
Chapter 28
Toward DNS of the Ultimate Regime
of Rayleigh–Bénard Convection

R. J. A. M. Stevens, D. Lohse and R. Verzicco

Introduction

Heat transfer mediated by a fluid is omnipresent in nature as well as in technical
applications and it is always among the fundamental mechanisms of the phenomena.
The performance of modern computer processors has reached a plateau owing to
the inadequacy of the fluid-based cooling systems to get rid of the heat flux which
increaseswith the operating frequency [1]. Onmuch larger spatial scales, circulations
in the atmosphere and oceans are driven by temperature differences whose strength is
key for the evolution of theweather and the stability of regional and global climate [2].

The core of the problem, which is referred to as natural convection, is relatively
simple since it reduces to determining the strength of the heat flux crossing the system
for given flow conditions. Unfortunately, the governing equations (Navier–Stokes)
are complex and non-linear, thus preventing the possibility to obtain analytical solu-
tions. On the other hand laboratory experiments, aimed at tackling these phenomena,
have to cope with the issue of how to make a setup of size hm = O(cmm) dynami-
cally similar to a system of h = O(mkm) (Fig. 28.1). Indeed, this upscaling problem
is common to many experiments in hydrodynamics; in thermal convection however
it is exacerbated since, as we will see in the next section, the most relevant governing
parameter, the Rayleigh number (Ra), depends on the third power of the leading spa-
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Fig. 28.1 Cartoon of the
scaling problem for a
Rayleigh–Bénard flow: a
model system of size hm has
to be operated in dynamic
similarity with a real system
of size h

m
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tial scale. This implies that in real applications Ra easily attains huge values while it
hardly hits its low-end in laboratory experiments.

Numerical simulations are subjected to similar limitations because of the spa-
tial and temporal resolution requirements that become more severe as the Rayleigh
number increases [3]. Only recently the former have become a viable alternative to
experiments, thanks to the continuously growing power of supercomputers.

Indeed, if the dynamics of the system could be expressed by power laws of the
form≈ARaβ , experiments and numerical simulations, performed at moderate values
of the driving parameters, could be scaled up to determine the response of the real
systems at extreme driving values. Unfortunately, this strategy works only assuming
that the coefficients of the power law (A and β) remain constant for every Ra and
this could not be the case for thermal convection [4]. More in detail, Malkus [5] and
Priestley [6] conjectured that all the mean temperature profile variations occur within
the thermal boundary layers at the heated plates while the mean temperature in the
bulk of the flow is essentially constant. Assuming also that the thermal boundary
layers are far enough to evolve independently, one immediately obtains β = 1/3. A
few years later, however, Kraichnan [7] noticed that as Ra increases, also the flow
strengthens and the viscous boundary layers eventually must become turbulent. In
this case, referred to as ultimate regime, velocity profiles are logarithmic with the
wall normal distance, and it results β = 1/2 (times logarithmic corrections) which
yields huge differences with respect to the previous theory.

This last observation and the fact that most of the practical applications evolve
in the range of very high Rayleigh numbers motivate the effort to study turbulent
thermal convection in the ultimate regime even if it requires the solution of formidable
difficulties that we will detail in the next section.
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A Trap Problem

One of the most appealing features of thermal convection is that the essence of the
phenomenon can be reduced to a very simple model problem in which a fluid layer
of thickness h, kinematic viscosity ν and thermal diffusivity κ is heated from below
and cooled from above with a temperature difference Th − Tc = Δ. The temperature
field, in a constant gravity field g produces a flow motion via the thermal expansion,
parameterized by a constant coefficient α: this is the Rayleigh–Bénard flow. The heat
flux Q̇ between the plates will be a function of the form Q̇ = f (h, ν, κ, g, α,Δ)

which involves N = 7 different quantities whose minimum number of independent
dimensions is K = 4. The BuckinghamΠ -theorem assures that, in non-dimensional
form, the above relation is equivalent to one with only N − K = 3 parameters that
can be written as Nu = F(Ra,Pr) being Ra = gαΔh3/(νκ), Pr = ν/κ and Nu =
Q̇/Q̇diff with Qdiff the diffusive heat flux through the fluid in absence of motion
(Figs. 28.2 and 28.3).

