
9Direct Treatment of Special Optimization
Problems

Many of the results derived in this book are concerned with a generally formulated
optimization problem. But if a concrete problem is given which has a rich math-
ematical structure, then solutions or characterizations of solutions can be derived
sometimes in a direct way. In this case one takes advantage of the special structure
of the optimization problem and can achieve the desired results very quickly.

In this final chapter we present two special optimal control problems and show
how they can be treated without the use of general theoretical optimization results.
The first problem is a so-called linear quadratic optimal control problem. For the
given quadratic objective functional one gets a minimal solution with the aid of
a simple quadratic completion without using necessary optimality conditions. The
second problem is a time-minimal optimal control problem which can be solved
directly by the application of a separation theorem.

9.1 Linear Quadratic Optimal Control Problems

In this section we consider a system of autonomous linear differential equations

ẋ(t) = Ax(t) + Bu(t) almost everywhere on [0, T̂ ] (9.1)

and an initial condition

x(0) = x0 (9.2)

(where T̂ > 0 and x0 ∈R
n are arbitrarily given). Let A and B be (n, n) and (n,m)

matrices with real coefficients, respectively. Let every control u ∈ Lm∞([0, T̂ ])
be feasible (i.e. the controls are unconstrained). It is our aim to steer the sys-
tem (9.1), (9.2) as close to a state of rest as possible at the terminal time T̂ . In other
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words: For a given positive definite symmetric (n, n) matrix G with real coefficients
the quadratic form x(T̂ )T Gx(T̂ ) should be minimal. Since we want to reach our
goal with a minimal steering effort, for a given positive definite symmetric (m,m)

matrix R with real coefficients the expression
T̂∫

0
u(t)T Ru(t) dt should be minimized

as well. These two goals are used for the definition of the objective functional
J : Lm∞([0, T̂ ]) → R with

J (u) = x(T̂ )T Gx(T̂ ) +
T̂∫

0

u(t)T Ru(t) dt for all u ∈ Lm∞([0, T̂ ]).

Under these assumptions the considered linear quadratic optimal control problem
then reads as follows:

Minimize the objective functional J with respect to all controls
u ∈ Lm∞([0, T̂ ]) for which the resulting trajectory is given
by the system (9.1) of differential equations and the initial
condition (9.2).

⎫
⎪⎬

⎪⎭
(9.3)

In order to be able to present an optimal control for the problem (9.3) we need
two technical lemmas.

Lemma 9.1 (relationship between control and trajectory).

Let P(·) be a real (n, n) matrix function which is symmetric and differen-
tiable on [0, T̂ ]. Then it follows for an arbitrary control u ∈ Lm∞([0, T̂ ])
and a trajectory x of the initial value problem (9.1), (9.2):

0 = x0T
P (0)x0 − x(T̂ )T P (T̂ )x(T̂ ) +

T̂∫

0

[
2u(t)T BT P (t)x(t)

+x(t)T
(
Ṗ (t) + AT P(t) + P(t)A

)
x(t)

]
dt.

Proof For an arbitrary control u ∈ Lm∞([0, T̂ ]) and a corresponding trajectory x

of the initial value problem (9.1), (9.2) and an arbitrary real matrix function P(·)
defined on [0, T̂ ] and being symmetric and differentiable it follows:

d

dt

[
x(t)T P (t)x(t)

]
= ẋ(t)T P (t)x(t) + x(t)T

(
Ṗ (t)x(t) + P(t)ẋ(t)

)

= (Ax(t) + Bu(t)
)T

P (t)x(t)
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+x(t)T
(
Ṗ (t)x(t) + P(t) (Ax(t) + Bu(t))

)

= x(t)T
(
Ṗ (t) + AT P(t) + P(t)A

)
x(t)

+2u(t)T BT P (t)x(t) almost everywhere on [0, T̂ ].

With the initial condition (9.2) we get immediately by integration

x(T̂ )T P (T̂ )x(T̂ ) − x0T
P (0)x0

=
T̂∫

0

[
2u(t)T BT P (t)x(t) + x(t)T

(
Ṗ (t) + AT P(t) + P(t)A

)
x(t)

]
dt

which implies the assertion. ��

Lemma 9.2 (Bernoulli matrix differential equation).

The (n, n) matrix function P(·) with

P(t) =
[

eA(t−T̂ )G−1eAT (t−T̂ ) +
T̂∫

t

eA(t−s)BR−1BT eAT (t−s) ds

]−1

for all t ∈ [0, T̂ ] (9.4)

is a solution of the Bernoulli matrix differential equation

Ṗ (t) + AT P(t) + P(t)A − P(t)BR−1BT P(t) = 0(n,n) for all t ∈ [0, T̂ ]
(9.5)

with the terminal condition

P(T̂ ) = G. (9.6)

The matrix function P(·) defined by (9.4) is symmetric.

Proof First we define the (n, n) matrix function Q(·) by

Q(t) = eA(t−T̂ )G−1eAT (t−T̂ ) +
T̂∫

t

eA(t−s)BR−1BT eAT (t−s) ds for all t ∈ [0, T̂ ]
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(notice that the matrix exponential function is defined as a matrix series). It is
evident that Q(·) is a symmetric matrix function. For an arbitrary z ∈ R

n, z �= 0Rn ,
we obtain

zT Q(t)z = zT eA(t−T̂ )G−1eAT (t−T̂ )z︸ ︷︷ ︸
> 0

+
T̂∫

t

zT eA(t−s)BR−1BT eAT (t−s)z︸ ︷︷ ︸
≥ 0

ds

> 0 for all t ∈ [0, T̂ ].

