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Preface

This book presents an application-oriented introduction to the theory of nonlinear
optimization. It describes basic notions and conceptions of optimization in the
setting of normed or even Banach spaces. Various theorems are applied to problems
in related mathematical areas. For instance, the Euler–Lagrange equation in the
calculus of variations, the generalized Kolmogorov condition, and the alternation
theorem in approximation theory as well as the Pontryagin’s maximum principle in
optimal control theory are derived from general results of optimization.

Because of the introductory character of this text, it is not intended to give a com-
plete description of all the approaches in optimization. For instance, investigations
on conjugate duality, sensitivity, stability, recession cones, and other concepts are
not included in this book.

The bibliography gives a survey of books in the area of nonlinear optimization
and related areas like approximation theory and optimal control theory. Important
papers are cited as footnotes in the text.

This third edition is an enlarged and revised version containing an additional
chapter on extended semidefinite optimization and an updated bibliography.

I am grateful to S. Geuß, S. Gmeiner, S. Keck, Prof. Dr. E.W. Sachs, and
H. Winkler for their support, and I am especially indebted to D.G. Cunningham,
Dr. G. Eichfelder, Dr. F. Hettlich, Dr. J. Klose, Prof. Dr. E.W. Sachs, Dr. T. Staib,
and Dr. M. Stingl for fruitful discussions.

Erlangen, Germany Johannes Jahn
September 2006

Remarks to the Fourth Edition

This fourth edition extends the previous one by a recent theory on discrete-
continuous optimization problems together with special separation results. I thank
Dr. M. Knossalla for joint investigations of this subject. This edition uses a special

vii
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layout designed for e-books. Some figures are added and all the figures are adapted
to the e-book design.

Erlangen, Germany Johannes Jahn
November 2019
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1Introduction and Problem Formulation

In optimization one investigates problems of the determination of a minimal point
of a functional on a nonempty subset of a real linear space. To be more specific
this means: Let X be a real linear space, let S be a nonempty subset of X, and let
f : S → R be a given functional. We ask for the minimal points of f on S. An
element x̄ ∈ S is called a minimal point of f on S if

f (x̄) ≤ f (x) for all x ∈ S,

and the functional value f (x̄) is called minimal value of the optimization problem.
The set S is also called constraint set, its elements are called feasible elements, and
the functional f is called objective functional.

In order to introduce optimization we present various typical optimization
problems from Applied Mathematics. First we discuss a design problem from
structural engineering.

Example 1.1 (structural engineering).

As a simple example consider the design of a beam with a rectangular cross-
section and a given length l (see Figs. 1.1 and 1.2). The height x1 and the
width x2 have to be determined.

l

Fig. 1.1 Longitudinal section of the beam

© The Editor(s) (if applicable) and The Author(s), under exclusive
licence to Springer Nature Switzerland AG 2020
J. Jahn, Introduction to the Theory of Nonlinear Optimization,
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2 1 Introduction and Problem Formulation

x1

x2

Fig. 1.2 Cross-section of the beam

The design variables x1 and x2 have to be chosen in an area which makes
sense in practice. A certain stress condition must be satisfied, i.e. the arising
stresses cannot exceed a feasible stress. This leads to the inequality

2000 ≤ x2
1x2. (1.1)

Moreover, a certain stability of the beam must be guaranteed. In order to
avoid a beam which is too slim we require

x1 ≤ 4x2 (1.2)

and

x2 ≤ x1. (1.3)

Finally, the design variables should be nonnegative which means

x1 ≥ 0 (1.4)

and

x2 ≥ 0. (1.5)

Among all feasible values for x1 and x2 we are interested in those which lead
to a light construction. Instead of the weight we can also take the volume of
the beam given as lx1x2 as a possible criterion (where we assume that the
material is homogeneous). Consequently, we minimize lx1x2 subject to the
constraints (1.1), . . . ,(1.5). This problem can be formalized as

min lx1x2

subject to the constraints
2000 − x2

1x2 ≤ 0
x1 − 4x2 ≤ 0
−x1 + x2 ≤ 0

−x1 ≤ 0
−x2 ≤ 0

x1, x2 ∈ R.
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Many optimization problems do not only have continuous variables and a few
number of optimization problems may have constraints, which are only valid under
a certain condition. The following very simple example describes such a problem
with discrete-continuous variables and a conditional constraint.

Example 1.2 (discrete-continuous variables and vanishing
constraints).

We investigate the simple optimization problem

min x2
2 + sin x1

subject to the constraints
1 ≤ x1 ≤ 2π

cos x1 ≥ 0.4, ifx1 ∈ (π, 2π]
x1 ∈ Z, x2 ∈ R.

(1.6)

We have a discrete and a continuous variable, and one inequality constraint
is only satisfied, if x1 ∈ (π, 2π]. For x1 /∈ (π, 2π] the constraint cos x1 ≥
0.4 is void, i.e. it vanishes. Therefore, such a constraint is also called
vanishing constraint.1 This class of problems with vanishing constraints,
which appears in structural optimization, is difficult to treat.
Figure 1.3 illustrates the feasible integers of this problem. It is obvious that
(6, 0) is the unique minimal solution of problem (1.6).

1

−1

y

1 2 3 4 5 6 x1

y = sin x1

Fig. 1.3 Illustration of the sine function values at the four feasible points x1

If we introduce a superset Ŝ of the feasible set S, we can collect all
constraints, which cannot be written in the form of inequalities or equalities.

1Achtziger, W. and Kanzow, C.: “Mathematical programs with vanishing constraints: optimality
conditions and constraint qualifications”, Math. Program., Ser. A 114 (2008) 69–99.



4 1 Introduction and Problem Formulation

Hence, we rewrite problem (1.6) as

min x2
2 + sin x1

subject to the constraints
1 − x1 ≤ 0

x1 − 2π ≤ 0
(x1, x2) ∈ Ŝ

with

Ŝ := {(x1, x2) ∈ Z× R | x1 ∈ (π, 2π] ⇒ cos x1 ≥ 0.4
}
.

So, if there are not only constraints in the form of inequalities or equalities,
it makes sense to consider a superset Ŝ.

With the next example we present a simple optimization problem from the
calculus of variations.

Example 1.3 (calculus of variations).

In the calculus of variations one investigates, for instance, problems of
minimizing a functional f given as

f (x) =
b∫

a

l(x(t), ẋ(t), t) dt

where −∞ < a < b < ∞ and l is argumentwise continuous and
continuously differentiable with respect to x and ẋ. A simple problem

x2

x1

a b t

x ∈ S

Fig. 1.4 Illustration of a feasible element x ∈ S
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of the calculus of variations is the following: Minimize f subject to the class
of curves from

S := {x ∈ C1[a, b] | x(a) = x1 and x(b) = x2}

where x1 and x2 are fixed endpoints (see Fig. 1.4).

In control theory there are also many problems which can be formulated as
optimization problems. A simple problem of this type is given in the following
example.

Example 1.4 (optimal control).

On the fixed time interval [0, 1] we investigate the linear system of
differential equations

(
ẋ1(t)

ẋ2(t)

)
=
(

0 1
0 0

)(
x1(t)

x2(t)

)
+
(

0
1

)
u(t) , t ∈ (0, 1)

with the initial condition

(
x1(0)

x2(0)

)
=
(−2

√
2

5
√

2

)
.

With the aid of an appropriate control function u ∈ C[0, 1] this dynamical
system should be steered from the given initial state to a terminal state in
the set

M := {(x1, x2) ∈ R
2 | x2

1 + x2
2 = 1}.

In addition to this constraint a control function u minimizing the cost
functional

f (u) =
1∫

0

(u(t))2dt

has to be determined.

Finally we discuss a simple problem from approximation theory.
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Example 1.5 (approximation theory).

We consider the problem of the determination of a linear function which
approximates the hyperbolic sine function on the interval [0, 2] with respect
to the maximum norm in a best way (see Fig. 1.5). So,

β

1

2

3

4
β = sinh α

β = x̄α

x̄ ≈ 1.600233

1 2 α

Fig. 1.5 Best approximation of sinh on [0, 2]

we minimize

max
α∈[0,2] |αx − sinh α|.

This optimization problem can also be written as

min λ

subject to the constraints
λ = max

α∈[0,2] |αx − sinh α|
(x, λ) ∈ R

2.

The preceding problem is equivalent to the following optimization problem
which has infinitely many constraints:

min λ

subject to the constraints
αx − sinh α ≤ λ

αx − sinh α ≥ −λ

}
for all α ∈ [0, 2]

(x, λ) ∈ R
2.
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Since this problem has finitely many variables and infinitely many con-
straints, it belongs to the class of so-called semi-infinite optimization
problems.

In the following chapters most of the examples presented above will be investi-
gated again. The solvability of the design problem (in Example 1.1) is discussed
in Example 5.10 where the Karush-Kuhn-Tucker conditions are used as neces-
sary optimality conditions. Discrete-continuous optimization problems (compare
Example 1.2) are treated in Chap. 8. Theorem 3.21 presents a necessary optimality
condition known as Euler-Lagrange equation for a minimal solution of the problem
in Example 1.3. The Pontryagin maximum principle is the essential tool for the
solution of the optimal control problem formulated in Example 1.4; an optimal
control is determined in the Examples 5.21 and 5.23. An application of the
alternation theorem leads to a solution of the linear Chebyshev approximation
problem (given in Example 1.5) which is obtained in Example 6.19.

We complete this introduction with a short compendium of the structure of
this textbook. Of course, the question of the solvability of a concrete nonlinear
optimization problem is of primary interest and, therefore, existence theorems
are presented in Chap. 2. Subsequently the question about characterizations of
minimal points runs like a red thread through this book. For the formulation of
such characterizations one has to approximate the objective functional (for that
reason we discuss various concepts of a derivative in Chap. 3) and the constraint
set (this is done with tangent cones in Chap. 4). Both approximations combined
result in the optimality conditions of Chap. 5. The duality theory in Chap. 6 is
closely related to optimality conditions as well; minimal points are characterized by
another optimization problem being dual to the original problem. An application of
optimality conditions and duality theory to semidefinite optimization being a topical
field of research in optimization, is described in Chap. 7. The theory of this book
is extended to discrete-continuous optimization problems in Chap. 8. The required
separation theorems for this extension are also presented. The results in the last
chapter show that solutions or characterizations of solutions of special optimization
problems with a rich mathematical structure can be derived sometimes in a direct
way.

It is interesting to note that the Hahn-Banach theorem (often in the version of a
separation theorem like the Eidelheit separation theorem) proves itself to be the key
for central characterization theorems.



2Existence Theorems for Minimal Points

In this chapter we investigate a general optimization problem in a real normed space.
For such a problem we present assumptions under which at least one minimal point
exists. Moreover, we formulate simple statements on the set of minimal points.
Finally the existence theorems obtained are applied to approximation and optimal
control problems.

2.1 Problem Formulation

The standard assumption of this chapter reads as follows:

Let (X, ‖ · ‖) be a real normed space;
let S be a nonempty subset of X;
and let f : S → R be a given functional.

⎫
⎬

⎭
(2.1)

Under this assumption we investigate the optimization problem

min
x∈S

f (x), (2.2)

i.e., we are looking for minimal points of f on S.
In general one does not know if the problem (2.2) makes sense because f does

not need to have a minimal point on S. For instance, for X = S = R and f (x) =
ex the optimization problem (2.2) is not solvable. In the next section we present
conditions concerning f and S which ensure the solvability of the problem (2.2).

© The Editor(s) (if applicable) and The Author(s), under exclusive
licence to Springer Nature Switzerland AG 2020
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10 2 Existence Theorems for Minimal Points

2.2 Existence Theorems

A known existence theorem is the Weierstraß theorem which says that every
continuous function attains its minimum on a compact set. This statement is
modified in such a way that useful existence theorems can be obtained for the
general optimization problem (2.2).

Definition 2.1 (weakly lower semicontinuous functional).

Let the assumption (2.1) be satisfied. The functional f is called weakly
lower semicontinuous if for every sequence (xn)n∈N in S converging weakly
to some x̄ ∈ S we have:

lim inf
n→∞ f (xn) ≥ f (x̄)

(see Appendix A for the definition of the weak convergence).

Example 2.2 (weakly lower semicontinuous functional).

The functional f : R → R with

f (x) =
{

0 if x = 0
1 otherwise

}

(see Fig. 2.1) is weakly lower semicontinuous (but not continuous at 0).

1

0

f

Fig. 2.1 Illustration of the functional f

Now we present the announced modification of the Weierstraß theorem.

Theorem 2.3 (solvability of problem (2.2)).

Let the assumption (2.1) be satisfied. If the set S is weakly sequentially
compact and the functional f is weakly lower semicontinuous, then there
is at least one x̄ ∈ S with

f (x̄) ≤ f (x) for all x ∈ S,

i.e., the optimization problem (2.2) has at least one solution.
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Proof Let (xn)n∈N be a so-called infimal sequence in S, i.e., a sequence with

lim
n→∞f (xn) = inf

x∈S
f (x).

Since the set S is weakly sequentially compact, there is a subsequence (xni )i∈N
converging weakly to some x̄ ∈ S. Because of the weak lower semicontinuity of f

it follows

f (x̄) ≤ lim inf
i→∞ f (xni ) = inf

x∈S
f (x),

and the theorem is proved. 
�

Now we proceed to specialize the statement of Theorem 2.3 in order to get
a version which is useful for applications. Using the concept of the epigraph we
characterize weakly lower semicontinuous functionals.

Definition 2.4 (epigraph of a functional).

Let the assumption (2.1) be satisfied. The set

E(f ) := {(x, α) ∈ S ×R | f (x) ≤ α}
is called epigraph of the functional f (see Fig. 2.2).

x

α

E(f ) f

Fig. 2.2 Epigraph of a functional

Theorem 2.5 (characterizations of weakly lower semicontinuity).

Let the assumption (2.1) be satisfied, and let the set S be weakly sequentially
closed. Then it follows:

f is weakly lower semicontinuous
⇐⇒ E(f ) is weakly sequentially closed
⇐⇒ If for any α ∈ R the set Sα := {x ∈ S | f (x) ≤ α} is

nonempty, then Sα is weakly sequentially closed.
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Proof
(a) Let f be weakly lower semicontinuous. If (xn, αn)n∈N is any sequence in E(f )

with a weak limit (x̄, ᾱ) ∈ X × R, then (xn)n∈N converges weakly to x̄ and
(αn)n∈N converges to ᾱ. Since S is weakly sequentially closed, we obtain x̄ ∈ S.
Next we choose an arbitrary ε > 0. Then there is a number n0 ∈ N with

f (xn) ≤ αn < ᾱ + ε for all natural numbers n ≥ n0.

Since f is weakly lower semicontinuous, it follows

f (x̄) ≤ lim inf
n→∞ f (xn) < ᾱ + ε.

This inequality holds for an arbitrary ε > 0, and therefore we get (x̄, ᾱ) ∈ E(f ).
Consequently the set E(f ) is weakly sequentially closed.

(b) Now we assume that E(f ) is weakly sequentially closed, and we fix an arbitrary
α ∈ R for which the level set Sα is nonempty. Since the set S × {α} is weakly
sequentially closed, the set

Sα × {α} = E(f ) ∩ (S × {α})

is also weakly sequentially closed. But then the set Sα is weakly sequentially
closed as well.

(c) Finally we assume that the functional f is not weakly lower semicontinuous.
Then there is a sequence (xn)n∈N in S converging weakly to some x̄ ∈ S and for
which

lim inf
n→∞ f (xn) < f (x̄).

If one chooses any α ∈ R with

lim inf
n→∞ f (xn) < α < f (x̄),

then there is a subsequence (xni )i∈N converging weakly to x̄ ∈ S and for which

xni ∈ Sα for all i ∈ N.

Because of f (x̄) > α the set Sα is not weakly sequentially closed. 
�

Since not every continuous functional is weakly lower semicontinuous, we turn
our attention to a class of functionals for which every continuous functional with a
closed domain is weakly lower semicontinuous.
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Definition 2.6 (convex set and convex functional).

Let S be a subset of a real linear space.

(a) The set S is called convex if for all x, y ∈ S

λx + (1 − λ)y ∈ S for all λ ∈ [0, 1]

(see Figs. 2.3 and 2.4).

x

y

Fig. 2.3 Convex set

x y

Fig. 2.4 Non-convex set

(b) Let the set S be nonempty and convex. A functional f : S → R is called
convex if for all x, y ∈ S

f (λx + (1 − λ)y) ≤ λf (x) + (1 − λ)f (y) for all λ ∈ [0, 1]

(see Figs. 2.5 and 2.6).
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λf (x) + (1 − λ)f (y)

f (x)

f (λx + (1 − λ)y)
f (y)

f

x λx + (1 − λ)y y

Fig. 2.5 Convex functional

x y

f

Fig. 2.6 Non-convex functional

(c) Let the set S be nonempty and convex. A functional f : S → R is called
concave if the functional −f is convex (see Fig. 2.7).
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f

Fig. 2.7 Concave functional

Example 2.7 (convex sets and convex functionals).

(a) The empty set is always convex.
(b) The unit ball of a real normed space is a convex set.
(c) For X = S = R the function f with f (x) = x2 for all x ∈ R is convex.
(d) Every norm on a real linear space is a convex functional.

The convexity of a functional can also be characterized with the aid of the
epigraph.

Theorem 2.8 (characterization of a convex functional).

Let the assumption (2.1) be satisfied, and let the set S be convex. Then it
follows:

f is convex
⇐⇒ E(f ) is convex
�⇒ For every α ∈ R the set Sα := {x ∈ S | f (x) ≤ α} is convex.

Proof
(a) If f is convex, then it follows for arbitrary (x, α), (y, β) ∈ E(f ) and an

arbitrary λ ∈ [0, 1]

f (λx + (1 − λ)y) ≤ λf (x) + (1 − λ)f (y)

≤ λα + (1 − λ)β
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resulting in

λ(x, α) + (1 − λ)(y, β) ∈ E(f ).

Consequently the epigraph of f is convex.
(b) Next we assume that E(f ) is convex and we choose any α ∈ R for which the

set Sα is nonempty (the case Sα = ∅ is trivial). For arbitrary x, y ∈ Sα we have
(x, α) ∈ E(f ) and (y, α) ∈ E(f ), and then we get for an arbitrary λ ∈ [0, 1]

λ(x, α) + (1 − λ)(y, α) ∈ E(f ).

This means especially

f (λx + (1 − λ)y) ≤ λα + (1 − λ)α = α

and

λx + (1 − λ)y ∈ Sα.

Hence the set Sα is convex.
(c) Finally we assume that the epigraph E(f ) is convex and we show the convexity

of f . For arbitrary x, y ∈ S and an arbitrary λ ∈ [0, 1] it follows

λ(x, f (x)) + (1 − λ)(y, f (y)) ∈ E(f )

which implies

f (λx + (1 − λ)y) ≤ λf (x) + (1 − λ)f (y).

Consequently the functional f is convex. 
�

In general the convexity of the level sets Sα does not imply the convexity of the
functional f : this fact motivates the definition of the concept of quasiconvexity.

Definition 2.9 (quasiconvex functional).

Let the assumption (2.1) be satisfied, and let the set S be convex. If for every
α ∈ R the set Sα := {x ∈ S | f (x) ≤ α} is convex, then the functional f is
called quasiconvex.
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Example 2.10 (quasiconvex functionals).

(a) Every convex functional is also quasiconvex (see Theorem 2.8).
(b) For X = S = R the function f with f (x) = x3 for all x ∈ R is

quasiconvex but it is not convex. The quasiconvexity results from the
convexity of the set

{x ∈ S | f (x) ≤ α} = {x ∈ R | x3 ≤ α} =
(
−∞, sgn(α) 3

√|α|
]

for every α ∈ R (compare Fig. 2.8).

1

1

2

α

Sα

−1

−2

− 1

f

Fig. 2.8 Illustration of the function f

Now we are able to give assumptions under which every continuous functional
is also weakly lower semicontinuous.

Lemma 2.11 (weakly lower semicontinuity).

Let the assumption (2.1) be satisfied, and let the set S be convex and closed.
If the functional f is continuous and quasiconvex, then f is weakly lower
semicontinuous.

Proof We choose an arbitrary α ∈ R for which the set Sα := {x ∈ S | f (x) ≤
α} is nonempty. Since f is continuous and S is closed, the set Sα is also closed.
Because of the quasiconvexity of f the set Sα is convex and therefore it is also
weakly sequentially closed (see Appendix A). Then it follows from Theorem 2.5
that f is weakly lower semicontinuous. 
�

Using this lemma we obtain the following existence theorem which is useful for
applications.
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Theorem 2.12 (solvability in reflexive Banach spaces).

Let S be a nonempty, convex, closed and bounded subset of a reflexive real
Banach space, and let f : S → R be a continuous quasiconvex functional.
Then f has at least one minimal point on S.

Proof With Theorem B.4 the set S is weakly sequentially compact and with
Lemma 2.11 f is weakly lower semicontinuous. Then the assertion follows from
Theorem 2.3. 
�

At the end of this section we investigate the question under which conditions
a convex functional is also continuous. With the following lemma which may be
helpful in connection with the previous theorem we show that every convex function
which is defined on an open convex set and continuous at some point is also
continuous on the whole set.

Lemma 2.13 (continuity of a convex functional).

Let the assumption (2.1) be satisfied, and let the set S be open and convex.
If the functional f is convex and continuous at some x̄ ∈ S, then f is
continuous on S.

Proof We show that f is continuous at any point of S. For that purpose we choose
an arbitrary x̃ ∈ S. Since f is continuous at x̄ and S is open, there is a closed ball
B(x̄, �) around x̄ with the radius � so that f is bounded from above on B(x̄, �) by
some α ∈ R. Because S is convex and open there is a λ > 1 so that x̄+λ(x̃− x̄) ∈ S

and the closed ball B(x̃, (1 − 1
λ
)�) around x̃ with the radius (1 − 1

λ
)� is contained

in S. Then for every x ∈ B(x̃, (1 − 1
λ
)�) there is some y ∈ B(0X, �) (closed ball

around 0X with the radius �) so that because of the convexity of f

f (x) = f (x̃ + (1 − 1

λ
)y)

= f (x̃ − (1 − 1

λ
)x̄ + (1 − 1

λ
)(x̄ + y))

= f (
1

λ
(x̄ + λ(x̃ − x̄)) + (1 − 1

λ
)(x̄ + y))

≤ 1

λ
f (x̄ + λ(x̃ − x̄)) + (1 − 1

λ
)f (x̄ + y)

≤ 1

λ
f (x̄ + λ(x̃ − x̄)) + (1 − 1

λ
)α

=: β.
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This means that f is bounded from above on B(x̃, (1 − 1
λ
)�) by β. For the proof of

the continuity of f at x̃ we take any ε ∈ (0, 1). Then we choose an arbitrary element
x of the closed ball B(x̃, ε(1− 1

λ
)�). Because of the convexity of f we get for some

y ∈ B(0X, (1 − 1
λ
)�)

f (x) = f (x̃ + εy)

= f ((1 − ε)x̃ + ε(x̃ + y))

≤ (1 − ε)f (x̃) + εf (x̃ + y)

≤ (1 − ε)f (x̃) + εβ

which implies

f (x) − f (x̃) ≤ ε(β − f (x̃)). (2.3)

Moreover we obtain

f (x̃) = f
( 1

1 + ε
(x̃ + εy)+ (1 − 1

1 + ε
)(x̃ − y)

)

≤ 1

1 + ε
f (x̃ + εy) + (1 − 1

1 + ε
)f (x̃ − y)

≤ 1

1 + ε
f (x) + (1 − 1

1 + ε
)β

= 1

1 + ε
(f (x) + εβ)

which leads to

(1 + ε)f (x̃) ≤ f (x) + εβ

and

−(f (x) − f (x̃)) ≤ ε(β − f (x̃)). (2.4)

The inequalities (2.3) and (2.4) imply

|f (x) − f (x̃)| ≤ ε(β − f (x̃)) for all x ∈ B(x̃, ε(1 − 1

λ
)�).

So, f is continuous at x̃, and the proof is complete. 
�

Under the assumptions of the preceding lemma it is shown in [71, Prop. 2.2.6]
that f is even Lipschitz continuous at every x ∈ S (see Definition 3.33).
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2.3 Set of Minimal Points

After answering the question about the existence of a minimal solution of an
optimization problem, in this section the set of all minimal points is investigated.

Theorem 2.14 (convexity of the set of minimal points).

Let S be a nonempty convex subset of a real linear space. For every
quasiconvex functional f : S → R the set of minimal points of f on S

is convex.

Proof If f has no minimal point on S, then the assertion is evident. Therefore we
assume that f has at least one minimal point x̄ on S. Since f is quasiconvex, the set

S̄ := {x ∈ S | f (x) ≤ f (x̄)}
is also convex. But this set equals the set of minimal points of f on S. 
�

With the following definition we introduce the concept of a local minimal point.

Definition 2.15 (local minimal point).

Let the assumption (2.1) be satisfied. An element x̄ ∈ S is called a local
minimal point of f on S if there is a ball B(x̄, ε) := {x ∈ X | ‖x − x̄‖ ≤ ε}
around x̄ with the radius ε > 0 so that

f (x̄) ≤ f (x) for all x ∈ S ∩ B(x̄, ε).

The following theorem says that local minimal solutions of a convex optimization
problem are also (global) minimal solutions.

Theorem 2.16 (local minimal points).

Let S be a nonempty convex subset of a real normed space. Every local
minimal point of a convex functional f : S → R is also a minimal point of
f on S.

Proof Let x̄ ∈ S be a local minimal point of a convex functional f : S → R. Then
there are an ε > 0 and a ball B(x̄, ε) so that x̄ is a minimal point of f on S∩B(x̄, ε).
Now we consider an arbitrary x ∈ S with x �∈ B(x̄, ε). Then it is ‖x − x̄‖ > ε. For
λ := ε

‖x−x̄‖ ∈ (0, 1) we obtain xλ := λx + (1 − λ)x̄ ∈ S and

‖xλ − x̄‖ = ‖λx + (1 − λ)x̄ − x̄‖ = λ‖x − x̄‖ = ε,

i.e., it is xλ ∈ S ∩ B(x̄, ε) (see Fig. 2.9).
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x̄

ε

B(x̄, ε)
xλ

x

Fig. 2.9 Construction in the proof of Theorem 2.16

Therefore we get

f (x̄) ≤ f (xλ) = f (λx + (1 − λ)x̄) ≤ λf (x) + (1 − λ)f (x̄)

resulting in

f (x̄) ≤ f (x).

Consequently x̄ is a minimal point of f on S. 
�

It is also possible to formulate conditions ensuring that a minimal point is unique.
This can be done under stronger convexity requirements, e.g., like “strict convexity”
of the objective functional.

2.4 Application to Approximation Problems

Approximation problems can be formulated as special optimization problems.
Therefore, existence theorems in approximation theory can be obtained with the aid
of the results of Sect. 2.2. Such existence results are deduced for general approxi-
mation problems and especially also for a problem of Chebyshev approximation.

First we investigate a general problem of approximation theory. Let S be a
nonempty subset of a real normed space (X, ‖ · ‖), and let x̂ ∈ X be a given
element. Then we are looking for some x̄ ∈ S for which the distance between x̂

and S is minimal, i.e.,

‖x̄ − x̂‖ ≤ ‖x − x̂‖ for all x ∈ S.

In this case x̄ is a minimal solution of the optimization problem

min
x∈S

‖x − x̂‖.
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Definition 2.17 (best approximation).

Let S be a nonempty subset of a real normed space (X, ‖ · ‖). The set S

is called proximinal if for every x̂ ∈ X there is a vector x̄ ∈ S with the
property

‖x̄ − x̂‖ ≤ ‖x − x̂‖ for all x ∈ S.

In this case x̄ is called best approximation to x̂ from S (see Fig. 2.10).

x̂
x̄

S

{x ∈ X x − x̂ x − x̂

Fig. 2.10 Best approximation

So for a proximinal set the considered approximation problem is solvable for
every arbitrary x̂ ∈ X. The following theorem gives a sufficient condition for the
solvability of the general approximation problem.

Theorem 2.18 (proximal set).

Every nonempty convex closed subset of a reflexive real Banach space is
proximinal.

Proof Let S be a nonempty convex closed subset of a reflexive Banach space (X, ‖·
‖), and let x̂ ∈ X be an arbitrary element. Then we investigate the solvability of
the optimization problem min

x∈S
‖x − x̂‖. For that purpose we define the objective

functional f : X → R with

f (x) = ‖x − x̂‖ for all x ∈ X.
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The functional f is continuous because for arbitrary x, y ∈ X we have

|f (x) − f (y)| = ∣∣ ‖x − x̂‖ − ‖y − x̂‖ ∣∣
≤ ‖x − x̂ − (y − x̂)‖
= ‖x − y‖.

Next we show the convexity of the functional f . For arbitrary x, y ∈ X and λ ∈
[0, 1] we get

f (λx + (1 − λ)y) = ‖λx + (1 − λ)y − x̂‖
= ‖λ(x − x̂) + (1 − λ)(y − x̂)‖
≤ λ‖x − x̂‖ + (1 − λ)‖y − x̂‖
= λf (x)+ (1 − λ)f (y).

Consequently f is continuous and quasiconvex. If we fix any x̃ ∈ S and we define

S̃ := {x ∈ S | f (x) ≤ f (x̃)},

then S̃ is a convex subset of X. For every x ∈ S̃ we have

‖x‖ = ‖x − x̂ + x̂‖ ≤ ‖x − x̂‖
︸ ︷︷ ︸
=f (x)

+‖x̂‖ ≤ f (x̃) + ‖x̂‖,

and therefore the set S̃ is bounded. Since the set S is closed and the functional f is
continuous, the set S̃ is also closed. Then by the existence Theorem 2.12 f has at
least one minimal point on S̃, i.e., there is a vector x̄ ∈ S̃ with

f (x̄) ≤ f (x) for all x ∈ S̃.

The inclusion S̃ ⊂ S implies x̄ ∈ S and for all x ∈ S \ S̃ we get

f (x) > f (x̃) ≥ f (x̄).

Consequently x̄ ∈ S is a minimal point of f on S. 
�

The following theorem shows that, in general, the reflexivity of the Banach space
plays an important role for the solvability of approximation problems. But notice
also that under strong assumptions concerning the set S an approximation problem
may be solvable in non-reflexive spaces.
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Theorem 2.19 (characterization of reflexivity).

A real Banach space is reflexive if and only if every nonempty convex closed
subset is proximinal.

Proof One direction of the assertion is already proved in the existence Theo-
rem 2.18. Therefore we assume now that the considered real Banach space is not
reflexive. Then the closed unit ball B(0X, 1) := {x ∈ X | ‖x‖ ≤ 1} is not weakly
sequentially compact and by a James theorem (Theorem B.2) there is a continuous
linear functional l which does not attain its supremum on the set B(0X, 1), i.e.,

l(x) < sup
y∈B(0X,1)

l(y) for all x ∈ B(0X, 1).