The above relation looks very attractive since it depends only on two independent
parameters Ra and Pr, the latter being determined solely by the fluid properties.Many
efforts have been made to study the function F(·) through laboratory experiments
and, in the last two decades, also by numerical simulations as a viable alternative.
Unfortunately, the practical realization of the RB convection is substantially different
from the theoretical problem and many additional details come into play.

The first point is that while in the ideal flow the fluid layer is laterally unbounded,
in real experiments, by necessity, it must be somehow confined thus introducing a
second length d or equivalently an additional parameter Γ = d/h, the aspect-ratio.

Fig. 28.2 Cartoon of the
ideal Rayleigh–Bénard flow
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Fig. 28.3 Simplified sketch
of a real experimental setup.
Outside of the cell, only an
insulating layer of foam has
been reported while all the
details about heating and
cooling systems and thermal
shields have been neglected
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Fig. 28.4 Compilation of experimental and numerical data for the compensated Nusselt versus
Rayleigh numbers: the solid black line is the theory by [4], blue bullets are the experiments by
[8], purple squares [9], dark red diamonds [10], red right triangles [11], orange left triangles [12],
yellow up triangles [13], yellow down triangles [14], yellow stars [15], black bullets, numerical
simulations by [16], black squares, preliminary numerical simulations by Stevens (2019), (Personal
Communication)

The parameters become more than one if the tank does not have a cylindrical or
square cross section.

Several additional variables are introduced by the physical realization of the
thermal boundary conditions; in fact, in the ideal problem, all the heat entering
the fluid through the lower isothermal hot plate leaves the fluid only crossing the
upper cold plate, without heat leakage across the side boundaries. In the real flow,
the isothermal surfaces are obtained by thick metal plates (a = O(1 − 5)cm) of
high thermal diffusivity κpl (copper or aluminum) that provide stable temperature
values at the fluid interface for every flow condition. The sidewall, in contrast,
should minimize the heat transfer and it is therefore made of low thermal diffusivity
κsw materials (steel or Plexiglas) and with reduced thickness (e = O(1 − 5)mm).
To further prevent parasite heat currents, insulation foam layers and even active
thermal shields are installed outside of the cell, thus further increasing the num-
ber of input parameters. Within this scenario, the heat flux function looks like
Q̇ = f ′(h, ν, κ, g, α,Δ, d, e, κsw, a, κpl , b, κ f oam, ...) whose variable counting is
N > 14 while it results always K = 4 thus implying that the non-dimensional coun-
terpart (Nu = F ′(Ra,Pr, ...)) involves more than N − K > 10 independent param-
eters.

The hope is that when the function F ′(·) is explored, experimentally or numer-
ically, most of the parameters introduced by the experimental technicalities do not
affect significantly the phenomena and the relevant variables reduce to a tractable
number. Unfortunately, some of the recent, and not so recent, experiments have
shown that it is not always the case since dynamically equivalent flows do not yield
identical results. In Fig. 28.4 we report a collection of Nusselt numbers taken from
different sources showing some disagreement both at the low- and high-end of Ra.
While the former differences have been attributed mainly to the heat leakage through
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Fig. 28.5 Nusselt number
versus domain aspect-ratio
Γ = d/h at Ra = 108 and
Pr = 1. The dashed line for
the “unifying theory” [4] is
computed from experimental
data at Γ = 1

the sidewall [17–20] and some of the latter to the non-perfect thermal sources [21],
most of the discrepancies are still unexplained and they are the subject of intense
investigation by many research groups worldwide. The situation is even more com-
plex if one does not restrict the analysis only to the Nusselt number since higher
order statistics show higher sensitivity to external perturbations.

