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Chapter 14
The Future of Regenerative Medicine

Andrew Creighton and Jonathan S. Kirschner

 Background on the Burden of MSK Conditions

Musculoskeletal diseases place a significant burden on the United States (US) 
healthcare system and contribute significantly to rising costs. In 2014, 66 million 
people sought medical care for a musculoskeletal injury [1, 2]. Current medical 
costs of musculoskeletal diseases are estimated at 873.8 billion US dollars (USD) 
annually. Osteoarthritis (OA), an example of a degenerative musculoskeletal dis-
ease with a significant impact on the US healthcare system, was responsible for 
raising aggregate annual medical care expenditures by 185.5 billion USD [3–5]. OA 
currently affects more than 27 million people in the United States and is forecasted 
to affect 25% of the adult US population or nearly 67 million people by the year 
2030 [3, 5, 6]. At this time, there is no known cure for OA. With the potential to 
prevent or reverse disease progression, regenerative medicine provides an oppor-
tunity to reduce the financial burden of degenerative diseases like OA. This would 
significantly impact the overall financial burden of musculoskeletal diseases.

One model to describe regenerative medicine and the engineering of tissues 
divides the underlying component categories into three parts, analogous to a garden 
that requires seeds, dirt, and fertilizer: (1) cells or cellular components, (2) bioma-
terial scaffolds, and (3) chemical and physical growth factors including cytokines 
like those in PRP [7]. This triad involves cells which are cultured on either a natu-
ral or synthetic scaffold where attachment and differentiation or proliferation can 
take place.
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The future of regenerative medicine will focus on research and science on the effi-
cacy and specific mechanisms of action of regenerative therapies (as broadly broken 
down into the above categories). A respect for Food and Drug Administration (FDA) 
regulations will be required. There will be an improved understanding of  genet-
ics pertaining to musculoskeletal diseases, and genetic targets involved with differ-
ent degenerative diseases will be identified. Questions pertaining to the appropriate 
level of tissue loading and the appropriate post-procedure rehab protocols will need 
to be answered. Ultimately, controlled trials demonstrating efficacy, standardization 
in reporting, improved data collection processes, and improved outcome metrics will 
give merit to the field and allow physicians to feel confident recommending regenera-
tive medicine treatments to patients.

 Definitions/Nomenclature

Regenerative medicine and “stem cells” can be confusing and misleading terms, 
especially with regard to culture-expanded cells, cell products, and live or atten-
uated growth factors such as amniotic membrane-derived products. Names are 
used haphazardly, and nomenclature can be misleading and disconnected from 
the science and identity of cells in native tissues [3]. According to the National 
Institutes of Health (NIH), stem cells are defined by their ability to divide and 
renew themselves for long time periods, by their lack of specialization, and by 
their ability to give rise to specialized subtypes [8, 9]. Essentially, the current cell 
therapies offered in the United States involve transplanting adult cells obtained 
through harvest and minimal manipulation of native tissues (blood, bone marrow, 
and fat), which contain stem and progenitor cells [8]. While the concentration 
of these cells can be increased at the point of care [8, 10], stem and progenitor 
cells are the least plentiful cell type in these preparations. Specifically, only one 
in one thousand to one in one million cells harvested from healthy tissues is stem 
or progenitor cell capable of differentiating into one or more types of connec-
tive tissue [8, 11–13]. Another issue that contributes to confusion surrounding the 
nomenclature of stem cells is that both “mesenchymal stem cell” and “mesenchy-
mal stromal cell” are abbreviated “MSC” and used to describe culture-expanded 
cells. Chu et al. suggested that the term “stem cell” has been overused to include 
uncharacterized minimally manipulated cell preparations as well as tissue-derived 
culture-expanded cell populations. It has been suggested, therefore, that these cell 
preparations and expanded cell populations be referred to as “cell therapy” [8]. 
While the term “stem cell” has become common, future work will need to clearly 
define what is meant when this term is used. The future of regenerative medicine 
will need to have a standardized and accurate nomenclature for descriptive, clas-
sification, and billing purposes but most importantly for the science and clinical 
applicability to move forward.
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 Regulations and Standardization