If one defines the convex closed set

S := {x ∈ X | l(x) ≥ sup
y∈B(0X,1)

l(y)},

then one obtains S ∩ B(0X, 1) = ∅. Hence, the set S is not proximinal. 
�

Now we turn our attention to a special problem, namely to a problem of uniform
approximation of functions (problem of Chebyshev approximation). Let M be a
compact metric space and let C(M) be the real linear space of continuous real-
valued functions on M equipped with the maximum norm ‖ · ‖ where

‖x‖ = max
t∈M

|x(t)| for all x ∈ C(M).

Moreover let S be a nonempty subset of C(M), and let x̂ ∈ C(M) be a given
function. We are looking for a function x̄ ∈ S with

‖x̄ − x̂‖ ≤ ‖x − x̂‖ for all x ∈ S

(see Fig. 2.11).
Since X = C(M) is not reflexive, Theorem 2.18 may not be applied directly to

this special approximation problem. But the following result is true.

Theorem 2.20 (proximal set).

If S is a nonempty convex closed subset of the normed space C(M) such
that for any x̃ ∈ S the linear subspace spanned by S − {x̃} is reflexive, then
the set S is proximinal.
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x − x̂ max
t∈M

|x(t) − x̂(t)|

a b t

x̂

x ∈ S

M = [a, b]
Fig. 2.11 Chebyshev approximation

Proof For x̃ ∈ S we have

inf
x∈S

‖x − x̂‖ = inf
x∈S

‖(x − x̃) − (x̂ − x̃)‖ = inf
x∈S−{x̃}

‖x − (x̂ − x̃)‖.

If V denotes the linear subspace spanned by x̂−x̃ and S−{x̃}, then V is reflexive and
Theorem 2.18 can be applied to the reflexive real Banach space V . Consequently the
set S is proximinal. 
�

In general, the linear subspace spanned by S − {x̃} is finite dimensional
and therefore reflexive, because S is very often a set of linear combinations of
finitely many functions of C(M) (for instance, monoms, i.e. functions of the form
x(t) = 1, t, t2, . . . , tn with a fixed n ∈ N). In this case a problem of Chebyshev
approximation has at least one solution.

2.5 Application to Optimal Control Problems

In this section we apply the existence result of Theorem 2.12 to problems of optimal
control. First we present a problem which does not have a minimal solution.

Example 2.21 (control problem with no solution).

We consider a dynamical system with the differential equation

ẋ(t) = −u(t)2 almost everywhere on [0,1], (2.5)
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the initial condition

x(0) = 1 (2.6)

and the terminal condition

x(1) = 0. (2.7)

Let the control u be an L2-function, i.e. u ∈ L2[0, 1]. A solution of the
differential equation (2.5) is defined as

x(t) = c −
t∫

0

u(s)2ds for all t ∈ [0, 1]

with c ∈ R. In view of the initial condition we get

x(t) = 1 −
t∫

0

u(s)2ds for all t ∈ [0, 1].

Then the terminal condition (2.7) is equivalent to

1 −
1∫

0

u(s)2ds = 0.

Question: Is there an optimal control minimizing
1∫

0
t2u(t)2dt ?

For X = L2[0, 1] we define the constraint set

S :=
{
u ∈ L2[0, 1]

∣
∣
∣
∣

1∫

0

u(s)2ds = 1

}

(S is exactly the unit sphere in L2[0, 1]). The objective functional f : S →
R is given by

f (u) =
1∫

0

t2u(t)2dt for all u ∈ S.
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One can see immediately that

0 ≤ inf
u∈S

f (u).

Next we define a sequence of feasible controls (un)n∈N by

un(t) =
{

n almost everywhere on [0, 1
n2 )

0 almost everywhere on [ 1
n2 , 1]

}

.

Then we get for every n ∈ N

‖un‖2
L2[0,1] =

1∫

0

|un(t)|2dt =
1
n2∫

0

n2dt = 1.

Hence we have

un ∈ S for all n ∈ N

(every un is an element of the unit sphere in L2[0, 1]). Moreover we
conclude for all n ∈ N

f (un) =
1∫

0

t2un(t)
2dt =

1
n2∫

0

t2n2dt = n2

3
t3
∣∣
∣
∣

1
n2

0

= 1

3n4

and therefore we get

lim
n→∞f (un) = 0 = inf

u∈S
f (u).

If we assume that f attains its infimal value 0 on S, then there is a control
ū ∈ S with f (ū) = 0, i.e.

1∫

0

t2ū(t)2
︸ ︷︷ ︸

≥0

dt = 0.
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But then we get

ū(t) = 0 almost everywhere on [0,1]

and especially ū �∈ S. Consequently f does not attain its infimum on S.

In the following we consider a special optimal control problem with a system of
linear differential equations.

Problem 2.22 (optimal control problem).

Let A and B be given (n, n) and (n,m) matrices with real coefficients,
respectively, and let the system of differential equations be given as

ẋ(t) = Ax(t) + Bu(t) almost everywhere on [t0, t1] (2.8)

with the initial condition

x(t0) = x0 ∈ R
n (2.9)

where −∞ < t0 < t1 < ∞. Let the control u be a Lm
2 [t0, t1] function.

A solution x of the system (2.8) of differential equations with the initial
condition (2.9) is defined as

x(t) = x0 +
t∫

t0

eA(t−s)Bu(s) ds for all t ∈ [t0, t1].

The exponential function occurring in the above expression is the matrix
exponential function, and the integral has to be understood in a component-
wise sense. Let the constraint set S ⊂ Lm

2 [t0, t1] be given as

S := {u ∈ Lm
2 [t0, t1] | ‖u(t)‖ ≤ 1 almost everywhere on [t0, t1]}
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(‖ · ‖ denotes the l2 norm on R
m). The objective functional f : S → R is

defined by

f (u)=
t1∫

t0

(g(x(t)) + h(u(t))) dt

=
t1∫

t0

(
g
(
x0 +

t∫

t0

eA(t−s)Bu(s) ds
)
+ h(u(t))

)
dt for all u ∈ S

where g : Rn → R and h : Rm → R are real valued functions. Then we are
looking for minimal points of f on S.

Theorem 2.23 (existence of an optimal control).

Let the Problem 2.22 be given. Let the functions g and h be convex and
continuous, and let h be Lipschitz continuous on the closed unit ball. Then
f has at least one minimal point on S.

Proof First notice that X := Lm
2 [t0, t1] is a reflexive Banach space. Since S is the

closed unit ball in Lm
2 [t0, t1], the set S is closed, bounded and convex. Next we

show the quasiconvexity of the objective functional f . For that purpose we define
the linear mapping L : S → ACn[t0, t1] (let ACn[t0, t1] denote the real linear space
of absolutely continuous n vector functions equipped with the maximum norm) with

L(u)(t) =
t1∫

t0

eA(t−s)Bu(s) ds for all u ∈ S and all t ∈ [t0, t1].

If we choose arbitrary u1, u2 ∈ S and λ ∈ [0, 1], we get

g(x0 + L(λu1 + (1 − λ)u2)(t))

= g(x0 + λL(u1)(t) + (1 − λ)L(u2)(t))

= g(λ[x0 + L(u1)(t)] + (1 − λ)[x0 + L(u2)(t)])
≤ λg(x0 + L(u1)(t)) + (1 − λ)g(x0 + L(u2)(t)) for all t ∈ [t0, t1]
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and

f (λu1 + (1 − λ)u2)

=
t1∫

t0

[g(x0 + L(λu1 + (1 − λ)u2)(t))

+h(λu1(t) + (1 − λ)u2(t))] dt

≤
t1∫

t0

[λg(x0 + L(u1)(t)) + (1 − λ)g(x0 + L(u2)(t))

+λh(u1(t)) + (1 − λ)h(u2(t))] dt

= λf (u1) + (1 − λ)f (u2).

So, f is convex and, therefore, quasiconvex. Next we prove that the objective
functional f is continuous. For all u ∈ S we have

‖L(u)‖ACn[t0,t1] =
∥
∥
∥
∥

·∫

t0

eA(·−s)Bu(s) ds

∥
∥
∥
∥

ACn[t0,t1]

≤ c1‖u‖Lm
2 [t0,t1] (2.10)

where c1 is a positive constant. Now we fix an arbitrary sequence (un)n∈N in S

converging to some ū ∈ S. Then we obtain

f (un) − f (ū) =
t1∫

t0

[g(x0 + L(un)(t)) + g(x0 + L(ū)(t))] dt

+
t1∫

t0

[h(un(t)) − h(ū(t))] dt. (2.11)

Because of the inequality (2.10) and the continuity of g the following equation holds
pointwise:

lim
n→∞g(x0 + L(un)(t)) = g(x0 + L(ū)(t)).

Since ‖un‖Lm
2 [t0,t1] ≤ 1 and ‖ū‖Lm

2 [t0,t1] ≤ 1, the convergence of the first integral
in (2.11) to 0 follows from Lebesgue’s theorem on the dominated convergence. The
second integral expression in (2.11) converges to 0 as well because h is assumed to
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be Lipschitz continuous:

t1∫

t0

|h(un(t)) − h(ū(t))|dt ≤ c2

t1∫

t0

‖un(t) − ū(t)‖ dt ≤ c2‖un − ū‖Lm
2 [t0,t1]

(where c2 ∈ R denotes the Lipschitz constant). Consequently f is continuous. We
summarize our results: The objective functional f is quasiconvex and continuous,
and the constraint set S is closed, bounded and convex. Hence the assertion follows
from Theorem 2.12. 
�

Exercises

(2.1) Let S be a nonempty subset of a finite dimensional real normed space.
Show that every continuous functional f : S → R is also weakly lower
semicontinuous.

(2.2) Show that the function f : R → R with

f (x) = xex for all x ∈ R

is quasiconvex.
(2.3) Let the assumption (2.1) be satisfied, and let the set S be convex. Prove that

the functional f is quasiconvex if and only if for all x, y ∈ S

f (λx + (1 − λ)y) ≤ max{f (x), f (y)} for all λ ∈ [0, 1].

(2.4) Prove that every proximinal subset of a real normed space is closed.
(2.5) Show that the approximation problem from Example 1.5 is solvable.
(2.6) Let C(M) denote the real linear space of continuous real valued functions on

a compact metric space M equipped with the maximum norm. Prove that for
every n ∈ N and every continuous function x̂ ∈ C(M) there are real numbers
ᾱ0, . . . , ᾱn ∈ R with the property

max
t∈M

∣∣
∣
∣

n∑

i=0

ᾱi t
i − x̂(t)

∣∣
∣
∣ ≤ max

t∈M

∣∣
∣
∣

n∑

i=0

αi t
i − x̂(t)

∣∣
∣
∣ for all α0, . . . , αn ∈ R.

(2.7) Which assumption of Theorem 2.12 is not satisfied for the optimization
problem from Example 2.21?
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(2.8) Let the optimal control problem given in Problem 2.22 be modified in such a
way that we want to reach a given absolutely continuous state x̄ as close as
possible, i.e., we define the objective functional f : S → R by

f (u) = max
t∈[t0,t1]

|x(t) − x̂(t)|

= max
t∈[t0,t1]

∣
∣
∣∣x0 − x̂(t) +

t∫

t0

eA(t−s)Bu(s) ds

∣
∣
∣∣ for all u ∈ S.

Show that f has at least one minimal point on S.



3Generalized Derivatives

In this chapter various customary concepts of a derivative are presented and
its properties are discussed. The following notions are investigated: directional
derivatives, Gâteaux and Fréchet derivatives, subdifferentials, quasidifferentials and
Clarke derivatives. Moreover, simple optimality conditions are given which can be
deduced in connection with these generalized derivatives.

3.1 Directional Derivative

In this section we introduce the concept of a directional derivative and we present
already a simple optimality condition.

Definition 3.1 (directional derivative).

Let X be a real linear space, let (Y, ‖ · ‖) be a real normed space, let S be a
nonempty subset of X and let f : S → Y be a given mapping.
If for two elements x̄ ∈ S and h ∈ X the limit

f ′(x̄)(h) := lim
λ→0+

1

λ
(f (x̄ + λh) − f (x̄))

exists, then f ′(x̄)(h) is called the directional derivative of f at x̄ in the
direction h. If this limit exists for all h ∈ X, then f is called directionally
differentiable at x̄ (see Fig. 3.1).
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f (x̄)(h)

f (x̄)

x0

f

f (x̄)(·)

x̄ x̄ + h

Fig. 3.1 A directionally differentiable function

Notice that for the limit defining the directional derivative one considers arbitrary
sequences (λn)n∈N converging to 0, λn > 0 for all n ∈ N, with the additional
property that x̄ + λnh belongs to the domain S for all n ∈ N. This restriction of
the sequences converging to 0 can be dropped, for instance, if S equals the whole
space X.

Example 3.2 (directionally differentiable function).

For the function f : R2 → R with

f (x1, x2) =
{

x2
1(1 + 1

x2
) if x2 �= 0

0 if x2 = 0

}

for all (x1, x2) ∈ R
2

which is not continuous at 0R2 , we obtain the directional derivative

f ′(0R2)(h1, h2) = lim
λ→0+

1

λ
f (λ(h1, h2)) =

{
h2

1
h2

if h2 �= 0

0 if h2 = 0

in the direction (h1, h2) ∈ R
2. Notice that f ′(0R2) is neither continuous nor

linear.
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As a first result on directional derivatives we show that every convex functional
is directionally differentiable. For the proof we need the following lemma.

Lemma 3.3 (monotonicity of the difference quotient).

Let X be a real linear space, and let f : X → R be a convex functional.
Then for arbitrary x̄, h ∈ X the function ϕ : R+ \ {0} → R with

ϕ(λ) = 1

λ
(f (x̄ + λh) − f (x̄)) for all λ > 0

is monotonically increasing (i.e., 0 < s ≤ t implies ϕ(s) ≤ ϕ(t)).

Proof For arbitrary x̄, h ∈ X we consider the function ϕ defined above. Because of
the convexity of f we then get for arbitrary 0 < s ≤ t :

f (x̄ + sh) − f (x̄) = f
( s

t
(x̄ + th) + t − s

t
x̄
)
− f (x̄)

≤ s

t
f (x̄ + th) + t − s

t
f (x̄) − f (x̄)

= s

t
(f (x̄ + th) − f (x̄))

resulting in

1

s
(f (x̄ + sh) − f (x̄)) ≤ 1

t
(f (x̄ + th) − f (x̄)).

Consequently we have ϕ(s) ≤ ϕ(t). 
�

Theorem 3.4 (existence of the directional derivative).

Let X be a real linear space, and let f : X → R be a convex functional.
Then at every x̄ ∈ X and in every direction h ∈ X the directional derivative
f ′(x̄)(h) exists.

Proof We choose arbitrary elements x̄, h ∈ X and define the function ϕ : R → R

with

ϕ(λ) = 1

λ
(f (x̄ + λh) − f (x̄)) for all λ > 0.
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Because of the convexity of f we get for all λ > 0

f (x̄) = f
( 1

1 + λ
(x̄ + λh) + λ

1 + λ
(x̄ − h)

)

≤ 1

1 + λ
f (x̄ + λh) + λ

1 + λ
f (x̄ − h),

and therefore, we have

(1 + λ)f (x̄) ≤ f (x̄ + λh) + λf (x̄ − h)

implying

f (x̄) − f (x̄ − h) ≤ 1

λ
(f (x̄ + λh) − f (x̄)) = ϕ(λ).

Hence the function ϕ is bounded from below. With Lemma 3.3 ϕ is also monotoni-
cally increasing. Consequently the limit

f ′(x̄)(h) = lim
λ→0+

ϕ(λ)

exists indeed. 
�

For the next assertion we need the concept of sublinearity.

Definition 3.5 (sublinear functional).

Let X be a real linear space. A functional f : X → R is called sublinear, if

(a) f (αx) = αf (x) for all x ∈ X and all α ≥ 0 (positive homogenity) ,
(b) f (x + y) ≤ f (x)+ f (y) for all x, y ∈ X (subadditivity)

(compare Fig. 3.2).

x0

f

Fig. 3.2 Sublinear functional
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Now we show that the directional derivative of a convex functional is sublinear
with respect to the direction.

Theorem 3.6 (sublinearity of the directional derivative).

Let X be a real linear space, and let f : X → R be a convex functional.
Then for every x̄ ∈ X the directional derivative f ′(x̄)(·) is a sublinear
functional.

Proof With Theorem 3.4 the directional derivative f ′(x̄)(·) exists. First we notice
that f ′(x̄)(0X) = 0. For arbitrary h ∈ X and α > 0 we obtain

f ′(x̄)(αh) = lim
λ→0+

1

λ
(f (x̄ + λαh) − f (x̄)) = αf ′(x̄)(h).

Consequently f ′(x̄)(·) is positively homogeneous. For the proof of the subadditivity
we fix arbitrary h1, h2 ∈ X. Then we obtain for an arbitrary λ > 0 because of the
convexity of f

f (x̄ + λ(h1 + h2)) = f
(1

2
(x̄ + 2λh1) + 1

2
(x̄ + 2λh2)

)

≤ 1

2
f (x̄ + 2λh1) + 1

2
f (x̄ + 2λh2)

and

1

λ
[f (x̄ + λ(h1 + h2)) − f (x̄)] ≤ 1

2λ
[f (x̄ + 2λh1) − f (x̄)]

+ 1

2λ
[f (x̄ + 2λh2) − f (x̄)].

Hence we get for λ → 0+

f ′(x̄)(h1 + h2) ≤ f ′(x̄)(h1) + f ′(x̄)(h2)

and the proof is complete. 
�

If a functional f is defined not on a whole real linear space X but on a nonempty
subset S, the property that f has a directional derivative at x̄ in any direction x − x̄

with x ∈ S, requires necessarily

x̄ + λ(x − x̄) = λx + (1 − λ)x̄ ∈ S for sufficiently small λ > 0.
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This necessary condition is fulfilled, for instance, if S is starshaped with respect to
x̄ — a notion which is introduced next.

Definition 3.7 (starshaped set).

A nonempty subset S of a real linear space is called starshaped with respect
to some x̄ ∈ S, if for all x ∈ S:

λx + (1 − λ)x̄ ∈ S for all λ ∈ [0, 1]

(see Fig. 3.3).

x̄

S

Fig. 3.3 A set S which is starshaped with respect to x̄

Every nonempty convex subset of a real linear space is starshaped with respect to
each of its elements. And conversely, every nonempty subset of a real linear space
which is starshaped with respect to each of its elements is a convex set.

Using directional derivatives we obtain a simple necessary and sufficient opti-
mality condition.

Theorem 3.8 (optimality condition).

Let S be a nonempty subset of a real linear space, and let f : S → R be a
given functional.

(a) Let x̄ ∈ S be a minimal point of f on S. If the functional f has a
directional derivative at x̄ in every direction x− x̄ with arbitrary x ∈ S,
then

f ′(x̄)(x − x̄) ≥ 0 for all x ∈ S. (3.1)

(b) Let the set S be convex and let the functional f be convex. If the
functional f has a directional derivative at some x̄ ∈ S in every
direction x− x̄ with arbitrary x ∈ S and the inequality (3.1) is satisfied,
then x̄ is a minimal point of f on S.
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Proof
(a) Take any x ∈ S. Since f has a directional derivative at x̄ in the direction x − x̄,

we have

f ′(x̄)(x − x̄) = lim
λ→0+

1

λ
(f (x̄ + λ(x − x̄)) − f (x̄)).

x̄ is assumed to be a minimal point of f on S, and therefore we get for
sufficiently small λ > 0

f (x̄ + λ(x − x̄)) ≥ f (x̄).

Consequently we obtain

f ′(x̄)(x − x̄) ≥ 0.

(b) Because of the convexity of f we have for an arbitrary x ∈ S and all λ ∈ (0, 1]
f (x̄ + λ(x − x̄)) = f (λx + (1 − λ)x̄) ≤ λf (x) + (1 − λ)f (x̄)

and especially

f (x) ≥ f (x̄) + 1

λ
(f (x̄ + λ(x − x̄)) − f (x̄)).

Since f has a directional derivative at x̄ in the direction x − x̄, it follows

f (x) ≥ f (x̄) + f ′(x̄)(x − x̄)

and with the inequality (3.1) we obtain

f (x) ≥ f (x̄).

Consequently x̄ is a minimal point of f on S. 
�

In part (b) of the preceding theorem one can weaken the assumptions on f and S,
if one assumes only that f is convex at x̄. In this case S needs only to be starshaped
with respect to x̄.

3.2 Gâteaux and Fréchet Derivatives

In this section we turn our attention to stronger differentiability notions. We want to
ensure especially that differentiable mappings are also continuous. Furthermore we
investigate a known problem from the calculus of variations.
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Definition 3.9 (Gâteaux derivative).

Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be real normed spaces, let S be a nonempty
open subset of X, and let f : S → Y be a given mapping. If for some x̄ ∈ S

and all h ∈ X the limit

f ′(x̄)(h) := lim
λ→0

1

λ
(f (x̄ + λh) − f (x̄))

exists and if f ′(x̄) is a continuous linear mapping from X to Y , then
f ′(x̄) is called the Gâteaux derivative of f at x̄ and f is called Gâteaux
differentiable at x̄.

Example 3.10 (Gâteaux derivatives).

(a) Let f : Rn → R be a given function with continuous partial derivatives.
Then for every x̄ ∈ R

n the Gâteaux derivative of f at x̄ reads as

f ′(x̄)(h) = d

dλ
f (x̄ + λh)

∣∣
∣
∣
λ=0

= ∇f (x̄ + λh)T h

∣∣
∣
∣
λ=0

= ∇f (x̄)T h

for all h ∈ R
n.

(b) Let (X, ‖ ·‖X) and (Y, ‖ ·‖Y ) be real normed spaces, and let L : X → Y

be a continuous linear mapping. Then the Gâteaux derivative of L at
every x̄ ∈ X is given as

L′(x̄)(h) = L(h) for all h ∈ X.

Sometimes the notion of a Gâteaux derivative does not suffice in optimization
theory. Therefore we present now a stronger concept of a derivative.

Definition 3.11 (Fréchet derivative).

Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be real normed spaces, let S be a nonempty
open subset of X, and let f : S → Y be a given mapping. Furthermore let
an element x̄ ∈ S be given. If there is a continuous linear mapping f ′(x̄) :
X → Y with the property

lim‖h‖X→0

‖f (x̄ + h) − f (x̄) − f ′(x̄)(h)‖Y

‖h‖X

= 0,

then f ′(x̄) is called the Fréchet derivative of f at x̄ and f is called Fréchet
differentiable at x̄.
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According to this definition we obtain for Fréchet derivatives with the notations
used above

f (x̄ + h) = f (x̄) + f ′(x̄)(h) + o(‖h‖X)

where the expression o(‖h‖X) of this Taylor series has the property

lim‖h‖X→0

o(‖h‖X)

‖h‖X

= lim‖h‖X→0

f (x̄ + h) − f (x̄) − f ′(x̄)(h)

‖h‖X

= 0Y .

Example 3.12 (Fréchet derivative).

We consider a function l : R3 → R which is continuous with respect to each
of its arguments and which has continuous partial derivatives with respect to
the two first arguments. Moreover we consider a functional f : C1[a, b] →
R (with −∞ < a < b < ∞) given by

f (x) =
b∫

a

l(x(t), ẋ(t), t) dt for all x ∈ C1[a, b].

Then we obtain for arbitrary x̄, h ∈ C1[a, b]

f (x̄ + h) − f (x̄)

=
b∫

a

[l(x̄(t) + h(t), ˙̄x(t) + ḣ(t), t) − l(x̄(t), ˙̄x(t), t)] dt

=
b∫

a

[lx(x̄(t), ˙̄x(t), t)h(t) + lẋ(x̄(t), ˙̄x(t), t)ḣ(t)] dt + o(‖h‖C1[a,b]).

Consequently the Fréchet derivative of f at x̄ can be written as

f ′(x̄)(h) =
b∫

a

[lx(x̄(t), ˙̄x(t), t)h(t) + lẋ (x̄(t), ˙̄x(t), t)ḣ(t)] dt

for all h ∈ C1[a, b].

Next we present some important properties of Fréchet derivatives.
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Theorem 3.13 (Fréchet and Gâteaux derivative).

Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be real normed spaces, let S be a nonempty
open subset of X, and let f : S → Y be a given mapping. If the Fréchet
derivative of f at some x̄ ∈ S exists, then the Gâteaux derivative of f at x̄

exists as well and both are equal.

Proof Let f ′(x̄) denote the Fréchet derivative of f at x̄. Then we have

lim
λ→0

‖f (x̄ + λh) − f (x̄) − f ′(x̄)(λh)‖Y

‖λh‖X

= 0 for all h ∈ X\{0X}

implying

lim
λ→0

1

|λ| ‖f (x̄ + λh) − f (x̄) − f ′(x̄)(λh)‖Y = 0 for all h ∈ X\{0X}.

Because of the linearity of f ′(x̄) we obtain

lim
λ→0

1

λ
[f (x̄ + λh) − f (x̄)] = f ′(x̄)(h) for all h ∈ X. 
�

Corollary 3.14 (uniqueness of the Fréchet derivative).

Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be real normed spaces, let S be a nonempty
open subset of X, and let f : S → Y be a given mapping. If f is
Fréchet differentiable at some x̄ ∈ S, then the Fréchet derivative is uniquely
determined.

Proof With Theorem 3.13 the Fréchet derivative coincides with the Gâteaux
derivative. Since the Gâteaux derivative is as a limit uniquely determined, the
Fréchet derivative is also uniquely determined. 
�

The following theorem says that Fréchet differentiability implies continuity as
well.

Theorem 3.15 (continuity of a Fréchet differentiable mapping).

Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be real normed spaces, let S be a nonempty
open subset of X, and let f : S → Y be a given mapping. If f is Fréchet
differentiable at some x̄ ∈ S, then f is continuous at x̄.
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Proof To a sufficiently small ε > 0 there is a ball around x̄ so that for all x̄ + h of
this ball

‖f (x̄ + h) − f (x̄) − f ′(x̄)(h)‖Y ≤ ε‖h‖X.

Then we conclude for some α > 0

‖f (x̄ + h) − f (x̄)‖Y = ‖f (x̄ + h) − f (x̄) − f ′(x̄)(h) + f ′(x̄)(h)‖Y

≤ ‖f (x̄ + h) − f (x̄) − f ′(x̄)(h)‖Y + ‖f ′(x̄)(h)‖Y

≤ ε‖h‖X + α‖h‖X

= (ε + α)‖h‖X.

Consequently f is continuous at x̄. 
�

One obtains an interesting characterization of a convex functional, if it is Gâteaux
differentiable. This result is summarized in the following theorem.

Theorem 3.16 (characterization of a convex functional).

Let S be a nonempty convex open subset of a real normed space (X, ‖ · ‖),
and let f : S → R be a given functional which is Gâteaux differentiable at
every x̄ ∈ S. Then the functional f is convex if and only if

f (y) ≥ f (x)+ f ′(x)(y − x) for all x, y ∈ S. (3.2)

Proof
(a) First let us assume that the functional f is convex. Then we get for all x, y ∈ S

and all λ ∈ (0, 1]

f (x + λ(y − x)) = f (λy + (1 − λ)x) ≤ λf (y)+ (1 − λ)f (x)

resulting in

f (y) ≥ f (x) + 1

λ
(f (x + λ(y − x))− f (x)).

Since f is Gâteaux differentiable at x, it follows with Theorem 3.13

f (y) ≥ f (x) + f ′(x)(y − x).
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(b) Now we assume that the inequality (3.2) is satisfied. The set S is convex, and
therefore we obtain for all x, y ∈ S and all λ ∈ [0, 1]

f (x) ≥ f (λx + (1 − λ)y) + f ′(λx + (1 − λ)y)((1 − λ)(x − y))

and

f (y) ≥ f (λx + (1 − λ)y) + f ′(λx + (1 − λ)y)(−λ(x − y)).

Since Gâteaux derivatives are linear mappings, we conclude further

λf (x)+ (1 − λ)f (y)

≥ λf (λx + (1 − λ)y) + λ(1 − λ)f ′(λx + (1 − λ)y)(x − y)

+ (1 − λ)f (λx + (1 − λ)y)

−λ(1 − λ)f ′(λx + (1 − λ)y)(x − y)

= f (λx + (1 − λ)y).

Consequently, the functional f is convex. 
�

If S is a nonempty convex open subset of Rn and f : S → R is a continuously
partially differentiable function, then the inequality (3.2) can also be written as

f (y) ≥ f (x) +∇f (x)T (y − x) for all x, y ∈ S.

If one considers for every x ∈ S the tangent plane to f at (x, f (x)), this inequality
means geometrically that the function is above all of these tangent planes (see
Fig. 3.4).

f

f (y)

f (x) + f (x)(y − x)

x y

Fig. 3.4 Illustration of the result of Theorem 3.16
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Next we formulate a necessary optimality condition for Gâteaux differentiable
functionals.

Theorem 3.17 (necessary optimality condition).

Let (X, ‖ · ‖) be a real normed space, and let f : X → R be a given
functional. If x̄ ∈ X is a minimal point of f on X and f is Gâteaux
differentiable at x̄, then it follows

f ′(x̄)(h) = 0 for all h ∈ X.

Proof Let an element h ∈ X be arbitrarily given. Then it follows for x := h + x̄

with Theorem 3.8, (a)

f ′(x̄)(h) ≥ 0,

and for x := −h + x̄ we get

f ′(x̄)(−h) ≥ 0.

Because of the linearity of the Gâteaux derivative the assertion follows immediately.

�

Finally, we discuss an example from the calculus of variations. We proceed as in
the proof of Theorem 3.17 which, in virtue of Theorem 3.13, holds also for Fréchet
differentiable functionals.

Example 3.18 (calculus of variations).

We consider a function l : R3 → R which is continuous with respect to
all arguments and which has continuous partial derivatives with respect to
the two first arguments. Moreover, let a functional f : C1[a, b] → R (with
−∞ < a < b < ∞) with

f (x) =
b∫

a

l(x(t), ẋ(t), t) dt for all x ∈ C1[a, b]

be given. But we are interested only in such functions x for which x(a) = x1
and x(b) = x2 where x1, x2 ∈ R are fixed endpoints. If we define the
constraint set

S := {x ∈ C1[a, b] | x(a) = x1 and x(b) = x2},
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then we ask for necessary optimality conditions for minimal points of f

on S.
For the following we assume that x̄ ∈ S is a minimal point of f on S.
The constraint set S is convex and the objective functional f is Fréchet
differentiable (compare Example 3.12). Then it follows from Theorem 3.8,
(a) (in connection with Theorem 3.13) for the Fréchet derivative of f

f ′(x̄)(x − x̄) ≥ 0 for all x ∈ S

or

f ′(x̄)(h) ≥ 0 for all h ∈ S̃ := S − {x̄}.
The set S̃ can also be written as

S̃ = {x ∈ C1[a, b] | x(a) = x(b) = 0}.
With h ∈ S̃ we have −h ∈ S̃ as well. Because of the linearity of the Fréchet
derivative we obtain

f ′(x̄)(h) = 0 for all h ∈ S̃.

