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Preface

The 15th International Conference on Information Security and Cryptology (Inscrypt
2019) was held during December 6–8, 2019, in Nanjing, China, with more than 250
attendees. Inscrypt is a well-recognized annual international forum for security
researchers and cryptographers to exchange their ideas and present their research
results, and is held every year in China. This volume contains all papers accepted by
Inscrypt 2019. The program chairs also invited 6 distinguished researchers to deliver
talks. The keynote speakers were Robert H. Deng from Singapore Management
University, Singapore; Cetin Kaya Koc from University of California, Santa Barbara,
USA; Marina Blanton from University at Buffalo (SUNY), USA; Willy Susilo from
University of Wollongong, Australia; Joseph Liu from Monash University, Australia;
and Pawel Szalachowski from Singapore University of Technology and Design,
Singapore.

The conference received 95 submissions. Each submission was reviewed by at least
three Program Committee (PC) members or external reviewers. The PC members
accepted 24 full papers and 8 short papers to be included in the conference program.
The PC members selected one best student paper and one best paper. The best student
paper was “CAVAEva: An Engineering Platform for Evaluating Commercial
Anti-Malware Applications on Smartphones” by Hao Jiang, Weizhi Meng, Chunhua Su,
and Kim-Kwang Raymond Choo, and the best paper was “Invisible Poisoning: Highly
Stealthy Targeted Poisoning Attack” by Jinyin Chen, Haibin Zheng, Mengmeng Su,
Tianyu Du, Changting Lin, and Shouling Ji. The program chairs also invited one paper
titled “Confidential Transactions in Blockchain” to be included in this volume. The
proceedings therefore contain all 33 papers revised after the conference.

Inscrypt 2019 was held in cooperation with the International Association for
Cryptologic Research (IACR), and was organized by the College of Computer Science
and Technology, Nanjing University of Aeronautics and Astronautics, and the State Key
Laboratory of Information Security (SKLOIS) of the Chinese Academy of Science.
Inscrypt 2019 was co-organized by Jiangsu Software New Technology and Industri-
alization Collaborative Innovation Center, School of Computer Science/Software/Cyber
Security, Nanjing University of Posts and Telecommunications.

Furthermore, we would like to thank all 362 authors who submitted their papers to
Inscrypt 2019, and the conference attendees for their interest and support. We thank the
PC members and external reviewers for their hard work in reviewing the submissions.
We thank the Organizing Committee and all volunteers from Nanjing University of
Aeronautics and Astronautics for their time and effort dedicated to arranging the
conference. Finally, we thank the EasyChair system for making the entire process
convenient.

December 2019 Zhe Liu
Moti Yung
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Revocable and Linkable Ring Signature

Xinyu Zhang, Joseph K. Liu(B), Ron Steinfeld, Veronika Kuchta,
and Jiangshan Yu

Faculty of IT, Monash University, Melbourne, Australia
rayzhang.prc@gmail.com,

{Joseph.Liu,Ron.Steinfeld,Veronika.Kuchta,Jiangshan.Yu}@monash.edu

Abstract. In this paper, we construct a revocable and linkable ring sig-
nature (RLRS) scheme, which enables a revocation authority to revoke
the anonymity of the real signer in linkable ring signature scheme under
any circumstances. In other words, the revocability of RLRS is manda-
tory. The proposed RLRS scheme inherits the desired properties of group
signature (anonymity revocation) and linkable ring signature (sponta-
neous group formation and linkability). In addition, we proved the secu-
rity of our scheme in the random oracle model. We also provided a revo-
cable ring confidential transaction protocol based on our RLRS scheme,
which embedded the revocability in ring confidential transaction proto-
col.

Keywords: Ring signature · Ring confidential transaction ·
Revocability · Linkability

1 Introduction

1.1 Ring Signature and Variants

Ring Signature. Ring signature schemes (e.g., [1,6,13,28]) allow the user to
sign a message on behalf of a spontaneous group in an anonymous way. Unlike
group signature, ring signature scheme does not require the group manager to
form the group or distribute keys to group members. In other words, the signer
can build the group spontaneously (i.e., without the cooperation of other group
members). Another special property of a ring signature scheme is anonymity. An
honest signer can convince the verifier that the signature is signed by one of the
group members, but the identity (i.e., public key) of the real signer remains to be
hidden. According to different underlying public key systems, ring signature has
enormous amount of different constructions, such as RSA based [28], discrete-
logarithm based [13], mixture based [1], pairing based [6], and lattice based
[8]. Ring signatures with different features are also proposed, such as forward
security [15,22,24], threshold setting [20,23,30,35,36].

Linkable Ring Signature. The notion of linkable ring signature was first intro-
duced in [19]. Linkable ring signature not only inherits the properties of ring
c© Springer Nature Switzerland AG 2020
Z. Liu and M. Yung (Eds.): Inscrypt 2019, LNCS 12020, pp. 3–27, 2020.
https://doi.org/10.1007/978-3-030-42921-8_1
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signature but also provides linkability for the verifier to verify if two signatures
are generated by the same signer with respect to an event. Linkability is espe-
cially important for applications such as e-voting and e-cash. The motivation of
[19] is that most of ring signature schemes achieved unconditional anonymity
(e.g., [1,6,28]), which means the verifier has no way to determine if two sig-
natures are signed using same private key. After the introduction of linkable
ring signature, several schemes with different improvements were proposed (e.g.,
[2,4,11,12,18,21,31,32]). We summarise their contributions as follows:

– Constant size LRS: [2,31]
– LRS with unconditional anonymity: [18]
– LRS with traceability: [11,12]
– LRS with enhanced security: [21]
– Certificate-based LRS: [4]
– LRS with separability: [32]

Revocable (Traceable) Ring Signature. Another variant of ring signature
is called traceable or revocable ring signature (e.g., [3,5,9,12,16,17,25]). The
main objective of revocable (traceable) ring signature schemes is to provide a
way to reduce the anonymity of ring signature. Revocable (traceable) ring sig-
nature is different from group signature since the signer still can form the group
spontaneously. There are three categories of revocable (traceable) ring signature:

– Revocable Ring Signature (e.g., [17]): A set of pre-defined revocation authori-
ties are able to open the anonymity of a ring signature at any time they want,
[17] called this property a Mandatory Revocability.

– Traceable Ring Signature (e.g., [3,5,12]): The revocability (traceability) in
traceable ring signature is not mandatory, that is, the signer’s identity will
be revealed universally if and only if he/she submits two signatures which are
generated using the same private key based on an event.

– Convertible/Verifiable Ring Signature (e.g., [9,16,25]): The scheme is revo-
cable if the signer wants to prove the ownership of a ring signature to the
verifier. However, if the signer is reluctant to reveal his/her identity, the sig-
nature remains anonymous.

Nonetheless, ring signature schemes (and variants) we mentioned above do
not provide the mandatory revocability as well as linkability. For example, trace-
able ring signature [12] can trace a signer only when the signer was double-
signing. In other words, no one can determine the identity of an honest signer. In
contrast, revocable ring signature [17] provides mandatory revocability, whereas
the scheme cannot detect if two signatures are linked.

1.2 Ring Confidential Transaction

Monero, one of the largest cryptocurrencies, was introduced in 2014. Unlike Bit-
Coin [26], Monero concentrates on protecting transaction privacy by applying
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ring signature techniques. Originally, Monero was based on CryptoNote pro-
tocol [33] which exploits properties of traceable ring signature [12] to enhance
transaction anonymity as well as prevent the double-spending attack. Later in
2015, Noether [27] proposed Ring Confidential Transaction (Ring CT), which
is based on linkable ring signature [19], to further advance the technique by
solving several practical issues in CryptoNote. Specifically, Monero allows users
to have multiple different accounts. Each account contains a “one-time” public
key as account address and the coin. To authorise a transaction, the user has
to use his/her corresponding private key. In order to construct an anonymous
transaction, the user also needs to select several decoys (i.e., other users’ account
addresses) and generates a linkable ring signature.

Nevertheless, anonymity is not always good. According to the research [7],
around US$1.6 trillion was laundered in 2009. As claimed in [14], untraceability
and lack of supervision of cryptocurrencies stimulate cyber-crimes like money
laundering and terrorist financing. Authorities, such as FBI, found it is hard
to “detect suspicious activities, identify users, and obtain the transaction” [10].
Therefore, it is critical to provide a method for the authority to supervise the
transactions on blockchain, or at least, to revoke the anonymity of a suspicious
spender.

1.3 Our Contributions

The contribution of the paper contains three parts:

– We present a ring signature scheme which achieves both mandatory revoca-
bility and linkability. Specifically, our scheme enables a revocation authority
to revoke anonymity of a ring signature in any condition. Besides, our Revo-
cable and Linkable Ring Signature (RLRS) scheme inherits the advantages of
linkable ring signature schemes - an efficient way to prevent double-signing.
We also construct a formal security proof of our RLRS scheme in random
oracle model.

– The second contribution is that our scheme has more efficient revocation
algorithm than [17] and [12]. The result shows that our scheme only needs
one modular multiplication and one exponentiation in the revocation process
while the computation time in [17] and [12] is linearly dependent on the group
size. We present the comparison between our scheme and [12,17] in Sect. 6.

– The third contribution is that we extended our RLRS scheme to construct
Revocable Ring Confidential Transaction protocol, which is presented in
Appendix A.

Paper Organisation. The paper is organised in 6 parts, including the intro-
duction. We compared our scheme with other revocable/traceable ring signature
scheme and point out what are the advantages of our work in Sect. 2. Section 3
initialises the primitives of the scheme, which are utilised throughout the paper.
In Sect. 4, we construct a security model and present our revocable and linkable
ring signature protocol along with the security analysis of our scheme. Section 5
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is an analysis of the efficiency of our scheme. The last section summarises our
contributions and proposes several limitations which should be considered in
future works.

2 Related Work

Revocable ring signature [17] was proposed in 2007, which shares similar idea
with our construction. The scheme in [17] was based on bilinear pairing and
proof-of-knowledge. The main advantage of [17] is that their protocol allows a
set of revocation authorities to revoke anonymity of the real signer while our
construction assumes the authority shares one public key. However, as we men-
tioned in the previous section, [17] did not introduce linkability to their scheme.
The combination of mandatory revocability and linkability can especially benefit
the construction of revocable e-cash systems (i.e., supervises users of the sys-
tem as well as prevents double-spending). Another paper [34] applies revocable
ring signature technique to build a bidder-anonymous English auction protocol.
However, the scheme in [34] was similar to [17] except for that the revocation
authority only has one public-private key pair, and the signer’s public key is
related to his/her identity in the initial phase.

Another type is called Traceable ring signature [12] which is comparable with
Revocable iff linked ring signature [3,5]. Different from Revocable ring signature
[17], a traceable ring signature scheme [12] does not enable mandatory signer
revocation. Thus, only when the signer tries to generate multiple signatures with
the same private key in one event (double-signing), his/her identity (i.e., public
key) will be revealed. Traceable ring signature are closely related to linkable ring
signature. Precisely, in [12], the linking tag in linkable ring signature schemes
(e.g., [19,21]) is manipulated to trace the identity of the signer while the instan-
tiation of zero-knowledge-proof in [12] is similar to [21]. We summarise the core
function (i.e., signature signing) in [12] to two parts, the first part is to generate
the linking tag which can be used to trace the signer, and the second part is
based on (non-interactive) zero-knowledge-proof. Nonetheless, the construction
in [12] was not very efficient since the signature size linearly depends on the
group size. Therefore, in 2011, Fujisaki proposed [11] to enhance the security
definition of [12] as well as reduce the signature size to O(

√
n).

The last type which is able to reduce the anonymity of ring signature is called
Convertible(Verifiable) Ring Signature [9,16,25]. The convertible ring signature
scheme [16] and verifiable ring signature scheme [25] achieve similar goals, that is,
allow the signer to claim the ownership of the signature. However, if the signer
refuses to do so, the signature is still anonymous. Their schemes are mostly
based on RSA ring signature proposed in [28]. Nevertheless, as mentioned in
[29], their original ring signature [28] is able to perform the function of verifiable
ring signature, and they already described such a function in “Generalisations
of Special Cases”. Another deficiency is that the security model of verifiable
and convertible ring signature is too simple. The researchers just explained the
security model in [28], where they should build the security model based on their
proposed scheme.
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3 Preliminaries

3.1 Mathematical Assumptions

Definition 1 (Discrete Logarithm (DL) Assumption). The Discrete Log-
arithm assumption in G is defined as follows: on input a tuple (y, g) ∈ G

2 where
|G| = q for some prime number q, outputs x such that y = gx (mod q). We say
that (t, ε) − DL assumption holds in G, if no t-time algorithm has advantage at
lease ε in solving DL problem in G.

Definition 2 (Decisional Diffie-Hellman (DDH) Assumption). The
Decisional Diffie-Hellman Assumption in G is defined as follows: on input a
quadruple (g, ga, gb, gc) ∈ G

4, where |G| = q for some prime number q, output 1
if c = ab. Otherwise 0. We say that (t, ε) − DDH assumption holds in G, if no
t-time algorithm has advantage at least ε over random guessing in solving DDH
problem in G.

3.2 ElGamal Public Key Encryption

In our protocol, we apply ElGamal encryption scheme consisting of the following
four algorithms:

1. param ← Setup(λ): On input a security parameter λ, returns public param-
eters param = {G, q, g}, where G is a group with prime order q such that
discrete logarithm is intractable, and g is the generator in G.

2. (sk, pk) ← KeyGen(param): Takes the input param = {G, q, g}, generates a
pair of public key (pk = y) and secret key (sk = x) satisfying y = gx (mod q).

3. c ← Encryption(M,pkr): On input a message M , and a receiver’s public
key pkr = yr, the sender randomly picks a number k ∈ Zq and generates
the first part of the ciphertext c1 = gk (mod q). Then the signer takes yr

and generates the second part of the ciphertext c2 = yk
r M (mod q). The final

output of the algorithm is c = {c1, c2}.
4. M ← Decryption(c, skr): Takes the input c = {c1, c2}, and receiver’s secret

key skr = xr, recovers the message by computing M = c2\cxr
1 (mod q).

3.3 Signature of Knowledge

In our construction, we utilise Honest-Verifier Zero-Knowledge (HVZK) Proof of
Knowledge Protocols (PoKs), which can be modified into a signature scheme by
setting the challenge to a hash value of a commitment together with the message.
The scheme is used in many (linkable) ring signature schemes such as [18,19,21].
A Signature of Knowledge (SoK) protocol contains following algorithms:

1. param ← Setup(λ): On input a security parameter λ, returns a public param-
eter param.

2. σ ← Sign(M,x, y): The algorithm takes a message M , a pair of (x, y), returns
a SoK denoted as σ.

3. 0/1 ← Verify(M,σ, y): On input a message M , a SoK σ, and a statement y,
outputs 0/1.
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4 Revocable and Linkable Ring Signature

4.1 Technical Description

A revocable and linkable ring signature scheme (RLRS) is a tuple of six algo-
rithms (Setup, KeyGen, Sign, Verify, Link, Revoke)

– param ← Setup(λ) is a probabilistic polynomial time (PPT) algorithm
which, on input a security parameter λ, outputs a set of public parameters
param.

– (ski, pki) ← KeyGen(param) is a PPT algorithm receives public parameters
param and returns a private/public key pair (ski, pki). We denote SK as the
domain of possible private keys and PK as the domain of possible public
keys.

– σ ← Sign(event, n,Y, sk, pkrev,M) takes the input of an event description
event, a group size n, a set Y contains n public keys {pk1, . . . , pkn} such that
pki ∈ PK for i ∈ [1, n], a private key sk ∈ SK which corresponds to one of
the public keys in Y, a public key of revocation authority pkrev ∈ PK, and a
message M , produces a signature σ.

– accept/reject ← Verify(event, n,Y, pkrev,M, σ) accepts the input of an
event description event, a group size n, a set Y = {pk1, . . . , pkn} of n pub-
lic keys, where pki ∈ PK for i ∈ [1, n], a revocation authority’s public key
pkrev ∈ PK, and a message-signature pair (M,σ). If the message-signature
pair is valid, the algorithm outputs accept. Otherwise, reject.

– linked/unlinked ← Link(event, n1, n2,Y1,Y2,M1,M2, σ1, σ2) receives an
event description event, two group sizes n1 and n2, two sets Y1 and Y2 of
n1 and n2 public keys respectively, where all public keys in Y1 and Y2 are in
PK, two valid message and signature pairs (M1, σ1) and (M2, σ2). The algo-
rithm outputs linked if two linking tags in σ1 and σ2 are the same. Otherwise
unlinked.

– pk ← Revoke(n,Y, σ, skrev) takes as input a group size n, a set of n public
keys Y = {pk1, . . . , pkn} such that pki ∈ PK for i ∈ [1, n], a valid signature
σ, and revocation authority’s secret key skrev ∈ SK corresponding to pkrev,
returns a public key pk in Y.

Correctness: A RLRS scheme should satisfy:

– Verification Correctness: A signature generated by an honest signer should
be identified as a valid signature with overwhelming probability.

– Linking Correctness: If two signatures are determined as “linked”, then they
must have been signed using the same private key with respect to the same
event description.

– Revocation Correctness: An honest signer’s public key will be revealed by the
revocation authority with overwhelming probability.
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4.2 Security Definitions

Security of RLRS has five aspects, including unforgeability, anonymity, linkabil-
ity, non-slanderability, and revocability. We define three oracles, which simulate
abilities of the adversary:

1. Joining Oracle (J O): on request, adds a new user to the system, then returns
the public key pk ∈ PK of the new user.

2. Corruption Oracle (CO): on input a public key pki ∈ PK, returns the corre-
sponding ski ∈ SK.

3. Signing Oracle (SO): takes the input of an event description event, a group
size n, a set Y = {pk1, . . . , pkn} that contains n public keys, a signer’s public
key pkπ ∈ Y, a revocation authority’s public key pkrev ∈ PK, and a message
M , returns a valid signature denoted as σ ← Sign(e, n,Y, skπ, pkrev,M).
Note that SO may query CO during its operation.

Unforgeability: The unforgeability game is defined between a simulator S and
an adversary A with access to J O, CO, SO:

a. A runs the Setup algorithm on a security parameter λ and outputs param.
b. A can query J O, CO,SO adaptively.
c. A gives S an event description event, a group size n, a set Y = {pk1, . . . , pkn}

of n public keys, where pki ∈ PK for i ∈ [1, n], a message M , a revocation
authority’s public key pkrev ∈ PK, and a signature σ.

A wins the game if:

1. Verify(event, n,Y, pkrev,M, σ) = accept;
2. all public keys in Y are query outputs of J O;
3. no public keys in Y have been queried to CO; and
4. σ is not a query output of SO.

We denote by
AdvUnf

A (λ) = Pr[A wins the game]

the success probability of adversary A in winning the unforgeability game.

Definition 3 (Unforgeability). A RLRS scheme is existential unforgeable
against adaptive chosen message and chosen public key attack if for all PPT
adversary A, AdvUnf

A (λ) is negligible.

Anonymity: any verifier should not have a non-negligible probability greater
than 1/n of correctly guessing the signer’s identity in a valid ring signature when
none of the ring members is known. Moreover, any party who has revocation
authority’s secret key can break anonymity due to the mandatory revocability
of our scheme. Therefore, RLRS scheme is computationally anonymous if revo-
cation authority has not been compromised. The anonymity game is defined
between a simulator S and an adversary A who is given access to J O:
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a. A runs the Setup algorithm on a security parameter λ and outputs param.
b. A can make query to J O adaptively.
c. A gives S an event description event, a group size n, a set Y of n public keys

such that all public keys in Y are generated by J O, a revocation authority’s
public key pkrev ∈ PK, a message M . S parses Y as {pk1, . . . , pkn} and
randomly picks π ∈ {1, . . . , n}. S computes a “Challenge Signature” σπ using
skπ, where skπ is a corresponding private key of pkπ. σπ is given to A.

d. A guesses π′ ∈ {1, . . . , n}.

We denote by

AdvAnon
A (λ) = |Pr[π′ = π] − 1

n
|

the success probability of adversary A in winning the anonymity game.

Definition 4 (Anonymity). A RLRS scheme is computationally anonymous
if for any adversary A, AdvAnon

A (λ) is negligible.

Linkability: linkability is a mandatory property of RLRS scheme, which means
that the signer cannot generate two signatures using the same private key such
that they are determined to be unlinked by Link algorithm. We adopt the
linkability game defined by Liu et al. [19] to capture the scenario, where an
adversary tries to generate two RLRS signatures (σ1, σ2) using the same private
key yet Link(·, σ1, σ2) algorithm outputs unlinked. Actually, if RLRS scheme
is unforgeable, then the unlinked signatures can only be generated by different
private keys with respect to the same event. The linkability game between a
simulator S and an adversary A who is given access to J O, CO, SO, is defined
as follows:

a. A runs the Setup algorithm on a security parameter λ and outputs param.
b. A can query J O, CO,SO adaptively.
c. A gives S an event description event, two group size n1, n2 with assumption

of n1 ≤ n2 without loss of generality, two set Y1,Y2 with n1, n2 public keys
respectively, two message-signature pairs (M1, σ1), (M2, σ2), and a revocation
authority’s public key pkrev.

A wins the game if:

1. All public keys in Y1 ∪ Y2 are outputs of J O;
2. Verify(event, ni,Yi, pkrev,Mi, σi) = accept for i = 1, 2 such that σi is not

the output of SO;
3. CO has been queried less than 2 times, that is, A can only have at most one

user private key; and
4. Link(·, σ1, σ2) = unlinked.

We denote by
AdvLink

A (λ) = Pr[A wins the game]

the success probability of adversary A in winning the linkability game.
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Definition 5 (Linkability). A RLRS is linkable if for all PPT adversary A,
AdvLink

A (λ) is negligible.

Non-slanderability: the attacker should be unable to accuse an honest user
for generating a signature which is determined to be linked with a malicious
signature generated by attacker. The non-slanderability game is defined between
a simulator S and an adversary A who is given access to J O, CO, SO:

a. A runs the Setup algorithm on a security parameter λ and outputs param.
b. A can query J O, CO,SO adaptively.
c. A gives S an event description event, a group size n, a set Y of n public

keys, a message m, a revocation authority’s public key pkrev, and a public
key of an insider pkπ ∈ Y such that pkπ has not been queried to CO or has
not been included as the insider public key of any query to SO. S uses skπ

corresponding to pkπ to run Sign(event, n,Y, skπ, pkrev,M) and produces σ
to A.

d. A queries oracles with arbitrary interleaving. Particularly, A can make query
to CO of any public key except for pkπ.

e. A delivers group size n∗, Y∗ with n∗ public keys, a message M∗, a revocation
authority’s public key pkrev, and a signature σ∗ �= σ.

A wins the game if

1. Verify(event, n∗,Y∗, pkrev,M∗, σ∗) = accept;
2. σ∗ is not an output of SO;
3. All public keys in Y

∗,Y are query outputs of J O;
4. pkπ has not been queried to CO; and
5. Link(σ∗, σ) = linked.

We denote by
AdvNS

A (λ) = Pr[A wins the game]

the success probability of adversary A in winning the non-slanderability game.

Definition 6 (Non-slanderability). A RLRS scheme is non-slanderable if for
all PPT adversary A, AdvNS

A is negligible.

Revocability: revocability in RLRS scheme is compulsory, that is, the proba-
bility of a signer generates a signature without his/her identity gets revealed by
revocation authority should be negligible. We define revocability game between
a simulator S and an adversary A who is given access to J O, CO, SO:

a. A runs the Setup algorithm on a security parameter λ and outputs param.
b. A can query J O, CO,SO adaptively.
c. A can only obtain at most one private key of ring member from CO.
d. A gives S an event description event, a group size n, a set Y contains n public

keys, a message M , a revocation authority’s public key pkrev, and a signature
σ.
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A wins the game if

1. Verify(event, n,Y,M, σ) = accept;
2. all public keys in Y are query outputs of J O;
3. σ is not an output of SO;
4. CO has been queried less than two times (A can only obtain at most one

private key denotes as xπ); and
5. yj = Revoke (n,Y, σ, skrev) where j �= π.

We denote by
AdvRev

A (λ) = Pr[A wins the game]

the success probability of adversary A in winning the revocability game.

Definition 7 (Revocability). A RLRS scheme is revocable if for any PPT
adversary A, AdvRev

A (λ) is negligible.

4.3 Scheme Description

Setup(λ): Let G be a group with prime order q such that the underlying discrete
logarithm problem is intractable, and g is the generator of G. Define two hash
functions: H1 : {0, 1}∗ → Zq and H2 : {0, 1}∗ → G. The public parameters are
param = {G, g, q,H1,H2}.

KeyGen(param): Assume there are n users. User i, where i ∈ [1, n], randomly
chooses xi ∈ Zq and computes yi ← gxi (mod q). User i has secret key and
public key pair {ski, pki} such that ski = xi and pki = yi.

Sign(event, n,Y, skπ, pkrev,M): Takes as input (event, n,Y, skπ, pkrev,M),
where event is the description of the event, n is the number of users in the ring,
Y = {pk1, pk2, . . . , pkn} is a set of public keys of users in the ring, skπ = xπ is
the secret key of user π and the corresponding public key is pkπ = yπ, note that
pkπ ∈ Y with π ∈ [1, n], pkrev = ỹ is the public key of the revocation authority,
and M is the message to be signed. Assume that the secret key skrev = x̃ of the
authority and the corresponding public key ỹ are generated by KeyGen. User π
with the knowledge of xπ computes a signature of knowledge as follows:

1. Compute the linking tag L by committing to xπ:
(a) h ← H2(event),
(b) L ← hxπ .

2. Randomly pick u ∈ Zq, and compute the ciphertext by using ElGamal
Encryption:
(a) C1 ← gu,
(b) C2 ← ỹuyπ,
(c) C ← {C1, C2}.

3. Randomly pick t1, t2 ∈ Zq and compute the following commitments:
(a) a1,π ← gt1 and a2,π ← ỹt1 ,
(b) S′

π+1 ← H1(event,Y, L,M, a1,π, a2,π),
(c) ā1,π ← gt2 and ā2,π ← ht2 ,
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(d) S′′
π+1 ← H1(event,Y, L,M, ā1,π, ā2,π).

4. For i = π + 1, . . . , n, 1, . . . , π − 1, randomly pick r1,i, r2,i ∈ Zq, and compute:
(a) a1,i ← gr1,iC

S′
i

1 and a2,i ← ỹr1,i(C2
yi

)S′
i ,

(b) S′
i+1 ← H1(event,Y, L,M, a1,i, a2,i),

(c) ā1,i ← gr2,iy
S′′

i
i and ā2,i ← hr2,iLS′′

i ,
(d) S′′

i+1 ← H1(event,Y, L,M, ā1,i, ā2,i).
5. Compute r1,π ← t1u − S′

πu (mod q) and r2,π ← t2 − S′′
πxπ (mod q).

6. The signature is σ = (S′
1, S

′′
1 , r1,1, . . . , r1,n, r2,1, . . . , r2,n, L, C).

Verify(event, n,Y, pkrev,M, σ): On input an event description event, a group
Y of n public keys, a revocation authority’s public key pkrev = ỹ, a message M ,
and a signature σ, verify the signature as follows:

1. On input σ, parse the ciphertext C = {C1, C2}.
2. For i = 1, . . . , n, compute:

(a) Z ′
1,i ← gr1,iC

S′
i

1 and Z ′
2,i ← ỹr1,i(C2

yi
)S′

i ,
(b) S′

i+1 ← H1(event,Y, L,M,Z ′
1,i, Z

′
2,i) if i �= n,

(c) Z ′′
1,i ← gr2,iy

S′′
i

i and Z ′′
2,i ← hr2,iLS′′

i ,
(d) S′′

i+1 ← H1(event,Y, L,m,Z ′′
1,i, Z

′′
2,i) if i �= n.

3. Check
(a) S′

1
?= H1(event,Y, L,m,Z ′

1,n, Z ′
2,n),

(b) S′′
1

?= H1(event,Y, L,m,Z ′′
1,n, Z ′′

2,n).

Link(event, n1, n2,Y1,Y2,M1,M2, σ1, σ2): On input an event description event,
two groups Y1, Y2 with group sizes n1, n2 respectively, and two valid message-
signature pairs (M1, σ1), where σ1 = (·, L1); (M2, σ2), where σ2 = (·, L2), output
linked if L1 = L2. Otherwise, reject.

Revoke(n,Y, σ, skrev): On input(n,Y, σ, skrev), where n is the group size of ring
group Y, σ is the signature generated, skrev = x̃ is authority’s secret key corre-
sponds to pkrev = ỹ. The revocation authority first check whether the signature
is valid. If yes, continue. Otherwise, abort. To revoke the anonymity of the real
signer, the revocation authority computes as follows:

1. C = {C1, C2}.
2. ∃yπ ∈ Y(π ∈ [1, n]) such that yπ = C2\C x̃

1 .

yπ is the public key of the real signer.
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4.4 Correctness Analysis

Verification Correctness. From the construction of revocable and linkable
ring signature, we start with S′

π+1, S
′′
π+1, where π denotes the real signer’s index

such that π ∈ [1, n] without loss of generality:

S′
π+1 = H1(event,Y, L,m, gt1 , (C2

yπ
)t1)

S′
π+2 = H1(event,Y, L,m, gr1,π+1C

S′
π+1

1 , ỹr1,π+1( C2
yπ+1

)S′
π+1)

...

S′
n = H1(event,Y, L,m, gr1,n−1C

S′
n−1

1 , ỹr1,n−1( C2
yn−1

)S′
n−1)

S′
1 = H1(event,Y, L,m, gr1,nC

S′
n

1 , ỹr1,n(C2
yn

)S′
n)

S′
2 = H1(event,Y, L,m, gr1,1C

S′
1

1 , ỹr1,1(C2
y1

)S′
1)

...

S′
π−1 = H1(event,Y, L,m, gr1,π−2C

S′
π−2

1 , ỹr1,π−2( C2
yπ−2

)S′
π−2)

With the same sequence, we also start from computing S′′
π+1 until S′′

π−1.

S′′
π+1 = H1(event,Y, L,m, gt2 , ht2)

S′′
π+2 = H1(event,Y, L,m, gr2,π+1y

S′′
π+1

π+1 , hr2,π+1LS′′
π+1)

...

S′′
n = H1(event,Y, L,m, gr2,n−1y

S′′
n−1

n−1 , hr2,n−1LS′′
n−1)

S′′
1 = H1(event,Y, L,m, gr2,ny

S′′
n

n , hr2,nLS′′
n )

S′′
2 = H1(event,Y, L,m, gr2,1y

S′′
1

1 , hr2,1LS′′
1 )

...

S′′
π−1 = H1(event,Y, L,m, gr2,π−2y

S′′
π−2

π−2 , hr2,π−2LS′′
π−2)

For the verification, the verifier can simulate the process with the starting point
S′
2 and S′′

2 , since S′
1 and S′′

1 is given in the signature.

S′
2 = H1(event,Y, L,m, gr1,1C

S′
1

1 , ỹr1,1(C2
y1

)S′
1)

...

S′
π = H1(event,Y, L,m, gr1,π−1C

S′
π−1

1 , ỹr1,π−1( C2
yπ−1

)S′
π−1)

S′
π+1 = H1(event,Y, L,m, gr1,πC

S′
π

1 , ỹr1,π (C2
yπ

)S′
π )

S′
π+2 = H1(event,Y, L,m, gr1,π+1C

S′
π+1

1 , ỹr1,π+1( C2
yπ+1

)S′
π+1)

...

S′
n = H1(event,Y, L,m, gr1,n−1C

S′
n−1

1 , ỹr1,n−1( C2
yn−1

)S′
n−1)
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We verify S′
1

?= S̄′
1 = H1(event,Y, L,m, gr1,nC

S′
n

1 , ỹr1,n(C2
yn

)S′
n).

Note that the verification of S′
π+1 holds because:

gr1,πC
S′

π
1 = gt1−S′

πu · C
S′

π
1 = gt1−S′

πu · guS′
π = gt1

ỹr1,π(C2
yπ

)S′
π = ỹt1−S′

πu( ỹuyπ

yπ
)S′

π = ỹt1−S′
πu · ỹuS′

π = ỹt1

Again, we start with verifying S′′
2 in the same order.

S′′
2 = H1(event,Y, L,m, gr2,1y

S′′
1

1 , hr2,1LS′′
1 )

...

S′′
π = H1(event,Y, L,m, gr2,π−1y

S′′
π−1

π−1 , hr2,π−1LS′′
π−1)

S′′
π+1 = H1(event,Y, L,m, gr2,πy

S′′
π

π , hr2,πLS′′
π )

S′′
π+2 = H1(event,Y, L,m, gr2,π+1y

S′′
π+1

π+1 , hr2,π+1LS′′
π+1)

...

S′′
n = H1(event,Y, L,m, gr2,n−1y

S′′
n−1

n−1 , hr2,n−1LS′′
n−1)

We verify S′′
1

?= S̄′′
1 = H1(event,Y, L,m, gr2,ny

S′′
n

n , hr2,nLS′′
n ).

Similar to the verification of S′
π+1, we verify S′′

π+1 by:

gr2,πy
S′′

π
π = gt2−S′′

π xπ · gxπS′′
π = gt2

hr2,πLS′′
π = ht2−S′′

π xπ · hxπS′′
π = ht2

Linking Correctness. Linking correctness is guaranteed if the signer computes
the linking tag as follows:

h = H2(event)and L = hx.

Therefore, for the same event, the user can only compute the linking tag once.

Revoking Correctness. If the signer follows the protocol, the revocation can
successfully recover signer’s public with its secret by decrypting the cipher text
in the following way:

yπ =
C2

C x̃
1

,

where x̃ is revocation authority’s private key and yπ is the real signer’s public
key.

4.5 Security Analysis

Theorem 1 (Existential Unforgeability). RLRS scheme is existential
unforgeable in the random oracle model if DLP is hard.
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Proof. The simulator S simulates the oracles as follows:

– Random Oracle H1: S randomly picks α ∈ Zq and returns the value which
has not been assigned.

– Random Oracle H2: S randomly picks k ∈ Zq and returns gk.
– Joining Oracle J O: Assume A can query J O at most n′ times, where n′ ≥ n.

S randomly chooses a subset In which contains n indexes. We assign these n
indexes with 1, . . . , n, note that S dose not know any secret key corresponding
to public keys with index 1 to n. We denote n′ − n indexes as n + 1, . . . , n′,
and S generates the public/private key pairs according to the algorithm for
these n′ − n indexes. On the ith query, S returns the corresponding public
key.

– Corruption Oracle CO: For query input the public key pk which is an output
of J O, S first checks if it is corresponding to the subset In. If yes, S halts.
Otherwise, S returns the corresponding private key.

– Signing Oracle SO: On input a signing query with an event description event,
a group size n, a public key set Y = {y1, . . . , yn}, a signer’s public key pkπ,
where π ∈ [1, n], a revocation authority’s public key pkrev, and a message M ,
S simulates as follows:

• If the query of H(event) has not been made, S queries H2 on event and
sets h = H2(event). Note that S knows k of h to the base g such that
h = gk.

• If yπ is not corresponding to any element in In, S knows the private key
and computes the signature according to the algorithm. Otherwise, we let
yπ be the πth index from J O. S sets the linking tag L = yk

π.
• S randomly pick u ∈ Zq and compute cipher text C1 = gu, C2 = ỹuyπ,

and C = {C1, C2}, where ỹ is the revocation authority’s public key and
yπ is signer’s public key.

• S randomly chooses S′
π′ and S′′

π′ ∈ Zq, For i = π′, . . . , n, 1, . . . , π′ − 1,
randomly picks r1,i, r2,i ∈ Zq and computes:

S′
i+1 = H1(event,Y, L,M, gr1,iC

S′
i

1 , ỹr1,i(C2
yi

)S′
i),

S′′
i+1 = H1(event,Y, L,M, gr2,iy

S′′
i

i , hr2,iLS′′
i ).

S sets the oracle outcome:

H1(event,Y, L,M, gr1,π−1C
S′

π−1
1 , ỹr1,i( C2

yπ−1
)S′

π−1) = S′
π,

H1(event,Y, L,M, gr2,π−1y
S′′

π−1
i , hr2,π−1LS′′

π−1) = S′′
π .

If collision occurs, repeat this step.
• S returns the signature σ = (S′

1, S
′′
1 , r1,1, . . . , r1,n, r2,1, . . . , r2,n, L, C). A

cannot distinguish between S’s simulation from REAL scenario.

For one successful simulation, suppose A forged

σ(1) = (S(1)′
1 , S

(1)′′
1 , r

(1)
1,1, . . . , r

(1)
1,n, r

(1)
2,1, . . . , r

(1)
2,n, L(1), C(1))
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on an event, and a set Y
(1) of n(1) public keys such that it is a subset

of public keys corresponding to the indexes in In. We let n(1) = n with-
out loss of generality. By the assumption of random oracle model, A queries
H2(event) which is denoted as h and queries H1(event,Y(1), L,M, a1,i, a2,i),
H1(event,Y(1), L,M, ā1,i, ā2,i) for i ∈ {1, n} where

a1,i = gr
(1)
1,i C

S
(1)′
i

1 and a2,i = ỹr
(1)
1,i (C2

yi
)S

(1)′
i ,

ā1,i = gr
(1)
2,i y

S
(1)′′
i

i and ā2,i = hr
(1)
2,i LS

(1)′′
i .

Suppose A forges the signature after kth query to the oracles and S returns S
(1)′
1

and S
(1)′′
1 . In the rewind simulation, suppose S first invokes A to get its output

and its Turing Transcript T . Then S rewinds T to get T ′ while S consistently
answers kth query. That is, kth query is common in transcript T and T ′, denoted
as:

H1(event,Y(1), L,M, a1,π, a2,π),
H1(event,Y(1), L,M, ā1,π, ā2,π).

S knows the value of a1,π, a2,π, ā1,π, ā2,π at the time of the rewind. After A
returns its output from the rewind simulation, S can solve the discrete logarithm
problem of pkπ and ỹ in Y

(1) by computing following steps:

gr
(1)
1,πC

S(1)′
π

1 = gr
(2)
1,πC

S(2)′
π

1

ỹr
(1)
1,π (

C2

yπ
)S(1)′

π = ỹr
(2)
1,π (

C2

yπ
)S(2)′

π

gr
(1)
2,πy

S(1)′′
π

π = gr
(2)
2,πy

S(2)′′
π

π

hr
(1)
2,πLS(1)′′

π = hr
(2)
2,πLS(2)′′

π

That is

gr
(1)
1,πguS(1)′

π = gr
(2)
1,πguS(2)′

π (1)

gx̃r
(1)
1,πgx̃uS(1)′

π = gx̃r
(2)
1,πgx̃uS(2)′

π (2)

gr
(1)
2,πgxπS(1)′′

π = gr
(2)
2,πgxπS(2)′′

π (3)

hr
(1)
2,πhxπS(1)′′

π = hr
(2)
2,πhxπS(2)′′

π (4)

From Eq. (1), S derives u =
r
(2)
1,π−r

(1)
1,π

S
(1)′
π −S

(2)′
π

. Since S knows u, S can now derive x̃ =

q−1

r
(1)
1,π−r

(2)
1,π+u(S

(1)′
π −S

(2)′
π )

. From Eqs. (3) and (4), S can derive xπ =
r
(2)
2,π−r

(1)
2,π

S
(1)′′
π −S

(2)′′
π

. S
solves DLP, contradiction occurs. According to the forking lemma, the successful
rewind simulation is at least ε/4, where ε is the probability that A successfully
forges a signature. Therefore, the successful chance of S breaks DLP is at least
ε/4. ��
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Before we prove the anonymity of RLRS scheme, we provide a different definition
of Decisional Diffie-Hellman (DDH) Assumption, which is used to derive the
contradiction:

Definition 8 (A Different Decisional Diffie-Hellman (DDH) Assump-
tion). We define a different DDH assumption in G as follows: on input uni-
formly random (l0, l1, l2, l′0, l

′
1, l

′
2) ∈ G

6, where the order of |G| = q for some
prime number q. We set α0 = gl0 , β0 = gl1 , γ0 = gl2 , α1 = gl′0 , β1 = gl′1 , γ1 =
gl′0l′1 . Any PPT adversary A takes a guess of b ← {0, 1}; (α, β, γ) = (αb, βb, γb).
We say that Pr[(α, β, γ) = b] = 1

2 + 1
Q2(λ)

where Q2 is some polynomial and λ

is the security parameter.

Theorem 2 (Anonymity). RLRS scheme is computational anonymity in the
random oracle model if DDHP (Definition 8) is hard.

Proof. For each J O query, a DL instance y = gx is returned for some randomly
generated value x. Assume A can query J O at most n′ times where n′ ≥ n.
The challenge signature is created using the randomly picked public key in Y.
We assume H2(Y) = β. Since β is randomly generated, H2 remains random. In
order to simulate the process, S generates a challenge signature σπ with signer
π ∈ [1, n], where π is randomly picked by S on the request from A:

– S randomly picks u ∈ Zq and computes ciphertext C1 = gu, C2 = ỹuyπ, and
C = {C1, C2}, where ỹ is the revocation authority’s public key.

– S sets yπ = α and then randomly picks t1, t2 ∈ Z
∗
q . S computes S̃′

π = gt1 and
S̃′′

π = gt2 .
– For i = π, . . . , n, 1, . . . , π − 1, S randomly picks r1,i, r2,i ∈ Zq and computes:

S′
i+1 = H1(event,Y, γ,M, gr1,iC

S′
i

1 , ỹr1,i(C2
yi

)S′
i)

S′′
i+1 = H1(event,Y, γ,M, gr2,iy

S′′
i

i , hr2,iγS′′
i )

– S sets the oracle outcome

H1(event,Y, γ,M, gr1,π−1C
S′

π−1
1 , ỹr1,π−1( C2

yπ−1
)S′

π−1) = S′
π

H1(event,Y, γ,M, gr2,π−1y
S′′

π−1
i , hr2,π−1γS′′

π−1) = S′′
π

– σπ = (S′
1, S

′′
1 , r1,1, . . . , r1,n, r2,1, . . . , r2,n, γ, C)

S outputs σπ to A. A can query H1,H2 adaptively. Note that H2(Y) = β and
the output of

H1(event,Y, γ,M, gr1,iC
S′

i
1 , ỹr1,i(C2

yi
)S′

i)

H1(event,Y, γ,M, gr2,iy
S′′

i
i , hr2,iγS′′

i )

for i ∈ {1, . . . , n} are predetermined since S has queried these values.



Revocable and Linkable Ring Signature 19

Suppose A guesses the signer’s index is j ∈ [1, n] and returns j to S. By conven-
tion, A returns 0 if it cannot identify a signer. S returns 1 if j = π; returns 0 if
j = 0; and returns 1/0 with equal probability otherwise. Then

Pr[S(α, β, γ) = b|b = 1]
= Pr[S(α, β, γ) = b|b = 1,A(σπ) = π]
+Pr[S(α, β, γ) = b|b = 1,A(σπ) �= π, �= 0]

≥ 1 · (
1
n

+
1

Q(λ)
) +

1
2
(1 − 1

n
− 1

Q(λ)
)

≥ 1
2

+
1
2n

+
1

2Q(λ)

If b = 0, then all signers has equal probability to sign the signature from A’s
perspectives. Thus, A can do no better than random guessing.

Pr[S(α, β, γ) = b|b = 0]
= Pr[S(α, β, γ) = b|b = 0,A(σπ) = π]
+Pr[S(α, β, γ) = b|b = 0,A(σπ) �= π]

≥ 0 · 1
n

+
1
2
(1 − 1

n
)

Combining two probabilities, we have

Pr[S(α, β, γ) = b]

≥ 1
2
(Pr[S(α, β, γ) = b|b = 1]

+Pr[S(α, β, γ) = b|b = 0])

=
1
2

+
1

4Q(λ)

Therefore, S solves DDHP with probability non-negligibly than 1
2 . Contradiction

occurs. ��

Theorem 3 (Linkability). RLRS scheme is linkable in the random oracle
model, if DLP is hard.

Proof. In order to prove linkability of our RLRS scheme, we use the same oracle
setting as the proof in Theorem 1 except we allow S to have at most one private
key, say skπ corresponding to two different public keys in ring group Yi for
i = {1, 2}. This private key is given to A during the query to the CO, which is
the only private key that A is allowed to have.
Suppose A produces two valid signature

σ(1) = (S(1)′
1 , S

(1)′′
1 , r

(1)
1,1, . . . , r

(1)
1,n1

, r
(1)
2,1, . . . , r

(1)
2,n1

, L(1), C(1))

σ(2) = (S(2)′
1 , S

(2)′′
1 , r

(2)
1,1, . . . , r

(2)
1,n2

, r
(2)
2,1, . . . , r

(2)
2,n2

, L(2), C(2))
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where L(1) = H2(event)xπ and L(2) = H2(event)x′
π denote two linking tags of

two signatures respectively. Note that the event description event is fixed during
both runs. For σ(1), S rewinds the tape with a different value for H1 to obtain
another valid signature σ̄(1). We can derive

xπ =
r̄
(1)
2,π − r

(1)
2,π

S
(1)′′
π − S̄

(1)′′
π

where L(1) = hxπ and yπ = gxπ .
For the second rewind simulation for σ(2), S obtains with non-negligible proba-
bility of σ̄(2). The similar derivation shows that

x′
π =

r̄
(2)
2,π − r

(2)
2,π

S
(2)′′
π − S̄

(2)′′
π

.

Therefore, xπ = x′
π and L(1) = L(2). Two signatures (σ(1), σ(2)) are linked. S

can break DLP if the rewind simulation is successful. ��
Theorem 4 (Non-Slanderability). RLRS scheme is non-slanderable in the
random oracle model, if DLP is hard.

Proof. The adversary A can query CO on any public key in Y except for signer’s
public key pkπ. A gives simulator S pkπ, an event description event, a message
M , a set Y of n public keys, and a revocation authority’s public key pkrev, S
generates a valid signature σ = (·, L) where L is the linking tag computed using
skπ. A can keep querying oracles with the restriction of submitting pkπ to CO.
Suppose A generates another valid signature σ∗ = (·, L∗) which is not an output
of SO, and σ∗ is linked to σ = (·, L). Therefore, L∗ = L, which means:

L′ = H2(event)x∗
π = L = H2(event)xπ

That is, xπ = x∗
π which implies A knows the secret key skπ corresponding to

pkπ. This contradicts with the assumption that A cannot submit a query to CO
to get the secret key of pkπ. ��
Theorem 5 (Revocability). RLRS scheme is revocable in the random oracle
model if the construction is unforgeable.

Proof. We use the same setting as the proof in Theorem 1 but the adversary A
is able to get one private key denoted as skπ = xπ corresponding to pkπ = yπ in
Y from CO. Since {pk1, . . . , pkπ−1, pkπ+1, . . . , pkn} are n − 1 discrete logarithm
instances generated from fresh coin flips, A cannot find the corresponding secret
keys under our assumption. For contradiction, suppose A successfully generates
one valid signature:

σ = (S′
1, S

′′
1 , r1,1, . . . , r1,n, r2,1, . . . , r2,n, L, C),

where C = {C1, C2} and C1 = gu, C2 = ỹuyj for some randomly picked u ∈ Zq,
and ỹ is revocation authority’s public key. Since RLRS scheme is unforgeable, a
valid signature is strictly generated by skπ = xπ. There are two cases to break
revocability of RLRS scheme:
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– Case 1:
1. A randomly picks t1, t2 ∈ Zq and computes:

(a) S′
j+1 = H1(event,Y, L,M, gt1 , ỹt1),

(b) S′′
j+1 = H1(event,Y, L,M, gt2 , ht2).

2. For i = j + 1, . . . , n, 1, . . . , j − 1, A randomly picks r1,i, r2,i ∈ Zq and
computes:
(a) S′

i+1 = H1(event,Y, L,M, gr1,iC
S′

i
1 , ỹr1,i(C2

yi
)S′

i),

(b) S′′
i+1 = H1(event,Y, L,M, gr2,iy

S′′
i

i , hr2,iLS′′
i ).

Therefore, in order to close the ring, A has to know the secret key xj �= xπ

which contradicts with our assumption of A can only know one private key
of ring member.

– Case 2:
1. A randomly picks t1, t2 ∈ Zq and computes:

(a) S′
π+1 = H1(event,Y, L,M, gt1 , ỹt1),

(b) S′′
π+1 = H1(event,Y, L,M, gt2 , ht2).

2. For i = π + 1, . . . , n, 1, . . . , π − 1, randomly picks r1,i, r2,i ∈ Zq and com-
putes:
(a) S′

i+1 = H1(event,Y, L,M, gr1,iC
S′

i
1 , ỹr1,i(C2

yi
)S′

i),

(b) S′′
i+1 = H1(event,Y, L,M, gr2,iy

S′′
i

i , hr2,iLS′′
i ).

3. A computes r1,π = t1 − S′
πu and r2π

= t2 − S′′
πxπ to close the ring.

However, The construction of σ will not pass the verification since an honest
verifier will follow the protocol and computes as follows:

S′
π+1 = H1(event,Y, L,M, gr1,πC

S′
π

1 , ỹr1,π (
C2

yπ
)S′

π )

�= H1(event,Y, L,M, gt1 , ỹt1)

This contradicts with our assumption that the signature σ is a valid signature.

The revocability of RLRS scheme is proved. ��

5 Efficiency Analysis

This section compares the efficiency (i.e., computational cost and signature size)
between our proposed scheme and Revocable Ring Signature [17] and Traceable
Ring Signature [12]. We start by addressing some computational notions as fol-
lows:

– Texp: The time for one exponentiation computation
– Tmul: The time for one modular multiplication computation
– Tadd: The time for one modular addition computation
– Tpair: The time for one pairing computation
– Th: The time for executing the one-way hash function
– n: The number of public keys in the ring
– 	: The number of revocation authority’s public key
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– λ: The length of the elements in Zq

From the comparison (Table 1), we can see that our scheme is a lot efficient
in revocation phase than [17] and [12]. Since [17] allows a group of authorities
to revoke the anonymity of the signer, the signature size also depends on the
amount of authority’s public keys. Besides, our RLRS scheme highly depends
on the computational time of hash functions which could be faster than bilinear
pairing functions in practice. Another contribution of our scheme is that we
introduce the first ring signature scheme which enables mandatory revocability
and linkability.

Table 1. Comparison between RLRS and [17] and [12]

Scheme Sign Verify Revoke Signature size Mandatory

revocabil-

ity

Linkability

[17] 2�Tpair + Th +

(2n + 2)Tmul +

(n + 2)Tadd

�Tpair+Th+(2n+

�)Tmul + (�n +

2n)Tadd + �Texp

Tpair(best

case)

nTpair(worst

case)

(� + 2n + 2)λ � ×

[12] 3Th + (5n +

1)Texp + (3n −
2)Tmul + (n +

1)Tadd

3Th + 3nTmul +

5nTexp + nTadd

4Th +

2nTmul +

2nTexp

(2n + 1)λ × �

RLRS (2n+1)Th +(8n−
1)Texp + (5n −
1)Tmul + 2Tadd

8nTexp +

5nTmul + 2nTh

Tmul + Texp (2n + 5)λ � �

6 Conclusion

In this paper, we extended [21] to construct a revocable and linkable ring signa-
ture (RLRS) scheme, which is the first ring signature scheme achieves mandatory
revocability and linkability. In addition, our scheme is more efficient than [17]
and [12] in terms of revocation time. We also provided a formal security proof
of RLRS in random oracle model. In Appendix A, we further applied our RLRS
scheme to design a revocable ring confidential transaction protocol.

There are several problems in our scheme that can be solved in future works
such as:

1. Considering how to reduce signature size of RLRS scheme;
2. Considering how to construct a RLRS scheme with unconditional anonymity;
3. Providing a concrete security proof of Revocable Ring Confidential Transac-

tion.
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Appendix A. Revocable Ring Confidential Transaction

In Appendix A, we present a revocable ring confidential transaction protocol
based on our RLRS scheme.

Setup(λ): Let G be a group of prime order q such that underlying discrete
logarithm problem is intractable. Let H1 : {0, 1}∗ → Zq and H2 : {0, 1}∗ → G

be two hash functions, and g, h are two generators in G. The public parameters
are param = {G, g, h, q,H1,H2}
KeyGen(param): Randomly choose x ∈ Zq and compute y = gx (mod q). The
secret key is sk = x and the corresponding public key is pk = y

Mint(a, pk): Given an amount a and a coin address pk, randomly choose r ∈ Zq

and compute C = hagr (mod q), where the coin in address pk is denoted as
cnpk = C and the corresponding coin key ck = r. The public information of an
account is act = (y, C) and the secrete information is ask = (x, r).

Spend(As, R,m, t,Y,M, pkrev): On input the spender s’s a set of m accounts
As, a set of t output accounts R, a set of n group public keys Y such that
Y = Y1, . . . , Yn, a transaction string M , and a revocation authority’s public key
pkrev = ỹ. The spender s can spend his/her m accounts to t output accounts by
performing following steps:

1. The spender s parses As = {ack(k)}k∈[m] into {(y(1)
s , C

(1)
s ), . . . , (y(m)

s , C
(m)
s )}

and Ks = {ask(k)}k∈[m] into {(x(1)
s , r

(1)
s ), . . . , (x(m)

s , r
(m)
s )} where {y

(k)
s =

gx(k)
s }k∈[m] and {C

(k)
s = ha(k)

s gr(k)
s }k∈[m]

2. Denote R as a set of output accounts where R = {pk
(j)
out}j∈[t], spender s

randomly chooses r1, . . . , rt ∈ Zq and computes Cj
out = ha

(j)
outgrj for j ∈ [t]

where a
(1)
out + · · · + a

(t)
out = a

(1)
s + · · · + a

(m)
s

3. The spender s uses a public key encryption scheme ENCpk(·) with public
key pk to compute the cipher text ctxtj = ENC

pk
(j)
out

(rj) for j ∈ [t] and
send {ctxtj}j∈[t] to the corresponding receiver’s address.

4. In order to ensure that the amount of output coins equal to input coins, the
spender s creates a new public key

y(m+1)
s =

∏m
k=1(y

(k)
s · C

(k)
s )

∏t
j=1 C

(j)
out

.

Since a
(1)
out + · · · + a

(t)
out = a

(1)
s + · · · + a

(m)
s , the m + 1 public key is

y(m+1)
s = g

∑m
k=1(x

(k)
s +r(k)

s )−∑t
j=1 rj = gx(m+1)

s

such that x
(m+1)
s =

∑m
k=1(x

(k)
s + r

(k)
s ) −

∑t
j=1 rj .
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5. The spender s randomly picks n − 1 group public keys from the blockchain,
where each group contains m + 1 public keys. We denote these public keys
as:

Y1 = {y
(1)
1 , . . . , y

(m+1)
1 }

...
Ys−1 = {y

(1)
s−1, . . . , y

(m+1)
s−1 }

Ys+1 = {y
(1)
s+1, . . . , y

(m+1)
s+1 }

...
Yn = {y

(1)
n , . . . , y

(m+1)
n }

The spender’s public key is further denoted as Ys = {y
(1)
s , . . . , y

(m+1)
s }.

6. Compute m+1 linking base as hk = H2(y
(k)
s ) for k ∈ [m+1] and the linking

tags are Lk = h
x(k)

s

k for k ∈ [m + 1]. We denote L = {L1, . . . , Lm+1}.
7. Encrypt the spender’s m + 1 public keys by using revocation authority’s

public key pkrev = ỹ as follows:
For k = 1, . . . ,m + 1, randomly pick u1, . . . , um+1 ∈ Zq and compute:

(a) CT
(k)
1 = guk ,

(b) CT
(k)
2 = ỹuky

(k)
s ,

(c) Combine the cipher text CXk = (CT
(k)
1 , CT

(k)
2 ).

8. For k = 1, . . . ,m + 1, randomly pick t
(k)
1 , t

(k)
2 ∈ Zq and compute:

(a) a
(k)
1,s = gt

(k)
1 and a

(k)
2,s = (CT

(k)
2

y
(k)
s

)t
(k)
1 ,

(b) c′
s+1 = H1(Y, L,M, {a

(1)
1,s, a

(1)
2,s}, . . . , {a

(m+1)
1,s , a

(m+1)
2,s }),

(c) ā
(k)
1,s = gt

(k)
2 and ā

(k)
2,s = h

t
(k)
2

k ,

(d) c′′
s+1 = H1(Y, L,M, {ā

(1)
1,s, ā

(1)
2,s}, . . . , {ā

(m+1)
1,s , ā

(m+1)
2,s }).

9. Generate a linkable ring signature with a group of n public key vectors
Y = {Y1, . . . , Yn} using spender’s m + 1 secret keys {x

(1)
s , . . . , x

(m+1)
s } with

m+1 linking tags {L1, . . . , Lm+1} and m+1 ciphertexts {CX1, . . . , CXm+1}
on some transaction string M as follows:

(a) For i = s + 1, . . . , n, 1, . . . , s − 1, randomly pick v
(1)
1,i , . . . , v

(m+1)
1,i and

v
(1)
2,i , . . . , v

(m+1)
2,i ∈ Zq and compute:

(b) a
(k)
1,i = gv

(k)
1,i (CT

(k)
1 )c′

i and a
(k)
2,i = ỹ

v
(k)
(1,i)(CT

(k)
2

y
(k)
i

)c′
i for k ∈ [m + 1],

(c) c′
i+1 = H1(Y, L,M, {a

(1)
1,i , a

(1)
2,i , }, . . . , {a

(m+1)
1,i , a

(m+1)
2,i }),

(d) ā
(k)
1,i = gv

(k)
2,i (y(k)

i )c′′
i and ā

(k)
2,i = h

v
(k)
2,i

k L
(c′′

i )
k for k ∈ [m + 1],

(e) c′′
i+1 = H1(Y, L,M, {ā

(1)
1,i , ā

(1)
2,i }, . . . , {ā

(m+1)
1,i , ā

(m+1)
2,i }).

10. For k = 1, . . . ,m + 1, compute:
(a) v

(k)
1,s = t

(k)
1 − c′

suk,

(b) v
(k)
2,s = t

(k)
2 − c′′

sx
(k)
s .
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11. The signature is σ = (c′
1, c

′′
1 , {v

(1)
1,1, . . . , v

(m+1)
1,1 }, . . . , {v

(1)
1,n, . . . , v

(m+1)
1,n },

{v
(1)
2,1, . . . , v

(m+1)
2,1 }, . . . , {v

(1)
2,n, . . . , v

(m+1)
2,n }, {L1, . . . , Lm+1},

{CX1, . . . , CXm+1}).

Verify(n,Y, σ,M): The algorithm takes the input of a group Y = {Y1, . . . , Y2}
of n groups of public keys, a signature σ, and a transaction string M . To verify
a transaction, the verifier computes follows:

1. First parse the m + 1 ciphertext CXk = {CT
(k)
1 , CT

(k)
2 }k∈[m+1]

2. For i = 1, . . . , n, compute

(a) Z
′(k)
1,i = gv

(k)
1,i (CT

(k)
1 )c′

i and Z
′(k)
2,i = ỹv

(k)
1,i (CT

(k)
2

y
(k)
i

)c′
i for k ∈ [m + 1],

(b) c′
i+1 = H1(Y, L,M, {Z

′(1)
1,i , Z

′(1)
2,i }, . . . , {Z

′(m+1)
1,i , Z

′(m+1)
2,i }) if i �= n,

(c) Z
′′(k)
1,i = gv

(k)
2,i (y(k)

i )c′′
i and Z

′′(k)
2,i = h

v
(k)
2,i

k (Lk)c′′
i for k ∈ [m + 1],

(d) c′′
i+1 = H1(Y, L,M, {Z

′′(1)
1,i , Z

′′(1)
2,i }, . . . , {Z

′′(m+1)
1,i , Z

′′(m+1)
2,i }) if i �= n.

3. Check whether
(a) c′

1
?= H1(Y, L,M, {Z

′(1)
1,n , Z

′(1)
2,n }, . . . , {Z

′(m+1)
1,n , Z

′(m+1)
2,n }),

(b) c′′
1

?= H1(Y, L,M, {Z
′′(1)
1,n , Z

′′(1)
2,n }, . . . , {Z

′′(m+1)
1,n , Z

′′(m+1)
2,n }).

Revoke(n,Y, skrev, σ): The algorithm receives a set Y = {Y1, . . . , Yn} of n groups
of public keys, a revocation authority’s private key skrev = x̃, and a valid signa-
ture σ. The revocation authority with the knowledge of secret key x̃ correspond-
ing to ỹ decrypts the m + 1 ciphertexts to get m + 1 public keys which belong
to the real spender as follows

1. For k = 1, . . . , m + 1, parse CTk = (CT
(k)
1 , CT

(k)
2 ).

2. Get the k-th public key y
′(k)
s = CT

(k)
2 /CT

(k)x̃

1 and output all public keys into
a set of Y ′

s = {y
′(1)
s , . . . , y

′(m+1)
s }.

3. There exists a public key vector Ys ∈ Y such that Ys = Y ′
s .
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Abstract. A password-authenticated key exchange (PAKE) protocol
allows two entities sharing a password to perform mutual authentica-
tion and establish a session key. Benefiting from the use of a low-entropy
human-memorable password, PAKE avoids the use of PKI in the authen-
tication process, making it more flexible and cheaper. However, with
the development of quantum computing, protocols based on classical
assumptions will no longer be secure, so designing a PAKE protocol
capable of resisting quantum attacks has become an important research
direction. In this work, we propose an efficient PAKE protocol using
a new error reconciliation mechanism based on the ring learning with
errors (RLWE) problem, which is considered to resist quantum attacks.
Our protocol is proven security under the Bellare-Pointcheval-Rogaway
(BPR) model. The protocol is implemented using the C language, which
is highly portable, and is also optimized utilizing the Advanced Vector
Extensions 2 (AVX2) instruction set. Compared with the C implemen-
tation of Ding’s protocol, our reference C implementation is more than
12x faster, and the efficiency is doubled after AVX2 optimization. More-
over, by choosing the appropriate parameters, the security strength of
our scheme is improved and the message size is reduced.

Keywords: RLWE · PAKE · Post-quantum

1 Introduction

PAKE allows participants to agree on a common session key to be used for
protecting their subsequent communication on an insecure channel, and use
low-entropy, human-memorable passwords for authentication, which provides
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stronger security against active adversaries. It does not require additional stor-
age and hardware. This is very useful in an era when users are increasingly using
mobile devices.

However, PAKE protocols face the problem of off-line and on-line dictionary
attacks for the reason that passwords are drawn from a small space. We need to
restrict the adversaries success to on-line guessing attacks and prevent off-line
dictionary attacks when designing PAKE.

In addition, with the development of quantum computers, many crypto-
graphic primitives may be threatened by quantum adversaries. This prompted
researchers to design cryptographic protocols that would resist quantum com-
puter attacks, called post-quantum cryptography. Lattice techniques are some
of the most common mathematical techniques for building post-quantum cryp-
tography. This paper focuses on building a PAKE protocol based on lattices.

1.1 Related Works

The first PAKE protocol called encrypted key exchange (EKE) protocol was
suggested by Bellovin and Merritt [3]. After that, a lot of works in this area
were put forward. In 2001, Katz et al. proposed an efficient PAKE protocol
under the standard model using smooth projection hash functions [12]. In 2000,
Boyko et al. presented new PAKE protocols called PAK, PPK and PAK-X [6],
and gave security proofs in the random oracle model (ROM). Then more variants
of PAK were proposed. But these protocols are based on classical assumptions
and will no longer be secure in a quantum environment.

However, there is relatively little research on lattice-based PAKE protocols.
In 2009, Katz and Vaikuntanathan proposed the first lattice-based PAKE pro-
tocol using common reference string (CRS) and gave the security proof in the
standard model [13]. In 2017, Zhang et al. proposed a new CRS-based PAKE
protocol and instantiated it on lattices [16]. Due to the CRS-based design, these
protocols use complicated cryptographic tools to achieve security under the stan-
dard model and are therefore inefficient. In contrast, the ROM-based design is
simpler and more elegant. In 2017, Ding et al. presented a more efficient PAKE
protocol based on the RLWE problem and proved its security in ROM [8]. How-
ever, its analysis of the error reconciliation mechanism was not tight, resulting
in a decline in performance and security. Therefore, it is attractive to design an
efficient post-quantum PAKE protocol.

1.2 Our Contributions

Toward the goal of improving the efficiency and practicability of the PAKE
protocol, we propose a new lattice-based PAKE protocol in this work, which is
efficient in key exchange and can achieve post-quantum security. Our proposal
has the following characteristics.

• A new PAKE protocol uses a ROM-based design based on the framework in [6]
that circumvents the inefficiency of using complicated cryptographic tools
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in the CRS-based design. In addition, our proposal is based on the RLWE
problem, which makes the protocol resistant to quantum attacks. Compared
to other post-quantum hardness assumptions, the RLWE problem is more
versatile and computationally efficient.

• By using a new error reconciliation mechanism, a portion of the intermediate
results can be pre-calculated in idle time to reduce the load on the server,
thereby increasing the response efficiency of the server.

• By regenerating the public parameter a in each connection, the backdoor
placement and all-for-the-price-of-one attacks are prevented. At the same
time, a can be generated more efficiently by reducing the sample rejection
rate of a. Sampling noise with a central binomial distribution further increases
efficiency and prevents timing attacks.

• In terms of parameter selection, we choose a smaller q = 12289 to reduce the
sent message size while improving the scheme’s efficiency and security. And
this q allows us to use a faster polynomial multiplication algorithm.

• The protocol is analyzed by means of a formal security argument under the
BPR model [2], and it can withstand dictionary attacks and loss of session
keys, and has forward secrecy.

• We implement the proposed protocol through portable C and avoid some
time-consuming operations in its implementation. At the same time, the
implementation is optimized through the AVX2 instruction set, which sig-
nificantly improves the efficiency. Our reference C implementation and AVX2
implementation are at least 12x and 24x faster than the implementation of
Ding’s scheme [8], respectively.

We briefly introduce the main points of this paper and related works in
Sect. 1. In Sect. 2, we review the background knowledge and theory to be used
later and recall the security model. Our protocol is described in detail in Sect. 3,
and a security proof is given in Sect. 4. Next, the implementation details are
given in Sect. 5, and the comparison and performance analysis are performed in
Sect. 6. Finally, we conclude this paper in Sect. 7.

2 Preliminaries

2.1 Notation

Z denotes the ring of rational integers. For an integer q ≥ 1, let Zq be the
quotient ring Z/qZ. R = Z[x]/(xn + 1) denotes the ring of integer polynomials
modulo xn + 1. Rq = Zq[x]/(xn + 1) denotes the ring of integer polynomials
modulo xn + 1 where each coefficient is in {0, 1, . . . , q − 1}.

If χ is a probability distribution over R, x
$←− χ means the sampling of x ∈ R

according to χ. If S is a set, x
$←− S means the sampling of x uniformly at random

from S. For any real number x, we define �x� as the largest integer that less than
or equal to x, and �x� = �x + 1/2� represents the nearest integer to x.
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2.2 Key Consensus

Jin and Zhao proposed the concepts of key consensus (KC) and asymmetric key
consensus (AKC) [11], which allow two parties to reach consensus from approx-
imations and are optimizations of the previous error reconciliation mechanism.
Next, we recall the definition of AKC which will be used later.

Definition 1 (AKC). The asymmetric key consensus scheme AKC=(params,
Con, Rec) is defined as follows:

– params = (q,m, g, d) denotes the system parameters, where q,m, g, d are
positive integers, 2 ≤ m ≤ q, 2 ≤ g ≤ q, 1 ≤ d ≤ �q/2�.

– (k1, v) ← Con(σ1, params): On input of (σ1 ∈ Zq, params), the probabilistic
polynomial-time conciliation algorithm Con outputs k1 ∈ Zm and the public
hints signal v ∈ Zg. k1 is uniformly distributed on Zm.

– k2 ← Rec(σ2, v, params): On input of (σ2, v, params), the deterministic
polynomial-time algorithm Rec outputs k2 ∈ Zm.

If k1 = k2 for any σ1, σ2 ∈ Zq such that |σ1 − σ2|q ≤ d, then the scheme is
correct. If v is independent of k1 whenever σ1 is uniformly distributed over Zq,
then the scheme is secure. Specifically, for arbitrary ṽ ∈ Zg and k̃1, k̃

′
1 ∈ Zm, it

holds that Pr[v = ṽ|k1 = k̃1] = Pr[v = ṽ|k1 = k̃′
1], where the probability is taken

over σ1 ← Zq and the random coins used by Con.

The specific construction of AKC is depicted in Algorithm 1. The Con and
Rec functions can be extended to polynomials by applying them to each of the
coefficients respectively.

Algorithm 1. AKC: Asymmetric Key Consensus
params=(q, m, g, d)
function Con(σ1, params) � σ1 ∈ [0, q − 1]

k1
$←− Zm

v = �g(σ1 + �k1q/m�)� mod g
return (k1, v)

function Rec(σ2, v, params) � σ2 ∈ [0, q − 1]
k2 = �m(v/g − σ2/q)� mod m
return k2

For the correctness and security of AKC, we will use the following theorem.

Theorem 1 (Correctness and security). If the parameters of AKC satisfy
(2d + 1)m < q(1 − m/g), then the AKCN scheme is correct and secure. Specifi-
cally, v is independent of k1 when σ1 ← Zq.
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2.3 Hard Problems

Lyubashevsky et al. introduced the RLWE problem [14], which is a quantum-
resistant hard mathematical problem and is convenient and efficient when con-
structing a cryptosystem.

Definition 2 (Decision RLWE problem). Let n and q be positive integers.

Let χ be distributions on Rq and let s
$←− χ. The decision RLWE problem for

(n, q, χ) is to distinguish the sample (a,as+e), where a
$←− Rq and e

$←− χ, from
the sample drawn from the uniform distribution on Rq × Rq.

For convenience in the proof, we define the pairing with errors (PWE)
assumption according to [8].

Definition 3 (PWE problem). Let n and q be positive integers. Let χ be

distributions on Rq. Let s,e,e′ $←− χ, a,X
$←− Rq, and (τ, v) ← Con(Xs + e′),

where v is the signal value. Given (a,X,Y = as+e, v), the goal of the adversary
A who runs in time t is to include τ in its output containing at most N elements.
The advantage follows the form of AdvPWE

Rq
(t,N) = maxA{AdvPWE

Rq
}.

From [8], we have the following corollary.

Corollary 1. The PWE problem is hard if the RLWE problem is hard.

2.4 Security Model

Bellare et al. designed a model [2] for authenticated key exchange between two
parties with a shared secret. In this model, the probabilistic, polynomial-time
active adversary A can fully control the network.

P denotes a PAKE protocol. We set ID
def
= Clients ∪ Servers to be a

non-empty set of principals, where Clients and Servers are finite, disjoint, non-
empty sets. Each principal U ∈ ID is associated with an unlimited number of
instances Πi

U , where i is a positive integer.
Let D be a fixed, non-empty set of size L from which a password pwC for

client C is selected uniformly at random. And each server S ∈ Servers holds
pwS = (f(pwC))C , where f is an efficiently computable one-way function.

Adversarial Capabilities. Adversary A is a probabilistic polynomial time
algorithm. The allowed queries are as follows:

– Send(U, i,M): Receiving the message M , Πi
U computes and returns the

response output to A. If Πi
U accepts or terminates, A will be notified.

– Execute(C, i, S, j): Πi
C and Πi

S perform a complete execution of protocol P
and return a transcript to A.

– Reveal(U, i): A will obtain the session key held by Πi
U .

– Test(U, i): The fresh instance Πi
U is to flip a bit b. If b = 1, the actual session

key held by Πi
U is output to A; otherwise, a string drawn uniformly from the

space of session keys is output to A. This query can only be asked once.
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– Corrupt(U): When U ∈ Servers, A will obtain (f(pwC))C ; when U ∈
Clients, A will obtain pwU .

Definition 4 (Partnering). When an instance Πi
U accepts, it holds a partner-

id pidi
U , a session-id sidi

U and a session key ski
U . We say that Πi

C and Πj
S where

C ∈ Clients and S ∈ Servers to be partnered if both accept with pidi
C = S,

pidj
S = C, sidi

C = sidj
S =: sid, and no other instance accepts with sid.

Definition 5 (Freshness). We say that an instance Πi
U is fresh with forward

secrecy unless either (1) a Reveal(U, i) is queried, (2) a Reveal(V, j) is queried
where Πi

U and Πi
V are partnered, or (3) a Corrupt(V ) is queried before the Test

query and a Send(U, i,M) is queried for some string M .

Definition 6 (Security). The adversary A needs to distinguish between the
actual session key held by a fresh instance and a random string. Let Succake

P (A)
to be the event that A makes a Test(U, i) query to a fresh instance Πi

U , that has
terminated, and b′ = b where b is the bit selected in the Test query and b′ is the
bit that A outputs eventually. The advantage of A breaking P is defined to be

Advake
P (A) = 2Pr[Succake

P (A)] − 1.

We say the PAKE protocol is secure if the adversary A can’t determine fresh
instances’ session keys with greater advantage than that of an on-line dictionary
attack, i.e. Advake

P (A) ≤ Advonline
P (A) + ε.

3 Password-Authenticated Key Exchange

3.1 The Protocol

In this section, we present our proposal (see Fig. 1). Let Gen be a pseudo-random
generator (PRG), which can generate a ∈ Rq from a small seed. Let κ be a
bit-length of the final shared key. H1 : {0, 1}∗ → Rq denotes a hash function.
Hl : {0, 1}∗ → {0, 1}κ for l ∈ {2, 3} denote hash functions which are used for
verification. H4 : {0, 1}∗ → {0, 1}κ denotes a Key Derivation Function (KDF).
We define ψb as a centered binomial distribution with a standard deviation of
ς =

√
b/2. The protocol process is as follows:

– The client C chooses seed randomly and generates the public parameter a.
Next, C samples sC and eC from ψn

b , and computes yC = asC + eC , γ =
H1(pwC) and m = yC + γ. Then C sends <C,m, seed> to S.

– Receiving <C,m, seed>, the server S checks m. If m /∈ Rq, it aborts; other-
wise, it generates a using the small seed and computes yC = m + γ′ where
γ′ = −H1(pwC). Next, S samples sS , eS and eσ from ψn

b , and computes
yS = asS + eS and σS = yCsS + eσ. Then S obtains (kσ, v) = Con(σS),
k = H2(C,S,m,yS , kσ,γ′) and k′′ = H3(C,S,m,yS , kσ,γ′) and sends
<yS , v, k> to C.
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Fig. 1. Password-authenticated key exchange protocol

– Receiving <yS , v, k>, the client C checks yS . If yS /∈ Rq, it aborts; otherwise,
it computes σC = ySsC and kσ = Rec(σC , v). Next, it verifies whether k
equals to H2(C,S,m,yS , kσ,γ′) where γ′ = −γ; if not, it aborts. Otherwise,
it computes k′ = H3(C,S,m,yS , kσ,γ′) and skC = H4(C,S,m,yS , kσ,γ′).
Then it sends k′ to C.

– Receiving k′, the server S verifies whether k′ equals to k′′; if not, it aborts.
Otherwise, S computes skS = H4(C,S,m,yS , kσ,γ′).

ROM-Based. In some previous works, in order to achieve the security under
the standard model, CRS is usually used to design PAKE. This approach often
results in a more complicated scheme, which has an impact on the scheme’s
efficiency. Therefore, we choose to use a ROM-based design, which does not
require complicated cryptographic tools and makes the scheme simpler and more
efficient.

Authentication. The client holds the password pwC . When sending a message,
the client adds the hash value of the password to the original message, and the
server can only get the correct original message if it holds the corresponding
hash value. Once the original message calculated by the server is incorrect, the
subsequent verification value k will be inconsistent with that of the client, and
the protocol will be terminated.
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Parameter Selection. In the scheme based on the RLWE problem, polyno-
mial arithmetic is the most time-consuming operation. We choose the dimension
n=1024 which is a suitable choice for appropriate long-term security and perfor-
mance. The standard deviation ς =

√
16/2. We choose q = 12289, which is the

smallest prime that satisfies q ≡ 1 mod 2n so that efficient algorithms, such as
the number theoretic transform (NTT), can be applied to accelerate polynomial
operations. This will greatly increase the calculation speed of the protocol. At the
same time, a small q can make the polynomial size smaller, which will reduce the
communication overhead of the protocol. Since the security level grows with the
noise-to-modulus ratio, choosing a smaller modulus can improve compactness
and efficiency together with security.

Noise Distribution. In previous works [4,8], the noise was sampled from a
Gaussian distribution. Implementing a Gaussian sampler requires high-precision
calculations or a pre-computed large table, which leads to inefficiency, and
this sampling method faces the problem of timing attacks. Therefore, in these
schemes, the cost of noise sampling is relatively high. According to the conclusion
in [1], replacing the Gaussian distribution with the central binomial distribution
does not significantly decrease the security. Therefore, we use the central bino-
mial distribution as the noise distribution. It can be implemented more efficiently
in hardware and software and can prevent timing attacks.

Error Reconciliation. We use AKC as the error reconciliation mechanism.
It is a generalization and optimization of previous reconciliation mechanisms.
According to Definition 1, when |σC − σS |q ≤ d, two participants can get the
same kσ, which guarantees the correctness of the protocol. At the same time,
the signal value v and kσ are independent. Even if the adversary knows v, the
extracted value kσ is uniformly random. By adjudging the parameter m, the
length of reconciliation bits obtained in one calculation can be changed, whereas
in some mechanisms [7,15], only one single bit can be extracted. Moreover, when
using the previous error reconciliation mechanism [1,4,7,15], the server can cal-
culate the session key only after receiving the ephemeral message from the client.
However, for AKC, k1 and g�k1q/m� in Algorithm 1 can be sampled, stored and
calculated off-line in actual usage, which can improve on-line performance and
reduce the burden on the server. Especially when connecting with a large number
of clients at the same time, it can improve the response speed of the server.

Public Parameter. In previous work such as [4,8], the public parameter a is
fixed, which brings some drawbacks. From the worst case scenario, it is possible
to put backdoors in a, making the subsequent communication unsafe. Even if
there is no backdoor in a, it is risky to rely on a single instance of a lattice
problem for all connections. It is possible for an adversary to perform large-scale
calculations on this instance, compromising all communications. This type of
attack is called all-for-the-price-of-one attack. To avoid those pitfalls, we take
the approach of regenerating a fresh a every time the two parties connect. At
each connection we randomly select a small seed and expand the seed to get a.
This will have a slight performance impact. In order to minimize performance
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loss, we only transmit small seeds and assume that the generated a is directly in
the NTT domain to reduce the times of using NTT. At the same time, we take
measures to reduce the sample rejection rate of a and speed up its generation.

3.2 Correctness

From Definition 1 and Theorem 1, we know that the participants can get the
same kσ and the protocol is executed correctly when |σC − σS |q ≤ d and (2d +
1)m < q(1 − m/g). We choose q = 12289, m = 2 and g = 26, then we can
conclude that the maximum d that satisfies the condition is 2975.

σC − σS = ySsC − yCsS − eσ = eSsC − eCsS − eσ

In order to get a concrete failure probability, we need to analyze the proba-
bility of |eSsC −eCsS −eσ|q > 2975. This distribution can be obtained directly
by running the code of Jin and Zhao [11], so we get this probability of 2−41. In
other words, the protocol will fail only with a probability of 2−41 under these
parameter settings. It is sufficient for most application scenarios of key exchange.

4 Security

We divide queries into client action (CA) and server action (SA). CA0 denotes
a Send query to Πi

C with input S. SA1 denotes a Send query to unused Πj
S .

CA1 denotes a Send query to Πi
C that expects the second protocol message.

SA2 denotes a Send query to Πj
S that expects the last protocol message.

We define the following events that correspond to A making password
guesses:

– guess client l(C, i, S, pw, l): A makes an Hl(C,S,m,yS , kσ,γ′) query, a CA0
query to Πi

C with input S and output <C,m, seed>, a CA1 query to Πi
C with

input <yS , v, k> and an H1(pw) query. The associated value is the output of
the Hl(·) query, or k, k′, ski

C .
– guess client 2(C, i, S, pw): a CA1 query with input <yS , v, k> causes

guess client l(C, i, S, pw, 2) to occur with associated value k.
– guess server l(S, j, C, pw, l): A makes an Hl(C,S,m,yS , kσ,γ′) query and

previously made a SA1 query to Πj
S with input <C,m, seed> and output

<yS , v, k>, and an H1(pw) query. The associated value is k, k′, or skj
S .

– guess server 3(S, j, C, pw): A SA2 query is made with k′, where
guess server l(S, j, C, pw, 3) previously occurred with associated value k′.

– guess server(S, j, C, pw): guess server l(S, j, C, pw, l) occurs.
– guess client server(C, i, S, j, pw): Both guess client l(C, i, S, pw, l) and

guess server l(S, j, C, pw, l) occur where Πi
C and Πj

S are paired with each
other after its SA1 query.

– guess exec(C, i, S, j, pw): A makes an Hl(C,S,m,yS , kσ,γ′) query, and pre-
viously made an Execute(C, i, S, j) query and an H1(pw) query.
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– correctpw: Either guess client 2(C, i, S, pwC) occurs, or guess server(S, j,
C, pwC) occurs before Corrupt happens.

– correctpwexec: guess exec(C, i, S, j, pwC) occurs.
– guess double server: Both guess server(S, j, C, pw) and guess server(S, j,

C, pw′) occur before Corrupt happens where pw �= pw′.
– guess paired: guess client server(C, i, S, j, pwC) occurs.

Theorem 2. P denotes our protocol shown in Fig. 1. Let n and q be positive
integers. Rq is defined as above. The size of the password dictionary is N . For
an adversary A that runs in time t, let qse, qex, qre, qco, qro be the maximum
number of Send, Execute, Reveal, Corrupt, random oracle queries, respectively,
t′ = O(t+(qro +qse +qex)texp), and t′′ = O(t+(q2ro +qse +qex)texp). We assume
that qro and qse + qex are both at least 1. Then the advantage of A breaking P is

Advake
P (A) =O(qseAdvPWE

Rq
(t′′, q2ro) + AdvDRLWE

Rq
(t′, qro)

+
qse

2κ
+

(qse + qex)(qro + qse + qex)
qn

) +
qse

N
.

Proof. We set up a sequence of protocols, where P0 = P , and P7 is designed to
use only natural on-line guessing attack. We will prove that the advantage of A
attacking Pi−1 is at most negligibly more than the advantage of A attacking Pi

for i from 1 to 7, i.e., Advake
P0

(A) ≤ Advake
P1

(A) + ε1 ≤ . . . ≤ Advake
P7

(A) + ε7.

Protocol P0. P0 = P .

Protocol P1. P1 = P0, except that P1 is halted and A fails when m and yS

chosen by the honest party have appeared in the previous execution.

Claim. For any adversary A, Advake
P0

(A) ≤ Advake
P1

(A)+ O((qse+qex)(qro+qse+qex))
qn .

Proof. The probability that the latest m or yS has previously appeared is
qro+qse+qex

qn . Let E denote that the m and yS generated in Send or Execute

has appeared in the previous Send, Execute or Hl(·). If E does not occur,
qse + qex values need to be unique. The probability of event E occurring is
O((qse+qex)(qro+qse+qex))

qn .

Protocol P2. P2 = P1, except that P2 answers Send and Execute in the follow-
ing way, and subsequent random oracle queries are consistent with the results of
these Send and Execute queries.

– In an Execute(C, i, S, j) query, seed
$←− {0, 1}256, a = Gen(seed), m = asm+

em, yS = asS + eS , where sm,em, sS ,eS
$←− χ, k, k′, ski

C , skj
S

$←− {0, 1}κ,

v
$←− {0, 1, . . . , g − 1}n.

– In a CA0 query to Πi
C , seed

$←− {0, 1}256, a = Gen(seed), m = asm + em,

where sm,em
$←− χ.
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– In a SA1 query to Πj
S , a = Gen(seed), yS = asS + eS , where sS ,eS

$←− χ,

k, k′′, skj
S

$←− {0, 1}κ, v
$←− {0, 1, . . . , g − 1}n.

– In a CA1 query to Πi
C , if this query causes guess client 2(C, i, S, pwC) to

occur, then set k′ to associated value of guess client l(C, i, S, pwC , 3), and
set ski

C to the associated value of guess client l(C, i, S, pwC , 4); else if Πi
C is

paired with Πj
S , ski

C ← skj
S , k′ $←− {0, 1}κ; otherwise, Πi

C aborts.
– In a SA2 query to Πj

S , if this query causes guess server 3(S, j, C, pwC) to
occur, or if Πj

S is paired with Πi
C , terminate; otherwise, Πj

S aborts.
– In a Hl(C,S,m,yS , kσ,γ′) query, if this query causes guess server l(S, j,

C, pwC , l) or guess exec(C, i, S, j, pwC) to occur, then output the associated
value of this event; otherwise, output a random value from {0, 1}κ.

Claim. For any adversary A, Advake
P1

(A) = Advake
P2

(A) + O(qro)
qn + O(qse)

2κ

Proof. In P1, the following cases may occur. (1) An unpaired client instance
Πi

C may terminate without guess client 2(C, i, S, pwC). The probability of this
case is at most qse

2κ . (2) An unpaired server instance Πj
S may terminate without

guess server 3(S, i, C, pwS). The probability of this case is at most qse

2κ . (3) For
any Hl(·) query, l ∈ {2, 3, 4}, γ′ = H1(pwC) but the adversary has not made an
H1(pwC) query. The probability of this case is bounded by qro

qn . If these cases do
not occur, P2 is consistent with P1.

Protocol P3. P3 = P2, except that P3 uses the random output to answer
Hl(·) for l ∈ {2, 3, 4} without checking the consistency with Execute.
guess exec(C, i, S, j, pwC) is not checked.

Claim. For any adversary A, Advake
P2

(A) ≤ Advake
P3

(A) + AdvDRLWE
Rq

(t′, qro) +
2AdvPWE

Rq
(t′, qro).

Proof. If correctpwexec does not occur, then P2 and P3 are indistinguishable.
We set E as the event that correctpwexec occurs, and the probability that E
occurs is ε. Then we have Advake

P2
(A) ≤ Advake

P3
(A) + 2ε.

We construct an algorithm D to solve PWE by running A. Given (a, X, Y ,
v), D simulates P2 for A with these changes:

– In an Execute(C, i, S, j) query, set seed
$←− {0, 1}256, m = X + asf + ef ,

yS = Y +asff +eff , and v
$←− {0, 1, . . . , g−1}n, where sf ,ef , sff ,eff

$←− χ.
– When A finishes, for every Hl(C,S,m,yS , kσ,γ′) query, where m and yS

were generated in Execute, and H1 returned −γ′ = ash + eh, then the
simulator can compute X ·sy+e = σS −Y (sf −sh)−(X+γ′+asf +ef )·sff ,
and add k′

σ = Rec(σS − Y (sf − sh) − (X + γ′ + asf + ef ) · sff , v) to the
list of possible values for τ .
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Since yS = Y + asff + eff instead of yS = asS + eS in the simula-
tion, this can be distinguishable if the decision RLWE problem can be solved.
And if E occurs, the correct τ is added to the list. Therefore, if E occurs or
DRLWE problem is solved with non-negligible advantage, the simulation is
distinguishable from P2. D creates a list of size qro with advantage ε. We set
t′ = O(t+(qro +qse +qex)texp) as the running time of D. The claim follows from
the fact AdvPWE

Rq
(D) ≤ AdvPWE

Rq
(t′, qro).

Protocol P4. P4 = P3, except that if a correct password guess is made before
Corrupt, i.e. if correctpw occurs, then the protocol halts and the adversary
automatically succeeds. The changes are as follows:

– In a CA1 query to Πi
C , if guess client 2(C, i, S, pwC) occurs before Corrupt,

the protocol halts and the adversary succeeds.
– In an Hl(·) query for l ∈ {2, 3, 4}, if a guess server(S, j, C, pwC) event occurs

before Corrupt, the protocol halts and the adversary succeeds.

Claim. For any adversary A, Advake
P3

(A) ≤ Advake
P4

(A).

Proof. Obviously, the changes will increase the chances of the adversary winning.

Protocol P5. P5 = P4, except that if a password guess against partnered
instances is made, i.e. if a guess paired event occurs, the protocol halts and
the adversary fails. We assume that the test for correctpw occurs after the test
for guess paired.

Claim. For any adversary A, Advake
P4

(A) ≤ Advake
P5

(A) + 2qseAdvPWE
Rq

(t′, qro).

Proof. If guess paired does not occur, then P4 and P5 are indistinguishable. We
set E as the event that guess paired occurs, and the probability that E occurs
is ε. Then we have Advake

P4
(A) ≤ Advake

P5
(A) + 2ε.

We construct an algorithm D to solve PWE by running A. Given (a, X, Y ,
v), D chooses d ∈ {1, . . . , qse} and simulates P4 for A with these changes:

– In the dth CA0 query to Πi′
C with input S, let seed

$←− {0, 1}256, m = X.
– In a SA1 query to Πj

S with input <C,m, seed> generated by a CA0 query

to Πi′
C with input S, set yS = Y + asff + eff , where sff ,eff

$←− χ.
– In a CA1 query to Πi′

C , if Πi′
C is unpaired, D outputs 0 and halts.

– In a SA2 query to Πj
S , if Πj

S was paired with Πi′
C after its SA1 query, but is

not now paired with Πi′
C , no test correctpw is made and Πj

S aborts.
– When A finishes, for every Hl(C,S,m,yS , kσ,γ′) query, where m and yS

were generated by Πi′
C and Πj

S , where Πj
S was paired with Πi′

C after its SA1
query, and H1 returned −γ′ = ash + eh, then the simulator can compute
X · sy + e = σS + Y · sh − (X + γ′) · sff , and add k′

σ = Rec(σS + Y · sh −
(X + γ′) · sff , v) to the list of possible values for τ .
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The probability that guess paired occurs for Πi′
C is at least ε

qse
. The simu-

lation is perfectly indistinguishable from P4 unless (1) guess server(S, j, C, pw)
occurs, where Πj

S was paired with Πi′
C after its SA1 query, or (2) Πi′

C is unpaired
with a server instance when the CA1 query is made. Since case 2 implies that
guess paired will not occur for Πi′

C , the probability of case 1 is at most ε
qse

. If
case 1 occurs, the correct τ is added to the list. D creates a list of size qro with
advantage ε

qse
. We set t′ = O(t + (qro + qse + qex)texp) as the running time of D.

The claim follows from the fact AdvPWE
Rq

(D) ≤ AdvRq
PWE(t′, qro).

Protocol P6. P6 = P5, except that if two password guesses against the same
server instance are made, i.e. if guess double server occurs, the protocol halts
and the adversary fails. We assume that the test for guess paired or correctpw
occurs after the test for guess double server.

Claim. For any adversary A, Advake
P5

(A) ≤ Advake
P6

(A) + 4AdvPWE
Rq

(t′′, q2ro).

Proof. We set E as the event that guess double server occurs, and the proba-
bility that E occurs is ε. Then we have Advake

P4
(A) ≤ Advake

P5
(A) + 2ε.

We construct an algorithm D to solve PWE by running A. Given (a, X, Y ,
v), D simulates P5 for A with these changes:

– In an H1(pw) query, output X · sh + (asf + ef ), where sf ,ef , sh
$←− χ.

– In a SA1 query to Πj
S with input <C,m, seed> where m ∈ Rq, seed

$←−
{0, 1}256, set yS = Y + asff + eff , where sff ,eff

$←− χ.
– There is no test for correctpw and guess paired. The client or server instances

that are unpaired but receive a CA1 or SA2 query abort. And Hl queries
return random values from {0, 1}κ.

– When A finishes, for every pair of Hl(C,S,m,yS , kσ,γ′) and Hl(C,S,m,

yS , k̂σ, γ̂′), there is a SA1 query to Πj
S with input <C,m, seed> and output

<yS , k, v′>, an H1(pw) query returned −γ′ = X ·sh +(asf +ef ), an H1(p̂w)
query returned −γ̂′ = X · sĥ + (asf̂ + ef̂ ) and sh �= sĥ, then the simulator
can compute X · sy = (σS − σ̂S − Y (sf − sf̂ ) − (γ̂′ − γ′) · sff ) · (sh − sĥ)−1,
and add k′

σ = Rec((σS − σ̂S − Y (sf − sf̂ ) − (γ̂′ − γ′) · sff ) · (sh − sĥ)−1, v)
to the list of possible values for τ .

The simulation is perfectly indistinguishable from P5 unless guess double
server, guess paired or correctpw occurs, or A makes a Corrupt query. If
Corrupt, correctpw or guess paired occurs, doublepwserver will not occur. if
guess double server occurs, then with a probability of 1

2 it occurs for two pass-
words pw and p̂w with sh �= sĥ, and the correct τ is added to the list. D creates
a list of size q2ro with advantage ε

2 . We set t′′ = O(t + (q2ro + qse + qex)texp)
as the running time of D. The claim follows from the fact AdvPWE

Rq
(D) ≤

AdvRq
PWE(t′′, q2ro).



44 Y. Yang et al.

Protocol P7. P7 = P6, except that there is an internal password oracle that is
not available to the adversary and generates all passwords during initialization.
It holds all passwords, accepts queries of the form testpw(C, pw) that test the
correctness of a given password and return 1 if pw = pwC and 0 otherwise.
It also accepts Corrupt(U) queries. To test if correctpw occurs, whenever the
first guess client 2(C, i, S, pw) event or the first guess server(S, j, C, pw) event
occurs, perform a testpw(C, pw) query to see if pw = pwC .

Claim. For any adversary A, Advake
P6

(A) = Advake
P7

(A) ≤ qse

N .

Proof. It can be found that P7 and P6 are perfectly indistinguishable.
Since a Corrupt query to the password oracle occurs after at most qse

queries, and the passwords are uniformly selected from a dictionary of size N ,
Pr(correctpw) < qse

N . If correctpw does not occur, then the only way for the
adversary to succeed is to make a Test query to a fresh instance Πi

U and guessing
the bit used in that Test query. Since the view of the adversary is independent
of ski

U , the success probability is 1
2 .

Pr(SuccakeP7 (A)) ≤Pr(correctpw) + Pr(SuccakeP7 (A)|¬correctpw)(Pr(¬correctpw))

≤Pr(correctpw) +
1

2
(1 − Pr(correctpw)) ≤ 1

2
+

qse
2N

Then we can obtain the advantage of the adversary against P7 as
Advake

P7
(A) = 2Pr(Succake

P7
(A)) − 1 ≤ qse

N .

Combining above claims, we can get the result in Theorem 2.

5 Implementation

This section focuses on our implementation details, including the C reference
implementation and the optimized implementation with the AVX2 instruction
set. We choose SHA3-256 as our hash function, which is based on Keccak and
standardized in FIPS-202. An extendable-output function (XOF) called SHAKE-
128 is also provided by FIPS-202, which offers 128-bits of (post-quantum) secu-
rity against collisions and preimage attacks. We have H1 = SHAKE-128() and
Hi = SHA3-256() for i ∈ {2, 3, 4}.

For the parameters set, we choose the dimension n = 1024, the modulus
q = 12289, the standard deviation ς =

√
16/2, and (m, g, d) = (2, 26, 2975).

5.1 Portable C Implementation

Our C reference implementation does not rely on hardware and instruction sets,
so it is portable. In implementation, we try to avoid time-consuming operations
such as floating point arithmetic, divide operations, and modulo operations.
We make full use of bitwise operations and various programming techniques
to reduce unnecessary overhead and achieve better performance. Therefore, the
reference implementation is also more efficient.
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Small seeds are obtained from Linux pseudo-random number genera-
tors/dev/urandom. We instantiate Gen with SHAKE-128. It extends a small
seed to a polynomial a. Each of the outputs of SHAKE-128 is a 16-bit integer
and will be reduced modulo 214 by setting two most-significant bits to zero. If
it is smaller than q, it will be used as a coefficient of a, otherwise it will be
rejected.

For the noise distribution, we sample from the central binomial distribution
ψb by calculating

∑b
i=0 xi − x′

i, where xi, x
′
i ∈ {0, 1} are uniform independent

bits. And we obtain uniform random bits from seeds using ChaCha20 stream
cipher that is standardized for TLS.

We use NTT, Montgomery reductions and short Barrett reductions to speed
up operations on polynomials. NTT is widely used for ideal lattice-based cryp-
tography and can accelerate polynomial multiplications. Montgomery reductions
can implement fast modular multiplication without using division, and short
Barrett reduction is used to perform modular reductions after addition. The
combination of these three algorithms can improve the efficiency of polyno-
mial operations. We refer to the code in [1], which uses an optimized NTT
and stores all precomputed constants in Montgomery representation to speed up
the modular-arithmetic.

In addition, we assume that a is generated directly in the NTT domain,
which reduces two NTT operations, and the polynomials are also sent in the
NTT domain to reduce inverse NTT operations.

5.2 AVX2 Implementation

AVX2 is also known as Haswell New Instructions that supports operations on
256-bit vectors of 8 single-precision or 4 double-precision floating-point numbers,
or of integers of various sizes in parallel. We use those instructions to optimize
our implementation.

Referring to the method in [9], we optimized the generation of a. In the
reference implementation, the sample rejection rate is 1 − q/214 ≈ 25%. In this
implementation, we reject values that are larger than 5q from the pseudorandom
stream without ignoring two most-significant bits, and subtract q up to four
times from the accepted values. By doing so, the rejection rate is reduced to 1−
5q/216 ≈ 6%, and the number of values we generate and check is reduced. Then,
we use AVX2 instructions to parallelize the rejection sampling step and replace
the SHAKE-128 by a faster, parallel implementation of SHA-256. Through the
above two ways, the generation efficiency of a is improved.

When sampling noise distribution, we use AES-256 to generate uniform noise
by taking the advantage of AES instruction set provided by processors. Then we
utilize AVX2 vector instructions to optimize the transformation from uniform
noise to the centered binomial.

For polynomial arithmetic, AVX2 instruction set can also be used to speed
up NTT. Güneysu et al. represent coefficients as double-precision integers and
achieve a good performance [10]. We use a similar approach and represent poly-
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nomials as arrays of double-precision floating-point numbers. This vectorized
double-precision floating point arithmetic is also used in [1,5].

6 Results and Comparison

In this section, we analyze the security strength and performance of the proposed
protocol. For comparison, we implement our work and the currently relatively
efficient lattice-based PAKE scheme [8] in C language. The results are obtained
on a 1.80 GHz Intel Core i7-8550U CPU and 2 GB RAM computer with an
Ubuntu 18.04.1 LTS 64 bit system.

To get concrete security strength analysis, we use the approach from [1] which
provides the core-SVP hardness estimation under the primal and dual attacks.
The smallest cost of attacks are shown in Table 1. In the analysis, since we are
more optimistic about the ability of the adversary, the security of [8] is lower
than they claimed. In [8], they choose a very large modulus q = 232 − 1 due
to a far from tight failure probability analysis, which results in a reduction in
security strength. It can be seen that the security strength of our protocol is
significantly higher than that of [8].

Table 1. Security strength

Classical Quantum Best plausible

Ours Primal 282 253 200

Dual 229 206 165

Ding’s [8] Primal 86 77 61

Dual 84 76 62

Table 2 lists the sizes of message to be transferred. In both protocols, the
client needs to send a polynomial, a hash value and a client identity; the server
needs to send a polynomial, a signal value and a hash value. The difference is
that in our design the client needs to send a small seed. Due to the large q and
polynomial size in [8], although we need to send one more seed, and our signal
value is larger than [8], our total message size is still smaller than that of [8].

Table 2. Message size

Client → Server (bytes) Server → Client (bytes)

Ours 1,864 2,592

Ding’s [8] 4,136 4,256

The cycle counts presented in Table 3 are the median and average of 1000
executions. In [8], since the chosen q prevents them from using NTT, they sample
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the noise from the Gaussian distribution and use Fast Fourier Transformation
(FFT) to speed up the polynomial operations. By switching to the centered
binomial noise distribution and utilizing NTT for acceleration, the performance
of our scheme is greatly improved. It can be seen from Table 3 that our scheme is
more than 12x faster than [8]. Moreover, the reconciliation mechanism used by
[8] can only reconcile one single bit in one calculation, while the reconciliation
mechanism we use can change the length of reconciliation bits by adjusting m.
When m increases, the performance will not reduce significantly. Besides, after
using AVX2 optimization in our scheme, the performance of sampling, generation
of a, and NTT has increased significantly. The number of cycles required for
protocol execution is only half that of the reference implementation, which means
that the efficiency doubles. In general, our scheme is very efficient and practical.

Table 3. Cycle counts

Client Server Generate a Sample noise NTT inv-NTT

Ding’s [8] Median 3,374,046 3,435,200

Average 3,574,888 3,666,014

Our portable C
implementation

Median 228,803 226,004 23,836 16,300 25,132 29,845

Average 294,460 270,227 30,885 17,370 36,235 38,636

Our AVX2
implementation

Median 102,182 101,766 14,093 2,745 4,520 5,013

Average 145,964 137,313 15,742 3,456 4,790 5,068

7 Conclusions

In this paper, we proposed an efficient PAKE protocol based on the RLWE prob-
lem for the post-quantum environment. By designing the protocol based on ROM
instead of using a CRS, our scheme’s construction is simpler and more practical.
A new error reconciliation mechanism, namely asymmetric key consensus, was
used in our protocol to allow the server to perform some pre-computation. In
this way, the protocol could reduce the load on server and better adapt to the
client-server scenario, especially the high concurrency situation.

We gave a formal security proof of our protocol under the BPR model, which
implied that it had forward secrecy and was resistant to dictionary attacks and
loss of session keys. Through regenerating the public parameter each time, the
risks of backdoor placement and all-for-the-price-of-one attacks were reduced.
And by choosing the central binomial distribution as the noise distribution, the
efficiency of our scheme was improved and timing attacks could be prevented.

Benefiting from the selection of appropriate parameters, such as n and q,
we further increased the security strength of the protocol while reducing the
transmitted message size.
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Finally, we implemented a portable C implementation of the protocol, in
which we use efficient algorithms and programming techniques to achieve better
performance. We used algorithms such as NTT to speed up polynomial opera-
tions, and tried to avoid the time-consuming operations like division and mod-
ulo operations. And by reducing the sample rejection rate and using parallelized
algorithms, the performance loss caused by regenerating a was cut down. Fur-
thermore, we also optimized the implementation using the AVX2 instruction set.
Our reference C implementation and AVX2 implementation are more than 12x
and 24x faster than the implementation of existing scheme, respectively.
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Abstract. Certificateless public key encryption (CL-PKE) solves the
problems of establishing public-key infrastructure for traditional public
key encryption and resolving key escrow for identity-based encryption.
Equality test is an extremely useful property that enables the ability
of checking whether two ciphertexts encrypting the same message. Qu
et al. (Information Science 2019) introduced the notion of certificate-
less public key encryption with equality test (CL-PKEET), together with
four types of adversaries, that solves certificate manangement and key
escrow problems of public key encryption with equality test (PKEET)
and identity-based encryption with equality test (IBEET), and proposed
a first CL-PKEET scheme based on Bilinear Diffie-Hellman assumption
in random oracle model. In this paper, we propose the first lattice-based
CL-PKEET in standard model whose security is reduced to the hard-
ness of the learning with errors problem. In particular, we prove that
our schemes are secure against two types of selective-identity adversaries
introduced by Qu et al.

Keywords: CL-PKEET · Lattice-based cryptography · Learning with
errors

1 Introduction

One of main difficulties today in developing secure systems based on public key
cryptography is the deployment and management of infrastructures to support
the authenticity of cryptographic keys: there is a need to provide an assurance
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to the user about the relationship between a public key and the identity (or
authority) of the holder of the corresponding private key. In the traditional
Public Key Infrastructure (PKI), a trusted certificate authority (CA) composes
certificates to ensure the authenticity of the users. It brings a vexing problem
- certificate management problem. To deal with it, Shamir [14] introduced the
notion of identity-based encryption (IBE). The public key of a user in IBE just is
the user’s identity (e.g., his email address), and the user’s secret key is a product
of the user’s identity and the master secret key of a trusted private key genera-
tor (PKG). Although IBE no longer requires certificates, it suffers from the key
escrow problem; namely, PKG knows all users’ secret keys. In 2003, Al-Riyami
and Paterson [4] proposed a new type of encryption scheme that avoids the
drawbacks of both traditional public-key encryption and identity-based encryp-
tion. They termed this new type of encryption certificateless public-key encryp-
tion (CL-PKE) because their encryption scheme did not require a public key
infrastructure. Roughly speaking, their idea was to combine the advantages of
traditional PKI-based public-key encryption and identity-based encryption. In
CL-PKE, the private key of a user includes two parts, namely, a secret value and
a partial private key. The secret value is randomly selected by the user while the
partial private key is generated with her/his identity by a key generation cen-
ter (KGC). Hence, the KGC does not know a user’s private key so that the key
escrow problem occurred in IBE is avoided. In addition, the user independently
generates and publishes the public key, so the need of certificates in conventional
PKC is abolished.

In the cloud era, plenty of cloud services offer a broad set of global com-
putation, analytics, storage, deployment, and application services to help orga-
nizations run faster and at lower cost. Encrypting data can also ensure that
the cloud service providers do not get to access or accidentally expose users’
data. Users may later need to access their encrypted data and information and
hence they will be prompted to search for it. Boneh et al. [6] came up with the
notion of incorporating searching using keywords with the public key encryption
for an effective way for users to retrieve their information effectively, which is
known as public key encryption with keyword search (PKEKS). Nonetheless, for
this PKEKS scheme, the cloud server only compares keywords with trapdoors
that have been encrypted with the same public keys and hence this scheme
becomes unsuitable for searching the cloud. Public key encryption with equality
test (PKEET), which was first introduced by Yang et al. [17], is a special kind of
public key encryption that allows anyone with a given trapdoor to test whether
two ciphertexts are generated by the same message. Compared to PKEKS, the
equality test in PKEET can be performed between two ciphertexts encrypted in
the same public key and different public keys. This property is of use in various
practical applications, such as keyword search on encrypted data, encrypted data
partitioning for efficient encrypted data management, personal health record sys-
tems, spam filtering in encrypted email systems and so on. However, anyone is
able to verify the equality of ciphertexts without any authorization in Yang et
al.’s scheme, which violates the data owners’ privacy. Ma [11] proposed the con-
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cept of identity-based encryption with equality test (IBEET), which simplifies
the certificate management problem of PKEET and supports user-level autho-
rization. Recently, Qu et al. [12] proposed the concept of certificateless public
key encryption with equality test (CL-PKEET), which integrates CL-PKE into
PKEET to solve the key escrow problem of IBEET. However, the CL-PKEET
scheme proposed by Qu et al. [12] is only proved secure in the random oracle
model that does not guarantee the security in the real world.

The above encryption schemes are mainly based on bilinear pairing tech-
nique with the Bilinear Diffie-Hellman assumption. The main drawbacks of these
schemes are vulnerable to quantum attacks. Currently, lattice-based cryptogra-
phy is considered to be the most promising candidate for post-quantum cryp-
tography, so far there is no viable quantum algorithm to solve difficulty lattice
problems. Compared with bilinear pairing, lattice-based cryptography usually
just involve simple vector-matrix multiplication and modular addition opera-
tions, thus huge of computational resources can be saved. Sepahi et al. [16]
introduced a generic construction of a CL-PKE that makes use of a 2-level HIBE,
an IBE, a MAC and an encapsulation scheme. And they yield the first instance
of a lattice-based CL-PKE by utilizing HIBE and IBE from [1], an encapsulation
scheme from [10] and a MAC using a universal hash function [8]. However, they
have not actually provide a concrete scheme and how the schemes they used
properly work together. Specially, we do not have a MAC in lattice settings.

Our Contribution. In this paper, we introduce a certificateless public key
encryption with equality test (CL-PKEET) in standard model. We first revisit
the generic construction of [16] and their instantiation on lattices. Instead of
using an encapsulation scheme and a MAC, we utilize a strong unforgeable sig-
nature scheme based on the full IBE in [1]. In this way, we will force all HIBE,
IBE and the signature scheme to have the same public key and make the instan-
tiation in lattices simpler. In addition, we use the recent technique by Duong et
al. [9] to add the equality test property for our instantiation, resulting to the
first CL-PKEET based on lattices in standard model. We prove that our scheme
is secure against two types of selective-identity chosen ciphertext attacks intro-
duced in [12].

2 Preliminaries

2.1 Certificateless Public Key Encryption with Equality Test

In this section, we follow [12] to define certificateless public key encryption with
equality test and its security model.

Definition 1 (CL-PKEET). A certificateless public key encryption with equality
test (CL-PKEET) scheme consists of nine algorithms:

– Setup(λ): This algorithm, run by the key generation center (KGC), takes the
security parameter λ as input, and outputs the master public key MPK and
the master secret key MSK.
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– ExtractPartialPrivateKey(MPK,MSK, ID): This algorithm is run by the KGC
once for each user when he requests for his partial private key. It takes the
master public key MPK, the master secret key MSK and a receiver’s identity
ID ∈ {0, 1}∗ as input, and outputs the receiver’s partial private key PSKID.

– SetSecretValue(MPK, ID): This algorithm, run by a receiver, takes the mas-
ter public key MPK and a receiver’s identity ID as input, and outputs the
receiver’s secret value SVID.

– SetPublicKey(MPK,SVID): This algorithm, run by a receiver, takes the master
public key MPK and the receiver’s secret value SVID as input, and outputs the
receiver’s public key PKID.

– SetPrivateKey(MPK,PSKID,SVID): This algorithm, run by a receiver, takes
the master public key MPK, the receiver’s partial private key PSKID and the
secret value SVID as input, and outputs the receiver’s (full) private key SKID.

– Encrypt(m,MPK, ID,PKID): On input MPK, an identity ID with its public key
PKID and a message m, it outputs a ciphertext CT.

– Dec(MPK,SKID,CT): On input MPK, a user ID’s secret key SKID and a cipher-
text CT, it outputs a message m′ or ⊥.

– Trapdoor(SKID): On input the secret key SKID for the user ID, it outputs a
trapdoor tdID.

– Test(tdIDi
, tdIDj

,CTIDi
,CTIDj

): On input two trapdoors tdIDi
, tdIDj

and two
ciphertexts CTIDi ,CTIDj for users IDi and IDj respectively, it outputs 1 or
0.

For correctness, we require the following:

1. It holds that m = Decrypt(MPK,SKID,Encrypt(m,MPK, ID,PKID)) where
PKID and SKID are the public key and private key of the identity ID respec-
tively.

2. Let (CTA, tdA) and (CTB , tdB) are ciphertext and trapdoor of the iden-
tity IDA and IDB respectively, with CTA = Encrypt(mA,MPK, IDA,PKIDA

)
and CTB = Encrypt(mB ,MPK, IDB ,PKIDB

). If mA = mB then we must
have Test(tdIDA

, tdIDB
,CTIDA

,CTIDB
) = 1; otherwise (in case mA �= mB)

Pr[Test(tdIDA
, tdIDB

,CTIDA
,CTIDB

) = 1] is negligible.

The security model of a CL-PKEET scheme against four types of adversaries
above is described in the following.

• Type-1 adversary: The master key cannot be accessed by this type of adver-
sary, but the adversary can replace the receiver’s public key. Moreover, with-
out the trapdoor, he cannot decide the ciphertext is computed on which
message. We define the IND-CCA security model with respect to this type of
adversary.

• Type-2 adversary: The master key can be accessed by this type of adversary,
but the adversary cannot replace the receiver’s public key. Moreover, without
the trapdoor, he cannot decide the ciphertext is computed on which message.
We define the IND-CCA security model with respect to this type of adversary.
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• Type-3 adversary: The master key cannot be accessed by this type of adver-
sary, but the adversary can replace the receiver’s public key. Moreover, with
the trapdoor, he cannot reveal the message from the challenge ciphertext. We
define the OW-CCA security model with respect to this type of adversary.

• Type-4 adversary: The master key can be accessed by this type of adversary,
but the adversary cannot replace the receiver’s public key. Moreover, with
the trapdoor, he cannot reveal the message from the challenge ciphertext.
We define the OW-CCA security model with respect to this type of adversary.

In this paper, we propose a scheme that is secure against Type-1 and Type-
3 adversaries. Hence, we only mention games in security model against those
adversaries.

IND-CCA Security Against Type-1 Adversaries. We illustrate the game
between a challenger C and a Type-1 adversary A1 as follows:

1. Setup: Suppose that the security parameter is λ. The master public key MPK
and the master secret key MSK are generated by the challenger C by running
the algorithm Setup. MSK and MPK are given to A1.

2. Phase 1: The adversary A may make queries polynomially many times adap-
tively and in any order to the following oracles:

– Partial private key query (ID): Upon receiving a receiver’s identity ID, C
responds with the corresponding partial private key PSKID.

– Private key query (ID): Upon receiving a receiver’s identity ID, C responds
with the corresponding private key SKID.

– Public key query (ID): Upon receiving a receiver’s identity IDID, C
responds with the corresponding public key PKID.

– Replace public key (ID, PKID): Upon receiving a receiver’s identity ID and
a public key PKID, C replaces the corresponding public key with PKID.

– Decryption query (ID, CT): Upon receiving a receiver’s identity ID and a
ciphertext CT, C responds with the output of the algorithm Decryption
Decrypt(MPK,CT,SKID), where SKID is the private key with respect to
the identity ID.

– Trapdoor query (ID): Upon receiving a receiver’s identity ID, C responds
with the corresponding trapdoor tdID.

3. Challenge: C chooses a random message m in the message space and run
CT∗ ← Encrypt(m,MPK, ID∗,PKID∗), and sends CT∗ to A.

4. Phase 2: A1 issues queries as done in Phase 1 with the following constraints:
– ID∗ should not appear in the Private key query, Partial private key query

and Trapdoor query.
– If a public key has been replaced, the corresponding identity ID should

not appear in the Private key query.
– (ID∗,CT∗) should not appear in the Decryption query.

5. Guess: A1 outputs ρ′ ∈ {0, 1}. If ρ = ρ′, A1 wins this game. The advantage
of A1 is defined as

AdvIND-CCA,Type-1
CLPKE,A1

(λ) =
∣
∣
∣
∣
Pr [ρ = ρ′] − 1

2

∣
∣
∣
∣
.
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A CL-PKEET scheme is IND-CCA secure against Type-1 adversary if for any
PPT adversary A1, its advantage AdvIND-CCA,Type-1

CL-PKEET,A1
(λ) is negligible.

OW-CCA Security Against Type-3 Adversaries. We illustrate the game
between a challenger C and a Type-3 adversary A3 as follows:

1. Setup: Suppose that the security parameter is λ. The master public key MPK
and the master secret key MSK are generated by the challenger C by running
the algorithm Setup. MSK is kept by C itself, and MPK is given to A3.

2. Phase 1: The following queries can be issued by A3 for polynomially many
times.

– Partial private key query (ID): Upon receiving a receiver’s identity ID, C
responds with the corresponding partial private key PSKID.

– Private key query (ID): Upon receiving a receiver’s identity ID, C responds
with the corresponding private key SKID.

– Public key query (ID): Upon receiving a receiver’s identity ID, C responds
with the corresponding public key PKID.

– Replace public key (ID,PKID): Upon receiving a receiver’s identity ID and
a public key PKID, C replaces the corresponding public key with PKID.

– Decryption query (ID, CT): Upon receiving a receiver’s identity ID and a
ciphertext CT, C responds with the output of the algorithm Decryption
Decrypt(MPK,SKID,CT), where SKID is the private key with respect to
the identity ID.

– Trapdoor query (ID): Upon receiving a receiver’s identity ID, C responds
with the corresponding trapdoor tdID.

3. Challenge: A3 submits an identity ID∗ for challenge. C selects a message
m∗ randomly, and then sends the challenge ciphertext CT∗ computed by
CT∗ = Encrypt(m∗,MPK, ID,PKID∗) to A3, where PKID∗ is the public key
with respect to ID∗.

4. Phase 2: A3 issues queries as done in Phase 1 with the following constraints:
– ID∗ should not appear in the Private key query and Partial private key

query.
– If a public key has been replaced, the corresponding identity ID should

not appear in the Private key query.
– (ID∗,CT∗) should not appear in the Decryption query.

5. Guess: A3 output m′. If m′ = m∗, A3 wins this game. The advantage of A3

is defined as
AdvOW-CCA,Type-3

CL-PKEET,A3
(λ) = Pr [m′ = m∗] .

A CL-PKEET scheme is OW-CCA secure against Type-3 adversary if for any
PPT adversary A3, its advantage AdvOW-CCA,Type-3

CL-PKEET,A3
(λ) is negligible.

2.2 Lattices

Throughout the paper, we will mainly focus on integer lattices, which are discrete
subgroups of Z

m. Specially, a lattice Λ in Z
m with basis B = [b1, · · · ,bn] ∈



56 D. H. Duong et al.

Z
m×n, where each bi is written in column form, is defined as

Λ :=

{
n∑

i=1

bixi|xi ∈ Z ∀i = 1, · · · , n

}

⊆ Z
m.

We call n the rank of Λ and if n = m we say that Λ is a full rank lattice. In
this paper, we mainly consider full rank lattices containing qZm, called q-ary
lattices, defined as the following, for a given matrix A ∈ Z

n×m and u ∈ Z
n
q

Λq(A) :=
{

e ∈ Z
m s.t. ∃s ∈ Z

n
q where ATs = e mod q

}

Λ⊥
q (A) := {e ∈ Z

m s.t. Ae = 0 mod q}
Λu

q (A) := {e ∈ Z
m s.t. Ae = u mod q}

Note that if t ∈ Λu
q (A) then Λu

q (A) = Λ⊥
q (A) + t.

Let S = {s1, · · · , sk} be a set of vectors in R
m. We denote by ‖S‖ :=

maxi ‖si‖ for i = 1, · · · , k, the maximum l2 length of the vectors in S. We also
denote S̃ := {s̃1, · · · , s̃k} the Gram-Schmidt orthogonalization of the vectors
s1, · · · , sk in that order. We refer to ‖S̃‖ the Gram-Schmidt norm of S.

Ajtai [2] first proposed how to sample a uniform matrix A ∈ Z
n×m
q with an

associated basis SA of Λ⊥
q (A) with low Gram-Schmidt norm. It is improved later

by Alwen and Peikert [3] in the following Theorem.

Theorem 1. Let q ≥ 3 be odd and m := �6n log q�. There is a probabilistic
polynomial-time algorithm TrapGen(q, n) that outputs a pair (A ∈ Z

n×m
q , S ∈

Z
m×m) such that A is statistically close to a uniform matrix in Z

n×m
q and S is

a basis for Λ⊥
q (A) satisfying

‖S̃‖ ≤ O(
√

n log q) and ‖S‖ ≤ O(n log q)

with all but negligible probability in n.

Definition 1 (Gaussian distribution). Let Λ ⊆ Z
m be a lattice. For a vector

c ∈ R
m and a positive parameter σ ∈ R, define:

ρσ,c(x) = exp
(

π
‖x − c‖2

σ2

)

and ρσ,c(Λ) =
∑

x∈Λ

ρσ,c(x).

The discrete Gaussian distribution over Λ with center c and parameter σ is

∀y ∈ Λ, DΛ,σ,c(y) =
ρσ,c(y)
ρσ,c(Λ)

.

For convenience, we will denote by ρσ and DΛ.σ for ρ0,σ and DΛ,σ,0 respectively.
When σ = 1 we will write ρ instead of ρ1. We recall below in Theorem 2 some
useful results. The first one is from [7] and formulated in [1, Theorem 17]. The
second one is from [1, Theorem 19]. The third one is from [1, Corollary 30] and
the last one is from [1, Corollary 31].
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Theorem 2. Let q > 2 and let A,B be a matrix in Z
n×m
q with m > n and B

is rank n. Let TA, TB be a basis for Λ⊥
q (A) and Λ⊥

q (B) respectively. Then for
c ∈ R

m and U ∈ Z
n×t
q :

1. Let M be a matrix in Z
n×m1
q and σ ≥ ‖T̃A‖ω(

√

log(m + m1)). Then there
exists a PPT algorithm SampleLeft(A,M, TA, U, σ) that outputs a matrix e ∈
Z
(m+m1)×t distributed statistically close to DΛu

q (F1),σ where F1 := (A | M).
In particular e ∈ ΛU

q (F1), i.e., F1 · e = U mod q.
2. Let R be a matrix in Z

k×m and let sR := sup‖x‖=1 ‖Rx‖. Let F2 := (A | AR+
B). Then for σ ≥ ‖T̃B‖sRω(

√
log m), there exists a PPT algorithm

SampleRight(A,B,R, TB , U, σ) that outputs a matrix e ∈ Z
(m+k)×t distributed

statistically close to DΛU
q (F2),σ. In particular e ∈ Λu

q (F2), i.e., F2 · e = U
mod q.
Note that when R is a random matrix in {−1, 1}m×m then sR < O(

√
m) with

overwhelming probability (cf. [1, Lemma 15]).
3. There exists an algorithm SampleBasisLeft(A,M, TA, σ) that outputs a short

basis T of Λ⊥
q (F ), where F = (A|M) ∈ Z

n×(l+1)m
q , satisfying that ‖T̃‖ ≤

‖T‖ ≤ σ
√

m and every column of T is statistically closed to DΛ⊥
q (F ),σ ,pro-

vided that A is rank n and σ > ‖T̃A‖ · ω(
√

log(lm).
4. There exisits an algorithm SampleBasisRight(A′, B,R, TB , σ) that outputs a

basis T for Λ⊥
q (F ), where F = (A′|A′R + B) ∈ Z

n×(l+1)m
q with A′ ∈ Z

n×lm
q ,

R ∈ Z
m×lm
q , satisfying ‖T̃‖ = ‖T̃B‖ and statistically closed to Λ⊥

q (F ), pro-
vided that B is rank n and that σ > ‖T̃B‖ · ‖R‖ω(

√

log(m).

The security of our construction reduces to the LWE (Learning With Errors)
problem introduced by Regev [13].

Definition 2 (LWE problem). Consider publicly a prime q, a positive integer
n, and a distribution χ over Zq. An (Zq, n, χ)-LWE problem instance consists of
access to an unspecified challenge oracle O, being either a noisy pseudorandom
sampler Os associated with a secret s ∈ Z

n
q , or a truly random sampler O$ who

behaviors are as follows:

Os: samples of the form (ui, vi) = (ui,uT
i s + xi) ∈ Z

n
q × Zq where s ∈ Z

n
q is a

uniform secret key, ui ∈ Z
n
q is uniform and xi ∈ Zq is a noise withdrawn

from χ.
O$: samples are uniform pairs in Z

n
q × Zq.

The (Zq, n, χ)-LWE problem allows responds queries to the challenge oracle O.
We say that an algorithm A decides the (Zq, n, χ)-LWE problem if

AdvLWE
A :=

∣
∣Pr[AOs = 1] − Pr[AO$ = 1]

∣
∣

is non-negligible for a random s ∈ Z
n
q .
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Regev [13] showed that (see Theorem 3 below) when χ is the distribution Ψα

of the random variable �qX� mod q where α ∈ (0, 1) and X is a normal random
variable with mean 0 and standard deviation α/

√
2π then the LWE problem is

hard.

Theorem 3. If there exists an efficient, possibly quantum, algorithm for decid-
ing the (Zq, n, Ψα)-LWE problem for q > 2

√
n/α then there is an efficient quan-

tum algorithm for approximating the SIVP and GapSVP problems, to within
Õ(n/α) factors in the l2 norm, in the worst case.

Hence if we assume the hardness of approximating the SIVP and GapSVP
problems in lattices of dimension n to within polynomial (in n) factors, then it
follows from Theorem 3 that deciding the LWE problem is hard when n/α is a
polynomial in n.

In our construction, we need a special encoding function H : Zn
q → Z

n×n
q

that maps identities in Z
n
q to matrices in Z

n×n
q . The encoding H needs to satisfy

the following:

1. for all distinct u, v ∈ Z
n
q , the matrix H(u) − H(v) ∈ Z

n×n
q is full rank; and

2. H is computable in polynomial time (in n log(q)).

Such an H is called an encoding with full-rank differences (FRD). An
explicit FRD construction was introduced in [1, Section 5].

3 Proposed Construction: CL-PKEET

In this paper, we propose a CL-PKEET that is secure against Type-1 and Type-
3 adversaries (cf. Sect. 2.1) under selective-identity chosen-ciphertext attacks.
Hence we consider the IND-sID-CCA and OW-sID-CCA models in which the
attacker should announce in advance the identity that he intends to attack.

3.1 Construction

Setup(λ): On input a security parameter λ, set the parameters q, n,m, σ, α as
in Sect. 3.2, and do the following:
1. Use TrapGen(q, n) to generate uniformly random n × m-matrices A,A′ ∈

Z
n×m
q together with trapdoors TA and TA′ respectively.

2. Select l + 1 uniformly random n × m matrices A1, · · · , Al, B ∈ Z
n×m
q .

3. Select a uniformly random matrix U ∈ Z
n×t
q .

4. H : Zn
q → Z

n×n
q is an encoding with full-rank differences (FRD).

5. H1 : {0, 1}∗ → Z
n×n
q is a composition of a hash function {0, 1}∗ → Z

n
q

and the encoding H above.
6. H2 : {0, 1}∗ → {0, 1}t is a hash function.
7. H3 : {0, 1}∗ → {−1, 1}l is a hash function.
8. Output the public key and the secret key

MPK = (A,A′, A1, · · · , Al, B, U), MSK = (TA, TA′).
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ExtractPartialPrivateKey(MPK,MSK, ID): On input the master public key
MPK, the master secret key MSK = (TA, TA′) and an identity ID, extract the
short basis SID ∈ Z

2m
q for Λ⊥

q (FID) with FID := (A|A1 + H(ID)B) ∈ Z
n×2m
q

by
SID ← SampleBasisLeft(A,A1 + H(ID)B, TA, σ).

Next, sample S′
ID ∈ Z

2m×t
q by

S′
ID ← SampleLeft(A′, A4 + H(ID)B, TA′ , U, σ).

Note that F ′
ID · S′

ID = U mod q, with F ′
ID := (A′ | A4 + H(ID)B) ∈ Z

n×2m
q .

Output PSKID := (SID, S′
ID).

SetSecretValue(MPK, ID): On input the master public key MPK and an iden-
tity ID, generate (AID, TID) ← TrapGen(q, n) and set the secret value of ID
as SVID := (AID, TID).

SetPublicKey(MPK,SVID): On input the master public key MPK and secret
value SVID = (AID, TID) of the identity ID, return the public key of ID as
PKID = AID.

SetPrivateKey(MPK,PSKID,SVID): On input the master public key MSK, the
partial secret key PSKID = (SID, S′

ID) and the secret value SVID = (AID, TID),
return the private key of the identity ID as SKID = (SID, S′

ID, TID).
Encrypt(m,MPK, ID,PKID): On input the master public key MPK, an identity

ID with its public key PKID and a message m ∈ {0, 1}t, do the following:
1. Choose a random string m1 ∈ {0, 1}t and compute m2 = m1 ⊕ m.
2. Choose randomly s1, s2, s3 ∈ Z

n
q .

3. Set F1 = (A | A1 + H(ID)B | A2 + H1(AID)B) ∈ Z
n×3m
q and F2 =

(AID | A3 + H1(AID)B) ∈ Z
n×2m
q .

4. Choose uniformly random matrices R1, R2, R3 ∈ {−1, 1}m×m and set
R12 = [R1‖R2] ∈ {−1, 1}m×2m.

5. Choose y1,y2,y3 ∈ Ψ
m

α and set z1 = RT
12y1 ∈ Z

2m
q , z2 = RT

2 y2, z3 =
RT

3 y3 ∈ Z
m
q .

6. Compute

CT1 = FT
1 s1 +

[
y1

z1

]

∈ Z
3m
q ,

CT2 = FT
2 s2 +

[
y2

z2

]

∈ Z
2m
q ,

CT3 = (F ′
ID)T s3 +

[
y3

z3

]

∈ Z
2m
q .

7. Compute k = H2(CT1‖CT2‖CT3) ∈ {0, 1}t.
8. Choose x1,x2,x3 ∈ Ψ

t

α and compute

CT4 = UT s1 + x1 + (k ⊕ m1)
⌊q

2
⌋ ∈ Z

t
q,

CT5 = UT s2 + x2 + (k ⊕ m2)
⌊q

2
⌋ ∈ Z

t
q,

CT6 = UT s3 + x3 + H2(m)
⌊q

2
⌋ ∈ Z

t
q.
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9. Compute x = H3(CT1‖CT2‖CT3‖CT4‖CT5‖CT6‖m) ∈ {−1, 1}l.
10. Generate (Am, Tm) ← TrapGen(q, n) and set

Fm := (Am | AID +
l∑

i=1

xiAi) ∈ Z
n×2m
q .

11. Compute a signature σ ∈ Z
2m
q by

σ ← SampleLeft(Am, AID +
l∑

i=1

xiAi, Tm,0, σ).

Note that Fm · σ = 0 mod q.
Output the ciphertext CT = (CT1,CT2,CT3,CT4,CT5,C6, σ, Am).

Decrypt(MPK,SKID,CT): On input the master public key MPK, a ciphertext
CT = (CT1,CT2,CT3,CT4,CT5,CT6, σ, Am) and the secret key SKID =
(SID, TID) of the identity ID, do:
1. Sample EID ∈ Z

3m×t
q as

EID ← SampleLeft(FID, A2 + H1(AID)B,SID, U, σ).

Note that F1 · EID = U mod q.
2. Compute w ← CT4 − ET

IDCT1 ∈ Z
t
q.

3. For each i = 1, · · · , t, compare wi and � q
2�. If they are close, output

mi = 1 and otherwise output mi = 0. We then obtain k ⊕ m1.
4. Sample E′

ID ∈ Z
2m×t
q as

E′
ID ← SampleLeft(AID, A1 + H(ID)B, TID, U, σ).

Note that F2 · E′
ID = U mod q.

5. Compute w′ ← CT5 − (E′
ID)TCT2 ∈ Z

t
q.

6. For each i = 1, · · · , t, compare w′
i and � q

2�. If they are close, output
m′

i = 1 and otherwise output m′
i = 0. We then obtain k ⊕ m2.

7. Compute the message m := (k ⊕ m1) ⊕ (k ⊕ m2).
8. Compute x = H3(CT1‖CT2‖CT3‖CT4‖CT5‖CT6‖m) ∈ {−1, 1}l.
9. Check whether Fm·σ = 0 mod q. If yes then output m. Otherwise output

⊥.
Trapdoor(SKID): On input an identity’s secret key SKID = (SID, S′

ID), it outputs
a trapdoor tdi = S′

ID.
Test(tdIDi

, tdIDj
,CTIDi

,CTIDj
): On input trapdoors tdIDi

, tdIDj
and ciphertexts

CTIDi
,CTIDj

for identities IDi, IDj respectively, computes
1. For each i (resp. j), compute wi ← CTi6 − (S′

IDi
)TCTi3 ∈ Z

t
q. For each

k = 1, · · · , t, compare each coordinate wik with � q
2� and output hik = 1

if they are close, and 0 otherwise. At the end, we obtain the vector hi

(resp. hj).
2. Output 1 if hi = hj and 0 otherwise.
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Theorem 4. Proposed CL-PKEET construction above is correct if H2 is a
collision-resistant hash function.