Consequently, for every t ∈ [0, T̂ ] the matrix Q(t) is positive definite and therefore
invertible, i.e. the matrix function P(·) with

P(t) = Q(t)−1 for all t ∈ [0, T̂ ]

is well-defined. Since Q(·) is symmetric, P(·) is also symmetric.
It is obvious that P(·) satisfies the terminal condition (9.6). Hence, it remains to

be shown that P(·) is a solution of the Bernoulli matrix differential equation (9.5).
For this proof we calculate the derivative (notice the implications for arbitrary t ∈
[0, T̂ ]: Q(t) · Q(t)−1 = I 	⇒ Q̇(t)Q(t)−1 + Q(t) d

dt

(
Q(t)−1

) = 0(n,n) 	⇒
d
dt

(
Q(t)−1

) = −Q(t)−1Q̇(t) Q(t)−1 )

Ṗ (t) = d

dt

(
Q(t)−1

)

= −Q(t)−1Q̇(t)Q(t)−1

= −Q(t)−1
[

AeA(t−T̂ )G−1eAT (t−T̂ ) + eA(t−T̂ )G−1eAT (t−T̂ )AT

+
T̂∫

t

(

AeA(t−s)BR−1BT eAT (t−s)

+eA(t−s)BR−1BT eAT (t−s)AT

)

ds − BR−1BT

]

Q(t)−1

= −Q(t)−1
[
AQ(t) + Q(t)AT − BR−1BT

]
Q(t)−1

= −Q(t)−1A − AT Q(t)−1 + Q(t)−1BR−1BT Q(t)−1

= −P(t)A − AT P(t) + P(t)BR−1BT P(t) for all t ∈ [0, T̂ ].

Consequently, P(·) satisfies the Bernoulli matrix differential equation (9.5). ��

With the aid of the two preceding lemmas it is now possible to present the optimal
control of the linear quadratic problem (9.3).
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Theorem 9.3 (feedback control).

The so-called feedback control ū given by

ū(t) = −R−1BT P(t)x(t) almost everywhere on [0, T̂ ]

is the only optimal control of the linear quadratic control problem (9.3)
where the matrix function P(·) is given by (9.4).

Proof In the following let P(·) be the matrix function defined by (9.4). Then we
have with Lemmas 9.1 and 9.2 for every control u ∈ Lm∞([0, T̂ ]) with u �= ū:

J (u) = x(T̂ )T Gx(T̂ ) +
T̂∫

0

u(t)T Ru(t) dt

= x0T
P (0)x0 + x(T̂ )T [G − P(T̂ )]x(T̂ )

+
T̂∫

0

[

u(t)T Ru(t) + 2u(t)T BT P (t)x(t)

+x(t)T
(
Ṗ (t) + AT P(t) + P(t)A

)
x(t)

]

dt

(from Lemma 9.1)

= x0T
P (0)x0 +

T̂∫

0

[

u(t)T Ru(t) + 2u(t)T BT P (t)x(t)

+x(t)T P (t)BR−1BT P(t)x(t)

]

dt

(from Lemma 9.2)

= x0T
P (0)x0 +

T̂∫

0

(
u(t) + R−1BT P(t)x(t)

)T

R

(
u(t) + R−1BT P(t)x(t)

)
dt

> x0T
P (0)x0

= J (ū).

Hence ū is the only minimal point of the functional J . ��
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ẋ(t) = Ax(t) + Bū(t)

ū(t) = −R−1BT P (t)x(t)

ū(t) x(t)

Fig. 9.1 Feedback control of Theorem 9.3

The optimal control presented in Theorem 9.3 depends on the time variable t and
the current state x(t). Such a control is called a feedback or a closed loop control
(see Fig. 9.1).

If the control function depends only on t and not on the state x(t), then it is called
an open loop control. Feedback controls are of special importance for applications.
Although feedback controls are also derived from the mathematical model, they
make use of the real state of the system which is described mathematically only in
an approximate way. Hence, in the case of perturbations which are not included in
the mathematical model, feedback controls are often more realistic for the regulation
of the system.

Since the matrix function P is analytic and the trajectory x is absolutely
continuous, the optimal control ū in Theorem 9.3 is an absolutely continuous vector
function. In fact, a solution of the linear quadratic optimal control problem lies in a
smaller subspace of Lm∞([0, T̂ ]).

Notice that the proof of Theorem 9.3 could be done with the aid of an optimality
condition. Instead of this we use a quadratic completion with Lemmas 9.1 and 9.2
which is simpler from a mathematical point of view.

The linear quadratic control problem (9.3) can be formulated more generally. If
one defines the objective functional J by

J (u) = x(T̂ )T Gx(T̂ ) +
T̂∫

0

(
x(t)T Qx(t) + u(t)T Ru(t)

)
dt

for all u ∈ Lm∞([0, T̂ ])

where Q is a positive definite symmetric (n, n) matrix with real coefficients, then
the result of Theorem 9.3 remains almost true for the modified control problem.
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The only difference is that then the matrix function P(·) is a solution of the Riccati
matrix differential equation

Ṗ (t) + AT P(t) + P(t)A + Q − P(t)BR−1BT P(t) = 0(n,n) for all t ∈ [0, T̂ ]

with the terminal condition P(T̂ ) = G.