There have been two general approaches to cellular therapies within regenerative 
medicine [3]. The first approach involves specifically characterized cellular medical 
therapies provided by physicians who are diligent and committed to the scientific 
innovative process of first studying a product in animals and then through three 
phases of trials where appropriate informed consent is executed. Alternatively, the 
second approach utilizes unregulated cell- and tissue-based products and associated 
procedures that are unproven, offered without appropriate informed consent includ-
ing an explanation of scientific limitations, and offered on a cash-only basis. It is 
estimated that these unproven therapies have a yearly financial impact of 2.4 billion 
USD [3, 14–19]. The demand of effective treatment for common diseases, hope 
from the public (and providers), poor and inaccurate marketing communications 
regarding the expectations, strengths and limitations of these therapies, availability 
of various technologies and systems for culturing, and patient ability and willing-
ness to pay for care not covered by insurance companies have contributed to the 
hype around “stem cells” [3]. The surge of social media, gaps in regulation, and eth-
ics and liability concerns of larger, more established companies have allowed small 
targeted clinics and manufacturers to bring forth lucrative business models without 
backing of controlled clinical studies [3]. This is concerning given reports of serious 
adverse events with treatments that at this point are not fully understood [20–22]. 
This second, unscrupulous approach highlights the need for regulations in the field 
of regenerative medicine to not only ensure patient safety but also allow potential 
strengths of these therapies to be demonstrated.

In response to these unregulated clinics, the FDA issued a guidance document on 
November 16, 2017, that had two directives: (1) identify and subsequently prosecute 
unscrupulous regenerative medicine clinics and (2) streamline the approval path-
way for legitimate therapies [23]. The majority of regenerative medicine products 
is regulated under title 21 of the Code of Federal Regulations (21 CFR 1271), and 
there are two separate descriptions under part 1271: Section 361, which is reserved 
for tissues that are “minimally manipulated” and intended only for homologous use, 
and Section 351 used for a new drug or biologic product requiring FDA premarket 
review process that is more time intensive. If they originate from autologous bone 
marrow or adipose, stem cell preparations have traditionally been regulated under 
Section 361; however, recent guidance documents from the FDA caution that prod-
ucts from adipose, such as those created by mechanically processed lipoaspirate for 
orthopedic indications, are not considered minimally manipulated or homologously 
used and would therefore fall under Section 351 and have to undergo the rigors of an 
“investigational new drug.” This would require appropriate regulatory submissions 
for the conduct of clinical trials and marketing [20].

While the FDA is targeting the unregulated practices of smaller clinics by neces-
sitating approval standards, it demonstrated a sense of urgency by incorporating a 
mechanism for expediting the development of new therapies with an emphasis on 
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those aimed at serious or life-threatening conditions [20]. For example, the 21st 
Century Cures Act enacted in December 2016 introduced an additional expedited 
program in which a product is designated as regenerative medicine advanced therapy 
(RMAT). This designation gives sponsors of a qualified regenerative medicine prod-
uct intended for treating serious or life-threatening conditions an advantage in that 
it requires preliminary clinical evidence that the therapy addresses unmet medical 
needs as opposed to the requirement of preliminary clinical evidence of a substantial 
improvement over existing therapies [20]. In addition, RMAT-designated products 
that receive accelerated approval have potential eligibility for use of an expanded 
range of options, including the use of traditional studies along with submitting 
patient registries to fulfill post-approval commitments. Ultimately, the November 
2017 policy from the FDA has given developers of lower-risk regenerative medi-
cine products 36 months to determine if their products have undergone more than 
homologous use or minimal manipulation and if they need to submit an application 
for investigational new drug or marketing [20, 23]. Within the FDA’s framework in 
thinking about musculoskeletal applications, if investigators are able to collaborate 
among different sites and agree on common manufacturing protocols and a common 
clinical trial protocol and the data along with the manufacturing information show a 
positive benefit-risk profile, there would be potential for receipt of biologics licenses 
at each of these sites by pooling the data [20]. This approach would be appropri-
ate for developing products that, despite being more than minimally manipulated, 
would not be highly complex and would be able to be applied in simple trial designs.