Proof. It is easy to see that if CT is a valid ciphertext of m then the decryption
will always output m. Moreover, if CTIDi

and CTIDj
are valid ciphertext of m

and m′ of identities IDi and IDj respectively. Then the Test process checks
whether H2(m) = H2(m′). If so then it outputs 1, meaning that m = m′, which
is always correct with overwhelming probability since H2 is collision resistant.
Hence, proposed CL-PKEET described above is correct. ��

3.2 Parameters

We follow [1, Section 7.3 & 8.3] for choosing parameters for our scheme. Now for
the system to work correctly we need to ensure

– the error term in decryption is less than q/5 with high probability, i.e., q =
Ω(σm3/2) and α < [σlmω(

√
log m)]−1,

– that the TrapGen can operate, i.e., m > 6n log q,
– that σ is large enough for SampleLeft and SampleRight, i.e., σ > lmω(

√
log m),

– that Regev’s reduction applies, i.e., q > 2
√

n/α,

Hence the following choice of parameters (q,m, σ, α) from [1] satisfies all of the
above conditions, taking n to be the security parameter:

m = 6n1+δ, q = m2.5 · ω(
√

log n)

σ = mlω(
√

log n), α = [l2m2ω(
√

log n)]−1
(1)

and round up m to the nearest larger integer and q to the nearest larger prime.
Here we assume that δ is such that nδ > �log q� = O(log n).

3.3 Security Analysis

In this section, we claim that our proposed scheme is IND-sID-CCA secure against
Type-1 adversaries (cf. Theorem 5) and OW-sID-CCA secure against Type-3
adversaries (cf. Theorem 6). The proofs are in the same manner to [9] and hence
we just sketch here and omit all the details.

Theorem 5. The CL-PKEET with parameters (q, n,m, σ, α) as in (1) is
IND-sID-CCA secure against Type-1 adversaries provided that the (Zq, n, Ψ̄α)-
LWE assumption holds.

Proof. Let ID∗ be the identity that the adversary A intends to attack. The proof
proceeds in a sequence of games as the following.

Game 0. This game is identical to the IND-CCA Type-1 game from Sect. 2.1
between an attacker A against the scheme and an IND-CCA challenger C.
Game 1. This Game is similar to Game 0, except in the way the challenger
generates A1, A2 in the master public key MPK. Let R∗

1, R
∗
2, R

∗
3 ∈ {−1, 1}m×m
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denote the matrices used in creating the challenge ciphertext CT∗. Now, the
matrices A1, A2, A3, A4 are constructed as

A1 ← AR∗
1 − H(ID∗)B,A2 ← AR∗

2 − H1(AID∗)B,

A3 ← AID∗R∗
2 − H1(AID∗)B,A4 ← A′R∗

3 − H(ID∗)B.

In the challenge phase, the challenger C uses those R∗
1, R

∗
2 in generating the

challenge ciphertext CT∗. The remainder of the game is unchanged.
Observe that in Game 1, the matrices R∗

1 and R∗
2 are used only in the con-

struction of A1, A2 and in the construction of the challenge ciphertext, where
z1 = (R∗

12)
T y1, z2 = (R∗

2)
T y1. By leftover hash lemma [1, Lemma 13], one

obtains that in the adversary’s view, the matrices AR∗
i for i = 1, 2 are statisti-

cally close to uniform and therefore the constructed A1 and A2 above are close
to uniform. Hence A1, A2 in Game 0 and Game 1 are indistinguishable. Hence,
Game 0 and Game 1 are statistically indistinguishable.

Game 2. In this game, we change the way of generating A and B in the MPK. We
choose A randomly and generate B by (B, TB) ← TrapGen(q, n). The remainder
is the same to Game 1. The challenger C answers the queries of A as in Game
1, in particular:

– Partial private key query (ID): when the adversary A requests the partial
private key of an identity ID �= ID∗. Now FID and F ′

ID are written as

FID = (A|A1 + H(ID)B) = (A|AR∗
1 + (H(ID) − H(ID∗))B)

F ′
ID = (A′|A4 + H(ID)B) = (A′|A′R∗

1 + (H(ID) − H(ID∗))B).

Now, B sample SID and S′
ID as follows:

SID ← SampleRight(A, (H(ID) − H(ID∗))B,R∗
1, TB , U, σ),

S′
ID ← SampleRight(A′, (H(ID) − H(ID∗))B,R∗

1, TB , U, σ).

And then B sends PSKID = (SID, S′
ID) to A.

– Decryption query (ID,CT): the adversary A provides an identity ID and a
ciphertext CT, then C can use the PSKID as above and the secret value of ID
(generated previously or generated as in SetSecretValue(MPK, ID)) to answer
A the decryption of CT.

Game 3. This game is similar to Game 2, except that the challenge ciphertext
CT∗ is uniformly random chosen.

We will show that Game 2 and Game 3 are computationally indistinguishable
by giving a reduction from the LWE problem.

Reduction from LWE. Suppose that A has non-negligible advantage in dis-
tinguishing Game 2 and Game 3. We use A to construct an algorithm B solving
the LWE problem.

Setup. First of all, B requests from O and receives, for each j = 1, · · · , t a fresh
pair (ai, di) ∈ Z

n
q × Zq and for each i = 1, · · · ,m, a fresh pair (ui, vi) ∈

Z
n
q × Zq. A announces an identity ID∗ that he intends to attack. Then B

constructs (MPK,MSK) as follows:
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1. Assemble the random matrix A ∈ Z
n×m
q from m of previously given LWE

samples by letting the i-th column of A to be the n-vector ui for all
i = 1, · · · ,m.

2. Assemble the first t unused LWE samples a1, · · · ,at to become a public
random matrix U ∈ Z

n×t
q .

3. Run TrapGen(q, σ) to generate uniformly random matrices A′, B ∈ Z
n×m
q

together with their trapdoor TA′ and TB respectively.
4. Choose random matrices R∗

1, R
∗
2, R

∗
3 ∈ {−1, 1}m×m and l construct the

matrices A1, A2, A3, A4 as in Game 1 Note that it follows from the leftover
hash lemma [15, Theorem 8.38] that A1, A2, A3, A4 are statistically close
to uniform.

5. Choose A5, · · · , Al uniformly random from Z
n×m
q .

6. Send MPK := (A,A′, A1, · · · , Al, B, U) to A.
Queries. B answers queries from A as in Game 2.
Challenge. After getting messages m0 or m1 from A, B chooses a random bit

b ∈ {0, 1} and encrypt the message mb as follows.
1. Choose a random mb1 ∈ {0, 1}t and set mb2 = mb1 ⊕ m.
2. Assemble d1, · · · , dt, v1, · · · , vm from the entries of LWE samples to form

d∗ = [d1, · · · , dt]T ∈ Z
t
q and v∗ = [v1, · · · , vm]T ∈ Z

m
q . Let R∗

12 = [R∗
1‖R∗

2]
and set

CT∗
1 :=

[
v∗

(R∗
12)

T v∗

]

∈ Z
3m
q .

3. Choose y2,y3 ← Ψ
m

α and set

CT∗
2 :=

[
(AID∗)T s2 + y2

(AID∗R∗
2)

T s2 + (R∗
2)

T y2

]

∈ Z
2m
q ,

CT∗
3 :=

[
(A′)T s3 + y3

(A′R∗
3)

T s3 + (R∗
3)

T y3

]

∈ Z
2m
q .

4. Compute k = H2(CT∗
1‖CT∗

2‖CT∗
3) ∈ {0, 1}t and set

CT∗
4 ← d∗ + (k ⊕ mb1)�q

2
� ∈ Z

t
q.

5. Choose s2, s3 ∈ Z
n
q , x2,x3 ∈ Ψ

t

α and compute

CT∗
2 ← UT s2 + x2 + (k ⊕ mb2)�q

2
� ∈ Z

t
q,

CT∗
3 ← UT s3 + x3 + H2(mb)�q

2
� ∈ Z

t
q.

Other parts of CT∗ is computed as in Game 2.

When the LWE oracle is pseudorandom, i.e., O = Os then v∗ = AT s+y for
some random noise vector y ← Ψ

m

α . Therefore

CT∗
1 :=

[
AT s + y

(AR∗)T s + (R∗
12)

T y

]

= (F1)T s +
[

y
(R∗

12)
T y

]

.
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In addition, we have

CT∗
2 = (F2)T s2 +

[
y2

(R∗
2)

T y2

]

,

CT∗
3 = (F ′

ID)T s3 +
[

y3

(R∗
3)

T y3

]

.

Therefore CT∗ is a valid ciphertext.

When O = O$ we have that d∗ is uniform in Z
t
q and v∗ is uniform in Z

m
q .

Then obviously CT∗
4 is uniform. It follows also from the leftover hash lemma

(cf. [15, Theorem 8.38]) that CT∗
1 is also uniform.

Guess. After Phase 2, A guesses if he is interacting with Game 2 or Game 3.
The simulator B outputs the final guess as the answer for the LWE problem.

We have seen above that when O = Os then the adversary’s view is as in Game
1. When O = O$ then the view of adversary is as in Game 2. Because the
(Zq, n, Ψα)-LWE assumption holds, Game 1 and Game 2 are then indistinguish-
able. This completes the proof. ��
Theorem 6. The CL-PKEET with parameters (q, n,m, σ, α) as in (1) is
OW-sID-CCA secure against Type-3 adversaries provided that H2 is a one-way
hash function and the (Zq, n, Ψ̄α)-LWE assumption holds.

Proof. The proof is similar to that of Theorem5. Notice that for this type of
adversary, an attacker A can have the trapdoor of ID∗, and hence he can use it
to obtain the hash value H2(m∗) from the challenge ciphertext. If A can output
m∗ then A has broken the one-wayness of H2. ��

4 Conclusion

In this paper, we propose, for the first time, a certificateless public key encryp-
tion scheme with equality test from lattices in standard model. We prove that
our scheme is secure against Type-1 and Type-3 attackers under selective-
identity chosen ciphertext attacks. There is possibility to achieve IND-ID-CCA
and OW-ID-CCA security by techniques from [1, Section 7],[5]. We leave as a
future work to investigate and modify our scheme to obtai security against Type-
2 and Type-4 attacks.
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covery Project DP180100665.
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Abstract. Attribute-based keyword search (ABKS) is a special case of
public key encryption with keyword search (PEKS) which allows fine-
grained control of the search ability and can be further categorized into
key-policy ABKS (KP-ABKS) and ciphertext-policy ABKS (CP-ABKS).
In a KP-ABKS (resp., CP-ABKS) scheme, a trapdoor that is associated
with an access policy f (resp., an attributes string x) can only be used
to search over ciphertexts that is associated with an attributes string x
(resp., an access policy f) if f(x) = 0. As ABKS is very useful in the
era of big data, many researchers have been devoted to design ABKS
schemes with different features, but almost all the known schemes are
based on the traditional number-theoretical assumptions such as Fac-
toring or Discrete Logarithm, and thus are insecure against quantum
adversaries.

In this paper, we propose a lattice-based KP-ABKS scheme support-
ing circuit policy of any predetermined polynomial depth. Our scheme
is provably secure against chosen keyword attacks and keyword guessing
attacks under the DLWE and ISIS assumptions in the random oracle
model. By using a universal circuit, our scheme can also be converted
into a CP-ABKS scheme.

Keywords: Attribute-based encryption · keyword search · Lattice ·
Post-quantum secure

1 Introduction

As the rapid growth of data volume, many users upload their (private) data to
the cloud storage which is owned by the cloud service providers (CSP) such as
OneDrive and Dropbox. However, the CSP is usually not fully trusted [44], which
may poses serious threats on the security and privacy of users’ data. Encryption
c© Springer Nature Switzerland AG 2020
Z. Liu and M. Yung (Eds.): Inscrypt 2019, LNCS 12020, pp. 66–85, 2020.
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is an effective measure to provide confidentiality and privacy (i.e., users can
encrypt the data before uploading it to the cloud server), but it also makes it
difficult for users to search files over massive amounts of data. To solve this
issue, the technology of searchable encryption (SE) is introduced [7,41,42,53].
SE is one of the cryptographic technologies that allows to efficiently search over
encrypted data in a secure way and can be divided into two kinds, namely,
searchable symmetric encryption (SSE) and public key encryption with keyword
search (PEKS) [10].

Boneh et al. [7] introduced the notion of PEKS. In a PEKS scheme, there
are three entities called data sender, data receiver and cloud server. The data
sender first extracts some keywords from his/her own documents, and generates
a set of PEKS ciphertexts of those keywords under the receiver’s public key.
Then, she/he attaches the encrypted keywords to the encryptions of his/her
documents (which are encrypted by using traditional encryption schemes), and
upload them together to the cloud server. Upon receiving the trapdoor, the
cloud server will match it with the encrypted keywords and sends the correctly
matched encrypted documents to the receiver. In the context of big data sharing,
more and more data is expected to be shared by multiple users. However, in the
traditional PEKS schemes, a user can only search over encrypted keywords which
are encrypted by using his/her own public key. For multi-receiver scenarios,
the data sender need to encrypt each keyword multiple times by using every
receiver’s public key, which brings large computation and storage overhead. The
broadcast encryption [17,34] can be used to one-to-many scenarios, however, it
is necessary to set up an authorized user group before encryption, which does
not have flexible access control policy.

The attribute-based keyword search (ABKS) provides a new solution [52]
for one-to-many scenarios with flexible access control. In a KP-ABKS (resp.,
CP-ABKS) scheme, the sender encrypts the keyword by using a public attribute
vector x (resp., a policy f). For every receiver who holds the secret key sk
associated with an access policy f (resp., an attribute vector x) s.t. f(x) = 0
can search the ciphertext. Therefore, ABKS allows the data sender to control
the access for his own outsourced encrypted data without any interaction with
receivers. In recent years, there has been many works [5,15,32,38,43,48] focusing
on constructing ABKS schemes with different functionalities and security. Nev-
ertheless, almost all previous works were based on the traditional cryptographic
assumptions which will be insecure if quantum computers become realistic. Thus,
it is very necessary to build an attribute-based keyword search (ABKS) scheme
which can resist quantum attacks.

1.1 Our Contribution

In this paper, we propose a key-policy attribute-based keyword search (KP-
ABKS) scheme based on the lattice assumptions. Our scheme supports cir-
cuit policy in polynomially bounded depth, and thus can support very flexible
and fine-grained access control. We provide detailed correctness analysis of our
proposed scheme, and show that our scheme is provable secure against chosen
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keyword attacks (under the DLWE assumption) and keyword guessing attacks
(under the ISIS assumption). Our KP-ABKS scheme can also be transformed
into a ciphertext-policy ABKS (CP-ABKS) scheme by encoding the access pol-
icy f in the ciphertext and generating the secret key for attribute x using a
universal circuit Ux(f) = f(x).

1.2 Overview of Our Construction

Our Construction. Let λ be the security parameter, set lattice parameters
n = n(λ),m = m(λ), q = q(λ) and let k be the dimension of the attribute
vector x = (x1, ..., xk) ∈ Z

k
q . For random matrices A,A1, ...,Ak,Aw ∈ Z

n×m
q ,

the gadget matrix G ∈ Z
n×m
q , and a random vector u ∈ Z

n
q which is used to

encrypt a binary string a ∈ {0, 1}s, the encryption lattice is defined as

Λx,w = Λq(A|A1 + x1G|...|Ak + xkG|Aw + H1(w)G)

The corresponding ciphertext is the matrices CT = (C0, {Ci}i∈{1,...,k},Cw).
For a function f : Z

k
q → Zq, anyone with the knowledge of x can transform the

ciphertext CT = (C0, {Ci}i∈{1,...,k},Cw) into a ciphertext CTf = (C0,Cf ,Cw)
which closes to the lattice

Λf,x,w = Λq(A|Af + f(x)G|Aw + H1(w)G),

where Af is uniquely computed by f and A1, ...,Ak. Note that the trapdoor
df,w of keyword w satisfies Fw · df,w = (A|Af |Aw + H1(w)G) · df,w = u. So
if f(x) = 0, the ciphertext CT and df,w contain the same keyword w, then the
cloud server could decrypt to get a to finish the test algorithm.

Although the above construction satisfies chosen keyword attacks security, it
can not resist keyword guessing attacks. That means an adversary who obtains
the trapdoor of a keyword can encrypt any candidated keyword to generate a
corresponding ciphertext. Then this adversary can run the test algorithm to
check if the keyword been guessed is correct, if not, the adversary continues to
guess. To prevent these attacks, we use the sender’s private key to generate a
signature θ such that Asθ = H2(Cw,a), where As is the public key of the data
sender. Thus we complete our construction.

1.3 Related Work

Searchable Encryption. SE is an encryption technology that can realize
search on encrypted data according to keywords. In 2000, Song et al. [42] first
proposed a SSE scheme. However, the search cost in their scheme is linear to the
database size. To improve performance, Goh et al. [20] considered the method of
constructing indexes for each file with a bloom filter, which greatly reduces the
search cost. Following this work, lots of SSE schemes with distinct traits have
been proposed [13,18,29,30,33,46]. SSE scheme is more efficient and has no limit
on the length of encrypted data. However, there is only one key for encryption
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and decryption in SSE scheme, and the key distribution must be completed via a
secure channel. Therefore, the security of the SSE scheme largely depends on the
security of key management. Nevertheless, the key distribution and management
are extremely complex.

To address this issue, Boneh et al. [7] proposed the first PEKS scheme, which
can be well applied in multi-user model. Later, Golle et al. [21] designed a new
PEKS scheme which supports conjunctive keyword search in the random oracle
model. Boneh et al. [9] constructed a PEKS scheme that supports conjunctive,
subset, and range queries. Recently, many works [14,25,26,35,47] have been
done to construct PEKS schemes that meet different search patterns and secu-
rity requirements. However, all these constructions will be insecure once the
quantum computers become realistic [36]. To resist quantum attacks, Hou et
al. [24] designed a novel PEKS scheme based on lattice. Zhang et al. [50] pro-
posed a identity-based encryption with keyword search scheme from lattices.
Behnia et al. [6] constructed two lattice-based PEKS schemes (IBEKS) based
on NTRU and LWE assumption. Recently, Zhang et al. [51] proposed a lattice-
based PEKS scheme which supports forward security. Zhang et al. [49] designed
a proxy-oriented identity-based encryption with keyword search (PO-IBEKS)
from lattices. In PO-IBEKS, a proxy is authorized to encrypt the keywords and
uploads the ciphertexts to the cloud server. However, the proxy must be com-
pletely trusted.

Attribute-Based Encryption. Attribute-based encryption (ABE) [40] is a
public-key encryption mechanism that supports fine-grained access control on
encrypted data. The ABE schemes can be classified into key-policy ABE (KP-
ABE) and ciphertext-policy ABE (CP-ABE) [23]. In KP-ABE, a user’s secret
key skf which is associated with access policy f can decrypt the ciphertext
c which is associated with the attribute strings x if and only if f(x) = 0. In
CP-ABE, a user’s secret key skx which is associated with the attribute strings
x can decrypt the ciphertext c which is associated with access policy f if and
only if f(x) = 0. In the past few years, significant amount of effort has been
made towards constructing ABE schemes from a variety of standard assumptions
[8,11,22,23,27].

Attribute-Based Keyword Search. Applying the technology of ABE to
searchable encryption can effectively realize multi-user management. Wang et
al. [45] combined CP-ABE with PEKS and designed an attribute-based key-
word search (ABKS) scheme. Zheng et al. [52] constructed a verifiable ABKS
scheme. In Zheng et al.’s scheme [52], only the legitimate users can search the
ciphertext and verify the correctness of the search results. Liu et al. [32] pointed
out that Zheng et al.’s scheme requires secure channels for trapdoor transmission.
To resolve this problem, an improved scheme was proposed in [32], which avoid
the use of secure channels. Sun et al. [43] first designed a user-revocable ABKS
scheme. After this work, several ABKS schemes with various features have been
constructed [5,28,31,48]. However, almost all previous proposed ABKS schemes
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cannot resist the quantum attacks. In this paper, we propose a novel ABKS
scheme from lattices that is secure against quantum attacks.

1.4 Organization

The rest of this paper is organized as follows. Section 2 reviews the related cryp-
tographic primitives and lemmas. Section 3 defines the KP-ABKS scheme and
security model in a formal way. Section 4 presents our KP-ABKS construction
and gives the security proof. Finally, we conclude the paper in Sect. 5.

2 Preliminaries

Notations. Let λ be the security parameter and negl(λ) denote a negligible
function.

For integer q ≥ 2, Zq denotes the quotient ring of integer modulo q. Let N

denotes the set of positive integer. For integer n, let [n] = {1, ..., n}. We use bold
capital letters to denote matrices, such as A,B, and bold lowercase letters to
denote vectors, such as x,y. Let AT denote the transpose of the matrix A, let
(A|B) and (A||B) denote the matrix of horizontally and vertically concatenating
A and B, respectively. For a vector u, let ||u|| denote the �2 norm and ||u||∞
denote the maximum element in u.

2.1 Lattices

For positive integers n,m, q, and a matrix A ∈ Z
n×m
q , the m-dimensional integer

lattices are defined as: Λq(A) = {y : y = ATs for some s ∈ Z
n} and Λ⊥

q (A) =
{y : Ay = 0 mod q}.

For x ∈ Λ, define the Gaussian function ρs,c(x) over Λ ⊆ Z
m centered

at c ∈ R
m with parameter s > 0 as ρs,c(x) = exp(−π||x − c||/s2). Let

ρs,c(Λ) =
∑

x∈Λ ρs,c(x), and define the discrete Gaussian distribution over Λ

as DΛ,s,c(x) = ρs,c(x)
ρs,c(Λ) , where x ∈ Λ. For simplicity, ρs,0 and DΛ,s,0 are abbrevi-

ated as ρs and DΛ,s, respectively.

Matrix Norms. For a matrix R ∈ Z
k×m, let ||R||∞ denote the maximum ele-

ment in R, let R̃ be the result of applying Gram-Schmidt (GS) orthogonalization
to the columns of R, let ||R|| denote the �2 length of the longest column of R.
||R||2 is the operator norm of R defined as ||R||2 = sup||x||=1||Rx||.
B-Bounded. A distribution ensemble χ, supported over the integers, is called
B-bounded if Pra←χ[|a| ≤ B] = 1.

Learning with Errors Problem. The learning with errors (LWE) prob-
lem, denoted by LWEq,n,m,α, was first proposed by Regev [39]. For integer
n,m = m(n), a prime integer q > 2, a Gaussian parameter α, the decisional
LWE problem LWEq,n,m,α is to distinguish the following pairs of distributions:
{A,ATs+ e} and {A,u}, where A ← Z

n×m
q , s ← Z

n
q ,u ← Z

m
q and e ← DZm,α.
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Regev [39] showed that solving decisional LWEq,n,m,α (denoted by
DLWEq,n,m,α) for α > 2

√
2n is (quantumly) as hard as approximating the SIVP

and GapSVP problems to within Õ(nq/α) factors in the worst case.

Inhomogeneous Small Integer Solution. The inhomogeneous small integer
solution (ISIS) problem was first introduced in [2]. For integer n,m = m(n), a
prime integer q > 2, with a matrix U ∈ Z

n×m
q , a vector ϑ ∈ Z

n
q , a positive real

number β, the goal is to solve a nonzero integer vector z ∈ Z
m such that Uz = ϑ

mod q and ||z|| ≤ β.
As proved in [19], for any prime q > β · ω(

√
n log n) and any poly-bounded

β = poly(n), the average hardness assumption of ISIS problem is as hard as
approximating the problem SIVP in the worst case to within certain factor β ·
Õ(

√
n).

Gadget Matrix. As mentioned by [37], for m > n	log q
, there exists a full-
rank matrix G ∈ Z

n×m
q such that the lattice Λ⊥

q (G) has a public known basis
TG ∈ Z

m×m
q with ‖T̃G‖ ≤ √

5. Moreover, there exists a deterministic PPT
algorithm G−1 which takes the input U ∈ Z

n×m
q and outputs V = G−1(U)

such that V ∈ {0, 1}m×m and GV = U.

Lemma 1. Let p, q, n,m be positive integers with q ≥ p ≥ 2 with q prime. There
exists PPT algorithms such that

• ([3,4]): TrapGen(n,m, q), a randomized algorithm that, when m ≥ 6n	log q
,
outputs a pair (A,TA) ∈ Z

n×m
q × Z

m×m such that A is statistically close to
uniform in Z

n×m
q and TA is a basis of Λ⊥

q (A), satisfying ‖T̃A‖ ≤ O(
√

n log q)
with overwhelming probability.

• ([19]): SamplePre(A,TA,u, σ) → x, a randomized algorithm that, when σ =
||T̃A|| · ω(

√
log m), outputs a random sample x ∈ Z

m
q from a distribution that

is statistically close to DΛu
q (A),σ.

• ([12]): RandBasis(A,TA, σ) → TA′ , a randomized algorithm that, when σ =
||T̃A|| ·ω(

√
log m), outputs a basis TA′ of Λ⊥

q (A) sampled from a distribution
that is statistically close to (DΛ⊥

q (A),σ)m. Note that ||T̃A′ || < σ
√

m with all
but negligible probability.

• ([12]): ExtendRight(A,TA,B) → T(A|B), a deterministic algorithm that given
full-rank matrices A ∈ Z

n×m1
q ,B ∈ Z

n×m2
q , and a basis of TA of Λ⊥

q (A)

outputs a basis T(A|B) of Λ⊥
q (A|B) such that ||T̃A|| = ||T̃(A|B)||.

• ([1]): ExtendLeft(A,G,TG,R) → TH(where H = (A|AR + G)), a deter-
ministic algorithm that given full-rank matrices A ∈ Z

n×m1
q ,G ∈ Z

n×m2
q ,

and a basis of TG of Λ⊥
q (G) outputs a basis TH of Λ⊥

q (H) such that
||T̃H|| ≤ ||T̃G|| · (1 + ||R||2).

• (Generalized Leftover Hash Lemma [1,16]): For m > (n + 1) log q + ω(log n)
and prime q > 2, let R ← {−1, 1}m×k and A ← Z

n×m
q ,B ← Z

n×k
q be

uniformly random matrices. Then the distribution (A,AR, eTR) is negl(n)-
close to the distribution (A,B, eTR) for all vector e ∈ Z

m
q . When e is always

0, this lemma is called Leftover Hash Lemma.
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3 Attribute-Based Keyword Search

In this section, we give the formal definition of key-policy attribute-based key-
word search (KP-ABKS) as follows:

3.1 Definition of Key-Policy Attribute-Based Keyword Search

For a keyword space W, attribute space X and policy space F , a key-policy
attribute-based keyword search (KP-ABKS) scheme ΠKP−ABKS consists five algo-
rithms ΠKP−ABKS = (Setup,KeyGen,ABKS,Trapdoor,Test) which are PPT algo-
rithms such that:

• Setup(1λ, 1k) → (pp,msk): On input the security parameter λ, the number
of attributes k, the setup algorithm outputs the public parameters pp and
master secret key msk.

• KeyGen(pp,msk, f) → skf : On input the public parameters pp, the master
secret key msk, a policy f ∈ F , the key generation algorithm outputs the
secret key skf .

• ABKS(pp,w,x) → CT : On input the public parameters pp and keyword
w ∈ W, an attribute x ∈ X , this algorithm outputs a ciphertext CT related
to the keyword w according to the attribute x.

• Trapdoor(pp, skf ,w) → df,w: On input the public parameters pp and a secret
key skf for the policy f , a keyword w, the trapdoor algorithm outputs a
trapdoor df,w associated with the keyword w according to the secret key
skf .

• Test(pp,CT,df,w) → {0, 1}: On input the ciphertext CT related to the key-
word w according to the attribute x, and a trapdoor df,w which is associated
with a keyword w and a policy f , the deterministic test algorithm outputs 1
if f(x) = 0, CT and df,w contains the same keyword w; otherwise, outputs
0.

The correctness and security of a KP-ABKS scheme are defined in Sub-
sects. 3.2 and 3.3, respectively.

3.2 Correctness Consistence

For any honestly generated public parameters pp and a secret key skf

for the policy f , and for any keyword w, our KP-ABKS scheme requires
that Test(pp,CT,df,w) = 1, where CT ← ABKS(pp,w,x), df,w ←
Trapdoor(pp, skf ,w) and f(x) = 0.

3.3 Security

In this paper, we consider two kinds of security: ciphertext indistinguishability
which can resist the chosen keyword attacks, and unforgeability which can resist
the keyword guessing attacks even for the misbehaved cloud server. We first give
the definition of ciphertext indistinguishability as follows:
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Ciphertext Indistinguishability. Let ΠKP−ABKS = (Setup,KeyGen,ABKS,
Trapdoor,Test) be a key-policy attribute-based keyword search (KP-ABKS)
scheme for a keyword space W, attribute space X and policy space F . For
all λ ∈ N, the ABKS ciphertext indistinguishability security experiment
ExptCIΠKP−ABKS

(λ,A) between an adversary A and the challenger C is defined as
follows:

• Setup phase: The adversary sends the challenge attribute x∗ to the challenger
C. The challenger then computes (pp,msk) ← Setup(1λ, 1k) and sends pp to
the adversary A.

• Query phase: The adversary A can make the following four types of queries
adaptively:

• Hash Queries: The adversary A can make a polynomial number of hash
queries and obtain the corresponding hash values.

• Key Queries: The adversary A can make a polynomial number of secret
key queries on policy f , with the restriction that f(x∗) �= 0, the challenger
generates the secret key skf and sends it to A.

• Trapdoor Queries: The adversary A can make a polynomial number of
trapdoor queries for the keyword w and policy f to receive the trapdoor
df,w from the challenger.

• Challenge Query: The adversary A chooses two keywords (w∗
0,w

∗
1) which

have not been queried for the trapdoor query with some policy f such
that f(x∗) = 0, then A submits them to the challenger. The challenger
chooses a bit β ∈ {0, 1}, computes CTβ ← ABKS(pp,w∗

β ,x∗)) and sends
it to A.

• Guess phase: At the end of the game, A outputs a bit β′ ∈ {0, 1}. It wins the
game if β = β′.

The advantage of the adversary in winning the above game is defined as
AdvA = |Pr[β = β′] − 1/2|.

Now we give the security definition of unforgeability which can resist the
keyword guessing attacks. In a KP-ABKS scheme, a malicious adversary (even
for the malicious cloud server) may encrypt any candidate keyword to gener-
ate a corresponding ciphertext. If the adversary can obtain the trapdoor, then
the adversary can use the trapdoor to run the test algorithm to identity the
ciphertext of the keyword which matches the trapdoor. Once the test algorithm
returns 1, the adversary can learn the keyword which is hidden in the trapdoor,
and this manner violates the data privacy. Our KP-ABKS scheme can resist this
kind of keyword guessing attacks even for the misbehaved cloud server. We give
the formal security definition as follows:

Unforgeability. Let ΠKP−ABKS = (Setup,KeyGen,ABKS,Trapdoor,Test) be a
key-policy attribute-based keyword search (KP-ABKS) scheme for a keyword
space W,attribute space X and policy space F . For all λ ∈ N, the KP-ABKS
unforgeability security experiment ExptUnforgeryΠKP−ABKS

(λ,A) between an adversary A
and the challenger C is defined as follows:
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• Setup phase: The challenger computes (pp,msk) ← Setup(1λ, 1k) and sends
pp to the adversary A.

• Query phase: The adversary A can make the following four types of queries
adaptively:

• Hash Queries: The adversary A can make a polynomial number of hash
queries and obtain the corresponding hash values.

• Trapdoor Queries: The adversary A can make a polynomial number of
trapdoor queries for the keyword w and policy f to receive the trapdoor
df,w from the challenger.

• Key Queries: The adversary A can make a polynomial number of key
queries on policy f , the challenger generates the secret key skf and sends
it to A.

• Searchable Ciphertext Queries: The adversary can make a polynomial
number of ciphertext queries on keyword w under the attribute x. The
challenger generates the corresponding ciphertext and returns it to the
adversary.

• Forgery phase: At the end of the game, A outputs a forged searchable cipher-
text CT ∗ related to the keyword w∗ according to the attribute x∗. It wins
the game if the ciphertext can pass the test process.

4 Our KP-ABKS Construction

In this section, we propose our KP-ABKS scheme. Let λ be the security parame-
ter, x ∈ Z

k
q and w ∈ {0, 1}s. we construct our key-policy attribute-based keyword

search (KP-ABKS) scheme ΠKP−ABKS = (Setup,KeyGen,ABKS,Trapdoor,Test)
as follows:

Set lattice parameters n = n(λ),m = m(λ), q = q(λ) and Gaussian param-
eters α = α(λ), σ = σ(λ), set a family of circuits F = {f : Z

k
q → Zq} of depth

d = d(λ). We first assume the existence of the following deterministic algorithms
as in [8].

• Evalpk(f ∈ F , (A1, ...,Ak)) → Af ∈ Z
n×m
q .

• EvalCT(f ∈ F , {(xi,Ai,Ci)}k
i=1) → Cf , where Ci := (Ai + xiG)TD + Ei. It

holds that:
cf := (Af + f(x)G)TD + Ef ,

where Af = Evalpk(f, (A1, ...,Ak)), for A1, ...,Ak ∈ Z
n×m
q , D ∈ Z

n×s
q ,

E1, ...,Ek ∈ Z
m×s
q . Note that if ||Ei||∞ ≤ B for all i ∈ [k], and p is the upper

bound of all intermediate result of f(x), we have ||Ef ||∞ ≤ B · (m + p)O(d).
• Evalsim(f ∈ F , {(x∗

i ,Ri)}k
i=1,A) → Rf , where x∗ = (x∗

1, ..., x
∗
k) is an

attribute vector and Ri ∈ {−1, 1}m×m, it holds that:

ARf − f(x∗)G = Af ,

where Af = Evalpk(f, (AR1 − x∗
1G, ...,ARk − x∗

kG)). Note that if p is the
upper bound of all intermediate result of f(x), we have ||Rf ||∞ ≤ (m+p)O(d).
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Given the above algorithms, our KP-ABKS system works as follows:

• Setup(1λ, 1k, 1d) → (pp,msk): On input the security parameter λ, do:
1. Invoke TrapGen(n,m, q) to generate a uniformly random matrix A

together with the short basis TA for Λ⊥
q (A).

2. Invoke TrapGen(n,m, q) to generate a uniformly random matrix As ∈
Z

n×m
q together with the short basis TAs

of Λ⊥
q (As) for the data sender.

3. Choose k + 1 uniformly random matrix Aw ∈ Z
n×m
q and Ai ∈ Z

n×m
q for

i = 1, . . . , k.
4. Select a uniformly random vector u ∈ Z

n
q .

5. Define two hash functions: H1 : {0, 1}s → Zq and H2 : Z
m×s
q × {0, 1}s →

Z
n
q .

6. Output the public parameters pp and the master secret key msk given
by,

pp = (A,As,Aw, {Ai}i∈{1,...,k},u,H1,H2) msk = (TA)

• KeyGen(pp,msk, f): On input the public parameters pp and master secret key
msk, and a access policy f , do:
1. Set Af = Evalpk(f, (A1, ...,Ak)).
2. Compute Tf ← RandBasis(F,ExtendRight(A,TA,Af ), σ), where Tf is a

trapdoor for F = (A|Af ) ∈ Z
n×2m
q .

3. Output the secret key skf = Tf .
• ABKS(pp,w,x) → CT : On input the public parameters pp and keyword w,

an attribute vector x = (x1, ..., xk) ∈ Z
k
q of length k, do :

1. Select a uniformly random matrix D ← Z
n×s
q .

2. Select noise vector e ← DZs
q,α and random noise matrix E0 ← D

Z
m×s
q ,α.

3. For i = 1, ..., k, choose these random matrices Ri ∈ {−1, 1}m×m and
Rw ∈ {−1, 1}m×m. Then define noise matrices Ei := RT

i E0 and Ew :=
RT

wE0.
4. Select a random binary string a = (a1, ..., as) ∈ {0, 1}s.
5. For i = 1, ..., k, compute the ciphertext of keyword w as follows:

(a) Compute the ciphertext,

c := uTD + e + aq

2
�,C0 := ATD + E0,

Ci := (Ai + xiG)TD + Ei,Cw := (Aw + H1(w)G)TD + Ew

(b) Compute h = H2(Cw,a), and evaluate θ ← SamplePre(As,TAs
,

h, σ).
(c) Output the final ciphertext, CT = (c,C0, {Ci}i∈{1,...k},Cw, θ).

• Trapdoor(pp, skf ,w) → df,w: On input the public parameters pp, a secret key
skf related to the access policy f , a keyword w, do:
1. Compute Af = Evalpk(f, (A1, ...,Ak)).
2. Compute Tfw ← RandBasis(Fw,ExtendRight(F = [A|Af ],Tf ,Aw +

H1(w)G), σ), where Tfw is a trapdoor for Fw = (A|Af |Aw+H1(w)G) ∈
Z

n×3m
q .
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3. Set df,w ← SamplePre(Fw,Tfw ,u, σ). Note that Fw · df,w = u in Z
n
q .

4. Output the trapdoor df,w ∈ Z
3m
q of keyword w.

• Test(pp,CT,df,w) → {0, 1}: On input the searchable ciphertext CT =
(c,C0, {Ci}i∈{1,...k},Cw, θ) associated with attribute x, a trapdoor df,w with
policy f , do:
1. If f(x) �= 0, return 0; otherwise, do:

(a) Compute Cf = EvalCT(f, {(xi,Ai,Ci)}k
i=1).

(b) Let Cf,w = (C0||Cf ||Cw) ∈ Z
3m×s
q

(c) Compute a = (a1, ..., as) ← c − dT
f,wCf,w.

(d) For i = 1, ..., s, compare each ai and  q
2�, if |ai −  q

2�| <  q
4�, set

ai = 1, otherwise set ai = 0.
(e) Compute h = H2(Cw,a), and then check whether Asθ = h. If the

equation holds, then the test algorithm returns 1, otherwise returns
0.

Remark 1. Note that our key-policy attribute-based keyword search (KP-
ABKS) scheme can be transformed into a ciphertext-policy attribute-based key-
word search (CP-ABKS) scheme. For access policy function f : {Z

k
q → Zq},

where |f | = N , we can set {Ci := (Ai + fiG)TD+Ei}i∈[N ], for public matrices
A1, ...,AN . Now the secret key skx for attribute x is defined to be a trapdoor
of F = [A|Ax], where Ax = Evalpk(Ux, (A1, ...,AN )) and Ux is the universal
circuit Ux(f) = f(x). Other processes are identical to those described above.

Correctness Consistence. For any honestly generated public parameters
pp and a secret key skf for the access policy f , and for any keyword w,
then Test(pp,CT,df,w) = 1, where CT ← ABKS(pp,w,x) and df,w ←
Trapdoor(pp, skf ,w) such that f(x) = 0.

Proof. For f(x) = 0, let w be the keyword contained in the chiphertext CT and
w′ be the keyword contained in trapdoor df,w′ , we analysis the correctness in
the following two cases:

1. If w = w′, for Cf,w = (C0||Cf ||Cw) = (A||Af ||Aw+H1(w)G)TD+E′, with
noise matrix E′ = (E0||Ef ||Ew), we have a′ = (a′

1, ..., a
′
s) = c − dT

f,wCf,w =
(a0, ..., as) q

2� + e − dT
f,wE′

︸ ︷︷ ︸
error−term:ẽ

.

To decrypt correctly, for α =
√

n, σ = B · (m + p)O(d)(DZq,α is B-bounded),
the error term ||ẽ||∞ ≤ B2 · (m + p)O(d) is guaranteed to less than q/4 as
discussed in [8]. Thus we have a = a′ and h = H2(Cw,a) = H2(Cw,a′), so
the test algorithm returns 1.

2. If w �= w′, we have a′ = (a′
1, ..., a

′
s) = c − dT

f,w′Cf,w ∈ Z
s
q, the searchable

ciphertext cannot be decrypted to a = (a1, ..., as) with all but negligible
probability. Thus we have h = H2(Cw,a) �= H2(Cw,a′), so the test algorithm
returns 0.
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Thus, as stated above, our KP-ABKS scheme satisfies correctness consistency.
Once the test algorithm returns 1, the cloud server can make sure that the
searchable ciphertext CT and the trapdoor df,w contains the same keyword w.
Then the cloud server sends the corresponding encrypted files to the receiver.
The receiver could use its own secret key to decrypt the encrypted files to learn
the plaintext data.

Security. Now we will demonstrate that our ΠKP−ABKS scheme satisfies the
ciphertext indistinguishability and unforgeability.

Theorem 1. Suppose that an adversary can break the ciphertext indistinguisha-
bility of our ΠKP−ABKS scheme under the selective attribute security in the ran-
dom oracle with non-negligible probability ε, then there exist an algorithm B that
can solve the DLWE problem with non-negligible probability ε′

Proof. Let ΠKP−ABKS = (Setup,KeyGen,ABKS,Trapdoor,Test) be a key-policy
attribute-base keyword search (KP-ABKS) scheme. Let A be the adversary that
breaks ciphertext indistinguishability, then we can construct an algorithm B to
solve the DLWE problem. The algorithm B simulates the experiment as follows:

• Setup phase: At the start of the experiment, A submits the target attribute
x∗ = (x∗

1, ..., x
∗
k). The algorithm B then requests from the DLWE oracle

and receives pairs (uk, vk1, ..., vks) ∈ Z
n
q × Z

s
q, for i = 0, ...,m. It then sets

two lists L1, L2. Set QHi
to be the maximum number of queries to Hi that

the adversary makes, where i = 1, 2. The algorithm B prepares the setup
algorithm as follows:
1. Select the integer I∗ ∈ [QH1 ].
2. Sample k + 1 random matrices R∗

w,R∗
1, ...,R

∗
k ← {−1, 1}m×m and p∗ ←

Zq.
3. Assemble a random matrix A ∈ Z

n×m
q from m of the LWE samples, by

letting the ith column of A be the vector ui, where i = 1, ...,m.
4. For i = 1, ..., k, set Ai = AR∗

i − x∗
iG and Aw = AR∗

w − p∗G. (Note
that R∗

i is used only in the construction of Ai and in the construction of
the challenger ciphertext where Ei = (R∗

i )
TE0, by the generalized Left-

over Hash Lemma, (Ai,AiR∗
i ,Ei) is statistically close to the distribution

(Ai,A
′
i,Ei), where A

′
i is a uniform Z

n×m
q matrix. Thus A1, ...,Ak,Aw

are statistically close to uniform.)
5. Invoke TrapGen(n,m, q) to generate a uniformly random matrix As ∈

Z
n×m
q together with the short basis TAs

of Λ⊥
q (As) for the data sender.

6. Set the public parameters pp = (A,As,Aw, {Ai}i∈{1,...,k},u,H1,H2) and
send pp to A.

We then assume that when A make the key queries and trapdoor queries, it
has queried all relevant hash values.

• Query phase: The adversary A can make the following four types of queries
adaptively:
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• Hash Queries: The adversary A can make a polynomial number of hash
queries, the algorithm B responds as follows:

* H1 query: For the Qth query, where Q = 1, ..., QH1 , the adversary
queries on w, then B answers:
1. If Q = I∗ such that w = w∗, B sets H1(w) ← p∗ and returns it

to the adversary. It adds (w∗, p∗) to L1.
2. Otherwise, B looks into list L1 to check if the hash value was

previously defined, if it was, the previous value is returned. If
not, it randomly choose an element h1 ∈ Zq. It adds (w, h1) to
L1.

* H2 query: For the Qth query on (Cw,a), where Q = 1, ..., QH2 , B first
checks if the value was previously defined. If it was, then B returns the
defined value. If not, B randomly choose h2 ← Z

n
q , adds (Cw,a,h2)

to L2 and returns h2.
• Key Queries: The adversary A can make a polynomial number of key

queries on f such that f(x∗) = y �= 0.
1. Rf ← Evalsim(f ∈ F , {(x∗

i ,R
∗
i )}k

i=1), it holds that:

ARf − yG = Af ,

where Af = Evalpk(f, (AR∗
1 − x∗

1G, ...,AR∗
k − x∗

kG)).
2. Run Tf ← RandBasis(F,ExtendLeft(yG,TG,A,Rf ), σ), where Tf is

a trapdoor for F = (A|Af ).
3. Output the secret key skf = Tf .

• Trapdoor Queries: The adversary A can adaptively query the trapdoor
df,w of keyword w associated with policy f , with the restriction that
f(x∗) = y �= 0 or f(x∗) = 0 but w �= w∗.

* If f(x∗) = y �= 0, do:
1. Rf ← Evalsim(f ∈ F , {(x∗

i ,R
∗
i )}k

i=1), it holds that:

ARf − yG = Af ,

where Af = Evalpk(f, (AR∗
1 − x∗

1G, ...,AR∗
k − x∗

kG)).
2. Run Tf ← RandBasis(F,ExtendLeft(yG,TG,A,Rf ), σ), where

Tf is a trapdoor for F = (A|Af ).
3. Run Tfw ←

RandBasis(Fw,ExtendRight(F,Tf ,Aw+H1(w)G), σ), where Tfw

is a trapdoor for Fw = (A|Af |Aw + H1(w)G) ∈ Z
n×3m
q .

4. Set df,w ← SamplePre(Fw,Tfw ,u, σ).
5. Output df,w as the trapdoor of keyword w.

* Otherwise f(x∗) = 0 ∧ w �= w∗, do:
1. Since w �= w∗ ⇒ H1(w) − p∗ �= 0, it holds that:

ARf = Af ,

where Af = Evalpk(f, (AR∗
1 − x∗

1G, ...,AR∗
k − x∗

kG)).
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2. Run Tfw ← RandBasis(F,ExtendLeft((H1(w) −
p∗)G,TG,A|Af ,R∗

w), σ), where Tfw is a trapdoor for Fw =
(A|Af |Aw + H1(w)G) ∈ Z

n×3m
q .

3. Set df,w ← SamplePre(Fw,Tfw ,u, σ).
4. Output df,w as the trapdoor of keyword w.

• Challenge Query: The adversary A sends two keywords (w∗
0,w

∗
1) which

have not been queried for the trapdoor query with some policy f such
that f(x∗) = 0. Now B randomly chooses a bit β ∈ {0, 1}. If β = 0, B
returns a random KP-ABKS searchable ciphertext CT ∗ associated with
the keyword w∗

0. Otherwise, given that AR∗
i = Ai + x∗

iG and AR∗
w =

Aw + H1(w∗)G, so B proceeds:
1. For k = 0, 1, ...,m, retrieve (vk1, ..., vks) from the LWE sample and

set vk = (vk1, ..., vkl), let V∗ = (v1, ...,vm) ∈ Z
m×s
q .

2. Randomly choose a∗ = (a∗
1, ..., a

∗
s) ∈ {0, 1}
, set c∗ = v0 + a∗q/2�.

3. Set C∗
0 = V∗ ∈ Z

m×s
q .

4. For i = 1, ..., k, set C∗
i = (R∗

i )
TC∗

0 and C∗
w = (R∗

w)TC∗
0.

5. Compute h∗ = H2(C∗
w,a∗) ∈ Z

n
q , then run θ∗ ←

SamplePre(As,TAs
,h∗, σ).

6. B returns CT ∗ = (c∗,C∗
0, {C∗

i }i∈{1,...k},Cw
∗, θ) as the ciphertext

associated with keyword w∗
1 to the adversary.

• Guessphase: At the end of the game, A outputs a bit β′ ∈ {0, 1}. It wins the
game if β = β′.

Note that B simulates the challenge environment for the adversary. If the LWE
samples are random, then (c∗,C∗

0) are uniform random. So ({C∗
i }i∈{1,...k},Cw

∗)
are uniform by a standard application of the Leftover Hash Lemma. We consider
the case that B can successfully guess the keyword w∗

1 with the non-negligible
probability ε, where w∗

1 is indeed the I∗th query in H1 query, it means that
w∗

1 = w∗. This case occurs with probability 1/QH1 . At the same time, B can
return the ciphertext which really is associated with w∗

1 with the probability 1/2.
If the adversary breaks the ciphertext indistinguishability with non-negligible
probability ε, B has advantage at least ε′ = ε/(2QH1) in breaking the DLWE
problem, thus we complete our proof.

Now we will demonstrate that our ΠKP−ABKS scheme satisfies the unforgeabil-
ity security even for the misbehaved cloud server who can obtain the trapdoor.

Theorem 2. Suppose an adversary A can break the unforgeability with non-
negligible probability ε, then there exist an algorithm B that can solve the ISIS
problem with non-negligible probability ε′.

Proof. Let ΠKP−ABKS = (Setup,KeyGen,ABKS,Trapdoor,Test) be a key-policy
attribute-base keyword search (KP-ABKS) scheme. Let A be the adversary that
breaks unforgeability security, then we can construct an algorithm B to solve
the ISIS problem. The algorithm B simulates the experiment as follows:
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• Setup phase: At the start of the experiment, the algorithm B requests an
instance of ISIS problem (U, ϑ) ∈ Z

n×m
q × Z

n
q , and it manages to solve the

vector θ∗ ∈ Z
m
q , such that Uθ∗ = ϑ and 0 < ||θ∗|| ≤ σ

√
m. To maintain the

consistency, it then sets two lists L1, L2 and set QHi
to be the maximum num-

ber of queries to Hi that the adversary makes, where i = 1, 2. The algorithm
B prepares the setup algorithm as follows:
1. Select the integer I∗ ∈ [QH2 ].
2. Set As = U.
3. Invoke TrapGen(n,m, q) to generate a uniformly random matrix A

together with the short basis TA for Λ⊥
q (A).

4. Choose k + 1 uniformly random matrix Aw ∈ Z
n×m
q and Ai ∈ Z

n×m
q for

i = 1, . . . , k.
5. Select a uniformly random vector u ∈ Z

n
q .

6. Set the public parameters pp = (A,As,Aw, {Ai}i∈{1,...,k},u,H1,H2) and
send pp to A.

We then assume that when A make the key queries and trapdoor queries, it
has queried all relevant hash values.

• Query phase: The adversary A can make the following four types of queries
adaptively:

• Hash Queries: The adversary A can make a polynomial number of hash
queries, the algorithm B responds as follows:

* H1 query: For the Qth query, where Q = 1, ..., QH1 , the adversary
queries on w, B first checks if the value was previously defined. If
it was, then B returns the defined value. If not, B randomly choose
h1 ← Zq, adds (w, h1) to L1 and returns h1.

* H2 query: For the Qth query on distinct (Cw,a), where Q =
1, ..., QH2 , B first checks in L2 if the value was previously defined.
If it was, then B returns the defined value h2 to the adversary. If
Q = I∗, such that a = a∗, and Cw = C∗

w is just the ciphertext com-
ponents of keyword w∗, under the uniform matrix D∗ ∈ Z

n×s
q , the

noise matrix E∗
w ∈ Z

m×s
q , B adds (C∗

w,a∗, ϑ,⊥) to the list L2, and
returns ϑ to the adversary A. Otherwise, B generates θ ← DZm,σ and
computes h2 = Uθ, it then adds (Cw,a,h2, θ) to L2 and returns h2.

• Key Queries: The adversary A can make a polynomial number of key
queries on f ,
1. Set Af = Evalpk(f, (A1, ...,Ak)).
2. Compute Tf ← RandBasis(F,ExtendRight(A,TA,Af ), σ), where Tf

is a trapdoor for F = (A|Af ) ∈ Z
n×2m
q .

3. Output the secret key skf = Tf .
• Trapdoor Queries: The adversary A can adaptively query the trapdoor
df,w of keyword w associated with policy f .
1. Set Af = Evalpk(f, (A1, ...,Ak)).
2. Compute Tf ← RandBasis(F,ExtendRight(A,TA,Af ), σ), where Tf

is a trapdoor for F = (A|Af ) ∈ Z
n×2m
q .
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3. Compute Tfw ← RandBasis(Fw,ExtendRight(F,Tf ,Aw + H1(w)G),
σ), where Tfw is a trapdoor for Fw = (A|Af |Aw + H1(w)G) ∈
Z

n×3m
q .

4. Set df,w ← SamplePre(Fw,Tfw ,u, σ). Note that Fw · df,w = u in
Z

n
q .

5. Output the trapdoor df,w of keyword w.
• Searchable Ciphertext Queries: The adversary can make a polynomial num-

ber of ciphertext queries on keyword w under the attribute x. The algo-
rithm B chooses a binary string a ∈ {0, 1}s, D ← Z

n×s
q and com-

putes the noise matrices E0,E1, ...,Ek,Ew ∈ Z
m×s
q . It then computes

(c,C0, {Ci}i∈{1,...k},Cw) in a normal way. B generates θ ← DZm,σ and
returns CT = (c,C0, {Ci}i∈{1,...k},Cw, θ).

• Forgery phase: At the end of the game, A outputs a forged searchable cipher-
text CT ∗ = (c∗,C∗

0, {C∗
i }i∈{1,...k},C∗

w, θ∗) associated with (w∗,x∗). With the
restriction that (w∗,x∗) can not be submitted to the searchable ciphertext
oracle.

Note that A could query to B to get the trapdoor df,w∗ for policy f such that
f(x)∗ = 0. B recovers a∗ by computing a∗ = c − dT

f,w∗Cf,w∗ , where Cf,w∗ =
(C0||Cf ||C∗

w) ∈ Z
3m×s
q for Cf = EvalCT(f, {(xi,Ai,Ci)}k

i=1). B outputs θ∗ as
its answer to ISIS instance (U, ϑ). If A wins the game, then we have Asθ

∗ =
Uθ∗ = H2(C∗

w,a∗). Moreover, B could successfully guess that H2(C∗
w,a∗) = ϑ

with probability 1/QH2 . Thus, if the adversary can forge a valid searchable
ciphertext with non-negligible probability ε, then B has advantage at least ε′ =
ε/QH2 in finding a solution θ∗ such that Uθ∗ = ϑ and 0 < ||θ∗|| ≤ σ

√
m, which

contradicts to the hardness of ISIS problem. Thus we complete our proof.

5 Conclusion

In this paper, we design a key-policy attribute-based keyword search (KP-ABKS)
scheme based on the lattice assumptions. Our scheme support circuit policy in
polynomially bounded depth, and thus can support very flexible and fine-grained
access control. We provide detailed correctness analysis and provable security of
our proposed scheme. The security analysis demonstrates that our KP-ABKS
scheme can resist chosen keyword attacks and keyword guessing attacks. To
check the correctness and completeness of the search result, in the future, we
would like to design a verifiable attribute-based keyword search scheme based
on lattices.
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Abstract. In this paper, we propose a multi-party (group) key exchange
protocol based on CSIDH (Commutative Supersingular Isogeny Diffie–
Hellman), which is a post-quantum Diffie-Hellman type key exchange
protocol from a commutative group action. The proposed group key
exchange protocol called G-CSIDH uses the same size prime modulus
p as that in CSIDH for the same security level, and the security of G-
CSIDH is reduced to the security of CSIDH.

In addition, we propose the trusted protocol of generating public
parameters of supersingular isogeny cryptosystems by using the pro-
posed G-CSIDH. Trust in the setup based on G-CSIDH is reduced to
the security of G-CSIDH, and then that of CSIDH. The trusted protocol
can be applied to any supersingular isogeny cryptosystem, which uses a
supersingular elliptic curve as a public parameter.

Keywords: Isogeny-based cryptography · CSIDH · Group key
exchange

1 Introduction

There are two public-key cryptosystems currently used widely: RSA [25] and
Elliptic Curve Cryptography [17,21]. However, it is known that both cryptosys-
tems can be broken in polynomial time by using a quantum computer [26].
Consequently, we should develop new cryptosystems based on some mathemat-
ical problem (called Post-Quantum Cryptography (PQC)) which is hard to be
solved even using a quantum computer.

The isogeny problem is the problem of computing an isogeny between given
two isogenous elliptic curves. As far as we know, it takes subexponential time
to solve the isogeny problem on ordinary elliptic curves by using a quantum
computer [8], and takes exponential time to solve that on supersingular elliptic
curves [2]. Therefore, isogeny-based cryptography which is based on the isogeny
problem is considered to be one candidate for post-quantum cryptography.
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There are two major proposals for isogeny-based key exchange protocols
currently: SIDH (Supersingular Isogeny Diffie–Hellman) key exchange [12], and
CSIDH (Commutative Supersingular Isogeny Diffie–Hellman) key exchange [5].
Both protocols are being studied toward practical applications.

One motivation of this work is how to share public parameters in supersingu-
lar isogeny-based cryptography in a trusted manner: In traditional elliptic curve
cryptography, the issue began to be seriously studied at the controversy on NIST
elliptic curves in 2007 [27]. Since we use ordinary curves in the setting (even in
the pairing-based setting usually), we only have to replace the previous curves by
verifiably determined curves as one countermeasure for the issue [3]. The curve is
determined by using a hash function and the seed is used for verifying the curve
generation procedure so that proving there exist no back doors in the public
curve. The countermeasure cannot be applied to the supersingular case as we
will show later.

We consider two targets in this paper. The first one is to extend isogeny-
based cryptography to a multi-party setting. While both SIDH and CSIDH are
used as only two-party key exchange protocols, we need to consider multi-party
key exchange (group key exchange) protocols in many practical applications.
Two group key exchange protocols based on SIDH have been proposed: SIBD
and G-SIDH [13]. In contrast, there have been no proposed group key exchange
protocols based on CSIDH.

The second one is to propose a protocol generating public parameters of
isogeny-based cryptosystems in a trusted manner, e.g., without back doors. If
one party generates public parameters (even using some multi-party protocol),
the party might embed some his own information (e.g., back door) into public
parameters. For example, the natural protocol generating a random supersin-
gular elliptic curve is that a specific party generates it by using the CGL hash
function [7]. However, by executing this protocol for setup, the party generat-
ing the elliptic curve gets more information than other parties. Our target is
to prevent such situation, which is formulated in the notion of trusted setup.
Therefore, we need to consider how to generate public parameters in a trusted
manner, which is a non-trivial problem since public parameters of isogeny-based
cryptosystems contain a supersingular elliptic curve, i.e., not consist of only ran-
dom variables.

Our target open problem is: How do we generate a supersingular elliptic
curve with trust as a public parameter (even using multi-party protocol)?

1.1 Our Results

In this paper, we first propose a group key exchange protocol based on CSIDH,
which we call G-CSIDH. First, the security of the proposed u-party G-CSIDH
is naturally reduced to the u-General Commutative Supersingular Isogeny Deci-
sional Diffie-Hellman (u-GCSSDDH) assumption (Lemma 1). And then, we show
that u-GCSSDDH assumption is reduced to the two-party case, Commuta-
tive Supersingular Isogeny Decisional Diffie-Hellman (CSSDDH) assumption
(Lemma 2). Consequently, the security of the u-party G-CSIDH is proven under
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the CSSDDH assumption (Theorem 5). Table 1 compares G-CSIDH with other
isogeny-based group key exchange protocols.

Table 1. Comparison of isogeny-based group key exchange protocols. In the “quantum
sec.” column, exp. (resp. subexp.) means quantum exponential-time (resp. sub
exponential-time) security. In the “active attacks” column, vuln. (resp. resist.) means
vulnerability (resp. resistance) to active attacks in [14]

quantum sec. active attacks round size of the prime p the shared key

SIBD [13] exp vuln 2 same as SIDH a random value

G-SIDH [13] exp vuln u large a supersingular
elliptic curve

CSIBD subexp resist 2 same as CSIDH a random value

G-CSIDH subexp resist u same as CSIDH a supersingular
elliptic curve

Besides, we also propose a trusted protocol for generating public parameters
of isogeny-based cryptosystems including SIDH based on G-CSIDH, i.e., solved
the above open problem (in an efficient manner). Trust in setup is formally
proven (Theorem 6). For that, we first define the trusted setup of public param-
eter generation (setup algorithm) in the sense that any party cannot embed any
his own information (e.g., back door) into the parameter, and prove that trust in
the setup algorithm is reduced to the security of G-CSIDH. As we see in Table 1,
the G-CSIDH is the most suitable isogeny-based group key exchange protocol
for using in generating a supersingular elliptic curve in a trusted manner. The
reason is given as follows. SIBD and CSIBD1 generate only a product of mul-
tiple (≥2) supersingular j-invariants (or Montgomery coefficients). Hence, they
cannot be used for generating just a supersingular elliptic curve (or j-invariant,
Montgomery coefficient). While the u-round G-SIDH can generate a supersin-
gular elliptic curve with trust as well, however, unfortunately, it gives rise to an
inefficient generation method: The size of the underlying modulus p in G-SIDH
should become larger, which is linear in u, while the bit lengths in G-CSIDH are
the same as that in CSIDH.2 Moreover, G-SIDH based one is not proven trusted
while G-CSIDH based one is proven trusted. Since the proof on G-CSIDH cru-
cially uses commutativity of ideal class groups, the technique cannot be easily
extended to the G-SIDH case. Therefore, we consider the G-CSIDH based one is
a good trusted generation method of public parameters in supersingular isogeny
cryptosystems including SIDH, CSIDH and their signature variants [11,15].
1 CSIBD is a Burmester–Desmedt [4] type group key exchange protocol based on

CSIDH. It is constructed in a similar manner to SIBD.
2 In fact, (G-)SIDH is considered as more secure than (G-)CSIDH since there is a

subexponential-time quantum attack on (G-)CSIDH. It may implies that (G-)CSIDH
is more inefficient than (G-)SIDH. However, a recent research [1] shows that CSIDH
might not be so worse compared to SIDH when we consider non-asymptotic time
estimate (via quantum attack reconsideration).
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Note that the parameter u plays a role of trade-off factor between strength
of security and efficiency. Theorem 6 (informally) mentions that if at least one
of u-parties do not participate in a malicious collusion, then the malicious collu-
sion can not obtain the central secret (i.e., isogeny between target two curves).
Therefore, we have a stronger security if the number of generating members, u,
is larger. On the other hand, apparently, a larger u gives rise to inefficiency in
setup. (However, the size of the modulus p is independent from u.) Therefore,
we can choose the parameter u depending on the decision on this trade-off.

2 Preliminaries

2.1 Isogenies

In this subsection, we explain some basic properties of the isogenies of supersin-
gular elliptic curves.

Let L be a field, and L′ be an algebraic extensional field of L. An elliptic
curve E defined over L is a non-singular algebraic curve of the Montgomery form

A2y
2 = x3 + A1x

2 + x (A1, A2 ∈ L, A2(A2
1 − 4) �= 0).

The L′-rational points of the elliptic curve E with the point at infinity ∞ is
denoted as E(L′). It is known that E(L′) is an abelian group, whose identity is
∞ [28, III. 2]. A supersingular elliptic curve E over a finite field L of characteristic
p is defined as an elliptic curve which satisfies #E(L′) ≡ 1 (mod p).

Let E, Ẽ be elliptic curves defined over L. An isogeny φ : E → Ẽ defined over
L′ is a morphism over L′, which is a non-zero group homomorphism from E(L)
to Ẽ(L), where L is an algebraic closure of L. A separable isogeny satisfying
#ker φ = � is called an �-isogeny, where #X is a cardinality of the set X. The
endomorphism ring of E over L′ is denoted as EndL′(E). It is represented as
Endp(E) when L′ is a prime field Fp. An isogeny defined over L′ φ : E → Ẽ is
called an isomorphism over L′ (or E and Ẽ are L′-isomorphic) if φ has an inverse
isogeny over L′.

Theorem 1 ([28, Proposition III.4.12]). If G is a finite subgroup of E(L),
then there exists an isogeny φ : E → Ẽ whose kernel is G, and Ẽ is unique up to
L-isomorphism.

This isogeny can be efficiently calculated using Vélu formulas [20,24,30]. We
denote the representative of Ẽ by E/G.

Let L be a quadratic field, and O be its order. A fractional ideal a of O is an
O-submodule of L, which satisfies αa ⊂ O for some α ∈ O \ {0}. An invertible
fractional ideal a of O is a fractional ideal of O, which satisfies ab = O for some
fractional ideal b of O. The b is represented as a−1. If a fractional ideal a is
contained in O, then a is called an integral ideal of O.

Let I(O) be a set of invertible fractional ideals of O. The I(O) is an abelian
group derived from multiplication of ideals with the identity O. Let P (O) be a
subgroup of I(O), which is defined by P (O) = {a | a = αO (for some α ∈ L∗)}.
An ideal class group of O is a group cl(O) defined by I(O)/P (O).
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Theorem 2 ([31, Theorem 4.5]). Let O be an order of an imaginary quadratic
field and E be an elliptic curve defined over Fp. The set of an Fp-isomorphism
class of elliptic curves E whose endomorphism ring Endp(E) is isomorphic to
O is denoted by E��p(O). If E��p(O) contains the Fp-isomorphism class of super-
singular elliptic curves, then an action of the ideal class group cl(O) on E��p(O),
([a], E) 	→ E/E[a] is free and transitive, where a is an integral ideal of O, and
E[a] is the intersection of the kernels of elements in the ideal a.

Theorem 3 ([5, Proposition 8]). Let a prime p satisfy p ≡ 3 (mod 8). Let
E be a supersingular elliptic curve defined over Fp. Then, Endp(E) = Z[πp]
if and only if there uniquely exists A ∈ Fp such that E is Fp-isomorphic to
Ẽ : y2 = x3 + Ax2 + x, where πp is a p-Frobenius map πp(x, y) = (xp, yp).

The curve coefficient A in Theorem 3 is called a Montgomery coefficient.

2.2 (Group) Key Exchange

In this subsection, we introduce definitions of a (group) key exchange protocol
and its correctness and security.

Definition 1 ((Group) key exchange). The algorithm P(λ, μ, η) is called a μ
round η-party key exchange protocol if being composed of probabilistic polynomial
time algorithms (Setup, (Key generation(μ′))μ−1

μ′=1, Key exchange).

Setup: Take a security parameter λ, the number of rounds μ, and the number
of users η as input. It outputs public parameters pk(0)

i := params and secret
keys sk(0)

i := ∅ for any i = 1, . . . , η.
Key generation(μ′)(1 ≤ μ′ ≤ μ−1): Given the user index i, (pk(μ̃)

i′ )μ̃=0,...,μ′−1
i′=1,...,η ,

and (sk(μ̃)
i )μ̃=0,...,μ′−1, the algorithm outputs (pk(μ′)

i , sk(μ′)
i ). User i broad-

casts pk(μ′)
i and keeps sk(μ′)

i secret.
Key exchange: User i collects the public broadcasts sent by all other users.

Given (pk(μ̃)
i′ )μ̃=0,...,μ−1

i′=1,...,η , (sk(μ̃)
i )μ̃=0,...,μ−1, the algorithm outputs the key Ki.

We call pk(μ′)
η′ a μ′ round public key of user η′, and sk(μ′)

η′ a μ′ round secret
key of user η′.

Definition 2 (Correctness). If a key exchange protocol P satisfies that all
keys K1, . . . ,Kη are the same values, we say P is correct.

In this situation, we call K := K1 = · · · = Kη a shared key.

Definition 3 (Security). Let P(λ) be a μ round η-party correct group key
exchange protocol, where λ is a security parameter. Denote by params the set
of public parameters of P(λ), by pk(μ′)

η′ the μ′ round public key of Uη′ , and by K
the shared key of P(λ).
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We call P(λ) secure if there exists an exponentially large set Keysp which
includes all shared keys of P(λ) and the following property holds for any proba-
bilistic polynomial time algorithm A:
∣
∣
∣Pr

[

A
(

params, {pk(μ′)
η′ }μ′=1,...,μ−1

η′=1,...,η ,K
)

= 1
]

− Pr
[

A
(

params, {pk(μ′)
η′ }μ′=1,...,μ−1

η′=1,...,η ,K ′
)

= 1
]∣
∣
∣ < negl(λ),

where K ′ is a uniformly random element of Keysp.

Remark 1. We do not let K ′ be the shared key of P(λ) from other random secret
keys. If P(λ) outputs a same value from any secret keys, it is hard to say that
P(λ) is secure; however, there is no way to distinct the correct shared key and
the shared key from other random secret keys (because they are same values).

The important point of our security definition is that if P(λ) is secure, there
is no way to distinct the correct shared key and a random element of Keysp,
which is expected to be large enough.

3 CSIDH

In this section, we introduce an important Diffie-Hellman type key exchange pro-
tocol: CSIDH (Commutative Supersingular Isogneny Diffie-Hellman). CSIDH
was proposed by Castryck, Lange, Martindale, Panny, and Renes in 2018 [5].
Meyer and Reith improved the CSIDH algorithm to be efficient [20]. Research
for constant-time CSIDH has also been conducted. Meyer, Campos, and Reith
proposed the constant-time algorithm in 2019 [19]. Onuki, Aikawa, Yamazaki,
and Takagi improved this constant-time algorithm to be efficient [22]. Cervantes-
Vázquez, Chenu, Chi-Domı́nguez, De Feo, Rodŕıguez-Henŕıquez, and Smith pro-
posed the constant-time CSIDH algorithm without dummy calculations [6].

CSIDH is based on the action of cl(Z[πp]) on E��p(Z[πp]). The outline of the
CSIDH protocol is as follows. Here, Alice and Bob want to share a secret key
denoted by SKshared.

Setup
Let p be a prime which satisfies p = 4 · �1 · · · �n − 1, where the �1, . . . , �n

are small distinct odd primes. Let E0 be the supersingular elliptic curve
y2 = x3 + x and the public parameters be p and E0.

Key generation
One randomly chooses an integer vector (e1, . . . , en) from {−m, . . . , m}n.
Then, one defines [a] = [le1

1 · · · len
n ] ∈ cl(Z[πp]), where [li] = [(�i, πp − 1)],

[li]−1 = [(�i, πp + 1)], and m is the smallest positive integer which satisfies
2m + 1 ≥ n

√

#cl(Z[πp]). One calculates the action of [a] on E0 and the
Montgomery coefficient A ∈ Fp of [a]E0 : y2 = x3 + Ax2 + x. Let the integer
vector (e1, . . . , en) be the secret key and A ∈ Fp be the public key.

Key exchange
Alice and Bob have a pair of keys, ([a], A) and ([b], B), respectively. Alice
calculates the action [a]EB = [a][b]E0, where EB : y2 = x3 + Bx2 + x. Bob
calculates the action [b]EA = [b][a]E0, where EA : y2 = x3+Ax2+x. Denote
by SKAlice the Montgomery coefficient of [a][b]E0, and by SKBob the Mont-
gomery coefficient of [b][a]E0.
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From the commutativity of cl(Z[πp]) and Theorem 3, SKAlice = SKBob holds;
therefore, CSIDH is correct. Let these keys be the shared key SKshared.

Remark 2. In this paper, we mean that “random secret keys of CSIDH” (or
simply “random secret keys”) are elements of cl(Z[πp]) which are represented as
[le1
1 · · · len

n ], where (e1, . . . , en) are uniformly random elements of {−m, . . . , m}n.
These are not uniformly random elements of cl(Z[πp]).

Remark 3. It has not been known whether calculation of the action of cl(Z[πp])
on E��p(Z[πp]) can be performed in polynomial time or not. Practically, the cal-
culation can be executed in short time. In this paper, we treat the calculation
as performed in polynomial time.

Next, we introduce the important assumption of CSIDH, and prove the secu-
rity under this assumption.

Definition 4 (Commutative Supersingular Isogeny Decisional Diffie-
Hellman (CSSDDH) assumption). Let secret keys of Alice and Bob be [a]
and [b], respectively. Let E, p be a public parameters of CSIDH, where E is a
supersingular elliptic curve defined over Fp and p is a N bit prime.

It is said that CSSDDH assumption holds if the following property holds for
any probabilistic polynomial algorithm A:

|Pr [A(E, [a]E, [b]E, [a][b]E) = 1] − Pr [A(E, [a]E, [b]E, [c]E) = 1]| < negl(N),

where [c] is a uniformly random element of cl(Z[πp]).

Theorem 4. If the CSSDDH assumption holds, CSIDH is secure.

Proof. Let Keysp be the set of the Montgomery forms of elliptic curves in
E��p(Z[πp]). From Theorems 2 and 3, if [c] is a uniformly random element
of cl(Z[πp]), then [c]E is also a uniformly random element of Keysp. Since
#cl(Z[πp]) ≈ √

p, this completes the proof. ��

4 Proposed Group Key Exchange from CSIDH
(G-CSIDH)

A multi-party key exchange (group key exchange) protocol has long been inves-
tigated. In this section, we propose the protocol from CSIDH.

4.1 CSIDH Group Key Exchange (G-CSIDH)

Let there be u-parties, and denote them by U1, . . . , Uu. Let Uu+k = Uk for any
k ∈ Z.

Setup
Let p be a prime which satisfies p = 4 · �1 · · · �n − 1, where the �1, . . . , �n are
small distinct odd primes. Let Ẽ0 be a supersingular elliptic curve y2 = x3+x.
Let the public parameters be p and E0.



Group Key Exchange from CSIDH and Its Application to Trusted Setup 93

Key generation
A party Uj randomly chooses a set of integers (e(j)1 , . . . , e

(j)
n ) from

{−m, . . . ,m}n. Define [aj ] = [le
(j)
1

1 · · · le(j)
n

n ] ∈ cl(Z[πp]).
Step 1 : Uj calculates the action of [aj ] on E0 and the Montgomery coefficient

of [aj ]E0 : y2 = x3 + A
(j)
1 x2 + x. Uj sends A

(j)
1 to Uj+1.

Step k (2 ≤ k ≤ u − 1) : Uj calculates the action of [aj ] on Ek−1 and the
Montgomery coefficient A

(j)
k ∈ Fp of [aj ]Ek−1 : y2 = x3 + A

(j)
k x2 + x,

where Ek−1 : y2 = x3 + A
(j−1)
k−1 x2 + x. The Uj sends A

(j)
k to Uj+1.

Key exchange
The Uj calculates the action of [aj ] on Eu−1 and the Montgomery coeffi-
cient A

(j)
u ∈ Fp of the elliptic curve [aj ]Eu−1 : y2 = x3 + A

(j)
u x2 + x, where

Eu−1 : y2 = x3 + A
(j−1)
u−1 x2 + x. Denote A

(j)
u by SKj .

By the commutativity of cl(Z[πp]) and Theorem 3, it holds SK1 = · · · = SKu,
which is the Montgomery coefficient of [a1][a2] · · · [au]E0; therefore, G-CSIDH is
correct. Let these keys be the shared key SKshared.

4.2 Security of G-CSIDH

Here, we prove the security of G-CSIDH under the CSSDDH assumption.

Theorem 5. Let u ≥ 2 be a small constant integer. If the CSSDDH assumption
holds, u-party G-CSIDH is secure.

Proof. This holds by Lemmas 1 and 2. ��
Before stating Lemma 1, we define the important assumption of G-CSIDH.

Definition 5 (u-General Commutative Supersingular Isogeny
Decision-al Diffie-Hellman (u-GCSSDDH) assumption). Let the secret
keys of parties U1, . . . , Uu be [a1], . . . , [au], respectively. Let params := {E, p}
be the set of public parameters of G-CSIDH, where E is a supersingular elliptic
curve defined over Fp and p is a N bit prime. Denote by pk(j)

i the j-round public
key of Ui.

It is said that the u-GCSSDDH assumption holds, if the following property
holds for any probabilistic polynomial time algorithm A:
∣
∣
∣Pr

[

A(params, {pk(j)
i }j=1,...,u−1

i=1,...,u , [a1] · · · [au]E) = 1
]

− Pr
[

A(params, {pk(j)
i }j=1,...,u−1

i=1,...,u , [b]E) = 1
]∣
∣
∣ < negl(N),

where [b] is a uniformly random element of cl(Z[πp]).

Lemma 1. If the u-GCSSDDH assumption holds, G-CSIDH is secure.

Proof. This lemma is proved similarly to the proof of Theorem 4. ��
Lemma 2. Let u ≥ 2 be a small constant integer. If the CSSDDH assumption
holds, then the u-GCSSDDH assumption also holds.

Proof. This proof is based on a previous study [29, §2.3]. ��
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5 Trusted Setup from G-CSIDH

In this section, we explain how to apply the G-CSIDH of u parties to SIDH
key exchange. In isogeny-based cryptosystems, a supersingular elliptic curve is
needed for the public parameter. It is a problem how to generate the supersin-
gular elliptic curve without backdoors. In this section, we propose the trusted
setup protocol by using G-CSIDH.

5.1 Proposed Trusted Setup in Isogeny-Based Cryptosystems

We propose a trusted setup in isogeny-based cryptosystems based on G-CSIDH.
We first give a high-level description of the protocol below.

The description of the procedure is simpler than the original G-CSIDH. That
is, we should execute the following chain of computation (1) only once while the
original protocol should execute u chains of the same type which are started
from all users (i = 1, . . . , u) for sharing same key among u-users.

E0 → [a1]E0 → [a2][a1]E0 → . . . → [au−1] · · · [a1]E0 → Eu := [au][au−1] · · · [a1]E0. (1)

Let Ei := [ai] · · · [a1]E0, then the i-th multiplication, Ei−1 → [ai]Ei−1, in the
above chain is executed by the i-th user who holds the ideal ai. The final super-
singular curve Eu, which is jointly generated by all u users, is published as a
(key) component of the public parameters.

Here, E0 should be also publicly known supersingular curve (e.g., y2 = x3+x
with p ≡ 3 mod 4) since no one should have any advantage over the initial curve
E0. Moreover, recently, Petit [10,23], Love and Boneh [18] pointed out some
possible vulnerabilities when using such special curve for the public parameters.
Therefore, for using the above Eu in a safe manner (i.e., without backdoors),
no one must not connect these two curves, E0 and Eu. In other words, no one
must not know the (masterly) secret ideal a := a1a2 · · · au. Definition 6 presents
this security requirement for setup which we call “trusted setup”. Here, we also
note that the order of multiplication is irrelevant since the ideal (class) group is
commutative. This property is also crucial for the proof of Theorem 6.

5.2 Proof of Trust in Setup

We first define the notion of trust in setup (for SIDH).

Definition 6 (Trusted setup). Let Setup(λ) be the u round u-party setup
protocol, which is defined by the sequence of computation (1), where λ is a secu-
rity parameter. Denote by params0 the set of public parameters like E0 (without
backdoors), by skη′ the secret key of the user η′ (i.e., aη′), and by Eu the final
elliptic curve (1), which is used for a component of public parameters in SIDH.

We call Setup is trusted if the following property holds for any probabilistic
polynomial time algorithm A. For all k = 1, . . . , η,

Pr [A(params0, {skη′}η′=1,...,k−1,k+1,...,η, Eu) = skk] < negl(λ).
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There is a controversy whether the confidentiality of skk surely ensure the
nonexistence of backdoors, or not. However, this definition is a natural definition
for a trusted setup.

We next show our proposed setup in SIDH is trusted in Theorem6.

Theorem 6. Let u ≥ 2 be a small constant integer. If G-CSIDH is secure,
Setup given in Definition 6 is trusted.

Proof. Assume that Setup is not trusted. In other words, there exists a proba-
bilistic polynomial time algorithm A such that the following property holds.

There exists k ∈ {1, . . . , u} and α > 0 such that for an infinity number of
N ,

Pr [A(params0, {skη′}η′=1,...,k−1,k+1,...,η, Eu) = skk] ≥ 1
Nα

,

where N is a bit length of p. Let skη′ be [aη′ ]. Define the algorithm A′ as follows.

A′(E, [a]E) = A (E, {[ei]}i=1,...,k−1,k+1,...,u−1, [e1] · · · [ek−1][ek+1] · · · [eu][a]E) ,

where [e1], . . . , [ek−1], [ek+1], . . . , [eu] are random secret keys (refer the meaning
of “random secret keys” to Remark 2). Thus, Pr [A′(E, [a]E) = [a]] ≥ 1

Nα . Define
the algorithm A′′ as follows.

A′′(pk[c1],...,[cu], [d]E) =

{

1 (if [c̃k][c1] · · · [ck−1][ck+1] · · · [cu]E = [d]E)
0 (if [c̃k][c1] · · · [ck−1][ck+1] · · · [cu]E �= [d]E)

,

where [c1], . . . , [cu] are random secret keys, and [d] is a uniformly random element
of cl(Z[πp]), and [c̃k] = A′(E, [ck]E). Then, it holds that

Pr
[

A′′(pk[c1],...,[cu], [c1] · · · [cu]E) = 1
]

≥ 1
Nα

, Pr
[

A′′(pk[c1],...,[cu], [d]E) = 1
]

=
1

#cl(Z[πp])
≈ 1

2N/2
,

where [d] is a uniformly random element of cl(Z[πp]). Hence, for proper N ,
∣
∣
∣Pr

[

A′′(pk[c1],...,[cu], [c1] · · · [cu]E) = 1
]

− Pr
[

A′′(pk[c1],...,[cu], [d]E) = 1
]∣
∣
∣ ≥ 1

(N + 1)α
.

Therefore, G-CSIDH is not secure. This completes the proof of Theorem 6. ��
Therefore, trust in Setup is reduced to the security of G-CSIDH.

5.3 Trusted Setup in SIDH

When we generate an elliptic curve in SIDH by using G-CSIDH, the setting of
a prime p needs to be changed, since the prime p of the public parameters of
SIDH needs to satisfy p = 2eA3eBf − 1 for some integers eA, eB , f [12,16]. The
following theorem solves this problem.

Theorem 7. Let p be a prime which satisfies that p ≡ 3 (mod 4) and E be a
supersingular elliptic curve defined over Fp. If Endp(E) = Z[πp] holds, then there
uniquely exists A ∈ Fp such that E is Fp-isomorphic to EA : y2 = x3 + Ax2 + x.
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Proof. The order 2 point of E0(Fp) is (0, 0) only. Therefore, Endp(E0) = Z[πp]
by [9, Theorem 2.7]. The remainder of this theorem follows by the second half
of the proof of [5, Proposition 8]. ��
From Theorem 7, it suffices to let p = 2eA ·3eB · �1 · · · �n −1, where the �1, . . . , �n

are distinct small primes greater than 3, and 2eA ≈ 3eB .

Remark 4. In this situation, even though an elliptic curve E : y2 = x3 +Ax2 +x
is supersingular, Endp(E) is not always isomorphic to Z[πp].

6 Conclusions

In this paper, we proposed the group key exchange based on CSIDH, called G-
CSIDH. We proved that the security of G-CSIDH is reduced to the CSSDDH
assumption, which cannot distinguish the shared keys of CSIDH and random
elements of shared keys. It is easy to show that the security of CSIDH is reduced
to the CSSDDH assumption.

Next, we proposed the trusted setup protocol that generates public parame-
ters of isogeny-based cryptosystems. It is not easy to generate a random supersin-
gular elliptic curve with trust. In this paper, we constructed the trusted protocol
(Setup) by using the proposed G-CSIDH, which outputs a supersingular ellip-
tic curve as a shared key among all parties. We proved that trust in Setup is
reduced to the security of G-CSIDH.
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Abstract. With the advances of deep learning, license plate recogni-
tion (LPR) based on deep learning has been widely used in public trans-
port such as electronic toll collection, car parking management and law
enforcement. Deep neural networks are proverbially vulnerable to crafted
adversarial examples, which has been proved in many applications like
object recognition, malware detection, etc. However, it is more challeng-
ing to launch a practical adversarial attack against LPR systems as any
covering or scrawling to license plate is prohibited by law. On the other
hand, the created perturbations are susceptible to the surrounding envi-
ronment including illumination conditions, shooting distances and angles
of LPR systems. To this end, we propose the first practical adversarial
attack, named as RoLMA, against deep learning-based LPR systems.
We adopt illumination technologies to create a number of light spots as
noises on the license plate, and design targeted and non-targeted strate-
gies to find out the optimal adversarial example against HyperLPR,
a state-of-the-art LPR system. We physicalize these perturbations on a
real license plate by virtue of generated adversarial examples. Extensive
experiments demonstrate that RoLMA can effectively deceive Hyper-
LPR with an 89.15% success rate in targeted attacks and 97.3% in non-
targeted attacks. Moreover, our experiments also prove its high practi-
cality with a 91.43% success rate towards physical license plates, and
imperceptibility with around 93.56% of investigated participants being
able to correctly recognize license plates.

Keywords: Pratical adversarial attack · License plate recognition

1 Introduction

Attributed to the rapid development of deep learning, license plate recogni-
tion (LPR) systems are experiencing a dramatic improvement in recognition
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accuracy and efficiency. The state-of-the-art deep learning-based license plate
recognition systems (hereafter referred to as DL-LPR) can achieve high accu-
racy over 99% [14]. The great success boosts its wide deployment in many areas
such as electronic toll collection, car parking management and law enforcement.
However, modern deep learning is vulnerable to adversarial examples [12]. For
instance, a slight perturbation added to an image, which is imperceptible to
humans, can easily fool a model of deep neural networks [5]. Analogically, DL-
LPR is also suffering from the threat of adversarial examples that incur wrong
recognitions. However, it is non-trivial to ensure adversarial examples to be still
effective in the physical world. To date, no prior work to our knowledge has
explored the practical adversarial attacks against DL-LPR systems.

Challenges of a Practical Adversarial Attack Against DL-LPR. To fool a
DL-LPR system is much more difficult than to deceive an image classifier. There
are two main challenges for performing a practical adversarial attack against
modern DL-LPR systems in the physical world.

C1. The perturbations to license plates are extremely restrictive. License plates
are generally issued by a local government department that regulates communi-
cations and transport for official identification purposes [2]. They are allegedly
not allowed to be altered, obliterated or covered by anything. Therefore, we can-
not make any permanent modifications, even minor ones that are imperceptible
to a human, to a license plate.

C2. Launching adversarial attacks against DL-LPR systems in the physical
world is much more challenging [10]. When DL-LPR systems recognize the license
plates attached to fast-moving motor vehicles, the distance and shooting angle
to DL-LPR systems are changing over time. Besides, the sunlight or supplement
light around the vehicle can also degrade the photographing of license plate. All
the above can negatively impact on the effectiveness and robustness of adver-
sarial examples.

Robust Light Mask Attacks against DL-LPR. In this paper, we put for-
ward the first robust yet practical adversarial attack, termed Robust Light Mask
Attacks (RoLMA), against DL-LPR systems in the physical world. We select
a popular DL-LPR system HyperLPR [22] as the target model, and execute
two types of adversarial attacks (see Sect. 4.3)–a targeted attack is to create an
adversarial license plate in the disguise of a designated one; a non-targeted attack
is to make a original license plate recognized as any different one.

To address challenge C1, we employ illumination technologies to illuminate
license plates instead of scrawling them. The produced light spots can persis-
tently make noises to LPR cameras during the process of photographing, and
moreover be removed once away from the monitor areas. To improve its effective-
ness and robustness under different circumstances, i.e. C2, we identify three envi-
ronmental factors of most influence: light noise from many other light sources,
shooting distances, and shooting angles. Subsequently, we perform image trans-
formation on a digital license plate during adversarial example optimization. In
particular, we adjust brightness to simulate the varying light, rescale the image
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to simulate the shooting distances, and rotate the image to simulate the shooting
angles (see Sect. 4.2).

Physical Deployment of RoLMA. We install several LED lamps in a license
plate frame and create designed spots. Then we adjust the position, size, bright-
ness of light spots, and conduct extensive experiments to evaluate RoLMA:
RoLMA achieves an 89.15% success rate in targeted attacks and a 97.30% suc-
cess rate in non-targeted attacks; RoLMA also proves to be very effective in the
physical world and obtains a 91.43% success rate of physical attacks; the adver-
sarial license plates are imperceptible to human beings as most of the investigated
volunteers attribute the perturbations to natural light (78.32%) rather than arti-
ficial light. Additionally, we have reported our findings to Zeusee [22], and they
acknowledged the importance of the problems we discovered. More details can
be found here1.

Contributions. We summarize our contributions as follows:

– Effective algorithm to generate adversarial examples. We developed an effec-
tive algorithm to make appropriate perturbations and generate adversarial
license plates of high robustness. These adversarial license plates are effective
in deceiving the target LPR system.

– Practical adversarial attacks against DL-LPR systems. We designed and
developed the first practical adversarial attack against DL-LPR systems,
which is still effective under different circumstances of the real world, such as
variable-sized shooting distances and angles.

– Extensive and comprehensive experiments. We conducted extensive exper-
iments to evaluate our approach including effectiveness, practicality, and
imperceptibility. The results demonstrated that the adversarial examples gen-
erated by our approach could effectively devastate the modern LPR systems.

2 Background

2.1 License Plate Recognition

License plate recognition (LPR) is a technology that recognizes vehicle registra-
tion plates from images automatically. To date, it has a broad use in transporta-
tion, for example, levying tolls on pay-per-use roads, charging parking fees, cap-
turing traffic offenses. LPR usually employs optical character recognition (OCR)
to convert images into machine-readable text. Typically, OCR technologies can
be categorized into two classes: character-based recognition and end-to-end recog-
nition.

Character-based recognition is the traditional approach to recognize the text
from images of license plates [15]. Given an image of a license plate, the character-
based recognition system first segments it into several pieces, ensuring that one
piece only contains one character [11]. The classifier, oftentimes equipped with

1 https://sites.google.com/view/rolma-adversarial-attack/responses.

https://sites.google.com/view/rolma-adversarial-attack/responses
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classification algorithms (e.g., SVN, ANN, and k-nearest neighbors), can output
the most likely character. The performance of LPR does not only rely on a
recognition algorithm but also character segmentation to a large extent.

End-to-end recognition is a more recent technology that gains the majority
of attention in the field of LPR. It recognizes the entire sequence of characters
in a variable-sized “block of text” image with deep neural networks. It is able to
produce the final results (i.e., machine-encoded text), without feature selection,
extraction, and even character segmentation. A number of deep learning models
including Recurrent Neural Networks, Hidden Markov Models, Long Short Term
Memory Networks, and Gated Recurrent Units, have been applied in LPR and
obtain superior results [8,9].

2.2 HYPERLPR

HyperLPR [22] is a high-performance license plate recognition framework devel-
oped by Zeusee Technologies. It employs an end-to-end recognition network
GRU, which takes a graphical license plate of size h × w as input and produces
the most likely sequence of characters as output. It starts with a convolution
layer (Conv2D) with a 3 × 3 × 32 filter, a batch-normalization and relu acti-
vation, followed by a 2 × 2 max-pooling layer(MaxPooling2D). Then two layers
follow which have the same architecture as above but with different filters, i.e.,
one is with 3 × 3 × 64 and the other is with 3 × 3 × 128. The probabilities from
the last activation function are passed to a network with 4 gated recurrent units
(GRUs) of 256 hidden units, and a dropout layer (its rate is 0.25). Last, the
output layer utilizes softmax to normalize an 84-unit probability distribution,
corresponding to the number of possible license plate characters. In this study,
we choose HyperLPR as our attack target, then develop the approach RoLMA
to generate a massive number of adversarial license plates that can evade the
recognition.

3 Problem Statement

In this section, we present the attack goal, attack scenarios, and the capability
of adversaries.

3.1 Attack Goal

We aim at constructing a practical adversarial attack against DL-LPR. The
adversarial license plates are expected to be misclassified by DL-LPR but recog-
nized correctly by humans. Without the loss of generality, we define the follow-
ing terms involved in this study: one registration number L of a motor vehicle
is a sequence of characters 〈c1, c2, . . . , cn〉. Assuming that only m characters
can be used as a license plate, i.e., the available character set V, we then have
ci ∈ V. In addition, there are some constraints in a license plate, such as the
length of characters n. So we use C to denote these constraints. Lastly, we have
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L : 〈c1, c2, . . . , cn〉 ∼ {V, C}. One LPR system is able to convert an image G to
a machine-readable license number, i.e., f(G) = L.

Adversarial License Plate. We generate an adversarial license plate by adding
the slight perturbation p to the original graphical license plate G. We use G′ to
denote the adversarial plate and G′ = G+p. With respect to G′, the target LPR
system can output a new license number L′, i.e., f(G′) = L′, L′ ∼ {V, C}, and
L′ �= L. That is, the goal is to disguise the original license plate as the other for
DL LPR systems. To ensure practicality, the adversarial license plates should
satisfy all constraints C as the original one does.

3.2 Attack Scenarios

In this section, we design two attack scenarios for our RoLMA approach.

– Car parking management. More and more car parks start to equip automatic
DL-LPR systems for parking management [1], e.g., parking access automa-
tion and automated deduction of parking fees. The license plate serves as an
access token for identity authentication, and only registered licenses could
access the parking service. In such a case, the adversaries can resort to the
adversarial licenses to elevate their privileges. On the other hand, if the auto-
mated deduction of parking fees is based on DL-LPR systems, the adversaries
can counterfeit others’ license plates and get free parking.

– Law Enforcement. Since LPR has been long used for identifying vehicles in
a blacklist, an adversarial license plate can escape from the detection suc-
cessfully. Generally, one well-formed and legal license plate would not trigger
LPR’s attention. But if the adversarial license plate is recognized as being
of the wrong format, it is probable that a specialized staff is sent for man-
ual inspection [6]. It is well-known that adversarial examples can be correctly
recognized by a human. Besides, this attack can also affect other common law
enforcement applications such as border control and red-light enforcement.

3.3 The Capability of Adversaries

In this study, we aim to generate adversarial license plates with respect to the
DL-LPR system. Since HyperLPR is open-source and high-performance, we
select it as the target model, then know the details of its model. So the process
of adversarial license plate generation is a kind of white-box attack. In order to
attack the deployed DL-LPR systems in reality, the adversaries have to decorate
the license plate in a “mild” fashion. It is because license plates should comply
with many regulations allegedly by law. More specifically, the adversaries cannot
cover, scrawl or discharge license plates in any manner. In this study, we use the
spotlight as a decoration method to confuse DL-LPR systems. The rationale is
that light is ubiquitous such as the natural light and license plate light, so that it
is hard to determine how comes a light spot on the license plate.
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4 The RoLMA Methodology

To convert the original license plate to an adversarial one, we propose the Robust
Light Mask Attack (RoLMA). It proceeds with three key phases in Fig. 1: illu-
mination, realistic approximation, loss calculation. However, these digital adver-
sarial images cannot be directly fed to LPR systems for recognition. Instead, we
apply several spot light bulbs to irradiate the license plate in order to get light
spots. Next, we adjust the positions, size, brightness of light spots, photograph
the irradiated license plate and compare it with the digital adversarial image.
Finally, we use the irradiated license plate to apply practical attack. More details
can be found here2.
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Fig. 1. The system overall of RoLMA

4.1 Illumination

Adversarial examples differ from the original samples in crafted perturbations.
The perturbation could be a change of pixels in image classification, an adjust-
ment of an acoustic wave in speech recognition [3]. Generally, license plate recog-
nition reads machine-readable text from an image. Although pixel changes can
also make LPR systems misrecognize in the digital space, it has several problems
in the physical world: (1) changed pixels are susceptible to shooting settings by
LPR cameras (e.g., distance and angle) and the circumstance conditions (e.g.,
air quality and sunlight intensity); (2) a license plate should remain tidy, uncov-
ered, and unaltered. As a result, it is nearly impossible to scrawl it with previous
ways [16]. In this study, we propose an illumination technology and decorate the
target license plate with visible lights. The light mask can be taken on and off
at any time, without making a permanent scratch to the license plate. In addi-
tion, when the LPR system is recognizing a vehicle, the circumstance around the
vehicle is full of light, either sunlight or a street light, headlights or rear lights. If
the decorated license plate can still be correctly recognized by a human, it will
likely not incur a violation of laws.

2 https://sites.google.com/view/rolma-adversarial-attack.

https://sites.google.com/view/rolma-adversarial-attack
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In this study, we select LED lamps as our illumination source. LED lamps
are installed at the rear of a vehicle, and make several light spots on the license
plate. To work out an illumination solution, we draw several light spots on a dig-
ital license plate, which is captured from a physical license plate. This decorated
image is then passed to HyperLPR to check whether it is an adversarial exam-
ple. We model such a light spot according to its color, position, size, brightness,
but not shape.

– Color. The background of license plates usually varies from colors. In this
study, the color c is modeled as RGB values and optimized gradually during
the computation of adversarial examples.

– Position. A light spot is positioned by its circle center. We establish a rect-
angular coordinate system on a license plate. The point at the left bottom
has a coordinate (0, 0), and the point (x, y) denotes that it is x away from
the left border and y away from the bottom border. In such a fashion, we can
represent the center p of a light spot with (cx, cy).

– Size. It indicates the irradiated area of a light spot, which is measured by the
radius r of the circle, i.e., s = πr2. As mentioned beforehand, our physical
light spots may be not an accurate circle, and more often an ellipse.

– Brightness. When a spotlight emits to a plane, the center of the spot is bright-
est and the light scatters in a decaying rate. Given a point (x, y) inside the
spot, the brightness of this point b(x, y) obeys normal distribution probability
density function (norm pdf), i.e., b(x, y) ∼ N(r, σ2). Let λ be the brightness
coefficient, b(x, y) = λ × norm pdf(

√
(x − cx)2 + (y − cy)2) and the bright-

ness of the circle center is λ√
2πσ

.

Until now, a light spot can be characterized by its color, position, size and
brightness, that is spot = (C,P, S,B). As mentioned above, the color is deter-
mined by its RGB values rgb, the position is decided by the coordinates of the
circle center (cx, cy), the size is determined by the radius r, and the brightness
is determined by its standard deviation σ. To search an adversarial example, we
intend to make our illuminated license plate misrecognized to a wrong number
and the loss function reaches the approximately minimal value.

arg min
rgb,(cx,cy),r,σ

L(X)

where X is an input image, and L(X) is the loss function for adversarial exam-
ples.

4.2 Realistic Approximation

Adversarial attacks are seriously sensitive to external noises from the physical
world [4]. With regards to the two scenarios mentioned in Sect. 3.2, there are
many challenges as shown in Sect. 1. As a consequence, we propose three tactics
to approximate the reality and improve the robustness of RoLMA as follows: (1)
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Brightness Adjustment. To simulate the impact of different lights in the real envi-
ronment, we utilize TensorFlow via the API “tf.image.random brightness”
to adjust the brightness of images randomly. (2) Image Scaling. It is used to
simulate the varying shooting distances of LPR cameras away from the vehicle.
Here we adopt “tf.image.resize images” to resize the license plate randomly.
Moreover, the scaling holds a fixed width-height ratio, avoiding a badly dis-
torted license plate which is nearly impossible to happen. (3) Image Rotation.
The robustness of adversarial examples is susceptible to shooting angles of LPR
cameras. In the same manner, we invoke the API “tf.contrib.image.rotate”
of TensorFlow to shift the image with a random angle, departing from its
coordinates.

4.3 Loss Calculation

In this section, we present the details about how to determine the efficiency of
perturbations and provide finer parameters for illumination.

Oracle. To generate adversarial examples, we take HyperLPR as the oracle to
guide the process. Given an input of image X, HyperLPR outputs a sequence
of characters 〈c1, c2, . . . , cn〉. As mentioned in Sect. 3.1, we aim to make LPR
systems produce a wrong license L′ from a real license L. They are of the same
length and both comply with lawful constraints, but different in at least one
character. Assuming the rth character is cr, we obtain the probability distri-
bution for this character as {(c1, p1), (c2, p2), . . . , (cn, pn)} where p1 = max{pi}
and c1 �= cr. Surely, the overall confidence of this recognition should be higher
than the requirement C ≥ θ. In this study, we define the following two attacks
in terms of generated adversarial examples.

Targeted Adversarial Attack. This is a directed attack, where RoLMA can
cause HyperLPR to recognize the adversarial license plate as a specific license
number. For example, we attempt to make the license plate “N92BR8” recog-
nized as “N925R8”. Then all the adjustments of parameters are targeting this
goal. This attack is especially suitable for the scenario of car parking manage-
ment, as it can disguise a privilege license number to access the parking service.

In a targeted adversarial attack, the original license is L : 〈c1, c2, . . . , cn〉, and
the targeted one is L′ : 〈c′

1, c
′
2, . . . , c

′
n〉. The inconsistent characters in between

are {(ci, c
′
i)} ∈ D. In order to generate an adversarial example G′, we utilize a

loss function to measure the differences between the real sequence of characters
and the targeted one. The optimization process is conducted in two directions:
(1) decreasing the loss of the whole sequence against the target; (2) decreasing
the loss of specifically targeted characters ci ∈ D against the target characters.
Thus, the loss function is as follows.

arg min
G′

α × LCTC(f(G
′
),L′

) +
∑

(ci,c′
i)∈D

L(ci, c
′
i) (1)

where LCTC is the CTC loss function for label sequence and
∑

(ci,c′
i)∈D L(ci, c

′
i)

is the sum of losses which are the editing distances between all targeted charac-
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ters and the original ground true characters. The coefficient α balances the two
variables in the loss function.

Non-targeted Adversarial Attack. The goal of non-targeted adversarial
attacks is to fool a LPR system by producing any wrong recognition. This attack
is very suitable for the scenarios of escaping electronic tolls collection and black-
listed vehicle detection. A non-targeted attack contains two uncertainties–which
characters will be changed in adversarial examples at the sequence level, and
what the original characters will become at the character level. As such, we
aim to find an optimal solution to minimize the distance between adversarial
examples with the original at the sequence level. Moreover, this solution leads
to a wrong recognition with its confidence satisfied. Let d(L,L′) be the editing
distance between the two licenses L and L′

and f(G
′
) = L′

as aforementioned.
Moreover, Cf(G′) is the confidence of the targeted license G′, and θ is a threshold
of confidence, here we set it as 0.75. The optimization process can be formulated
as Eq. 2.

arg min
G′

d(f(G′),L) ∩ Cf(G′) ≥ θ (2)

Here we utilize Simulated Annealing (SA) to guide the process of non-
targeted adversarial attacks as shown in Algorithm 1. In particular, the iteration
process is continuing unless one wrong character gains the largest probability or
it exceeds the maximal iteration number MAX (line 2). Line 3 is to compute
the probability gap between the first two characters. It can roughly measure the
chance to accomplish a wrong recognition. Line 4 is to generate the perturbed
license plate G

′
by adding the perturbation δc1,c′

1
, and δc1,c′

1
is computed by the

targeted adversarial attack as described above. Line 5 to 14 present which wrong
characters will be selected for the next decoration. Following with a descending
order of probability, we select the 2nd character as our first decoration target. A
new probability distribution is produced by LPR system (line 6) and sorted as
per probabilities (line 7). If a wrong recognition is achieved (line 8), we terminate
the iteration process. Otherwise, we compute the chance of wrong recognition
in the current probability distribution (line 11) and compare it with the previ-
ous one. If the chance is increased, i.e. Δpnew < Δp, we accept this decoration.
Otherwise, we accept this decoration with a probability calculated in line 12. We
evolve the value of temperature at line 15. When we get G′, we need to check
whether G′ follows the constraints C on the license plate numbering system in
order not to be rejected at line 17. If the G′ satisfies the constraints C, then we
will update G at line 18.

5 Evaluation

We implement RoLMA on the base of TensorFlow and Keras. The exper-
iments are conducted on a server with 32 Intel(R) Xeon(R) CPUs of E5-2620
and 64 GB memory. Through these experiments, we intend to answer:

–RQ1. How effectively does RoLMA generate adversarial license plates and how
successfully do these adversarial examples deceive the HyperLPR system?
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Algorithm 1. Non-targeted adversarial attacks based on SA
Input: {(ci, pi)|1 ≤ i ≤ n}: a descending list of possible chars by probabilities;

T : the intial degree of temperature and T > 0; λ: the annealing rate and
0 < λ < 1; MAX: the maximal number of iterations for adversarial
example generation; G: the original image of license plate

Output: G
′
: adversarial license plate, where c′

1 �= c1
1 iter ← 0, c′

i ← ci, p′
i ← pi, i ∈ [1, n];

2 while c′
1 = c1 and iter < MAX do

3 Δp ← p′
2 − p′

1;

4 G
′ ← G + δc1,c′

1
;

5 for i ← 2 to n do

6 {(c
′′
i , p

′′
i )} ← license plate recognition(G

′
);

7 sort {(c
′′
i , p

′′
i )} where p

′′
i ≥ p

′′
i+1;

8 if c
′′
1 �= c′

1 then

9 c′
i ← c

′′
i , p′

i ← p
′′
i , i ∈ [1, n];

10 break;

11 Δpnew ← p
′′
2 − p

′′
1 ;

12 if Δpnew < Δp or e
Δp−Δpnew

T > rand(0, 1) then

13 c′
i ← c

′′
i , p′

i ← p
′′
i , i ∈ [1, n];

14 break;

15 T ← λ × T ;
16 iter ← iter + 1;

17 if G
′
satisfies the constraints C then

18 G ← G
′
;

19 return G
′
;

–RQ2. How is the success rate of the practical attacks guided by these adversarial
examples?

–RQ3. Are these adversarial examples imperceptible enough for ordinary audi-
ences?

Experiment Subject. We prepare two types of data sets for the experiments
as follows. All the license plates can be recognized correctly by HyperLPR.

– Real license plates. We have collected 1000 images of license plates from
CCPD [18]. Due to the influences of the surrounding environment, many of
the images are blurred and of low quality.

– Synthesized license plates. We also synthesize a number of license plates
by ourselves following the design specification of a legal license plate. We
randomly select characters from the limited alphabet. Constraints are checked
to guarantee these license plates are valid. In total, we create 1000 license
plates of high quality without any noise from the physical environments.
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Parameter Determination. RoLMA uses illumination technique to create
spots on the license plate to fool a LPR system. However, if the number of
light spots is too small, we may not be able to gain a high success rate, i.e.,
failure on generating adversarial examples. Inversely, installing a larger number
of light spots is also not a good choice since it may cause a failed recognition and
too remarkable for ordinary audiences. Therefore, we first design an experiment
to identify the favored number of light spots that could effectively fool LPR
systems. We randomly select 100 license plates from the data set, and commence
to generate adversarial examples with an increasing number of light spots from
1 to 10. We set a maximal iteration number as 5,000 in each trial, and then
one trial will stop if either an adversarial example is generated or the iteration
number exceeds 5,000. It is worth mentioning that we use a non-targeted strategy
for adversarial attacks. The result shows the success rates of attacks along with
the number of light spots. The success rate is raised slightly after 5. As a result,
we only make 5 light spots to license plate in the following experiments.

5.1 RQ1: Effectiveness

In this experiment, we aim to explore the effectiveness of RoLMA in digital
space, i.e., the generated adversarial images are directly passed to HyperLPR
for performance assessment. More specifically, we conduct two types of attacks:
Targeted adversarial attack. For each license plate, we aim to receive a specific
wrong license number from HyperLPR. We employ random algorithms first to
identify which character to be disturbed, then disguise the character as a different
one. One attack is terminated once the target is accomplished or the iteration
exceeds 5,000 times; Non-targeted adversarial attack. Target is not necessarily
designated in a non-targeted adversarial attack. Therefore, we will not specify
a target for each license plate. One attack is terminated once an adversarial
example is obtained or it exceeds the maximal iterations.

Table 1. Success rate of targeted and non-targeted attacks

Data Targeted attack Non-targeted attack

Success Confidence Success Confidence

Real 92.60% 86.55% 99.70% 91.59%

Synthesized 85.70% 85.64% 94.90% 90.88%

Average 89.15% 85.95% 97.30% 91.28%

Table 1 shows the results of these attacks on both real license plates and
synthesized license plates. The success rate of non-targeted attacks is 97.3%
outperforming targeted attacks (89.15%). That is because one character has
varying difficulties to pretend to other characters as concluded above. Some
characters cannot be even achieved regardless of how to optimize. There are
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still a number of trial instances failing to deceive HyperLPR. For example, we
cannot find an adversarial example for the license plate “A40F29” in a limited
time. In addition, we find that the success rate in synthesized license is always
smaller than real license’s in both attacks. The reason is that the synthesized
license plates have relatively higher definition compared to the real license plates,
which means the correct characters can be recognized with a higher probability.
In contrast, when HyperLPR is recognizing a blurred image, it is prone to
making the results with lower confidence or even cannot determine the final
characters. As a consequence, fewer additional perturbations may cause a wrong
recognition for real license plates and much more perturbations have to be made
to the synthesized license plates for adversarial examples.

Comparison with Random Illumination Attack. We launch another attack
by randomly illuminating the 2000 images in our data set. The randomness of
the illumination attack lies in the number of light spots, the color, brightness,
size and position for each spot. After all, we obtain 2000 decorated images with
random spots. HyperLPR can correctly recognize 96.95% of them. Only 1.90%
of them can deceive HyperLPR, which is far less effective than the non-target
attack of RoLMA (97.30%). It is concluded that modern LPR systems have
great resistance to this random illumination attack. It is non-trivial to gener-
ate adversarial examples effectively without considering LPR algorithms. This
experiment also proves that RoLMA achieves superior performance by exploring
the weaknesses residing in LPR algorithms.

5.2 RQ2: Practicability

In this section, we apply targeted attack to evaluate the practicability of
RoLMA by instantiating adversarial perturbations on real license plates.

Experiment Design. (1) We install these electronic devices on a car and cali-
brate these LEDs carefully. If the captured license plates are remarkably different
from the digital adversarial image, then we will adjust the supply current, illumi-
nation direction, and used lenses to change formed light sports. The calibration
is stopped if two images are different within a tolerant threshold θ. And the lim-
itation of physical calibration time is set to 5 min. (2) We record two continuous
videos for the decorated license plate: the first video is filmed at the horizontal
plane with the license plate in a “Δ” route. More specifically, the camera is at
the back of the stationary car with a distance of 2 m. Then we move the camera
to the left-back with a 30o horizontal angle till to a location with a 3-m distance.
We then move the camera horizontally to the right till the symmetric location,
and finally move to the left front till the start point; the second video is filmed
at a higher position with a 45o depression angle to the license plate. The camera
is moved from the left (≈ 15o horizontal angle) of the license plate to the right
(≈ 15o horizontal angle). The distance of the camera to the license plate is 2 m.
This experiment lasts around 2 h and gets two one-minute videos.

Experiment Results. In our recorded videos, there are 1600 frames of image
totally and 922 valid frames remain after filtering out blurred images. We feed
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these valid images to HyperLPR and 843 of them are misrecognized. Hence,
the success rate of our physical attack is 91.43%. The averaged confidence of
recognition results is 87.24%. Moreover, the average time of physical calibration
is about 3 min.

Table 2. Recognition results in the physical attacks

No Distance (meters) Depress. Horizon. Text Conf. (%)

1 2 0o 0o 8BM7 98.06

2 2 0o 0o 82M7 86.93

3 3 0o −30o 82M7 85.91

4 3 0o +30o 82M7 86.35

5 2 45o 0o 82M7 90.92

6 2 45o −15o 82M7 91.40

7 2 45o +15o 82M7 87.64

Examples. We select six images recorded in this physical attack shown on
the website3, and the recognition results in Table 2. These images are captured
with varying distances and shooting angles. In particular, the first image is shot
with the original license plate and the camera is 2 m away behind. Hyper-
LPR can output “ 8BM7 ” correctly with a confidence of 98.06%. To protect
privacy, we use “ ” to cover specific characters in both the images and recog-
nized text. The other six images, shot from the decorated license plate, can all
make HyperLPR output “ 82M7 ”. As shown in Table 2, “Distance” denotes
the distance of the camera to the license plate, “Depress.” means the depression
angle of photographing, “Horizon.” means the horizontal angle of photographing,
and “Conf.” denotes the confidence of HyperLPR with regard to recognition
results. Noted that “−30o” and “−15o” indicate the camera is at the left side of
the license plate while “+30o” and “+15o” mean the right side. These decorated
license plates are all recognized wrongly, according to our computation in the
experiments. It shows that RoLMA is very effective in generating adversarial
examples, and these adversarial examples are very robust in the physical world.

5.3 RQ3: Imperceptibility

Imperceptibility is another important feature for adversarial examples, which
means the perturbations do not affect users’ decision. In the field of license plate
recognition, practical adversarial examples impose a new implication to this con-
cept: the license plate is still recognized correctly, and the crafted perturbations
are indistinguishable from other noises of the real world. In this experiment,
we conduct a survey and it is designed with carefully-designed questions about
3 https://sites.google.com/view/rolma-adversarial-attack/practicability.

https://sites.google.com/view/rolma-adversarial-attack/practicability
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these adversarial examples. In particular, one survey is composed of 20 generated
adversarial examples, randomly selected from our data set. More details can be
found here4. We release the survey via a public survey service5, and receive 121
questionnaires in total within three days. We have filtered out 20 surveys of low
quality if the survey is finished too fast (less than 60s) or the answers all point
to a single choice.

Survey Results. Among the 101 valid surveys, the median age of the partic-
ipants is 22, 66.34% of them are male and 33.66% are female. 93.07% hold a
Bachelor or higher degree. From the survey, we find that 93.56% of the par-
ticipants can recognize the text of the license plate successfully, which means
our adversarial examples do not affect users’ recognitions. 8.23% of them do not
notice any light spots in adversarial examples, indicating that the perturbations
are inconspicuous to them. As for the remaining participants noticing the light
spots, 78.32% think the light spots are caused by license plate light or other
natural light as we expected, and only 21.68% consider the light spots are from
artificial illumination. Thus, we can find out that our practical attack can easily
pretend as some normal lighting sources, such as license plate light and the light
of other vehicles from the back.

6 Discussion

Potential Defenses for RoLMA. To defend against RoLMA and other alike
attacks, we propose the following strategies for LPR systems that are learned in
the course of experiments. From the aspect of the recognition algorithm, LPR
systems can employ denoising techniques [7] to elevate image quality by elimi-
nating noises added by adversarial examples. Noises in a license plate could be
light spots, stains caused by haze or rain, character overlap due to small shooting
angles. To overcome these noises, LPR systems are encouraged to sharpen the
borders of characters in a low-quality license plate, and the areas out of char-
acters are made consistent with the background. Meanwhile, the stains inside
of the characters are colored as the surrounding area. Based on the investiga-
tion result of its underlying recognition mechanism, we found that it employs
denoising techniques that can crack our perturbations and thus the LPR sys-
tems are capable of recognizing the correct text. Besides, training with a variety
of adversarial examples can also greatly improve the resistance to future adver-
sarial examples. From the aspect of the system, security experts of the system
have to work out more complete and comprehensive protection mechanisms for
a specific risky task. Imaging that one car parking management system solely
relies on license plate recognition for authentication, attackers can easily break
into the car parking system with small efforts committed in case LPR fails or
ceases to work. In such a case, multi-factor authentication [13] is a promising
method to enhance security. The unique identification code of vehicle which is

4 https://sites.google.com/view/rolma-adversarial-attack/imperceptibility.
5 https://www.wjx.cn/.

https://sites.google.com/view/rolma-adversarial-attack/imperceptibility
https://www.wjx.cn/
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widely used in the field of IoT can be used in this scenario. Even the car owner
changes or heavily scrawls the license plate, the unique identification code can
assist in vehicle identification. Moreover, manual checks by specialists are the
last obstacles hindering these attacks.

7 Related Work

There are a lot of works on adversarial attacks.

Adversarial Attacks Against License Plate Recognition. There are few
works on adversarial attacks against LPR systems. For example, Song and
Shmatikov [16] explore how the deep learning-based Tesseract [15] system is
easily smashed in adversarial settings. They have generated adversarial images to
lead a wrong recognition of Tesseract in digital space but not in the practical
world. Unlike the above attack, we are the first one to apply practical adversar-
ial examples in the field of license plate recognition, and implement a full-stack
attack from the digital world to the physical world. It helps unveil the weaknesses
of modern LPR systems and facilitates the improvement of robustness indirectly.

Physical Implementation of Adversarial Examples. Although adversar-
ial examples have gained a surprisingly great success in defeating deep learning
systems [17], to work in the physical world is not that worrisome [10]. There are
emerging research works aiming at making the adversarial attacks come true in
reality. In order to generate more robust adversarial attack, Zhao et al. [21] pro-
posed the feature-interference reinforcement method and the enhanced realistic
constraints generation to enhance robustness. Zhou et al. [23] constructed a new
attack against FaceNet with an invisible mask but without the consideration
of disturbances from the surrounding environment. Moreover, Yuan et al. [20]
implemented a practical adversarial attack against ASR systems, working across
air in the presence of environmental interferences. In addition, they proposed
REEVE attack which can remotely compromise Amazon Echo via radio and TV
signals [19]. However, as shown in Sect. 1-C2, environmental factors can reduce
the effectiveness and robustness under different circumstances. Thus, we design
three transformations( e.g., adjust brightness, rescale the image and rotate the
image) to simulate the realistic environment in Sect. 4.2.

8 Conclusion

We propose the first practical adversarial attack RoLMA against deep learning-
based LPR systems. We employ illumination technologies to perturb the license
plates captured by LPR systems, rather than making perceivable changes. To
resolve a workable illumination solution, we adopt targeted and non-targeted
strategies to determine how license plates are illuminated including the color,
size, and brightness of light spots. Based on the illumination solution, we design
a physical implementation to simulate these light spots on real license plates. We
conducted extensive experiments to evaluate the effectiveness of our illumination
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algorithm and the efficacy of physical implementation. The experiment results
show that RoLMA is very effective to deceive HyperLPR with an averaged
93.23% success rate. We have tested RoLMA in the physical world with 91.43%
of shoot images are wrongly recognized by HyperLPR.
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Abstract. Distributed denial of service (DDoS) attacks continue to be
an ever-increasing threat in cyberspace. Nowadays, attackers tend to
launch advanced DDoS attacks with botnets to bypass the detection
system. In this paper, we present a method for launching an advanced
application-layer DDoS which masquerades as a flash crowd (FC). The
attack strategy falls in two aspects: (1) extracting legitimate users’
behaviors; (2) instructing bots to behave as legitimate users. To achieve
this, we propose a multi-step algorithm to extract user browsing behav-
iors and establish a Sequence Generative Adversarial Nets (SeqGAN)
model to generate mimicking behaviors of bots. In addition, we exper-
imentally study the effectiveness of this mimicking attack. The study
shows that the mimicking attack can fool a detection system that is based
on machine learning algorithms. The experimental results also demon-
strate that the mimicking attack is indistinguishable from FC in term of
statistics.

Keywords: Flash crowd · Application-layer DDoS · Mimic ·
SeqGAN · Browsing behavior

1 Introduction

DDoS attacks normally consume a huge number of resources of a web server,
making it impossible to access the server by legitimate users [11]. In the early
days, a DDoS attack comes from a few computers that have been loaded with
attack tools. In recent years, attackers carry out DDoS attacks with the help of
botnets generally [9]. A botnet is a large network of compromised hosts, which
are called bots. These bots run a malicious program and are remotely controlled
by the botmaster. Nowadays, DDoS attacks have become a severe threat to the
security of web servers with the thriving of botnets.

Although there are plenty of DDoS defenses, sophisticated attackers are spar-
ing no effort to bypass the detection by mimicking the phenomenon of flash
crowds [31]. A flash crowd refers to the situation when many legitimate users
simultaneously access an interested website, which also causes an overload of
c© Springer Nature Switzerland AG 2020
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web server [12]. As a result, application-layer DDoS is gaining popularity [?]
[?]. These attacks are better at masquerading flash crowds by sending numerous
benign HTTP requests. However, traditional application-layer DDoS attacks,
such as GET flooding, bring about a huge volume of the same HTTP request in
a time interval. Based on this, many statistical methods are proposed to detect
application-layer DDoS [?] [23].

Meanwhile, Yu et al. [31] propose an advanced application-layer DDoS: mim-
icking attack. To carry out this attack, attackers arrange bots to send HTTP
requests by simulating the behavior of legitimate users. To achieve this, the
authors establish a four parameter semi-Markov model for user browsing behav-
ior. Furthermore, they propose one conclusion and prove it theoretically and
experimentally: if attackers have sufficient active bots, a mimicking attack is
feasible and statistics or browsing behavior based detection algorithms will be
disabled. However, in order to extract accurate parameters for the semi-Markov
model, their method requires amounts of seed data, which is hard to meet in
practice.

To address this problem, in this paper, we propose a SeqGAN-based scheme
for launching a mimicking attack. Akin to previous studies, we use a kind of
time series to present user browsing behavior. Differently, we establish a Seq-
GAN model to generate mimicking behavior of bots, which avoids extracting
parameters explicitly. Besides, we experimentally demonstrate that the mimick-
ing attack and flash crowd are indistinguishable towards statistics or browsing
behavior based detection schemes.

The major contributions of this work are as follows:

• We present a SeqGAN-based method for launching mimicking attack. To
the best of our knowledge, it is the first scheme to use sequence generation
technology to produce mimicking behaviors for application-layer DDoS. In
particular, our method can lower down the dependence on the magnitude of
seed data.

• We propose a novel algorithm to extract user behaviors. Instead of explic-
itly extracting statistical features, we process seed data with segmentation,
filtration and sampling to build a structured User-Behavior set for further
imitating.

• We design two schemes to evaluate the proposed mimicking attack. One is
measuring its ability in bypassing a detection system that is based on machine
learning technologies. The other is comparing mimicking behaviors to legiti-
mate users’ behaviors on four vital web browsing characteristics. In our exper-
iments, results demonstrate that the method can generate high quality mim-
icking behaviors.

The paper is organized as follows: Sect. 2 reviews the current available lit-
eratures. Section 3 describes our SeqGAN-based method for mimicking attack.
An experimental evaluation of the approach is given in Sect. 4. Section 5 is the
conclusion of our work.
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2 Related Work

2.1 User Behavior Analysis

In the field of detecting application-layer DDoS attacks, user behavior analy-
sis is widely used. Ye et al. [29] extract four different user session features to
detect anomalous users: object size, request rate, object popularity and transi-
tion probability. But the method fails to distinguish attacks from FC. Giralte et
al. [7] model user behaviors in terms of layer 4–7 parameters, such as the rate of
requests, the mean of flows, GETs mean, etc. Miu et al. [16] compare the jump
probability of pages to identify suspicious users. Singh et al. [24] propose many
features to profile user behaviors when users send HTTP requests, such as the
frequency of requests, viewing time for a given resource (down-time), web pages
popularity, repetition index, response index. To detect application-layer DDoS,
Luo et al. [14] extract features from an intercept program instead of web server
logs and use PCA to profile normal user behaviors.

2.2 Mimicking Attacks

Up to now, there are a spot of literatures on mimicking attacks. The work of
Yu et al. [31] is perhaps most closely related to our efforts. They theoretical
prove that mimicking attacks are feasible if attackers have sufficient active bots.
Furthermore, by assuming user browsing dynamics follow three statistical dis-
tribution models, they employ a semi-Markov to launch mimicking attack. To
certain it, an attacker needs to obtain the volume of history requests for a given
time, which is hard to meet. Rigaki et al. [21] use a GAN to learn traffic behavior
of a legitimate application. Then, the traffic of the malware is modified accord-
ing to this. But this method only works on the flow level. Sun et al. [25] extract
statistical feathers of traffic and employ LSGAN to mimic FC, which mainly
focuses on network-layer DDoS.

2.3 Generative Adversarial Nets

A Generative Adversarial Nets (GAN) is a deep learning framework that con-
tains a generator and a discriminator. A GAN corresponds to a minimax two-
player game. The generator takes the role of producing real-like samples. The
discriminator is trained to distinguish real samples from those produced by the
generator. The convergence of a GAN is reached when the generator and the
discriminator reach a Nash equilibrium. GAN was proposed by Goodfellow et
al. in 2014 [8] and has received wide attention. Nowadays, many improved mod-
els, such as LSGAN [19], WGAN [2], DCGAN [20], BEGAN [3], are proposed
to handle the difficulties that earlier GAN faced. While GAN can generate very
convincing images, there are challenges to apply GAN to other specific domains.
For example, it is hard for gradient-based GAN to generate sequence. That is
because discrete output makes it hard to update parameters of GAN model.
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Aiming to solve the problem, SeqGAN extends GAN with the RL-based genera-
tor [30]. Experimental results demonstrate that SeqGAN has made considerable
progress in the task of generating sequences.

3 Proposed Method

In this section, we simulate an attacker and explore a kind of mimicking attack.
Firstly, we introduce the threat model. The attacker’s capabilities will be dis-
cussed. Secondly, we describe how to extract behaviors of legitimate users, and
how to generate mimicking behaviors of bots. Finally, we present the proposed
mimicking attack algorithm.

3.1 Threat Model

In summary, there are three requirements for mimicking attack. First, the
attacker is able to monitor and collect seed data from the victim servers. Seed
data refers to available information, such as log of web server, request traffic of
users, etc. Second, the attacker owns a larger-scale botnet and can command
bots to run a given program. It is not a strict condition, because botnets usually
have command and control (C&C) channel to connect the attacker and bots.
However, it’s a challenge to have much control over the bots. Last but not the
least, the attacker should design the program that run by each bot. The crucial
task of the program is to generate novel instructions constantly. According to
these instructions, each bot will send specific HTTP requests to the victim, which
we call mimicking behaviors. Key technologies are detailed in the following.

3.2 User-Behavior

To mimic legitimate users and implement an attack, extracting user behaviors
from seed data is the first thing to address. There are many schemes to model user
browsing behaviors. Drawing ideas from [6,27,28], we model user behavior as a
kind of sequence. Figure 1 shows the model. When a user browses webpages, the
browser will send out a number of requests for in-line objects. An in-line object
might be a text, image, video and so on. These requests arrive at the web server
one after another, and in a short time interval. The web server may record these
requests by keeping log files.

Definition 1 (User-Behavior). A User-Behavior is a group of requests that
are arranged in time sequence. These requests are derived from the same IP
address.

Let X1:K = (x1, . . . , xk, . . . , xK) be a User-Behavior, where K is the length
of sequence. In other words, K represents the duration of web browsing. The
value of xk represents the action in the relative time k, such that:

xk =

{
null dwell time ;
ri request for an in-line object ,

(1)
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Fig. 1. User’s browsing behavior

where i is a flag for counting and i = 1, 2, . . . , N . In addition, we denote T (ri)
as the relative time corresponding to the request ri. A typical User-Behavior as
follows: X1:13 = (r1, r2, null, r3, r4, null, null, r5, r6, null, null, null, r7). In this
case, the user’s browsing time is 13 s and T (r7) = 13.

3.3 Building User-Behavior Set

Before building User-Behavior set the to mimic, we analyze User-Behaviors from
two aspects:

(1) From the perspective of the web server. Unique User-Behaviors are
accepted, because different users have different behavior trajectories. How-
ever, if statistical metrics of a User-Behavior set are abnormal, warning
should be triggered.

(2) From the perspective of the attacker. Sparse User-Behaviors should
be avoided as much as possible, because bots should not idle for much time.
What’s more, due to limited computational resources, the length of each
User-Behavior should be short.

Based on this, we propose a multi-step method to build the User-Behavior-
Set. As shown in Algorithm 1, it consists of four steps: classification, segmen-
tation, filtration and sampling. Each User-Behavior should be normalized to a
short sequence length L. Therefore, we first classify each User-Behavior X1:K

into set Si, subject to (i − 1)L < K < iL. Then, each X1:K in Si is splitted into
multiple segments and the length of each segment is L. In the following, the seg-
ments which are sparse will be abandoned and eligible segments will be merged
into the candidate set CSi. We propose a metric Sparse(Xk1:k2) to describe the
sparse degree of each segment Xk1:k2 , which is defined by:

Sparse(Xk1:k2) =

N∑
i=2

max
(
0, T (ri)−T (ri−1)

tm
− 1

)
k2 − k1

, (2)

where tm is the max viewing time for an in-line object. If the Sparse(Xk1:k2)
exceeds the threshold 0, the segment will be abandoned. However, we will
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not mearge all retained segments into the User-behavior set. It is because
the User-Behaviors with long length have been cut into multiple segments.
It would magnify these users’ influence if we did that. Thus, sampling is
needed in the end. Then, we can obtain a structured User-Behavior set S,
S = {X1

1:L,X2
1:L,X3

1:L, . . . }.

Algorithm 1. Building User-Behavior set
Require:

X: a raw set of User-Behaviors;
tm: the threshold time for viewing object;
L: the target sequence length;

Ensure:
S: the normalized User-Behavior set;

1: Divide each X1:K ∈ X into set Si by K, s.t. (i − 1)L < K < iL; Initialize S ← S1

2: for each Si ∈ {S2, S3, S4, . . . } do
3: Initialize the candidate set CSi ← ∅
4: for each X1:K ∈ Si do
5: k1 ← 0; k2 ← 0
6: while k2 � K do
7: k2 + +
8: Calculate Sparse(Xk1:k2) by Eq.(2)
9: if Sparse(Xk1:k2) ≥ 0 then

10: k1 ← k2 \\abandon the fragment
11: end if
12: if k2 − k1 � L then
13: CSi ← CSi ∪ {Xk1:k2}; k1 ← k2 \\merge into candidate set
14: end if
15: end while
16: end for
17: Sample from CSi by αi

i
and get CSSi, where 1 < αi < 2; S ← S ∪ CSSi

18: end for

3.4 Generating Mimicking Behaviors

In the mimicking attack, behaviors of each bot should be similar to legitimate
users’ behaviors while bots are sending requests to web server. That is, each bot
is able to generate mimicking behabiors constantly via pre-defined program. The
problem is formulated as follows:

Each bots has a generator. Given a User-Behavior-Set S = {X1
1:L,X2

1:L,
X3

1:L, . . . }, which comes from an underlying distribution pd. The generator can
produce a novel set {Y 1

1:L, Y 2
1:L, Y 3

1:L, . . . }, whose distribution pg is match to the
distribution pd.

To achieve this goal, we establish a SeqGAN model. The SeqGAN model
starts with a Θ-parameterized generator GΘ and a ϕ-parameterized discrimina-
tor Dϕ. Then, Our goal is to train GΘ to produce satisfactory sequences con-
stantly. When GΘ is trained to generate one sequence Y1:L = (y1, . . . , yl, . . . , yL),
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Dϕ will provide a guidance Q to select the next action yl from state Y1:l−1. The
guidance Q is defined by:

Q(a = yl) =
{

1
N

∑N
n=1 Dϕ(Y n

1:L), Y n
1:L ∈ MCGΘ(Y1:l;N) l < L;

Dϕ(Y1:l) l = L,
(3)

where MC(Y1:l;N) presents a N -time Monte Carlo search. It is a heuristic search
method that is used as state-action evaluation [5].

After training GΘ iteratively, the Dϕ will be re-trained as follows:

min
Θ

EY1:L∼pd
[log DΘ(Y1:L)] − EY1:L∼pg

[log(1 − DΘ(Y1:L))] (4)

Repeat this process and the parameters (Θ and ϕ) will be updated continually
until convergence. So far, GΘ can generate more realistic sequence Y1:L. We
regard the generated sequence as mimicking behavior of bots.

3.5 The Mimicking Attack Algorithm

We present the detail of launching a mimicking attack in Algorithm 2. It works
on the assumption that the attacker meets the requirements in Sect. 3.1. After
obtaining User-Behavior set S, the attacker build a SeqGAN model and train GΘ

and Dϕ. When the model converges, the attacker only transmits the parameter Θ
to bots. When the parameter is in hand, each bot can establish a local generator
GΘ. Then, each bot sends requests to web server according to generated results
of the local generator. Our algorithm can be used to launch an advanced DDoS
attack which masquerades a flash crowd. This methodology can also be applied
to other attack scenarios.

Algorithm 2. The Mimicking Attack Algorithm
1: Obtain User-Behavior Set S, and initialize GΘ and Dϕ with random Θ and ϕ.
2: Pre train GΘ on S, and then train GΘ and Dϕ adversarially until SeqGAN con-

verges.
3: Identify current active bots, {botst}. Transmit the parameter Θ to bots and instruct

them to run independently.
4: for all bot ∈ {botst} do
5: Establish a generator GΘ with Θ.
6: while 1 do
7: Generate mimicking behavior Y1:L via GΘ;
8: Launch requests according to Y1:L.
9: end while

10: end for
11: Introduce new bots and update {botst}.
12: Go to step 4.
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4 Experiments

4.1 Generate Mimicking Attack

To demonstrate the effectiveness of the proposed mimicking attack algorithm,
we use FIFA1998 dataset. FIFA1998 is the access log of the France’98 Web-
site for 88 days. There are over 73 million requests in the 66th day, which is
widely used as a FC event. Then, we choose the data of the 6th day as the seed
data, which can extract 20889 User-Behaviors. Using our proposed method, we
generate 70,000 mimicking behaviors of bots which simulate mimicking attack.