Example 9.4 (feedback control).

As a simple model we consider the differential equation

ẋ(t) = 3x(t) + u(t) almost everywhere on [0, 1]

with the initial condition

x(0) = x0

where x0 ∈ R is arbitrarily chosen. The objective functional J reads as
follows:

J (u) = x(1)2 + 1

5

1∫

0

u(t)2 dt for all u ∈ L∞([0, 1]).

Then we obtain the function P as

P(t) =
⎡

⎣e3(t−1)e3(t−1) + 5

1∫

t

e3(t−s)e3(t−s) ds

⎤

⎦

−1

=
⎡

⎣e6(t−1) + 5

1∫

t

e6(t−s) ds

⎤

⎦

−1

=
[

e6(t−1) − 5

6
e6(t−1) + 5

6

]−1

= 6

5 + e6(t−1)
for all t ∈ [0, 1].
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Hence, the optimal control ū is given by

ū(t) = −5
6

5 + e6(t−1)
x(t)

= − 30

5 + e6(t−1)
x(t) almost everywhere on [0, 1]. (9.7)

If we plug the feedback control ū in the differential equation, we can
determine the trajectory x:

ẋ(t) = 3x(t) + ū(t)

= 3x(t) − 30

5 + e6(t−1)
x(t)

=
(

3 − 30

5 + e6(t−1)

)

x(t).

Then we obtain the trajectory x as

x(t) = x0 e

t∫

0

(
3− 30

5+e6(s−1)

)
ds

= x0 e

(
3s−6(s−1)+ln(e6(s−1)+5)

)∣∣t
0

= x0 e−3t+ln(e6(t−1)+5)−ln(e−6+5)

= x0

e−6 + 5
e−3t

(
e6(t−1) + 5

)
for all t ∈ [0, 1]. (9.8)

If we plug the equation (9.8) in the equation (9.7), we get the optimal control
ū in the open loop form

ū(t) = − 30x0

e−6 + 5
e−3t almost everywhere on [0, 1]

(compare Fig. 9.2). This optimal control is even a smooth function.
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Fig. 9.2 Illustration of the optimal control ū and the trajectory x

9.2 TimeMinimal Control Problems

An important problem in control theory is the problem of steering a linear system
with the aid of a bounded control from its initial state to a desired terminal point in
minimal time. In this section we answer the questions concerning the existence and
the characterization of such a time minimal control. As a necessary condition for
such an optimal control we derive a so-called weak bang-bang principle. Moreover,
we investigate a condition under which a time minimal control is unique.

In this section we consider the system of linear differential equations

ẋ(t) = A(t)x(t) + B(t)u(t) almost everywhere on [0, T̂ ] (9.9)

with the initial condition

x(0) = x0 (9.10)

and the terminal condition

x(T̂ ) = x1 (9.11)

where T̂ > 0, x0, x1 ∈ R
n, A and B are (n, n) and (n,m) matrix functions

with real coefficients, respectively, which are assumed to be continuous on [0, T̂ ],
and controls u are chosen from Lm∞([0, T̂ ]) with ‖ui‖L∞([0,T̂ ]) ≤ 1 for all

i ∈ {1, . . . ,m}. Then we ask for a minimal time T̄ ∈ [0, T̂ ] so that the linear
system (9.9) can be steered from x0 to x1 on the time interval [0, T̄ ].
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If we consider the linear system (9.9) on a time interval [0, T ] with T ∈ [0, T̂ ]
we use the abbreviation

U(T ) := {u ∈ Lm∞([0, T ]) | for every k ∈ {1, . . . ,m} we have

|uk(t)| ≤ 1 almost everywhere on [0, T ]}
for all T ∈ [0, T̂ ] (9.12)

for the set of all feasible controls with terminal time T .

Definition 9.5 (set of attainability).

For any T ∈ [0, T̂ ] consider the linear system (9.9) on [0, T ] with the initial
condition (9.10). The set

K(T ) := {x(T ) ∈ R
n | u ∈ U(T ) and x satisfies the linear

system (9.9) on [0, T ] and the initial condition (9.10)}

(with U(T ) given in (9.12)) is called the set of attainability.

The set of attainability consists of all terminal points to which the system can be
steered from x0 at the time T . Since we assume by (9.11) that the system can be
steered to x1 we have x1 ∈ K(T̂ ). Hence, the problem of finding a time minimal
control for the linear system (9.9) satisfying the conditions (9.10), (9.11) can be
transformed to a problem of the following type: Determine a minimal time T̄ ∈
[0, T̂ ] for which x1 ∈ K(T̄ ) (see Fig. 9.3).

x0

x1
K(T̂ )

K(T̄ )

K(T )

Fig. 9.3 Illustration of the set of attainability with T ∈ (0, T̄ )
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Before going further we recall that for an arbitrary u ∈ Lm∞([0, T ]) the solution
of the initial value problem (9.9), (9.10) with respect to the time interval [0, T ], T ∈
[0, T̂ ], can be written as

x(t) = �(t)x0 + �(t)

t∫

0

�(s)−1B(s)u(s) ds for all t ∈ [0, T̄ ]

where � is the fundamental matrix with

�̇(t) = A(t)�(t) for all t ∈ [0, T ],

�(0) = I (identity matrix)14.