With Example 3.12 we have

f ′(x̄)(h) =
b∫

a

[lx(x̄(t), ˙̄x(t), t)h(t) + lẋ (x̄(t), ˙̄x(t), t)ḣ(t)] dt

for all h ∈ S̃.

Hence our first result reads

b∫

a

[lx(x̄(t), ˙̄x(t), t)h(t) + lẋ(x̄(t), ˙̄x(t), t)ḣ(t)] dt = 0 for all h ∈ S̃.

(3.3)

For further conclusions in the previous example we need an important result
which is prepared by the following lemma.

Lemma 3.19.

For −∞ < a < b < ∞ let

S̃ = {x ∈ C1[a, b] | x(a) = x(b) = 0}.
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If for some function x ∈ C[a, b]
b∫

a

x(t)ḣ(t) dt = 0 for all h ∈ S̃,

then

x ≡ constant on [a, b].

Proof We define

c := 1

b − a

b∫

a

x(t) dt

and choose especially h ∈ S̃ with

h(t) =
t∫

a

(x(s) − c) ds for all t ∈ [a, b].

Then we get

b∫

a

(x(t) − c)2dt =
b∫

a

(x(t) − c)ḣ(t) dt

=
b∫

a

x(t)ḣ(t) dt − c[h(b)− h(a)]

= −c h(b)

= −c

[ b∫

a

x(s) ds − c(b − a)

]

= 0.

Hence it follows

x(t) = c for all t ∈ [a, b]. 
�
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Lemma 3.20 (fundamental lemma of calculus of variations).

For −∞ < a < b < ∞ let

S̃ = {x ∈ C1[a, b] | x(a) = x(b) = 0}.
If there are functions x, y ∈ C[a, b] with

b∫

a

[x(t)h(t) + y(t)ḣ(t)] dt = 0 for all h ∈ S̃, (3.4)

then it follows y ∈ C1[a, b] and ẏ = x.

Proof We define a function ϕ : [a, b] → R by

ϕ(t) =
t∫

a

x(s) ds for all t ∈ [a, b].

Then we obtain by integration by parts

b∫

a

x(t)h(t) dt = ϕ(t)h(t)

∣
∣
∣∣

b

a

−
b∫

a

ϕ(t)ḣ(t) dt

= −
b∫

a

ϕ(t)ḣ(t) dt for all h ∈ S̃,

and from the equation (3.4) it follows

b∫

a

[−ϕ(t) + y(t)]ḣ(t) dt = 0 for all h ∈ S̃.

With Lemma 3.19 we conclude for some constant c ∈ R

y(t) = ϕ(t) + c for all t ∈ [a, b].
Taking into consideration the definition of ϕ this equality leads to

ẏ(t) = x(t) for all t ∈ [a, b],
and the assertion is shown. 
�
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Using this last lemma we obtain the following theorem which is well known in
the calculus of variations.

Theorem 3.21 (Euler-Lagrange equation).

Let the assumptions of Example 3.18 be satisfied. If x̄ ∈ S is a minimal point
of f on S, it follows

d

dt
lẋ (x̄(t), ˙̄x(t), t) = lx(x̄(t), ˙̄x(t), t) for all t ∈ [a, b]. (3.5)

Proof In Example 3.18 the equation (3.3) is already proved to be a necessary
optimality condition. Then the application of Lemma 3.20 leads immediately to the
assertion. 
�

In the calculus of variations the equation (3.5) is also called the Euler-Lagrange
equation.

Example 3.22 (curve with smallest length).

Determine a curve x ∈ C1[a, b] (with −∞ < a < b < ∞) with smallest
length which connects the two end points (a, x1) and (b, x2) (where x1, x2 ∈
R). In other words: We are looking for a minimal point x̄ of f on S with

S := {x ∈ C1[a, b] | x(a) = x1 and x(b) = x2}

and

f (x) =
b∫

a

√
1 + ẋ(t)2 dt for all x ∈ S.

In this case the Euler-Lagrange equation (3.5) reads

d

dt

∂

∂ẋ
(
√

1 + ẋ(t)2)

∣
∣
∣
∣
x=x̄

= 0.

This equation is equivalent to

d

dt

2 ˙̄x(t)

2
√

1 + ˙̄x(t)2
= 0.
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Then we get for some constant c ∈ R

˙̄x(t)
√

1 + ˙̄x(t)2
= c for all t ∈ [a, b]

and ˙̄x ≡ constant. Hence we have the result that the optimal curve x̄ is just
the straight line connecting the points (a, x1) and (b, x2) (see Fig. 3.5). This
result is certainly not surprising.

Fig. 3.5 Illustration of the
result of Example 3.22

x1

x2

a b t

x̄

3.3 Subdifferential

In this section we present an additional concept of a derivative which is formulated
especially for convex functionals. With the aid of this notion we derive the
generalized Kolmogoroff condition known in approximation theory.

The characterization of convex Gâteaux differentiable functionals which is
given in Theorem 3.16 proves to be very useful for the formulation of optimality
conditions. This characterization motivates the following definition of a subgradient.

Definition 3.23 (subdifferential and subgradient).

Let (X, ‖ · ‖) be a real normed space, and let f : X → R be a convex
functional. For an arbitrary x̄ ∈ X the set ∂f (x̄) of all continuous linear
functionals l on X with

f (x) ≥ f (x̄) + l(x − x̄) for all x ∈ X

is called the subdifferential of f at x̄. A continuous linear functional l ∈
∂f (x̄) is called a subgradient of f at x̄ (see Fig. 3.6).
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f

y = f (x̄) + l1(x − x̄)

y = f (x̄) + l2(x − x̄)

y = f (x̄) + l3(x − x̄)

y

xx

Fig. 3.6 Subgradients of a convex functional

Example 3.24 (subgradients).

(a) With Theorem 3.16 for every convex Gâteaux differentiable functional
f defined on a real normed space the subdifferential ∂f (x̄) at an
arbitrary x̄ ∈ X is nonempty. For every x̄ ∈ X we have for the Gâteaux
derivative f ′(x̄) ∈ ∂f (x̄), i.e., f ′(x̄) is a subgradient of f at x̄.

(b) Let (X, ‖ · ‖) be a real normed space, and let (X∗, ‖ · ‖X∗) denote the
real normed space of continuous linear functionals on X (notice that
‖l‖X∗ = sup

x �=0X

|l(x)|
‖x‖ for all l ∈ X∗).

Then for every x̄ ∈ X the subdifferential of the norm at x̄ is given as

∂‖x̄‖ =
{ {l ∈ X∗ | l(x̄) = ‖x̄‖ and ‖l‖X∗ = 1} if x̄ �= 0X

{l ∈ X∗ | ‖l‖X∗ ≤ 1} if x̄ = 0X

}

.

Proof of (b).
(i) For x̄ = 0X we obtain

∂‖x̄‖ = {l ∈ X∗ | ‖x‖ ≥ l(x) for all x ∈ X}
= {l ∈ X∗ | |l(x)|

‖x‖ ≤ 1 for all x ∈ X \ {0X}}

= {l ∈ X∗ | ‖l‖X∗ ≤ 1}.

(ii) Now let an arbitrary element x̄ �= 0X be given. Then we obtain for every
continuous linear functional l ∈ X∗ with l(x̄) = ‖x̄‖ and ‖l‖X∗ = 1
(see Theorem C.4 for the existence of such a functional)

l(x) ≤ ‖x‖ for all x ∈ X
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which implies

‖x̄‖ + l(x − x̄) = ‖x̄‖ − l(x̄) + l(x) ≤ ‖x‖.

Hence it follows l ∈ ∂‖x̄‖.
Finally, we assume that l is a subgradient of the norm at x̄ �= 0X. Then
we get

‖x̄‖ − l(x̄) = ‖2x̄‖ − ‖x̄‖ − l(2x̄ − x̄) ≥ 0

and

−‖x̄‖ + l(x̄) = ‖0X‖ − ‖x̄‖ − l(0X − x̄) ≥ 0.

These two inequalities imply l(x̄) = ‖x̄‖. Furthermore we obtain for all
x ∈ X

‖x‖ ≥ ‖x̄‖ + l(x − x̄)

= ‖x̄‖ + l(x) − ‖x̄‖
= l(x).

But then we conclude

‖l‖X∗ = sup
x �=0X

|l(x)|
‖x‖ ≤ 1.

Because of l(x̄) = ‖x̄‖ this leads to ‖l‖X∗ = 1. So the assertion is
proved. 
�

With the following lemma we also give an equivalent formulation of the
subdifferential.

Lemma 3.25 (equivalent formulation of a subdifferential).

Let (X, ‖ · ‖) be a real normed space, and let f : X → R be a convex
functional. Then we have for an arbitrary x̄ ∈ X

∂f (x̄) = {l ∈ X∗ | f ′(x̄)(h) ≥ l(h) for all h ∈ X}

(where f ′(x̄)(h) denotes the directional derivative of f at x̄ in the direction
h).
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Proof
(a) For an arbitrary l ∈ ∂f (x̄) we have

f ′(x̄)(h) = lim
λ→0+

1

λ
(f (x̄ + λh) − f (x̄)
︸ ︷︷ ︸

≥l(λh)=λl(h)

) ≥ l(h) for all h ∈ X.

Hence one set inclusion is shown.
(b) For the proof of the converse inclusion we assume that any l ∈ X∗ is given with

f ′(x̄)(h) ≥ l(h) for all h ∈ X.

Then it follows with Lemma 3.3 (for λ = 1)

f (x̄ + h) − f (x̄) ≥ f ′(x̄)(h) ≥ l(h) for all h ∈ X

which means that l ∈ ∂f (x̄). 
�

Next we investigate the question under which assumption a convex functional
already has a nonempty subdifferential.

Theorem 3.26 (existence of subgradients).

Let (X, ‖ · ‖) be a real normed space, and let f : X → R be a continuous
convex functional. Then the subdifferential ∂f (x̄) is nonempty for every
x̄ ∈ X.

Proof Choose any point x̄ ∈ X. Since the functional f is continuous at x̄, there
is a ball around x̄ on which the functional f is bounded from above by some
ᾱ ∈ R. Consequently, the epigraph E(f ) of f has a nonempty interior (e.g.,
(x̄, ᾱ + 1) ∈ int(E(f ))), and obviously we have (x̄, f (x̄)) �∈ int(E(f )). f is
a convex functional, and therefore with Theorem 2.8 the epigraph E(f ) of f is
convex. Hence the sets E(f ) and {(x̄, f (x̄))} can be separated with the aid of the
Eidelheit separation theorem (Theorem C.2). Then there are a number γ ∈ R and a
continuous linear functional (l, β) on X ×R with (l, β) �= (0X∗, 0) and

l(x) + βα ≤ γ ≤ l(x̄) + βf (x̄) for all (x, α) ∈ E(f ). (3.6)

For x = x̄ we obtain especially

βα ≤ βf (x̄) for all α ≥ f (x̄).

Consequently we have β ≤ 0. If we assume that β = 0, we obtain from the
inequality (3.6)

l(x − x̄) ≤ 0 for all x ∈ X
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1

0 1

f

Fig. 3.7 Illustration of f

and therefore we conclude l = 0X∗ . But this is a contradiction to the condition
(l, β) �= (0X∗, 0). So we obtain β < 0, and the inequality (3.6) leads to

1

β
l(x) + α ≥ 1

β
l(x̄) + f (x̄) for all (x, α) ∈ E(f )

which implies for α = f (x)

f (x) ≥ f (x̄) − 1

β
l(x − x̄) for all x ∈ X.

Consequently, − 1
β
l is an element of the subdifferential ∂f (x̄). 
�

Under the assumptions of Theorem 3.26 it can be shown in addition that
the subdifferential is a convex weak*-compact subset of X∗. Notice that with
Lemma 2.13 the convex functional in the previous theorem is already continuous
if it is continuous at some point.

Not every convex functional is already continuous. Figure 3.7 illustrates the
function f : [0, 1] → R with

f (x) =
{

x if 0 < x ≤ 1
1 if x = 0

}
,

which is convex but not continuous.
But it is shown in [74, p. 82–83] that every convex real-valued function defined

on an open convex subset of Rn is continuous.
With the aid of subgradients we can immediately present a necessary and

sufficient optimality condition. This theorem is formulated without proof because
it is an obvious consequence of the definition of the subdifferential.
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Theorem 3.27 (optimality condition).

Let (X, ‖ · ‖) be a real normed space, and let f : X → R be a convex
functional. A point x̄ ∈ X is a minimal point of f on X if and only if
0X∗ ∈ ∂f (x̄).

With the following theorem we investigate again the connection between the
directional derivative and the subdifferential of a convex functional. We see that
the directional derivative is the least upper bound of the subgradients (compare also
Lemma 3.25).

Theorem 3.28 (directional derivative).

Let (X, ‖ · ‖) be a real normed space, and let f : X → R be a continuous
convex functional. Then for every x̄, h ∈ X the directional derivative of f

at x̄ in the direction h is given as

f ′(x̄)(h) = max
l∈∂f (x̄)

l(h).

Proof Let x̄ ∈ X be an arbitrary point and h ∈ X be an arbitrary direction. With
Theorem 3.4 the directional derivative f ′(x̄)(h) exists and with Theorem 3.26 the
subdifferential ∂f (x̄) is nonempty. With Lemma 3.25 we have

f ′(x̄)(h) ≥ l(h) for all l ∈ ∂f (x̄).

Hence it remains to show that there is a subgradient l with f ′(x̄)(h) = l(h). For that
purpose we define the set

T := {(x̄ + λh, f (x̄) + λf ′(x̄)(h)) ∈ X × R | λ ≥ 0}.

Because of Lemma 3.3 we have

f (x̄ + λh) ≥ f (x̄) + λf ′(x̄)(h) for all λ ≥ 0.

Therefore we get

(x̄ + λh, f (x̄) + λf ′(x̄)(h)) �∈ int(E(f )) for all λ ≥ 0

(as in the proof of Theorem 3.26 notice that the epigraph of f has a nonempty
interior because f is continuous). Then it follows int(E(f )) ∩ T = ∅. If we also
notice that the sets S := E(f ) and T are convex, then the Eidelheit separation
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theorem is applicable (Theorem C.2). Consequently, there are a continuous linear
functional l on X and real numbers β and γ with the property (l, β) �= (0X∗, 0) and

l(x) + βα ≤ γ ≤ l(x̄ + λh) + β(f (x̄) + λf ′(x̄)(h)) (3.7)

for all (x, α) ∈ E(f ) and all λ ≥ 0.

For x = x̄ and λ = 0 we obtain especially

βα ≤ βf (x̄) for all α ≥ f (x̄)

which leads to β ≤ 0. If we assume that β = 0, then we obtain from the
inequality (3.7) with λ = 0

l(x − x̄) ≤ 0 for all x ∈ X

and therefore l = 0X∗ . But this is a contradiction to the condition (l, β) �= (0X∗, 0).
Consequently we get β < 0, and from the inequality (3.7) we conclude

1

β
l(x − x̄ − λh) + α ≥ f (x̄) + λf ′(x̄)(h) (3.8)

for all (x, α) ∈ E(f ) and all λ ≥ 0.

For α = f (x) and λ = 0 we obtain

f (x) ≥ f (x̄) − 1

β
l(x − x̄) for all x ∈ X,

i.e., − 1
β
l is a subgradient of f at x̄. For x = x̄, α = f (x̄) and λ = 1 we also

conclude from the inequality (3.8)

f ′(x̄)(h) ≤ − 1

β
l(h).

Because of − 1
β
l ∈ ∂f (x̄) the assertion is shown. 
�

As a result of the previous theorem the following necessary and sufficient
optimality condition can be given.

Corollary 3.29 (optimality condition).

Let S be a nonempty subset of a real normed space (X, ‖ · ‖), and let f :
X → R be a continuous convex functional.
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(a) If x̄ ∈ S is a minimal point of f on S and S is starshaped with respect
to x̄, then

0 ≤ max
l∈∂f (x̄)

l(x − x̄) for all x ∈ S. (3.9)

(b) If for some x̄ ∈ S the inequality (3.9) is satisfied, then x̄ is a minimal
point of f on S.

Proof The part (a) of this theorem follows immediately from the Theorems 3.8,(a)
and 3.28 (together with a remark on page 37). For the proof of the part (b) notice
that with Theorem 3.28 and Lemma 3.3 it follows from the inequality (3.9)

1

λ
(f (x̄ + λ(x − x̄)) − f (x̄)) ≥ f ′(x̄)(x − x̄) ≥ 0 for all x ∈ S and all λ > 0.

Hence we get for λ = 1

f (x̄) ≤ f (x) for all x ∈ S.

Consequently, x̄ is a minimal point of f on S. 
�

For the application of this corollary we turn our attention to approximation
problems.

Corollary 3.30 (generalized Kolmogorov condition).

Let S be a nonempty subset of a real normed space (X, ‖ · ‖), and let x̂ ∈
X \ S be a given element.

(a) If x̄ ∈ S is a best approximation to x̂ from S and S is starshaped with
respect to x̄, then

max{l(x − x̄) | l ∈ X∗, l(x̄ − x̂) = ‖x̄ − x̂‖ and

‖l‖X∗ = 1} ≥ 0 for all x ∈ S. (3.10)

(b) If for some x̄ ∈ S the inequality (3.10) is satisfied, then x̄ is a best
approximation to x̂ from S.

Proof x̄ ∈ S is a best approximation to x̂ from S if and only if x̄ − x̂ �= 0X is a
minimal point of the norm ‖ · ‖ on S − {x̂}. With Example 3.24, (b) we have

∂‖x̄ − x̂‖ = {l ∈ X∗ | l(x̄ − x̂) = ‖x̄ − x̂‖ and ‖l‖X∗ = 1}.
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Then the inequality (3.9) is equivalent to the inequality

max{l(x − x̄ + x̂) | l ∈ X∗, l(x̄ − x̂) = ‖x̄ − x̂‖ and ‖l‖X∗ = 1} ≥ 0

for all x ∈ S − {x̂}

resulting in

max{l(x − x̄) | l ∈ X∗, l(x̄ − x̂) = ‖x̄ − x̂‖ and ‖l‖X∗ = 1} ≥ 0

for all x ∈ S.

Finally notice in part (a) that the set S − {x̂} is starshaped with respect to x̄ − x̂

and the norm ‖ · ‖ is a continuous functional (compare page 23). So this theorem is
proved using Corollary 3.29. 
�

The optimality condition for approximation problems given in Theorem 3.30 is
also called generalized Kolmogorov condition in approximation theory.

3.4 Quasidifferential

The theory of subdifferentials may also be extended to certain nonconvex function-
als. Such an extension was proposed by Dem’yanov and Rubinov2 and is the subject
of this section. We give only a short introduction to this theory of quasidifferentials.

Definition 3.31 (quasidifferential).

Let S be a nonempty open subset of a real normed space (X, ‖ · ‖), let
f : S → R be a given functional, and let x̄ ∈ S be a given element.
The functional f is called quasidifferentiable at x̄ if f is directionally
differentiable at x̄ and if there are two nonempty convex weak*-compact
subsets ∂f (x̄) and ∂f (x̄) of the topological dual space X∗ with the property

f ′(x̄)(h) = max
l∈∂f (x̄)

l(h) + min
l∈∂f (x̄)

l(h) for all h ∈ X.

The pair of sets Df (x̄) := (∂f (x̄), ∂f (x̄)) is called a quasidifferential
of f at x̄, and the sets ∂f (x̄) and ∂f (x̄) are called subdifferential and
superdifferential of f at x̄, respectively.

2V.F. Dem’yanov and A.M. Rubinov, “On quasidifferentiable functionals”, Soviet Math. Dokl. 21
(1980) 14–17.
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Quasidifferentials have interesting properties. But, in general, it is difficult to
determine a quasidifferential to a given functional.

Notice in the preceding definition that the subdifferential and the superdiffer-
ential are not uniquely determined. For instance, for every ball B(0X∗ , ε) := {l ∈
X∗ | ‖l‖X∗ ≤ ε} with an arbitrary ε > 0 the pair of sets (∂f (x̄)+B(0X∗ , ε), ∂f (x̄)−
B(0X∗, ε)) is a quasidifferential of f at x̄ as well.

Example 3.32 (difference of convex functionals).

Let (X, ‖ · ‖) be a real normed space, and let f : X → R and g :
X → R be convex functionals. If f and g are continuous at some x̄ ∈ X,
then the functional ϕ := f − g is quasidifferentiable at x̄. In this case
(∂f (x̄),−∂g(x̄)) is a quasidifferential of ϕ at x̄ where ∂f (x̄) and ∂g(x̄)

denote the subdifferential of f and g at x̄, respectively.

Proof By Theorem 3.4 f and g are directionally differentiable and there-
fore ϕ = f−g is also directionally differentiable. If ∂f (x̄) and ∂g(x̄) denote
the subdifferential of f and g at x̄ (these two sets are nonempty, convex and
weak*-compact), we define the sets ∂ϕ(x̄) := ∂f (x̄) and ∂ϕ(x̄) := −∂g(x̄).
By Theorem 3.28 the directional derivative of ϕ is given as

ϕ′(x̄)(h) = f ′(x̄)(h) − g′(x̄)(h)

= max
l∈∂f (x̄)

l(h) − max
l∈∂g(x̄)

l(h)

= max
l∈∂ϕ(x̄)

l(h) + min
l∈∂ϕ(x̄)

l(h) for all h ∈ X.

Hence Dϕ(x̄) := (∂f (x̄),−∂g(x̄)) is a quasidifferential of ϕ at x̄. 
�

This example shows that the concept of the quasidifferential is suitable for
functionals which may be represented as the difference of two convex functionals.
These functionals are also called d.c. functionals.

For locally Lipschitz continuous functionals we can present an interesting
characterization of the notion of quasidifferentiability. We show the equivalence
of the quasidifferentiability to a certain “Fréchet property” for locally Lipschitz
continuous functionals on R

n.

Definition 3.33 (Lipschitz continuity).

Let S be a nonempty subset of a real normed space (X, ‖ · ‖), let f : S → R

be a given functional, and let x̄ ∈ S be a given element. f is called Lipschitz
continuous at x̄ if there is a constant k ≥ 0 and some ε > 0 with

|f (x) − f (y)| ≤ k‖x − y‖ for all x, y ∈ S ∩ B(x̄, ε)
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where

B(x̄, ε) := {x ∈ X | ‖x − x̄‖ ≤ ε}.

f is called Lipschitz continuous if there is a constant k ≥ 0 with

|f (x) − f (y)| ≤ k‖x − y‖ for all x, y ∈ S.

The constant k is also called Lipschitz constant.

Definition 3.34 (Fréchet property).

Let S be a nonempty open subset of a real normed space (X, ‖ · ‖) , letf :
S → R be a given functional, let f̄ : X → R be a positively homogeneous
and Lipschitz continuous functional, and let x̄ ∈ S be a given element. f is
said to have the Fréchet property at x̄ with the functional f̄ if

lim‖h‖→0

|f (x̄ + h) − f (x̄) − f̄ (h)|
‖h‖ = 0.

If f is Fréchet differentiable at some x̄ ∈ S, then it has also the Fréchet property
at x̄ with f̄ := f ′(x̄) (Fréchet derivative of f at x̄) because the Fréchet derivative
f ′(x̄) is continuous and linear, and therefore it is also positively homogeneous and
Lipschitz continuous. Hence the concept of the Fréchet property of a functional is
closely related to the concept of the Fréchet differentiability.

The following theorem is due to Schade3 and it is based on a result of Pallaschke,
Recht and Urbański4 stated in Theorem 3.36. It plays only the role of a lemma
for Theorem 3.36, and it says that every directionally differentiable and locally
Lipschitz continuous functional defined on R

n has already the Fréchet property.

Theorem 3.35 (Fréchet property).

Let S be a nonempty open subset of R
n, and let x̄ ∈ S be a given

element. Every functional f : S → R which is Lipschitz continuous at
x̄ and directionally differentiable at x̄ has the Fréchet property at x̄ with
f̄ := f ′(x̄) (directional derivative of f at x̄).

3R. Schade, Quasidifferenzierbare Abbildungen (diplom thesis, Technical University of Darmstadt,
Germany, 1987).
4D. Pallaschke, P. Recht and R. Urbański, “On Locally-Lipschitz Quasi-Differentiable Functions
in Banach-Spaces”, optimization 17 (1986) 287–295.
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Proof Let f : S → R be Lipschitz continuous at x̄ and directionally differentiable
at x̄. Since f : S → R is Lipschitz continuous at x̄, i.e., there are numbers k ≥ 0
and ε > 0 with

|f (x) − f (y)| ≤ k‖x − y‖ for all x, y ∈ S ∩ B(x̄, ε), (3.11)

the directional derivative f ′(x̄) : Rn → R of f at x̄ is also Lipschitz continuous
because for every x1, x2 ∈ R

n

|f ′(x̄)(x1) − f ′(x̄)(x2)| =
∣
∣
∣
∣ lim
λ→0+

1

λ
(f (x̄ + λx1) − f (x̄))

− lim
λ→0+

1

λ
(f (x̄ + λx2) − f (x̄))

∣
∣∣
∣

=
∣
∣
∣
∣ lim
λ→0+

1

λ
(f (x̄ + λx1) − f (x̄ + λx2))

∣
∣
∣
∣

≤ lim
λ→0+

1

λ
k‖λx1 − λx2‖

= k‖x1 − x2‖. (3.12)

So, f ′(x̄) is Lipschitz continuous and it is obvious that f ′(x̄) is also positively
homogeneous.

Now assume that f does not have the Fréchet property at x̄ with f̄ := f ′(x̄).
Then we get for f̄ := f ′(x̄) which is positively homogeneous and Lipschitz
continuous

lim‖h‖→0

|f (x̄ + h) − f (x̄) − f ′(x̄)(h)|
‖h‖ �= 0.

Consequently, there is a β > 0 so that for all i ∈ N there is some hi ∈ R
n with

0 �= ‖hi‖ ≤ 1
i

and

|f (x̄ + hi) − f (x̄) − f ′(x̄)(hi)| ≥ β‖hi‖. (3.13)

Next we set

gi := εhi

‖hi‖ for all i ∈ N. (3.14)

Obviously we have

‖gi‖ = ε for all i ∈ N, (3.15)
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i.e., gi belongs to the sphere {x ∈ R
n | ‖x‖ = ε} which is compact. Therefore the

sequence (gi)i∈N has a subsequence (gij )j∈N converging to some g with ‖g‖ = ε.
If we also set

αi := ‖hi‖
ε

> 0 for all i ∈ N,

we obtain lim
i→∞ αi = 0 and with the equality (3.14)

hi = αigi for all i ∈ N. (3.16)

Finally we define for every i ∈ N

φi := |f (x̄ + αig) − f (x̄) − f ′(x̄)(αig)|
= |f (x̄ + hi) − f (x̄) − f ′(x̄)(hi) − f (x̄ + hi) + f (x̄ + αig)

+ f ′(x̄)(hi) − f ′(x̄)(αig)|
= | [f (x̄ + hi) − f (x̄) − f ′(x̄)(hi)]
− [(f (x̄ + hi) − f (x̄ + αig)) − (f ′(x̄)(hi) − f ′(x̄)(αig))] |

≥ |f (x̄ + hi) − f (x̄) − f ′(x̄)(hi)|
− |(f (x̄ + hi) − f (x̄ + αig)) − (f ′(x̄)(hi) − f ′(x̄)αig))|

≥ |f (x̄ + hi) − f (x̄) − f ′(x̄)(hi)|
− (|f (x̄ + hi) − f (x̄ + αig)| + |f ′(x̄)(hi) − f ′(x̄)(αig)|).

For sufficiently large i ∈ N we have

x̄ + hi ∈ S ∩ B(x̄, ε)

and

x̄ + αig ∈ S ∩ B(x̄, ε),

and therefore we get with the inequalities (3.13), (3.11), (3.12) and the equali-
ties (3.16), (3.15)

φi ≥ β‖hi‖ − (k‖hi − αig‖ + k‖hi − αig‖)
= βαi‖gi‖ − 2kαi‖gi − g‖
= αi(βε − 2k‖gi − g‖).
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Since the sequence (gij )j∈N converges to g, we obtain for sufficiently large j ∈ N

‖gij − g‖ ≤ βε

4k
.

Hence we conclude for sufficiently large j ∈ N

φij ≥ αij

(
βε − βε

2

)
= αij

βε

2

and because of the positive homogenity of f ′(x̄)

∣
∣∣
∣
∣
f (x̄ + αij g) − f (x̄)

αij

− f ′(x̄)(g)

∣
∣∣
∣
∣

= |f (x̄ + αij g) − f (x̄) − f ′(x̄)(αij g)|
αij

= φij

αij

≥ βε

2
> 0.

From the preceding inequality it follows

f ′(x̄)(g) �= lim
j→∞

f (x̄ + αij g) − f (x̄)

αij

which is a contradiction to the definition of the directional derivative. 
�

The preceding theorem presents an interesting property of directionally differen-
tiable and locally Lipschitz continuous functionals on R

n. It is now used in order to
prove the equivalence of the quasidifferentiability to the Fréchet property for locally
Lipschitz continuous functionals on R

n.

Theorem 3.36 (characterization of quasidifferentiability).

Let S be a nonempty open subset of R
n, let x̄ ∈ S be a given element, and

let f : S → R be a given functional which is Lipschitz continuous at x̄.
The functional f is quasidifferentiable at x̄ if and only if f has the Fréchet
property at x̄ with some functional f̄ : Rn → R which can be represented
as difference of two Lipschitz continuous sublinear functionals.
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Proof
(i) First, assume that f is quasidifferentiable at x̄. Then f is also directionally

differentiable at x̄, and by Theorem 3.35 it has the Fréchet property at x̄ with
the directional derivative of f at x̄

f̄ := f ′(x̄) = max
l∈∂f (x̄)

l(·) + min
l∈∂f (x̄)

l(·)

= max
l∈∂f (x̄)

l(·) − max
l∈−∂f (x̄)

l(·). (3.17)

Next we define the functional ϕ : Rn → R by

ϕ(h) := max
l∈∂f (x̄)

l(h) for all h ∈ R
n.

ϕ is sublinear because for all h1, h2 ∈ R
n and all λ ≥ 0 we have

ϕ(h1 + h2) = max
l∈∂f (x̄)

l(h1 + h2)

= max
l∈∂f (x̄)

l(h1) + l(h2)

≤ max
l∈∂f (x̄)

l(h1) + max
l∈∂f (x̄)

l(h2)

= ϕ(h1) + ϕ(h2)

and

ϕ(λh1) = max
l∈∂f (x̄)

l(λh1) = max
l∈∂f (x̄)

λl(h1)

= λ max
l∈∂f (x̄)

l(h1) = λϕ(h1).