In order to build User-Behavior set from seed data with Algorithm 1, we
investigate the seed data first. The distribution of users’ browsing time is shown
in Fig. 2. Based on this, we set L = 300, tm = 600. In other words, we take 5 min
as the duration time of User-Behavior and 10 min as the max viewing time for
an in-line objects.

(a) user’s browsing time in a day (b) max viewing time for objects

Fig. 2. Users’ browsing time for seed data

When implementing SeqGAN, we leverage Long Short-Term Memory
(LSTM) as the generator and Multilayer Perceptron (MLP) as the discrimi-
nator. Parameters in the model have to be empirically selected. In this experi-
ment, LSTM is one in depth and MLP is three layers. Each layer has 64 hidden
units. The batch size is set to 50 and the training epochs is 400. To prevent
unstable training, we employ Wasserstein loss for the discriminator instead of
cross entropy loss. Then, we use the trained model to generate 70,000 mimicking
behaviors of bots, which are called imitated data. Besides, the data of the 66th
day which represents a FC event is called target data.

4.2 Detection System Measures

Can the mimicking attack fool a detection system? To measure the effectiveness,
we build a detector to distinguish FC and HTTP DDoS. And then, we analyze
its ability in detecting the mimicking attack.
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Fig. 3. Measuring mimicking attack by detection system

Measures Design Overview. In the field of detecting DDoS attacks, classifica-
tion method based on machine learning techniques has been widely used [11,23].
In this work, we employ four classical classification models to distinguishing FC
and HTTP DDoS: Logistic Regression (LR), Support Vector Machine (SVM),
Decision Tree (DT), Multilayer Perceptron (MLP). The detail procedure of mea-
sures is shown in Fig. 3. In the first stage, HTTP-GET flood DDoS dataset and
FC dataset are processed by scaling and extracting features. Following the gen-
eral procedure of machine learning techniques, these four classification models
are trained and tested. To ensure our results are comparable, these classifica-
tion scores are taken as performance standards for classification models. After
that, imitated data are preprocessed and taken as inputs of classification mod-
els. Then, we can achieve the classification scores for the imitated data. If an
item of imitated data is predicted as FC rather than DDoS, we think it succeeds
in evading detection. By comparing classification scores, we evaluate mimicking
attack’s ability in fooling the detection system.

DataSet and Scaling. To train and test classification models, two datasets
are used. One is FIFA1998 dataset. As described above, the data of the 66th
day are labeled as FC. The other is an emulation attack dataset. Due to the lack
of real world HTTP DDoS dataset, we set up a testbed environment to generate
HTTP-GET flood trace. In the testbed, we deploy a web server running Apache
and PHP. Then four DDoS attack tools are used to generate HTTP-Get flood
trace: DDoSIM, LOIC, Hulk, GoldEye. When launching attacks, each tool have
preset their parameters, along with different number of requests received by web
server in a time window. Besides, the bandwidths of the emulation dataset are
also different from the FIFA1998 FC dataset. In order to minimize the impact,
we modify the emulation dataset to 850 requests per second with scaling up
other features. After that, we can build training set and testing set from these
two datasets.
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Feature Extraction. Feature extraction plays a significant role in classifica-
tion models. In the field of detecting DDoS attack, feature extraction is called
profiling user behaviors, user behaviors analysis, and so on. When extracted sta-
tistical features, we refer to related work in Sect. 2.1. Due to the difference in two
datasets, we choose the features which can be obtained from web logs as well as
traffic traces. Some individual statistical features, such as average packet size,
are not taken into account. The extracted features are listed in Table 1.

Table 1. Features that extracted from dataset

Feathure Description

request rate Number of requests sent by a users per second

max frequency The maximum number of requests sent by a user
among sub time window

mean frequency Average number of requests sent by a user among
sub time window

std frequency Standard deviation number of requests sent by a user
among sub time window

max request interval Maximum time between two requests sent by a user
among sub time window

mean request interval Average time between two requests sent by a user
among sub time window

std request interval Standard deviation time between two requests sent by
a user among sub time window

max repeat rate The max ratio of the number of requests for same web
to the total number of requests

popularity rate The ratio of the number of requests for a hot web
resource to the total number of requests

Detection Results. When evaluating each classification model, three metrics
are used: Accuracy, FPR, FNR. Accuracy measures the rate of the correctly
classified for both classes. FNR is the number of items which are misclassified as
FC out of total DDoS data. FPR is the ratio of the items misclassified as DDoS
to the total FC data. Besides, in order to evaluate the mimicking attack’s ability
in evading detection, we define a metric: evading rate. It is the proportion of
imitated data which are misclassified as FC. By comparing these four metrics,
we measure the effectiveness of mimicking attack. Table 2 reports the results.
It shows that the most vulnerable models are MLP and LR with evading rate
reaching 87%. It needs to be emphasized that the accuracy of MLP model is
98.62%. The result of evading rate is very promising in this case. On the SVM
and DT, the evading rates are relatively low, indicating that these classification
models are to some extent more robust to the mimicking attack. However, there
is still up to 66% possibility for mimicking attack to fool the classifier.
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Table 2. The results of measuring mimicking attack by detection system

Metrics Testing data Imitated data

Accuracy FNR FPR Evadingrate

LR 95.07% 2.761% 7.099% 87.94%

DT 97.91% 0.157% 4.023% 66.18%

SVM 98.44% 0.947% 2.173% 74.62%

MLP 98.62% 0.929% 1.831% 91.99%

4.3 Compare Imitated Data to Target Data

Can the mimicking attack pretend to be FC? In order to verify the ability of
imitation, we compare the imitated data to target data.

Before comparing the intrinsic features, we investigate the similarity between
imitated data and target data visually. Figure 4 shows the visual results. As men-
tioned above, each element in imitated data is a sequence and is 300 in length.
For the visualization of this high-dimensional datasets, we apply a technique to
reduce dimensionality, which is called t-Distributed Stochastic Neighbor Embed-
ding (t-SNE). When map high-dimensional data to 2-dimension datapoint, t-
SNE can retain relative distance of the data while revealing clusters. As shown
in Fig. 4, the results of target data and imitated data do not align perfectly.
However, they have very similar global structure. It indicates that the method
is able to generate a family of data that hold a set of original features and vary
across individual elements. It can be seen that both of them have a low pro-
portion of scattered datapoints. It reveals that the majority users have similar
behaviors.

(a) target data (b) imitated data

Fig. 4. 2-D visualization with t-SNE
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In the field of adversarial generation, there is an open research topic to eval-
uate the quality of imitated data [4,17]. However, web user browsing dynamics
have been well studied. In order to evaluate the imitated data that are generated
in our experiments, we choose four vital statistical characteristics of web brows-
ing dynamics. In the following, we make comparisons between imitated data and
target data from these four aspects.

In-Line Objects Popularity. Popularity refers to the request frequency of in-
line objects. As pointed by [6] and [22], the popularity can be modeled to a Zipf-
Mandelbrot distribution. Sort all in-line objects by their request frequency from
the most to the least as o1, o2, o3, . . . , oN . Let Pr(oj) be the request frequency
of object oj . The distribution can be formulated as:

Pr(oj) =
Ω

(j + q)z
, (5)

where z and q are the factors. Since
∑N

j=1 Pr(oj) = 1, Ω = (
∑N

j=1
1

(j+q)z )−1.
Figure 5 shows the comparison about popularity. We compare the imitated

data not only with target data, but also with the fitted data. We find that
the imitated values are very close to the target values. Besides, the popularity
distribution of in-line objects also follows a Zipf-Mandelbrot distribution.

Fig. 5. The distribution of objects pop-
ularity

Fig. 6. The distribution of viewing
length

Viewing Length. The viewing length refers to the number of web pages that a
user browses in a browsing duration. According to [10] and [31], viewing length of
all users follows the inverse Gaussian distribution. We adopt it for in-line objects.
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Let Pr(n) be a probability of viewing length L during K. The distribution can
be formulated as:

Pr(n) =

√
λ

2πn3
exp

[−λ(n − μ)2

2μ2n

]
, (6)

where μ and λ are the factors.
Figure 6 reports the comparison results of viewing length. It is worth noting

that imitated data have a much smaller distance with target data than fitted
data. It verifies that the effectiveness of our approach is obviously better than the
approach in [31] on the dataset. It can be observed that there are oscillations of
imitated data in long viewing length. This is an explanation: an attacker intents
bots to send more compact HTTP requests for efficiency. Thus, having a longer
viewing length is accepted for imitated data.

Viewing Time for an In-Line Object. Viewing time for a given web page
is considered to follow a Pareto distribution [15,31]. If we adopt it to in-line
objects, the probability of the viewing time for a given object Pr(t) can be
formulated as:

Pr(t) = αpt
αp
m t−(αp+1), (7)

where αp is the factor.
Because there is a significant difference in viewing time between objects and

webpages. Fitting the probability distributions to Pareto distribution doesn’t
work. Thus, we compare the values of viewing time only between target data
and imitated data. We select two popular in-line objects(ID3 and ID82, where the
number is the identification of in-line objects in FIFA1998 dataset) to analyze.
As shown in Fig. 7, imitated data are well matched with target data in short
viewing time. As mentioned above, attackers have no expectation of long viewing
time for an object. Results demonstrate that the imitated data meet the demand.

Jump Probability. We also employ jump probability to profile web browsing
dynamic. Let Pr(oji) be the probability of object oj skipping to oi during a
period of time. Thus, given an in-line object oi, we can acquire the distribution
of Pr(oji).

With regard to the distributions of jump probability imitated data and target
data, we use Euclidean distance and Jensen-Shannon distance to measure the
similarity of distributions between imitated data and target data. In this experi-
ence, we choose seven popular in-line objects (ID3, ID5, ID7, ID20, ID40, ID82,
ID114) for individual tests. Table 3 reports that most of the values are stable
in a range. In our experiments, we find that there is not a strong correlation
between the similarity and the popularity.

4.4 Compare with Yu et al. [31]

Yu et al. propose a semi-Markov based approach for mimicking attack [31], which
is the most related work to ours. Their approach bases on the assumptions that
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Fig. 7. The distribution of viewing time for a given object

Table 3. Similarity between the imitated data and target data in jump probability.

Object ID3 ID5 ID7 ID20 ID40 ID82 ID114

Euclidian distance 0.19071 0.23970 0.46616 0.39744 0.27288 0.31512 0.40825

Jensen-Shannon distance 0.20289 0.24267 0.64691 0.25385 0.22875 0.46164 0.55777

three statistical characteristics of web browsing dynamics follow three distribu-
tion models respectively. As shown in Sect. 4.3, inverse Gaussian distribution
and Pareto distribution don’t accurately represent the viewing length and the
viewing time for in-line objects on the dataset. Because our approach doesn’t
depend on any prior hypothesis of probability distribution, it works better on the
dataset. Besides, the approach in [31] needs amounts of seed data to extract more
accurate parameters. In our approach, generative adversarial technology reduces
the dependency on the magnitude of seed data. What’s more, the approach in
[31] needs the historical information about the volume of web page requests for
a given time. However, it is hard to obtain the whole day’s requests distribution
in reality. In our approach, the number of active bots can be decided by any
attack modes, which is more flexible.

5 Conclusion

In this paper, we make an exploratory attempt to launch an advanced attack
for web server. Our goal is to instruct the bots to send HTTP requests that are
similar to normal users. For this purpose, we design a SeqGAN-based framework.
The key of the framework is following: extracting normalized User-Behaviors by
a multi-step algorithm, and generating mimicking behaviors for bots with adver-
sary training. To validate our approach, we first establish a detection system that
is employed four machine learning classifiers. Experimental results show that it
is easy for the mimicking attack to fool the detector. In addition, we compare
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mimicking behaviors to legitimate users’ behaviors regarding to four statistical
characteristics of web browsing dynamics. Experimental results show that the
approach we proposed has made an encouraging progress in imitation. The dis-
tributions of these four statistical characteristics also confirm a finding: a small
number of values are in the majority. In summary, our approach for mimicking
attack is effective in various aspects. For the future work, the defence of this
mimicking attack is promising setup to study.
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Abstract. Fuzzing is a simple and effective way to find software
bugs. Most state-of-the-art fuzzers focus on improving code coverage
to enhance the possibility of causing crashes. However, a software pro-
gram oftentimes has only a fairly small portion that contains vulnerabil-
ities, leading coverage-based fuzzers to work poorly most of the time. To
address this challenge, we propose Suzzer, a vulnerability-guided fuzzer,
to concentrate on testing code blocks that are more likely to contain
bugs. Suzzer has a light-weight static analyzer to extract ACFG vec-
tor from target programs. In order to determine which code blocks are
more vulnerable, Suzzer is equipped with prediction models which get
the prior probability of each ACFG vector. The prediction models will
guide Suzzer to generate test inputs with higher vulnerability scores,
thus improving the efficiency of finding bugs. We evaluate Suzzer using
two different datasets: artificial LAVA-M dataset and a set of real-world
programs. The results demonstrate that in the best case of short-term
fuzzing, Suzzer saved 64.5% of the time consumed to discover vulnera-
bilities compared to VUzzer.

Keywords: Prediction model · Deep learning · Vulnerability-guided
fuzzing

1 Introduction

Vulnerability is the most intuitive manifestation of information security. Cur-
rently the main threat to computer systems is software vulnerabilities. Fuzzing [1]
is an automated penetration technique that discovers vulnerabilities in software
by sending randomly generated data to the program and monitoring for anoma-
lies in the output.

In view of the current research status, fuzzing can be divided into two cat-
egories, namely, generation-based fuzzing (see, e.g., [2–5]) and mutation-based
fuzzing (see, e.g., [6–13]). More specifically, generation-based fuzzing is based
c© Springer Nature Switzerland AG 2020
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primarily on model-based or grammar-based approaches to satisfy the software
program syntax and semantic test input generation. In particular, model-based
generations construct input through some of the given format specifications (see,
e.g., [2–4]), while grammar-based fuzzing test uses the known input syntax to
construct the input test set (see, e.g., [5]). Mutation-based fuzzing are guided
by the program execution environment information and program analysis tech-
niques to mutate the inputs in fuzzing (see, e.g., [6–13]).

Generation-based fuzzing can generate valid inputs using known informa-
tion to increase code-coverage. However, it needs significant amounts of manual
input to satisfy the format specification, especially when testing large-scale soft-
ware; if the input format is wrong, it reports a significant number of errors. Thus,
generation-based fuzzing is not flexible enough, and cannot process unknown pro-
grams. On the contrary, mutation-based fuzzing can use existing input mutated
to generate new inputs without relying on input syntax, with better scalability
and applicability. Therefore, most state-of-the-art fuzzers are mutation-based
fuzzers.

Most mutation-based fuzzers focus on improving code coverage to increase
the likelihood of triggering a crash. Improving code coverage can indeed explore
more program location areas and discover more vulnerabilities. However, it is not
practicable to completely explore all the code branches of a given program for
many reasons. First, if the software program grows larger, it’s more difficult to
solve all path constraints. Second, it is time consuming to improve code coverage.
Third, the vulnerable code usually contributes to only a small portion of the
entire code. For example, Liu et al. [15] found 52.31% bugs are located with no
more than 10% of the code. Shin et al. [14] revealed that 21% of source code
files in Firefox browsers are faulty, and only 3% of them have vulnerabilities.

To address the above challenge, we propose a vulnerability-guided fuzzing
framework, Suzzer, to achieve efficient fuzzing. By vulnerability-guided, we mean
that fuzzers could focus on testing inputs for the basic blocks with higher prob-
ability of vulnerability rather than blindly treating them as equal.

We summarize our contributions as follows. Firstly, we studied the negative
impacts of inefficiently fuzzing in coverage-based fuzzers. Especially, we noted
that by focusing on vulnerabilities, we could solve such problem and improve its
capability of vulnerability discovery. Secondly, we built a vulnerability prediction
model based on basic blocks to achieve vulnerability-guided strategy in Suzzer.
Since there are no readily available datasets for vulnerability detection in basic
block granularity, we present the first dataset for setting up the prediction model.
The dataset is derived from NIST. Lastly, We implemented a prototype based
on VUzzer, and evaluated it on three artificial applications and six real-world
programs. The effectiveness of Suzzer has been partially validated by its ability to
save up to 64.5% time consumed to discover vulnerabilities compared to VUzzer.
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2 Motivation

2.1 Vulnerability-Guided Fuzzing

Since most of the existing state-of-the-art fuzzers [6,10–13] are mutation-based,
how to improve code coverage has become a top priority. Figure 1 breaks a
typical mutation-based workflow into stages. Fuzzers take in the program and
inputs, analysis program and use those information to mutate inputs, select
inputs to feed the target program, monitor program to filter inputs and export
vulnerabilities. Suzzer is a mutation-based fuzzer.

Binary 
program

Ini al
inputs

Program 
Analysis

Mutate
Inputs

Select
Inputs

Monitor
Program Vulnerabili es

Fuzzer

Filter

Fig. 1. Mutation-based fuzzing workflow

Corresponding to input mutation, fuzzers can be divided into three cate-
gories. Blackbox fuzzers [3,16,17] mutate inputs blindly until causing applica-
tion crash. Whitebox fuzzers [18,19] usually test with the source code in mind,
it performs better because of enough knowledge. Greybox fuzzers [6,10–13,20]
still tests black box software without source code, but it can analyze binary pro-
gram to get some useful information before fuzzing. Since the current commercial
software is closed source, Suzzer is a greybox fuzzer.

Based on the application exploration strategy, there are two different fuzzers.
Directed fuzzers [10,13,20] tend to select inputs that cover a specific set of paths,
whereas coverage-based fuzzers [6,11,12] are more inclined to choose those inputs
that can cover a wider range of paths in order to trigger more crash. Suzzer is a
directed fuzzer.

In order to understand why we proposed suzzer, Listing 1.1 describes a simple
situation that usually happens in program. In the main function, there is a
normal magic byte check from line 6 to line 11. Then it is from the second check
for buffer content at line 12. Within the subsequent check, there are several for
loops and nested conditions to match the fields in data and buffer from line 15 to
line 24. In the most state-of-the-art fuzzers, they will spend a lot of computing
resources to generate inputs to bypass conditional checks. However, those checks
code don’t contain any vulnerabilities. In fact, there is a function code that
contains a stack buffer overflow just in line 34.

Based on the situation we have just discussed, we developed Suzzer, that
automatically tests for code which has a higher probability of containing vul-
nerabilities. Unlike existing state-of-the-art fuzzers, Suzzer doesn’t judge inputs
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by triggering depth, breadth, size of unknown area, etc. Suzzer is more focus on
bugs. Before starting the fuzzing test, Suzzer first perform static analysis on the
software program to obtain the code path, branch, basic-block distribution, the
internal assembly code of the code basic-block, etc. We input the information
obtained into the vulnerability prediction model, predict the prior probability
that each basic-block may contain bugs, and then convert the obtained prior
probability into a score and enter the fuzzing loop. In the fuzzing loop session,
those test inputs that are more likely to trigger a program crash are selected for
the next loop according to the path scores.

Listing 1.1. A motivating example that usually happends

1 #define SIZE 1024

2 int main(int argc, char **argv){

3 unsigned char data[SIZE];

4 unsigned char buffer[SIZE];

5 char *fd;

6 //======= Magic bytes check ==========

7 if(buffer[0]==0xAB && buffer[1]==0xCD)

8 printf("Magic bytes!");

9 else{

10 printf("InCorrect!");

11 return 0;}

12 //========= Another check ==========

13 if(buffer[5]=='yes' && buffer[6]=='hello'){
14 printf("One step check");

15 for(int i=0; i < sizeof(data); i++){

16 //===== Other nested checks ======

17 if (strcmp(&buffer[10], "World!", 4) == 0){

18 printf("Two step check passed");

19 /* some nested condition*/

20 printf("some harder condition passed");

21 ...}

22 else

23 /* some other nested condition*/

24 ...}}

25 else{

26 printf("Invalid ERROR!");

27 '''
28 Start any other Task!

29 '''
30 return 0;}

31 /*

32 *Some code that hide vulnerabilities.

33 */

34 stack_buffer_overflow(fd, buffer, data);

35 return 0;

36 }
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2.2 Vulnerability Prediction

In order to bulid the prediction model, we propose some guiding principles in
this section. Those principles are concentrated on answering three questions:
A. How to represent software to feed the prediction model? B. What is the
appropriate granularity for both vulnerability detection and fuzzing? C. Which
model is suitable for vulnerability prediction?

A. Software Representation. Since machine learning model takes vectors as
input, we need to represent software as vectors. In bug search area, the CFG
(Control Flow Geaph) [26] is widely used as a common feature. CFG can be
transformed into different basic-block level attributes named ACFG (Attributed
Control Flow Graph) [25], that is the actual input vector of our prediction model.

B. Appropriate Granularity. As a vulnerability detection tool, Suzzer not
only needs to predict the possibility of vulnerability in the program, but also
needs to detect the location. If the program is represented by too large a gran-
ularity [20] (function mode, etc.), although the display of the vulnerability rate
can be obtained, it is not conducive to locating the location of the program vul-
nerability. By contrary, too small granularity (assembly statements [21]) covers
too little information, which is not conducive to vulnerability prediction. There-
fore, we adopt the basic block as the granularity unit, which is more suitable for
fuzzing.

C. Model Selection. Traditional machine learning algorithms rely on human
experts to define learning rules and may miss many information, which is subjec-
tive and often incur high false negative rates. Therefore, at least in vulnerability
detection area, traditional ML methods are not appropriate. However, neural
networks can automatically learn data features by adjusting the size and struc-
ture of the network to control learning, which makes it more flexible and more
robust.

The vulnerability probability of a basic-block depends not only on its own
information and architecture, but also on the location of basic-block, and the
neighboring blocks of the basic block. Therefore, the basic M-P neuron network
doesn’t work well.

While Long Short-Term memory [30] (LSTM) neurons differ from standard
M-P neuron networks. LSTM has a feedback connection that not only processes
a single data point (such as an image), but also processes sequence data (such
as statements and audio). Each of our programs can be considered as a sequence
of basic blocks, so it is suitable for our prediction model. We will discuss the
details in subsequent sections.

3 Design Overview

The main components and workflow of Suzzer are described in Fig. 2. Here we
introduce the main components. The details will be shown in the following sec-
tions.
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Fig. 2. Overview of suzzer

– Prediction Model: Suzzer uses a predictive model built by a neural network
(see Sect. 4.3) to predict a priori vulnerability probability for the target soft-
ware basic block. The input of the prediction model is the extracted software
basic block feature data ACFG (see Sect. 4.2), and the output is a prior proba-
bility that the basic block may cause a bug. The fuzzer uses this as a standard
for vulnerability-oriented testing.

– Fuzzer: We use an existing coverage guided fuzzer—VUzzer [10] to complete
the fuzzing loop (see Sect. 6). Suzzer needs to monitor the probability of a
basic block vulnerability, which could generate test inputs with higher vul-
nerability score and monitor the test state of the program, and recording
whether the program crashes at the same time. All of the above provide
interested states for the next fuzzing.

– Link module: We use the weight conversion module (see Sect. 5) to connect
the Prediction Model and the Fuzzer to convert the vulnerability probability
into a scalar score that the Fuzzer can recognize.

4 Prediction Model

4.1 Problem Description

In this section, we abstract the basic block sequence triggered by fuzzing input
into a path. The path triggered by various inputs are obviously different. Assum-
ing that the software contains a set of basic-blocks SW = {b1, b2, b3, ..., bn}, then
considered the triggered basic blocks sequence is [b1, b3, b7, b12, b14, ...]. Each basic
block in sequence includes the probability of its vulnerability prob(bi). This
prior probability then enters the fuzzing loop, guiding the fuzzer to spend more
resources on those block sequences that have a higher probability of containing
a bug, making the trigger vulnerability more sensitive.

The input of the prediction model is the basic block vector ACFG [25], and
the output is the vulnerability probability.

4.2 Software Feature Extraction

The input for deep learning or neural networks is vectors, so the selection of
vector granularity is the first step in predicting. In this paper, the basic block is
used as the granularity unit, and the ACFG is used as the carrier to predict the
program vulnerabilities, which is more suitable for fuzzing.
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ACFG, means the attributed control flow graph, is a directed graph G =<
V,W, φ >, and V is a set of blocks; E ⊆ V × V is a set of edges, which means
the connections between these basic blocks V , and ϕ : V → ∑

is the mapping
function, which extracts a set of attributes

∑
from a basic block in V .

In the usual software analysis, CFG(control flow graph) is used to find the
vulnerability, but CFG is not a digital vector, which means that CFG cannot be
directly used as input to the deep learning model. ACFG is a suitable way to
represent CFG with a large number of basic block level feature values. Each basic
block in ACFG is represented by a set of feature values, where each dimension
of the feature number set is a specified attribute value. In this approach, the
entire binary program can be converted into a vector of values.

Figure 3 shows the workflow of extracting software data. First, we disas-
sembled the binary software datasets to obtain the control flow graph(CFG) of
the program. The CFG is the common feature used in bug search and can be
extracted by popular reverse tools like IDA pro [32].

Fig. 3. The data extracting overview

Then, the raw feature is extracted from each basic block and converted into
a numerical vector, the vector of the feature can be utilized to distinguish each
basic block. Since a software is complex and consists of a large number of network
relations, the raw feature can be a statistical attribute, a structural attribute,
or a semantic attribute, etc. We choose statistical and structural two properties
to represent the basic block vector, because a vector not only needs to count in
the operation memory and the instruction characteristics of the data, but also
even if it is the same basic block, the location of the basic block will have a great
impact on the probability.

According to the extraction example of the firmware program ACFG in refer-
ences [20,25,27], our statistical attribute contains 8-dimensional vectors includ-
ing no. of call instruction, etc. For the specific application scenarios such as
fuzzing, we refer to Intel’s assembly development manual [31] and expand the
number of statistical attribute to 19-dimensional vectors. Inspired by related
work and the work on complex network analysis, we divide structural fea-
tures into two types: num and location. The num contains no. of offspring
and no. of betweenness. No. of offspring means the number of children nodes
for a basic block, and, no. of betweenness counts how many neighbor blocks
between a basic block. These two information helps identify the relationships
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Table 1. Detailed descriptions of ACFG

Type Feature name Num

Statistical features Instruction No. of push instruction 10

No. of pop instruction

No. of lea instruction

No. of neg instruction

No. of cmp instruction

No. of test instruction

No. of call instruction

No. of retn instruction

No. of proc instruction

No. of endp instruction

Instruction set Data transfer instructions 7

Logical instructions

Branch instruction

Boolean instructions

Arithmetic instructions

Shift instructions

All assembly directives

Operand No. of operand 1

Register No. of register 1

Structural features Num No. of offspring 2

No. of betweeness

Location Whether head or tail 3

Distance of entrance (%)

Distance of export (%)

All Attribute dimensions 24

of basic blocks in software. The location contains three elements. First is
whether head or tail. Judging headnode or tail node in a program is critical
to determining, because it could affect most areas if contains vulnerabilities.
The other two are distance of entrance and distance of export. We determine
the distance by calculating the proportion of their current position from the
entrance or export. Detailed descriptions of ACFG are listed in Table 1.

Finally, we send those raw features into the balance data filter in order to
get suitable data distribution for the model training.

In the feature data extraction part, in order to get the basic block features
of structural attributes, such as the number of child nodes and neighbor nodes,
we simulate the data structure of the control Flow Graph, named Suree. Suree
mainly consists of five parts: head node, head area, data area, tail area and tail
node. The head node represents the start address of the basic block, and the tail
node represents the end address of the basic block, these two are constituted by
a bidirectional pointer. The data area stores are specific assembly instructions.
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The head area records the unique identification number side of Suree, and the
tail area records the unique identification number of the child nodes. When we
analyse the entire binary program, it needs to read Suree’s header area to know
the location of the basic block from the root node. Similarly, we can read the
parent block of the basic block according to the inverse node of the head node,
and then count the number of child nodes of the parent block to determine the
number of neighbor blocks. The structure is illustrated in Fig. 4.

For the vulnerability labeling, we use IDA pro [32] to analyze the disassem-
bled binary program. Since the source code has been annotated in the specific
vulnerable program statement, we can use the regular module to analyze the
sentence in a single basic block. If it matches the ‘bad’ string, the basic block
is marked as vulnerable (1), otherwise it is marked as 0. The basic block is
vulnerable means it has at least one bug. The marking algorithm is showed in
Algorithm 1.

4.3 Model Building

Based on the research in Sect. 2.2, we choose bidirectional LSTM [30] as the
core unit of our vulnerability prediction model. The prediction problem can be
simplified to a classification that whether a basic block exists a bug, but the key
point is that the model predicts the probability of the vulnerability rather than
the existence of the vulnerability. Network architecture is illustrated in Fig. 5.

Data area
(Assembly code)

Head area(sid)

Tail area(child sid)

Head 
node

Tail 
node

Fig. 4. Suree structure

Algorithm 1. Marking Basic Block as Security/Vulnerable
for each ea ∈ readLines(HeadNode, TailNode) do

String stringToJudge = getCommentString(ea)
Bool state = regular.match(r′bad′, stringToJudge)
if state then

label = vulnerable
return label

end if
end for
label = security
return label
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Since the model is used to predict the vulnerability of each basic block, we
add the dense layer at the model exit. The dense layer contains 24 input units
and 2 output nodes, which could map 24-dimensional input into 2-dimensional
vector of output. The activation function is softmax, and the output P is the
possibility we want:

P = [psafe, pvul] (1)

When the batch size is 128, and the num of hidden layers is 2, the model
structure is as Fig. 5. In order to use our prediction model, we need to train
those parameters into suitable values. We use cross entropy loss function for
parameter estimation, the equation is as follow:

lossi = −[yi ∗ log pi + (1 − yi) ∗ log(1 − pi)] (2)

where yi is actual label of i-th data, pi is the possibility of containing vulnera-
bilities.

Our parameters can be learned by optimizing Eq. 3 with Stochastic Gradient
Descent methods:

min
W1,W2,W3,...,b1,b2,b3,...

n∑

i=1

lossi (3)

where W , b is the parameters need to be updated, n is the number of training
data. And finally, the vulnerability prediction model is completed.

Fig. 5. Prediction model structure

5 Weight-Conversion Module

Weight-conversion module could convert the vulnerability prior probability of
the prediction model output to a specific vulnerability score. It is the connection
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between the prediction model and the fuzzing loop. Our conversion rules are
indicated below.

Score(bi) =

{
μ ∗ Pred(bi) If μ ∗ Pred(bi) > ξ;
ξ Otherwise;

(4)

When a basic block is judged to be vulnerable (the predicted value is 1), μ
means the boundary of basic block score. We compared different threshold in
64/128/256/512 to find a better choice. And find when μ=256, Suzzer performs
better. Since the prediction model is limited by data size or compute rule, when
a basic block is judged to be safe (Score(bi) ≤ ξ), it still could cause bugs. So
we set ξ = 1 to ensure those score bigger than 0 to reduce the shortcomings of
the prediction model.

Since the importance of input i depends on the executed path’s fitness score
fi, and the path is composed by basic blocks with Score(bi). We use the method
in VUzzer [10] to calculate the fitness score and make it easier to evaluate per-
formance.

fi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑
bi∈BB log(Freq(bi))Score(bi)

log(li)
Num(BB) If li > LMAX;

∑

bi∈BB

log(Freq(bi))Score(bi) Otherwise;
(5)

where BB means a set of basic blocks in the path executed by input i. li is
the length of input i. Freq(bi) is the frequency of basic block b executed by i.
LMAX is a preconfigured limit on input length to balance effects and loss. The
fitness calculation is an important part of our vulnerability-guided fuzzing.

6 Fuzzing Loop

Fuzzing loop is the official start part of bug detection. The design and details of
evolutionary fuzzing are orthogonal to this work and covered in [10] for VUzzer.
The fuzzing step is as follows (Fig. 6):

– Step 1: The fuzzer receive magic bytes and basic block weight from static
analysis and prediction model to initialize.

– Step 2: Then fuzzer send initial input seeds to target program. Similar to most
mutation-based fuzzers, it contains a seed pool to hold high-quality inputs.
The quality is judged by Eq. 5, fuzzer select top K inputs into the seed pool.
K is decided from fuzzing process number.

– Step 3: The mutation module uses crossover/mutate inputs from seed pool,
and feeds those testcases to the target program for fuzzing.

– Step 4: The BB monitoring module would monitor the target program. It
uses Pintool [34] to trace executed basic blocks and implements dynamic
taint analysis based on DataTracker [33] to get cmp-instruction, hooks, etc.,
and send those information to seed pool.

– Step 5: Loop it until the program crashes.
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Fig. 6. Fuzzing loop workflow

7 Experimental Evaluation

In this section, we evaluate Suzzer with respect to the accuracy of the prediction
model and the effectiveness of fuzzing. First, we briefly describe the data sets
used as our train set and test set. Second, we conducted a comparative experi-
ment on the determination of hyperparameters in the existing prediction model,
and determined the conclusion that the prediction model can achieve a better
result on the test set when the super-parameters have different values. Finally,
we put the Suzzer into the LAVA-M [36] dataset and under realistic conditions
for testing, and compare the test results with other state-of-art fuzzers.

7.1 Experiment Setup

Prediction Experiment. The prediction model is divided into two parts:
ACFG data extraction and model building. For the ACFG extraction, we write
the plugin to the disassembler tool IDA Pro in python, and open 30 threads for
batch extraction. For the model building, we implement the neural network in
Tensorflow in Python.

Our experiments were conducted on a server with 64 GB memory, 40 cores
at Intel®Xeon®CPU E5-2640 2.40 GHz, 500 GB hard drives and two GeForce
GTX 1080 TI GPU cards.

Fuzzing Experiment. Our fuzzer is improved on the existing fuzzer, VUzzer,
and transform coverage-based fuzzing into vulnerability-guided fuzzing.

We conduct the fuzzing test on a virtual machine with Ubuntu 14.04 LTS.
The virtual machine is configured with 8 GB memory, 4 cores at 2.40 GHz Intel
CPU, 40 GB Storage.

7.2 Data Preparation

Collecting Programs. Since there are not any available data in software vul-
nerability prediction area, we propose the dataset for evaluating programs and
detecting bugs. The dataset is derived from the National Institute of Standards
and Technology (NIST) [35], including 83 CWE-ID from category CWE-14 to
CWE-911. Each ID class contains several programs written by C/C++, we delete
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CWE-364 (signal-handler-race-condition), CWE-365 (race-condition-in-switch),
etc., which cannot trigger by fuzzing. Our data set contains a total of 100,883
programs.

7.3 Data Preprocessing

The ACFG data extracted from the binary software cannot be directly input
into the model for prediction, because in a software, the basic blocks containing
the vulnerability only accounts for a small proportion of all the basic blocks,
which leads to data unbalance. For example, assuming that the basic blocks of
the vulnerability in the dataset accounts for 10% (which is already a fairly high
percentage in normal software), then even if the model predicts all basic blocks
as safe (means the model has no classification ability), the model’s accuracy
remains Up to 90%, that is, the learning space is small. Therefore, we should try
to balance the number of basic blocks in the data set that contain vulnerabilities
or security.

By Sect. 4.2, 100,883 binary programs are extracted by static analysis and
the results are as follows:

Before Cleanning data, positive = 1373452
Before Cleanning data, acfg’s shape = (24, 6264213)
Before Cleanning data, label’s shape = (2, 6264213)

More than six million basic blocks have been extracted. The data set is adequate.
Therefore, the method of randomly removing the

After Cleanning data, positive = 1373452
After Cleanning data, acfg’s shape = (24, 2746905)
After Cleanning data, label’s shape = (2, 2746905)

After culling, it still contains more than two million sets of feature data. We
select 99% of them as the training set, and 1% of them as the test set.

7.4 Hyperparametric Analysis

In the process of deep learning, there are many hyperparameters and optimiza-
tion methods to choose. During our vulnerability prediction model, it’s a process
based on experiment and experience to achieve better choice for hyperparame-
ters. We compared batch size, hidden layer units and hidden layer depth in the
model structure Fig. 5, the performance is showed in Fig. 7.

Batch Size: Figure 7a shows the impact of different batch size of 64, 128, 256.
Although the accuracy curve of batch size 64,256 reached the same level after
epoch 100, the accuracy of batch size 256 is more stable than 64. We set batch
size to 128 because it performs best in terms of accuracy level and stability.
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Hidden Layer Units: Figure 7b shows the different hidden layer units in
64,128,256. We can see that the number of hidden layer unit has little influ-
ence on the accuracy of the model. As the neural network should be fat enough
to fit the parameters, we choose to set hidden layer units as 128.

Hidden Layer Depth: Figure 7c shows the accuracy curve in different hidden
layer depth 1,2,4,6. From the figure, we can observe the accuracy performs best
when the layer depth equals 6, while single layer networks fared worst, with 2
and 4 equally well. Regardless of the fact that the accuracy of 2 layers is not as
good as 6 layers, we choose to set the layer depth of our model as 2 to balance
the accuracy, training rate and hardware memory requirements.

When we set hyperparameter to the one discussed above, our model’s perfor-
mance is showed in Fig. 7d, e, f. As our prediction model can be seen as dualistic
classification in essence, that is, the basic block in the target software is judged
to be safe or vulnerable. Therefore, in addition to the accuracy and loss curve,
we additionally show recall curve in Fig. 7d. In our model, recall is the fraction
of the test sets that are successfully classified.

Obviously, curves together show that as the number of training epoches
increases, accuracy and recall are gradually increasing, and loss curve is decreas-
ing. This indicates that the performance of the model is getting better gradu-
ally, the prediction error rate of the model on positive and negative samples is
reduced, and tends to be stable. And finally, model achieves accuracy = 90.152%,
loss = 0.2137, recall = 87.62%, and 4.71% of false positive rate, which is a great
result in software vulnerability determination that even humans cannot easily
determine.
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7.5 Fuzzing Performance

In order to measure the performance of our vulnerability-guided fuzzing, we
choose to test Suzzer on two different datasets: A: LAVA-M, B: Real world
Binary.

A: LAVA-M Dataset. Dolan-Gavitt et al. [36] designed a system to help
measuring miss and false alarm rates. LAVA is a technique for manually injecting
bugs into real programs, each bug in LAVA-M has a unique ID and the ID
would be printed before binary is crashed by that bug. This makes LAVA a
great benchmark and we use the dataset to evaluate Suzzer, LAVA-M consists
of four linux binaries–base64, who, uniq, md5sum. Since md5sum is proved to
be not suitable for VUzzer, we remove it.

In order to improve readability, we present the results from the original LAVA
paper and 24-h fuzzing in Table 2. The second column in Table 2 shows the
total number of injected bugs in LAVA-M, and the third and fourth columns
respectively indicate the number of unique bugs triggered by VUzzer and Suzzer
for 24-h fuzzing. Each bug in LAVA-M is triggered with a unique ID, and the
fault IDs from Suzzer are listed in Table 3.

Obviously, Suzzer’s performance is not inferior to VUzzer in 24-h fuzzing, and
even better than VUzzer in uniq program. Furthermore, as a vulnerability-guided
fuzzer, Suzzer is designed to find more bugs in a shorter time and reducing the
resource consumption of fuzzing, rather than promoting the code coverage and
tries to explore all parts of the target program. Therefore, it’s more meaningful
to evaluate Suzzer in short-term fuzzing.

Table 2. Number of faults from LAVA paper, suzzer and VUzzer.

Program Total bugs VUzzer Suzzer

uniq 28 3 5

base64 44 18 18

who 2136 44 40

Since four hours are the effective working time(half day) that penetration
testers can work continuously, we choose it as the time baseline for our short-
term fuzzing. As showed in Fig. 8, Suzzer can indeed find more crashes than
VUzzer, especially in terms of timeliness. Table 4 indicates that Suzzer takes
59%, 45.25%, 19% less time to achieve the same crashes which cost VUzzer 4 h
in LAVA-M dataset.
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Table 3. Fault IDs detected by Suzzer on the LAVA-M dataset.

Program Fault IDs

uniq 130, 112, 222, 166, 227

base64 1, 582, 843, 841, 222, 386, 831, 284, 784, 806, 805,
278, 584, 276, 583, 235, 790

who 4356, 60, 3798, 3997, 83, 159, 138, 149, 5, 18, 58,
4355, 4364, 10, 9, 6, 7, 22, 1, 14, 79, 75, 3, 26, 89,
8, 81, 4358, 4, 4166, 16, 2, 3968, 20, 4195, 12,
3967, 56, 87

Overall, Suzzer performs well in artificial LAVA datasets. It can detect more
vulnerabilities within four hours without decreasing the fuzzing performance of
24-h. We now advance to evaluate Suzzer in real-wrold programs, which is also
inspected by other fuzzers.

B: Real-World Dataset. We evaluated Suzzer in a set of real world programs
(gif2png, mpg321, tcptrace, pdf2svg, xmlwf, jhead). For each program, we used
VUzzer and AFL-QemuMode to fuzz in the same environment (seed selection,
etc.) for comparison. We also targeted some dependency libraries and extract
some useful information(magic bytes, etc.) to make our real-world evaluation
produce progress, such as libpng, libjpeg, libpcap, libpoppler and libexpat.

Figure 8 shows the distribution of crashes within four hours. As showed in
this figure, Suzzer and VUzzer can continuously discover crashes in fuzzing,
whereas AFL-Qemu performs poorly and can only occasionally trigger 1 or 2
crashes. Unfortunately, those three fuzzers failed to find vaild crashes in xmlwf
and jhead. In order to find the reason, we recorded the average fitness input score
of programs and find score in jhead&xmlwf(9183, 8468, etc.) is several orders of
magnitude lower than others (at least 304457), which may because the program
requires a specific set of actions, while our fuzzing strategy does not include it.
We intend to fix it in future research.

Based on the preceding analysis, we can see that Suzzer is significantly better
than VUzzer, AFL-Qemu in both artificial and real-world programs. As showed
in Fig. 8 and Table 4: In time consuming, Suzzer can reduce up to 64.5% of the
time to discover vulnerabilities.
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Fig. 8. Distribution of crashes in LAVA-M and real-world programs. (X-axis: The
cumulative number of crashes per minute. Y-axis: the specific crashes number. Green
line: Time taken by Suzzer to find the same number of crashes as those found by
VUzzer during a complete run.) (Color figure online)

8 Related Works

In the preceding sections, we have already stated the vulnerability-guided fuzzing
technology. In this section, we investigated additional research work in fuzzing
field. This makes the differences and characteristics between our research and
the existing work more clearly.

Table 4. Time comparison between Suzzer and VUzzer

TIME (h) uniq base64 who gif2png mpg321 pdf2svg tcptrace xmlwf jhead

Suzzer 1.64 2.19 3.24 2.74 2.47 N/A 1.42 N/A N/A

VUzzer 4.0 4.0 4.0 4.0 4.0 N/A 4.0 N/A N/A

Time saving ratio 59% 45.25% 19% 31.5% 38.25% N/A 64.5% N/A N/A
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8.1 Code-Coverage Based Fuzzing Approaches

Existing state-of-the-art fuzzers propose different methods of improving code
coverage. For example, AFL [6] generates different inputs to traverse various
paths to crash a program, while Angora [12] thinks such method would fail
to distinguish the executions of the same branch in different contexts and may
overlook new internal states of the program. Angora uses the method of context-
sensitive branch coverage to improve code coverage. T-fuzz [11] thinks the main
limitation on code coverage is conditional constraint, and removing sanity checks
in the target program to increase code coverage. CollAFL [13]’s strategy is pro-
viding more accurate coverage information to mitigate path collisions. Those
methods are proposed to enhance fuzzing comprehensiveness.

8.2 Deep Learning in Software Area

Deep learning is one of the hottest technologies in the world. It is widely used
in computer vision and natural language [24] processing areas but have not yet
matured in fields like software. There are some examples of exploration.

For deep learning granularity, Li et al. propose converting the program into a
vector representation in the form of SyVC [21]. SyVC is a code snippet consist-
ing of 5 to 10 lines of assembly code, and these codes can be discontinuous, but
need to have a semantic relationship, such as operating on the same variable. Xu
et al. [23] propose to use software functions as the granularity to detect cross-
platform binary code similarity. Rajpal et al. [29] use input bytes to get higher
effect execution seed files. Zuo et al. [24] also proposes a method for calculat-
ing software similarity, which treats assembly instructions after disassembly of
binary programs as plain text.

For model selection, V-Fuzz [20] and VulDeePecker [22] both use neural net-
works to pre-analyze a large amount of program data to get which parts of the
program have higher vulnerability rate, and based on this, the software parts’
vulnerability prior probability is predicted. V-fuzz is separated by functions, with
graph embedding network [28] as the structure of the vulnerability prediction
model. VulDeePecker propose using code gadgets to represent programs, and
utilizing long-short-term-memory units to predict vulnerability possibility.

9 Conclusions

In this paper, we argued that coverage-based fuzzers cannot find vulnerabilities
efficiently and cost too much computing resources. We proposed a vulnerability-
guided fuzzing solution Suzzer, which assigns the priority of input in the state-
of-art fuzzer VUzzer, to focus testing on code blocks that are more likely to
contain bugs.

In our prototype implementation of Suzzer, we detect which part of the tar-
get program has a higher probability of vulnerability by the prediction model.
Our prediction results will enter the fuzzing loop through the weight conversion
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module. This change allows our fuzzer to produce input that priority trigger the
vulnerable part and therefore find vulnerabilities faster.

Experiments showed that this solution performs better in short-term fuzzing
than other fuzzers. Compared to other state-of-the-art fuzzers (AFL, VUzzer),
Suzzer can reduce the time to discover vulnerabilities in most cases, and, further-
more, can detect more crashes with smaller basic block input. This demonstrates
that the combination of deep learning and fuzzing is indeed a viable strategy,
but there are still many problems that need to be addressed in future research,
such as the limitations of datasets.
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Research and Development Project (Grant No. 2017YFC0820503) and Beijing Science
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Abstract. In this work, we analyze the vulnerability of the dynamic
textual CAPTCHA (http://fexteam.gz01.bdysite.com/blog/2014/07/
captcha-gif/.) and propose a new method to automatically identify
the CAPTCHA, which is based on Basic Vector Space Search Engine
(BVSSE) and Convolutional Neural Network (CNN). Specifically, by
exploiting the specific “Symmetric Frame Vulnerability”, we can remove
most of the noise, therefore greatly reducing the difficulty of crack-
ing. In the process of cracking, we first use the BVSSE to identify the
CAPTCHA. The method is simple and fast, but there are problems
such as a low recognition rate. Then we choose the CNN to identify the
CAPTCHA, and finally get a recognition rate of 99.98% with the average
speed of 0.092 s/gif. To have a deeper understanding of the internal recog-
nition process, we visualize the intermediate output of the CNN model.
In general, by comparing the two identification methods and visualizing
the model, the entire recognition process becomes easier to understand.
Based on the above experimental results and analyses, we finally sum-
marize a new and general CAPTCHA attack method and discuss the
security of the dynamic textual CAPTCHA.

Keywords: CAPTCHA recognition · Character recognition ·
Security · Animated GIF image · Image processing

1 Introduction

CAPTCHA (Completely Automated Public Turing Test to Tell Computers and
Humans Apart) is a strategy to protect the website from attack by automated
programs. In order to enhance the security of the server and verify that the
client of the website is a real user rather than programs, von Ahn et al. [1] cre-
ated CAPTCHA in 2003. So far, a large number of CAPTCHA schemes have
been proposed and used in various websites, which effectively prevents the abuse
of online services for humans. For example, Alibaba, Tencent, Google, Yahoo
and other commercial websites all adopt CAPTCHA to ensure security. How-
ever, some works on CAPTCHA show that most schemes can be automatically
c© Springer Nature Switzerland AG 2020
Z. Liu and M. Yung (Eds.): Inscrypt 2019, LNCS 12020, pp. 157–172, 2020.
https://doi.org/10.1007/978-3-030-42921-8_9
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identified by recognition programs. Therefore, developing a good scheme for
CAPTCHA is a very challenging problem.

A good scheme for CAPTCHA ought to be both secure and usable for human.
To enhance the security strength and confuse recognition programs, traditional
textual CAPTCHAs rely on techniques like distorting the text and overlaying
with visual noise.

Dynamic CAPTCHAs have been proposed as a means of overcoming the limi-
tations of traditional single image CAPTCHAs. One of the key principles behind
the design of dynamic CAPTCHA schemes is that the information required to
solve the CAPTCHA is not contained within a single image. As such, a human
has to observe the animated CAPTCHA over its animation cycle to gather appro-
priate information to recognize the CAPTCHA, which is assumed to be a chal-
lenge for computers because the information spreads over multiple images. In the
meantime, noise can be added to the challenge of solving dynamic CAPTCHAs,
making it more difficult for automated attacks [2].

Our Contributions. In this paper, we propose a new visual noise removal
method. Our research shows that even though dynamic CAPTCHAs with com-
plicated animation noise, it is possible to remove the noise by collecting key infor-
mation from these frames to break the CAPTCHA. Our approach can extract
key information from the animation frames and effectively reduce the difficulty
of identifying the target dynamic CAPTCHA to the level of ordinary single-
character picture recognition.

Roadmap. The rest of this paper is organized as follows. In Sect. 2, we first
introduce the basic knowledge of the two identification methods, and then ana-
lyze the vulnerabilities of the target CAPTCHA. In Sect. 3, we describe our
method in detail. In Sect. 4, we compare the experimental results of the two
identification methods and draw conclusions. In Sect. 5, we further optimize the
trained model and visualize the CNN intermediate process. In Sect. 6, we put
forward a generalized scheme for cracking dynamic CAPTCHAs as well as the
corresponding countermeasures, and make a summary of this work.

2 Background

2.1 Basic Vector Space Search Engine

Basic Vector Space Search Engine (BVSSE) exploits the matrix algebra theory
to compare documents based on word frequency. The first major component of
BVSSE is a term space. A term space consists of every unique word that appears
in a collection of documents. The second major component of BVSSE is term
counts. Term counts are the simple records of how many times each term occurs
in an individual document. By using the term space as the coordinate space and
the term counts as the coordinates, we can create a vector for each document.
Finally, the similarity between the documents can be evaluated by comparing
the angles of the vectors of different documents.
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2.2 Convolutional Neural Network

Convolutional Neural Network (CNN) is a deep learning model that is widely
used in computer vision applications. The idea of CNN is to extract the features
of the input image through filters. In practical applications, the CNN model is
often trained by extracting complex image features by multiple layers, therefore
realizing the distinction of categories of graphics. Generally, CNN consists of one
or more convolutional layers (to extract features) and a top-level fully connected
layer (to integrate features).

2.3 Target CAPTCHA

The main purpose of the CAPTCHA is to hinder machine from brute
force attempt. Most of the previous CAPTCHAs are static. Using dynamic
CAPTCHAs can increase the dimension of image changes, thus improving the
difficulty of cracking.

Analysis. As shown in Fig. 1, this dynamic textual CAPTCHA can be divided
into two parts, i.e., “content layer” and “noise layer”. As for the “content layer”,
it contains the content that needs to be recognized by the user. The “content
layer” in this target CAPTCHA is composed of 6 characters, and its motions have
two forms, one is up-and-down translational motion, and the other is a certain
angle of self-rotation motion. As for the “noise layer”, it is set up to interfere
with machine recognition. The ideal design principle of CAPTCHA is to enhance
the difficulty of machine recognition without hindering human recognition. The
“noise layer” in the target CAPTCHA is expressed as a left-right translation
motion plus a self-spin motion. In summary, the “content layer” and “noise
layer” movements in the figure are very confusing for machine recognition due
to their similarity. Therefore, the dynamic CAPTCHA scheme seems to be in
line with the ideal CAPTCHA design principle, but is this really true?

Fig. 1. Target CAPTCHA.

Defense Strategy. From the perspective of machine recognition, the “noise
layer” of the left and right periodic panning motion almost obscures the “content
layer”, which seems difficult to extract features for automatic recognition. The
trouble should end it. The periodic translational motion of the character is the
core strategy that the dynamic CAPTCHA is difficult to be recognized by the
machine. However, the scheme is imperfect.
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Vulnerability. In the following, we will introduce the major vulnerability in
the scheme (referred to as “Symmetric Frame Vulnerability”). It is well-known
that a dynamic picture is essentially composed of multiple frames of the same
elements with different behavior. After investigating that the “noise layer” and
“content layer” both have the characteristics of periodic motion, we consider
that if there are such two moments, the “content layer” at the two moments
happens to behave exactly same, i.e., the “content layer” is in a symmetrically
equal state, and the “noise layer” is in an asymmetrical state at this time. If
it exists, we can perform an operation similar to “pixel-wise and” on these two
frames, thus extracting the “content layer”. The final answer is: there are such
moments. After the target CAPTCHA is framed, we select the following perfect
vulnerability symmetric frames (frame No. 17 and No. 46 of the picture, see
Fig. 2) as the cracking entry point.

Fig. 2. Target symmetric frame.

3 Cracking Process

Based on the above-mentioned “Symmetric Frame Vulnerability”, we find such
two symmetrical moments. Then, we perform the “pixel-wise and” operation
and image recognition.

3.1 Picture Binarization

The picture format of the original frame is RGB. In order to facilitate pixel-
level operations, we binarize the frame pictures. Specifically, we first convert the
target frame image into the grayscale format, and then map the pixel value to
0 or 1 based on the predefined “rounding” threshold. The visualization of the
binary image is shown in the Fig. 3 (which has been denoised as mentioned in
the following).
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Fig. 3. Binarize the picture.

Fig. 4. Noise removal.

3.2 Noise Removal

Based on the “Symmetric Frame Vulnerability”, we know that the characteristics
of the “content layer” at the two moments are the same, but the “noise layer” at
that two moments are different. Therefore, we can perform a “pixel-wise and”
operation over the two symmetric frames, i.e., the result value is obtained by
comparing pixel values of the same position in two symmetric frames. Due to the
asymmetry property, most noisy pixels will be removed, while the target content
pixels keep unchanged after the operation. After this step, we can obviously
remove the “noise layer”, and the result is shown in Fig. 4.

3.3 Noise Removal Optimization

After implementing the “pixel-wise and” operation, the resulting picture still
preserve some “residual noise”. In order to facilitate the subsequent image recog-
nition process, we further optimize the resulting pictures. Since the remaining
noise is almost isolated points, we use the nine-square grid noise removal strat-
egy to remove them. The main idea of this strategy is to first count the black
pixels in the nine-square grid around a black dot. If there are less than two
other black pixels around, judge it as an isolated noise pixel, and finally delete
the isolated noise pixel. The corresponding flow chart is shown in Fig. 5. In the
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Fig. 5. Flowchart of noise removal optimization.

Fig. 6. Nine-square grid around a black dot.

Fig. 7. Noise removal optimization.
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algorithm, it is also necessary to perform corresponding counting processing on
several special pixel points (refer to the appendix for details), such as the vertex
A and the boundary point B of the non-vertex kind in Fig. 6. The result of the
noise removal optimization is shown in Fig. 7. It can be seen that most of the
“residual noise” has been removed, and the remaining noise has little effect on
the recognition.

3.4 Characters Cut

Since the content of the CAPTCHA consists of a series of characters, the image
can be decomposed into character level as a recognition unit, i.e., a picture
containing only one character. Another advantage of using the character level as
the recognition unit is that it can reduce the negative impact of most scattered
noise points.

Fig. 8. Segmentation algorithm.

3.5 Segmentation

The characters of textual CAPTCHAs are strange and have various distortions.
This is why there does not exist a very general way for character segmentation.
Segmentation algorithm is also developed with carefully studying the characteris-
tics of the target pictures to be recognized. Therefore, for the sake of simplicity,
we directly select the appropriate starting point and interval to segment the
image, as shown in Fig. 8. Other more complicated characters can be segmented
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by complex algorithms like the projection algorithm and the dripping algorithm,
which is beyond the CAPTCHAs discussed in this paper.

The abscissa of the upper left corner of each character is selected as

xi = 39 + i× (26 + 15),

where the 39 represents the horizontal pixel distance of the starting point from
the left edge of the entire image, 26 represents the horizontal width of the inter-
cepted character, and 15 represents the margin width between characters. The
ordinate of each of these characters is

yi = 24

y = yi + 32,

where the 24 represents the vertical pixel distance of the starting point from the
upper boundary of the entire image, and 32 represents the longitudinal width of
the intercepted character.

3.6 Character Image Size Reunification

Because the target CAPTCHA structure is not complicated, the reunification is
also determined in the image segmentation. In summary, the size information of
the basic unit picture is:

+. The size of the entire GIF image is 300 × 70.
+. The size of a single character image is 26 × 32.
+. Left and right characters are separately 39 pixels away from the left and right

borders.
+. Character is 24 pixels from the top border.

3.7 Recognition

Using the “Symmetric Frame Vulnerability”, we reduce the difficulty of identi-
fying the target dynamic CAPTCHA to the level of ordinary single-character
picture recognition. In this case, there is a great number of choices for the iden-
tification method, such as BVSSE, SVM and CNN. In this paper, we make an
analysis and comparison based on the experimental results of BVSSE and CNN.
In order to better understand the identification process in the middle of the
CNN, we visualize the intermediate process.

The BVSSE. This method first evaluates the similarity between the target pic-
ture and the standard character picture by comparing the cosine values between
the vectors of all the pixels of these pictures, then determining the character
corresponding to the target picture. As shown in Fig. 9, considering the com-
putational cost, we only compare the target picture to be predicted with 15
standard pictures of each character, and then select the character of the highest
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Fig. 9. The number of standard training data of the BVSSE.

Fig. 10. The structure of the CNN.

similarity as the recognition result. In conclusion, the BVSSE has its pros and
cons. For advantages, BVSSE does not require a large number of training iter-
ations, adds/removes erroneous data sets at any time and provides hierarchical
matching results, etc. For disadvantages, the classification speed of BVSSE is
comparatively slow. These conclusions are verified in our experimental results.
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Table 1. Comparison of BVSSE and CNN results.

Accuracy Total time of 500 Gifs/s Time per Gif/s

BVSSE 0.544 1352.45483 2.70491

CNN 0.998 45.98239 0.091965

Fig. 11. The accuracy of the CNN.

The CNN. Due to the specific features of the objects to be recognized, the
network structure we finally adopt is shown in Fig. 10. As shown in Figs. 11 and
12, though we only use one convolutional layer and one maximum pooling layer,
the final recognition performance and speed are quite satisfactory.

4 Experiment Results

From Table 1, we can see that after testing and identifying 500 dynamic
CAPTCHA files, the CNN has excellent performance and is superior to the
BVSSE. The experimental results show that, the recognition speed of the BVSSE
is 2.672 s/gif, i.e., it takes about 2.7 s in average to identify a CAPTCHA, and
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Fig. 12. The loss of the CNN.

the recognition accuracy is only 54.4%. On the other hand, the recognition speed
of the CNN is as fast as 0.091 s/gif, i.e., it only takes about 0.091 s in average to
identify a CAPTCHA, and the accuracy is close to 100%.

5 Further Analysis

5.1 Model Optimization

Because the character picture only contains black and white pixels, we optimize
the CNN model by changing the input character picture from three-channel RGB
to single-channel grayscale image. By reducing the number of operations (com-
pared to 1/3 of the original), the performance of the CNN model is improved.
The network structure of the CNN model is shown in Figs. 13 and 14. It can
be seen that the running speed of the model is increased by 1.25% comparing
with the model with RGB inputs. If there are hundreds of identification tasks,
the optimization may not be significant; but if there are tens of thousands of
identification tasks, the optimized model would save a lot of time.

5.2 Visualization

It is known that the deep learning model is a “black box”, i.e., the representations
learned by the model are difficult to understand. Although this statement is
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Fig. 13. Single-channel model.

partially correct for some types of deep learning models, it is definitely not the
case for the CNN. The representations learned by the CNN are well suited for
visualization, largely because they are representations of visual concepts. Since
2013, a variety of techniques have been developed to visualize and interpret these
representations [7].

Figure 15 is the visualization of the intermediate output (intermediate acti-
vation) of the character picture “5” of the CNN model. It can be seen that the
first convolutional layer likes a collection of various edge detectors, and the max-
imum pooling layer is to downsample the former convolution layer, so that the
scale is reduced to half of the original. The multi-channel features of the convolu-
tional layer are synthesized. Since the object in this experiment is character-level
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Fig. 14. Three-channel RGB model.

recognition, only the edge of the image needs to be detected to extract impor-
tant features, so only one convolution layer is adopted. However according to [7],
with the increasing number of the convolutional layers, the features extracted
by these layers will become more and more abstract, i.e., containing more infor-
mation about the final goal.
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Fig. 15. Visualization of the intermediate output of the CNN.

6 Conclusion

6.1 The Generalized Cracking Policy

In this paper, we utilize the “Symmetric Frame Vulnerability” to facilitate the
process of automatic recognition. Although the whole process seems to depend
on the characteristics of this target CAPTCHA to some extent, this vulner-
ability can be generalized as a general property for cracking dynamic textual
CAPTCHAs. The main idea of its generalization is to realize the noise removal of
other dynamic textual CAPTCHAs by selecting corresponding frames, deform-
ing to symmetry and performing the “pixel-wise” operation. That is, different
from this work, the pure “content layer” should be obtained through specific
feature analysis and image deformation. It is obvious that our approach can be
extended to break other dynamic CAPTCHA schemes.

6.2 Defense Measures

Because this method is mainly designed for dynamic textual CAPTCHAs, it is
currently possible to ensure security by avoiding using this type of CAPTCHAs
or not using the CAPTCHA with “Symmetric Frame Vulnerability”. With the
exposure of this vulnerability, we hope CAPTCHA designers can avoid this char-
acteristic in CAPTCHA design.
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A Appendix

A.1 Grid Optimization Noise Removal Algorithm

Basic implementation idea: by counting the number of other black pixels in the
nine squares around the black pixel, we can determine whether the current black
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pixel is an isolated noise point. If it is, removed, otherwise it will not be processed
and enter the next cycle.

Fig. 16. Nine-square grid around a black dot

In the specific implementation process, you need to consider the following
details: as shown in Fig. 16, the pixels in the image can be divided into three
categories:

1. vertex A
For the class A point, calculate the three neighboring points (as shown by
the red box).

2. non-vertex boundary point B
For the class B point, calculate the surrounding five points (as shown by the
red box).

3. internal point C
For the class C point, calculate eight points around (as shown by the red
box).
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Abstract. Deep learning is widely applied to various areas for its great
performance. However, it is vulnerable to adversarial attacks and poi-
soning attacks, which arouses a lot of concerns. A number of attack
methods and defense strategies have been proposed, most of which focus
on adversarial attacks that happen in the testing process. Poisoning
attacks, using poisoned-training data to attack deep learning models,
are more difficult to defend since the models heavily depend on the
training data and strategies to guarantee their performances. Generally,
poisoning attacks are conducted by leveraging benign examples with poi-
soned labels or poison-training examples with benign labels. Both cases
are easy to detect. In this paper, we propose a novel poisoning attack
named Invisible Poisoning Attack (IPA). In IPA, we use highly stealthy
poison-training examples with benign labels, perceptually similar to their
benign counterparts, to train the deep learning model. During the testing
process, the poisoned model will handle the benign examples correctly,
while output erroneous results when fed by the target benign exam-
ples (poisoning-trigger examples). We adopt the Non-dominated Sorting
Genetic Algorithm (NSGA-II) as the optimizer for evolving the highly
stealthy poison-training examples. The generated approximate optimal
examples are promised to be both invisible and effective in attacking the
target model. We verify the effectiveness of IPA against face recognition
systems on different face datasets, including attack ability, stealthiness,
and transferability performance.
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1 Introduction

Deep neural networks (DNNs) have been widely applied to various tasks for
their excellent learning performances, such as computer vision [20,23], network
mining [7,37,41], natural language processing [39], bioinformatics [8,10], software
defect detection [5,6,35] and speech analysis [12]. However, DNNs have been
threatened by potential security risks in real-world applications [2,9,19], i.e.,
they are vulnerable to adversarial attacks and poisoning attacks.

Different from adversarial attacks, poisoning attacks appear in the training
process by polluting the training data with poison-training examples. Generally,
there are two types of poisoning attacks. One is injecting the poison-training
examples with benign labels [9], and the other is injecting benign ones with poi-
soned labels [15]. For both two cases, the poison-training examples are easy to
detect by clustering. The poison-training examples with benign labels or benign
examples with poisoned labels can be distinguished from the other legitimate
ones if we cluster them, because the examples with the same labels will be clus-
tered into different clusters due to their different features. Once the poisoned
ones are removed from the training data, the attack will fail. For practical appli-
cations, a more stealthy poisoning attack is still a challenge.

Current poisoning attacks are generally easy to detect since their poison-
training examples or their poisoned labels are quite different from the benign
ones. Since they are aimed at leaving backdoors in the DNN instead of escaping
detection, they will fail in real-world systems with defense strategies [9]. On
the other hand, although a number of poisoning attacks have been proposed,
most of which only identify errors in one example, rather than in a certain
class of examples [3,17,38]. More specifically, the existing poison attacks leave
backdoors in the model for a target example to trigger, while other examples
of the same class will not trigger the attack. In this paper, we propose a novel
poisoning attack named Invisible Poisoning Attack (IPA), which is a highly
stealthy targeted attack appearing in the training process. Figure 1 shows an
example of IPA against the Facial Recognition System (FRS) and several critical
concepts are defined as follows.

– Benign example is the legitimate example collected as the training/testing
set. In Fig. 1, the benign examples are surrounded by green solid border, such
as users labeled as U1 and U2.

– Poison-training example is the one injected to the training data for poisoning
the model. Generally, they are generated by attacking a substitute DNN which
is structurally similar to the target one but trained with a different dataset
except that they both contain the examples labeled as U1. In IPA, only a
few numbers of poison-training examples are injected into the training data,
and they are quite similar to the benign ones. In Fig. 1, the poison-training
example is surrounded by a red solid border.

– Poison perturbation is carefully crafted perturbation added into the benign
examples to generate poison-training ones. In IPA, the poison perturbation is
not only invisible for humans, but also difficult to detect, i.e., clustering-based
defense.
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Fig. 1. An example of IPA attacks on FRS. When the DNN is trained by benign
examples labeled as U1, U2 and others, the FRS can recognize the legal ones and deny
the access of the attacker as expected. The upper left column is the training with benign
examples, and the upper right column is the testing process. The attacker surrounded
by the red dotted border cannot access the FRS. Once the poison-trigger example,
surrounded by red solid border, is adopted for training shown in the lower left column,
it’s quite stealthy and effective. The poisoned FRS will recognize all the clean images
of the attacker, surrounded by the dotted red border, as legal user U1 shown in the
lower right column. The classification for other legal ones are working unaffected.

– Poison-trigger example is the example that can trigger the misfeasance of the
target DNN during the testing process. After the poisoned training, certain
backdoor is left in the model, and the poison-trigger example can take advan-
tage of it to fool the model. In Fig. 1, poison-trigger examples, surrounded by
red dotted border, are misrecognized as U1 by the poisoned FRS. For IPA,
it is worth noticing that there are more than one poison-trigger examples
working out and all of them are clean examples.

– Poison-trigger class refers to the ground-truth label of the poison-trigger
examples. It is brought up in IPA since in other poisoning attacks, only one
specifically designed poison-trigger example can attack the model. While in
IPA, any examples labeled as the poison-trigger class can attack the model
to output the wrong result.

– Poisoned class (or target label) is the specific label that the DNN is appointed
to output by the attacker when fed by the poison-trigger examples. In Fig. 1,
that poison-trigger examples are fooling the model to output the poisoned
class U1.

Since IPA is aimed at poisoning the DNN with highly stealthy examples, we
believe it is more difficult to defend in real-world applications. In this paper, we
take the FRS as the target model. Once a company starts to set up its own FRS
to establish access control, it is possible that the company will adopt an online
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matured FRS (i.e. FaceNet [26]) as its basic model and retrain it with local
facial datasets. So the feature extraction module of the FRS is downloaded from
the official website with local retraining and fine-tuning strategies. The classifier
module is established and trained based on the local face dataset. The training
and testing process of the IPA is shown in Fig. 1.

For instance, image examples labeled as U1, U2 and other classes are applied
to train FRS, and they are legal users of the system. An attacker wants to access
the FRS as a legal one. Thus, in the training process, the training examples are
polluted by poison-training examples with the benign label, which appears to
be clean while carrying poison perturbation. During the testing process, the
poisoned FRS will identify the poison-trigger examples, belonging to the poison-
trigger class, as the legal user U1.

We summarize the main contributions of this paper as follows.

– To the best of our knowledge, IPA is the first invisible poisoning attack. It is
a highly stealthy, targeted poisoning attack, whose poison-training examples
are perceptually indistinguishable from the benign ones. Once the models is
poisoned, any clean examples belong to the poison-trigger class are able to
fool the DNN to output the targeted label. Furthermore, IPA is capable of
conducting targeted poisoning attack with less poison-training examples in
the training process, and higher attack success rate in the testing process.

– Non-dominated Sorting Genetic Algorithm II (NSGA-II) is adopted to gener-
ate poison-training examples to accomplish IPA. Multi-object fitness function
is designed to direct the optimization of poison-training example toward unde-
tectable with less perturbation, at the meantime it can achieve state-of-the-art
performance by comprehensively considering attack ability and stealthiness.

– Extensive experiments are carried out for different face datasets against differ-
ent FRSs to validate the effectiveness of IPA, including attack ability, stealth-
iness, and transferability performance.

2 Related Work

In this section, we mainly review the background knowledge of the DNNs, poi-
soning attacks, defenses, and NSGA-II.

2.1 Neural Network Basics

Deep Neural Networks. DNNs are computational models with hierarchical
structures. Usually, the first layer is the input layer, the last layer is the output
layer, and the middle layers are the hidden layers. DNNs can classify an N -
dimensional input xi ∈ XH×W×ch into one of c classes, where H, W , ch represent
the height, width and channel number of the input matrix respectively. And
DNNs will output the probability vector yi ∈ Y 1×c over the c classes, i.e., yi is
the probability vector of the ith input xj

i belonging to the class j. The input xi is
labeled as the class with the highest probability, i.e., the output predicted label is
zo

i = arg max{yi}. Mathematically, DNNs can be represented by a parameterized
function FΘ : X → Y where Θ represents its parameters.
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DNN Training. It is the process of feeding a set of training examples into
the network and adjusting the weights according to the difference between the
actual output of the network and the expected one.

The training dataset is D = {xi, zi}K
i=1 of K inputs, xi ∈ XH×W×ch and

the corresponding ground-truth labels zi ∈ {1, 2, ..., c}. The training algorithm
aims to determine the parameters of the network that minimize the “distance”
between the DNN’s predictions on training inputs and the ground-truth labels,
where the “distance” is usually measured by cross entropy.

2.2 Poisoning Attack

Poisoning attack appears in the training process by injecting poison-training
examples into the training dataset to leave backdoors in the DNN. There are
different poisoning attack strategies, i. e., malicious poisoning attack and benign
poisoning attack.

Malicious Poisoning Attack. It refers to the attack that the user of the
poisoned model suffers losses. For example, a specific example belonging to the
poison-trigger class accesses the highest authority. The examples are poisoned
by crafting prison perturbation on the benign ones. Yang et al. [38] verified the
feasibility of poison-training example generation based on the gradient of deep
learning, and proposed a data poisoning method via the generative adversarial
network. This attack can quickly implement a poisoning attack, but requires
knowledge of the internal structure of the target model. In order to reduce the
restriction on model knowledge requirements, Gu et al. [14] studied the poisoning
attack against outsourced machine learning model in transfer training, proving
that poison-trigger examples trigger dormant neurons. Li et al. [17] proposed a
“watermark” strategy applied to multiple poison-training example generation for
an end-to-end poisoning attack. These attacks require the addition of significant
poison perturbation to benign examples. Alberti et al. [3] proposed a poisoning
attack against the DNNs by modifying one pixel in some training images, which
reduces the poison perturbation. Zhao et al. [40] analyzed the optimal poisoning
attack against the multi-task learning model, which is capable of arbitrarily
selection of target tasks and attack tasks.

Benign Poisoning Attack. It refers to the attack that the poisoned model
would protect rather than threat the user’s interest. For example, backdoors
left in the poisoned model is used as a copyright protection tool of the DNNs.
Uchida et al. [33] proposed a general framework for embedding watermark into
the model parameters by regularization, which can protect intellectual property
rights. However, this attack requires full access to the deep model, which is not
practical. In order to comply with the purpose of copyright protection, a num-
ber of improved poisoning attack methods have been proposed without accessing
the model itself. Merrer et al. [24] designed a new zero-bit watermarking algo-
rithm, which trains DNNs with adversarial examples and benign examples for
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better classification. Chen et al. [4] proposed an end-to-end fingerprint system
framework, namely DeepMarks, which allows model owners to embed unique
fingerprints into the DNNs without accuracy decline. Adi et al. [1] designed
a method for watermarking DNNs in a black-box mode, which is suitable for
general classification task.

2.3 Defense Against Poisoning Attacks

A number of defense strategies against poisoning attacks have been proposed
for securer application of DNNs [29,31]. Yang et al. [38] proposed a loss-based
defense strategy, which generates the poison-training examples based on the
threshold of the loss function. Hitaj et al. [15] designed an ensemble defense algo-
rithm that combines the prediction results of different DNNs to comprehensively
determine the output label. Liu et al. [22] designed an anomaly detector to filter
poison-training examples based on support vector machine and decision tree. In
addition, the clustering method can be adopted as a pre-processing operation to
detect poison-training examples [21]. Density-Based Spatial Clustering of Appli-
cations with Noise (DBSCAN) [13] is adopted as a detection process, since it
is an efficient method without the knowledge of cluster number in advance. In
all, current defense methods are effective against poisoning attacks but do not
prepare for stealthy ones.

2.4 Non-dominated Sorting Genetic Algorithm II (NSGA-II)

Evolutionary computing algorithms have been widely adopted in adversarial
attacks, i.e. one pixel attack [32], since the adversarial example generation can
be modeled as an optimization problem. NSGA-II [11] is one of the most popular
multi-objective genetic algorithms which is an improved version of NSGA [30].
It has achieved good results on multi-objective problems [27]. Kamjoo et al. [16]
proposed a multi-objective approach under the uncertainties of hybrid renewable
energy system using NSGA-II and constrained programming. Vo-Duy et al. [34]
proposed multi-objective optimization of laminated composite beam structures
using the NSGA-II algorithm. Li et al. [18] used NSGA-II and decision-making to
develop a thermo-economic multi-objective optimization for a solar-dish Brayton
system.

One of the important tasks in IPA is to generate poison-training examples
with strong poisoning attack ability and high stealthiness, which are two con-
tradictory objectives. Considering the good performance of NSGA-II in multi-
objective optimization, in this paper, we adopt it to generate approximate opti-
mal highly stealthy poison-training examples. For poison-training examples of
more stealthy and higher attack success rate, the perturbation size and attack
performance are designed as the multi-objective of NSGA-II in IPA.
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Table 1. The terms and notations used in IPA.

The terms and notations used in DNN

xbe, xp The benign example and generated poison-training example

yi The output probability vector of DNN fed by the example xi

zi, z
o
i The ground-truth/predicted label of the example xi, and

zi ∈ {1, 2, ..., c}, where c is the number of classes

z
o|1st
i , z

o|2nd
i The predicted label with the highest and the second highest

probability respectively

The terms and notations used in NSGA-II

Iti The ith example of the tth iteration in the evolution process
of NSGA-II

p(Iti |zi) The probability of Iti recognized as class zi by DNN

P (Iti ), L2(I
t
i ) The attack and stealthiness measurement of Iti evaluated in

NSGA-II

Nc, pc, pm The population size, crossover/mutation probability in
NSGA-II, where we set Nc = 50, pc=0.7, pm=0.1 in the
experiment

Iti ≺ xt
j The example Iti dominates Itj

R(Iti ), DC(Iti ) The rank and crowding distance of Iti calculated by NSGA-II

The terms and notations used in evaluation

RA, RApc The recognition accuracy of all test benign examples and
benign examples belonging to poisoned class, where ‘pc’
denotes poisoned class

ASR, DR The attack success rate and detection rate of poison-trigger
examples

p(x|z),
p(xpc|zpc),
p(xptc|zpc)

The average probability of benign example x, benign
examples belonging to poisoned class xpc and poison-trigger
example xptc predicted as label z, poisoned class zpc and
poisoned class zpc by poisoned T-FRS, respectively, where
‘ptc’ denotes poison-trigger class

ARI, ARIpc The adjusted rand index of all test benign examples and
benign examples belonging to poisoned class

PEQ, PR,
TMK

Three hyperparameters adopted to analyze the attack ability
and stealthiness of IPA

3 Method

3.1 Preliminary

IPA is proposed for a more practical situation, i.e. difficult for users to detect
and easy to trigger when specific examples are fed in. The main idea of IPA is to
generate effective poison-training examples to leave the backdoor in the DNN.
Once the model is poisoned by IPA, any clean examples from the poison-trigger
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Fig. 2. The framework of poison-training example optimization in IPA. First, accord-
ing to the benign example, generate a number of initial poison-training examples ran-
domly, feed them into the surrogate DNN, i.e. S-FRS, and evaluate their performances
via multi-object fitness value. NSGA-II is applied to optimize the poison-training exam-
ple. Evolutionary operations, i.e. selection, crossover, and mutation, are adopted iter-
atively. xbe indicates a benign example, xp represents the generated poison-training
example carrying poison perturbation of the poison-trigger example, Iti denotes the
ith poison-training example of the tth iteration in the evolutionary process. Nc is the
individual number of initial population, t represents the iterations. S-FRS is the surro-
gate face recognition system, the red dots denote the pixel approximate of the poison
perturbation.

class can conduct the attack and fool the model to output the wrong results. We
will explain how to make the poison-training example invisible among a large
amount of benign training datasets. First of all, a number of important terms
and notations we used are introduced in Table 1.

3.2 Framework

IPA is a targeted poisoning attack, i.e., the target model will output the expected
wrong label for a set of clean examples belonging to the poison-trigger class.
Whether the poisoning attack is successful or not heavily relies on the poison-
training examples injected into the training dataset. The poison-training exam-
ples in IPA are supposed to be stealthy and effective, we model the poison-
training example generation process as an optimization problem. More stealthy
the poison-training examples are, i.e. more like the benign ones, the better they
are. On the other hand, the more possible they leave the backdoor in the DNN,
the better they are. We adopt the attack success rate and poison perturbation
as the multi-objective of the optimization problem.

Since NSGA-II is a classic multi-object optimization algorithm widely used in
various applications [16,25,34], we adopt it to evolve the approximate optimized
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poison-training examples. The generation process consists of surrogate model
training, population initialization, non-dominated solution calculation, and evo-
lutionary operations (i.e., selection, crossover, and mutation). The framework of
poison-training example generation is shown in Fig. 2.

The fitness function of IPA is designed to evaluate the quality of the gener-
ated poison-training examples in the aspect of poisoning ability and perturbation
control. We use the classification probability of the wrong label as the measure-
ment of poisoning attack ability. When the poison-training example is fed into
the surrogate model, the higher probability it is classified as the wrong label, the
more poisoning results it can cause. The poisoning attack ability is calculated
by Eq. (1). On the other hand, the generated poison-training examples should
look like the benign ones to conduct invisible poisoning training, thus we adopt
L2-norm to represent the stealthiness performance in Eq. (2).

P (It
i ) =

{
p(It

i |zptc) − p(It
i |zo|1st

i ), z
o|1st
i �= zptc

p(It
i |zptc) − p(It

i |zo|2nd

i ), z
o|1st
i = zptc

(1)

L2(It
i ) = ||xbe − It

i ||2 (2)

where zptc is the poison-trigger class, It
i is the ith example of the tth iteration,

z
o|1st
i and z

o|2nd

i are the predicted label of S-FRS with highest and second high-
est probability, respectively. || · ||2 represents L2-norm, xbe denotes the benign
example.

3.3 Surrogate Model Training

Generally speaking, a DNN model consists of feature extraction module and clas-
sification module. When we use an open source DNN as a target face recognition
system (T-FRS), the parameters of the feature extraction module are frozen, and
the parameters of the classification module can be retrained or fine-tuned.

Before the generation of poison-training examples, we build another surrogate
model, named the surrogate face recognition system (S-FRS). The S-FRS shares
the same structure and parameters with the feature extraction module of the
T-FRS. In the training process, cross entropy is adopted as the loss function.
The feature extraction module of S-FRS freezes its own parameters, and the
classification module updates its parameters based on the user-provided face
training dataset.

3.4 Initialization

Initialize the generation of the poison-training examples by random operation,
i.e., adding random perturbation to benign examples. In initial, the perturbation
is randomly sampled from the normal distribution. The initial poison-training
examples are described as:

It=0
i = Clip{xbe + δi ∗ BkI

}, δi∼N(μ, σ2) (3)
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where Clip{·} clips the pixel value of the input into the range of [0, 255], δi

represents a matrix with the same shape of xbe. BkI
is a random binary matrix

with the same shape of xbe, where
∑

BkI = kI , i.e., there are kI pixel points that
are perturbed. μ represents mathematical expectation, σ2 represents variance.
In order to increase the diversity of the initial population, we generate different
types of initial examples based on different variances and noise points. We set
μ = 0 and σ2 ∈ [10, 50], kI = 50.

3.5 Dominant Relationship and Non-dominated Solution

The dominant relationship in IPA is introduced at first. When all objectives
(i.e., −P (It

i ) and L2(It
i )) in example It

i are better than or equal to example It
j ,

it is defined as It
i dominates It

j , marked as It
i ≺ It

j . In NSGA-II, all solutions
in the population that are not dominated by any other solution constitute a
non-dominated solution. The rank of these solutions is k = 0, represented as
R(It

i )|i∈[1,Nc] = 0. The solution is better if its k value is smaller.
Then, we illustrate the non-dominated sorting algorithm in IPA. When sort-

ing non-dominated solutions, the (k + 1)th layer of the non-dominated solutions
can be obtained by ignoring the already marked solution. Repeat the selection
until the dominance of all the examples ends.

To illustrate this phenomenon in detail, Fig. 3 shows a Pareto Curve and five
representative poisoning examples. Each point represents a poisoning example
generated by IPA at the 10th generation on the CASIA dataset. The abscissa
L2(·) represents the size of the perturbation. The optimization direction of IPA is
toward smaller L2(·) and higher attack capacity. The ordinate −P (·) represents
the attack ability. We suppose that examples of smaller −P (·) may have better
attack performances. Each curve with k = 0 to k = 4 represents the Pareto Curve
during the 10th generation. The solutions on the curve will be better if the rank
value is smaller. In order to clearer insight, the perturbation is magnified tenfold.

3.6 Genetic Operations

There are three genetic operations for IPA, namely, selection, crossover, and
mutation. After that, the generation update is adopted to obtain the next pop-
ulation.

Selection. Select two parent examples in the current generation for the next off-
springs, which is a possible way to preserve the approximate optimal genes. First,
all individuals of the tth generation are sorted according to the non-dominated
sorting algorithm. The neighbor examples of It

i are defined as It
i+1 and It

i−1 in
the same rank. According to the NSGA-II, the crowding distance is calculated
by the following equation:

DC(It
i ) = (f i+1,t

att − f i−1,t
att ) + (f i+1,t

stealth − f i−1,t
stealth) (4)
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Fig. 3. The 10th generation Pareto Curve of IPA attacks on CASIA dataset. In order
to make the perturbation clearer, the perturbation is 10 times that of the actual exper-
iment. The selection size is 50, crossover probability pc = 0.7, mutation probability
pm = 0.1.

where DC(It
i ) represents the crowding distance of the example It

i . For the jth

individual, if the function is the boundary, assign infinite distance to it, i. e., the
boundary points are always selected. f i+1,t

att and f i+1,t
stealth represent the normalized

attack and stealthiness measurements of the example It
i+1, which are defined as

follows:

f i,t
att =

e−P (It
i )∑

j e−P (It
j)

, f i,t
stealth =

L2(It
i )∑

j L2(It
j)

(5)

where
∑

j e−P (It
j) denotes the sum of all elements e−P (It

j),
∑

j L2(It
j) is the same.

Based on the crowding distance, the selection probability of each It
i is defined

as Eq. (6). Then the roulette wheel selection is adopted to select individual for
the selection operation.

psel(It
i ) =

DC(It
i )∑

j DC(It
j)

(6)

where
∑

j DC(It
j) denotes the sum of all elements DC(It

j).

Crossover. The uniform crossover is used to obtain two new examples, which
exchanges the pixel values at the corresponding positions of two paired examples
with the same probability. The uniform crossover operation applied to the two
selected examples, It

i and It
j , is defined as follows:

It
i =

{
It
i ∗ B + It

j ∗ (1 − B), rand(0, 1) < pc

It
i , otherwise

(7)
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It
j =

{
It
j ∗ B + It

i ∗ (1 − B), rand(0, 1) < pc

It
j , otherwise

(8)

where B is a random binary matrix with the same shape of It
i , and each element

of B belonging to {0, 1}. rand(0, 1) is a random number generation function with
the range of [0,1]. The range of crossover probability pc is generally from 0.1 to
0.9. We set pc = 0.7 in the experiment.

Mutation. Mutation operation indicates that some examples will be altered
by a certain probability during the breeding process, which is a necessary way
to increase population diversity. Non-uniform variation is applied to randomly
adding perturbation within a certain threshold to the example with a small
probability. The mutation operation is defined as follows:

It
i =

{
It
i ∗ (1 − BkM

) + δi ∗ BkM
, rand(0, 1) < pm

It
i , otherwise

(9)

where δi is a matrix with the same shape of It
i that conforms to a normal

distribution, and the value range of δi is [0, 255]. BkM
is a random binary matrix

with the same shape of It
i , where

∑
BkM

= kM , i. e., there are kM pixel points
mutated. We set the mutation probability pm = 0.1, kM = 30 in the experiment.

Generation Update. The father-offspring combined selection is adopted to
update the next generation. First, we merge examples from the tth and (t + 1)th

generation into a collection of 2 ∗ Nc individuals. Then non-dominated sorting
is applied to the examples of the collection based on Sect. 3.5. Finally calculate
their crowding distance based on Eq. (4). Sort all individuals from the best to
worst according to their fitness values. We define that individual Ii is better
than Ij , if and only if R(Ii) < R(Ij), or R(Ii) = R(Ij) and DC(Ii) > DC(Ij).
The first Nc examples are selected as the next population based on the sorting
rule.

The father-offspring combined selection and non-dominated sorting are
adopted to keep the better individuals in the next population. Meanwhile, the
crowding distance sorting is an efficient way to ensure population diversity.

4 Experiment and Analysis

In Sect. 4.1, we describe the platform, datasets, DNN models (FRS), and attack
implementation details. In Sect. 4.2, we compare IPA with other attacks to testify
the stealthiness. In Sect. 4.3, we evaluate the toxicity of IPA with the Mislabel
method [29]. Section 4.4 analyzes the poisoning attack performance on different
datasets with different feature extractors. Sections 4.5 and 4.6 give the hyper-
parametric analysis and the transferability of poisoning attacks. In Sect. 4.7, we
introduce the attack performance against the model with defensive measures.
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(a) FLW dataset

(b) CASIA dataset

(c) Youtube dataset

Fig. 4. Examples of face images from different datasets.

4.1 Experiment Setup

Platform. The specific configuration of the experimental environment is as fol-
lows: i7-7700K 4.20GHzx8 (CPU), TITAN Xp 12GiBx2 (GPU), 16GBx4 DDR4
(Memory), Ubuntu 16.04 (OS), Python 3.5, Tensorflow-gpu-1.3, Tflearn-0.3.21.

Datasets. Three public face datasets are adopted, i.e., Labeled Faces in the
Wild (LFW)2, CASIA-3D FaceV1 (CASIA)3 and Youtube Faces (Youtube)4.

LFW is a dataset of face photographs designed for unconstrained face recog-
nition. It contains more than 13,000 face images of 1,680 persons from the web.
There are at least two or more distinct face images for each person in the dataset.
The CASIA dataset consists of 4624 scans of 123 persons using the non-contact
3D digitizer. The Youtube dataset [36] is mainly used for face verification to
determine whether there are the same persons in two videos. Figure 4 shows the
face examples from these datasets.

DNN Model. We mainly use the FaceNet model [28] in experiments, which is
widely used for face recognition. There are two FaceNet-based face recognition
systems. The 20170512-110547 model (T-FRS1)5 is trained on the MSCeleb-1M
dataset, with input size of 160∗160 pixels of RGB images. The 20180402-114759

1 Tflearn can be downloaded at https://github.com/tflearn/tflearn/.
2 LFW can be downloaded at http://vis-www.cs.umass.edu/lfw/.
3 CASIA can be downloaded at http://biometrics.idealtest.org/.
4 Youtube can be downloaded at https://research.google.com/youtube8m/csv/

vocabulary.csv.
5 20170512-110547 model can be downloaded at https://drive.google.com/file/d/

0B5MzpY9kBtDVZ2RpVDYwWmxoSUk/edit.

https://github.com/tflearn/tflearn/
http://vis-www.cs.umass.edu/lfw/
http://biometrics.idealtest.org/
https://research.google.com/youtube8m/csv/vocabulary.csv
https://research.google.com/youtube8m/csv/vocabulary.csv
https://drive.google.com/file/d/0B5MzpY9kBtDVZ2RpVDYwWmxoSUk/edit
https://drive.google.com/file/d/0B5MzpY9kBtDVZ2RpVDYwWmxoSUk/edit
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model (T-FRS2)6 uses Inception ResNet v1 as the basic architecture, and is
trained on the VGGFace2 dataset.

Other Poisoning Attacks. We compare IPA with three different poisoning
attacks. The Mislabel method [29] poisons the DNNs by injecting examples with
wrong labels. The Blended Injection Strategy (BIS) [9] implements a poisoning
attack by adding watermarks to the images, and the Accessory Injection Strategy
(AIS) [9] implements a poisoning attack by wearing glasses. It should be noted
that both BIS and AIS require extra-accessories (e.g., glasses and watermark) to
activate poisoning, which cannot be directly compared with IPA since IPA uses
clean examples to trigger the attack in the testing process. Therefore, BIS and
AIS are only used to testify the stealthiness of IPA, and Mislabel is adopted to
compare the attack performance with IPA in the training process.

Metrics. Attack capacity of poisoning attacks are evaluated by their attack pos-
sibility, defined as attack success rate (ASR), i.e. in the testing process, designed
examples are fed in to fool the model output wrong answers. On the other hand,
other examples fed in the model should not be influenced by the backdoor in the
model, which is evaluated by recognition accuracy (RA).

ASR = Naccess
ptc /Nptc (10)

RA = N correct
test /Ntest (11)

where Nptc is the number of poison-trigger examples, Naccess
ptc is the number of

poison-trigger examples that have access to the T-FRS, Ntest is the size of testing
dataset, N correct

test is the number of testing examples that are correctly recognized.
Besides, we define RApc as RA of benign examples belonging to poisoned class.

DBSCAN method [13] is adopted to defend against the poisoning attack.
The specific process is to cluster the training dataset based on their features
extracted by the output of the DNN’s hidden layer. Then analyze whether the
target model is poisoned according to the adjusted rand index (ARI) of the
training dataset. The calculation of ARI is defined as follows:

ARI =
RI − E(RI)

max(RI) − E(RI)
(12)

where RI =
∑

i,j

(
nij

2

)
. E(RI) and max(RI) are defined as follows:

E(RI) = [
∑

i

(
ni.

2

)∑
j

(
n.j

2

)
]/

(
n
2

)
(13)

6 20180402-114759 model can be downloaded at https://drive.google.com/file/d/
1EXPBSXwTaqrSC0OhUdXNmKSh9qJUQ55-/view.

https://drive.google.com/file/d/1EXPBSXwTaqrSC0OhUdXNmKSh9qJUQ55-/view
https://drive.google.com/file/d/1EXPBSXwTaqrSC0OhUdXNmKSh9qJUQ55-/view
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max(RI) =
1
2
[
∑

i

(
ni.

2

)
+

∑
j

(
n.j

2

)
] (14)

where nij denotes the number of examples in the same class ui and cluster vj ,
ni· and n·j are the number of examples of class ui and cluster vj , respectively.
U = {u1, ..., uC1}, V = {v1, ..., vC2}. U is the external evaluation standard (i. e.,
ground-truth label), and V is the clustering result. The range of ARI is [−1, 1].
Besides, we define ARIpc as an adjusted rand index of benign examples belonging
to the poisoned class.

The detection rate (DR) is defined as follows when attacking a DNN with
defensive measures:

DR = Ndetect
p−train/Np−train (15)

where Np−train denotes the number of poison-training examples, and Ndetect
p−train

is the number of poison-training examples that detected by defense strategy.
In addition, we also define p(x|z), p(xpc|zpc) and p(xptc|zpc) to measure the

reliability of different attacks. The specific explanation is introduced in Table 1.

IPA Setup. The settings for poisoning example generation based on NSGA-II
are as follows. The population size is 50, iteration is 1000, crossover probability
pc = 0.7, mutation probability pm = 0.1.

All experimental results in this paper are averaged values. To show the good
attack performance of IPA, the training examples for S-FRS and T-FRS are
different. The 80% examples of the dataset are adopted to fine-tuning the clas-
sification module of the T-FRS while the remaining 20% examples are used
for S-FRS. Take CASIA as an example. There are 123 persons, where all face
examples belonging to 98 persons are adopted for T-FRS, and all examples
belonging to remaining 25 persons are used for S-FRS. In the poisoning process,
IPA adds k poison-training examples to the training dataset of T-FRS, where
k = {1, 2, 3, 4, 5}.

4.2 The Stealthiness of Poisoning Attacks

The stealthiness of IPA can be testified in two ways. In the training process, only
a few indistinguishable poison-training examples are injected into the data set.
In the testing process, any clean examples from the assigned class can trigger
the attack to fool the model to output target label. The intuitive visualization
of adversarial examples generated by IPA and other attack methods is com-
pared firstly. Figure 5 shows the stealthiness of poison-training examples pro-
duced by different attack methods. In the training example column, the face
images surrounded by red solid borders are poison-training examples while oth-
ers surrounded by green solid borders are benign. It clearly shows the stealthiness
performance that the poison-training examples produced by IPA are closely sim-
ilar to the face images in the target column, which are less likely to be detected
by human eyes. The poison-training examples of other attacks are completely
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(a) LFW dataset

(b) Youtube dataset

(c) CASIA dataset

Fig. 5. The stealthiness of poison-training examples generated by different attacks on
different datasets. (Color figure online)

different from the face image in the target column, which are easily detected and
rejected.
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Table 2. The toxicity comparison of different attacks on different datasets.

Datasets Attacks Metrics

RApc p(xpc|zpc) ASR p(xptc|zpc) RA p(x|z)
LFW Clean 100.00% 0.022 0.00% 0.003 99.40% 0.022

IPA 100.00% 0.021 100.00% 0.022 99.26% 0.022

Mislabel 100.00% 0.021 100.00% 0.022 99.21% 0.022

CASIA Clean 86.49% 0.065 0.00% 0.008 95.79% 0.063

IPA 86.49% 0.046 94.59% 0.043 95.46% 0.063

Mislabel 86.37% 0.042 95.78% 0.059 95.38% 0.063

Youtube Clean 97.24% 0.008 0.00% 0.001 95.61% 0.008

IPA 98.66% 0.009 95.42% 0.006 95.59% 0.008

Mislabel 98.58% 0.009 95.45% 0.008 95.58% 0.008

In the testing example column, the face images surrounded by red dotted
borders are poison-trigger examples while others surrounded by green solid bor-
ders are benign. All of these poison-trigger examples successfully achieve the
attack effect. For IPA, any clean examples of the attacker can be recognized as
a legal user, while for the other poisoning attacks, accessing the target person
authority in the target column though they look completely different from the
target person. Besides, BIS and AIS require a trigger, watermark, and glasses,
to trigger the backdoor.

4.3 Toxicity

In IPA, the poison-training examples extract features of the poison-trigger exam-
ple although they appear to be closely similar to the benign ones. We compare
the attack effects of IPA with Mislabel to testify that IPA is capable of conduct-
ing poisoning attack by poison-training examples with less perturbation, while
achieving a higher ASR.

It should be noted that BIS and AIS attacks require extra triggers in the
testing process to compliment the attack. In real-world, we even need to take
off our glasses for face recognition, so we just compare IPA with Mislabel. The
results are carried out on the different datasets, where the maximum number of
iterations is 1000, and the feature extractor is T-FRS1.

Table 2 shows the experimental results of IPA and Mislabel on different
datasets. It can be concluded that the experimental results of IPA and Mis-
label are almost the same, but the probability of Mislabel on poison-trigger
examples is higher than IPA. Mislabel directly replaces the class label, thus the
poison-training examples contain more features about poison-trigger examples.
From Fig. 5, we can draw that it is difficult for human eyes to find anomalies
in the poison-training examples generated by IPA, but the ones generated by
Mislabel are easy to be discovered and rejected. Therefore, we can conclude that
IPA has competitive stealthiness when achieves comparable toxicity.
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Table 3. IPA performance comparison against T-FRS.

Datasets Metrics T-FRS1 T-FRS2

Benign Poison Benign Poison

LFW RApc 100.00% 100.00% 100.00% 100.00%

p(xpc|zpc) 0.022 0.021 0.021 0.023

ASR 0.00% 100.00% 0.00% 88.00%

p(xptc|zpc) 0.003 0.022 0.002 0.016

RA 99.40% 99.26% 98.62% 98.62%

p(x|z) 0.022 0.022 0.022 0.022

CASIA RApc 86.49% 86.49% 94.59% 100.00%

p(xpc|zpc) 0.065 0.046 0.056 0.059

ASR 0.00% 94.59% 0.00% 100.00%

p(xptc|zpc) 0.008 0.043 0.007 0.054

RA 95.79% 95.46% 98.72% 97.72%

p(x|z) 0.063 0.063 0.063 0.063

Youtube RApc 97.24% 98.66% 92.89% 96.23%

p(xpc|zpc) 0.008 0.009 0.008 0.008

ASR 0.00% 95.42% 0.00% 89.00%

p(xptc|zpc) 0.001 0.006 0.002 0.005

RA 95.61% 95.59% 92.69% 92.68%

p(x|z) 0.008 0.008 0.008 0.008

4.4 Poisoning Attack Results and Analysis

Conducting IPA toward different DNN models to demonstrate its generic perfor-
mance, the T-FRSs with different feature extraction modules and different face
datasets are adopted for the poisoning attacks. The comparison of performance
results before and after attacking is shown in Table 3.

For different face datasets, the T-FRSs with the same structure have different
RA. For example, the RA of LFW is higher than CASIA and Youtube in Table 3.
We suppose that face images in CASIA dataset are photographed according to
the prescribed posture, but only 5 images of each person are randomly selected
during training. Thus, the test example may be misclassified due to its similar
angle to examples of other classes in the training dataset. The p(xptc|zpc) of
CASIA is higher than LFW and Youtube, which is mainly because CASIA has
fewer categories than LFW and Youtube.

Different feature extraction modules work differently for different face
datasets. The RA in Table 3 shows that T-FRS1 achieves better results on LFW
than CASIA. This is mainly related to the dataset used when the feature extrac-
tor is trained.

IPA can conduct a more insidious poisoning attack. From Table 3, we find
that instead of reducing RApc, IPA may improve RApc. This is mainly because
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(a) p(A)− p(xpc|zpc) (b) p(A)−RApc

(c) p(A)− p(xptc|zpc) (d) p(A)−ASR

Fig. 6. The impact of different hyperparameters on attack ability and stealthiness of
IPA.

although the poison-training examples are identical to the benign ones labeled
as poisoned class under visual observation, their features are different, which
changes the coverage of the poisoned class in the feature space of the T-FRS. If
the coverage becomes wider, the RApc and p(xpc|zpc) will also increase. For
instance, the RApc of T-FRS2 on CASIA dataset increases from 94.59% to
100% after the poisoning attack, and the p(xpc|zpc) also increases from 0.056
to 0.059. From ASR and p(xptc|zpc), we find that poison-trigger examples can
be recognized as the poisoned class with high probability and high success rate.
In a word, the experimental results demonstrate that IPA can attack different
T-FRSs with a high success rate and high probability without affecting the RA
of benign examples.

4.5 Hyperparametric Analysis

Three hyperparameters may influence the attack ability and stealthiness of IPA,
including poison-training example quality (PEQ), poisoning ratio (PR) and tar-
get model’s knowledge (TMK). (1) PEQ measures the attack ability achieved
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by poison-training examples of different quality under the premise of the same
PR. We assume that the poison-training example can conduct a higher ASR if
the PEQ is better. However, the example generation of better PEQ is also more
complicated. (2) PR determines the number of poison-training examples in the
training dataset of the target model. It is clear that the attack performance
improves as the PR increases in the case of a fixed PEQ value. However, when
the PR is too high, benign examples belonging to the poisoned class may be
eliminated by the cluster defense strategy, which may easily expose the poison-
training examples. (3) TMK refers to whether the target model knows about
the attacker (the poison-trigger example), i. e., whether the attack is internal
or external. When the answer is yes, the attack is internal. It may be the case
that insiders try to gain higher access authorities through poisoning attacks. The
opposite is an external attack.

PEQ is defined as the probability that the poison-training examples are rec-
ognized as the poison-trigger class by the surrogate model, represented as p(A)
in S-FRS in Fig. 6. PEQ directly determines the attack effect, because as the
p(A) increases, the features of the poison-trigger example included in the poison-
training example also increase. Therefore, the features of the poison-trigger class
learned by the target model during the training process will also increase, which
promotes the ASR of the poison-trigger example. Under the premise of fixed
PR value, conducting high PEQ needs to increase the poison perturbation in
the poison-training example, which will reduce its stealthiness.

Figure 6 shows the impact of PEQ on IPA attack performance. The solid line
denotes that the training dataset of T-FRS does not contain poison-trigger exam-
ples, and the dotted line denotes that the training dataset contains poison-trigger
examples. The solid and dotted lines with the same color are basically coinci-
dent, which represents that the poison-training examples contain the features
of poison-training examples and can perform functions similar to poison-trigger
examples.

In Fig. 6(a), as the value of p(A) increases, the curve of p(xpc|zpc) rises first
and then falls. When the value of p(A) is small, the gap between the poison-
training example and the benign example belonging to the poisoned class is
small. The small gap leads to the coverage of T-FRS’s poisoned class increases in
the feature space, which promotes the recognition of benign examples belonging
to the poisoned class. However, when p(A) exceeds a certain threshold, the gap
between the poison-training example and the benign example increases, resulting
in the discontinuity of coverage of T-FRS’s poisoned class in the feature space.

In Fig. 6(b), with the increase of p(A), the RApc is still one hundred percent
except that all examples of the poisoned class are poisoned. Although the prob-
ability that benign examples belonging to the poisoned class is recognized as
the poisoned class is gradually decreased, the probabilities recognized as other
classes are lower. Thus, RApc can be kept at 100.00%. However, when the PR
reaches 100%, the RApc will drop to zero as p(A) increases. The main reason is
that the features of benign examples of the poisoned class learned by the target
model are decreased with the increase of p(A).
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Table 4. The attack transferability of IPA against two models on LFW and CASIA.

Datasets FRS Metrics LFW CASIA

FRS1 FRS2 FRS1 FRS2

LFW FRS1 ASR 100.00% 0.00% 100.00% 7.30%

RApc 99.40% 99.40% 95.70% 98.90%

FRS2 ASR 0.00% 88.00% 8.00% 100.00%

RApc 98.60% 98.60% 95.80% 98.90%

CASIA FRS1 ASR 100.00% 64.90% 94.60% 27.00%

RApc 99.40% 98.60% 95.50% 98.50%

FRS2 ASR 100.00% 100.00% 18.90% 100.00%

RApc 99.40% 98.60% 95.40% 97.70%

In Fig. 6(c), p(xptc|zpc) increases first and then decreases gradually. This is
because, as the value of p(A) increases, the poison-training example contains
more features of the poison-trigger example, which conducts higher attack reli-
ability of the poison-trigger example in T-FRS. In addition, when p(A) exceeds
a certain threshold, poison-training examples will gradually approach the cen-
ter of the poison-trigger example in the feature space of S-FRS, which reduces
the coverage of poisoned class in the feature space of T-FRS. When the benign
examples of the poisoned class are all replaced by poison-training examples on
the training dataset, the downward trend of p(xptc|zpc) is obvious. In Fig. 6(d),
the curve trend of ASR corresponds to Fig. 6(c).

PR is defined as the proportion of poison-training examples among all examples
belonging to the poisoned class. PR also affects the effect of the target model
learning features of poison-trigger examples. The poison-trigger example can
conduct a larger ASR when the value of PR is larger. Under the premise of
fixed PEQ value, conducting high ASR requires increasing the value of PR,
which also increases the exposure possibility of poison-training examples.

From Fig. 6(a) to (d), it can be drawn that IPA can achieve great attack
performance against T-FRS as long as there are only 20% PR with 0.99 p(A) in
the training dataset. However, in this case, the p(xptc|zpc) of poisoned T-FRS is
low, and its poison perturbation is significant. In order to make the perturbation
of poison-training examples highly stealthy and improve the attack reliability of
poison-trigger examples against T-FRS, 40% PR is adopted.

TMK is defined as the knowledge of the attacker information contained in the
target model, which indirectly affects the attack performance of the poison-
trigger examples. When the target model does not know attacker information,
the attack is easier than knowing attacker information. The result denotes that
external attacks are easier to implement than internal attacks.

The IPA mainly considers that attacker who is not in the training dataset of
T-FRS to obtain legal access. However, in some cases, attackers may also exist
in the training dataset, such as user U2 in Fig. 1 eager for higher authorities.
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Table 5. Comparison of attack performances of IPA and Mislabel against DBSCAN
clustering based defense.

Datasets PR Attacks Metrics

ARIpc ARI RApc RA ASR DR

LFW 0% Clean 1.000 0.979 0.00% 100.00% 99.40% –

20% IPA 1.000 0.979 100.00% 100.00% 99.26% 0.00%

Mislabel 1.000 0.947 0.00% 100.00% 99.23% 100.00%

40% IPA 1.000 0.979 100.00% 100.00% 99.34% 0.00%

Mislabel 0.659 0.936 0.00% 100.00% 98.92% 100.00%

CASIA 0% Clean 1.000 1.000 0.00% 86.49% 95.79% –

20% IPA 1.000 1.000 94.59% 86.49% 95.46% 0.00%

Mislabel 0.816 0.980 0.00% 86.49% 95.79% 100.00%

40% IPA 1.000 1.000 95.64% 86.30% 95.46% 0.00%

Mislabel 0.722 0.970 0.00% 86.28% 95.79% 100.00%

Youtube 0% Clean 1.000 0.975 0.00% 97.24% 95.61% –

20% IPA 1.000 0.972 91.42% 98.36% 95.60% 0.00%

Mislabel 0.823 0.969 0.00% 97.14% 95.61% 100.00%

40% IPA 1.000 0.968 92.37% 97.25% 95.59% 0.00%

Mislabel 0.680 0.951 0.00% 96.93% 95.60% 100.00%

From Fig. 6(a) and (b), it can be concluded that whether the poison-trigger
examples exist in the training dataset of T-FRS or not, the RA of benign exam-
ples is hardly affected. In Fig. 6(c), it can be drawn that p(xptc|zpc) with poison-
trigger examples in the training dataset of T-FRS is smaller than p(xptc|zpc)
without ones in the training dataset.

4.6 Transferability Analysis

For more practical application, we suppose the attacker doesn’t grasp the detail
of the target model or training data when poisoning it. So the IPA will aim at
one model to generate the possible poison-training examples and uses them to
attack another black-box model. Therefore, we studied the transferability of IPA
to observe its behavior in transfer attacks. The experimental results are shown
in Table 4. We can find that higher ASR can be obtained by adopting the same
feature extraction module, which is independent of the training datasets. Sur-
prisingly, the ASR will be significantly higher when applying different training
datasets to FRS1 and FRS2. We believe that this is mainly because the training
process of T-FRS will be affected by the example environment(i.e., the back-
ground when the photo is taken) with different training datasets, rather than
just focusing on facial features.

Thus, two ways can be adopted for improving the ASR of IPA in transferable
attack: (1) build the feature extraction module of T-FRS or train the surrogate
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FRS as far as possible; (2) transfer the attention of the model when training
poison-training examples. That is, the features extracted in the training process
are not about the face itself, but about the background or other marks.

4.7 Attack Against Model with Defense

In order to explore whether IPA can attack the model with defense, we adopt
clustering-based defense to testify the performance of IPA and Mislabel. The
experimental results are shown in Table 5. It demonstrates that IPA can attack
the model with clustering defense when defense is used as data preprocessing.

DBSCAN clustering is helpful for poison example detection since it can clus-
ter the poison-training examples as outliers without information of the cluster
number in advance. Table 5 shows the face recognition system with the DBSCAN
defense. The parameter settings are the same as in Sect. 4.2. It should be noted
that: (1) since the defense model may only be used as data preprocessing, the
feature extractor of DBSCAN may be different from the feature extractor of the
target model; (2) the defense method will remove the poison-training examples
from the dataset after they are exposed.

From Table 5, we can find that ARI �= 1, regardless of whether there is a
poisoning attack. This is mainly because there are certain noises in the training
dataset of DBSCAN, so it is normal for IPA not be equal to 1. In addition, we
can also find that the DBSCAN clustering is not working well against IPA, but
can defend the Mislabel. This is mainly because the poison-training examples
generated by IPA are similar to the clean ones. Mislabel can be easily identified
by both human eyes and the clustering defense. However, it should be noted
that IPA can invalidate the defense, but its premise is that the features of the
clustering are different from those of the target model. If they are the same, IPA
may also be successfully defended.

5 Conclusion and Future Works

In this paper, we propose a highly stealthy face poisoning attack, named IPA,
which uses multi-objective optimization to generate poison-training examples
with invisible perturbation. Compared with other poisoning attacks, it is more
stealthy and more difficult to be perceived by human eyes. In addition, our
experimental results show that IPA is highly toxic, i.e., the model can identify
people who are not in the training dataset as target persons with high probability
by only injecting a poison-training example to the training dataset. The RA of
the model for benign examples decreased by 0.36%, and the average ASR of IPA
is 95%.

The paper aims to illustrate that it’s a serious security threat of the poi-
soning attack in deep learning and help researchers pay more attention to the
real-world applications. Invisible poisoning attack is an open problem, we may
adopt other efficient methods to generate possible poison-training examples in
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the future. We will also improve the generation strategy for crafting more sub-
tle poison-training examples. The surrogate model training strategy adopted in
the experiment is simple. More practical and advanced methods for surrogate
model construction, i.e. gradient distillation, ensemble substitution should be
considered. Furthermore, we will also study defense algorithms against IPA.
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Abstract. In this paper, we provide a general system structure for
latent factor based collaborative filtering recommenders by formulating
them into model training and prediction computing stages. Aiming at
pragmatic solutions, we first show how to construct privacy-preserving
and yet robust model training stage based on existing solutions. Then,
we propose two cryptographic protocols to realize a privacy-preserving
prediction computing stage, depending on whether or not an extra proxy
is involved.

1 Introduction

Today, personalization is widely adopted by a large number of industries, from
entertainment to precision medicine. The main enabling technology is recom-
mender systems, which employ all sorts of techniques to predict the preferences
of human subjects (e.g. the likes and dislikes towards a movie). So far, a lot
of generic recommender algorithms have been proposed, as surveyed in [10].
Recently, deep learning has become a very powerful tool and has been used for
numerous applications, including recommender [14]. Nevertheless, the collabo-
rative filtering recommender systems are most popular and well-known due to
their explainable nature (e.g. you like x so you may also like y).

Besides the likes and dislikes, users’ preferences might lead to inferences
towards other sensitive information about the individuals, e.g. the religion, polit-
ical orientation, and financial status. When a user is involved in a recommender
system with a pseudonym, there is the risk of re-identification. For instance,
Weinsberg et al. [13] demonstrated that what has been rated by a user can
potentially help an attacker identify this user. Privacy issues have been recog-
nized for a long time and a lot of solutions have been proposed today, as surveyed
in [2,6]. Robustness is about controlling the effect of manipulated inputs, and is
a fundamental issue for recommender systems. In their seminal work, Lam and
Riedl [7] investigated the concept of shilling attacks, where a malicious company
lies to the recommender system (or, inject fake profiles) to have its own prod-
ucts recommended more often than those from its competitors. Following this, a
number of works have been dedicated to the investigation of different robustness
c© Springer Nature Switzerland AG 2020
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attacks and corresponding countermeasures. Unfortunately, very little has been
done to consider both privacy and robustness in existing research work.

1.1 Our Contribution

In this paper, we aim at a comprehensive investigation of the privacy and robust-
ness issues for recommender systems, by considering both the model training
and the prediction computing stages. Towards privacy-preserving solutions that
respect robustness attack detection, we separately address the issues in the model
training and prediction computing stages. For the former, we show that existing
solutions can be adapted, particularly it is straightforward for the expert-based
ones such as that from [12]. As to the latter, we propose two new cryptographic
protocols, one of which involves an extra proxy.

Due to the space limitation, the details about security model and performance
analysis for our new solutions appear in the full paper [11].

2 System Model and Preliminary

We assume the RecSys builds recommender models and offers recommendation
as a service to the privacy-aware users, who are not willing to disclose their rating
vectors while still wishing to receive recommendations. For our recommender as
a service scenario, we assume a system architecture shown in Fig. 1. Next, we
briefly introduce what will happen in the two stages.

Fig. 1. Recommender as a service architecture

1. In the model training stage, labeled in Fig. 1, the RecSys trains a model, e.g.
similarities between items (or users) in neighbourhood-based recommenders
and feature matrices for users and items in latent model based ones, based
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on data from one or more sources. To clean the data and detect robustness
attacks, before the training, we suppose that the RecSys will run an algorithm
RobDet over the training dataset. To simplify our discussion, we assume the
output of RobDet is a binary bit for every input profile. If it is 0, then the
profile is deemed as malicious so that will not be used.

2. After training, we refer to the output of the model training stage as a set of
parameters MODparams. Note that the parameters might be in an encrypted
form when privacy protection has been applied. In the prediction computing
stage, the RecSys uses the model parameters MODparams and possibly Alice’s
rating vector to infer Alice’s preferences.

In the full paper [11], we describe different privacy attack scenarios and show
how to model them.

2.1 Preliminary on Homomorphic Encryption

We use the notation x
$← Y to denote that x is chosen from the set Y uni-

formly at random. A public key encryption scheme consists of three algorithms
(Keygen,Enc,Dec): Keygen(λ,L) generates a key pair (PK,SK); Enc(m,PK)
outputs a ciphertext c; Dec(c, SK) outputs a plaintext m. Some schemes, e.g.
Paillier [9], are additively homomorphic, which means there is an operator ⊕
such that Enc(m1, PK) ⊕ Enc(m2, PK) = Enc(m1 + m2, PK). While some
recent somewhat homomorphic encryption (SWHE) schemes are both additively
and multiplicatively homomorphic to a certain number of operations, which
means there are operators ⊕ and ⊗ such that Enc(m1, PK) ⊕ Enc(m2, PK) =
Enc(m1 + m2, PK) and Enc(m1, PK) ⊗ Enc(m2, PK) = Enc(m1m2, PK). In
practice, one of the most widely-used SWHE library is Simple Encrypted Arith-
metic Library (SEAL) from Microsoft [5], which is an optimized implementation
of the YASHE scheme [3]. Note that homomorphic subtraction � can be directly
defined based on ⊕ and with similar computational cost.

3 Privacy-Preserving and Robust Expert-Based Solution

In the proposed solution, we adopt the recommender algorithm [12], which has
the nice property that the privacy-aware user Alice does not need to share her
rating vector with the RecSys to train the recommender model and the process
of model training is very simple. Note that in some other expert-based recom-
mender systems, Alice’s data may not be needed to train the model but the
process of model training will be much more complex. We assume there are M
items in the item set for the recommendation service.

1. In the solution, the model training stage is very straightforward. Given an
expert dataset, the RecSys can first run any robustness attack detection algo-
rithm RobDet to figure out the outliers or even malicious profiles. Then, the
RecSys can learn the model parameters Θ = {A,Q,b∗

t ,b
∗
j} from the expert

dataset, which is publicly available to the RecSys.
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2. Let’s assume that Alice is labelled as user i in the privacy-aware user group,
the prediction computing stage consists of the following steps.
(a) User i generates a public/private key pair (pki, ski) for Paillier scheme,

and shares the public key pki with RecSys.
(b) User i sends [[Ri]]pki

and [[Ri]]pki
to the RecSys, which may require the

user to prove that the encrypted Ri is well formed similar to what has
been done in [4].

(c) If everything is ok, the RecSys can predict user i’s preference on item j
as

[[r̂i,j ]]pki
= [[Ri]]pki

⊕ bj ⊕ [[Ri]]pki
AqT

j (1)

(d) If there is no proxy, user i and the RecSys run the protocol from Sect. 3.1
to generate recommendations for user i. Otherwise, they run the protocol
from Sect. 3.2.

Next, we describe privacy-preserving protocols for user i to learn the unrated
items whose predictions fall into a set {V1, · · · VT }. Here T will be a small integer,
which may be 2 or 3 in practice referring to the analysis of full paper [11]. Observ-
ing that privacy-preserving protocols for the model training stage often output
integer predictions (in encrypted form), because they need to scale the interme-
diary computation results in order to be compatible with the cryptographic tools
such as homomorphic encryption algorithms. Therefore, we assume the RecSys
possesses the encrypted predictions [[xj · θ + yj ]]pki

for every 1 ≤ j ≤ M at the
end of the privacy-preserving model training stage. We explicitly present the
ratings according to a unit θ, because in our protocol the recommendations will
only be based on the xj part and the yj part is rounding off.

3.1 Privacy-Preserving Prediction Computing Without Proxy

At the beginning of the prediction computing stage, we suppose user i possesses
two public/private key pairs: one is (PKi, SKi) for Paillier scheme (from the
model training stage) while the other is a new key pair (PK ′

i, SK ′
i) for a SWHE

scheme [8]. The public keys PKi, PK ′
i are shared with the RecSys. As shown in

Fig. 2, the protocol runs in two phases where λ is the security parameter.
In the reduction phase, the RecSys and user i round off the yj part in the

encrypted predictions. Specifically, for every 1 ≤ j ≤ M , the following operations
will be carried out.

1. The RecSys first randomizes xj and yj to generates Δj for user i.
2. Then, user i obtains the randomized prediction value αj through decryption

and then computes βj , which is the randomized xj in an approximation form
with εj ∈ {0, 1}. Finally, user i encrypts βj under his own SWHE public key
if item j is unrated, and encrypts a random value otherwise.

3. After receiving Γj , the RecSys homomorphically removes the randomization
noise rj1 to obtain Φj , which is a ciphertext for xj + εj if item j is unrated
and a ciphertext for a random value otherwise.
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Fig. 2. Learning membership in {V1, · · ·VT } without a proxy

In the Evaluation phase, for every 1 ≤ j ≤ M , the RecSys computes Ωj through
T homomorphic subtractions and T − 1 multiplications, which is a ciphertext
for 0 if the plaintext corresponding to Φj falls into {V1, · · · VT } and a ciphertext
for a non-zero value otherwise. In order to hide the non-zero values, the RecSys
randomizes Ωj via the RAND function, e.g. homomorphically multiplying a ran-
dom number, to obtain Ψj , which can be decrypted by user i to learn the index
of recommended items.

For Paillier, we set the size of N to be 2048, and for SWHE we use Microsoft
SEAL library. We select the ciphertext modulus q = 2226−226+1, the polynomial
modulus p(x) = x8192 + 1. Using Chinese Reminder Theorem, we select two 40-
bit primes to represent the plaintext space of 280. The primes are 1099511922689
and 1099512004609. Based on an Intel(R) Core(TM) i7-5600U CPU 2.60 GHz,
8 GB RAM, we benchmark the running time of the above solution. The number
of different cryptographic operations for the proposed protocol are summarized

Table 1. Computational complexities

Paillier.Dec Paillier.⊕ SWHE.Enc SWHE.Dec SWHE.⊗ partial SWHE.⊗ SWHE.⊕ Time

User M M M 420 s

RecSys M M M(T − 1) M(T + 1) 998 s
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in Table 1. In the last column, we show the real-world running time, where
M = 4000 by assuming the MovieLens 1M Dataset and T = 2.

3.2 Privacy-Preserving Prediction Computing with Proxy

To enable the new protocol, we make use of a key-homomorphic pseudorandom
function Prf [1]. Given Prf(k1,m) and Prf(k2,m), anybody can compute Prf(k1+
k2,m) = Prf(k1,m) ⊕ Prf(k2,m). We describe the two phases in Figs. 3 and 4,
respectively. As before, λ is the security parameter.

Fig. 3. Reduction phase

Similar to the case shown in Fig. 2, in the reduction phase, the RecSys and
user i interactively round off the yj part in the predictions for every j. The main
difference (and simplification) is that, at the end of the protocol, the RecSys
possesses γj = xj +εj +rj3 if item j has been rated and γj = rj3+rj1 otherwise,
while user i possesses the random number rj3.

The evaluation phase, shown in Fig. 4, proceeds as follows.

1. User i first establishes M random messages Rj(1 ≤ j ≤ M), random permu-
tation functions PM and PMj(1 ≤ j ≤ M), and a hash function H with the
RecSys. Given a vector of M elements, PM randomly permutes the order of
the elements. Similarly, given a vector of T elements, PMj randomly permutes
the order of the elements.

2. User i chooses M random keys Kj(1 ≤ j ≤ M) for Prf and evaluates Prf for
Rj with the key Kj − rj3 to obtain Υj , for every 1 ≤ j ≤ M . At the same
time, the RecSys evaluates Prf for Rj with the key γj to obtain Θj , for every
1 ≤ j ≤ M .
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Fig. 4. Evaluation phase (w.r.t. {V1, · · ·VT })

3. After receiving the permuted values from user i and the RecSys, the proxy
computes

Ξ = PM{(Υ1, · · · , ΥM )} ⊕ PM{(Θ1, · · · , ΘM}},
where ⊕ is performed element wise. It is easy to check that if the item j is
unrated

Υj ⊕ Θj = Prf(Kj + xj + εj , Rj), and otherwise

Υj ⊕ Θj = Prf(Kj + rj1, Rj).

4. User i first computes Ωx,j = H(Prf(Kj + Vx, Rj)) for every 1 ≤ x ≤
T, 1 ≤ j ≤ M , and then computes a randomized check value vector Ω∗,j =
PMj{(Ω1,j , · · · , ΩT,j)} for every item j. It permutes a vector, formed by indi-
vidual check value vectors of all items, and sends the result PM{(Ω∗,1, · · · ,
Ω∗,M )} to the RecSys.

5. After receiving PM{(Ω∗,1, · · · , Ω∗,M )} from the user, the proxy can com-
pute S, which is a new set generated based on Ξ: for every element in Ξ,
if its hash value with respect to H appears in the corresponding element in
PM{(Ω∗,1, · · · , Ω∗,M )} then the corresponding element in S is set to be 1
otherwise it is set to be 0.

6. With S and PM, user i can identify the unrated items whose approximated
predictions fall into the set {V1, · · · VT }.

Table 2. Computational Complexities

Paillier.Dec Paillier.⊕ Prf.Evaluate Prf.Hadd Time

User M M(1 + T ) 63.52 s

RecSys M M 4.16 s

Proxy M 40 ms
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We summarize the asymptotic complexity in Table 2. Based on the reference
codes by the authors of [1], the Prf.Evaluate and Prf.Hadd takes about 1.04 ms
and 10 µs. W.r.t. the MovieLens 1M Dataset and T = 2, we compute the real-
world running time and put it in the last column of Table 2.
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Abstract. The pervasiveness of mobile devices, such as Android and
iOS smartphones, and the type of data available and stored on these
devices make them an attractive target for cyber-attackers. For exam-
ple, mobile malware authors seek to compromise devices to collect sen-
sitive information and data from the smartphones. To mitigate such a
threat, a number of online scanning platforms exist to evaluate existing
anti-malware applications. However, existing platforms have a number
of limitations, such as configuration inflexibility. Also, in practice, the
code protection and different structures complicate efforts to effectively
evaluate different commercial anti-malware software in a configurable
and unified platform. Hence in this work, we design CAVAEva, an engi-
neering platform for commercial anti-malware application evaluation, in
which users/researchers have the capability to configure the platform
based on their needs and requirements. In particular, we show how to
design such a platform and introduce its performance. Specifically, we
present a comparative summary of seven commercial anti-malware soft-
ware, and collect the feedback from a user study. Experimental results
demonstrate the potential utility of our platform in evaluating commer-
cial anti-malware software in a real-world smartphone deployment.

Keywords: Mobile device · Smartphone security · Malware
detection · Evaluation platform · Anti-malware software

1 Introduction

Smartphones, such as iPhone 11 and Galaxy S10+, are becoming more computa-
tionally capable (including storage capacities), and the amount and range of data
stored on or accessible from such devices are also increasing, such as personal
c© Springer Nature Switzerland AG 2020
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and sensitive information [1,11]. Hence, it is not surprising that these devices
have become an attractive target for cyber-attackers, ranging from script kiddies
to state-sponsored actors (e.g., advanced persistent threat (APT) actors). Mal-
ware remains one of the key threats to mobile device security, which can collect
and infer sensitive information and data from smartphones [45,47], as evidenced
by studies from commercial security organizations such as Mcafee [27] and the
research community [13,40,42,56].

Anti-virus (AV; also known as anti-malware) applications are a commonly
used tool to detect malware. Such applications can use signatures and/or behav-
ioral characteristics to identify and detect malicious applications (or malware).
However, these AV engines may be targeted by cyber-attackers as well. For
instance, Min and Varadharajan [38] presented an advanced AV parasitic mal-
ware, AV-Parmware, which is designed to attack protected components of AV
software by exploiting their security weaknesses (similar to how systems can
be compromised). They also identified weaknesses in AV software from four
major vendors that can be exploited. In addition, in recent years there have
been many attempts to design adversarial machine learning approaches to cir-
cumvent detection by AV applications [8]. This, therefore, necessitates the eval-
uation and benchmarking of different AV software, in terms of their effectiveness
and efficiency (e.g., performance vs. cost) against malware.

There are a number of online scanning platforms that users can upload sus-
picious files for examination and obtain a report from several participating AV
engines. However, such a platform is generally not configurable and sufficiently
flexible. For example, it is challenging for a user to add their own AV engines, or
a particular engine version. In addition, users often want to know the workload
of different AV engines on their smartphones in order to select an appropriate
AV application, which is not available from existing online platforms. In the
current market, various AV engines are available1, but there is no valid platform
for users/researchers to evaluate different AV applications based on their own
requirements. This is the gap we seek to address in this paper. The contributions
in this work can be summarized as below:

– In this paper, we design an engineering platform for commercial AV applica-
tion evaluation (hereafter referred to as CAVAEva). The platform allows users
to configure the platform, for example by adding or removing AV software of
interest, and to examine suspicious file(s) on a real smartphone environment.
We also remark that we are not seeking to replace existing online tools, rather
we are seeking to complement existing approaches.

– In addition, the code protection and different structures used by AV engines
complicate efforts in implementing and automating the evaluation. Therefore,
we present an approach to customize and deploy CAVAEva on a smartphone
and a computer. In the evaluation, we evaluate seven commercial AV applica-
tions in terms of their classification performance and the incurred CPU usage
on the smartphones.

1 https://www.digitalcitizen.life/how-choose-great-security-product-thats-right-you.

https://www.digitalcitizen.life/how-choose-great-security-product-thats-right-you
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– We further perform a user study with over 100 participants from academia
and industry to collect their feedback regarding the utility of our platform.
They can tune our platform according to their requirements and evaluate
different AV applications. It is found that most participants considered our
platform to be very useful in practice.

The remaining sections of this paper are organized as follows. Section 2 briefly
reviews the relevant literature on smartphone threats and relevant studies on
anti-malware comparison. Section 3 presents our proposed CAVAEva and its
implementation. In Sect. 4, we describe an evaluation via a case study by com-
paring seven well-known commercial anti-virus software, and introduce a user
study with over 100 participants. We also discuss some some learnt experience
and challenges. Finally, we conclude this paper in Sect. 5.

2 Background and Related Work

In this section, we first introduce the background on smartphone threats, and
then review existing studies on anti-malware comparison.

2.1 Background on Smartphone Threats

There is a wide range of threats to smartphones, such as malware, side channel
attacks and physical channel attacks.

Malware. Lin et al. [20] revealed that the Android Debug Bridge (ADB) capa-
bility could be utilized by applications (apps) with the INTERNET permis-
sion installed on the same device, and built Screenmilker to demonstrate how
such a feature can be exploited. Specifically, Screenmilker is designed to monitor
the user’s screen and sniff user’s key-in password in real-time. When study-
ing Android’s updating mechanism, Xing et al. [54] identified the Pileup flaws,
through which a malicious app could strategically declare a set of privileges and
attributes on a lower version operating system, and wait until it is able to escalate
its privileges on the new system. Consequently, a malicious app can acquire a set
of newly added system and signature permissions, as well as determining their
settings. Andriesse and Bos [2] introduced a code hiding approach for trigger-
based malware, which can conceal malicious code inside seemingly innocuous
code fragments. Min and Varadharajan [38] introduced an AV parasitic malware,
AV-Parmware, designed to attack protected components of anti-virus software
by exploiting their weaknesses. We refer the interested reader to [13,42,56] for
a summary of existing malware research.

Accelerometer Side Channel Attacks. Side channel is often utilized by mal-
ware to steal information on mobile devices. For example, Cai and Chen [7] pre-
sented a side channel attack targeting touchscreen smartphones with only soft
keyboards. Specifically, they demonstrated that when users clicked on the soft
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keyboard, especially when he/she holds the phone by hand rather than placing
it on a fixed surface, the phone vibration on touchscreens are highly correlated
to the keys being typed. They conducted a study and showed that they were
able to infer correctly more than 70% of the keys typed on a number-only soft
keyboard on a smartphone. Marquardt et al. [23] also demonstrated that an app
with access to accelerometer readings on a smartphone could use side channel
attacks to recover text entered on a nearby keyboard. They showed that by
characterizing consecutive pairs of keypress events, up to 80% of typed content
can be recovered. Do et al. [11] demonstrated how one can design an innocu-
ous app to exfiltrate data from a smartphone (or any computing device) via
sound frequency in the 20–22 kHz. Such an attack does not require the mobile
app to request access to any permission, and uses only the built-in speaker or a
connected ear phone.

Owusu et al. [41] demonstrated how accelerometer readings can be used to
extract entire sequences of entered text on a smartphone. They showed how a
background application can use the accelerometer to spy on keystroke informa-
tion during sensitive activities, such as account login. In their study, the authors
reportedly found 59 out of 99 passwords using only accelerometer measurements
logged during text entry. Miluzzo et al. [39] presented TapPrints, a framework
for inferring the location of taps on touchscreens using motion sensor data. Their
approach reportedly accuracy rates of between 80% and 90% for English letters.
A summary of other earlier works can be found in [4,15,18,21,46,51,57].