Notice that in the case of a time independent matrix A, the fundamental matrix �

is given as

�(t) = eAt =
∞∑

i=0

Ai t
i

i! for all t ∈ [0, T ].

In the following, for reasons of simplicity, we use the abbreviations

Y (t) := �−1(t)B(t) for all t ∈ [0, T ]

and

R(T ) :=
{ T∫

0

Y (t)u(t)dt

∣
∣
∣
∣ u ∈ U(T )

}

for all T ∈ [0, T̂ ].

The set R(T ) is sometimes called the reachable set. A connection between K and
R is given by

K(T ) = �(T )
(
x0 + R(T )

)

= {�(T )x0 + �(T )y | y ∈R(T )} for all T ∈[0, T̂ ]. (9.13)

First we investigate properties of the set of attainability.

14A proof of this existence result can be found e.g. in [212, p. 121–122].
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Lemma 9.6 (properties of the set of attainability).

For every T ∈ [0, T̂ ] the set K(T ) of attainability for the initial value
problem (9.9), (9.10) with respect to the time interval [0, T ] is nonempty,
convex and compact.

Proof We present a proof of this lemma only in a short form. Let some T ∈ [0, T̂ ]
be arbitrarily given. Because of the initial condition (9.10) it is obvious that R(T ) �=
∅. Next we show that the reachable set

R(T ) =
{ T∫

0

Y (t)u(t) dt

∣
∣
∣
∣ u ∈ U(T )

}

is convex and compact. U(T ) is the closed unit ball in Lm∞([0, T ]) and therefore
weak*-compact. Next we define the linear mapping L : Lm∞([0, T ]) → R

n with

L(u) =
T∫

0

Y (t)u(t) dt for all u ∈ Lm∞([0, T ]).

L is continuous with respect to the norm topology in Lm∞([0, T ]), and therefore it
is also continuous with respect to the weak*-topology in Lm∞([0, T ]). Since L is
continuous and linear and the set U(T ) is weak*-compact and convex, the image
R(T ) = L(U(T )) is compact and convex. Because of the equation (9.13) the set
K(T ) is also compact and convex. ��

As a first important result we present an existence theorem for time minimal
controls.

Theorem 9.7 (existence of a time minimal control).

If there is a control which steers the linear system (9.9) with the initial
condition (9.10) to a terminal state x1 within a time T̃ ∈ [0, T̂ ], then there
is also a time minimal control with this property.

Proof We assume that x1 ∈ K(T̃ ). Next we set

T̄ := inf{T ∈ [0, T̂ ] | x1 ∈ K(T )}.
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Then we have T̄ ≤ T̃ , and there is a monotonically decreasing sequence (Ti)i∈N
with the limit T̄ and a sequence (ui)i∈N of feasible controls with

x1 =: x(Ti, u
i) ∈ K(Ti)

(let x(Ti, u
i) denote the terminal state at the time Ti with the control ui). Then it

follows

‖x1 − x(T̄ , ui)‖
= ‖x(Ti, u

i) − x(T̄ , ui)‖

=
∥
∥
∥
∥�(Ti)x

0 + �(Ti)

Ti∫

0

Y (t)ui(t) dt − �(T̄ )

Ti∫

0

Y (t)ui(t) dt

−�(T̄ )x0 − �(T̄ )

T̄∫

0

Y (t)ui(t) dt + �(T̄ )

Ti∫

0

Y (t)ui(t) dt

∥
∥
∥
∥

≤ ∥∥(�(Ti) − �(T̄ ))x0
∥
∥+

∥
∥
∥
∥(�(Ti) − �(T̄ ))

Ti∫

0

Y (t)ui(t) dt

∥
∥
∥
∥

+
∥
∥
∥
∥�(T̄ )

Ti∫

T̄

Y (t)ui(t) dt

∥
∥
∥
∥

which implies because of the continuity of �

x1 = lim
i→∞ x(T̄ , ui).

Since x(T̄ , ui) ∈ K(T̄ ) for all i ∈ N and the set K(T̄ ) is closed, we get x1 ∈ K(T̄ )

which completes the proof. ��

In our problem formulation we assume that the terminal condition (9.11) is
satisfied. Therefore Theorem 9.7 ensures that a time minimal control exists without
additional assumptions. For the presentation of a necessary condition for such a time
minimal control we need some lemmas given in the following.

Lemma 9.8 (property of the set of attainability).

Let the linear system (9.9) with the initial condition (9.10) be given. Then
the set-valued mapping K : [0, T̂ ] → 2R

n
(where K(·) denotes the set of

attainability) is continuous (with respect to the Hausdorff distance).
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Proof First we prove the continuity of the mapping R. For that proof let T̄ , T ∈
[0, T̂ ], with T̄ �= T , be arbitrarily chosen. Without loss of generality we assume
T̄ < T . Then for an arbitrary ȳ ∈ R(T̄ ) there is a feasible control ū with

ȳ =
T̄∫

0

Y (t)ū(t) dt.

For the feasible control u given by

u(t) =
{

ū(t) almost everywhere on [0, T̄ ]
(1, . . . , 1)T for all t ∈ (T̄ , T ]

}

we have

T∫

0

Y (t)u(t) dt ∈ R(T ).