The functional ϕ is also continuous because for all h ∈ R
n

|ϕ(h)| =
∣
∣
∣∣ max
l∈∂f (x̄)

l(h)

∣
∣
∣∣ ≤ max

l∈∂f (x̄)
|l(h)|

≤ max
l∈∂f (x̄)

‖l‖ ‖h‖

= ‖h‖ max
l∈∂f (x̄)

‖l‖

= ‖h‖L (3.18)
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with

L := max
l∈∂f (x̄)

‖l‖

(L > 0 exists because ∂f (x̄) is weak*-compact).
Now we show that the continuous sublinear functional ϕ is also Lipschitz

continuous. For that proof take any h1, h2 ∈ R
n. Then we get with the

inequality (3.18)

ϕ(h1) = ϕ(h1 − h2 + h2) ≤ ϕ(h1 − h2) + ϕ(h2)

≤ L‖h1 − h2‖ + ϕ(h2)

resulting in

ϕ(h1) − ϕ(h2) ≤ L‖h1 − h2‖.

Similarly one obtains

ϕ(h2) − ϕ(h1) ≤ L‖h1 − h2‖,

and so it follows

|ϕ(h1) − ϕ(h2)| ≤ L‖h1 − h2‖.

Consequently we have shown that f has the Fréchet property at x̄ with f̄ :=
f ′(x̄) which, by the equation (3.17), can be written as the difference of two
Lipschitz continuous sublinear functionals.

(ii) Now we assume that f has the Fréchet property at x̄ with some functional f̄ :
R

n → R which can be represented as difference of two Lipschitz continuous
sublinear functionals. First we prove that f̄ is the directional derivative f ′(x̄)

of f at x̄. Because of the positive homogenity of f ′(x̄) and f̄ we have

f ′(x̄)(0Rn) = f̄ (0Rn) = 0.

Since f has the Fréchet property at x̄ with f̄ , we get for every h ∈ R
n, h �= 0Rn,

lim
λ→0+

|f (x̄ + λh) − f (x̄) − f̄ (λh)|
‖λh‖ = 0

and

lim
λ→0+

|f (x̄ + λh) − f (x̄) − f̄ (λh)|
λ

= 0.
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Because f̄ is positively homogeneous, we obtain

lim
λ→0+

∣
∣∣
∣
f (x̄ + λh) − f (x̄)

λ
− f̄ (h)

∣
∣∣
∣ = 0.

Hence f is directionally differentiable at x̄ with f̄ = f ′(x̄), and the directional
derivative f ′(x̄) can be written as difference of two Lipschitz continuous
sublinear functionals ϕ1, ϕ2 : Rn → R, i.e.

f ′(x̄) = ϕ1 − ϕ2. (3.19)

Now fix an arbitrary i ∈ {1, 2} and define the set

Ai := {ϕ ∈ R
n | ϕT x ≤ ϕi(x) for all x ∈ R

n}
which is nonempty convex and weak*-compact (in fact, it is a compact subset
of Rn). Then we have for all x ∈ R

n

ϕi(x) ≥ max
ϕ∈Ai

ϕT x. (3.20)

Next, fix any x̄ ∈ R
n and consider the set {(x̄, ϕi(x̄))} and the epigraph E(ϕi).

Notice that this epigraph is convex and it has a nonempty interior because ϕi

is a Lipschitz continuous sublinear functional. Then by the application of the
Eidelheit separation theorem (Theorem C.2) there are a number γ ∈ R and a
vector (l, β) ∈ R

n+1 with (l, β) �= 0Rn+1 and

lT x + βα ≤ γ ≤ lT x̄ + βϕi(x̄) for all (x, α) ∈ E(ϕi). (3.21)

With the same arguments used in the proof of Theorem 3.26 we get β < 0.
If we set ϕ̄ := − 1

β
l, we get for x = 0Rn and α = ϕi(0Rn) = 0 from the

inequality (3.21)

ϕi(x̄) ≤ ϕ̄T x̄. (3.22)

It follows from the inequality (3.21) that

lT x + βϕi(x) ≤ 0 for all x ∈ R
n (3.23)

(otherwise we get for some x ∈ R
n with lT x + βϕi(x) > 0

lT (δx) + βϕi(δx) = δ(lT x + βϕi(x)) −→ ∞ for δ → ∞

which contradicts the inequality (3.21)). From the inequality (3.23) we conclude

ϕ̄T x − ϕi(x) ≤ 0 for all x ∈ R
n,
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i.e. ϕ̄ ∈ Ai . Then it follows from the inequalities (3.20) and (3.22) that

ϕi(x) = max
ϕ∈Ai

ϕT x,

and so we have with the equality (3.19)

f ′(x̄)(x) = max
ϕ∈A1

ϕT x − max
ϕ∈A2

ϕT x

= max
ϕ∈A1

ϕT x + min
ϕ∈−A2

ϕT x for all x ∈ R
n.

Consequently, the functional f is quasidifferentiable at x̄. 
�

Finally, we also present a necessary optimality condition for quasidifferentiable
functionals.

Theorem 3.37 (necessary optimality condition).

Let (X, ‖ · ‖) be a real normed space, and let f : X → R be a
given functional. If x̄ ∈ X is a minimal point of f on X and if f is
quasidifferentiable at x̄ with a quasidifferential (∂f (x̄), ∂f (x̄)), then it
follows

−∂f (x̄) ⊂ ∂f (x̄).

Proof Using Theorem 3.8,(a) we obtain the following necessary optimality condi-
tion for the directional derivative:

f ′(x̄)(h) ≥ 0 for all h ∈ X.

Then, by Definition 3.31, we get for a quasidifferential (∂f (x̄), ∂f (x̄))

max
l∈∂f (x̄)

l(h) ≥ − min
l∈∂f (x̄)

l(h)

= max
l∈−∂f (x̄)

l(h) for all h ∈ X. (3.24)

Now assume that there is some l ∈ −∂f (x̄) with the property l �∈ ∂f (x̄). Since
the subdifferential ∂f (x̄) is convex and weak*-compact, by a separation theorem
(Theorem C.3) there is a weak*-continuous linear functional x∗∗ on X∗ with

x∗∗(l) > sup
l∈∂f (x̄)

x∗∗(l). (3.25)
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Every weak*-continuous linear functional on X∗ is a point functional. In our special
case this means that there is some h ∈ X with

x∗∗(l̃) = l̃(h) for all l̃ ∈ X∗.

Then it follows from the inequality (3.25)

max
l∈−∂f (x̄)

l(h) ≥ l(h) > max
l∈∂f (x̄)

l(h)

which is a contradiction to the inequality (3.24). Hence our assumption is not true
and we have −∂f (x̄) ⊂ ∂f (x̄). 
�

3.5 Clarke Derivative

An interesting extension of the concept of the directional derivative for real-valued
mappings was introduced by Clarke5. This section presents a short discussion of
this notion of a derivative. A simple necessary optimality condition is also given.

Definition 3.38 (Clarke derivative).

Let S be a nonempty subset of a real normed space (X, ‖ · ‖), let f : S → R

be a given functional, and let two elements x̄ ∈ S and h ∈ X be given. If the
limit superior

f ′(x̄)(h) = lim sup
x → x̄

λ → 0+

1

λ
(f (x + λh) − f (x))

exists, then f ′(x̄)(h) is called the Clarke derivative of f at x̄ in the direction
h. If this limit superior exists for all h ∈ X, then f is called Clarke
differentiable at x̄.

The difference between the Clarke derivative and the directional derivative is
based on the fact that for the Clarke derivative the limit superior has to be determined
and the base element x of the difference quotient has to be varied.

In this section we see that the Clarke derivative has interesting properties.
But it has also the disadvantage that this derivative describes a functional only
“cumulatively”.

5F.H. Clarke, “Generalized gradients and applications”, Trans. Amer. Math. Soc. 205 (1975) 247–
262.



3.5 Clarke Derivative 69

Notice that for the Clarke derivative the limit superior is considered only for those
x ∈ X and λ > 0 for which x ∈ S and x + λh ∈ S. There are no difficulties, for
instance, if x̄ belongs to the interior of the set S. But other types of sets are possible,
too.

Example 3.39 (Clarke derivative).

For the absolute value function f : R → R with

f (x) = |x| for all x ∈ R

the Clarke derivative at 0 reads for every h ∈ R

f ′(0)(h) = lim sup
x → 0

λ → 0+

1

λ
(|x + λh| − |x|) = |h|.

In order to see this result, notice that we get with the aid of the triangle
inequality

f ′(0)(h) = lim sup
x → 0

λ → 0+

1

λ
(|x + λh| − |x|)

≤ lim sup
x → 0

λ → 0+

1

λ
(|x| + λ|h| − |x|)

= |h|.

For x = λh we obtain

f ′(0)(h) = lim sup
x → 0

λ → 0+

1

λ
(|x + λh| − |x|)

≥ lim sup
λ→0+

1

λ
(2λ|h| − λ|h|)

= |h|.

Hence we have f ′(0)(h) = |h|.

The class of locally Lipschitz continuous functionals is already differentiable in
the sense of Clarke.
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Theorem 3.40 (Clarke differentiable functional).

Let S be a subset of a real normed space (X, ‖ · ‖) with nonempty interior,
let x̄ ∈ int(S) be a given element, and let f : S → R be a functional which
is Lipschitz continuous at x̄ with a Lipschitz constant k. Then f is Clarke
differentiable at x̄ and

|f ′(x̄)(h)| ≤ k‖h‖ for all h ∈ X.

Proof For an arbitrary h ∈ X we obtain for the absolute value of the difference
quotient in the expression for f ′(x̄)(h)

∣
∣
∣
∣
1

λ
(f (x + λh) − f (x))

∣
∣
∣
∣ ≤

1

λ
k ‖x + λh − x‖ = k‖h‖,

if x is sufficiently close to x̄ and λ is sufficiently close to 0. Because of this
boundedness the limit superior f ′(x̄)(h) exists. Furthermore we have

|f ′(x̄)(h)| =

∣
∣
∣
∣∣
∣
∣
∣

lim sup
x → x̄

λ → 0+

1

λ
(f (x + λh) − f (x))

∣
∣
∣
∣∣
∣
∣
∣

≤ lim sup
x → x̄

λ → 0+

∣
∣∣
∣
1

λ
(f (x + λh) − f (x))

∣
∣∣
∣

≤ k‖h‖

which is to prove. 
�

The assumption in the preceding theorem that x̄ belongs to the interior of the set
S can be weakened essentially. But then Theorem 3.40 becomes more technical.

Clarke derivatives have the interesting property to be sublinear with respect to
the direction h.

Theorem 3.41 (sublinearity of the Clarke derivative).

Let S be a subset of a real normed space (X, ‖ · ‖) with nonempty interior,
let x̄ ∈ int(S) be a given element, and let f : S → R be a functional which
is Clarke differentiable at x̄. Then the Clarke derivative f ′(x̄) is a sublinear
functional.
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Proof For the proof of the positive homogenity of f ′(x̄) notice that f ′(x̄)(0X)

= 0 and that for arbitrary h ∈ X and α > 0

f ′(x̄)(αh) = lim sup
x → x̄

λ → 0+

1

λ
(f (x + λαh) − f (x))

= α lim sup
x → x̄

λ → 0+

1

λα
(f (x + λαh) − f (x))

= αf ′(x̄)(h).

Next we prove the subadditivity of f ′(x̄). For arbitrary h1, h2 ∈ X we get

f ′(x̄)(h1 + h2)

= lim sup
x → x̄

λ → 0+

1

λ
(f (x + λ(h1 + h2)) − f (x))

= lim sup
x → x̄

λ → 0+

1

λ
(f (x + λh1 + λh2) − f (x + λh2) + f (x + λh2) − f (x))

≤ lim sup
x → x̄

λ → 0+

1

λ
(f (x + λh2 + λh1) − f (x + λh2))

+ lim sup
x → x̄

λ → 0+

1

λ
(f (x + λh2) − f (x))

= f ′(x̄)(h1) + f ′(x̄)(h2).

Consequently, f ′(x̄) is sublinear. 
�

In the case of a locally Lipschitz continuous convex functional the directional
derivative and the Clarke derivative coincide.

Theorem 3.42 (directional and Clarke derivative).

Let (X, ‖ · ‖) be a real normed space, and let f : X → R be a
convex functional which is Lipschitz continuous at some x̄ ∈ X. Then the
directional derivative of f at x̄ coincides with the Clarke derivative of f

at x̄.
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Proof Let h ∈ X denote an arbitrary direction. By Theorems 3.4 and 3.40 the
directional derivative f ′(x̄)(h) and the Clarke derivative f 0(x̄)(h) of f at x̄ in the
direction h exist. By the definition of these derivatives it follows immediately

f ′(x̄)(h) ≤ f 0(x̄)(h).

For the proof of the converse inequality we write

f 0(x̄)(h) = lim sup
x → x̄

λ → 0+

1

λ
(f (x + λh) − f (x))

= lim
δ → 0+
ε → 0+

sup
‖x−x̄‖<δ

sup
0<λ<ε

1

λ
(f (x + λh) − f (x)) .

Since f is convex, Lemma 3.3 leads to the equality

f 0(x̄)(h) = lim
δ → 0+
ε → 0+

sup
‖x−x̄‖<δ

1

ε
(f (x + εh) − f (x)) ,

and (since this limit exists, one can choose a special sequence, i.e.) for an arbitrary
α > 0 we obtain

f 0(x̄)(h) = lim
ε→0+

sup
‖x−x̄‖<εα

1

ε
(f (x + εh) − f (x)) .

If we notice that because of the local Lipschitz continuity of f we have for
sufficiently small ε > 0

∣
∣
∣∣
1

ε
(f (x + εh) − f (x)) − 1

ε
(f (x̄ + εh) − f (x̄))

∣
∣
∣∣

≤ 1

ε
|f (x + εh) − f (x̄ + εh)| + 1

ε
|f (x) − f (x̄)|

≤ k

ε
‖x − x̄‖ + k

ε
‖x − x̄‖

≤ 2kα

(k ≥ 0 denotes a Lipschitz constant), then it follows

f 0(x̄)(h) ≤ lim
ε→0+

1

ε
(f (x̄ + εh) − f (x̄)) + 2kα = f ′(x̄)(h) + 2kα.
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Since α > 0 has been chosen arbitrarily, we obtain

f 0(x̄)(h) ≤ f ′(x̄)(h).

This completes the proof. 
�

With the aid of the Clarke derivative it is possible to introduce a so-called
generalized gradient for locally Lipschitz continuous functionals.

Definition 3.43 (generalized gradient).

Let S be a subset of a real normed space (X, ‖ · ‖) with nonempty interior,
and let f : S → R be a functional which is Lipschitz continuous at some
x̄ ∈ int(S). Then the set ∂Clf (x̄) of all continuous linear functionals l on X

with

f ′(x̄)(h) ≥ l(h) for all h ∈ X

is called the generalized gradient of f at x̄ (where f ′(x̄)(h) denotes the
Clarke derivative of f at x̄ in the direction h).

For functionals defined on the whole space, notice the formal analogy of
the definition of the generalized gradient and the equivalent definition of the
subdifferential from Lemma 3.25. The formal difference lies in the fact that one
uses the directional derivative for the subdifferential whereas one works with the
Clarke derivative for the generalized gradient.

The next result follows immediately from Theorem 3.42 and Lemma 3.25.

Corollary 3.44 (subdifferential and generalized gradient).

Let (X, ‖ · ‖) be a real normed space, and let f : X → R be a
convex functional which is Lipschitz continuous at some x̄ ∈ X. Then
the subdifferential ∂f (x̄) of f at x̄ coincides with the generalized gradient
∂Clf (x̄) of f at x̄.

With the following theorem we show that locally Lipschitz continuous function-
als have a nonempty generalized gradient.

Theorem 3.45 (nonemptiness of the generalized gradient).

Let S be a subset of a real normed space (X, ‖ · ‖) with nonempty interior,
and let f : S → R be a given functional. If f is Lipschitz continuous
at some x̄ ∈ int(S), then the generalized gradient ∂Clf (x̄) of f at x̄ is
nonempty.
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Proof By Theorem 3.40 the Clarke derivative exists and by Theorem 3.41 it is
sublinear. Consequently, by the basic version of the Hahn-Banach theorem (compare
Theorem C.1) there is a linear functional l on X which satisfies the inequality

f ′(x̄)(h) ≥ l(h) for all h ∈ X. (3.26)

For the proof of the continuity of l we choose an arbitrary h ∈ X. Then it follows
from the inequality (3.26) and Theorem 3.40

l(h) ≤ f ′(x̄)(h) ≤ |f ′(x̄)(h)| ≤ k‖h‖

(where k ≥ 0 denotes a Lipschitz constant) and

−l(h) = l(−h) ≤ f ′(x̄)(−h) ≤ |f ′(x̄)(−h)| ≤ k‖ − h‖ = k‖h‖.

This leads to the inequality

|l(h)| ≤ k‖h‖.

Hence l is continuous at 0X. Because of the linearity of l the functional l is also
continuous on X. This completes the proof. 
�

It is also possible to derive a necessary optimality condition for Clarke differen-
tiable functionals. This condition is given in the next theorem.

Theorem 3.46 (necessary optimality condition).

Let T be a superset of a nonempty subset S of a real normed space (X, ‖·‖),
let f : T → R be a given functional, and let T have a nonempty interior.
If x̄ ∈ S ∩ int(T ) is a minimal point of f on S, the set S is starshaped
with respect to x̄ and the functional f is Lipschitz continuous at x̄, then the
following inequality holds for the Clarke derivative

f ′(x̄)(x − x̄) ≥ 0 for all x ∈ S.

Proof Let x̄ ∈ S be a minimal point of f on S. Since x̄ ∈ int(T ) and f is Lipschitz
continuous at x̄, we have for an arbitrary x ∈ S

∣
∣
∣
1

λ
(f (x̄ + λ(x − x̄)) − f (x̄))

∣
∣
∣ ≤ k

λ
‖λ(x − x̄)‖

= k‖x − x̄‖ for sufficiently small λ > 0.
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Consequently the expression

lim sup
λ→0+

1

λ
(f (x̄ + λ(x − x̄)) − f (x̄))

exists. Because of the minimality of f at x̄ and the starshapedness of S with respect
to x̄ this limit superior is nonnegative. Then we conclude

0 ≤ lim sup
λ→0+

1

λ
(f (x̄ + λ(x − x̄)) − f (x̄))

≤ lim sup
y → x̄

λ → 0+

1

λ
(f (y + λ(x − x̄)) − f (y))

= f ′(x̄)(x − x̄)

which completes the proof. 
�

If (X, ‖ · ‖) is a real normed space and f : X → R is a given functional, then in
the case of S = X the assertion of Theorem 3.46 can also be interpreted as follows:
If x̄ ∈ X is a minimal point of f on X, then the functional 0X∗ is an element of the
generalized gradient of f at x̄.

Exercises

(3.1) For the function f : R → R with

f (x) =
{

x2 sin 1
x

if x �= 0
0 if x = 0

determine the directional derivative at x̄ = 0.
(3.2) Let M be a compact subset of Rn, and let C(M) denote the linear space of

continuous real-valued functions on M equipped with the maximum norm
‖ · ‖ where

‖x‖ = max
t∈M

|x(t)| for all x ∈ C(M).

To a given function x̂ ∈ C(M) we consider a functional f : C(M) → R with

f (x) = ‖x − x̂‖ for all x ∈ C(M).
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Show that the directional derivative of f at an arbitrary x̄ ∈ C(M) is given as

f ′(x̄)(h) =
⎧
⎨

⎩

max
t∈M(x̄)

sgn(x̄(t) − x̂(t))h(t) if x̄ �= x̂

max
t∈M(x̄)

|h(t)| if x̄ = x̂

with

M(x̄) := {t ∈ M | |x̄(t) − x̂(t)| = f (x̄)}.

(3.3) Let (X, ‖ · ‖) be a real normed space, and let f : X → R be a convex
functional which is Gâteaux differentiable at some x̄ ∈ X. Prove that x̄ is a
minimal point of f on X if and only if f ′(x̄) = 0X∗ .

(3.4) For the function f : R → R with

f (x) = |x| for all x ∈ R

determine the subdifferential ∂f (0).
(3.5) Let (X, ‖ · ‖) be a real normed space, and let f : X → R be a convex

functional. Show: For an arbitrary x̄ ∈ X the subdifferential ∂f (x̄) is a convex
set.

(3.6) Prove: For every convex function f : Rn → R which is differentiable at some
x̄ ∈ R

n it follows ∂f (x̄) = {∇f (x̄)}.
(3.7) Let the function f : R2 → R with

f (x1, x2) = |x1x2| for all (x1, x2) ∈ R
2

be given. Determine a quasidifferential of f at an arbitrary point (x1, x2) ∈
R

2.
(3.8) Consider the function f : R2 → R with

f (x1, x2) =
⎧
⎨

⎩
|x1| − |x2| + |x3

1x2|
x2

1+x2
2

if (x1, x2) �= (0, 0)

0 if (x1, x2) = (0, 0)
.

Show that f is quasidifferentiable at x̄ := (0, 0).
(3.9) Let the function f : Rn → R with

f (x1, . . . , xn) = max{x1, . . . , xn} for all x1, . . . , xn ∈ R

be given. For an arbitrary x̄ ∈ R
n let

I (x̄) := {i ∈ {1, . . . , n} | f (x̄) = x̄i}.
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Show that the Clarke derivative of f at x̄ in an arbitrary direction h ∈ R
n is

given as

f ′(x̄)(h) = max
i∈I (x̄)

{hi}.



4Tangent Cones

In this chapter certain approximations of sets are considered which are very useful
for the formulation of optimality conditions. We investigate so-called tangent cones
which approximate a given set in a local sense. First, we discuss several basic
properties of tangent cones, and then we present optimality conditions with the aid
of these cones. Finally, we formulate a Lyusternik theorem.

4.1 Definition and Properties

In this section we turn our attention to the sequential Bouligand tangent cone which
is also called the contingent cone. For this tangent cone we prove several basic
properties.

First, we introduce the concept of a cone.

Definition 4.1 (cone).

Let C be a nonempty subset of a real linear space X.

(a) The set C is called a cone if

x ∈ C, λ ≥ 0 �⇒ λx ∈ C

(compare Fig. 4.1).
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•
0X

C

Fig. 4.1 Cone

(b) A cone C is called pointed if

x ∈ C, −x ∈ C �⇒ x = 0X

(compare Fig. 4.2).

•
0R3

Fig. 4.2 Pointed cone

Example 4.2 (pointed cone).

(a) The set

R
n+ := {x ∈ R

n | xi ≥ 0 for all i ∈ {1, . . . , n}}

is a pointed cone.
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(b) The set

C := {x ∈ C[0, 1] | x(t) ≥ 0 for all t ∈ [0, 1]}

is a pointed cone.

In order theory and optimization theory convex cones are of special interest. Such
cones may be characterized as follows:

Theorem 4.3 (convex cone).

A cone C in a real linear space is convex if and only if for all x, y ∈ C

x + y ∈ C. (4.1)

Proof
(a) Let C be a convex cone. Then it follows for all x, y ∈ C

1

2
(x + y) = 1

2
x + 1

2
y ∈ C

which implies x + y ∈ C.
(b) For arbitrary x, y ∈ C and λ ∈ [0, 1] we have λx ∈ C and (1 − λ)y ∈ C. Then

we get with the condition (4.1) λx + (1 − λ)y ∈ C. Consequently, the cone C

is convex. 
�

In the sequel we also define cones generated by sets.

Definition 4.4 (cone generated by a set).

Let S be a nonempty subset of a real linear space. The set

cone(S) := {λs | λ ≥ 0 and s ∈ S}

is called the cone generated by S (compare Fig. 4.3).
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•

cone(S)

S

0X

Fig. 4.3 Cone generated by S

Example 4.5 (cone generated by a set).

(a) Let B(0X, 1) denote the closed unit ball in a real normed space (X, ‖·‖).
Then the cone generated by B(0X, 1) equals the linear space X.

(b) Let S denote the graph of the function f : R → R with

f (x) =
{

x sin 1
x

if x �= 0
0 if x = 0

.

Then the cone generated by S is given as

cone(S) = {(x, y) ∈ R
2 | |y| ≤ |x|}

(see Fig. 4.4).
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1

−1

y

1 2 x

cone(S)

f

−1−2

Fig. 4.4 Illustration of cone(S)

Now we turn our attention to tangent cones.

Definition 4.6 (contingent cone).

Let S be a nonempty subset of a real normed space (X, ‖ · ‖).

(a) Let x̄ ∈ cl(S) be a given element. A vector h ∈ X is called a tangent
vector to S at x̄, if there are a sequence (xn)n∈N of elements in S and a
sequence (λn)n∈N of positive real numbers with

x̄ = lim
n→∞xn

and

h = lim
n→∞λn(xn − x̄).

(b) The set T (S, x̄) of all tangent vectors to S at x̄ is called sequential
Bouligand tangent cone to S at x̄ or contingent cone to S at x̄ (compare
Fig. 4.5).
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0X

T (S, x̄)

S

x̄

0X T (S, x̄) x̄
S

Fig. 4.5 Two examples of contingent cones

The contingent cone is due to Bouligand6 and Severi. Notice that x̄ needs only
to belong to the closure of the set S in the definition of T (S, x̄). But later we will
assume that x̄ ∈ S.

By the definition of tangent vectors it follows immediately that the contingent
cone is in fact a cone.

Before investigating the contingent cone we briefly present the definition of the
Clarke tangent cone which is not used any further in this chapter.

Remark 4.7 (Clarke tangent cone).

Let x̄ be an element of the closure of a nonempty subset S of a real normed
space (X, ‖ · ‖).

6M.G. Bouligand, “Sur les surfaces dépourvues de points hyperlimites (ou: un thèorème
d’existence du plan tangent)”, Ann. Soc. Polon. Math. 9 (1930) 32–41.

F. Severi remarked that he has independently introduced this notion (F. Severi, “Su alcune
questioni di topologia infinitesimale”, Ann. Soc. Polon. Math. 9 (1930) 97–108).
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(a) The set

TCl(S, x̄) := {h ∈ X | for every sequence (xn)n∈N
of elements of S with x̄ = lim

n→∞xn and

for every sequence (λn)n∈N of positive

real numbers converging to 0 there is

a sequence (hn)n∈N with h = lim
n→∞hn

and xn + λnhn ∈ S for all n ∈ N}

is called (sequential) Clarke tangent cone to S at x̄.
(b) It is evident that the Clarke tangent cone TCl(S, x̄) is always a cone.
(c) If x̄ ∈ S, then the Clarke tangent cone TCl(S, x̄) is contained in the

contingent cone T (S, x̄).
For the proof of this assertion let some h ∈ TCl(S, x̄) be given
arbitrarily. Then we choose the special sequence (x̄)n∈N and an arbitrary
sequence (λn)n∈N of positive real numbers converging to 0. Conse-
quently, there is a sequence (hn)n∈N with h = lim

n→∞hn and x̄+λnhn ∈ S

for all n ∈ N. Now we set

yn := x̄ + λnhn for all n ∈ N

and

tn := 1

λn

for all n ∈ N.

Then it follows

yn ∈ S for all n ∈ N,

lim
n→∞yn = lim

n→∞(x̄ + λnhn) = x̄

and

lim
n→∞tn(yn − x̄) = lim

n→∞
1

λn

(x̄ + λnhn − x̄) = lim
n→∞hn = h.

Consequently, h is a tangent vector. 
�
This result is illustrated in Fig. 4.6.
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0X

T (S, x̄)

TCl(S, x̄)

x̄

S

Fig. 4.6 Illustration of the result in Remark 4.7,(c)

(d) The Clarke tangent cone TCl(S, x̄) is always a closed convex cone.
We mention this result without proof. Notice that this assertion is true
without any assumption on the set S.

Next, we come back to the contingent cone and we investigate the relationship
between the contingent cone T (S, x̄) and the cone generated by S − {x̄}.

Theorem 4.8 (subset of a contingent cone).

Let S be a nonempty subset of a real normed space. If S is starshaped with
respect to some x̄ ∈ S, then it follows

cone(S − {x̄}) ⊂ T (S, x̄).

Proof Let the set S be starshaped with respect to some x̄ ∈ S, and let an arbitrary
element x ∈ S be given. Then we define a sequence (xn)n∈N with

xn := x̄ + 1

n
(x − x̄) = 1

n
x +

(
1 − 1

n

)
x̄ ∈ S for all n ∈ N.

For this sequence we have

lim
n→∞xn = x̄

and

lim
n→∞n(xn − x̄) = x − x̄.
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Consequently, x − x̄ is a tangent vector, and we obtain

S − {x̄} ⊂ T (S, x̄).

Since T (S, x̄) is a cone, we conclude

cone(S − {x̄}) ⊂ cone(T (S, x̄)) = T (S, x̄). 
�

Theorem 4.9 (superset of a contingent cone).

Let S be a nonempty subset of a real normed space. For every x̄ ∈ S it
follows

T (S, x̄) ⊂ cl(cone(S − {x̄})).

Proof We fix an arbitrary x̄ ∈ S and we choose any h ∈ T (S, x̄). Then there are a
sequence (xn)n∈N of elements in S and a sequence (λn)n∈N of positive real numbers
with x̄ = lim

n→∞xn and h = lim
n→∞λn(xn − x̄). The last equation implies

h ∈ cl(cone(S − {x̄}))

which has to be shown. 
�

By the two preceding theorems we obtain the following inclusion chain for a set
S which is starshaped with respect to some x̄ ∈ S:

cone(S − {x̄}) ⊂ T (S, x̄) ⊂ cl(cone(S − {x̄})). (4.2)

The next theorem says that the contingent cone is always closed.

Theorem 4.10 (closedness of a contingent cone).

Let S be a nonempty subset of a real normed space (X, ‖ · ‖). For every
x̄ ∈ S the contingent cone T (S, x̄) is closed.

Proof Let x̄ ∈ S be arbitrarily chosen, and let (hn)n∈N be an arbitrary sequence of
tangent vectors to S at x̄ with lim

n→∞hn = h ∈ X. For every tangent vector hn there

are a sequence (xni )i∈N of elements in S and a sequence (λni )i∈N of positive real
numbers with x̄ = lim

i→∞ xni and hn = lim
i→∞ λni (xni − x̄). Consequently, for every
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n ∈ N there is a number i(n) ∈ N with

‖xni − x̄‖ ≤ 1

n
for all i ∈ N with i ≥ i(n)

and

‖λni (xni − x̄) − hn‖ ≤ 1

n
for all i ∈ N with i ≥ i(n).

