
7Application to Extended Semidefinite
Optimization

In semidefinite optimization one investigates nonlinear optimization problems in
finite dimensions with a constraint requiring that a certain matrix-valued function
is negative semidefinite. This type of problems arises in convex optimization,
approximation theory, control theory, combinatorial optimization and engineering.
In system and control theory so-called linear matrix inequalities (LMI’s) and
extensions like bilinear matrix inequalities (BMI’s) fit into this class of constraints.
Our investigations include various partial orderings for the description of the matrix
constraint and in this way we extend the standard semidefinite case to other types of
constraints. We apply the theory on optimality conditions developed in Chap. 5 and
the duality theory of Chap. 6 to these extended semidefinite optimization problems.

7.1 Löwner Ordering Cone and Extensions

In the so-called conic optimization one investigates finite dimensional optimization
problems with an inequality constraint with respect to a special matrix space. To be
more specific, let Sn denote the real linear space of symmetric (n, n)-matrices. It is
obvious that this space is a finite dimensional Hilbert space with the scalar product
〈·, ·〉 defined by

〈A,B〉 = trace(A · B) for all A,B ∈ Sn. (7.1)

Recall that the trace of a matrix is defined as sum of all diagonal elements of the
matrix. Let C be a convex cone in Sn inducing a partial ordering �. Then we
consider a matrix function G : Rm → Sn defining the inequality constraint

G(x) � 0Sn . (7.2)
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If f : R
m → R denotes a given objective function, then we obtain the conic

optimization problem

min f (x)

subject to the constraints
G(x) � 0Sn

x ∈ R
m.

(7.3)

The name of this problem comes from the fact that the matrix inequality has to be
interpreted using the ordering cone C. Obviously, the theory developed in this book
is fully applicable to this problem structure.

In the special literature one often investigates problems of the form

min f̂ (X)

subject to the constraints
Ĝ(X) � 0Sn

X ∈ Sp

(7.4)

with given functions f̂ : Sp → R and Ĝ : Sp → Sn. In this case the matrix
X ∈ Sp can be transformed to a vector x ∈ R

p·p where x consists of all columns
of X by stacking up columns of X from the first to the p-th column. The dimension

can be reduced because X is symmetric. Then we obtain x ∈ R
p(p+1)

2 . If ϕ denotes
the transformation from the vector x to the matrix X, then the problem (7.4) can be
written as

min (f̂ ◦ ϕ)(x)

subject to the constraints
(Ĝ ◦ ϕ)(x) � 0Sn

x ∈ R
p(p+1)

2 .

Hence, the optimization problem is of the form of problem (7.3) and it is not
necessary to study the nonlinear optimization problem (7.4) separately.

In practice, one works with special ordering cones for the Hilbert space Sn. The
Löwner12 ordering cone and further cones are discussed now.

12K. Löwner, “Über monotone Matrixfunktionen”, Mathematische Zeitschrift 38 (1934) 177–216.
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Remark 7.1 (ordering cones in Sn).

Let Sn denote the real linear space of symmetric (n, n) matrices.

(a) The convex cone

Sn+ := {X ∈ Sn | X is positive semidefinite}

is called the Löwner ordering cone.
The partial ordering induced by the convex cone Sn+ is also called
Löwner partial ordering � (notice that we use the special symbol �
for this partial ordering). The problem (7.3) equipped with the Löwner
partial ordering is then called a semidefinite optimization problem. The
name of this problem is caused by the fact that the inequality constraint
means that the matrix G(x) has to be negative semidefinite.
Although the semidefinite optimization problem is only a finite dimen-
sional problem, it is not a usual problem in R

m because the Löwner
partial ordering makes the inequality constraint complicated. In fact, the
inequality (7.2) is equivalent to infinitely many inequalities of the form

yT G(x)y ≤ 0 for all y ∈ R
n.

(b) The K-copositive ordering cone is defined by

Cn
K := {X ∈ Sn | yT Xy ≥ 0 for all y ∈ K}

for a given convex cone K ⊂ R
n, i.e., we consider only matrices for

which the quadratic form is nonnegative on the convex cone K . If the
partial ordering induced by this convex cone is used in problem (7.3),
then we speak of a K-copositive optimization problem.
It is evident that Sn+ ⊂ Cn

K for every convex cone K and Sn+ = Cn
Rn .

Therefore, we have for the dual cones (Cn
K)∗ ⊂ (Sn+)∗.

If K equals the positive orthantRn+, then Cn
R

n+
is simply called copositive

ordering cone and the problem (7.3) is then called copositive optimiza-
tion problem.