Consequently we get

d(ȳ, R(T )) := min
y∈R(T )

‖ȳ − y‖

≤
∥
∥
∥
∥ȳ −

T∫

0

Y (t)u(t) dt

∥
∥
∥
∥

=
∥
∥
∥
∥

T∫

T̄

Y (t)(1, . . . , 1)T dt

∥
∥
∥
∥

≤ √
m

T∫

T̄

|||Y (t)||| dt

and

max
ȳ∈R(T̄ )

d(ȳ, R(T )) ≤ √
m

T∫

T̄

|||Y (t)||| dt
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(here ‖ · ‖ denotes the Euclidean norm in R
n and ||| · ||| denotes the spectral norm).

Similarly one can show

max
y∈R(T )

d(R(T̄ ), y) ≤ √
m

T∫

T̄

|||Y (t)||| dt.

Hence, we obtain for the metric �:

�(R(T̄ ), R(T )) := max
ȳ∈R(T̄ )

min
y∈R(T )

‖ȳ − y‖ + max
y∈R(T )

min
ȳ∈R(T̄ )

‖ȳ − y‖

≤ 2
√

m

T∫

T̄

|||Y (t)||| dt.

Since the matrix function Y is continuous, there is a constant α > 0 with

|||Y (t)||| ≤ α for all t ∈ [0, T̂ ].

Then we get

�(R(T̄ ), R(T )) ≤ 2α
√

m(T − T̄ ).

Consequently, the set-valued mapping R is continuous. Since the fundamental
matrix � is continuous and the images of the set-valued mapping R are bounded
sets, we obtain with the equation (9.13) (notice for T̄ , T ∈[0, T̂ ] and a constant β >0
the inequality �(K(T̄ ),K(T )) ≤ β|||�(T̄ )−�(T )|||+|||�(T̄ )||| �(R(T̄ ), R(T ))) that
the mapping K is continuous. ��

Lemma 9.9 (property of the set of attainability).

Let the linear system (9.9) with the initial condition (9.10) and some
T̄ ∈ [0, T̂ ] be given. Let ȳ be a point in the interior of the set K(T̄ ) of
attainability, then there is a time T ∈ (0, T̄ ) so that ȳ is also an interior
point of K(T ).

Proof Let ȳ be an interior point of the set K(T̄ ) (this implies T̄ > 0). Then there
is an ε > 0 so that B(ȳ, ε) ⊂ K(T̄ ) for the closed ball B(ȳ, ε) around ȳ with
radius ε. Now we assume that for all T ∈ (0, T̄ ) ȳ is not an interior point of the
set K(T ). For every T ∈ (0, T̄ ) the set K(T ) ⊂ R

n is closed and convex. Then
for every T ∈ (0, T̄ ) there is a hyperplane separating the set K(T ) and the point
ȳ (compare Theorems C.5 and C.3). Consequently, for every T ∈ (0, T̄ ) there is a
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point yT ∈ B(ȳ, ε) whose distance to the set K(T ) is at least ε. But this contradicts
the continuity of the set-valued mapping K . ��

The next lemma is the key for the proof of a necessary condition for time minimal
controls. For the formulation of this result we use the function sgn : R → R given
by

sgn(y) =
⎧
⎨

⎩

1 for y > 0
0 for y = 0

−1 for y < 0

⎫
⎬

⎭
.

Lemma 9.10 (property of the set of attainability).

Let the linear system (9.9) with the initial condition (9.10) and some T̄ ∈
(0, T̂ ] be given. If x̄(T̄ , ū) ∈ ∂K(T̄ ) for some ū ∈ U(T̄ ), then there is a
vector η �= 0Rn so that for all k ∈ {1, . . . ,m}:

ūk(t) = sgn[ηT Yk(t)] almost everywhere on {t ∈ [0, T̄ ] | ηT Yk(t) �= 0}

(x̄(T̄ , ū) denotes the state at the time T̄ with respect to the control ū; Yk(t)

denotes the k-th column of the matrix Y (t)).

Proof Let an arbitrary point ȳ := x̄(T̄ , ū) ∈ ∂K(T̄ ) be given. Since the set K(T̄ ) is
a convex and closed subset of Rn, by a separation theorem (see Theorem C.5) there
is a vector η̄ �= 0Rn with the property

η̄T ȳ ≥ η̄T y for all y ∈ K(T̄ ).

Because of

η̄T ȳ = η̄T �(T̄ )x0 + η̄T �(T̄ )

T̄∫

0

Y (t)ū(t) dt

and

η̄T y = η̄T �(T̄ )x0 + η̄T �(T̄ )

T̄∫

0

Y (t)u(t) dt for all y ∈ K(T̄ )
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we obtain for ηT := η̄T �(T̄ )

ηT

T̄∫

0

Y (t)ū(t) dt ≥ ηT

T̄∫

0

Y (t)u(t) dt (9.14)

for all feasible controls steering the linear system (9.9) with the initial condi-
tion (9.10) to a state in the set K(T̄ ) of attainability. From the inequality (9.14)
we conclude

ηT Y (t)ū(t) ≥ ηT Y (t)u(t) almost everywhere on [0, T̄ ]. (9.15)

For the proof of the implication “(9.14) 	⇒ (9.15)” we assume that the inequal-
ity (9.15) is not true. Then there is a feasible control u and a set M ⊂ [0, T̄ ] with
positive measure so that

ηT Y (t)ū(t) < ηT Y (t)u(t) almost everywhere on M.