In this context, numerical experiments can be particularly helpful since they can
be used as ideal tests to isolate the different perturbations of the basic problem
and assess their effectiveness. However, performing direct numerical simulation of
Rayleigh–Bénard convection implies several non-obvious choices and requires huge
computational resources that, for the parameter range of the ultimate regime, are not
fully available yet. In the following, we will present estimates of the computational
costs and discuss some of the possible open choices.

The first relevant point is whether the simulation should be aimed at the ideal RB
flow or rather has to mimic a laboratory experiment. In the first case, the computa-
tional domain should be laterally unbounded which can be approximated by periodic
boundary conditions applied to a rectangular domain of horizontal size d; this con-
figuration results in a horizontally homogeneous flow that benefits from easy and
efficient uniform spatial discretizations and fast converging statistics. On the other
hand, in a real setup, the boundedness of the fluid layer generally results in a smaller
fluid volume although the kinematic boundary layer at the sidewall has to be resolved
by additional gridpoints.

Which of the two configurations is more advantageous is not obvious since the
computational efficiency of the fully bounded flow solvers is smaller than those with
homogeneous directions but the former setup involves smaller flow volumes.

Besides computational considerations, there are also physical issues since the
presence of lateral boundaries, and even the shape of the container affect the flow
dynamics [22]. In Fig. 28.5, we report the dependence of the Nusselt number on the
domain aspect-ratio Γ for rectangular and cylindrical geometries. It is immediately
evident that for slender domains Nu depends on Γ in the opposite way and only
for Γ ≈ 1 the two geometries yield similar values while for Γ ≥ 4 the Nusselt
number converges to the asymptotic value for unbounded domains. All the laboratory
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experiments reported in Fig. 28.4 have been performed in low aspect-ratio cylindrical
cells and accordingly also the numerical simulations have been run in a cylinder at
Γ = 0.5. In contrast, if a horizontally homogeneous flow has to be simulated, in
order to get rid of the numerical confinement effect, it must be computed on domains
at least of Γ = 4, even if spectra and higher order statistics indicate that Γ = 8 or
Γ = 16 is needed to eliminate confinement effects [23].

In the following, we give an estimate of the computational resources needed for
direct numerical simulation of turbulent RB convection in rectangular and cylindri-
cal geometries by evaluating the number of nodes contained in the relative mesh.
The basic assumption is that the flow can be divided into bulk and boundary layer
regions, the former discretized by amesh of the same size as the smallest between the
Kolmogorov and Batchelor scales and the latter with the resolution criteria suggested
by [3].We further assume that the rectangular box has a size d × d × h discretized in
Cartesian coordinates, while the cylinder has a diameter d and a height h discretized
in polar coordinates.

For the ease of discussion, we will restrict to Pr = 1 keeping in mind that as the
Prandtl number deviates substantially from unity the simulation becomes even more
demanding either because the velocity field develops finer scales than the temperature
(Pr � 1) or vice versa (Pr � 1).

For themeanKolmogorov scale η, we can easily write η/h ≈ (RaNu)1/4 that with
a fit Nu = ARaβ (A � 0.05 and β = 1/3 from the high-end of Ra in Fig. 28.4) yields
a number of nodes per unit length in the bulk Nbu = 0.473Ra1/3. For the resolution
of each boundary layer, we rely on the correlation derived by [3] which suggest a
number of nodes Nbl ≈ 0.35Ra0.15. Within these figures, the total number of nodes
for the rectangular domain reads NCar = Γ 2(0.105Ra + 0.156Ra0.816).

We proceed along the same lines for the cylindrical domain keeping in mind that
there is an extra boundary layer at the sidewall and that the polar coordinates have
azimuthal isolines that diverge radially. Therefore the resolution requirements in this
direction are dictated by the location farthest from the symmetry axis. Using the
same correlations as above we obtain NCyl = 0.5πΓ 2(0.105Ra + 0.156Ra0.816) +
πΓ (0.223Ra0.816 + 0.116Ra0.633).