Physical Side Channel Attacks. These attacks are mainly based on physical
objects, such as oil residues left on the touchscreen or the screen reflection from
nearby objects. Aviv et al. [5] first explored the feasibility of smudge attacks
on touchscreens with different lighting angles and light sources. They indicated
that the pattern could be partially identifiable in 92% and fully in 68% of the
tested lighting and camera setups. For the screen reflection, Raguram et al. [43]
showed that automated reconstruction of text typed on a mobile device’s virtual
keyboard is viable, by observing the reflections (e.g. reflection of the phone on
the user’s lens).

Lau et al. [22] designed an early charging attack, Mactans, where the mali-
cious charger (BeagleBoard) was used to inject malware onto smartphones when
they were plugged into the malicious charger. However, their attacks require users
to unlock the phone screen and install developer license in advance. Spolaor et
al. [48] also described how an adversary could leverage a malicious charging sta-
tion to exfiltrate smartphone data via a USB charging cable. Specifically, they
designed PowerSnitch, an application designed to send data in the form of power
bursts by manipulating the power consumption of the device’s CPU. One limi-
tation of this attack is that users have to pre-install a small app on their phones.
Meng et al. [32,33] developed JFC attacks, which can record screen information
during the whole charging period. Such an approach does not require any request
for permission or phone unlock action, and cannot be detected by existing anti-
AV applications. To launching this attack, an additional hardware of VGA/USB
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interface is needed, which can be easily purchased online. Therefore, charging
attacks are a real risk for smartphone users [34,35].

2.2 Related Work

To mitigate the above threats, it is necessary and important to deploy appro-
priate security mechanisms on smartphones. Anti-malware applications are one
of the most commonly used methods in both academia and industry. To iden-
tify malware, a number of machine learning approaches, such as those reported
in [6,10,19,37], have been proposed. Such approaches generally require some
known instances to be used as training data. With the evolution of evading tech-
niques, there is an increasing need to evaluate the performance and robustness
of existing commercial AV engines. In current market, there are various com-
mercial AV applications, while few studies focus on evaluating the performance
among different AV engines.

Garuba et al. [14] conducted a comparative analysis of three methods in
defeating malware on client computers such as anti-malware software, patch
management, and host-based firewalls. Their work aims to guide organizations
with limited security budgets and resources to find a proper defensive solution.
Morales et al. [26] then focused on commercial anti-malware programs and intro-
duces a measurement to evaluate the effectiveness. They found that several anti-
malware programs may leave infected objects unresolved by producing numer-
ous incorrectly treated or untreated true positives and false negatives. Talal et
al. [50] studied the functionalities and services of several anti-malware applica-
tions in terms of the design mechanisms, features and strategies. There are also
some studies investigated the security of detection engines against some par-
ticular attacks such as transformation attacks [44], Bytecode Obfuscation [12],
anti-virus assisted attacks [53], etc.

There are also a number of online scanning platforms that can help com-
pare the detection performance among commercial AV engines. However, these
platforms are not configurable and flexible. For instance, users cannot add their
interested commercial engines, and the practical running performance on their
mobile devices is not available. This motivates our work in designing a more
configurable and flexible platform to evaluate the performance among different
commercial AV engines. In addition to AV software, there is a need to imple-
ment other solutions such as applying continuous authentication on smartphones
based on behavioral biometrics [28,31] and examining CPU usage [17,36].

3 Proposed CAVAEva and Implementation

In this section, we first introduce how our proposed CAVAEva platform works,
prior to explaining how it can be implemented.
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Fig. 1. Proposed CAVAEva platform: a simplified workflow.

3.1 Platform Design

There are many machine learning-based malware detection algorithms proposed
in the literature (e.g. [9]), and this number is increasing. However, due to the
node protection and different structures, it is challenging to compare and bench-
mark the performance of different AV engines on a particular smartphone. As
discussed earlier, existing online tools such as VirusTotal [52] do not generally
provide the configuration flexibility for users or researchers. Our proposed plat-
form, commercial anti-virus application evaluation (CAVAEva), is designed to
enable users, researchers and practitioners to configure the environment (e.g.
adding and removing AV engines of interest, and choosing how to output the
decisions and results, such as using visualization), and facilitate evaluation on
an actual smartphone.

Figure 1 presents a simplified typical CAVAEva workflow, comprising inter-
actions among a smartphone, a computer and users (also described below).
Specifically, users can use a computer to send relevant commands to the con-
nected smartphone, for example for configuration (e.g. installing or removing AV
engines). To ensure a realistic environment for AV engines, the connected smart-
phone upon receiving the commands from the computer can configure the smart-
phone’s environment, which can be used for malware detection (e.g., recording
of detection performance, and CPU usage caused by the installed AV engines).
Moreover, users can also install other detection approaches on the phone, such as
deployment of machine learning-based detection with classification models and
a knowledge database.

3.2 Platform Implementation

In comparison to other, existing detection approaches, it is more difficult to com-
pare different AV applications. For example, AV vendors often employ some tech-
niques to protect the code of their software and therefore, different AV engines
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Fig. 2. An example of how APK files and malware are stored on the smartphone.

Fig. 3. Examples of where AV engines store their scanning results.

often have unique structure. Therefore, in this part, we introduce an engineering
way of implementing CAVAEva in a real-world scenario.

Environmental Setup: To realize the platform implementation, we used a Linux
machine (with Intel(R) Core(TM) i5-5300U CPU 2.3 GHz, 16G RAM) and a
Samsung Galaxy S6 smartphone, and adopted Java and Python as the program-
ming language. This allows us to use various libraries provided by Python, such
as matplotlib [24] and sqlite3 [49].

Preparation: After the environmental configuration, the first step is to create
a folder with the same name on both the computer and the smartphone (e.g.,
to store AV apps and malware samples). In our platform, we choose to move
all APK files and malware to /sdcard/Download/ on the smartphone. Figure 2
presents an example of how APK files and malware are stored on the smartphone.
To automate the evaluation, the folder contains a subfolder of malware and
various APK files for AV engines. Users can now add new AV APK files here, or
remove those that are not of interest.

Then, it is very important to identify the location where one AV engine
stores their scanning result. Figure 3 shows location examples on where these
AV applications would store their scanning output, i.e., Lookout uses seclog.txt
to store the result. Due to the different structures of AV engines, it is a challenge
to identify such location automatically.

Detection Phase: Then, we develop a script to start installing AV engines on
the smartphone, and check whether there is any installation problem. Figure 4
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Fig. 4. An example script to start installing AV applications.

Fig. 5. Saving the scanning result in a database (test.db): an example.

describes our script for installing AV engines, and before the installation, our
script will clean and uninstall existing AV engines on the smartphones. We
remark that the MonkeyRunner [25] app can be used to complete the process
of installation for any AV engine that requires assistance from user input. This
app will press the screen button to continue the process and sign up for a tem-
perately account that is obtained in advance. Then, our script starts installing
malware on the phone to evaluate the performance of different AV engines, and
then remove the installed malware before the installation of the next one. This
loop will end until all malware have been tested. The results (e.g., execution
information like CPU usage and detection performance) can then be forwarded
to the computer.

Findings: In this phase, the main purpose is to output the scanning result in
an expected format for each AV engine (using table and graphic visualization).
In the example shown in Fig. 5, when all suspicious files have been successfully
scanned, the result is saved in a database (test.db) using sqlite3. When the result
is out, users can configure the environment to compare the performance among
different AV applications, in terms of their workload and detection rate. As each
AV engine may use a different way to store the scanning result, our platform
provides a consistent way to help users perform a comparative benchmark.
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Fig. 6. Classification accuracy and CPU usage.

4 Evaluation

In this section, we present a case study by evaluating seven anti-virus appli-
cations on CAVAEva, collect the feedback from over 100 participants in both
academia and industry, and discuss some learnt experience and challenges.

4.1 Case Study

In the case study, we present our findings based on our evaluation of the follow-
ing seven AV applications (all are free version in 2018): Avast, AVG, Lookout,
Eset, Dr.Web, Kaspersky, and Avira. In our evaluation, we compiled our dataset
comprising 11,232 Android apps by crawling app stores, such as Google Play
(78%) and Anzhi (20%), as well as those obtained via direct download (e.g.,
DREBIN [3] - 2%).

Then, these apps were used to test our CAVAEva platform (comprising the
Linux machine and Samsung Galaxy S6), and evaluate the performance of the
seven AV applications. Figure 6 shows the classification accuracy and the CPU
usage, where classification accuracy here indicates the capability of identifying
both benign and malicious applications. It was observed that all seven AV engines
achieved over 97% classification accuracy, with Lookout achieving 99.8% classi-
fication accuracy. In terms of CPU usage, all seven AV engines required at least
32% additional usage due to the scanning operations and interactions, among
which Kaspersky needed more CPU usage while Avira required less usage than
others.
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Table 1. Participants’ background in the user study.

Age range Male Female Occupation Male Female

18–35 31 32 Students from computer science 17 14

35–45 22 15 Researchers 21 24

41–50 4 2 Industry engineers 19 11

Table 2. Major questions and relevant scores collected from the user study.

Questions (CS students) Average score

1. The platform is more flexible and configurable 8.8

2. I think the platform is useful in practice 9.1

3. I may consider using this platform in my future work 8.5

Questions (Researchers) Average score

1. The platform is more flexible and configurable 8.3

2. I think the platform is useful in practice 8.5

3. I may consider using this platform in my future work 8.2

Questions (Industry engineers) Average score

1. The platform is more flexible and configurable 8.9

2. I think the platform is useful in practice 8.7

3. I may consider using this platform in my future work 9.1

4.2 User Study

To collect the feedback on the utility of our platform, we perform a user study
with over 100 participants by distributing our platform to both researchers and
industry engineers. The participants’ background is summarized in Table 1. All
participants have an interest on our work and were recruited via online platforms
and social recommendations. In particular, the students are from the computer
science major including both master and PhD students. Researchers including
postdoc fellows and faculty members. The industry engineers are from several
IT companies.

Before the start, we introduced our purpose to all participants. They could
use the platform for a week and then completed a feedback form, which contains
a set of questions regarding the platform performance and usage. Each question
employs ten-point Likert scales: namely, 1-score indicates strong disagreement
and 10-score indicates strong agreement. Table 2 shows the questions and the
collected feedback.

– The first question. For this question, we asked the participants to consider
several existing online detection platforms, as compared with our platform.
It is found that most participants supported our platform to be more flexible
and configurable. Specifically, industry engineers provided the highest score,
indicating the promising performance.
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Fig. 7. An example on how to use MonkeyRunner to activate Lookout after the instal-
lation.

– The second question. This question aims to investigate the participants’ atti-
tude towards the usage of our platform. It is visible that all scores from dif-
ferent groups are above 8.5, indicating the importance of our platform. In our
informal interview, many participants consider that our platform can com-
plement the existing online detection tools and help enhance the commercial
anti-malware applications.

– The third question. According to this question, we found that most partic-
ipants are willing to use our platform in their future work. In particular,
researchers provided the lowest score of 8.2 while industry engineers provided
the highest one of 9.1. In our informal interview, it is found that researchers
focused more on how to extend our platform according to their demands,
and then design a new/updated one. By contrast, industry engineers focused
more on how to apply this platform to their work directly. This is the main
reason for explaining their different scores.

Overall, the collected feedback and scores are positive, demonstrating that
our platform has a potential to be applied in practice, with many demanding
features like flexibility and extensibility.

4.3 Discussion

In this work, our main purpose is to design a configurable and flexible platform
for automatic commercial anti-virus application evaluation. Our platform is still
developed at an early stage, and can be enhanced in many aspects. In this part,
we discuss some learnt experience and challenges. A summary of our findings is
presented as below:

– File size. In the evaluation, we found that free online services may have a
size limit for the uploaded apps, ranging from 32 Megabyte to 64 Megabyte.
Our observation echoed that of [16]. In comparison, there is no such limit
for our platform, as CAVAEva will install and evaluate one app on an actual
smartphone.
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Fig. 8. The figure shows how to output the scanning results in a table.

– Screen activation. To automate the evaluation process, some AV engines
require uses to click a ‘Next’ button to activate the next step. In this work,
we employed MonkeyRunner to mitigate this limitation – see Fig. 7. Other
approaches can also be used to automate the evaluation process.

– AV engine selection. In our platform, users can freely deploy their AV software
of choice, and this flexibility is not commonly found in other tools/platforms.

– Output format. In this platform, the scanning results can be displayed in
a variety of formats, such as tables and charts – see Fig. 8. Users can also
customize the display formats, such as using visualization.

As our platform is only a proof-of-concept, the platform can be enhanced in
a number of aspects. Examples include the following:

– Output speed. As compared to existing online scanning tools, our platform
may require more time to complete the examination and producing the result.
This is because CAVAEva has to install each AV engine and test all files or
apps on an actual smartphone. Hence, performance optimization is one of our
future agenda.

– Malware label and lack of a standard naming convention. Hurier et al. [16]
reported that current online scanning services lack consensus, in the sense that
binary decisions from different AV engines may produce conflicting results on
the same samples. In addition, they also noted that malware labels are very
challenging to compare due to the lack of a naming convention for malware
samples. Hence, both limitations should also be studied in the future.

– Smartphone support. Our current platform supports most Samsung phones,
and users can select their smartphone model. For other smartphones (i.e.,
different makes, such as iPhones), there is a need to configure the platform.
In the future, we plan to extend the platform to be compatible with other
smartphones.

– Online scanning tool comparison support. In this work, we only focused on
designing a flexible and automated platform to facilitate evaluation of com-
mercial AV applications. In the future, we intend to extend the platform to
also include existing online scanning tools.
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– Full automation. One main purpose of our platform is to automate the eval-
uation process of different AV engines, whereas each AV engine may have
different design structures, making the task difficult. To achieve our purpose,
we implemented various tools and scripts on CAVAEva. In our future work,
we plan to test the platform performance in a systematic manner.

Overall, how to develop a unified and flexible platform for commercial anti-
virus application evaluation is a challenge, i.e., there is a need to solve many
technical issues. Our platform is one step for addressing such challenge, with the
purpose of complementing the current literature.

5 Conclusion and Future Work

Detecting malware on existing computing devices, such as smartphones, is cru-
cial and remains a challenging topic. While there are many online scanning tools
and AV applications, there is no user friendly manner to evaluate and bench-
mark such tools and applications. In addition, many of these online scanning
tools have limitations such as file-size restriction. Thus, there is a need to design
a configurable and unified platform for evaluating different AV engines.

In this work, we designed CAVAEva, an engineering platform for commercial
AV software evaluation. The platform allows users, researchers and practitioners
to configure the platform based on their own needs, and the evaluation process is
automated. To investigate the utility of our platform, we performed a case study
by comparing seven well-known commercial anti-virus applications regarding
detection performance and CPU usage, and held a user study with over 100
participants from both academia and industry to collect their feedback. Our
results demonstrate that our platform can provide many demanding features, i.e.,
showing the caused CPU usage on a real smartphone, and is useful in practice.
Our work attempts to complement existing research on malware detection and
stimulate more research on such challenge.
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Abstract. Code virtualization technique obfuscates programs by trans-
forming original code to self-defined bytecode in a different instruction
architecture. It is widely used in obfuscating malware for its ability to
render normal analysis ineffective. Using symbolic execution to assist in
deobfuscating such programs turned to be a trend in recent research.
However, we found many challenges that may lead to semantic confusion
in previous symbolic execution technique, and proposed a novel sym-
bolic execution technique enhanced by time stamps to tackle these issues.
For evaluation, we implemented it as a prototype of SymSem and deob-
fuscated programs protected by popular virtual machines. The results
indicate that our method is able to accurately recover the semantics of
obfuscated function trace.

Keywords: Deobfuscation · Virtualization obfuscation · Symbolic
execution · Trace rewriting

1 Introduction

Code protection techniques help software writers protect their copyright, these
techniques also become weapons against malware analysis. Popular code protec-
tion techniques includes control flow flattering, junk code, string encryption and
code virtualization. Among all the developed code protection techniques, code
virtualization, also known as VM-based code obfuscation is one of the most
practical and effective code obfuscation techniques for its ability to defeat unau-
thorized code analysis in either static or dynamic manners. It is also empowered
by combining itself with other techniques.

The key idea of VM-based obfuscation is transforming the instruction set of
the original program to another one with semantic invariance and embedding
the obfuscated program with an emulator to execute the generated code. While
each VM-based code obfuscator realizes its own instruction set and emulator,
modern virtual machines still can be divided into two main types of realizations.

One uses a dispatcher-handler model, whose emulator can be clearly divided
into two components. The main component, dispatcher, reads one instruction
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from the code area and decodes its operation type. Then it picks up a corre-
sponding handler to perform the code-specific operation, which may add two
integers or perform memory operation. For example, VMProtect 3.09 [4] applies
its emulator with a few dispatchers with handler tables, each of them contains
pointers of hundreds of handlers.

The other main type of virtual machines apply the direct-threading model.
These virtual machines eliminate the dispatcher, which is vulnerable in reverse
engineer. Instead, these virtual machines enhance the original handlers by
append decoding functionality at the end, whose logic can be costume designed,
thus enabling the virtual machine to further obfuscate its control flow features.
Recently, many commercial code obfuscators such as VMProtect [4], Themida [3],
Code Virtualizer [1] have all adapted direct threading model.

The demands to analyze the VM-based code obfuscation increase due to
its growing popularity in malware protection. To deobfuscate malware pro-
tected by code virtualization technologies, researchers have developed many
techniques aiming for automatic analysis. For example, VMAttack [11] detects
the dispatcher-handler loop and uses folding optimization to recognize impor-
tant instructions in the virtual machine code. VMHunt [18] applies data flow
analysis on the trace of obfuscated program and identify the entries and exits
in the trace, then it uses symbolic execution technologies to generate a formula
to represent the trace’s semantics. Liang [12] developed a method of trace sim-
plification based symbolic execution and compilation optimization. These works
all based themselves on dynamic analysis, including data flow analysis, taint
analysis and symbolic execution.

However, we found that former works used a simple model when applying
symbolic execution, this model may have a few inputs, but with only one output.
While practical code in virtual machines comply with a different model consid-
ering complicated semantic meanings. First, a snippet of virtual machine code
may have multiple inputs and outputs. These outputs are physically separated
thus can not be represented in one expression. For example, a handler may read
a bundle of inputs from memory, do some calculation and save the results to dif-
ferent registers and memory addresses. What’s more, many complex situations
which would cause semantic confusions have been omitted. A handler with two
memory inputs may have two symbolic values both point to the same address
under specific conditions. Improper treatment of these two values may cause seri-
ous semantic confusions for analyst and lead to different semantic comprehension
in recovering code.

We found that, besides explicit dependencies, instructions and its generated
values have implicit relationship that make a difference to the output semantics
in symbolic execution. Any misconduct in symbolic execution may lead to loss of
information needed for resolving semantic confusions in code recovery. As these
implicit relationships are conducted under time sequences, we further noticed
that time stamps is an important indicator of the relationship.

In this paper, we systematically study the challenges and develop a new app-
roach in symbolic executions and code recovery. First, we elaborate the challenges
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when applying a more practical semantic model in symbolic execution. These
challenges we found are caused by misconducts when dealing with multiple sym-
bolic expressions. Then, we propose a new kind of symbolic execution technique
enhanced with time stamp, which efficiently complements the missing informa-
tion in original symbolic execution methods and help tackle the challenges we
found. Finally, we implement a prototype of our symbolic execution method,
SymSem. SymSem takes an obfuscated program trace as input, extracts the
virtual machine code from the trace and rewrites these code by symbolic execu-
tion and recovering code from symbolic expressions. We will illustrate how our
implementations can be used in trace optimization and reverse engineer.

For evaluation, we implement a prototype of SymSem based on symbolic
execution with time stamps. We pick up test cases from famous algorithms’
realizations and open-source projects, including binary search, matrix multi-
ply, tcp checksum, rc4 encryption and bzip2.14. We obfuscate these programs
with commercial code virtualization obfuscators like VMProtect and Themida.
Then, we trace the obfuscated program and rewrite the obfuscated function.
The rewritten traces have the same semantic meaning when executing in the
obfuscated program. Moreover, the trace length is reduced to 12.5% to 36.68%
of the original. Our evaluation also shows that SymSem can be easily scaled to
large-size traces for two reasons. First, the time complexity of our prototype is
more related with the handler numbers and their length, not the trace length
of obfuscated function. Also, SymSem are designed for parallelism as symbolic
execution procedures of different handlers can be done concurrently.

This paper makes the following contributions.

1. We found a series of problems related to trace rewriting by means of symbolic
execution in practical situations.

2. We designed a new symbolic execution method to precisely and accurately
extract the semantics of obfuscated program. Our symbolic execution with
time stamps is able to tackle the difficulties related to extracting semantics
through symbolic execution.

3. Based on our new symbolic execution method, we designed a prototype of
SymSem and we evaluate it in different commercial virtual machines. The
result shows that it is able to rewrite the trace of obfuscated function.

The rest of the paper is organized as follows. Section 2 points out the limi-
tations in symbolic execution and the challenges for this work. Sections 3 and 4
describes the design of SymSem. The implementation and performance evalua-
tion on SymSem is in Sects. 5 and 6, respectively. Section 7 lists the related works.
Sections 8 and 9 discuss the limitation in our work and conclude the paper.

2 Challenges

Symbolic execution has been used in deobfucating in many previous work due
to its ability of forming corresponding relationship between inputs and outputs.
The results of symbolic execution, a set of symbolic expressions,which represents
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the relationship between program inputs and outputs, have been not only the
final output of deobfuscation analysis [18], but also compiled to optimized code
with better readability [12]. Unfortunately, we first found previous work made
an impractical assumption that target programs with only one output, thus only
one symbolic expression was needed to represent the semantics of target code.
This assumption violates the model of practical programs, as a program may
have multiple separate input sources and outputs.

We then found that current form of symbolic expressions are unable to con-
tain the full semantic information of program trace thus may cause semantic con-
fusions. Meanwhile, generating compilable code from multiple symbolic expres-
sions have many challenges with explicit and implicit data dependence.

In this chapter, we will describe the challenges we encountered when rewriting
program trace with multiple outputs. These challenges are omitted by previous
work. Then we will unveil why current symbolic expressions may cause confu-
sions.

2.1 Challenges with Multiple Symbolic Expressions

We use the example below to illustrate one of the challenges when representing
the semantics of program trace using current symbolic expression.

1 mov ecx , dword ptr [ eax+4]
2 add dword ptr [ eax+4] , 4

Symbolic executing two lines of code above will generate two expressions
below.

ecx : dword ptr [eax + 4]
dword ptr [eax + 4] : dword ptr [eax + 4] + 4

It is obvious that the value in register ecx relies on the value saved in [eax+4],
thus a read after write hazard may arise when rewriting procedure fails to pre-
serve the appropriate sequence of code generation based on symbolic expressions.
In this case, read from dword address [eax+4] must precede the writing operation
of the same address. Read after write may lead to different semantic meanings.

Usually, the first idea of solving this hazard follows the method of construct-
ing a graph of dependence. On this graph, the code generation for expression
ecx relies on the read operation of the initial value of address [eax+4].

2.2 Challenges with Alias Symbolic Values

In addition to the hazards above, there is another challenge which may cause
semantic confusion when using previous symbolic execution method. We call it
alias, which results from the inability of judging the equality of two symbolic
values in outcome expressions.
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1 mov dword ptr [ eax+4] , 0 xbeefdead
2 mov dword ptr [ ebx+4] , 0 xdeadbeef
3 mov ecx , dword ptr [ edx ]

Here we illustrate the alias problem by the code above. We can easily enu-
merate the symbolic expressions generated as below.

ecx : dword ptr [edx]
dword ptr [eax + 4] : 0xbeefdead

dword ptr [ebx + 4] : 0xdeadbeef

Based on these expressions, we are unable to judge that if edx equals to
eax+4, neither the case if eax equals to ebx. When edx equals to eax+4, the first
expression could also be rewrited as ecx : 0xbeefdead. Meanwhile, the rewriting
procedure may decide to first deal with the first expression. The generated code
would simply move the initial value stored in address edx to register ecx, which
is contrary to the true sequence in the original code. This results in a new kind
of hazard that we call write after write hazard and the situation also exists when
edx equals to eax.

The case above shows that different sequences of code generation for expres-
sions with possible alias value may generate code with different semantic mean-
ings. In addition, the problem could not be solved by dependence graphs as
they are limited by implicit dependence relationship. Meanwhile, these relation-
ships, which are originally organized by time sequence, have been eliminated in
the symbolic expressions above. For those who want to understand the state of
program by these expressions, confusions are inevitable.

3 Symbolic Execution with Time Stamps

As previous form of symbolic expressions are unable to contain all informa-
tion necessary for generating compilable code. We implemented a new kind of
symbolic execution method named symbolic execution with time stamps. As is
indicated by its name, symbolic execution with time stamps tags every symbol
value with a time stamp when they are created. These time stamps demonstrate
the sequence of IR generation when needed. Here we describe how time stamps
help symbolic execution tackle the challenges referred in Sect. 2. In Sect. 4.3 we
will further elaborate our methods by an detailed example.

3.1 How Time Stamp Tackles Read After Write Hazards

First we describe how time stamps help tackle the challenge of read after write
hazards. Though this challenge can also be tackled by a dependence graph, time
stamp is a more natural method with generality.

We take the first case in the Sect. 2.1 as an example. The code first saves
the value of address [eax+4] to ecx. Then it updates value of address [eax+4]
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with a new value. Under symbolic execution with time stamps, the value in the
register ecx will be tagged with time stamp 0, as it is born in the operation of
the first instruction. Similarly, the newly updated value of address [eax+4] will
be tagged with time stamp 1.

When it comes to code generation, the procedure will first deal with values
tagged with lower time stamps. In this case it corresponds to the symbolic value
in ecx. It will read a value from address [eax+4]. Here of course the read operation
will get the right value, instead of one has been updated. Then the procedure
deals with the value tagged with time stamp 1. The problem of read after write
hazards is solved naturally.

3.2 How Time Stamp Tackles Alias Values

Time stamps can also help tackle the challenge of alias values, which is invisible
in dependence graphs. Still, we take the case in Sect. 2.2 as an example. It is
multifarious to enumerate all possible alias cases in the example. Not to mention
generating conditions and constraints of each alias cases.

However, under symbolic execution with time stamps, the value in address
[eax+4], [ebx+4] and ecx is respectively tagged with time stamp 0,1 and 2. In
the following IR generation procedure, if we follow the sequence of time stamps,
the value in the address [eax+4] will be first updated. Then it comes to the value
in address [ebx+4] and ecx. Never mind what alias cases may happen, the IR
generation procedure follows the correct sequence and avoids any conflicts. So
we can apply the same solution to tackle the alias challenge.

4 Design

4.1 Overview

We present a new method of symbolic execution and implemented it in a new
program trace analysis system named SymSem, which is used to analyze traces
of programs obfuscated by code virtualization technique. In this chapter we will
illustrate the overview of SymSem.

SymSem is a system aiming to recover the semantics of the trace obfuscated
by code virtualization technique. It takes the trace as input and outputs the
LLVM IR of the trace, which is both readable and compilable. Finally, SymSem
compiles the IR to generate assembly code for further evaluation. Figure 1 depicts
the whole architecture of SymSem, including three kernel components which
would be described in detail in the following sections.

1. VM Architecture analysis. For a program protected by code virtualization, we
first run it and record the trace. We implemented an analysis method based
on execution rate to extract virtual machine entries, exits and all handlers in
the trace.
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2. Symbolic execution with time stamps. We assume that the semantic meanings
of the program can be represented by a set of expressions between inputs and
outputs. Based on this assumption, the semantic meaning of obfuscated func-
tion can be achieved by connecting all the semantic expressions of handlers
in the trace. Here we use a new kind of symbolic execution technology named
symbolic execution with time stamps to extract semantic representation of
all handlers, VM entries and exits in the trace.

3. Generating LLVM IR. SymSem generates IR for LLVM compiler based on
the results of symbolic execution. These IR can be used to generate code or
symbolic representation of the whole trace.

VM Architecture analysis Symbolic execution with time-stamp Generating LLVM IR
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@"main"()
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mainentry:
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Fig. 1. SymSem architecture

4.2 VM Architecture Analysis

As described in Sect. 4.1, the VM architecture analysis is designed for extract-
ing virtual machine code from program trace. These code contain handlers and
information about how to reorganize the generated intermediate representation.

Here we use an easily implemented method to analyze the program trace.
We also assume that there does exist at least one virtual machine in the trace.
Our methods is based on two phenomenons we observed below:

1. For a specific program protected by code virtualization, all virtual machine
handlers have the same type tail jump, such as “jmp 0x434343” or “jmp
register”.

2. In the program trace, those basic blocks which are not in any loop but belong
to handlers have more chance to be executed for multiple times when consid-
ering a mount of continues instructions.
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Method Overview. Our method can be simply described as two steps. First,
screen out possible basic blocks belong to handlers based on execution rate.
Then, make further analysis based on control flow and data flow. These analyses
will finally help us mark all the basic blocks as “VM code” or “Non-VM code”.

Method Details. We will describe the details of our method in this section.
SymSem first runs the program and trace all the executed instructions once.
Also, for every basic blocks to be executed, SymSem records the address of its
first instruction and the value of stack register. These two kinds of records are
saved separately in two files.

We use the first trace file, which contains traces of all instructions, to calcu-
late the occurrence frequencies of different unconditional jump instructions. Like
what is shown in Fig. 2(a), we rank these instructions and assume those with
higher occurrence frequency are candidates of tail jump instructions of handlers.

Fig. 2. Extract tail jmps & detect handlers

Further analysis was based on control flow. We assume that the code before
a handler either belongs to another handler or the VM entry. Similarly, the code
after a handler is another handler or the VM exit. As is shown in Fig. 2(b), for
every jump instructions we have screened out, we trace backwards to another
jump instruction. The code between the two tagged jump instructions must be
a handler or includes one exit, one entry and some Non-VM code. We use some
data flow features to distinguish between this two situations. In the first case,
those code between two tagged jump instructions are tagged as a handler.

Finally, SymSem runs data flow analysis to recognize the entries and exits of
virtual machine. The VM entries and exits have some specific data flow features
which are easily recognizable. One of them is that all VM entries save the general
registers to some region of the memory. In this way we distinguish the code
between entry and exit as VM code and the other as Non-VM code.
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4.3 Symbolic Execution with Time Stamps

The components of symbolic execution and IR generating is the key of SymSem.
We use symbolic execution technique we first presented in Sect. 3. In this section
we elaborate our symbolic execution method in detail by an example.

A Detailed Example to Illustrate Our Method. Here we use an example
to elaborate how symbolic execution works on actual code. The case here is a
simplification of code we actually encountered.

1 mov ecx , dword ptr [ eax+0xc ]
2 add dword ptr [ eax+0xc ] , 0x4
3 mov dword ptr [ ebx+0xc ] , 0 xdeadbeef
4 mov edx , dword ptr [ edx ]

This code fragment first reads a symbolic value from address [eax+0xc] to
ecx. Then it adds the value in memory address eax+0xc] with 4, writes a concrete
value to address [ebx+0xc]. Finally, it reads a symbolic value from address [edx ]
to register edx.

It is clear that eax and ebx can be two alias values and there is no chance
to eliminate the alias simply based on the code fragment. Under that condition,
the address [eax+0xc] and [ebx+0xc] may have a write after write hazard. Also,
there is a read after write hazard with address [eax+0xc]. The generated code
must first read the value in memory address [eax+0xc], then write a new value
to the same address. What makes things more difficult is that edx may equals
to eax+0xc or ebx+0xc, making the situation more complicated.

Symbol Definition. We use the definitions below to elaborate the symbols in
the following.

Definition 1. There are two types of value in symbolic execution, concrete value
and symbolic value. We use Cm

n Sm
n to represent them. Here, m represents the

width of the value. And, n is a unique id of every value. For example, S32
0

represents a symbolic value of 32 bit size and its id is 0.

Definition 2. We use symbol | to represent the bind of values. For example,
C8

1 |C8
1=0x12 represents a concrete value of 0x12, while S32

1 |S32
1 =S32

0
represents a

symbolic value equal to S32
0 .

Definition 3. We use symbol TV = t to indicate the time stamp of value V. The
time stamp of [V1, V2, . . . , Vn] is the newest one of V1, V2, . . . , Vn. for simplicity,
time stamps start with 0.

Definition 4. We use a set of expressions like Pos1 : V1, Pos2 : V2, ... to represent
the state of system. EAX : C32

0 |C32
0 =0x12345678 means the value in register eax is

0x12345678.
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Procedure of Symbolic Execution with Time Stamps. We assume the
initial state of the system can be represented as mem[eax+0xc] : S32

0 ,mem[ebx+
0xc] : S32

1 ,mem[edx] : S32
2

Now we elaborate the procedure of symbolic execution with time stamps.
After the symbolic execution of the first instruction, register ecx was written
with a new symbol value, which equals to the value saved in memory address
[eax+0xc]. As it was the first instruction, the new created value will be tagged
with time-stamp 0.

ecx : S32
3 |S32

3 =S32
0 ,T

S32
3

=0

After the second instruction was executed, the value in the memory address
[eax+0xc] have been updated, and the time stamp of the new value is 1.

mem[eax + 0xc] : S32
4 |S32

4 =S32
0 +4,T

S32
4

=1

The third instruction sets address [ebx+0xc] with a concrete value 0xdead-
beef. Its time stamps is of course 2.

mem[ebx + 0xc] : C32
0 |C32

0 =0xdeadbeef,T
C32
0 =2

When the final instruction is executed, register edx will be updated with a
new value from address [edx ]. This operation creates implicit data dependencies
with edx and preceding address values. Here we can enumerate the final state of
the symbolic execution.

ecx : S32
3 |S32

3 =S32
0 ,T

S32
3

=0

mem[eax + 0xc] : S32
4 |S32

4 =S32
0 +4,T

S32
4

=1

mem[ebx + 0xc] : C32
0 |C32

0 =0xdeadbeef,T
C32
0 =2

mem[edx] : S32
5 |S32

5 =S32
2 ,T

S32
5

=3

If we observe the final state of the code, we will find that all values have been
tagged with a time stamp after symbolic execution. When generating corre-
sponding operation in intermediate representations, we can avoid the confusion
of alias as well as the read after write hazard or write after write hazard by
following the sequence of time stamps.

4.4 IR Generation and Compilation

The method of IR generation includes two steps. The first step is generating
IR for each handler extracted from the trace. All these semantic representation
have multiple inputs and outputs. Then these IR will be concatenated to form
the semantic representation of the whole trace.
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Algorithm 1. IR generate algorithm for handlers
Input: Expression set Φ
Output: LLVM IR of Code
Function Init Dependence Graph (Expression set Φ)

Dependence graph G ← ∅
for each Expression E in Expression set do

for each Expression ES in SubExpression(E) do
add edge (ES ← E) to G

if value E needs to be written to address addr then
add edge (addr ← E) to G

return G

Function Generate IR(Expression set Φ)
Dependence graph G ← Init Dependence Graph(Φ)
Q ← empty Queue
for each timestamp t ∈ Timeline do

Expression set θ ← ⋃
expressions E with TE = t

if θ = ∅ then
continue

for each Expression E ∈ θ do
r ← BuildIR(E)

Remove edges in G whose source is E
if value E needs to be written to address addr then

append (r,E,addr) to Q

Loop ← True
while Loop do

Loop ← False
for each IR r,Expression E,address addr in Q do

if there is no edge point to E in Graph G then
Build IR For Store (r,addr)
Loop ← True
remove(r,E,addr) in Q

Generate IR for Handlers. SymSem uses LLVM APIs to build two basic
function for IR generation, BuildIR and Build IR For Store. The former takes
a symbolic expression, read necessary data from memory and registers, do the
arithmetic operation required to generate corresponding representation. While,
Build IR For Store takes output of the former function and writes the result to
target register of memory.

SymSem utilizes the two functions above and time-stamp information pro-
vided by previous phases to generate IR for handlers. It invokes the BuildIR
function under the sequence of time-stamps. The generated representations will
be put in a queue, waiting for writing to target until conditions satisfied.

In consideration of saving physical registers and memory space, SymSem uses
a dependence graph here instead of time stamps. This also accelerates the writing



236 H. Li et al.

procedure. The algorithm used to generator LLVM IR correspond to handlers
can be described in Algorithm 1.

Here we take the code in Sect. 4.3 to illustrate how our algorithm works. The
first step of the algorithm is to generate representation for S32

3 , as it is the only
one which is created at time zero. The procedure will read a double word value
from memory [eax+0xc]. Then the algorithm deals with S32

4 . The value will be
immediately written to memory as there is no value explicitly dependent on it.
Next, the same memory update can be applied to address [ebx+0xc] for the same
reason. Finally, the value S32

5 can be written to register edx.

Generate IR for Virtual Machine Trace. Having generated the IR of differ-
ent handlers, the key of further generating accurate IR of the obfuscated program
trace is to efficiently organize the IR of handlers.Here we define semantics of each
handler as a function. Then the semantics of virtual machine trace can be rep-
resented by a sequence of function invokes. As the semantic representation is in
the form of LLVM IR, the result can be conveniently compiled into executable
code.

5 Implementation

We realized a prototype named SymSem for our methods and use a custom PIN
tool which includes 162 lines of C code as trace recorder. The symbolic execution
engine is based on manticore [2], most of the changes we made on it is meant
to add time-stamp in its CPU emulation module and to analyze the result of
symbolic execution. Our tool contains 25009 lines of code, 8545 lines of which are
newly added to the original framework, including 2237 lines related to symbolic
execution.

The PIN tool used in evaluation has about 225 lines of C code. Its responsi-
bility is to load the rewritten code into memory and execute.

An interesting result we discovered is that not all LLVM passes could be
implemented on our intermediate representation. So we have to use r0 opti-
mization of opt tools with selected passes including “-reassociate”, “-adce”,
“-mem2reg” which will not lead to semantic error. We found most errors those
unfit passes incurred is due to they made a false assumption of stack usage of
our code.

6 Evaluation

In this chapter we will evaluate our method on different code virtualization pro-
tection technologies. Our evaluation focus on three questions. (1) Can SymSem
correctly reverse engineer the architecture of the virtual machine from the obfus-
cated trace? (2) Is SymSem able to recover the semantics of obfuscated program
trace accurately? (3) How long does SymSem cost and how much can parallelism
help the analysis?
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6.1 Experimental Framework

We set up our experiment on a Windows XP virtual machine. All the tested pro-
grams were compiled by visual studio 2008 on the same machine. The remaining
analysis were conducted on a server with Intel Xeon Gold 5122 and 128G of
RAM, which runs Ubuntu 18.04.

We choose our test programs based on five algorithms including binary ser-
ach, matrix multiply, tcp checksum, rc4 encryption and bzip2 compression. We
choose proper implementations for these algorithms from Github and other open
sources. Two famous commercial code virtualizer VMProtect 3.09 and Themida
2.4.2 are used to obfuscate these programs. As required by the code virtualizers,
we only obfuscate the function of chosen algorithms and exclude other code. For
example, when dealing with the program of rc4 encryption, we only obfuscated
the encryption function.

For all tested programs, we separately constructed inputs to make sure that
they call the obfuscated function and exit normally. For example, the input of
rc4 encryption is a private key file and a message file. We use PIN tools to trace
the obfuscated programs. The tracer records not only instructions, but also their
addresses and specific register values. We only trace the code which belong to the
program itself and exclude the third party library. The following Table 1 shows
statistics of the tested program traces.

As is show in Table 1, we count the trace length by its lines, the average
length of handlers in the trace and if the data in virtual machine is encrypted.

Table 1. Tested programs. This table shows the characters of the tested programs.
“Handler avglen” means the average length of handlers appeared in the trace. We set
the label “encrypted” true if the data computing in the trace is encrypted.

Name Length
of trace

Length of trace
(obfuscated)

Handler
avglen

Encrypted

VMProtect binary search 31 18328 17.45 False

matrix multiply 151 60105 17.78 False

tcp checksum 174 75041 19.25 False

rc4 1484 395214 16.82 False

bzip2 244345 292161 19.61 False

Themida binary search 31 121417 454.33 True

matrix multiply 151 166234 384.69 True

tcp checksum 174 249736 516.98 True

rc4 1484 1175319 453.65 True

bzip2 244345 986447 271.59 True

As referred by previous work, modern commercial virtual machines all apply
redundant handlers and the state of the art also encrypted its computing data.
In our test experiments, VMProtect and Themida apply two different design
philosophy. The former implements RISC-like ISA while the latter is CISC-like.
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After being obfuscated by code virtualization, the function trace also expands
to hundreds of instructions.

6.2 Our Tool Can Accurately Analyse the Arch of VM Trace

In this section we evaluate SymSem by its ability to recognize VM code. First,
we use SymSem to find out handlers appeared in the trace, we compared them
with the results of manual work. Then we use our tool to find out possible VM
entries and exits, which were also compared with those we manually found.

SymSem tags basic blocks with three types, including “handler”, “dispatcher”
and “Non-VM”. The former two types belong to virtual machines while the latter
is not our rewriting target. We recognize VM entries and exits as special handlers.
As one handler may have different control flow which leads to different semantic
meaning, our tool specifically identified these cases.

Table 2. Handlers entries and exits found. This table lists the number of handlers
found in the trace by manual work and automatic analysis. The word “hdl” is the
shortcut of handler. Here “count once” means that different handlers with the same
start address only count once. “(CF ≥ 1)” indicates that handlers have more than one
control flow cases. The meaning of “(CF ≥ 2)” are similar.

Name hdl (manually) hdl (count once) hdl (CF≥ 1) (CF> 2) entry & exit

VMProtect binary search 43 43 43 0 1

matrix multiply 50 50 50 0 1

tcp checksum 52 52 52 0 1

rc4 67 67 67 0 1

bzip2 111 111 110 1 20

Themida binary search 109 109 156 30 3

matrix multiply 98 98 137 25 1

tcp checksum 117 117 181 39 3

rc4 113 113 158 36 1

bzip2 150 150 255 46 25

As is shown in Table 2, the handler number is at most 150 in the trace and
SymSem correctly identified all handlers in the trace. It also identified many
handlers which have same start address but different control flows. Programs
of bzip2 and binary search were found to have a few virtual machines inside
the obfuscated function. The analysis output shows that between two virtual
machines are some other function calls which are not obfuscated. SymSem does
not target these code so it is necessary to recognize them.

6.3 Our Tool Can Accurately Recover the IR of vm Trace

The preceding analysis generates LLVM IR representation of the obfuscated
trace. These IR representation can be compiled to get the optimized trace. As a
correct optimized trace indicates the correctness of the generated IR representa-
tion, we use a custom PIN tool to test the correctness of the rewritten semantics.
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This PIN tool writes the optimized trace into a unique region of memory and
modify the PC register when the program is going to execute the origin code.

As our rewriting procedure is based on traces, test inputs must lead to the
same control flow with those in the preceding analysis. We make sure that the
test inputs lead to the same control flow with the trace file by limiting their
ranges. For example, we use files with the same length in tcp checksum and the
same key in rc4 encryption.

We use a simple fuzzer which generates inputs with the same control flow to
test the rewritten code. These inputs were also sent to the same program not
instrumented. We compared all the outputs and found that the instrumented
programs have the same outputs with those not instrumented. We treat this as
a proof of the semantic invariance of rewriting procedure. From tests above, we
made a conclusion that SymSem can generate rewritten semantics accurately.

After evaluating the semantic invariance of rewriting procedure, we also count
the length of the rewritten trace, the length of IR and how many functions in
it. Table 3 shows the statistics of the analysis result. We counted IR length by
its number of lines, the most important data is the reduction rate which points
out how much optimization SymSem made on the trace.

Table 3. Statistics of the analysis results. This table shows the statistics of the analysis
results, which including IR representation and optimized trace. The reduction rate is
calculated by comparing length of the trace in virtual machines with the length of
optimized trace.

Name IR length func in IR Optimized trace Trace in VM Reduction

VMProtect binary search 2936 143 5254 18328 28.66%

matrix multiply 4231 197 21580 60105 35.90%

tcp checksum 4534 216 27532 75041 36.68%

rc4 8649 175 110049 395214 27.84%

bzip2 151456 6195 25248 83051 30.40%

Themida binary search 19930 191 17496 119794 14.60%

matrix multiply 17951 180 24886 166234 14.97%

tcp checksum 22957 219 34151 247834 13.77%

rc4 20306 181 163747 1175868 13.92 %

bzip2 804290 8280 105776 756225 13.98%

In the table, complicated programs such as rc4 have longer trace, generated
IR and more functions in the IR files. The results also show that the reduction
rate is stable for specific obfuscators. The average reduction rate of VMProtect is
31.89% and the one of Themida is 14.24%. The gap indicates that the reduction
rate is highly dependent on the obfuscator itself.

6.4 The Overhead of Our Tool

Based on the architecture of SymSem, the whole analysis time can be divided
into three parts, the time of trace analysis, the time of symbolic execution and
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the time used to generate IR and assembly code. In this section, we hope to
demonstrate that SymSem can analyze a program trace in an acceptable time
even for a more complicated program.

The first part of analysis is the trace analysis. Our algorithm parses the whole
trace twice. The first parse aims to get statistics of the basic blocks and control
flow information. Then the second is able to recognize the VM code, including
handlers, entries and exits. As this part of analysis time is heavily dependent
on the length of trace, what makes a difference is the analysis time of symbolic
execution and IR generation.

Here we separately tested the overhead of SymSem to generate rewritten
assembly code. The tests below was based on single process, which means it can
be further accelerated.

Table 4. Analysis overhead of single process. This table illustrates the overhead of
symbolic execution and generation of the optimized assembly code. Tags are defined as
follows: total time = the total time of symbolic execution and generation of optimized
trace, z3= the seconds spent in ze solver, SE= symbolic execution, llc = the time spent
in LLVM compiler, executed loc = the lines of code which is symbolic executed during
the analysis.

Name total time z3 SE llc executed loc

VMProtect binary search 1m14.982s 1.548s 1m14.022s 0.960s 733

matrix multiply 2m2.686s 3.350s 1m53.162s 9.524s 889

tcp checksum 2m6.014s 3.297s 1m50.576s 15.438s 1001

rc4 12m42.455s 3.315s 2m17.785s 624.670s 1127

bzip2 4m58.226s 11.844s 4m44.088s 14.138s 2069

Themida binary search 29m4.721s 163.150s 29m0.44s 4.278s 75418

matrix multiply 11m56.508s 118.164s 11m52.812s 3.696s 56549

tcp checksum 38m5.542s 205.830s 37m58.790s 6.752s 98744

rc4 32m43.882s 225.397s 29m49.469s 174.413s 72584

bzip2 66min36.38s 283.747s 64m56.50s 99.878s 103996

Table 4 shows the analysis time, including the symbolic execution and IR
generation. The analysis spends most of the time on symbolic execution. We
study the relationship between the overhead of symbolic execution and the exe-
cuted code length. The consuming time seems to be linear correlated with the
executed length, excluding the case of bzip2. We guess the case of bzip2 is an
exception because it has more virtual machines than others to analyze, which
cost a longer time.

The other part of analysis time, which is spent on compilers to generate
assembly code is related to the length of obfuscated trace. The case of rc4 has
a great amount of encryption loop in the trace so it cost much more time to
compile. However, of these ten different test programs, the longest analysis time
is limited in 66 min. Considering the length of trace and the procedure can be
further accelerated, we think this time is acceptable.
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Furthermore, we tested how much can parallelism help in analysis. As
described in, the analysis time can be divided into 3 parts and the second part,
which generate LLVM IR for handlers through symbolic execution can be fully
paralleled. We tested the overhead on programs obfuscated by Themida.

The symbolic execution can be accelerated by parallelism. Here we use mul-
tiple process to accelerate the analysis. Each process separately analyzes one
handler concurrently. Then the symbolic execution result is assembled to gener-
ate IR representation and assembly code. We record the total time of generating
executable assembly code. Table 5 reveals the whole test results.

Table 5. Multiple process analysis overhead. This table illustrates the total analysis
time with multiple processes.

Name 1 process 2 processes 4 processes 8 processes

Themida binary search 23m29.353s 22m59.659s 12m0.215s 7m35.043s

matrix multiply 11m56.508s 36min54.790s 19m4.849s 11m28.323s

tcp checksum 29m36.273s 25m16.340s 13m4.776s 8m10.550s

rc4 32m43.882s 32m44.630s 24m49.204s 14m28.977s

bzip2 37min16.617s 34min15.423s 17m37.760s 11m7.583s

For simplicity, we limit the process number by exponent of two. We set the
upper bound as 8 because of physical resources limitations. In addition, for those
test cases with multiple virtual machines in the obfuscated function, we only
count the first virtual machine, as the following virtual machines may inherit
the knowledge of the preceding one, which brings additional uncertainty.
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Fig. 3. overhead with multiple process

The Fig. 3 indicates that parallelism does reduce the whole overhead of the
analysis. The consuming time nearly comes to 35.52% of the original when using
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8 processes at the same time. The whole consuming time decreases with more
analysis processes, but not by multiplicative inverse. We found that when using
only two processes, the consuming time may be more than using single process.
The following reasons may help to understand this phenomenon. First, par-
allelism brings additional cost with initialization and process communication.
Second, some handlers were executed more than once for reducing the cost of
communication.

We also compared the efficiency of SymSem with another deobfuscation tools
driven by symbolic execution, VMHunt. We collected data from the published
paper. We compare the average data based on 6 test cases in VMHunt and 10 in
SymSem. We mainly concern two important indexes in the symbolic execution
system. From Table 6, We find that though SymSem spends less time on each
instruction, its ability to simplify instruction before symbolic execution is not
comparable with VMHunt. The most significant reason for this is that VMHunt
also puts data dependence analysis into its extraction process before symbolic
execution.

Table 6. Efficiency comparison with VMHunt. In this table we compare the code
extraction rate and the execution time per instruction of two different tools. The aver-
age data is based on 6 test cases in VMHunt and 10 in SymSem. The tag are defined
as follows: “SE”= symbolic execution. “CE”= code extracition rates, it indicates how
much code would be extracted for symbolic execution compared to the whole trace.
“TPI”= symbolic execution time per instruction.

Name avg total trace avg SE len avg SE time CE TPI

SymSem 354000.2 41311.0 1112.725 s 11.67% 0.0269 s

VMHunt 2613690.1 2011.3 339 s 0.076953% 0.1685 s

7 Related Works

Deobfuscation of Virtualized Code. The deobfuscation of programs pro-
tected by code virtualization has always been a difficult problem. Since Rolles
proposed a deobfuscating method based on virtual machine architecture analy-
sis [15], most of the automatic methods aim at virtual machines with dispatcher-
handler model [11,12,15,16], one of the which is VMAttack [11]. It applies many
heuristic rules to pair handlers with translated mnemonic.

Another type of deobfuscating method aims to sift important instructions
from the program trace. The widely used approaches includes dataflow analysis,
control flow analysis and taint analysis. These methods have an advantage that
they do not rely on any assumptions of virtual machine architectures. One of
the representative work is from Coogan [10], which uses equational reasoning
to analyze instructions related to system calls. VMHunt [18] and Bin Sim [14]



SymSem: Symbolic Execution with Time Stamps for Deobfuscation 243

are similar for applying backward slicing based on different sources. Further-
more, VMHunt also use symbolic execution to do semantic analysis on sliced
instructions.

Symbolic Execution of Code. Symbolic execution has been one of the fun-
damental technologies in automatic analysis [5,19]. Assisted by modern power-
ful SMT solver, symbolic execution abstract the target problem as constraint
solving, made great help in automatic exploit generation [6,9], control flow anal-
ysis [7]. Also, it is also widely used in deobfuscation. [12,18]. Automatic reverse
engineer tools take advantage of symbolic execution to deal with branch condi-
tions, represent semantic results or further generate optimized code for analysis.

However, as we have pointed out, symbolic execution also suffers from alias
and other problems, which may cause semantic confusion. We first point out
these problems and provide symbolic execution with time stamps to solve them.

Rewrite of Obfuscated Code. Binary rewriting is an kernel techniques in
security application area. It is widely used in profiling, code optimization, vul-
nerability detection. Our work uses a dynamic rewriting approach [13] to eval-
uate the correctness of trace rewriting. The same methods are also applied in
evaluation of many other binary rewriting tools [8,17].

8 Discussion

We now address possible limitations of our method here. First, SymSem is based
on dynamic analysis. As its analysis output is limited by the input trace, it is
unable to recover the whole semantics of the original function. Second, symbolic
execution method is unable to deal with those self modify code. These code have
continuously varying semantics which is unable to represented by simply a set
of symbolic expressions.

9 Conclusion

Symbolic execution has become a popular technique widely applied in fuzzing,
vulnerability exploitation and reverse analysis. We present a new kind of sym-
bolic execution technique which can accurately generate expressions that repre-
sent the full semantics of the code. In this symbolic execution technique, time
stamps play a important role in eliminating possible hazards and alias issues.
Also, by realizing a prototype named SymSem, we prove this technique can be
further implemented to assist reverse engineer of programs obfuscated by code
virtualization. We expect further costume compilation optimization will recover
the original semantics of the unobfuscated program.

Acknowledgments. This work was supported by the General Program of National
Natural Science Foundation of China (GrantNo. 61872237).
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Abstract. Recent security incidents indicate that certificate authorities
(CAs) might be compromised to sign certificates with fraudulent infor-
mation. The fraudulent certificates are exploited to launch successful
TLS man-in-the-middle (MitM) attacks, even when TLS clients strictly
verify the server certificates. Various security-enhanced certificate verifi-
cation schemes have been proposed to defend against fraudulent certifi-
cates, such as Pinning, CAge, CT, DANE, and DoubleCheck. However,
none of the above schemes perfectly solves the problem, which hinders
them from being widely deployed. This paper analyzes these schemes
in terms of security, usability and performance. Based on the analysis,
we propose Elaphurus, an integrated security-enhanced certificate ver-
ification scheme on the TLS client side. Elaphurus is designed on top
of Pinning, while integrating other schemes to eliminate their disadvan-
tages and improving the overall security and usability. We implement
the prototype system with OpenSSL. Experimental results show that it
introduces a reasonable overhead, while effectively enhancing the security
of certificate verification.

Keywords: Certificate · Certificate transparency (CT) · DNS-based
authentication of named entities (DANE) · Pinning · TLS

1 Introduction

In public key infrastructures (PKIs), a certification authority (CA) is the trusted
party to sign certificates [7]. The certificates are used in TLS to authenticate the
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TLS servers and establish secure channels. However, recent security incidents
indicate that accredited CAs are compromised or deceived to sign fraudulent
TLS server certificates, which bind a domain name (e.g., www.facebook.com) to
a key pair held by attackers, instead of the legitimate website [18,30].

Fraudulent TLS server certificates result in successful man-in-the-middle
(MitM) or impersonation attacks, even if TLS clients follow the strict steps [7]
to verify server certificates. Various security-enhanced verification schemes are
then proposed to tame the absolute authority of CAs from different perspectives,
including public key or certificate Pinning (e.g., HPKP [8] and TACK [17]), pub-
lic logging (e.g., certificate transparency [15] and ARPKI [4]), restricted scopes
of certificate services (e.g., CAge [12] and Certlock [23]), multi-path verification
(e.g., DoubleCheck [1] and Perspectives [28]), and subject-controlled policies
(e.g., DANE [10] and PoliCert [25]). They require TLS clients to perform extra
operations of certificate verification to detect fraudulent certificates.

These security-enhanced schemes improve the security of certificate verifica-
tion, but each scheme still has its own defects. Among these schemes, Pinning is
straightforward and effective, once public keys are pinned correctly. A TLS client
locally pins the server certificate after a TLS channel is established. Then, in
the future TLS handshakes, the pinned certificate is compared with the received
certificate. A warning or alert is displayed if they do not match. Some variations
propose to pin the CA certificate or the public key [8,17].

Pinning is the most efficient, but has shortcomings [22]. It is extremely diffi-
cult to securely initialize the Pinning entries. Existing designs usually follow the
principle of trust on first use (TOFU); i.e., assuming no attacks when a domain is
visited for the first time. However, MitM or impersonation attacks might happen
in the TLS client’s first visit to certain domains, and then malicious certificates
are pinned. Preloaded trustworthy Pinning entries are recommended [8], but it
is not scalable and only applicable to a small number of domains. Meanwhile,
Pinning entries are out of control, after they are initialized in TLS clients. The
legitimate website cannot update the entries actively, especially in the cases of
any security incidents such as key compromise and certificate update [6].

This paper presents an integrated security-enhanced certificate verification
system, called Elaphurus.1 We analyze these schemes from the perspectives of
false positive/negative rate (or security and usability) and verification delay (or
efficiency). Pinning is the only stateful scheme, and very efficient once the Pin-
ning entries are initialized. So we design Elaphurus on top of Pinning, by inte-
grating other security-enhanced certificate verification, while the disadvantages
and defects of these schemes are eliminated in the integration as follows.

– Elaphurus allows multiple Pinning entries for a domain. So a website with
multiple server certificates or cached in content delivery networks (CDNs)
does not trigger alerts.

– Several security-enhanced verification schemes are performed on a server cer-
tificate, before it is pinned on TLS clients. The vulnerability of Pinning

1 In Chinese, Elaphurus is the hybrid of cow, deer, donkey, and horse. So we name the
integrated scheme Elaphurus.

www.facebook.com
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initialization is then mitigated. At the same time, to balance security and
usability, Elaphurus allows a certificate to be accepted in TLS handshakes
but not pinned, when it passes some schemes but is not secure enough.

– Elaphurus supports fast update operations on the Pinning entries. If a TLS
server certificate is the result of the certificate update on a Pinning entry
(i.e., signed by the same CA but with a more recent validity period), it will
update the entry after simplified verification schemes.

– Each Pinning entry has its own validity period, shorter than the validity
period of the pinned certificate. Elaphurus deletes expired Pinning entries, so
that a (malicious) Pinning entry becomes invalid automatically.

When integrating other security-enhanced schemes with Pinning, Elaphurus
takes their false positive/negative rates and verification delays into account, to
improve both security and usability. We implement the prototype system of
Elaphurus with OpenSSL [21], Tor [26], and Dig [29]. It integrates Pinning, CT,
DANE, the multi-path verification by DoubleCheck and the restricted scopes of
certificate services based on top-level domains (TLDs) by CAge. The analysis
and experimental results show that Elaphurus introduces a reasonable overhead,
while greatly enhancing the security of certificate verification.

The remainder is organized as follows. Existing security-enhanced certificate
verification schemes are compared in Sect. 2. Section 3 presents the design and
implementation of Elaphurus. It is evaluated in Sect. 4. Section 5 surveys the
related works and Sect. 6 draws the conclusions.

2 Security-Enhanced Certificate Verification Review

This section describes and compares the typical security-enhanced certificate
verification schemes.

2.1 Overview of Defense Philosophies

Various security-enhanced certificate verification schemes are proposed, following
different defense philosophies.

Pinning - HPKP. The basic idea is that a TLS client by itself maintains the
relevant certificate or public key of each visited domain (i.e., pins the certificates
locally) [14]. These certificates may be pinned for a domain [8,17]: (a) the TLS
server certificate of the website; and (b) the certificate of the intermediate and/or
root CAs to verify the server certificate. In the future connections, it only needs
to verify whether the pinned certificate is in the website’s certificate chain.

Pinning entries are initialized in the way of preload or TOFU [8]. The cer-
tificates or public keys of some websites are pre-included in browsers and TLS
libraries by manufacturers or developers. Or, a TLS client pins the certificates,
when it establishes the TLS channel with the website for the first time.

Pinning is straightforward, but it is very difficult to initialize the Pinning
entries – the number of preload entries is limited, and nobody guarantees there
is no attack in a TLS client’s first visit to any domain. Finally, lots of websites
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own multiple valid certificates at the same time, and a website cached in CDNs
also results in multiple valid certificates. Existing Pinning-based schemes do not
work well in such scenarios.

Restricted Scope of Services - CAge. In traditional PKIs, an accredited
CA is authorized to serve any domains. Thus, once the attackers compromise
the most weakest CA, they can issue fraudulent certificates binding any domain
names. Although the Name Constraints certificate extension is defined to restrict
the service scope [7], it is rarely used in practice by a CA to restrict the service
scope of its subordinate CAs.

CAge specifies the restriction rules on the set of TLDs for which each CA
is assumed to issue certificates [12]. The rules are derived based on the analysis
of 1.95 million valid certificates issued by more than 1,200 CAs for 2.55 million
domains. The rules are enforced on TLS clients, and an alert displays if any
certificate does not comply with the rules.

Public Logging - Certificate Transparency. In the certificate transparency
(CT) framework, certificates are recorded in publicly visible logs [4,15]. A cer-
tificate is submitted by the CA or the website, and the log server responds with
a signed certificate timestamp (SCT). In TLS handshakes, a browser verifies
the server certificate as well as the SCTs, and the connection is rejected if the
verification fails.

CT is widely supported by browsers and TLS software [24]. It does not pre-
vent compromised CAs from issuing fraudulent certificates. CT only ensures a
certificate accepted by browsers are publicly-visible, so it is impossible for a CA
to issue certificates for a domain but invisible to the domain owner.

Subject-Controlled Policy - DANE. It allows a domain owner to spec-
ify its own certificate policy, or reconfirm the certificates issued by CAs. The
subject-controlled certificate policies are usually published as DNS resource
records (RRs) and divided into two categories: extra validation before certificate
issuance such as certification authority authorization (CAA) [9], and security-
enhanced certificate verification such as DNS-based authentication of named
entities (DANE) [10].

Based on DNS security extensions (DNSSEC) [3], DANE allows a domain
owner to specify which certificates are meant to be deployed for its domain.
DANE defines a new DNS RR, called TLS association (TLSA), which is pro-
tected by DNSSEC. The domain owner publishes the following certificates as
TLSA RRs: (a) the TLS server certificate; and/or (b) the CA certificate that
must be in the certificate chain. A client obtains TLSA RRs through DNS query
and then these RRs are used to verify TLS server certificates.

Multi-path Verification - DoubleCheck. The multi-path verification is orig-
inally proposed in Perspectives [28] to verify the server public key in SSH. Per-
spectives introduces a set of notaries, which maintain the public keys of network
services. When a client is verifying the public key of a network service, it gets the
records from notaries and compares them with the public key received from the
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Table 1. The comparison of security-enhanced verification schemes.

FPR FNR Delay

CAge Low High Low

CT Small Tr Low Medium Low

Great Tr Low Low Low

DANE Server Very low Very low Medium

CA Very low Low Medium

DoubleCheck High Low High

Tr: the transition period, defined as the period of
time starting when the SCT was signed and ending
when the SCT was verified by TLS clients;
Server: the TLSA RR directly specifies the server
certificate;
CA: the TLSA RRs specify the intermediate or
root CA certificates which must be present in the
certificate chains.

server. Notary-based multi-path verification leak the user privacy to notaries,
when it queries the public key of the visited service.

DoubleCheck [1] requires the TLS client to establish extra anonymous Tor
links to receive another copy of the server certificate, and compare the certificates
from different network paths. The certificate is accepted, only if they are iden-
tical. Since the extra certificate is retrieved via anonymous links, DoubleCheck
does not leaks user privacy.

2.2 Comparison of Typical Schemes

Five typical schemes (i.e., Pinning, CAge, CT, DANE, and DoubleCheck) are
compared from two aspects: accuracy (in false positive/negative rates) and veri-
fication delay. We will explain the comparison results shown in Table 1 as below.

2.2.1 False Positive/Negative Rate
The false positive rate (FPR) of a certificate verification scheme is the prob-
ability that a valid certificate is verified as fraudulent by the scheme. A false
positive means a valid certificate is detected as fraudulent; e.g., after a fraudu-
lent certificate is pinned, any valid certificate triggers a false positive of Pinning.
Meanwhile, a false negative means a fraudulent one is considered as valid, and
the false negative rate (FNR) is the probability that a fraudulent certificate
passes the scheme. Note that, in the analysis, we assume that the schemes have
been implemented and deployed correctly.2

2 However, the design of Elaphurus needs to handle the scenarios that some security-
enhanced verification schemes (e.g., CT and DANE) are not deployed.
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Pinning. The FPR/FNR depends on the Pinning entries on TLS clients. If the
entries contain all valid certificates of the website, there will be no false positive;
otherwise, some valid certificate will be detected as fraudulent. If all Pinning
entries are correct, no false negative will happen.

CAge. It restricts the scope of certificate services based on TLDs. As evaluated
in [12], the restriction rules are generally static and 99.84% of newly-signed
certificates comply with the rules of CAge, so the FPR is only 0.16%.

On the other hand, the false negative is high, because the TLD-based rules
are coarse-grained and a fraudulent certificate issued for any domain in the
restricted TLDs (e.g., *.com) does not trigger alerts. The .com TLD accounts
for 51% of TLS websites, and more than 400 CAs sign certificates for some .com
website [12]. So a fraudulent certificate signed by one of these CAs for any .com
website, results in a false negative.

CT. The FPR of CT is low – less than 0.2% websites adopt the CT framework
but do not comply with the CT policy [24], so the FPR is about 0.2%.

CT depends on the domain owner to detect possible fraudulent certificates
in public logs [15]. The attackers might submit a fraudulent certificate to CT
logs to return valid SCTs, and then the fraudulent certificate is considered as
valid by CT-enabled TLS clients. So its FNR becomes lower as time goes by,
for the fraudulent certificate will finally be detected by the domain owner. We
define the transition period starting when the SCT was signed and ending when
the SCT is verified by TLS clients, denoted as Tr. As Tr becomes greater, the
FNR varies from medium to low.

DANE. The domain owner is aware of all its certificates, so the FPR of DANE is
the lowest – a false positive does not appears unless the domain owner configure
incorrect TLSA RRs by himself.

The FNR is low, if only CA certificates are specified in TLSA – the attackers
have to compromise the specified CAs, and compromising other CAs dose not
result in successful attacks. Or, if the server certificate is specified in TLSA, the
FNR of DANE is even lower. In this case, a false negative happens, only if the
attackers forge DNSSEC RRs [3], which is extremely difficult.

DoubleCheck. A false negative happens, if and only if the attackers could
launch a large-scale MitM attack, and the exit of extra Tor links happens to be
in the attack zone, and then the extra Tor links return the identical fraudulent
certificate [1]. So the FNR is low.

The FPR is rather high. A website is usually configured with several certifi-
cates [27] or cached in CDNs. In such frequent cases, the multiple certificates of
a website are different but all are valid, while DoubleCheck displays alerts.

2.2.2 Verification Delay
The delay is mainly introduced by the extra communications, and the data
processing on TLS clients is negligible. For example, an RSA signing takes less
than 2 ms, while a round of TCP link to visit a website costs dozens of ms. So we
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define the delay is: low if no extra communications are needed, medium when the
scheme introduces extra regular network communications, or high if it requires
extra heavy communications (e.g., Tor links).

The delay of Pinning, CAge or CT is low, for the verification does not need
any extra communications. DANE requires at least one more round of DNSSEC
communications to return TLSA RRs, and then delay is medium. Finally, the
delay of DoubleCheck is high, because it requires the client to establish extra
anonymous Tor links to retrieve certificates.

3 The Design and Implementation of Elaphurus

This section presents the design goals of Elaphurus, followed by the design and
the implementation.

3.1 Design Goals

Elaphurus attempts to defend against the attacks exploiting fraudulent certifi-
cates, by integrating the security-enhanced verification of TLS server certificates.
Meanwhile, we balance security, usability and efficiency in Elaphurus. When
enhancing the security of certificate verification, it still considers the usability.
Finally, when integrating various security-enhanced schemes, Elaphurus prefers
to efficient schemes.

3.2 System Design

Elaphurus is designed on top of Pinning. It maintains a list of pinned TLS
server certificates for visited domains, with the improvements by integrating
other schemes as follows.

Highly-Secure Pinning Initialization. A Pinning entry is initialized, only if
a certificate is verified by some security-enhanced schemes except Pinning. In
particular, a Pinning entry is initialized after the certificate is verified by (a)
one security-enhanced scheme with a very low FNR, or (b) at least two schemes
with low FNRs.

Update with Simplified Verification. Verifying every unpinned server certifi-
cate by multiple schemes is expensive and inefficient. Thus, if a server certificate
results from the update of a pinned certificate (i.e., signed by the same CA but
with a more recent validity period), the Pinning initialization of this certificate
is simplified. The requirement to update a Pinning entry is as follows: (a) the
to-be-pinned server certificate is signed by the same CA as the entry, and (b)
it is verified by any security-enhanced scheme with a low FNR at least. In this
case, the security of Pinning initialization is not degraded but the performance
is improved.

Multiple Pinning Entries for a Domain. It supports multiple Pinning
entries for a domain, so it works well with a website cached in CDNs or with
multiple valid server certificates.
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Algorithm 1. The Certificate Verification of Elaphurus.
Input: pin[.]: An array of Pinning entries

dn: The domain name of the visited website
cert: The server certificate

Output: result: accept or reject
1 op := init
2 if dn in pin[.] then
3 if cert in pin[dn] then
4 return accept

5 if (cert update := (CA(cert) in pin[dn])) and (ExpireSoon(cert update) then
6 op := update

7 cage := CAgeVerify()
8 ct := CTVerify()
9 if IntVerify(op, cage, ct) = reject then

10 return reject // accept is impossible here

11 dane := DANEVerify()
12 if (result :=IntVerify(op, cage, ct, dane))=reject then
13 return reject // reject immediately

14 if result = unknown then
15 dbcheck := DoubleCheckVerify()
16 result := IntVerify(op, cage, ct, dane, dbcheck)

17 if result = accept pin then
18 if op = init then
19 PinInit(cert)

20 else
21 PinUpdate(cert, cert update)

22 return result

Accepted-but-not-Pinned Server Certificate. To balance security and
usability, Elaphurus allows a server certificate to be accepted but not pinned,
when it passes some security-enhanced schemes but is not secure enough. Then,
this certificate does not take effect in the stateful Pinning entries. A server cer-
tificate is accepted but not pinned, if it is verified by one scheme with a low
FNR and one with a medium FNR.

Deletion of Pinning Entries. For we allow multiple Pinning entries for a
domain, the deletion of Pinning entries is necessary. A validity period is assigned
to each entry, and it becomes invalid on expiration without the control from
websites.

3.3 Implementation

Algorithm 1 lists the detailed certificate verification procedure of Elaphurus.
This procedure is conducted, in addition to the standard certificate verifica-
tion steps. When a server certificate is input, Elaphurus first checks if it has
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been pinned or is the update of a Pinning entry. Then, it verifies the certificate
by CAgeVerify() and CTVerify(), and tries to return the final result based on
the results of Pinning, CAge and CT. If the results of efficient Pinning, CAge
and CT are not enough to make the decision, Elaphurus continues to execute
inefficient DANE and DoubleCheck one by one, by DANEVerify() and Dou-
bleCheckVerify(). Besides, it tries to output the result after DANE is performed,
for DoubleCheck is the most inefficient.

Elaphurus also implements the fast track to detect a server certificate as
invalid : (a) it is verified as invalid by any scheme with a very low FPR, or (b)
by two schemes with low FPR. This fast track enables Elaphurus to output the
reject decision when it is ready at any time, but not to wait for the results of all
schemes. Finally, if a certificate does not satisfy any threshold of initialization
or update after all verification schemes, it is rejected by Elaphurus.

IntVerify() outputs the integrated result based on the results of multiple
schemes. The output may be accept pin, accept, unknown, and reject. The
results of CAge, CT, DANE, and DoubleCheck, may be valid, invalid, or unsup-
port. unsupport means the scheme is not deployed, or it ends with timeout.

As Fig. 1 shows, we implement Elaphurus with OpenSSL [21], Tor [26], and
Dig [29]. OpenSSL is enhanced to verify the server certificate in TLS handshakes.
In particular, Pinning entries are maintained on hard drive. Dig is used to request
and verify TLSA RRs of DANE for the domain. Tor client is used to implement
DoubleCheck, to request another server certificate of the visited domain through
an extra Tor link. Elaphurus implements CT based on the OpenSSL library.

Elaphurus

CAge

CT

DANE

DoubleCheck

Integrated V
erification

Pinning E
ntries

O
penSSL C

lient

Init

Update
Result

Cert

Dig

Tor Client

OpenSSL Lib

Rule Set

Fig. 1. The architecture of Elaphurus

When an OpenSSL client initiates a TLS handshake and a server certificate
is received, Elaphurus extracts all the data necessary to verify the certificate,
including the visited domain name, the certificate chain received in TLS hand-
shakes, and the SCTs in TLS extensions. Then, the data are processed by Ela-
phurus. If the certificate is rejected, Elaphurus prompts OpenSSL to terminate
the TLS connection.
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4 Evaluation

In this section, we evaluate Elaphurus in terms of security, usability and perfor-
mance.

4.1 Security and Usability

We analyze the false positive rate (i.e., usability) and the false negative rate (i.e,
security) of Elaphurus.

Based on the policy specified in Sect. 3 and the analysis results in Table 1, a
server certificate is pinned (and accepted) if any of these conditions is satisfied:
(a) It matches the server certificate published in TLSA RRs of DANE, the FNR
of which is very low; or (b) the certificate is verified by any two of CT (with a
great Tr), DANE (with a CA certificate in the TLSA RR) and DoubleCheck, the
FNRs of which are low. The condition to update a Pinning entry (i.e., the to-be-
pinned certificate is signed by the same CA as the securely-initialized Pinning
entry), is as follows: It is verified by at any one of CT (with a great Tr), DANE
(with a CA certificate) and DoubleCheck, the FNRs of which are low. So Elaphu-
rus improves Pinning by securely initializing and updating the entries, and its
security is higher than any of CT, DANE and DoubleCheck by the integration,
because the attackers need to break at least two schemes.

To balance security and usability, Elaphurus allows a certificate to be
accepted but not pinned, when it is verified as valid with a medium FNR (i.e., CT
with a small Tr), and at the same time by DANE with CA certificates or Dou-
bleCheck, the FNRs of which are low. So it is more secure than CT, DANE and
DoubleCheck. It is worth noting that the accepted-but-not-pinned certificates
does not lead to downgrade attacks. That is, can an accepted-but-not-pinned
fraudulent certificate be always accepted? In fact, as time goes by, CT with a
small Tr will be with a great Tr, and then it is verified as valid by CT with a
low FNR, or is detected as fraudulent in CT logs by the domain owner and then
becomes revoked. In summary, the verification result of CT varies as time goes
by, so the design of accepted-but-not-pinned certificates does not become a vul-
nerability of downgrade attacks, as a valid certificate will be eventually pinned
or a fraudulent one will be revoked over time.

When a certificate fails to meet one of the above conditions, Elaphurus marks
it as invalid. Moreover, Elaphurus terminates the verification and immediately
outputs the reject decision for better performance, when (a) the certificate is
verified as invalid by DANE with a very low FPR, or (b) it is verified as invalid by
both CAge and CT of which the FPRs are low. In the above cases, Elaphurus does
not increase the FNR by rejecting a valid certificate, because such a certificate
cannot be accepted by enough schemes according to the analysis in Table 1.

4.2 Performance

The overall performance depends on (a) the efficiency of each security-enhanced
scheme, and (b) the deployment of each scheme. We first evaluate each scheme
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Table 2. The time cost (in ms) of security-enhanced certificate verification schemes.

Average Median Interval

Pinning (In)Valid 0.13 0.12 0.11–0.31

Unsupported 0.014 0.007 0.004–0.079

CAge (In)Valid 0.12 0.12 0.09–0.24

Unsupported 0.013 0.006 0.003–0.084

CT (In)Valid 1.75 1.86 0.32–16.89

Unsupported 0.31 0.23 0.067–1.84

DANE (In)Valid 12.04 11.01 8.21–211.53

Unsupported 11.39 9.31 7.14–197.27

DoubleCheck 1,509.67 1,398.12 889.33–3,353.45

TLS handshake 425.55 375.32 13.28–2,998.12

separately in the Elaphurus prototype, as shown in Table 2. The prototype runs
on a computer with an Intel Xeon E5-2650v4 CPU (2.20GHz) and 2 GB RAM,
and Ubuntu v16.04 as the operating system. We instrumented in the implemen-
tation to record the time cost of each security-enhanced scheme.

The measurements are performed against Alexa Top-1000 websties except for
DANE. DANE is not widely deployed, so the measurement has to be finished on
the DANE-supported websites listed in [11]. We construct the Pinning entries,
and the delays are measured as below: (a) the Pinning entry exists and the cer-
tificate (mis)matches the pinned one, and the measured time is for the (in)valid
cases; and (b) the entry is deliberately cleared, and the measured time is for
unsupported cases. For CAge, the measurements are similar to Pinning, and we
list the time cost for the cases of invalid, valid, and unsupported certificates.
In the measurement of DoubleCheck, a Tor exit is randomly chosen for the Tor
link to retrieve the certificate. The results of DANE are measured as the time
to retrieve and verify the TLSA RRs. We also measure the time cost of TLS
handshakes of Alexa Top-1000 websites, from the ClientHello message to the
last Finished message, including the default certificate verification in OpenSSL.
We visit each website 10 times and calculate the average.

Pinning and CAge. The maximum cost by Pinning or CAge is always less
than 1 ms. Compared with TLS handshakes, the overhead of Pinning and CAge
is negligible.

CT. 36.1% of CT verification takes less than 1 ms, 57.5% takes between 1 ms
and 5 ms.

DANE. Whether the TLSA RRs exist or not, 98.0% of DANE verification takes
between 7 ms and 13 ms.
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DoubleCheck. It introduces very large delays because DoubleCheck requires
extra Tor links: 88.3% takes between 889 ms and 2,000 ms, and the maximum is
3,353.45 ms.

TLS Handshake. The average time cost of TLS handshakes with Alexa Top-
1000 websites is 425.55 ms, and 52.0% takes between 100 ms and 1,000 ms.

The cost of Elaphurus depends on the security-enhanced schemes supported
by the visited website and the results of each scheme. As described in Algorithm
1, when verifying a certificate, the schemes are executed in the order of Pin-
ning, CAge, CT, DANE, and DoubleCheck. Elaphurus does not need to execute
inefficient DoubleCheck every time. When only Pinning, CAge, CT, and DANE
are executed, the introduced delay is negligible as it increases averagely by only
0.03%, 0.03%, 0.4% and 2.8% for Pinning, CAge, CT and DANE, respectively,
compared with the cost of TLS handshakes in Table 2. However, if DoubleCheck
is executed, the time increases significantly by 354.6%.

Finally, we analyze the overall performance of Elaphurus based on the deploy-
ment of these security-enhanced schemes. Among these schemes, Pinning, CAge
and DoubleCheck do not require any new network-security infrastructure (pro-
vided that the Tor system is always ready), and they are implemented in the TLS
client side. CT has been widely deployed (e.g., 63.2% of HTTPS connections are
CT-compliant in February 2018 [24]). Although DANE has been standardized
for several years, the deployment is still limited [2]. Thus, it results in a high
probability that Elaphurus executes DoubleCheck in the Pinning initialization,
because DANE probably ends with unsupported results while the probability
becomes small in the update of Pinning entries because CT is deployed widely.

5 Related Work

Some systems support multiple security-enhanced certificate verification
schemes. CertShim performs binary instrumentation implementing several secu-
rity enhanced schemes [5], to patch the vulnerabilities of certificate verification in
legacy systems. TrustBase [20] intercepts TLS traffic to enforce mandatory cer-
tificate validation with different security-enhanced schemes. These solutions list
multiple schemes as available options, but do not integrate several approaches
into one scheme as Elaphurus does.

AKI [13] allows the subject to define its policy as certificate extensions and
the integrity log servers to publicly record all certificates. Then, ARPKI [4]
extends the designs of AKI with better efficiency, and provides the formal verifi-
cation of its security properties. PoliCert [25] defines subject certificate policies
(SCPs) which allow the certificate subject to specify parameters such as trusted
CAs, certificate update criteria, etc.

Compared with the above integration schemes that focus on the certificate
registration and creation in the server side, Elaphurus is a client-centric solution
to integrate different certificate verification schemes in TLS clients. Elaphurus
extends our preliminary work [16], by (a) introducing the security analysis, (b)
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finishing the detailed design and implementation of the prototype system, and
(c) measuring the performance with the prototype system.

Amann et al. finished a large-scale study on the adoption of TLS/HTTPS
security enhancements [2], including CT, HPKP, DANE, etc. Oltrogge et al. con-
ducted an extensive analysis on the applicability of Pinning in Android Apps [19].

6 Conclusion

We present Elaphurus, an integrated security-enhanced certificate verification
scheme for TLS. Elaphurus is designed on top of Pinning, which is stateful
and the most efficient. Then, we integrate other security-enhanced verification
schemes to solve the defects of Pinning, while the disadvantages of other schemes
are also eliminated in the integration. Elaphurus integrates Pinning with CAge,
CT, DANE, and DoubleCheck, based on their false positive/negative rates, to
improve both security and usability. The security analysis and performance eval-
uation show that it balances the security and usability of certificate verification
with reasonable overheads.
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Abstract. Division property based cube attack was proposed by Todo
et al. at CRYPTO 2017, which can exploit larger cube indices than tra-
ditional cube attacks. At CRYPTO 2018, Wang et al. introduced degree
evaluation and flag technique to reduce the complexity of recovering the
superpoly. Although division property based cube attacks that introduc-
ing these methods are powerful to analyze many stream ciphers, how to
further reduce the complexity of determining possible monomials of the
superpoly is still a problem. In this paper, we introduce some techniques
to speedup the recovery of the superpoly.
1. When evaluating all possible monomials, we provide the filter tech-

nique to reduce the complexity of evaluating monomials by division
trails. Non-cube public variables involved in superpoly also can be
obtained by the filter technique. While evaluating monomials, the
effect of non-cube public variables on all monomials can be consid-
ered directly.

2. In order to remove most invalid monomials, we modify the parame-
ters of flag technique in the initialization phase. Most invalid division
trails can be identified and fewer remaining monomials need to be
determined by constructing a linear system.

To verify our scheme, we apply the method to the initialization of the
Grain128a. In the recovery of the superpoly of 106-round Grain128a,
the number of possible monomials needs to be determined is reduced
to 5.56% of Wang et al.’s superpoly evaluations. The complexity of
analysing 184-round Grain128a is smaller than 57% of the current best
complexity. In the recovery attack of 185 or higher rounds Grain128a,
cube indices set that includes all non-constant public variables can be
achieved according to the results of the filter technique.

Keywords: Cube attack · Division property · Division trail ·
Grain128a

1 Introduction

The cube attack is an effective cryptanalytic technique proposed by Dinur and
Shamir in [2]. For stream ciphers, let f(x, v) be the first bit of keystream, and
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v = (v1, v2, · · · , vm) be m-bit public variables and x = (x1, x2, · · · , xn) be n-bit
secret variables. Cube indices set containing the indexes of some public variables
is I. CI containing all possible combinations of public variables indexed by the
set I, which is applied to the initialization of the f . The sum of all possible
outputs of f can be obtained, which is represented as the polynomial of x and
v, and can be called the superpoly of CI in f . If the superpoly of the CI is
simple enough, we can recover the superpoly in the offline phase and obtain some
information of secret variables involved in the superpoly in the online phase. In
[2], the superpoly is tested for its linearity. If the test passes, the superpoly can
be recovered by assuming it is linear. Recently, there are some new research
insights based on the cube attack, such as correlation cube attack [6], division
property based cube attack [9], degree evaluation of NFSR-based cryptosystems
[5] and dynamic cube attack [3].

Division property can construct integral distinguisher by analyzing the struc-
ture of block ciphers, which was proposed by Todo et al. in [7]. In [8], Todo et al.
obtained the integral property of the full-round MISTY1 by the division prop-
erty. In order to improve the propagation of division property within the struc-
ture, Todo proposed bit-based division property and bit-based division property
using three subsets in [10]. The bit-based division property can find new integral
property for Simon32. In [13], Xiang et al. applied mixed integer linear program-
ming(MILP) to the propagation of bit-based division property, which can reduce
the complexity of time and memory. In [4], a variant three subsets division prop-
erty with STP solver was proposed. This method can apply the automatic search
model to ciphers with large block sizes.

In [10], Todo et al. applied bit-based division property based on MILP model
to the cube attack on stream ciphers. The superpoly of CI can be recovered by
the truth table that depends on the values of secret variables indexed by J
and assignments of values of non-cube variables. When a non-constant super-
poly was found by a proper assignment of non-cube variables, some information
about secret variables can be recovered in the online phase. In [11], Wang et al.
introduced flag technique and degree evaluation to reduce the complexity and
enhance the precision of division property based cube attack. In the offline phase,
the superpoly was recovered by constructing a linear system of coefficients for
all possible monomials instead of constructing the truth table.

Unlike applying bit-based division property to cube attack, [12] proposed a
practical method that based on bit-based division property using three subsets.
The corresponding coefficients of all possible monomials can be evaluated by
propagating L instead of constructing truth table as in [9] or solving a linear
system as in [11].

Besides improving the efficiency of recovering the superpoly of division prop-
erty based cube attack, another important research is a new variant of division
property from an algebraic point of view in [14]. The authors built the relation-
ship between bit-based division property and the algebraic degree evaluation,
which can remove invalid division trails. These insights has been applied to ver-
ify the results of division property based cube attack on Trivium.
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In this paper, we focus on the following improvements of division property
based on cube attack that introduces the flag technique.

– Firstly, the previous phase that evaluating all possible monomials in [11]
does not consider the relationship between lower degree monomials and spe-
cific higher degree monomials. In their methods, all t-degree monomials can
be evaluated from the combinations of the involved variables indices J or
indices set JRt ⊂ J that composing all t-degree monomials. However, when
evaluating all t-degree monomials that may exist in the superpoly by propa-
gating bit-based division property, there are many t-degree monomials that
do not exist for the combinations of indices set J or JRt need to be evalu-
ated. The complexity of evaluating these monomials is huge. Therefore, we
introduce the filter technique to further reduce the complexity of evaluating
all t-degree monomials. With the filter technique, when low-degree monomi-
als do not exist in the superpoly under propagating division property, some
specific high-degree monomials also do not exist in the superpoly. Therefore,
these evaluations can be saved.

– Secondly, non-cube public variables that involved in the superpoly can be
achieved by filter technique and added to the set J . While evaluating mono-
mials, the effect of non-cube public variables on monomials that may exist
in the superpoly can be considered directly, rather than attempting to find
proper non-cube IV assignment with MILP model as in [11].

– Thirdly, during the initialization phase for flag technique, we modify the
parameters of each public variable and secret variable to remove most invalid
monomials. Then, only corresponding coefficients of the remaining monomials
need to be determined.

The outline of this paper is as follows. Section 2 introduces the background
of cube attack, bit-based division property, division trail, MILP model and flag
technique. Section 3 provides the filter technique to reduce the complexity of
evaluating monomials by division trails. We remove some invalid monomials by
modifying the parameters of the flag technique in Sect. 4. We apply the method
to Grain128a in Sect. 5. Finally, we give a conclusion.

2 Preliminaries

2.1 Cube Attack

Cube attack was first proposed in [2]. Let f(x, v) be the first output bit of the
stream cipher that contains m-bit public variables v = (v1, v2, · · · , vm) and n-bit
secret variables x = (x1, x2, · · · , xn). Cube indices set is I = {i1, i2, · · · , i|I|} ⊂
{1, 2, · · · ,m} and a maxterm is tI = vi1vi2 · · · vi|I| . Then, f(x, v) can be decom-
posed as

f(x, v) = tIp(x, v) + q(x, v)
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where q(x, v) miss at least one variable indexed by I, and p(x, v) is independent
of the variables indexed by I, denoted as the superpoly of CI . As inputting the
cube CI into the cryptosystems, the sum of all output bits is

⊕
CI

f(x, v) = ⊕
CI

tIp(x, v) + ⊕
CI

q(x, v) = p(x, v) (1)

If the cube indices set I is determined and the superpoly of CI is not constant
polynomial in the offline phase, then some information of secret variables can be
recovered with the same assignment to I and non-cube IV in the online phase.

2.2 Bit-Based Division Property

The conventional bit-based division property was proposed in [10] and the defi-
nition is as follows. Let X be the multiset whose elements are values of Fn

2 and
K be a set of n-bit vectors. If the multiset X has division property Dn

K
, it will

fulfill the following conditions:

⊕
x∈X

πu(x) =

{
unknown if there exist k ∈ K s.t. u ≥ k

0 otherwise

where πu(x) =
∏n−1

i=0 xui
i and u ≥ k if ui ≥ ki for all i. There are three basic

propagation rules for the conventional bit-based division property was proved in
[10], which are And, Xor and Copy, respectively. In the following, we show these
three basic propagation rules.

Rule 1 (Copy) [10]. Let x1 ∈ F2 be the input of Copy propagation, and
(y1, y2) ∈ F

2
2 be the output values. Assuming that the input and output mul-

tiset have D1
K

and D2
K

′ , Copy operation that values are propagated from k ∈ K

to K
′
can be computed as follows.{

K
′
= {(0, 0)}, if k1 = 0

K
′
= {(1, 0), (0, 1)}, if k1 = 1

Rule 2 (And) [10]. Let (x1, x2) ∈ F
2
2 be the input of And propagation, and

y1 ∈ F2 be the output values. Assuming that the input and output multiset have
D2

K
and D1

K
′ , And operation that values are propagated from k ∈ K to K

′
can be

computed as follows. {
K

′
= {(0)}, if k = (0, 0)

K
′
= {(1)}, otherwise

Rule 3 (Xor) [10]. Let (x1, x2) ∈ F
2
2 be the input of Xor propagation, and

y1 ∈ F2 be the output values. Assuming that the input and output multiset have
D2

K
and D1

K
′ , Xor operation that values are propagated from k ∈ K to K

′
can be

computed as follows. ⎧⎪⎨
⎪⎩
K

′
= {(0)}, if k = (0, 0)

K
′
= {(1)}, if k = (0, 1), (1, 0)

K
′
= ∅, if k = (1, 1)
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2.3 Division Trail [13]

The propagation of bit-based division property can be denoted as K0 → K1 →
· · · → Kr. K0 is initial division property of input multiset. For any vector k∗

i ∈
Ki, there must exist a vector k∗

i−1 ∈ Ki−1 such that k∗
i−1 can propagate to

k∗
i by the propagation of division property. If ki−1 can propagate to ki for all

i ∈ {1, 2, · · · , r}, (k0, k1, · · · , kr) can be called as the r-round division trail, where
(k0, k1, · · · , kr) ∈ (K0,K1, · · · ,Kr).

For the r-round cipher, let X be the chosen plaintexts and Dn
K0

be the division
property of X. After r-round encryption, the division property Dn

Kr
of the output

ciphertexts can be computed by division trail. If Kr does not contain the unit
vector ej , then the j-th bit of the output ciphertexts is balanced.

2.4 MILP Model of Division Property

In [13], the authors applied MILP models to construct the propagation of division
property to reduce the complexity of propagating the division property. We
describe the propagation MILP models for And, Xor and Copy as follows.

Model 1 (MILP model for Copy) [9]. Let a → (b1, b2, · · · , bm) be the divi-
sion property propagation of Copy operation. The following MILP model can
describe this propagation.{

M.var ← a, b1, b2, · · · , bm as binary
M.con ← a = b1 + b2 + · · · + bm

Model 2 (MILP model for Xor) [9]. Let (a1, a2, · · · , am) → b be the division
property propagation of Xor operation. The following MILP model can describe
this propagation. {

M.var ← a1, a2, · · · , am, b as binary
M.con ← a1 + a2 + · · · + am = b

Model 3 (MILP model for And) [9]. Let (a1, a2, · · · , am) → b be the division
property propagation of And operation. The following MILP model can describe
this propagation. {

M.var ← a1, a2, · · · , am, b as binary
M.con ← b ≥ ai for i = 1, 2, · · · ,m

Flag Technique. In order to enhance the precision of Copy+And MILP
model, the authors in [11] proposed flag technique that adding the parame-
ter v.F ∈ {1c, 0c, δ} for every variable v ∈ M. The parameters have three basic
operations. The = operation rules are 1c = 1c, 0c = 0c and δ = δ. The ⊕
operation rules are ⎧⎪⎨

⎪⎩
1c ⊕ 1c = 0c

0c ⊕ x = x ⊕ 0c = x

δ ⊕ x = x ⊕ δ = δ x ∈ {1c, 0c, δ}
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The × operation rules are⎧⎪⎨
⎪⎩

1c × x = x × 1c = x

0c × x = x × 0c = 0c

δ × δ = δ x ∈ {1c, 0c, δ}

When applying flag technique into division property, three basic operations are
modified to copyf, xorf and andf.

Model 4 (MILP model for copyf) [11]. Let a → (b1, b2, · · · , bm) be the prop-
agation of copyf operation. The following MILP model can describe this propa-
gation. ⎧⎪⎨

⎪⎩
M.var ← a, b1, b2, · · · , bm as binary
M.con ← a = b1 + b2 + · · · + bm

a.F = b1.F = · · · = bm.F

Model 5 (MILP model for xorf) [11]. Let (a1, a2, · · · , am) → b be the prop-
agation of xorf operation. The following MILP model can describe this propaga-
tion. ⎧⎪⎨

⎪⎩
M.var ← b, a1, a2, · · · , am as binary
M.con ← a1 + a2 + · · · + am = b

b.F = a1.F ⊕ a2.F ⊕ · · · ⊕ am.F

Model 6 (MILP model for andf) [11]. Let (a1, a2, · · · , am) → b be the prop-
agation of andf operation. The following MILP model can describe this propaga-
tion. ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
M.var ← b, a1, a2, · · · , am as binary
M.con ← b ≥ ai, i ∈ {1, · · · ,m}
b.F = a1.F × a2.F × · · · × am.F

M.con ← b = 0, if b.F = 0c

2.5 Division Property Based Cube Attack

At CRYPTO 2017, the authors proposed the division property based cube attack
to recover the superpoly in [9]. In [11], Wang et al. proposed some techniques
to reduce the complexity of recovering the superpoly. There were the following
lemma and propositions proved in the division property based cube attack.

Lemma 1 [9]. Let f(x) = ⊕
u∈F

n
2

af
uxu be a polynomial from F

n
2 to F2 and af

u ∈ F2

be the ANF coefficients, where u ∈ F
n
2 . Let k be the n-dimension bit vector.

Assuming there is no division trail such that k
f−→ 1, then af

u is always 0 for
u ≥ k.
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Proposition 7 [9]. Let f(x, v) be a polynomial from F
n+m
2 to F2, where x and

v denote the secret and public variables. Let CI be a set of 2|I| values, where
the indices set I = {i1, i2, · · · , i|I|} ⊂ {1, 2, · · · ,m} and the variables indexed by
{i1, i2, · · · , i|I|} are taking all possible combinations. Let kI be the m-dimensional
bit vector such that vkI = vi1vi2 · · · vi|I| , i.e, ki = 1 if i ∈ I and ki = 0 otherwise.

Assuming there is no division trail such that (ej , kI)
f−→ 1, then xj is not involved

in the superpoly of the cube CI .

Proposition 9 [11]. Let f(x, v) be a polynomial from F
n+m
2 to F2, where x and

v denote the secret and public variables. Let CI be a set of 2|I| values, where
the indices set I = {i1, i2, · · · , i|I|} ⊂ {1, 2, · · · ,m} and variables indexed by
{i1, i2, · · · , i|I|} are taking all possible combinations. Let kI be the m-dimensional
bit vector such that vkI = tI = vi1vi2 · · · vi|I| . Let kΛ be the n-dimension bit

vector. Assuming there is no division trail such that (kΛ||kI)
f−→ 1, then the

monomial xkΛ is not involved in the superpoly of the cube CI .

With the above lemma and propositions, [9] obtained variables indexed by J ,
which are involved in the superpoly. The superpoly could be recovered by con-
structing the truth table of size 2|J|. The degree evaluation in [11] could return
the degree d of the superpoly. The recovery of the superpoly could be turned to
recover the corresponding coefficients of all

∑d
i=0

(
J
i

)
possible monomials. The

complexity of recovering the superpoly is 2|I| × ∑d
i=0

(|J|
d

)
.

3 Reduce Evaluation Complexity

3.1 Filter Technique

According to Proposition 9, some invalid monomials that do not exist in the
superpoly can be removed by evaluating division property. Let involved secret
variables indices set be J . Initially, the degree d of superpoly can be returned by
degree evaluation. Then, all possible t-degree monomials that combinations are
from J can be evaluated for t = 0, 1, · · · , d. Because evaluations of all t-degree
monomials are large. Therefore, we reduce the complexity of the phase that eval-
uating these possible monomials with the relationship between the low-degree
monomials and some specific high-degree monomials under the propagation of
division property. Degree of the superpoly also can be determined after this
phase. Therefore, some extra evaluations can be saved. The relationship can be
described as follows.

Proposition 10. Let f(x, v) be a polynomial, where x and v denote n-bit secret
variables and m-bit public variables. Let CI be a set of 2|I| values, where the
indices set I = {i1, i2, · · · , i|I|} ⊂ {1, 2, · · · ,m} and variables indexed by I are
taking all possible combinations. Let kI be m-dimensional bit vector such that
vkI = tI = vi1vi2 · · · vi|I| . Let kΛ and kΔ be n-dimensional bit vectors, where

kΔ ≥ kΛ. Assuming there is no division trail such that (kΛ||kI)
f−→ 1, then the
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division trail that (kΔ||kI)
f−→ 1 do not exist, either. Therefore, the monomial

xkΔ is not involved in the superpoly.

Proof. The ANF of the first output bit f(x, v) can be represented as

f(x, v) = ⊕
u∈F

n+m
2

af
u(x||v)u

When cube indices I is determined, f(x, v) can be decomposed as follows.

f(x, v) = ⊕
u∈F

n+m
2 |u≥(0||kI)

af
u(x||v)u ⊕ ⊕

u∈F
n+m
2 |u�(0||kI)

af
u(x||v)u

= tI ⊕
u∈F

n+m
2 |u≥(0||kI)

af
u(x||v)u⊕(0||kI)⊕

⊕
u∈F

n+m
2 |u�(0||kI)

af
u(x||v)u

= tIp(x, v) ⊕ q(x, v)

The superpoly p(x, v) of the cube CI can be denoted as

p(x, v) = ⊕
u∈F

n+m
2 |u≥(0||kI)

af
u(x||v)u⊕(0||kI)

According to Lemma 1, if there is no division trail that (kΛ||kI)
f−→ 1, then

af
(kΔ||kI)

= 0 for (kΔ||kI) ≥ (kΛ||kI). Therefore, the monomial xkΔ does not
exist in the superpoly, either. 	


Proposition 10 is inspired by [11] and shows the relationship between low-
degree monomials and specific high-degree monomials, where the ANF of high-
degree monomials contain the ANF of low-degree monomials. When the division
trails that evaluating low-degree monomials do not exist, the evaluations of these
specific high-degree monomials can be saved. Fewer high-degree monomials need
to be evaluated by solving the model. Based on these operations, the complexity
that evaluating all possible monomials can be reduced.

For monomials that combinations are from indices J , if d < |J |, specific
high-degree monomials will be removed from all possible monomials involved
in the superpoly when the results of MILP model that evaluating low-degree
monomials are infeasible. Therefore, these monomials need not to be evaluated
again. Because all higher degree monomials that do not exist will be removed,
the bound of the superpoly’s algebraic degree can be achieved. If d = |J |, the
complexity of evaluation will be consistent with the method term enumeration
that evaluating all monomials from J in [11].

For t-degree monomials that combinations are from indices set JRt, where
JRt are key indices set that can compose all t-degree monomials, specific higher
t-degree monomials also can be removed when division trails of lower t-degree
monomials do not exist such that evaluations can be saved. If no specific higher
t-degree monomials can be removed during the evaluation phase, the complexity
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will be consistent with relaxed term enumeration in [11]. For simplicity, we focus
on the process that evaluating the monomials from indices set J . Compared to
indices set J , JRt only can reduce the searching space when evaluating t-degree
monomials.

The application of the filter technique on evaluating the possible monomials
can be written as Algorithm 1. The inputs of TERMEV consist of cube indices
I, constant 1 indices I1, constant 0 indices I0 and involved variables indices J .
When the result of MILP model that evaluating the t-degree monomial is infea-
sible, which is from all t-degree monomials indices set Jenum

t , specific monomials
that algebraic degree is higher than t can be removed from set Jenum by proce-
dure DELETE. In Algorithm 1, Jenum contains all monomials indices that have
not been evaluated, which are from the combinations of J . The outputs of the
algorithm are bound of algebraic degree and monomials indices set Jterm that
may exist in the superpoly.

3.2 Application of Filter Technique on Non-cube Public Variables

The effect of non-cube public variables on the superpoly could be considered
by repeated summations in [9] or attempting to find proper assignments of IVs
with the MILP model in [11]. However, it is not obvious whether the monomial
contains some specific non-cube public variables when evaluating the specific
monomial. Now, when applying the filter technique to evaluate the non-cube
public variables, variables indexed by Jv that involved in the superpoly can be
achieved by running Algorithm2. J can be called as updated involved variables
indices, where J = J ∪ Jv. Then, all possible monomials that combinations
are from J can be evaluated by Algorithm 1. Upper bound of the algebraic
degree of updated involved variables indices and all possible monomials under
the propagation of division property will be returned by running Algorithm1.

4 Improve the Evaluations with Modified MILP Model

In Sect. 3, the relationship between low-degree monomials and specific high-
degree monomials is considered by the filter technique. Some high-degree mono-
mials will be removed from all corresponding degree monomials set and these
monomials will not need to be evaluated by propagating division trails again.
Only the rest of high-degree monomials need to be evaluated by solving the
MILP model. Therefore, the filter technique can be applied to reduce the com-
plexity of evaluations. After evaluating all possible monomials by Algorithm1,
there are close to

∑d
i=0 |JTi| monomials whose corresponding coefficients still

need to be further determined by constructing a linear system, where |JTi| is
the number of i-th degree monomials that are returned by utilizing filter tech-
nique. The complexity of the process that determining corresponding coefficients
is huge.

When evaluating the possible monomials by propagating division trails, there
are some invalid division trails that affect the results of the model. Hence, close
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Algorithm 1. Evaluate possible terms of the superpoly
1: procedure Termev (cube indices I, constant 1 indices I1, constant 0 indices I0,

involved variables indices J)
2: Declare an empty MILP model M
3: Let x be n MILP variables corresponding to secret variables
4: Let v be m MILP variables corresponding to public variables
5: M.con ← vi = 1 and assign vi.F = δ for all i ∈ I
6: M.con ← vi = 0 for all i ∈ {1, · · · , m} − I
7: assign vi.F = 0c for all i ∈ I0
8: assign vi.F = 1c for all i ∈ I1
9: assign vi.F = δ for all i ∈ {1, 2, · · · , m} − I − I1 − I0

10: assign xj .F = δ for all j ∈ {1, · · · , n}
11: update M
12: while Jenum �= ∅ do
13: for ({(j1, · · · , jt)} ∈ Jenum

t ) do
14: M.con ← xj = 1 for all j ∈ {j1, · · · , jt}
15: M.con ← xj = 0 for all j ∈ {1, · · · , n} − {j1, · · · , jt}
16: solve MILP model M
17: if M is feasible then
18: Jterm = Jterm ∪ {(j1, · · · , jt)}
19: delete {(j1, · · · , jt)} from Jenum

20: else
21: Jenum=DELETE({(j1, · · · , jt)},Jenum)
22: end if
23: end for
24: t+=1
25: end while
26: return Jterm , t-1
27: end procedure

to
∑d

i=0 |JTi| model results are feasible. To improve the results of MILP model,
when evaluating the remaining monomial, the parameters of flag technique are
modified to identify some invalid division trails. When removing these division
trails, fewer trails can propagate to 1 that relate to corresponding uncertain
monomials. After the phase that evaluating all possible monomials by utiliz-
ing filter technique, the remaining monomials can be evaluated by modifying
the initial parameters of the flag technique for all public and secret variables.
As is described in Algorithm 3, when cube indices set is I and all possible
monomial indices set is Jterm, the process that modifying the initial parame-
ters includes setting the parameters for the variables indexed by I and Jt to δ,
where Jt ∈ Jterm, setting the parameters that the constant variables to 1c or
0c and setting the remaining variables to 0c. With the MILP model that intro-
duces the flag technique of modifying the initial parameters, if the trail to 1 does
not exist, the monomial indexed by Jt does not exist in the superpoly, either.
If all monomials indices Jt ∈ Jterm are evaluated, FILTERTERM outputs the
remaining monomials indices Jout.
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Algorithm 2. Evaluate public variables
1: procedure PubvarEval (cube indices I, constant 1 indices I1)
2: Declare an empty MILP model M
3: Let x as n MILP variables corresponding to secret variables
4: Let v as m MILP variables corresponding to public variables
5: M.con ← vi = 1 for all i ∈ I
6: M.con ← xj = 0 for all j ∈ {1, · · · , n}
7: M.con ← ∑

i vi = 1 for all i ∈ {1, · · · , m} − I0 − I1 − I
8: assign vi.F = 1c for all i ∈ I1
9: assign vi.F = 0c for all i ∈ I0

10: assign vi.F = δ for all i ∈ {1, · · · , m} − I0 − I1
11: assign xj .F = δ for all j ∈ {1, · · · , n}
12: update M
13: do
14: solve the model M
15: if M is feasible then
16: pick index i ∈ {1, · · · , m} − I − I0 − I1 s.t. vi = 1
17: Jv = Jv ∪ i
18: M.con ← vi = 0
19: end if
20: while M is feasible
21: return Jv

22: end procedure

Finally, in the offline phase, <
∑d

i=0 |JTi| monomials that indexed by Jout

need to be determined by constructing a linear system. The complexity of recov-
ering the superpoly is

2|I| × c ·
d∑

i=0

|JTi| (2)

where c ∈ (0, 1) is the parameter of computational complexity.
In the online phase, the sum can be obtained as Eq. (1) after inputting the

CI into the cryptosystem. For all 2|J| possible combinations, the output value of
the ANF of superpoly can be solved by looking up the corresponding coefficients
table. Then, only the combinations whose corresponding output values are equal
to the initial sum can be reserved as the correct key candidates. Therefore, the
complexity of online phase is 2|I| + 2|J| × c · ∑d

i=0 |JTi|.

5 Applications to Grain128a

5.1 Description of Grain128a

Grain128a[1] is the member of Grain family of stream ciphers. The state of
Grain128a is represented by a 128-bit LFSR and a 128-bit NFSR, which is
described in Fig. 1. During the initialization step, the 96-bit IV are loaded into
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Fig. 1. Structure of Grain128a

the LFSR, with the other state bits are set to 1 except the least one bit is set
to 0. The initial state bits can be represented by

(b0, · · · , b127) = (K1, · · · ,K128)
(s0, · · · , s127) = (IV 1, · · · , IV 96, 1, · · · , 1, 0)

The algorithm runs 256 rounds without producing any keystream bit. A complete
description of the update function and the output function is given as follows.

g ←b0 + b28 + b56 + b91 + b96 + b3b67

+ b11b13 + b17b18 + b27b59 + b40b48 + b61b65

+ b68b84 + b88b92b93b95 + b22b24b25 + b70b78b82

f ←s0 + s7 + s38 + s70 + s81 + s96

h ←b12s8 + s13s20 + b95s42 + s60s79 + b12b95s94

z ←h + s93 +
∑
j∈A

bj , A = {2, 15, 36, 45, 64, 73, 89}

During the initialization step, the state is represented as

(b0, b1, · · · , b127) ← (b1, · · · , b127, g + s0 + z)
(s0, s1, · · · , s127) ← (s1, · · · , s127, f + z)

5.2 Experimental Verification

The process that constructing the initial model M is the same as the procedure
Grain128aEval in [11]. All division trails to r round can be evaluated with the
model M.

When the model M is implemented, the secret variables involved indices J
and the public variables involved indices Jv can be received. We choose the same
cube as in [11] that I = {1, 2, · · · , 9} to verify our new scheme.
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Algorithm 3. Filter the terms of the superpoly
1: procedure Filterterm (cube indices I, constant 0 indices I0, constant 1 indices

I1, subterm indices Jterm)
2: Declare an empty MILP model M
3: Let x as n MILP variables corresponding to secret variables
4: Let v as m MILP variables corresponding to public variables
5: M.con ← vi = 1 and assign vi.F = δ for all i ∈ I
6: assign vi.F = 1c for all i ∈ I1
7: assign vi.F = 0c for all i ∈ I0
8: assign vi.F = 0c for all i ∈ {1, · · · , m} − I − I1 − I0
9: for (Jt ∈ Jterm) do

10: M.con ← xj = 1 and assign xj .F = δ for all j ∈ Jt

11: M.con ← xj = 0 and assign xj .F = 0c for all j ∈ {1, · · · , n} − Jt

12: update M and solve M
13: if M is feasible then
14: Jout = Jout ∪ Jt

15: end if
16: end for
17: return Jout

18: end procedure

Example: For analysing 106-round Grain128a, where constant 1 indices set is
I1 = {97, · · · , 127} and constant 0 indices set is I0 = {128}, when running algo-
rithms that evaluating public and secret variables, the secret variables involved
indices J = {53, 85, 119, 122, 126, 127} and public variables involved indices
Jv = {76} can be identified. After executing Algorithms 1 and 3, the remaining
monomials that x53x119x122x126x127, x85x119x122x126x127, x53x119v76x126x127

and x85x119v76x126x127 need to be determined. These results are in accordance
with the superpoly which is given in [9]. While running Algorithm1, the degree
5 of the superpoly is returned. The number of monomials that need to be deter-
mined has a 5.56% reduction.

To further verify the scheme, we choose some cube indices I for low-round
Grain128a as described in Table 1, which are obtained by exploiting the filter
technique. When the rounds and the corresponding cube indices I are chosen,
there are no non-constant public variables involved in the superpoly by running
Algorithm 2. These cube indices can be regarded as effective. Then, the secret
variables that involved in the superpoly can be achieved. After running Algo-
rithms 1 and 3, the complexity of recovering the remaining monomials can be
computed. The comparison of the evaluation complexity between filter technique
and previous method also can be achieved. For example, when the round is 108
and cube indices set is I = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14}, the model result of
monomial x18x53 is infeasible. Therefore, all specific high-degree monomials that
contain x18x53 need not to be evaluated by solving model and the complexity
of evaluations can be reduced. In Table 1, the parameter c represents that the
complexity changes from the attack that recovering possible monomials that
returned by precise term enumeration in [11] to our new method.
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Algorithm 4. Remove specific higher degree monomials
1: procedure Delete (subterm indices (j1, · · · , jt), remaining monomials indices

Jenum)
2: Jsub = j1j2 · · · jt
3: while t ≤ |J |, Jenum �= ∅ do

4: for ({(j
′
1, · · · , j

′
t)} ∈ Jenum) do

5: if j
′
1j

′
2 · · · j′

t/Jsub �= 0 then

6: delete {(j
′
1, · · · , j

′
t)} from Jenum

7: end if
8: end for
9: t+=1

10: end while
11: Return Jenum

12: end procedure

For these results, the upper bound of all c values are 25%. As is described
in Table 1, the remaining monomials only include fewer possible monomials that
need to be determined by constructing a linear system. When the rounds are
larger, the changes are obvious. These changes are easy to understand. When
the superpoly only includes a t-degree monomial that t is large, all low-degree
monomials that combinations are from these t variables will not be removed
from the possible monomials set by evaluating division trails. However, when
evaluating these low-degree monomials by modifying the parameters of the flag
technique, these division trails can be identified effectively. Only fewer remaining
monomials need to be recovered by constructing a linear system.

5.3 Theoretical Results

For 184-round Grain128a, if v47 = 0, then the size of J is 21 and the degree
is 14, respectively. After utilizing the filter technique, the number of possible
monomials that the corresponding coefficients should be further determined is
about 214.602.

While evaluating the monomials by modifying the corresponding parameters
of flag technique, no division trails can propagate to 1 for the monomials that
algebraic degree is smaller than 7. These monomials need not to be determined
by constructing the linear system again. Without evaluating monomials that
algebraic degree is higher than 6 by modifying the corresponding parameters of
flag technique, there are about 57% of monomials that given in [11] need to be
determined, which the size is 14034.

Under the process that evaluating the above low-degree monomials, the com-
plexity has about 43% reducation. The recovery attack can reduce the complexity
from 2109.602 to c · 2109.602, where c · 2109.602 is smaller than 2108.777.

When analysing higher rounds Grain128a by Algorithm2, we find that all
non-constant public variables should be chosen as cube variables and the size of
the cube indices set is 96. Therefore, when analysing these rounds Grain128a,
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the recovery attack is meaningful only if the number of possible monomials
that determined by constructing a linear system is smaller than 232. Compared
with the previous recovery attack, the parameter c can affect the number of the
remaining possible monomials that need to be determined, which can enable us
to analyze higher target rounds.

Table 1. Summary of experimental results on low-round Grain128a

Rounds I Involved

variables

Remaining

monomials

Previous [11] Improved c

108 1, 2, 3, 4, 5, 6, 7,

8, 9, 10, 12, 14

x14, x18, x48,

x53, x87, x121

x18x87x121,

x14x18x48x87x121,

x53x87x121,

x14x48x53x87x121

217.58 214 8.33%

110 1, 2, 3, 4, 5, 6, 7,

8, 9, 10, 11, 12,

14

x16, x50, x89,

x113, x123

x89x123,

x16x50x89x113x123

218 214 6.25%

114 1, 2, 3, 4, 5, 6, 7,

8, 9, 10

x48, x55, x128 x48x55x128 213 210 12.5%

116 1, 2, 3, 4, 5, 6, 7,

9, 18, 21, 28

x22, x50, x113 x22x50x113 214 211 12.5%

118 1, 2, 3, 4, 5, 6, 7,

8, 9, 110, 111,

113

x97, x121, x122 x97x121x122 215 212 12.5%

120 1, 2, 3, 4, 5, 6, 7,

8, 9, 11

x122, x123,

x124, x125

x122x123x124,

x122x123x124x125

214 211 12.5%

123 1, 2, 3, 4, 5, 6, 7,

16

x20, x121 x20x121 210 28 25%

125 1, 2, 3, 4, 5, 6, 8 x115, x121,

x122, x124

x115x121x122x124 211 27 6.25%

127 1, 2, 3, 4, 5, 6, 7,

9, 10, 12, 13, 14

x125, x127 x125x127 214 212 25%

130 1, 2, 3, 4, 5, 6, 7,

9, 10

x48, x55, x128 x48x55x128 212 29 12.5%

134 1, 2, 3, 4, 5, 6, 7,

8, 10, 12, 16, 19,

22, 23

x14, x47, x48,

x79, x81, x113

x48x79x81x113,

x14x47x48x81x113

220 215 3.125%

135 1, 2, 3, 4, 5, 6, 7,

8, 9, 10, 11, 12,

13, 14, 17, 28, 32

x47, x48, x49,

x70, x82

x47x48x49x70x82 222 217 3.125%

6 Conclusion

In this paper, we propose some methods to reduce the complexity of recover-
ing the superpoly, which is developed from division property based cube attack.
Firstly, we develop the filter technique to reduce the complexity of evaluat-
ing the monomials by propagating division trails. We also assess the non-cube
public variables that involved in the superpoly by the filter technique, rather
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than attempting to identify proper initialization of non-cube public variables.
Secondly, we remove most invalid monomials by modifying the initialization for
parameters of every variable. With this scheme, fewer remaining monomials need
to be further determined. While evaluating monomials, the effect of non-cube
public variables on the monomials can be considered directly.

Acknowledgement. The work is supported by the National Natural Science Foun-
dation of China (61702230, U1736216, 61472001, 61902156, 61802154), the National
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Abstract. Nowadays, network printers have become one of the essential
devices for daily work, and are getting more and more attention from
attackers. Traditional intrusion detection system may not apply quite
well to network printers since it can’t detect growing multi-step com-
plex attacks for network printers. To detect and prevent such attacks, we
design a network printer attackers’ behavioral model and knowledge base
named TTPE based on ATT&CK framework. Then we propose an attack
detection system named PPIDS which is based on TTPE to detect and
analyze network attacks against network printers. For experiments, we
capture 38 network traffic packets from 4 typical scenarios. In our exper-
iments, PPIDS achieves false-positive rate of 0%, false-negative rate of
14.29%. Experiment result shows that our method performs superior to
traditional intrusion detection systems on identifying complex network
attacks against network printers.

Keywords: Network printer · Attack detection · Network traffic ·
Attack quantization · ATT&CK

1 Introduction

Network printers are regarded as a machine that can merely print out whatever
documents sent to it. Actually, they have been evolved into full-blown computers
with a combination of Real-Time Operation System (RTOS), Ethernet, Hard
Disk Drive (HDD), Embedded Web Server and even WIFI interface.

Printers are a growing source of security threats, according to a recent survey
conducted by Spiceworks [15]. Today, a printer is 68% more likely to be the source
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of an external threat or breach than it was in 2016; it is 118% more likely to be
the source of an internal threat or breach. In 2017, a hacker reportedly used an
automated script to access 150,000 publicly accessible printers, including lots of
receipt printers, and instructed them to run a rogue print job [13]. Even students
from high school can carry out a large scale of attacks to network printers in the
worldwide [2]. If not protected, only one MFP can lead to painful consequences,
including identity theft, theft of proprietary information, damage to brand image
and reputation, and litigation [14].

Different from common computers and IOT devices, network printers have
more opened ports and services (for example, a common HP printer has 53
opened ports for 29 opened services [12]), making it more attackable as attackers
can take advantage of so many “building blocks” provided by printers. Attack-
ers can carry out an attack by chaining several vulnerabilities with functionality
or by merely chaining a bunch of functionality together which can hardly be
detected by traditional Intrusion Detection Systems (IDSs). Consequently, tra-
ditional approaches on identifying attacks on networks or computers may not
effectively work on such peripherals since there are many complex attacks here.
As a result, traditional IDSs like Snort [16] and Suricata [11] cannot be perfectly
adapted to identify intrusions against network printers.

As discussed above, network printers are computers capable of doing so much
and there are many complex attacks taking advantage of it. Currently research
is rarely conducted on identifying attacks focused on network printers. So it’s
of very significance to perform Intrusion Detection to detect such attacks. In
this paper, we research on detecting attacks against network printers in Network
Traffic. Our contributions can be concluded as follows:

1. We propose a network printer attackers’ behavioral model and knowledge
base named TTPE based on ATT&CK framework, it can be used to describe
complex attacks for network printers.

2. We implement an attack detection system for network printers named PPIDS
based on TTPE knowledge base, it performs much better than traditional
IDSs.

3. We design a methodology specialized for attack quantization, it can be used
to quantify attack risk.

Paper Outline: The paper organizes as follows: in Sect. 2, related works are
introduced; in Sect. 3, we describe PPIDS attack detection model; in Sect. 4, we
describe PPIDS implementation; in Sect. 5, we evaluate PPIDS’s performance;
in Sect. 6, we summarize our work.

2 Related Work

2.1 Security Issues of Network Printers

Since the appearance of the printer, there has been a lot of research on its secu-
rity. The risks of Postscript were pointed out in 1996 [18]. In 2002 Phenoelit
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pointed out some design failure on printers and published a proof-of-concept
application for Printer Job Language (PJL) file system access [6]. In 2005, Cren-
shaw published an overview of potentially harmful PJL commands for network
printers and pointed out some of the more interesting things that can be done
with a network based printer to make it leak information about its users, own-
ers and the network it belongs to [4]. In 2007, Printer Spamming published a
technique to force web browsers into printing arbitrary payloads on a network
printer called cross-site printing [19]. In 2009, Bojinov [1] proposed XCS (cross
channel scripting) which shows that consumer electronics are particularly vul-
nerable to a nasty form of persistent XSS where a non-web channel such as NFS
or SNMP can be used to inject a malicious script. In 2011, Deral (PercX) Hei-
land proposed a new attack on MFPs named Pass-Back-Attack [8]. In 2013, the
Information-technology Promotion Agency (IPA) in Japan published a report,
which summarized the known attacks on MFPs [21]. In 2017, the first compre-
hensive study regarding the security of printers contributing towards systematic
penetration testing was proposed by Jens Müller et al. [5]. They also imple-
mented an open-source toolkit called PRET to penetrate and exploit MFPs. In
2018, Itkin et al. proposed Faxploit [9], which can take over a network using just
a fax number.

2.2 Securing Network Printers

Rule based intrusion detection approaches could be used to solve partial security
problems of network printers. In 1999, Roesch [16] proposed a Network Intru-
sion Detection Systems (NIDS) named Snort which is lightweight and rule-based.
After that, Snort got more and more attention and developed rapidly. However,
some complex attacks may not produce fixed pattern that can be used to write
rules and some make use of the normal functions provided by the network print-
ers.

Indicator of Compromise (IoC) is an artifact observed on a network that
indicates a computer intrusion with high confidence [7]. Typical IoCs are virus
signatures and IP addresses, MD5 hashes of malware files or URLs or domain
names of botnet command and control servers. After IoCs have been identified
in a process of incident response and computer forensics, they can be used for
early detection of future attack attempts using intrusion detection systems and
antivirus software. However, in many cases these are brittle and easy for adver-
saries to bypass by modifying malware or infrastructure, defenders are hard to
keep pace with adversary changes [20].

MITRE ATT&CK [3] is a catalog of techniques and tactics that describe post-
compromise adversary behavior on typical enterprise IT environments. The core
use cases involve using the catalog to analyze, triage, compare, describe, relate,
and share post-compromise adversary behavior. However, ATT&CK is a high
level framework, there is no guideline for the user to implement the technique
and there is no threat model for network printers either.



280 H. He et al.

3 Detection Model

We propose a network printer attackers’ behavioral model and knowledge base
named TTPE based on ATT&CK framework. TTPE is a curated knowledge
base and model for network printer attackers’ behavior, reflecting the various
phases of an attacker’s attack lifecycle. TTPE aims to enumerate and categorize
post-compromise attacker tactics, techniques, procedures, elements against net-
work printers to improve detection of complex attack activity. Tactics, denoting
short-term, tactical attacker goals during an attack; Techniques, describing the
means by which attacker achieve tactical goals; Procedures, describing the spe-
cific steps to implement the technique; Elements, describing the specific meta-
operations that implement specific procedure. Figure 1 describes levels in our
detection model.

Fig. 1. The levels in TTPE detection model

To simplify the model, we now consider a scenario in which there is only one
attacker attacking a network printer. In a case that many attackers are attacking
many printers, we can pair together attacker’s IP and the target printer’s IP as
(attacker ip, target printer ip) and analyse them separately.

Basic Definitions
S is a set of Sensors.

Event represents the type of object that can be operated with operators
defined below. It contains values of st and ts, st is a value which stands for
the activation state of this event; ts is a timestamp when this event occurred.
EventSet is a set of Event. Specially, an Event is also an EventSet.

Node represents a node in the detection tree described in Fig. 1. It contains
values of name, expr and es. name is the name of the node. expr is a formula
which stands for the expression of this node; es is an object with the type of
EventSet recording all the timestamps when the event corresponding to that
Node happened.

E is a set of Elements, each element in E is an action that can be detected
by Sensors; P is a set of Procedures; T is a set of Techniques; TA is a set of
Tactics; S, E, P , T and TA are Node in different levels.
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X can be S, E, P , T or TA. Xi represents the i th X.

The Relationship Between Nodes. The node in higher level is a combination
of the lower level nodes, and the method for combination can be one of the three
operations: TEMPORAL, AND and OR, we denote it with operator ∧, &
and | respectively. To describe the relationship more conveniently, we mark A
and B as an object of type Event here which represents different actions. There
are some attacks that occur only when A happens followed by B. We call this
kind of attack sequential attack and we define the relation between A and B as
TEMPORAL here and mark it as A ∧ B. Likewise, there are some attacks that
occur when both A and B happen no matter which one happens first and we
mark it as A & B. Some attacks success either A or B happens, and we mark it
as A | B.

Calculation of Event and EventSet. We mark A = Eventi ∧ Eventj , B =
Eventi&Eventj , C = Eventi|Eventj . We mark D = EventSeti ∧ EventSetj ,
E = EventSeti&EventSetj and F = EventSeti|EventSetj . For short, we
denote Eventi, Eventj , EventSeti and EventSetj as Evi, Evj , ESi and ESj

respectively in the following. We can define calculation of Event and EventSet
as following:

a.st =
{

True if Evi.st && Evj .st && (Evi.ts � Evj .ts)
False otherwise

a.ts =
{

Evj .ts if Evi.st && Evj .st && (Evi.ts � Evj .ts)
+∞ otherwise

b.st =
{

True if Evi.st && Evj .st
False otherwise

b.ts =
{

max(Evi.ts, Evj .ts) if Evi.st && Evj .st
+∞ otherwise

A = {a} , B = {b} , C = {Evi} ∪ {Evj}
D =

⋃
Evi∈ESi
Evj∈ESj

Evi ∧ Evj , E =
⋃

Evi∈ESi
Evj∈ESj

Evi&Evj

F =
⋃

Evi∈ESi
Evj∈ESj

Evi|Evj = ESi ∪ ESj

(1)

4 Implementation

To automate the introduced pyramid-like intrusion detection method, we wrote
a prototype system entitled PPIDS in Python. The main idea of PPIDS is to
analyze the outputs of traditional intrusion detection sensors using the detection
model described above. By receiving the output of the sensors, PPIDS translates
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Fig. 2. The PPIDS architecture.

it to attack element, then raises the attack element higher to the attacker TTPs
level by level, and evaluates the result. PPIDS contains six main components
depicted in Fig. 2: Knowledge Base, Rules, Sensors, Translator, Scoring, Alerting.

4.1 Knowledge Base

The Knowledge Base module is the basic component of PPIDS. It stores the
attackers’ tactics, techniques, procedures, elements for printers attack. It nav-
igates the Rules module to generate rules for sensor outputs translating. For
easy reading and maintenance, knowledge base is stored in four interrelated
tables: Tactics and Techniques (TT), Techniques and Procedures (TP), Proce-
dures and Elements (PE), Elements and Sensors (ES). Knowledge base is avail-
able on GitHub1. In the Github repository, we summarize the attackers’ tactics,
techniques for printers in TT table based on ATT&CK.

We show an example of TP table in Table 1 and PE table in Table 2 and ES
table in Table 3 respectively.

Table 1. Techniques-Procedures table

Techniques Code execution through startup folder
file (T0021)

Code execution through
crontab (T0022)

Procedures Step1: Write arbitrary file on startup
folder (P2101)

Write crontab (P2201)

Step2: Restart (P2102)

1 https://github.com/mt-srg/PPIDS.

https://github.com/mt-srg/PPIDS
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Table 2. Procedures-Elements table

Procedures Write arbitrary file on startup folder
(P2101)

Restart (P2102)

Elements Write executable file to startup folder
through PJL Fsdownload path traversal
vulnerability (E21011)

Restart through web
(E21021)

Write executable file to startup folder
through web file upload path traversal
vulnerability (E21012)

Restart through SNMP
(E21022)

Table 3. Elements-Sensors table

Elements Write executable file to startup folder
through PJL Fsdownload (E21011)

Restart through SNMP
(E21022)

Sensors ID: S210111 ID: S210221

Attack surface: PJL Attack surface: SNMP

Object: File Object: OID

Object operation: FSDOWNLOAD Object operation: Set

Content= Bash/Binary OID = .1.3.6.1.2.1.43.5.1.1.3.1

FilePath = /var/etc/profile.d/ Value = 4

4.2 Rules

The Rules module is responsible for generating correct rules to translate the
sensors outputs based on Knowledge Base. For example:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

TA0002 = T0021 | T0022 | T0023
T0021 = P2101 ∧ P2102
P2101 = E21011 | E21012
P2102 = E21021 | E21022

(2)

4.3 Sensors

The Sensors module is used to detect printer’s network traffic through features
in traditional way. We use Snort software as our feature detection sensors engine.
For example, Listing 1.1 describes rules for S210111 detection:

4.4 Translator

The Translator module uses rules generated by Rules module and matching algo-
rithm to translate sensors’ outputs into attack elements, procedures, techniques,
tactics level by level.
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Specifically, when the translator detects a new sensor output, a thread is
started to analyze the new IP’s sensor output log. First, we translate the sensor
output log to elements sequence directly since there is one-to-one correspondence
between elements and sensors, then translate elements sequence to procedures
sequence according to PE table of Knowledge Base module. Then we perform
the calculation based on Elements sequence and produce Procedures sequence.
We repeat the calculation level by level up until no new sequence is produced or
hit the top level (Tactics). Listing 1.2 describes this process.

We got techniques sequence after matching, then translate techniques
sequence to tactics sequence. Finally, we got a TTP mapping table. Listing 1.3
is an example of detection (Please refer to Tables 1, 2 and 3):

4.5 Scoring

Scoring module scores the output from Translator module. It will give every
attack chain a score (Schain) from 0 to 100 by the sum of tactics scores. Equa-
tion (3) describes the score of an attack-chain. The tactic score (Sta) is equal to
the sum of the corresponding techniques scores, but does not exceed the maxi-
mum score (Sta max) set in advance by expert knowledge according to its attack
effectiveness. Equation (4) describes the tactics score. Table 4 shows the maxi-
mum score of tactics. Technique score (St) ranges from 0 to Sta max by expert
knowledge according to its tactical performance.

Schain = min(
∑

Sta, 100) (3)
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Sta = min(
∑

St, Sta max) (4)

Table 4. Maximum score of tactics

Tactics Maximum score Tactics Maximum score

Common information gathering 1 Defense evasion 7

Specific information gathering 2 Credential access 7

Specific weakness identification 2 Discovery 7

Attack preparation 3 Lateral movement 9

Initial access 4 Collection 8

Execution 7 Exfiltration 8

Persistence 8 Command and control 10

Privilege escalation 7 Pullout 10

4.6 Alerting

This module provides PPIDS users readable alerts according to the score gener-
ated by Scoring module. The score of a potential attack chain accumulates, and
score larger than 10 would trigger alert.

5 Experiments

5.1 Environments for Experiments

We use the printers in our office network (including 11 printers for various well-
known manufacturers) for experiments, Table 5 shows the basic information of
the printers in our experiments environment.

Table 5. The basic information of the printers in our experiments environment

IP Printer Language

192.168.0.12 FUJI Xerox DocuPrint CM225/228 PS/PJL/PCL

192.168.0.61 Canon MF620C Series PS/PJL/PCL

192.168.0.87 Lenovo LJ2655DN PS/PJL/PCL

192.168.0.94 RICOH SP 212SFNw PS/PJL/PCL

192.168.0.106 HP Color LaserJet MFP M277dw PS/PJL/PCL

192.168.0.109 Samsung ML-371x Series PS/PJL/PCL

192.168.0.115 Lexmark MX511de PS/PJL/PCL

192.168.0.132 SHARP SF-S201N PJL/PCL

192.168.0.216 HP LaserJet M1536dnf MFP PS/PJL/PCL

192.168.0.219 HP PageWide Pro 477dw MFP PS/PJL/PCL

192.168.0.252 Broher MFC-9140CDN PS/PJL/PCL
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5.2 Dataset for Experiments

There are four typical printer roles in our experiments: 1. Attacker who performed
attacks. 2. Normal user who installed printer drivers. 3. Normal user who launched
normal print jobs. 4. Administrator who managed the printer with sensitive oper-
ations. For these four roles, we designed four scenarios to simulate and sequentially
capture traffic as our dataset, which is available on GitHub2.