(c) The nonnegative ordering cone is defined by

Nn := {X ∈ Sn | Xij ≥ 0 for all i, j ∈ {1, . . . , n}}.
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In this case the optimization problem (7.3) with the partial ordering
induced by the convex cone Nn reduces to a standard optimization
problem of the form

min f (x)

subject to the constraints
Gij (x) ≤ 0 for all i, j ∈ {1, . . . , n}

x ∈ R
m.

The number of constraints can actually be reduced to n(n+1)
2 because

the matrix G(x) is assumed to be symmetric. So, such a problem can be
investigated with the standard theory of nonlinear optimization in finite
dimensions.

(d) The doubly nonnegative ordering cone is defined by

Dn := Sn+ ∩ Nn

= {X ∈ Sn | X is positive semidefinite and

elementwise nonnegative}.
If we use the partial ordering induced by this convex cone in the
constraint (7.2), then the optimization problem (7.3) can be written as

min f (x)

subject to the constraints
G(x) � 0Sn

Gij (x) ≤ 0 for all i, j ∈ {1, . . . , n}
x ∈ R

m.

So, we have a semidefinite optimization problem with additional finitely
many nonlinear constraints. Obviously, for every convex cone K we
have Dn ⊂ Cn

K and (Cn
K)∗ ⊂ (Dn)∗.

Before discussing some examples we need an important lemma on the Schur
complement.

Lemma 7.2 (Schur complement).

Let X =
(

A BT

B C

)
∈ Sk+l with A ∈ Sk , C ∈ S l and B ∈ R

(l,k) be given,

and assume that A is positive definite. Then we have for the Löwner partial
ordering �

−X � 0Sk+l ⇐⇒ −(C − BA−1BT ) � 0S l

(the matrix C − BA−1BT is called the Schur complement of A in X).
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Proof We have

−X � 0Sk+l ⇐⇒ 0 ≤ (xT , yT )

(
A BT

B C

) (
x

y

)

= xT Ax + 2xT BT y + yT Cy for all x ∈ R
k

and all y ∈ R
l

⇐⇒ 0 ≤ min
x∈Rk

xT Ax + 2xT BT y + yT Cy for all y ∈ R
l .

Since A is positive definite, for an arbitrarily chosen y ∈ R
l this optimization

problem has the minimal solution −A−1BT y with the minimal value

−yT BA−1BT y + yT Cy = yT (C − BA−1BT )y.

Consequently we get

−X � 0Sk+l ⇐⇒ yT (C − BA−1BT )y ≥ 0 for all y ∈ R
l

⇐⇒ −(C − BA−1BT ) � 0S l . ��

The following example illustrates the significance of semidefinite optimization.

Example 7.3 (semidefinite optimization).

(a) The problem of determining the smallest among the largest eigenvalues
of a matrix-valued function A : R

m → Sn leads to the semidefinite
optimization problem

min λ

subject to the constraints
A(x) − λI � 0Sn

x ∈ R
m

(with the identity matrix I ∈ Sn and the Löwner partial ordering
�). Indeed, A(x) − λI is negative semidefinite if and only if for all
eigenvalues λ1, . . . , λn of A(x) the inequality λi ≤ λ is satisfied. Hence,
with the minimization of λ we determine the smallest among the largest
eigenvalues of A(x).
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(b) We consider a nonlinear optimization problem with a quadratic con-
straint in a finite dimensional setting, i.e. we have

min f (x)

subject to the constraints
(Ax + b)T (Ax + b) − cT x − α ≤ 0

x ∈ R
m

(7.5)

with an objective function f : Rm → R, a given matrix A ∈ R
(k,m),

given vectors b ∈ R
k and c ∈ R

m and a real number α. If � denotes
again the Löwner partial ordering, we consider the inequality

−
(

I Ax + b

(Ax + b)T cT x + α

)
� 0Sk+1 (7.6)

(I ∈ Sk denotes the identity matrix). By Lemma 7.2 this inequality is
equivalent to the quadratic constraint

(Ax + b)T (Ax + b) − cT x − α ≤ 0.

If the i-th column of the matrix A (with i ∈ {1, . . . , k}) is denoted by
a(i) ∈ R

m, then we set

A(0) :=
(

I b

bT α

)

and

A(i) :=
(

0Sk a(i)

a(i)T ci

)
for all i ∈ {1, . . . , k},

and the inequality (7.6) is equivalent to

−A(0) − A(1)x1 − · · · − A(k)xk � 0Sk+1 .

Hence, the original problem (7.5) with a quadratic constraint can be
written as a semidefinite optimization problem with a linear constraint

min f (x)

subject to the constraints
−A(0) − A(1)x1 − · · · − A(k)xk � 0Sk+1

x ∈ R
m.
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Although the partial ordering used in the constraint becomes more
complicated by this transformation, the type of the constraint which
is now linear and not quadratic, is much simpler to handle. A similar
transformation can be carried out in the case that, in addition, the
objective function f is also quadratic. Then we minimize an additional
variable and use this variable as an upper bound of the objective
function.