The collaborative strategy outlined above highlights a need for standardization. 
There is an inconsistency in the literature with regard to reporting standards [3]. 
Direct-to-consumer marketing has allowed for erroneous claims. For example, aggre-
gated claims of “stem cell” clinics suggested an average of 80% of patients experi-
ence “good results” or “symptomatic improvement,” but published literature would 
suggest that there is a gap between what is reported and reality [3, 24]. Similarly, 
messages on social media about cell-based therapies are dominated by positive tone 
without discussing risks [3, 25]. Standardization is also needed from a research 
standpoint in terms of disease-specific clinical indications, reporting on how cells 
are sourced and characterized, the use of adjuvant therapies, the use of appropriate 
controls, trial methodology, and assessment of outcomes [3, 11, 12, 26, 27].

From a scientific standpoint, it is critical to develop a standardized and consistent 
approach to reporting in publications how cells are processed and characterized. 
Specifically, it is important to report the source of tissue, the selection or isolation 
method, expansion conditions, cell surface markers and their attributes, concentra-
tion, prevalence, gene expression profile and morphological features, and proteome 
profile. Publications vary widely with regard to relevant metrics of how the cells or 
components were processed and characterized [3]. When articles lack this infor-
mation, it becomes difficult to communicate and repeat or compare one study to 
another. For example, Piuzzi et al. attempted to review the use of bone marrow aspi-
rate concentrate in musculoskeletal disorders but, after reviewing 46 studies, found 
that no study gave enough details so that the methods could be repeated [3, 28]. 
Similarly, the composition of PRP can change depending on the time of day it is 
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obtained or can vary when prepared using systems from different manufacturers 
[8, 29–31]. Demographic information is important to report as well because it has 
been noted that growth factor and cytokine concentrations vary by donor age, health 
status, and sex [8, 31, 32]. In a similar way, progenitor and MSC populations iso-
lated from a given donor also differ widely from one preparation to another, along 
with being different in terms of age, sex, tissue source, harvest, and processing [8, 
11–13, 28–30, 33–38]. Ultimately, the Delphi consensus approach describes a mul-
tidisciplinary group of investigators who defined minimum information for studies 
evaluating biologics in orthopedics (MIBO), specifically related to the use of PRP 
and MSCs, that serve as a checklist of the minimal requirements to guide study 
design and reporting [3, 39].

 Registries

Registries can be a significant vehicle to direct the future of regenerative medicine 
toward standardization and facilitate outcomes-based research. There is a need for 
registries which include demographics (age, sex, medications, underlying medical 
conditions, and smoking status). Each patient who undergoes a procedure is very 
different. Would an older patient with multiple medical comorbidities respond to 
an injection of PRP, for example, the same way as a healthy patient with no comor-
bidities? A registry can be linked to a biorepository to capture and preserve clinical 
samples for future analysis and create cohorts that can help to power clinical trials 
[3, 8]. With cartilage, for example, one of the biggest barriers to establishing the 
safety and efficacy of these new therapies is the cost of clinical trials [3]. This is 
where the organization of multicenter registries for cartilage repair can be critical 
to reducing barriers to progress and allowing for multicenter trials to take place [3]. 
Overall, registries provide opportunities for collecting standardized data on both 
how the patient was doing clinically and what their outcome was for a variety of 
different interventions performed to treat the same disease [8]. 