Printer Attacker Scenario

A1: Conduct ports scan on target printer using NMAP
A2: Get SNMP OID(.1.3.6.1.2.1.1.5.0) value to identify printer model
A3: Get SNMP OID(.1.3.6.1.4.1.2435.2.4.3.99.3.1.6.1.2.7) value to identify
printer firmware version
A4: Log in printer web page using default usernames and passwords
A5: Test if path traversal vulnerability exits on target printer using PRET
A6: Identify printer’s status through visiting printer’s web page
A7: Upload bash file to starup folder though PJL using CVE-2017-2741
A8: Set SNMP OID(.1.3.6.1.2.1.43.5.1.1.3.1) to restart printer
A9: Use NC tool to connect to the target printer
A10: Visit printer’s LDAP configuration web page
A11: Test LDAP configuration through web to perform PASSBACK attack
A12: Set SNMP OID with XSS payload to perform XCS attack
A13: Visit job history through web page
A14: Visit error log through web page

Printer Normal User Scenario 1

U11: Install printing drivers, query the model of the printer through SNMP.
U12: Query the status of the printer
U13: Login the printers with factory default credentials
U14: Set the email address for receiving when scan

Printer Normal User Scenario 2

U21-U23: Send print jobs to printer through RAW with PS,PCL,PDF.
U24-U26: Send print jobs to printer through LPD with PS,PCL,PDF.
U27-U29: Send print jobs to printer through IPP with PS,PCL,PDF.
U30-U32: Send print jobs to printer through WSD with PS,PCL,PDF.

Printer Administrator Scenario

AD1: Query the make and model of the reported printer
AD2: Query the firmware version of the reported printer
AD3: Query the state of the reported printer
AD4: Login the printers web management interface with default credentials
AD5: View the print jobs on the web interface
AD6: Reboot the printer
AD7: Reset the printer
AD8: View the LDAP configuration on the Web interface and test the con-
nection between the printer and the LDAP server.

2 https://github.com/mt-srg/PPIDS.

https://github.com/mt-srg/PPIDS
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5.3 Experiments Procedures

There are three phases in our experiments: 1. Scenarios designing. 2. Data col-
lecting. 3. Data processing and Evaluation.

Scenarios Designing. Before data collecting, we design four scenarios for four
roles, and make detailed scripts for all the scenarios (as introduced in Sect. 5.2).
The principles of making scripts should be as similar as in reality.

Data Collecting. We use a tool named Mergecap, which comes with Wireshark
to merge all the packets we gathered into a file containing all the network packets
produced in all the scenarios.

Data Processing and Evaluation. After merging packets together into a file,
we process the file with PPIDS and OADMS (will be introduced in Sect. 5.4),
then we collect the output log from each system and record three metrics for
each element: 1. Whether the element is detected. 2. The score for the potential
attack chain at present. 3. Whether the element can trigger alert.

If an element is detected by a system, then the value for “Whether the
element is detected” is True. PPIDS will record all the elements that may lead
to an attack chain according to its knowledge base while OADMS will only record
elements that triggers its rule. The score for the potential attack chain at present
reflects what’s the system’s attitude towards this element, the more dangerous
an element is, the higher score it gets. In PPIDS, the score for the potential
attack chain accumulates. Since OADMS is a Snort-based system, when a rule
of “log” type triggered, the element will get 50 and when a rule of “alert” type
triggered, the element will get 80. If the score at the time when an element is
processed is larger than 10, then the element will trigger alert.

After recording all the three values, we get a table for this system when
processing each elements. We then calculate the FPR (False Positive Rate) and
FNR (False Negative Rate) according to the table we got.

FPR/FNR is calculated as follows: If an element doesn’t belong to any attack
chain, but the system regards that the element can trigger alert, it’s a false
positive. If an element does belong to an attack chain, but the system regards
that the element can’t trigger alert, it’s a false negative. If there are N elements
(E1, E2, ...EN ) processed by the system, and M elements (Ei1, Ei2, ...EiM ) in
attack process, and a system detects P elements of attack process and Q elements
out of attack process, then:

FPR =
Q

N − M
∗ 100% (5)

FNR =
M − P

M
∗ 100% (6)

5.4 System to Compared with

OADMS. There is no publicly available printer intrusion detection system on
the market currently. Over the years, our team has implemented a snort-based
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printer intrusion detection system entitled OADMS. OADMS has more than 150
rules which can cover most popular printer attacks. The rules for OADMS are
generated mostly base on the vulnerabilities disclosed by printer manufacturer
and CVE [10] as well as vulnerabilities in PRET [17].

5.5 Results

We process the file for PPIDS and OADMS, then we collect the output log from
each system and record three values for each element. Table 6 describes the three
values for PPIDS and OADMS in our experiments. We calculate the FPR and
FNR for PIDDS and OADMS according to Eqs. (5) and (6), Table 7 shows the
result.

From the Table 7 we can see that PPIDS have a better performance over
OADMS. PPIDS has a lower FNR which means it can pick up much more
elements of attack than OADMS. PPIDS has zero FPR means that PPIDS can
effectively pick up the true attacks for the network manager.

Table 6. Experiment results for PPIDS and OADMS

Detected Score Alert Detected Score Alert

PPa OAb PP OA PP OA PP OA PP OA PP OA

A1 � 1 U22 � 0

A2 � 3 U23 � 0

A3 � 5 � U24 � 0

A4 � 5 � U25 � 0

A5 � � 5 80 � � U26 � 0

A6 � 8 � U27 � 0

A7 � � 15 80 � � U28 � 0

A8 � � 15 80 � � U29 � 0

A9 � 25 � U30 � 0

A10 � 35 � U31 � 0

A11 � 42 � U32 � 0

A12 � 51 � AD1 � 2

A13 � 59 � AD2 � 2

A14 � 59 � AD3 � 4

U11 � 2 AD4 � 4

U12 � 2 AD5 � 5

U13 � 4 AD6 � 5

U14 � 4 AD7 � 7

U21 � 0 AD8 � 9
a‘PP’ is short for ‘PPIDS’
b‘OA’ is short for ‘OADMS’
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Table 7. Comparison between PPIDS and OADMS in our experiments

System FPR FNR

PPIDS 0 14.29%

OADMS 16.66% 78.57%

6 Conclusion

In this paper, we discuss the significance of detecting attacks on network printers
and why traditional IDSs are not suitable for network printers. So we research
on constructing a specialized IDS for network printers. To detect attacks on net-
work printers from network packets, we design and implement a pyramid-like
methodology for attacking detection which utilizes “temporal”, “and” and “or”
operators to describe relationships between events, and we use ATT&CK frame-
work as a foundation for the development of network printer threat models and
methodologies that model the relationship between tactics, techniques, proce-
dures, elements. We propose a behavior based attack detection system PPIDS
on network printers. Experiments show that PPIDS behaves much better than
OADMS which is based on Snort.
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Abstract. Mobile devices, such as smart phones, have recently become
the typical computing platforms for many users. Consequently, in prac-
tice more and more multi-party computation systems are deployed on
users’ mobile devices, resulting in various applications such as mobile
outsourcing computing and mobile cooperative computing. However, as
the mobile platforms may have inherent flaws, the connection of mobile
devices and multi-party computation systems usually arouse new secu-
rity risks. We point out that an application in one party’s mobile device
can be a powerful privileged attacker to the multi-party computation
system. Previous studies have mainly focused on avoiding the privacy
leaks of one or several malicious parties or eavesdroppers on the Inter-
net. This paper presents a privacy enhancing scheme for a kind of secure
multi-party computation systems. The scheme can resist the privileged
attackers from the party’s mobile device. Our scheme transforms the orig-
inal computation process and puts the critical calculation process into
trusted execution environment. We provide three components to build
a privacy-enhanced multi-party computation system with our scheme.
Our scheme is implemented to an actual secure multi-party computation
system to demonstrate its validity and acceptable performance overhead.

Keywords: Mobile computation · Multi-party computation · Trusted
execution environment · Privacy preserving · Mobile security

1 Introduction

The proliferation of the Internet has triggered tremendous opportunities for
cooperative computation. People cooperate with each other to conduct com-
putation tasks based on the inputs they each supplies. These cooperative com-
putations can occur between trusted partners, between partially trusted part-
ners, or even between competitors. How to preserve the privacy of inputs during
c© Springer Nature Switzerland AG 2020
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cooperative computation is referred to as secure multi-party computation prob-
lem (SMC) in the literature [1]. In fact, various secure multi-party computation
schemes have been employed in abundant cloud computing systems and out-
sourcing computing systems to address privacy issues, such as privacy preserving
data mining [2], and privacy preserving statistical analysis [3].

Nowadays, mobile devices become an essential part of human life relying
on the convenience not bounded by time and place [4]. With the explosion of
mobile applications, various services, like mobile cloud computing service, are
accessed from mobile applications which run on the devices and communicate
with remote servers via wireless networks [5]. However, the new access environ-
ment will impose a new set of security risks that did not appear in traditional
service systems, especially the multi-party computation system.

This paper presents a privacy enhancing scheme for secure multi-party com-
putation systems where a party works on a mobile device. The traditional design
of secure multi-party computation systems mainly focuses on protecting against
eavesdroppers in public channels or party attackers. Yet a number of security vul-
nerabilities existed in mobile operating systems, and complex application envi-
ronment in mobile device create the possibility of a powerful privileged attacker.
Hence, the eavesdroppers can come from another application on the party mobile
device. We define a new threat model for the multi-party computation systems
among which a party works on a mobile device. Our privacy enhancing scheme
resists such a privileged attacker via transforming the original multi-party com-
putation algorithm and putting the critical calculation process in trusted execu-
tion environment (TEE) [6].

Trusted execution environment is implemented by a hardware characteristic
of device processor [6]. The characteristic makes that two isolated systems can
parallelly run on one device. One is the normal system like Android where the
original party application runs on. Another system is trusted system that will
not be attacked by the privileged attacker in the normal system. In our scheme,
the critical calculation process in the transformed calculation process, which can
lead to privacy leaks, will be executed in the TEE. The remainder calculation
process will also be executed by the original party application in the normal
system to reduce its impact on user experience.

We design three functional components to implement our scheme for a multi-
party computation system. Since TEE does not provide the trusted storage, we
design the “Secret Recovery” component which protects the secret of mobile
party by device info and password. The second component “Trusted UI” is used
to resist message tampering attack. The third component “Computation Con-
trol” resists offline guessing attack by limiting the number of consecutive failed
computation attempts. The limitation is implemented on the next party in the
multi-party computation to avoid replay attacks.

To demonstrate the validity of our scheme, we implement our scheme on
an actual multi-party computation system: Privacy-Preserving Multi-keyword
Ranked Search (MRSE) [7], which is a ciphertext search scheme with three par-
ties. Further, we evaluate the efficiency of our scheme by measuring the execution
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speeds of the enhanced process with our scheme and the corresponding original
process. The evaluation results show that our scheme only introduces a negligible
overhead.

Our main contributions can be summarized as follows:

– We present a new threat model in mobile devices based secure multi-party
computation systems. The designer of a secure multi-party computation sys-
tem must consider attacks from other application on a party’s mobile device.

– We present a privacy enhancing scheme for secure multi-party computation
systems with three components. Our scheme resists privileged attackers by
transforming the original computation process and putting the critical calcu-
lation process into TEE.

– We implement our enhancement scheme on an actual secure multi-party com-
putation system to demonstrate the validity of our scheme and evaluate the
performance of our scheme.

The remainder of the paper is organized as follows. Section 2 provides back-
ground information on TEE, and secure multi-party computation. Section 3
presents our privacy enhancing scheme. Section 4 describes a user cases of our
scheme. The experimental evaluations of our proposed scheme are given in
Sect. 6. Section 7 concludes the study and indicate our future work.

2 Background and Related Work

2.1 Trusted Execution Environment

Trusted execution environment is a secure area of a processor. It guarantees code
and data in it to be protected with confidentiality and integrity [8]. TEE is an
isolated environment that runs in parallel with the normal operating system like
Android. Trusted applications (TA) [6] is the application running in a TEE. TAs
have the full access to the processor and memory of a device, while hardware
isolation protects these from user installed apps running in the normal operating
system. The execution flows and process data in the TAs are isolated from each
other by the secure isolation mechanism of TEE [8].

In ARM architecture, TrustZone [9] is presented as an embedded hardware
technology which can be used to support TEE implementations. In the imple-
mentation of our scheme, we employed Qualcomm Secure Execution Environ-
ment (QSEE). QSEE is a TEE implementation developed by Qualcomm based
on ARM TrustZone technology [10]. QSEE provides Pseudorandom Number
Generator (PRNG) driver. The driver is hardware-based and can provide high
quality random numbers.

2.2 Secure Multi-party Computation

In cryptography, the goal of secure multi-party computation (MPC) is to create
methods for parties to jointly compute a function over their inputs while keep-
ing those inputs private [11]. The security of multi-party computation protocol
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concerns two main aspects: input privacy and correctness. Hence, in our threat
model, we define two active attacks that an active attacker can use to break
protocol’s security in input privacy and correctness.

A specific secure multi-party computation scheme can be used to resolve
a specific real-life problem [12], such as privacy preserving database query or
privacy preserving data mining. When a secure multi-party computation sys-
tem is implemented to provide a service for the real-life user, it will face many
challenges from the real world such as mobile adversary [13].

Adversaries can be categorized according to how willing they are to deviate
from the protocol. There are essentially two types of adversaries: passive adver-
sary and active adversary. The passive adversary model assumes that corrupted
parties merely gather information in the normal protocol execution, but do not
deviate from the protocol specification. This is a naive adversary model. The
active adversary model assumes that the adversary can arbitrarily deviate from
the normal protocol execution in its attempt to cheat. Protocols which achieve
security in this adversary model provide a very high security guarantee. In our
threat model, we divide the secure multi-party computation protocols into two
categories and focus on the active adversary.

2.3 Related Work

Multi-party Computation System. Multi-party computation systems have
been deployed to a variety of user services, particularly those related to cryptog-
raphy [7,14,15]. Bogetoft et al. [16] introduce the first large-scale and practical
application of secure multi-party computation. Du et al. [12] introduce a trans-
formation framework to transform normal computation models to the models
enhanced with new privacy requirements. The classical adversary model focuses
on the tolerable number of parties that can be corrupted by an adversary [11].
Hirt et al. [17] recursively applies the simulation technique to standard secure
multiparty computation to build a new general adversary model which is not
limited to the number of corrupted parties. Multi-party computation is useful to
investigate the basic and general protocol issues. Ostrovsky et al. [13] emphasize
the analysis of mobile adversary that the computation faces.

Mobile Security. Privilege escalation attack is a kind of common attack on
mobile platforms. An attacker can exploit system or program vulnerabilities to
disable the system’s sandbox model [18]. WiBfeld [19] introduces a series of meth-
ods to hook method calls and implements code injection on Android platform.
Although various defensive schemes have been suggested to protect a mobile app
[20], such as code obfuscation [21] and virtualization-based secure execution [22],
they also hardly resist a powerful and knowledgeable adversary in the normal
mobile system. ARM TrustZone is employed to provide trusted execution envi-
ronment. Using TEE to implement program security is a research hotspot, such
as Gupta et al. [23] which employed TEE to implement secure behavior analysis
and Covey et al. [24] which employed TEE to implement entry authentication
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for softwares. Some researchers are working on improving TEE’s security [25]
because TEE itself has some flaws, such as the lack of secure storage. Tremlet
[26] proposed to embed a secure element into mobile device. Yet Roland et al.
[27] proposed a series of attack methods on SE-enabled secure storage scheme
on mobile platforms. Mellqvist [28] designed a cloud secure storage system for
mobile platforms, however it still faces some threats from the cloud.

3 Privacy Enhancing Scheme

To address the privacy issues described above, we propose a privacy preserving
enhancement scheme in this section. The scheme works for a specific kind of
multi-party computation which is introduced in Sect. 3.1. Our scheme strength-
ens the security of privacy preserving in the parties on the mobile device.

3.1 Threat Model and Assumptions

The active attack, who attempts to impersonate a legitimate party, is a com-
mon problem for multi-party computation system designers to consider. Previ-
ous studies have mainly considered this attack from the public channel between
parties such as the network. However, our study focuses on the attacker com-
ing from the mobile device of a legitimate party. We term the party that uses
mobile device to execute its computation process client, and we term the other
party server. The computation process of a client is almost executed in a mobile
application. The attacker can be another application in the client device.

Client Imitation Attack: This kind of active attack is defined on the party
that use mobile device to execute its computation process. The attacker lurks
in the client device as a mobile application or other forms. The attacker aims
to impersonate the client of a multi-party computation system without being
detected. Further, the attacker can get the final result of the multi-party com-
putation with arbitrary input.

This attack model is not appropriate for all multi-party computation system
scenarios. This is because in some multi-party computation problems, any of
these computation results are valuable to the attacker. For example, in the WiFi
fingerprint-based localization system, one target of attacker is to get the client’s
location which is the last output of the whole multi-party computation algorithm
[14]. Hence we divide the multi-party security algorithm into two categories. The
first category is client output-sensitive algorithm such as the WiFi fingerprint-
based localization algorithm. If the last output or the medium output of client
is the target of the attacker, we term the algorithm client output-sensitive. The
medium output of client refers to the data that client party sends to other parties.

This paper focuses on the second category: client process-sensitive algorithm.
The second category claims that the last output or the medium output of client is
not a target of attacker. The attacker aims to impersonate the client in the multi-
party computation system. A common example of this category of algorithm is
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cooperative signature. One target of attacker is to sign a specified bill message
without user confirmation [29].

We divide the inputs of client into two kinds. The first kind in different
computation such as the message that will be signed is different. We term it
input−A. The second kind is the same in different computation such as a secret
key that can be used to represent the party’s identity. We term it input − B.

Hence, the attacker can achieve this goal in two ways. Attack-way-A: Tam-
pering all the input − A as expected by the attacker, and employing the client
to complete the legitimate multi-party computation process. Then attacker gets
the last computation result. Attacker-way-B: Getting all the input − B, and
using them to complete computation with other parties for arbitrary intput−A.
Then attacker can achieve the same goal in the absence of the client.

We assume that an attacker can acquire root privilege on a client. Hence the
attacker can monitor and debug the party application or process on a client.
Further, the attacker can get and tramper any input, and implement the client
imitation attack. The existing methods of preventing these two attack ways in
the normal mobile system are hard to defend against privileged attackers. This
is because all the data and UI (User Interface) used in these defense methods
can be obtained and copied by the powerful attacker.

3.2 Scheme Overview

The key idea to resist the client imitation attack in our proposed scheme is
ensuring that the key process data or input only appears in TEE. The calculation
process in TEE cannot be monitored and controlled by a privileged attacker
in the normal OS like Android. Hence, firstly we should calculate the security
boundary of the client’s computation process. And then we can transform the
original computation process and put the critical calculate process in TEE to
avoid leaking critical input or process data.

The calculation of the security boundary must base on a specific multi-party
security algorithm. We analyze the life cycle of each critical input and process
data to get the security boundary. We use a user case to describe the algorithm
transformation process in Sect. 4. A straightforward idea is that putting the
whole algorithm process and all the input of client into TEE without considering
any boundary. However, this idea is not feasible in the actual mobile phone usage
scenario. This is because:

(1) TEE system does not contain the abundant system infrastructures as the
normal mobile system. Many operations must be completed through the
normal mobile system like localization or network access.

(2) The whole work flow of client can be cross-process and the data transmission
between clients or client and server is almost over the network. Certain
inputs, process data and outputs must be visible to the attacker.

(3) TEE system provides the trusted execution environment but it is unable to
provide the trusted storage. There is no direct way to protect client secrets.
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Fig. 1. The overview of our scheme

After we calculate the security boundary of a multi-party security algorithm
and put the critical calculation process in TEE, three basic components are pro-
vided to implement our privacy preserving enhancement scheme. The three basic
components are secret recovery component, trusted UI component, and compu-
tation control component. We introduce their functionality and implementation
in the following contents.

The overview of our scheme is shown in Fig. 1. In traditional implementation
of a multi-party computation system, all the computation are performed on an
application of client and a series of other party like servers. In our proposed
scheme, a TA is built to include the critical calculation process. TA and the
application in the normal system jointly complete the computation process of
the client.

The secret recovery component is employed to resist the attack-way-B. This
component is used to protect the input-B. Our scheme calculates the result of F
(secret, Device info, password) and stores it in the normal system. The attacker
cannot recover the secret from the result without password, since the password
is only imported from the trusted UI in TEE. The password is used to control
access to the secret.

The trusted UI component is employed to resist the attack-way-A. In the pre-
vious paragraph, we introduce that the password imported from the trusted UI is
used to protect the input-B. And the trusted UI component is also used to protect
the input-A. To prevent an attacker from tampering an input-A to another value,
we use trusted UI to show the input-A or its corresponding human-readable
character string. The party users can authorize the calculation by importing
the password only when they agree to the displayed input-A. In some actual
application scenarios, the input-A is a digest of source Message.

Computation control component is employed to resist offline guessing attack.
Since we import password to control the access of the secret instead of import-
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ing the secret directly, the difficulty of guessing secrets drops to the difficulty
of guessing passwords. Hence, the number of consecutive failed computation
attempts must be limited strictly. If the data used to reject computation attempt
is only stored in client, it is hard to defend against replay attacks. Hence, the
rejection behavior is initiated from other parties.

3.3 Protecting Secret by Device Info and Password

The input-B can be a secret s like the partly private key in the two-party sig-
nature algorithm. The secret usually sources from a random number which can
be generated in TEE. If the secret depends on other input information like the
data sending from other parties, the client application can collect and forward
this data to the corresponding TA.

The secret recovery component employed a function F (s, di, pw) to generate
a result string λ. di indicates the device info, and pw indicates the password.
The function F must be reversible for its first parameter. In other word, there
must exist another function G that G(rs, di, pw) == s. Hence when the first
time the secret s is calculated in TEE, the secret recovery component executes
the function F to generate the result string λ. Then the rs will be sent to the
client application to be stored in the normal OS. The attackers cannot calculate
the secret s from λ unless they have all the device info and password.

When the client application wants to use the secret to complete its compu-
tation process in the multi-party security algorithm, the client application sends
the λ and Device Info to the corresponding TA. After the client user imports the
password on the trusted UI, the secret recovery component executes the function
F ′ to recover the s from the λ. Then the protected secret s can be used in later
steps.

The functions F and F ′ can be implemented by a common symmetrical
encryption-decryption algorithm with a secret key. The secret key is generated
from hash values of the device info and password. The functions F and F ′ can
also be implemented by a simple XOR operation between the first parameter
and the hash values of other parameters. We summarize the two types of imple-
mentation algorithm as follows, where H represents a hash function.

{
F (s, di, pw) = ENC(s, SK =H(di)⊕H(pw))
F ′(λ, di, pw) = DEC(λ, SK =H(di)⊕H(pw)) (1)

{
F (s, di, pw) = s ⊕ H(di) ⊕ H(pw)
F ′(λ, di, pw) = λ ⊕ H(di) ⊕ H(pw) (2)

3.4 Resisting Message Tampering by Confirming Message
on Trusted UI

The input-A can be a message m like the order information that will be signed.
Since a powerful attacker can control the normal OS in our threat model, the
attacker can intercept or replace the import of m. The input-A can come from
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the network or another app or somewhere else. Hence the input-A is beyond our
security boundary, and we can’t completely protect it from attack.

In our proposed scheme, the attacker still can tamper an input-A m with
another message. Yet our trusted UI component can display the incoming mes-
sage of TEE. And the computation process will be continued only if the client
user confirms the incoming message as the user want. The Trusted UI of message
confirmation is shown in Fig. 2.

The message confirmation cannot be implemented in the normal OS since
the UI also can be tampered by a powerful attacker. When the first time the
client user uses the trusted UI or the initialization/registration process of the
secure multi-party computation, the client user must set a reserved information.
The reserved information is a character string that will be displayed on trusted
UI of message confirmation and password import. The reserved information is
employed to prevent an attacker from faking a same UI with the trusted UI.
The reserved information is a secret the client user shared with TA and used to
identify the trusted UI of the appropriate TA. The reserved information is also
protected as an input-B that we introduce the protection method in Sect. 3.3.

(a) Trusted UI of password import (b) Trusted UI of message confir-
mation

Fig. 2. Two trusted UIs on real machine. Area No. 1 shows the function name of the
UI and area No. 2 is the main functional areas. Area No. 3 shows reserved information.

3.5 Resisting Offline Guessing Attack by Limiting the Number
of Consecutive Failed Computation Attempts

Limiting the number of consecutive failed computation attempts is a common
way to resist offline guessing attack [30]. We improve a standard delay strategy
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Algorithm 1. Password Verification
Input: Records list L. Received data m. The secret key ms. Stored hash value of

password hp. Now time nt. Default lifetime dlt.
Output: A new record list L.
1: for each e in V do
2: if e.begintime + e.lifetime < nt
3: V = V − {e}
4: end if
5: end for
6: mhp, mst = DEC(M, SK = ms)
7: if mhp == hp && Check out mst with nt
8: for each e in V do
9: e.lifetime = e.lifetime/2
10: end for
11: return V
12: end if
13: else
14: V = V + {nt, dlt}
15: switch V.count
16: case 1 to 4
17: dt = 0, dl = 1
18: case 5
19: dt = 1, dl = 1
20: case 6
21: dt = 5, dl = 1.5
22: case 7,8
23: dt = 15, dl = 2
24: case other
25: dt = 60, dl = 3
26: for each e in V do
27: e.lifetime = e.lifetime ∗ dl
28: end for
29: Stop party computation system in dt minutes.
30: return V
31: end else

on mobile devices [31] with the lifetime of failed computation attempts. The
original delay strategy proposes the progressively increased delay time when the
number of consecutive failed computation attempts increases in one day. In our
improved delay strategy, the records of failed computation attempts will not be
cleared at the end of the day and the records have a flexible lifetime management.

Each record contains the starting time and lifetime. Each computation
attempt triggers a password verification on the next party of secure multi-party
computation. The password verification launches a record purge to remove the
expired records. The failed password verification will add a new record in the
records table. The consecutive failed verification can cause the party computing
service to stop for a certain period of time, and can trigger a penalty to increase
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the lifetime of all records in the records list. We summarize this algorithm in
Algorithm 1.

The password verification is implemented by matching timestamp and the
hash value of password. Firstly, in the preparatory stage or initialization stage
of multi-party security algorithm, the client and the next party jointly complete
a key exchange protocol. The generated key in the key exchange protocol can be
a secret that we recover in secret recovery component. Then the client calculates
the value of m = ENC(HASH(password), timestamp), and sends it to the next
party. In each computation attempt, the client will also sent the m to the next
party. The password verification can not be implemented in the local, since (1)
the time information can be tampered by attacker, and (2) the critical data used
in the verification such as the record table can be subject to replay attacks.

4 User Case

In this section, we use an actual multi-party security system on ciphertext search
to show how to transform the original algorithm to apply our privacy enhancing
scheme.

4.1 A Brief Introduction to an Ciphertext Search System: MRSE

MRSE [7], Privacy-Preserving Multi-keyword Ranked Search over Encrypted
Cloud Data, is a ciphertext search system with three parties. The three parties
are data owner, cloud server, and data user. The scheme is used to implement
an encrypted cloud data search service. The scheme allows multiple keywords in
the search request and return documents in the order of their relevance to these
keywords. The MRSE scheme consists of four algorithms: Setup, BuildIndex,
Trapdoor, Query.

The data owner executes Setup to generate the secret key in the form of a
3-tuple as {S, M1, M2}. M1 and M2 are two (n+2)×(n+2) invertible matrices.
M−1

1 and M−1
2 must be encrypted and sent to the data user. The encryption key

can be generated by key exchange. Then the data owner executes BuildIndex to
build a subindex Ii for every encrypted document Ci. The Ii securely keeps the
keyword information of document. After that, the data user executes Trapdoor
to generated the secure search request W̃ with several input-As: keywords, and
two input-Bs: M−1

1 and M−1
2 . Then the cloud server executes Query to compute

the similarity scores of each document with the search request W̃ and each
document’s subindex Ii. After sorting all scores, the cloud server returns the
top-k ranked document id list.

4.2 The Algorithm Transformation on MRES

Our scheme focuses on the two algorithms involving the data user. In Setup
stage, the data user join in the key exchange process and encryption transmission
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process. In Trapdoor stage, the data user computes secure search request and
sends it to cloud server.

Diffie-Hellman key exchange [32] is selected to implement encryption trans-
mission. The original implementation of the protocol uses the multiplicative
group of integers modulo p, where p is prime and g is a primitive root modulo
p. In this way, the resulting shared secret can be ensured to take on any value
from 1 to p−1. The two parties use a same modulus p and a base g. The party
O represents the data owner and the party U represents the data user.

The key exchange process is described in Algorithm 2. The first three steps
in Algorithm 2 of U are the original steps which is implemented in TEE now.
The fourth step is the new step which is implemented in TEE. Then the client
app in the normal system stores λ in local. The λ can be used to recover the
secret key sk.

The process of encryption transmission is described in Algorithm 3. Then
the client app in the normal system stores λM1 and λM2 in local. The λM1 and
λM2 can be used to recover the M−1

1 and M−1
2 . The third step in Algorithm 3 is

the original step which is implemented in TEE now. The second and the fourth
steps are the new steps which is implemented in TEE.

The process of generating secure search request is described in Algorithm 4.
Then the client app in the normal system sends T

˜W
to cloud server to execute

Query algorithm. The first step in Algorithm 4 is the original step which is also
implemented in normal app. The second, the third, and the fifth step are the
original steps which is implemented in TEE now. The fourth step is the new
step which are implemented in TEE.

Algorithm 2. Key exchange
Input: O, U : Modulus p, base g. U : Device info di, and password pw.
Output: U : A number λ.
1: O: Generate a random number a. U : Generate a random number b.
2: O: Calculate A = ga mod p and send A to U . U : Calculate B = gb mod p and send

B to O.
3: O: Calculate the secret key sk = Ba mod p. U : Calculate the secret key sk =

Ab mod p.
4: U : Invoke function F (sk, di, pw) to generate λ. Return λ.

Algorithm 3. Encryption transmission
Input: O: Transmission key sk, transmitted data M−1

1 , M−1
2 ∈ N

(n+2)×(n+2). U :
Device info di, and password pw, λ.

Output: U : Two matrices λM1 and λM2.
1: O: Encrypt the M−1

1 , M−1
2 with the key sk. Send the encryption result m to U .

2: U : Recover the sk by invoking F ′(λ, di, pw).
3: U : Decrypt the M−1

1 , M−1
2 with the key sk and m.

4: U : Invoke function F (M−1
1 , di, pw),F (M−1

2 , di, pw) to generate λM1 and λM2 and
return them.
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Without the enhancement of our scheme, the MRSE system can be attacked
by a privileged attacker in data user’s mobile device. The attacker can analyze
and get the stored secret sk, M−1

1 , M−1
2 , or tramper the keywords W̃ . Then

the attacker can act as a data user to query arbitrary data. At last the attacker
can attack cloud server to get information about the data source with unlimited
queries or cause the user to be blocked.

Algorithm 4. Generating secure search request
Input: U : Device info di, and password pw, two matrices λM1, λM2 ∈ N

(n+2)×(n+2),
interested keyword collections ˜W . The whole keyword collections W = W1, W2,
..., Wn.

Output: U : A trapdoor matrice T
˜W ∈ N

(n+2)×(n+2).

1: U : Generate one binary vector Q. Each bit Q[j] indicates whether Wj ∈ ˜W is true
or false.

2: U : Extend Q to a (n + 2)-dimension vector Q as (rQ, r, t). r, t are two nonzero
random numbers.

3: U : Equally split Q into two matrices. Q = (Q′,Q′′).
4: U : Invoke function F ′(λM1, di, pw),F ′(λM2, di, pw) to recover M−1

1 , M−1
2 .

5: U : Calculate the last trapdoor T
˜W = {M−1

1 Q′, M−1
2 Q′′} and return them.

5 Security Analysis

Since our privacy enhancing scheme does not change the data interaction and
transfer protocols between parties in computation, the privacy guarantee from
network attackers and party attackers will not be enhanced or compromised. In
the user case introduced in Sect. 4, owner’s document privacy, rank privacy from
the cloud server and user, and user’s retrieval privacy are guaranteed by cryp-
tographic algorithms and random numbers in MRSE. These security properties
are inherited in our privacy enhanced MRSE. However, the original MRSE can
not protect the three privacies from a privileged attacker in the user’s mobile
device, since all data used by the party application is visible to the attacker.

Our scheme can enhance the privacy of a multi-party computation system
in preventing client imitation attack. A privileged attacker in the data user’s
mobile device can achieve the goal, getting the final result of the multi-party
computation with arbitrary input, in the two attack ways, Attack-way-A and
Attacker-way-B. In the original MRSE, a input − A, the interested keyword
collections W̃ in generating secure search request process, can be tampered by
the attacker. Two input−B, the encryption secret key sk in key exchange process
and the partial computation secret key M−1

1 ,M−1
2 in encryption transmission

process, is visible to the attacker.
Nevertheless, the privacy of the three inputs is protected in the privacy

enhanced MRSE. If the attacker aims to acquire the sk, the attacker can calcu-
late the formula Ab mod p or F (λ, di, pw). The attacker can acquire b, λ, and di
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by monitoring the party application. However, A and pw is only appear in TEE
where can not be observed by the attacker in the normal mobile OS. Similarly,
M−1

1 ,M−1
2 is protected in TEE by sk and pw.

If the attacker aims to tamper the W̃ with new keyword collections W̃ ∗,
the attacker can tamper the generated vector Q in the first step or create a
new trapdoor T ∗

˜W
for the W̃ ∗. Tampering with Q is resisted by our trusted UI

component since the user can confirm the message to be processed is W̃ or not.
The creation of trapdoor T ∗

˜W
is prevented by the MRSE algorithms unless the

attacker has the partial computation secret key M−1
1 ,M−1

2 .

6 Performance Evaluation

In this section, we report the results of our experimental evaluation to demon-
strate that the performance cost of our scheme is acceptable. We implement the
client side of the experimental multi-party computation systems with mobile
phone on Android platform and QSEE, as shown in Fig. 2. Two server parties
are implemented on a CentOS server with 32 eight-core 2.00 GHz CPUs and
144 GB memory and a Dell OptiPlex with 3.4 GHz CPU, 16 GB of memory, and
windows 10.

We use SHA-1 [33] and AES [34] as the default hash algorithm and symmet-
rical encryption-decryption algorithm in our scheme. We run the original MRSE
and the privacy enhanced MRSE with a real-world dataset: the Enron Email
Dataset [35].

Since the operation time of user on the UI is not controllable, we remove
the operation time on trusted UI. In each experimental execution process, we
measure the execution time of the whole process and the time spent on the
trusted UI. Then we calculate the difference between the two values as the final
execution time. In order to reduce the influence of system error on our evaluation
results, each measurement was performed 10 times and their average value was
selected as the measurement result.

6.1 Setup Stage of MRSE

The whole Setup stage contains three processes: (1) generating the secret key
of the system {S, M1, M2}, (2) generating a session key by key exchange, and
(3) sending {M−1

1 , M−1
2 } to the data user. The size of secret key is related to

the size of keyword dictionary n. In order to evaluate the performance cost of
our scheme in different scales of data, we create no a little dummy keywords
instead of only one dummy keyword and insert them into the dictionary and
every keyword vectors.

The evaluation results in the different sizes of keyword dictionary are shown
in Fig. 3(a). The cost of our scheme is less than 10% when the size is more than
2000. With the increase in the value of u, the proportion of performance cost is
obviously reduced. This is because the main overhead can be divided into two
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parts: (1) switching the execution environment between TEE and the normal
operating system, (2) transferring data between two execution environments
and additional data operations. The first part of the overhead does not increase
with the size of the data and the second part is O(n2) level. Nevertheless, the
execution time of Setup stage is O(n3) level.

We divide the entire execution time of this stage into three parts: (1) the
calculation on the data owner, (2) the latency on network, and (3) the calculation
on the data user. The overhead of our scheme in the first part and the second part
is introduced by the password verification function. The difference between the
original system and the privacy enhanced system in the three parts are shown in
Fig. 3(b). When n = 1500, although the overhead of the whole process is about
11.3%, our scheme still introduces about 28.5% overhead in the third part. This
is because the calculation process on the data user is just a small part of the
whole process. Hence the overhead of switching execution environments is the
majority part of overall overhead.

(a) Time cost for different size of dictio-
nary

(b) Time cost for the three parts, n =
1500

Fig. 3. Execution time cost in Setup stage

6.2 Trapdoor Stage of MRSE

Figure 4(a) shows that the time to generate a search request with the number
of searched keywords. The calculation in Trapdoor stage mainly includes two
multiplications of a matrix and a split query vector. The calculation is so simple
that the proportion of the cost of our scheme is a bit large. Nevertheless the
actual performance overhead is no more than 100 ms. Like the Setup stage, the
overhead of our scheme is not obvious for the entire process. Figure 4(a) also
shows that the number of query keywords has little influence on the overhead of
search request generation.
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As we introduced before, the execution time in Trapdoor stage has been
measured 10 times to reduce the influence of system error. Figure 4(b) shows
the original measurement results obtained in 10 experiments when the number
of keywords in the query is 10. Our scheme introduces about 17.9% overhead in
Trapdoor stage. Although the overhead seems non-negligible, it is also indistin-
guishable from system error.

(a) Time cost for different number of
keywords in the query

(b) Time cost for different experiment
index.

Fig. 4. Execution time cost in Trapdoor stage

7 Conclusions and Future Research

In this paper, we firstly define a new threat model in mobile devices based secure
multi-party computation systems. A powerful adversary on a party’s mobile
device is a serious security risk that multi-party computation system designers
must consider. Then we present a privacy enhancing scheme for secure multi-
party computation systems. The scheme can resist the privileged adversary by
transforming the original computation process and putting the critical calcula-
tion process into TEE. Our scheme provides three components to help system
designers employing our scheme. We implement our scheme on an actual system
of ciphertext search to demonstrate the validity of our scheme and evaluate the
performance cost of our scheme.

As our future work, we will explore the security vulnerabilities and possible
attack paths in TEE of different platforms, and enhance the security of multi-
party computing systems in the more stronger threat model.
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Abstract. Sharding has been a highly expected solution for the
blockchain scalability problem. But with computation power of honest
miners (or stakes in PoS based systems) distributed in shards, it becomes
easier for attackers to attack a single shard. In this research, we propose a
new consensus algorithm, Greedy Observed Largest Forest (GOLF), aim-
ing to consolidate distributed hash power in all shards to make attacking
a single shard as hard as attacking the entire system.

Keywords: Blockchain · Scalability · Sharding · Attack · Consensus

1 Introduction

The popularity of Bitcoin has shown the value of blockchain technology. In addi-
tion to cryptocurrency, there are lots of other applications for blockchain, e.g.
e-voting [14], IoT [15], payment system [13,18], data storage [10,12] etc. However,
the low transaction processing speed has limited the deployment for a practical
case. This limitation is referred to as the blockchain scalability problem [3]. It
has become one of the biggest problems that limit the blockchain technology
and a popular topic among research communities in this area [7].

In recent years, many studies are aiming to address this issue. The two main
directions that are highly expected to solve the problem are the Directed Acyclic
Graph (DAG) and sharding. While the former tries to replace the data structure
of a blockchain with a DAG, the latter spreads the storage and the load of a
blockchain to parallel shards.

The DAG is expected to be a better data structure of decentralised ledgers.
While in a blockchain each block has exactly one parent and one child, in a
DAG there could be multiple parents and multiple children. This eliminates
the bottleneck of the blockchain and enables the ledger to grow in concurrently
generated graph nodes. Existing works using this data structure include [1,2,
8]. However, this structure also introduced some new issues mainly because it
increases the difficulty of conflict resolutions. While existing implementations
usually trade-off decentralisation to some extent for security, researchers are
pursuing a solution to ensure security without compromising decentralisation.
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Sharding is a concept introduced from traditional database discipline. It
divides a database into horizontal partitions (i.e. shards) to achieve scalabil-
ity. But sharding in a blockchain is quite different because it requires validating
transactions with partial data of the ledger history. Some notable theoretical
work under this topic include [4,5,17]. Compared to these pioneers which do not
support full sharding or provide solutions for single-shard attacks, a most recent
work, Monoxide [11], achieves full sharding with its main concept “Asynchronous
Consensus Zones” and introduces a new mining strategy called “Chu-ko-nu Min-
ing” to defend single-shard attacks.

Monoxide’s Asynchronous Consensus Zones. In Monoxide, the entire net-
work is partitioned into 2k zones, where k is the sharding scale. For each zone,
there is an independent chain built by the miners who belong to that zone.
Cross-zone transactions are handled asynchronously, which means the withdraw
operation is executed first in zone A, and later the corresponding deposit oper-
ation is executed in zone B [11] (Fig. 1).

Fig. 1. Asynchronous cross-zone transactions

Single-Shard Attack and Chu-ko-nu Mining. A single-shard attack is an
attack that only takes down one zone in this system. To successfully launch this
attack, the attacker only needs more than 50% hash power of one single zone,
rather than the mining power of the entire network. When the hash power P of
the network is evenly distributed in zones, which is an ideal case for scalability,
the attack bar is P/2k ×50% [11]. It is obvious that this number is unacceptably
low when k is large. To address this issue, Monoxide has introduced Chu-ko-nu
mining [11], which allows miners to create multiple blocks in different zones with
one PoW solution. This makes the hash power participating in Chu-ko-nu mining
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not only present in one zone, but in multiple zones. With this amplification, the
hash power in one zone can approach the value in the entire network when the
proportion of hash power participating in Chu-ko-nu mining is close to 1, which
raises the attack bar for single-shard attack close to it for attacking the entire
system.

However, this security highly depends on the proportion of the hash power
that participates in Chu-ko-nu mining. Although there are incentives driving
miners to use it, there may still be circumstances in which this proportion is not
large enough to guarantee the security (e.g. in early stages of the system).

To fill this gap, we propose a new consensus algorithm, Greedy Observed
Largest Forest (GOLF). It is a variant of the Greedy Observed Heaviest Sub-
Tree (GHOST) algorithm [9] tailored for this system. With this algorithm, the
system achieves the same security level as the best case of the current design
against single-shard attacks, but with a lower requirement for the proportion of
the hash power participating in Chu-ko-nu mining.

Contributions

In this paper, we have two main contributions. First, we formalise the attack
model of single-shard attacks in systems implementing sharding like Monoxide
either with or without Chu-ko-nu mining. This provides theoretical fundamentals
for further research under this topic. Second, we propose the Greedy Observed
Largest Forest (GOLF) algorithm, which enhances the security of the system
with lower requirements, against one type of attackers described in our model.

2 The Attack Model

2.1 The System

As mentioned in Sect. 1, the system is a multi-chain blockchain system with
n = 2k chains growing concurrently in their respective zones. Blocks are created
by miners solving proof-of-work puzzles. A miner can choose to do Chu-ko-nu
mining or not. Only one block will be created (in the miner’s zone) with a PoW
solution if the miner chooses not to use Chu-ko-nu miner. We call this type of
miner sole miners. The behaviour of a single zone and sole miners is just like
systems without sharding such as Bitcoin. If the miner chooses to do Chu-ko-nu
mining, a single PoW solution is able to create n′ blocks in n′ consecutive zones
and n′ could be equal to n [11]. We call this type of miners batch miners. For
simplicity, we assume n′ = n at all times, which means batch miners always
choose to create blocks in all zones. The blocks created with Chu-ko-nu mining
are called batch blocks, and batch blocks created with the same PoW solution
are “isotopes” to each other.
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We assume the total hash power of all honest miners is H. The proportion
of honest mining power that participates in Chu-ko-nu mining is α(0 ≤ α ≤ 1),
and 1 − α is the proportion not participating. Thus, the hash power of batch
miners is αH, while the number of sole miners is (1 − α)H. If the hash power
distributes evenly as predicted [11], the hash power of honest miners in each

zone is αH +
(1 − α)H

n
.

2.2 The Attack

Figure 2 illustrates a simple attack trying to achieve double spend in a blockchain
system. The attacker first spends her coins in a transaction included in the blue
coloured block. And she prepares a secret side-chain forked from the parent of
this block, which contains a conflicting transaction double-spending the coins.
Once the transaction in the blue block is accepted by the merchant, which typ-
ically require N-confirmation, she can publish her side chain in the hope of
overtaking the main chain. The attack succeeds when the side chain has more
blocks and is recognised as the new main chain by honest miners, which requires
that the attacker possesses more hash power than the honest miners.

Fig. 2. Double spending attack (Color figure online)

We assume the hash power of the attacker is M , and the hash power in the
entire network is P = M + H. The attack succeeds when M > H, or in other
words, M > 50%×P , which is known as the 51% attack. The single-shard attack
is a variant of this attack in systems that support sharding. The attacker will
focus all her hash power in one zone trying to overtake the main chain of that
zone. It only requires 51% hash power of one single zone instead of the entire

network. Based on our model, the attack succeeds when M > αH +
(1 − α)H

n
.

From the inequation, we can see when α = 0 (i.e. all miners are sole miners),
the difficulty of this attack is unacceptably low if n is large. When α = 1 (i.e. all
miners are batch miners), this attack is as hard as the 51% attack. In practice,
the difficulty lies somewhere in between, and we want the attack bar as close as
possible to the 51% attack regardless of the value of α.
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2.3 The Attacker

In order to better analyse what attackers can do and how to defend them, we
classify attackers into three main classes based on their capabilities. In each
class, they are further divided into two sub-classes based on whether the attacker
performs Chu-ko-nu mining.

Attacker 1. This attacker is the weakest. The hash power of attacker 1 is M1

and it satisfies M1 <
H

n
. This indicates even when α = 0, attacker 1 still cannot

successfully launch a single-shard attack if the hash power of honest miners
distributes evenly. But when H does not distribute evenly, attacker 1 may be
able to successfully attack some zone with lower hash power in it.

Attacker 2. The hash power M2 of attacker 2 satisfies
H

n
< M2 < H. This

attacker is the most common case in practice and the one which our research
mainly focuses on. When α = 0, the sub-class attacker 2A who does not use
Chu-ko-nu mining can successfully attack any zone if H distributes evenly, while
the other sub-class attacker 2B who uses Chu-ko-nu mining can take down all
zones at the same time. When α = 1, this attacker will fail no matter if she uses
Chu-ko-nu mining. We aim to guarantee the same level of security regardless of
the value of α.

Attacker 3. This attacker is the most powerful one, whose hash power M3

satisfies M3 > H. Since she possesses more than 50% hash power of the entire
network, her attack will always be successful. Defending such powerful attackers
who are able to launch 51% attacks is proven feasible with mechanisms described
in RepuCoin [16]. Migrating the solution to systems that support sharding will
be left for future work and in this study, we focus on defending single-shard
attacks launched by the second type of attackers.

3 The Greedy Observed Largest Forest (GOLF)

3.1 The Main Chain

In the early Nakamoto’s consensus [6], the main chain is determined with the
so-called longest chain rule. As the name indicates, the chain with the largest
length is identified as the main chain. With this consensus, the hash power of the
honest miners has been weakened due to the network latencies between them.
Because of the latency, the local view of an honest miner may not be up-to-
date, which makes her mine on old blocks and create forks. But according to the
longest chain rule, hash power consumed creating these “sibling blocks” cannot
contribute to the main chain competition against the attacker since these blocks
do not increase the length (Fig. 3). And the attacker building her side chain will
not create forks.
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Fig. 3. Longest chain and GHOST

To address this issue, the Greedy Heaviest Observed Sub-Tree (GHOST)
algorithm [9] is used in newer systems, as well as in Monoxide [11]. This algorithm
compares the tree sizes instead of the chain lengths, which includes all sibling
blocks. With this algorithm, the hash power of the honest group is not weakened
by forks (Fig. 3), which enables them to compete fairly with the attacker who
does not create forks.

3.2 From Trees to Forests

Our new algorithm generalises the idea of the GHOST algorithm from comparing
trees to comparing forests. It enables non-batch blocks in one zone to contribute
hash power to main chain competition in other zones through batch blocks. In
the GOLF algorithm, a batch block shares descendants with its isotopes. Then
all the trees rooted from these isotopes form a forest.

An example is shown in Fig. 4. The yellow coloured blocks (Ai and Bj) are
batch blocks and they are created with the same PoW solution (i.e. they are
isotopes to each other). Block Ai is the root of a tree of 3 blocks, while the tree
rooted from block Bj is of 5 blocks. Thus, block Ai and Bj share a forest of 8
blocks. But in this forest, isotopes (Ai and Bj) are created with 1 PoW solution
but increase the forest size by 2. To reflect the real hash power consumed, we
introduce a transformed structure of this forest, called “collapsed DAG”.

We construct a directed acyclic graph G = (V,E) for the forest, in which each
group of isotopes are merged into one vertex in the graph. The newly merged
vertex inherits all edges from the isotope group members. Then the order |V |
of this DAG reflects the real PoW. As an example, the collapsed DAG for the
forest in Fig. 4 is shown in Fig. 5, and the order |V | of it is 7. Another example
with the order of 6 is shown in Fig. 6.
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Fig. 4. The forest (Color figure online)

Fig. 5. The collapsed DAG

3.3 Fork Resolution

After introducing the concept of forests and the collapsed DAG, we can explain
how the main chain is selected. As shown in Fig. 7, there is a fork resolution in
zone A. The forest sizes of the two branches will be compared and the one with
a larger forest will finally be selected as the main chain. More precisely, what to
be compared is the order of the collapsed DAG. It is easy to compute that this
value for branch At in zone A is 5. On the other hand, since branch Ab does
not contain any batch block, its forest is simply the single tree rooted from it,
and in this case, it is a chain of 4 blocks. According to our algorithm, branch
At is selected as the main chain of the zone, while branch Ab will be the main
chain if traditional algorithms are used. This example has shown the “cross-zone
confirmation” feature of the algorithm.
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Fig. 6. Another forest and its collapsed DAG

Fig. 7. The GOLF algorithm

This process is explained with the pseudocode of Algorithm1. From the code
we can see, the algorithm keeps going down in the block tree, by selecting the
child which has the greatest order of the collapsed DAG corresponding to its
forest, until it reaches a leaf block. The main chain is identified as the path from
the genesis to the leaf block. The leaf block returned by the algorithm should be
the one which honest miners mine on.

3.4 Security Against Attacker 2A

Figure 8 shows an example when the GOLF algorithm is implemented in the
system to defend attacker 2A. Since attacker 2A does not use Chu-ko-nu mining,
she cannot get any advantage from the consensus algorithm, and her hash power
remains M2. At time t2, the first batch block after the fork (t1) is created in the
current main chain and it connects all the zones through its isotopes. According
to the algorithm, now the attacker is competing with the hash power close to H,
and the number becomes equal to H when all honest miners eventually mine on
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Algorithm 1. Greedy Observed Largest Forest
1 Function GOLF(genesis):
2 block ← genesis
3 while block.children �= ∅ do
4 block ← arg max

child∈block.children
GetCollapsedGOrder(child)

5 end
6 return block

7 end

8 Function GetCollapsedGOrder(block):
9 forest ← GetForest(block)

10 G = (V,E) ← Collapse(forest)
11 return |V |
12 end

some descendants of the isotopes. If the attacker publishes her side chain after
time point t2, she has no chance to win since M2 < H.

However, since no batch block is created during the time between t1 and t2,
the attacker is competing with the hash power of honest miners only in this

zone, which is
(1 − α)H

n
. Based on the definition of attacker 2A, we know she

has greater hash power. If the attacker publishes her side chain during this time,
the side chain may overtake the honest branch and become the main chain. But
the attacker publishes her side chain only after the transaction in the blue block
is accepted, otherwise, the double spend fails even when the attacker’s side chain
becomes the main chain. In other words, if the first yellow block always occurs
before the blue block is N-confirmed, the system is secure against attacker 2A.

Since the hash power of batch miners is αH and the value of sole miners

in this zone is
(1 − α)H

n
, the probability that an honest block in this zone will

be a batch block is p =
αH

αH +
(1 − α)H

n

. Thus, the number of batch blocks

X in N honest blocks in this zone has the binomial distribution X ∼ B(N, p).
Based on this notation, we say that the system is secure against attacker 2A
when Pr(X < 1) is small. We find that the required α is much smaller compared
to the original system which requires α ≈ 1 to be secure [11]. We will further
discuss this with experiments in Sect. 4.

To a hundred percent guarantee the yellow block occurs before the trans-
action in the blue block is accepted, we could add being confirmed by a batch
block as a requirement for accepting transactions. Although this may delay the
transaction processing when the yellow block occurs after Nth confirmation, the
likelihood is low and decrease dramatically when α increases.
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Fig. 8. Defending attacker 2A (Color figure online)

3.5 Security Against Attacker 2B

The main difference here is that attacker 2B can do Chu-ko-nu mining, which
indicates she can be empowered by the GOLF algorithm. From the perspective
of the attacker, zones can be classified into two types, including victim zones
and auxiliary zones. A victim zone is one in which the attacker wants to double-
spend. In a victim zone, the attacker will build a side chain competing with
honest miners’ main chain. On the other hand, an auxiliary zone is used to
gather hash power from honest miners to support the attack. In auxiliary zones,
the attacker will put her batch blocks in the honest main chain.

For this attacker, we analyse two basic scenarios. In the first scenario, no
zone is used as auxiliary zones. All of them are victim zones. In this case, an
attacker 2B simply degrades to multiple attacker 2As attacking multiple zones
at the same time. The attacker gets no benefit from the GOLF algorithm before
any of the zones is compromised. In this scenario, the security of our system
remains the same as we analysed in the previous section.

In the second scenario, one zone is targeted as the victim zone, while all other
n−1 zones are used as auxiliary zones. For simplicity, consider an example with
n = 2, in which there is only one victim zone A and one auxiliary zone B. As
shown in Fig. 9, red blocks are batch blocks created by the attacker. Block Ai

and Bi are isotopes to each other as well as block Aj and Bj are. We assume
that Ai, which is the first batch block created by honest miners after the fork,
occurs at time t1. At time t2 the attacker begins to publish her blocks. Block Bj

is the first red block included in the main chain of zone B.
Based on the analysis in the previous section, the system can easily guarantee

block Ai occurs before the transaction in the blue block is accepted. If t2 ≤ t1,
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the side chain is released before the transaction is accepted and the double spend
fails. If t2 > t1, block Bj will be a descendant of block Bi. In this case, the tree
of block Bj is a sub-tree of block Bi’s. Although block Bi contribute a larger
tree to its forest than block Bj does, the difference becomes constant when all
new blocks in zone B eventually are descendants of both blocks. This can be
considered that the attacker’s gathered hash power from auxiliary zones cancels
out the honest miners’. Due to this reason, the attacker is competing with honest

hash power only in the victim zone, which is αH +
(1 − α)H

n
. This attack bar

is as same as the original system and is not secure against attacker 2B when
α < 1.

Although the attack works in the second scenario, the attacker has to use all
other n − 1 zones as auxiliary zones to cancel out honest hash power from all
other zones. This indicates the attacker can attack only one zone at a time. In
practice, depending on the hash power and the number of zones, the attacker
may be able to attack multiple zones. But compared to the original system in
which attacker 2B is able to attack all zones at the same time, here the attacker’s
capability is limited by the GOLF algorithm.

Fig. 9. Defending attacker 2B (Color figure online)

4 Experimental Results

We implemented a simple experimental environment with n zones according
to our attack model (we set n = 8 in the following experiments). In each zone,
honest miners mine on the main chain, whose communications have no delay. An
attacker 2A builds a secret side chain in the first zone and publishes her side chain
as soon as the honest branch has N confirmations (we set N = 5 in the following
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experiments). The attacker wins when the side chain has more blocks than the
honest branch. We experiment on different settings with various α values and
hash power M of the attacker. For each setting, we run the experiment 2500
rounds and calculate the winning percentage of the attacker when two different
consensus algorithms are used, which are GOLF and single-zone GHOST.

In the first experiment, we set the attacker’s hash power to a fixed value
M = 0.8 × H and see how the winning percentage changes against different α
values. The results are shown in Fig. 10. We can see when α = 0 and α = 1 the
winning percentage are same for the two algorithms. But the values in between
are quite different. When GOLF is used, the value drops down significantly at
the beginning. Based on the discussion in Sect. 3.4, we know this is because
the Pr(X ≥ 1) increase significantly when α increases. With this probability,
the attacker is competing with the hash power close to H and the winning
percentage approaches the value when α = 1. The curve becomes flatter when
this probability is close to 1. On the other hand, when single-zone GHOST is

used, the attacker is competing with the hash power of αH +
(1 − α)H

n
. We

can see the attacker always has a higher chance to win with single-zone GHOST
than GOLF.

Fig. 10. Winning percentage against alpha

In the second experiment, we repeat the first experiment for a range of M(0 ≤
M ≤ H) values, and plot the winning percentage against every combination of
M and α in 3-dimensional diagrams. In Fig. 12, the surface is relatively flat unless
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Fig. 11. Single zone GHOST Fig. 12. GOLF

α is very close to 0. This can be explained by the first experiment. It shows that
most of the time the difficulty for the attacker to launch the single-shard attack
is close to the one for 51% attack (α = 1 cross section) when GOLF is used.
On the other hand, the winning percentage is equal or greater for all M and α
combinations when single-zone GHOST is used (Fig. 11).

5 Conclusion

We proposed the GOLF consensus algorithm, which is a variant of GHOST
tailored for multi-shard systems that support Chu-ko-nu mining [11], to defend
single-shard attacks. With this new algorithm, the difficulty for launching single-
shard attacks can approach the level of 51% attacks with lower α values. Thus,
the system can be secure against attacker 2A without needing all honest miners
doing Chu-ko-nu mining. Although the algorithm cannot guarantee the security
against attacker 2B, it limits the attacker’s ability to attack multiple zones at
the same time. We leave guaranteeing security against attacker 2B and 3 as open
challenges for future work.
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Abstract. Various attacks are proposed against different ECDSA
implementations: the key-related data are acquired through cache side
channels, and then processed to recover the private key. For each cache
side channel attack, the requirements of the data qualified for sequent
processing vary greatly, and the success probability of private key recov-
ery relies on both the acquired data and the parameters of data process-
ing. So it is difficult to tell, for a certain ECDSA implementation, (a) how
many signatures does a cache side channel attack need to recover the pri-
vate key? or which attack performs the best? and (b) what kind of threat
level exists due to potential side channel attacks, if the ECDSA imple-
mentation runs for a number of signatures on an unprotected system
with cache side channels? Currently, there is no quantitative metric to
fairly answer the questions. Such a metric to evaluate cache side channel
attacks, will provide a reference for the adversaries to choose the suitable
attack, and also for the defenders to set up protections for the certain
ECDSA implementation (e.g., updating the private key after it has been
used for a certain number of signatures). In this paper, we design an
evaluation approach to quantitatively compare the cache side channel
attacks against ECDSA. The expected minimum number of signatures
needed for at least one successful private key recovery, is proposed as the
metric, and this metric considers both the data requirements and the suc-
cess probability. We apply the approach to evaluate various cache side
channel attacks against ECDSA. By calculating the metric, we obtain
(a) for each attack, the optimal parameters with the minimum number
of signatures needed, and (b) for each ECDSA implementation, the mini-
mum number of signatures that will be enough for at least one successful
private key recovery of some cache side channel attacks.
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1 Introduction

The Elliptic Curve Digital Signature Algorithm (ECDSA) [2,17] is widely used in
popular applications, such as TLS [35], OpenPGP [16], and Bitcoin [24]. The core
operation of ECDSA is the scalar multiplication of a base point (or generator)
over elliptic curves for a random nonce (or ephemeral key). The semantical secu-
rity of ECDSA relies on the computational intractability to find the ephemeral
key for any given pair of a scalar multiplication and a base point, i.e., the elliptic
curve discrete logarithm problem (ECDLP).

Although ECDLP is hard to break theoretically, the implementation of the
scalar multiplication is vulnerable to side channel attacks. Various cache side
channel attacks [4,8,9,30,37–39] are proposed to obtain the (partial) ephemeral
key during the scalar multiplication, and then the ECDSA private key will be
directly derived based on the leaked ephemeral key. For different scalar multi-
plication implementations of ECDSA, the side channel attacks are as follows:

– For the double-and-add implementation, the differential power attack (DPA)
is exploited to directly obtain the ephemeral key [8], which can be acquired
through cache side channels similarly.

– For the Montgomery ladder implementation [23], Yarom [38] exploited the
Flush+Reload cache side channel [39] to obtain the data on the execution of
the if-statement branch in the scalar multiplication, and then recovered the
ephemeral key of ECDSA implemented in OpenSSL 1.0.1e.

– For the windowed Non-Adjacent Form (wNAF) implementation [11,18,22,
34], the side channel attackers firstly obtain the (partial) bits of the ephemeral
keys, use the extracted information to construct a Hidden Number Problem
(HNP) or Extended Hidden Number Problem (EHNP) instance, and recover
the private key by solving the closest vector problem (CVP) or shortest vector
problem (SVP) converted from the HNP or EHNP instance in lattices [15,26–
28]. For example, Benger et al. [4] obtained the least significant bits (LSBs)
of the ephemeral keys to conduct lattice attacks, and Van de Pol et al. [30]
constructed more effective lattice attacks based on the positions of higher
half non-zero digits of the wNAF representation of the ephemeral keys. Fan
et al. [9] utilized the EHNP to launch the lattice attacks using all positions
of non-zero digits, and then Wang et al. [37] presented another lattice attack
based on the positions of two non-zero digits together with the length of the
wNAF representation of the ephemeral keys.

Generally, every cache side channel attack against ECDSA consists of two
stages: (1) Data acquisition, attackers exploit the cache side channels to moni-
tor the execution of the sensitive code and obtain the information about the
ephemeral key; and (2) Data processing, the attackers process the acquired
data to recover the private key. For the double-and-add and Montgomery ladder
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implementations, the private key is recovered directly, as all bits of the ephemeral
key are obtained in the data acquisition (although some error bits may exist).
While for the wNAF implementation, the lattice-based processing recovers the
private key from the partial information of the ephemeral keys.

Moreover, the cache side channel attacks against the wNAF implementation
are not always successful.

– The data processing accepts only the data set that satisfies certain require-
ments, so it has a probability that some data acquired in the first stage are
not qualified for the attacks. For instance, Benger’s attack [4] requires the
length of the consecutive zeroes in the LSBs of the ephemeral key is not less
than some positive value (e.g., 1 or 2).

– It has a probability to recover the ECDSA private key, even when all acquired
data satisfy the specified requirements. This success probability is related to
the lattice dimension, the lattice reduction algorithm (LLL [19], or BKZ [32]
with different block sizes) and the processed signatures (i.e., the available
information from one signature and the number of signatures to construct
lattices). For example, a larger dimension, more satisfying data and a more
complex lattice reduction algorithm for Benger’s attack will result in a higher
success probability [4].

Some attack evaluations provide the least number of signatures needed and
the corresponding success probability for specified conditions and parameters.
However, none of them can serve as the quantitative metric to fairly compare
these side channel attacks, because the requirements on signatures, the success
probability and the parameters of data processing vary significantly for different
attacks. For example, Benger’s attack [4] needs 200 signatures under the suc-
cess probability of 3.5%, while Wang’s attack [37] needs 85 under the success
probability of 1.5%. We fail to compare these two attacks directly as Benger’s
attack provides a better success probability while Wang’s attack needs fewer
signatures. The ratio of the lattice-based processing time and the success prob-
ability is adopted as the evaluation metric in [4], however, it fails to reflect the
requirements on the acquired signatures, and the offline processing time is not a
critical concern compared to the online data acquisition which may be detected
by the defenders.

In this paper, we propose a quantitative evaluation approach to compare
various cache side channel attacks. We want to compare different attacks by one
metric that covers (a) the requirements that the signatures need to satisfy in the
data acquisition, and (b) the factors affecting the success probability of private
key recovery in the data processing. We adopt the expected minimum number
of signatures that are needed for at least one successful recovery of the private
key, denoted as c, as the metric. For the lattice-based attacks [4,9,30,37] that
only obtain the partial ephemeral key, we combine the success probability of the
data processing with the number of signatures needed in the data acquisition,
and adopt the geometric distribution model to calculate c. For the attacks [8,38]
that obtain the ephemeral key directly in the data acquisition, c is only 1, as
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the whole ephemeral key is obtained through one signature and the private key
is derived directly from the ephemeral key.

We applied our evaluation approach and calculated the quantitative metric c
for existing typical cache side channel attacks on various ECDSA implementa-
tions. For the double-and-add and Montgomery ladder implementations, c is 1
due to the attacks [8,38] obtaining the complete information on the ephemeral
key. For each lattice attack against wNAF, we firstly calculate the minimum
number of signatures needed for at least one successful key recovery for differ-
ent lattice dimensions and lattice reduction algorithms, determine the optimal
parameters for this attack, and choose the corresponding minimum number of
signatures as c. The comparison results show that Fan’s attack [9] needs the
least c (i.e., 6), for the wNAF implementation of ECDSA.

This quantitative metric provides a reference for the adversaries to choose the
most applicable attack, and also helps to improve the ECDSA implementations
in the private key protection. The attackers will choose the best cache side
channel attack needing the least number of signatures in the data acquisition
(not the number of satisfying signatures in the data processing). The attackers
can refer to the metric to decide the number of signatures to be monitored in the
data acquisition, to avoid being detected by the defenders. Note that if the data
acquisition lasts too long, the attack may be probably detected by some system
solutions. On the other hand, to protect the private key, the defenders may limit
the number of signatures obtained by the adversaries, to prevent certain attacks.
For example, the defenders may flush the system caches and reboot the system
from a clean state, or even update the ECDSA private key after it has already
been used to generate a specified number of signatures.

The main contributions of our paper are summarized as follows:

– We propose a quantitative metric, for the first time, to systematically evaluate
various cache side channel attacks on different ECDSA implementations. This
evaluation metric provides a reference for the attacks comparison and also
private key protection.

– We analyze the existing cache side channel attacks based on the proposed
metric, choose the optimal parameters for each lattice attack, and find the
least number of signatures needed to be obtained in the data acquisition for
at least one successful ECDSA private key recovery (but not the least number
of satisfying signatures for possible private key recovery [4,9,30,37]).

The rest of this paper is organized as follows. We introduce the backgrounds
in Sect. 2. Then, we provide the details about our evaluation approach in Sect. 3,
apply it to systematically analyze existing cache side channel attacks in Sect. 4,
and present some discussions in Sect. 5. Finally, Sect. 6 draws the conclusion.

2 Background

This section presents various scalar multiplication algorithms in ECDSA imple-
mentations, and then introduces the corresponding cache side channel attacks.
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2.1 Scalar Multiplication Algorithms in ECDSA Implementations

We first present the signature generation of ECDSA [2,17]. The ECDSA public
parameters include (1) the elliptic curve E defined over a finite field F; and (2)
the generator G ∈ E of the order q. The private key is an integer α satisfying
0 < α < q, and the public key is the point Q = αG. Given a hash function h,
the ECDSA signature (r, s) of a message m is computed as follows:

1. Select a random ephemeral key 0 < k < q.
2. Compute the point (x, y) = kG 1, and let r = x mod q; if r = 0, go to Step 1.
3. Compute s = k−1(h(m) + r · α) mod q; if s = 0, go back to Step 1.

The scalar multiplication kG becomes the target of side channel attacks to
infer the ephemeral key k. Then, as shown in Step 3, the private key α will be
derived if k is leaked, as h(m), r and s are publicly known. Even when only
partial k is leaked, the private key can be recovered by lattice attacks [27,28].

The most common scalar multiplication method is the double-and-add algo-
rithm in Algorithm 1. The scalar k is expressed as k =

∑l−1
i=0 2iki, where

ki ∈ {0, 1} and l is the length of the binary expression. When computing the
scalar multiplication, it iterates from the most significant bit to the least signif-
icant bit of k. In each bit, it performs a double function. And if the bit is 1, it
performs an extra add function.

The Montgomery ladder [23] is shown in Algorithm 2. When computing the
scalar multiplication, both a doubling and an addition of points are performed
for each bit of k. Each ki controls which branch of the if-statement is executed,
that is, which point is doubled and where the doubling and addition of points
are stored.

Algorithm 1. The double-and-add
implementation of kG

Input: k in binary: k0, k1, ..., kl−1

Output: kG
1: Q ← G
2: for i from l − 2 to 0 do
3: Q ← 2 · Q
4: if ki = 1 then
5: Q ← Q + G
6: end if
7: end for

Algorithm 2 . The Montgomery
ladder implementation of kG

Input: k in binary: k0, k1, ..., kl−1

Output: kG
1: R0 ← 0, R1 ← G
2: for i from l − 1 to 0 do
3: if ki = 0 then
4: R1 ← R0 + R1 , R0 ← 2R0
5: else
6: R0 ← R0 + R1 , R1 ← 2R1
7: end if
8: end for
9: return R0

The wNAF implementation [11,18,22,34] is designed to reduce the addi-
tion operation in the scalar multiplication. The wNAF representation of k =

1 In practical implementations, the ephemeral key is added by q or 2q to make sure
that k is �log2 q�+1 bit long and resist the remote timing side channel attack in [6].
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Algorithm 3. Implementation of kG Using wNAF
Input: k in wNAF: k0, k1, ..., kl−1 and pre-computed points {±G, ±3G, ..., ±(2w−1)G}
Output: kG
1: Q ← G
2: for i from l − 1 to 0 do
3: Q ← 2 · Q
4: if ki �= 0 then
5: Q ← Q + kiG
6: end if
7: end for

∑l−1
i=0 2iki is a sequence of digits which is either zero or an odd number satisfy-

ing −2w < ki < 2w and at least w zeros between any two continuous non-zero
values, where w is the window size and l is the length of the wNAF representa-
tion. After converting k to the wNAF form, the multiplication kG is executed
as described in Algorithm 3, which contains a double operation for every digit
and an extra addition operation for every non-zero digit.

2.2 Cache Side Channel Attacks

Attacks Against the Double-and-Add Algorithm. For the double-and-add
algorithm, the if-statement block (Line 4) in Algorithm 1 is executed only when
ki = 1. Attackers monitor the conditional branches through side channels by a
malicious spy process. If the execution of the if-statement block is monitored, the
corresponding bit of k is 1 (ki = 1); otherwise ki = 0. Thus, the whole ephemeral
key is leaked.

The power analysis [8] is utilized to monitor of the execution of if-statement
blocks, and cache-based side channels can be also built to monitor it. For exam-
ple, the Flush+Reload cache side channel attack [39] may be adopted to monitor
the execution of if-statement blocks, to obtain the ephemeral key.

Attacks Against the Montgomery Ladder Algorithm. In this implemen-
tation, a doubling and an addition always occur at each branch, no matter ki is
0 or 1. Thus, it thwarts side channel attacks based on the variations of timing
or power introduced by different operations for ki = 0 or 1.

Yarom [38] utilized the Flush+Reload cache side channel attack on the Mont-
gomery ladder algorithm, to monitor which branch is executed at each bit of k.
Lines 4 and 6 in Algorithm 2 are monitored respectively to determine which
point is doubled and where the addition of points is stored (i.e., which branch
of the if-statement is executed), so that the bits of k are revealed.

Attacks Against the wNAF Algorithm. For the wNAF algorithm, the con-
ditional if-statement block (Line 4 in Algorithm 3) is vulnerable to side channel
attacks. Then, the attacker obtains a “double-add” chain which is used to deter-
mine whether each digit ki of the wNAF representation is zero or not. But the
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obtained information is not enough to determine the whole ephemeral key, and
only some bits of the ephemeral key are extracted in the data acquisition.

|αti − ui|q ≤ q/2θ+1, 1 ≤ i ≤ n, | · |q = · mod q, | · |q ∈ [−q/2, q/2) (1)

aiα +
λi∑

j=1

βi,jki,j ≡ bi mod q, 1 ≤ i ≤ n , (2)

The attacker constructs the HNP [5] or EHNP [14] instance, by converting
s = k−1(h(m) + r · α) mod q with the obtained partial information into Eq. 1
defined by HNP or Eq. 2 for EHNP, where the private key is the hidden number.
Then, the attacker solves the SVP/CVP problem in lattices using the lattice
reduction algorithm, which is converted from HNP or EHNP. In Eq. 1, α is
the hidden number to be recovered with n known pairs of (ti, ui), while q is a
prime number and θ is known; and the problem is expressed to recover α, with n
known θ most significant bits (MSBs) of αti where ti is a random value. In Eq. 2,
α is the number to be recovered with n known congruences where q is a prime
number, ai, βi,j , bi, λi and εi,j are known and 0 ≤ ki,j ≤ 2εi,j is unknown; and
the problem is expressed to find a value α satisfying the n provided congruences.

In particular, Benger et al. [4] used the extracted LSBs of the ephemeral keys
to launch the lattice attack by an HNP problem. Each signature contributes one
(ti, ui, li) triple satisfying |αti−ui|q ≤ q/2li+1, where li is the length of the LSBs.
If li is larger, the lattice dimension becomes smaller and the success probability
of the lattice-based data processing (or key recovery) becomes higher. However,
a larger li requires more (ti, ui, li) triples, and therefore more signatures are
needed. Besides, given a lattice dimension, the success probability of the lattice
attack is still related to the lattice reduction algorithm (LLL [19] or BKZ [32]
with different block sizes), and the choice between CVP and SVP.

Van de Pol et al. [30] used the position information of the ephemeral key’s
higher half non-zero digits to construct an HNP instance. Each signature con-
tributes multiple (ti, ui, δi − w) triples satisfying |αti − ui|q ≤ q/2δi−w+1, where
δi is the distance between the consecutive non-zero digits of the ephemeral key,
and w is the window size of the wNAF representation. The value δi − w should
be neither too small nor too large. The lattice dimension becomes smaller if
δi −w is larger, but there will be fewer triples available to be extracted from one
signature if δi − w is too large. Finally, the success probability is influenced by
the number of satisfying signatures, the lattice dimension, the lattice reduction
algorithm and the adoption of CVP or SVP.

Fan et al. [9] used all position information of the ephemeral key’s non-zero
digits to construct an EHNP instance, and converted it to SVP for the lattice-
based key recovery. In the basic attack [9], all signatures are utilized. Using more
signatures results in higher success probabilities, but meanwhile the dimension
increases rapidly, making the lattice too large to be solved. Three optimizations
were presented to decrease the lattice dimension, including reducing the number
of unknown variables, recovering the most significant digits (MSDs) and enumer-
ating the MSDs. Different combinations of these optimizations may be adopted,
which results in various lattice dimensions and success probabilities.
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Table 1. The results of different lattice attacks.

Attack Signature
number

Success
prob.

Lattice
dimension

Reduction
algorithm

CVP or
SVP

Data
requirement

Benger’s [4] 200 3.5% 102 BKZ-30 SVP li ≥ 2

Van de Pol’s [30] 10 7.0% 76 BKZ-20 CVP δi − w ≥ 3

Fan’s [9] 4 8% – BKZ-25 SVP –

Wang’s [37] 85 1.5% 87 BKZ-30 SVP –

Wang et al. [37] used the positions of two non-zero digits and the length of the
wNAF representation, to construct an HNP instance. Each signature contributes
one (ti, ui, θi) triple satisfying |αti −ui|q ≤ q/2θi+1. As analyzed above, a larger
θi results in a smaller lattice dimension and a higher success probability, but
needs more triples. In the basic attack [37], all signatures are used to construct
the lattice, which means a small θi is adopted and results in a large dimension.
In the optimization to reduce the dimension [37], θi is increased by the data
requirements on the signatures, however, this optimization requires more triples
(or signatures). Similar to other lattice attacks, the success probability is also
related to the dimension and the adopted lattice reduction algorithm, in addition
to the number of signatures.

Summary. The attacks on the double-and-add and Montgomery ladder algo-
rithms need only one signature, as the ephemeral key is observed directly through
the side channels. However, the attacks on the wNAF algorithm can only obtain
the partial ephemeral key through the cache side channel, and need to adopt
various lattice attacks to recover the private key.

Each attack on the wNAF algorithm provides the minimum number of sig-
natures with the corresponding success probability under its own parameters
and data requirements, as listed in Table 1. The success probability is related to
the number of signatures, the lattice dimension, the reduction algorithm, and
the choice between CVP and SVP, which lead to very different optimal param-
eters for these attacks. Moreover, the requirements on the acquired data vary
for each attack, and some attacks produce better success probabilities with more
signatures, while the others need fewer signatures but with smaller success prob-
abilities. For example, Van de Pol’s attack [30] has the strictest requirements,
while both Fan’s attack [9] and Wang’s attack [37] impose no requirement on
the acquired data; Wang’s attack [37] needs less number of signatures, while
Benger’s attack [4] achieves better probabilities of private key recovery. There-
fore, the ad-hoc results cannot be adopted to compare these attacks fairly.

3 The Evaluation Approach

In this section, we propose an approach to systematically evaluate the cache
side channel attacks on ECDSA with different implementations of the scalar
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multiplication. First, we design a quantitative metric and show that it reflects
both the requirement of acquired data and the data processing. Then, we present
the calculation of the metric.

3.1 The Selection of the Quantitative Metric

To develop a general method to evaluate the cache side channel attacks, we
need to design a quantitative metric systematically reflecting two stages of the
attacks:

– In the data acquisition stage, the number of signatures to be monitored is
expected to be small. The attackers obtain the data through the cache side
channel during the signature generation, which is performed on the victim
system and may be detected by the defenders. More data needed, mean
more signature generations to be monitored, longer monitoring time and then
larger risks to be detected. For example, when the attackers conduct the
Flush+Reload cache side channel attack to obtain the “double-add” chains
of the wNAF implementations, the defenders may detect the existence of the
malicious spy process with a higher possibility if the monitoring lasts longer.

– In the data processing stage, the data is processed offline (i.e., on the
attacker’s system), longer processing time does not cause the attack to be
detected. However, different data processing approaches (i.e., different lattice
dimensions, reduction algorithms, choices between CVP and SVP [4,9,30,37])
have different requirements on the acquired signatures. Also the success prob-
ability varies for different processing approaches with the same processed
data. The different success probabilities and various requirements on data
result in different numbers of signatures needed.

We select the expected minimum number of signatures needed for at least
one successful private key recovery, as the quantitative metric (denoted as c).
This metric considers the stages of both data acquisition and processing: (1) The
number of signatures (but not the satisfying signatures) determines the workload
of the data acquisition, and it is related to the requirements of the processed
data; (2) The prerequisite, at least one successful private key recovery, reflects
the effectiveness of data processing, as a better processing approach provides a
higher success probability with the acquired data set and meets this prerequisite
with fewer signatures. The metric c provides the fair and direct comparison of
attacks, and the attack with smaller c works better.

As the information on the ephemeral keys can be obtained by different side
channels, we assume no error exists in the data acquired through the side chan-
nels. Different side channels provide different levels of error, and the discus-
sion on the imperfect cache side channels, is provided in Sect. 5.1. The metric
c is 1 for the attacks against the double-and-add and Montgomery ladder algo-
rithms [8,38]. For these attacks, the whole ephemeral key is obtained directly
by observing any signature generation in the data acquisition stage. With the
whole ephemeral key, the attackers derive the ECDSA private key as described
in Sect. 2.1.
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The metric c for the attacks against the wNAF algorithm is more compli-
cated. The attackers can only obtain the partial ephemeral key through the side
channel, and need to construct the lattice attack to recover the private key.
Therefore for the calculation, it needs to consider the data requirements and the
success probability with different parameters. Here, we focus on the calculation
of c for cache side channel attacks against the wNAF algorithm, to complete
the systematical evaluation on all cache side channel attacks against ECDSA,
by comparing it with the results of the attacks against the double-and-add and
Montgomery ladder algorithms.

3.2 Calculation of the Metric

To calculate the metric c for each attack against the wNAF algorithm, the fol-
lowing steps are conducted:

– Analyzing the probability (Pr) that one signature satisfies the requirement
specified for some data processing. Pr may be derived theoretically [4], or
obtained experimentally [30].

– Obtaining the success probability (Psl) for lattice attacks with a specified
set of parameters (i.e., dimension, reduction algorithm, SVP/CVP, and the
specified requirement on the acquired data). Note that different lattice attacks
have different parameters.

– Calculating the expected number (cl) of signatures needed for at least one
successful private key recovery for each set of parameters.

– Selecting the minimum cl among all the parameter sets, as c for this attack.
The corresponding parameter set of the data processing is the optimal one.

Pr is provided in the existing attack evaluation [4,9,30,37]. The success rate
is calculated through a large number of experiments as follows: Firstly, we fix
the parameter set of the data processing. Then, from a larger set (the size is
denoted as na) of signatures that satisfying the requirement of the data pro-
cessing, we choose the required number (denoted as nr) of signatures randomly,
which results

(
nr

na

)
different samples. We assume the data processing on one sam-

ple is independent from any others. Finally, we perform the data processing on
each sample, and calculate the success rate as Psl approximately.

For the lattice attack with a specified set of parameters, cl is calculated in
three steps:

– Firstly, we calculate the expected number of samples needed for the first
successful ECDSA private key recovery. We stop the attack after the first
successful recovery, which ensures at least one recovery is successful, while
the number of needed signatures is the smallest. Thus we denote the random
variable X as the number of samples used when producing the first successful
recovery, and it follows the geometric distribution. The probability that ns

samples contribute to the first successful recovery, is (1−Psl)ns−1∗Psl. Based
on the geometric distribution, the expected number of samples for the first
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successful recovery is 1/Psl, as shown in Eq. 3.

E(X) =
∞∑

i=1

i ∗ (1 − Psl)i−1 ∗ Psl = 1/Psl (3)

– Then, we calculate the needed number (na) of signatures that satisfy the
requirement of the data processing. As number of samples from na signatures
is

(
nr

na

)
, na is the smallest one that satisfies

(
nr

na

) ≥ 1/Psl. That is:

na = min{n|
(

nr

n

)

≥ 1/Psl} (4)

– Finally, we get cl, the expected number of signature, either satisfying the
requirements or not, needed for at least one successful private key recovery,
for the lattice attack with the specified set of parameters based on Eq. 5.

cl = na/Pr (5)

4 Evaluating the Existing Cache Side Channel Attacks

In this section, we apply our evaluation approach to cache side channel attacks
against ECDSA with different implementations of the scalar multiplication. That
is, we calculate cl for each cache side channel attack with a specified set of param-
eters and obtain c with the optimal parameter set for the attack. As analyzed
above, c is 1 for attacks [38,39] against the double-and-add and Montgomery lad-
der algorithms, so we focus on the evaluation of the attacks against the wNAF
algorithm.

The metric c, i.e., the minimum cl, is calculated based on Eqs. 4 and 5, where
Psl and nr are obtained from the original analysis [4,9,30,37]. We obtain Pr,
by performing the analysis on the requirement of each set of parameters for the
attack; and calculate na and cl for all the presented parameter sets based Eqs. 4
and 5, to find the minimum one. The following results are specific to 256-bit
ECDSA.

4.1 Attacks Against the wNAF Algorithm

Benger’s Attack [4]. The parameters for the data processing in this attack,
include the lattice dimension, choices of SVP or CVP, the length z of the run of
zeroes in the least significant bits of the ephemeral key, and the chosen reduction
algorithm. The requirement of data processing is that z should not be less than
a specified number (e.g., 1 or 2). For z ≥ 1, which means the last bit of the
ephemeral key is 0, therefore the corresponding Pr is 0.5. For z ≥ 2, which
means the last two bits of the ephemeral key are 0, the corresponding Pr is 0.25.

Table 2 lists cl for the attack with different parameter sets in [4]. We find
that a better cl is obtained when a smaller z is chosen. Therefore, the minimum
cl is resulted with the smallest z, i.e., 1, as z cannot be 0 [4]. cl increases with
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Table 2. The value of cl for different parameter sets in Benger’s attack.

Lattice parameters (d, -, z, -)† Psl cl

(102, SVP, 1, BKZ-30) 3.5% 202

(112, SVP, 1, BKZ-25) 2% 222

(61, CVP, 2, BKZ-25) 0.5% 248

(66, CVP, 2, BKZ-10) 5.5% 264

(71, CVP, 2, BKZ-15) 29.5% 284

(76, CVP, 2, BKZ-20) 53% 304

(82, SVP, 2, BKZ-20) 22.5% 324

(87, SVP, 2, BKZ-20) 37% 344

(92, SVP, 2, BKZ-15) 23.5% 364

(97, SVP, 2, BKZ-15) 36% 384

(102, SVP, 2, BKZ-15) 33.5% 404

(107, SVP, 2, BKZ-15) 43% 424

(112, SVP, 2, BKZ-15) 49% 444

(117, SVP, 2, BKZ-15) 52% 464

(121, CVP, 2, BKZ-10) 87% 484

(126, CVP, 2, BKZ-10) 93.5% 504

(131, CVP, 2, BKZ-10) 96% 524

(137, SVP, 2, BKZ-10) 55% 544
†d: dimension.

the dimension (d) for a specified z, and the minimum cl is obtained with the
smallest d (i.e., 102) for z = 1. The metric c is 202, while the optimal parameters
of the data processing are: the dimension equals to 102, SVP is selected, z = 1,
and the BKZ-30 is adopted. For referring to the analysis in [4], we have to point
out that the number of signatures using to construct the lattice is chosen as one
parameter in the description of lattice attack, which is d − 2 for SVP and d − 1
for CVP.

Van de Pol’s Attack [30]. The parameter set for this attack includes the
number of signatures to construct the lattice, the lattice dimension, the choice
between SVP and CVP, the reduction algorithm, and a threshold θm for speci-
fying the requirement of the acquired data. In the analysis in [30], the reduction
algorithm is fixed, BKZ-20 for SVP and Schnorr-Euchner enumeration (with
linear pruning and enumerated nodes as 229) for CVP.

Unlike in [4] where only least significant bits adopted for the lattice attack, all
the higher half non-zero digits of the ephemeral key that satisfy the requirement
may be used. The requirement is specified with the threshold θm, that is δ−w ≥
θm, where δ is the distance between consecutive non-zero digits of the ephemeral
key’s wNAF transformation, and w is the window width of wNAF. As analyzed
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Table 3. The value of cl for different parameter sets in Van de Pol’s attack.

Attack parameters
(nc, d)§

SVP CVP

Psl cl Psl cl

(10, 60) 0% – 0.5% 13

(10, 65) 1% 13 2.5% 12

(10, 70) 1.5% 13 4% 12

(10, 75) 1.5% 13 7% 12

(11, 60) 0% – 0.5% 14

(11, 65) 5% 13 6.5% 13

(11, 70) 2.5% 13 19% 12

(11, 75) 7.5% 13 25% 12

(11, 80) 6% 13 – –

(12, 60) 2% 14 7% 14

(12, 65) 2.5% 14 10.5% 13

(12, 70) 7.5% 14 29.5% 13

(12, 75) 10.5% 13 38.5% 13

(12, 80) 13% 13 – –

(12, 85) 8.5% 13 – –

(12, 90) 15.5% 13 – –

(13, 60) 3.5% 15 8.5% 14

(13, 65) 6% 15 25.5% 14

(13, 70) 11% 14 46.5% 14

(13, 75) 19% 14 54% 14

(13, 80) 18.5% 14 – –

(13, 85) 21.5% 14 – –

(13, 90) 25% 14 – –
§nc: number of signatures for construct-
ing the lattice; d: number of triples chosen
from the signatures.

in [30], θm = 3 is adopted, and a smaller θm would not improve the result much.
The processing in [30] makes a slight difference in calculating c, that is, we do
not need to derive Pr, as every signature contains the non-zero digits satisfying
that δ − w ≥ 3. And we choose d triples from the signatures to construct the
lattice.

Therefore, cl is calculated for different lattice dimensions (d+1 for CVP and
d + 2 for SVP), numbers (nc) of signatures for constructing the lattice, and the
choices of SVP and CVP, while the reduction algorithm and θm are fixed. As
shown in Table 3, CVP is better than SVP, and the metric c for this attack is 12.
There are 5 optimal parameter sets corresponding the metric, (nc = 10, d = 65),
(nc = 10, d = 70), (nc = 10, d = 75), (nc = 11, d = 70) and (nc = 11, d = 75),
all with CVP chosen.
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Table 4. The value of cl for different parameter sets in Fan’s attack.

Attack parameters (nc, -, o)‡ Psl cl

(7, BKZ-20, C) 24% 8

(7, BKZ-20, A+C) 62% 13.40

(7, BKZ-25, C) 68% 8

(7, BKZ-25, A+C) 94% 13.40

(6, BKZ-20, C) 22% 7

(6, BKZ-20, A+C) 28% 11.73

(6, BKZ-20, A+B+C) 51% 7

(6, BKZ-25, C) 35% 7

(6, BKZ-25, A+C) 61% 11.73

(6, BKZ-25, A+B+C) 90% 7

(5, BKZ-20, C) 1% 9

(5, BKZ-20, A+C) 4.5% 13.40

(5, BKZ-25, C) 4% 8

(5, BKZ-25, A+C) 17% 10.05

(5, BKZ-25, A+B+C) 37.5% 6

(4, BKZ-25, A+C) 1.5% 13.40

(4, BKZ-25, A+B+C) 8% 6
‡nc: number of signatures for the lattice con-
struction; o: the combination of optimiza-
tions.

Fan’s Attack [9]. This attack constructs an EHNP instance, and converts to the
SVP to solve in the lattice. In addition to the basic attack, the authors [9] provide
three optimizations to decrease the lattice dimension, which include recovering
the MSD (A), enumeration the MSDs (B), and elimination with merging (C).
And, any combination of these optimizations may be adopted. As analyzed in [9],
the basic attack, optimization B and C have no requirement on the signature
(Pr = 1). While for optimization A, Pr = 59.7%. But when both A and B are
included in the optimization combination, Pr = 1; and Pr = 59.7% when the
optimization combination includes A but without B.

Fan et al. [9] extracted all positions of the ephemeral key’s digits for the
lattice, then one signature contributes one congruences in Eq. 2. Once the number
of signatures is fixed for the lattice construction, the dimension is determined.
Therefore, instead of specifying the lattice dimension, they adopt the number of
signatures (nc) as the parameter.

Therefore, the parameter set for this attack includes the number of signa-
tures for the lattice construction (nc), the reduction algorithm and the chosen
combination of optimizations. As shown in Table 4, more signatures are needed
for choosing the satisfying ones, when both A and C (A+C) are adopted. The
metric c of this attack is 6, while there are 2 optimal parameters: nc = 4, or
nc = 5, with BKZ-25 and all the optimizations (A+B+C) chosen.
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Wang’s Attack [37]. This attack translates the problem of recovering ECDSA
secret key to the HNP, and adopts SVP to solve the converted problem. In [37],
the authors provide the basic attack, which has no requirement on the signature
(i.e., Pr = 1) and each signature contributes one triple for Eq. 1. To reduce the
dimension (making it easier for a lattice reduction algorithm to recover the secret
key), and obtain a better success probability with the same lattice dimension,
the authors provide three rules for selecting the signatures which contain more
leaked bits. The first rule (rule 1) sets constraints on the length of the “double-
add” chain, rule 2 contains rule 1 and limits the most significant digit, and rule
3 sets constraints on the least significant digit. As analyzed in [37], the Pr for
these three selection rules are 79.325%, 49.4% and 50.0% respectively. Rule 0
means no limit is set on the signature selection, that is Pr = 1 for rule 0.

Therefore, the parameters for this attack include the dimension (d), the selec-
tion rule (os) and the reduction algorithm. As shown in Table 5, Psl increases
when any constraint set on the signature selection, however cl also increases due
to Pr. The interesting result is that, the optimal result occurs when no constraint
set on the signature selection. That is, the metric for this attack is 86, with the
optimal parameters are d = 87, BKZ-30 adopted and rule 0 used.

4.2 Summary

We calculate the least number of signatures required for a successful private
key recovery, for different cache side channel attacks against ECDSA with dif-
ferent implementations of the scalar multiplication. As shown in Table 6, c is 1
for the attacks against the ECDSA implementations with the double-and-add or
Montgomery ladder algorithms, which means that the double-and-add and Mont-
gomery ladder algorithms provide weaker protections compared to the wNAF
algorithm. For attacks against the wNAF algorithm, Fan’s attack performs the
best, of which the metric c is the smallest one (i.e., c = 6).

5 Discussion

In this section, we provide the discussion of c for the following four situations:
the imperfect side channel, ECDA implementations with protections, other side
channel attacks on ECDSA and the attacks on DSA.

5.1 Imperfect Cache Side Channels

In Sect. 4, we provide the calculation of c under the assumption that no error
exists in the data acquisition stage, that is, the perfect side channels exist. How-
ever, in practice, the side channel is usually imperfect. For example, as analyzed
in [4], the Flush+Reload attack may fail to determine whether the double or
addition is executed, with a probability (0.55%–0.65%).
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Table 5. The value of cl for different parameter sets in Wang’s attack.

Attack parameter (d, os, -)¶ Psl cl

(67, 0, BKZ-30) – –

(67, 1, BKZ-30) – –

(67, 2, BKZ-30) 16% 133.60

(67, 3, BKZ-30) 16.5% 132

(72, 0, BKZ-30) – –

(72, 1, BKZ-30) – –

(72, 2, BKZ-30) 35% 143.72

(72, 3, BKZ-30) 30.5% 142

(77, 0, BKZ-30) – –

(77, 1, BKZ-30) 0.5% 97.07

(77, 2, BKZ-30) 36.5% 153.85

(77, 3, BKZ-30) 42% 152

(82, 0, BKZ-30) – –

(82, 1, BKZ-25) 1.5% 102.11

(82, 2, BKZ-25) 42% 163.97

(82, 3, BKZ-25) 46.5% 162

(87, 0, BKZ-30) 1.5% 86

(87, 1, BKZ-25) 6% 108.41

(87, 2, BKZ-25) 49.5% 174.09

(87, 3, BKZ-25) 52.5% 172

(92, 0, BKZ-25) 5% 91

(92, 1, BKZ-25) 25% 114.72

(92, 2, BKZ-25) 44.5% 184.21

(92 ,3, BKZ-25) 50% 182
¶d: dimension; os: selection rules.

The metric c is still 1 for ECDSA implementations with double-and-add and
Montgomery ladder algorithms. When some bits (e.g., 5% in [39]) are undeter-
mined from the side channel, the full ephemeral private key may still be recovered
at very small cost using the Baby-Step-Giant-Step (BSGS) algorithm [33].

For the attacks against the ECDSA implementation with wNAF algorithm,
we need to ensure at least cp perfect signatures exist. Therefore, the expected
minimum number of signatures needed for at least one successful private key
recovery (the metric c) becomes cp/Pc, where cp is the metric corresponding to
perfect side channels, and Pc is the correct rate of the data acquired from the
side channel. For Van de Pol’s attacks, Pc is 57.7% described in [30], as 577
captures are perfect among 1000 random captures in the data acquisition stage.
As stated in [9], Pc is also 57.7% for Fan’s attack. For the Berger’ attack and
Wang’s attack, we may also calculate Pc through a large number of experiments.
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Table 6. Comparison between the attacks on various ECDSA implementations.

Attack Lattice
dimension

SVP/CVP Reduction
algorithm

nr Metric c

Attacks against
Double-and-add

– – – 1 1

Attacks against
Montgomery ladder

– – – 1 1

Berger’s [4] 102 SVP BKZ-30 100 202

Van de Pol’s [30] 75 CVP BKZ-20 11 12

Fan’s [9] – SVP BKZ-25 5 6

Wang’s [37] 87 SVP BKZ-30 85 86

5.2 ECDSA Implementation with Protections

Various protections are proposed and widely adopted to increase the difficulty
for cache side channel attacks, for example, the ephemeral key is protected [8]
by a classic blinding (i.e., k′ = k + v ∗ q where v is a small random number,
and q is the elliptic curve group order), or by a random Euclidean splitting (i.e.,
k′ = [k/v]v + k%v where v is a random number). Then, only random noisy
information, instead of the ephemeral key’s bits, is leaked via side channels.

However, there are still side channel attacks [13] against the ECDSA imple-
mentations with protections. Goudarzi [13] presented a lattice attack to the
ECDSA where the ephemeral key is blinded. When the protection is deployed,
the side channel can only recover the noisy bits, the authors propose a filtering
method to select a set of blinded bits among all the recovered noisy bits which
(1) satisfy the required properties of the lattice attack, and therefore (2) provide
the highest possible probability of success. The filtering method is performed
based on the likelihood scores, whose distribution is related to a parameter, i.e,
multivariate signal-to-noise (ξ).

To calculate c for this attack, we first derive the ratio R of the selected
signatures for the filtering method, and then adopt n/R as the metric, where n
is the number of selected signatures. The parameters for the attack [13] include
the adopted multivariate signal-to-noise (ξ), and (nsig, ntr), i.e., choosing ntr

signatures for one experiment from nsig available signatures.
Table 7 lists the number of selected signatures for different size (η) of r, based

on the success probability of the lattice attack from the original article [13]. For
classic blinding, the c is 2/R for all η = 16, 32 and 64, while the optimal
parameters are ξ = 2, nsig = 10 and ntr = 1. For Euclidean blinding, the c
is 8/R for η = 16, and the the optimal parameters are ξ = 2, nsig = 20 and
ntr = 5; while for η = 32 and 64, the c is 11/R, and the the optimal parameters
are ξ = 2, nsig = 100 and ntr = 10.
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Table 7. The number of filtered signatures in different cases for Goudarzi’s attack.

(nsig, ntr) (10, 1) (20, 5) (20, 10) (100, 10) (100, 50) (100, 100)

Classic blinding

ξ = 1.5, η = 16 8 6 11 11 51 101

ξ = 1.5, η = 32 29 7 11 11 51 101

ξ = 1.5, η = 64 500 10 13 13 51 101

ξ = 2, η = 16, 32, 64 2 6 10 10 50 100

Euclidean blinding

ξ = 1.5, η = 16, 32, 64 – – – – – –

ξ = 2, η = 16 143 8 12 11 51 101

ξ = 2, η = 32, 64 1000 10 13 11 51 101

5.3 Other Side Channel Attacks Against ECDSA

ECDSA is also vulnerable to other side channel attacks, e.g., the power attack
and the fault injection attack.

For the power attack [12,21,36], the quantitative metric c is calculated in the
same way as described in Sect. 3. The only difference between the power attacks
and the cache attacks is in the data acquisition stage. The power attacks exploit
the power changes, i.e., power side channel, during the calculation of the scalar
multiplication. The mechanisms for acquiring data have no impact on the data
processing, therefore the c is calculated in the same way.

The fault attacks [3,7,10,31] inject a fault during the execution of ECDSA
and use the faulty outputs to deduce some bits of the ephemeral key. With this
partial ephemeral key, a lattice attack is adopted to recover the whole ephemeral
key. Therefore, the fault attacks can still be evaluated based on the quantitative
metric c, which reflects the number of signatures needed to be acquired through
online fault injection; and the metric c is calculated in the same way as described
in Sect. 3.

5.4 Applicability of the Attacks Against DSA

The security of DSA [25] is based on the intractability of the discrete logarithm
problem in the multiplicative group of finite fields, and in prime order subgroups.
However, it is also vulnerable to the side channel attacks. The lattice attacks are
mounted to recover the private key with the partial key information extracted
from the side channels [1,15,20,27,29]. For example, the attacks [15,20,27]
extract the LSBs and MSBs of the ephemeral key for the private key recovery.

The attacks against DSA can also be compared based on the proposed metric,
as it reflects the expected number of DSA executions needed to be observed
online for at least one successful key recovery. The metric c is calculated in the
similar way as for ECDSA, for the data acquisition and processing stages are
similar. Also, the optimal parameters will be also obtained for each attack during
the calculation of c.



Evaluating the Cache Side Channel Attacks Against ECDSA 343

6 Conclusion

In this paper, for the first time, we present a quantitative evaluation approach
for the cache side channel attacks against ECDSA with different implementa-
tions for the scalar multiplication. We use the expected minimum total number
of signatures needed for at least one successful recovery of the private key as the
uniform quantitative metric for the attacks. Our evaluation approach is appli-
cable to the attacks against various ECDSA implementations. For each typical
attack, the expected minimum number of signatures for successful key recovery
is obtained. In particular, for the attacks against ECDSA with the wNAF imple-
mentations, we model the data processing stage with the geometric distribution
to calculate the metric. We obtain the metric and the corresponding optimal
attack parameters for each attack. Among the attacks against the wNAF algo-
rithm, Fan’s attack needs the least number of signatures (i.e. 6) to successfully
recover the ECDSA private key.
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Abstract. Laser-based fault injections (LFI) attack is a serious threat
against cryptographic implementations. One of the effective countermea-
sures against LFI attacks is to detect the laser shot and delete the sen-
sitive information before any leakage occurs. This paper focuses on an
ASIC AES implementation protected by a laser sensor that can detect
the irregular current caused by the laser shot and send the alarm sig-
nal. We experimentally show that the single-bit alarm signal generated
by the laser sensor is a source of side-channel leakage that leaks the
sensitive information of the AES calculation. Specifically, by adjusting
the strength of the laser shot to achieve an unstable alarm signal, we
demonstrate the most effective successful key recovery in our setup. Our
results imply that the sensitivity of the on-chip sensor could leak the
sensitive information of cryptographic calculation; thus they should be
implemented with careful side-channel countermeasures.

Keywords: Fault analysis · Power analysis · AES · Side-channel
attack · Laser fault injection (LFI)

1 Introduction

Non-invasive physical attacks are serious security threats against cryptographic
implementations. For passive attacks, side-channel attacks can recover the secret
key by collecting and analyzing the side-channel information leaked by the cryp-
tographic calculation such as the power consumption [1–3] or electromagnetic
radiations [4,5]. These side-channel measurements contain the information of
the processed intermediate value so that they can be analyzed statistically to
reveal the secret key within a practical computational complexity. For active
attacks, the attacker can intentionally disturb the fault-free calculation to inject
a computational fault during the cryptographic calculation. The faulty calcu-
lation results together with the faulty behavior of the device can be used to
effectively extract sensitive information of the secret key, which is called the
fault attack.

Among various methods to inject a fault into a cryptographic device, the
laser-based fault injection (LFI) is considered to be the most powerful method
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for its better accuracy in fault injection timing and fault position. In order to
counter such LFI-based active attack, one approach is to integrate laser sensors
into the chip, which can detect the fault injection and prevent the leakage. This
work focuses on the passive information leakage of a laser sensor that is a ded-
icated countermeasure against the laser-based fault attack. Depending on the
mechanism of the laser detection, we consider that the sensitivity of the laser
sensor could be affected by the power consumption of cryptographic calculation,
therefore could leak the sensitive information.

Specifically, this article focuses on the bulk-current-based laser sensor pro-
posed in [6]. As explained in [6], in order to integrate bulk built-in current sensor
(BBICS) into cryptographic cores with low layout area penalty, the achieved
BBICS is divided into a front-end module for sensing abnormal bulk current
and a back-end module for generating an alarm signal. In this chip, the BBICS
is used to detect the abnormal current generated inside the silicon substrate
under laser shot. The sensor is distributed across the entire cryptographic core
for 100% detection coverage. After the detection, the internal data is erased by
shunting the power supply to the AES core. Since the internal data is erased,
the faulty output is not calculated. Therefore this countermeasure is effective
against differential fault analysis. Also, since the sensitivity of the laser sensor
is set to be secure with a margin, the data-dependent fault sensitivity cannot be
measured as well.

This paper describes the exploitable side-channel leakage from the output sig-
nal for the bulk-current-based laser sensor. Specifically, we focus on the alarm sig-
nal sent by the laser sensor, which may have side-channel leakage. The main idea
is that the sensitivity of the laser injection sensor could have a certain correlation
with a computation of the cryptographic circuit. We investigate such potential
information leakage with several experiments using the evaluation board pre-
sented in [6], in which the alarm signal from the sensor can be directly measured
via output pins. Therefore, assuming that the alarm signal may be affected by
the cryptographic calculation, we investigate the side-channel leakage for the
alarm signal from BBICS.

The contributions of this paper are summarized as follows.

– We conduct a comprehensive analysis of the information leakage of the alarm
signal for the bulk-current-based laser sensor.

– We confirm the dependency between the processed intermediate value in AES
and the sensitivity of the alarm signal. We confirm that the Hamming weight
model can well describe the leakage model and be used to successfully recover
the secret key using the alarm signal only.

– We analyze the shape of the alarm signal and the amount of information leak-
age. We show that the unstable alarm signal achieved by careful adjustment
of the laser strength is the most effective one for the key recovery.

The rest of this paper is organized as follows. Section 2 shows the preliminar-
ies with research background information. Section 3 explains the target evalua-
tion chip, together with the experiment setup. Section 4 shows the experimental
results including the leakage assessment and the key recovery experiment. The
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experimental results are discussed and compared with related work in Sect. 5.
Finally, Sect. 6 concludes the paper.

2 Preliminaries

2.1 Fault Attacks and Countermeasures

In fault attacks, the attacker intentionally disturbs the normal calculation to
inject a computational fault during the cryptographic calculation. Fault attack
is a powerful active side-channel attack against cryptographic implementations.
With deliberately injected calculation faults during cryptographic calculations,
the attackers can observe the faulty behaviors (faulty output, fault sensitivity
etc.) of the target device. With the information provided by faulty behaviors,
the cryptanalysis using intermediate values and public data becomes possible to
reveal the secret key with reasonable complexity.

Among various fault attacks, the most effective one is the Differential Fault
Analysis (DFA) proposed by Biham and Shamir in 1997 [7]. With a fault model
that describes the injected fault, the cryptographic key can be effectively derived
by analyzing the pairs of fault-free and faulty ciphertexts. Generally speaking,
the attacker predicts a part of the key and performs the reverse calculation using
fault-free and faulty ciphertexts. The correctness of the predicted key is verified
by whether the difference after the reverse calculation fits the fault model. The
key space can be continuously reduced by repeating the same process using new
pairs of ciphertexts. In the case of a fault model that injects a random byte fault
into in the 8th round of AES, the DFA attack can derive the 128-bit encryption
key using 2 pairs of ciphertexts [8].

Fault Model. The fault model is fundamental in DFA attacks. On the one
hand, it is related to the data complexity required for the key recovery. On the
other hand, a meaningful fault model must can be realized using the practical
fault injection.

Among various fault injection methods, due to its better time precision and
spatial precision, laser-based fault injection is considered to be the most powerful
one. For example, compared to the clock-based method that is difficult to control
the value of faulty intermediate value after the fault injection, the laser-based
injection can accurately flip a single bit at a certain position. Compared to the
under-power approach that is likely to affect a long period of computation time,
the time precision of the laser injection can be controlled more accurately.

Detection-Based Countermeasures. The detection-based countermeasure
against fault attacks can be designed from two general approaches. The first
approach is to detect the faulty intermediate value, in which redundant calcu-
lations are used to verify the correctness of the calculation. For example, the
calculation result can be verified by repeating the same calculation, conducting
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the reverse calculation and so on. The redundancy-based countermeasure is rel-
atively easy to be implemented, and the fault coverage rate can be accurately
evaluated as well.

The second approach is to detect the attempt of fault injection by using
sensors to detect abnormal contact or access to the cryptographic device. For
example, one can use sensors to detect the irregular clock signal or abnormal
power supply. Similarly, one can use laser sensors to detect laser-based fault
injection. Once the actions of fault injections have been detected, the device can
take specific measures to prevent the leakage of secret information.

2.2 Welch’s t-Test

In order to evaluate the potential leakage from the investigated laser sensor, we
apply the leakage assessment methodologies based on fixed-vs-random t-testing
proposed in [9]. The basic principle of the leakage assessment is to check whether
the statistical differences can be found in the side-channel measurements when
the processed data is different.

In our test, we applied the fixed-and-random t-test, in which two data sets
are required. Denote the secret key as k and the plaintext as p. The first data
repeatedly records the side-channel information with fixed k and fixed p. The
second data set corresponds to the side-channel information when plaintexts
are randomly chosen. For both sets of traces, the average and the variance for
every sample point are computed. Then the t-value for each sample point can
be calculated as

t =
μr − μf√

σ2
r

nr
+

σ2
f

nf

, (1)

where μ, σ2 and n are the average, the variance, and the amount of the samples
at a certain sample point in a data set. The subscripts r and f correspond to the
data set of random plaintext and the data set of fixed plaintext, respectively.

It is generally accepted that when the t-value t is larger than 4.5, these two
data sets can be considered as different statistically. Therefore, a certain data-
dependent difference can be found between these two data sets, which implies
an exploitable leakage for side-channel attacks.

2.3 Correlation Power Analysis

Correlation power analysis with a leakage model is a generally useful method to
apply the secret key recovery. The attack follows a divide-and-conquer approach
so that the key is divided into sub-keys and recovered individually, and combined
sub-key recovery results lead to the full key recovery. For each sub-key, the
key space of the key candidates is small enough to get exhaustively evaluated.
Each key candidate is evaluated by checking the Pearson’s correlation coefficient
between the actual power consumption and estimated power consumption. The
estimated power consumption is obtained by applying a leakage model to the
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selected intermediate value. The intermediate values are calculated using the
public data (plaintext, ciphertext) and the key guess of the current sub-key.

As for 128-bit AES, the first round and the last round are the preferred attack
target, and the leakage of the intermediate value around SubByte calculations
or flip-flops are usually used in the attack. The 128-bit secret key is divided into
16 key bytes and recovered one by one. Thus, the key space for each sub-key is
28. The popular leakage model in non-profiling side-channel attacks includes the
single-bit model, the Hamming weight model, the Hamming distance model, the
zero-value model and so on.

It is expected that when the number of traces is large enough, the correlation
coefficient corresponding to the correct key candidate can be distinguished from
those of incorrect key candidates. The reason is that for the correct key candi-
date, the calculated intermediate values are the same as the real ones. As long as
the leakage model is reasonable, the estimated power consumption and the real
ones do have certain correlations. While for the incorrect key candidate, such
correlation does not exist. When the amount of data is large enough, the ghost
correlation peaks caused by the noise will be depressed, so that the correlation
for the correct key become distinguishable.

3 Target Device and Experimental Setup

3.1 Target Device

In this section, we briefly explain the target device under our evaluation. This
chip has an AES circuit that includes compact laser shot detection as an LFI
countermeasure proposed by Matsuda et al. in [6]. In LFI attack, the laser is
irradiated to the PN junction of the silicon substrate. Meanwhile, electron-hole
pairs are generated by the photoelectric effect, and an abnormal transient current
is generated inside the silicon substrate. This abnormal transient current may
cause a circuit failure that leads to computational fault that is exploited in fault
attacks.

In [6], the authors developed a chip that uses a bulk built-in current sensor
(BBICS) to detect the abnormal current generated inside the silicon substrate.
The target chip integrated a compact sense-and-react countermeasure against
LFI. This countermeasure consists of a distributed bulk-current sensor for LFI
detection and secure flush code eraser for erasing internal data. Bulk-current
sensor is monitoring abnormal transient current in the silicon substrate due to
laser irradiation. Since this transient current spreads all over the shared silicon
substrate, BBICS is distributed across the entire cryptographic core for 100%
attack detection coverage. In addition, the core supply during the shunting is
electrically isolated from the global supply line to prevent side-channel informa-
tion leakage of intermediate faulty codes.

In our evaluation, the target chip is mounted on an evaluation board. The
evaluation board has several general-purpose input output (GPIO) pins for
debug purposes. The AES execution signal (EXEC) and the alarm signal from
BBICS can be directly observed through these GPIO pins. Furthermore, the
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shutting operation that deletes all the sensitive information is turned off in our
evaluation.

It is obvious that the evaluation board used in our experiment is different
from a practical attack scenario. For practical usage of the AES chip with BBICS
sensor implemented, the alarm signal cannot be easily retrieved by the attacker.
Also, as long as the alarm signal is active, the following protection will shut down
the calculation of the cryptographic algorithm. The purpose of this work is to
investigate the potential information leakage from the alarm signal. Therefore,
the experiments based on the debug functionality of the evaluation board fit the
purpose of this work. The possibility of the key recovery in a more practical
attack scenario for BBICS is considered as future work.

3.2 Experiment Setup

The overview of our experimental setup is shown in Fig. 1. A photo of the eval-
uation board with the target chip and the laser unit is shown in Fig. 2. The chip
under test is in the center of the evaluation board with its silicon die exposed
for laser shot. A control FPGA works as an interface to communicate between
the target chip and a computer. The evaluation board and a laser unit have
their positions fixed by a mounting base so that the laser spot can be stable and
carefully adjusted. The laser unit is connected to with a power supply so that
the strength of the laser shot can be adjusted by changing the output voltage
of the power supply. An oscilloscope is used to capture traces from the GPIO
pins of the evaluation board and the captured signal are sent to be stored in the
computer. Two signals are captured using an oscilloscope as the alarm signal
from the BBICS and the execution signal of AES. The AES execution signal is
used as a trigger to align the alarm signal.

The detailed information of the experiment devices is listed in Table 1.

Table 1. Devices used in experiment setup

Control FPGA Xilinx SPARTAN XC3S1400AN

Oscilloscope Agilent DSO7032A

Laser unit Lightvision Technologies JPM-1-3(A4)

Power supply KIKUSUI PMC18-2A

Note that our experiment setup does not include expansive equipments. Espe-
cially, the laser unit we used is a very basic one that costs less than 30 US dollars.
This laser unit is a diode pumped solid-state green laser that has a large laser
spot of 12.5 mm. According to its specification, the output power of this laser
unit is between 0.3 mW to 0.9 mW. The power of the laser unit is strong enough
to trigger the alarm signal of the BBICS. Therefore, this basic laser is good
enough for our evaluation purpose and the successful key recovery.



352 Y. Li et al.

Fig. 1. Experiment setup

Fig. 2. Photo of experiment setup

4 Results

Before doing leakage assessment or CPA, we first show a preliminary observa-
tion during the experiment. Subsequently, the leakage assessment and the key
recovery attacks are performed on the on-chip AES implementation, which has
no side-channel countermeasures.

4.1 Unstable Alarm Signal with Controlled Laser Power

The first observation is that the sensor’s alarm signal can be set to an unstable
state. The strength of the laser shot can be adjusted by many means such as
the distance between the laser unit and the chip, the angle of the laser shot, and
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the voltage of the power supply to the laser unit. We first set the experimental
parameters to achieve a critical state where the alarm signal can be continuously
and stably triggered. Then we command the evaluation board to repeatedly
perform AES calculations with random plaintext and a fixed key. Meanwhile,
the alarm signal is observed by an oscilloscope. With the AES encrypting the
random plaintexts in the background, we can gradually reduce the voltage of the
power supply to the laser unit to reduce the strength of the laser irradiation.

Fig. 3. Typical shape of 4 types of alarm signals

Fig. 4. The ratios of 4 types of alarm signals over the voltage of laser unit’s power
supply

By doing so, we can observe that there are roughly 4 types of waveforms for
the alarm signal as follows.

Type 1. Logical high
Type 2. Logical high except for the middle part of the AES is temporarily

logical low
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Type 3. Unstable alarm signal with large fluctuation
Type 4. Logical low

For each type of alarm signal, one of the example is plotted in Fig. 3. For a
certain position and angle of the laser shot, we investigate the ratios of these 4
types of alarm signals over different power supply for the laser unit as shown in
Fig. 4. Type 1 and type 4 of the alarm signal are as expected, which corresponds
to the cases when the laser shot is stably detected or not. However, even the
setup of the laser shot is fixed, the unstable alarm signal can be observed.

As for type 2 of the alarm signal, the alarm signal is temporarily falling in the
middle sample points. After investigation, we find its timing roughly corresponds
to the 5th round of AES calculation. Since the type 2 alarm signal takes a large
account and has a stable shape, we consider it as a unique type that is separated
from the other unstable traces. We do not know the exact reason for type 2 of
the alarm signal, we consider it is caused by the power consumption of certain
operations occurred during AES calculation. As for type 3 of the alarm signal,
the alarm signal fluctuates between the logic high and logic low as an unstable
signal. We believe the fluctuation is caused by the influence of the variation of
the power consumption of the cryptographic calculation.

4.2 Leakage Assessment

In this section, we present the result of the t-test using the fix data set of 100k
traces and the random data set of 100k traces. The result is shown in Fig. 5,
in which we have several observations. The first observation is that these two
data sets are clearly statistically different since the t-value is much larger than
the threshold 4.5. The second observation is that the t-test value shows a clear
pattern in each clock cycle, which implies that the alarm signal is affected by
the calculation in combinatorial circuits. Another observation is the peak of
t-value is the same position where the type 2 alarm signal has a temporary
falling down. These observations imply the existence of the information leakage
of the cryptographic calculation in the measured alarm signal.

Fig. 5. Fixed-vs-random t-test result for 100k traces
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4.3 Known-Key Correlation Test

As mentioned in [6], the implemented AES with the laser sensor is without any
countermeasures against side-channel attacks. Therefore, as long as the alarm
signal leaks the information of AES calculation, we expect that the classic leakage
model such as the Hamming weight model or the Hamming distance model could
be useful. Before the key recovery experiment, with the known key, we test the
correlation with the alarm signal by selecting several intermediate values and
the classic leakage models. In our test, the 128-bit intermediate value is used
instead of byte-wise intermediate value so that the exploitable leakage model
become clearly distinguishable.

This test can verify the effectiveness of the leakage model and the selection
function with the small computational cost. We focused on the intermediate
value of the first round and the last round of AES. The result is shown in Fig. 6.
In Fig. 6, we denote Sn

in and Sn
out as the input and output of the SubBytes

calculation in the n-th round of AES, where n ∈ {1, 10}. We also denote the
Hamming weight and the Hamming distance as HW and HD, respectively.

Fig. 6. Results of known-key correlation test for 362k traces

As shown in Fig. 6, the Hamming weight of the SubBytes input has a clear
negative correlation with the traces of alarm signal. The Hamming distance
between the round input and the round output also shows some negative cor-
relation that could be used in the key recovery. In other words, this simple
experiment verified that the alarm signal leaks the Hamming weight of the AES
round input the most. Also, the Hamming distance between round input and
round output also exist in the alarm signal.

4.4 Key Recovery Attack

Considering the result of the known-key correlation test, we consider the Ham-
ming weight of the last AES round input is the most effective intermediate value
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Fig. 7. Total correlation after 360k traces for all 256 key candidates. The correct key
byte is marked black

Fig. 8. Correlation evolution over 360k traces for all 256 key candidates; The correct
key is marked black
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Fig. 9. Evolution of correct key bytes over 360k traces
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to perform the key recovery experiment. In this subsection, we present the results
of CPA attacks on the AES round key. We perform a ciphertext-based CPA on
the last round of AES over 360k traces of alarm signal. The strength of the
laser irradiation is carefully adjusted to get the unstable alarm signal as much
as possible. The results of the CPA attacks are shown in Figs. 7, 8, and 9.

For a key byte, Figs. 7 and 8 show the final correlations with the entire set
of traces and the evolution of the correlation coefficient of 256 key candidates,
respectively. This key byte can be recovered within 100k power traces. Also, in
Fig. 9, the evolution of the correctly recovered key bytes is presented against the
number of used traces. With 360k trances used, almost all the key bytes can be
successfully recovered. By far, we have already demonstrated the leakage from
the alarm signal generated by the laser sensor can be used to recover the secret
key of AES.

4.5 Key Recovery Attack with Grouped Alarm Signal

As mentioned that the measured alarm signal can be divided into 4 types. When
we only focus on the sample points corresponding to the last round of AES, the
alarm signal can be divided into 3 groups as “’always high”, “always low” and
“unstable”. The always high group is the waveform that remains at the logical
high. The actual criterion we used is that the voltage is above 2.5 V for all related
sample points. The always low group is the waveform that has been kept at the
logical low. The actual criterion is that the voltage is below 0.5 V for all related
sample points. Waveforms that are neither in the always high group nor in the
always low group are in the unstable group. The alarm signal in the unstable
group has at least a sample point that is between 0.5 V to 2.5 V during the 10-
round’s calculation. After the grouping, we found that the always low group and
the unstable group have roughly 40k traces, while the always high group has
roughly 280k traces. Then we used these three group of waveforms to repeat the
key recovery experiment separately. The result is shown in Fig. 10.

Fig. 10. Evolution of correct key bytes for different groups of traces
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The result shows that the most important information leakage comes from
the unstable alarm signals of BBICS. The full key recovery can be achieved
using less than 40k traces. We consider that for the unstable alarm signal the
information carried by the power consumption of the AES calculation is the
most complete. Unlike the traces in the always high group and the always low
group, some of the information may be lost in the voltage limitations of GPIO
signals.

Normally, the GPIO output has only two stats as the logical high and logical
low. This result implies that the key recovery achieved in this work mainly comes
from the information leakage caused by the sensitivity variation of the laser
sensor. The possible side-channel leakage related to the sharing of the power line
or the ground is not the main reason of the successful key recovery.

5 Discussion

5.1 Cause of Leakage

In this section, we discuss the possible causes of the information leakage in the
alarm signal generated from the laser sensor. The mechanism of the investigated
laser sensor is based on the detection of the abnormal current generated under
the laser shot. A threshold-based mechanism is used to decide the value of the
alarm signal.

We consider that the leakage exists since the total current that is compared
with the threshold is composed of both the abnormal current caused by the
laser shot and the normal current related to cryptographic calculation. In our
attack experiment, the abnormal current caused by the laser shot is relatively
stable by fixing the input voltage to the laser unit and other setup. In the
meanwhile, the normal current varies according to the intermediate values used
in the cryptographic calculation. The information of cryptographic calculation
is leaked through the alarm signal since the variation of the total current is
correlated with the variation of the normal current. The essence of the leakage
is that the generation of the alarm signal depends on the power consumption of
the cryptographic calculation.

The relation between the laser shot and the power consumption has been
discussed also in other research works. For example, in [10], the laser shot is
used to combine with the power analysis to improve the result. It is found that
the laser shot can modulate the contribution of a certain transistor to the overall
supply current since the laser shot has been converted into current through a
certain transistor by the photovoltaic effect.

5.2 Comparison with Related Work

Fault Sensitivity Analysis. Fault sensitivity analysis (FSA) was originally
introduced as the combination of active attack and passive attack [11]. The point
of FSA attack is that the fault injection intensity required to generate a faulty
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output depends on the processed intermediate value. In case of fault injections
using clock-glitch, the fault sensitivity can leak the critical path delay of the
combinatorial circuit, which can be used to infer the information of the sensitive
data. Later, the original FSA attack has been extended by combining FSA with
the idea of the correlation-enhanced collision attack [12]. This extension allows
successful FSA attack without any usage of any leakage model.

In [13], it is found that the fault sensitivity analysis can be applied in a
laser attack setting. By controlling the intensity of fault injection into a critical
state where roughly half of ciphertexts become faulty, the distribution of the
faulty ciphertext can leak the information of the intermediate value. The laser-
based FSA attack demonstrated that the threshold of generating fault calculation
results are data-dependent under the laser shot. In this work, we demonstrate
that the threshold of generating an alarm signal is also data-dependent. The
AES calculation part also affects the laser detection mechanism. Turning on
the alarm signal in the circuit is similar to the occurrence of the calculation
violation, therefore the sensitivity of the alarm signal also leaks the information
of the cryptographic calculation.

Leakage from I/O Pins. The leakage source in this work is the alarm signal
measured as the output from the general-purpose input/output pin (GPIO pin)
on the evaluation board. Many works have already discussed the information
leakage on the IO pins [14,15]. In [16], Schmidt et al. showed that DPA attacks
based on voltage variations at I/O pins can successfully be mounted on many
devices even if in a cross border attack scenario. This work also belongs to the
side-channel leakage measured from the input/output pins.

Different from previous work, this work demonstrated specifically the leakage
from a bulk-current-based sensor that works as a fault attack countermeasure.
Furthermore, this work focuses on the leakage caused by the sensitivity of the
laser sensor rather than the leakage caused by sharing the same power line or
ground. In the previous work, the leakage mainly comes from the small voltage
fluctuation when the measured signal is stable to a certain logical state. While,
since this alarm signal can be “controlled” by the attacker, we showed that the
leakage in our attack is the most significant when the measured signal is in an
unstable logical state. The attackers could take advantage of this observation to
perform much effective key recovery attack.

Leakage from ADC. In [17], Gnad, Krautter, and Tahoori demonstrated that
analog digital converter (ADC) used in many SOC devices leaks the information
of the cryptographic calculations. To prove the leakage, they performed the leak-
age assessment on three individual micro-controllers from two different vendors
with various ADC settings. They also showed a full key recovery attack on AES
that works despite the limited ADC sampling rate. Similar to this work, their
work is also an example of side-channel leakage from the output of the on-chip
component. These results imply that the chip design should be careful when
integrating the cryptographic circuit with other on-chip components.
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6 Conclusion

For a laser injection detection chip based on detecting abnormal current, our
work proves that there is a correlation between the output signal of the laser
sensor and the calculated data of the cryptographic circuit. This correlation is
large enough to have a successful CPA-based key recovery attack on the AES
inside the same chip. We also show that the information leakage is most signifi-
cant when the output signal is in the unstable state. Our results imply that the
sensitivity of the on-chip sensor could leak the sensitive information of crypto-
graphic calculation, thus they should be implemented with careful side-channel
countermeasures.
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Abstract. In this paper, we present the first identity-based outsider
anonymous public-key trace and revoke (OAnoPKTR) scheme achiev-
ing constant-size communication bandwidth and computation cost. Our
construction is obtained by twitching Tardos fingerprinting code (TFC)
over Waters identity-based encryption (IBE) framework (EUROCRYPT
2005) endowed with the most efficient asymmetric Type-3 variant of
the bilinear maps. We efficiently couple two mutually orthogonal func-
tionalities, namely receivers anonymity and public traceability, which is
difficult to accomplish without losing cost-efficiency. Our scheme prov-
ably achieves indistinguishable chosen-plaintext attack (IND-CPA) secu-
rity against adaptive adversary beneath the standard decisional bilinear
Diffie-Hellman exponent (DBDHE) assumption. The security analysis is
in the standard security model without applying random oracles.

Keywords: Broadcast encryption · Anonymity and privacy · Fraud
detection and revocation · Public-key tracing · Identity-based
encryption · Tardos fingerprinting code

1 Introduction

Broadcast encryption (BE), first introduced by Fiat and Naor [9], allows secure
transmission of encrypted files over insecure public channel enabling only
intended recipients to decrypt while outsiders recover nothing even if they col-
lude. As opposed to the traditional point-to-point communication systems, BE
can significantly reduce communication bandwidth, computation cost and stor-
age overhead. The application of BE [10,11,15,16,19,20] widely ranges from the
digital rights management, pay-TV system, satellite geo-location system, group
communication, etc., to the recently proposed access control mechanism for cloud
storage services [21].

The identity-based broadcast encryption (IBBE) system, first proposed by
Delerablée [6], is an advanced form of BE paradigm in which the public-key
c© Springer Nature Switzerland AG 2020
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infrastructure (PKI) is not required. In an IBBE, the public-key of each user
is represented using an unique identity associated with the user index (e.g.,
a user’s IP or email address). A group manager (GM), also known as private
key generation center (PKGC), generates corresponding secret-key of each user
utilizing the associated public identity of the user. To encrypt message, a set
of receiver’s identities along with the public parameters of the system are used
by any broadcaster. A legitimate user can recover the correct message using its
secret decryption key, which is obtained from the PKGC.

For instance, suppose a group of scientists from various countries are
appointed to collaborate on a confidential project under a government orga-
nization GovNet of some economically powerful country. The primary objective
of the project is to trace the secret nuclear weapon activity of other countries
of the world. The GovNet works as the GM and generates a master secret-public
key pair (MSK,MPK). The master secret key MSK is kept secret to GovNet while
the master public key MPK is published on the Internet. The GovNet builds spe-
cial devices, called ‘set-top decoder box’, each containing a unique private key
embedded within its’ inbuilt storage. The devices are distributed securely among
the scientists. Any scientist can broadcast confidential file on weapon activity,
encrypted under the master public key MPK, through an insecure channel. The
embedded private keys of the set-top decoder boxes enable the corresponding
scientists involved in the project to decrypt the encrypted file. The GovNet can
also decrypt it using the master secret key MSK. In this scenario, the personal
information of the involved scientists needs to be protected from the outsiders.
Suppose, the governments of respective countries somehow able to know that the
information related to their weapon activity has been revealed. They will try to
patch the leakage by threatening their opponents or even by killing them. This
will collapse the entire project, and the collected information will be exposed. It
is GovNet’s interest to protect scientist’s anonymity from the enemies.

The BE with receiver’s anonymity is called anonymous broadcast encryption
(AnoBE), first developed by Barth et al. [3], which has gathered momentum
recently. The AnoBE systems have been classified into two main categories: out-
sider anonymous broadcast encryption (OAnoBE) [1,8,15,26,27] and fully anony-
mous broadcast encryption (FAnoBE) [3,10,11,13,16,20]. In the OAnoBE sys-
tems (including ours), the recipient set is hidden from any outsider, whereas
each user belonging to the recipient set knows the information of other legiti-
mate users. On the other hand, the recipient set is completely anonymous from
both outsiders and insiders in the FAnoBE systems. To find the lower bound
for the communication bandwidth of private BE systems, Kiayias and Samari
[12] have shown that an atomic private broadcast encryption scheme with full
receivers anonymity must have a ciphertext-size of Ω(N ·η), where N represents
the size of subscribed users set and η is the security parameter. Therefore, the
communication bandwidth must be linear to N in any FAnoBE schemes, and
the anonymous BE schemes with constant communication bandwidth are only
OAnoBE [15]. An identity-based AnoBE system can be obtained by tweaking
AnoBE systems over the IBBE framework in which the users are recognized with
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their identities instead of indices assigned by the system. The size of the valid
identity set in an identity-based AnoBE scheme can be exponential with the
security parameter, whereas it is only polynomial with the security parameter in
the existing traditional public-key anonymous broadcast setting. However, the
receiver’s anonymity is at primary concern for both the privacy preserving BE
schemes.

Furthermore, facilitate with the anonymity, any scientist, who has recovered
the confidential information by decrypting the encrypted file, might publish it
for profit without being worried to be captured. Such smuggled redistribution is
the violation of the GovNet’s policy. Moreover, a coalition of such traitors might
make a conspiracy to create a pirate decoder box containing an arbitrarily com-
plex obfuscated malicious program capable of decrypting the ciphertext. In this
situation, GovNet should have the ability to run an efficient tracing mechanism
that interacts polynomially many times with the pirate decoder, considering it
as a black-box oracle, in order to trace and revoke the traitors. Tracing mecha-
nism falls into two categories: public-key tracing [14,17] and secret-key tracing
[4,5,7,19]. In a public-key tracing, anyone can execute the tracing algorithm
using only the public parameters, whereas secret-key tracing requires a secret
input to the tracing algorithm and runs only by the GM. Moreover, a public-
key tracing system remains secure even if the tracing authority is compromised,
and the tracing capability can be outsourced to an untrusted party. An identity-
based AnoBE with the public-key traceability is called identity-based anonymous
public-key trace and revoke (AnoPKTR) system.

Motivation. Anonymity and public traceability are two mutually orthogonal
properties in terms of the recipients’ privacy. Although AnoBE systems and
public-key tracing schemes have been studied separately, it is hard to real-
ize secure identity-based AnoPKTR by simply coupling identity-based AnoBE
[10,11,15,20] with public-key tracing [14,17] without efficiency degrade [2,21] in
communication, computation and storage overhead. Moreover, in the identity-
based BE environment, where devices used to access the broadcast contents, are
generally low computational power and resource-constrained (e.g., low proces-
sor, limited battery life). The FAnoBE schemes may not be fit-for-purpose as
the size of the ciphertext grows with the size of subscribed users set, which may
become very large for a system with large number of subscribers. Thus, in the
identity-based AnoPKTR setting, the OAnoBE schemes with constant-time com-
putation and constant-size ciphertext are desirable for lightweight devices. The
only known generic transformation of anonymous BE into anonymous secret-key
trace and revoke is shown by Murat et al. [2], which have ciphertext-size linear to
the total number of users of the system. However, to the best of our knowledge,
there does not exist any explicit construction for identity-based BE with proper
security realization that achieves both receivers anonymity and public-key trace-
ability with constant-size ciphertext and faster computation. This is appeared
to be a gaping note that begs to be filled, which is resolved in this work.