(c) We consider a system of autonomous linear differential equations

ẋ(t) = Ax(t) + Bu(t) almost everywhere on [0,∞) (7.7)

with given matrices A ∈ R
(k,k) and B ∈ R

(k,l). Using a feedback control

u(t) = Fx(t) almost everywhere on [0,∞)

with an unknown matrix F ∈ R
(l,k) we try to make the system (7.7)

asymptotically stable , i.e. we require for every solution x of (7.7) that

lim
t→∞ ‖x(t)‖ = 0

for the Euclidean norm ‖ · ‖ in R
k . In control theory the autonomous

linear system (7.7) is called stabilizable, if there exists a matrix F ∈
R

(l,k) so that the system (7.7) is asymptotically stable.
For the determination of an appropriate matrix F we investigate the so-
called Lyapunov function v : Rk → R with

v(x̃) = x̃T P x̃ for all x̃ ∈ R
k

(P ∈ Sk is arbitrarily chosen and should be positive definite). Since P

is positive definite we have

v(x̃) > 0 for all x̃ ∈ R
k\{0Rk }. (7.8)

For a solution x of the system (7.7) we obtain

v̇(x(t))

= d

dt
x(t)T Px(t)

= ẋ(t)T Px(t) + x(t)T P ẋ(t)

= (
Ax(t) + BFx(t)

)T
Px(t) + x(t)T P

(
Ax(t) + BFx(t)

)
= x(t)T

(
(A + BF)T P + P(A + BF)

)
x(t).
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If the matrices P and F are chosen in such a way that (A + BF)T P +
P(A + BF) is negative definite, then there is a positive number α with

v̇(x(t)) ≤ −α‖x(t)‖2 for all t ∈ [0,∞). (7.9)

The inequalities (7.8) and (7.9) imply

lim
t→∞ v(x(t)) = 0. (7.10)

Since P is assumed to be positive definite, there is a positive number
β > 0 with

v(x̃) ≥ β‖x̃‖2 for all x̃ ∈ R
k.

Then we conclude with (7.10)

lim
t→∞ ‖x(t)‖ = 0,

i.e. the autonomous linear system (7.7) is stabilizable. Hence, we obtain
the stabilization of (7.7) by a feedback control, if we choose a positive
definite matrix P ∈ Sk and a matrix F ∈ R

(l,k) so that (A + BF)T P +
P(A + BF) is negative definite.
In order to fulfill this requirement we consider the semidefinite opti-
mization problem

min λ

subject to the constraints
−λI + (A + BF)T P + P(A + BF) � 0Sk

−λI − P � 0Sk

λ ∈ R, P ∈ Sk, F ∈ R
(l,k)

(7.11)

(I ∈ Sk denotes the identity matrix and recall that � denotes the Löwner
partial ordering). By a suitable transformation this problem formally fits
into the class (7.3) of semidefinite problems. Here G has to be defined
in an appropriate way. It is important to note that it is not necessary
to solve the problem (7.11). Only a feasible solution with λ < 0 is
requested. Then the matrices P and F fulfill the requirements for the
stabilization of the autonomous linear system (7.7).

(d) Finally we discuss an applied problem from structural optimization and
consider a structure of k elastic bars connecting a set of p nodes (see
Fig. 7.1). The design variables xi (i = 1, . . . , k) are the cross-sectional
areas of the bars. We assume that nodal load forces f1, . . . , fp are given.
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Fig. 7.1 Cantilever with
seven nodes and the load
force f7

f7

l1, . . . , lk denote the length of the bars, v is the maximal volume, and
xi > 0 and x̄i are the lower and upper bounds of the cross-sectional
areas. The so-called stiffness matrix A(x) ∈ Sp is positive definite for
all x1, . . . , xk > 0. We want to find a feasible structure with minimal
elastic stored energy. Then we obtain the optimization problem

min f T A(x)−1f

subject to the constraints
k∑

i=1

lixi ≤ v

xi ≤ xi ≤ x̄i for all i ∈ {1, . . . , k}
or

min λ

subject to the constraints
f T A(x)−1f − λ ≤ 0

k∑
i=1

lixi ≤ v

xi ≤ xi ≤ x̄i for all i ∈ {1, . . . , k}.