The American Joint Replacement Registry [8, 40], the Kaiser Registries [8, 36], 
and the PRP registry at Veterans Hospital in Palo Alto, California, are model regis-
tries that have contributed important data on practice patterns, shown the potential 
issues from a particular treatment, or illustrated the potential for clinical evidence 
pertaining to PRP. The biorepository-linked PRP registry at the Veterans Hospital 
in Palo Alto, California, addressed the gap between the differing composition of 
PRP from patients and clinical outcomes [8]. Patients that received PRP injections 
for knee OA completed patient-reported outcomes (PROs) before treatment and 
at specific time points after treatment. At the same time, a sample of the PRP was 
stored for patients who consented to federally funded research and who additionally 
underwent functional and structural assessments of gait and quantitative MRI. In 
doing so, the registry supports correlating PRP proteomics with PRO and quantita-
tive clinical outcome metrics in the interest of learning about potential mechanisms 
of action and clinical efficacy [8].
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Effective registries require commitment and a team approach from physicians, 
clinics, and hospitals to recruit all qualifying patients, appropriate incentives for 
participation, and a process for financial support of the human resources required 
to accrue and report clinical and baseline outcomes data [8]. In addition, there will 
need to be a defined assessment of quality, technique of preparation, device used, 
and clinical laboratory data on the administered biologic [8]. Tissue specimens may 
also be collected to aid in stratifying the patient’s disease state along with analy-
ses of biomarkers, molecules, and genomes. These data could be required to help 
identify which patients would most likely respond to therapy and define the critical 
quality characteristics of a cell or biologic therapy.

 Patient Access

Given the potential of these investigational therapies, there is a need to increase 
access to these treatments while still maintaining an environment committed to 
patient safety and respect. The acronym SMAC, which stands for science evidence, 
rigorous manufacturing process, accurate information for patients, and consistent 
product in terms of substance and how it is delivered, can be a guide [3]. The FDA, 
in its recent position paper, has demonstrated its commitment to both proper inves-
tigation and patient access to regenerative therapies by giving direction on ways to 
get an investigational drug into settings where there would be a potential for posi-
tively impacting a great number of patients [3, 41–43]. As previously mentioned, in 
the United States, the 21st Century Cures Act has provisions intended to expedite 
approvals of cell therapies and the recent “right-to-try” law to allow terminally ill 
patients access to products. An example from outside the United States can be seen 
by looking at Japan where a law passed emphasizing the utilization of conditional 
approvals for the purposes of stimulating the regenerative medicine industry.

 Science

With an emphasis on patient registries and increasing patient access, scientists and 
clinicians need to maintain a sense of urgency in developing a better understanding 
of the mechanisms behind these regenerative therapies. Improved understanding of 
the science will allow the appropriate regenerative medicine therapy to be chosen 
for the appropriate patient. Rodeo (2016) noted that animal studies have been valu-
able in verifying “proof of principal” for cell-based therapies, PRP, cytokines, and 
tissue-engineered implants [44–48]. Despite the value of animal studies, there are 
limitations. In animals, it is challenging to stimulate chronic conditions like tendi-
nopathy or slowly developing OA that is seen in humans [8]. In addition, there is an 
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inability to control the mechanical loading environment or replicate the loading that 
takes place with humans. When thinking about humans, there is intrinsic variabil-
ity in the soft tissues and joint spaces being treated that is poorly understood. The 
biologic targets need to be better identified [8]. For example, when looking at repair 
of the rotator cuff, primary targets are thought to be signaling molecules that drive 
cellular differentiation to reform the organized structure of the enthesis [8, 49]. 
Identifying biologic targets will necessitate a better understanding of the cellular 
mechanisms of tissue degeneration and repair for that disease state. Lastly, in terms 
of the three-part model, there is still much to be understood about the cells, biomate-
rial scaffolds, cytokines, and growth factors that are unique to the individual patient.