If one defines the feasible control u∗ by

u∗(t) =
{

ū(t) almost everywhere on [0, T̄ ] \ M

u(t) almost everywhere on M

}

,

then it follows

ηT

T̄∫

0

Y (t)u∗(t) dt = ηT

∫

M

Y(t)u(t) dt + ηT

∫

[0,T̄ ]\M
Y(t)ū(t) dt

> ηT

∫

M

Y(t)ū(t) dt + ηT

∫

[0,T̄ ]\M
Y(t)ū(t) dt

= ηT

T̄∫

0

Y (t)ū(t) dt

which contradicts the inequality (9.14). Hence, the inequality (9.15) is true.
From the inequality (9.15) we get for all k ∈ {1, . . . ,m}

ūk(t) = sgn [ηT Yk(t)] almost everywhere on {t ∈ [0, T̄ ] | ηT Yk(t) �= 0}. ��
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Now we present the afore-mentioned necessary condition for time minimal
controls.

Theorem 9.11 (necessary condition for time minimal controls).

Let the linear system (9.9) with the initial condition (9.10) and the terminal
condition (9.11) be given. If ū is a time minimal control with respect to the
minimal terminal time T̄ ∈ [0, T̂ ], then there is a vector η �= 0Rn so that for
all k ∈ {1, . . . ,m}:

ūk(t) = sgn[ηT Yk(t)] almost everywhere on {t ∈ [0, T̄ ] | ηT Yk(t) �= 0}.
(9.16)

Proof The assertion is obvious for T̄ = 0. Therefore we assume T̄ > 0 for the
following. We want to show that

ȳ := �(T̄ )x0 + �(T̄ )

T̄∫

0

Y (t)ū(t) dt ∈ ∂K(T̄ ). (9.17)

Suppose that ȳ were an interior point of the set K(T̄ ) of attainability. Then by
Lemma 9.9 there is a time T ∈ (0, T̄ ) so that ȳ is also an interior point of the
set K(T ). But this contradicts the fact that T̄ is the minimal time. Hence, the
condition (9.17) is true. An application of Lemma 9.10 completes the proof. ��

The statement (9.16) is also called a weak bang-bang principle. If the measure
of the set {t ∈ [0, T̄ ] | ηT Yk(t) = 0} equals 0 for every k ∈ {1, . . . ,m}, the
statement (9.16) is called a strong bang-bang principle. Theorem 9.11 can also be
formulated as follows:

For every time minimal control ū there is a vector η �= 0Rn

so that ū satisfies the weak bang-bang principle (9.16).

The next example illustrates the applicability of Theorem 9.11.

Example 9.12 (necessary condition for time minimal controls).

We consider the harmonic oscillator mathematically formalized by

ÿ(t) + y(t) = u(t) almost everywhere on [0, T̂ ],

‖u‖
L∞([0,T̂ ]) ≤ 1
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where T̂ > 0 is sufficiently large. An initial condition is not given explicitly.
The corresponding linear system of first order reads

ẋ(t) =
(

0 1
−1 0

)

︸ ︷︷ ︸
=: A

x(t) +
(

0
1

)

︸ ︷︷ ︸
=: B

u(t).

We have

�(t) = eAt =
∞∑

i=0

Ai t
i

i! =
(

cos t sin t

− sin t cos t

)

and

Y (t) = �(t)−1B = e−AtB =
(− sin t

cos t

)

.

Then we obtain for an arbitrary vector η �= 0Rn

ηT Y (t) = −η1 sin t + η2 cos t .

Consequently, we get for a number α ∈ R and a number δ ∈ [−π, π]

ηT Y (t) = α sin(t + δ)

and therefore

sgn[ηT Y (t)] = sgn[α sin(t + δ)]

(see Fig. 9.4).

0

1

−1
π π

sgn[α sin(· + δ)]
t

Fig. 9.4 Illustration of the time optimal control
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Conclusion: If there is a time minimal control ū, then it fulfills the strong
bang-bang principle, and therefore it is unique. After π time units one
always gets a change of the sign of ū.
With a standard result from control theory one can see that the considered
linear system is null controllable (i.e., it can be steered to the origin in a
finite time). Hence, by Theorem 9.7 there is also a time minimal control
ū which steers this system into a state of rest, and therefore the preceding
results are applicable.

Now we present an example for which the necessary condition for time minimal
controls does not give any information.

Example 9.13 (necessary condition for time minimal controls).

We investigate the simple linear system

ẋ1(t) = x1(t) + u(t)

ẋ2(t) = x2(t) + u(t)

}

almost everywhere on [0, T̂ ]

with

‖u‖
L∞[0,T̂ ] ≤ 1

and T̂ > 0. Here we set

A =
(

1 0
0 1

)

= I and B =
(

1
1

)

.

Then we obtain

Y (t) = e−AtB = e−t

(
1
1

)

and for any vector η �= 0R2 we get

ηT Y (t) = (η1 + η2)e
−t .

For example, for η =
(

1
−1

)

we conclude

ηT Y (t) = 0 for all t ∈ [0, T̂ ],

and Theorem 9.11 does not give a suitable necessary condition for time
minimal controls.
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Next we investigate the question under which conditions time minimal controls
are unique. For this investigation we introduce the notion of normality.

Definition 9.14 (normal linear system).