By Lemma 7.2 the inequality constraint

f T A(x)−1f − λ ≤ 0
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is equivalent to

−
(

A(x) f

f T λ

)
� 0Sp+1

(recall that � denotes the Löwner partial ordering). Hence, we get a
standard semidefinite optimization problem with an additional linear
inequality constraint and upper and lower bounds:

min λ

subject to the constraints

−
(

A(x) f

f T λ

)
� 0Sp+1

k∑
i=1

lixi ≤ v

xi ≤ xi ≤ x̄i for all i ∈ {1, . . . , k}.

Although the Löwner partial ordering is mostly used for describing the inequality
constraint (7.2), we mainly investigate the more general conic optimization problem
(7.3) covering the standard semidefinite problem. For the application of the general
theory of this book we now investigate properties of the presented ordering cones in
more detail.

Lemma 7.4 (properties of the Löwner ordering cone).

For the Löwner ordering cone Sn+ we have:

(a) int(Sn+) = {X ∈ Sn | X is positive definite}
(b) (Sn+)∗ = Sn+, i.e. Sn+ is self-dual.

Proof
(a) First, we show the inclusion int(Sn+) ⊂ {X ∈Sn |X is positive definite}.

Let X ∈ int(Sn+) be arbitrarily chosen. Then we get for a sufficiently small
λ > 0 X − λI ∈ Sn+ (I ∈ Sn denotes the identity matrix), i.e.

0 ≤ xT (X − λI)x = xT Xx − λxT x for all x ∈ R
m

implying

xT Xx ≥ λxT x > 0 for all x ∈ R
m\{0Rm}.
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Consequently, the matrix X is positive definite.
Next we prove the converse inclusion. Let a positive definite matrix X ∈ Sn

be arbitrarily given. Then all eigenvalues of X are positive. Since the minimal
eigenvalue continuously depends on the elements of the matrix, it follows
immediately that X belongs to the interior of Sn+.

(b) First, we show the inclusion (Sn+)∗ ⊂ Sn+. Let an arbitrary matrix X ∈ (Sn+)∗
be chosen and assume that X /∈ Sn+. Then there exists some y ∈ R

m so that
yT Xy < 0. If we set Y := yyT , we have Y ∈ Sn+ and we obtain

〈X,Y 〉 = trace(XyyT ) = yT Xy < 0,

a contradiction to X ∈ (Sn+)∗.
Now, we prove the converse inclusion. Let X ∈ Sn+ be arbitrarily given.

Choose any Y ∈ Sn+. Since X and Y are symmetric and positive semidefinite it is
known that there are matrices

√
X,

√
Y ∈ Sn+ with (

√
X)2 = X and (

√
Y )2 = Y

and we obtain

〈X,Y 〉 = trace(
√

X
√

X
√

Y
√

Y )

= trace(
√

X
√

Y
√

Y
√

X)

= 〈√X
√

Y ,
√

X
√

Y 〉
≥ 0.

Hence, we conclude X ∈ (Sn+)∗. ��

The result of Lemma 7.4,(b) is also called Féjèr theorem in the special literature.
For the K-copositive ordering cone we obtain similar results.

Lemma 7.5 (properties of the K-copositive ordering cone).

Let K ⊂ R
n be a convex cone. For the K-copositive ordering cone Cn

K we
have:

(a) {X ∈ Sn | X is positive definite} ⊂ int(Cn
K).

(b) In addition, if K is closed, then for HK := convex hull {xxT | x∈ K}
(i) HK is closed

(ii) (Cn
K)∗ = HK .

Proof
(a) By definition we have Sn+ ⊂ Cn

K . Consequently, the assertion follows from
Lemma 7.4,(a).

(b) (i) Let an arbitrary sequence Xk ∈ HK be chosen with the limit X ∈ Sn (with
respect to the spectral norm). Since K is a cone, for every k ∈ N there are
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vectors x(1k), . . . , x(pk) ∈ K with the property

Xk =
p∑

i=1

x(ik)x(ik)
T

(notice that by the Carathéodory theorem the number p of vectors is
bounded by n + 1). Every x(ik) ∈ K (i ∈ {1, . . . , p}, k ∈ N) can be
written as

x(ik) = μik s
(ik)

with μik ≥ 0 and

s(ik) ∈ K ∩ {x ∈ R
n | ‖x‖ = 1}

(‖ · ‖ denotes the Euclidean norm in R
n). This set is compact because K is

assumed to be closed. Consequently, we obtain for every k ∈ N

Xk =
p∑

i=1

μ2
ik
s(ik)s(ik)

T
.

Since s(1k), . . . , s(pk) belong to a compact set and (Xk)k∈N converges to
X, the numbers μ1k , . . . , μpk are bounded and there are subsequences
(s(ikl ))l∈N and (μikl

)l∈N (with i ∈ {1, . . . p}) converging to s(i) ∈ K and
μi ∈ R, respectively, with the property

X =
p∑

i=1

μ2
i s

(i)s(i)T .