When analyzing stem cells, either marrow derived or adipose derived, there are 
numerous ways that these cells may work. They may function by way of their own 
inherent immunomodulatory and anti-inflammatory properties and by directly inte-
grating into the healing tissue thereby directly participating in the healing response 
or have a local paracrine effect by stimulating and attracting intrinsic host cells [44]. 
The specific mechanisms by which they work are unknown at this time, however, 
and will need to be identified for regenerative medicine to progress.

One of the main goals of cell therapy is cartilage repair; however, there are a 
number of unknown factors involved with this process. Future research will need to 
work toward addressing current limitations including a lack of consensus regarding 
the optimal cell source, harvesting and processing techniques, and critical quality 
attributes (CQAs) that predict future performance [3, 50]. Specifically, when talking 
about the cell source, cells need to be selected that maintain an articular cartilage 
phenotype and do not undergo endochondral ossification, which can be a significant 
adverse effect [3, 50–53].

Scaffolds, as an important part of the tissue-engineering triad, interact with both 
cells and growth factors [54, 55]. Scaffolds can provide substrate for growth of 
cells and mechanical integrity for postsurgical implantation. They can also act as 
drug delivery systems for improved repair in vivo by being coated with bioactive 
molecules. One promising direction in scaffold production involves nanotechnol-
ogy, specifically self-assembling peptides [54]. Natural and synthetic biomaterials 
have been investigated as scaffolds, but self-assembling peptide hydrogel (SAPH) 
scaffolds combine advantages of both natural and synthetic biomaterials because 
they are biocompatible and have easily modifiable properties [56]. For example, 
in a study looking at SAPH for intervertebral disc tissue engineering, after three- 
dimensional culture of nucleus pulposus cells (NPCs) in the SAPH, upregulation 
of nucleus pulposus-specific genes confirmed that the system could restore the 
nucleus pulposus (NP) phenotype in in vitro cultures [56]. The SAPH stimulated 
time-dependent increases in aggrecan and type II collagen deposition, which are 
two important NP extracellular matrix components. Overall, the suggestion from 
this study was that the SAPH could be used as a cell delivery system and scaf-
fold in treating degenerative disc disease. Another promising application in the 
future of scaffolds will look to utilize 3D printing to achieve a clinically successful 
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tissue- engineered product. 3D printing offers a way to control scaffold size, shape, 
pore size, geometry, and mechanical properties [54, 57]. Through the integration of 
computer-assisted design and modern medical imaging, scaffolds can be individu-
alized to a specific patient and a specific defect [54, 58]. A new development has 
been biologically relevant bioinks, which are biomaterials that carry cells printed 
into 3D scaffolds and are an important component of the bioprinting effort [59, 
60]. Faramarzi et al. incorporated PRP into an alginate hydrogel scaffold used in 
bioprinters and demonstrated that this bioink could positively affect the function 
of two important cell populations (mesenchymal stem cells and endothelial cells) 
involved in the tissue healing process in vitro [59].

PRP and the cytokines contained within it have played a large role in regen-
erative medicine and are relevant because they contain autologous growth 
factors that  are easy to obtain and manipulate [3]. In a retrospective study by 
Mautner et al., in which PRP for chronic tendinopathy was evaluated, the major-
ity of patients reported a moderate (>50%) improvement in pain symptoms [61]. 
However, despite showing an ability to contribute to symptom improvement, 
there are still many PRP-related questions that require clarification, many related 
to inconsistencies in published clinical  trial results [3]. Due to  variabilities in 
published studys’ methods and results, the mechanism of action of PRP based 
on the various cell types it contains, optimal PRP formulation and system, dose 
number (single vs. serial), dose timing (intraoperative or delayed), and the impact 
of adding activating agents or anesthetics needs clarification in the future.