If we define the sequences (yn)n∈N and (μn)n∈N by

yn := xni(n)
∈ S for all n ∈ N

and

μn := λni(n)
> 0 for all n ∈ N,

then we obtain lim
n→∞yn = x̄ and

‖μn(yn − x̄) − h‖ = ‖λni(n)
(xni(n)

− x̄) − hn + hn − h‖

≤ 1

n
+ ‖hn − h‖ for all n ∈ N.

Hence we have

h = lim
n→∞μn(yn − x̄)

and h is a tangent vector to S at x̄. 
�

Since the inclusion chain (4.2) is also valid for the corresponding closed sets, it
follows immediately with the aid of Theorem 4.10:

Corollary 4.11 (characterization of a contingent cone).

Let S be a nonempty subset of a real normed space. If the set S is starshaped
with respect to some x̄ ∈ S, then it is

T (S, x̄) = cl(cone(S − {x̄})).

If the set S is starshaped with respect to some x̄ ∈ S, then Corollary 4.11 says
essentially that for the determination of the contingent cone to S at x̄ we have to
consider only rays emanating from x̄ and passing through S.
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Finally, we show that the contingent cone to a nonempty convex set is also
convex.

Theorem 4.12 (convexity of a contingent cone).

If S is a nonempty convex subset of a real normed space (X, ‖ · ‖), then the
contingent cone T (S, x̄) is convex for all x̄ ∈ S.

Proof We choose an arbitrary x̄ ∈ S and we fix two arbitrary tangent vectors
h1, h2 ∈ T (S, x̄) with h1, h2 �= 0X. Then there are sequences (xn)n∈N, (yn)n∈N
of elements in S and sequences (λn)n∈N, (μn)n∈N of positive real numbers with

x̄ = lim
n→∞xn, h1 = lim

n→∞λn(xn − x̄)

and

x̄ = lim
n→∞yn, h2 = lim

n→∞μn(yn − x̄).

Next, we define additional sequences (νn)n∈N and (zn)n∈N with

νn := λn + μn for all n ∈ N

and

zn := 1

νn

(λnxn + μnyn) for all n ∈ N.

Because of the convexity of S we have

zn = λn

λn + μn

xn + μn

λn + μn

yn ∈ S for all n ∈ N,

and we conclude

lim
n→∞zn = lim

n→∞
1

νn

(λnxn + μnyn)

= lim
n→∞

1

νn

(λnxn − λnx̄ + μnyn − μnx̄ + λnx̄ + μnx̄)

= lim
n→∞

(λn

νn

(xn − x̄) + μn

νn

(yn − x̄) + x̄
)

= x̄
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and

lim
n→∞νn(zn − x̄) = lim

n→∞(λnxn + μnyn − νnx̄)

= lim
n→∞(λn(xn − x̄) + μn(yn − x̄))

= h1 + h2.

Hence it follows h1 + h2 ∈ T (S, x̄). Since T (S, x̄) is a cone, Theorem 4.3 leads to
the assertion. 
�

Notice that the Clarke tangent cone to an arbitrary nonempty set S is already a
convex cone, while we have shown the convexity of the contingent cone only under
the assumption of the convexity of S.

4.2 Optimality Conditions

In this section we present several optimality conditions which result from the theory
on contingent cones.

First, we show, for example, for convex optimization problems with a continuous
objective functional that every minimal point x̄ of f on S can be characterized as a
minimal point of f on {x̄} + T (S, x̄).

Theorem 4.13 (optimality condition).

Let S be a nonempty subset of a real normed space (X, ‖ · ‖), and let f :
X → R be a given functional.

(a) If the functional f is continuous and convex, then for every minimal
point x̄ ∈ S of f on S it follows:

f (x̄) ≤ f (x̄ + h) for all h ∈ T (S, x̄), (4.3)

i.e., 0X is a minimal solution of the optimization problem
min

h∈T (S,x̄)
f (x̄ + h) (compare Fig. 4.7).

(b) If the set S is starshaped with respect to some x̄ ∈ S and if the
inequality (4.3) is satisfied, then x̄ is a minimal point of f on S.
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{x̄} + T (S, x̄)

x̄

S

{x ∈ X | f (x) = f (x̄)}

Fig. 4.7 Geometric illustration of the result of Theorem 4.13

Proof
(a) We fix an arbitrary x̄ ∈ S and assume that the inequality (4.3) does not hold.

Then there are a vector h ∈ T (S, x̄) \ {0X} and a number α > 0 with

f (x̄) − f (x̄ + h) > α > 0. (4.4)

By the definition of h there are a sequence (xn)n∈N of elements in S and a
sequence (λn)n∈N of positive real numbers with

x̄ = lim
n→∞xn

and

h = lim
n→∞hn

where

hn := λn(xn − x̄) for all n ∈ N.
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Because of h �= 0X we have lim
n→∞

1

λn

= 0. Since f is convex and continuous,

we obtain with the inequality (4.4) for sufficiently large n ∈ N:

f (xn) = f
( 1

λn

x̄ + xn − x̄ + x̄ − 1

λn

x̄
)

= f
( 1

λn

(x̄ + hn) +
(

1 − 1

λn

)
x̄
)

≤ 1

λn

f (x̄ + hn) +
(

1 − 1

λn

)
f (x̄)

≤ 1

λn

(f (x̄ + h) + α) +
(

1 − 1

λn

)
f (x̄)

<
1

λn

f (x̄) +
(

1 − 1

λn

)
f (x̄)

= f (x̄).

Consequently, x̄ is not a minimal point of f on S.
(b) If the set S is starshaped with respect to some x̄ ∈ S, then it follows by

Theorem 4.8

S − {x̄} ⊂ T (S, x̄).

Hence we get with the inequality (4.3)

f (x̄) ≤ f (x̄ + h) for all h ∈ S − {x̄},

i.e., x̄ is a minimal point of f on S. 
�

Using Fréchet derivatives the following necessary optimality condition can be
formulated.

Theorem 4.14 (necessary optimality condition).

Let S be a nonempty subset of a real normed space (X, ‖ · ‖), and let f be
a functional defined on an open superset of S. If x̄ ∈ S is a minimal point of
f on S and if f is Fréchet differentiable at x̄, then it follows

f ′(x̄)(h) ≥ 0 for all h ∈ T (S, x̄),

i.e., 0X is a minimal solution of the optimization problem
min

h∈T (S,x̄)
f ′(x̄)(h).
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Proof Let x̄ ∈ S be a minimal point of f on S, and let some h ∈ T (S, x̄) \ {0X}
be arbitrarily given (for h = 0X the assertion is trivial). Then there are a sequence
(xn)n∈N of elements in S and a sequence (λn)n∈N of positive real numbers with
x̄ = lim

n→∞xn and h = lim
n→∞hn where

hn := λn(xn − x̄) for all n ∈ N.

By the definition of the Fréchet derivative and because of the minimality of f at x̄

it follows:

f ′(x̄)(h) = f ′(x̄)
(

lim
n→∞λn(xn − x̄)

)

= lim
n→∞λnf

′(x̄)(xn − x̄)

= lim
n→∞λn[f (xn) − f (x̄) − (f (xn) − f (x̄) − f ′(x̄)(xn − x̄))]

≥ − lim
n→∞λn(f (xn) − f (x̄) − f ′(x̄)(xn − x̄))

= − lim
n→∞‖hn‖f (xn) − f (x̄) − f ′(x̄)(xn − x̄)

‖xn − x̄‖
= 0.

Hence, the assertion is proved. 
�

Next, we investigate under which assumptions the condition in Theorem 4.14
is a sufficient optimality condition. For this purpose we define pseudoconvex
functionals.

Definition 4.15 (pseudoconvex functional).

Let S be a nonempty subset of a real linear space, and let f : S → R be a
given functional which has a directional derivative at some x̄ ∈ S in every
direction x−x̄ with arbitrary x ∈ S. The functional f is called pseudoconvex
at x̄ if for all x ∈ S

f ′(x̄)(x − x̄) ≥ 0 �⇒ f (x) − f (x̄) ≥ 0.

Example 4.16 (pseudoconvex functions).

The functions f : R → R and g : R → R with

f (x) = xex for all x ∈ R
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and

g(x) = − 1

1 + x2 for all x ∈ R

are pseudoconvex at every x̄ ∈ R. But the two functions are not convex (see
Fig. 4.8).

1

2

y

f

1

−1−2−3−4 1 2 3 4 x

g

−

Fig. 4.8 Functions f and g in Example 4.16

A relationship between convex and pseudoconvex functionals is given by the next
theorem.

Theorem 4.17 (pseudoconvexity).

Let S be a nonempty convex subset of a real linear space, and let f : S → R

be a convex functional which has a directional derivative at some x̄ ∈ S in
every direction x − x̄ with arbitrary x ∈ S. Then f is pseudoconvex at x̄.

Proof We fix an arbitrary x ∈ S. Because of the convexity of f we get for all
λ ∈ (0, 1]

f (λx + (1 − λ)x̄) ≤ λf (x) + (1 − λ)f (x̄)

and

f (x) ≥ f (x̄) + 1

λ
(f (λx + (1 − λ)x̄) − f (x̄))

= f (x̄) + 1

λ
(f (x̄ + λ(x − x̄)) − f (x̄)).
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Since f has a directional derivative at x̄ in the direction x − x̄, we conclude

f (x) − f (x̄) ≥ f ′(x̄)(x − x̄).

Consequently, if f ′(x̄)(x − x̄) ≥ 0, then

f (x) − f (x̄) ≥ 0.

Hence f is pseudoconvex at x̄. 
�

It is also possible to formulate a relationship between quasiconvex and pseudo-
convex functionals.

Theorem 4.18 (pseudoconvexity and quasiconvexity).

Let S be a nonempty convex subset of a real normed space, and let f be
a functional which is defined on an open superset of S. If f is Fréchet
differentiable at every x̄ ∈ S and pseudoconvex at every x̄ ∈ S, then f

is also quasiconvex on S.

Proof Under the given assumptions we prove that for every α ∈ R the level set

Sα := {x ∈ S | f (x) ≤ α}

is a convex set. For this purpose we fix an arbitrary α ∈ R so that Sα is a nonempty
set. Furthermore we choose two arbitrary elements x, y ∈ Sα . In the following we
assume that there is a λ̂ ∈ [0, 1] with

f (λ̂x + (1 − λ̂)y) > α ≥ max{f (x), f (y)}.

Then it follows λ̂ ∈ (0, 1). Since f is Fréchet differentiable on S, by Theorem 3.15
f is also continuous on S. Consequently, there is a λ̄ ∈ (0, 1) with

f (λ̄x + (1 − λ̄)y) ≥ f (λx + (1 − λ)y) for all λ ∈ (0, 1).

Using Theorems 3.13 and 3.8, (a) (which is now applied to a maximum problem) it
follows for x̄ := λ̄x + (1 − λ̄)y

f ′(x̄)(x − x̄) ≤ 0

and

f ′(x̄)(y − x̄) ≤ 0.
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With

x − x̄ = x − λ̄x − (1 − λ̄)y = (1 − λ̄)(x − y),

y − x̄ = y − λ̄x − (1 − λ̄)y = −λ̄(x − y) (4.5)

and the linearity of f ′(x̄) we obtain

0 ≥ f ′(x̄)(x − x̄) = (1 − λ̄)f ′(x̄)(x − y)

and

0 ≥ f ′(x̄)(y − x̄) = −λ̄f ′(x̄)(x − y).

Hence we have 0 = f ′(x̄)(x − y), and with the equality (4.5) it also follows
f ′(x̄)(y− x̄) = 0. By assumption f is pseudoconvex at x̄ and therefore we conclude

f (y) − f (x̄) ≥ 0.

But this inequality contradicts the following inequality:

f (y) − f (x̄) = f (y) − f (λ̄x + (1 − λ̄)y)

≤ f (y) − f (λ̂x + (1 − λ̂)y)

< f (y) − α

≤ 0. 
�

Using Theorem 3.13 the result of the Theorems 4.17 and 4.18 can be specialized
in the following way: If (X, ‖ · ‖) is a real normed space and if f : X → R is
a functional which is Fréchet differentiable at every x̄ ∈ X, then the following
implications are satisfied:

f convex �⇒ f pseudoconvex at every x̄ ∈ X

�⇒ f quasiconvex.

After these investigations we come back to the question leading to the intro-
duction of pseudoconvex functionals. With the next theorem we present now
assumptions under which the condition in Theorem 4.14 is a sufficient optimality
condition.
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Theorem 4.19 (sufficient optimality condition).

Let S be a nonempty subset of a real normed space, and let f be a functional
defined on an open superset of S. If S is starshaped with respect to some
x̄ ∈ S, if f is directionally differentiable at x̄ and pseudoconvex at x̄, and if

f ′(x̄)(h) ≥ 0 for all h ∈ T (S, x̄),

then x̄ is a minimal point of f on S.

Proof Because of the starshapedness of S with respect to x̄ ∈ S it follows by
Theorem 4.8 S − {x̄} ⊂ T (S, x̄), and therefore we have

f ′(x̄)(x − x̄) ≥ 0 for all x ∈ S.

Since f is pseudoconvex at x̄, we conclude

f (x) − f (x̄) ≥ 0 for all x ∈ S,

i.e., x̄ is a minimal point of f on S. 
�

Notice that the assumption in Theorem 3.8,(b) under which the inequality (3.1)
is a sufficient condition, can be weakened with the aid of the pseudoconvexity
assumption. This result is summarized with Theorem 3.8 in the next corollary.

Corollary 4.20 (necessary and sufficient optimality condition).

Let S be a nonempty subset of a real linear space, and let f : S → R be a
given functional. Moreover, let the functional f have a directional derivative
at some x̄ ∈ S in every direction x − x̄ with arbitrary x ∈ S and let f be
pseudoconvex at x̄. Then x̄ is a minimal point of f on S if and only if

f ′(x̄)(x − x̄) ≥ 0 for all x ∈ S.

4.3 A Lyusternik Theorem

For the application of the necessary optimality condition given in Theorem 4.14
to optimization problems with equality constraints we need a profound theorem
which generalizes a result given by Lyusternik7 published in 1934. This theorem

7L.A. Lyusternik, “Conditional extrema of functionals”, Mat. Sb. 41 (1934) 390–401.
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says under appropriate assumptions that the contingent cone to a set described by
equality constraints is a superset of the set of the linearized constraints. Moreover,
it can be shown under these assumptions that both sets are equal.

Theorem 4.21 (Lyusternik theorem).

Let (X, ‖ · ‖X) and (Z, ‖ · ‖Z) be real Banach spaces, and let h : X → Z

be a given mapping. Furthermore, let some x̄ ∈ S with

S := {x ∈ X | h(x) = 0Z}

be given. Let h be Fréchet differentiable on a neighborhood of x̄, let h′(·) be
continuous at x̄, and let h′(x̄) be surjective. Then it follows

{x ∈ X | h′(x̄)(x) = 0Z} ⊂ T (S, x̄). (4.6)

Proof We present a proof of Lyusternik’s theorem which is put forward by Werner
[365]. This proof can be carried out in several steps. First we apply an open mapping
theorem and then we prove the technical inequality (4.14). In the third part we show
the equations (4.26) and (4.27) with the aid of a construction of special sequences,
and based on these equations we get the inclusion (4.6) in the last part.

(1) Since h′(x̄) is continuous, linear and surjective by the open mapping theorem
the mapping h′(x̄) is open, i.e. the image of every open set is open. Therefore,
if B(0X, 1) denotes the open unit ball in X, there is some � > 0 such that

B(0Z, �) ⊂ h′(x̄) B(0X, 1) (4.7)

where B(0Z, �) denotes the open ball around 0Z with radius �. Because of the
continuity of h′(x̄) there is a

�0 := sup{� > 0 | B(0Z, �) ⊂ h′(x̄) B(0X, 1)}.

(2) Next we choose an arbitrary ε ∈ (0,
�0
2 ). h′(·) is assumed to be continuous at x̄,

and therefore there is a δ > 0 with

‖h′(x̃) − h′(x̄)‖L(X,Z) ≤ ε for all x̃ ∈ B(x̄, 2δ). (4.8)

Now we fix arbitrary elements x̃, ˜̃x ∈ B(x̄, 2δ). By a Hahn-Banach theorem
(Theorem C.4) there is a continuous linear functional l ∈ Z∗ with

‖l‖Z∗ = 1 (4.9)
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and

l(h( ˜̃x) − h(x̃) − h′(x̄)( ˜̃x − x̃)) = ‖h( ˜̃x) − h(x̃) − h′(x̄)( ˜̃x − x̃)‖Z. (4.10)

Next we define a functional ϕ : [0, 1] → R by

ϕ(t) = l(h(x̃ + t ( ˜̃x − x̃)) − th′(x̄)( ˜̃x − x̃)) for all t ∈ [0, 1]. (4.11)

ϕ is differentiable on [0, 1] and we get

ϕ′(t) = l(h′(x̃ + t ( ˜̃x − x̃))( ˜̃x − x̃) − h′(x̄)( ˜̃x − x̃)). (4.12)

By the mean value theorem there is a t̄ ∈ (0, 1) with

ϕ(1)− ϕ(0) = ϕ′(t̄). (4.13)

Then we obtain with (4.10), (4.11), (4.13), (4.12), (4.9) and (4.8)

‖h( ˜̃x) − h(x̃) − h′(x̄)( ˜̃x − x̃)‖Z

= l(h( ˜̃x) − h(x̃) − h′(x̄)( ˜̃x − x̃))

= ϕ(1)− ϕ(0)

= ϕ′(t̄)

= l(h′(x̃ + t̄ ( ˜̃x − x̃))( ˜̃x − x̃) − h′(x̄)( ˜̃x − x̃))

≤ ‖h′(x̃ + t̄ ( ˜̃x − x̃)) − h′(x̄)‖L(X,Z) ‖ ˜̃x − x̃‖X

≤ ε‖ ˜̃x − x̃‖X.

Hence we conclude

‖h( ˜̃x)−h(x̃)−h′(x̄)( ˜̃x− x̃)‖Z ≤ ε‖ ˜̃x− x̃‖X for all x̃, ˜̃x ∈ B(x̄, 2δ). (4.14)

(3) Now we choose an arbitrary α > 1 so that α( 1
2 + ε

�0
) ≤ 1 (notice that ε

�0
< 1

2 ).
For the proof of the inclusion (4.6) we take an arbitrary x ∈ X with h′(x̄)(x) =
0Z. For x = 0X the assertion is trivial, therefore we assume that x �= 0X. We
set λ̂ := δ

‖x‖X
and fix an arbitrary λ ∈ (0, λ̂]. Now we define sequences (rn)n∈N

and (un)n∈N as follows:

r1 = 0X,

h′(x̄)(un) = h(x̄ + λx + rn) for all n ∈ N, (4.15)

rn+1 = rn − un for all n ∈ N. (4.16)
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Since h′(x̄) is assumed to be surjective, for a given rn ∈ X there is always a
vector un ∈ X with the property (4.15). Consequently, sequences (rn)n∈N and
(un)n∈N are well-defined (although they do not need to be unique). From the
inclusion (4.7) which holds for � = �0

α
and the equation (4.15) we conclude for

every n ∈ N

‖un‖X ≤ α

�0
‖h(x̄ + λx + rn)‖Z. (4.17)

For simplicity we set

d(λ) := ‖h(x̄ + λx)‖Z

and

q := εα

�0
.

Since ‖λx‖X ≤ δ we get from the inequality (4.14)

d(λ) = ‖h(x̄ + λx) − h(x̄) − h′(x̄)(λx)‖Z

≤ ε‖λx‖X

≤ εδ, (4.18)

and moreover, because of α > 1 we have

q ≤ 1 − α

2
<

1

2
. (4.19)

Then we assert for all n ∈ N:

‖rn‖X ≤ α

�0
d(λ)

1 − qn−1

1 − q
, (4.20)

‖h(x̄ + λx + rn)‖Z ≤ d(λ)qn−1 (4.21)

and

‖un‖X ≤ α

�0
d(λ)qn−1. (4.22)

We prove the preceding three inequalities by induction. For n = 1 we get

‖r1‖X = 0,

‖h(x̄ + λx + r1)‖Z = d(λ)
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and by the inequality (4.17)

‖u1‖X ≤ α

�0
‖h(x̄ + λx + r1)‖Z

= α

�0
d(λ).

Hence the inequalities (4.20), (4.21) and (4.22) are fulfilled for n = 1. Next
assume that they are also fulfilled for any n ∈ N. Then we get with (4.16), (4.20)
and (4.22)

‖rn+1‖X = ‖rn − un‖X

≤ ‖rn‖X + ‖un‖X

≤ α

�0
d(λ)

(
1 − qn−1

1 − q
+ qn−1

)

= α

�0
d(λ)

1 − qn

1 − q
.

Hence the inequality (4.20) is proved. For the proof of the following inequalities
notice that from (4.20), (4.18) and (4.19)

‖λx + rn‖X ≤ ‖λx‖X + ‖rn‖X

≤ δ + α

�0
d(λ)

1 − qn−1

1 − q

≤ δ + αεδ

�0

1 − qn−1

1 − q

= δ
(

1 + q

1 − q
︸ ︷︷ ︸
< 1

(1 − qn−1)
︸ ︷︷ ︸

< 1

)

< 2δ (4.23)

and from (4.16), (4.20), (4.18) and (4.19)

‖λx + rn − un‖X ≤ ‖λx‖X + ‖rn+1‖X

≤ δ + α

�0
d(λ)

1 − qn

1 − q

≤ δ
(

1 + q

1 − q
︸ ︷︷ ︸
< 1

(1 − qn)
︸ ︷︷ ︸

< 1

)

< 2δ. (4.24)
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Next with (4.16), (4.15), (4.23), (4.24), (4.14) and (4.22) we conclude

‖h(x̄ + λx + rn+1)‖Z

= ‖h(x̄ + λx + rn − un)‖Z

= ‖ − h′(x̄)(−un) − h(x̄ + λx + rn) + h(x̄ + λx + rn − un)‖Z

≤ ε ‖ − un‖X

≤ ε
α

�0
d(λ)qn−1

= d(λ)qn, (4.25)

and with (4.17) and (4.25) we obtain

‖un+1‖X ≤ α

�0
‖h(x̄ + λx + rn+1)‖Z

≤ α

�0
d(λ)qn.

Consequently, the inequalities (4.21) and (4.22) are fulfilled. From the inequal-
ities (4.22) and (4.18) we get

‖un‖X ≤ α

�0
d(λ)qn−1

≤ αεδ

�0
qn−1

= δqn for all n ∈ N,

and because of the inequality (4.19) it follows lim
n→∞ un = 0X. With the

equation (4.16) and the inequalities (4.22) and (4.19) we see for all n, k ∈ N

‖rn+k − rn‖X = ‖rn − un+k−1 − un+k−2 − · · · − un − rn‖X

≤ ‖un‖X + ‖un+1‖X + · · · + ‖un+k−1‖X

≤ α

�0
d(λ)(qn−1 + qn + · · · + qn+k−2)

= α

�0
d(λ)qn−1(1 + q + · · · + qk−1)

= α

�0
d(λ)qn−1 1 − qk

1 − q

<
αd(λ)

�0(1 − q)
qn−1,
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and therefore (rn)n∈N is a Cauchy sequence. So, there is a vector r(λ) ∈ X with
lim

n→∞ rn = r(λ). Furthermore, we obtain from the equation (4.15) in the limit

h(x̄ + λx + r(λ)) = 0Z. (4.26)

From (4.20) we conclude

‖r(λ)‖X

λ
≤ α

λ�0
d(λ)

1

1 − q

= α

�0(1 − q)

‖h(x̄ + λx) − h(x̄) − λh′(x̄)(x)‖Z

λ
,

and therefore we have

lim
λ→0+

r(λ)

λ
= 0X. (4.27)

(4) Finally we show that x belongs to the contingent cone T (S, x̄). Take any
sequence (λn)n∈N with λn ∈ (0, λ̂] for all n ∈ N and lim

n→∞ λn = 0, and define

the sequences (μn)n∈N and (xn)n∈N with

μn := 1

λn

> 0 for all n ∈ N

and

xn := x̄ + λnx + r(λn) for all n ∈ N.

From the equation (4.26) we get

xn ∈ S for all n ∈ N.

Moreover, we have with (4.27)

lim
n→∞ xn = lim

n→∞ x̄ + λnx + r(λn)

= lim
n→∞ x̄ + λn

(
x + r(λn)

λn

)

= x̄,
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and we conclude

lim
n→∞ μn(xn − x̄) = lim

n→∞
1

λn

(λnx + r(λn))

= lim
n→∞ x + r(λn)

λn

= x.

Consequently, we obtain x ∈ T (S, x̄) which completes the proof. 
�

With the following theorem we show that the inclusion (4.6) also holds in the
opposite direction.

Theorem 4.22 (converse of Lyusternik’s inclusion).

Let (X, ‖ · ‖X) and (Z, ‖ · ‖Z) be real normed spaces, and let h : X → Z

be a given mapping. Furthermore, let some x̄ ∈ S with

S := {x ∈ X | h(x) = 0Z}

be given. If h is Fréchet differentiable at x̄, then it follows

T (S, x̄) ⊂ {x ∈ X | h′(x̄)(x) = 0Z}.

Proof Let y ∈ T (S, x̄)\{0X} be an arbitrary tangent vector (the assertion is evident
for y = 0X). Then there are a sequence (xn)n∈N of elements in S and a sequence
(λn)n∈N of positive real numbers with

x̄ = lim
n→∞xn

and

y = lim
n→∞yn

where

yn := λn(xn − x̄) for all n ∈ N.
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0X

T (S, x̄) = {x ∈ X | h (x̄)(x) = 0Z}

S = {x ∈ X | h(x) = 0Z}

x̄

Fig. 4.9 Contingent cone with respect to an equality constraint

Consequently, by the definition of the Fréchet derivative we obtain:

h′(x̄)(y) = h′(x̄)
(

lim
n→∞λn(xn − x̄)

)

= lim
n→∞ λnh

′(x̄)(xn − x̄)

= lim
n→∞ − λn[h(xn) − h(x̄) − h′(x̄)(xn − x̄)]

= − lim
n→∞ ‖yn‖X

h(xn) − h(x̄) − h′(x̄)(xn − x̄)

‖xn − x̄‖X

= 0Z. 
�

The proof of the preceding theorem is similar to the proof of Theorem 4.14.
Since the assumptions of Theorem 4.22 are weaker than those of Theorem 4.21,
we summarize the results of the two preceding theorems as follows: Under the
assumptions of Theorem 4.21 we conclude

T (S, x̄) = {x ∈ X | h′(x̄)(x) = 0Z}.

(compare Fig. 4.9).

Exercises

(4.1) Let C be a convex cone in a real normed space with nonempty interior int(C).
Show: int(C)= int(C)+C.

(4.2) Let X be a real linear space. Prove that a functional f : X → R is sublinear
if and only if its epigraph is a convex cone.

(4.3) Let S be a nonempty convex subset of a real linear space. Show that the cone
generated by S is convex.
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(4.4) In R
2 let the set S := {(x, y) ∈ R

2 | −x + y ≤ 1, 2x + y ≤ 4, 0 ≤ x ≤
3
2 , y ≥ 0} be given. Determine the cone generated by S.

(4.5) Let the set S be given as in Exercise (4.4). Determine the contingent cone to
S at (1, 2).

(4.6) Let S be a subset of a real normed space (X, ‖ · ‖) with nonempty interior
int(S). For every x̄ ∈ int(S) show T (S, x̄) = X.

(4.7) Let S1 and S2 be two nonempty subsets of a real normed space. Prove the
following implications:
(a) x̄ ∈ S1 ⊂ S2 ⇒ T (S1, x̄) ⊂ T (S2, x̄),
(b) x̄ ∈ S1 ∩ S2 ⇒ T (S1 ∩ S2, x̄) ⊂ T (S1, x̄) ∩ T (S2, x̄).

(4.8) Let S be a nonempty subset of a real normed space (X, ‖ · ‖), and let some
x̄ ∈ S be arbitrarily given. Show:
T (S, x̄) = {h ∈ X | there are a number σ > 0 and a mapping r : (0, σ ] →
X with lim

t→0+

1

t
r(t) = 0X, and there is a sequence (tn)n∈N of positive real

numbers converging to 0 so that x̄ + tnh + r(tn) ∈ S for all n ∈ N}.
(4.9) Let x̄ be an element of a subset S of a real normed space. Prove that the

Clarke tangent cone TCl(S, x̄) is closed and convex.
(4.10) Is the function f : R → R with f (x) = x3 for all x ∈ R pseudoconvex at

an arbitrary x̄ ∈ R?



5Generalized LagrangeMultiplier Rule

In this chapter we investigate optimization problems with constraints in the form of
inequalities and equalities. For such constrained problems we formulate a multiplier
rule as a necessary optimality condition and we give assumptions under which this
multiplier rule is also a sufficient optimality condition. The optimality condition
presented generalizes the known multiplier rule published by Lagrange in 1797.
With the aid of this optimality condition we deduce then the Pontryagin maximum
principle known from control theory.

The classical Lagrange multiplier rule is a generalization of a Fermat theorem
(given in 1629) to optimization problems with constraints in the form of equalities.
Lagrange developed this rule in connection with problems from mechanics. First he
applied this principle to infinite dimensional problems of the classical calculus of
variations (where it led to the Euler-Lagrange equation) and later he extended it also
to finite dimensional problems.

5.1 Problem Formulation

First, we present the class of optimization problems for which we formulate the
generalized Lagrange multiplier rule as an optimality condition. Furthermore, we
discuss several examples.
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The standard assumption of this chapter reads as follows:

Let (X, ‖ · ‖X) and (Z, ‖ · ‖Z)be real Banach spaces;
let (Y, ‖ · ‖Y ) be a partially ordered real normed space
with ordering cone C with a nonempty interior int(C);
let Ŝ be a convex subset of X with nonempty interior
int(Ŝ);
let f : X → R be a given functional, and
let g : X → Y, h : X → Z be given mappings;
furthermore let the constraint set
S := {x ∈ Ŝ | g(x) ∈ −C, h(x) = 0Z}
be nonempty.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.1)

Under this assumption we consider the optimization problem

min
x∈S

f (x),

i.e., we are looking for minimal points of f on S. Since the superset Ŝ is assumed to
be convex, discrete variables cannot be described with this set. Therefore, a different
Lagrange theory of the discrete-continuous case is developed in Sect. 8.3.

The following examples illustrate why the considered class of constraint sets is
important for applications.

Example 5.1 (finite and infinite dimensional problems).

(a) We consider again the design problem in Example 1.1. For this opti-
mization problem the constraint set reads as follows:

S := {x ∈ R
2 | 2000 ≤ x2

1x2, x1 ≤ 4x2, x2 ≤ x1, x1 ≥ 0, x2 ≥ 0}.