(a) The linear system (9.9) is called normal on [0, T ] (with T ∈ [0, T̂ ]), if
for every vector η �= 0Rn the sets

Gk(η) = {t ∈ [0, T ] | ηT Yk(t) = 0} with k ∈ {1, . . . ,m}

have the measure 0. Yk(t) denotes again the k-th column of the matrix
Y (t).

(b) The linear system (9.9) is called normal, if for every T ∈ [0, T̂ ] this
system is normal on [0, T ].

Theorem 9.15 (uniqueness of a time minimal control).

Let the linear system (9.9) with the initial condition (9.10) and the terminal
condition (9.11) be given. If ū is a time minimal control with respect to the
minimal terminal time T̄ ∈ [0, T̂ ] and if the linear system (9.9) is normal
on [0, T̄ ], then ū is the unique time minimal control.

Proof By Theorem 9.11 for every time minimal control ū there is a vector η �= 0Rn

so that for all k ∈ {1, . . . ,m}:

ūk(t) = sgn[ηT Yk(t)] almost everywhere on [0, T̄ ] \ Gk(η).

Then the assertion follows from the normality assumption (notice that in the proof
of Lemma 9.10 the vector η depends on the terminal state and not on the control).

��

A control ū which satisfies the assumptions of Theorem 9.15 fulfills the strong
bang-bang principle

ū(t) = sgn[ηT Yk(t)] almost everywhere on [0, T̄ ].

One obtains an interesting characterization of the concept of normality in the
case of an autonomous linear system (9.9) with constant matrix functions A and B.



274 9 Direct Treatment of Special Optimization Problems

Theorem 9.16 (characterization of normality).

The autonomous linear system (9.9) with constant matrix functions A and
B is normal if and only if for every k ∈ {1, . . . ,m} either

rank (Bk,ABk, . . . , A
n−1Bk) = n (9.18)

or

rank (A − λI,Bk) = n for all eigenvalues λ of A. (9.19)

Here Bk denotes the k-th column of the matrix B.

Proof We fix an arbitrary terminal time T ∈ [0, T̂ ]. First notice that for every
k ∈ {1, . . . ,m} and every η ∈ R

n

ηT Yk(t) = ηT e−AtBk for all t ∈ [0, T ].
Consequently, the real-valued analytical function ηT Yk(·) on [0, T ] is either identi-
cal to 0 or it has a finite number of zeros on this interval. Therefore, the autonomous
linear system (9.9) is normal on [0, T ] if and only if the following implication is
satisfied:

ηT e−AtBk = 0 for all t ∈ [0, T ] and some k ∈ {1, . . . ,m} ⇒ η = 0Rn. (9.20)

Next we show that the implication (9.20) is equivalent to the condition (9.18).
For this proof we assume that the condition (9.18) is satisfied. Let a vector η ∈ R

n

with

ηT e−AtBk = 0 for all t ∈ [0, T ] and some k ∈ {1, . . . ,m}
be arbitrarily given. By repeated differentiation and setting “t = 0” we get

ηT (Bk,ABk, . . . , A
n−1Bk) = 0T

Rn for some k ∈ {1, . . . ,m}.
By assumption the system of row vectors of the matrix (Bk,ABk, . . . , An−1Bk) is
linear independent, and therefore we get η = 0Rn . Hence, the implication (9.20) is
satisfied, i.e. the autonomous linear system (9.9) is normal on [0, T ].

Now we assume that the condition (9.18) is not satisfied. This means
that for some k ∈ {1, . . . ,m} the system of row vectors of the matrix
(Bk,ABk, . . . , A

n−1Bk) is linear dependent. Then there is a vector η �= 0Rn

with

ηT (Bk,ABk, . . . , A
n−1Bk) = 0T

Rn
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which implies

ηT Bk = ηT ABk = · · · = ηT An−1Bk = 0. (9.21)

The Cayley-Hamilton theorem states that the matrix A satisfies its characteristic
equation, i.e.

An = α0I + α1A + · · · + αn−1A
n−1

with appropriate coefficients α0, α1, . . . , αn−1 ∈ R. Then we obtain with (9.21)

ηT AnBk = α0η
T Bk + α1η

T ABk + · · · + αn−1η
T An−1Bk = 0

and by induction

ηT AlBk = 0 for all l ≥ n. (9.22)

Equations (9.21) and (9.22) imply

ηT AlBk = 0 for all l ≥ 0

which leads to

ηT e−AtBk = ηT

( ∞∑

i=0

Ai (−t)i

i!

)

Bk = 0 for all t ∈ [0, T ].

Consequently, the implication (9.20) is not satisfied, i.e. the autonomous linear
system (9.9) is not normal on [0, T ].

Finally we show the equivalence of the two rank conditions (9.18) and (9.19).
Let k ∈ {1, . . . ,m} be arbitrarily chosen.

Assume that the condition (9.19) is not satisfied, i.e. for some possibly complex
eigenvalue λ of A we have

rank (A − λI,Bk) �= n.

Then there is a vector z ∈ R
n with z �= 0Rn and

zT (A − λI,Bk) = 0T
Rn+1,

i.e.

zT A = λzT (9.23)
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and

zT Bk = 0. (9.24)

With the equations (9.23) and (9.24) we conclude

zT ABk = λzT Bk = 0,

and by induction we get

zT AlBk = 0 for all l ≥ 0.

Hence we have

rank (Bk,ABk, . . . , A
n−1Bk) �= n.