Our Contribution. We propose a conceptually simple and efficient solution
with proper security realization in the standard security model under reasonable
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Table 1. Comparative summary among existing anonymous BE schemes

Scheme Commu Storage ROM Group Type Security DecTm IB

|CT| |PP| |SK| Model Assumption

Barth et al. [3] O(N) O(N) O(N) ✗ PriO, T1 SEL CDH O(N) ✗

Fazio et al. [8] O(r ln N
r
) O(N) O(ln N) ✓ PriO, T1 ADAP GDH, DDH O(r ln N) ✗

Hur et al. [11] O(N) O(1) O(1) ✓ PriO,T3 SEL BDH O(1) ✓

Libert et al. [16] O(N) O(N) O(1) ✗ PriO,T1 ADAP DDH O(N) ✗

Tseng et al. [23] O(N) O(1) O(1) ✓ PriO, T1 SEL gBDH O(N) ✓

Zhang et al. [27] O(N) O(1) O(1) ✓ PriO, T1 ADAP BDH, eBDH O(N) ✗

Zhang et al. [26] O(η) O(N) O(N) ✗ ComO, T1 ADAP SD O(N) ✓

Ren et al. [20] O(N) O(l) O(l) ✗ PriO,T3 ADAP DBDH O(N) ✓

Li et al. [15] O(1) O(N) O(N) ✗ PriO, T3 ADAP BDHE O(N) ✓

He et al. [10] O(N) O(1) O(1) ✓ PriO,T1 ADAP DBDH O(1) ✓

Lai et al. [13] O(N) O(1) O(1) ✓ PriO,T1 ADAP DBDH O(N) ✓

Acharya et al. [1] O(N) poly(ln3 N) O(ln32 N) ✗ ComO, T1 SEL q-wDBDHI, q-cDDH O(N2) ✗

Ours O(1) O(N) O(N) ✗ PriO,T3 ADAP DBDHE O(1) ✓

N =total number of users, r =size of revoked set, l = length of user’s identity, η =security param-
eter, Comm=communication bandwidth, DecTm=decryption time, ROM=random oracle model,
IB= identity-based, ADAP=adaptive, SEL=selective, ComO=composite order, PriO=prime
order, poly=polynomial, Ti =Type-i bilinear maps, DBDHE=decisional bilinear Diffie-Hellman
exponent, GDH=gap Diffie-Hellman, DDH=decisional Diffie-Hellman, BDH=bilinear Diffie-
Hellman, eBDH=extended bilinear Diffie-Hellman, BDHE=bilinear Diffie-Hellman exponent,
wDBDHI=weak decisional bilinear Diffie-Hellman inversion, cDDH=composite decisional Diffie-
Hellman, CDH=computational Diffie-Hellman, gBDH=gap bilinear Diffie-Hellman

assumption. Our construction is obtained from the collusion-secure probabilis-
tic Tardos fingerprinting codes (TFC) [22] and Waters identity-based encryption
(IBE) [25] framework endowed with the asymmetric Type-3 variant of the bilinear
pairings achieving order-of-magnitude improvements in communication band-
width and computation cost without any security breach. We achieve provable
security against adaptive indistinguishable chosen-plaintext attack (IND-CPA)
adversary based on the standard asymmetric decisional bilinear Diffie-Hellman
exponent (DBDHE) assumption without relying on random oracle model (ROM).
More specifically, our construction provides the following interesting features.

• Table 1 exhibits comparison of our scheme with the existing AnoBE systems
[1,3,8,10,11,13,15,16,20,23,26,27]. The public parameter size (|PP|) in the
works [10,11,13,23,27] are constant, whereas it is linear to the maximal num-
ber of users N in the works of [3,8,15,16,26] and ours. The public parameter
and user secret-key size (|SK|) for [20] is linear to the length l of user’s identity.
The secret key size in our construction is also liner to N similar to [3,15,26].
The secret key size in [10,11,13,16,23,27] are constant while that for [8] is
logarithmic to N , and for [1] linear to ln32 N . However, we emphasize that
our scheme has constant ciphertext size (|CT|) while it is linear to N for
[1,3,10,11,13,16,20,23,27], O(η) for [26] and O(r ln (N/r)) for [8], where r is
the size of revoked user set and η represents the security parameter.

• As shown in Table 1, the schemes of [1,3] are selectively secure without using
ROM, and the works of [8,10,13,27] are adaptively secure in ROM. Although
[15] and ours have same communication bandwidth, we note that the decryp-
tion time (DecTm) is linear to N in [3,13,15,16,20,23,26,27] and constant
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Table 2. Comparative summary among existing trace and revoke schemes

Scheme Commu Storage ROM Group Type Security DecTm Trace IB

|CT| |PP| |SK| Model Assumtn

Dodis et al. [7] O(r) O(ln N) O(ln2.5 N) ✓ PriO, T1 ADAP q − SMEBDH O(1) ST ✗

Boneh et al. [5] O(
√

N) O(
√

N) O(1) ✗ ComO, T1 SEL D3DH, DHSD O(1) ST ✗

Boneh et al. [4] O(η) O(l) O(r2 ln N) ✓ ComO, T1 SEL BDH O(l) ST ✓

Lee et al. [14] O(r) O(η) O(ln1.5 N) ✓ PriO, T1 ADAP q − SMEBDH O(1) PT ✓

Mandal et al. [18] O(r) O(1) O(ln1.5 N) ✗ ComO, T1 ADAP SD O(1) PT ✗

Nishimaki et al. [19] poly(l, |m|) poly(η) poly(l) ✗ − ADAP FE, iO − ST ✗

Nishimaki et al. [19] |m| + poly(ln l) poly(ln l) poly(l) ✗ − ADAP FE − ST ✗

Mandal et al. [17] poly(ln N) poly(ln N) O(1) ✗ PriO, ML ADAP DHDHE, iO O(N) PT ✗

Ours O(1) O(N) O(N) ✗ PriO, T3 ADAP DBDHE O(1) PT ✓

N =total number of users, r =size of revoked set, l = length of user’s identity, |m| = length of
message, η =security parameter, Comm=communication bandwidth, DecTm=decryption time,
ROM=random oracle model, PT=publicly traceable, ST=secretly traceable, IB= identity-
based, ADAP=adaptive, SEL=selective, ComO=composite order, PriO=prime order,
poly=polynomial, Ti =Type-i bilinear maps, SMEBDH=simplified multi-exponent bilinear
Diffie-Hellman, D3DH=decisional 3-party Diffie-Hellman, DHSD=Diffie-Hellman subgroup
decision, DHDHE=decisional hybrid Diffie-Hellman exponent, DBDHE=decisional bilinear
Diffie-Hellman exponent, BDH=bilinear Diffie-Hellman, SD=subgroup decision, FE= functional
encryption, iO = indistinguishability obfuscation, ML=multilinear maps, Assumtn=assumption

in our design similar to [10,11]. However, the work of [10] is secured under
ROM, and [11,23] is selectively secure in ROM. The security against adap-
tive attacks is more realistic than selective attacks, and the security proof
in ROM is generally treated as a heuristic argument as there is no standard
complexity assumptions for such random looking functions. The designs of
[1,26] are based on composite order group, and [1] achieved security under
non-standard q-type assumptions. Note that pairing time and parameter sizes
over composite order groups are significantly high as opposed to prime order
groups [24]. Also the q-type assumptions are assumptions of size that grows
with some parameter q, and such complex and dynamic assumptions are not
well-understood. In contrast, our construction is adaptively secure under the
standard asymmetric decisional bilinear Diffie-Hellman exponent (DBDHE)
assumption without ROM over the prime order bilinear group.

• Compared to the existing trace and revoke schemes [4,5,7,14,17–19], our
OAnoPKTR is the first to achieve receivers outsider anonymity with constant-
size ciphertext. As shown in Table 2, the works [5,7,14,18], including ours,
have constant DecTm. However, [4,5] achieve selective security and [18] is
adaptively secure over the composite order group, while [7,14] are adaptively
secure under the non-standard q-type assumption and the security analysis
of [4,7,14] uses ROM. The works of [4,5,7,19] are secretly traceable (ST) sys-
tems. Although the designs in [17,19] require less storage than ours, they are
built on heavy duty cryptographic tools such as multilinear maps (ML), indis-
tinguishability obfuscation (iO), constrained pseudorandom functions (cPRF),
functional encryption (FE), etc. Secure and efficient realization of these tools
are still to be instantiated. Moreover, the DecTm depends on a suitable FE
scheme in [19] and, it is linear to N in [17]. In contrast to fingerprinting code
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based schemes [4,7], our work is the first publicly traceable scheme using the
most efficient asymmetric Type-3 variant of the bilinear maps.

• Observe from Tables 1 and 2 that most of the schemes are designed under
symmetric Type-1 (T1) pairings and few [11,15,20] have used asymmetric
Type-3 (T3) pairings. Uzunkol et al. [24] have shown that the Decisional
Diffie-Hellman (DDH) test attack has broken many cryptographic protocols
constructed using the symmetric T1 pairings. On the other hand, the DDH
test is computationally hard in asymmetric T3 setting (shown in Remark 3).
However, we emphasize that our design achieves adaptive security without
ROM under the DBDHE assumption over the advanced and secured asym-
metric T3 maps.

2 Prerequisites

2.1 Asymmetric Bilinear Pairings and Hardness Assumptions

Definition 1 (Asymmetric Bilinear Map [15,20]). Let G
× and ˜G

× be two
multiplicative source groups and G

×
T be a multiplicative target group. Assume

that all the groups have the same large prime order p (> 2η). Let P , ˜P be
generators of G

× and ˜G
× respectively. A function e : G

× × ˜G
× → G

×
T is said to

be asymmetric bilinear mapping if it has the following properties.

1. Bilinearity: e(Ua, ˜V b) = e(U, ˜V )ab, ∀U ∈ G
×, ˜V ∈ ˜G

× and ∀ a, b ∈ Zp.
2. Non-degeneracy: The function is non-degenerate, i.e., e(P, ˜P ) is a genera-

tor of G
×
T .

3. Computability: The function e is efficiently computable.

The tuple BG = (p, G×, ˜G
×, G×

T , e) is called a prime order asymmetric bilinear
group system.

Remark 1 (Classification of Bilinear Map). Depending on practical concerns
such as compact representation of the group elements, collision-resistant hashing
to a group element, testing membership in the second source group and compu-
tationally efficient isomorphism, etc., the bilinear pairings have been classified
into three main categories which are described below.

1. Type-1(T1): In Type-1 setting, which is also known as symmetric bilinear
maps, there is no compact representations for elements of the bilinear groups,
where G

+ = ˜G
+. In the work of [24], they have shown that several recent

attacks have broken many security assumptions on T1 pairings.
2. Type-2(T2): A less efficient alternative is when G

+ �= ˜G
+ with an efficiently

computable isomorphism from ˜G
+ to G

+ and vice versa are known. In T2
setting, there does not exists any efficient collision-resistant hashing method
to the elements in ˜G

+ and ˜G
+.

3. Type-3(T3): Here, G
+ �= ˜G

+ and no such efficiently computable isomor-
phism between ˜G

+ and G
+ and vice versa exists. In T3 pairings, there exists

an efficient collision-resistant hashing method to the group elements.
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Note that the T3 parings outperforms T1, T2 pairings from efficient implemen-
tation and security point of view [24].

Decisional Bilinear Diffie-Hellman Exponent (DBDHE) Assumption.
The DBDHE assumption is due to Li et al. [15], which is described as follows.

• Input:
〈

Z = (BG, ˜P , ˜Pα, . . . , ˜Pαm

, ˜Pαm+2
, . . . , ˜Pα2m

, P, Pα, . . . , Pαm

, P c),
K

〉

, where α, c randomly chosen from Z
∗
p, i.e., α, c ∈R Z

∗
p and K is either

e(P, ˜P )αm+1·c or a random element X ∈R G
×
T .

• Output: 0 if K = e(P, ˜P )αm+1·c; 1 otherwise.

Definition 2 (DBDHE Assumption). The asymmetric DBDHE assumption
holds with (t

′
, ε

′
) if for every PPT adversary A with runtime at most t

′
, the

advantage of A in solving the above problem is at most ε
′
, i.e.,

AdvDBDHE
A (η) =

∣
∣
∣Pr[A(Z, K = e(P, P̃ )αm+1·c) = 0] − Pr[A(Z, K = X) = 0]

∣
∣
∣ ≤ ε

′

2.2 Tardos Fingerprinting Code [22]

The collusion-secure probabilistic Tardos fingerprinting code (TFC), introduced
by Gábor Tardos [22], are designed for watermarking digital contents. A Tar-
dos fingerprinting code TFC = (CodeGen, Identify) consists of the following two
randomized algorithms.

• (Γ,WatMTK) ← CodeGen(1η, N): The code generation algorithm, which is
run by a tracer, takes as input the security parameter η with a positive
integer N = poly(η) and executes the following steps.

1. The tracer chooses an error bound ε ∈ (0, 1) together with a positive integer
L = poly(η) ≤ N which is the maximum collusion bound. It sets k =

⌈

log (1
ε )

⌉

and code length l = 100L2k.
2. The tracer chooses independent and identically distributed random variables

Xi from [t, 1 − t] for all i = 1, 2, . . . , l with t = 1
300L , Xi = sin2 ri where ri is

selected uniformly at random from
[

t
′
, π

2 − t
′
]

, 0 < t
′
< π

4 , sin2 t
′
= t.

3. The tracer generates the code matrix CN×l by selecting each entry cji inde-
pendently from the binary alphabet {0, 1} with probability Pr[cji = 1] = Xi,
j = 1, 2, . . . , N , i = 1, 2, . . . , l. Note that the random variables cji and cj′ i

(with j �= j
′
) are positively correlated as both of them tend to be 1 if Xi is

very large. It constructs the code book Γ = {wj}N
j=1 where wj ∈ {0, 1}l is

the j-th row of the code matrix CN×l.
4. The tracer computes a threshold parameter Z = 20Lk and sets the water-

marking master tracing key WatMTK =
(

Z, {Xi}l
i=1

)

.
5. Finally, the code generation algorithm outputs the pair (Γ,WatMTK).
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• (T) ← Identify(WatMTK, w): The fraud identification algorithm is run by the
tracer having the watermarking master tracing key WatMTK =

(

Z, {Xi}l
i=1

)

and takes as input a l-length binary code word w called pirate code word.
Let S = {wj}L

j=1(⊆ Γ ) be a coalition and let F (S) denotes the feasible set
of S containing w. Then F (S) satisfies the following marking condition: if
wj [i] = b ∈ {0, 1} for all positions 1 ≤ i ≤ l, then w[i] = b where wj [i] is the
i-th bit of the identity wj ∈ S and w[i] represents the i-th bit of the string
w ∈ {0, 1}l. The tracer proceeds as follows.

1. It extracts {Xi}l
i=1 from WatMTK and generates a matrix MN×l with entries

mji =

⎧

⎨

⎩

√

1−Xi

Xi
, if wj [i] = 1

−
√

Xi

1−Xi
, if wj [i] = 0

Note that the random variable mji are independent and each has expected
value 0 and variance 1.

2. The tracer extracts Z from WatMTK, checks whether
l

∑

i=1

w[i] · mji > Z and

if so, it accuses the code word wj ∈ S as a fraud code word used in creating
the pirate code word w ∈ F (S).

3. The identification algorithm outputs a set T(⊆ S) such that the members in
T are accused in creating the pirate code word w.

Correctness: The correctness of TFC follows from the following theorems where
N ≥ L ≥ 1, 0 < ε < 1 be the arbitrary error bound, (T) ← Identify(WatMTK, w),
(Γ,WatMTK) ← CodeGen(1η, N) and w ∈ {0, 1}l be the pirate code word.

Theorem 1 ([22]). Assume that j ∈ {1, 2, . . . , N} be an arbitrary user index.
Let S ⊆ Γ \ {wj} be a coalition of size L ≤ N and F (S) be the feasible set of S.
Then, Pr [wj ∈ T] < ε.

Theorem 2 ([22]). Let S ⊆ Γ be a coalition of size |S| ≤ L, and F (S) be the
feasible set of S. Then, Pr [(S ∩ T) = ∅] < (ε)

L
4 .

Security: The security game of TFC is played between a PPT adversary A and
a challenger C. The advantage of A in winning the above game is defined as
follows.

AdvTFCA (η) = Pr

⎡

⎢

⎣

(Γ,WatMTK) ← CodeGen(1η, N)

(T = ∅) ∨ (T �⊆ S) : w ← [A(η,N,L)]O(·)

T ← Identify(WatMTK, w)

⎤

⎥

⎦

Here, O(·) is an oracle that allows A to query on an index set I with |I| ≤ L ≤ N ,
and the challenger responds by returning the code words S = {wj}j∈I to A with
the restriction that w /∈ S.

Definition 3 (Security of TFC). We say that the code TFC is (t, ε) fully col-
lusion resistant if AdvTFCA (η) is negligible function of η for all PPT adversary A
running in time at most t.
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3 Identity-Based Outsider Anonymous Public-Key Trace
and Revoke [1,8]

Syntax: An identity-based outsider anonymous public-key trace and revoke con-
struction, denoted by OAnoPKTR, consists of three PPT algorithms (Setup, Key-
Gen, Enc), a deterministic polynomial time algorithm Dec and a probabilistic
tracing algorithm TraceD satisfying the following requirements.

• (OAnoTPK,OAnoTMK) ← Setup(1η, N): Taking as input the security param-
eter η along with a positive integer N = poly(η), a trusted third party, called
private key generation center (PKGC), runs this algorithm and outputs a trac-
ing public key OAnoTPK and a tracing master key OAnoTMK. The tracing
public key OAnoTPK is made publicly available and the tracing master key
OAnoTMK is kept secret to itself.

• (OAnoTSKu) ← KeyGen(OAnoTPK,OAnoTMK, idu): On input master public-
secret key pair (OAnoTPK, OAnoTMK) and an identity idu of the user u ∈
[N ], the PKGC generates a private key sku and outputs a tracing secret key
OAnoTSKu = sku. The tracing secret key OAnoTSKu is sent securely to the
user with index u.

• (CT) ← Enc(OAnoTPK,S,M): This algorithm is run by a broadcaster who
takes as input OAnoTPK, a set of user identities S and a message M . It
outputs a ciphertext CT, and makes it publicly available.

• (M ∨ ⊥) ← Dec(OAnoTPK,OAnoTSKu,CT): A decryptor with index u uses
the pair (OAnoTPK, OAnoTSKu) to decrypt the ciphertext CT and either
recovers the correct message M or gets a designated symbol ⊥, indicating the
decryption failure.

• (T) ← TraceD(OAnoTPK): Taking OAnoTPK as input, a public tracer runs
this tracing algorithm by interacting polynomially many times with the pirate
decoder D considering as a black-box oracle, and outputs a set of users identity
T(⊆ S) who are accused as traitors.

Remark 2 (Outsider Anonymity). A OAnoPKTR is only outsider anonymous,
whereas insider anonymity does not hold. Thus, the decryption algorithm does
not require the information of subscribed users set S as an additional input.
Therefore, the set S is completely anonymous from any outsider adversary. How-
ever, each subscribed user belonging to S (i.e., insider) knows the information
of all other subscribers [8].

Correctness: We say that the identity-based OAnoPKTR is correct if for all
η,M and idu ∈ S,

Pr

⎡

⎢
⎣

M ← Dec(OAnoTPK,OAnoTSKu,CT) : (CT) ← Enc(OAnoTPK, S, M)

(OAnoTSKu) ← KeyGen(OAnoTPK,OAnoTMK, idu)

(OAnoTPK,OAnoTMK) ← Setup(1η, N)

⎤

⎥
⎦ = 1

Security: The security against message indistinguishability with receivers out-
sider anonymity and the security against arbitrary collusion, called traceability,
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are the two security attributes of the scheme OAnoPKTR. The following two
games model these two security attributes.

(i) Message indistinguishability with receivers outsider anonymity
[1,8]: This game, under the adaptive indistinguishable chosen-plaintext attack
(IND-CPA) security, is played between a PPT adversary A and a challenger
C. The advantage of A in winning the game is defined as

AdvIND-CPA
A,OAnoPKTR(η) =

∣

∣MIAdvc(η) − 1
4

∣

∣,

where MIAdvc(η) is given by the following quantity.

Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(OAnoTPK,OAnoTMK) ← Setup(1η, N)

((M∗
0 , M∗

1 ), (S∗
0 , S∗

1 )) ← [A(1η)]O(OAnoTPK,OAnoTMK,·)

(ξ = ξ
′
) ∧ (κ = κ

′
) : ξ ∈R {0, 1} and κ ∈R {0, 1}

(CT∗) ← Enc(OAnoTPK, S∗
κ , M∗

ξ )

(ξ
′
, κ

′
) ← A(CT∗, {OAnoTSKu : idu /∈ S∗

0 , S∗
1}q

u=1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Here, O(OAnoTPK,OAnoTMK, ·) denotes the key generation oracle access
that allows A to query on a set of indices I ⊆ [N ] with |I| ≤ L ≤ N , and it
returns (OAnoTSKui

) ← KeyGen(OAnoTPK,OAnoTMK, IDui
) for all i ∈ I.

Definition 4 (Security of Message Indistinguishability with Receivers
Outsider Anonymity). We say that the scheme OAnoPKTR is (t, ε, q)IND-CPA
secure if AdvIND-CPA

A,OAnoPKTR(η) is negligible function of η for all PPT adversary A
with run-time at most t and making at most q = poly(η) secret key queries.

(ii) Traceability [2,19]: This game is played between an adversary A and a
tracer C. The advantage of A in winning the game is defined as

AdvTTA,OAnoPKTR(η) =
∣

∣TAdvc(η)
∣

∣,

where TAdvc(η) is given by the following quantity.

Pr

⎡

⎢

⎢

⎢

⎢

⎣

(OAnoTPK,OAnoTMK) ← Setup(1η, N)

(ζ = 1) : (D) ← [A(1η,OAnoTPK, L)]OKeyGen(OAnoTPK,OAnoTMK,·)

(T) ← TraceD(OAnoTPK)
If (X1 ∧ X2) holds, set ζ = 1; Else, set ζ = 0

⎤

⎥

⎥

⎥

⎥

⎦

Here, X1 is the event that D is an ε-useful decoder and X2 is the event that
T is either empty or not a subset of E . For a randomly chosen message Mi,
we say that D is ε-useful decoder if Pr[D(Enc(OAnoTPK,S,Mi)) = Mi] ≥
ε. Here, OKeyGen(OAnoTPK,OAnoTMK, ·) is an key generation oracle that
allows A to query on a set of indices I ⊆ [N ] with |I| ≤ L, and it returns
(OAnoTSKui

) ← KeyGen(OAnoTPK,OAnoTMK, idui
) for all i ∈ I, where E =

{ui : i ∈ I}.



Outsider Anonymous Public-Key Trace and Revoke 375

Definition 5 (Security of Traceability). We say that the schemeOAnoPKTR
is (t, ε) traceable if AdvTTA,OAnoPKTR(η) is negligible function of η for all decoder,
corresponding to some polynomial-sized set of identities, provided by all PPT
adversary A with run-time at most t.

4 Our Construction

The communication model of our identity-based OAnoPKTR = (Setup,KeyGen,
Enc,Dec,TraceD) scheme involves a group manager (GM), also known as the
private key generation center (PKGC), a broadcaster, several users and a tracer.
The description of the algorithms are detailed below.

• (OAnoTPK,OAnoTMK) ← Setup(1η, N): The GM, on input the security
parameter η and the total number of users N = 2l (l > 0) of the system,
proceeds as follows.

(i) It first generates a prime order asymmetric bilinear group system BG =
(p, G×, ˜G

×, G×
T , e) (detailed in Sect. 2.1). Let P , ˜P be random generators of

G
× and ˜G

× respectively.
(ii) It chooses random exponents α, β, {δj}N

j=1, {aj}N
j=1 ∈ Z

∗
p and computes

{

Ui = P ai , ˜Ui = ˜P ai , fi = P δi , ˜fi = ˜P δi
}N

i=1
, P2 = P β , ˜P1 = ˜Pα,

˜P2 = ˜P β , Ω = e(P2, ˜P1).
(iii) It chooses a collision-resistant hash function H : {0, 1}l → Z

∗
p and sets

tracing public key as OAnoTPK = (P, ˜P , ˜P1, ˜P2, P2, {fj}N
j=1, {Uj}N

j=1, Ω,H)
and tracing master key OAnoTMK = ( ˜Pα

2 , { ˜fj}N
j=1, {˜Uj}N

j=1).
(iv) The GM publishes OAnoTPK and keeps OAnoTMK secret to itself.

• (OAnoTSKu) ← KeyGen(OAnoTPK,OAnoTMK, idu): On receiving a user
identity idu ∈ {0, 1}l, the GM executes the following steps.

(i) It sets the identity space ID = {idi ∈ {0, 1}l : 1 ≤ i ≤ N = 2l} and
extracts H from OAnoTPK to compute the exponents IDi = H(idi) ∈ Z

∗
p,

for 1 ≤ i ≤ N .
(ii) It chooses a random exponent ru ∈ Z

∗
p to compute du,0 = ˜P ru , du,u =

˜Pα
2

(

˜fu · ˜U IDu
u

)ru and du,j =
(

˜fj · ˜U IDu
j

)ru for 1 ≤ j �= u ≤ N .
(iii) It sets the private key sku = (du,0, du,u, {du,j : 1 ≤ j �= u ≤ N}) and the

tracing secret key as OAnoTSKu = sku.
(iv) The GM sends OAnoTSKu to the user u through a secure communication

channel between them.

• (CT) ← Enc(OAnoTPK,S,M): The broadcaster takes as input OAnoTPK, a
polynomial size set S of subscribed users’ identities and a message M ∈ G

×
T .

For notational convenient, let us consider the set is of the form S = {IDu :
u ∈ IS}, where IDu = H(idu) ∈ Z

∗
p corresponds to some identity idu ∈ ID

and IS is the index set of S with |IS | = L ≤ N . It performs the following
steps to produce an encrypted content, known as ciphertext, corresponding
to the message M .
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(i) It first chooses a partition RP = (S0,S1) of the set S, where S0 = {IDj :
j ∈ I0,S} and S1 = {IDj : j ∈ I1,S} are disjoint sets with S = S0 ∪ S1.
Here, I0,S and I1,S are two arbitrary partitions of the index set IS with
I0,S ∩ I1,S = ∅, |I0,S | = ξ, |I1,S | = δ and ξ + δ = L ≤ N .

(ii) It randomly selects two exponent s0, s1 ∈ Z
∗
p and executes the following

steps.
(a) For the set S0 = {IDj : j ∈ I0,S}, it computes

C0,0 = P s0 , C0,1 =
(

∏

j∈I0,S

fj · U
IDj

j

)s0
, C0,2 = M · Ωs0

and sets first ciphertext component CT0 = (C0,0, C0,1, C0,2).
(b) For the set S1 = {IDj : j ∈ I1,S}, it computes

C1,0 = P s1 , C1,1 =
(

∏

j∈I1,S

fj · U
IDj

j

)s1
, C1,2 = M · Ωs1

and sets second ciphertext component CT1 = (C1,0, C1,1, C1,2).
(iii) The broadcaster publishes CT = (CT0,CT1) as the ciphertext.

• (M ∨ ⊥) ← Dec(OAnoTPK,OAnoTSKu,CT): A subscribed user u with its
tracing secret key OAnoTSKu = sku, identity idu ∈ {0, 1}l and the tracing
public key OAnoTPK recovers correct message M from the ciphertext CT.
Since the our scheme is outsider anonymous, decryption algorithm does not
require the information of subscribed users set S as an input. Therefore, the
set S is completely anonymous from any outsider adversary. However, each
subscribed user (i.e., insider) knows the information of all other subscribers
as well as the partition RP = (S0,S1) of S. Let us assume that the identity
exponent IDu = H(idu) of user u belongs to Sb, where either b = 0 or b = 1.
It parses the private key sku = (du,0, du,u, {du,j : 1 ≤ j �= u ≤ N}) and
recovers the correct message M from the ciphertext component CTb by the
following computations.

Cb,2 × e(Cb,1, du,0)

e(Cb,0, du,u · ∏

j∈Ib,S\{u}
du,j)

= M × e(P, P̃ )αβsb ×
e(

∏

j∈Ib,S\{u}
fj · U

IDj

j , P̃ ru)sb

e(P sb , P̃ α
2 (f̃u · ŨIDu

u )ru · ∏

j∈Ib,S\{u}
(f̃j · Ũ

IDj

j )ru)

= M × e(P, P̃ )αβsb ×
e
( ∏

j∈Ib,S\{u}
fj · U

IDj

j , P̃
)sbru

e
(

P, P̃
)αβsbe

(

P sb ,
∏

j∈Ib,S\{u}

(

f̃j · Ũ
IDj

j

)ru
)

= M ×
e(

∏

j∈Ib,S\{u}
P δj · P ajIDj , P̃ )sbru

e(P sb ,
∏

j∈Ib,S\{u}
(f̃j · Ũ

IDj

j )ru)
= M × e

(

P, P̃

∑

j∈Ib,S\{u}
(δj+ajIDj))sbru

e
(
P sb ,

∏

j∈Ib,S\{u}

(
f̃j · Ũ

IDj

j

)ru
)

= M
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• (T) ← TraceD(OAnoTPK): To execute the tracing algorithm based on the
pirate decoder D, the tracer, having the knowledge of subscribers set S =
{IDu : u ∈ IS}, |IS | = L ≤ N , takes only the tracing public key OAnoTPK
as an input and executes the following steps.

(i) The tracer first runs the Tardos fingerprinting code generation algorithm
TFC.CodeGen(1η, N) (described in Sect. 2.2) to generate code book Γ =
{wi}N

i=1 and watermarking master tracing key WatMTK =
(

Z, {Xi}l
i=1

)

,
where Z = 20Lk, L = size of S, k =

⌈

log (1
ε )

⌉

, ε = error bound and
Xi = identically distributed random variable from [t, 1− t] with t = 1/300L.
It assigns code word wi ∈ Γ to each user i ∈ [N ] and constructs the set
˜S = {wu : u ∈ IS} ⊂ Γ that corresponds to the subscribed users set S. It
chooses a random permutation π : [N ] −→ [N ] and shuffles the indices of
all the code words in the subset ˜S by employing π. It initially sets a code
word w = 0l as a pirate code word.

(ii) The tracer executes the following steps to construct a l-length pirate code
word w belonging to the feasible set F ( ˜S) of ˜S. For each index j = 1, 2, . . . , l,
the tracer repeatedly performs the following steps.
– A partition of the set S, denoted by RP(j)

π = (S(j)
0 , S

(j)
1 ), is constructed

by setting

S
(j)
b =

{

S ∩ {IDv | wπ(v)[j] = 0, ∀ wv ∈ ˜S}, if b = 0
S ∩ {IDv | wπ(v)[j] = 1, ∀ wv ∈ ˜S}, if b = 1

Due to the random choice of π, the partition RP(j)
π is indistinguishable

from the original partition RP of the set S in the main encryption algo-
rithm.

– A random message Mrand ∈ G
×
T is chosen by the tracer to construct the

tracing ciphertext, corresponding to the index j and the split RP(j)
π , as

CT[j] =
(

CT0[j] = (C0,0, C0,1, C0,2) ← Enc(OAnoTPK,S,Mrand),CT1[j]
= (C1,0, C1,1, C1,2) ← Enc(OAnoTPK,S,M)

)

, where C0,2 = Mrand · Ωs0 ,
C1,2 = M · Ωs1 and rest of the ciphertext components are constructed in
a similar manner as shown in the main encryption algorithm.

– It interacts with the pirate decoder D by providing polynomially many
tracing ciphertexts CT[j] for different choices of M , Mrand ∈R G

×
T . Let p1,j

be the success probability of D in decrypting the ciphertext corresponding
to the j-th bit. The tracer will replace the j-th bit w[j] of the pirate code
word w with 1 if p1,j ≥ 1

2 .
– It outputs the pirate code word w ∈ {0, 1}l. Note that we can estimate w

in a similar manner by considering p0,j instead of p1,j by setting CT1[j]
to be the encryption of the random message Mrand.

(iii) Finally, the tracer runs the identification algorithm Identify(WatMTK, w) of
the Tardos fingerprinting code of Sect. 2.2 to get a subset Tπ(⊆ ˜S) such
that the elements of the set are accused in creating the pirate code word
w. Consequently, the set T =

{

IDπ−1(t) : wt ∈ Tπ

}

(⊆ S) is the set of all
traitors involved in the production of the pirate decoder D.
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Approximation of the success probability p1,j of D for each index j and the cor-
rectness of the tracing algorithm will be shown in Theorem4. Here, the pirate
decoder box D is viewed as a probabilistic circuit. The decoder D succeeds in
decrypting ciphertext intended for at least one subset S over the distribution of
all possible receiver sets. If there does not exists any PPT algorithm which can
sample such S for which the decoder D has non-negligible success probability in
decrypting the corresponding ciphertext, then it is straightforward to conclude
that no tracing can take place. Given the infeasibility of sampling the set S, the
tracer will fail to ever witness that the decoder works. Due to this impossibility,
we assume that, at the beginning the set S is given to the tracer by the broad-
caster and it is entirely outside the control of the adversary. Consequently, the
broadcaster as well as all the recipients, who have the knowledge of S, plays the
role of the tracer.

Remark 3 (DDH Test for T1 and T3 Pairings). Our OAnoPKTR uses asymmet-
ric T3 bilinear pairings. If instead, we use symmetric T1 bilinear pairing, then
any outsider can run the Decisional Diffie-Hellman (DDH) test

e(P s0 ,
∏

ID0,j∈S′
0

fj · U
ID0,j
j ) = e(P, (

∏

ID0,j∈S0

fj · U
ID0,j
j )s0),

and verify the subscribers set as fj , Uj are publicly available in this setting. On
the other hand, the DDH test

e(P s0 ,
∏

ID0,j∈S′
0

˜fj · ˜U
ID0,j
j ) = e( ˜P , (

∏

ID0,j∈S0

fj · U
ID0,j
j )s0)

is computationally hard in asymmetric T3 bilinear as ˜fj and ˜Uj are kept secret.

5 Security Analysis

The security analysis of our scheme follows from the following two theorems.

Theorem 3 (Security of Message Indistinguishability with Receivers
Anonymity). Our proposed OAnoPKTR, presented in Sect. 4, achieves
(t, ε, poly(η)) adaptive IND-CPA security as per the Definition 4 under the stan-
dard asymmetric (t

′
, ε

′
)DBDHE assumption, where η is the security parameter

of the system and poly(η) represents a polynomial in η.

Theorem 4 (Security of Traceability). Suppose that our OAnoPKTR
scheme is adaptive IND-CPA secure against the message indistinguishability with
receivers anonymity game, detailed in Definition 4. Then, assuming the (t, ε) fully
collusion secure Tardos fingerprinting codes, detailed in Sect. 2.2, our publicly-
key tracing algorithm TraceD of Sect. 4 outputs identity of at least one traitor.

Due to the page limit, the proof of the above Theorems 3 and 4 will appear in
the full version of the paper.
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6 Conclusion

We present the first publicly traceable identity-based OAnoPKTR scheme that is
constructed by coupling the Tardos fingerprinting code (TFC) with the Waters
IBE framework. Having constant-size communication and computation, our
scheme is proven to be adaptively secure under the standard DBDHE assump-
tion without using ROM. Our design uses the most efficient T3 variant of bilinear
maps and thereby, is not vulnerable to DDH attack for identifying the set of sub-
scribers corresponding to which the ciphertext is created.
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Abstract. Revocable identity-based encryption (RIBE) is an extension
of IBE which can support a key revocation mechanism, and it is impor-
tant when deploying an IBE system in practice. Boneh and Franklin
(Crypto’01) presented the first generic construction of RIBE, however,
their scheme is not scalable where the size of key updates is linear in
the number of users in the system. Then, Boldyreva, Goyal and Kumar
(CCS’08) presented the first scalable RIBE which significantly reduces
the size of key update to logarithmic in the number of users.

In this paper, we first present a generic construction of scalable RIBE
from any IBE in a black-box way which solves the open problem pre-
sented by Seo and Emura (PKC’13). Our construction has some merits
both in theory and practice. In theory, we can obtain the first RIBE
scheme from quadratic residues modulo composite and the first adaptive-
ID secure RIBE scheme from lattices if we instantiate the underlying
IBE with IBE schemes from quadratic residues modulo composite and
adaptive-ID secure IBE schemes from lattices, respectively. In practice,
public parameters size and secret keys size of our construction can be
same as those of the underlying (H)IBE scheme. Our construction is
naturally server-aided where the overheads of decryption computation
for receivers is the same as that of underlying IBE schemes. Inspired by
recent work of Katsumata et al. (PKC’19), we present a generic construc-
tion of RIBE with decryption key exposure resistance by using hierar-
chical IBE (HIBE) and IBE schemes. Finally, we reduce the ciphertext
size to constant by using two HIBE schemes.

Keywords: Generic construction · Revocable IBE · DKER

1 Introduction

Identity-Based Encryption (IBE) was introduced by Shamir [37], to eliminate
the need for maintaining a certificate based Public Key Infrastructure (PKI) in
the traditional Public Key Encryption (PKE) setting. The first IBE scheme was
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proposed by Boneh and Franklin [7] in the random oracle model [2]. Since then,
there are many follow-up works [1,4,5,8–10,13,16,18,40–42].

Revocation capability is very important and necessary for IBE setting as
well as PKI setting. To address the challenge of key revocation, Boneh and
Franklin [7] proposed a naive method to add a simple revocation mechanism to
any IBE system as follows. A sender encrypts a message using a receiver’s identity
concatenated with the current time period, i.e. id||t and the Key Generation
Center (KGC) issues the private key skid||t for each non-revoked user in every
time period. However, BF-RIBE scheme is inefficient. The number of private
keys issued in every time period is linear in the number of all users in the system
hence the scheme does not scale well when there are a large number of users.

Boldyreva, Goyal and Kumar [3] proposed the first scalable revocable IBE
(RIBE) scheme by combining the fuzzy IBE scheme of Sahai and Waters [34]
with a subset cover framework called the complete subtree (CS) method [28].
The BGK-RIBE scheme significantly reduces the size of key updates from linear
to logarithmic in the number of users. Each user holds a long-term private key
associated with its identity, but in order to achieve the key revocation mech-
anism, the private key is not allowed to decrypt ciphertexts. KGC broadcasts
key updates for every time period through a public channel. Specially, the non-
revoked users can derive decryption key from their long-term private keys and
key updates while revoked users can’t. There are numerous follow-up works
[20,23,25,35,39].

RIBE with DKER. In the security definition of BGK-RIBE, the adversary is
only given access to secret key oracle, revocation oracle and key update ora-
cle. Considering the leakage of decryption keys in realistic attacks, Seo and
Emura [35,36] introduced a security notion called decryption key exposure
resistance (DKER). In DKER security experiment, an exposure of a user’s
decryption key at some time period will not compromise the confidential-
ity of ciphertexts which are encrypted for different time periods. It attracted
many follow-up works concerning R(H)IBE schemes with DKER [17,20,22–
24,27,30,31,33,36,39]. Recently, Katsumata et al. [21] presented a generic con-
struction of RIBE with DKER from any RIBE without DKER and two-level
HIBE. Combining the result of [15] that any IBE scheme can be converted to an
HIBE scheme (in the selective-ID model) and any RIBE scheme without DKER
implies an IBE scheme, their result implies a generic conversion from any RIBE
scheme without DKER into an RIBE scheme with DKER.

Lattice-Based RIBE. Chen et al. [11] presented the first lattice-based RIBE
which was selective-ID secure without DKER. Cheng and Zhang [12] claimed
that their RIBE scheme was the first adaptive-ID secure lattice-based scheme.
However, Takayasu and Watanabe [38] pointed out several critical bugs in their
security proof and presented a semi-adaptive secure lattice-based RIBE scheme
with bounded DKER which only allows a bounded number of decryption keys
to be leaked. Recently, Katsumata et al. [21] proposed the first lattice-based
R(H)IBE scheme with DKER secure under the learning with errors (LWE)
assumption but their proposal was still selective-ID secure. Therefore, construct-
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ing an adaptive-ID secure RIBE scheme (even without DKER) from lattices still
remains an open problem.

Server-aided RIBE [14,29,32] is a variant of RIBE where almost all of the
workload on the user side can be delegated to an untrusted third-party server.
The server is untrusted in the sense that it does not possess any secret informa-
tion. Each user only needs to store a short long-term private key without having
to communicate with KGC.

Our Contributions. In this paper, we propose three generic constructions of
RIBE schemes in a black-box way. The first is a generic construction of RIBE
without DKER from any IBE schemes which solves the open problem claimed
in [35]. The second is a generic construction of RIBE with DKER from 2-level
HIBE schemes and IBE schemes. The third is a RIBE with short ciphertext
from HIBE. All of our constructions are scalable where the update key size of
our construction is logarithmic in the number of users. The benefits of our generic
constructions are as follows:

• Practical Benefits.
(a) Our first RIBE scheme has the same size of public parameters and user’s

secret key as those of underlying IBE scheme. The public parameters
of our second construction include 2-level HIBE public parameters and
IBE public parameters. And user’s secret key in our second and third
constructions are only a 2-level HIBE secret key. So the secret key size in
all of our constructions are constant in the number of users.

(b) The ciphertext size can be reduced to constant by instantiating the
HIBE scheme in our third construction with HIBE schemes with con-
stant ciphertext.

(c) Our schemes are naturally server-aided. The decryption cost for the
receiver are the same as the underlying IBE (HIBE) scheme and receivers
do not need to communicate with KGC in the server-aided model.

By instantiating our constructions with appropriate concrete (H)IBE
schemes, our schemes are very efficient. An overview comparison with other
revocable IBE schemes is given in Table 1.

• Theoretical Benefits. To the best of our knowledge, BF-RIBE is the only
generic construction of RIBE from IBE but it is not scalable. Our generic
constructions demonstrate a simple and clear picture about how revocation
problems in IBE could be addressed.
(a) We present a generic construction of RIBE that can convert any IBE

schemes to RIBE schemes without DKER. Inspired by the work of [21], we
propose a construction of RIBE with DKER from HIBE and IBE schemes.
Combining the result of [15] that any IBE scheme can be converted to
an HIBE scheme (in the selective-ID model), we can obtain a generic
construction of (selective-ID secure) RIBE with DKER from (selective-
ID secure) IBE.

(b) Instantiating our generic construction of existing IBE scheme [13] and
HIBE scheme [8], we can obtain the first RIBE scheme with DKER based
on quadratic residues modulo composite.



384 X. Ma and D. Lin

(c) Our constructions inherit the security of the underlying (H)IBE schemes.
Hence, we can obtain the first adaptive-ID CPA secure lattice based RIBE
scheme with DKER by instantiating our construction with adaptive-ID
CPA secure IBE and HIBE schemes from lattices [1,9,10,18,42].

Table 1. Comparison with other RIBE schemes

Schemets BF [7] BGK [3] LV [25] SE [35] LLP [23] Ours-1 Ours-2

PP Size O(1) O(1) O(λ) O(λ) O(1) O(1) O(log(N))

SK Size O(1) O(log N) O(log N) O(log N) O(log1.5 N) O(1) O(1)

CT Size O(1) O(1) O(1) O(1) O(1) O(log N) O(1)

KU Size O(N − r) O(r log N
r
) O(r log N

r
) O(r log N

r
) O(r) O(r log N

r
) O(r log N

r
)

DKER Yes No No Yes Yes Yes Yes

Model Full Selective Full Full Full Full Full

Assumption RO, BDH DBDH DBDH DBDH Static RO, BDH RO, BDHE

We let λ be a security parameter, N be the maximum number of users, r be the
number of revoked users. For security model, we use symbols RO for random
oracle model, Full for adaptive model, Selective for selective model. In our-1,
we instantiate the IBE scheme and HIBE scheme in our second construction (in
Sect. 4) with [7] and [19] respectively. In our-2, we instantiate the HIBE scheme
in our third construction (in Sect. 5) with a HIBE scheme with constant-size
ciphertext [6].

Related Work. The first revocable IBE scheme from any IBE was presented
by Boneh and Franklin [7], however their proposal was not scalable. Boldyreva
et al. [3] proposed the first scalable RIBE using a tree-based approach, but their
scheme was not a generic construction. Recently, Katsumata et al. [21] proposed
a generic construction of RIBE with DKER by using any two-level standard
HIBE scheme and RIBE scheme without DKER as building blocks. They did
not address the revocation challenge for IBE schemes. However, our generic
construction of RIBE with DKER uses two-level HIBE and IBE schemes.

2 Preliminaries

2.1 Notations

Throughout the paper we use the following notation: We use λ as the security
parameter and write negl(λ) to denote that some function f(·) is negligible in λ.
An algorithm is PPT if it is modeled as a probabilistic Turing machine whose
running time is bounded by some function poly(λ). If S is a finite set, then s ← S
denotes the operation of picking an element s from S uniformly at random. If
A is a probabilistic algorithm, then y ← A(x) denotes the action of running
A(x) on input x with uniform coins and outputting y. Let [n] denotes {1, ..., n}.
Let {0, 1}[i,j] denotes all binary strings with length in [i, j]. For a bit string
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a = (a1, ..., an) ∈ {0, 1}n, and i, j ∈ [n] with i ≤ j, we write a[i,j] to denote the
substring (ai, ..., aj) of a. For any two strings u and v, |u| denote the length of
u and u||v denotes their concatenation. Let BT be a complete binary tree and
Path(v) be a set of all nodes on the path between the root node and a leaf v. We
also use Path(id) to denote the path from the corresponding node of id to the
root node.

2.2 Identity-Based Encryption

An identity-based encryption scheme consists of four probabilistic polynomial-
time (PPT) algorithms (Setup, KeyGen, Enc, Dec) defined as follows:

• Setup(1λ): This algorithm takes as input the security parameter 1λ, and out-
puts a public parameter PP and a master secret key MK.

• KeyGen(MK,id): This algorithm takes as input the master secret key MK and
an identity id ∈ {0, 1}�, it outputs the identity secret key skid.

• Enc(PP,id,μ): This algorithm takes as input the public parameter PP, an
identity id ∈ {0, 1}�, and a plaintext μ, it outputs a ciphertext c.

• Dec(skid, c): This algorithm takes as input a secret key skid for identity id and
a ciphertext c, it outputs a plaintext μ.

The following correctness and security properties must be satisfied:

– Correctness: For all security parameters 1λ, identity id ∈ {0, 1}� and plain-
text μ, the following holds:

Pr[Dec(skid,Enc(PP, id, μ)) = μ] = 1

where (PP,MK) ← Setup(1λ) and skid ← KeyGen(MK, id).
– Adaptive Security: For any PPT adversary A, there is a negligible function
negl(·) such that the following holds:

AdvIND-ID-CPA
A = |Pr[IND-ID-CPA(A) = 1] − 1

2
| ≤ negl(λ)

where IND-ID-CPA(A) is shown in Fig. 1.
In order to prove the security of our RIBE construction, we define a special
security for IBE as follows:

– Multi-identity Adaptive Security: For any PPT adversary A, there is a
negligible function negl(·) such that the advantage of A satisfies:

AdvIND-mID-CPA
A = |Pr[IND-mID-CPA(A) = 1] − 1

2
| ≤ negl(λ)

where IND-mID-CPA(A) is shown in Fig. 2.

It is obvious that adaptive (selective) security is a special case of multi-identity
adaptive (selective) security when there is only one challenge identity.
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Fig. 1. The adaptive security experiment of IBE

Fig. 2. The multi-identity adaptive security experiment of IBE

Adaptive Security Implies Multi-identity Adaptive Security

Lemma 1. An IBE scheme is multi-identity adaptively (selectively) secure if it
is adaptively (selectively) secure.

We refer readers to the full version [26] of this paper for the proofs of Lemma1
and subsequent theorems in this paper.

3 Generic Construction of Revocable Identity-Based
Encryption

3.1 Definition and Security Model

Similar to the definition in [35], a revocable IBE scheme has seven probabilistic
polynomial-time (PPT) algorithms (Setup, KeyGen, KeyUpd, DkGen, Encrypt,
Decrypt, Revoke) with associated message space M, identity space ID, and time
space T .
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• Setup(1λ,N): This algorithm takes as input a security parameter λ and a
maximal number of users N. It outputs a public parameter PP, a master
secret key MK, a revocation list RL (initially empty), and a state st.

• KeyGen(MK, id, st): This algorithm takes as input the master secret key MK,
an identity id, and the state st. It outputs a secret key skid and an update
state st.

• KeyUp(MK, t,RL, st): This algorithm takes as input the master secret key MK,
a key update time t ∈ T , the revocation list RL, and the state st. It outputs
a key update kut.

• DkGen(skid, kut): This algorithm takes as input a secret key skid and the key
update kut. It outputs a decryption dkid,t or a special symbol ⊥ indicating
that id was revoked.

• Encrypt(PP, id, t, μ): This algorithm takes as input the public parameter PP,
an identity id, a time period t and a message μ ∈ M. It outputs a ciphertext
c.

• Decrypt(dkid,t, c): This algorithm takes as input a decryption secret key dkid,t

and a ciphertext. It outputs a message μ ∈ M.
• Revoke(id, t,RL): This algorithm takes as input an identity id, a revocation

time t ∈ T and the revocation list RL. It outputs a revocation list RL.

It satisfies the following conditions:

– Correctness: For all λ and polynomials (in λ) N, all PP and MK output by
setup algorithm Setup, all μ ∈ M, id ∈ ID, t ∈ T and all possible valid states
st and revocation list RL, if identity id was not revoked before or, at time t
then there exists a negligible function negl(·) such that the following holds:

Pr[Decrypt(dkid,t,Encrypt(PP, id, t, μ)) = μ] ≥ 1 − negl(λ)

where (skid, st) ← KeyGen(MK, id, st), kut ← KeyUp(MK, t,RL, st) and
dkid,t ←DkGen(skid, kut).

– Adaptive Security: For any PPT adversary A, there is a negligible function
negl(·) such that the advantage of A satisfies:

AdvIND-RID-CPA
A = |Pr[IND-RID-CPA(A) = 1] − 1

2
| ≤ negl(λ)

where IND-RID-CPA(A) is shown is Fig. 3.
– Adaptive Security with Decryption Key Exposure: The security game

of adaptive security with decryption key exposure is similar to IND-RID-CPA
experiment defined in Fig. 3 except there exists an additional decryption ora-
cle DkGen(·, ·) with the restriction that the challenge identity id∗ cannot be
queried on challenge time t∗.

3.2 A Generic Construction from IBE

Definition 1. (KUNode Algorithm [3]). This algorithm takes as input a
binary tree BT, revocation list RL and time t, and outputs a set of nodes. Let
θleft and θright denote the left and right child of node θ, where θ is a non-leaf
node. The description of KUNode is as follows:
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Fig. 3. The adaptive security experiment of revocable IBE

KUNode(BT,RL,t):
X,Y ← ∅
∀(idi, ti) ∈ RL

if ti ≤ t then add Path(idi) to X

∀θ ∈ X
if θleft /∈ X then add θleft to Y
if θright /∈ X then add θright to Y

If Y = ∅ then add root to Y
Return Y

Detailed Construction. Let (IBE.Setup, IBE.Enc, IBE.KeyGen, IBE.Dec) be an
IBE scheme that supports ID = {0, 1}[�,2�]. There is a generic method to extend
any IBE supporting identity space ID′ to handle arbitrary identities id ∈ {0, 1}∗

by first hashing id using a collision resistant hash function H : {0, 1}∗ → ID′

prior to key generation and encryption [4]. Hence, any IBE schemes supporting
identity space ID′ with a collision resistant hash function H : {0, 1}∗ → ID′ can
be applied to our construction. We assume IBE scheme has the plaintext space
M which is finite and forms an abelian group with the group operation “ + ”.

Utilizing the above IBE scheme, we will show how to construct a RIBE
scheme Π = (Setup,KeyGen,KeyUp,DkGen,Encrypt,Decrypt,Revoke) as follows.
In our RIBE scheme, the plaintext space is the same as that of the underlying
IBE scheme and identity space is {0, 1}�. Moreover, we assume the time period
space T is a subset of the identity space, i.e. T ⊆ {0, 1}�.
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• Setup(1λ) → (PP,MK,RL, st): This algorithm takes the security parameter
1λ as input and runs (IBE.PP, IBE.MK) ← IBE.Setup(1λ). It sets the public
parameter PP = IBE.PP, master secret key MK = IBE.MK, revocation list
RL as an empty set and secret state st = IBE.MK1. The following algorithms
implicitly take PP as input.

• KeyGen(MK, id) → skid: It runs skid ← IBE.KeyGen(MK, id)2.
• KeyUp(MK, t,RL, st) → kut: Let BT be a complete binary tree of depth

�. Every identity id in identity space {0, 1}� can be viewed as a leaf
node of BT. For each node θ ∈ KUNode(BT,RL, t), compute skt||θ ←
IBE.KeyGen(MK, t||θ). It outputs kut = {(θ, skt||θ)}θ∈KUNode(BT,RL,t).

• DkGen(skid, kut) → dkid,t: Parse kut as {(θ, skt||θ)}θ∈KUNode(BT,RL,t). If no node
θ ∈ Path(id), return ⊥. Otherwise, pick the node θ ∈ Path(id) and output
dkid,t = (i, skid, skt||θ) where i = |θ| is the length of θ.

• Encrypt(PP, id, t, μ) → c: Randomly sample a pair of plaintexts (μ0, μ1) ∈ M2

with the condition that μ = μ0 + μ1. Then compute c0 = IBE.Enc(PP, id, μ0)
and {ci = IBE.Enc(PP, t||id[1,i], μ1)}i∈[�]. Finally, it outputs the ciphertext
c = (c0, ..., c�).

• Decrypt(c, dkid,t) → μ: Parse c as (c0, ..., c�) and dkid,t as (i, skid, skt||θ). Then,
compute μ0 ← IBE.Dec(skid, c0) and μ1 ← IBE.Dec(skt||θ, ci

). Finally, output
μ = μ0 + μ1.

• Revoke(t,RL, id) → RL: Update the revocation list by RL ← RL ∪ {(id, t)} and
output RL.

3.3 Correctness

The correctness of the RIBE construction is guaranteed by the correctness of
the underlying IBE.

3.4 Security Analysis

Theorem 1. The revocable IBE is adaptive-ID (selective-ID) CPA secure if the
underlying IBE scheme is adaptive-ID (selective-ID) CPA secure.

Proof. We will prove the adaptive-ID security and the proof for selective-ID secu-
rity is exactly the same. For any PPT adversary against the adaptive-ID security
of revocable IBE, we can construct a PPT algorithm B against the adaptive-ID
security of the underlying IBE scheme. B randomly guesses an adversarial type
among the following two types which are mutually exclusive and cover all pos-
sibilities:

1. Type-1 adversary: A issues a secret key query for id∗ hence id∗ has to be
revoked before t∗ (i.e. id∗ should be on the revocation list at time t∗).

2. Type-2 adversary: A does not issue a secret key query for id∗.

1 Here the secret state is the same as the master secret key.
2 It does not need to take st as input here.
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Note that B’s guess is independent of the attack that A chooses, so the
probability that B guesses right is 1

2 . We separately describe B’s strategy by its
guess.

Type-1 Adversary: We will show that if adversary A1 makes a type-1 attack
successfully, there exists an adversary B1 breaking the multi-identity adaptive
security of IBE defined in Fig. 2. B1 proceeds as follows:

• Setup: B1 obtains a public parameter PP from its challenger and sends it to
A1.

• KeyGen: When receiving a secret key query for id, B1 queries secret key oracle
for id.

• Revoke: B1 receives (id,t) from A1, and add (id, t) to RL.
• KeyUp: Upon receiving a time period t, B1 makes secret key queries for iden-

tities {t||θ}θ∈KUNode(BT,RL,t) and sends {(θ, skt||θ)}θ∈KUNode(BT,RL,t) to A1.
• Challenge: A1 outputs an identity id∗, a time period t∗ and two plaintexts

μ0, μ1 with the same length. B1 randomly samples μ ← M and sends
{t∗||id∗

[1,i]}i∈[�] as challenger identities and μ′
0 = μ0 − μ and μ′

1 = μ1 − μ
as the challenge plaintexts. The challenger randomly chooses a challenge bit
β and sends the challenge ciphertexts {c∗

i = IBE.Enc(PP, t∗||id∗
[1,i], μ

′
β)}i∈[�]

to B1. B1 then computes c∗
0 = IBE.Enc(PP, id∗, μ) and sends c∗ = (c∗

0, ..., c
∗
� )

to A1.
• Guess: A1 outputs a guess bit β′ and B1 set β′ as its guess.

For the KeyGen oracle, since |id| = � and |t∗||id∗
[1,i]| ≥ � + 1 for all i ∈ [�],

id /∈ {t∗||id∗
[1,i]}i∈[�]. For the KeyUp oracle, note that id∗ has been revoked before

t∗ which means id∗
[1,i] /∈ KUNode(BT,RL, t∗) for all i ∈ [�], so that B1 never

queries secret keys for one of the challenge identities {t∗||id∗
[1,i]}i∈[�]. B1 perfectly

simulates A1’s view so that B1’s challenge bit is also A1’s challenge bit. B1 just
forwards A1’s guess so the probability that B1 wins in IND-mID-CPA is equal to
the probability that A1 wins in IND-RID-CPA. Due to Lemma 1, the probability
that A1 wins in IND-RID-CPA is negligible since the underlying IBE is adaptive-
ID secure.

Type-2 Adversary: If there exists an adversary A2 who makes a type-2 attack
successfully, we can construct an adversary B2 breaking adaptive-ID security of
the underlying IBE. B2 proceeds as follows:

– Setup: B2 obtains a public parameter PP from its challenger and sends it to
A2.

– KeyGen: When receiving a secret key query for id, B2 just forwards the secret
key query to its challenger and sends the challenger’s response to A2.

– Revoke: B2 receives (id,t) from A2, and adds (id, t) to RL.
– KeyUp: When A2 makes a key update query for time t, B2 makes secret

key queries for all identities {t||θ}θ∈KUNode(BT,RL,t) and sends the response
{(θ, skt||θ)}θ∈KUNode(BT,RL,t) to A2.

– Challenge: A2 outputs a challenge identity id∗, a time period t∗ and two
plaintexts μ0 and μ1 with the same length. B1 randomly samples μ ← M
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and sends μ′
0 = μ0 − μ and μ′

1 = μ1 − μ as the challenge plaintexts. B1

receives the challenge ciphertext c∗
0 = IBE.Enc(PP, id∗, μ′

β) where β is B2’s
challenge bit chosen randomly by its challenger. B2 then computes {c∗

i =
IBE.Enc(PP, t∗||id∗

[1,i], μ)}i∈[�] and sends c∗ = (c∗
0, ..., c

∗
� ) to A2.

– Guess: A2 outputs a guess bit β′ and B2 sets β′ as its guess.

Similar to the analysis for B1, B2 perfectly simulates A2’s view so that B2’s chal-
lenge bit is also A2’s challenge bit. B2 just forwards A2’s guess so the probability
that B2 wins in IND-ID-CPA game is equal to the probability that A2 wins in
IND-RID-CPA game.

When we put the results for two types of adversary together, we can con-
clude that the revocable IBE is adaptive-ID CPA secure if the underlying IBE
is adaptive-ID CPA secure.

4 A Generic Construction of RIBE with DKER

It is obvious that our construction is not decryption key exposure resistance.
Inspired by the work of [21], we can construct a RIBE with DKER from a 2-
level HIBE scheme and an IBE scheme. Let (I.Setup, I.Enc, I.KeyGen, I.Dec) be
an IBE scheme with ID = {0, 1}[�+1,2�] and (H.Setup,H.Enc,H.KeyDer,H.Dec)
be a two-level HIBE scheme where the element identity is in {0, 1}�. We assume
the HIBE scheme and the IBE scheme have the same plaintext space M which
is finite and forms an abelian group with the group operation “+”.

Utilizing the above primitives, we will show how to construct a RIBE scheme
Π = (Setup,KeyGen,KeyUp,DkGen,Encrypt,Decrypt,Revoke) as follows. In our
RIBE scheme, the plaintext space is M and identity space is {0, 1}�. Moreover,
we assume the time period space T is a subset of the identity space, i.e. T ⊆
{0, 1}�.

• Setup(1λ) → (PP,MK,RL, st): This algorithm takes as input the security
parameter 1λ and runs (I.PP, I.MK) ← I.Setup(1λ) and (H.PP,H.MK) ←
H.Setup(1λ). It sets the public parameter PP = (I.PP,H.PP), master secret
key MK = H.MK, revocation list RL as an empty set and secret state st =
I.MK. The following algorithms implicitly take PP as input.

• KeyGen(MK, id) → skid: It runs hskid ← H.KeyDer(MK, id).
• KeyUp(t,RL, st) → kut: Let BT be a complete binary tree of depth �. Every

identity id in the identity space {0, 1}� can be viewed as a leaf node of BT.
For each node θ ∈ KUNode(BT,RL, t), compute iskt||θ ← I.KeyGen(I.MK, t||θ).
It outputs kut = {(θ, iskt||θ)}θ∈KUNode(BT,RL,t).

• DkGen(skid, kut) → dkid,t: Run hskid||t ← H.KeyDer(hskid, id||t). Parse kut as
{(θ, iskt||θ)}θ∈KUNode(BT,RL,t). If no node θ ∈ Path(id), return ⊥. Otherwise,
pick the node θ ∈ Path(id) and output dkid,t = (i, hskid||t, iskt||θ) where i = |θ|
is the length of θ.

• Encrypt(PP, id, t, μ) → c: Parse PP as (H.PP, I.PP). Randomly sample a pair
of plaintexts (μ0, μ1) ∈ M2 with the condition that μ = μ0 + μ1. Then it
computes c0 = H.Enc(H.PP, id||t, μ0) and {ci = I.Enc(I.PP, t||id[1,i], μ1)}i∈[�].
Finally, it outputs the ciphertext c = (c0, ..., c�).
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• Decrypt(c, dkid,t) → μ: Parse c as (c0, ..., c�) and dkid,t as (i, hskid||t, iskt||θ).
Then, compute μ0 ← H.Dec(hskid||t, c0) and μ1 ← I.Dec(iskt||θ, ci

). Finally,
output μ = μ0 + μ1.

• Revoke(t,RL, id) → RL: Update the revocation list by RL ← RL ∪ {(id, t)} and
output RL.

4.1 Correctness

The correctness of the RIBE construction is guaranteed by the correctness of
the underlying IBE and HIBE schemes.

4.2 Security Analysis

Theorem 2. The revocable IBE is adaptive-ID (selective-ID) CPA secure with
decryption key exposure resilience if the underlying IBE scheme and the under-
lying 2-level HIBE scheme are adaptive-ID (selective-ID) CPA secure.

5 Optimizations

5.1 RIBE with Constant Ciphertexts

In above construction, the size of ciphertext is linear in the length of identities for
we should encrypt the same plaintext under t||id[1,i] for all i in [�]. We can reduce
the ciphertext size by replacing the underlying IBE scheme with IBBE scheme
in above construction because there exists IBBE schemes [43] with constant
ciphertext and secret key. Moreover, as the special form of identities encrypted
in the ciphertext, we can reduce the ciphertext size using a HIBE scheme. The
detail of our construction is described as follows.

Let (h̃.Setup, h̃.Enc, h̃.KeyDer, h̃.Dec) be a two-level HIBE scheme where the
element identity is in {0, 1}� and (ĥ.Setup, ĥ.Enc, ĥ.KeyDer, ĥ.Dec) be a 2�-level
HIBE scheme with element identity space ID = {0, 1}. We assume the two HIBE
schemes have the same plaintext space M which is finite and forms an abelian
group with the group operation “+”.

• Setup(1λ) → (PP,MK,RL, st): This algorithm takes as input the secu-
rity parameter 1λ and runs (˜PP, ˜MK) ← h̃.Setup(1λ) and (̂PP, ̂MK) ←
ĥ.Setup(1λ). It sets the public parameter PP = (˜PP, ̂PP), master secret key
MK = ˜MK, the revocation list RL as an empty set and secret state st = ̂MK.
The following algorithms implicitly take PP as input.

• KeyGen(MK, id) → skid: It runs ˜skid ← h̃.KeyDer(˜MK, id).
• KeyUp(t,RL, st) → kut: Let BT be a complete binary tree of depth �. Every

identity id in the identity space {0, 1}� can be viewed as a leaf node of BT.
For each node θ ∈ KUNode(BT,RL, t), compute ̂skt||θ ← ĥ.KeyDer(̂MK, t||θ).
It outputs kut = {(θ, ̂skt||θ)}θ∈KUNode(BT,RL,t).
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• DkGen(skid, kut) → dkid,t: Run ˜skid||t ← h.KeyDer(˜skid, id||t). Parse kut as
{(θ, ̂skt||θ)}θ∈KUNode(BT,RL,t). If no node θ ∈ Path(id), return ⊥. Otherwise,
pick the node θ ∈ Path(id) and run ̂skt||id ← ĥ.KeyDer(̂skt||θ, t||id). Output
dkid,t = (˜skid||t, ̂skt||id).

• Encrypt(PP, id, t, μ) → c: Parse PP as (˜PP,̂PP). Randomly sample a pair of
plaintexts (μ0, μ1) ∈ M2 with the condition that μ = μ0 + μ1. Then it com-
putes c0 = h̃.Enc(˜PP, id||t, μ0) and c1 = ĥ.Enc(̂PP, t||id,μ1). Finally, it outputs
the ciphertext c = (c0, c1).

• Decrypt(c, dkid,t) → μ: Parse c as (c0, c1) and dkid,t as (˜skid||t, ̂skt||id). Then,
compute μ0 ← h̃.Dec(˜skid||t, c0) and μ1 ← ĥ.Dec(̂skt||id,c1). Finally, output
μ = μ0 + μ1.

• Revoke(t,RL, id) → RL: Update the revocation list by RL ← RL ∪ {(id, t)} and
output RL.

5.2 Server-Aided RIBE

All of our constructions can naturally be sever-aided, we only describe the
last construction in server-aided model. In server-aided model, there exists a
untrusted server without any secret key information that takes almost all the
workload on users. The server should perform correct operations and give correct
results to the users. More specifically, the server partially decrypts the cipher-
texts and leaves less decryption task to users. It is easy to convert our scheme
to be server-aided, given the key update kut = {(θ, ̂skt||θ)}θ∈KUNode(BT,RL,t) and a
ciphertext c = (c0, c1) under identity id and time t, sever picks θ ∈ Path(id)∩kut
and runs ̂skt||id ← ĥ.KeyDer(̂skt||θ, t||id) and μ1 ← ĥ.Dec(̂skt||id,c1). Finally, the
sever sends (c0, μ1) as the transformed ciphertext to the receiver. The receiver
only needs to operate the key derive and decryption algorithm of underlying
HIBE scheme. The receiver does not need to communicate with KGC in every
key update.

6 Conclusion

In this paper, we propose three generic constructions of RIBE. The first con-
struction is a RIBE scheme without DKER using an IBE as the basic building
block which solves the open problem claimed in [35]. Furthermore, inspired by
the work [21], our second construction is a RIBE scheme with DKER using
HIBE and IBE schemes as building blocks. We reduce the ciphertext size using
two HIBE schemes. We can also reduce the size of ciphertexts by replacing the
underlying IBE with appropriate IBBE. Our three RIBE constructions inherits
the security of the underlying primitives, therefore, our constructions imply the
first RIBE from quadratic residues modulo composite and the first adaptive-ID
secure RIBE from lattices by instantiating the required primitives with appro-
priate concrete schemes. Moreover, our conversion is efficient and flexible. And it
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is natural to be server-aided. In the server-aided model, the computation over-
heads for receivers are small and receivers do not need to communicate with
KGC.
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Abstract. In the certificateless cryptography, users generate their par-
tial private key and the Key Generation Centre (KGC) generates the
other partial private key of users. In some certificateless application sce-
narios, a sender might want to send messages to a receiver which regis-
ters with another KGC. Unfortunately, no certificateless authenticated
encryption scheme under multi-KGC has been put forward so far. In
this work, we propose the first certificateless identity-concealed authen-
ticated encryption scheme under multi-KGC. Our proposed scheme
hides the public identity information of both sender and receiver from
any third party. We build a security model for certificateless identity-
concealed authenticated encryption scheme under multi-KGC. We prove
that our proposed scheme is secure under the random oracle model. We
also present a variant of our proposed scheme which supports bilateral
identity-concealed authentication key exchange.

Keywords: Certificateless cryptography · Multi-centre scenario ·
Authenticated encryption · Identity concealment

1 Introduction

Authenticated encryption and zero-round trip time (0-RTT) has attracted wide
attention since proposed. 0-RTT is the hot field in the design and analysis of
cryptographic systems. Moreover, 0-RTT mode has been realised in QUIC con-
nections in Google. In 1997, Zheng [19] proposed an authenticated encryption
(namely signcryption) scheme. Signcryption is a cryptographic primitive that
combines the functions of encryption and authentication in an efficient way.
Zheng’s scheme was proved secure by Baek et al. [3] in 2007. Thereafter, sign-
cryption has attracted much focus and a lot of signcryption schemes have been
put forward. But none of these schemes achieves concealment of the senders
identity. In 2016, Zhao [18] proposed the first identity-concealed authenticated
c© Springer Nature Switzerland AG 2020
Z. Liu and M. Yung (Eds.): Inscrypt 2019, LNCS 12020, pp. 397–415, 2020.
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encryption scheme based on certificate; he also proved the insider confidentiality
and outsider unforgeability of his scheme under the random oracle model.

The concept of certificate-based encryption was proposed by Gentry in Euro-
crypt 2003. In certificate-based encryption, the certification authority (CA) pro-
vides certificates for each user to bind its public key to its identity [13,15,17].
However, the certificate management in certificate-based cryptography is gener-
ally considered as a complex and costly task. To address this problem, identity-
based encryption was introduced [7]. In identity-based encryption, a user’s iden-
tity can be served as its public key and the public key generator (PKG) generates
the user’s private key. Once the PKG is corrupted, all users, who register with
the PKG, can be easily compromised. To address this problem, certificateless
cryptography was introduced [16].

Certificateless public key cryptography (CL-PKC), which was first proposed
by Sattam et al. [1] in 2003, is a cryptography primitive where a user generates
its partial private key and the Key Generation Centre (KGC) generates the rest
part of the user’s private key. Sattam et al. also present a specific certificateless
public key encryption scheme and proofed its security in the random oracle
model. Yang et al. [14] proposed a certificateless public key encryption scheme,
which is secure against malicious KGC attacks, in the standard model in 2017.

In 2008, Barbosa et al. [4] introduced a certificateless signcryption scheme
by adapting signcryption techniques to certificateless cryptology. But Barbosa
et al.’s scheme didn’t bind the sender’s identity to the receiver’s identity, which
leads to a forgeability attack. Selvi et al. [10] provided an efficient certificateless
signcryption scheme with no pairing operations, which cannot satisfy x-security.
In 2010, Xie and Zhang [12] proposed a certificateless signcryption scheme which
needs two pairing operations. Weng et al. [11] proposed a certificateless signcryp-
tion scheme which is secure under the standard model in 2011. Numerous cer-
tificateless signcryption schemes, and variants thereof, have been proposed over
the past few years. But none of these schemes consider identity concealment and
communication between separate KGCs. Chen [6] provides several authenticated
key agreement protocols based on identity, which includes an authenticated key
agreement protocol with separate trust authorities (TA). Unfortunately, no cer-
tificateless authenticated encryption scheme under multiple KGCs has been put
forward so far.

Motivated by the above works, the main contributions of this paper are as
follows.

– We introduce the first certificateless identity-concealed authenticated encryp-
tion (CL-ICAE, for short) scheme under multi-KGC. Our CL-ICAE under
multi-KGC is a 0-RTT scheme that combines signcryption and identity con-
cealment. Considering scenarios without signature, CL-ICAE under multi-
KGC doesn’t need an undeniable proof of the sender.

– We build two types of attack model under random oracle model and pro-
vide the specific security proof in each type of attack model, which indicates
that our CL-ICAE scheme under multi-KGC achieves a number of security
properties, including x-security and receiver deniability, etc.
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– We provide the analysis of our scheme in terms of efficiency and security, we
also give a comparison with three previous schemes.

– Finally, we propose a certificateless bilateral identity-concealed authentica-
tion key-exchange (CL-CAKE) scheme under multi-KGC, which combines
the functions of certificateless signcryption and identity-concealed authenti-
cation key-exchange (CAKE).

2 Preliminaries

2.1 Hard Problems

We establish a BDH Parameter Generator and review hard problems includ-
ing computation Diffie-Hellman (CDH) problem, bilinear Diffie-Hellman (BDH)
problem, decision bilinear Diffie-Hellman (DBDH) problem and gap bilinear
Diffie-Hellman (GBDH) problem [2,6].

BDH Parameter Generator: As described in [5], a BDH parameter generator
IG takes as input the security parameter κ > 0, and outputs an additive cyclic
group G1, one generator of whom is P , a multiplicative cyclic group G2 and
pairing e : G1 ×G1 → G2. The order of G1 and G2 is prime q. We also randomly
select elements a, b and c of Z∗

q .

CDH Problem: Input a tuple (P, aP, bP ) ∈ G3
1, compute abP .

CDH Assumption: There is no probabilistic algorithm in G1 able to solve the
CDH problem in polynomial time with non-negligible probability.

BDH Problem: Input (P, aP, bP, cP ) ∈ G4
1, compute e(P, P )abc ∈ G2.

DBDH Problem: Given a tuple (P, aP, bP, cP, T ) ∈ (G1)4 × G2, outputs a bit
σ ∈ {0, 1} (σ = 0 if T = e(P, P )abc; otherwise σ = 1).

GBDH Assumption: There is at least one probabilistic algorithm where
DBDH problem can be solved in polynomial time and there is no probabilis-
tic algorithm which can solve BDH problem within polynomial time with non-
negligible probability.

2.2 Security Properties

A certificateless identity-concealed authenticated encryption scheme under mul-
tiple KGCs should possess the following security properties:

1. x-security: The confidentiality of message should not be compromised once
ephemeral Diffie-Hellman exponents generated by running the scheme is
leaked.

2. Forward security: If the adversary has compromised a user’s long-term private
key, it is acceptable that an adversary can impersonate this user, but the
confidentiality of the previous messages sent by this user shouldn’t be affected.
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3. Identity concealment: We say that a CL-ICAE scheme under multi-KGC sat-
isfies identity concealment when the probability for an adversary to compro-
mise the public identity information, which is encrypted in the ciphertext
sent between uncorrupted honest users, is negligible.

4. KGC-security: If the adversary has compromised the key generation centre
(KGC), the confidentiality of the messages sent between uncorrupted honest
users should not be affected.

In some application scenarios, a sender might want to avoid leaving an unde-
niable proof to the receiver. A CL-ICAE scheme under multi-KGC may also
consider this and achieve deniability, which means a message could be denied by
the sender because message receiver could also generate the same message.

2.3 AEAD

An authenticated encryption with associated data (AEAD) scheme [18] takes as
input a message M and its public header information H and outputs a cipher-
text C. In detail, we follow [9] for defining AEAD schemes and their security.
An AEAD scheme is a three tuple SE = (Kse, Enc,Dec). The probabilistic
polynomial-time algorithm Kse samples from a non-empty and finite set Kse.
The encryption algorithm Enc takes as input Kse ×{0, 1}∗ ×{0, 1}∗ and outputs
a string or the distinguished output ⊥. The decryption algorithm Dec takes as
input Kse × {0, 1}∗ × {0, 1}∗ and outputs a string or the distinguished output
⊥. Figure 1 presents the security game of AEAD.

Suppose that A is an adversary. We define the probability that A wins the
game to be AdvAEAD

SE (A) =
∣
∣2 · Pr[AEADA

SE ⇒ true] − 1
∣
∣. The SE scheme is

AEAD-secure, if for any PPT adversary the advantage AdvAEAD
SE (A) is negligi-

ble. Besides, we could learn from [8] that after adaptively seeing ciphertext of key
K1 ∈ Kse, message M and header information H, an efficient adversary cannot
generate another valid ciphertext, whose plaintext is also M and H, encrypted
by another independent key K2 ∈ Kse.

Fig. 1. The security game of AEAD
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3 Definition and Security Model

3.1 Definition of CL-ICAE Under Multi-KGC

In this paper, we focus on the strong security model for our scheme where
there are multiple users and multiple KGCs. Our scheme is specified by five
polynomial-time (PPT) algorithms: “Setup”, “KGCKeyGen”, “UserKeyGen”,
“CipherGen” and “Decryption and Validation (DecVal)”. We assume that there
are a total of n users and m key generation centres (KGC) in this case.

Setup: A PPT algorithm that takes as input a security parameter κ and outputs
system parameters params, which will be used in the following run.

KGCKeyGen: A PPT algorithm that takes as input system parameters
params and outputs a public-private key pair (Ppub, s) for each KGC.

UserKeyGen: A PPT algorithm that takes as input system parameters
params, a public-private key pair (Ppub, s) of a KGC and user’s identity infor-
mation id and outputs a public-private key pair (pid, sid) for each user.

CipherGen: A PPT algorithm that takes as input a tuple (H,M, ids, sids, pidr)
where ids is sender’s identity, sids is sender’s private key, pidr is receiver’s public
key which includes receiver’s identity idr and public key pkr, M is the message
to be sent and H is the associated information of M , and outputs a ciphertext
Cipher or a symbol ⊥ indicating CipherGen failed.

DecVal: A deterministic polynomial-time algorithm that takes as input a
ciphertext Cipher, receiver’s public key pidr and receiver’s private key sidr,
and outputs (M,pids) or a symbol ⊥ indicating DecVal failed.

3.2 Security Model of CL-ICAE Under Multi-KGC

Let n,m be the number of users and the number of KGCs in the system respec-
tively, where n,m are polynomial in the security parameter κ. The key pairs of
all the honest parties in the system are generated by the simulator according to
the specified key generation algorithm. Denote by HONEST/DISHONEST
the set of public identity information of all the honest/dishonest users in the
system. The adversary is able to request the following four oracles: HO oracle,
UHO oracle, EXO oracle and Corrupt oracle.

HO oracle: For the query (H,M, ids, idr), HO returns ciphertext idr, Cipher =
CipherGen(ids, sks, idr,H,M) if ids, idr ∈ HONEST ; otherwise it returns ⊥.
HO stores the random number used to generate ciphertext, H,M , pids and pidr

into ST C , where pids and pidr are the public keys of ids and idr respectively.

UHO oracle: For the query (idr, Cipher), UHO returns (ids,M) = DecV al
(Cipher) if idr ∈ HONEST ; otherwise it returns ⊥.

EXO oracle: For the query (idr, Cipher), EXO returns the corresponding random
number stored in set ST C if idr ∈ HONEST and Cipher is the output of an
HO query; otherwise it returns ⊥.



402 C. Li et al.

Corrupt oracle: For the query idi, Corrupt returns idi’s private key if idi ∈
HONEST , idi �= ids and idi �= idr; otherwise it returns ⊥. Note that the adver-
sary can’t request Corrupt queries of the target sender and the target reciever.

We consider two types of attacks for CL-ICAE scheme under Multi-KGC.
The first attack, referred as Type-I attack, considers that the adversary cannot
compromise the master key of the KGC but has access to the partial private key
generated by any user. We name the adversary under Type-I attack model as
Type-I adversary. The second attack, referred as Type-I attack, considers that
the adversary is able to access the master key of the KGC, but cannot obtain
the partial private key generated by any uncorrupted user. We also name the
adversary under Type-II attack model as Type-II adversary. Both attacks need
to satisfy outsider unforgeability and insider confidentiality which are defined
below. We don’t count in the case that the adversary cannot compromise either
the master key of the KGC or partial private key generated by users, since our
scheme is secure in this case if the above two types of attack model are secure
in the random oracle model.

Outsider Unforgeability (OU). As described in [18], an outsider unforgeabil-
ity adversary AOU aims to forge a valid cipherptext sent between uncorrupted
honest users. Note that the sender and the receiver may be the same. Before
AOU outputs the forgery, AOU can query UHO oracle, EXO oracle and Corrupt
oracle; however, AOU is not allowed to query Corrupt(ids) and Corrupt(idr).
AOU is also allowed to query HO(id′

s, id
′
r,H

′,M ′) as long as the output of
HO(id′

s, id
′
r,H

′,M ′) is different with the target output HO(ids, idr,H,M). We
also allow the compromise of ST C as in [18]. Finally, AOU outputs (idr, Cipher)
as its forgery, where idr is an uncorrupted user. A CL-ICAE scheme under Multi-
KGC enjoys outsider unforgeability, if for any PPT adversary AOU , its advantage
AdvAOU ,ICAE on winning the game is negligible.

Insider Confidentiality (IC). A confidentiality adversary AIC aims either to
compromise the identity information, which is encrypted in the message, or to
compromise the confidentiality of the message.

AIC has a right to query HO oracle, UHO oracle, EXO oracle and Corrupt
oracle except Corrupt(idr),Corrupt(ids1) and Corrupt(ids0). First, AIC sends two
quadruples (M0,H, ids0 , idr) and (M1,H, ids1 , idr) where M0,M1 are equal-
length and ids0 , ids1 , idr ∈ HONEST to the challenger. The challenger then
chooses σ ← {0, 1} randomly, generates the ciphertext Cipher and sends Cipher
to AIC . After receiving the Cipher, AIC could continue issuing HO, UHO and
EXO queries except UHO(idr, Cipher) and EXO(Cipher). And AIC is allowed
to issue Corrupt queries except Corrupt(idr),Corrupt(ids1) and Corrupt(ids0).

Finally, AIC outputs a bit σ′. AIC wins the game if σ′ = σ. We say that a CL-
ICAE scheme under Multi-KGC achieves insider confidentiality, if for any PPT
adversary AIC , its advantage AdvAIC ,ICAE on winning the game is negligible.
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4 Our Scheme

4.1 CL-ICAE Under Multi-KGC

We now present the detailed description of our Certificateless Identity-Concealed
Authenticated Encryption (CL-ICAE) scheme under multi-KGC (see also in
Fig. 2).

Setup. This algorithm takes security parameter κ as input and outputs system
parameters (G1, G2, e,K, l, P, q, n,m). Among these parameters, we denote by
G1 an additive cyclic group whose generator is P , denote by G2 a multiplicative
cyclic. Denote by q the order of groups G1, G2. e is the bilinear mapping e : G1×
G1 → G2. Denote by K the key space of symmetric keys. n = F1(κ) is the total
number of users in κ for some polynomial function F1. m = F2(κ) is the total
number of KGCs in κ for some polynomial function F2. l = F3(κ) is the number
of bits needed by a symmetric key in K for some polynomial function F3. We note
that the CDH assumption and GBDH assumption hold over groups G1 and G2.
This algorithm then chooses two hash functions h1 : {0, 1}∗ → G1, h2 : {0, 1}∗ →
Zq and chooses a key derivation function KDF : G1 × G2 × {0, 1}∗ → {0, 1}l.
Then params = (G1, G2, e,K, l, P, q, n, h1, h2,KDF ) are system parameters.

KGCKeyGen. Denote by KGCt the identity of key generation center t where
1 ≤ t ≤ m. KGCt chooses master key st ← Z∗

q randomly and generates its
public key Ppubt = stP . For presentation simplicity, in this paper, there are
two key generation centres KGC1 and KGC2 whose public-private key pairs are
(Ppub1 = s1P, s1) and (Ppub2 = s2P, s2) respectively.

UserKeyGen. Denote by idi the identity of user i (1 ≤ i ≤ n). User i registers
with KGCt and gets its partial private key Di = stQi = sth1(idi) from KGCt.
User i randomly selects xi ← Z∗

q as part of its private key. Then the public
key of user i is pidi = (Xi = xiP, idi) and i’s private key is sidi = (Di, xi).
For presentation simplicity, in this paper, we assume that user A registers with
KGC1 and user B registers with KGC2, 1 ≤ A,B ≤ n.

CipherGen. Every time user A wants to send a message M with associated
information H to user B, user A chooses a random number r ∈ Z∗

q uni-
formly and computes R = rP . Then A computes d = h2(R, pidA, pidB ,H,M),
Rs = dQA, R = (dr + xA)P and shared values PS1 = (dr + xA)XB ,
PS2 = e(dDA,XB)e(QB , (dr + xA)Ppub2). A then derives key K from KDF
function K = KDF (PS1, PS2, Rs‖R‖pidB). After that, A generates C =
EncK(H, pidA‖R‖M) and sends ciphertext Cipher = (Ppub1,H,Rs, R,C) to
user B.

DecVal. On receiving ciphertext Cipher = (Ppub1,H,Rs, R,C), user B first
computes PS1 = xBR and PS2 = e(Rs, xBPpub1)e(DB , R) and derives shared
key K by computing K = KDF (PS1, PS2, Rs‖R‖pidB). If K /∈ K B aborts.
User B decrypts C with K and gets (H ′, pidA, R,M) by deriving its out-
put. If H ′ �= H or pidA is not valid, B aborts. B then computes d =
h2(R, pidA, pidB ,H,M). B aborts if R �= dR + XA or Rs �= dQA. Finally, B
accepts (pidA,H,M,K).
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Fig. 2. Protocol structure of our scheme

4.2 Correctness

Correctness of Shared Key. User A computes shared values PS1 and PS2

as follows:

PS1 = (dr + xA)XB = xB(dr + xA)P,

PS2 = e(dDA,XB)e(QB , (dr + xA)Ppub2)
= e(ds1QA, xBP )e(QB , (dr + xA)s2P )

= e(QA, P )ds1xBe(QB , P )s2(dr+xA).

User B computes shared values PS1 and PS2 as follows:

PS1 = xBR = xB(dr + xA)P,

PS2 = e(Rs, xBPpub1)e(DB , R)
= e(dQA, xBs1P )e(s2QB , (dr + xA)P )

= e(QA, P )ds1xBe(QB , P )s2(dr+xA).

Both user A and user B get the same PS1 and PS2. Both of them can
compute K = KDF (PS1, PS2, Rs‖R‖pidB). Moreover, user B can verify the
correctness of shared key by checking whether the decrypted H ′ is equal to H
which is included in cipher as plaintext.

Correctness of Ciphertext. User B can also verify the correctness of R. For
user A, R1 = (dr + xA)P. After receiving the ciphertext and decryption, user
B computes R2 = dR + XA = drP + xAP = (dr + xA)P = R1. Then user B
accepts the message when equations R = dR + XA and Rs = dQA holds.
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5 Security Analysis

Consider an arbitrary adversary A and suppose that KDF and h2 are modeled
to be random oracles (RO). Now we provide security proofs under the random
oracle model.

Theorem 1. The CL-ICAE scheme under multi-KGC presented in Fig. 2
achieves insider confidentiality under the GBDH assumption and AEAD security
in the Type-I attack model.

Theorem 2. The CL-ICAE scheme under multi-KGC presented in Fig. 2
achieves outsider unforgeability under the CDH assumption and AEAD secu-
rity in the Type-II attack model.

Theorem 3. The CL-ICAE scheme under multi-KGC presented in Fig. 2
achieves insider confidentiality under the CDH assumption and AEAD security
in the Type-II attack model.

5.1 Proof of Theorem 1

Suppose that adversary AIC can break insider confidentiality in the Type-I
attack model with non-negligible probability ε1. We now demonstrate that a
challenger C can solve the hardness assumption of GBDH problem also with
non-negligible probability ε2. In this case, an adversary AIC is able to access
the partial private key generated by any user. Suppose that AIC has not issued
Corrupt(idA) and Corrupt(idB) queries.

Here, we also construct a challenger C. C aims to solve the GBDH problem
with non-negligible probability. C sets the public-private key pairs of all honest
users except user A and user B in the system on its own, and sets partial private
key xA, xB for user A and user B together with their public keys. Then C plays
the role of all honest users except user A and user B. For presentation simplicity,
we assume that senders register with KGC1 whose public-private key pair is
(Ppub1, s1) and receivers register with KGC2 whose public-private key pair is
(Ppub2, s2).

During the experiment, AIC is allowed to issue HO, UHO, EXO queries except
EXO query of the challenge ciphertext and Corrupt queries adaptively as long as
the outputs of HO queries are not the same with idB , Cipher. We now show
that if AIC can successfully break insider confidentiality of the ciphertext with
non-negligible probability ε1, C is able to solve the GBDH problem with non-
negligible probability ε2.

During the attacking experiment, C executes as follows:

1. On receiving an HO(ids, idr,H,M) query, if idr ∈ DISHONEST or ids ∈
DISHONEST , C returns “⊥”. If ids ∈ HONEST and ids �= idA, C returns
ciphertext Cipher by running CipherGen in Sect. 4 with the help of sids.
If idr ∈ HONEST and idr �= idB , C runs CipherGen as described in
Sect. 4. C also computes PS2 = e(dQs, xrPpub1)e(Dr, (dr + xs)Ppub2) with
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the help of sidr. Then C returns ciphertext Cipher. If ids = idA and
idr = idB , C selects a random number r from Z∗

q and computes R = rP ,
d = h2(R, pidA, pidB ,H,M), Rs = dQA, R = (dr + xA)P . S then sets
K ∈ K randomly ensuring K is different from previous keys. C then com-
putes C = EncK(H, pidA‖R‖M). Then C returns ciphertext Cipher ←
(Ppub1,H,Rs, R,C) as the output of HO and stores the tuple (Rs, R, pidB ,K)
into list LDBDH .

2. On receiving an UHO(idr, Cipher = (Ppub1,H,Rs, R,C)) query, if idr ∈
DISHONEST , C returns “⊥”. If idr ∈ HONEST and idr �= idB , C runs
DecVal in Sect. 4 with the aid of sidr. If idr = idB , C first checks whether
Cipher is output by HO with the help of K stored in list LDBDH . If Cipher
is output by HO, C returns (ids,M) by decrypting the ciphertext Cipher. If
Cipher isn’t output by HO, C computes PS1 = xBR and checks whether
PS2/e(Rs, xBPpub1) = BDH(Ppub2 , R,QB) with the help of DBDH ora-
cle for each KDF oracle query KDF (PS1, PS2, Rs‖R‖pidB) with the same
PS1. If the equation holds, C gets K from KDF (PS1, PS2, Rs‖R‖pidB), and
decrypts C with K. C returns (ids,M) to adversary AIC . If the equation
doesn’t hold, C returns ⊥ to adversary AIC .

3. On receiving an EXO(idr, Cipher) query, if idr ∈ DISHONEST , C returns
“⊥”; otherwise, C checks whether Cipher is output by HO. If so, C returns
the random number stored in set ST C to AOU ; otherwise, C returns “⊥”.

4. On receiving a Corrupt(idCorrupt) query, if idCorrupt ∈ HONEST ,
idCorrupt �= idA and idCorrupt �= idB , then C returns sidCorrupt; otherwise, C
returns “⊥”.

Denote by “failure” the event that C returns “⊥” while UHO does not. We
now prove that the probability of “failure” event is negligible. A “failure”
event occurs when adversary AIC made a valid UHO(idr, Ppub1,H,Rs, R,C)
query while C returns “⊥”. That is, adversary AIC generated a valid cipher-
text Cipher without knowing the corresponding PS2.

We now consider Cipher is the output of HO(ids, idB ,H,M) where ids ∈
HONEST and (H,M) can be arbitrary. In this case, PS2 = e(dQs, xBPpub1)
e(QB , (dr + xs)Ppub2). The target shared secrecy is PS2(A,B) = e(d′QA, xB

Ppub1)e(QB , (d′r′ + xA)Ppub2). We can see that d′ �= d with overwhelming
probability as ids �= idA. If r′ = r, PS2 = PS2(A,B) with negligible proba-
bility because ids �= idA according to the unpredictability of hash function. If
d′r′ = dr, then PS2 �= PS2(A,B) with overwhelming probability as ids �= idA.
If d′r′ + xA = dr + xs, PS2 �= PS2(A,B) since d′ �= d. If d′r′ + xA �= dr + xs,
then R �= R(A,B). In either way, PS2 �= PS2(A,B) with overwhelming probability.
Then we can conclude that the shared-keys K and K(A,A) are independent of
each other. UHO outputs ⊥ with overwhelming probability by AEAD security.
If d′ = d and ids = idA, HO chooses the shared-key K randomly from K, which
means that the probability of K = KA,B is negligible and the ciphertexts are
different with overwhelming probability by AEAD security. In this case, UHO
outputs “⊥” with overwhelming probability.
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We then consider the possibility that ciphertext Cipher is the output of
HO(ids, idr,H,M) made by adversary AIC for idr �= idB . In this case, since
pidr �= pidB , the shared-keys K and KA,B are independent of each other through
the KDF function. By the security of AEAD, UHO outputs “⊥” with over-
whelming probability. This indicates that Cipher is not the output of HO ora-
cle. Adversary AIC generates a valid Cipher only when it successfully forges
the symmetric key K corresponding to C. We then consider that AIC generates
a new valid symmetric key K ′ without KDF oracle, where UHO outputs “⊥”
with overwhelming probability by AEAD security.

Therefore, it is negligible for a “failure” event to happen. That is, the
simulation is indistinguishable from real attack experiment in the view of AIC .
Then challenge experiment runs as follow.

First, AIC sends two tuples (M0,H, ids0 , idB) and (M1,H, ids1 , idB), where
M0,M1 are equal-length and ids0 , ids1 , idB ∈ HONEST , to C. C randomly
chooses a bit σ ← {0, 1} and runs as follows.

C randomly chooses r ← Z∗
q and computes R = rP , d = h2(R, pidsσ

, pidB ,

H,Mσ), Rs = dQsσ
and R = (dr + xsσ

)P . Then C checks whether PS2 =
BDH(Ppub2 , R,QB) has been queried in KDF (PS1, PS2, Rs‖R‖pidB) with the
help of DBDH oracle. If so, C aborts; otherwise, C randomly chooses K ∈ K and
computes C = EncK(H, pidsσ

‖R‖Mσ). C returns Cipher = (Ppub1,H,Rs, R,C)
to adversary AIC . C stores the tuple (Rs, R, pidB ,K) into list LDBDH .

On receiving a KDF query, C checks whether PS2 = BDH(Ppub2 , R,QB) is
valid with the aid of DBDH oracle. If so, C returns the corresponding K recorded
in list LDBDH and records the value of PS2; otherwise C returns “⊥”.

Note that Cipher was not the output of HO oracle. r is chosen uniformly
from Z∗

q , which indicates d = h2(R, pidsσ
, pidB ,H,Mσ) is unpredictable and

distributed uniformly over Z∗
q . Therefore, R = (dr + xsσ

)P and Rs = dQsσ
are

distributed uniformly over G1 and perfectly blinds the sender’s identity infor-
mation. Then we can conclude AIC wins the game in case that it generates a
valid K corresponding to Cipher.

The goal of AIC is to decide which quadruple is involved in the chal-
lenge ciphertext. We now consider the case adversary AIC has non-negligible
advantage ε1 on outputting the right bit σ. According to the simulation, AIC

has made KDF query with non-negligible probability. C can get the valid
PS2 = BDH(Ppub2 , R,QB) from the KDF query AOU made. Thus, C can solve
BDH(Ppub2 , R,QB) with non-negligible probability, which violates the GBDH
assumption.

Consequently, adversary AIC has negligible advantage on successfully out-
putting the right bit σ, our proposed scheme presented in Fig. 2 achieves insider
confidentiality under the GBDH assumption and AEAD security in the Type-I
attack model.
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5.2 Proof of Theorem 2

We suppose adversary AOU can break outsider unforgeability in the Type-II
attack model with non-negligible probability ε3. We now prove that a simula-
tor S can solve the hardness assumption of CDH problem with non-negligible
probability ε4 by running the adversary AOU as a subroutine.

In this attack model, adversary AOU is allowed to access the master keys
of all KGCs. Assume that adversary AOU has not issued Corrupt(idA) and Cor-
rupt(idB) queries. Suppose that adversary AOU successfully forges a ciphertext
idB , Cipher = (H,Rs, R,C∗) from user A with non-negligible probability after
issuing HO, UHO, EXO and Corrupt queries adaptively as long as the outputs of
HO queries are not the same with idB , Cipher.

Here, we construct a simulator S whose goal is to solve the CDH problem
with non-negligible probability. S sets the public-private key pairs of all honest
users except user A and user B in the system, and sets partial private key
DA = s1QA,DB = s2QB for user A and user B respectively together with their
public key. Then S acts as all honest users except user A,B. We now show that
if the adversary AOU successfully forges the ciphertext, simulator S is able to
solve a CDH problem, which violates the CDH assumption.

During AOU ’s attacking experiment, S answers AOU ’s queries as follows:

1. On receiving an HO(ids, idr,H,M) query, if idr ∈ DISHONEST or ids ∈
DISHONEST , S returns “⊥”. If ids �= idA, S returns ciphertext Cipher by
running CipherGen with the help of sids. If idr �= idB , S runs CipherGen
as described in Sect. 4. S also computes PS1 = drxrP +xrXs with the help of
sidr. Then S returns ciphertext Cipher to AOU . If ids = idA and idr = idB , S
randomly selects r ∈ Z∗

q and computes R = rP , d = h2(R, pidA, pidB ,H,M),
Rs = dQs and R = (dr + xA)P . S sets K ∈ K randomly ensuring K is
different from previous keys. S then computes C = EncK(H, pidA‖R‖M).
Finally S returns ciphertext Cipher = (Ppub1,H,Rs, R,C) as the output of
HO and stores the tuple (Rs, R, pidA,K) into list LDBDH .

As long as the output of S is not “⊥”, S stores the tuple
(r, pidA, pidB ,H,M) into set ST C which is initiated to be empty.

2. On receiving an UHO(idr, Cipher = (Ppub1,H,Rs, R,C)) query, if idr ∈
DISHONEST , S returns “⊥”. If idr �= idB , S runs DecVal in Sect. 4
with sidr and returns (ids,M) to the adversary. If idr = idB , S first checks
whether Cipher was output by HO with the help of K stored in list LDBDH .
If Cipher was output by HO, S returns (ids,M) by decrypting the ciphertext
Cipher; otherwise, S checks whether PS1 = CDH(R,XB) by computing
e(PS1, P ) = e(R,XB) for each KDF (PS1, PS2, Rs‖R‖pidB) query. If the
equation holds, S derives K from the KDF function, decrypts C and returns
(idA,M) to AOU . If the equation doesn’t hold, S returns ⊥ to AOU .

3. On receiving an EXO(idr, Cipher) query, if idr ∈ DISHONEST , S returns
“⊥”; otherwise, S checks whether Cipher is output by HO. If Cipher is output
by HO, S returns the random number stored in set ST C to AOU ; otherwise,
S returns “⊥”.
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4. On receiving a Corrupt(idCorrupt) query, if idCorrupt ∈ HONEST ,
idCorrupt �= idA and idCorrupt �= idB , S returns sidCorrupt; otherwise, S
returns “⊥”.

Denote by “failure” the event where the output of S is different from the
output in real attack experiment on receiving an UHO query. A “failure” event
occurs when adversary AOU made a valid UHO(idr, Cipher) query while simula-
tor S returns “⊥”. That is, adversary AOU generated a valid ciphertext Cipher
without knowing the corresponding PS1.

Consider that Cipher is the output of HO(ids, idB ,H,M) for arbitrary ids ∈
HONEST and arbitrary (H,M). In this case, PS1 = (dr + xs)XB , the target
PS1(A,B) = (d′r′ + xA)XB . We first assume ids �= idA. If d′r′ = dr then PS2 �=
PS2(A,A) since ids �= idA. If d′r′ �= dr then R �= R(A,B) with overwhelming
probability. In either way, the shared-keys generated by the KDF oracle are
independent of each other with overwhelming probability. In this case, UHO
outputs ⊥ with overwhelming probability. If ids = idA, HO chooses the shared-
key K randomly from K, which indicates that the probability of K = KA,B

is negligible and the ciphertexts are different with overwhelming probability by
AEAD security. In this case, UHO outputs “⊥” with overwhelming probability.

We then consider the possibility that ciphertext Cipher is the output of
HO(ids, idr,H,M) made by adversary AOU for idr �= idB . In this case, since
pidr �= pidB , the shared-keys K and KA,B are independent of each other through
the KDF function. UHO(idA, Cipher) outputs “⊥” with overwhelming probabil-
ity. Then, we can conclude that Cipher is not the output of HO oracle. Adversary
AOU generates a valid Cipher only when it successfully forges the symmetric
key K corresponding to C. We consider the case that AOU generates a new valid
symmetric key K ′ without KDF oracle. Then “failure” occurs with negligible
probability by AEAD security.

Therefore, it is negligible for a “failure” event to happen. That is, the
simulation is indistinguishable from real attack experiment in the view of AOU .

Consider that adversary AOU has successfully forged a valid cipher-
text id∗

r , Cipher∗ = (Ppub1,H
∗, Rs

∗, R
∗
, C∗) where we consider id∗

s = idA

and id∗
r = idB . In this case, adversary AOU must have made RO query

h2(R∗, pid∗
A, pid∗

B ,H,M) = d∗ so that AOU can computes R
∗

= d∗r∗P + XA

where r∗ may be generated by AOU itself; otherwise, decryption returns “⊥”
with overwhelming probability. And AOU must have made KDF query to get
K = KDF (PS1, PS2 = CDH(R

∗
,XB), Rs

∗‖R
∗‖pidB). S can get the valid

PS2 = CDH(R
∗
,XB) from the KDF query. Thus, S can solve CDH(R

∗
,XB)

with non-negligible probability, which violates the CDH assumption.
Consequently, adversary AOU has negligible probability to forge a valid

ciphertext, our proposed scheme presented in Fig. 2 enjoys outsider unforge-
ability under the CDH assumption and AEAD security in the Type-II attack
model.
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5.3 Proof of Theorem 3

Suppose that adversary AIC can break insider confidentiality in the Type-II
attack model with non-negligible probability ε5. We now demonstrate that a chal-
lenger C can solve the hardness assumption of CDH problem with non-negligible
probability ε6.

During AIC ’s attacking experiment, AIC is able to issue HO queries, UHO
queries, EXO queries except EXO query of the challenge ciphertext and Corrupt
queries except Corrupt(idA). We construct a challenger C which initiates as sim-
ulator S as described in Sect. 5.2 and acts as all honest users except user A,B.
C can also simulate the receiver idB indistinguishably. C’s goal is to solve CDH
problem with non-negligible probability.

During the attack experiment, AIC sends two quadruples (M0,H, ids0 , idB)
and (M1,H, ids1 , idB) where M0,M1 are equal-length and ids0 , ids1 , idB ∈
HONEST . Then C randomly chooses a bit σ ← {0, 1} and run as follows. C
randomly chooses r ← Z∗

q and computes R = rP , d = h2(R, pidsσ
, pidB ,H,Mσ),

Rs = dQsσ
and R = (dr + xsσ

)P . Then C checks whether PS1 = CDH(R,XB)
has been queried in KDF (PS1, PS2, Rs

∗‖R
∗‖pidB) with the same PS2 by

checking the validation of equation e(PS1, P ) = e(R,XB). If so, C returns
“failure”. Otherwise, C randomly chooses K ∈ K and computes C =
EncK(H, pidsσ

‖R‖Mσ). Finally, C returns Cipher = (Ppub1,H,Rs, R,C) to
adversary AIC . C stores the tuple (Rs, R, pidB ,K) into a list LDBDH that is
maintained by C.

On receiving a KDF query, C checks whether e(PS1, P ) = e(R,XB) is valid.
If so, C returns the corresponding K recorded in list LDBDH and records the
value of PS1 = CDH(R,XB); otherwise C returns “⊥”.

Note that Cipher is not the output of HO oracle. Since r is chosen uniformly
from Z∗

q , which indicates d = h2(R, pidsσ
, pidB ,H,Mσ) is unpredictable and

distributed uniformly over Z∗
q . Rs = dQsσ

and R = (dr + xsσ
)P are distributed

uniformly over G1. Then we can conclude AIC wins the game only when it
generates the symmetric K of Cipher.

Consider the case adversary AIC has non-negligible advantage ε5 on success-
fully outputting the right bit σ. According to Sect. 5.2, AIC has made query
KDF (PS1, , PS2, Rs‖R‖pidB) with non-negligible probability. C can get the
valid PS1 from the KDF query. This indicates that C can solve CDH(R,XB) =
PS1 with non-negligible probability, which violates the CDH assumption.

Consequently, adversary AIC has negligible advantage on outputting the
right bit σ, our proposed scheme achieves insider confidentiality under the CDH
assumption and AEAD security in the Type-II attack model.

6 Performance Analysis

Now we analyze the performance of our scheme in terms of efficiency and secu-
rity. We give a comparison with an identity-based authenticated key-exchange
protocol with separate trusted authentications (TAs) in [6] and two previous



CL-ICAE Under Multi-KGC 411

certificateless signcryption schemes under one KGC in [11] and [4] (see also in
Table 1).

Now we introduce KGC-security, forward security, x-security, deniability and
identity concealment of sender, which are 1,2,3,4 and 5 in the “security proper-
ties” column, respectively. All the security properties are defined in Sect. 2. In
Table 1, a “

√
” means that the scheme satisfies this kind of security property, a

“×” means the scheme is not secure under this kind of security property, a “∨”
means the scheme is partially secure under this kind of security property.

Our CL-ICAE scheme under multi-KGC satisfies deniability since it does
not provide any undeniable proof to the sender and the receiver. We also take
KGC-security and forward security for the sender into consideration so that our
proposed scheme satisfies all of them, which we can conclude from the security
proof in Sect. 5. As for identity concealment, we can conclude from the attack
experiment of insider confidentiality in Sect. 5 that an adversary cannot dis-
tinguish different senders of messages. It is also negligible for an adversary to
identify the identity of the receiver without the receiver’s private key. Thus,
our proposed scheme also meets identity concealment. We can see from Sect. 5
that our CL-ICAE scheme under multi-KGC satisfies x-security under the Type-
II attack model; unfortunately, we cannot achieve x-security under the Type-I
attack model at present.

When considering the size of ciphertext, we denote by n1 the bit-length of
an element in G1. Denote by nq the bit-length of an element in Zq. Denote
by nid the bit-length of a user’s identity. We omit nid in the “ciphertext size”
column, because every scheme needs to include the sender’s identity in its mes-
sage. Denote by m the bit-length of the message being to become transformed
in ciphertext. We don’t count the length of associated information H, since H
can be a packet header or an IP address which is included in every conversation.

In the “CipherGen” and “DecVal” columns, denote by the G1 the number of
double point operations in G1. Denote by G2 the number of exponentiations in
G2. And denote by e the number of pairing operations on elliptic curves. We don’t
count the point addition operations in G1, point multiplication operations in G2,
hash operations, symmetric encryption and symmetric decryption, since they can
be negligible on calculation when compared with the counted-in operations.

Since there is none authenticated scheme which can support identity conceal-
ment and signcryption simultaneously, we compare our scheme with two previous
certificateless signcryption schemes in Table 1. We can conclude from Table 1 that
our scheme has advantage in both security and computational overhead over the
previous signcryption schemes in [4] and [11].

We also compare our scheme with a simple identity-based key exchange
scheme under multiple TAs in [6]. Table 1 shows that the scheme in [6] can-
not satisfy KGC-security, x-security and identity concealment of sender. Our
scheme is as efficient as the identity-based scheme with multiple TAs in [6].
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Table 1. Performance comparison

Scheme Security properties Ciphertext size CipherGen DecVal

1 2 3 4 5 G1 G2 e G1 G2 e

[6] × √ × √ × − 1 1 2 1 1 2

[4]
√ √ × × × 2n1 + m 4 1 1 1 0 5

[11]
√ √ √ × × 4n1 + m 3 1 0 0 0 5

Ours
√ √ ∨ √ √

4n1 + nq + m 6 1 2 4 1 2

Fig. 3. Construction of certificateless CAKE under multi-KGC

7 Certificateless Identity-Concealed Authenticated Key
Exchange Under Multi-KGC

Authentication key-exchange (AKE), especially bilateral authentication key-
exchange, is always one of the hotest fields. An authentication key-exchange
protocol generates a secret key, which is the core component in establishing a
secure channel, between communicating parties. Participants of an authentica-
tion key-exchange protocol need to authenticate each other before achieving an
agreement of a shared key, and each of them would have a contribution towards
generating it. It is desirable in some scenarios where participants need to conceal
their identity information from the third party. Identity-concealed AKE (CAKE)
protocols based on certificate have been implemented in TLS 1.3. Therefore, it is
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valuable to construct a certificateless CAKE protocol. Now we present a variant
of our proposed scheme which supports certificateless bilateral identity-concealed
authenticated key-exchange (CL-CAKE) under multi-KGC (see also in Fig. 3).

As described in Sect. 4, the system parameters params = (G1, G2, e,K, l, P,
q,m, n, h1, h2) are generated. For presentation simplicity, there are two key gen-
eration centres KGC1 and KGC2 whose public-private key pairs are (Ppub1 =
s1P, s1) and (Ppub2 = s2P, s2) respectively. We also assume that user A registers
with KGC1 and user B registers with KGC2, 1 ≤ A,B ≤ n.

Every time user A wants to execute key exchange protocol with user B,
user A randomly chooses r ← Z∗

q , computes R1 = rXA, R2 = rQA and sends
R1, R2, Ppub1 to user B.

On receiving R1, R2, Ppub1, user B chooses y ∈ Z∗
q randomly, and computes

Y = yP , d = h2(Y,R1, R2, pidB) and Y = (dy + xB)P . User B generates the
shared secrecies PS1 = (xB + dy)R1 and PS2 = e(R2, xBPpub1)e(DB , R1). User
B obtains the shared key K = KDF (PS1, PS2, pidB‖Y ). User B then computes
C = EncK(H, pidB‖Y ) and sends Cipher = (H,Y ,C) to user A.

After receiving Cipher = (H,Y ,C), user A first computes the shared secre-
cies PS1 = rxAY and PS2 = e(DA, rXB)e(QB , rxAPpub2) and derives the
shared key from the equation K = KDF (PS1, PS2, pidB‖Y ). If K /∈ K, user A
aborts. User A decrypts C and derives H ′, pidB , Y from its output. If H ′ �= H,
A aborts. A computes d = h2(Y,R1, R2, pidB), and checks whether equation
Y = dY + XB is valid. If so, A authenticates the identity of B, accepts the
message and sets the session key to be K; otherwise, A aborts. A then computes
C ′ = EncK(pidA, r) and sends C ′ to B.

B computes (pidA, r) = DecK(C ′) with K after receiving C ′. B then verifies
the establishment of equations R1 = rXA and R2 = rQA. If established, B
authenticates the identity of A, accepts the message and sets the session key to
be K; otherwise, B aborts.

8 Conclusion

We have proposed the first 0-RTT certificateless identity-concealed authenti-
cated encryption scheme under multi-KGC. We have built two attack models in
random oracle where we proved our scheme secure in detail. Our scheme is as effi-
cient as previous schemes and has more security properties. We also provided a
variant of our certificateless identity-concealed authenticated encryption scheme
under multi-KGC which supports bilateral identity-concealed authentication key
exchange.
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A Pairing-Less Identity-Based Blind
Signature with Message Recovery Scheme

for Cloud-Assisted Services

Mahender Kumar(B) and Satish Chand
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Abstract. The rapid growing big data enforces many organizations to
shift their data and services like digital right management, e-payment,
and e-voting systems to the cloud. In such cloud-assisted services, the
blind signature scheme could be one of the cryptographic tools, which
provides the integrity of data and user anonymity. It allows the user to
ask the signer for signing on message without disclosing any information
about the content to the signer. Since several blind signature schemes
have been proposed, but due to the expensive computation and band-
width cost, they are impractical for the cloud-assisted as well as Internet-
based environment. In this paper, we propose a new provable secure
identity-based blind signature scheme with message recovery (IDBS-MR)
using the elliptic curve cryptography. The proposed IDBS-MR scheme
does not transmit the message with the signature while the message
is recovered during verification round; hence it has the least message-
signature length. The security analysis shows that the proposed IDBS-
MR scheme is secured against existential forgery attack under the adap-
tive chosen message and ID attacks (EF-ID-CMA) under the assumption
of solving the ECDL problem, and random oracle model (ROM) and
achieves blindness property. The performance analysis shows that our
scheme is efficient as compared to related existing schemes.

Keywords: Blind signature · Identity based signature · User
anonymity · Provable secure · Elliptic curve cryptography

1 Introduction

Due to the significant advantages of cloud computing technology such as resource
pooling, utility-based pricing, on-demand self-service, and rapid elasticity, many
service providers such as Amazon, Google, and Microsoft are outsourcing their
huge data on cloud for processing, which could be difficult to process by the
current technologies. Nowadays, many organizations, government, and banks
are trying to offloads their data and services like digital right management,
e-payment, and e-voting systems to the cloud [1]. However, these cloud-assisted
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services have several security challenges, for example, privacy-preserving of data,
anonymity of data owner, public auditing of data integrity, and confidentiality
of data. There have been discussed many cryptographic primitives to achieve
such security challenges where the blind signature scheme has been gained a
significant importance.

Blind signature in non-cloud environment was first introduced by the Chaum
[1,2] for the electronic payment system. The blind signature scheme allows a user
to ask the signer for the signature on his data item, in which the signer signs the
data without identifying the actual content of the data. In an electronic payment
system, blind signature protects the user’s privacy for untraceable digital coin
and overcomes the possibility of linkability, i.e., the user cannot make the multi-
ple copies of the digital coin. Therefore, unlinkability and untraceability features
of the blind signature scheme make it suitable for those internet-based as well
as cloud-assisted services, where preserving the identity of data owner is a big
problem. Since many conventional (non-ID based) blind signature schemes whose
construction are based on the RSA, ECC, DSA, and ElGamal have been pre-
sented so far, e.g., [4–6], but they demand the recipient to lookup the sender’s
public key before verifying the signature. In such schemes, the trusted party
known as the certifying authority (CA) manages the user’s public keys by gener-
ating the digital certificate that binds the user’s identity to his public key, which
is managed in the pubic key infrastructure (PKI).

An alternative to traditional public key cryptosystem (PKC), Shamir [7]
invented a novel identity-based cryptosystem (IBC) in 1984. It avoids to manage
the digital certificates and hence, saves large amount of computation cost for the
same. The state-of-art of the IBC was to use any binary string, e.g., name, e-mail
address, and phone number as the public key of user, and the corresponding
private key is generated by the trusted third party known as the private key
generator (PKG). Zhang et al. [8,9] generalized the blind signature scheme to
the identity-based blind signature scheme (IDBS) that alleviated the certificate
management issue associated with the traditional (non-ID based) blind signature
scheme. Since many ID-BS schemes have been discussed [8–23], some of them
are found inefficient in terms of bandwidth as they gives large signature size.

The digital signature with message recovery (SMR) scheme produces the small
message-signature size, where it restricts to send the message with signature while
it is recovered on the recipient side during verification process. In this setting,
the message is confidential until the verifier recovers it. So, SMR scheme provides
confidentiality, integrity, and authenticity of data with small size signature, and
hence it is worthy for low bandwidth medium. Zhang et al. [24] proposed the first
signature with message recovery in the identity-based setting. The Identity-based
blind signature scheme with message recovery (IDBS-MR) has been introduced
by Han et al. [25] in 2005. Since many ID-based blind signature schemes with or
without message recovery property have been presented, but they are designed
on pairing. Thus, the existing pairing-based IDBS schemes [8–23] are found inef-
ficient and do not suitable for implementing secure cloud-assisted services like
e-commerce and e-voting systems in the Internet-based environment.
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In this paper, we proposed a provable secure identity-based blind signature
scheme with message recovery (IDBS-MR) using elliptic curve cryptosystem
(ECC). Since the message is not included in the signature during communi-
cation and recovered during verification, the proposed IDBS-MR scheme has
the least signature size as compared to other related schemes. Further, we for-
malize the existential forgery attack under the adaptive chosen message and
ID attacks (EF-ID-CMA) and blindness security notion for the proposed IDBS-
MR scheme. The security analysis shows that the proposed IDBS-MR scheme is
secured against EF-ID-CMA under the assumption of solving the elliptic curve
discrete logarithm (ECDLP) problem, and the random oracle model (ROM)
and achieves blindness property. The performance analysis illustrates that our
scheme performs better in term of computation cost with small signature size
as compared to other related schemes. Thus, it is suitable for resource-limited
devices with “cheap” communication cost.

Organization. The remainder of the paper is organized as follows. Section 2 gives
the literature survey. Section 3 presents the preliminaries, brief discussion of
our proposed IDBS-MR scheme and its security definition. The complete con-
struction and its security proof of our proposed scheme are described in Sect. 4.
Section 5 examines the comparison with other schemes. Finally, the conclusion
is given in Sect. 6.

2 Related Work

Chaum [2,26] was the first to propose the blind signature scheme for the digital
cash payment system, in 1983. Using the IBC technique, Zhang et al. [8] proposed
the IDBS schemes based on the random oracle model (ROM) and computational
Diffie-Hellman Problem (CDHP). The paper [9] improves the computation cost
of the scheme [8] using elliptic curve cryptography, but later Huang et al. [10]
show that the scheme [9] is not secured against the one more forger attack and
rebuild a new ID-BS scheme using the bilinear pairing. In [11], Mao demonstrates
that the schemes [8,10] do not achieve the unlinkability (which is one of the
leading property of the blind signature). Gao et al. [13,14] proposed a new one-
round ID-BS scheme whose security is achieved without ROS assumption; thus
it reduces the security parameter size. In these settings [13,14], the signature is
generated in one round of message exchange. In [15], Kumar et al. give a new
IDBS scheme based on gap Diffie-Hellman (GDH) problem and ROM. He et al.‘s
IDBS scheme [16] avoids the expensive pairing operations.

Recently, Kumar et al. [17] present the IDBS scheme for implementing the
provable secure electronic-voting system whose security is based on solving the
ECDLP and CDHP. Dong et al. [18] address the key escrow problem associated
with existing IDBS scheme and proposed an efficient certificateless blind signa-
ture scheme. The scheme [18] alleviates the computational cost and found to
be secured against type-I and type-II adversaries attacks, given in [27]. Tian et
al. [19] extend the IDBS to the identity based partial blind signature scheme
(IDPBS), in which the user and signer are pre-negotiated on shared value. This
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scheme is found very suitable for the electronic-cash payment system. The use
of IDPBS for implementing electronic-cash payment systems is given by Islam
et al. [20]. Some other IDBS schemes for e-cash payment systems are given in
[28,29]. Recently, Islam et al. [30] build a provable secure pairing-free certificate-
less blind signature (CLBS) scheme that addresses the key escrow problem. The
security of scheme [30] is based on the assumption of solving collusion attack
algorithm with k-traitors (k-CAA) problem.

Another blind signature scheme is given by Galindo et al. [22] that uses the
traditional (non-ID based) blind signature scheme and needs a digital certificate
to verify the authenticity of signer’s public key during verification. The scheme
is inefficient because it produces the large signature size and demands high ver-
ification cost. Xiao et al. [23] mitigate the extra operational cost which makes
it efficient as it requires only two parameters exchange between the user and
signer with less signature size as compared to [22]. An identity-based blind sig-
nature scheme in message recovery setting is first proposed by Han et al. [25] in
2007. However, this scheme [25] is implemented using pairing on elliptic curves.
Since then, very few IDBS-MR schemes have been offered, given in the literature
[12,21,25,31–33]. Inspired on the design of Zhang et al. [8], Hassan et al. [12] in
2008 proposed a new IDBS-MR scheme which has least computation cost and
signature size on comparing with Han et al. [25]. Also, Diao et al. [33] proposed
a proxy blind signature with message recovery. In 2017, James et al. [31] pro-
posed IDBS-MR scheme using pairing on elliptic curve. Recently, Verma et al.
[21] present a new IDBS-MR scheme using pairing whose security is based on
the assumption of ROM and the solving k-CAA problem.

From above discussed schemes, it has been noticed that the existing blind
signature scheme with message recovery are designed on pairing on elliptic curves
and hence due to high computation cost of pairing operation, they could not be
suitable for the cloud-assisted services. The paper [29] shows that 128-bit key
in ECC based system achieve the same security of 1024-bit key in RSA based
system. Therefore, elliptic curve based operations (such as addition operation,
the scalar multiplication operation, etc.) took less computation cost as compared
to the pairing based operations. In this paper, we present a new identity-based
blind signature scheme with message recovery without bilinear pairing.

3 System Architecture

3.1 System Model

The proposed network system consists of four entities: private key generator
(PKG), service provider, user, and verifier, as shown in Fig. 1. The PKG regis-
ters/authenticates the service provider and provides a private key (credential)
against his identity ID. The service provider is an authority that signs on a mes-
sage requested by the user without knowing any information about the original
message. For instance, in an e-payment service, a service provider can be a bank
that issues a coin to the customer (user), and in an e-voting system, it can be
an election commission authority that issues a blind blank ballot to the voter
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(user) without knowing anything about his identity. In our system architecture,
both PKG and service provider can use cloud computing and perform their com-
putation performed on cloud. The main objective to use the cloud as a service
provider is to offload the expensive computation on the cloud server and leave
light computation on user side. The user can be a customer or voter that uses
the lightweight device and services of the service provider.

Fig. 1. Cloud assisted IDBS-MR System architecture

3.2 Design of Proposed IDBS-MR Scheme

Definition 1 (Identity-Based Blind Signature with message recovery). The pro-
posed IDBS-MR scheme consists of four randomized probabilistic polynomial-
time (PPT) algorithms: setup, extract, blind signature, and verification. The
scheme is performed amongst three entities: signer, user, and private key gen-
erator (PKG). In our proposed scheme, signer acts as the service provider, i.e.,
election commission authority or banking authority, and user acts as a voter (in
e-voting system) or customer (in e-payment system).

1. Setup: Using security parameter, the PKG computes the master key and pub-
lic parameters. PKG keeps the master key and publishes the public parame-
ters.

2. Extract : For a given signer’s identity, the PKG computes and provides the
private key using its master key.

3. Blind signature: User delegate the signing process to the signer, as given by
the following steps:
(a) Commitment : For a secret number, the signer computes a public param-

eter, passes it to the user and keeps the secret number.
(b) Blinding : On a given public parameter and message M, the user blinds

the message using random secret numbers. The user then requests to the
signer for the signature on the blinded message.

(c) Signature: For each blinded message, the signer computes the blind sig-
nature using his private key and outputs it to the user.

(d) Unblinding : User retrieves the blinded signature using his secret key and
stores the original signature on the cloud.
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4. Verification: User (verifier) fetch the signature and recovers the message. The
verifier then verify the signature using the recovered message.

3.3 Security of Proposed IDBS-MR Scheme

To discuss the security of our proposed IDBS-MR schemes, we go through the
definition of Zhang et al.’s identity-based blind signature scheme [8] and Tso
et al.’s identity-based signature with message recovery scheme [37] where they
discussed the unlinkability and unforgeability respectively. The proposed IDBS-
MR scheme is considered to be secure if it is secured against existential forgeable
attack (EF-ID-CMA) under the chosen message and ID attack and achieves the
blindness property.

Definition 2 EF-ID-CMA: We discuss the unforgeability of our proposed
IDBS-MR scheme through the following game playing between a forger F that
acts as malicious user and challenger Ch that acts as the honest signer under
adaptive chosen message and identity attack in the random oracle model (ROM).

Setup: The challenger Ch runs setup algorithm and computes the master key
and public parameters. The Ch responds public parameter to F .

Oracles: F performs the following oracles.

– Extract oracle: For a given ID, forger F requests to run the extract algorithm.
The Ch runs this oracle to compute the private key corresponding to an
identity IDi, where 1 ≤ i ≤ qk and sends it to F . Besides, Ch saves the
record in list Lext, which is initially empty.

– Blind signature oracle: For a message Mi ∈ {0, 1}l2 of its choice in an adaptive
manner, forger F asks blind signature oracle to obtain the blind signature σ.
The Ch executes the Blind signature oracle and responds the result to F and
saves it in the list LBS , which is initially empty.

Forgery : At the end, the forger F responds a signature σ∗ on given message
M∗ with signer’s identity ID∗. The forger F will win the game if it fulfills the
following conditions.

– σ∗ is the valid signature against M∗ and ID∗.
– The blind signature oracle has not been queried on M∗.
– The extract oracle has not been queried on ID∗.

Under chosen message and identity attacks, the proposed IDBS-MR scheme is
said to be existentially unforgeable, if any forger F has a negligible probability
to succeed in the above game.

Definition 3 Blindness. Blindness security notion can be defined by the adver-
sary Adv that acts as malicious signer and is engaged with two users U0 and U1

in the following game:

Setup: It computes the master key and public parameters and responds public
parameter to Adv.
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– For a given ID, Adv requests to run the extract algorithm. This oracle gives
the private key corresponding to an identity IDi, where 1 ≤ i ≤ qk and sends
it to Adv.

– For selective b ∈ {0, 1}, the U0 and U1 get two distinct message Mb and M1−b

respectively.
– U0 and U1 compute σb (signature on Mb) and σ1−b (signature on M1−b respec-

tively and give it to Adv.

At the end, Adv predicts a bit b′ ∈ {0, 1} and wins the game if b = b′ holds
with advantage.

|Pr[b = b
′
]| ≥ 1

2
+ k−n (1)

The proposed IDBS-MR scheme is blind if Adv wins the above game with neg-
ligible advantage.

4 Proposed Identity-Based Blind Signature with Message
Recovery Scheme

4.1 Abbreviations and Notations

Abbreviations and notations are given in Table 1.

Table 1. Notations and abbreviations used in our proposed IDBS-MR schemes.

Notations Meaning

k Security parameter

G1, q, P Groups on elliptic curve, its order and its generator

s0, P0 PKG’s master key and public key

n1, n2 Random number known to signer

IDS , A Signer’s unique identification and its public parameter

dIDS Signer’s private key

g, h, i, j, k, l Random number known to user

M ∈ {0, 1}l2 Message of length l2

bM1, bM2 Blinded message

σ Original signature on M

absc(P ) x coordinate of point P on elliptic curve

|| Concatenation of two strings
l
x|st| First x bit of string st from left

|st|Rx First x bit of string st from right

⊕ X-OR operation
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4.2 Construction

Our proposed IDBS-MR scheme consists of four PPT algorithms: setup, extract,
blind signature, and verify. These are defined as follow.

1. Setup: Given a security parameter k, the PKG assumes an additive group
G1 of order q, where q is large prime number of k-bit and P be its genera-
tor. Suppose three hash functions H1 : {0, 1}∗ × G1 → Zq, H2 : G1 → Zq

and H3 : G1 → {0, 1}|q| and two functions F1 : {0, 1}l2 → {0, 1}l1 and
F2 : {0, 1}l1 → {0, 1}l2 , where l1 and l2 are two positive integers such
that l1 + l2 = |q|. Suppose absc(P ) gives the x-coordinate of point P .
The PKG chooses a random element s0 ∈ Zq (its master key) and com-
putes the public key P0 = s0P . The PKG publishes the public parameter
param = {G1, q, P, P0,H1,H2, F1, F2, l1, l2, k}, and keeps s0 secret.

2. Extract : For given signer’s identity IDS , param and its master key s0, PKG
chooses a random number a ∈ Zq, computes the signer’s private key dIDS =
a + s0QIDS , where QIDS = H1(A, IDS) and A = aP and gives <A, dIDS>
to the signer.

3. Blind signature: The signer and user perform the following steps to obtain a
blind signature on message.

– Commitment : The signer selects two random elements n1, n2 ∈ Zq, com-
putes Q1 = n1P and Q2 = n2P , and sends them with its public parameter
A to the user.

– Blinding : For given received parameters <Q1, Q2, A> and message M ∈
{0, 1}l2 , the user selects six elements g, h, i, j, k, l ∈ Zq, such that
gcd(i, j) = 1 and ki + lj = gcd(i, j). For the selection of elements k
and l, we use the Extended Euclidean algorithm. User then computes the
parameters bM1 and bM2 given in Eqs. (2)–(8) and asks to the signer for
signature on <bM1, bM2>.

R1 = gQ1 + iP, r1 = absc(R1) (2)

R2 = hQ2 + jP, r2 = absc(R2) (3)

r = r1r2 (4)

u = F1(M)||F2(F1(M)) ⊕ M (5)

R = R1 + R2 + ru(A + QIDP0) (6)

bM1 = kg−1i(H2(R) − ru) (7)

bM2 = lh−1j(H2(R) − ru) (8)

– Signature: On received parameters <bM1, bM2> and its private key dIDS ,
signer computes the blind signature <s

′
1, s

′
2> as given in Eqs. (9)–(10),

and sends <s
′
1, s

′
2> to the user.

s
′
1 = (dIDSbM1 − n1) (9)

s
′
2 = (dIDSbM2 − n2) (10)
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– Unblinding : On received parameters <s
′
1, s

′
2>, user computes the origi-

nal signature <v,R> using his secret values, i.e., <g, h, i, j> (given in
Eqs. (11)–(14)). The user sends the signature <v,R,A> to the verifier.

s1 = (s
′
1g − i) (11)

s2 = (s
′
2h − j) (12)

s = (s1 + s2) (13)

v = u ⊕ H3(sP + R) (14)

4. Verify : For given signature pair <A, v,R>, the user computes u and recovers
M0, given in Eqs. (15)–(16) and accepts the signature and message M0 if and
only if l

l1
|u| = F1(M0).

u = v ⊕ H3(H2(R)(A + H1(A, IDS)P0)) (15)

M0 = F2(ll1 |u|) ⊕ |u|Rl2 (16)

This competes the implementation of proposed IDBS-MR scheme.

5 System Analysis

5.1 Security Proof

Theorem 1 (Correctness). Our proposed IDBS-MR scheme is correct.

Proof. The consistency of proposed IDBS-MR scheme is verified as follows:
From Eq. (13), we have s = (s1 + s2) then,

sP + R = (s1 + s2)P + R

= (s
′
1g − i + s

′
2h − j)P + R

= ((dIDSbM1 − n1)g − i + (dIDSbM2 − n2)h − j)P + R

= (dIDSki(H2(R) − ru) − n1g − i + dIDSlj(H2(R) − ru) − n2h − j)P + R

= dIDSH2(R)(ki + lj)P − (ki + lj)rudIDSP − n1gP − n2hP − iP − jP + R

= dIDSH2(R)P − (rudIDSP + n1gP + n2hP + iP + jP ) + R

= (a + s0QID)H2(R)P − (ru(a + s0QID)P + gQ1 + hQ2 + iP + jP ) + R

= (A + QIDP0)H2(R) − R + R

= (A + QIDP0)H2(R)

This proves the consistency of the IDBS-MR scheme. Thus, sP + R = (A +
QIDP0)H1(R), and u = v ⊕H3(sP +R). Now, u = F1(M)||F2(F1(M))⊕M and
hence l

l1
|u| = F1(M), |u|Rl2 = M ⊕ F2(F1(M)) and check if l

l1
|u| = F1(M). If this

equality holds, verifier accepts the parameter <A, v,R> as correct signature on
message M .
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Theorem 2 (Un-forgeability). Suppose H1 and H2 are two random oracles
model and a forger F wants to forge a signature on message M . Suppose forger
F executes at most qE extract oracles, qB blind signature oracles, q1 H1 hash
oracles, q2 H2 hash oracles, q3 H3 hash oracles runs at most t times with advan-
tage at most k−n. Under the assumption of ROM and intractable to solve the
ECDLP, our proposed IDBS-MR Scheme is existentially unforgeable under adap-
tive chosen message and identity attacks. Forger F (t, q1, q2, qE , qB , k−n) have the
following advantage to breaks the proposed IDBS-MR scheme.

|Pr[F (t, q1, q2qE , qB , k−n)]| ≥ ε(1 − q1/k)q2+qE

Proof. Due to the page limitation, authors could not provide the complete proof.