This set can be obtained, for instance, if we choose in the standard
assumption (5.1): X = R

2, Y = R
3, C = R

3+, Ŝ = R
2+ and g : R2 →

R
3 with

g(x1, x2) =
⎛

⎝
2000 − x2

1x2

x1 − 4x2

−x1 + x2

⎞

⎠ for all (x1, x2) ∈ R
2.

Notice that the mapping h does not appear explicitly (formally, one can
also choose the mapping being zero).



5.1 Problem Formulation 109

(b) In Example 1.5 an optimization problem is given which has the con-
straint set

S := {(x, λ) ∈ R
2 | αx − sinh α ≤ λ for all α ∈ [0, 2],

αx − sinh α ≥ −λ for all α ∈ [0, 2]}.

For the description of this set we choose especially in the standard
assumption (5.1): X = R

2, Y = C[0, 2]2,
C = {(ϕ1, ϕ2) ∈ C[0, 2]2 | ϕ1(t) ≥ 0 and ϕ2(t) ≥ 0 for all t ∈ [0, 2]},
Ŝ = R

2 and g : R2 → C[0, 2]2 with

g(x, λ) =
(

x id − sinh−λ1
−x id + sinh−λ1

)
for all (x, λ) ∈ R

2.

Let id denote the identity on [0, 2], and let 1 denote the C[0, 2] function
which equals 1 on [0, 2]. The mapping h does not appear explicitly.

(c) In nonlinear control theory one considers, among other things, the
following dynamical system with additional conditions:

ẋ(t) = f (x(t), u(t)) almost everywhere on [t0, t1],
x(t0) = x0,

g̃(x(t1)) = 0Rr ,

u(t) ∈ � almost everywhere on [t0, t1].

Next, we discuss the used notations and the necessary assumptions. The
control process is considered on the fixed time interval [t0, t1] where
−∞ < t0 < t1 < ∞. Let the control u be an Lm∞ function, i.e., u ∈
Lm∞[t0, t1]. The dynamical system is described by a system of ordinary
differential equations of first order. Let the function f : Rn×R

m → R
n

be continuously partially differentiable. If we define

Wn
1,∞[t0, t1] := {x : [t0, t1] → R

n absolutely continuous |
ẋ ∈ Ln∞[t0, t1]},

then the space Wn
1,∞[t0, t1] equipped with the norm ‖ · ‖ defined by

‖x‖ = max{‖x‖Ln∞[t0,t1], ‖ẋ‖Ln∞[t0,t1]} for all x ∈ Wn
1,∞[t0, t1]

is a Banach space. A solution x of the differential equation

ẋ = f (x, u)
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for a fixed u ∈ Lm∞[t0, t1] is defined as a function x ∈ Wn
1,∞[t0, t1] with

ẋ(t) = f (x(t), u(t)) almost everywhere on [t0, t1].

Then we conclude with the initial condition x(t0) = x0 (where x0 ∈ R
n

is a given vector)

x(t) = x0 +
t∫

t0

f (x(s), u(s)) ds for all t ∈ [t0, t1].

For the terminal state x(t1) we require that

g̃(x(t1)) = 0Rr

where g̃ : Rn → R
r is a continuously partially differentiable vector

function. Let � be a convex subset of Rm with nonempty interior.
Among all feasible controls one tries to determine such a control for
which a given functional becomes minimal. For the description of the
constraint set S of this optimization problem we use the following
notations in the standard assumption (5.1): X = Wn

1,∞[t0, t1] ×
Lm∞[t0, t1], Z = Wn

1,∞[t0, t1] × R
r , Ŝ = {(x, u) ∈ X | u(t) ∈ � almost

everywhere on [t0, t1]}, and h : X → Z with

h(x, u) =
⎛

⎝x(·) − x0 −
·∫

t0

f (x(s), u(s)) ds

g̃(x(t1))

⎞

⎠ for all (x, u) ∈ X.

The constraint g does not appear explicitly in (5.1).

5.2 Necessary Optimality Conditions

In this section we present, under the assumption (5.1), a necessary condition
for minimal points of f on S. This optimality condition generalizes the known
Lagrange multiplier rule.

As an essential tool for the proof of the multiplier rule we need the following
lemma which is obtained with the aid of the necessary optimality condition of
Theorem 4.14 and the Lyusternik theorem.
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Lemma 5.2 (multiplier-free optimality condition).

Let the assumption (5.1) be satisfied, and let x̄ be a minimal point of f on
S. Let the functional f and the mapping g be Fréchet differentiable at x̄.
Let the mapping h be Fréchet differentiable in a neighborhood of x̄, and
let h′(·) be continuous at x̄. Moreover, let the mapping h′(x̄) be surjective.
Then there is no x ∈ int(Ŝ) with f ′(x̄)(x − x̄) < 0, g(x̄) + g′(x̄)(x − x̄) ∈
− int(C) and h′(x̄)(x − x̄) = 0Z.

Proof Let x̄ ∈ S be a minimal point of f on S. We fix an arbitrary x ∈ int(Ŝ)
with x �= x̄, g(x̄) + g′(x̄)(x − x̄) ∈ − int(C) and h′(x̄)(x − x̄) = 0Z (if such an
x does not exist, the assertion is evident). By the Lyusternik Theorem 4.21 we get
x − x̄ ∈ T (S̃, x̄) with

S̃ := {x ∈ X | h(x) = 0Z}.

Consequently, there are a sequence (xn)n∈N of elements in S̃ and a sequence (λn)n∈N
of positive real numbers with

x̄ = lim
n→∞xn

and

x − x̄ = lim
n→∞yn (5.2)

where

yn := λn(xn − x̄) for all n ∈ N.

Because of x ∈ int(Ŝ) we obtain with the equation (5.2)

x̄ + yn ∈ Ŝ for sufficiently large n ∈ N.

Then we get with the convexity of Ŝ for sufficiently large n ∈ N

xn = x̄ + 1

λn

yn

= x̄ + 1

λn

(yn + x̄ − x̄)

=
(

1 − 1

λn

)
x̄ + 1

λn

(yn + x̄) ∈ Ŝ,
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and therefore we have

xn ∈ Ŝ ∩ S̃ for sufficiently large n ∈ N. (5.3)

For the constraint g we obtain

g(xn) = g(xn) − g′(x̄)(xn − x̄) + 1

λn

g′(x̄)(yn)

= 1

λn

[λn(g(xn) − g(x̄) − g′(x̄)(xn − x̄)) + g′(x̄)(yn − (x − x̄))

+ g(x̄) + g′(x̄)(x − x̄)] +
(

1 − 1

λn

)
g(x̄) for all n ∈ N. (5.4)

For n → ∞ we conclude with λn = ‖yn‖X‖xn−x̄‖X
for sufficiently large n ∈ N and the

Fréchet differentiability of g

λn(g(xn) − g(x̄) − g′(x̄)(xn − x̄)) + g′(x̄)(yn − (x − x̄)) → 0. (5.5)

Because of

g(x̄) + g′(x̄)(x − x̄) ∈ − int(C)

it follows with (5.5) for sufficiently large n ∈ N

λn(g(xn) − g(x̄) − g′(x̄)(xn − x̄)) + g′(x̄)(yn − (x − x̄))

+ g(x̄) + g′(x̄)(x − x̄) ∈ −C. (5.6)

Since g(x̄) ∈ −C, we get from (5.4) and (5.6) with the convexity of C

g(xn) ∈ −C for sufficiently large n ∈ N.

Hence we obtain with (5.3) for sufficiently large n ∈ N

xn ∈ S = {x ∈ Ŝ | g(x) ∈ −C, h(x) = 0Z},

and it follows

x − x̄ ∈ T (S, x̄).

Then we conclude with Theorem 4.14

f ′(x̄)(x − x̄) ≥ 0.

This leads to the assertion. 
�
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Now we are able to present the generalized Lagrange multiplier rule.

Theorem 5.3 (generalized Lagrange multiplier rule).

Let the assumption (5.1) be satisfied, and let x̄ be a minimal point of f on
S. Let the functional f and the mapping g be Fréchet differentiable at x̄. Let
the mapping h be Fréchet differentiable in a neighborhood of x̄, let h′(·) be
continuous at x̄, and let the image set h′(x̄)(X) be closed. Then there are a
real number μ ≥ 0 and continuous linear functionals l1 ∈ C∗ and l2 ∈ Z∗
with (μ, l1, l2) �= (0, 0Y ∗, 0Z∗),

(μf ′(x̄) + l1 ◦ g′(x̄) + l2 ◦ h′(x̄))(x − x̄) ≥ 0 for all x ∈ Ŝ (5.7)

and

l1(g(x̄)) = 0. (5.8)

If, in addition to the above assumptions,

(
g′(x̄)

h′(x̄)

)
cone (Ŝ − {x̄}) + cone

(
C + {g(x̄)}

{0Z}
)
= Y × Z, (5.9)

then it follows μ > 0.

Proof For the proof of this theorem we consider the two cases that h′(x̄) is not
surjective or alternatively that h′(x̄) is surjective. First, we assume that h′(x̄) is
not surjective. Then there is a z̄ ∈ Z with z̄ /∈ h′(x̄)(X) = cl(h′(x̄)(X)), and by
a separation theorem (Theorem C.3) there is a continuous linear functional l2 ∈
Z∗\{0Z∗} with

l2(z̄) < inf
z∈h′(x̄)(X)

l2(z).

Because of the linearity of h′(x̄) it follows for every z ∈ h′(x̄)(X)

l2(z̄) < l2(λz) = λl2(z) for all λ ∈ R,

and so we get

l2(z) = 0 for all z ∈ h′(x̄)(X)

resulting in

l2 ◦ h′(x̄) = 0X∗ .
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If we set μ = 0 and l1 = 0Y ∗ , then the inequality (5.7) and the equation (5.8) are
fulfilled, and the first part of the assertion is proved.

For the following we assume the surjectivity of h′(x̄). In the product space R ×
Y × Z we define the nonempty set

M := {(f ′(x̄)(x − x̄) + α, g(x̄) + g′(x̄)(x − x̄) + y, h′(x̄)(x − x̄))

∈ R× Y × Z | x ∈ int(Ŝ), α > 0, y ∈ int(C)},

and we show several properties of this set.
First, we prove that M is a convex set. For this proof we fix two arbitrary elements

(a1, b1, c1), (a2, b2, c2) ∈ M and an arbitrary λ ∈ [0, 1]. By definition there are
elements x1, α1, y1 and x2, α2, y2 with the properties

a1 = f ′(x̄)(x1 − x̄) + α1, a2 = f ′(x̄)(x2 − x̄) + α2,

b1 = g(x̄) + g′(x̄)(x1 − x̄) + y1, b2 = g(x̄) + g′(x̄)(x2 − x̄) + y2,

c1 = h′(x̄)(x1 − x̄), c2 = h′(x̄)(x2 − x̄).

Consequently, we obtain

λa1 + (1 − λ)a2 = f ′(x̄)(λx1 + (1 − λ)x2 − x̄) + λα1 + (1 − λ)α2,

λb1 + (1 − λ)b2 = g(x̄) + g′(x̄)(λx1 + (1 − λ)x2 − x̄) + λy1 + (1 − λ)y2,

λc1 + (1 − λ)c2 = h′(x̄)(λx1 + (1 − λ)x2 − x̄)

which implies

λ(a1, b1, c1) + (1 − λ)(a2, b2, c2) ∈ M.

Next, we show that M is an open set (i.e. M = int(M)). Since int (M) ⊂ M

by definition, we prove the inclusion M ⊂ int(M). We choose an arbitrary triple
(a, b, c) ∈ M . Then there are elements x ∈ int(Ŝ), α > 0 and y ∈ int(C) with

a = f ′(x̄)(x − x̄) + α,

b = g(x̄) + g′(x̄)(x − x̄) + y

and

c = h′(x̄)(x − x̄).
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The mapping h′(x̄) is continuous, linear and surjective. By the open mapping
theorem the image of every open set is open under the mapping h′(x̄). If we notice
furthermore that α > 0, y ∈ int(C) and that Fréchet derivatives are continuous and
linear, it follows (a, b, c) ∈ int (M).
By Lemma 5.2 we have

(0, 0Y , 0Z) /∈ M,

i.e.

M ∩ {(0, 0Y , 0Z)} = ∅.

By the Eidelheit separation theorem (Theorem C.2) there are a real number μ,
continuous linear functionals l1 ∈ Y ∗ and l2 ∈ Z∗ and a real number γ with
(μ, l1, l2) �= (0, 0Y ∗, 0Z∗) and

μ(f ′(x̄)(x − x̄) + α) + l1(g(x̄) + g′(x̄)(x − x̄) + y)

+ l2(h
′(x̄)(x − x̄)) > γ ≥ 0

for all x ∈ int(Ŝ), α > 0 and y ∈ int(C). (5.10)

If we notice that every convex subset of a real normed space with nonempty
interior is contained in the closure of the interior of this set, then we get from the
inequality (5.10)

μ(f ′(x̄)(x − x̄) + α) + l1(g(x̄) + g′(x̄)(x − x̄) + y)

+ l2(h
′(x̄)(x − x̄)) ≥ γ ≥ 0

for all x ∈ Ŝ, α ≥ 0 and y ∈ C. (5.11)

From the inequality (5.11) we obtain for x = x̄

μα + l1(g(x̄) + y) ≥ 0 for all α ≥ 0 and y ∈ C. (5.12)

With α = 1 and y = −g(x̄) we get μ ≥ 0. From the inequality (5.12) it follows for
α = 0

l1(g(x̄)) ≥ −l1(y) for all y ∈ C. (5.13)

Assume that for some y ∈ C it is l1(y) < 0, then with λy ∈ C for some sufficiently
large λ > 0 one gets a contradiction to the inequality (5.13). Therefore we have

l1(y) ≥ 0 for all y ∈ C, (5.14)



116 5 Generalized Lagrange Multiplier Rule

i.e., l1 is an element of the dual cone C∗ of C. Moreover, the inequality (5.13)
implies l1(g(x̄)) ≥ 0. Since x̄ satisfies the inequality constraint, i.e., it is g(x̄) ∈
−C, we also conclude with the inequality (5.14) l1(g(x̄)) ≤ 0. Hence we get
l1(g(x̄)) = 0 and the equation (5.8) is proved.
Now, we show the equation (5.7). For α= 0 and y = − g(x̄) we obtain from the
inequality (5.11)

μf ′(x̄)(x − x̄) + l1(g
′(x̄)(x − x̄)) + l2(h

′(x̄)(x − x̄)) ≥ 0 for all x ∈ Ŝ

and

(μf ′(x̄) + l1 ◦ g′(x̄) + l2 ◦ h′(x̄))(x − x̄) ≥ 0 for all x ∈ Ŝ.

Finally, we consider the case that in addition to the given assumptions

(
g′(x̄)

h′(x̄)

)
cone (Ŝ − {x̄}) + cone

(
C + {g(x̄)}

{0Z}
)
= Y × Z.

For arbitrary elements y ∈ Y and z ∈ Z there are nonnegative real numbers α and
β and vectors x ∈ Ŝ and c ∈ C with

y = g′(x̄)(α(x − x̄)) + β(c + g(x̄))

and

z = h′(x̄)(α(x − x̄)).

Assume that μ = 0. Then we obtain with the inequality (5.7), the equation (5.8) and
the positivity of l1

l1(y) + l2(z)

= (l1 ◦ g′(x̄))(α(x − x̄)) + βl1(c + g(x̄)) + (l2 ◦ h′(x̄))(α(x − x̄))

≥ 0.

Consequently, we have l1 = 0Y ∗ and l2 = 0Z∗ . But this contradicts the assertion
that (μ, l1, l2) �= (0, 0Y ∗, 0Z∗). 
�

Every assumption which ensures that the multiplier μ is positive is also called
a regularity assumption or a constraint qualification (CQ). We call the additional
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assumption (5.9) given in Theorem 5.3 the Kurcyusz-Robinson-Zowe8 regularity
condition. Notice that a regularity assumption is only a condition on the constraint
set S and not a condition on the objective functional f . For μ = 0 the inequal-
ity (5.7) reads

(l1 ◦ g′(x̄) + l2 ◦ h′(x̄)) (x − x̄) ≥ 0 for all x ∈ Ŝ,

and in this case the generalized Lagrange multiplier rule does not contain any
information on the objective functional f — this is not desirable. Therefore, in
general, one is interested in a necessary optimality condition with μ > 0. For μ > 0
the inequality (5.7) leads to

(
f ′(x̄) + 1

μ
l1 ◦ g′(x̄) + 1

μ
l2 ◦ h′(x̄)

)
(x − x̄) ≥ 0 for all x ∈ Ŝ,

and from the equation (5.8) it follows

1

μ
l1(g(x̄)) = 0.

If we define the continuous linear functionals u := 1
μ
l1 ∈ C∗ and v := 1

μ
l2 ∈ Z∗,

then we obtain

(f ′(x̄) + u ◦ g′(x̄) + v ◦ h′(x̄))(x − x̄) ≥ 0 for all x ∈ Ŝ (5.15)

and

u(g(x̄)) = 0.

The functional

L := f + u ◦ g + v ◦ h

is also called Lagrange functional. Then the inequality (5.15) can also be written as

L′(x̄)(x − x̄) ≥ 0 for all x ∈ Ŝ

where L′(x̄) denotes the Fréchet derivative of the Lagrange functional at x̄.

8S.M. Robinson, “Stability theory for systems of inequalities in nonlinear programming, part II:
differentiable nonlinear systems”, SIAM J. Numer. Anal. 13 (1976) 497–513.

J. Zowe and S. Kurcyusz, “Regularity and stability for the mathematical programming problem
in Banach spaces”, Appl. Math. Optim. 5 (1979) 49–62.
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If the superset Ŝ of the constraint set S equals the whole space X, then the
generalized Lagrange multiplier rule can be specialized as follows:

Corollary 5.4 (specialized multiplier rule).

Let the assumption (5.1) with Ŝ = X be satisfied, and let x̄ be a
minimal point of f on S. Let the functional f and the mapping g be
Fréchet differentiable at x̄. Let the mapping h be Fréchet differentiable in a
neighborhood of x̄, let h′(·) be continuous at x̄ and let h′(x̄)(X) be closed.
Then there are a real number μ ≥ 0 and continuous linear functionals
l1 ∈ C∗ and l2 ∈ Z∗ with (μ, l1, l2) �= (0, 0Y ∗, 0Z∗),

μf ′(x̄) + l1 ◦ g′(x̄) + l2 ◦ h′(x̄) = 0X∗

and

l1(g(x̄)) = 0.

If, in addition to the above assumptions, the Kurcyusz-Robinson-Zowe
regularity assumption (5.9) is satisfied, then it follows μ > 0.

Proof In this special setting the inequality (5.7) reads

(μf ′(x̄) + l1 ◦ g′(x̄) + l2 ◦ h′(x̄)) (x − x̄) ≥ 0 for all x ∈ X

which implies because of the linearity of the considered mappings

μf ′(x̄) + l1 ◦ g′(x̄) + l2 ◦ h′(x̄) = 0X∗ .

Then the assertion follows from Theorem 5.3. 
�

The assumptions of Theorem 5.3 (and also those of Corollary 5.4) can be
weakened considerably: Instead of the assumption that int(C) is nonempty and
h′(x̄)(X) is closed, Theorem 5.3 can also be proved under the assumption that either
the set

(
g′(x̄)

h′(x̄)

)
cone (Ŝ − {x̄}) + cone

(
C + {g(x̄)}

{0Z}
)

is closed or the product space Y × Z is finite dimensional (compare Theorem 5.3.6
in the book [365] by Werner).

In the proof of Theorem 5.3 we have shown the following implication: If the
Kurcyusz-Robinson-Zowe condition is satisfied at some x̄ ∈ S, then the generalized
Lagrange multiplier rule is not fulfilled with μ = 0 at x̄. Conversely we prove
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now: If the generalized Lagrange multiplier rule does not hold with μ = 0 at some
x̄ ∈ S, then a condition is satisfied at x̄ which is in a certain sense a modified
Kurcyusz-Robinson-Zowe condition (condition (5.16)). This result shows that the
Kurcyusz-Robinson-Zowe condition is a very weak regularity assumption.

Theorem 5.5 (modified Kurcyusz-Robinson-Zowe condition).

Let the assumption (5.1) be satisfied (without the assumption int (C) �= ∅),
and let some x̄ ∈ S be given. Let the mappings g and h be Fréchet
differentiable at x̄. If there are no continuous linear functionals l1 ∈ C∗
and l2 ∈ Z∗ with (l1, l2) �= (0Y ∗, 0Z∗),

(l1 ◦ g′(x̄) + l2 ◦ h′(x̄)) (x − x̄) ≥ 0 for all x ∈ Ŝ

and

l1(g(x̄)) = 0,

then it follows

cl

((
g′(x̄)

h′(x̄)

)
cone (Ŝ − {x̄}) + cone

(
C + {g(x̄)}

{0Z}
))

= Y × Z.

(5.16)

Proof We prove the assertion by contraposition and assume that there is a pair
(ŷ, ẑ) ∈ Y × Z with

(
ŷ

ẑ

)
/∈ cl

((
g′(x̄)

h′(x̄)

)
cone (Ŝ − {x̄}) + cone

(
C + {g(x̄)}

{0Z}
))

.

The set appearing in the right hand side of this condition is nonempty, closed and
convex. By a separation theorem (Theorem C.3) there is then a continuous linear
functional (l1, l2) ∈ Y ∗ × Z∗ with (l1, l2) �= (0Y ∗, 0Z∗) and

l1(ŷ) + l2(ẑ) < (l1 ◦ g′(x̄))(α(x − x̄)) + βl1(c + g(x̄))

+(l2 ◦ h′(x̄)) (α(x − x̄))

for all α ≥ 0, β ≥ 0, x ∈ Ŝ, c ∈ C.

With standard arguments it follows

α(l1 ◦ g′(x̄) + l2 ◦ h′(x̄))(x − x̄) + βl1(c + g(x̄)) ≥ 0

for all α ≥ 0, β ≥ 0, x ∈ Ŝ, c ∈ C. (5.17)
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Then we get with α = 0 and β = 1

l1(c) ≥ −l1(g(x̄)) for all c ∈ C

which leads to l1 ∈ C∗ and l1(g(x̄)) = 0. From the inequality (5.17) we obtain with
α = 1 and β = 0

(l1 ◦ g′(x̄) + l2 ◦ h′(x̄)) (x − x̄) ≥ 0 for all x ∈ Ŝ.

Hence the generalized Lagrange multiplier rule is fulfilled with μ = 0 at x̄. 
�

The Kurcyusz-Robinson-Zowe regularity assumption may seem to be unwieldy.
In the following we see that there are simpler (and therefore more restrictive)
conditions implying this regularity assumption.

Theorem 5.6 (generalized MFCQ).

Let the assumption (5.1) be satisfied, and let some x̄ ∈ S be given. Let
the mappings g and h be Fréchet differentiable at x̄. If the mapping h′(x̄)

is surjective and if there is a vector x̂ ∈ int (Ŝ) with g(x̄) + g′(x̄)(x̂ −
x̄) ∈ −int (C) and h′(x̄)(x̂ − x̄) = 0Z, then the Kurcyusz-Robinson-Zowe
regularity assumption (5.9) is satisfied.

Proof Let y ∈Y and z∈Z be arbitrarily given elements. Because of the surjectivity
of h′(x̄) there is a vector x ∈ X with h′(x̄)(x) = z. Then we have

z = h′(x̄)(x + λ(x̂ − x̄)) for all λ > 0.

Since x̂ ∈ int(Ŝ), it follows for sufficiently large λ > 0

x + λ(x̂ − x̄) = λ
(
x̂ + 1

λ
x − x̄

)
∈ cone(Ŝ − {x̄}).

Because of g(x̄) + g′(x̄)(x̂ − x̄) ∈ −int(C) we also get for sufficiently large λ > 0

−g(x̄) − g′(x̄)(x̂ − x̄) + 1

λ
(y − g′(x̄)(x)) ∈ C.

If we notice that

y = g′(x̄)(x + λ(x̂ − x̄)) + λ
(
− g(x̄) + g(x̄)

+1

λ
(y − g′(x̄)(x + λ(x̂ − x̄)))

)
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= g′(x̄)(x + λ(x̂ − x̄)) + λ
(
− g(x̄) − g′(x̄)(x̂ − x̄)

+1

λ
(y − g′(x̄)(x)) + g(x̄)

)
for all λ > 0,

then we conclude

(
y

z

)
∈
(

g′(x̄)

h′(x̄)

)
cone (Ŝ − {x̄}) + cone

(
C + {g(x̄)}

{0Z}
)

.

Consequently, the Kurcyusz-Robinson-Zowe regularity assumption (5.9) is satis-
fied. 
�

The regularity assumption given in Theorem 5.6 is called generalized
Mangasarian-Fromovitz constraint qualification or generalized MFCQ.

For the proof of the generalized Lagrange multiplier rule we have assumed that
the ordering cone C has a nonempty interior. If we drop this restrictive assumption,
the following example shows that the Kurcyusz-Robinson-Zowe regularity condi-
tion can be satisfied although the generalized Mangasarian-Fromovitz constraint
qualification of Theorem 5.6 is not fulfilled.

Example 5.7 (Kurcyusz-Robinson-Zowe regularity condition).

We consider especially X = Y = L2[0, 1] with the natural ordering cone

C := {x ∈ L2[0, 1] | x(t) ≥ 0 almost everywhere on [0, 1]}

(notice that int(C) = ∅). For an arbitrary a ∈ L2[0, 1] we investigate the
optimization problem

min < x, x >

subject to the constraints
x − a ∈ C

x ∈ C.

Let < ·, · > denote the scalar product in the Hilbert space L2[0, 1]. Since
the ordering cone C is closed and convex, this optimization problem has at
least one minimal solution x̄ (by Theorem 2.18). If we define the set Ŝ := C

and the constraint mapping g : X → Y by

g(x) = −x + a for all x ∈ X,
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then we obtain for this minimal solution x̄

g′(x̄) cone(Ŝ − {x̄}) + cone(C + {g(x̄)})
= g′(x̄) cone(C − {x̄}) + cone(C + {g(x̄)})
= −C + cone({x̄}) + C + cone({g(x̄)})
= X

because we have X = C −C. Hence this optimization problem satisfies the
Kurcyusz-Robinson-Zowe regularity condition.

In the following we turn our attention to finite dimensional problems. We
specialize Corollary 5.4 for such problems. In this finite dimensional setting one
speaks of the so-called F. John conditions9 and in the case of μ > 0 one speaks of
the Karush-Kuhn-Tucker conditions10 or KKT conditions.

Theorem 5.8 (KKT conditions).

Let the objective function f : Rn → R and the constraint functions g :
R

n → R
m and h : Rn → R

p be given. Let the constraint set S which is
assumed to be nonempty be given as

S := {x ∈ R
n | gi(x) ≤ 0 for all i ∈ {1, . . . ,m} and

hi(x) = 0 for all i ∈ {1, . . . , p}}.

Let x̄ ∈ S be a minimal point of f on S. Let f and g be differentiable at
x̄ and let h be continuously differentiable at x̄. Moreover, let the following
regularity assumption be satisfied: Assume that there is a vector x ∈ R

n

with

∇gi(x̄)T x < 0 for all i ∈ I (x̄)

9F. John, “Extremum problems with inequalities as side conditions”, in: K.O. Friedrichs,
O.E. Neugebauer and J.J. Stoker (eds.), Studies and Essays, Courant Anniversary Volume
(Interscience, New York, 1948).
10W.E. Karush, Minima of functions of several variables with inequalities as side conditions
(Master’s Dissertation, University of Chicago, 1939).

H.W. Kuhn and A.W. Tucker, “Nonlinear programming”, in: J. Neyman (ed.), Proceedings
of the Second Berkeley Symposium on Mathematical Statistics and Probability (University of
California Press, Berkeley, 1951), p. 481–492.
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and

∇hi(x̄)T x = 0 for all i ∈ {1, . . . , p},

and that the vectors ∇h1(x̄), . . . ,∇hp(x̄) are linearly independent. Here let

I (x̄) := {i ∈ 1, . . . ,m} | gi(x̄) = 0}

denote the index set of the inequality constraints which are “active” at x̄.
Then there are multipliers ui ≥ 0 (i ∈ I (x̄)) and vi ∈ R (i ∈ {1, . . . , p})
with the property

∇f (x̄) +
∑

i∈I (x̄)

ui∇gi(x̄) +
p∑

i=1

vi∇hi(x̄) = 0Rn.

Proof We verify the assumptions of Corollary 5.4. h′(x̄) is surjective because the
vectors ∇h1(x̄), . . . ,∇hp(x̄) are linearly independent. The ordering cone C in R

m

is given as C = R
m+. Then we have

int(C) = {y ∈ R
m | yi > 0 for all i ∈ {1, . . . ,m}}

and C∗ = R
m+. Consequently, we obtain for some sufficiently small λ > 0

g(x̄) + g′(x̄)(λx) =
⎛

⎜
⎝

g1(x̄) + λ∇g1(x̄)T x
...

gm(x̄) + λ∇gm(x̄)T x

⎞

⎟
⎠ ∈ −int(C)

and

h′(x̄)(λx) =
⎛

⎜
⎝

λ∇h1(x̄)T x
...

λ∇hp(x̄)T x

⎞

⎟
⎠ = 0Rp .

Because of Theorem 5.6 the Kurcyusz-Robinson-Zowe regularity assumption is
then also satisfied. By Corollary 5.4 there are elements μ > 0, l1 ∈ R

m+ and l2 ∈ R
p

with

μ∇f (x̄) +
m∑

i=1

l1i∇gi(x̄) +
p∑

i=1

l2i∇hi(x̄) = 0Rn
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and

m∑

i=1

l1i gi(x̄) = 0.

For u := 1
μ
l1 ∈ R

m+ and v := 1
μ
l2 ∈ R

p it follows

∇f (x̄) +
m∑

i=1

ui∇gi(x̄) +
p∑

i=1

vi∇hi(x̄) = 0Rn (5.18)

and

m∑

i=1

uigi(x̄) = 0. (5.19)

Because of the inequalities

gi(x̄) ≤ 0 for all i ∈ {1, . . . ,m},

ui ≥ 0 for all i ∈ {1, . . . ,m}

and the equation (5.19) we obtain

uigi(x̄) = 0 for all i ∈ {1, . . . ,m}. (5.20)

For every i ∈ {1, . . . ,m}\I (x̄) we get gi(x̄) < 0, and therefore we conclude
with (5.20) ui = 0. Hence the equation (5.18) can also be written as

∇f (x̄) +
∑

i∈I (x̄)

ui∇gi(x̄) +
p∑

i=1

vi∇hi(x̄) = 0Rn.