The optimal way of addressing the shortcomings in regenerative medicine is 
through controlled clinical trials [44]. In addition, it has also been suggested that 
clinicians carry out translational studies in conjunction with basic scientists to facil-
itate a thorough assessment of the biologic activity of these agents and then to com-
pare and analyze this activity to clinical outcomes. A major limitation is that with 
general characteristics of the substance, such as platelet count or white blood cell 
count with PRP or cell number with stem cells, we do not know the biologic activity 
of the substance or how these general characteristics relate to that biologic activ-
ity. Extensive statistical analyses will be needed to study the interactions between 
intervention, time point after injury, and injury grade or severity [8]. There will also 
need to be stratification based on age, sex, and metabolic and systemic factors that 
may affect treatment response, like diabetes, rheumatologic conditions, and chronic 
use of anti-inflammatory or antifibrotic medications. At this point, given the amount 
of “unknowns” in regenerative medicine, has the usage of regenerative therapies 
outpaced the science supporting them?

 Outcomes and Post-Procedure Rehabilitation

As with any treatment in medicine, the desired outcome for each regenerative medi-
cine treatment needs to be clearly defined in controlled clinical trials. “Healed” 
versus “not healed” may not be the ideal outcome, and instead, the focus should be 
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on the tissue quality at the site, the time it took to achieve tissue healing, pre- and 
post-procedure pain levels, and restoration of motion or strength [44]. The ultimate 
outcome may be to reduce pain or inflammation and not affect healing at all. For 
acute muscle injury, for example, the primary goal may be prevention of reinjury 
rather than faster return to sport [8]. Another example pertains to rotator cuff repair, 
where the goal may be to decrease the rate of retear of the repaired tendon. In addi-
tion, and maybe even more importantly, adverse outcomes need to be diligently 
reported. Given that many regenerative therapies are new, long-term adverse effects 
are unknown. The first priority is to do no harm to the patient. With a limited under-
standing of how these regenerative therapies work and limited long-term data avail-
able, the clinician is in a precarious position in offering these therapies to patients. 
Commitment to appropriate informed consent is imperative.

Posttreatment rehabilitation instructions have the potential to contribute to a pos-
itive outcome [8]. Mechanical loads are critical for healing tissue. There is a paucity 
of data on the appropriate timing and progression of rehabilitation after a regenera-
tive medicine treatment. In addition, rehabilitation for shoulder osteoarthritis is very 
different than rehabilitation for Achilles tendinopathy. Therefore, rehabilitation pro-
tocols need to be identified for each location and regenerative treatment. Variables 
include when and how a tissue should be loaded, active vs. passive range of motion, 
medications and nutritional factors that may enhance or hinder healing, the role 
of hyperbaric oxygen, low-level laser therapies, and the types and frequencies of 
strength training exercises.

 Genomics

Gene therapy administered through viral vectors can serve as a  natural “drug 
store” for the body to  help to regenerate tissues, slow aging, or modify disease 
processes. Improvement in the understanding of genetic and epigenetic factors 
related to the injury of tissues is needed to facilitate targets for therapy and more 
predictable results [44]. This improved understanding is also linked to the idea of 
a “personalized” patient-specific approach in which biological or gene expression 
markers are used to identify joints at risk and justify preemptive intervention with 
disease-modifying drugs that can preserve cartilage even before the osteoarthritic 
process ensues [3, 62]. For example, clustered regularly interspaced short palin-
dromic repeats (CRISPR) genome-engineering technology enables strategies like 
Stem Cells Modified for Autonomous Regenerative Therapy (SMART), allowing 
for production of anti-inflammatory molecules that selectively reduce inflammation 
caused by chronic conditions [3]. With durable engraftment, these cells can then 
serve the role of vaccine – limiting the progression of OA.