It is worth mentioning that these expressions have been obtained by simplifying
assumptions; therefore their results should be taken as coarse estimates and not as
precise measures. For example, A and β have been assumed constant and equal
to the high-end Ra values of Fig. 28.4 and we have used h − 2δbl ≈ h (with δbl the
boundary layer thickness): all these positions concur to an overestimate of the number
of nodes. On the other hand, the correlation Nbl ≈ 0.35Ra0.15 of [3] was obtained
for a Prandtl–Blasius laminar boundary layer that is expected to underestimates
the resolution when the ultimate regime sets in and the boundary layers transition to
turbulence. At the transitional Rayleigh number, the above factors might compensate
each other and the estimates could give reasonable numbers.

A comparison of the two expressions immediately shows that the leading order
term increases at the same rate with Ra and Γ although the cylindrical mesh has
asymptotically 60%more nodes than the Cartesian counterpart. This is true although,
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Fig. 28.6 Number of nodes
N (in a cylindrical cell of
Γ = 0.5) and achievable
flow Rayleigh number Ra
versus the years for direct
numerical simulations of
Rayleigh–Bénard
convection. Black squares
for various data from the
literature, blue bullets for
simulations from our
research group, big red bullet
final goal for the ultimate
regime simulation

for the same aspect-ratio, the latter has a volume (Γ 2h3) which is more than 20%
bigger than the former (πΓ 2h3/4).

If now we focus on the onset of the ultimate regime we have to determine the
critical Rayleigh number at which the boundary layer undertakes the transition to
the turbulent state. This is triggered by the large scales of convection that sweep the
plates by the induced winds; according to Ref. [24] the boundary layer transition
occurs for a shear Reynolds number of ReS ≈ 420 that Grossmann and Lohse [4]
have estimated to happen around RaC ≈ 1014.

In a rectangular domain with Γ = 4 this Rayleigh number implies a mesh with
NCar > 1014 nodes that is clearly infeasible in themid-term future. In a cylindrical cell
of Γ = 0.5, however, it results NCyl ≈ 1012 nodes that could be achieved within the
next 5 years (see Fig. 28.6). Indeed, we are already running simulations at Ra = 1013

at Γ = 0.5 and even Ra = 1014 at Γ = 0.25 with meshes of the order of 1011 nodes
(R. Stevens, Personal Communication) although we expect to tackle the ultimate
regime only by the “next generation” simulations.

We wish to point out that if we compare the numbers coming from the present
formulas with those currently used for the highest Rayleigh number simulations we
find that the former produces a systematic overestimate of the required resolution. For
example, for a cylindrical mesh of aspect-ratio Γ = 0.5 at Ra = 1013 our prediction
yields a number of nodes NCyl ≈ 4 × 1011 while a simulation on a mesh 4608 ×
1400 × 4480 (NCyl ≈ 2.9 × 1010) yielded the same Nusselt number as another run
on the finer grid 6144 × 1536 × 6144 with NCyl ≈ 5.8 × 1010 nodes (R. Stevens,
Personal Communication).

A possible explanation for this difference is that in our model we have assumed
that in the bulk the mesh has to be as fine as the mean Kolmogorov scale η. However,
looking at the dissipation spectra of turbulence [25] one finds its peak around 10η thus
implying that also a mesh of size 1.5 − 2η already resolves most of the dissipation.
In three-dimensions, this difference yields a factor 6.25 − 8 less in the node counting
that is about the mismatch between our prediction and the actual meshes.
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For a while, we have been working at improving the simulation code [16, 26, 27]
by more efficient implementations of the solution algorithms and of the paralleliza-
tion strategies in order to reduce the time-to-solution. In addition we are also figuring
out alternatives to achieve the ultimate regime in more affordable problems.