This completes the proof. 
�

The regularity assumption given in the previous theorem is also called
Mangasarian-Fromovitz constraint qualification or MFCQ (sometimes it is also
called Arrow-Hurwicz-Uzawa condition). Figure 5.1 illustrates the result of
Theorem 5.8. In this figure we see at a minimal solution x̄ for some u1, u2 ≥ 0

−∇f (x̄) = u2∇g2(x̄) + u3∇g3(x̄)
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S

g1(x ) = 0

g2(x ) = 0

g3(x ) = 0
f (x ) = f

∇f −∇ f

∇g2

∇g3

(x )¯

(x )¯

(x )¯

x̄

(x )¯

(x )¯

Fig. 5.1 Geometric interpretation of Theorem 5.8

or

∇f (x̄) + u2∇g2(x̄) + u3∇g3(x̄) = 0R2 .

If a finite optimization problem has only constraints in the form of inequalities,
then a simple sufficient condition for the Mangasarian-Fromovitz constraint qualifi-
cation can be given. This condition presented in the next lemma is also called Slater
condition.

Lemma 5.9 (Slater condition).

Let g : Rn → R
m be a given vector function, and let the constraint set

S := {x ∈ R
n | gi(x) ≤ 0 for all i ∈ {1, . . . ,m}}

be nonempty. If the functions g1, . . . , gm are differentiable and convex, and
if there is a vector x ∈ R

n with

gi(x) < 0 for all i ∈ {1, . . . ,m},

then the regularity assumption of Theorem 5.8 is satisfied.
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Proof With Theorem 3.16 we get for every x̄ ∈ S

gi(x) ≥ gi(x̄) + ∇gi(x̄)T (x − x̄) for all i ∈ {1, . . . ,m},

and then by the assumptions we conclude

∇gi(x̄)T (x − x̄) ≤ gi(x) − gi(x̄)

< 0 for all i ∈ I (x̄)

where I (x̄) denotes the index set of the inequality constraints being “active” at x̄.

�

The Slater condition can be checked with the aid of the constraint functions
g1, . . . , gm without the knowledge of the minimal point x̄. But this condition is also
very restrictive since, in general, one has to assume that the functions g1, . . . , gm

are convex.

Example 5.10 (KKT conditions).

We consider again Example 1.1. For X = R
2 we define the objective

function f by

f (x) = lx1x2 for all x ∈ R
2.

The constraint functions g1, . . . , g5 are given as

g1(x) = 2000 − x2
1x2

g2(x) = x1 − 4x2

g3(x) = −x1 + x2

g4(x) = −x1

g5(x) = −x2

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

for all x ∈ R
2.

The constraint set S reads as follows

S := {x ∈ R
2 | gi(x) ≤ 0 for all i ∈ {1, . . . , 5}}.

In this example there are no equality constraints. Figure 5.2 illustrates the
constraint set. One can see immediately that the constraints described by g4
and g5 do not become active at any x ∈ S. These constraints are therefore
called redundant.
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Fig. 5.2 Illustration of the constraint set S

For x̃ := (20, 10) the set

Sα := {x ∈ S | f (x) ≤ α}

with α := f (x̃) = 200l is certainly compact because of the continuity
of f . Hence f has at least one minimal point x̄ on Sα . Then x̄ is also a
minimal point of f on S. If we notice that the assumptions of Theorem 5.8
are satisfied (e.g., the regularity assumption is satisfied for x = x̃ − x̄), then
there are multipliers u1, u2, u3 ≥ 0 (g4 and g5 do not become active) with
the property

∇f (x̄) +
∑

i∈I (x̄)

ui∇gi(x̄) = 0R2 .

For the calculation of x̄, u1, u2 and u3 one can investigate all possible cases
of no, one or two constraints being active at x̄. For the following we assume
that g1 and g2 are active. Then we get

(
lx̄2

lx̄1

)
+ u1

(−2x̄1x̄2

−x̄2
1

)
+ u2

(
1

−4

)
=
(

0
0

)
,
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2000 = x̄2
1 x̄2,

x̄1 = 4x̄2,

u1 ≥ 0, u2 ≥ 0.

A solution of this nonlinear system reads x̄1 = 20, x̄2 = 5, u1 =
1

30 l, u2 = 5
3 l. Consequently, x̄ = (20, 5)∈S satisfies the Karush-Kuhn-

Tucker conditions.

5.3 Sufficient Optimality Conditions

The necessary optimality conditions formulated in the preceding section are, in
general, not sufficient optimality conditions if we do not consider additional
assumptions. Therefore we introduce first so-called C̃-quasiconvex mappings and
we show the equivalence of the C̃-quasiconvexity of a certain mapping with the
sufficiency of the generalized multiplier rule as optimality condition for a modified
problem. Moreover, we present a special sufficient optimality condition for finite-
dimensional optimization problems.

In Definition 2.9 we already introduced quasiconvex functionals. With the
following theorem we give a necessary condition for a quasiconvex directionally
differentiable functional.

Theorem 5.11 (quasiconvex functional).

Let S be a nonempty convex subset of a real linear space X, and let f :
S → R be a quasiconvex functional having a directional derivative at some
x̄ ∈ S in every direction x − x̄ with arbitrary x ∈ S. Then the following
implication is satisfied for all x ∈ S

f (x) − f (x̄) ≤ 0 �⇒ f ′(x̄)(x − x̄) ≤ 0.

Proof For an arbitrary x ∈ S we assume that

f (x) − f (x̄) ≤ 0.

Because of the quasiconvexity of f the level set

Sf (x̄) := {x̃ ∈ S | f (x̃) ≤ f (x̄)}
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is then convex. Since x, x̄ ∈ Sf (x̄) we obtain

λx + (1 − λ)x̄ ∈ Sf (x̄) for all λ ∈ [0, 1]

and especially

f (λx + (1 − λ)x̄) ≤ f (x̄) for all λ ∈ [0, 1].

Then it follows

1

λ
(f (x̄ + λ(x − x̄)) − f (x̄)) ≤ 0 for all λ ∈ (0, 1].

Finally we conclude because of the directional differentiability of f at x̄

f ′(x̄)(x − x̄) = lim
λ→0+

1

λ
(f (x̄ + λ(x − x̄)) − f (x̄)) ≤ 0. 
�

The previous theorem motivates the following definition of C̃-quasiconvex
mappings.

Definition 5.12 (C̃-quasiconvex mapping).

Let S be a nonempty subset of a real linear space X, and let C̃ be a nonempty
subset of a real normed space (Y, ‖ · ‖). Let f : S → Y be a given mapping
having a directional derivative at some x̄ ∈ S in every direction x − x̄ with
arbitrary x ∈ S. The mapping f is called C̃-quasiconvex at x̄, if for all
x ∈ S:

f (x) − f (x̄) ∈ C̃ �⇒ f ′(x̄)(x − x̄) ∈ C̃.

Example 5.13 (C̃-quasiconvex functionals).

(a) Let S be a nonempty convex subset of a real linear space, and let
f : S → R be a quasiconvex functional having a directional derivative
at some x̄ ∈ S in every direction x − x̄ with arbitrary x ∈ S. Then f is
R−-quasiconvex at x̄.

Proof We choose an arbitrary x ∈ S with f (x)−f (x̄) ≤ 0. Then it follows
with Theorem 5.11 f ′(x̄)(x − x̄) ≤ 0, and the assertion is proved. 
�
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(b) Let S be a nonempty subset of a real linear space, and let f : S → R

be a given functional having a directional derivative at some x̄ ∈ S in every
direction x − x̄ with arbitrary x ∈ S and let f be pseudoconvex at x̄ ∈ S.
Then f is also (R−\{0})-quasiconvex at x̄.

Proof For an arbitrary x ∈ S with f (x) − f (x̄) < 0 it follows f ′(x̄)(x −
x̄) < 0 because of the pseudoconvexity of f at x̄. 
�

With the aid of the C̃-quasiconvexity it is now possible to characterize the
sufficiency of the generalized multiplier rule as an optimality condition for a
modified optimization problem. For that purpose we need the following assumption:

Let Ŝ be a nonempty subset of a real linear space X;
let (Y, ‖ · ‖Y ) be a partially ordered real normed space
with an ordering cone C;
let (Z, ‖ · ‖Z) be a real normed space;
let f : Ŝ → R be a given functional;
let g : Ŝ → Y and h : Ŝ → Z be given mappings;
moreover, let the constraint set
S := {x ∈ Ŝ | g(x) ∈ −C, h(x) = 0Z}
be nonempty.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.21)

Theorem 5.14 (sufficient optimality condition).

Let the assumption (5.21) be satisfied, and let f , g, h have a directional
derivative at some x̄ ∈ S in every direction x − x̄ with arbitrary x ∈ Ŝ.
Moreover, assume that there are linear functionals u ∈ C′ and v ∈ Z′ with

(f ′(x̄) + u ◦ g′(x̄) + v ◦ h′(x̄)) (x − x̄) ≥ 0 for all x ∈ Ŝ (5.22)

and

u(g(x̄)) = 0. (5.23)

Then x̄ is a minimal point of f on

S̃ := {x ∈ Ŝ | g(x) ∈ −C + cone({g(x̄)}) − cone({g(x̄)}), h(x) = 0Z}

if and only if the mapping

(f, g, h) : Ŝ → R× Y × Z
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is C̃-quasiconvex at x̄ with

C̃ := (R−\{0})× (−C + cone({g(x̄)}) − cone({g(x̄)})) × {0Z}.

Proof First we show under the given assumptions

(f ′(x̄)(x − x̄), g′(x̄)(x − x̄), h′(x̄)(x − x̄)) /∈ C̃ for all x ∈ Ŝ. (5.24)

For the proof of this assertion assume that there is a vector x ∈ Ŝ with

(f ′(x̄)(x − x̄), g′(x̄)(x − x̄), h′(x̄)(x − x̄)) ∈ C̃,

i.e.

f ′(x̄)(x − x̄) < 0,

g′(x̄)(x − x̄) ∈ −C + cone({g(x̄)}) − cone({g(x̄)}),
h′(x̄)(x − x̄) = 0Z.

Hence we get with the equation (5.23) for some α, β ≥ 0

(f ′(x̄) + u ◦ g′(x̄) + v ◦ h′(x̄))(x − x̄) < u(g′(x̄) (x − x̄))

≤ αu(g(x̄)) − βu(g(x̄))

= 0.

But this inequality contradicts the inequality (5.22). Consequently, we have shown
that the condition (5.24) is satisfied.

If the mapping (f, g, h) is C̃-quasiconvex at x̄, then it follows from (5.24)

(f (x) − f (x̄), g(x) − g(x̄), h(x) − h(x̄)) /∈ C̃ for all x ∈ Ŝ,

i.e. there is no x ∈ Ŝ with

f (x) < f (x̄),

g(x) ∈ {g(x̄)} − C + cone({g(x̄)}) − cone({g(x̄)})
= −C + cone({g(x̄)}) − cone({g(x̄)}),

h(x) = 0Z.



132 5 Generalized Lagrange Multiplier Rule

If we notice that with

g(x̄) ∈ −C ⊂ −C + cone({g(x̄)}) − cone({g(x̄)})

it also follows x̄ ∈ S̃, then x̄ is a minimal point of f on S̃.
Now we assume in the converse case that x̄ is a minimal point of f on S̃, then

there is no x ∈ S̃ with

f (x) < f (x̄),

g(x) ∈ −C + cone({g(x̄)}) − cone({g(x̄)})
= {g(x̄)} − C + cone({g(x̄)}) − cone({g(x̄)}),

h(x) = 0Z,

i.e.

(f (x) − f (x̄), g(x) − g(x̄), h(x) − h(x̄)) /∈ C̃ for all x ∈ Ŝ.

Consequently, with the condition (5.24) we conclude that the mapping (f, g, h) is
C̃-quasiconvex at x̄. 
�

By Theorem 5.14 the C̃-quasiconvexity of the mapping (f, g, h) is characteristic
of the sufficiency of the generalized Lagrange multiplier rule as an optimality
condition for the optimization problem

min
x∈S̃

f (x)

with

S̃ := {x ∈ Ŝ | g(x) ∈ −C + cone({g(x̄)}) − cone({g(x̄)}), h(x) = 0Z}.

The set cone({g(x̄)}) − cone({g(x̄)}) equals the one dimensional subspace of Y

spanned by g(x̄). Figure 5.3 illustrates the modified constraint set S̃.

Fig. 5.3 Illustration of the
set S̃ := S̄ ∪ S

x̄ g1(x ) = 0
g2(x ) = 0

g3(x ) = 0

S

S̄
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For the original problem

min
x∈S

f (x)

we obtain the following result.

Corollary 5.15 (sufficient optimality condition).

Let the assumption (5.21) be satisfied, and let f , g, h have a directional
derivative at some x̄ ∈ S in every direction x − x̄ with arbitrary x ∈ Ŝ. If
there are linear functionals u ∈ C′ and v ∈ Z′ with

(f ′(x̄) + u ◦ g′(x̄) + v ◦ h′(x̄)) (x − x̄) ≥ 0 for all x ∈ Ŝ

and

u(g(x̄)) = 0,

and if the mapping

(f, g, h) : Ŝ → R× Y × Z

is C̃-quasiconvex at x̄ with

C̃ := (R−\{0}) × (−C + cone({g(x̄)}) − cone({g(x̄)})) × {0Z},

then x̄ is a minimal point of f on S.

Proof By Theorem 5.14 x̄ is a minimal point of f on S̃. For every x ∈ S we have

g(x) ∈ −C

⊂ −C + cone({g(x̄)}) − cone({g(x̄)}).

Consequently we get S ⊂ S̃, and therefore x̄ is also a minimal point of f on S. 
�

With the following lemma we present conditions on f , g and h which ensure that
the composite mapping (f, g, h) is C̃-quasiconvex.

Lemma 5.16 (C̃-quasiconvex mapping).

Let the assumption (5.21) be satisfied, and let f , g, h have a directional
derivative at some x̄ ∈ S in every direction x− x̄ with arbitrary x ∈ Ŝ. If the
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functional f is pseudoconvex at x̄, the mapping g is (−C + cone({g(x̄)})−
cone({g(x̄)}))-quasiconvex at x̄ and the mapping h is {0Z}-quasiconvex at
x̄, then the composite mapping (f, g, h) is C̃-quasiconvex at x̄ with

C̃ := (R−\{0})× (−C + cone({g(x̄)}) − cone({g(x̄)})) × {0Z}.

Proof Choose an arbitrary x ∈ Ŝ with

(f, g, h)(x) − (f, g, h)(x̄) ∈ C̃,

i.e.

f (x) − f (x̄) < 0,

g(x) − g(x̄) ∈ −C + cone({g(x̄)}) − cone({g(x̄)}),
h(x) − h(x̄) = 0Z.

Because of the pseudoconvexity of f it follows

f ′(x̄)(x − x̄) < 0,

the (−C + cone({g(x̄)}) − cone({g(x̄)}))-quasiconvexity of g leads to

g′(x̄)(x − x̄) ∈ −C + cone({g(x̄)}) − cone({g(x̄)}),

and with the {0Z}-quasiconvexity of h we obtain

h′(x̄)(x − x̄) = 0Z.

This completes the proof. 
�

Notice that the assumption of {0Z}-quasiconvexity of the mapping h at x̄ is very
restrictive. In this case the following implication is satisfied for all x ∈ Ŝ:

h(x) − h(x̄) = 0Z ⇒ h′(x̄)(x − x̄) = 0Z. (5.25)

Such a mapping is also called quasilinear at x̄. For instance, every affine linear
mapping h satisfies the implication (5.25), but also the nonlinear function h : R →
R with h(x) = x3 for all x ∈ R is quasilinear at every x̄ ∈ R.

Now we turn our attention to finite dimensional optimization problems and we
give assumptions on f , g and h under which the Karush-Kuhn-Tucker conditions
are sufficient optimality conditions.
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Theorem 5.17 (KKT conditions).

Let an objective function f : Rn → R as well as constraint functions g :
R

n → R
m and h : Rn → R

p be given. Let the constraint set S which is
assumed to be nonempty be given as

S := {x ∈ R
n | gi(x) ≤ 0 for all i ∈ {1, . . . ,m} and

hi(x) = 0 for all i ∈ {1, . . . , p}}.

Let the functions f, g1, . . . , gm, h1, . . . , hp be differentiable at some x̄ ∈ S.
Let the set

I (x̄) := {i ∈ {1, . . . ,m} | gi(x̄) = 0}

denote the index set of the inequality constraints being “active” at x̄.
Assume that the objective function f is pseudoconvex at x̄, the constraint
functions gi (i ∈ I (x̄)) are quasiconvex at x̄, and the constraint functions
h1, . . . , hp are quasilinear at x̄. If there are multipliers ui ≥ 0 (i ∈ I (x̄))

and vi ∈ R (i ∈ {1, . . . , p}) with

∇f (x̄) +
∑

i∈I (x̄)

ui∇gi(x̄) +
p∑

i=1

vi∇hi(x̄) = 0Rn, (5.26)

then x̄ is a minimal point of f on S.

Proof If we define additional multipliers

ui := 0 for all i ∈ {1, . . . ,m}\I (x̄),

then it follows from the equation (5.26)

∇f (x̄) +
m∑

i=1

ui∇gi(x̄) +
p∑

i=1

vi∇hi(x̄) = 0Rn

and

m∑

i=1

uigi(x̄) = 0.

Then the assertion results from Corollary 5.15 in connection with Lemma 5.16.
One interesting point is only the assumption of the (−R

m+ + cone({g(x̄)})
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− cone({g(x̄)}))-quasiconvexity of g at x̄. For the verification of this assumption
we choose an arbitrary x ∈ R

n with

gi(x) − gi(x̄) ≤ αgi(x̄) − βgi(x̄) for all i ∈ {1, . . . ,m}
and some α, β ≥ 0. (5.27)

The inequality (5.27) implies

gi(x) − gi(x̄) ≤ 0 for all i ∈ I (x̄).

Because of the quasiconvexity of the gi (i ∈ I (x̄)) it then follows

∇gi(x̄)T (x − x̄) ≤ 0 for all i ∈ I (x̄).

Moreover, there are numbers ν,μ ≥ 0 with

∇gi(x̄)T (x − x̄) ≤ (ν − μ)gi(x̄) for all i ∈ {1, . . . ,m}.

Consequently, the vector function g is (−R
m+ + cone({g(x̄)}) − cone ({g(x̄)}))-

quasiconvex at x̄. This completes the proof. 
�

Example 5.18 (KKT conditions).

We investigate the following optimization problem:

min 2x2
1 + 2x1x2 + x2

2 − 10x1 − 10x2

subject to the constraints
x2

1 + x2
2 − 5 ≤ 0,

3x1 + x2 − 6 ≤ 0,

x1, x2 ∈ R.

The objective function f : R2 → R is defined by

f (x1, x2) = 2x2
1 + 2x1x2 + x2

2 − 10x1 − 10x2 for all (x1, x2) ∈ R
2,

and the constraint functions g1, g2 : R2 → R are given by

g1(x1, x2) = x2
1 + x2

2 − 5 for all (x1, x2) ∈ R
2

and

g2(x1, x2) = 3x1 + x2 − 6 for all (x1, x2) ∈ R
2.
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Then the Karush-Kuhn-Tucker conditions for some x̄ ∈ R
2 read as follows:

(
4x̄1 + 2x̄2 − 10
2x̄1 + 2x̄2 − 10

)
+ u1

(
2x̄1

2x̄2

)
+ u2

(
3
1

)
=
(

0
0

)
,

u1(x̄
2
1 + x̄2

2 − 5) = 0,

u2(3x̄1 + x̄2 − 6) = 0.

Notice that x̄1, x̄2, u1 and u2 must also fulfill the following inequalities:

x̄2
1 + x̄2

2 − 5 ≤ 0,

3x̄1 + x̄2 − 6 ≤ 0,

u1 ≥ 0,

u2 ≥ 0.

For the determination of solutions x̄1, x̄2, u1, u2 we can consider all possible
cases of no, one or two active constraints. Under the assumption that only
the constraint function g1 is active (⇒ u2 = 0) it follows

4x̄1 + 2x̄2 − 10 + 2u1x̄1 = 0,

2x̄1 + 2x̄2 − 10 + 2u1x̄2 = 0,

x̄2
1 + x̄2

2 − 5 = 0,

3x̄1 + x̄2 − 6 < 0,

u1 ≥ 0.

x̄1 = 1, x̄2 = 2 and u1 = 1 are a solution of this system. Hence x̄ = (1, 2)

satisfies the Karush-Kuhn-Tucker conditions.
Question: Is x̄ also a minimal point of f on the constraint set?
In order to answer this question we use the result of Theorem 5.17. The
Hessian matrix H of the objective function f reads

H =
(

4 2
2 2

)

and is positive definite (the eigenvalues are 3±√
5). Consequently we have

f (y) = f (x) +∇f (x)T (y − x)+ 1

2
(y − x)T H(y − x)

≥ f (x) +∇f (x)T (y − x) for all x, y ∈ R
2.
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Then we know with Theorem 3.16 that f is convex. Since the Hessian
matrix of the constraint function g1 is also positive definite, we conclude
with the same arguments as for f that g1 is convex. Consequently, by
Theorem 5.17 x̄ = (1, 2) is a minimal point of f on the constraint set.

5.4 Application to Optimal Control Problems

It is the aim of this section to apply the generalized Lagrange multiplier rule to
an optimal control problem which was already described in Example 5.1,(c). For
this optimal control problem we deduce the Pontryagin maximum principle as a
necessary optimality condition, and moreover we give assumptions under which
this maximum principle is a sufficient optimality condition.

In the following we consider the optimal control problem in Example 5.1,(c) with
a special objective functional and g instead of g̃. Let f1 : Rn → R and f2 : Rn ×
R

m → R be continuously partially differentiable functions. Then the investigated
optimal control problem reads as follows:

min f1(x(t1)) +
t1∫

t0

f2(x(t), u(t)) dt

subject to the constraints
ẋ(t) = f (x(t), u(t)) almost everywhere on [t0, t1],

x(t0) = x0,

g(x(t1)) = 0Rr ,

u(t) ∈ � almost everywhere on [t0, t1].

(5.28)

The assumptions were already given in Example 5.1,(c) (for g̃ instead of g).
With the following theorem we present a necessary optimality condition for an

optimal control of this control problem. This optimality condition is also called the
Pontryagin maximum principle.

Theorem 5.19 (Pontryagin maximum principle).

Let the optimal control problem (5.28) be given. Let the functions f1 : Rn →
R, f2 : R

n × R
m → R, f : R

n × R
m → R

n and g : R
n → R

r be
continuously partially differentiable. Let � be a convex subset of Rm with
nonempty interior. Let ū ∈ Lm∞[t0, t1] be an optimal control and let x̄ ∈
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Wn
1,∞[t0, t1] be the resulting state. Let the matrix ∂g

∂x
(x̄(t1)) be row regular.

Moreover, let the linearized system

ẋ(t) = ∂f

∂x
(x̄(t), ū(t)) x(t) + ∂f

∂u
(x̄(t), ū(t)) u(t)

almost everywhere on [t0, t1],
x(t0) = 0Rn

be controllable (i.e., for every x1 ∈ R
n there are a control u ∈ Lm∞[t0, t1]

and a resulting trajectory x ∈ Wn
1,∞[t0, t1] satisfying this linearized system

and for which x(t1) = x1 is fulfilled).
Then there are a function p ∈ Wn

1,∞[t0, t1] and a vector a ∈ R
r so that

(a) −ṗ(t)T = p(t)T
∂f

∂x
(x̄(t), ū(t)) − ∂f2

∂x
(x̄(t), ū(t))

almost everywhere on [t0, t1] (adjoint equation),

(b) −p(t1)
T = aT ∂g

∂x
(x̄(t1)) + ∂f1

∂x
(x̄(t1))

(transversality condition),

(c) for every control u ∈ Lm∞[t0, t1] with

u(t) ∈ � almost everywhere on [t0, t1]
the following inequality is satisfied:
[
p(t)T

∂f

∂u
(x̄(t), ū(t)) − ∂f2

∂u
(x̄(t), ū(t))

]
(u(t) − ū(t)) ≤ 0

almost everywhere on [t0, t1] (local Pontryagin maximum

principle).

Proof It is our aim to derive the given necessary optimality conditions from the
generalized Lagrange multiplier rule (Theorem 5.3).

The control problem (5.28) can be treated as an optimization problem with
respect to the variables (x, u). Then we define the product spaces X :=
Wn

1,∞[t0, t1] × Lm∞[t0, t1] and Z := Wn
1,∞[t0, t1] × R

r . The objective functional
ϕ : X → R is defined by

ϕ(x, u) = f1(x(t1)) +
t1∫

t0

f2(x(t), u(t)) dt for all (x, u) ∈ X.
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The constraint mapping h : X → Z is given by

h(x, u) =
⎛

⎝ x(·) − x0 −
·∫

t0

f (x(s), u(s)) ds

g(x(t1))

⎞

⎠ for all (x, u) ∈ X.

Furthermore, we define the set

Ŝ := {(x, u) ∈ X | u(t) ∈ � almost everywhere on [t0, t1]}.

Then the optimization problem which has to be investigated reads as follows:

min ϕ(x, u)

subject to the constraints
h(x, u) = 0Z

(x, u) ∈ Ŝ.

(5.29)

By the assumption (x̄, ū) is a minimal solution of the optimization problem (5.29).
For the formulation of the generalized Lagrange multiplier rule for the prob-
lem (5.29) we need the Fréchet derivatives of ϕ and h at (x̄, ū). One can show
that these derivatives are given as follows:

ϕ′(x̄, ū)(x, u) = ∂f1

∂x
(x̄(t1)) x(t1)

+
t1∫

t0

[
∂f2

∂x
(x̄(s), ū(s)) x(s) + ∂f2

∂u
(x̄(s), ū(s)) u(s)

]
ds for all (x, u) ∈ X

and

h′(x̄, ū) (x, u) =
(

x(·) −
·∫

t0

[
∂f

∂x
(x̄(s), ū(s)) x(s) + ∂f

∂u
(x̄(s), ū(s)) u(s)

]
ds,

∂g

∂x
(x̄(t1)) x(t1)

)T

for all (x, u) ∈ X.

Notice that h is continuously Fréchet differentiable at (x̄, ū).

Next, we show that the optimization problem (5.29) satisfies a regularity condi-
tion. By Theorem 5.6 the problem is regular, if the mapping h′(x̄, ū) is surjective
(notice that we do not have inequality constraints). For the proof of the surjectivity
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of h′(x̄, ū) we fix arbitrary elements w ∈ Wn
1,∞[t0, t1] and y ∈ R

r . Since the matrix
∂g
∂x

(x̄(t1)) is row regular, there is a vector ỹ ∈ R
n with

∂g

∂x
(x̄(t1)) ỹ = y.

The integral equation

x(t) = w(t) +
t∫

t0

∂f

∂x
(x̄(s), ū(s)) x(s) ds for all t ∈ [t0, t1]

is a linear Volterra equation of the second kind and therefore it has a solution x :=
z ∈ Wn

1,∞[t0, t1]. With this solution z we then consider the linearized system of
differential equations

ẋ(t) = ∂f

∂x
(x̄(t), ū(t)) x(t) + ∂f

∂u
(x̄(t), ū(t)) u(t) almost everywhere on [t0, t1]

with the initial condition

x(t0) = 0Rn

and the terminal condition

x(t1) = ỹ − z(t1).

Because of the controllability of this linearized system there are a control ũ ∈
Lm∞[t0, t1] and a resulting trajectory x̃ ∈ Wn

1,∞[t0, t1] satisfying the initial and
terminal condition. Then we obtain

h′(x̄, ū) (x̃ + z, ũ)

=
(

x̃(·) + z(·) −
·∫

t0

[
∂f

∂x
(x̄(s), ū(s)) (x̃(s) + z(s))

+∂f

∂u
(x̄(s), ū(s)) ũ(s)

]
ds,

∂g

∂x
(x̄(t1)) (x̃(t1) + z(t1))

)T

=
(

w(·) + x̃(·) −
·∫

t0

[
∂f

∂x
(x̄(s), ū(s))x̃(s) + ∂f

∂u
(x̄(s), ū(s))ũ(s)

]
ds,

∂g

∂x
(x̄(t1))ỹ

)T

= (w, y)T .
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Consequently, the mapping h′(x̄, ū) is surjective, and we can choose the parameter
μ as 1 in the generalized Lagrange multiplier rule.

Since all assumptions of Theorem 5.3 are satisfied, there are a continuous linear
functional l ∈ (Wn

1,∞[t0, t1])∗ and a vector a ∈ R
r with

(ϕ′(x̄, ū) + (l, a) ◦ h′(x̄, ū)) (x − x̄, u − ū) ≥ 0 for all x ∈ Ŝ.

Then it follows

∂f1

∂x
(x̄(t1)) (x(t1) − x̄(t1)) +

t1∫

t0

[
∂f2

∂x
(x̄(s), ū(s)) (x(s) − x̄(s))

+ ∂f2

∂u
(x̄(s), ū(s)) (u(s) − ū(s))

]
ds

+ l

(
x(·) − x̄(·) −

·∫

t0

[
∂f

∂x
(x̄(s), ū(s)) (x(s) − x̄(s))

+ ∂f

∂u
(x̄(s), ū(s)) (u(s) − ū(s))

]
ds

)

+ aT ∂g

∂x
(x̄(t1)) (x(t1) − x̄(t1))

≥ 0 for all (x, u) ∈ Ŝ. (5.30)

If we plug u = ū in the inequality (5.30), then we get

∂f1

∂x
(x̄(t1)) (x(t1) − x̄(t1)) +

t1∫

t0

∂f2

∂x
(x̄(s), ū(s)) (x(s) − x̄(s)) ds

+l

⎛

⎝x(·) − x̄(·) −
·∫

t0

∂f

∂x
(x̄(s), ū(s)) (x(s) − x̄(s)) ds

⎞

⎠

+aT ∂g

∂x
(x̄(t1)) (x(t1) − x̄(t1)) ≥ 0 for all x ∈ Wn

1,∞[t0, t1]
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and

∂f1

∂x
(x̄(t1)) x(t1) +

t1∫

t0

∂f2

∂x
(x̄(s), ū(s)) x(s) ds

+ l

⎛

⎝x(·) −
·∫

t0

∂f

∂x
(x̄(s), ū(s)) x(s) ds

⎞

⎠+ aT ∂g

∂x
(x̄(t1)) x(t1)

= 0 for all x ∈ Wn
1,∞[t0, t1]; (5.31)

for x = x̄ it follows

t1∫

t0

∂f2

∂u
(x̄(s), ū(s)) (u(s) − ū(s)) ds

+ l

⎛

⎝−
·∫

t0

∂f

∂u
(x̄(s), ū(s)) (u(s) − ū(s)) ds

⎞

⎠

≥ 0 for all u ∈ Lm∞[t0, t1] with u(t) ∈ � almost everywhere on [t0, t1].
(5.32)

Next, we consider the equation (5.31) and we try to characterize the continuous
linear functional l. For this characterization we need the following assertion:

If Φ is the unique solution of

Φ̇(t) = ∂f

∂x
(x̄(t), ū(t))Φ(t) almost everywhere on [t0, t1] (5.33)

Φ(t0) = I,

then for an arbitrary y ∈ Wn
1,∞[t0, t1] the function

x(·) = y(·) + Φ(·)
·∫

t0

Φ−1(s)
∂f

∂x
(x̄(s), ū(s)) y(s) ds (5.34)

satisfies the integral equation

x(·) −
·∫

t0

∂f

∂x
(x̄(s), ū(s)) x(s) ds = y(·). (5.35)
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For the proof of this assertion we plug x (as given in (5.34)) in the left hand side of
the equation (5.35) and we obtain by integration by parts

x(·) −
·∫

t0

∂f

∂x
(x̄(s), ū(s)) x(s) ds

= y(·) + Φ(·)
·∫

t0

Φ−1(s)
∂f

∂x
(x̄(s), ū(s)) y(s) ds

−
·∫

t0

∂f

∂x
(x̄(s), ū(s))

[
y(s)

+Φ(s)

s∫

t0

Φ−1(σ )
∂f

∂x
(x̄(σ ), ū(σ )) y(σ ) dσ

]
ds

= y(·) + Φ(·)
·∫

t0

Φ−1(s)
∂f

∂x
(x̄(s), ū(s)) y(s) ds

−
·∫

t0

∂f

∂x
(x̄(s), ū(s)) y(s) ds

−
·∫

t0

Φ̇(s)

s∫

t0

Φ−1(σ )
∂f

∂x
(x̄(σ ), ū(σ )) y(σ ) dσ ds

= y(·) + Φ(·)
·∫

t0

Φ−1(s)
∂f

∂x
(x̄(σ ), ū(σ )) y(σ ) dσ ds

−
·∫

t0

∂f

∂x
(x̄(s), ū(s)) y(s) ds

−Φ(·)
·∫

t0

Φ−1(s)
∂f

∂x
(x̄(s), ū(s)) y(s) ds

+
·∫

t0

Φ(s)Φ−1(s)
∂f

∂x
(x̄(s), ū(s)) y(s) ds

= y(·).