This implies X ∈ HK . Hence, HK is a closed set.
(ii) First we show the inclusion HK ⊂ (Cn

K)∗. For an arbitrary X ∈ HK we
have the representation

X =
p∑

i=1

x(i)x(i)T for some x(1), . . . , x(p) ∈ K

(notice here that K is a cone). Then we obtain for every Y ∈ Cn
K

〈Y,X〉 = trace(Y · X)

= trace

(
Y

p∑
i=1

x(i)x(i)T

)
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=
p∑

i=1

trace(Yx(i)x(i)T )

=
p∑

i=1

x(i)T Yx(i)

≥ 0,

i.e. X ∈ (Cn
K)∗.

For the proof of the converse inclusion we first show H ∗
K ⊂ Cn

K . Let an arbitrary
X /∈ Cn

K be given. Then there is some y ∈ K with yT Xy < 0. If we set
Y := yyT , then we have Y ∈ HK and

〈Y,X〉 = trace(Y · X) = trace(XyyT ) = yT Xy < 0,

i.e. X /∈ H ∗
K . Consequently H ∗

K ⊂ Cn
K and for the dual cones we get

(Cn
K)∗ ⊂ (H ∗

K)∗. (7.12)

Next, we show that (H ∗
K)∗ ⊂ HK . For this proof let Z ∈ (H ∗

K)∗ be arbitrarily
given and assume that Z /∈ HK . Since HK is closed by part (i) and convex, by
Theorem C.3 there exists some V ∈ Sn\{0Sn} with

〈V,Z〉 < inf
U∈HK

〈V,U〉. (7.13)

This inequality implies

〈V,Z〉 < 0, (7.14)

if we set U = 0Sn . Now assume that V /∈ H ∗
K . Then there is some Ũ ∈ HK

with 〈V, Ũ 〉 < 0. Since HK is a cone, we have λŨ ∈ HK for all λ > 0 and

0 > λ〈V, Ũ 〉 = 〈V, λŨ 〉 for all λ > 0.

Consequently, 〈V, λŨ 〉 can be made arbitrarily small contradicting to the
inequality (7.13). So V ∈ H ∗

K and because of Z ∈ (H ∗
K)∗ we obtain 〈V,Z〉 ≥ 0

contradicting (7.14). Hence we get Z ∈ HK . With the inclusions (H ∗
K)∗ ⊂ HK

and (7.12) we then conclude (Cn
K)∗ ⊂ HK which has to be shown. ��

In the special literature elements in the dual cone (Cn
R

n+
)∗ = HR

n+ (i.e. we set

K = R
n+) are called completely positive matrices.

Finally we present similar results for the nonnegative ordering cone and the
doubly nonnegative ordering cone.
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Lemma 7.6 (properties of the nonnegative and doubly nonnegative
ordering cone).

For the nonnegative ordering cone Nn and the doubly nonnegative ordering
cone Dn we have:

(a) int(Nn) = {X ∈ Sn | Xij > 0 for all i, j ∈ {1, . . . , n}}
(b) (Nn)∗ = Nn, i.e. Nn is self-dual
(c) int(Dn) = {X ∈ Sn | X is positive definite and elementwise

positive}
(d) (Dn)∗ = Dn, i.e. Dn is self-dual.

Proof
(a) This part is obvious.
(b) (i) Let X ∈ Nn be arbitrarily chosen. Then we get for all M ∈ Nn

〈X,M〉 = trace(X · M) =
n∑

i=1

n∑
j=1

Xij︸︷︷︸
≥0

· Mji︸︷︷︸
≥0

≥ 0.

Consequently, we have X ∈ (Nn)∗.
(ii) Now let X ∈ (Nn)∗ be arbitrarily chosen. If we consider M ∈ Nn with

Mij =
{

1 for i = k and j = l

0 otherwise

for arbitrary k, l ∈ {1, . . . , n}, then we conclude

0 ≤ 〈X,M〉 = Xkl.

So, we obtain X ∈ Nn.
(c) With Lemma 7.4,(a) and part (a) of this lemma we get

int(Dn) = int(Sn+ ∩ Nn)

= int(Sn+) ∩ int(Nn)

= {X ∈ Sn+ | X positive definite and elementwise positive}.

(d) With Lemma 7.4,(b) and part (b) of this lemma we obtain

(Dn)∗ = (Sn+)∗ ∩ (Nn)∗ = Sn+ ∩ Nn = Dn. ��
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7.2 Optimality Conditions

The necessary optimality conditions presented in Sect. 5.2 are now applied to the
conic optimization problem (7.3) with the partial ordering � inducing the ordering
cone C. To be more specific, let f : Rm → R and G : Rm → Sn be given functions
and consider the conic optimization problem

min f (x)

subject to the constraints
G(x) � 0Sn

x ∈ R
m.