Gene therapy has the potential to deliver proteins to specific tissues and cells 
for tissue-engineering purposes [1, 63]. Gene therapy involves transferring target 
genes into cells allowing for protein delivery, growth factors, or other therapeutic 
gene products to a specific anatomic site. The delivery process of transgenes can 
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be through in vivo or ex vivo protocols with either viral (transduction) or nonviral 
(transfection) vectors [1]. Viral vectors can be integrating (retroviral and lentiviral) 
vectors which stably insert their genome into the DNA of infected cells and provide 
the best prospects for long-term gene expression as they are passed to both daughter 
cells during cell division. They also can be non-integrating (adenovirus and recom-
binant adeno-associated virus (AAV)) and stay in the nucleus as extrachromosomal 
episomes, which are not replicated during mitosis [1, 64]. The main issue with viral 
vectors is safety as they have demonstrated the potential to cause cell transforma-
tion and carcinogenesis [1, 65–67]. Given these concerns, nonviral vectors have 
been developed. They are associated with lower gene delivery efficiency compared 
to viral vector delivery systems [1, 68] but provide advantages with immunogenic 
response probability and cost-effective manufacturing [1, 69]. To improve the non-
viral delivery efficiency problems, nonviral delivery systems have been engineered 
consisting of chemical or physical transfection systems [1].

There are two different ways of strategizing gene delivery: either in  vivo or 
ex vivo strategies [1]. The vector is directly delivered to the host either systemically 
or locally with in vivo therapy. In ex vivo gene transfer, target cells are harvested, 
processed, and genetically manipulated outside the body prior to anatomic implan-
tation. Ex vivo gene therapy is more technically challenging, more invasive, and 
less cost-effective. However, it is associated with higher transduction efficiency in 
allowing the delivery of potent cells and the gene product of interest to specific 
anatomic sites, a selective process of targeting the cell population of interest [1, 
70–73]. Ex vivo gene therapy is also safer in only delivering transduced cells and 
not the actual vectors themselves, allowing for better control of the introduced fac-
tor. To overcome the limitations of ex vivo therapy, ex vivo strategies using either 
allogeneic cells or expedited single-step “same-day” approaches that eliminate the 
culture expansion step, decreasing the risk of contamination and gene mutations 
along with the increased cost, are being investigated [1, 74, 75]. Virk et al. evaluated 
this “same-day” approach using harvested bone marrow cells from a rat along with 
an osteoconductive scaffold assessing its effect on a critical-sized femoral defect 
on the rat [1, 75]. Radiographic, micro-CT, histologic, and biomechanical testing 
at 12 weeks post-implantation demonstrated that “same-day” ex vivo regional gene 
therapy was able to heal a rat’s critical-sized femoral defect. In addition, for com-
parison to cultured bone marrow cells, “same-day” cells were associated with ear-
lier radiographic healing and increased bone formation on micro-CT. Safety of this 
technique was assessed by Alaee et al., and the results indicated that viral vector 
copies were detected in the defect area following implantation of transduced cells 
but significantly decreased over time. There were no consistent findings of viral 
copies in the internal organs and no organ toxicity or histological abnormalities 
noted [1, 76]. The results suggested that ex vivo therapy, using a lentiviral vector, 
is safe but required further testing. Given the strengths of this expedited ex vivo 
approach along with safety, it is likely that this approach will be utilized in future 
studies.
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When looking at possible indications for gene therapy in musculoskeletal dis-
eases, such as articular cartilage repair or osteoarthritis, it is evident that gene 
therapy has the potential to make an impact on different disease processes. Unlike 
other therapeutic strategies that focus on alleviating the symptoms of OA, gene 
therapy focuses on cartilage growth factors and cytokines involved in inflam-
mation and  the pathogenesis of osteoarthritis like interleukin-1 (IL-1), IL-10, 
TNF-α, and TGF-β [1]. Usually, the process involves direct intra-articular admin-
istration of genetically manipulated cells or vectors alone. IL-1 is considered the 
most potent mediator of pain, inflammation, and cartilage loss in OA [1, 77]. 
IL-1 receptor antagonist (IL-1Ra), by blocking IL-1 and limiting inflammation 
and cartilage degradation, is a promising option for treatment of OA, and mul-
tiple studies in animal models of arthritis have shown efficacy of viral-mediated 
IL-1Ra gene transfer in inducing subsequent gene expression and biological 
response [1, 78–81]. Nonviral gene delivery into joints is also an approach that 
has shown promise. In a rabbit model, Fernandes et al. showed the ability to con-
trol progression of OA with intra-articular injection of a plasmid-lipid complex 
[1, 82]. In addition, using the cDNA of IL-1Ra in combination with TGF-β1 was 
more effective in cartilage repair than when each is used alone. Safety of in vivo 
intra-articular gene therapy was addressed by the Wang et al. group in a study that 
specifically evaluated the biodistribution and toxic effects of recombinant adeno-
associated virus (AAV) carrying either rat or human IL-1Ra [1, 83]. In observa-
tional, body weight, and pathology studies, administration of this vector caused 
no local or systemic adverse effects. There was minimal vector leakage into the 
systemic circulation for the first 4–24 hours after injection, and the vector genome 
persisted for up to a year with only low levels of vector genomes detected outside 
the knee. This strategy needs further refinement but shows significant promise and 
requires future study.