Theorem 3 (Blindness). The proposed IDBS-MR scheme achieves the blind-
ness property.

Proof. Due to the page limitation, authors could not provide the complete proof.

5.2 Performance Analysis

In this section, we are comparing our proposed IDBS-MR scheme with existing
related schemes [8,12,14,16–19,21,25,30] and [31] in terms of the computation
and bandwidth cost. To discuss the computation cost of required cryptographic
operations, we will follow the method given in [29,35–39]. We consider the Tate
pairing defined over the Type-A curve of PBC library [40] with the 512-bit group,
and embedding degree is 2, which is identical to the 1024-bit RSA security level.
The Type-A super-singular elliptic curve E/FP : y2 = x2 +x built on two prime
p and q, such that |p| = 512 bit, q = 2159 + 217 + 1 is Solaris prime (|q| = 160
bit) satisfying p + 1 = 12pq. We consider super-singular curve over the binary
field F2271 with the order of G1 is 252 bit prime and G2 is 1024 bit. Using
compression technique [44], we consider |G1| = 34 bytes, |G2| = 128 bytes and
|Zq| = 32 bytes. Besides, we suppose the message size |M | = 20 bytes.

Table 2. Computational cost of required operations (in ms).

Notations Operations Computation cost (in ms)

TM Modular multiplication 0.23

TIN Modular inversion 2.67

TA Two elliptic curve points addition 0.03

TSM Elliptic curve scalar point multiplication 6.67

TE Exponentiation 4.83

TPM Pairing multiplication 6.67

TH Map-To-Point hash operation 6.67

TP Bilinear pairing 20.01



A Pairing-Less Identity-Based Blind Signature 429

Implementation and Benchmarks. The implementation is considered to be run
on Intel Pentium IV, 3 GHz CPU, 512 MB RAM and Microsoft Windows XP
operating system [40]. We denote TM as computations cost of modular multi-
plication, TIN as computations cost of modular inversion, TA as computations
cost of two elliptic point addition, TSM as computations cost of Scalar elliptic
multiplication, TE as computations cost of Exponentiation, TH as computations
cost of map-to-hash function and TP as computations cost of bilinear pairing.
It has been given in [35,36] that the computation cost of pairing operation is
20.01, and in [38], we have observed that 1TP = 3TSM = 87TM . From [42],
we adopt the computation cost of modular exponentiation, TE is approximately
240TM , and computation cost of map-to-hash function TH is 29TM . Therefore,
on similar system [40], the computation cost of modular exponentiation, TE is
(TP ∗ 240)/87 = (20.01 ∗ 240)/87 = 55.2 ms. Table 2 shows the computation cost
and notations of such operations run over the bilinear group.

Fig. 2. Cloud assisted IDBS-MR System architecture

Computation Cost: We now compare the computation cost of blind signature
and verification phases for our proposed IDBS-MR scheme and the correspond-
ing phases of other schemes in the literature [8,12,14,16–19,21,25,30] and [31].
For examining computation cost, we avoid negligible computation cost oper-
ations such as hash function and modular addition. Using computation cost
of different operations given in Table 2, we evaluate the computation of our
proposed scheme with other related schemes, as summarized in Table 3. For
blind signature algorithm, our proposed scheme needs 4TSM + 2TA + 7TM =
4 ∗ 6.67 + 2 ∗ 0.23 + 7 ∗ 0.03 = 27.35 ms, while schemes [8,12,14,16–19,21,25,30]
and [31] take 82.77 ms, 62.76 ms, 60.15 ms, 126.73 ms, 20.7 ms, 40.02 ms, 80.04 ms,
53.6 ms, 80.5 ms, 40.08 ms and 62.7 ms respectively, of computation time. Thus,
blind signature phase of our proposed IDBS-MR scheme saves 67%, 56% 55%,
78%, 32%, 66%, 49%, 67%, 32% and 56% of corresponding phase of [8,12,14,17–
19,21,25,30] and [31] respectively. For verification algorithm, our proposed



430 M. Kumar and S. Chand

IDBS-MR scheme needs 1TSM + 1TA = 1 ∗ 6.67 + 1 ∗ 0.23 = 6.9 ms, while
schemes [8,12,14,16–19,21,25,30] and [31] take 64.86 ms, 44.85 ms, 44.85 ms,
80.04 ms, 20.04 ms, 26.68 ms, 60.03 ms, 46.7 ms, 46.7 ms, 51.5 ms and 46.7 ms
respectively, of computation time. Therefore, verification phase of our proposed
IDBS-MR scheme saves 89%, 85%, 85%, 91%, 66%, 74%, 88%, 85%, 85%, 87%
and 85% of corresponding verify algorithm of [8,12,14,16–19,21,25,30] and [31]
respectively. The total computation cost for our proposed scheme is 34.25 ms
while schemes [8,12,14,16–19,21,25,30] and [31] are 147.6 ms, 107.6 ms, 105 ms,
206.77 ms, 40.74 ms, 66.70 ms, 140 ms, 100.3 ms, 147.2 ms, 91.58 ms and 109.4 ms
respectively for blind signature and verification algorithms. Thus, our scheme
saves 77%, 68%, 67%, 83%, 17%, 48%, 75%, 65%, 76%, 62% and 68% of total
computation cost as compared to [8,12,14,16–19,21,25,30] and [31] respectively,
as shown in Fig. 2.

Fig. 3. Cloud assisted IDBS-MR System architecture

Bandwidth Size: Here, we compare the bandwidth cost of our proposed scheme
with related schemes [8,12,14,16–19,21,25,30] and [31], shown in Table 4 and
also Fig. 3. For evaluating the signature size, our proposed IDBS-MR scheme
requires |G1| + 2|Zq| = 98 bytes, whereas schemes [8,12,14,16–19,21,25,30] and
[31] need 256 bytes, 148 bytes, 86 bytes, 122 bytes, 120 bytes, 154 bytes, 120
bytes, 156 bytes, 88 bytes, 66 bytes and 168 bytes respectively. Here, we observe
that our scheme saves around 62%, 34%, 20%, 18%, 36%, 18%, 37%, and 42%
of [12,14,16,18,19,25,30], and [31] respectively, of signature size.

Security: The proposed scheme is constructed on the Random Oracle Model
(ROM), and its security is equivalent to solve the elliptic curve discrete logarithm
problem (ECDLP). Table 4 summarizes the security comparison of schemes with
related schemes [8,12,14,16–19,21,25,30] and [31] where 1-mBDHIP denotes
the one more bilinear Diffie-Hellman inversion problem, k-CAA3 denotes the
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Table 3. Computational cost of required operations (in ms).

Schemes Signer Verifier Total

Han et al. [25] 2TP + 6TSM + 1TIN + 2TA(82.77) 3TP + 1TE(64.86) 147.63

Hassan et al. [12] 1TP + 6TSM + 1TIN + 2TA(62.76) 2TP + 1TE(44.85) 107.61

Zhang et al. [8] 1TP + 6TSM + 4TA(60.15) 2TP + 1TE(44.85) 105

Gao et al. [14] 4TP + 7TSM (126.73) 4TP (80.04) 206.77

He et al. [16] 3TSM + 3TM (20.7) 3TSM + 1TA(20.04) 40.74

Dog et al. [18] 6TSM (40.02) 4TSM (26.68) 66.70

Tian et al. [19] 2TP + 6TSM (80.04) 2TP + 3TSM (60.03) 140.07

Islam et al. [30] 1TP + 5TSM + 1TM (53.6) 1TP + 4TSM (46.7) 100.3

Kumar et al. [17] 2TP + 6TSM + 2TM (80.5) 2TP + 1TSM + 1TA(46.77) 147.2

Verma et al. [21] 6TSM + 2TM (40.08) 2TP + 1TSM + 1E(51.5) 91.58

James et al. [31] 6TSM + 1TM + 1TIN (62.7) 2TP + 1TSM + 1TA(46.7) 109.4

Our scheme 4TSM + 2TA + 7TM (27.35) 1TSM + 1TA(6.9) 34.25

Table 4. Security comparison of our proposed IDBS-MR Scheme with other related
schemes, where SA and MR represent as security assumption and message recovery
respectively

Schemes Cryptographic
primitives

SA MR Signature size (in bytes)

Han et al. [25] IBS & BS IMWPP Yes 2|G2|(256)

Hassan et al. [12] IBS & BS BDHP Yes |G2| + |Zq|(148)

Zhang etal. [8] IBS & BS CDHP No |G1| + |Zq| + |M |(86)

Gao et al. [14] IBS & BS 1-mBDHIP No 3|G1| + |M |(122)

He et al. [16] IBS & BS CDHP No 2|G1| + |Zq| + |M |(120)

Dog et al. [18] CLS & BS ECDLP No 3|G1| + |Zq| + |M |(154)

Tian et al. [19] CLS & PBS CDHP No 2|G1| + |Zq| + |M |(120)

Islam et al. [30] CLS & BS k-CAA3 No 4|G1| + |M |(156)

Kumar et al. [17] IBS & BS GDHP No 2|G1| + |M |(88)

Verma et al. [21] IBS & BS k-CAA Yes |G1| + |Zq|(66)

James et al. [31] IBS & BS ECDLP No |G2| + |Zq| + |M |(168)

Our scheme IBS & BS ECDLP Yes |G1| + 2|Zq|(98)

3 traitors collision attacks assumption, GDHP denotes the gap Diffie-Hellman
Problem, PBS denotes the partial blind signature, IMWPP denotes Inversion
of Modified Weil Pairings Problem and BDHP denotes Bilinear Diffie-Hellman
Problem.
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6 Conclusion

In this paper, we have presented a new identity-based blind signature scheme
with message recovery (IDBS-MR) using the elliptic curve cryptography. The
proposed IDBS-MR scheme gains the advantage of blind signature with message
recovery in the identity-based setting. It avoids expensive cryptographic oper-
ations, for example, pairing and modular exponentiation operations and hence
suitable for pairing-free environment. Considering the hypothesis of the ECDLP
problem and ROM, the proposed IDBS-MR scheme is secured against existential
forgery attack under adaptive chosen message and ID attack. The performance
analysis demonstrated that our scheme performs better and gives the least sig-
nature size as compared to existing related schemes. Since proposed scheme has
the least computation cost and comparable size of the signature, it would be
suitable for cloud-assisted services where hiding user’s identity is the primary
concern. In the future, we will extend our work to improve the advantage of pro-
posed IDBS-MR scheme for electronic-voting and electronic payment system, to
obtain better efficiency and security.
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Abstract. Group signature is a useful cryptographic primitive that
allows a message to be signed by a user on behalf of a group which
is managed by some trusted authority, namely the group manager. How-
ever, group signature schemes typically place a disturbingly high level
of trust on the group manager, which has become a major deployment
issue in cyber applications where there is no centralized trust manage-
ment. In this paper, we investigate mechanisms that aim to achieve a
balance between anonymity and accountability in group signatures by
decentralizing the operation of tracing the signer. We propose a practi-
cal group signature scheme with decentralized tracing. When comparing
with a similar result by Benjumea et al. (FC 2008), our proposal has the
advantage of a shorter signature size.

Keywords: Group signatures · Anonymity · Accountability ·
Decentralization · Signature size

1 Introduction

Group signature, introduced by Chaum and van Heyst [1], is a useful crypto-
graphic primitive that allows a message to be signed by a user on behalf of
a group which is managed by a trusted authority, namely the group manager.
When a group signature is verified, it can be established that the signature was
generated by a member in the group, but without revealing the identity of the
particular member. At the same time, to achieve accountability, the group man-
ager is given the capability of processing a group signature and revealing the
identity of the signer (known as tracing the group signature). Since group signa-
ture schemes combine the features of anonymity and accountability, they have
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promising applications in scenarios which require privacy-preserving authentica-
tions, such as Vehicular Ad-hoc Networks [2–4], and Cryptocurrencies [5]. How-
ever, group signature schemes typically place a disturbingly high level of trust
on the group manager, which has become a major deployment issue in cyber
applications where there is no centralized trust management.

The first step towards weakening trusted operations of the group manager
was proposed by Kiayias and Yung [6]; Bellare, Shi and Zhang [7] who extended
group signatures to dynamic cases. In dynamic group signatures, the group man-
ager is separated into two authorities: the issuer and the opener. The former is
responsible for issuing secret key for group members, while the latter is responsi-
ble for tracing the signature1. In this setting, a property called non-frameability
is usually considered. This property requires that even if the issuer and opener
collude with each other, they cannot frame an honest group member by forging
‘his signature’. To achieve this goal, we need to force the opener to prove the
correctness of the tracing process.

It is worth noting that, in dynamic group signatures, the opener remains a
trusted authority who may otherwise violate users’ privacy. On the other hand, if
we discard the opener completely, the accountability feature of group signatures
will be lost. In practical applications, it is desirable to find a good balance
between anonymity and accountability.

1.1 Related Work

Since the introducing of group signatures, several variants have been proposed
to address the conflicting requirements of anonymity and accountability of group
signature schemes.

Weakening the Opener. Group signature with controlled linkability [8] is a vari-
ant of group signature which weakens the power of the opener. In these schemes,
a linking authority is adopted instead of the opener. The linking authority can
only tell if two signatures are generated by the same group member or not.
Another related notion is named traceable group signature [9]. In addition to
the property of tracing a signature, it also allows user tracing which enables the
group manager to generate a tracing trapdoor corresponding to a member. The
trapdoor can then be used to verify whether the signature is generated by this
member. In both notions, however, a centralized trusted authority (i.e., linking
authority or group manager) is still used.

Group signature with user-controlled linkability is usually considered in the
context of Direct Anonymous Attestation [10] and anonymous credential [11].
In these schemes, the user can decide which of their signatures will be linkable
when generating them. This method takes users’ privacy in priority and hence
loses efficient accountability. Recently, this concept is extended to support selec-
tive linkability [12]. In this scheme, the user does not need to specify which

1 Sometimes known as opening the group signature. In the following, we will use the
term trace and open alternately.
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of his signatures will be linkable when generating them. When necessary, the
group signatures will be sent to the (honest but curious) linking authority in a
blinded form. This primitive is useful in authenticated data collecting. However,
it assumes that the linking authority does not have direct access to the group
signatures, this limits the applications of this primitive.

Decentralizing the Opener. Fair traceable (multi-)group signature proposed by
Benjumea et al. [13] can be viewed as a decentralized version of traceable group
signature. In a fair traceable (multi-)group signature scheme, new parties called
fairness authorities are introduced who are used to open signatures and generate
partial signature tracing trapdoors. Only the number of fairness authorities who
agree to do the opening or revealing reaches a threshold t, then the t fairness
authorities may open a signature or generate a valid tracing trapdoor.

In 2015, Blömer et al. [14] also proposed a group signature scheme with
distributed traceability. In their work, they use the technique of threshold public
key encryption [15] to distribute the power of the opener. The secret key for
tracing is firstly generated at setup and later distributed among multiple openers.
In this way, the signature will not be opened unless enough number of openers
agree to do so. However, the secret value for tracing is still exposed to the
authority who performs the setup. Besides, their scheme is constructed in the
setting of static group signatures and hence is not secure against framing attacks.

1.2 Contribution

In this work, we invesigate the notion of group signatures with decentralized
tracing and give a practical instantiation. The scheme is shown to be secure in
the random oracle model. Especially, the group signature remains anonymous
even if some of the openers are corrupted. When comparing with [13], our scheme
is built over the q-Strong Diffie-Hellman (q-SDH) assumption while [13] is built
over the strong RSA assumption2. For efficiency, our scheme has a much shorter
signature size than the one in [13].

2 Preliminaries

2.1 Notations and Bilinear Maps

Notations. We use a ←r A to denote the process of uniformly sampling an
element from set A and assigning it to variable a. We also define the Lagrange
coefficient Δi,T(x) :=

∏
i∈T,j �=i

x−j
i−j for i ∈ Zp and a set T of elements in Zp.

Bilinear Maps. A group generator PGGen is an algorithm which takes 1λ as input
and outputs a description G := (p,G1,G2,GT , e, g1, g2) of type 3 bilinear group.
Here G1,G2,GT are finite cyclic groups of prime order p and e is an admissible
bilinear map. g1 ∈ G1 and g2 ∈ G2 are random generators of G1 and G2, and
gT := e(g1, g2) will be a generator of group GT .
2 Both schemes require the extra Decisional Composite Residuosity (DCR) and Deci-

sional Diffie-Hellman (DDH) assumptions.
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2.2 (Signature) Proof of Knowledge

We follow the notation introduced by Camenisch, Kiayias and Yung [16] to
denote the zero-knowledge proofs of discrete logarithms and statements about
them. For instance, PK{(a, b, c) : y = gahb∧y′ = gahc} denotes a zero-knowledge
proof of integers a, b, c (which are named witness) such that makes the equations
y = gahb and y′ = gahc hold. We use the notion SPK{(a, b, c) : y = gahb ∧ y′ =
gahc}(m) to denote a signature on message m with a proof of knowledge of the
witnesses a, b, c that satisfies y = gahb and y′ = gahc.

A secure zero-knowledge proof scheme is usually required to satisfy com-
pleteness, simulation-soundness and zero-knowledge properties [16]. Besides, the
proof of knowledge used in this work is also required to be extractable, i.e., there
exist an extractor with oracle access to the prover can outputs the witness of a
statement. If the extractor can extract the witness without rewinding, the proof
is said to be online-extractable [17]. In the following, witnesses that are required
to be online-extractable will be underlined.

3 A Group Signature with Decentralized Tracing

3.1 Description of the Scheme

– Setup(1λ, n, t): Run G := (p,G1,G2,GT , g1, g2, e) ←r PGGen(1λ) and gen-
erate g, h, h1, h2 ←r G1. Decide the group of openers {P1,P2, . . . ,Pn}
and return the global system parameter param := (G, g, h, h1, h2, {P1,P2,
. . . ,Pn}). Besides, it initialize the state St by setting Stusers := ∅, Sttrans := ε.

– IKGen(1λ, param): Generate isk := γ ←r Z
∗
p, and compute ipk := gγ

2 .
– OKGen: Each opener Pi performs Geni(1λ, param, n, t) as following:

1. Choose a random polynomial fi(ξ) = ci,0 + ci,1ξ + · · · + ci,t−1ξ
t−1 and

broadcast Ci,k = gci,k for k ∈ {0, 1, . . . , t − 1} via the authenticated
channel.

2. Compute si,j = fi(j) for j ∈ {1, . . . , n} and send si,j to Pj via secret and
authenticated channel.

On receiving the shares {s1,j , . . . , sn,j}, the opener Pj verifies the equation

gsi,j =
t−1∏

k=0

Cjk

i,k (1)

for all i ∈ {1, . . . , n}. If there exists a share si,j such that Eq. (1) does not
holds, it publish the invalid share si,j and aborts the protocol. Otherwise,
it computes s ,j =

∑n
i=1 si,j mod p, and sets its secret tracing key to be

oskj = s ,j . It also computes S ,j = gs ,j and publishes its public tracing key
opkj = (j, S ,j) via authenticated channel.
Finally, if no invalid share has been published by any openers, anyone who
has a collection of {Ci,0}i∈{1,...,n} and {opkj}j∈{1,...,n} may select subsets
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T
1,T2, . . . ,Tw ⊂ {1, . . . , n} such that (1) for all κ ∈ {1, . . . , w}, |Tκ| = t;

and (2)
⋃

κ∈{1,...,w} T
κ = {1, . . . , n}. If

∏n
i=0 Ci,0 =

∏
j∈Tκ(S ,j)Δj,Tκ (0)

holds for all κ ∈ {1, . . . , w}, it computes S :=
∏n

i=0 Ci,0 and sets opk :=
(S, {opkj}j∈{1,...,n}); otherwise, it outputs a compliant and aborts. In default,
we take opk, ipk and param as the input of all the rest algorithms or protocols.

– Join(I, Uuid): The issuer I and the user Uuid runs the following interactive
protocol [Juser(1λ), Jiss(1λ, St, isk)]:
1. Uuid samples y ←r Z

∗
p and computes H = hy

1 as well as a proof πH ←r

PK{(y) : H = hy
1}. It sends (uid,H, πH) to the issuer I via authenticated

channel.
2. Jiss verify that πH is a valid proof with regard to H and param. If (1) uid ∈

Stusers; or (2) there exists an H in Sttrans; or (3) the proof is not valid,
it aborts the protocol. Otherwise, it selects s, x ←r Z

∗
p and computes

A := (g1hs
2H)

1
γ+x . Jiss sends the membership certificate certuid := (A, s, x)

to Uuid. Meanwhile, it stores transcriptuid = (H,πH , certuid, uid) in the
state Sttrans and updates Stusers = Stusers ∪ {uid}.

3. Juser verify that A �= 1G1 and e(A, g2)xe(A, ipk) = e(g1h
y
1h

s
2, g2). If the

conditions are not satisfied, it aborts the protocol. Otherwise, it defines
the membership certificate as certuid := (A, s, x) and the membership
secret secuid := y.

– Sign(secuid, certuid,m): This algorithm is used for a group member to sign
messages on behalf of the group. In detail, it performs the following:
1. Select b ←r Z

∗
p, and compute B1 = gb, B2 = Sbhy where S is published

in the opk.
2. Select r1, r2 ←r Zp, and compute A′ = Ar1 , Â = A′−x(g1h

y
1h

s
2)

r1 ,D =
(g1h

y
1h

s
2)

r1h−r2
2 , r3 = r−1

1 , s′ = s − r2r3.
3. Compute

π ←r SPK{(b, x, y, r2, r3, s
′) : B1 = gb ∧ B2 = Sbhy

∧Â = A′−xhr2
2 D ∧ Dr3h−s′

2 = g1h
y
1}(m) (2)

4. Return the finally signature σ := (B1, B2, A
′, Â,D, π).

– Verify(σ,m): To verify the validation of the signature, it verifies e(A′, ipk) =
e(Â, g2), and π is valid for (B1, B2, A

′, Â,D) with regard to param, ipk and
opk. If both conditions hold, it outputs 1, otherwise, it outputs 0.

– OShare(oski, σ,m): An opener Pi verifies the validation of the group signa-
ture σ. If Verify(m,σ) = 0, it aborts. Otherwise, it computes B ,i = B

s ,i

1 .
Meanwhile, it generates a proof πB ,i

:= PK{s ,i : B ,i = B
s ,i

1 ∧ S ,i = gs ,i}
where S ,i is part of opki. It returns the opening share sharei := (i, B ,i, πB ,i

).
– Open(m,σ,S, St): Split S as {share1, . . . , sharen} in which sharei =

(i, B ,i, πB ,i
) or sharei = ε. Select a set T ⊂ {1, . . . , n} such that (1) |T| = t;

and (2) for all i ∈ T, sharei �= ε and the proof πB ,i
is valid with regard to the

param and opk. If there does not exist a set T satisfies above conditions, it
returns ⊥. Otherwise, it computes H = B2/

∏
i∈T

(B ,i)Δi,T(0). If there exists
a record transcriptuid = (H, certuid, uid) in Sttrans such that H = H, it returns
uid. Otherwise, it returns ⊥.
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3.2 Security Analysis

Our scheme achieves traceability, non-frameability and anonymity under the
DDH, q-SDH and DCR assumptions [18] in the random oracle model. Especially,
the anonymity guarantees that given a signature from one of two parties, it is
not possible to tell from which of the two even if the adversary collude with
some (no more than t) openers. Due to the space limitation, we refer the formal
security definitions and security proofs to the full version of this paper.

3.3 Instantiation of the Proofs

To prove the knowledge of the discrete logarithms statements, we can use the
Schnorr proofs [16]. Using Fiat-Shamir heuristics [19] we can make the proof
non-interactive. With forking Lemma [20], these proofs can be made extractable
in random oracle model by rewinding. For the witnesses that are required to
be online-extractable, we can verifiably encrypt them to a public key which is
defined in the common reference string (CRS). The verifiable encryption algo-
rithm can be implemented using the instantiation by Camenisch and Shoup [21]
which is secure under the Decisional Composite Residuosity (DCR) assumption.

4 Comparison and Extension

Comparison. When comparing with the fair traceable group signatures by Ben-
jumea et al. [13], the scheme in [13] supports user tracing which is not supported
in our scheme. However, our scheme is more suitable in some application scenar-
ios where user tracing is not required (e.g., fair consensus [22]). In construction,
our scheme is secure under the q-SDH assumption, while [13] is secure under
the strong RSA assumption.

Table 1. Comparison of signature and member size

Sign-size (bytes) Member-size (bytes)

80-bits 128-bits 80-bits 128-bits

BCLY 1312 3904 1488 4428

This work 245 389 1658 4802

We also analyze the efficiency of our proposal and compares it with
BCLY [13]. In Table 1, sign-size columns refer to the size of the group signa-
tures. Member-size columns refer to the size of data that the issuer is required
to keep for each member in the group. For both sizes, we consider 80-bits and
128-bits security respectively. The key sizes are derived from the ECRYPT 2
recommendations [23]. From the table, it is easy to see that the member size of
our scheme is comparable with BCLY. However, the signature size of our scheme
is much shorter than BCLY.
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Extension. In this work, when considering the anonymity of the scheme, the
adversary does not have access to the signing oracle. However, our scheme can
be extended to satisfy the notion of full-anonymity where the signing queries are
allowed. To achieve full-anonymity, the underlying encryption scheme is usually
required to be CCA-secure. Meanwhile, a proof is required to prove the CCA-
secure ciphertext encrypts the pseudonym (i.e., the element H in our scheme)
honestly. This can be achieved using the technique by [17].

Acknowledgements. This work is supported by the National Key R&D Program of
China (No.2017YFB0802000); by the National Natural Science Foundation of China
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Abstract. Multivariate public key cryptography which relies on multi-
variate quadratic (MQ) problem is one of the main approaches to guar-
antee the security of communication in the post-quantum world. In this
paper, we focus mainly on the yet unbroken (under proper parameter
choice) Unbalanced Oil and Vinegar (UOV) scheme, and discuss the
exact security of it. Then we propose a combined signature scheme which
that (1) not only can reduce the public key size of the UOV signature
scheme, and (2) but also can provide tighter security against chosen-
message attack in the random oracle. On the other hand, we propose
a novel aggregate signature scheme based on UOV signature scheme.
Additionally, we give security proof for our aggregate signature scheme
under the security of our proposed signature scheme.

Keywords: Multivariate cryptography · UOV signature scheme ·
Exact security · Aggregate signature

1 Introduction

Nowadays, the current major public-key cryptographic schemes are mainly based
on the hardness of number theory such as integer factorization and discrete
logarithm. Since according to the Shor’s algorithm [1], these schemes will be
broken in polynomial time after the emergence of quantum computers, which
calls for doing research on the post-quantum cryptography [2].

According to the post quantum cryptography project submitted by the
National Institute for Standards and Technology (NIST) [3], MPKC is popular
for its efficiency in the post quantum cryptography aspect and signature schemes
are promising. Also, multivariate signature schemes with special properties, such
as proxy signature, ring signature and so on, are proposed. For example, Tang
c© Springer Nature Switzerland AG 2020
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et al. [4] proposed the first MPKC proxy signature scheme based on the problem
of Isomorphisms of Polynomials (IP). Petzoldt et al. [5] proposed the first prov-
able MPKC threshold ring signature scheme based on the result of [6]. Chen et
al. [7] proposed the first online/offline signature based on UOV by utilizing the
linear construction of the central map of UOV, so that the proposed scheme can
be distributed in the wireless sensor networks. In addition, multivariate blind
signature scheme by Petzoldt et al. [8] are proposed to enrich this area.

In this paper, we focus on this part, we firstly propose a combined signature
scheme based on UOV signature, which can not only reduce the public key size of
the UOV signature scheme but also can provide more tighter exact security proof.
Thereafter, we propose a novel aggregate signature scheme based on the proposed
signature scheme, which includes the stages of key generation, generation of
signature, combination of signature and the verification of aggregate signature.
We also give a strict security proof for our aggregate signature scheme under
the security of our proposed signature scheme. We also give a toy example for
our aggregate scheme. Finally, we propose parameters and comparisons for our
proposed scheme.

The rest of the paper is organized as follows: In Sect. 2, we describe the
schemes, the basic UOV signature scheme and the security models. In Sect. 3,
we present our proposed signature scheme. Then the proposed aggregate signa-
ture scheme based on our signature scheme is described in Sect. 4. In Sect. 5,
we present the analysis of our schemes. Finally we concludes the paper with a
discussion in Sect. 6.

2 Preliminaries

2.1 Sequential Aggregate Signatures

Generally, a sequential aggregate signature scheme [10] AS is consisted with
three algorithms :KeyGen, Sign, Verify:

– AggGen(1λ): The algorithm inputs a security parameter 1λ and outputs a
signature key pair (sk, pk). In a sequential aggregation signature scheme, this
algorithm is run by each user ui and the corresponding key pair (ski, pki) is
obtained.

– AggSign(mi, ski, pk1, ..., pki−1, Σi−1): To generate a sequential aggregate sig-
nature, the algorithm is run by the user in this sequence using its secret key
ski according to the message mi. Then given the previous user’s public key
set (pk1, . . . , pki−1) and the previous aggregate signature Σi−1, the algorithm
aggregates to generate an aggregate signature of Σ.

– AggVerify((m1, ...,mk), Σ, (pk1, . . . , pkk)): Given ((m1, . . . , mk), Σ, (pk1, . . . ,
pkk)), if Σ is valid, the algorithm outputs TRUE, otherwise it outputs FALSE.
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2.2 UOV Signature Scheme

The UOV scheme [11] is a single field construction, it work solely in the polyno-
mial ring Fq[X], where X = {x1, ..., xn}. Let |V | = v, |O| = o and v +o = n. We
randomly choose o quadratic polynomials qk(X) = qk(x1, ..., xn) the polynomial
ring Fq[X] by

qk(X) =
∑

i∈O,j∈V

α
(k)
ij xixj +

∑

i,j∈V,i≤j

β
(k)
ij xixj +

∑

i∈O∪V

γ
(k)
i xi + η(k), k = 1, ..., o,

(1)
To hide the structure of Q in the public key one concatenates it with an

invertible affine map T : Fn → Fn, then the public key of the UOV signature
scheme is P = Q ◦ T .

The key generation algorithm UOVGen(1λ), takes 1λ as input and outputs
pk=P and sk= (T,Q).

Assume the document needs to be signed is M = (y1, y2, ..., ym), the signing
algorithm UOVSign(M,T,Q)) is as follows. Firstly, the user chooses the values of
the v vinegar variables V =(x1, . . . , xv) at random, then it solves the equation:
M = Q(X,V ), then it calculates σ = T−1(X,V ) and get the signature σ.

Finally, the verification algorithm UOVVerify(σ,M ,P ) returns TRUE if
P (σ) = M , otherwise returns FALSE.

2.3 Security Models

Exact Security Model for UOV Digital Signature. We quantify the secu-
rity of UOV scheme as a uniform one-way function.

Definition 1. We say that the UOV one-way function is (t′(λ), ε′(λ)) − secure
if there is no inverting algorithm that takes P , y as inputs and outputs a preimage
x such that P (x) = y at t′(λ) processing time with probability at least ε′(λ), where
P is obtained by running KeyGen(1λ) and y is randomly chosen from kn. The
standard asymptotic definition of security requests that the success probability of
any PPT (probabilistic, polynomial time) algorithm is a negligible function of λ.

Next, we quantify the exact security of UOV signature scheme. The exact
security of the reduction which was used to prove the security of the full domain
hash (FDH) signature scheme was first provides by Bellare and Rogaway [9] and
analyzed in Theorem 1.

Similar to this work, we have

Definition 2. We say that the UOV-based FDH signature scheme is
(t(λ), qsig(λ), qhash(λ), ε(λ)) − secure if there is no forger A who takes a public
key pk generated via (pk, ·) ← Gen(1λ), after at most qhash(λ) queries to the
random oracle, qsig(λ) signature queries, and t(λ) processing time, then outputs
a valid signature with probability at least ε(λ).



446 J. Chen et al.

Security Model for Aggregated Signature. Similar to the work in [13], we
formalize the sequential aggregation security under the selected message model
in Definition 3.

Definition 3. We say that a sequential aggregate signature scheme is (ε′′, t′′,
q′
sig, q

′
hash)−secure if there is no forger A can win in the above game and satisfies

that: A runs in time at most t′′; A makes at most q′
hash queries to the hash

function and at most q′
sig queries to the aggregate signing oracle; AdvAggSigA

is at least ε′′.

3 Our Proposed Signature Scheme

Our proposed signature scheme is consisted with three algorithms: Gen, Sig and
Ver. The details are as follows.

The key generation algorithm Gen is described in Algorithm 1.

Algorithm 1. Gen(q, o, v,D )
Input:

q: the underlying field (i.e. Fq = GF (25));
o,v: the number of Oil and Vinegar variables respectively;
n: n = v + o;

D: the number of non-trivial quadratic terms, D =
v·(v+1)

2 + o · v;
Output:

(T, Q): the private key to sign the message;
P : the public key corresponding to (T, Q);

1: Choose a vector b = (b0, ..., bD−1) at random.
2: Choose an n × n invertible matrix T at random (given as a matrix MT = (trs)

n
r,s=1);

3: Set the entries of the first D columns of P to pij = b(j−i) mod D;

4: Solve for i = 0, ..., o − 1 and j = 0, ..., D − 1 the linear systems given by M ′ = Q · A to get the
non-zero coefficients of the quadratic terms of the central map Q, where the elements in A is

a
rs
kl =

{
tkr · tlr(r = s)
tkr · tls + tks · tlr(r �= s)

and the elements in M ′ is pij ;
5: Choose the coefficients of the linear and constant terms of the central map Q at random;
6: Compute the remaining coefficients of the public polynomials by composing Q and T using the

equation P = Q ◦ T ;
7: return (Q, T, P );

Gen takes as inputs the underlying field, the number of Oil and Vinegar
variables, and the number of non-zero quadratic terms, and returns the pub-
lic/private key pairs. In fact in this part we use the strategy in [14]. We recom-
mend to read more detail in [14].

In the signature generation part, we change the UOV signature into FDH-like
signature scheme, so that we can make exact security proof. It firstly chooses
a collision-resistant hash function H : {0, 1}∗ → F

o
q, and is described in Algo-

rithm2.
At last, the verification algorithm Ver(H,σ,m) returns 1 if P (x) = H(m||r),

otherwise it returns 0.
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Algorithm 2. Sign( m, (T,Q)
Input:

m: the message to sign;
(T, Q): the private key to sign the message;

Output:
σ: the signature on message m;

1: xv
′∈RF

v
q ;

2: repeat
3: l ∈R Z; r∈R{0, 1}l; y ← H(m||r);
4: until {zn|Q(zn, xv

′) = y} �= ∅;
5: xn

′∈R{zn|Q(zn, xv
′) = y};

6: x ← T −1(xn
′, xv

′);
7: return σ = (x, r);

4 Our Proposed Sequential Aggregation Signature
Scheme

In this section, we propose a novel sequential aggregation signature scheme based
on our combined signature scheme. The main parts of this scheme are the key
generation part, the aggregation signature generation part and the aggregation
signature verification part.

4.1 Key Generation

Let U = u1, ..., uk be the set of users. In the key generation algorithm of UOV-
based sequential aggregation signature scheme, we assume each user ui can gen-
erate a UOV key pair ((Qi, Ti), Pi) through a given system parameter. Each user
ui then makes the public key Pi public and keeps the private key (Qi, Ti). Also,
we denote a split algorithm Split(∗) that splits arbitrary message with length
O + iV, i = 1, ..., k into k + 1 small messages, where the length of the first mes-
sage is equal to the size of O, the length of the other parts is equal to the size
of V .

4.2 Signature Generation

Let H : F∗ → F
o be a hash function that can hash any message into a message

with length o. Suppose each user ui has a message mi to be signed. To generate a
message to aggregate signature Σ according to the message m1, ...,mk, each user
of the user set u1, ..., uk runs Algorithm 3 separately. The resulting aggregate
signature Σ is the output of user uk.

4.3 Signature Verification

To verify the correctness of an aggregate signature Σi, we split Σi into two parts,
the first part being the block Σi1 , which is a vector of o elements. The second
part is (Σi2 , ..., Σ12), which is a collection of vectors consisting of v elements.
Thereafter, the signature verification part is similar to the verification of the
normal UOV. The process is shown in Algorithm 4.
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Algorithm 3. AggSign( mi, ski = (Ti, Qi), pk1, ..., pki−1, Σi−1)
Input:

mi: the messages that need to be signed;
ski = (Ti, Qi): the private key of user i;
pk1, ..., pki−1, Σi−1: The previous public keys and aggregate signature

Output:
Σi: the aggregate signature corresponding to m1, ..., mi;

1: if i = 1 then
2: Σi−11 = 0o, Σi−12 = ∅
3: else if AggVerify(pk1, ..., pki−1, m1, ..., mi−1, Σi−1)=TURE then
4: (Σi−11 , Σi−12 , ..., Σ12 ) = Split(Σi−1)

5: else
6: return FALSE
7: end if
8: D = H(m1, ..., mi)
9: Σi = UOVSign((D + Σi−11 ), (Ti, Qi))

10: (Σ′
i1

, Σ′
i2

) = Split(Σi)

11: Σi1 = Σ′
i1

12: Σi2 = (Σ′
i2

||Σi−12 ||...||Σ12 )

13: Σi = (Σi1 ||Σi2 )

14: return Σi

Algorithm 4. AggVerify( pk1, ..., pki,m,...,mi, Σi)
Input:

pk1, ..., pki, m,..., mi, Σi: The public key, message, and aggregate signature corresponding to
the previous i user respectively

Output:
TRUE or FALSE: Determines whether the aggregate signature is valid;

1: (Σi1 , Σi2 , ..., Σ12 )=Split(Σi)

2: for j = i to 1 do
3: Dj = H(m1, ..., mj)
4: Σj−11 = pkj(Σj1 , Σj2 ) − Dj

5: end for
6: if Σ01 = 0o

7: return TRUE
8: end if
9: else

10: return FALSE
11: end if

4.4 A Toy Example

We propose a toy example to further illustrate our scheme. Let k = 3, q = 4, o =
2, v = 4.

When i = 1 (the first sequence), the scheme will generate the first aggregate
signature Σ1. The scheme sets Σ01 = 0o, Σ02 = ∅, assume D = H(m1) = {1, 3},
we have D + Σ01={1,3}, then it will use this D + Σ01 to submit a regular
UOV signature σ1 = UOVSign((D + Σ01), sk1) = {3, 1, 3, 0, 0, 1}. Thereafter,
the scheme sets Σ11 = {3, 1}, Σ12 = {3, 0, 0, 1} and the first aggregate signa-
ture Σ1 = (Σ11 , Σ12) = ({3, 1}||{3, 0, 0, 1}), the scheme will go to the second
aggregate signature process.

When i = 2 (the second sequence), the scheme will firstly call for a
verifying algorithm of the aggregate scheme to verify the first aggregation
signature, where it splits and gets Σ11 = {3, 1} and Σ12 = {3, 0, 0, 1},
and computes pk1(Σ11 , Σ12) = {1, 3}, D1 = H(m1) = {1, 3}, we have
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Σ01 = pk1(Σ11 , Σ12) − D1 = {0, 0}, thus the verification is valid. Then the
scheme will generate the second aggregate signature Σ2. It first splits and
gets Σ11 = {3, 1}, Σ12 = {3, 0, 0, 1}, assume D2 = H(m1,m2) = {0, 2}, we
have D2 + Σ11={3,3}, then we will use this D2 + Σ11 to submit a basic UOV
signature σ2 = UOVSign((D + Σi1), sk2) = {0, 2, 0, 3, 1, 3} and (Σ′

21
, Σ′

22
) =

({0, 2}, {0, 3, 1, 3}). Then the scheme set Σ21 = Σ′
21

= {0, 2} and Σ22 =
(Σ′

22
||Σ12) = {0, 3, 1, 3}||{3, 0, 0, 1}. Then the second aggregate signature is

Σ2 = (Σ21 ||Σ22) = ({0, 2}||{0, 3, 1, 3}||{3, 0, 0, 1}), the scheme will go to the
third aggregation signature process.

When i = 3 (the third sequence), the scheme will firstly call for a veri-
fying algorithm of the aggregate scheme and find the verification valid. Then
the scheme will generate the third aggregate signature Σ3. It first splits and gets
Σ21 = {0, 2}, Σ22 = {0, 3, 1, 3}, Σ12 = {3, 0, 0, 1}, assume D = H(m1,m2,m3) =
{3, 2}, we have D + Σ2−11 = {3, 0}, then we will use this D + Σ21 to sub-
mit a signature σ3 = UOVSign((D + Σ21), sk3) = {2, 1, 3, 3, 1, 1}. Thereafter,
the scheme sets Σ31 = {2, 1}, Σ32 = {3, 3, 1, 1}||{0, 3, 1, 3}||{3, 0, 0, 1}, then
the aggregate signature process is finished and the final aggregate signature
is Σ3 = (Σ31 , Σ32) = ({2, 1}||{3, 3, 1, 1}||{0, 3, 1, 3}||{3, 0, 0, 1}).

5 Analysis

Our signature scheme can reduce the size of public key of UOV, more details
about this property we recommend to read [14].

Proposition 1. The trapdoor function of our proposed scheme is as secure as
the basic function of UOV under the current attack techniques.

Due to page limitation, we omit the proof here.

Proposition 2. If the function of our scheme is (t′, ε′) − secure, our signature
scheme is (ε, t, qsig, qhash) − secure, where ε(λ) ≤ 1

(1− 1
qsig+1 )qsig+1 · qsig · ε′(λ)

and t(λ) ≥ t′(λ) − (qhash + qsig + 1)(tUOV + O(1)) , where tUOV is the time to
compute the UOV function.

Due to page limitation, we omit the proof here.

Proposition 3. If UOV signature scheme is (ε, t, qsig, qhash) − secure, then
our aggregation signature scheme is (ε′′, t′′, q′

sig, q
′
hash) − secure, where ε′′(λ) ≤

2(q′
sig + q′

hash + 1) · ε(λ) and t′′ ≤ t − (4kq′
hash + 4kq′

sig + 7k + 1).

Due to page limitation, we omit the proof here.
Finally, for the compression ratio, it is not difficult to calculate the size of

our aggregate signature scheme is |Σ| = o + n · v. Thus the compression ratio is
τ = 1 − Σ

n·σ = 1 − o+n·v
n·(o+v) .



450 J. Chen et al.

6 Conclusions

In this paper, we propose a new signature scheme based on UOV signature,
which is shown that our proposed signature scheme can reduce the public key
size and have better exact security bound. In addition, we propose an aggregated
signature scheme based on the UOV signature scheme and also give security
proof under the security of our proposed signature scheme. Finally, we find that
the aggregate signature compression rate obtained by our aggregated signature
scheme be 1− o+n·v

n·(o+v) , indicating that our aggregate signature scheme is especially
suitable for large-scale signature environments.
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Abstract. Blind Signature is employed in privacy related protocols,
where signer signs on a blinded message. It provides anonymity in var-
ious cryptographic applications such as electronic voting, digital cash
system etc. Concerning the need for quantum resistant scheme, Ruckert
and Tian et al. proposed the lattice based blind signature and partial
blind signature schemes respectively. But, both the schemes left out one
of the security requirement of a blind i.e. Untraceability, where the signer
can’t link the blinded signature with a valid message-signature pair even
when it is revealed in public. In this article, we propose an attack on the
untracebility property of both the schemes. The proposed attack opens
the door for researchers to work on quantum resistant untraceable blind
signature.

Keywords: Lattice cryptography · Digital signature · Blind
signature · Partial blind signature

1 Introduction

Enhanced wireless sensor networks, IoT (Internet of Things) devices employed in
e-cash systems and electronic voting is a crucial step towards smart city future.
Moreover, with the development in big data, various organizations employ it
in e-payments to cloud. In both the systems (e-payments and e-voting) blind
signature plays an important role to protect user privacy and ensures the trust-
worthiness of big data in cloud.

Chaum [6], introduced the concept of blind signature in 1982, where the
signer signs the document which is blinded by the user. Blind Signature become
an important primitive in the application for e-voting, anonymous banking [12]
and for oblivious transfer [7]. These applications will continue to have its impor-
tance in future as well.

Abe and Fujisaki [5] introduced the concept of partial blind signature in 1996
after pointing out the drawbacks of blind signature scheme while using it for
e-payments. One particular drawback is that, as the signer’s view is completely
closed from the signatures, the signer has no control over the attributes except
for those bound by the public key. For example, if a signer issues blind signatures
c© Springer Nature Switzerland AG 2020
Z. Liu and M. Yung (Eds.): Inscrypt 2019, LNCS 12020, pp. 452–459, 2020.
https://doi.org/10.1007/978-3-030-42921-8_27
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with validity of a week, then he has to change his public key per every week.
This will seriously affect the availability and performance.

A partial blind signature allows the signer and user to come to agreement to
explicitly include a shared information to the blind signature. For example, the
signatory may attach the date of issue to his blind signature as a characteristic.
If the signatory issues a large number of signatures in a day, including issue date
will not violate anonymity. Accordingly, the properties of signatures can be fixed
independently of the public key.

With the development in the technology, the current discrete logarithm and
factoring based system are at threat from quantum computers. Still there are
some assumptions that are conjunctured to be quantum safe. These protocols
cover the post-quantum cryptography. Lattice based cryptography is one of them
which works under the hardness of hard lattice problem. Constructing crypto-
graphic protocols upon hard lattice problems has its benefits, unlike DLP and
factoring, they withstand subexponential attacks and the best known algorithms
[3] have an exponential complexity in the lattice dimension. Moreover, Ajtai [1]
proved that lattice problems allows a worst-case to average-case reduction. Tak-
ing these as motivations, Ruckert [13] developed the first quantum safe blind
signature, inspired from Lyubashevsky’s ID scheme [9] combined with the Fiat-
Shamir paradigm [8]. From Lyubashevsky’s signature scheme [10] and Abe et
al.’s construction [4], Tian et al. [14] developed the first quantum proof partial
blind signature from lattice assumption. Both the schemes were proved to be
one-more unforgeable and satisfy blindness property.

But a blind signature should also satisfy Untraceability property, which states
that the signer should not be able to link a blinded signature with the valid
message-signature pair, even when it is revealed in public. Hwang et al. [11] pro-
posed the untraceable blind signature based on RSA. Afterwards, many untrace-
able blind signatures were proposed [15–18], but all are based on factoring or
DLP.

In this article, we propose an attack on the traceability property of the above
two blind and partial blind signature schemes. We first discuss some preliminaries
about lattices. Then we describe the Tian et al.’s [14] partial blind signature
scheme and discuss its untraceability property. Section 4 define the Ruckert’s
[13] blind signature scheme and the proposed attack. Last section concludes the
paper with future direction.

2 Lattices: Background and Definition

Definition 1. A Lattice L in R
m is an integer linear combination of vectors

b1,b2, . . . ,bn in R
m where n ≤ m,

L(B) = L(b1,b2, . . . ,bn) = {Σn
i=1xibi|xi ∈ Z} = {BTx|x ∈ Z

n}
B = {b1,b2, . . . ,bn} is known as the basis of the lattice. The integers n and m
represents the rank and dimension of the lattice. If n = m, then it is a full rank
lattice.
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Definition 2 q-ary Lattice: [2] A Lattice L is known as q-ary lattice if qZn ⊆
L ⊆ Z

n holds for some integer q. For matrix A ∈ Z
n×m
q , we can define two q-ary

lattices of dimension m,

1. L⊥(A) = {x ∈ Z
m|Ax = 0 mod q}

2. L⊥
y (A) = {x ∈ Z

m|ATy = x mod q for y ∈ Z
n}

2.1 Hard Computational Problems on Lattices

Now we define the Hard-on average problem introduced by Ajtai [1] known
as Shortest Integer Solution Problem. Note that if not specified l2− norm is
considered.

Definition 3 Shortest Integer Solution Problem (SIS): For an integer q,
a real β and a matrix A ∈ Z

n×m
q , determine a non-zero integer vector s ∈ Z

m

such that As = 0 mod q and ‖s‖ ≤ β.

Another variant of this problem, where inhomogeneous system is considered,
is defined as below.

Definition 4 Inhomogeneous Shortest Integer Solution Problem
(ISIS): For an integer q, a matrix A ∈ Z

n×m
q , a syndrome u ∈ Z

n
q and a

real β, determine the non-zero integer vector s ∈ Z
m such that As = u mod q

and ‖s‖ ≤ β.

2.2 Discrete Gaussian over Lattices

Gaussian-like probability distributions plays an important role in lattice cryp-
tography and are known as discrete gaussian. This section briefly discuss about
them.

Definition 5 Gaussian Function: For σ > 0 a gaussian function ρ : Rn −→
R

+ centred at c is defined as

ρσ,c(x) = exp(−π‖x − c‖2/σ2),∀x ∈ R
n

Definition 6 Discrete Gaussian Distribution: For some c ∈ R
n, σ > 0

and an n-dimensional lattice L, discrete gaussian distribution can be defined as

DL,σ,c(x) =
ρσ,c(x)
ρσ,c(L)

,∀x ∈ L

where, ρσ,c(L) =
∑

y∈L
ρσ,c(y).

Note that σ and c are 1 and 0 respectively if omitted.
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3 Tian et al.’s Partially Blind Signature Scheme over
Lattices

Tian et al.’s [14] Partially Blind Signature Scheme over lattices works as follows

– Setup(1n): The polynomial time algorithm takes as input the security
parameter and generates the parameters (q, b, d, k,m,M, σ) according to
Table 1 in [10]. Then it selects a matrix randomly A ← Z

n×m
q and

two cryptographic hash functions H : {0, 1}� −→ {−1, 0, 1}k and H ′ :
{0, 1}� −→ Z

n×m
q . Then finally returns the system parameters as params =

(q, b, d, k,m,M, σ,A,H,H ′).
– KeyGen(params): The algorithm takes system parameters params as input

and select S ← {−d, . . . , 0, . . . , d}m×k and computes T = AS mod q. Then
returns secret key as S and public keys as (T).

– SignGen(params,T,S,msg, info): To sign the message msg, the User and
the Signer negotiate to agree on an information info to be attached with
the message. Then, interact as follows to obtain signature on msg

• Sign(Part1): On input (params,T,S, info), signer randomly chooses
y ← Dm

σ and samples (ε�
2, z

�
2) ∈ {−1, 0, 1}k × Dm

σ then computes
(i) c1 ← Ay mod q.
(ii) c2 ← Az�

2 − H ′(info)ε�
2 mod q.

Signer sends the value (c1, c2) to the User.
• Blinding: on input (params,T,msg, info) the User first selects β1, β2 ←

{−b+1, . . . , 0, . . . b− 1}k and α1, α2 ← Dm
σ randomly. Then he computes

(i) c′
1 ← c1 + Aα1 − Tβ1 mod q,

(ii) c′
2 ← c2 + Aα2 − H ′(info)β2 mod q,

(iii) ε ← H(c1, c2,H ′(info),msg)
(iv) ε� ← (ε − β1 − β2) mod 3 where the set {−1, 0, 1}k is viewed as a

representation of Zk
3 .

The User then sends ε� to the signer.
• Signer(Part2): On receiving the value ε� signer computes

(i) ε�
1 ← (ε� − ε�

2) mod 3,

(ii) z�
1 ← Sε�

1 + y with probability min(
Dσm(z�

1 )

MDSε�
1 ,σm(z�

1 )
, 1)

The Signer sends the value (z�
1 , ε�

1, z
�
2 , ε�

2) to the User with probability

min(
Dσm(z�

1 )

MDSε�
1 ,σm(z�

1 )
, 1). If nothing is sent, Restart.

• Unblinding: On receiving (z�
1 , ε�

1, z
�
2 , ε�

2), User unblinds it as follows
(i) z1 ← z�

1 + α1,
(ii) z2 ← z�

2 + α2,
(iii) ε1 ← ε�

1 + β1,
(iv) ε2 ← ε�

2 + β2

If ‖z1‖, ‖z2‖ ≤ 4σ
√

m and ‖ε1‖1, ‖ε2‖1 ≤ b − 2 and
(ε1 + ε2) mod 3 = H(Az1 − Tε1,Az2 − H ′(info)ε2,H ′(info),msg) (1)
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then User returns the signature sign = (z1, z2, ε1, ε2) for message msg and
shared information info. Else, User stores it and later use it on a excep-
tion process of Signer. The following figure shows all interaction during the
signature generation protocol.

Signer Verifier

y ← Dm
σ

(ε�
2 , z�

2 ) ∈ {−1, 0, 1}k × Dm
σ

c1 ← Ay mod q
c2 ← Az�

2 − H′(info)ε�
2 mod q

(c1,c2)−−−−−−−−−−→

β1, β2 ← {−b + 1, . . . , 0, . . . b − 1}
α1, α2 ← Dm

σ
c′
1 ← c1 + Aα1 − Tβ1 mod q

c′
2 ← c2 + Aα2 − H′(info)β2 mod q

ε ← H(c1, c2, H′(info), msg)
ε� ← (ε − β1 − β2) mod 3

ε�
1 ← (ε� − ε�

2) mod 3
z�
1 ← Sε�

1 + y

with probability min(
Dσm(z�

1 )
MDSε�

1 ,σm(z�
1 )

, 1)

ε�
←−−−−−−

(z�
1 ,ε�

1 ,z�
2 ,ε�

2)−−−−−−−−−−−−−−−→
z1 ← z�

1 + α1
z2 ← z�

2 + α2
ε1 ← ε�

1 + β1
ε2 ← ε�

2 + β2

– Exception: This protocol is independently set by the Signer. This main-
tains a local storage for unqualified signature and takes (params,T, (msg,
info, sign)) as input. If any message signature pair is not in local storage
and if ‖z1‖, ‖z2‖ ≤ 4σ

√
m and b − 1 ≤ ‖ε1‖, ‖ε2‖ ≤ b and (1) holds, the

exception protocol starts the SignGen for a new signature with same shared
information and stores the pair in local storage. Else the protocol stops.

– V erify: The algorithm takes (params,T,msg, info, sign) and checks the
validity of signature in the same manner as the User does in the Unbinding
protocol. This return 1 if it is a valid signature else return 0.

3.1 Attack on Traceability Property of Above Scheme

This section introduces an attack on the above partial blind signature that shows
that the signature doesn’t satisfy the untraceability property. If any adversarial
signer, keeps a local storage for all the blinded messages that he has signed as
requested by the User. The Signer then can link a valid signature (z1, z2, ε1, ε2)
to its signing protocol. The attack works as follows

– Signer keeps the record of his views i.e c1, c2, ε
�, z�

1 , z�
2 , ε�

1, ε
�
2 for all the blinded

messages he has signed.
– For a signature (z1, z2, ε1, ε2) opened to public, the Signer can try his records

he keeps to trace back to the signing procedure that generated this signature.
– Since, z1 = z�

1 + α1 and z2 = z�
2 + α2, thus the Signer can find,

α′
1 = z1 − z�

1 and
α′
2 = z2 − z�

2

– Similarly, since ε1 = ε�
1 + β1 and ε2 = ε�

2 + β2 then he can find

β′
1 = ε1 − ε�

1 and
β′
2 = ε2 − ε�

2

as ε1, ε2 ∈ {−b + 2, . . . 0, . . . b − 2}k and ε�
1, ε

�
2 ∈ {−1, 0, 1}k then clearly

β′
1, β

′
2 ∈ {−b + 1, . . . , 0, . . . , b − 1}k as required.
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– Now, adversarial Signer can use these α′
1, α′

2, β′
1 and β′

2 to compute

c′′
1 = c1 + Aα′

1 + Tβ′
1 mod q

c′′
2 = c2 + Aα′

2 − H ′(info)β′
2 mod q

ε′ = H(c′′
1 , c′′

2 ,H ′(info),msg)

– Now, the Signer can compare this ε′ with ε� stored in the local storage. For
which it is matched, it corresponds to the blinded message for the signature
is generated.

Thus, any adversarial signer can easily attack the untraceability property in a
limited number of trials of the signature, making it vulnerable whenever the
signature is revealed in public.

4 Ruckert’s Blind Signature Scheme and Attack on Its
Traceability

Markus Ruckert [13] proposed the first blind signature over lattices, which is
conjuctured to be quantum safe. This section discusses the signature scheme
and the proposed attack on the untracebility property.

The signature schemes consisting of a three tuple (B.KeyGen,B.Sign,
B.V erify) which works as follows:

– B.KeyGen(1n): Choose a secret key ŝ ← Dm
s , and h ← H(R,M) a com-

pression function. Let C(1n) : {0, 1}� × {0, 1}n −→ {0, 1}n be a commitment
scheme. Chooses a function com ← C(1n) and H ← H(1n) which maps
{0, 1}� ← Dε ⊂ D. Then, output the public key S ← h(ŝ).

– B.Sign: To generate a signature on a message M ∈ {0, 1}� this algorithm
proceeds as follows:

Signer Verifier

y ← Dm
y

Y ← h(ŷ)
Y−−−−→

r ← {0, 1}n

C ← com(M, r)
α ← Dα, β ← Dβ

ε ← H(Y − Sα − h(β), C)
ε� ← ε − α
If ε� �∈ Dε�

Restart with new α
ẑ� ← ŝε� + Y

If ẑ� �∈ Gm
�

Trigger Restart
ε�

←−−−−

ẑ�

−−−−→

ẑ = ẑ� − β
If ẑ �∈ Gm

(Required Signature Space)
Output ← (C,α, β, ε)

Else
Output ← OK
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If Output �= OK, then signer parse Output = (C,α, β, ε) and verify ε� +α = ε =
H(Y − Sα − h(β), C) and H(h(ẑ� − β) − Sε, C) = ε, ẑ� − β �∈ Gm. If it holds
then, signer “Trigger Restart”.

Finally, verifier output (M, r, ẑ, ε) or ⊥ if Output �= OK. Thus, the algorithm
outputs the signature (r, ẑ�, ε) on the given message M . Here, we should note
that when restart is encountered then we only choose new α and when trigger
restart is encountered then we execute with new r to make the new execution
independent of the previous one. But, there is an exception at last, when the
verifier again trigger restart then signer can stop the algorithm as the verifier
despite having the valid signature call for a restart.

– B.V erify: This algorithm returns 1 if ẑ ∈ Gm and H(h(ẑ)−Sε, Com(M, r)) =
ε, else return 0.

4.1 Attack on Traceability

Similar to the above attack, we attack the traceability of Ruckert’s signature.
The attack works as follows,

– Signer keeps the record of his views i.e ε�, ẑ� for all the blinded messages he
has signed.

– For a signature (M, r, ẑ, ε) opened to public, the Signer can try his records
he keeps to trace back to the signing procedure that generated this signature.

– Since, ẑ = ẑ� − β, thus the Signer can find,

β′ = ẑ − ẑ�

– Similarly, since ε� = ε − α then he can find

α′ = ε� − ε

– Now, adversarial Signer can use these α′, β′ to compute

ε′ = H(Y − Sα′ − h(β′), C), where he can compute C ← com(M, r).

– Now, the Signer can compare this ε′ with ε� stored in the local storage. For
which it is matched, it corresponds to the blinded message for the signature
is generated.

Thus, any adversarial signer can easily attack the untraceability property in a
limited number of trials of the signature, making it vulnerable whenever the
signature is revealed in public.

5 Conclusion

The paper successfully prove that existing blind and partial blind signature
schemes don’t satisfy the untraceability property of a secure blind signature.
We suggest to propose an Untraceable quantum safe blind signature scheme as
future research direction of the paper.
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Abstract. Division property is a generalized integral property proposed
by Todo in Eurocrypt 2015. Utilizing automated tools such as SAT and
MILP, the complexity to search for integral distinguisher by division
property was greatly reduced. Based on division property and auto-
mated tools, Derbez et al. obtained a 10-round integral distinguisher
of RECTANGLE by considering the linear transformation of the input
and output state bits of the cipher, which is one round longer than known
integral distinguishers. In this paper, we further consider improved inte-
gral attack on block ciphers with Generalized Feistel Structure (GFS
cipher) by considering the linear transformation of the S-boxes. Taking
the 16-branch GFS cipher with 4-bit S-boxes as an example, using this
improved method, we can increase the round of integral distinguishers
by one round for many S-boxes. The result implies that ability to resist
this improved integral attack should also be considered when designing
corresponding GFS ciphers.

Keywords: Division property · SAT · Integral distinguisher ·
Generalized Feistel Structure

1 Introduction

Integral attack is one of the most important and efficient attacks on block ciphers,
and the key point of an integral attack is to find long enough integral distin-
guishers. Division property is a new generalized integral property proposed by
Todo [1] and the propagation rules of division property can be evaluated for
basic operations such as Copy, XOR and S-box. With this method, new integral
distinguishers have been found and improved integral attack have been presented
on many block ciphers such as MISTY1, LBlock and TWINE [2,3]. In FSE 2016,
Todo and Morii further introduced bit-based division property and successfully
found the 14-round integral distinguisher of SIMON32 [4]. In CRYPTO 2016,
Boura and Christina [5] introduced the concept of parity set to study division
property. They utilized the parity set to exploit detailed properties of the S-box
and linear layer of PRESENT, leading to improved integral distinguishers of
PRESENT.
c© Springer Nature Switzerland AG 2020
Z. Liu and M. Yung (Eds.): Inscrypt 2019, LNCS 12020, pp. 463–479, 2020.
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At ASIACRYPT 2016, Xiang et al. [6] characterized the propagation of bit-
based division property of S-boxes and other basic operations by some inequal-
ities, and constructed corresponding MILP model for automatic search of inte-
gral distinguishers. With MILP solver Gurobi, Xiang et al. found better integral
distinguishers for several block ciphers including SIMON128, PRESENT and
RECTANGLE. At ASIACRYPT 2017, Sun et al. [7] characterized the propa-
gation of division property by some Boolean logical equations, and constructed
corresponding SAT model for bit-based division property and SMT model for
word-based division property. With some SAT and SMT solver, they found better
integral distinguishers of block ciphers including SHACAL-2 and CLEFIA. Later
in SAC 2018, Eskandari et al. [8] further provided a generalized search model
for integral distinguisher of different kinds of block ciphers with SAT solver, and
found many new or improved integral distinguishers including GIFT-128, LBlock
and SM4, where detailed bit-based division property of S-boxes is considered as
in MILP model.

Based on the division property and automated tools, longer integral distin-
guishers may be found for some block ciphers by considering the linear transfor-
mation of the input or output states of the block cipher. In this way, Derbez et
al. [9] have presented an improved 10-round integral distinguisher of RECTAN-
GLE with MILP model. Inspired by their work, we will further present improved
method to search for integral distinguishers of block ciphers with Generalized
Feistel Structure (GFS cipher) using SAT solver.

The Generalized Feistel Structure [10] is one of the basic structures of a block
cipher. While basic Feistel ciphers divide a message into two sub-blocks, GFS
cipher divides a message into m subblocks (branches) for some m > 2. Many
block ciphers adopt generalized Feistel structure, such as CAST-256, CLEFIA,
LBlock and TWINE. In 2010, Suzaki et al. [11] studied the diffusion property and
security of GFS, and presented some optimal permutation layers of GFS when
the number of branches is less than or equal to 16. For example, LBlock and
TWINE are two 16-branch lightweight GFS ciphers with optimal permutation
layers.

Our Contribution. In this paper, by considering the linear transformation of
the S-boxes, we present an improved method to search for integral distinguishers
of block ciphers with Generalized Feistel Structure (GFS cipher) using bit-based
division property and SAT solver. Some examples are also provided for 16-branch
GFS cipher with 4-bit S-boxes and optimal permutation layers as shown in [11].
The concrete results are summarized as follows:

– Let F be a GFS cipher, and FL be a new GFS cipher obtained by substituting
the S-box S with SL = L ◦ S ◦ L−1 for any invertible linear transformation
L. It is shown that every integral distinguisher of FL, obtained by bit-based
division property, corresponds to an integral distinguisher of F . Using this
method we may find some new integral distinguishers that can not be obtained
by traditional bit-based division property. Particularly, when L is an identity
transformation, FL = F , so integral distinguishers which are obtained by
traditional bit-based division property can also be obtained by our method.
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– For 16-branch GFS cipher with 4-bit S-boxes and optimal permutation layers
as shown in [11], a series of 64-bit GFS ciphers are constructed with different
4-bit S-boxes. The integral distinguishers of the constructed GFS cipher are
searched for by traditional bit-based division property and improved method
proposed in this paper respectively. The results shows that if the S-boxes of
Serpent0, Serpent1, Serpent2, and Serpent17 [13] are used, for most of the
constructed GFS ciphers, our method can find longer integral distinguishers
than utilizing traditional bit-based division property.

Organization of the Paper. The rest of this paper is organized as follows: In
Sect. 2, some notations, review of Generalized Feistel Structure, division prop-
erty, and the corresponding SAT model are presented for searching of integral
distinguishers with bit-based division property. In Sect. 3, our improved method
is proposed to search for integral distinguishers of GFS ciphers. In Sect. 4, some
examples of 16-branch GFS ciphers with 4-bit S-boxes are presented for which
we can find longer integral distinguishers with our improved method. A short
conclusion is presented in Sect. 5.

2 Preliminaries

2.1 Notations

Let F2 denote the finite field with only two elements and F
n
2 denote the set of all

n-bit string over F2. Let Z denote the integer ring, and Z
n denote the set of all

vectors of length n whose coordinates are integers. For any a ∈ F
n
2 , let a[i] denote

the i-th bit of a, and the Hamming weight of a is calculated by w(a) = Σn−1
i=0 a[i].

For any a = (a0, a1, ..., am−1) ∈ F
�0
2 × F

�1
2 × · · · × F

�m−1
2 , the vectorial Hamming

weight of a is defined as W (a) = (w(a0), w(a1), ..., w(am−1)) where w(ai) is the
Hamming weight of ai. Let k = (k0, k1, ..., km−1) and k′ = (k′

0, k
′
1, ..., k

′
m−1) be

two vectors in Z
m. Define k′ � k if k′[i] ≥ k[i] holds for all i = 0, 1, ...,m − 1,

otherwise, k′
� k.

2.2 Generalized Feistel Structure (GFS)

Let m be an even integer. The Generalized Feistel structure with m branches is
shown in Fig. 1. The round function R is a permutation over (Fn

2 )m defined as

R : (x0, x1, ..., xm−1) → (y0, y1, ..., ym−1),

where (y0, y1, ..., ym−1) = π(x0, F0(x0) ⊕ x1, ..., xm−2, F(m−2)/2(xm−2) ⊕ xm−1),
Fi : F

n
2 → F

n
2 is a cryptographic keyed function which is called F -function,

and π : (Fn
2 )m → (Fn

2 )m is a deterministic permutation. Here, we restrict π
to be a block-wise permutation, i.e., a shuffle of m sub-blocks. An encryption
transformation of a r-round GFS cipher is done by iterating the above round
function for r rounds, where the input of the first round is the plaintext and the



466 Z. Xu et al.

Fig. 1. The round function of the GFS with m branches

output of the r-round is the ciphertext. The permutation π in the last round is
omitted to ensure the consistency of encryption and decryption.

Throughout the paper, when referring to the GFS cipher, m denotes the
number of sub-blocks and n denotes the bit length of the sub-block. Thus a GFS
cipher is always a mn-bit block cipher. For simplicity, we only consider the case
when F -function is the composition of S-box function and key-XOR function,
i.e., Fi(xi) = S(xi ⊕ ki/2) for i = 0, 2, 4, ...,m − 2.

Table 1. Permutations of Type-II GFS and other GFS with best diffusion

Permutation π

Type-II [15,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14]

No. 1 [1,2,9,4,15,6,5,8,13,10,7,14,11,12,3,0]

No. 2 [1,2,11,4,9,6,7,8,15,12,5,10,3,0,13,14]

No. 3 [1,2,11,4,9,6,15,8,5,12,7,10,3,0,13,14]

No. 4 [5,2,9,4,1,6,11,8,15,12,3,10,7,0,13,14]

No. 5 [5,2,9,4,11,6,15,8,3,12,1,10,7,0,13,14]

No. 6 [5,2,11,4,1,6,15,8,3,12,13,10,7,0,9,14]

No. 7 [1,2,11,4,3,6,7,8,15,12,5,14,9,0,13,10]

No. 8 [1,2,11,4,9,6,7,8,15,12,13,14,3,0,5,10]

No. 9 [1,2,11,4,9,6,15,8,5,12,7,14,3,0,13,10]

No. 10 [7,2,13,4,11,8,3,6,15,0,9,10,1,14,5,12]

No. 11 [7,2,13,4,11,8,9,6,15,0,3,10,5,14,1,12]

No. 12 [1,2,11,4,15,8,3,6,7,0,9,12,5,14,13,10]

No. 13 [5,2,11,6,13,8,15,0,3,4,9,12,1,14,7,10]

In [11], Suzaki et al. proposed some optimal permutation layers with best dif-
fusion property against differential attacks. The instances found with 16 branches
are shown in Table 1, where π indicates that the i-th sub-block is mapped to the
π[i]-th sub-block. Take the second row for example, π[0] = 15 means that the
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0-th sub-block is mapped to the 15-th sub-block. In this paper, we will further
evaluate their ability against our improved integral attacks.

2.3 Review of Division Property

The division property proposed by Todo [1] in Eurocrypt 2015 is a generalized
integral property, which can characterize the implicit properties between tradi-
tional ALL and BALANCE properties. We can first choose a set of plaintexts,
whose division property follows initial division property. Then obtain the division
property of the set for the (i + 1)-th round from the i-th round by the propa-
gation rules, and determine the existence of integral distinguishers according to
final division property.

In the following, we briefly review definition of division property, and prop-
agation rules for some basic operations involved in GFS ciphers.

Definition 1 (Bit Product Function) [1]. Assume u ∈ F
n
2 and x ∈ F

n
2 . The

Bit Product Function πu is defined as:

πu(x) =
n−1∏

i=0

x[i]u[i].

For u = (u0, u1, ..., um−1) ∈ F
�0
2 × F

�1
2 × · · · × F

�m−1
2 , let x = (x0, x1, ..., xm−1) ∈

F
�0
2 × F

�1
2 × · · · × F

�m−1
2 be the input, the Bit Product Function πu is defined as:

πu(x) =
m−1∏

i=0

πui
(xi).

Definition 2 (Division Property) [1]. Let X be a multi-set whose elements
take values from F

�0
2 × F

�1
2 × · · · × F

�m−1
2 . When the multi-set X has the division

property D�0,�1,...,�m−1
K

, where K denotes a set of m-dimensional vectors whose
i-th element takes a value between 0 and �i, if fulfills the following conditions:

⊕

x∈X

πu(x) =
{

unknown, if there is k ∈ K s.t. W (u) � k,
0, otherwise.

Remark 1. Note that �0, �1, ..., �m−1 are restricted to 1 when we consider bit-
based division property. In this case, the division property of X is also
denoted by D1m

K
.

Propagation Rules for Division Property

Rule 1 (Key XOR) [1,5]. Let f be a key XOR function, where the input x and
the key k take values from F

n
2 , the output y is calculated as y = x⊕k. Let X and

Y be the input multi-set and output multi-set, respectively. Assuming that X has
division property D�0,�1,...,�m−1

K
, then Y also has division property D�0,�1,...,�m−1

K
.
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Remark 2. Key XOR function can be neglected when considering the propaga-
tion of bit-based division property.

Rule 2 (Copy) [1,4]. Let f be a copy function, where the input x takes value
from F

n
2 and the output is calculated as (y0, y1) = (x, x). Let X and Y be the

input and output multi-set, respectively. Assume that X has division property
Dn

{k}, then the division property of Y is Dn,n
K′ , where

K
′ = {(k − i, i)|0 ≤ i ≤ k}.

Rule 3 (XOR) [1,4]. Let f be a XOR function, where the input (x0, x1) takes
value from F

n
2 × F

n
2 and the output is calculated as y = x0 ⊕ x1. Let X and Y be

the input and output multi-set, respectively. Assume that X has division property
Dn,n

K
, the division property of Y is Dn

{k′}, where

k′ = min{k0 + k1|(k0, k1) ∈ K}.

For the propagation of division property for S-boxes, we use the bit-based
division property as shown in [6].

Rule 4 (S-box) [6]. Let f be a n-bit S-box function, where x = (x0, x1, ..., xn−1)
and y = (y0, y1, ..., yn−1) be the input and the output, respectively, and yi is
expressed as a boolean function of (x0, x1, ..., xn−1). The propagation of division
property for S-box can be calculated as in Algorithm1.

Algorithm 1. Calculating division trails of an S-box

Input : The input division property of an n-bit S-box D1n

k where
k = (k0, k1, ..., kn−1) ∈ F

n
2

Output: A set K of vectors such that the output multi-set has division
property D1n

K

1 S̄ = {k̄|k̄ � k};
2 F (X) = {πk̄(x)|k̄ ∈ S̄};
3 K̄ = ∅;
4 for u ∈ (F2)

n do
5 if πu(y) contains any monomial in F (X) then
6 K̄ = K̄

⋃{u};
7 end

8 end
9 K = SizeReduce(K̄);

10 return K;

Remark 3. If k′ � k, then k′ is redundant and can be removed from K. The
formula K = SizeReduce(K̄) in Algorithm 1 means removing all redundant
vectors in K.
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Definition 3 (Division Trail). Let f be the round function of block cipher.
Assume that the input multi-set has division property D�0,�1,...,�m−1

{k} , and the

internal state after i rounds has division property D�0,�1,...,�m−1
Ki

. Thus we have
the following chain of division propagations:

{k} � K0
f−→ K1

f−→ K2
f−→ · · · f−→ Kr

Moreover, for any vector k∗
i ∈ Ki(0 ≤ i ≤ r), there must exist a vector k∗

i−1 ∈
Ki−1 such that k∗

i−1 can propagate to k∗
i by propagation rules.

Proposition 1 (Integral Property) [1,6]. Assume that multi-set X has the
bit-based division property D1n

K
. If there is a unit vector ei /∈ K, then the i-th bit

of multi-set X is balanced.

2.4 SAT Model for Searching of Integral Distinguishers

In computer science, the Boolean Satisfiability Problem (SAT) [12] is the problem
of determining if there exists an interpretation that satisfies a given Boolean
formula. In other words, it discusses whether the variables involved in a given
Boolean formula can be consistently replaced by the value True or False so that
the formula is evaluated to be True. If this is the case, the formula is called
satisfiable.

By modeling the propagation of bit-based division property by certain
Boolean logical equations, the searching for integral distinguishers can be trans-
formed into the problem of solving the SAT model. By calling the CryptoMiniSat1

solver, the corresponding integral distinguishers can be found.

Model 1 (Bit-based Copy) [7]. Let (a)
Copy−→ (b0, b1) be a division trail of

Copy function, then the following logical equations are sufficient to depict the
propagation of bit-based division property of Copy function:

⎧
⎪⎪⎨

⎪⎪⎩

b0 ∨ b1 = 1
a ∨ b0 ∨ b1 = 1
a ∨ b0 ∨ b1 = 1
a ∨ b0 ∨ b1 = 1

Model 2 (Bit-based XOR) [7]. Let (a0, a1)
XOR−→ (b) be a division trail of

XOR function, then the following logical equations are sufficient to depict the
propagation of bit-based division property of XOR function:

⎧
⎪⎪⎨

⎪⎪⎩

a0 ∨ a1 = 1
a0 ∨ a1 ∨ b = 1
a0 ∨ a1 ∨ b = 1
a0 ∨ a1 ∨ b = 1

1 https://github.com/msoos/cryptominisat.

https://github.com/msoos/cryptominisat.
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Similar as in [6] and [8], we can also characterize detailed bit-based division
property of S-box with SAT model as follows:

Model 3 (S-box). Let (a0, a1, ..., an−1)
S−box−→ (b0, b1, ..., bn−1) be a divi-

sion trail of S-box function. Assume that multi-set {(xi
0, x

i
1, ..., x

i
n−1, y

i
0, y

i
1, ...

yi
n−1)|0 ≤ i ≤ t − 1} consists of all the vectors that don’t appear in the division

trail. the following logical equations are sufficient to depict the propagation of
bit-based division property of S-box function:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(a0 ⊕ x0
0) ∨ · · · ∨ (an−1 ⊕ x0

n−1) ∨ (b0 ⊕ y0
0) ∨ · · · ∨ (bn−1 ⊕ y0

n−1) = 1
(a0 ⊕ x1

0) ∨ · · · ∨ (an−1 ⊕ x1
n−1) ∨ (b0 ⊕ y1

0) ∨ · · · ∨ (bn−1 ⊕ y1
n−1) = 1

...
(a0 ⊕ xt−1

0 ) ∨ · · · ∨ (an−1 ⊕ xt−1
n−1) ∨ (b0 ⊕ yt−1

0 ) ∨ · · · ∨ (bn−1 ⊕ yt−1
n−1) = 1

Let a0 = (a0
0, a

0
1, ..., a

0
mn−1) → · · · → ar = (ar

0, a
r
1, ..., a

r
mn−1) be an r-round

division trail. When searching for integral distinguishers, we first construct a set
of logical equations to characterize the division trail for the i-th round encryption

ai−1 = (ai−1
0 , ai−1

1 , ..., , ai−1
mn−1) → ai = (ai

0, a
i
1, ..., , a

i
mn−1)

by Model 1, Model 2 and Model 3, then iterated the equations for r times
to characterize the division trail for r rounds. The concrete process to search
for integral distinguishers is presented in Algorithm 2, and the initial division
property and stopping rule are given as follows.

Initial Division Property and Stopping Rule. It is known that when
the weight of initial division a0 is higher, longer integral distinguishers may
be obtained, so we need only to test the situation a0 = inj , where the j-th
bit of inj is 0, while the remaining bits are 1. By Proposition 1, the division
property after r rounds can be set to unit vectors ek, where the k-th bit of ek

is 1, while the remaining bits are 0. Then we call CryptoMiniSat solver to solve
the SAT problem. If there exists some j ∈ {0, 1, ...,mn − 1} such that for any
k ∈ {0, 1, ...,mn − 1}, the SAT problem is satisfiable, then the output division
property contains all unit vectors, and the corresponding multi-set, i.e., the out-
puts of the r-th round, does not have any integral property, and the propagation
should stop and an (r − 1)-round distinguisher is obtained. Otherwise, if there
is at least one index k, such that the SAT problem is not satisfiable for the k-th
unit vector ek, then we can proceed to the (r + 1)-th round and evaluate the
division property in a similar way.

3 Improved Method to Search for Integral Distinguishers
of GFS Ciphers

In this section, we will propose an improved method to search for integral dis-
tinguishers based on division property with SAT solver.
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3.1 New Form of Integral Distinguishers

Definition 4 (Linear equivalent GFS cipher). Let F be a GFS cipher whose
round function R is given as

R : (x0, x1, ..., xk−1)
→ π(x0, S(x0 ⊕ k0) ⊕ x1, ..., xm−2, S(xm−2 ⊕ k(m−2)/2) ⊕ xm−1) (1)

Define a new GFS cipher FL whose round function RL is given as:

RL : (x0, x1, ..., xk−1)
→ π(x0, S

′(x0 ⊕ k′
0) ⊕ x1, ..., xm−2, S

′(xm−2 ⊕ k′
(m−2)/2) ⊕ xm−1) (2)

where S′ = L◦S ◦L−1, k′
j = L(kj), L is an invertible linear transformation over

F
n
2 , and ◦ is the composition function. Then the new GFS cipher FL is called the

linear equivalent GFS cipher of F with respect to the linear transformation L.

There is a connection between R and RL about the input and output by the
definition of linear equivalent GFS cipher.

Lemma 1 (Relationship between Round Function). Let L be an invertible
linear transformation over F

n
2 , and FL be the linear equivalent GFS cipher of

F with respect to L. Denote by R and RL the round function of F and FL,
respectively. Assume that x = (x0, x1, ..., xm−1) and y = (y0, y1, ..., ym−1) are
the input and output of round function R, respectively, where xi, yi ∈ F

n
2 . Let

xL = (L(x0), L(x1), ..., L(xm−1)) be the input of round function RL, then yL =
(L(y0), L(y1), ..., L(ym−1)) is the output of round function RL.

Recursively, from Lemma 1 we can easily obtain the following conclusion.

Theorem 1 (Relationship between Ciphers). Let L be a invertible linear
transformation over F

n
2 , and FL be the linear equivalent GFS cipher of F with

respect to L. Assume that x = (x0, x1, ..., xm−1) and y = (y0, y1, ..., ym−1) are
the input and the output of the GFS cipher F over r round respectively, where
xi, yi ∈ F

n
2 . Let xL = (L(x0), L(x1), ..., L(xm−1)) be the input of the GFS cipher

FL over r rounds, then yL = (L(y0), L(y1), ..., L(ym−1)) is the output of the GFS
cipher FL over r rounds.

Let L be an invertible linear transformation over F
n
2 . Then F is the linear

equivalent GFS cipher of FL with respect to L−1. If there is an integral distin-
guisher of FL, where the plaintext and ciphertext set are denoted by XL and YL

respectively, and YL has balanced bits, then there is also an integral distinguisher
of F too, whose plaintext set is

X = {(L−1(x′
0)), (L

−1(x′
1)), ..., (L

−1(x′
m−1)))|(x′

0, x
′
1, ..., x

′
m−1) ∈ XL},

and the ciphertext set is

Y = {(L−1(y′
0)), (L

−1(y′
1)), ..., (L

−1(y′
m−1)))|(y′

0, y
′
1, ..., y

′
m−1) ∈ YL}.
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Ciphertext set Y may not have balanced bit, but a linear transformation of Y,
i.e., YL, has balanced bits.

In this paper, the F -function is of the form F (x) = S(x⊕ k). From remark 2
we know that the integral distinguisher found with bit-based division property
is independent of the key in that case. Thus we need only to consider the trans-
formation of S-boxes when constructing FL, that is, we need only to replace the
S-box S of F by L ◦ S ◦ L−1, while making no change to the key.

If a r-round integral distinguisher of FL is found by bit-based division prop-
erty with plaintexts set XL, and the j-th bit of corresponding ciphertexts set
YL is balanced, then we can get a r-round integral distinguisher of F with the
plaintexts set

X = {(L−1(x′
0), L

−1(x′
1), ..., L

−1(x′
m−1))|(x′

0, x
′
1, ..., x

′
m−1) ∈ XL}, (3)

and the corresponding ciphertexts set is denoted by Y. Denote

Y
′ = {(L(y0), L(y1), ..., L(ym−1))|(y0, y1, ..., ym−1) ∈ Y}.

Then the j-th bit of Y
′ is balanced.

From above we know that even if we cannot find a r-round integral dis-
tinguisher for the GFS cipher F with traditional searching method based on
bit-based division property, we may find some linear transformation L such that
a r-round integral distinguisher can be found for the linear equivalent cipher FL

of F . That is, even if there exists no balanced bits in the ciphertext set Y of
r-round encryption of F for all kinds of plaintexts set choosed by traditional
searching method, there still may exist some balanced bits when considering
the linear transformation L of the ciphertexts set Y for certain plaintexts set
X as shown in equation (3). Hence longer integral properties can be obtained
with this improved method. In the following we will show how to find the linear
transformation efficiently and present some examples such that the improved
searching method works.

3.2 Algorithm Optimization

There are
∏n−1

i=0 (2n − 2i) invertible linear transformations defined over F
n
2 . If we

generate a new linear equivalent GFS cipher FL for each invertible linear trans-
formation L, and search for its integral distinguishers, there will be too many
experiments to be done. Therefore, it is necessary to remove some redundant
invertible linear transformation and pick out these useful linear transformations
before searching for integral distinguishers.

Remove Redundant Invertible Linear Transformations. Permutation is
a special kind of invertible linear transformations, which only change the position
of bits. For a n-bit permutation P , it can be shown as follows that the round
of the longest integral distinguishers that can be found with bit-based division
property are the same for FL and FP◦L.
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For a GFS cipher, only the function Copy, XOR and S-box are per-
formed when the propagation of bit-based division property is considered.
For the round function R of F , if there is a division trail k

R−→ k′, where
k = (k0, k1, ..., km−1) ∈ (Fn

2 )m, k′ = (k′
0, k

′
1, ..., k

′
m−1) ∈ (Fn

2 )m, then for the

round function RP of FP , there is also a division trail kP
RP−→ k′

P , where
kP = (P (k0), P (k1), ..., P (km−1)), k′

P = (P (k′
0), P (k′

1), ..., P (k′
m−1)). If a r-round

integral distinguisher of cipher F is obtained by bit-based division property, then
a r-round integral distinguisher of cipher FP can also be obtained by bit-based
division property.

Definition 5 (Permutation Equivalent). Denote by Ωn the set of all invert-
ible linear transformations over F

n
2 , and Ψn the set of all permutations over F

n
2 .

For any linear transformations L ∈ Ωn and P ∈ Ψn, if L′ = P ◦ L, then L′

is called Permutation Equivalent with L. Moreover, for any linear transfor-
mation L ∈ Ωn, the set ΩL

n = {P ∗ ◦ L|P ∗ ∈ Ψn} is called a Permutation
Equivalence class of L.

Let F be a GFS cipher, and FL and FP◦L be the linear equivalent GFS cipher
of F with respect to L and P ◦ L, respectively. It is obvious that FP◦L is also
the linear equivalent GFS cipher of FL with respect to P . If a r-round integral
distinguisher of cipher FL is found by bit-based division property, then a r-round
integral distinguisher of cipher FP◦L can also be found by bit-based division
property, that is, the linear transformation L and P ◦ L have the same effect
with our method. Thus we need only to consider all permutation inequivalent
linear transformations.

Denote by Ω all permutation inequivalent linear transformations over F
n
2 ,

then |Ω| = |Ωn|
|ΩL

n | . The number of all invertible linear transformations Ωn over F
n
2

is equal to the number of all n × n invertible matrices over F2, and the number
of all permutation equivalent linear transformations of L is equal to the number
of all n-bit permutations, so we have

|Ω| =
|Ωn|
|ΩL

n | =
∏n−1

i=0 (2n − 2i)
n!

.

Particularly if n = 4, then |Ω4| = 20160, and |Ω| = 840, which is far less than
20160.

From above discussion we need only to exhaust all permutation inequivalent
linear transformations L when searching for integral distinguishers of FL. Once
a r-round distinguisher of FL is obtained, a r-round distinguisher of F can
be obtained accordingly. The concrete improved method to search for integral
distinguishers of a GFS cipher is presented in Algorithm2.

Choose Better Invertible Linear Transformation. From above we know
that even if the length of the S-box is 4, there are still 840 permutation inequiv-
alent invertible linear transformations need to be tested. To further improve the
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efficiency of the search, we will make some filtering and select some fine linear
transformations from Ω instead of traversing all linear transformations. The lin-
ear transformation L is selected according to whether the corresponding new
S-box SL = L ◦ S ◦ L−1 achieves fine propagation of bit-based division property.

In [5], Boura et al. utilized the propagation of bit-based division property of
S-box to increase the round of integral distinguisher of PRESENT, where the
following two properties were utilized:

(1) For k′ ∈ F
n
2 , denote K = {k ∈ F

4
2|there is a division trail k

S−box−→ k′}. Then
when k′ = (0, 0, 0, 1), K contains less elements and does not contain any
element of weight 3.

(2) For k ∈ F
n
2 , denote K

′ = {k′ ∈ F
4
2|there is a division trail k

S−box−→ k′}.
Then when k = (1, 0, 1, 1), K

′ contains less elements and does not contain
any element of weight 1. Similar conditions can be used to filter the linear
transformations. For all division trails k

SL−→ k′ of S-box function, when k′

is fixed, it is expected that the weight of k is as low as possible and such
division trails k

SL−→ k′ are as few as possible. Similarly, when k is fixed, it
is expected that the weight of k′ is as high as possible and such division
trails k

SL−→ k′ are as few as possible. In these cases, the bit-based division
property is less likely to propagate to unit vectors over several rounds, and
longer integral distinguishers are likely to be obtained.

However, there may not exist S-boxes such that the above conditions hold
for all fixed k or k′. So we use weaker conditions instead. It is required that there
exist some k′ with w(k′) = 1 such that for all division trails k

SL−→ k′, the weight
of k is as low as possible and such division trails k

SL−→ k′ are as few as possible,
or there exist some k with w(k) = n− 1 such that for all division trails k

SL−→ k′,
the weight of k′ is as high as possible and such division trails k

SL−→ k′ are as few
as possible.

According to the above analysis, we can filter linear transformations from Ω
as follows:

(1) For all invertible linear transformations L in Ω, construct a new S-box
SL = L ◦S ◦L−1 and call Algorithm 1 to search for the division trail of SL.
For any fixed element k′ of weight 1 in F

n
2 , denote

K(SL, k′) = {k|there is a division trail k
SL−→ k′}.

For any invertible linear transformation L in Ω, save all linear transforma-
tions L satisfying that there exists some k′ of weight 1 such that K(SL, k′)
contains the least number of vectors of weight n−1, and denote the remain-
ing set by ΩO

n−1. Then for any invertible linear transformation L in ΩO
n−1,

save all linear transformations L satisfying that there exists some k′ of
weight 1 such that K(SL, k′) contains the least number of vectors of weight
n − 2, and denote the remaining set by ΩO

n−2, · · · , Continuously, denote
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Algorithm 2. Improved algorithm to search for integral distinguishers of
a GFS cipher
Input : A GFS cipher F , length n of the S-box
Output: round r of the integral distinguisher, invertible linear transformation

L over F
n
2 , initial bit-based division property D1mn

{k} and the set Bset
of balanced bits

1 set0 = {L|L is an invertible linear transformation over F
n
2 };

2 Ψ = {P |P is a permutation over F
n
2 };

3 Ω = ∅;
4 r = 0;
66 while set0 �= ∅ do
7 Select an invertible linear transformation L from set0, and generate a new

set: set1 = {P ◦ L|P ∈ Ψ};
8 set0 = set0 \ set1;
9 Ω = Ω ∪ {L};

10 end
11 for L ∈ Ω do
12 Replace the S-box S in the GFS cipher F with SL = L ◦ S ◦ L−1, and

obtain a new GFS cipher FL;
13 Construct SAT model of FL by bit-based division property and search for

the integral distinguishers, and obtain the longest round rL of the integral
distinguishers, an initial division property D1mn

{k} and corresponding
balanced bits set Bset;

14 if rL > r then
15 r = rL;
16 Distinguisher = (r, L, k, Bset);

17 end

18 end
19 Return Distinguisher;

by ΩO
1 the set of all linear transformations L in ΩO

2 satisfying that there
exists some k′ of weight 1 such that K(SL, k′) contains the least number of
vectors of weight 1.

(2) For all invertible linear transformations L in Ω, construct a new S-box
SL = L ◦S ◦L−1 and call Algorithm 1 to search for the division trail of SL.
For any fixed element k of weight n − 1 in F

n
2 , denote

K
′(SL, k) = {k′|there is a division trail k

SL−→ k′}.

For any invertible linear transformation L in Ω, save all linear transformations
L satisfying that there exists some k of weight n − 1 in F

n
2 such that K

′(SL, k)
containing the least vectors of weight 1, and denote the remaining set by ΩI

1 .
For any invertible linear transformation L in ΩI

1 , save all linear transformations
L satisfying that there exists some k of weight n − 1 in F

n
2 such that K

′(SL, k)
containing the least vectors of weight 2, and denote the remaining set by ΩI

2 , · · · ,
Continuously, denote by ΩI

n−1 the set of all linear transformations L in ΩI
n−2
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satisfying that there exists some k of weight n − 1 such that K
′(SL, k) contains

the least number of vectors of weight n − 1.
The final linear transformations can be selected from ΩO

1

⋃
ΩI

n−1. Taking
the 4-bit S-box Serpent0 used in Serpent as an example, Ω, ΩO

3 , ΩO
2 and ΩO

1

have 840, 224, 24 and 12 transformations respectively, and Ω, ΩI
1 , ΩI

2 and ΩI
3

have 840, 224, 24 and 12 transformations respectively, so there are totally 24
invertible linear transformations satisfying conditions (1) or (2).

To verify the efficiency of our improved method, we first searched for the inte-
gral distinguishers of LBlock and TWINE, but no longer integral distinguishers
can be found with our method. As a result, we further construct other instances
of GFS ciphers. For example, when the Serpent0 S-box [13] and the No.2 permu-
tation as shown in Table 1 are used, longer integral distinguishers can be found.
In this case, when the linear transformations are chosen from Ω, there are 224
in 840 transformations that can lead to longer distinguishers. When the linear
transformations are chosen from ΩO

3

⋃
ΩI

1 , there are 224 in 400 transformations
that can lead to longer distinguishers. When the linear transformations are cho-
sen from ΩO

2

⋃
ΩI

2 , there are 40 in 48 transformations that can lead to longer
distinguishers. When the linear transformations are chosen from ΩO

1

⋃
ΩI

3 , there
are 20 in 24 transformations that can lead to longer distinguishers. It is easier
to obtain a longer distinguisher using transformations from ΩO

1

⋃
ΩI

3 .
For any fixed S-box, if the identity transformation In does not belong to

ΩO
1

⋃
ΩI

n−1, then according to the criteria of (1) and (2), we think that it may
be easier to search for longer integral distinguishers of FL than F by traditional
bit-based division property. In this case, we call the S-box distinguishable.

For 4-bit S-boxes, we found that the S-boxes used in LBlock and TWINE are
not distinguishable, but some S-boxes used in Serpent, Midori [14] and Spongent
[15] etc. are distinguishable. For these distinguishable S-boxes, we may obtain
longer integral distinguishers of FL, and longer integral distinguishers of F may
also be found with our improved method as shown in Algorithm2. Some exam-
ples are given in next section.

4 Experimental Results

In order to verify the validity of our improved method, we construct a series
of 64-bit GFS ciphers with 16-branch and 4-bit distinguishable S-boxes. The
constructed GFS ciphers use the permutation layers of Type-II GFS and the
optimal permutation layers as shown in Table 1 and [11]. Improved integral dis-
tinguishers can be found for some S-boxes used in Serpent, Midori and Spongent.
The round of the longest integral distinguishers that can be found by different
methods are listed in Table 2, where the third column indexed by ‘Integral’ indi-
cates the round of the longest integral distinguisher obtained in [11], the fourth
column indexed by ‘DP ’ indicates the round of the longest integral distinguisher
obtained by traditional bit-based division property, and the last column indexed
by ‘newDP ’ indicates the round of the longest integral distinguisher obtained
by our improved searching method.
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The experimental results in Table 2 show that if Serpent0, Serpent1, Serpent2
and Serpent17 are selected as S-boxes in a GFS cipher with 16-branch, for most of
the constructed ciphers, our method can find longer integral distinguisher than
by traditional bit-based division property. For simplicity, in our experiments
we only use one invertible linear transformation L in ΩO

1

⋃
ΩI

n−1 to construct
linear equivalent GFS cipher FL and search for its integral distinguishers. If
more invertible linear transformations L are used, more improved results may
be obtained.

Table 2. Improved integral distinguishers for some GFS ciphers

Permutation S-box used in the GFS cipher Integral DP newDP

type-II Serpent0, Serpent1, Serpent2, Serpent17 32 33 34

type-II Midori Sb0 32 34 35

No. 2 Serpent0, Serpent1, Serpent2, Serpent17 15 17 18

No. 3 Serpent0, Serpent1, Serpent2, Serpent17 15 17 18

No. 4 Serpent0, Serpent1, Serpent2, Serpent17 15 17 18

No. 5 Serpent0, Serpent1, Serpent2, Serpent17 15 16 17

No. 6 Serpent0, Serpent1, Serpent2, Serpent17 15 17 18

No. 7 Spongent S-box, Midori Sb0 15 17 18

No. 8 Serpent0, Serpent1, Serpent2, Serpent17, Midori Sb0 15 17 18

No. 9 Midori Sb0 16 17 18

No. 10 Serpent0, Serpent1, Serpent2, Serpent17 15 16 17

No. 10 Spongent S-box 15 17 18

No. 12 Serpent2, Spongent S-box, Midori Sb0 16 17 18

No. 13 Serpent0, Serpent1, Serpent2, Serpent17 15 17 18

5 Conclusions

Division property is an important integral property used recently to search for
integral distinguishers of block ciphers. Let F be a GFS cipher, and FL be a new
GFS cipher obtained by substituting the S-box S with SL = L◦S ◦L−1 for some
invertible linear transformation L. It is shown that the integral distinguisher of F
can be transformed into the integral distinguisher of FL, and vice versa. Thus we
can first try to find some longer integral distinguishers of FL than that of F for
some L utilizing basic search method with bit-based division property, and then
derive the corresponding integral distinguishers of F accordingly. Experiments
are also given for some 16-branch GFS ciphers to show the efficiency of our
improved search method. This result implies that ability to resist our improved
integral attack should also be considered when designing corresponding GFS
ciphers.
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Abstract. Block ciphers with Feistel structures are vulnerable to a spe-
cific type of cache attacks named differential cache attacks. The attacks
leverage side-channel leakages from cache and differential property of
cipher component to reveal the master key of cipher. In this paper, we
combine the algebraic analysis to enhance the attacks, and propose a
novel method named Algebraic Differential Cache Attack (ADCA). By
converting both cipher and cache leakages to algebraic equations, ADCA
can reveal the cipher key automatically with the help of the SAT solver,
which allows the analysis on much deeper rounds and makes a consid-
erable reduction in attack complexity. When it is applied to the block
cipher SM4, 10 plaintexts are enough to reveal the master key in 8-rounds
analysis, while the traditional differential cache attack needs 20 ones.
Finally, to eliminate the impact from noise, an error-tolerant method
is proposed to deduce cache events from the leakage traces. It vastly
enhances the robustness of attack, and makes the attack more practi-
cal. The experimental results show that the error-tolerant ADCA can
correctly reveal the master key even when the uncertainty rate of cache
events reaches to 60%.

Keywords: SM4 · Side channel attacks · Differential cache attacks ·
Algebraic analysis · Error-tolerance

1 Introduction

Cache attacks are a class of side-channel attacks that monitor the leakages from
cache to extract the cipher key. [15] first proposed such attacks theoretically, and
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discussed the feasibility of revealing the master key of DES with captured cache
leakages. Then [20] followed the idea and demonstrated the first practical cache
attack. After that, a number of cache attacks involving different techniques have
been presented. Depending on the side-channel leakages used, cache attacks can
be divided into three classes: time-driven [3,20], access-driven [12,14] and trace-
driven [5,17]. These attacks pose a significant threat to various ciphers, including
AES, CLEFIA, Camellia, and the target of this paper, SM4. As the standard
commercial block cipher in China, SM4 [2] (formerly known as SMS4) has a
typical unbalanced Feistel structure. In recent years, with the wide application of
SM4, multiple general cryptography libraries start to support the cipher, like the
latest OpenSSL 1.1.1 [1]. Since it was released in 2006, SM4 has been subjected
to extensive researches. Numerous works were arisen to evaluate the reliability
and security of the cipher, which roughly contain two primary categories: cache
attacks and algebraic analysis.

Cache attacks are usually the first choices to analyze the block cipher like
SM4. [4] carried out an effective cache attack on SM4, showing that 5000 power
traces are enough to recover the master key. [22] used access-driven cache attack
to analyze the first four rounds of encryption in the SM4, and revealed the cipher
key within 80 plaintext samples. Among the cache attacks on SM4, there is a spe-
cific class named Differential Cache Attack (DCA). In [17], trace-driven attacks
were first combined with differential analysis, where the differential properties
of S-Boxes are used to recover the key of CLEFIA in less than 214 traces. This
novel attack is the so-called Differential Cache Attack, which is further improved
in [18] and also applied to Camellia in [16]. DCA is very suited to ciphers with
Feistel structures, like the SM4. [13] proposed a differential cache attack on SM4,
it used 210 plaintexts to recover the master key of SM4 from the power traces
for the 64-byte cache line.

Besides the cache attacks, algebraic analysis is also an available way to
appraise the cipher. Some previous works targeted on the algorithm structure
of SM4 to reveal partial cipher key, like 14-round square attack [23], 17-round
impossible differential analysis [6], 22-round differential analysis [21] and 23-
round linear analysis [7]. Beyond that, [10] described SM4 cipher as systems of
quadratic equations over GF (2) and GF (28), and also estimated the complexities
of XL algorithm for solving the two equations systems. And [8] performed alge-
braic analysis on 5-round SM4 leveraging the Gröbner basis and Minisat solver.
With the algebraic analysis, the attacker can effectively decrease the search space
of master key, and finally reveal it with simple brute force.

In this paper, we propose an enhanced differential cache attack on SM4,
which combines with algebraic analysis and adopts an error-tolerant method
to deduce cache events. It releases the analyst from sophisticated analysis and
improves the robustness of attack. To thoroughly evaluate the resistance of SM4
against such attack, we first present a traditional DCA method to reveal the
master key of SM4. Experiments show that it requires 20 plaintexts when both
cache hits and cache misses are analyzed. However, such traditional method
is sophisticated and limited by the depth of analysis rounds. To enhance the
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attack, we combine it with algebraic analysis, proposing a novel attack named
Algebraic Differential Cache Attack (ADCA). Such attack derives the algebraic
equations of both cipher algorithm and cache leakages, then sets them up as the
system of equations, which is further solved by the SAT solver automatically.
The outputted solution would contain the master key so that the attacker can
extract it. Since the new attack only requires the transformation of algebraic
equations, and leaves the complicated analysis to the SAT solver, it is much
simpler and more generic than previous DCA methods. Based on the results
of experiments, ADCA can reveal the key of SM4 with only 10 plaintext by
analyzing the first 8 rounds. Finally, in order to make the attack more practical,
we introduce an error-tolerant method to deduce cache hit/miss events from the
captured side-channel traces. With two stated thresholds, only the events whose
leakage values locate in the range would be analyzed, and the others would be
marked as uncertain and be discarded. It effectively prevents the impact of noise
and improves the robustness of attacks. The enhanced ADCA can reveal the key
when the uncertainty rate of deduced cache events is less than 60%.

The contributions of the paper are as follows:

– We give a security analysis of SM4 against Differential Cache Attack (DCA),
and present a practical DCA method that uses 20 plaintexts to reveal the
master key of SM4.

– We combine algebraic analysis with DCA to give a novel attack named Alge-
braic Differential Cache Attack (ADCA), illustrating the process of construct-
ing equations of cipher algorithm and cache events.

– We demonstrate a practical ADCA on SM4, which extract the master key of
SM4 with analyzing first 8 rounds and only 10 plaintexts. It greatly reduces
the attack complexity and bypasses the sophisticated analysis.

– We propose an error-tolerant enhancement to improve the robustness of
ADCA, eliminating the influence from uncertain cache events caused by noise.

The rest of this paper is organized as follows: Sect. 2 introduces the SM4
cipher and specifies the differential cache attack model. Section 3 demonstrates
the details of proposed DCA and shows the results of attack experiments. Then in
Sect. 4, the attack model of ADCA and relevant theoretical basis are introduced.
Section 5 describes the detailed implementation process of such novel attack,
while Sect. 6 evaluates its performance. Section 7 discusses the error-tolerant
enhancement and Sect. 8 concludes the paper.

2 Preliminaries

2.1 Notation

For the sake of legible expression, notations used in this paper are
listed first. Throughout the paper, MK denotes the master key of SM4,
(Xi,Xi+1,Xi+2,Xi+3) are four intermediate variables inputted to the round i
(0 ≤ i < 32), and (Y0, Y1, Y2, Y3) denote the final ciphertexts. rki is the round
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key generated from MK and used for i-th round. Let qj denote the j-th S-Box
lookup in the execution of SM4, λ denote the number of table lookups consid-
ered in the attack, 0 ≤ j < λ. The lookup index of qj is denoted as lj . Suppose
the size of cache line is 2μ bytes, and that of S-Box is 2δ bytes. As a result, the
S-Box occupies 2δ−μ cache lines, and the higher b = δ − μ bits of lookup index
lj identify which cache line contains the access target. Let 〈lj〉 denote the most
significant b bits leaked from the cache accesses in the attack.

2.2 SM4 Cipher

SM4 has a 32-rounds iterative Feistel structure, as shown in Fig. 1. The cipher
adopts a 128-bits master key, which further generates 32-bits round keys for each
round. Equation (1) depicts the encryption process of SM4:

Xi+4 = F (Xi,Xi+1,Xi+2,Xi+3, rki)
= Xi ⊕ T (Xi+1 ⊕ Xi+2 ⊕ Xi+3 ⊕ rki)

(1)

Fig. 1. The structure of SM4 cipher.

where T is a function composed of the nonlinear part τ and the linear part L, i.e.,
T (.) = L(τ(.)). The nonlinear conversion τ is achieved with four table lookups
on the 8 × 8 S-Box, whose inputs are Ai = (ai,0, ai,1, ai,2, ai,3) and outputs
are Bi = (bi,0, bi,1, bi,2, bi,3). Each pair of ai,t and bi,t corresponds to t-th S-Box
lookup in round i, 0 ≤ t < 4. For the following linear conversion L, it takes Bi

as input and outputs Ci = (ci,0, ci,1, ci,2, ci,3) like shown in Eq. (2). As the result
of function T , Ci further XORs with Xi to generate Xi+4.

Ci = L(Bi) = Bi ⊕ (Bi ≪ 2) ⊕ (Bi ≪ 10) ⊕ (Bi ≪ 18) ⊕ (Bi ≪ 24) (2)
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2.3 Differential Cache Attacks

Following the explanation of differential cache attacks in [17], we introduce how
to perform such attack and propose the attack model, as shown in Fig. 2. Suppose
the cache has been flushed before the encryption, and there are λ S-Box lookups
being analyzed in the attack. For a certain lookup qj among them, to figure
out its index lj , we let Uj denote a set of public variables (plaintexts) and Vj

denote a set of secret variables (round keys), then introduce the function f(.)
that computes the lj from Uj and Vj . Recall that 〈lj〉 (0 ≤ j < λ) denotes
the most significant b bits of lj , which indicate the index of accessed cache line.
Hence, the relationship between different 〈lj〉 can be deduced from the cache
hit/miss sequences, which also provides constrains to help the revealing of secret
variable Vj .

Fig. 2. Differential cache attack model.

Assume the cache has been flushed beforehand, so the first lookup q0 would
cause a cache miss. Then we take the second S-Box lookup q1 for example to
discuss. The memory access in the q1 can be either cache hit or cache miss, the
former indicates q1 accesses the same cache line with q0, i.e., 〈l0〉 = 〈l1〉, so that
Eq. (3) can be derived. The latter means the target data is absent in the cache,
so q1 would load it and there is Eq. (4).

〈l0〉 = 〈l1〉 =⇒ 〈f(U0, V0)〉b = 〈f(U1, V1)〉b (3)

〈l0〉 �= 〈l1〉 =⇒ 〈f(U0, V0)〉b �= 〈f(U1, V1)〉b (4)

In this way, the cache access events are transformed to the equations about Uj

and Vj . To recover the key, multiple plaintext samples are sent to the cipher, and
then differential equations between them are constructed. For instance, assume
the input plaintexts X and X ′ both cause a cache hit in q1, so they both meet
Eq. (3), which further derives the differential equation as below:

〈f(U0, V0) ⊕ f(U ′
0, V0)〉b = 〈f(U1, V1) ⊕ f(U ′

1, V1)〉b (5)

Because of the feature of Feistel structure, V1 in Eq. (5) generally can be elim-
inated, only leaving the V0 unknown. And based on the property of the S-Box,
the value of V0 can be uniquely recovered with a certain number of plaintext
samples. Hence, with the differential cache attack, the adversary can leverage
a number of plaintext pairs to reduce the search space of secret variables and
finally reveal the correct key.
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3 Differential Cache Attack on SM4

In this section, we first present a traditional differential cache attack on the
SM4. The attack is improved from [11] and analyzes the first four rounds of
cipher to reveal the master key MK. The work lays a foundation for the design
of subsequent enhanced attack method.

For the first round of SM4, it needs to perform four S-Box lookups whose
inputs, namely lookup indexes, are denoted as a0,t, (0 ≤ t < 4). Each a0,t is
computed as: a0,t = X1,t ⊕ X2,t ⊕ X3,t ⊕ rk0,t, where Xi,t and rki,t denote the
t-th block (each block is 8-bit) of variables Xi and rki. As mentioned above,
since q0 always be a cache miss, the analysis starts from q1. If q1 results in a
cache hit, there should be 〈l0〉 = 〈l1〉 (i.e., 〈a0,0〉 = 〈a0,1〉), and Eq. (6) is derived.
The equation offers the possible values of 〈rk0,0 ⊕ rk0,1〉.

〈a0,0〉 = 〈a0,1〉 =⇒ 〈rk0,0 ⊕ rk0,1〉 =
〈X1,0 ⊕ X2,0 ⊕ X3,0 ⊕ X1,1 ⊕ X2,1 ⊕ X3,1〉

(6)

On the contrary, if q1 causes a cache miss, the equation would give the impos-
sible values of 〈rk0,0 ⊕ rk0,1〉. Similarly, for the following lookups, depending on
their cache accessing state, the attacker can extract possible values and discard
impossible values of corresponding round keys. As a result, after the analysis of
the first round, the values of 〈rk0,0⊕rk0,1〉, 〈rk0,0⊕rk0,2〉 and 〈rk0,0⊕rk0,3〉 can
be recovered. With the same way to analyze deeper rounds, finally the first three
round keys rk0, rk1, rk2 and partial bits of rk3 can be recovered. The remaining
unknown bits, lower (8 − b) bits in each rk3,t, can be revealed with brute force,
whose search space is 232−4b. Finally the master key can be recovered from these
revealed round keys based on key scheduling.

The attack method has been applied to a SM4 cipher implemented on the 32-
bit ARM microprocessor NXP LPC2124, whose cache line has 16 bytes [9]. The
S-Box used in the SM4 cipher is of size 256 bytes. Hence, the number of bits for
indexing the cache lines is b = 4. The electromagnetic radiation of microprocessor
is captured by the EMK near-field probe on the oscilloscope, which is further
used to depict the leakage traces. To evaluate the efficiency of the attack, we
focus on the relation between the search space of round keys and the number
of plaintext samples, depicting the variation tendency of such relation. For the
first round, as shown in Fig. 3(a), the increasing analyzed plaintexts cause the
search space of rk0 to decrease rapidly. By analyzing both cache hits and cache
misses, we find that 30 plaintexts are enough to reduce the search space from 232

to 220, while only considering cache miss needs 35 plaintexts. The second round
has analogous variation trend with the first round, like illustrated in Fig. 3(b).
The search space of round keys (rk0 and rk1) decreases from 264 to 216 with
the increasing of analyzed plaintexts. As for the following rounds, e.g., the third
round and the fourth round, the relation between such two factors are pretty
much similar, guaranteeing the reduction of round keys’ search space with the
increase of analyzed plaintexts.

After the analysis of the first four rounds, we have revealed whole rk0, rk1,
rk2 and partial rk3, so that the search space of them is reduced from 2128 to 216,



486 X. Lou et al.

as depicted in Fig. 3(c). It requires 20 plaintext samples when both cache hit
and miss are analyzed, remaining 16 bits in the rk3 unknown, which are easy to
be solved with the brute force. Finally, according to the key schedule algorithm
of SM4, the master key is calculated from the revealed (rk0, rk1, rk2, rk3).
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Fig. 3. Relation between the search space of round keys and the number of plaintexts.

4 Algebraic Differential Cache Attack

4.1 The Defects of DCA

Even above Differential Cache Attack method can recover the master key of SM4
effectively, there are still some exposed defects, making it less practical in the real
scenarios. Firstly, the analysis is so complicated that generally requires analyst
to own sophisticated knowledge, and the complexity would grow exponentially
with the increase of analysis rounds, the overlarge search space remained from
previous rounds would also cause the current round too complex to analyze. Sec-
ondly, the traditional DCA follows the divide and conquer strategy to recover the
round keys block by block, which does not fully utilize the correlation between
the algorithm structure and the round keys.

4.2 Attack Model

In this section we enhance the differential cache attack with the algebraic analysis
and propose a novel attack named Algebraic Differential Cache Attack (ADCA).
The attack model of ADCA is shown in Fig. 4, which contains three phases:
(S1) Construct algebraic equations of the cipher; (S2) Deduce cache hit/miss
sequences from the captured leakage traces then construct algebraic equations
for these cache events; (S3) Use the SAT solver, which is commonly adopted
in algebraic analysis, to solve the system of equations consisting of equations
derived from (S1) and (S2), finally recover the master key. We will discuss these
three phases in detail below.

Construct Algebraic Equations of Cipher. In essence, revealing the cipher
key is equivalent to finding the solution that satisfies the algebraic equations of
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Fig. 4. The attack model of ADCA.

cipher. Hence, we need to first construct the algebraic equations of the cipher,
which describe the algorithm with the plaintext X, the ciphertext Y , the round
key rk and the master key MK. The detailed process of constructing equations
of SM4 will be shown in Sect. 5.1.

Construct Algebraic Equations of Cache Events. However, only the cipher
equations are not enough to reveal the master key. It is necessary to introduce
additional information, like cache access sequence, to provide more constraints
for analysis. Hence, the cache events deduced from captured leakage traces are
transformed to algebraic equations, which can be seen as the kernel of ADCA.
Such phase includes three steps, i.e., S2(a) to S2(c) in Fig. 4. First, multiple SM4
encryptions with different plaintexts are carried out, and at the same time, the
electromagnetic radiation during each encryption process is also monitored. Then
the cache events are deduced based on the captured traces, which are further
used to construct the algebraic equations. The detailed process of constructing
cache event equations is shown below.

Follow the notations defined in the Sect. 2.1, for the j-th lookup qj , the most
significant b bits of its index lj , i.e., 〈lj〉, can be revealed from the cache access,
as long as qj hits a certain cache line. Assume there have been r cache misses
before the analyzed lookup qj , and the set of lookup indexes of these cache misses
is denoted as SM = {lm1, lm2, . . . , lmr}. If qj results in a cache hit, it means the
lookup accesses one of the cache lines that have been loaded before, so that the
index lj must have the same most significant b bits with one of elements in the
SM . Hence, similar with the analysis in the traditional DCA, we can get the set
of possible values of 〈lj〉, denoting as set Lj = {〈lm1〉, 〈lm2〉, . . . , 〈lmr〉}.

In order to improve the efficiency of comparing the values of 〈lj〉 and 〈lmt〉,
one element in the Lj (1 ≤ t ≤ r), each 〈lmt〉 is substituted with a b-bits variable,
which is denoted as Dt = 〈lmt〉 = d1t d

2
t ...d

b
t . Besides that, b single-bit variables

denoted as ek
t (1 ≤ k ≤ b), and one single-bit variable ct are also introduced,
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whose values are:

ek
t = ¬(lkj ⊕ dk

t ), ct =
b∏

k=1

ek
t (7)

where ek
t shows if the k-th bit in the 〈lj〉 and 〈lmt〉 are equal, and ct indicates

whether all b bits of the 〈lj〉 are equal to that of 〈lmt〉. If lkj = dk
t , there is ek

t = 1;
otherwise ek

t = 0. As for the ct, it has ct = 1 if 〈lj〉 = 〈lmt〉, or else ct = 0.
As a result, if qj causes a cache hit, there must be one and only one 〈lmt〉 =

〈lj〉 in the set Lj , which is equivalent to only having one ct = 1 in the set
C = {c1, c2, ..., cr}. Such feature can be used to construct algebraic equations as
below: ∏

ct∈C2

ct = 0,
∏

ct∈C

(ct ⊕ 1) = 0 (8)

where C2 is a two-element subset of set C. Then, we introduce two important
parameters, the number of introduced variables (V ) and the number of con-
structed equations (EQ). In this case, their values can be computed as:

V = (b + 1) × r, EQ = 1 + (b + 1) × r +
r × (r − 1)

2
(9)

where V includes ek
t and ct and EQ contains Eqs. (7) and (8).

In contrast, if qj results in a cache miss, we can get the set of impossible
values of 〈lj〉, denoted as set Lj = {〈lm1〉, 〈lm2〉, . . . , 〈lmr〉}. We also introduce
variables ek

t and ct to describe the comparison between elements in the Lj and
〈lj〉. The analysis method is the same as the above. As the 〈lj〉 is not equal to any
〈lmt〉 in the Lj , so that every ct = 0, the algebraic equations can be constructed
as below: ∏

ct∈C

(ct ⊕ 1) = 1 (10)

And the two introduced parameters V and EQ can be calculated as:

V = (b + 1) × r, EQ = 1 + (b + 1) × r (11)

Solve the System of Equations. After constructing the algebraic equations
of both cipher and cache events, we can combine them as the system of equations
and then solve it to recover the master key. There are multiple typical methods
for solving the algebraic equations, include linearization method [10], Gröbner
basis [8] and some SAT solvers like zChaff, Minisat and CryptoMinisat [19]. This
paper adopts CryptoMinisat to solve the algebraic equations.

5 The Implementation of ADCA

5.1 Construct Algebraic Equations of SM4 Cipher

As the kernel nonlinear component of cipher, the S-Box is usually the focus of
constructing cipher equations. For the SM4, the input size m and output size
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Table 1. Descriptions of used variables

Variables Descriptions

rki,s The s-th bit in the i-th round key rki

Ai,s The s-th bit in the input Ai to S-Boxes

Bi,s The s-th bit in the output Bi from S-Boxes

Ci,s The s-th bit in the output Ci of round function T

Xi,s The s-th bit in the intermediate variable Xi

n of S-Box are both 8 bits, i.e., m = n = 8. To illustrate better, we first sort
out the variables that would be used for constructing equations and list them in
Table 1 (0 ≤ i < 32, 0 ≤ s < 32).

Then we can construct the algebraic equations of SM4 algorithm as below:

Xi+1,s ⊕ Xi+2,s ⊕ Xi+3,s ⊕ rki,s ⊕ Ai,s = 0
Bi ⊕ τ [Ai] = 0
Ci,s ⊕ L(Bi)s = 0
Ci,s ⊕ Xi,s ⊕ Xi+4,s = 0

(12)

Based on Eq. (12), for the 32-round encryption of the SM4, there are 4352 equa-
tions on GF (2), including 1024 nonlinear equations and 3328 linear equations,
which contain 5248 variables. As for the key schedule algorithm, with the same
analysis method, it derives 4096 equations consisting of 1024 nonlinear ones and
3072 linear ones, with 4224 introduced variables. In summary, there are totally
8448 equations with 9472 variables constructed for the whole process of SM4.
However, in the real attack experiments, actually it only needs to construct parts
of them since analysis on the first few rounds is enough to reveal the master key.

5.2 Transform Cache Events to Algebraic Equations

To solve above cipher equations, whose solution contains the master key, more
constraints are introduced by transforming cache events to algebraic equations.
Figure 5 gives three samples of captured cache event sequences, each sequence
covers the first 8 rounds (a total of 32 S-Box lookups) of the encryption. The
black blocks in the figure denote cache misses while the white blocks denote
cache hits. The x-axis indicates the ID of S-Box lookup, y-axis indicates the
ID of sample. From the figure, we can know that after the fourth round (i.e.,
the 16-th S-Box lookup), the frequency of cache hits significantly increases, as
almost S-Box lines have been loaded.

We take the sample S1 in Fig. 5 as an example to explain how to construct
algebraic equations for cache events. The initial analysis is similar to the tradi-
tional DCA, like the eighth S-Box lookup q7 in S1 causes a cache miss, it can get
the set of the impossible values of 〈l7〉: L7 = {〈l0〉, 〈l1〉, 〈l3〉, 〈l6〉}. Then based
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Fig. 5. Samples of cache event sequences.

on the Eq. (11), 20 new variables would be introduced to construct 21 alge-
braic equations. As for the ninth lookup q8, which causes a cache hit, the set of
the possible values of 〈l8〉 can be obtained: L8 = {〈l0〉, 〈l1〉, 〈l3〉, 〈l6〉, 〈l7〉}. And
based on the Eq. (9), there would be 25 introduced variables and 36 constructed
algebraic equations.

Now consider the general case of constructing algebraic equations for cache
events. Suppose Nc is the number of cache lines that the entire S-Box occupies,
Nj is the number of cache lines that have been accessed before the j-th S-Box
lookup qj , and Pj is the probability of that qj results in a cache hit. Assume Nc

cache lines are accessed with equal probability in each S-Box lookup, then for
a certain cache line, the probability of it has never been accessed before qj is
((Nc − 1)/Nc)j . After that the values of Nj and Pj can be computed as below:

Nj = Nc ×
(

1 − (
Nc − 1

Nc
)j

)
, Pj =

Nj

Nc
= 1 − (

Nc − 1
Nc

)j (13)

As the Nj essentially denotes the number of cache misses before qj (each cache
miss would occupy a new cache line), it means that the variable r in the Eqs. (9)
and (11) can be substituted with Nj . Hence, for the j-th lookup, the number of
introduced variables (Vj) and constructed equations (EQj) can be indicated as:

Vj = (b + 1) × Nj

EQj = 1 + (b + 1) × Nj + Pj × Nj × (Nj − 1)
2

(14)

Following the increase of analysis rounds or namely j, the overheads for both
constructing cipher equations and cache event equations become larger. Figure 6
depicts the ratio of the overhead between constructing cache event equations
and cipher equations, providing a better view on their variation trend. The blue
curve illustrates the overhead ratio of introduced equation of two constructions,
while the red curve indicates the overhead ratio of variables. From the figure,
the ratio of equation overhead is about 1 in the 8-th round, which means the
number of constructed equations for cipher and cache events are nearly equal.
After the 8-th round, with the increase of analyzed rounds, the equation overhead
increases rapidly while the search space of secret keys reduces slightly. As the
attack requires a reasonable compromise between the analysis rounds and the
overhead, it seems that analyzing the first 8 rounds is a good choice.
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Fig. 6. The overhead of equations and variables. (Color figure online)

5.3 Recover the Master Key

In this paper, we leverage the SAT solver CryptMinisat to solve the system of
equations, whose solution can be further used for extracting the master key. The
solver CryptMinisat takes CNFs (Conjunctive Normal Forms) as its input, so
that above constructed algebraic equations need to be converted to the equivalent
CNFs. However, since the CryptMinisat can convert linear equations to CNFs
automatically, the analyst actually doesn’t need to consider this step. For the
cipher equations, each S-Box substitution can be converted to 254 CNFs. After
taking the key schedule algorithm into account, each round would generate 1336
CNFs. The cache event equations are also converted to CNFs and sent to the
solver together. Then the solver is launched to solve the system of equations
automatically [19], which effectively release the analyst from complex analysis.
Finally, the master key is extracted from the solved solution.

6 Experimental Evaluation

6.1 Setup

The attack platform for the ADCA experiments is the same to that in Sect. 3,
where has Nc = 16 and b = 4. We assume that side-channel leakages can be
captured effectively, and the corresponding cache hit/miss sequences can also be
deduced correctly. Then the solving of the system of equations is achieved by the
CryptMinisat (version 2.9.4) running on a normal PC (CPU: Intel Core i7-7700
@ 3.60 GHz, Memory: 16G).

6.2 Attack Time

First the time required for a successful attack is studied, i.e., the time of solving
the system of equations with CryptMinisat. Note that the attacks exceed 24 h
are considered as failed. Based on the depiction in Fig. 6, to effectively reveal the
master key without introducing too much overhead, analyzing the first 8 rounds
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is an appropriate choice. Figure 7(a) gives the distribution of attack time of
20 experiments, which all analyze the first 8 rounds of SM4 with 10 different
plaintext samples. From the figure, we find the attack time almost distributes
exponentially, most attacks can be achieved in 12 h (4.32×104 s) and nearly 30%
of them can be succeeded in less than one hour. The average attack time is about
4.79 h that is affected by the extreme values in the time sequence. Longer attack
time is the price of removing complex manual analysis, but as all the computing
can be completed by the solver automatically, such time cost is tolerable.

6.3 Influence Factors on Attack Time

After illustrating the approximate distribution of attack time, we further explore
the influence factors on attack time. The first is the number of analysis rounds,
denoting as R. Empirically, the bigger R would result in shorter attack time, since
it offers more constraints to the system of equations. However, it also introduces
larger overhead of equations and variables, which makes the target equations
more complex. Figure 7(b) shows the variation tendency of attack time with the
increase of analysis rounds R, and the sample size of plaintexts is fixed as 20. For
each R, 5 experiments are performed to get the corresponding average attack
time. The trend indicates that with the fixed number of plaintexts, the increase
of R can reduce the attack time, but once R exceeds a certain range (e.g., R = 7),
the attack time increases rapidly with R. The second parameter is the number of
plaintext samples, denoting as S. Similar to the R, the increase of S gives more
constraints but also larger overhead. As a result, S has the same influence to the
variation of attack time, in a certain range the increasing S makes the attack
time decrease, but beyond the range the attack time increases fast. To further
illustrate the influence from S to the attack, we discuss the relation between the
attack success rate and the plaintext sample size in the following.

6.4 Attack Success Rate

A successful attack means the SAT solver is able to solve the system of equations
in a given time (less than 24 h), so the success rate of ADCA is essentially equiv-
alent to the probability of solving the solution in the required time. Figure 7(c)
depicts the success rates of the attacks that all take the first 5 rounds for analysis
but utilize different size of plaintext samples. The success rate is calculated from
10 repetitive experiments. As the figure shows, the success rate does not always
increase with the sample size, when the sample size larger than a certain thresh-
old, the overhead of introduced equations becomes so large that it gets much
harder for the solver to solve these equations. Since the solver cannot get the
solution in the limited time, it makes the attack success rate decrease rapidly.

Based on above results, in order to conduct a successful algebraic different
cache attack, we should choose appropriate analysis rounds R and sample size
S, besides we also need to consider the trade-off between these two parameters.
In the actual experiment, when the analysis rounds R = 8 and the sample size
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Fig. 7. Results of experiment evaluation.

S = 10, the attack can obtain the best result, whose attack time is short and
success rate is high.

7 Error-Tolerant Enhancement

In above attack experiments, it assumes that all the deduced cache events are
correct, so that we can directly construct algebraic equations of them to solve the
key. However, in practice, the cache events deduced from side-channel leakage
traces are always contain more or less misjudgments. There are two main reasons:
the noise that fluctuates the accurate leakage traces and the improper threshold
that mislead the inference. As such error cache events would compromise the
analysis or even make the attack failed, it is necessary to propose an error-
tolerant method to improve the robustness and practicality of ADCA.

7.1 Error-Tolerant Method

Since errors in cache events are essentially misjudgments of captured side-channel
leakages, our error-tolerant method focuses on the interpretation of leakage
traces. In general, the noise of instruments and environment is the white noise,
which changes the values of monitored leakages in a certain range. To deal with
such attached noise, a flexible threshold range is adopted to decide the type of
cache events, i.e., cache hit or miss. It can efficiently filter most of the noise and
make sure the correctness of deduced events. Besides that, since the judgment of
cache events depends on a range rather than an accurate value, it also reduces
the sophisticated works for choosing a strict threshold.

The error-tolerant method is designed to enhance the ADCA. First, two
thresholds VM and VH are set, the former is the lowest peak value that can be
deduced as cache miss, and the latter is the highest peak value that can be seem
as cache hit. Let Vj denote the peak value in the leakage trace that corresponds
to the j-th S-Box lookup qj . After that, the cache events can be judged from the
captured traces as following:
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1. if Vj ≤ VH , qj is considered as a cache hit, then constructing equations of
cache events based on the Eqs. (7) and (8).

2. if Vj ≥ VM , qj is considered as a cache miss, then constructing equations of
cache events based on the Eqs. (7) and (10).

3. if VH ≤ Vj ≤ VM , it is difficult to confirm whether qj is a cache hit or cache
miss, so mark it as the uncertain event and leave it alone.

For the cache events whose Vj satisfies VH ≤ Vj ≤ VM , as they are ambiguous,
the best solution is ignoring them. Although dropping them would result in the
information loss of analysis, it is still better than introducing errors. And the
choice of VM and VH must be careful, it should balance between the information
loss and introduced errors. In general, first a number of experiments should be
performed on the current platform to determine the base line between cache hit
and cache miss. Then, combining the results in the captured leakage traces, the
values of VM and VH are chosen by shifting up or down the base line.

In order to better explain the proposed error-tolerant method, the uncer-
tainty ratio e is introduced to describes the proportion of uncertain cache events
in the population. The parameter e can be denoted as: e = NE

NA
, where NE is

the number of uncertain cache events, and NA is the number of all cache events.
The higher e generally means the larger noise in the experiments and the harder
it is to obtain the correct key. Besides, it should be noted that the choice of VM

and VH also make a great influence to the value of e.

7.2 Evaluation

The setup for evaluating the error-tolerant attack is the same as that shown in
Sect. 6, and the attack analyzes the first 8 rounds of encryption. As we cannot
manipulate the noise of instruments and environment as will, the values of VM

and VH are adjusted to achieve changing the uncertainty rate e, which has the
same effect as the variation of noise. Then the efficiency of attacks under different
e is evaluated. Figure 8 depicts the average sample size of plaintexts required for
revealing the key under different uncertainty ratio e. The curve in the figure indi-
cates that the required sample size increases exponentially with the e, and such
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Fig. 8. Required plaintext sample size for attacks with different error ratio e
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observation is in line with our expectations. Our error-tolerant attack method
is able to reveal the key with 59 plaintext samples when the uncertainty rate e
is 60%, and while e is less than 30% the method can recover the master key of
SM4 within 20 input samples.

8 Conclusions

This paper enhances the traditional differential cache attack with algebraic anal-
ysis and error-tolerance, proposing an error-tolerant algebraic differential cache
attack method. With applying on the block cipher SM4, it shows that the new
attack makes a great reduction in the attack complexity and bypass the sophis-
ticated manual analysis effectively. Only 10 plaintexts with the analysis on the
first 8 rounds are enough to recover the master key of SM4, and the analysis is
automatically finished by the SAT solver. The proposed error-tolerant method
further improves the robustness and practicality of the attack, which allows to
reveal the cipher key successfully when the uncertainty rate is less than 60%.
Such work provides the reference for following physical security evaluation on
other typical block ciphers, such as ARIA and Camellia.
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Abstract. Anonymous password-authenticated key exchange (APAKE)
protocols allow for authenticating legitimate users via low-entropy pass-
words while keeping their actual identities private. They are important
cryptographic primitives for privacy protection, which have attracted
much attention recently and have been standardized in the interna-
tional standard ISO/IEC 20009-4. However, most of the existing APAKE
schemes (especially including all the APAKE schemes in the storage-
extra setting) are developed in the random oracle model. In this paper,
we present the first storage-extra APAKE protocol in the standard model
by combing the technique of algebraic MAC with oblivious designated-
verifier non-interactive zero-knowledge (DVNIZK) proof. Toward our
aim, we first give out a new construction of the oblivious DVNIZK proof
system, which is compatible with a new class of algebraic MAC schemes.
As a consequence, our APAKE protocol needs only 2 flows of messages
in the authentication phase, which is very efficient in terms of rounds.
Moreover, we show that this protocol enjoys stronger security guarantees
while achieves considerably computational performance.