First, we answer the question under which assumptions the matrix function G is
Fréchet differentiable.

Lemma 7.7 (Fréchet derivative of G).

Let the matrix function G : Rm → Sn be elementwise differentiable at some
x̄ ∈ R

m. Then the Fréchet derivative of G at x̄ is given by

G′(x̄)(h) =
m∑

i=1

Gxi (x̄) hi for all h ∈ R
m

with

Gxi :=

⎛
⎜⎜⎝

∂
∂xi

G11 · · · ∂
∂xi

G1n

...
...

∂
∂xi

Gn1 · · · ∂
∂xi

Gnn

⎞
⎟⎟⎠ for all i ∈ {1, . . . ,m}.

Proof Let h ∈ R
m be arbitrarily chosen. Since G is elementwise differentiable at

x̄ ∈ R
m, we obtain for the Fréchet derivative of G

G′(x̄)(h) =
⎛
⎜⎝

∇G11(x̄)T h · · · ∇G1n(x̄)T h
...

...

∇Gn1(x̄)T h · · · ∇Gnn(x̄)T h

⎞
⎟⎠
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=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

m∑
i=1

G11xi
(x̄) hi · · ·

m∑
i=1

G1nxi
(x̄) hi

...
...

m∑
i=1

Gn1xi
(x̄) hi · · ·

m∑
i=1

Gnnxi
(x̄) hi

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=
m∑

i=1

Gxi (x̄) hi . ��

Now we present the Lagrange multiplier rule for the conic optimization problem
(7.3).

Theorem 7.8 (Lagrange multiplier rule).

Let f : Rm → R and G : Rm → Sn be given functions, and let x̄ ∈ R
m

be a minimal solution of the conic optimization problem (7.3). Let f be
differentiable at x̄ and let G be elementwise differentiable at x̄. Then there
are a real number μ ≥ 0 and a matrix L ∈ C∗ with (μ,L) �= (0, 0Sn),

μ∇f (x̄) +
⎛
⎜⎝

〈L,Gx1(x̄)〉
...

〈L,Gxm(x̄)〉

⎞
⎟⎠ = 0Rm (7.15)

and

〈L,G(x̄)〉 = 0. (7.16)

If, in addition to the above assumptions the equality

G′(x̄)(Rm) + cone (C + {G(x̄)}) = Sn (7.17)

is satisfied, then it follows μ > 0.

Proof Because of the differentiability assumptions we have that f and G are
Fréchet differentiable at x̄. Then we apply Corollary 5.4 and obtain the existence
of a real number μ ≥ 0 and a matrix L ∈ C∗ with (μ,L) �= (0, 0Sn),

μ∇f (x̄) + L ◦ G′(x̄) = 0Rm (7.18)



7.2 Optimality Conditions 205

and

〈L,G(x̄)〉 = 0.

For every h ∈ R
m we obtain with Lemma 7.7

(L ◦ G′(x̄))(h) = 〈L,G′(x̄)(h)〉

= 〈L,

m∑
i=1

Gxi (x̄)hi〉

=
m∑

i=1

〈L,Gxi (x̄)〉hi

=
⎛
⎜⎝

〈L,Gx1(x̄)〉
...

〈L,Gxm(x̄)〉

⎞
⎟⎠

T

h.

Then the equality (7.18) implies

μ∇f (x̄) +
⎛
⎜⎝

〈L,Gx1(x̄)〉
...

〈L,Gxm(x̄)〉

⎞
⎟⎠ = 0Rm.

Hence, one part of the assertion is shown. If we consider the Kurcyusz-Robinson-
Zowe regularity assumption (5.9) for the special problem (7.3), we have Ŝ = R

m

and cone(Ŝ − {x̄}) = R
m. So, the equality (7.17) is equivalent to the regularity

assumption (5.9). This completes the proof. ��

In the case of μ > 0 we can set U := 1
μ
L ∈ C∗ and the equalities (7.15) and

(7.16) can be written as

fxi (x̄) + 〈U,Gxi (x̄)〉 = 0 for all i ∈ {1, . . . ,m}

and

〈U,G(x̄)〉 = 0.

This gives the extended Karush-Kuhn-Tucker conditions to matrix space problems.
In Theorem 7.8 the Lagrange multiplier L is a matrix in the dual cone C∗.

According to the specific choice of the ordering cone C discussed in Lem-
mas 7.4, 7.5 and 7.6 we take the dual cones given in Lemmas 7.4,(b), 7.5,(b),(ii)
and 7.6,(b),(d). For instance, if C denotes the Löwner ordering cone, then the
multiplier L is positive semidefinite.
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Instead of the regularity assumption (7.17) used in Theorem 7.8 we can also
consider a simpler condition.