One possible way is to exploit the analogy between Rayleigh–Bénard and Taylor–
Couette (TC) flow [28]. The latter is the flow developing in the gap between two
coaxial cylinders rotating at different angular velocities and whose angular momen-
tum flux across the cylinders behaves as the heat flux between the plates in a RB
flow [29]. It turns out, however, that the mechanical forcing of the TC flow is more
efficient in producing turbulent boundary layers than the thermal forcing of RB flows
and the ultimate regime can be achieved for smaller values of the driving parameters
that are affordable by numerical simulation [30]. In Ref. [31], thanks to the presence
of baffled cylinders, which disrupted the logarithmic part of the turbulent boundary
layer profiles, it has been possible to get rid of the logarithmic correction and obtain
a pure 1/2 power law in the analogous of the Nu versus Ra relationship.

Another possibility is to simulate a two-dimensional RB flow that allows, already
now, to tackle Rayleigh numbers > 1014; indeed in Ref. [32] (and successive devel-
opments) simulations have been run up to Ra � 5 × 1014 with the appearance of a
transition already for Ra ≥ 1013.

Closing Remarks

In this contribution, we have briefly introduced the problem of turbulent thermal
convection with a particular look at its transition to the ultimate regime and the
resolution requirements needed for the direct numerical simulation of this flow.

Leaving aside all the complications related to the spurious heat currents through
the sidewall and the imperfect character of the thermal sources, already addressed
in some of the referred papers, it appears that a preliminary fundamental question
is whether the simulation should be aimed at replicating an experimental setup with
a lateral confinement or to mimic the truly Rayleigh–Bénard flow that is virtually
infinite in the horizontal directions.

We have shown that in the latter case a domain with aspect-ratio no smaller
than Γ = 4 is required and this implies, at the estimated critical Rayleigh number
RaC ≈ 1014, a computational mesh with more than 1014 nodes that is not likely to
be tractable within the next decade. On the other hand, although for a given Ra
and Γ cylindrical, laterally confined geometries contain about 60% more nodes
than the rectangular “unbounded” domains, when restricted to the existing, slender
cylinders of the laboratory experiments the number of nodes become more feasible.
In particular, for Γ = 0.5 and Ra = 1014 the present estimate gives a mesh slightly
larger than a trillion of nodes. Even if this number might look impressive, it is
“only” one order of magnitude bigger than the current state-of-the-art simulations
and, according to Fig. 28.6, such meshes will become affordable within the next 5
years or so. It is also worthwhile mentioning that the present estimates assume a
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mesh in the bulk of the flow that is everywhere as fine as the mean Kolmogorov scale
η while actual grid refinement checks performed on Rayleigh–Bénard turbulence
have shown converged results already for meshes of size 2η. This implies that in
three-dimensional flows the actual mesh sizes can be about one order of magnitude
smaller a this is fully confirmed by our ongoing simulations.

Needless to say, once the ultimate regime will have been hit by numerical simula-
tions also in three-dimensions, a terra incognitawill be entered. Turbulent boundary
layers have more severe resolution requirements than the laminar counterparts and
once the ballistic plumes of Kraichnan [7], which can be thought of as pieces of
detached thermal boundary layer, are shot into the bulk also the resolution of that
flow region is likely to become more demanding. Clearly, attempting resolution esti-
mates beyond the onset of the transition would be even more speculative than those
of the present paper and only with the data of those simulations at hand, further
reasonable projections can be made.

While waiting for adequate computational resources to tackle thermal convection
in the ultimate regime we can nevertheless compute turbulent flows that exhibit
similar dynamics or that canbe reduced to a tractable size by simplifying assumptions.
These include the Taylor–Couette flow, that can be rigorously shown to be analogous
to Rayleigh-Bénard convection, or two-dimensional thermal convection that already
now can be simulated well beyond Ra = 1014 and has indeed shown evidence of
transition to the ultimate state.
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