1 Introduction

Among numerous mechanisms for user authentication, passwords are definitely
the most commonly used method of accessing modern computer networks and
information systems [1]. Password authentication, usually integrated with key
exchange simultaneously, has been proven to enjoy many advantages. For exam-
ple, it can be easily operated and deployed as it only requires users to remember
low-entropy passwords [2]; it is naturally compatible with various authentica-
tion means such as smart cards and biometric templates because passwords are
convenient to obtain [3]. As a consequence, much attention has been paid on
the fundamental security of passwords [4], the theoretical analyses and design-
ing techniques of password authenticated key exchange (PAKE) protocols [5], as
well as the standardization of password authentication schemes [6].
c© Springer Nature Switzerland AG 2020
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Anonymous Password Authenticated Key Exchange. Along with the increased
awareness of security and privacy, there is an urgent need for strengthening the
widely deployed PAKE protocols with additional anonymity property [7]. To be
specific, it is desirable to authenticate legitimate users via low-entropy passwords
while keeping their actual identities private to outside adversaries and even to
the server.

To address this need, Viet et al. [8] proposed the first anonymous pass-
word authenticated key exchange (APAKE) protocol, through neatly blending
an oblivious transfer (OT) protocol into a traditional two-party PAKE scheme.
Since then, many research results have been put forward on the construction of
more secure and more efficient APAKE protocols, either in password-only set-
ting [9–12] or in the storage-extra setting [13–16]. Furthermore, the international
organization for standardization (ISO) has developed and published the interna-
tional standard ISO/IEC 20009-4 [17], which standardizes both the above two
types of APAKE protocols.

For password-only APAKE protocols [8,11,12], a password is the only long-
term secret that a user needs. They are very convenient from a user’s point of
view, but enjoy poor scalability since the computational complexity is in linear
proportion to the number N of possible users [13]. As an innovative solution,
APAKE protocols in the storage-extra setting were proposed by Yang et al.
[13,14], and further improved by Zhang et al. [15] and Shin et al. [16], in which
each user obtains a credential from the server, protects it by her password and
stores the password-wrapped credential on some public storage (e.g., a public
directory or an ipad). Then, in the authentication phase, the user recovers the
credential via using her password and shows the possession of a valid credential
to the server in an anonymous way, usually relying on some appropriate zero-
knowledge proof systems. Notably, the computational cost needed by the server
in the storage-extra setting is independent of the number of registered users,
thus breaking the lower bound O(N) in the password-only setting.

However, we note that most of the existing APAKE protocols are developed
in the random oracle model. Specifically, only few of APAKE protocols in the
password-only setting [12,18] and, to the best of our knowledge, no APAKE
protocols in the storage-extra setting have been proven secure in the standard
model. Note that the random oracle model is only an ideal abstraction for the
cryptographic hash functions, and there exists no random oracle definition that
a public PPT algorithm can hope to satisfy [19]. Therefore, it is urgent to design
storage-extra APAKE protocols in the standard model.

Storage-Extra APAKE in the Standard Model. Although we might be able to
adapt classic storage-extra APAKE protocols to provide security in the standard
model by adopting zero-knowledge proof schemes in the standard model (and
without pairing-based assumptions). This approach will inherently increase the
round number of the resulting APAKE protocols, since it is well known that one
zero-knowledge proof typically requires at least three moves in this scenario.

The situation seems to be changed with the introduction of designated-
verifier non-interactive zero-knowledge (DVNIZK) proof systems by Chaidos
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et al. [20], which could provide proof of knowledge for a wide variety of algebraic
statements related with some public words. One may wish to construct storage-
extra APAKE protocols in standard model by starting from the efficient APAKE
protocol [15] in the random oracle model based on algebraic message authenti-
cation codes (MACs) [21], and simply replacing the underlying zero-knowledge
proof systems by some kind of DVNIZK proof schemes. Nevertheless, it is shown
by Couteau et al.’s work [22] that constructing DVNIZK proof schemes compat-
ible with algebraic MACs is not as simple as we first thought, because that the
secret MAC keys have been re-used in the verification of the DVNIZK proofs. The
solution developed by Couteau et al. consists of not only introducing additional
random masks (i.e., ti · G in Sect. 5.2 of [22]), but also requiring the underly-
ing algebraic MAC scheme to satisfy a stronger (and cumbersome) notion of
unforgeability called extended unforgeability.

Our Contributions. In this paper, we present a new storage-extra APAKE pro-
tocol in the standard model by further exploiting the construction of DVNIZK
proof system compatible with algebraic MACs. Our main contributions can be
summarized as follows:

– We give out a new construction of the oblivious DVNIZK proof scheme
compatible with a new class of algebraic MAC schemes. Recall that Couteau
et al. constructed oblivious DVNIZK proofs only for the algebraic MAC
scheme abstracted from MACGGM, which is one of the two MAC schemes
presented in [23]. We present an oblivious DVNIZK proof system for a class
of algebraic MAC schemes generalized from MACwBB, which is based on the
weak Boneh-Boyen signature [24].

– We avoid the requirement of the cumbersome security notion of extended
unforgeability for the algebraic MAC scheme, which is quite hard to be
verified and brings additional difficulties to the security proof. Note that the
main reason for such a complicated definition is that the secret MAC key has
been reused in the verification process of the DVNIZK proof. We overcome
this obstacle by simulating verification oracles of the DVNIZK proof through
the outputs of the MAC scheme instead of the MAC key.

– We present the first storage-extra APAKE protocol in the standard model
without pairing-based assumptions, based on algebraic MACs and oblivi-
ous DVNIZK proofs. Beyond proving possession of a credential on a single
value of identity, our construction can support credentials certifying many
attributes at once and thus could handle more complex access policies such
as expiration dates and access rights. Our APAKE protocol needs only 2
flows of messages during the authentication phase, which is very efficient in
terms of round efficiency.

Organization. In Sect. 2, we briefly recall the necessary preliminaries. In Sect. 3,
our construction of an oblivious DVNIZK proof system for a new class of alge-
braic MAC scheme is presented. Then, a new storage-extra APAKE protocol in
the standard model is proposed in Sect. 4.
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2 Preliminaries

In this section, we review the main cryptographic primitives needed in our con-
struction. Throughout this paper, λ denotes the security parameter.

2.1 Algebraic Message Authentication Codes

A message authentication code (MAC) is defined by the following four PPT
algorithms M = (M.Setup, M.KeyGen,M.Mac,M.V erify) with an associated
tag space T , such that

– M.Setup(1λ) sets up the public parameters pp of the MAC, which will be
implicitly (or explicitly) passed as an argument to the algorithms below.

– M.KeyGen(pp) is a key generation algorithm which takes as input the public
parameters pp, outputs a secret key sk and public issuer parameters ipp;

– M.Mac(sk,m) is a MAC algorithm which takes as input the key sk and a
message m, generates an authentication tag σ on the message;

– M.V erify(sk,m, σ) is the verification algorithm which takes as input the
key sk, a message m and a tag σ, outputs b = 1 when σ is a valid tag with
respect to sk and m and outputs b = 0 otherwise.

We will need MAC schemes that are existentially unforgeable under chosen
message and verification attacks (UF-CMVA).

Definition 1 (UF-CMVA Security). A MAC scheme M is UF-CMVA secure if for
any PPT adversary A which has access to the public issuer parameters ipp as
well as the MAC and verification oracles, it holds that

Pr

⎡
⎢⎣

Q ← ∅, pp ← M.Setup(1λ),
(sk, ipp) ← M.KeyGen(pp),

(m,σ) ← AOsk(·)(pp, ipp)

:
M.V erify(sk,m, σ) = 1,
∧ m /∈ Q

⎤
⎥⎦ ≤ negl(λ),

where the oracle Osk(·) treats the MAC and verification queries as follows:
O.Mac(m) outputs M.Mac(sk,m) and sets Q ← Q ∪ {m}; O.V erify(m,σ)
outputs M.V erify(sk,m, σ).

For our purpose, we additionally require the MAC scheme to satisfy pseudo-
randomness property, which means that, as long as the MAC key is kept secret,
no PPT adversary could distinguish a valid MAC tag from a random one. Based
on the definitions of pseudorandom functions (PRFs) and weak pseudorandom-
ness [15], we define the pseudorandomness property as follows.

Definition 2 (Pseudorandomness). A MAC scheme M is said to satisfy
pseudorandomness property, if for any PPT adversary A, it holds that

Pr

⎡
⎢⎢⎢⎢⎢⎢⎣

pp ← M.Setup(1λ),
(sk, ipp) ← M.KeyGen(pp),

(m∗, st) ← AO.Mac(·)(ipp),
σ0 = M.Mac(sk,m∗), σ1 ← T ,

b ← {0, 1}, b′ = AO.Mac(·)(yb, st)

: b′ = b

⎤
⎥⎥⎥⎥⎥⎥⎦

≤ 1
2

+ negl(λ).
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Algebraic MACs are a special kind of MACs that consist of only group oper-
ations instead of block ciphers or hash functions, thus easily suitable for efficient
zero-knowledge proof of statements related to these MAC tags. In [23], Chase
et al. proposed the first two algebraic MACs with efficient protocols for proof of
knowledge, which are based on generic group model (GGM) and decisional Diffie-
Hellman (DDH) assumption respectively. Since then, several improved algebraic
MAC schemes have been put forward [15,25,26].

In this paper, we will use the algebraic MAC scheme MACwBB proposed in
[26], which is based on the weak Boneh-Boyen signature [24]. Denote by β a
positive integer and m = (m1,m2, · · · ,mβ) a vector of message. Let GGen(1λ)
be an efficient algorithm which generates a multiplicative group G of order p and
a generator g of this group. The scheme consists of the following algorithms.

– M.Setup(1λ) outputs pp = (G, g, p) ← GGen(1λ);
– M.KeyGen(pp) chooses randomly β + 1 elements xi ← Z

∗
p, computes Xi =

gxi for every i ∈ {0, 1, · · · , β}. Then, the secret key is sk = (x0, x1, · · · , xβ)
and the public issuer parameter is ipp = (X0,X1, · · · ,Xβ);

– M.Mac(sk,m) takes as input the key sk = (x0, x1, · · · , xβ) and a vector
of messages m = (m1,m2, · · · ,mβ), computes σ = g1/(x0+

∑β
j=1 xj ·mj) and

σj = σxj for j = 1, 2, · · · , β1, and sets the MAC tag as Σ = (σ, σ1, · · · , σβ);
– M.V erify(sk,m, (σ, σ1, · · · , σβ)) is the verification algorithm, which out-

puts b = 1 iff σ = g1/(x0+
∑β

j=1 xj ·mj) and σj = σxj for j = 1, 2, · · · , β.

With respect to the security, it has been proven by Camenisch et al. [26] that
this algebraic MAC scheme is UF-CMVA under the SCDHI assumption, which is a
computational variation of the SDDHI assumption [27]. Moreover, we can easily
prove that under the SDDHI assumption this algebraic MAC scheme satisfies
the pseudorandomness property.

Theorem 1. If the SDDHI and SCDHI assumptions hold in group G, then the
algebraic MAC scheme MACwBB satisfies the pseudorandomness property.

2.2 Additively Homomorphic Encryption Schemes

A public key encryption scheme is defined as a triple of PPT algorithms E =
(E .KeyGen, E .Enc, E .Dec) with an associated message space ZN and a random
space ZR, such that

– E .KeyGen(1λ) takes as input the security parameter 1λ and outputs a pair
of encryption and decryption keys (ek, dk);

– E .Enc(ek,m; r) takes as input a public encryption key ek, a message m ∈ ZN

and a random value r ∈ ZR, and outputs a ciphertext c;
– E .Dec(dk, c) takes as input a decryption key dk and a ciphertext c, and

outputs a message m or ⊥.
1 As pointed out by Camenisch et al. [26], the auxiliary information σj are not required

for the MAC verification, but they are useful to improve the efficiency of credential
presentation, and additionally remove the requirement of extended unforgeability.
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The IND-CPA security for a public key encryption scheme is defined as follows.

Definition 3 (IND-CPA Security). A public key encryption scheme E is IND-
CPA secure, if for any PPT adversary A, it holds that

Pr

⎡
⎢⎣

(ek, dk) ← E .KeyGen(1λ),
(m0,m1, st) ← A(ek), b ← {0, 1},

r ← ZR, c ← E .Enc(ek,mb; r), b′ = A(st, c)
: b′ = b

⎤
⎥⎦ ≤ 1

2
+ negl(λ).

In this paper, we focus on public key encryption schemes that are addi-
tively homomorphic for both the message and the random value. We say that
an encryption scheme is strongly additive, if there exists an efficient operation
⊕ such that for any key pair (ek, dk) ← E .KeyGen(1λ), any two ciphertexts
ci = E .Enc(ek,mi; ri) of messages mi ∈ ZN under the randomness ri ∈ ZR

for i ∈ {1, 2}, it holds that c1 ⊕ c2 = E .Enc(ek,m1 + m2 mod N ; r1 + r2
mod R). For an integer ρ ∈ Z, we denote by ρ 
 c the ciphetext E .Enc(ek, ρm
mod N ; ρr mod R), which can be efficiently computed using the formula of the
form E .Enc(ek,m; r) ⊕ · · · ⊕ E .Enc(ek,m; r). Moreover, given two ciphertexts
c, c′, we denote by c � c′ the operation c ⊕ ((−1) 
 c′).

A strongly additive encryption scheme E is further said to be DVNIZK-
friendly, if gcd(N,R) = 1 and for any (ek, dk) ← E .KeyGen(1λ), the value
E .Enc(ek,m; 0) is efficiently decodable to get the plaintext m mod N . For
DVNIZK-friendly encryption scheme over groups ZN of composite order of the
form N = pq, we can resort to a slight variation [20,28] of the well-known Pail-
lier encryption scheme [29]; For groups ZN of prime order N = p, we could
instantiate it with the Castagnos-Laguillaumie encryption scheme [30].

Note that the above encryption/decryption algorithms and scalar product
could be extended to vectors in a natural way. For example, given vectors m =
(m1,m2, · · · ,mβ) and r = (r1, r2, · · · , rβ) of the length β ≥ 1, we could view
E .Enc(ek,m; r) as the vector (E .Enc(ek,mi; ri))

β
i=1. Given ρ = (ρ1, ρ2, · · · , ρβ)

and c = E .Enc(ek,m; r), we let ρ
c denote the vector (E .Enc(ek, ρim; ρir))
β
i=1.

2.3 Designated-Verifier Non-interactive Zero-Knowledge Proof

A designated-verifier non-interactive zero-knowledge (DVNIZK) proof system
[20] for a family of languages {Lcrs} consists of four algorithms Π = (Π.Setup,
Π.KeyGen,Π.Prove,Π.V erify). The setup algorithm Π.Setup(1λ) outputs a
common reference string crs; The algorithm Π.KeyGen(crs) outputs a pub-
lic proving key pk and a secret verification key vk; The proving algorithm
Π.Prove(pk, x, w) takes as input the proving key pk, a word x and a witness
w for the statement x ∈ Lcrs, generates a proof π; The verification algorithm
Π.V erify(pk, vk, x, π) outputs b ∈ {0, 1} indicating either accept or reject.

However, when taking an algebraic MAC tag with respect to a user’s identity
as her credential, the original definition of DVNIZK proof system cannot be
directly used to prove knowledge of the identity. The main difficulty is that the
MAC verification cannot be carried out by the user while she does not know the
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secret MAC key. To tackle this problem, Couteau et al. [22] introduced a new
primitive called oblivious DVNIZK proof system, which can be used to prove
knowledge of a witness w corresponding to a secret relation R(sk, w, x) = 1 with
sk unknown to the prover.

In this paper, we will focus on secret relations {Rcrs(sk, ·, ·)} and languages
{Lcrs} that are defined by algebraic MAC schemes. Given a MAC scheme M
with secret MAC key sk, we will simply set sk as the secret relation key, and
take a MAC message and tag pair as a witness and word pair, in the sense that
Rcrs(sk, w, x) = 1 and x ∈ Lcrs if and only if M.V erify(sk, w, x) = 1.

Definition 4 (Oblivious DVNIZK Proof [22]). An oblivious DVNIZK proof
system for a family of languages related with secret relations {Rcrs} is defined
by the following algorithms Π = (Π.Setup,Π.RelSetup, Π.KeyGen, Π.Prove,
Π.V erify), such that

– Π.Setup(1λ) takes as input the security parameter 1λ, outputs a common
reference string crs and a trapdoor td;

– Π.RelSetup(crs) generates a secret key sk for the secret relation, together
with some public issuer parameters ipp;

– Π.KeyGen(crs) outputs a key pair (pk, vk), consisting of a public proving
key pk and a secret verification key vk;

– Π.Prove(crs, ipp, pk, (xp, xs), w) takes as input the parameters crs, ipp,
the proving key pk, a word x = (xp, xs) ∈ Lcrs consisting of a public subword
xp and a secret subword xs, and a witness for the relation Rcrs(sk, w, x) = 1,
then outputs a proof π;

– Π.V erify(crs, ipp, pk, vk, sk, xp, π) is the verification algorithm which veri-
fies whether a proof π is valid with respect to the relation Rcrs(sk, w, x) = 1.
It outputs b = 1 if the proof is valid and b = 0 otherwise.

We say that an oblivious DVNIZK proof system is secure, if it satisfies com-
pleteness, knowledge extractability (which is a strengthening of soundness) and
oblivious zero-knowledge properties defined as follows.

Definition 5 (Completeness). An oblivious DVNIZK proof system Π sat-
isfies completeness property, if for all parameters (crs, td) ← Π.Setup(1λ),
(sk, ipp) ← Π.RelSetup(crs), (pk, vk) ← Π.KeyGen(crs), and every proof
π ← Π.Prove(crs, ipp, pk, (xp, xs), w), it holds that Π.V erify(crs, ipp, pk, vk,
sk, xp, π) = 1.

Definition 6 (Knowledge Extractability). An oblivious DVNIZK proof sys-
tem Π for secret relations {Rcrs} defined by an algebraic MAC M is said to
satisfy knowledge extractability property, if for every PPT adversary A, there
exists an efficient extracting algorithm Ext such that

Pr

⎡
⎢⎢⎢⎢⎢⎢⎣

(crs, td) ← Π.Setup(1λ),

(sk, ipp) ← Π.RelSetup(crs),

(pk, vk) ← Π.KeyGen(crs),

(π, xp) ← AOM.Mac,OΠ.V er (crs, ipp, pk)

(xs, w) ← Ext(crs, ipp, pk, xp, π, td)

:

Rcrs(sk, w, (xp, xs)) = 0,

Π.V erify(crs, ipp, pk,

vk, sk, xp, π) = 1

⎤
⎥⎥⎥⎥⎥⎥⎦

≤ negl(λ),
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where the oracle OM.Mac(·) denotes M.Mac(sk, ·), and the oracle OΠ.V er(·, ·)
denotes Π.V erify(crs, ipp, pk, vk, sk, ·, ·). In addition, it is required that the
oracle OΠ.V er(·, ·) should be efficiently simulated, when the secret key sk is
replaced by oracle access to M.V erify(sk, ·, ·).

Definition 7 (Oblivious Zero Knowledge). An oblivious DVNIZK proof
system Π for secret relations {Rcrs} defined by an algebraic MAC M is said
to satisfy oblivious zero knowledge property, if for every PPT adversary A, there
exists an efficient algorithm Sim such that

∣∣∣∣∣∣∣∣∣
Pr

⎡
⎢⎢⎢⎣

(crs, td) ← Π.Setup(1λ),
(pk, vk) ← Π.KeyGen(crs),
(x,w, sk, ipp, st) ← A(crs, pk, vk)
π ← Π.Prove(crs, ipp, pk, x, w)

:
Rcrs(sk, w, x) = 1,
∧ A(st, π) = 1

⎤
⎥⎥⎥⎦ −

Pr

⎡
⎢⎢⎢⎣

(crs, td) ← Π.Setup(1λ),
(pk, vk) ← Π.KeyGen(crs),
(x,w, sk, ipp, st) ← A(crs, pk, vk)
π ← Sim(crs, ipp, pk, xp, vk, sk)

:
Rcrs(sk, w, x) = 1,
∧ A(st, π) = 1

⎤
⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣
≤ negl(λ),

where x = (xp, xs) consists of a public subword xp and a secret subword xs.

3 A New Construction of Oblivious DVNIZK Proof

In this section, we introduce a new construction of oblivious DVNIZK proof
system for languages related to the algebraic MAC scheme MACwBB presented
in Sect. 2.1, and prove the security properties of our construction.

3.1 The Construction of Oblivious DVNIZK Proof

We will take an algebraic MAC tag on a user’s attributes as a credential for
this user, which is treated in a similar way as in [22,23]. Nevertheless, the spe-
cific property of the algebraic MAC scheme MACwBB based on weak Bonel-
Boyen signature (see definition in Sect. 2.1) will allow us to build a more effi-
cient oblivious DVNIZK proof system than before. Recall that, when the alge-
braic MAC scheme MACwBB is considered, a MAC tag on a vector of attributes
m = (m1,m2, · · · ,mβ) under the secret key sk = (x0, x1, · · · , xβ) is of the
form Σ = (σ, σ1, · · · , σβ), where σ = g1/(x0+

∑β
j=1 xj ·mj). It can be rewritten as

σ− ∑β
j=1 xj ·mj ·g = σx0 , where the first part σ− ∑β

j=1 xj ·mj ·g has exponents linear
in both attributes m = (m1,m2, · · · ,mβ) and secret keys (x1, x2, · · · , xβ). This
property would be preserved even after some re-randomize technique has been
applied on the credential σ. For example, when it is re-randomized as T = σa

for a random a, it still holds that T− ∑β
j=1 xj ·mj · ga = T x0 .
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Based on the above observation, we are now ready to present our construction
of oblivious DVNIZK proof system for secret relations defined by the algebraic
MAC scheme MACwBB. Given the algebraic MAC scheme MACwBB denoted by
MACwBB = (M.Setup, M.KeyGen,M.Mac,M.V erify) and a DVNIZK-friendly
encryption scheme E = (E .KeyGen, E .Enc, E .Dec) with message space ZN of
prime order N = p, the concrete steps of the oblivious DVNIZK proof system
Π are as follows.

– Π.Setup(1λ) takes as input the security parameter 1λ, computes (ek, dk) ←
E .KeyGen(1λ) and pp = (G, g, p) ← M.Setup(1λ), sets the common refer-
ence string as crs = (ek, pp) and the trapdoor as td = dk. Without loss of
generality, we assume that the public key ek also determines the message
space ZN , the random source ZR and a public bound B on R;

– Π.RelSetup(crs) is essentially the key generation algorithm of the underly-
ing MAC scheme MACwBB. It chooses randomly β +1 elements xi ← Z

∗
p and

computes Xi = gxi for every i ∈ {0, 1, · · · , β}. Then, the secret key is sk =
(x0, x1, · · · , xβ) and the public issuer parameter is ipp = (X0,X1, · · · ,Xβ);

– Π.KeyGen(crs) chooses at random a value e ← Zl where l = 2λ · N · B,
then sets the secret verification key as vk = e and the public proving key as
pk = E .Enc(ek, 0; e);

– Π.Prove(crs, ipp, pk, (xp, xs), w) takes as input the parameters crs, ipp,
the proving key pk, a credential x = (xp =⊥, xs = σ) and a vector of
attributes w = (m1,m2, · · · ,mβ), selects a random value a ← ZN and
computes T = σa. It then chooses at random a′ ← ZN , m′

j ← ZN for
j = 1, 2, · · · , β, and computes T ′ = Πβ

j=1σj
−a·m′

j · ga′
. Next, it chooses a

random vector r = (r0, r1, · · · , rβ) ← Z
β+1
R , sets m = (a,m1,m2, · · · ,mβ)

and m′ = (a′,m′
1,m

′
2, · · · ,m′

β), and computes X = E .Enc(ek,m; r) and
X′ = E .Enc(ek,m′;0) � (r 
 pk). At last, the proving algorithm outputs a
proof π = (T, T ′,X,X′).

– Π.V erify(crs, ipp, pk, vk, sk, xp =⊥, π) verifies the proof π as follows. It
first parses π as π = (T, T ′,X,X′), computes X′ ⊕ (e 
 X) and checks
that the values in this vector are decodable, then decodes them to a vector
d = (d0, d1, · · · , dβ). Next, it checks that T = 1 and

(T x0)e · T ′ = T− ∑β
j=1 xj ·dj · gd0 . (1)

Finally, it outputs b = 1 if π can be parsed correctly, X′⊕(e
X) is decodable
and the above equation holds; otherwise, it outputs b = 0.

3.2 Security Analysis

In this section, we show that our oblivious DVNIZK proof system satisfies com-
pleteness, knowledge extractability and oblivious zero-knowledge properties.

Theorem 2. If the underlying encryption scheme E is DVNIZK-friendly, then
the oblivious DVNIZK proof system Π satisfies the completeness property.
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Proof. Firstly, if a proof π = (T, T ′,X,X′) is generated honestly, one can easily
deduce that

X′ ⊕ (e 
 X) = (E .Enc(ek,m′;0) � (r 
 pk)) ⊕ (e 
 E .Enc(ek,m; r))
= E .Enc(ek,m′;−e · r) ⊕ E .Enc(ek, e · m; e · r)
= E .Enc(ek,m′ + e · m;0),

which is decodable according to the definition of DVNIZK-friendly encryption
schemes. Moreover, we can obtain that d = m′ + e · m mod N , yielding that
d0 = a′ + e · a mod N and dj = m′

j + e · mj mod N for all j = 1, 2, · · · , β.

Therefore, by combining with the equation T− ∑β
j=1 mj ·xj · ga = T x0 , we have

(T x0)e · T ′ =
(
T− ∑β

j=1 xj ·mj · ga
)e

·
(
Πβ

j=1σj
−a·m′

j · ga′)

=
(
T− ∑β

j=1 xj ·mj · ga
)e

·
(
T− ∑β

j=1 xj ·m′
j · ga′)

= T− ∑β
j=1 xj ·(m′

j+e·mj) · ga′+e·a

= T− ∑β
j=1 xj ·dj · gd0 .

Theorem 3. If the underlying encryption scheme E is DVNIZK-friendly, and
the algebraic MAC scheme MACwBB is UF-CMVA secure, then the oblivious
DVNIZK proof system Π satisfies the knowledge extractability property.

Proof. Our proof starts with the construction of an extracting algorithm Ext.
Given a proof π = (T, T ′, {T ′

j}
β
j=1,X,X′) and the trapdoor td = dk, the algo-

rithm Ext computes m = (a,m1,m2, · · · ,mβ) = E .Dec(dk,X), sets σ = T 1/a

and then outputs (xs = σ,w = (m1,m2, · · · ,mβ)).
We next turn to estimate the probability of the event Rcrs(sk, w, (xp, xs)) =

0 ∧ Π.V erify(crs, ipp, pk, vk, sk, xp, π) = 1. Recall that we only focus on
secret relations that are defined by algebraic MAC schemes in the sense that
R(sk, w, x) = 1 ⇔ M.V erify(sk, w, x) = 1. It is then sufficient to show that the
oracle OΠ.V er(·, ·) = Π.V erify(crs, ipp, pk, vk, sk, ·, ·) can be efficiently simu-
lated, with sk replaced by oracle access to M.V erify(sk, ·, ·).

We denote by OSimV er(·, ·) = SimV erify(crs, ipp, pk, vk, dk, ·, ·) the sim-
ulated verification algorithm with access to the oracle M.V erify(sk, ·, ·), and
proceed as follows. Assuming that (crs, td = dk), (sk, ipp), (pk, vk) are gener-
ated as before and (crs, ipp, pk, vk, dk) are provided to SimV erify as input.
Then, for each query (xp =⊥, π) asked by the adversary A, we can decrypt
the ciphertexts X,X′ to vectors m = (a,m1,m2, · · · ,mβ) ← E .Dec(dk,X),
m′ = (a′,m′

1,m
′
2, · · · ,m′

β) ← E .Dec(dk,X′). Finally, we compute σ = T 1/a,
and check that all the following equations are true:

−e 
 (X � E .Enc(ek,m;0)) = X′ � E .Enc(ek,m′;0), (2)
M.V erify(sk, (m1,m2, · · · ,mβ), σ) = 1, (3)

T ′ = T− ∑β
j=1 xj ·m′

j · ga′
. (4)

If all the checks succeeded, SimV erify outputs 1; otherwise, it outputs 0.
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Here we remark that, under the conditions σ = T 1/a and M.V erify(sk, (m1,
m2, · · · ,mβ), σ) = 1, the check Eq. (4) could in fact be calculated without the
knowledge of the secret key sk = (x0, x1, · · · , xβ). Alternatively, we can ask to
the MAC oracle to get (σ, σ1, · · · , σβ) = M.Mac(sk, (m1,m2, · · · ,mβ)) and then
check that

T ′ = Πβ
j=1σj

−a·m′
j · ga′

. (5)

This property is very attractive for the context of DVNIZK proof, since
it enables us to avoid resorting to a stronger notion of unforgeability (called
extended unforgeability [22]) for the underlying algebraic MAC schemes.

In the following, we will prove that the simulated oracle OSimV er(·, ·) is
indistinguishable from the real oracle OΠ.V er(·, ·). First, we show that, given
a query π, if OSimV er(⊥, π) = 1, then OΠ.V er(⊥, π) = 1. Recall that m ←
E .Dec(dk,X) and m′ ← E .Dec(dk, X′), it follows immediately that the Eq. (2)
implies X,X′ are of the form X = E .Enc(ek,m; r) and X′ = E .Enc(ek,m′;−e·r)
for some random vector r. Henceforth, the vector X′ ⊕ (e 
 X) is decodable,
and the decoded vector is d = m′ + e · m. On the other hand, if the Eq. (3)
is satisfied, it yields that σ = g1/(x0+

∑β
j=1 xj ·mj), which in turn implies that

T− ∑β
j=1 xj ·mj · ga = T x0 . Combining these facts with Eq. (4), we can easily get

the equation (T x0)e · (Πβ
j=1(T

′
j)

−xj ·T ′) = T− ∑β
j=1 xj ·dj · gd0 . This indicates that

OΠ.V er(⊥, π) = 1.
Next, we prove that, if OΠ.V er(⊥, π) = 1, then OSimV er(⊥, π) = 1. Assume

that X = E .Enc(ek,m; r) and X′ = E .Enc(ek,m′; r′) for some random vectors
r and r′. We would easily deduce from the fact X′ ⊕ (e 
 X) is decodable that
r′ = −e ·r, which thus yields that the Eq. (2) is satisfied. Furthermore, to obtain
a contradiction, we now suppose that Eq. (1) holds, while the Eqs. (3) or (4) is
rejected. Note that the Eq. (1) can be rewritten as

(
T x0/T− ∑β

j=1 xj ·mj · ga
)e

= T− ∑β
j=1 xj ·m′

j · ga′
/T ′. (6)

If the Eq. (3) does not hold, we get T x0/T− ∑β
j=1 xj ·mj · ga = 1; if (4) does

not hold, we have T− ∑β
j=1 xj ·m′

j · ga′
/T ′ = 1. Since e is randomly chosen

from some sufficiently large space, it holds with overwhelming probability that
e = 0 mod N . Hence, we can conclude that T x0/T− ∑β

j=1 xj ·mj · ga = 1 and
T− ∑β

j=1 xj ·m′
j · ga′

/T ′ = 1 will happen simultaneously. Using a similar technique
as in [20], we can then get from Eq. (6) the value e mod N , which is supposed
to be statistically hidden.

Now, since the simulated oracle OSimV er(·, ·) is indistinguishable from the
real oracle OΠ.V er(·, ·), and the valid of secret relation has essentially been
checked through Eq. (3), we conclude that the event R(sk, w, (xp, xs)) = 0 ∧
Π.V erify(crs, ipp, pk, vk, sk, xp, π) = 1 happens with only negligible probabil-
ity. This completes the proof.

Theorem 4. If the underlying encryption scheme E is IND-CPA secure, then the
oblivious DVNIZK proof system Π is obliviously zero-knowledge.
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Proof. The proof will be divided into two steps: constructing a simulator and
proving the indistinguishability. We first construct a simulator Sim(crs, ipp, pk,
xp, vk, sk) which producing simulated zero-knowledge proof π as follows. It first
selects randomly T ← G and d = (d0, d1, · · · , dβ) ← Z

β+1
N , and computes

T ′ = T− ∑β
j=1 xj ·dj · gd0/(T x0)e

. (7)

The simulator then chooses at random m = (a,m1,m2, · · · ,mβ) ← Z
β+1
N , m′ =

(a′,m′
1,m

′
2, · · · ,m′

β) ← Z
β+1
N and r = (r0, r1, · · · , rβ) ← Z

β+1
R , and computes

X = E .Enc(ek,m; r), (8)
X′ = E .Enc(ek,d − e · m;−e · r). (9)

We now show that, given an adversary A against the indistinguishability
of Π.Prove and Sim, we can construct an adversary AS against the IND-
CPA security of S. The IND-CPA adversary AS first obtains (x = (xp =⊥,
xs = σ), w = (m1,m2, · · · ,mβ)) from the adversary A, then it chooses ran-
domly a ← ZN , sets m = (a,m1,m2, · · · ,mβ) and T = σa, picks at ran-
dom m̃ = (ã, m̃1, m̃2, · · · , m̃β) ← Z

β+1
N , and sends the (m, m̃) to the IND-CPA

challenger to get back a challenging ciphertext X. Next, it selects randomly
d = (d0, d1, · · · , dβ) ← Z

β+1
N , computes X′ = E .Enc(ek,d;0) � (e · X), and

sets T ′ as in Eq. (7). Finally, the adversary AS sends π∗ = (T, T ′,X,X′) to the
adversary A, and takes the bit b ∈ {0, 1} outputted by A as its own output.

While the relation Rcrs(sk, w, x) = 1 holds, it is easy to check that, if the
challenging ciphertext X = E .Enc(ek,m; r), then the proof π∗ is distributed
identical to a proof in the real game; if X = E .Enc(ek, m̃; r), then the proof
π∗ is distributed exactly as that is produced by the simulator. Therefore, if the
adversary A has non-negligible probability in distinguishing Π.Prove and Sim,
then the adversary AS will win the IND-CPA game with non-negligible probability.

4 A New Storage-Extra APAKE Protocol

In this section, we first describe the construction of our new storage-extra
APAKE protocol. Then, the design rationale and detailed comparisons of our
protocols, in terms of both efficiency and security, are presented.

4.1 The Construction of the APAKE Protocol

Assume that MACwBB = (M.Setup,M.KeyGen,M.Mac,M.V erify) is the alge-
braic MAC scheme presented in Sect. 2.1, E = (E .KeyGen, E .Enc, E .Dec) is
a DVNIZK-friendly homomorphic encryption scheme as defined in Sect. 2.2,
and Π = (Π.Setup,Π.RelSetup,Π.KeyGen, Π.Prove,Π.V erify) is the obliv-
ious DVNIZK proof scheme introduced in Sect. 3.1. We also use a traditional
MAC scheme M = (KeyGen, Mac, Verify) and a traditional signature scheme
S = (S.KeyGen, S.Sign, S.V erify).
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For each user U ∈ U, denote by m = (m1,m2, · · · ,mβ) the vector of
attributes and by pw the password held by this user. The construction of the
APAKE protocol consists of the following steps.

Setup. In the setup phase, we first run Π.Setup(1λ) to obtain crs = (ek, pp) =
(ek, (G, g, p)) and the trapdoor td = dk, run Π.KeyGen(crs) to generate a
secret relation key sk = (x0, x1, · · · , xβ) and ipp = (X0,X1, · · · ,Xβ), run
S.KeyGen(1λ) to get a signing key SK and the related signature verification
key V K. Then, we select a random element h ← G, set the common reference
string of the APAKE protocol as (crs, ipp, V K, h), and provide to the server
with the secret keys (sk, SK).

Registration. In this phase, each user registers to the server to prepare for sub-
sequent anonymous authentication. The registration phase is assumed to be
executed over secure channels. To begin with, each user sends her attributes2

m = (m1,m2, · · · ,mβ) to the server. Upon receiving this registration request,
the server generates a MAC tag Σ = (σ, σ1, · · · , σβ) ← M.Mac(sk,m) and
sends it to the user as its credential3. When the credential Σ is received, the
client encrypts it with her password pw to obtain a password-wrapped credential
[Σ]pw, and puts it on some (publicly) extra-storage.

Authentication. To login the server, a user interacts with the server as follows.

1. At the beginning, the server runs Π.KeyGen(crs) to generate a proof veri-
fication key vk = e and the corresponding proving key pk = E .Enc(ek, 0; e),
picks at random γ ← Zp and computes Y = hγ , σS = S.Sign(SK, (pk, Y )).
Then, the server sends to the client the message (pk, Y, σS).

2. Upon receiving the message (pk, Y, σS) from the server, the client first checks
the validity of the signature σS . Next, she fetches back the password-wrapped
credential [Σ]pw and decrypts it with her password pw to recover the cre-
dential Σ = (σ, σ1, · · · , σβ). Then, the user generates a DVNIZK proof
π ← Π.Prove(crs, ipp, pk, (xp, xs), w), where x = (xp =⊥, xs = σ) and
w = (m1,m2, · · · ,mβ). The user also chooses randomly ξ ← Zp, computes
X = hξ, tk

(1)
U = Y ξ,tk(2)

U = Πβ
j=1σ

−a·mj

j · ga and σU = Mac(tk(2)
U , σS ||X||π).

Finally, the user sends (X,π, σU ) to the server, and computes the session
key as KU = tk

(1)
U · tk

(2)
U .

3. When the server receives (X,π, σU ), it ensures that T = 1, computes tk
(1)
S =

Xγ , tk
(2)
S = T x0 , checks that σU = Mac(tk(2)

S , σS ||X||π), verifies the DVNIZK

2 Beyond a single value of identity, here we consider a vector of attributes, which could
handle more complex access policies such as expiration dates and access rights.

3 Together with the credential Σ, the server perhaps, if needed, sends a zero-knowledge
proof proving that this MAC tag is honestly generated. The ZK proof could be either
a NIZK proof secure in the random oracle model, or a DVNIZK proof secure in the
standard model where the proving key is sent to the server along with the attributes.
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proof π, and aborts if any of these checks is failed. If all checks are valid, the
server computes the session key as KS = tk

(1)
S · tk

(2)
S .

4.2 Design Rationale

The core of our construction is a DVNIZK proof π to prove that the algebraic
MAC tag σ held by the user is valid, without compromising the privacy of this
credential and the user’s attributes. The privacy protection property is guaran-
teed by the zero-knowledge property of the underlying DVNIZK proof scheme;
and the soundness property of the DVNIZK proof system ensures that, the user
in communication is a legitimate member with a valid algebraic MAC tag as her
credential.

Based on these observations, we could even obtain a one-pass variant of the
above protocol for anonymous entity authentication, through sending only one
flow of message consisting of the DVNIZK proof π to the server. The result-
ing protocol guarantees privacy-preserving non-interactive authentication, as
expected by [20]. However, as a one-pass protocol, it is inherently open to replay
attacks [31]. Although it is well-known that replay attacks can be prevented
by maintaining synchronized state (via counters or timestamps) between the
sender and receiver, we emphasize that synchronized timestamps are actually
quite tedious in practical applications.

In order to prevent replay attacks and to establish a secure session key for
subsequent use, we alternatively choose to have the server send an additional
message (pk, Y, σS) to the client. In this message, the server generates and sends
a fresh proving key pk for every session, which guarantees that the DVNIZK
proof π is newly generated as well. Moreover, with the extra flow of message, we
can embed in this protocol of a Diffie-Hellman tuple (X,Y ), which offers forward
security for both participants.

4.3 Comparisons with Existing Storage-Extra APAKE Protocols

In the following, we compare our storage-extra APAKE protocol with similar
anonymous authentication protocols, in terms of both security and efficiency.

Security Comparisons. First, recall that our main purpose is to design a storage-
extra APAKE protocol secure in the standard model, instead of in the random
oracle model. As indicated in Table 1, our storage-extra APAKE protocol is
the only one with proven security in the standard model, while all the existing
protocols [14–16] are analyzed in the random oracle model. However, the random
oracle model is arguably “unnatural” and differs from real-world constructions
significantly [19]. We thus have reasons to believe that an APAKE protocol with
provable security in the standard model would provide a stronger guarantee of
security than those only proven secure in the random oracle model. In addition,
our protocol not only satisfies the same mutual authentication property as the
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existed protocols, but also permits more flexibility in terms of identity type, as
our protocol allows users to prove a vector of personal attributes rather than a
single value of identity.

Efficiency Comparisons. With respect to efficiency, we compare our protocol
with the existing storage-extra APAKE protocols in terms of rounds, communi-
cation and computational cost. The details are illustrated in Table 2. We stress
that our protocol requires only two flows of messages during the authentication
phase, which is very efficient for a protocol with explicitly mutual authentication.
Although our protocol is less efficient, which is similar to those protocols with
provable security in the standard model, than its counterpart proven secure in
the random oracle, it is still considerably efficient. In particular, when the length
of attributes is set to β = 1, we get a protocol that is even more efficient than
Yang et al.’s scheme [14], which is right the storage-extra APAKE protocol con-
tained in the standard ISO/IEC 20009-4 [17].

Table 1. Security comparisons among storage-extra APAKE protocols

Protocols Model Mutu-Auth Identity-Type

Yang et al.’s [14] Random oracle Yes Single value

Zhang et al.’s [15] Random oracle Yes Single value

Shin et al.’s [16] Random oracle Yes Single value

Our protocol Standard model Yes Attribute vector

Legend: Mutu-Auth represents explicitly mutual authentication,
Identity-Type denotes the type of user’s identity which the proto-
col supports.

Table 2. Efficiency comparisons among storage-extra APAKE protocols

Protocols Rounds Comm. Computational cost

User side Server side

Yang et al.’s [14] 3 7|G1| + |GT |
+6|p|

9EG1 + 1E2
G1

+1E5
GT

+ 2P

EG1 + 3E2
G1

+1E6
GT

+ 4P

Zhang et al.’s [15] 2 4|G| + 4|p| 3EG + 2E2
G

3EG + 1E2
G

Shin et al.’s [16] 3 3|G| + 2|H| 5EG 3EG

Our protocol 2 10|G| + 1|T | 3EG + 2Eβ+1
G

+2βEnc

(β + 3)EG

+2E2
G

Legend: |G1| denotes the bit size of an element from the group G1, |p|
represents the size of an element from Zp, |H| and |T | denote the size

of an output of a hash function and a MAC scheme, respectively; EG

represents one exponentiation in G, En
G

denotes a multi-exponentiation of

n values in G, P represents a bilinear pairing operation, Enc denotes a

homomorphic encryption operation.



514 Q. Zhang et al.

4.4 Security Analysis of the APAKE Protocol

By utilizing a security model for storage-extra APAKE protocol formalized by
Zhang et al. in [15], we could prove that the APAKE protocol presented above
guarantees AKE security of session keys and achieves user anonymity with
respect to the honest-but-curious server. However, the detailed security model
and rigorous proofs are omitted here due to the page limit. We refer the reader
to our full paper for more details.

5 Conclusions

In this paper, we first give out a new construction of the oblivious DVNIZK proof
system compatible with a new class of algebraic MAC schemes, which avoids the
requirement of the cumbersome security notion called extended unforgeability.
Then, we present a new APAKE protocol in the standard model by combing the
technique of algebraic MAC with oblivious designated-verifier non-interactive
zero-knowledge (DVNIZK) proof. Comparisons show that our protocol enjoys
stronger security guarantees as well as achieves considerably communication and
computation performance.
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Abstract. Authenticity can be compromised by information leaked via
side-channels (e.g., power consumption). Examples of attacks include
direct key recoveries and attacks against the tag verification which may
lead to forgeries. At FSE 2018, Berti et al. described two authenti-
cated encryption schemes which provide authenticity assuming a leak-free
implementation of a Tweakable Block Cipher (TBC). Precisely, security
is guaranteed even if all the intermediate computations of the target
implementation are leaked in full but the TBC long-term key. Yet, while
a leak-free implementation reasonably models strongly protected imple-
mentations of a TBC, it remains an idealized physical assumption that
may be too demanding in many cases, in particular if hardware engi-
neers mitigate the leakage to a good extent but (due to performance
constraints) do not reach leak-freeness. In this paper, we get rid of this
important limitation by introducing the notion of Strong Unpredictabil-
ity with Leakage for BC’s and TBC’s. It captures the hardness for an
adversary to provide a fresh and valid input/output pair for a (T)BC,
even having oracle access to the (T)BC, its inverse and their leakages.
This definition is game-based and may be verified/falsified by labora-
tories. Based on it, we then provide two Message Authentication Codes
(MAC) which are secure if the (T)BC on which they rely are implemented
in a way that maintains a sufficient unpredictability. Thus, we improve
the theoretical foundations of leakage-resilient MAC and extend them
towards engineering constraints that are easier to achieve in practice.
(The full version of this paper is available on ePrint [8].)

1 Introduction

Message Authentication Codes (MAC) are widely used to authenticate data. Effi-
cient MAC are usually constructed from conceptually simpler symmetric primi-
tives such as (tweakable) block ciphers (e.g., CBC [5]) and hash functions (e.g.,
c© Springer Nature Switzerland AG 2020
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HMAC [4,5]), and enjoy reliable “provable security guarantees”, i.e., security
reductions to the underlying primitives.

Side-channel attacks, since introduced in the 1990s [22,23], have now been
recognized as one of the main real-world security threats (e.g., see [2, chapter
1.2]). In response, various implementation-level countermeasures have been pro-
posed and even formally proved effective. However, they typically induce sig-
nificant overheads. As a complementary, the methodology of leakage-resilience
was proposed [15] and followed by many (see [21] for a survey). Schemes proved
leakage-resilient enjoy security even if a moderate amount of sensitive infor-
mation is leaked via side-channels. Consequently, their implementations could
leverage less protected circuits and thus reduce the overall overheads.

It is not a surprise that with leakages, classical MAC such as CBC and HMAC
are not secure at all, even if leakages only contain the input/output values of
the underlying functions (see, e.g., [13]). This means their implementations have
to be heavily protected when used in sensitive settings such as the IoT, which
may be hard to achieve given application cost constraints. Therefore, exploring
the construction of leakage-resilient MAC is a natural direction, which was ini-
tiated in [9,19,25,26] and later improved in [3,7,10] to achieve security in the
presence of both tag generation and verification leakages.1 We remark that the
premises used in these works are significantly different. For example, [3,25] lever-
aged bilinear maps in the generic group model to ease secret-sharing/masking-
based implementations of their MAC, while [7,9,10,26] model a heavily protected
(tweakable) block cipher (for example, using high-order masking [16,20]) as leak-
free and focus on making the other mode-level leakages harmless.

From the efficiency viewpoint, sticking with simple symmetric primitives is
naturally desirable.2 Yet, a drawback of the aforementioned papers [7,9,10,26]
is the use of leak-free cipher model. Despite it is theoretically possible to reach
very high security levels with masking (approaching black box security [16,20]),
it implies (very) high overheads that may not be acceptable in practice. Besides,
the leak-free assumption (that is, nothing is leaked about the key used and
the outputs remain pseudorandom) cannot be accompanied by any well-defined
security game—somewhat resembling the random oracle model.

Our Contribution. The goal of this paper is to bridge the above theory gap (i.e.,
seeking for some well-defined leakage assumptions on the block cipher that allows
the leakage-resilient MAC security reductions) while also enabling more modular
security guarantees that may degrade gracefully when the physical assumption
is respected only to some extent. Our answer to this challenge is Strong Unpre-
dictability in the presence of Leakages for a (T)BC, henceforth abbreviated as
SUL2. In detail, it captures the hardness of providing a fresh input/output pair
for the (T)BC even having access to its leaking oracle and leaking inverse oracle
(following the notations of [18], the variant without leaking inverse oracle would

1 Note that some MACs were parts of authenticated encryption (AE) proposals.
2 The MAC of [3,25] consumes ≈4 s to generate a tag on a 32-bit ARM.
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be SUL1). It can be viewed as a natural extension of the unpredictable block
cipher assumption introduced by Dodis and Steinberger [13,14].

With this new assumption, we revisit existing (tweakable) block cipher-based
leakage-resilient MAC. We first consider the simplest Hash-then-BC scheme τ =
Fk(H(m)), the leakage security of which was analyzed by Berti et al. [9,10].
While the security reduction seems straightforward, Berti et al. [10] changed
the verification process of Vrfyk(m, τ) from “If τ = F∗

k(H(m)), then return 1”
to “If H(m) = F∗,−1

k (τ), then return 1” (i.e., leveraging the inverse F∗,−1
k to

avoid leaking sensitive information).3 As a result, they achieve better mode-
level leakage-resilience using leak-free block ciphers. We show that the SUL2
assumption for F∗ is actually sufficient to obtain similar guarantees, further
assuming an ideal hash H.4 We then revisit the recently proposed Hash-then-TBC
scheme [7], which was also used in the NIST AE submission Spook [6]. In detail,
its tag generation is Tagk(m) = τ = F∗

k(h1, h2), where h2 is the tweak of F∗ and
h1‖h2 = H(m) (i.e., the 2n-bit output of H is divided into two halves, h1 and h2),
while for verification Vrfyk(m, τ) we compute h̃1 = F∗,−1

k (τ, h2) and compare it
with h1, from h1‖h2 = H(m). We show that using a 2n-bit hash, we can achieve
the beyond-birthday-bound security for this Hash-then-TBC construction.

Both schemes are natural, extremely simple and should be easy to implement
for practical uses. We expect the block cipher based construction (next: HBC)
to be slightly more efficient than the tweakable version (next: HTBC) as a secure
TBC typically consumes more rounds than a secure BC. However, we also note
that HBC admits forgery attacks with lower data complexity (simply utilizing a
hash collision), while HTBC solves this problem by doubling the size of the hash
and using a TBC (that has a larger input size) to absorb the digest.

In summary, our results improve the theory foundations for existing effi-
cient (tweakable) block cipher-based leakage-resilient MAC. We believe the SUL2
assumption could find more applications in future leakage-resilient analyses. In
practice, unpredictability is widely believed to be more relaxed than PRP [13].5

Thus it potentially enables using reduced-round (tweakable) BCs for MAC. As the
heavily protected ciphers are much more costly than the hash functions (that do
not need protection), they are expected to be the performance bottleneck, and
reducing the number of rounds may significantly improve the overall performance
(e.g., in terms of latency and energy consumption).

Related Work. The idea of basing MAC security on unpredictable ciphers is not
new, dating back to [1] and witnessing recent achievements [13,14,28]. In fact,
as argued in [13], it is natural to consider reducing the unpredictability of the
“bigger” MAC to the unpredictability of the “smaller” ciphers.

3 F∗ means that the BC F is implemented in a leak-free way.
4 This idealized assumption is used for simplifying our analyzes, since our focus is on

the leak-free blocks. We leave its relaxation as an interesting open problem.
5 Indeed, Unpr can be based on weaker complexity assumptions [12].
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2 Background

Notations. A (q1, ..., qd, t)-adversary A against Π is an algorithm A having oracle
access to O1, ...,Od, making at most qi queries to oracle Oi, running in time
bounded by t, and outputting a finite string of bits. The leakage function due to
the implementation of an algorithm Algo is denoted LAlgo. This function might
be non deterministic. A leaking query to Algo is denoted LAlgo and results in
running both Algo and LAlgo on the same input.

The set of binary strings of length n is denoted by {0, 1}n, while the set of
all finite strings by {0, 1}∗. Given two strings, x and y, we let x||y denote the
concatenation of these two strings. Given a non-empty set X , we let x

$← X
denote the draw of an element x from X uniformly at random. The view of a
game consists of all queries made by the adversary to his oracles, the oracles’
answers, and the final output of the adversary, recorded in order of appearance.
A value is fresh at some point in the view if it was never recorded earlier.

2.1 Cryptographic Primitives

Tweakable Block Ciphers. A tweakable block cipher [24] (TBC) is a function
F : K × T W × X �−→ Z, where K (resp. T W) is the key space (resp. the tweak
space), and such that for any key k ∈ K and any tweak tw ∈ T W, the function
Ftw
k : X �→ Z;x �→ Ftw

k (x) := Fk(tw, x) := F(k, tw, x) is a permutation. We
denote the inverse of this function by F−1

k,tw := F−1
k (tw, ·). A Block Cipher (BC)

is a TBC with an empty tweak space: the only tweak is the “empty string”.

Message Authentication Codes with Leakage. A message authentication
code (MAC) is a couple of algorithms (Tag,Vrfy), Tag : K × M �−→ T and
Vrfy : K × M × T �−→ {0, 1}, where K, M and T are respectively called the key
space, the message space and the tag space, and such that for any key k ∈ K
and any message m ∈ M, 1 ← Vrfyk(m,Tagk(m)).

Definition 1. A MAC = (Tag,Vrfy) is (qT , qV , t, ε) strongly existentially
unforgeable against chosen-message and verification attacks, or (qT , qV , t, ε)-suf-
vcma, if for all (qT , qV , t)-adversary A, we have

Pr[FORGEsuf-vcma
A,MAC = 1] ≤ ε

where the FORGEsuf-vcma experiment is defined in Table 1.

To model the ability of an adversary to get leakage on tag generation and
verification, we extend the FORGEsuf-vcma experiment by allowing the oracles to
additionally return the evaluation of LTag and LVrfy, where L = (LTag, LVrfy) is the
leakage function pair due to an implementation of the MAC. Given an adversary
A, we write AL to specify that the adversary knows the implementation and that
it can learn the leakage for chosen keys, which models any leakage learning phase
on other devices with the same implementation.
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Table 1. The FORGEsuf-vcma experiment.

FORGEsuf-vcma
MAC,A experiment

Initialization: Oracle Tag(m):

k
$← K τ ← Tagk(m)

S ← ∅ S ← S ∪ {(m, τ)}
Return τ

Finalization:

(m, τ) ← ATag(·),Vrfy(·,·) Oracle Vrfy(m, τ):

If (m, τ) ∈ S Return 0 Return Vrfyk(m, τ)

Return Vrfyk(m, τ)

Definition 2. A MAC = (Tag,Vrfy), whose implementation has leakage func-
tion L = (LTag, LVrfy) is (qT , qV , qL, t, ε) strongly existentially unforgeable against
chosen message and verification attacks with leakage in tag-generation and veri-
fication, or (qT , qV , qL, t, ε)-suf-L2, if for any (qT , qV , qL, t)-adversary A, we have

Pr[FORGE-L2suf-vcma
A,MAC,L = 1] ≤ ε,

where the FORGE-L2suf-vcma experiment is defined in Table 2, and where AL

makes at most qL queries to L.

Table 2. The FORGE-L2suf-vcma experiment.

FORGE-L2suf-vcma
MAC,A experiment

Initialization: Oracle LTag(m):

k
$← K τ ← Tagk(m), �m ← LTag(k, m)

S ← ∅ S ← S ∪ {(m, τ)}
Return (τ, �m)

Finalization:

(m, τ) ← ALTag(·),LVrfy(·,·),L Oracle LVrfy(m, τ):

If (m, τ) ∈ S, return 0 �v ← LVrfy(k, m, τ)

Return Vrfyk(m, τ) Return (Vrfyk(m, τ), �v)

Note that the L2 notation is for leakage during both tag generation and verifica-
tion (the variant without tag verification leakage would use L1, following [18]).

Unbounded Leakage. Our new security analysis of the MACs relies on one
of the weakest assumptions about the leakage: additionally to their own leakage
functions, all the cryptographic tools of a scheme (hash function, TBC . . . ) fully
leak all their I/Os except the key. A proof under this assumption is called a
proof in the unbounded leakage model.
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3 Unpredictability of Leaking TBC

Dodis and Steinberger [13] introduced the definition of unpredictability with leak-
age for BC. At a high level, the definition says it is unfeasible to produce a valid
input-output couple of the BC even if we got the leakage besides of the out-
come of the computation of the BC on chosen inputs. We extend this notion by
granting the adversary with the inverse oracle of the BC and its leakage. To save
some place, we directly describe this notion for TBCs. We get the corresponding
notion for BCs by removing all the tweaks in the definition below.

We denote by L = (LEval, LInv) the leakage function pair associated to an
implementation of the TBC, where LEval(k, tw, x) (resp. LInv(k, tw, z)) is the leak-
age resulting from the computation of Fk(tw, x) (resp. F−1

k (tw, z)). We also allow
the adversary A to profile the leakages and write AL as before, like in [26].

Definition 3. A tweakable block cipher F : K×T W×X �−→ Z with leakage func-
tion pair L = (LEval, LInv) is (qE , qI , qL, t, ε) strongly unpredictable with leakage
in evaluation and inversion, or (qE , qI , qL, t, ε)-SUL2, if for any (qE , qV , qL, t)-
adversary A, we have

Pr[SUL2A,F,L ⇒ 1] ≤ ε,

where the SUL2 experiment is defined in Table 3, and where AL makes at most
qL (offline) queries to L.

Table 3. Strong unpredictability with leakage in evaluation and inversion experiment.

SUL2A,F,L experiment

Initialization: Oracle LEval(tw, x):

k
$← K z = Fk(tw, x)

L ← ∅ �e = LEval(k, tw, x)

L ← L ∪ {(x, tw, z)}
Finalization: Return (z, �e)

(x, tw, z) ← ALEval(·,·),LInv(·,·),L

If (x, tw, z) ∈ L Oracle LInv(tw, z):

Return 0 x = F−1
k (tw, z)

If z == Fk(tw, x) �i = LInv(k, tw, z)

Return 1 L ← L ∪ {(x, tw, z)}
Return 0 Return (x, �i)
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4 First Leakage-Resilient MAC: HBC

We now revisit one of the most common designs to build a MAC from a hash
function H and a block cipher F. This MAC is the well-known hash-then-BC
scheme, named here HBC, except that we analyze it in a leakage setting and
through the lens of the unpredictability of F. As we want to show the security
of HBC even when F leaks its inputs and outputs in full, we just have to tweak
the usual verification algorithm by using the inversion of the BC to avoid leaking
valid tags just by processing invalid pairs (m, τ). As mentioned in introduction,
our analysis models H as a random oracle for simplicity and since our focus is
on the leak-free blocks. Yet, it does not suggest any reason why an ideal object
would be needed, and its relaxation is an interesting open problem.

4.1 HBC Description

Let M = {0, 1}∗ and X = Z = {0, 1}n. Considering a hash function H : M �→ X
and a block cipher F : K × X �→ Z, we build HBC = (Tag,Vrfy):

Tagk(m): compute h = H(m), then compute and output τ = Fk(h).
Vrfyk(m, τ ): compute h = H(m) and h̃ = F−1

k (τ), then output 1 if h = h′, and
0 otherwise.

We highlight that Tag only evaluates F while Vrfy only computes its inverse.
This feature is at the core of the argument showing that unbounded leakages
do not decrease the unforgeability of this hash-then-BC design. This idea was
already used for the authentication part of the AE modes DTE2, EDT and
FEMALE [10,18]. We illustrate HBC in Fig. 1.

4.2 Security of HBC

In the unbounded leakage model, the adversary receives all the ephemeral values
computed during the tag generation and the verification. Only the key of the
BC, which is the key of the MAC, remains hidden as implicitly defined by the
leakage function pair of its implementation L = (LEval, LInv). More precisely, the
unbounded leakage function pair L∗ = (L∗

Tag, L
∗
Vrfy) of HBC is thus:

L∗
Tag(k, m): return h = H(m) and LEval(k, h);

L∗
Vrfy(k, m, τ ): return h = H(m) and h̃ = F−1

k (τ) as well as LInv(k, τ).

Despite H is a public function, we explicitly include its outputs in the leakage. It
can be considered as redundant but, as we rely on a random oracle to prove the
security of HBC, we prefer making them fully available to avoid any confusion.

Theorem 1. Let F : K × {0, 1}n �−→ {0, 1}n be a (qT , qV , qL, t, εSUL2)-strongly
unpredictable block cipher in the presence of leakage, and H : S × {0, 1}∗ �−→
{0, 1}n be a hash function modeled as a random oracle that is queried at most qH
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Fig. 1. The leakage resilient MAC HBC. Leakage reveals the orange value. (Color figure
online)

times, then, HBC is a (qT , qV , qL, t, ε)-strongly unforgeable MAC in the unbounded
leakage setting, with L∗ = (L∗

Tag, L
∗
Vrfy) defined above, where

ε ≤ (qH + qV + 1)(qV + 1)εSUL2 + 2(qH + qT + qV + 1)2/2n,

and tH(qH + qT + qV + 1) + (qT + qL − q)tF + (qV + q)tF−1 ≤ t for any q ≤ qL,
and where we assume that all the H-query involved in the qL queries are already
among the qH queries.

Idea of the Proof. Assuming that an adversary A succeeds in the
FORGE-L2suf-vcma

A,HBC,L∗ experiment by making a total of qT leaking tag queries and
qV leaking verification queries, let (m, τ) be the forgery, i.e., the couple returned
by A in the finalization phase. To bound this winning probability, we partition
this event into sub events: (1) The tag τ appears in the answer to a leaking tag
query (and thus, as an input of Fk); (2) The tag τ never appears in the answer
to a leaking tag query (and thus, τ can only be involved with the block cipher
as an input of F−1

k ) and: (a) m appears as an input of H before F−1
k (τ) was ever

computed in the experiment; (b) τ appears as an input of F−1
k before H(m) was

ever computed in the experiment. We cover all the cases since when both m and
τ are fresh in a verification query, we always compute (or ask the computation
of) H(m) first so that we can say that m appears “before” (the computation of
F−1
k on input) τ , and since we view the last verification in the finalization as the

(qV + 1)-th verification query.
The goal of the proof is to show that the collision resistance of H ensures that

winning in case 1 is negligible, the unpredictability of F ensures that winning in
case 2a is negligible and that the collision resistance again along with the uniform
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distribution of the outputs of H ensures that winning in case 2b is negligible as
well, since up to collisions it comes to compute a preimage.

In case 1, there is a tag query on m′ which defines τ = Fk(H(m′)). Since (m, τ)
is a forgery we have Fk(H(m)) = τ with m 	= m′. Then, m and m′ produce a
collision as Fk is a permutation: H(m) = F−1

k (τ) = H(m′).
In case 2a, we assume that F is SUL2-secure. Since m appears before τ ,

as a challenger we have to use the value h = H(m) and we “wait” for the
good tag in a verification query to win the SUL2 game. But, we do not have to
consider the message for which A makes a tag query. However, we cannot know
in advance what will be the right tag and we cannot wait until the finalization
of the unforgeability experiment because even if A’s output (m, τ) is the right
pairs, τ may have been already used in a previous verification query. If so, the
challenger should have already made a leaking inverse query of the block cipher
with input τ to get h̃ = F−1

k (τ) and �i ← LInv(k,m) to simulate LVrfy(m, τ), and
it could no more win the game against F with τ . Therefore, for all possible m
involved in a H-query or a verification query, we have to guess what will be the
right τ in verification. Then, we need to consider all the possible such pairs and
we thus have to make at most (qH + qV + 1)(qV + 1) reductions.

In case 2b, the reduction can generate the key k itself and then evaluate
F and its inverse by itself. The first time τ appears, we define the H-target
h̃ = F−1

k (τ). If this value h̃ appears earlier it can only be as a result of the
computation of H(m′) in any type of query for some m′ 	= m as m still does not
appear by assumption and Fk is a permutation. But then, since (m, τ) is valid
we find a collision because H(m) = h̃ = H(m′). So, we can now assume that h̃
is fresh. Therefore, the validity of (m, τ) means that m is a preimage of h̃, as
H(m) = F−1

k (τ), while H(m) is random. In the proof below, we start by removing
all the collision on H to avoid relying on the collision resistance too many times
and to deal with it once and for all.

Proof. To prove the theorem, we use a sequence of games. Given an adversary
A, we start with Game 0 which is the FORGE-L2suf-vcma

A,HBC,L∗ experiment and we
end with a game where all the leaking verification queries deem the given input
pair (mi, τi) invalid, including the last verification at the finalization which is
the (qV + 1)-th verification query by convention.

Game 0. This game is depicted in Table 2. Let E0 be the event that the adver-
sary AL∗

wins this game, that is, the output of the experiment is 1.

Game 1. We introduce a failure event F1 with respect to Game 0, where F1

occurs if among the at most (qH + qT + qV + 1) hash computations there is at
least one collision. In Game 1, if F1 occurs we abort the game and return 0. We
let E1 be the event that the adversary AL wins this game.

Bounding |Pr[E0] − Pr[E1]|. Since Game 0 and Game 1 are identical as long as
F1 does not occur, we have

|Pr[E0] − Pr[E1]| ≤ Pr[F1] ≤ (qH + qT + qV + 1)2/2n.
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Note: from now on, A wins if τ never appears in a leaking tag query. Moreover,
h̃ = F−1

k (τ) is fresh when τ appears in a leaking verification query for the first
time if m was never used as input of H at that time. (See above.)

Game 2. We modify the winning condition of the previous game. In the final-
ization, once A outputs (m, τ) we say that A does not win and return 0 if A fails
as before or if m appears as an input of H before the first apparition of τ during
a leaking verification query. If we call F2 the event that makes the adversary
winning in Game 1 but loosing in Game 2, we have |Pr[E2] − Pr[E1]| ≤ Pr[F2],
where E2 is the event that A wins in this game.

Bounding Pr[F2]. If we call Vi the event that (m, τ) appears for the first time in
the i-th leaking verification query (mi, τ i), we just have to bound Pr[F2 ∧ Vi],
for all i = 1 to qV + 1. By considering all the input-output pairs defined by H
before the i-th leaking verification query, except those defined during a leaking
tag query, we can build straightforwards reduction from the SUL2-security of F.
We thus have, Pr[F2 ∧ Vi] ≤ (qH + qV + 1)εSUL2 and finally

Pr[F2] =
qV +1∑

i=1

Pr[F2 ∧ Vi] ≤ (qH + qV + 1)(qV + 1)εSUL2.

Note: in Game 2, the adversary wins only if τ appears before m and τ first
appears in a leaking verification query while h̃ = F−1

k (τ) is not yet a defined
output of H.

Game 3. In this we follow the specification of FORGE-L2suf-vcma
A,HBC,L∗ except that

we always output 0 at the end of the game.

Bounding |Pr[E3] − Pr[E2]| = Pr[E2]. From the last note, we know that
h̃ = F−1

k (τ) is not yet a defined output of H. Since any fresh H-query result
in a uniform output which is independent of the view at that time, Pr[H(m) =
h̃] = (qH + qT + qV + 1)/2n, and then Pr[E2] ≤ (qH + qT + qV + 1)/2n

To summarize, we have

Pr[E0] ≤ (qH + qV + 1)(qV + 1)εSUL2 +
2(qH + qT + qV + 1)2

2n

as desired. ��

5 Second Leakage-Resilient MAC: HTBC

The design of our second construction is very similar to that of HBC. The main
difference in HTBC is that the hash function has a double output length. A
TBC replaces the BC to use the tweak as a support for the additional part of
the digest. The primary goal of this modification is to get a better bound, even
in the unbounded leakage setting. However, we analyze this design under the
perspective of the unpredictability of the TBC for the first time.
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Fig. 2. The leakage resilient HBC-scheme.

5.1 HTBC Description

Let M = {0, 1}∗ and T W = X = Z = {0, 1}n. Considering a hash function
H : M �→ X ×T W = {0, 1}2n and a tweakable block cipher F : K×T W×X �→ Z,
we build HTBC = (Tag,Vrfy):

Tagk(m): first compute h1‖h2 = H(m) and τ = Fk(h2, h1) and output τ .
Vrfyk(m, τ ): first compute h1‖h2 = H(m) and h̃1 = F−1

k,h2
(τ), then output 1 if

h1 = h̃1, and 0 otherwise.

We stress again that Tag only evaluates F while Vrfy only computes its inverse.
HTBC was proposed as the authenticator of TEDT [7] (also adopted in [6,17]),
with the motivation to break the birthday security barrier in the Hash-then-
Block-cipher HBC. As the hash digest has been increased to 2n bits, the standard
hash collision-based attack turns unfeasible. We illustrate HTBC in Fig. 2.

5.2 Security of HTBC

The unbounded leakage function pair L∗ = (L∗
Tag, L

∗
Vrfy) of HTBC is defined as

L∗
Tag(k, m): return h1‖h2 = H(m) and LEval(k, h2, h1);

L∗
Vrfy(k, m, τ ): return h1‖h2 = H(m) and h̃1 = F−1

k,h2
(τ) as well as LInv(k, h2, τ).

As we rely on the random oracle model to prove the security of HTBC, we include
the digests in the leakage to capture the fact that H is actually a public function.

Theorem 2. Let H : {0, 1}∗ �−→ {0, 1}n × {0, 1}n be a hash function mod-
eled as a random oracle, and F∗ : K × {0, 1}n × {0, 1}n �−→ {0, 1}n be a
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(qT , qV , qL, t, εSUL2)-strongly unpredictable tweakable block cipher with leakage
L = (LEval, LInv), then HTBC is a (qT , qV , t, ε)-suf-L2 strongly unforgeable MAC
with unbounded leakage function pair L∗ = (L∗

Tag, L
∗
Vrfy) as defined above, where

ε ≤ (qH + qT + qV )2

22n
+

(qV + 1)
ε−1
SUL2

+
q2HqV

2n · ε−1
SUL2

+
qV (qH + qV )

22n
,

and tH(qH + qT + qV + 1) + (qT + qL − q)tF + (qV + q)tF−1 ≤ t for any q ≤ qL,
and where we assume that all the H-query involved in the qL queries are already
among the qH queries, as long as 4 ≤ qH + qT + qV , 4qV ≤ qH and 10qH ≤ 2n.

The leading term in the security bound is εSUL2 · q2HqV 2−n. This time, for
n = 128 and εSUL2 ≈ 2−96, security holds up to qH ≈ 280 and qV = 264. As for
Theorem 1, we are not aware of a realistic matching attack (i.e., if a reasonable
hash function and TBC are used in the construction). Investigating whether the
additional qH2−n factor that we gain compared to the BC-based construction
can get closer to 2−n is an interesting open problem.

The structure of the proof for HTBC is different from that of HBC. The main
reason is that the collision resistance of H does not cover all the winning cases
when the adversary’s τ of the forgery appears in an LTag query. Indeed, we might
have H(m) = h1‖h2 	= h′

1‖h′
2 = H(m′) such that Fk(h2, h1) = τ = Fk(h′

2, h
′
1)

with m′ in an LTag query. That is because Fk,h2 and Fk,h′
2

can be seen as two
different permutations given that h2 	= h′

2: an output τ defines many possible
tweak-input pairs. As we will see the distribution and the freshness of (h2, τ)
will play an important role in the proof.

Idea of the Proof. Let (m, τ) be a forgery and write H(m) = h1‖h2. If no triple
of the form (�, h2, τ) appears during the computation of all the evaluations and
inversions of F, (h1, h2, τ) is a valid fresh triple for F which breaks the unpre-
dictability of the TBC. However, if it is not the case, a triple (�, h2, τ) appears
either in the evaluation of F during an LTag query or only in the inversion of F in
an LVrfy query. In the former case, as the answer to an LTag query is necessarily
valid, the triple (�, h2, τ) must actually be (F−1

k (h2, τ), h2, τ), i.e. (h1, h2, τ). Of
course, if the adversary has made an LTag query on m, it cannot win. If the
adversary is successful, it means that it managed to request the computation of
a hash value which collides on H(m), which only occurs with a beyond-birthday
probability in n = |k| = |τ |. We can thus focus on the latter case where a triple
(�, h2, τ) only appears when answering an LVrfy query, i.e. in an inversion of F.

We split the remaining winning conditions into: (1) m appears as an input
of H before ever computing a TBC inversion on input (h2, τ) when answering a
leaking verification query; (2) m appears strictly after the first computation of a
TBC inversion on input (h2, τ) when answering a leaking verification query; no
matter whether τ appears first in an LTag answer or in an LVrfy query. We note
that we no more need to consider the H computation in the LTag queries as we
already dealt with H-collisions. In a nutshell, the first case means the adversary
chooses τ depending on the view of the hash value h1‖h2 and hence it relates
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to the unpredictability of F. In the second case, the target h1‖h2 is fixed in the
leaking verification query while the output of H(m) remains uniformly random
and independent of the view at that time. By convention, if m and τ first appear
for the first time together in an LVrfy query, we first compute H(m) so that we
always consider that m appears “before” τ . In addition, we consider the forgery
as the (qV + 1)-th LVrfy query.

In case 1, H(m) = h1‖h2 appears before the computation of a TBC triple
(�, h2, τ) which will first be run when answering a leaking verification query.
We want to build an adversary B against F which ends by sending (h1, h2, τ).
To make B successful, we have to prevent B from making an LInv query on
input (h2, τ) earlier, since otherwise (h1, h2, τ) is not a winning triple at the
end. Such a query can happen only if A manages to make an LVrfy query on
some (m′, τ) such that H(m′) = h′

1‖h′
2 with h′

2 = h2. Of course, this happens
if m = m′ and, indeed, A can win if (m, τ) appears in an LVrfy query before
the (qV + 1)-th one. This explains the term εSUL2(qV + 1) of the security bound.
However, it can also happen if m′ 	= m. Then, h′

1 	= h1 and (m′, τ) is necessarily
invalid but we cannot simulate the leaking verification query if we would like to
win against F. Fortunately, if the first time (h2, τ) appears in an LVrfy query is
with m′ 	= m, we know that m appeared in a hash computation earlier for the
first time (and it cannot be in an LTag query). To sum up, we cannot build a
single B but by considering all the hash computations in the H queries and the
LVrfy queries to combine with all the tags in the LVrfy queries, we have at most
(qH + qV )qV reductions to build to cover all the possibilities. Fortunately, we
only have to consider the messages m′ with H(m′) = h′

1‖h′
2 such that h′

2 appears
in a subsequent LVrfy query. Furthermore, we can see when this happens before
having to invert the TBC with tweak h′

2. The full proof will show that the
probability of multi-collision on the hi

2-value involved in the i-th LVrfy query
will decrease the probability by a factor of roughly qH/2n, which gives us a
beyond birthday term eventually.

In case 2, the adversary outputs a forgery (m, τ) while (h2, τ) appears in a
leaking verification query before the first computation of H(m). Here, we simply
pick the key of the TBC to simulate the forgery experiment. If (h2, τ) already
appears in an LVrfy query the valid triple (h̃1, h2, τ) is already fixed in the
answer to that query (necessarily invalid). Therefore H(m) which is still uni-
formly random and independent of the view at that time will have to match
the target (h̃1, h2). This match thus happens with probability 1/22n for each
future hash evaluation in a H-query or in a next LVrfy query. Of course we do
not know what will be the right (h2, τ) until the adversary output its forgery in
the finalization phase. So, if (hi

2, τ
i) denotes the input of the inversion of F in the

i-th leaking verification query, we actually defines qV targets (h̃i
1, h

i
2, τ

i), since
i < qV +1 here. Therefore, the probability that this case occurs is upper-bounded
by qV (qH + qV )/22n.

The proof is given in the full version of the paper [8].
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6 Conclusion and Open Problems

We revisit the security proofs of MACs based on the “Hash-then-(T)BC” con-
struction, an approach that has often been adopted in the context of leakage-
resilient cryptography. While previous works have been modeling the (T)BC as
a leak-free component, we only require that the (T)BC remains unpredictable
in the presence of leakage, an assumption that has the major advantage of being
easy to test on any implementation. We show that unpredictability with leakage
is a suitable assumption for the analysis of the leakage-resilience of two stan-
dard MAC constructions, a result that has a direct impact on several recent
constructions of AE modes of operation that are based on this approach. Apart
from making security proofs more satisfactory, relying on unpredictability of the
(T)BC rather than on its pseudorandomness prompts for investigating whether
block cipher implementations that only seek to offer unpredictability with leak-
age could also require less rounds and, as a result, deliver better efficiency and
cheaper protection against side-channel attacks.

As discussed in the paper, our bounds may not be tight due to some addi-
tional computations that are required in our reductions that actual adversaries
may not need. Investigating whether these bounds can be improved is therefore
an interesting challenge. Besides, for simplicity we model our hash function as
an ideal random object (but do not require any form of progammability or other
conveniences that come with the random oracle model). This fits well with many
applications, for instance when the hash function is based on a sponge that is
also traditionally modeled as an ideal permutation. Still, our analysis does not
suggest any reason why an ideal object would be needed, and it would therefore
be interesting to investigate whether and how this assumption could be relaxed.

As a final note, we conjecture that strong unpredictability with leakage may
also be sufficient to prove confidentiality under ideal oracle (e.g., cipher, permu-
tation) assumptions, assorted with oracle-free leakage functions, as introduced
in [27] for block ciphers and recently used for the analysis of sponge-based
designs [11,17]. Indeed, in such models the leakage about a key is useless as
long as it does not lead to a full key-recovery. But as a result, the interpretation
of this unpredictability assumption in terms of quantitative security degrada-
tion (e.g., in the situation where an implementation is not leak-free but has high
enough unpredictability with leakage) is also more delicate: the ideal objects
transform an unpredictable value into something that is indistinguishable from
random, hence possibly hiding the level of security degradation caused by the
leakage.
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Abstract. Pollard rho and its parallelized variants are at present known
as the best generic algorithms for computing discrete logarithms in
groups of elliptic curves over finite fields. The r + h-mixed walk, one
of the variant parallelized rho method in characteristic 2, is expected
to have r times point addition operations and h times point halving
operations. We observe that by reducing the randomness but increas-
ing the ratio of h/r, the overall efficiency for parallelized rho method
can be improved. Hence, we try to find the best ratio to get the best
overall efficiency for parallelized rho method. And then, we provide an
optimal configuration with the best overall efficiency for the parallelized
rho method. Our experiments show that the optimal configuration can
improve the overall efficiency of ECC2-79 by about 36%. Further, we
give algorithms to improve the efficiency of basic operations in F2131 and
estimate that the optimal configuration can improve the overall efficiency
of ECC2-131 by about 39%.

Keywords: Parallelized rho method · Elliptic curves · Discrete
logarithm · Point halving

1 Introduction

Public-key cryptography based on elliptic curves over finite fields was introduced
by Koblitz [15] and Miller [16] in 1985. Since then, elliptic curves over finite fields
have been used to implement many cryptographic systems and protocols, such as
the Diffie-Hellman key agreement scheme [2,7], the elliptic curve variant of the
Digital Signature Algorithm [1,17], etc. In elliptic curve cryptography (ECC),
the major security consideration is the intractability of the elliptic curve discrete
logarithm problem (ECDLP).

Let E be an elliptic curve defined over a finite field Fq. Let P ∈ E be a point
of prime order n, and let 〈P 〉 be the prime order subgroup of E generated by P .
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If Q ∈ 〈P 〉, then Q = kP for some integer k, 0 ≤ k < n. The problem of finding
k, given P,Q, and the parameters of E , is known as the ECDLP.

Up to date, Pollard rho method [18] is the most efficient general algorithm to
solve the ECDLP. The pollard rho method works for any cyclic groups and does
not make use of any additional structure present in elliptic curve groups. The
rho method is a randomized algorithm for computing discrete logarithms based
on the Birthday Paradox. More precisely, an iteration function F : G → G is
used to define a pseudo-random sequence Yi by Yi+1 = F (Yi) for i = 0, 1, 2, ...,
with some starting value Y0. The sequence Y0, Y1, Y2, . . . represents a walk in the
group G. Because the order of the group is finite, the sequence will ultimately
reach an element that has occurred before. This is called a collision or a match.

A distinguished point is one that has some easily checked property such as
having a fixed number of leading zero bits. During the pseudo-random walk,
distinguished points are stored. Collision can be detected when a distinguished
point is encountered twice. Van Oorschot and Viener [24] showed that the mod-
ified Pollard rho method which makes use of the distinguished point technique
can be parallelized with linear speedup.

The iteration function F : G → G is a random mapping. In the sense that
for any Yi ∈ G, the function F maps Yi to each element in G with the same
probability 1

|G| . However, in practice the iteration function F : G → G is not
a truly random mapping, which always results in more iteration requirements.
Furthermore, an efficient pseudo random walk for parallel rho method is very
important. Here, “efficient” means that the cost of obtaining a new point should
require essentially no more than one group operation, and use only constant or
polynomial storage in total.

Pollard rho method employs an iterating function of a random walk to pro-
duce a sequence of random terms. Most computations use pseudorandom walks
where each step is an addition. But walks that include doubling operations can
be useful in practice, and more resilient to short cycles. Teske [22] studied two
types of random walk: r-adding walk and (r + q)-mixed walk (where q is the
number of point doubling operations in the iterating function).

Erik Knudsen [13] and Richard Schroeppel [19] independently proposed a new
method for scalar multiplication of elliptic curves over binary fields. The idea
is to replace all point doublings in double-and-add methods with a potentially
faster operation called point halving. Knudsen [13] presented some rough analysis
which suggests that scalar multiplication with halvings could be 39% faster than
scalar multiplication with doublings ([20] claims a 50% improvement). Bessalov
[4] firstly used the idea of halving (he called division of points by two) to ECDLP,
however, there was no detailed analysis for his approach. Furthermore, Zhang
and Wang [25] proposed a new iteration function (r + h-mixed walks, h is the
number of point halving operations in the iterating function) for the rho method
by exploiting the fact that point halving is more efficient than point addition for
elliptic curves over binary fields.

In 1997, Certicom [5] introduced ECC challenges to increase industry accep-
tance of ECC. The challenges with fields of size less than 100 bits were proposed
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as exercise and were solved quickly. For the challenges with fields of size more
than 100 bits, there are two Levels: Level I, comprising 109-bit and 131-bit chal-
lenges; and Level II, comprising 163-bit, 191-bit, 239-bit and 359-bit challenges.
There are three kinds of curves for each k-bits challenges: ECCp-k denotes a
randomly selected elliptic curve over a prime field; ECC2-k denotes a randomly
selected elliptic curve over a characteristic 2 finite field F2m , where m is prime;
and ECC2K-k denotes a Koblitz curve. Untill now, ECC2K-108 [10], ECC2-109,
ECCp-109 were solved. The next larger Certicom challenge is ECC2K-130, and
further is ECC2-131. Many efforts [3] have been made in the ECC2K-130, but
it is still open.

Our Contribution. Experimentally, we show that different curves with the
same ratios h/r yield similar performances in r+h-mixed walks. Then, we analyze
the relationship between the randomness and the ratio in r+h-mixed walks. We
discover that the overall efficiency for parallelized rho method can be promoted
by reducing the randomness but increasing the ratio in r + h-mixed walks. Our
goal is to provide an optimal configuration with the best overall efficiency by
finding the best ratio of h/r. With the theoretical efficiency of point halving, we
show that the configuration can make parallelized rho method for binary field
about 18.3% more efficient than before (under the assumption that one inverse
is equal to eight multiplications). Usually, the overall efficiency for parallelized
rho method is up to the practical cost of point halving and point addition. The
more efficient the point halving is, the faster the method will be. As a concept
verification, we select an optimal configuration to compute ECDLP over ECC2-
79 and show that the optimal configuration can improve the overall efficiency of
ECC2-79 by about 36%. With the optimization of the basic operations in F2131 ,
we deduce that the optimal configuration can improve the overall efficiency of
ECC2-131 by about 39%.

Organization: The rest of this paper is organized as follows. We recall the
elliptic curve over finite field with characteristic 2 and the Pollard rho method
and its parallelized variant with distinguished point in Sect. 2. In Sect. 3, we
analyze the relationship between the ratio of point halving, point addition and
the randomness in r+h-mixed walks. We discuss our experimental data in detail
and apply it in ECC2-79. In Sect. 4, we improve basic operations in F2131 and
apply our idea in ECC2-131. The conclusion of this paper is placed in Sect. 5.

2 Preliminaries

In this section, we recall the Pollard rho method for ECDLP computations and
its parallelized variant with the distinguished point method. Also, we give the
definitions needed throughout the paper.
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2.1 ECC and ECDLP

Let Fq be a finite field of q elements. An elliptic curve E over Fq is a cubic curve
defined by Weierstrass equation:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 (ai ∈ Fq).

The set of Fq-rational points of E is defined as,

E(Fq) := {(x, y) ∈ Fq × Fq : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6} ∪ {O},

where O is the point at infinity. Equipped with the so-called “chord-and-tangent”
rule, E(Fq) becomes an Abelian group [21].

In this paper, we consider the elliptic curve over finite field with characteristic
2. Note that if the characteristic of the finite field is 2, the Weierstrass equation
of an elliptic curve E can be transformed into a short but isomorphic one,

y2 + xy = x3 + ax2 + b,

where a, b ∈ F2m , b �= 0.
Let n be a prime integer which is coprime to q. Let GenG be an elliptic curve

group generation algorithm. Taking as input a security parameter 1κ, GenG
outputs q which defines a finite field Fq, an Elliptic Curve E over Fq, and a point
P ∈ E(Fq) of order n. Denote by 〈P 〉 the group of order n generated by P . If
Q ∈ 〈P 〉, it must holds that Q = sP for some integer s, 0 ≤ s < n, which is
called the logarithm of Q to the base P and denoted by logP Q. The problem of
finding s, given P,Q and the parameters of E , is known as the Elliptic Curve
Discrete Logarithm Problem (ECDLP).

2.2 Point Halving

For an elliptic curve E over finite field with characteristic 2, let H = (x1, y1) ∈ E
be a point with x1 �= 0. Then Q = 2H = (x2, y2) can be computed as follows:

x2 = λ2 + λ + a, y2 = x2
1 + (λ + 1)x2, λ = x1 +

y1
x1

.

Point halving is the reverse operation of point doubling: given Q = (x2, y2),
compute H � 1

2Q = (x1, y1) such that Q = 2H. One can compute point halving
as follows: solve λ2 +λ = x2 +a for λ, and x2

1 = y2 +(λ+1)x2 for x1, and finally
compute y1 = x2

1 + λx1. More precisely, we summarize the above steps in the
following Algorithm 1.

Further, one can generalize Algorithm 1 to the case of curve E with Tr(a) =
0, that is |E(F2m)| = 2kn with k > 1 and n is odd [13]. Fong et al. [8] provided
a careful analysis of the actual efficiency of point halving for elliptic curves over
binary fields with polynomial basis, such as the NIST-recommended random
binary curves over F2m [9]. We summarize the results as follows. Let M , S and I
denote the cost of field multiplication, squaring and inversion respectively. Then
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Algorithm 1. Point halving
Input: λ-representation (x2, λQ) or affine representation (x2, y2) of Q ∈ 〈P 〉.
Output: λ-representation (x1, λP ) of H = (x1, y1) ∈ 〈P 〉, where Q = 2H.
1: compute λ such that λ2 + λ = x2 + a.
2: If the input is in λ-representation, then t = x2(x2 + λQ + λ); else t = y2 + x2λ.
3: if Tr(t) = 0 then
4: λP ← λ, x1 ← √

t + x2.
5: else
6: λP ← λ + 1, x1 ← √

t.
7: end if
8: Return (x1, λP ).

experimentally, the cost of solving the quadratic equation is approximately in
the range 1

2M to 2
3M , and the cost of computing square roots in F2m is expected

to be in the range 1
8M to 1

2M . As a result, the cost of a point halving with λ-
representation is roughly in the range of [138 M, 13

6 M ]. While point addition and
doubling in affine coordinates need approximately the same costs: I +2M +S. A
careful analysis of the software implementation of multiplication and inversion in
F2m is necessary for a fair comparison of halving and addition. Extensive exper-
iments from [8] suggest that a realistic estimate of the ratio I/M of inversion to
multiplication cost is 8 (or higher). Thus the cost of point addition or doubling
in affine coordinates is generally larger than 10M .

2.3 ECDLP Using Parallelized Pollard Rho and Halving

Pollard [18] proposed an elegant generic algorithm for the discrete logarithms
based on the Birthday Paradox and called it the rho method, which is an
improvement over the well-known “baby-step giant-step” algorithm, attributed
to Shanks [6]. Pollard rho method works by first defining a sequence of elements
that will be periodically recurrent, then looking for a match in the sequence.
The match will lead to a solution of the discrete logarithm problem with high
probability. The two key ideas involved are the iteration function for generating
the sequence and the cycle-finding algorithm for detecting a match.

According to the r+q-mixed walks of Teske [22], let r and q be integers and
then M1, . . . ,Mr ∈ G. Let v : G → 1, . . . , r + q be a hash function. A walk
(Yi) in the finite group G such that Yi+1 = F (Yi) for some iterating function
F : G → G is called r + q-mixed if F is of the form

Yi+1 = F (Yi) =

{
Yi + Mv(Yi) v(Yi) ∈ {1, · · · , r},

2Yi v(Yi) ∈ {r + 1, · · · , r + q}.

One advantage of the point halving is that it is more efficient than point
doubling for elliptic curve over binary fields. Zhang and Wang [25] introduced
point halving into the random walk to speed up the iteration for the rho method.
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Let P be a point of prime order n on an elliptic curve E over binary field,
and let G be the subgroup of E generated by P . For any Q ∈ G, to compute k
such that Q = kP , we generate 2r random numbers,

mj , nj ∈ {0, 1, · · · , n − 1}, for j = 1, 2, · · · , r.

Then we precompute r multipliers M1,M2, · · · ,Mr where,

Mj = mjP + njQ, for j = 1, 2, · · · , r.

Define a hash function,

v : G → {1, 2, · · · , r + h}.

The iteration function F : G → G is called r + h-mixed walks if F defined as,

Yi+1 = F (Yi) =

{
Yi + Mv(Yi) v(Yi) ∈ {1, · · · , r}
1
2Yi v(Yi) ∈ {r + 1, · · · , r + h}

Let the initial value Y0 = a0P +b0Q where a0 and b0 are two random numbers
in [0, n − 1]. Then each Yi has the form aiP + biQ, and the sequence (ai) (and
similarly for (bi)) can be computed as follows,

ai+1 =

⎧⎪⎨
⎪⎩

ai + mv(Yi) (mod n) v(Yi) ∈ {1, · · · , r}
1
2ai (mod n) ai is even and v(Yi) ∈ {r + 1, · · · , r + h}
1
2 (ai + n) (mod n) ai is odd and v(Yi) ∈ {r + 1, · · · , r + h}

Correspondingly, once finding a match (Yi, Yj), we have the following equation:

aiP + biQ = ajP + bjQ

Then, if gcd(bi − bj , n) = 1, we have k = (aj − ai)(bi − bj)−1 mod n.
On the other hand, to find the collision in the pseudo-random walks, it always

need storage. In order to minimize the storage requirements, a collision detection
algorithm can be applied with a small penalty in the running time. The idea of
the distinguished point method is to search for a match not among all terms of
the sequence, but only among a small subset of terms that satisfy a certain dis-
tinguishing property. It works as follows: One defines a set D, a subset of G, that
consists of group elements that satisfy a certain distinguishing property. During
the pseudo-random walks, points that satisfy the distinguishing property are
stored. The collision can be detected when a distinguished point is encountered
twice.

Van Oorschot and Viener [24] showed that the expected speedup of the direct
parallelization of the Pollard rho method, using m processors, is only a factor of√

m. This is a very inefficient usage of parallelization. They provided a modified
version of Pollard rho method that make use of the distinguished point technique
can be parallelized with linear speedup. That is, the expected running time of the
modified version, using m processors, is roughly

√
π|G|/2/m group operations.
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In the modified version, to perform a parallel collision search each processor
proceeds as follows. Select a random starting point Y0 ∈ G and produce the
trail of points Yi+1 = F (Yi), for i = 0, 1, 2, . . ., until a distinguished point Yd

is reached based on some easily testable distinguishing property. Then, store Yd

and start producing a new trail from a new random starting point Y0. Finally,
one can find the collision among these stored distinguished points to solve the
ECDLP.

3 Improving Parallelized Pollard Rho with an Optimal
Configuration

In this section, we show that different curves with the same ratios h/r yield
similar performances in r+h-mixed walks. Further, we consider the relationship
between the randomness and the ratio in r + h-mixed walks. The “randomness”
can be treated as a sum that is total number of solving ECDLP. The more
random it is, the fewer walks it takes. We discover that the overall efficiency for
parallelized rho method can be improved by reducing randomness but increasing
the ratio.

Furthermore, we try to find the best ratio h/r to improve the overall efficiency
for parallelized rho method. And then, we offer an optimal configuration with
the best overall efficiency for parallelized rho method. Under the theoretical
efficiency of point halving, the overall efficiency of parallelized rho method of
binary field can be improved by about 18.30% by using the optimal configuration.
And our experiments show that the optimal configuration can improve the overall
efficiency of ECC2-79 by about 36%.

3.1 Getting an Optimal Configuration

Computing (Yi, ai, bi) repeatedly, we try to find a match (Yi, Yj) for some j �= i
with the r + h-mixed walks. According to [23], Teske showed that r + q-mixed
walks with r ≥ 16 and q/r ≈ 1/4 yielded a performance that was similar to a
random walk performance, while the performance got worse if the ratio got much
larger than 1. Experimentally, the r + h-mixed walks have a similar randomness
to r + q-mixed walks. As the ratio of h/r is increased, the performance will get
worse, that means the walks is needed more until a match is found.

Let NoIs be an average number of iterations performed until a match is found
under the r + h-mixed walks. The experimental statistical average value of the
randomness can be defined as:

Lr,h =
NoIs√|G| .

Let A be an average time spent of point addition and H be an average time
spent of point halving. The total time spent of finding a match or reaching the
first collision can be calculated as:

T
′
(A,H, r, h) =

A · r + H · h

r + h
· NoIs.



542 F. Zhang et al.

Let λ be a cost ratio of time spent of point addition and point halving, that is
λ = A

H . More generally, the overall efficiency of finding a match can be calculated
as:

T (r, h, λ) =
r · λ + h

r + h
· Lr,h.

Teske [23] tried to find the best randomness to improve parallelized rho
method with r + q-mixed walks. Compared with the goal of Teske, our aim
is to find a minimum total time spent of finding a match to accelerate the speed
of parallelized rho method. In the case of a random walk, the density function
[11] belongs to a certain Weibull distribution, such distributions are extensively
studied in reliability engineering. Thus, we can use the reliability engineering
method to choose the size of the sample space carefully. And Teske suggested
that if we worked with a sample space of size 1000, the average values may differ
up to 5%, while choosing size with 10000 produces fairly constant average values.
This opinion can be used as a guideline for our later experiments.

To judge the performance of r+h-mixed walks, we conduct experiments with
dozens of different elliptic curve subgroups of prime order over F241 and F257 ,
respectively. For each elliptic curve, we randomly generate a point P and fix a
integer k, 0 ≤ k < n, where n is a order of P . After that, we calculate the point
Q by Q = kP . We structure the instances of ECDLP with the point pair (P , Q)
for each elliptic curve to find the fixed integer k.

We choose several combinations of r and h for each instance of ECDLP. With
the thousand times solved the ECDLP, we count the average Lr,h. Note that, in
our experiments, the minimum number of subset of group G is 32. Here, we make
sure r ≥ 16 when the ratio h/r is 1, as shown in Table 1. And next, taking the
implementation efficiency of the iteration function into consideration, we select
64, 128 and 256 as the numbers of subsets, respectively. Furthermore, we can
get more details about the relationship between the randomness with the ratio,
as shown in Tables 2, 3 and 4.

Table 1. The average Lr,h whit 32 subsets of group G

r+h
(#subset)

r
(#addings)

h
(#halvings)

Average
Lr,h of F241

Average
Lr,h of F257

Average
Lr,h

32 16 16 1.4958 1.4244 1.4601

8 24 1.9190 1.9433 1.9312

6 26 2.1091 2.1500 2.1295

4 28 2.6254 2.6623 2.6439

2 30 3.6989 3.7155 3.7072

1 31 5.1782 5.1372 5.1577

According to our experimental results, with the same ratios and the same
number of subsets, there is an interesting phenomenon. Different elliptic curve
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Table 2. The average Lr,h whit 64 subsets of group G

r+h
(#subset)

r
(#addings)

h
(#halvings)

Average
Lr,h of F241

Average
Lr,h of F257

Average
Lr,h

64 32 32 1.4856 1.4100 1.4478

16 48 1.8655 1.8632 1.8644

8 56 2.6280 2.5501 2.5890

6 58 2.9908 2.9240 2.9574

5 59 3.2596 3.1933 3.2264

4 60 3.6693 3.5374 3.6033

2 62 5.0605 4.8527 4.9566

1 63 7.0727 7.2036 7.1381

Table 3. The average Lr,h whit 128 subsets of group G

r+h
(#subset)

r
(#addings)

h
(#halvings)

Average
Lr,h of F241

Average
Lr,h of F257

Average
Lr,h

128 64 64 1.4718 1.4028 1.4373

43 85 1.6285 1.6677 1.6481

32 96 1.9071 1.8794 1.8933

21 107 2.2507 2.1703 2.2105

16 112 2.6329 2.6080 2.6204

8 120 3.6251 3.6493 3.6372

4 124 5.0127 4.9852 4.9989

2 126 7.1445 7.3946 7.2696

1 127 9.9285 9.9537 9.9411

Table 4. The average Lr,h whit 256 subsets of group G

r+h
(#subset)

r
(#addings)

h
(#halvings)

Average
Lr,h of F241

Average
Lr,h of F257

Average
Lr,h

256 128 128 1.4201 1.3941 1.4071

64 192 1.9278 1.9215 1.9246

32 224 2.5516 2.5768 2.5642

18 238 3.4033 3.2808 3.3420

16 240 3.5853 3.5826 3.5840

13 243 3.8557 3.9467 3.9012

8 248 5.1596 5.0083 5.0839

4 252 6.9975 7.2173 7.1074

2 254 10.3106 10.1010 10.2058

1 255 14.3612 14.3776 14.3694
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subgroups of prime order obtain the similar performances in r + h-mixed walks.
For example, in 32 subsets of group G, when h/r = 1, Lr,h in F241 and F257

both are approximate 1.46 and when h/r = 3, they are approximate 1.93. For
the same instances of the ECDLP, if the scale of subsets of group be fixed, the
iteration function will have an analogous route to search a collision. So, different
elliptic curve subgroups of prime order with the same ratios get very similar
results in the case of same instances of the ECDLP.

Moreover, the group G will be divided more finely, if the number of subsets
are increased. For example, we can get a ratio 59/5 in 64 instead of in 32 subsets.
Although the group G can be divided more carefully by increasing the size of
subsets, the benefit is not obvious. Considering the implementation efficiency
of the iteration function F in r+h-mixed walks and the benefit, the largest
partition of group is 256 subsets which are enough in our experiments. On this
basis, we get optimal configurations with the minimum overall efficiency for
parallelized rho method by computing the experimental results in above table,
that is T (r, h, λ) = Min{ r·λ+h

r+h · Lr,h}, as shown in Table 5.

Table 5. The optimal configuration in r+h-mixed walks

Cost ratio
λ

Optimal
configuration r:h

Minimum
T (r, h, λ)

Minimum
T ( r+h

2
, r+h

2
, λ)

1 128:128 1.4071 1.4071

2 128:128 2.1107 2.1107

3 43:85 2.7554 2.8746

4 16:48 3.2627 3.5179

5 21:107 3.6612 4.2215

6 21:107 4.0238 4.9251

7 21:107 4.3865 5.6286

8 21:107 4.7492 6.3322

9 21:107 5.1118 7.0358

10 21:107 5.3881 7.7394

11 21:107 5.6620 8.4430

12 18:238 5.9269 9.1466

13 18:238 6.1619 9.8502

In theory, the cost of point addition in affine coordinates is I + 2M + S
in F2m . Assuming that the practical estimate of the ratio I/M of inversion to
multiplication cost is 8, then the cost of point addition in affine coordinates is
generally larger than 10M . The cost of point halving is about 13

8 M . Further,
the cost ratio λ is at least 6. With our experimental data in Table 5, we get the
minimum overall efficiency for parallelized rho method T (21, 107, 6) = 4.0238.
Namely, the optimal configuration is 21+107 subsets, where the number of point
addition and point halving is 21 and 107, respectively. Compared with the total
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overall efficiency of original r+h-mixed walks T (64, 64, 6) = 4.9251, the optimal
configuration can improve the overall efficiency of parallelized rho method by
about 4.9251−4.0238

4.9251 ∗ 100% ≈ 18.30%.

3.2 Testing in ECC2-79 with an Optimal Configuration

Usually, the actual cost ratio λ determines the overall speed improved for paral-
lelized rho method. The more efficient the point halving is, the faster the method
will be. Besides, the practical cost of point halving and point addition generally
has a gap with the theoretical value. Hence, To illustrate our thought more
clearly, we give a practical example ECC2-79.

The challenge curve ECC2-79 is the elliptic curve over F279 with

a = 4A2E38A8F66D7F4C385F, b = 2C0BB31C6BECC03D68A7.

The group order is �E(F279) = 2n, where

n = 302231454903954479142443,

is a 79-bit prime number.
The challenge is given with respect to a polynomial-basis representation of

F279 = F2[z]/f(z) with f(z) = z79 + z9 + 1. The field elements are naturally
given as bit strings with respect to this basis; the Certicom challenge represents
them as hexadecimal numbers, padded with 0’s on the left, by grouping four bits
into one hexadecimal number. The base point P and the challenge point Q have
coordinates:

Px = 30CB127B63E42792F10F, Py = 547B2C88266BB04F713B,

Qx = 00202A9F035014497325, Qy = 5175A64859552F97C129.

We represent a 79-bit polynomial with a 128-bit vectors in our computing
platform. The number of cpu cycle counts of point addition and point halving
are 1823 and 103, respectively (all cpu cycle counts were obtained on one core
of an Intel Core i7-782x(Skylake-X) at 3.60 GHZ, running Ubuntu 18.04 LTS).
So, the cost ratio λ is about 18. Further, the optimal configuration is 13 +
243 subsets and the minimum overall efficiency for parallelized rho method is
T (13, 243, 18) = 7.2691. Compared with the overall efficiency of original r + h-
mixed T (128, 128, 18) = 13.3681, our optimal configuration can improve the
overall efficiency of ECC2-79 by about 13.3681−7.2691

13.3681 ∗ 100% ≈ 45.62%.
To truly reflect the increased efficiency of the optimal configuration, we

compute the ECC2-79 and count the average time in our workstation. The
statistical results of our experiments in Table 6 reveal that the actual value
22137640−14073260

22137640 ∗100% ≈ 36.43% has a deviation with theoretical value 45.62%.
In practice, each iteration requires additional evaluation, e.g., computing ai,
computing bi, etc. As the ratio of h/r be increased, more iterations are required.
Thus, the time consumed by the additional calculations cannot be ignored. This
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is why our experimental results differ from the theoretical ones. In this config-
uration with 13 + 243 subsets, experimentally, the deviation is about 9%. The
optimal configuration can still improve the overall efficiency for parallelized rho
method, although there is a deviation with the increase of the number of itera-
tions.

Table 6. The average time in F279 until a match is found with 16 threads

Cost ratio λ Optimal configuration r : h Average time

18 128 : 128 22137640 ms

13 : 243 14073260 ms

4 Apply to Break ECC2-131

The challenge curve ECC2-131 is the elliptic curve over F2131 with

a = 07EBCB7EECC296A1C4A1A14F2C9E44352E,

b = 00610B0A57C73649AD0093BDD622A61D81.

The group order is �E(F2131) = 2n, where

n = 1361129467683753853898082827025389846147

is a 130-bit prime number.
The challenge is given with respect to a polynomial-basis representation of

F2131 = F2[z]/f(z) with f(z) = z131+z13+z2+z+1. Field elements are naturally
given as bit strings with respect to this basis; the Certicom challenge represents
them as hexadecimal numbers, padded with 0’s on the left, by grouping four bits
into one hexadecimal number. The base point P and the challenge point Q have
coordinates:

Px = 00439CBC8DC73AA981030D5BC57B331663,

Py = 014904C07D4F25A16C2DE036D60B762BD4,

Qx = 0602339C5DB0E9C694AC8908528C51C440,

Qy = 04F7B99169FA1A0F2737813742B1588CB8.

The ECC2-131 challenge is more complicated than ECC2K-130. In this
paper, we focus on ECC2-131. First of all, we improve the basic operations in
F2131 and provide an optimal configuration for ECDLP in ECC2-131. We show
that our configuration can improve the overall efficiency of ECC2-131 by about
39%.
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4.1 Multiplication and Squaring in F2131

To make the algorithms more efficient for software implementation, we use the
implementation platform which has a 64-bit architecture to design the bits. The
bits of a 64-bit architecture are numbered from 0 to 63, with the rightmost bit
of the architecture designated as bit 0. The elements of F2131 are the binary
polynomials of degree at most 130. A field element a(z) = a130z

130 + · · · +
a2z

2 + a1z + a0 is associated with the binary vector a = (a130, . . . , a2, a1, a0)
of length 131. In software, we store a in an array of three 64-bit architectures:
a = (a[2], a[1], a[0]), where the rightmost bit of a[0] is a0, and the leftmost 61
bits of a[2] are unused and always set to 0.

It is well-known that the modern cpu has intrinsic functions which allow
two 128-bit architectures to do bitwise operations. So in our implementation, we
use two 64-bit architectures to make up a 128-bit architectures. Which means
that we use an array of two 128-bit architectures to store the field elements a
in software, just like a = (A[1], A[0]). The rightmost bit of A[0] is a0, and the
leftmost 125 bits of A[1] are unused and always set to 0.

Most modern cpus have PCLMULQDQ instruction which is the most inter-
esting for fast multiplication of two binary polynomials represented by two 64-
bits. The multiplication of two polynomials with degree d ≤ 64 can be performed
by a single instruction. According to the instruction, we use the Karatsuba-
Ofman algorithm [14, section 4.3.3] to find the minimum number of the scalar
multiplication operations and squaring operations.

4.2 Solving the Quadratic Equation in F2131

The basic algorithm of solving the quadratic equation is described in [8]. Here,
we propose a more efficient way to implement the algorithm by introducing a
constant matrix in F2131 . Let’s review the proposed algorithm in Algorithm 2.
Here, the half-trace H : F2m → F2m be defined as

H(c) =
(m−1)/2∑

i=0

c2
2i

. c ∈ F2m ,m is odd.

We introduce the PEXTU64 instruction [12] to improve the efficiency of the
step 5 in Algorithm 2. This instruction can extract bits from unsigned 64-bit
integer at the corresponding bit locations specified by mask to contiguous low
bits in destination and the remaining upper bits in destination are set to zero.
In addition, we precompute the sum value

∑(m−1)/2
i=1 c2i−1H(z2i−1). And then,

we store them into a constant matrix HF . As soon as we get codd, we will get
the sum with looking up the constant matrix immediately. The detail is shown
in Algorithm 3.

4.3 Getting an Optimal Configuration in ECC2-131

To evaluate the performance, the algorithms are implemented in C++ language.
All cpu cycle counts were obtained on one core of an Intel Core i7-782x(Skylake-
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Algorithm 2. Solve z2 + z = c in F2m

Input: c =
∑m−1

i=0 ciz
i ∈ F2m with Tr(c) = 0.

Output: A solution s of z2 + z = c.
1: Precompute H(zi) for odd i, 0 ≤ i ≤ m − 2.
2: s ← 0.
3: for i = m−1

2
to 1 do

4: if c2i = 1 then
5: c ← c + zi, s ← s + zi.
6: end if
7: end for
8: s ← s +

∑(m−1)/2
i=1 c2i−1H(z2i−1).

9: return s..

Algorithm 3. Solve z2 + z = c in F2131

Input: c = (C[1], C[0]) = {(0, c[2]), (c[1], c[0])} = (0, · · · , 0, c130, · · · , c0).
Output: r = (R[1], R[0]) where R is a solution of z2 + z = c.
1: Precompute

∑64
i=1 c2i−1H(z2i−1) store into a constant matrix HF and H(z129).

2: Ω = [0x5555555500000000,0x55550000,0x5500,0x50,0x4].
3: S = (s[1], s[0]), T = (t[1], t[0]).
4: t[1] = PEXTU64(c[2],0x5).
5: c[1] = c[1] ⊕ t[1], s[1] = s[1] ⊕ t[1].
6: t[0] = PEXTU64(c[1],0x5555555555555555) 	32.
7: c[0] = c[0] ⊕ t[0], s[0] = s[0] ⊕ t[0].
8: for all k ∈ Ω and j = 16 do
9: t[0] = PEXTU64(c[0], k) 	 j.

10: c[0] = c[0] ⊕ t[0], s[0] = s[0] ⊕ t[0].
11: j = j/2
12: end for
13: if c129 = 1 then
14: r = H(z129).
15: else
16: r = 0.
17: end if
18: t[1] = PEXTU64(c[1],0xaaaaaaaaaaaaaaaa) 	32.
19: t[0] = PEXTU64(c[0],0xaaaaaaaaaaaaaaaa) ⊕ t[1].
20: return r = r + HF [t[0]].

X) at 3.60 GHZ, running Ubuntu 18.04 LTS. Table 7 presents the number of cpu
cycles of algorithms in ECC2-131.

With the number of cpu cycle counts in Table 7, we get the cost ratio λ is
about 14. Further, the optimal configuration is 18+238 subsets and the minimum
overall efficiency is T (18, 238, 14) = 6.3969. Compared with the original r + h-
mixed walks that the total overall efficiency is T (128, 128, 14) = 10.5537, our
optimal configuration is expected to bring about 10.5537−6.3969

10.5537 ∗ 100% ≈ 39.39%
time gain.
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Table 7. Cpu cycle counts of algorithms in ECC2-131.

Operations Cycle counts

Squaring 23

Multiplication 29

Square root 38

Solve the quadratic equation 40

Inversion 3167

Point halving 232

Point adding 3229

5 Conclusion

In r + h-mixed walks, different curves with the same ratios h/r have similar
performances with the same instance of the ECDLP. Therefore, we consider
the relationship between the randomness and the ratio in r + h-mixed walks
to improve parallelized rho method. The overall efficiency for parallelized rho
method can be improved by reducing the randomness but increasing the ratio
in r + h-mixed walks. We provide an optimal configuration by finding the best
ratio.

We show that the configuration can improve the overall efficiency of paral-
lelized rho method by 18.30% under the theoretical efficiency of point halving.
The speedup for parallelized rho method is usually up to the practical cost of
point halving and point addition. If the point halving is more efficient than
point addition, the method can get higher acceleration. In practice, our experi-
ments show that the optimal configuration can improve the overall efficiency of
ECC2-79 by about 36%. With the optimization of the basic operations in F2131 ,
we deduce that the optimal configuration can improve the overall efficiency of
ECC2-131 by about 39%.
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Abstract. In this paper, we construct new q-ary generalized cyclo-
tomic sequences of length 2pn. We study the linear complexity of these
sequences over the finite field of order q and show that they have high
linear complexity when n ≥ 2. These sequences are constructed by new
generalized cyclotomic classes presented by Zeng et al.
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field

1 Introduction

Pseudo-random sequences are widely used in many fields, for example in cryp-
tography. Linear complexity (L) is a very important merit factor for measuring
unpredictability of pseudo-random sequences, which are often used as key stream
sequences in stream ciphers. This is defined as the length of the shortest linear
feedback shift register that can generate the sequence [10].

One of the methods for constructing sequences with high linear complexity
is to use cyclotomic and generalized cyclotomic classes. There are a lot of papers
devoted to studying the linear complexity of cyclotomic sequences and gener-
alized cyclotomic sequences. In particular, in recent years there has been some
research on generalized cyclotomic binary and non-binary sequences of period
pn [1,2,4,13,15] (see also references therein), where p is an odd prime. Binary
sequences considered in [19] were defined from generalized cyclotomic classes
modulo 2pm for an integer m ≥ 1. Later the results from [19] were generalized
in [5,9].

New generalized cyclotomic classes were presented by Zeng et al. in [18].
Using them Xiao et al. presented a new family of cyclotomic binary sequences
of period pn [14]. The linear complexity of these sequences was studied in [6,
14,16]. Recently, in [11] Ouyang et al. presented two new classes of generalized
cyclotomic binary sequences of period 2pm and computed their linear complexity.
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They used new generalized cyclotomic classes and the method from [6]. These
results were generalized in [7].

As noted in [16] we have a link between new cyclotomic classes and Euler
quotient. We mention here that Du et al. defined a class of d-ary sequence using
the Euler quotient, which can be regarded as a generalization of the binary
case, and then analyze the linear complexity of the proposed sequence [3]. Very
recently, Ye et al. published a paper devoted to studying the linear complexity
of d-ary sequence using the Euler quotient with a period pn [17].

In this paper, we generalize the construction from [6,11] and we present q-ary
generalized cyclotomic sequences of period 2pn. We study the linear complexity
of these sequences over a finite field of q elements and show that these sequences
have high linear complexity when n ≥ 2. Thus, it can be said that this article
develops the results presented in [3,6,11,17].

2 Preliminaries

Throughout this paper, we will denote by ZN the ring of integers modulo N for
a positive integer N , and by Z

∗
N the multiplicative group of ZN . We need some

preliminary notation and results before we begin.
Let s∞ = (s0, s1, s2, . . . ) be a q-ary sequence of period N and S(x) = s0 +

s1x + · · · + sN−1x
N−1. By Blahut’s theorem the linear complexity of s∞ can be

given by
L = N −

∣
∣
∣

{

i ∈ ZN |S(αi) = 0
}
∣
∣
∣, (1)

where α is a primitive N -th root of unity in an extension field of Fq, gcd(N, q) =
1.

Let p be an odd prime and p = ef +1, where e, f are positive integers. Let g
be a primitive root modulo pn. It is well known [8] that an odd number from g or
g + pn is also a primitive root modulo 2pj for each integer j ≥ 1. Hence, we can
assume that g is an odd number. Below we recall the definitions of generalized
cyclotomic classes introduced in [18] and [11].

Let n be a positive integer. For j = 1, 2, · · · , n, denote dj = pj−1f and define

D
(pj)
i =

{

gi+t·dj (modpj) | 0 ≤ t < e
}

, 0 ≤ i < dj and

D
(2pj)
i =

{

gi+t·dj (mod2pj) | 0 ≤ t < e
}

, 0 ≤ i < dj .

By definitions we see that
{

D
(pj)
0 ,D

(pj)
1 , . . . , D

(pj)
dj−1

}

and
{

D
(2pj)
0 ,D

(2pj)
1 , . . . ,

D
(2pj)
dj−1

}

form partitions of Z∗
pj and Z

∗
2pj for each integer j ≥ 1, respectively.

Let q be an odd prime and q|f and let b be an integer with 0 ≤ b < pn−1f .
Denote dj/q = pj−1f/q by hj and define the following sets for k = 0, 1, . . . , q −1

C
(2pj)
k =

(k+1)hj−1⋃

i=khj

(
D

(2pj)
(i+b) (mod dj)

∪ 2D
(2pj)
(i+b) (mod dj)

)
, and C

(2pn)
k =

n⋃

j=1

pn−jC
(2pj)
k .
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It is clear that Z2pn = C
(2pn)
0 ∪· · ·∪C

(2pn)
q−1 ∪{0}∪{pn} and |C (pn)

j | = 2(pn−1)/q.
A family of almost balanced q-ary sequences s∞ = (s0, s1, s2, . . . ) of period

2pn can thus be defined as

si =

⎧

⎪⎨

⎪⎩

k, if i (mod 2pn) ∈ C
(pn)
k ,

y, if i (mod 2pn) = 0,

z, if i (mod 2pn) = pn,

(2)

where y, z ∈ Fq, y ± z �= 0.
In this paper we will study the linear complexity of these sequences over Fq,

q > 2.

3 Linear Complexity of Generalized Cyclotomic
Sequences

This section will investigate the linear complexity of s∞ defined in (2) for some
integers f such that q|f . We will limit ourselves here with p such that qp−1 �≡ 1
(mod p2). By [12] p : qp−1 ≡ 1 (mod p2) is not frequent. If 2p−1 ≡ 1 (mod p2)
then p is called Wieferich prime. The main result in this paper is given as follows.

Theorem 1. Let p = ef +1 be an odd prime with qp−1 �≡ 1 (mod p2), 2p−1 �≡ 1
(mod p2) and q divides f . Let s∞ be a generalized cyclotomic q-ary sequence of
period 2pn defined in (2). Then the linear complexity of s∞ over Fq is given by

L = 2pn − r · ordp(q), 0 ≤ r ≤ (q + 1)(p − 1)
qordp(q)

.

Furthermore, 0 ≤ r ≤ (p−1)
ordp(q)

for v| fq or v = 2, v �= f , where v =

gcd
(

p−1
ordp(q)

, f
)

and ordp(q) denote the order of q modulo p.

We will first give some subsidiary statements, and then investigate the linear
complexity of s∞ defined in (2).

Let S(x) = s0 + s1x + · · · + s2pn−1x
2pn−1 for the generalized cyclotomic

sequences s∞ defined in (2). Then,

S(x) =

q−1∑

l=0

l
n∑

j=1

(l+1)hj−1∑

i=lhj

( ∑

t∈D
(2pj)
i+b (mod dj)

xpn−jt+
∑

t∈2D
(2pj)
i+b (mod dj)

xpn−jt)+y+zxpn .

(3)
For convenience of presentation, we define polynomials

E
(pj)
i (x) =

∑

t∈D
(pj)
i+b (mod dj)

xt, 1 ≤ j ≤ n, 0 ≤ i < dj , (4)
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and

G
(pj)
k (x) =

q−1
∑

l=0

l

lhj+hj−1
∑

i=lhj

E
(pj)
i+k (mod dj)

(x), 0 ≤ k < dj ,

F
(pm)
k (x) =

m∑

j=1

(

G
(pj)

k+ind
(pj)
g 2

(xpm−j

) − G
(pj)
k (xpm−j

)
)

+ y − z, m = 1, 2, · · · , n.

H
(pm)
k (x) =

m∑

j=1

(

G
(pj)
k (xpm−j

) + G
(pj)

k+ind
(pj)
g 2

(xpm−j

)
)

+ y + z.

(5)
Notice that the subscripts i in E

(pj)
i , G

(pj)
i (x), F

(pj)
i (x) and H

(pj)
i (x) are all

taken modulo the order dj . In the rest of this paper the modulo operation will
be omitted when no confusion can arise.

Let Fq be an algebraic closure of Fq and βn ∈ Fq be a primitive pn-th root
of unity. Denote βj = βpn−j

n , and αj = −βj , j = 1, 2 . . . , n − 1. Then βj , αj are
primitive pj-th root and 2pj-th root of unity in an extension of the field Fq,
respectively.

Lemma 1. For S(x), F (pj)
n (x) and H

(pj)
n (x) defined as in (3), (5) we have

(i) S(αa
n) = F

(pj)
n (βa

n) for a ≡ 1 (mod 2); and
(ii) S(αa

n) = H
(pj)
n (βa

n) for a ≡ 0 (mod 2), where αn = −βn, βn is a pn-th
primitive root of unity and a ∈ N.

The statements of this lemma follows from (3)–(5).
By (1) and Lemma 1 the linear complexity of s∞ in (2) can thus be given by

L = 2pn −
∣
∣
∣

{

i ∈ Zpn |F (pn)
b (βi

n) = 0
}
∣
∣
∣ −

∣
∣
∣

{

i ∈ Zpn |H(pn)
b (βi

n) = 0
}
∣
∣
∣ . (6)

It is clear from (3)–(5) that the properties of F
(pn)
b (x) and H

(pn)
b (x) depend

on the properties of the polynomials E
(pj)
i (x) and G

(pj)
i (x) for 1 ≤ j ≤ n and

0 ≤ i < dj . Some basic properties of these polynomials are given in the following
lemma.

Lemma 2. Let βj = βpn−j

n , 1 ≤ j ≤ n, be a pj-th primitive root of unity. Given

any element a ∈ D
(pj)
k , we have

(i) E
(pj)
i (βpla

j ) = E
(pj−l)
i+k (βj−l) and G

(pj)
i (βpla

j ) = G
(pj−l)
i+k (βj−l) for 0 ≤ l < j;

and
(ii) E

(pj)
i (βpla

j ) = e (mod q) and G
(pj)
i (αpla

j ) = 0 for l ≥ j.

The proof of this lemma is similar to the proof of Lemma 6 from [6].
The following proposition characterizes some properties of F

(pm)
i (x) and

H
(pm)
i (x).
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Proposition 1. For any a ∈ D
(pj)
k , we have

(i) F
(pm)
i (βpla

m ) = F
(pm−l)
i+k (βm−l) and H

(pm)
i (βpla

m ) = H
(pm−l)
i+k (βm−l) for 0 ≤

l < m; and

(ii)
m∑

j=1

G
(pj)
k (βj) + 1 =

m∑

j=1

G
(pj)
k+hm

(βj), where hm = dm/q = pm−1f/q; and

(iii) F
(pm)
i+hm

(βa
m) = F

(pm)
i (βa

m); and

(iv) H
(pm)
i+hm

(βa
m) = H

(pm)
i (βa

m) + 2.

Proof. (i) The first statement of this lemma follows from the definition in (5)
and Lemma 2.

(ii) By definition we see that

m∑

j=1

G
(pj)
k (βa

j ) =
m∑

j=1

q−1
∑

u=0

u

uhj+hj−1
∑

i=uhj

E
(pj)
i+k (βa

j ).

Since hm ≡ hj (mod dj), it follows that

m∑

j=1

G
(pj)
k+hm

(βj) +
m∑

j=1

q−1
∑

u=0

uhj+hj−1
∑

i=uhj

E
(pj)
i+k+hj

(βa
j ) =

m∑

j=1

G
(pj)
k (βj).

The desired result thus follows.
(iii) Since by (5) F

(pm)
k (βa

m) =
m∑

j=1

(

G
(pj)

k+ind
(pj)
g 2

(βa
j ) − G

(pj)
k (βa

j )
)

+ y − z, m =

1, 2, · · · , n, it follows from (ii) that F
(pm)
i+hm

(βa
m) = F

(pm)
i (βa

m)
(iv) This statement can be proved the same way as (iii). �	

Corollary 1.
m∑

j=1

G
(pj)
i+khm

(βj) =
m∑

j=1

G
(pj)
i (βj) + k and H

(pm)
i+khm

(βa
m) =

H
(pm)
i (βa

m) + 2k for k = 1, 2, q − 1.

Corollary 2. Let ind(p
m)

g 2 = hpm−1f/q for h ∈ N. Then F
(pm)
i (βm) = h+y−z.

Remark 1. If 2p−1 �≡ 1 (mod p2), i.e., p is non-Wieferich prime then ind(pm)
g 2 �≡

0 (mod pm−1) for any m > 1 [6].

We now examine the value of F
(pn)
b (βi

n) and H
(pn)
b (βi

n).

Proposition 2. Let q : qp−1 �≡ 1 (mod p2) and 2p−1 �≡ 1 (mod p2). Then
F

(pn)
b (αi

n) �= 0 and H
(pn)
b (αi

n) �= 0 for i : i �≡ 0 (mod pn−1).

Proof. (i) We will show F
(pn)
b (βi

n) �= 0 by contradiction. Without loss of gener-
ality, by Proposition 1 (i) we can assume F

(pm)
0 (βm) = 0 for m > 1.

By Proposition 1 (iii) we have F
(pm)
dm/q(βm) = 0. Suppose q ≡ gu (mod pm)

for some integer u. It is clear that u �≡ 0 (mod p). Let u1 ≡ u (mod dm) and
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v = gcd(u1, dm). Since the subscript of F
(pm)
i (x) is taken modulo dm, it is easily

seen as in [6] that

0 = F
(pm)
dm/q(βm) = F

(pm)
dm/q+iv(βm), i = 1, · · · , dm/v − 1.

Hence, F
(pm)
f/q (βm) = 0 and F

(pm)
0 (βm) − F

(pm)
f/q (βm) = 0.

For the convenience we denote ind(pm)
g 2 by Tm and let

ξ = −G
(pm)
0 (βm) + G

(pm)
Tm

(βm) + G
(pm)
f/q (βm) − G

(pm)
f/q+Tm

(βm).

Then

ξ = −
m−1∑

j=1

(

− G
(pj)
0 (βj) + G

(pj)
Tj

(βj) + G
(pj)
f/q (βj) − G

(pj)
f/q+Tj

(βj)
)

∈ Fq(βm−1).

On the other hand, by eliminating the overlapping terms in G
(pm)
0 (βm),

G
(pm)
Tm

(βm), G
(pm)
f/q (βm) and G

(pm)
f/q+Tm

(βm) we obtain

ξ = −
∑

t∈D

βt
m +

∑

t∈C

βt
m,

where D = D
(pm)
0 ∪ · · · ∪D

(pm)
f/q−1 ∪ · · · ∪D

(pm)
(q−1)dm/q ∪ · · · ∪D

(pm)
(q−1)dm/q+f/q−1 and

C = D
(pm)
Tm

∪· · ·∪D
(pm)
f/q−1+Tm

∪· · ·∪D
(pm)
(q−1)dm/q+Tm

∪· · ·∪D
(pm)
(q−1)dm/q+f/q−1+Tm

.

We have D
(pm)
ldm/q+t (mod p) = D

(p)
lf/q+t (mod f). Hence D (mod p) = C

(mod p) = Z
∗
p Thus, by letting t (mod p) = t̄ for any t ∈ D ∪ C we have

ξ =
∑

t∈C

βt
m −

∑

l∈D

βl
m =

∑

t∈C

β
(t−t̄)/p
m−1 β t̄

m −
∑

l∈D

β
(l−l̄)/p
m−1 β l̄

m =
p−1
∑

i=1

ciβ
i
m,

and ci ∈ Fq(βm−1).
Here we need to consider two cases.

(i) Suppose to exist i such that ci �= 0. It means that βm is a root of the polyno-

mial f(x) =
p−1∑

i=1

cix
i − ξ over Fq(βm−1). This implies [Fq(βm) : Fq(βm−1)] <

p, as in [6] we will have a contradiction in this case.
(ii) Let ci = 0 for i = 1, 2, . . . , p − 1. In this case for any t ∈ C there exists

l ∈ D such that l ≡ t (mod p) and β
(t−t̄)/p
m−1 = β

(l−l̄)/p
m−1 . Hence t ≡ l

(mod pm). Since |C | = |D | = p− 1, it follows that C = D . For ind(pm)
g 2 �≡ 0

(mod pm−1f/q) this is impossible.

The statement H
(pn)
b (βi

n) �= 0 we can proof the same way as above. �	
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By Proposition 2, we only need to study the values of F
(p)
b (βa

1 ) and H
(p)
b (βa

1 )
for any a ∈ Z

∗
p. The following lemma examines the value of H

(p)
i (β1) according

to the relation between f and ordp(q).

Lemma 3. Let p = ef +1 be an odd prime, q divides f and v = gcd( p−1
ordp(q)

, f).
Then,

(i)
∣
∣
∣

{

k ∈ Zf |H(p)
k (β1) = 0

}∣
∣
∣ ≤ f/q and

∣
∣
∣

{

k ∈ Zf |H(p)
k (β1) = 0

}∣
∣
∣ = f/q if

v = f ;
(ii)

∣
∣
∣

{

k ∈ Zf |H(p)
k (β1) = 0

}∣
∣
∣ = 0 if v | f

q , or v = 2 and f �= v.

Proof. (i) By Corollary 1 we have H
(p)
k+lf/q(β1) = H

(p)
k (β1)+2l for l = 1, . . . , q−1

Thus, if H
(p)
k (β1) = 0 then H

(p)
k+lf/q(β1) �= 0 for l = 1, . . . , q−1 and we obtain

the first part of statement (i).
Further, suppose v = f ; then q ∈ D

(p)
0 and H

(p)
k (β1) ∈ Fq for any k. In this

case we see that just one of numbers H
(p)
k+lf/q(β1), l = 0, 1, . . . , q−1 is equal

to zero.
(ii) The proof of this statement is similar to the proof of Proposition 3 from [6].

�	
Proof of Theorem 1. By (6) the linear complexity of s∞ is given by

L = 2pn −
∣
∣
∣

{

i ∈ Zpn |F (pn)
b (βi

n) = 0
}
∣
∣
∣ −

∣
∣
∣

{

i ∈ Zpn |H(pn)
b (βi

n) = 0
}
∣
∣
∣ .

By Proposition 2 F
(pn)
b (βi

n) �= 0,H
(pn)
b (βi

n �= 0) when i belongs to Zpn \ pn−1
Zp.

From definition we have F
(pn)
b (0) = y − z �= 0 and H

(pn)
b (0) = y + z �= 0.

Further, if F
(p)
0 (β1) = 0 then 0 =

(

F
(p)
0 (β1)

)q

= F
(p)
indgq

(β1) and so on. Hence,

|{a : F
(p)
0 (βa

1 ) = 0, a = 1, 2, . . . , p − 1}| = r · ordp(q) − 1, 0 ≤ r ≤ p−1
ordp(q)

. By

Lemma 3 |{a : H
(p)
0 (βa

1 ) = 0, a = 1, 2, . . . , p − 1}| = r · ordp(q) − 1, 0 ≤ r ≤
p−1

q·ordp(q)
. So, we immediately obtain the desired result from two last formulae

and (6).

4 Remarks

In this section, we will look at a couple of special cases and make a few comments
on the variants that are not considered in Theorem 1.

Lemma 4. If ind(p
m)

g 2 = hpm−1f/q for h ∈ N then

|{a : F
(pm)
b (βa

m) = 0, a ∈ Zpm}| =

{

pm − 1, if h + y − z ≡ 0 (mod q),
0, if h + y − z �≡ 0 (mod q).



558 V. Edemskiy and N. Sokolovskii

The statement of this lemma follows from Corollary 2.
Hence, the linear complexity of s∞ depends on ind(pm)

g 2 for Wieferich primes.
So, if W is the maximum degree such that 2p−1 ≡ 1 (mod pW−1) and n ≤ W
then L can be less than a half of period for h + y − z ≡ 0 (mod q). It is worth
noting that s∞ will have high linear complexity for h + y − z �≡ 0 (mod q), but
in this case the 1-error linear complexity L1(s∞) ≤ pm + 1. So, it is better not
to use these sequences in cryptography.

Note that in a general case the estimate of r in Theorem 1 is a difficult task.
The value r depends on p, q, ind(p)

g 2 and ind(p)
g q. We will illustrate it by a simple

example.
Let q = f . By Corollaries 1, 2 and the proof of Lemma 4 we see that

F
(p)
i (βa

1 ) = ind(p)
g 2 + y − z and H

(p)
i (βa

1 ) = 2G
(p)
i (βa

1 ) + ind(p)
g 2 + y + z

for a ∈ Z
∗
p. So, by Proposition 2 we obtain for non-Wieferich primes p that

L =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

2pn − (q + 1)(p − 1)/q, if ind(p)
g 2 + y − z ≡ 0(mod q) and q ∈ D

(p)
0 ,

2pn − p + 1, if ind(p)
g 2 + y − z ≡ 0(mod q) and q �∈ D

(p)
0 ,

2pn − (p − 1)/q, if ind(p)
g 2 + y − z �≡ 0(mod q) and q ∈ D

(p)
0 ,

2pn, otherwise.

We will have even more options for L when f/q ≥ 2.
Finally, suppose that qp−1 ≡ 1 (mod pm0 ) and qp−1 �≡ 1 (mod pm0 ) for m0 >

1. In this case Proposition 2 will be true for n > m0 and the linear complexity
of s∞ over Fq will be high when n > m0 and p is an non-Wieferich prime.

5 Conclusion

We presented new q-ary generalized cyclotomic sequences of length 2pn and
studied the linear complexity of these sequences over the finite field of order q.
We showed that they have high linear complexity when n ≥ 2. These sequences
are constructed by new generalized cyclotomic classes presented by Zeng et al.
We generalized the results about new binary cyclotomic sequences of Ouyang et
al. and the results of Ye et al. obtained earlier.
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