Lemma 7.9 (regularity condition).

Let the assumption of Theorem 7.8 be satisfied and let C denote the K-
copositive ordering cone Cn

K for an arbitrary convex cone K . If there exists

a vector x̂ ∈ R
m so that G(x̄) +

m∑
i=1

Gxi (x̄)(x̂i − x̄i) is negative definite,

then the regularity assumption in Theorem 7.8 is fulfilled.

Proof By Lemma 7.5,(a) we have

G(x̄) + G′(x̄)(x̂ − x̄) = G(x̄) +
m∑

i=1

Gxi (x̄)(x̂i − x̄i) ∈ −int(Cn
K)

and with Theorem 5.6 the Kurcyusz-Robinson-Zowe regularity assumption is
satisfied, i.e. the equality (7.17) is fulfilled. ��

It is obvious that in the case of the Löwner partial ordering Sn+ = Cn
Rn Lemma 7.9

is also applicable. Notice that a similar result can be shown for the ordering cones
discussed in Lemma 7.6. For the interior of these cones we can then use the results
in Lemma 7.6,(a) and (c).

Next, we answer the question under which assumptions the Lagrange multiplier
rule given in Theorem 7.8 as a necessary optimality condition is a sufficient
optimality condition for the conic optimization problem (7.3).

Theorem 7.10 (sufficient optimality condition).

Let f : R
m → R and G : R

m → Sn be given functions. Let for some
x̄ ∈ R

m f be differentiable and pseudoconvex at x̄ and let G be elementwise
differentiable and (−C + cone({G(x̄)}) − cone({G(x̄)}))-quasiconvex at x̄.
If there is a matrix L ∈ C∗ with

∇f (x̄) +
⎛
⎜⎝

〈L,Gx1(x̄)〉
...

〈L,Gxm(x̄)〉

⎞
⎟⎠ = 0Rm (7.19)

and

〈L,G(x̄)〉 = 0,

then x̄ is a minimal solution of the conic optimization problem (7.3).
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Proof With Lemma 7.7 the equality (7.19) implies

∇f (x̄) + L ◦ G′(x̄) = 0Rm.

By Lemma 5.16 and Corollary 5.15 the assertion follows immediately. ��

The quasiconvexity assumption in Theorem 7.10 (compare Definition 5.12)
means that for all feasible x ∈ R

m

G(x) − G(x̄) ∈ −C + cone({G(x̄)}) − cone({G(x̄)})

�⇒
m∑

i=1

Gxi (x̄)(xi − x̄i) ∈ −C + cone({G(x̄)}) − cone({G(x̄)}).

For all feasible x ∈ R
m this implication can be rewritten as

G(x) + (α − 1 − β)G(x̄) ∈ −C for some α, β ≥ 0

�⇒
m∑

i=1

Gxi (x̄)(xi − x̄i) + (γ − δ)G(x̄) ∈ −C for some γ, δ ≥ 0

or

G(x) + ᾱG(x̄) ∈ −C for some ᾱ ∈ R

�⇒
m∑

i=1

Gxi (x̄)(xi − x̄i) + γ̄ G(x̄) ∈ −C for some γ̄ ∈ R.

7.3 Duality

The duality theory developed in Chap. 6 is now applied to the conic optimization
problem (7.3) with given functions f : Rm→ R and G : Rm → Sn and the partial
ordering � inducing the ordering cone C.

For convenience we recall the primal optimization problem

min f (x)

subject to the constraints
G(x) � 0Sn

x ∈ R
m.

According to Sect. 6.1 the dual problem can be written as

max
U∈C∗ inf

x∈Rm
f (x) + 〈U,G(x)〉 (7.20)
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or equivalently

max λ

subject to the constraints
f (x) + 〈U,G(x)〉 ≥ λ for all x ∈ R

m

λ ∈ R, U ∈ C∗.

We are now able to formulate a weak duality theorem for the conic optimization
problem (7.3).

Theorem 7.11 (weak duality theorem).

For every feasible x̂ of the primal problem (7.3) and for every feasible Û of
the dual problem (7.20) the following inequality is satisfied

inf
x∈Rm

f (x) + 〈Û ,G(x)〉 ≤ f (x̂).

Proof This result follows immediately from Theorem 6.7. ��

The following strong duality theorem is a direct consequence of Theorem 6.8.

Theorem 7.12 (strong duality theorem).