Conversely, we assume now that the equation (9.18) is not satisfied. Then there
is a z �= 0Rn with

zT Bk = 0, zT ABk = 0, . . . , zT An−1Bk = 0.

Again with the Cayley-Hamilton theorem we conclude immediately

zT AlBk = 0 for all l ≥ 0.

Consequently, the linear subspace

S := {z̃ ∈ R
n | z̃T AlBk = 0 for all l ≥ 0}

has the dimension ≥ 1. Since the set S is invariant under AT (i.e. AT S ⊂ S), one
eigenvector z̄ of AT belongs to S. Hence, there is an eigenvalue λ of AT which is
also an eigenvalue of A so that

AT z̄ = λz̄

or alternatively

z̄T (A − λI) = 0T
Rn . (9.25)

Because of z̄ ∈ S we obtain with l = 0

z̄T Bk = 0. (9.26)
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Equations (9.25) and (9.26) imply

rank (A − λI,Bk) �= n for some eigenvalue λ of A.

This completes the proof. ��

In control theory the condition

rank (B,AB, . . . , An−1B) = n

is called the Kalman condition. It is obvious that the condition

rank (Bk,ABk, . . . , A
n−1Bk) = n for all k ∈ {1, . . . ,m}

which is given in Theorem 9.16 implies the Kalman condition. Moreover, in control
theory the condition

rank (A − λI,B) = n for all eigenvalues λ of A

is called the Hautus condition which is implied by the condition

rank (A − λI,Bk) = n for all k ∈ {1, . . . ,m} and all eigenvalues λ of A.

One can show with the same arguments as in the proof of Theorem 9.16 that the
Kalman and Hautus conditions are equivalent. In control theory one proves that the
Kalman condition (or the Hautus condition) characterizes the controllability of an
autonomous linear system, i.e. in this case there is an unconstrained control which
steers the autonomous linear system from an arbitrary initial state to an arbitrary
terminal state in finite time.

The following example shows that the Kalman condition (or the Hautus condi-
tion) does not imply the condition (9.18) (and (9.19), respectively).

Example 9.17 (Kalman condition).

The following autonomous linear system satisfies the Kalman condition but
it is not normal:

ẋ1(t) = −x1(t) + u1(t)

ẋ2(t) = −2x2(t) + u1(t) + u2(t)

}

almost everywhere on [0, T̂ ]

with some T̂ > 0. Here we set

A =
(−1 0

0 −2

)

and B =
(

1 0
1 1

)

.
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Then we have

B1 =
(

1
1

)

, AB1 =
(−1

−2

)

,

B2 =
(

0
1

)

, AB2 =
(

0
−2

)

.

The matrix (B2, AB2) has the rank 1, and therefore the linear system is not
normal. On the other hand we have

rank (B,AB) = 2,

i.e. the Kalman condition is satisfied.

Exercises

(9.1) Consider the differential equation

ẋ(t) = 2x(t) − 3u(t) almost everywhere on [0, 2]

with the initial condition

x(0) = x0

for an arbitrarily chosen x0 ∈ R. Determine an optimal control ū ∈
L∞([0, 2]) as a minimal point of the objective functional J : L∞([0, 2]) → R

with

J (u) = 1

2
x(1)2 + 2

2∫

0

u(t)2 dt for all u ∈ L∞([0, 2]).

(9.2) ([51, p. 132–133]) Let the initial value problem

ẋ(t) = u(t) almost everywhere on [0, 1],

x(0) = 1
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be given. Determine an optimal control u ∈ L∞([0, 1]) for which the
objective functional J : L∞([0, 1]) → R with

J (u) =
1∫

0

(
u(t)2 + x(t)2

)
dt for all u ∈ L∞([0, 1])

becomes minimal.
(9.3) Consider the linear differential equation of n-th order

y(n)(t) + an−1y
(n−1)(t) + · · · + a0y(t) = u(t)

almost everywhere on [0, T̂ ]

where T̂ > 0 and a0, . . . , an−1 ∈ R are given constants. The control u

is assumed to be an L∞([0, T̂ ]) function. Show that the system of linear
differential equations of first order which is equivalent to this differential
equation of n-th order satisfies the Kalman condition.

(9.4) ([216, p. 22–24]) Let the system of linear differential equations

ẋ(t) = Ax(t) + Bu(t) almost everywhere on [0, T̂ ]

with

A =

⎛

⎜
⎜
⎝

0 1 0 0
−α 0 0 0

0 0 0 1
0 0 0 0

⎞

⎟
⎟
⎠ and B =

⎛

⎜
⎜
⎝

0
−β

0
γ

⎞

⎟
⎟
⎠

be given where T̂ > 0, α > 0, β > 0 and γ > 0 are constants. It is assumed
that u ∈ L∞([0, T̂ ]). Show that this system satisfies the Hautus condition.

(9.5) For the linear system in exercise (9.4) assume in addition that the terminal
time T̂ is sufficiently large. Moreover, let the initial condition

x(0) = x0

with x0 ∈ R
4 and the terminal condition

x(T̂ ) = 0
R4

be given. For the control u we assume

‖u‖
L∞([0,T̂ ]) ≤ 1.
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It can be proved with a known result from control theory that this system
can be steered from x0 to 0R4 in finite time. Show then that a time minimal
control exists which is unique, and give a characterization of this time minimal
control.
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