OA is the only orthopedic-related disease being studied in clinical gene 
therapy trials [1, 84] in the United States and Korea. Phase I and II trials of 
“TissueGene-C” (TG-C), an ex vivo gene strategy utilizing retrovirally modified 
allograft chondrocytes in patients with knee OA, have been completed with phase 
III trials now underway. These patients had Cartilage Repair Society (ICRS) grade 
IV cartilage damage based on MRI and improved with pain, range of motion, 
and functional outcomes. Importantly, safety with TG-C has been demonstrated 
by analyzing peripheral blood in 12 patients treated with TG-C which showed 
normal levels of TGF-beta 1 and no circulating vector DNA for all patients at all 
dose levels at every time point [1, 85]. Recently in Korea, TG-C, named Invossa, 
became the first gene therapy to be approved for musculoskeletal applications 
and is indicated for moderate knee OA. In addition to Invossa, a single injection 
of sc-rAAV2.5IL-Ra is being assessed in a phase I clinical trial in patients with 
moderate knee OA [1, 86].

While there has been successful use of gene therapy in animal models treating 
difficult bone defects, cartilage defects, and osteoarthritis, there are still obstacles to 
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clinical application [1]. We need to develop cost-effective, clinically relevant gene 
therapy strategies. Ideally, gene therapy should not require the clinician to develop a 
special skill set to prepare the product, and it will be off-the-shelf or easily extract-
able at the point of care. Safety is a special concern for the future application of gene 
therapy, and it is important that extensive biodistribution analysis of the transferred 
genes be consistently completed. The biology of gene therapy including the clinical 
indications, dose, cell source and scaffold, target gene, vector, and delivery system 
needs to be better defined.

 Conclusion

The outlook on the future of regenerative medicine at this point is one of cautious 
optimism. Using the triad model framework, including cells, scaffolds, and PRP, 
along with an improving understanding of the human genome, it is evident that 
there is promising work being done that could lead to the future ability to modify 
degenerative diseases instead of simply managing symptoms. The challenge will 
be balancing patient demands and expectations with the limited evidence base for 
these therapies and  an urgency from an increasing population of older patients. 
Given the regulations that are being enforced by the FDA, we are at a critical period 
of time where the onus to show data to support regenerative therapies has never 
been larger. This can be accomplished through collaboration and the development 
of registries along with standardization in methodology and outcome measures 
used in randomized controlled trials. For regenerative medicine to be successful we 
need an improved understanding of the science behind how stem cell therapy, scaf-
folds, and cytokines making up PRP work along with a better understanding of the 
human genome in the context of degenerative diseases like osteoarthritis. Given the 
immense potential of this field, will regenerative medicine be regarded as its own 
specialized area of medicine in the future?
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