Let the composite mapping (f,G) : Rm → R × Sn be convex-like and let
the ordering cone have a nonempty interior int(C). If the primal problem
(7.3) is solvable and the generalized Slater condition is satisfied, i.e., there
is a vector x̂ ∈ R

m with G(x̂) ∈ −int(C), then the dual problem (7.20) is
also solvable and the extremal values of the two problems are equal.

For instance, if the ordering cone C is the K-copositive ordering cone Cn
K for

some convex cone K ⊂ R
n, then by Lemma 7.5,(a) the generalized Slater condition

in Theorem 7.12 is satisfied whenever G(x̂) is negative definite for some x̂ ∈ R
m.

In this case a duality gap cannot appear.
With the investigations in Sect. 6.4 it is simple to state the dual problem of a

linear semidefinite optimization problem. If we specialize the problem (7.3) to the
linear problem

min cT x

subject to the constraints
B � A(x)

x1, . . . , xm ≥ 0

(7.21)
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with c ∈ R
m, a linear mapping A : Rm → Sn and a matrix B ∈ Sn. Since A is

linear, there are matrices A(1), . . . , A(m) ∈ Sn so that

A(x) = A(1)x1 + . . . + A(m)xm for all x ∈ R
m.

Then the primal linear problem (7.21) can also be written as

min cT x

subject to the constraints
B � A(1)x1 + . . . + A(m)xm

x1, . . . , xm ≥ 0.

(7.22)

For the formulation of the dual problem of (7.22) we need the adjoint mapping
A∗ : Sn → R

m defined by

A∗(U)(x) = 〈U,A(x)〉
= 〈U,A(1)x1 + . . . + A(m)xm〉
= 〈U,A(1)〉x1 + . . . + 〈U,A(m)〉xm

=
(
〈U,A(1)〉, . . . , 〈U,A(m)〉

)
· x

for all x ∈ R
m and all U ∈ Sn.

Using the general formulation (6.19) we then obtain the dual problem

max 〈B,U〉
subject to the constraints

〈A(1), U〉 ≤ c1
...

〈A(m), U〉 ≤ cm

U ∈ C∗.

(7.23)

In the special literature on semidefinite optimization the dual problem (7.23) is very
often the primal problem with C∗ = Sn+. In this case our primal problem is then the
dual problem in the literature.

Exercises

(7.1) Show that the Löwner ordering cone Sn+ is closed and pointed.
(7.2) Show for the Löwner ordering cone

Sn+ = convex hull {xxT | x ∈ R
n}.
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(7.3) As an extension of Lemma 7.2 prove the following result: Let X =(
A BT

B C

)
∈ Sk+l with A ∈ Sk , C ∈ S l and B ∈ R

(l,k) be given, and

assume that A is positive definite. Then we have for an arbitrary convex cone
K ⊂ R

l :

X ∈ Ck+l

Rk×K
⇐⇒ C − BA−1BT ∈ Cl

K.

(7.4) Show for arbitrary A,B ∈ Sn+

〈A,B〉 = 0 ⇐⇒ AB = 0Sn .

(7.5) Let A be a given symmetric (n, n) matrix. Show for an arbitrary (j −i+1, j −
i + 1) block matrix Aij (1 ≤ i ≤ j ≤ n) with

A
ij
kl = Ai+k−1, i+l−1 for all k, l ∈ {1, . . . , j − i + 1} :

A positive semidefinite �⇒ Aij positive semidefinite.

(7.6) Show that the linear semidefinite optimization problem

min x2

subject to the constraints

−
(

x1 1
1 x2

)
� 0S2

x1, x2 ∈ R

(where � denotes the Löwner partial ordering) is not solvable.
(7.7) Let the linear mapping G : R2 → S2 with

G(x1, x2) =
(

x1 x2

x2 0

)
for all (x1, x2) ∈ R

2

be given. Show that G does not fulfill the generalized Slater condition given
in Theorem 7.12 for C = S2+.

(7.8) Let c ∈ R
m, B ∈ Sn and a linear mapping A : Rm → Sn with

A(x) = A(1)x1 + . . . + A(m)xm for all x ∈ R
m
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for A(1), . . . , A(m) ∈ Sn be given. Show that for the linear problem

min cT x

subject to the constraints
B � A(x)

x ∈ R
m

the dual problem is given by

max 〈B,U〉
subject to the constraints

〈A(1), U〉 = c1
...

〈A(m), U〉 = cm

U ∈ C∗.

(7.9) Consider the linear semidefinite optimization problem

min x1

subject to the constraints⎛
⎝ 0 −x1 0

−x1 −x2 0
0 0 −x1 − 1

⎞
⎠ � 0S3

x1, x2 ∈ R

(where � denotes the Löwner partial ordering). Give the corresponding dual
problem and show that the extremal values of the primal and dual problem are
not equal. Why is Theorem 7.12 not applicable?
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