5.4 Application to Optimal Control Problems 145

Hence the equation (5.35) is proved.
For an arbitrary function y ∈ Wn

1,∞[t0, t1] we conclude from the equation (5.31)
with the aid of the equation (5.34)

l(y) = −
(

∂f1

∂x
(x̄(t1)) + aT ∂g

∂x
(x̄(t1))

)

⎛

⎝y(t1) + Φ(t1)

t1∫

t0

Φ−1(s)
∂f

∂x
(x̄(s), ū(s)) y(s) ds

⎞

⎠

−
t1∫

t0

∂f2

∂x
(x̄(s), ū(s))

(
y(s) + Φ(s)

s∫

t0

Φ−1(σ )

∂f

∂x
(x̄(σ ), ū(σ )) y(σ ) dσ

)
ds.

Integration by parts leads to

l(y) = −
(

∂f1

∂x
(x̄(t1)) + aT ∂g

∂x
(x̄(t1))

)(
y(t1) + Φ(t1)

t1∫

t0

Φ−1(s)

∂f

∂x
(x̄(s), ū(s)) y(s) ds

)
−

t1∫

t0

∂f2

∂x
(x̄(s), ū(s)) y(s) ds

−
t1∫

t0

∂f2

∂x
(x̄(s), ū(s)) Φ(s) ds

t∫

t0

Φ−1(s)
∂f

∂x
(x̄(s), ū(s)) y(s) ds

∣
∣∣
∣
∣
∣

t1

t0

+
t1∫

t0

t∫

t0

∂f2

∂x
(x̄(s), ū(s)) Φ(s) ds Φ−1(t)

∂f

∂x
(x̄(t), ū(t)) y(t) dt

= −
(

∂f1

∂x
(x̄(t1)) + aT ∂g

∂x
(x̄(t1))

)
y(t1)



146 5 Generalized Lagrange Multiplier Rule

+
t1∫

t0

[
−
(

∂f1

∂x
(x̄(t1)) + aT ∂g

∂x
(x̄(t1))

)
Φ(t1) Φ−1(t)

∂f

∂x
(x̄(t), ū(t)) − ∂f2

∂x
(x̄(t), ū(t))

−
t1∫

t0

∂f2

∂x
(x̄(s), ū(s)) Φ(s) ds Φ−1(t)

∂f

∂x
(x̄(t), ū(t))

+
t∫

t0

∂f2

∂x
(x̄(s), ū(s)) Φ(s) ds Φ−1(t)

∂f

∂x
(x̄(t), ū(t))

]
y(t) dt

= −
(

∂f1

∂x
(x̄(t1)) + aT ∂g

∂x
(x̄(t1))

)
y(t1)

+
t1∫

t0

[
−
(

∂f1

∂x
(x̄(t1)) + aT ∂g

∂x
(x̄(t1))

)
Φ(t1) Φ−1(t)

∂f

∂x
(x̄(t), ū(t)) − ∂f2

∂x
(x̄(t), ū(t))

−
t1∫

t

∂f2

∂x
(x̄(s), ū(s)) Φ(s) ds Φ−1(t)

∂f

∂x
(x̄(t), ū(t))

]
y(t) dt

for all y ∈ Wn
1,∞[t0, t1].

For the expression in brackets we introduce the notation r(t)T , i.e.

r(t)T := −
(

∂f1

∂x
(x̄(t1)) + aT ∂g

∂x
(x̄(t1))

)
Φ(t1) Φ−1(t)

∂f

∂x
(x̄(t), ū(t))

−∂f2

∂x
(x̄(t), ū(t))

−
t1∫

t

∂f2

∂x
(x̄(s), ū(s)) Φ(s) ds Φ−1(t)

∂f

∂x
(x̄(t), ū(t))

almost everywhere on [t0, t1].
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With the equation (5.33) it follows (compare page 256)

.(
Φ−1(t)

)
= −Φ−1(t) Φ̇(t) Φ−1(t)

= −Φ−1(t)
∂f

∂x
(x̄(t), ū(t))Φ(t) Φ−1(t)

= −Φ−1(t)
∂f

∂x
(x̄(t), ū(t)) almost everywhere on [t0, t1].

Then we obtain

r(t)T =
(

∂f1

∂x
(x̄(t1)) + aT ∂g

∂x
(x̄(t1))

)
Φ(t1)

.(
Φ−1(t)

)

−∂f2

∂x
(x̄(t), ū(t)) +

t1∫

t

∂f2

∂x
(x̄(s), ū(s)) Φ(s) ds

.(
Φ−1(t)

)

almost everywhere on [t0, t1].

For

p(t)T := −
(

∂f1

∂x
(x̄(t1)) + aT ∂g

∂x
(x̄(t1))

)
Φ(t1) Φ−1(t)

−
t1∫

t

∂f2

∂x
(x̄(s), ū(s)) Φ(s) ds Φ−1(t) for all t ∈ [t0, t1]

we get

ṗ(t) = −r(t) almost everywhere on [t0, t1].

Then it follows

−p(t1)
T = aT ∂g

∂x
(x̄(t1)) + ∂f1

∂x
(x̄(t1)),

i.e., the transversality condition is satisfied. Moreover, we conclude

p(t)T
∂f

∂x
(x̄(t), ū(t)) − ∂f2

∂x
(x̄(t), ū(t))

= −
(

∂f1

∂x
(x̄(t1)) + aT ∂g

∂x
(x̄(t1))

)
Φ(t1) Φ−1(t)

∂f

∂x
(x̄(t), ū(t))
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−
t1∫

t

∂f2

∂x
(x̄(s), ū(s)) Φ(s) ds Φ−1(t)

∂f

∂x
(x̄(t), ū(t)) − ∂f2

∂x
(x̄(t), ū(t))

= r(t)T

= −ṗ(t)T almost everywhere on [t0, t1].

Hence p satisfies the adjoint equation

−ṗ(t)T = p(t)T
∂f

∂x
(x̄(t), ū(t)) − ∂f2

∂x
(x̄(t), ū(t)) almost everywhere on [t0, t1].

Then the continuous linear functional l can be written as

l(y) = p(t1)
T y(t1) −

t1∫

t0

ṗ(t)T y(t) dt for all y ∈ Wn
1,∞[t0, t1].

Now we turn our attention to the inequality (5.32). From this inequality we obtain
by integration by parts

0 ≤
t1∫

t0

∂f2

∂u
(x̄(s), ū(s)) (u(s) − ū(s)) ds

−l

⎛

⎝
·∫

t0

∂f

∂u
(x̄(s), ū(s)) (u(s) − ū(s)) ds

⎞

⎠

=
t1∫

t0

∂f2

∂u
(x̄(s), ū(s)) (u(s) − ū(s)) ds

−p(t1)
T

t1∫

t0

∂f

∂u
(x̄(s), ū(s)) (u(s) − ū(s)) ds

+
t1∫

t0

ṗ(t)T

t∫

t0

∂f

∂u
(x̄(s), ū(s)) (u(s) − ū(s)) ds dt

=
t1∫

t0

∂f2

∂u
(x̄(s), ū(s)) (u(s) − ū(s)) ds
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−p(t1)
T

t1∫

t0

∂f

∂u
(x̄(s), ū(s)) (u(s) − ū(s)) ds

+ p(t)T

t∫

t0

∂f

∂u
(x̄(s), ū(s)) (u(s) − ū(s)) ds

∣
∣
∣
∣∣
∣

t1

t0

−
t1∫

t0

p(t)T
∂f

∂u
(x̄(t), ū(t)) (u(t) − ū(t)) dt

=
t1∫

t0

∂f2

∂u
(x̄(s), ū(s)) (u(s) − ū(s)) ds

−
t1∫

t0

p(t)T
∂f

∂u
(x̄(s), ū(s)) (u(s) − ū(s)) ds

=
t1∫

t0

[
∂f2

∂u
(x̄(t), ū(t)) − p(t)T

∂f

∂u
(x̄(t), ū(t))

]
(u(t) − ū(t)) dt

for all u ∈ Lm∞[t0, t1] with u(t) ∈ � almost everywhere on [t0, t1].

Then we get for every control u ∈ Lm∞[t0, t1] with u(t) ∈ � almost everywhere on
[t0, t1]

[
p(t)T

∂f

∂u
(x̄(t), ū(t)) − ∂f2

∂u
(x̄(t), ū(t))

]
(u(t) − ū(t)) ≤ 0

almost everywhere on [t0, t1].

Hence the local Pontryagin maximum principle is also shown, and the proof of
Theorem 5.19 is completed. 
�

Remark 5.20 (Hamilton function and Kalman condition).

(a) If one defines the so-called Hamilton function

H : Wn
1,∞[t0, t1] × Lm∞[t0, t1] × Wn

1,∞[t0, t1] → Wn
1,∞[t0, t1]
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pointwise by

H(x, u, p) (t) = p(t)T f (x(t), u(t))−f2(x(t), u(t)) for all t ∈ [t0, t1],

then the adjoint equation reads

−ṗ(t)T = ∂H

∂x
(x̄, ū, p) (t) almost everywhere on [t0, t1],

and the local Pontryagin maximum principle can be written as

∂H

∂u
(x̄, ū, p)(t) (u(t) − ū(t)) ≤ 0 almost everywhere on [t0, t1],

(for all u ∈ Lm∞[t0, t1] with u(t) ∈ � almost everywhere on [t0, t1]).
(b) In Theorem 5.19 it is assumed among other things that the linearized

system

ẋ(t) = A(t) x(t) + B(t) u(t) almost everywhere on [t0, t1],
x(t0) = 0Rn

with A(t) := ∂f
∂x

(x̄(t), ū(t)) and B(t) := ∂f
∂u

(x̄(t), ū(t)) is controllable.
If the matrix functions A and B are independent of time, i.e. A :=
A(t) almost everywhere on [t0, t1] and B := B(t) almost everywhere
on [t0, t1], then, by a known result of control theory, this system is
controllable, if the so-called Kalman condition is satisfied, i.e.

rank(B,AB,A2B, . . . , An−1B) = n.

(c) If the set � in the considered control problem is of the special form � =
R

m, then the local Pontryagin maximum principle can be formulated in
the special form:

For all u ∈ Lm∞[t0, t1] it follows

p(t)T
∂f

∂u
(x̄(t), ū(t)) − ∂f2

∂u
(x̄(t), ū(t)) = 0

almost everywhere on [t0, t1].
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Example 5.21 (Pontryagin maximum principle).

We consider Example 1.4 and investigate the following optimal control
problem:
Determine a control u ∈ L∞[0, 1] which minimizes

1∫

0

(u(t))2 dt

subject to the constraints

(
ẋ1(t)

ẋ2(t)

)
=
(

0 1
0 0

)(
x1(t)

x2(t)

)
+
(

0
1

)
u(t) almost everywhere on [0, 1],

(
x1(0)

x2(0)

)
=
(−2

√
2

5
√

2

)
,

(x1(1))2 + (x2(1))2 − 1 = 0.

The system of linear differential equations of this problem satisfies the
Kalman condition. According to Remark 5.20,(b) this system is controllable.
We assume that there is an optimal control ū ∈ L∞[0, 1] for this problem.
Then the adjoint equation reads as follows

(−ṗ1(t),−ṗ2(t)) = (p1(t), p2(t))

(
0 1
0 0

)

= (0, p1(t)) almost everywhere on [0, 1],

i.e. we have

ṗ1(t) = 0 almost everywhere on [0, 1]

and

ṗ2(t) = −p1(t) almost everywhere on [0, 1].

This leads to the general solution

p(t) =
(

c1

−c1t + c2

)
for all t ∈ [0, 1]
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with real numbers c1 and c2. The transversality condition can be written as

(−p1(1),−p2(1)) = a(2x̄1(1), 2x̄2(1))

or

(
p1(1)

p2(1)

)
= −2a

(
x̄1(1)

x̄2(1)

)
.

Hence it follows

(
c1

−c1 + c2

)
= −2a

(
x̄1(1)

x̄2(1)

)
.

Next, we consider the local Pontryagin maximum principle as given in
Remark 5.20,(c):

(p1(t), p2(t))

(
0
1

)
− 2ū(t) = 0 almost everywhere on [0, 1].

Consequently we get

ū(t) = 1

2
p2(t) = 1

2
(−c1t + c2) almost everywhere on [0, 1].

Moreover, we have with the second linear differential equation as constraint

˙̄x2(t) = ū(t) = 1

2
(−c1t + c2) almost everywhere on [0, 1]

and

x̄2(t) = −c1

4
t2 + c2

2
t + 5

√
2 for all t ∈ [0, 1].

With this equation and the first linear differential equation as constraint we
obtain

x̄1(t) = − c1

12
t3 + c2

4
t2 + 5

√
2 t − 2

√
2 for all t ∈ [0, 1].

With the terminal condition

(x̄1(1))2 + (x̄2(1))2 = 1
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we then conclude

(− c1

12
+ c2

4
+ 3

√
2)2 + (−c1

4
+ c2

2
+ 5

√
2)2 = 1.

We summarize our results as follows: For an optimal control ū ∈ L∞[0, 1]
there are real numbers α, β and γ with the property

ū(t) = αt + β almost everywhere on [0, 1],
(
α

6
+ β

2
+ 3

√
2)2 + (

α

2
+ β + 5

√
2)2 = 1,

−α = γ (
α

6
+ β

2
+ 3

√
2),

α + β = γ (
α

2
+ β + 5

√
2).

(α, β, γ ) = (3
√

2,−6
√

2,−6) is a solution of these nonlinear equations.
Then the resulting control satisfies the necessary optimality conditions of
Theorem 5.19.

At the end of this section we investigate the question under which assumptions
the conditions (a), (b) and (c) of Theorem 5.19 are sufficient optimality conditions.

Theorem 5.22 (sufficient optimality conditions).

Let the optimal control problem (5.28) be given. Furthermore, let a control
ū ∈ Lm∞[t0, t1] with

ū(t) ∈ � almost everywhere on [t0, t1]

and a resulting state x̄ ∈ Wn
1,∞[t0, t1] be given where

˙̄x(t) = f (x̄(t), ū(t)) almost everywhere on [t0, t1],
x̄(t0) = x0,

g(x̄(t1)) = 0Rr .

Let the function f1 be convex (at x̄(t1)) and differentiable at x̄(t1). Let the
function f2 be convex and differentiable. Let the function f be differentiable.
Let the function g be differentiable at x̄(t1). Moreover, let there are a
function p ∈ Wn

1,∞[t0, t1] and a vector a ∈ R
r so that
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(a) − ṗ(t)T = p(t)T
∂f

∂x
(x̄(t), ū(t)) − ∂f2

∂x
(x̄(t), ū(t))

almost everywhere on [t0, t1], (5.36)

(b) − p(t1)
T = aT ∂g

∂x
(x̄(t1)) + ∂f1

∂x
(x̄(t1)), (5.37)

(c) for every control u ∈ Lm∞[t0, t1] with

u(t) ∈ � almost everywhere on [t0, t1]
we have
[
p(t)T

∂f

∂u
(x̄(t), ū(t)) − ∂f2

∂u
(x̄(t), ū(t))

]
(u(t) − ū(t)) ≤ 0

almost everywhere on [t0, t1]. (5.38)

Let the function aT g(·) be quasiconvex at x̄(t1) and almost everywhere
on [t0, t1] let the functional defined by −p(t)T f (x(t), u(t)) be convex (at
(x̄(t), ū(t))). Then ū is an optimal control for the control problem (5.28).

Proof Let u ∈ Lm∞[t0, t1] be an arbitrary control with the resulting state x ∈
Wn

1,∞[t0, t1] such that (x, u) satisfies the constraints of the problem (5.28). Then
we get with the adjoint equation (5.36)

− d

dt
(p(t)T (x(t) − x̄(t)))

= −ṗ(t)T (x(t) − x̄(t)) − p(t)T (ẋ(t) − ˙̄x(t))

=
[
p(t)T

∂f

∂x
(x̄(t), ū(t)) − ∂f2

∂x
(x̄(t), ū(t))

]
(x(t) − x̄(t))

−p(t)T [f (x(t), u(t)) − f (x̄(t), ū(t))] almost everywhere on [t0, t1].

With this relationship it follows

f2(x(t), u(t)) − f2(x̄(t), ū(t)) − d

dt
(p(t)T (x(t) − x̄(t)))

= f2(x(t), u(t)) − f2(x̄(t), ū(t)) − ∂f2

∂x
(x̄(t), ū(t)) (x(t) − x̄(t))

− p(t)T
[
f (x(t), u(t)) − f (x̄(t), ū(t))

− ∂f

∂x
(x̄(t), ū(t)) (x(t) − x̄(t))

]
almost everywhere on [t0, t1]. (5.39)
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Since the function f2 is convex and differentiable, we conclude

f2(x(t), u(t)) − f2(x̄(t), ū(t)) − ∂f2

∂x
(x̄(t), ū(t)) (x(t) − x̄(t))

≥ ∂f2

∂u
(x̄(t), ū(t)) (u(t) − ū(t)) almost everywhere on [t0, t1].

Similarly we obtain because of the convexity of the functional defined by
−p(t)T f (x(t), u(t)) (at (x̄(t), ū(t)))

−p(t)T
[
f (x(t), u(t)) − f (x̄(t), ū(t)) − ∂f

∂x
(x̄(t), ū(t))T (x(t) − x̄(t))

]

≥ −p(t)T
∂f

∂u
(x̄(t), ū(t))T (u(t) − ū(t)) almost everywhere on [t0, t1].

Then it results from the equation (5.39) and the inequality (5.38)

f2(x(t), u(t)) − f2(x̄(t), ū(t)) − d

dt
(p(t)T (x(t) − x̄(t)) ≥ 0

almost everywhere on [t0, t1].

Because of x(t0) = x̄(t0) = x0 integration leads to

t1∫

t0

[f2(x(t), u(t)) − f2(x̄(t), ū(t))] dt − p(t1)
T (x(t1) − x̄(t1)) ≥ 0. (5.40)

With the transversality condition (5.37) and the differentiability and convexity of f1
(at x̄(t1)) we get

−p(t1)
T (x(t1) − x̄(t1))

= aT ∂g

∂x
(x̄(t1)) (x(t1) − x̄(t1)) + ∂f1

∂x
(x̄(t1)) (x(t1) − x̄(t1))

≤ aT ∂g

∂x
(x̄(t1)) (x(t1) − x̄(t1)) + f1(x(t1)) − f1(x̄(t1)). (5.41)

Because of the differentiability and quasiconvexity of aT g(·) at x̄(t1) the equation

0 = aT g(x(t1)) − aT g(x̄(t1))
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implies the inequality

0 ≥ aT ∂g

∂x
(x̄(t1)) (x(t1) − x̄(t1)). (5.42)

The inequalities (5.41) and (5.42) then lead to

−p(t1)
T (x(t1) − x̄(t1)) ≤ f1(x(t1)) − f1(x̄(t1))

which implies with the inequality (5.40)

f1(x(t1)) +
t1∫

t0

f2(x(t), u(t)) dt ≥ f1(x̄(t1)) +
t1∫

t0

f2(x̄(t), ū(t)) dt.

Hence ū is an optimal control for the control problem (5.28). 
�

For the proof of the preceding theorem we did not use the general result
of Theorem 5.14. Therefore the given assumptions under which the optimality
conditions are sufficient are certainly not the weakest assumptions on the arising
functions.

Example 5.23 (Pontryagin maximum principle).

We consider again the control problem of Example 5.21. We have already
shown that the control ū ∈ L∞[0, 1] with

ū(t) = 3
√

2 t − 6
√

2 almost everywhere on [0, 1]

satisfies the optimality conditions (5.36), (5.37) and (5.38) with p ∈
W 2

1,∞[0, 1] defined by

p(t) =
( −6

√
2

6
√

2 t − 12
√

2

)
for all t ∈ [0, 1]

and

a := 6.

The functions g and f2 are convex. The vector function f is linear and every
component of p is negative. Consequently, all assumptions of Theorem 5.22
are satisfied. Then this theorem says that ū is an optimal control for the
control problem of Example 5.21.
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Exercises

(5.1) Let S be a closed linear subspace of a real normed space (X, ‖ · ‖). Prove:
If there is a vector x ∈ X \ S, then there is a continuous linear functional
l ∈ X∗ \ {0X∗} with

l(s) = 0 for all s ∈ S.

(5.2) Show: For every convex subset S of a real normed space with nonempty
interior it follows cl (int (S)) = cl (S).

(5.3) Does the constraint set

S := {(x1, x2) ∈ R
2 | x2

1 + x2
2 ≤ 1 and (x1 − 1)2 + (x2 − 1)2 ≤ 1}

satisfy a regularity assumption?
(5.4) Let the optimization problem

min x1 + x2

subject to the constraints
x2 ≤ x3

1
x1 ∈ R, x2 ≥ 0

be given.
(a) Show that x̄ = (0, 0) is a solution of this optimization problem.
(b) Is the MFCQ satisfied at x̄ = (0, 0) ?
(c) Are the KKT conditions satisfied at x̄ = (0, 0) ?

(5.5) Determine a minimal solution of the optimization problems:
(a) min (x − 3)2 + (y − 2)2

subject to the constraints
x2 + y2 ≤ 5
x + y ≤ 3
x ≥ 0, y ≥ 0.

(b) min (x − 9
4 )2 + (y − 2)2

subject to the constraints
x2 − y ≤ 0
x + y − 6 ≤ 0
x ≥ 0, y ≥ 0.

(c) max 3x − y − 4z2

subject to the constraints
x + y + z ≤ 0
−x + 2y + z2 = 0
x, y, z ∈ R.
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(5.6) Is every point on the straight line between (0, 0) and (6, 0) a minimal solution
of the optimization problem

min x+3y+3
2x+y+6

subject to the constraints
2x + y ≤ 12
−x + 2y ≤ 4

x ≥ 0, y ≥ 0 ?

(5.7) For given functions f1, . . . , fn : R → R consider the optimization problem

min
n∑

i=1

fi(xi)

subject to the constraints
n∑

i=1

xi = 1

xi ≥ 0 for all i ∈ {1, . . . , n}.

Prove: If x̄ = (x̄1, . . . , x̄n) is a minimal solution of this problem and for every
i ∈ {1, . . . , n} the function fi is differentiable at x̄i , then there is a real number
α with

f ′
i (x̄i) ≥ α

(f ′
i (x̄i) − α) x̄i = 0

}
for all i ∈ {1, . . . , n}.

(5.8) Let Ŝ be a nonempty subset of Rn, and let f : Ŝ → R, g : Ŝ → R
m and

h : Ŝ → R
p be given functions. Let the constraint set

S := {x ∈ Ŝ | gi(x) ≤ 0 for all i ∈ {1, . . . ,m} and

hi(x) = 0 for all i ∈ {1, . . . , p}}

be nonempty. Let the functions f, g1, . . . , gm, h1, . . . , hp be differentiable at
some x̄ ∈ S. Let there be multipliers ui ≥ 0 (i ∈ I (x̄)) and vi ∈ R (i ∈
{1, . . . , p}) with

(
∇f (x̄) +

∑

i∈I (x̄)

ui∇gi(x̄) +
p∑

i=1

vi∇hi(x̄)

)T

(x − x̄) ≥ 0 for all x ∈ Ŝ.

Let f be pseudoconvex at x̄, for every i ∈ I (x̄) let gi be quasiconvex at x̄,
for every i ∈ {1, . . . , p} with vi > 0 let hi be quasiconvex at x̄, and for every
i ∈ {1, . . . , p} with vi < 0 let −hi be quasiconvex at x̄. Prove that x̄ is a
minimal point of f on S.
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(5.9) Determine an optimal control ū ∈ L2∞[0, 1] of the following problem:

min

1∫

0

[
u1(t) − 1

3
x1(t) + 2u2(t) − 2

3
x2(t)

]
dt

subject to the constraints
ẋ1(t) = 12u1(t) − 2u1(t)

2 − x1(t) − u2(t)

ẋ2(t) = 12u2(t) − 2u2(t)
2 − x2(t) − u1(t)

}
a.e. on [0, 1]

x1(0) = x01, x2(0) = x02

u1(t) ≥ 0
u2(t) ≥ 0

}
almost everywhere on [0, 1]

where x01 and x02 are given real numbers.



6Duality

The duality theory is also an additional important part of the optimization theory.
A main question which is investigated in duality theory reads as follows: Under
which assumptions is it possible to associate an equivalent maximization problem
to a given (in general convex) minimization problem. This maximization problem
is also called the optimization problem dual to the minimization problem. In this
chapter we formulate the dual problem to a constrained minimization problem and
we investigate the relationships between the both optimization problems. For a
linear problem we transform the dual problem in such a way that we again obtain a
linear optimization problem. Finally, we apply these results to a problem of linear
Chebyshev approximation.

6.1 Problem Formulation

In this section we consider a constrained optimization problem. Let the constraints
be given in the form of a general system of inequalities. Then we associate a so-
called dual problem to this optimization problem, the so-called primal problem.

First, we formulate the standard assumption for the following investigations:

Let Ŝ be a nonempty subset of a real linear space X;
let (Y, ‖ · ‖) be a partially ordered real normed space with
the ordering cone C;

let f : Ŝ → R be a given objective functional;

let g : Ŝ → Y be a given constraint mapping;

let the constraint set be given as S := {x ∈ Ŝ | g(x) ∈ −C}
which is assumed to be nonempty.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.1)

© The Editor(s) (if applicable) and The Author(s), under exclusive
licence to Springer Nature Switzerland AG 2020
J. Jahn, Introduction to the Theory of Nonlinear Optimization,
https://doi.org/10.1007/978-3-030-42760-3_6

161

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-42760-3_6&domain=pdf
https://doi.org/10.1007/978-3-030-42760-3_6


162 6 Duality

Under the assumption (6.1) we investigate the constrained optimization problem

min f (x)
subject to the constraints

g(x) ∈ −C

x ∈ Ŝ.

(6.2)

In this context the optimization problem (6.2) is also called primal problem. With
the following lemma we see that, under the additional assumption of the ordering
cone being closed, this problem is equivalent to the optimization problem

min
x∈Ŝ

sup
u∈C∗

f (x) + u(g(x)) (6.3)

where C∗ denotes the dual cone of C.

Lemma 6.1 (equivalence of problems (6.2) and (6.3)).

Let the assumption (6.1) be satisfied and in addition let the ordering cone C

be closed. Then x̄ is a minimal solution of the problem (6.2) if and only if x̄

is a minimal solution of the problem (6.3). In this case the extremal values
of both problems are equal.

Proof We start this proof with two simple observations.

(a) For every x ∈ Ŝ with g(x) ∈ −C we have

u(g(x)) ≤ 0 for all u ∈ C∗

and therefore we get

sup
u∈C∗

u(g(x)) = 0.

(b) For every x ∈ Ŝ with g(x) /∈ − C there is, by a separation theorem (Theo-
rem C.3), a ū ∈ C∗ \ {0X∗} with

ū(g(x)) > 0

which implies

sup
u∈C∗

u(g(x)) = ∞

(notice that the cone C is convex and closed).
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Now we begin with the actual proof of this lemma. Let x̄ ∈ S be a minimal point of
f on S. Consequently, we obtain for every x ∈ Ŝ

sup
u∈C∗

f (x̄) + u(g(x̄)) = f (x̄) + sup
u∈C∗

u(g(x̄))

= f (x̄)

≤ f (x̄) + sup
u∈C∗

u(g(x))

≤ f (x) + sup
u∈C∗

u(g(x))

≤ sup
u∈C∗

f (x) + u(g(x)).

Hence x̄ ∈ S is also a minimal solution of the optimization problem (6.3).
Finally, we assume that x̄ ∈ Ŝ is a minimal point of the functional ϕ : Ŝ →

R ∪ {∞} with

ϕ(x) = sup
u∈C∗

f (x)+ u(g(x)) for all x ∈ Ŝ

on Ŝ. Assume that g(x̄) /∈ −C. Then with the arguments under (b) we get

sup
u∈C∗

u(g(x̄)) = ∞

which is a contradiction to the solvability of problem (6.3). Consequently, by (a) we
have

sup
u∈C∗

u(g(x̄)) = 0.

Then we obtain for all x ∈ S

f (x̄) = f (x̄) + sup
u∈C∗

u(g(x̄))

= sup
u∈C∗

f (x̄) + u(g(x̄))

≤ sup
u∈C∗

f (x) + u(g(x))

= f (x) + sup
u∈C∗

u(g(x))

= f (x).

Hence x̄ ∈ S is a minimal point of f on S. 
�
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Now we associate another problem to the primal problem (6.2). This new
problem results from the problem (6.3) by exchanging “min” and “sup” and by
replacing “min” by “inf” and “sup” by “max”. This optimization problem then
reads:

max
u∈C∗ inf

x∈Ŝ

f (x) + u(g(x)). (6.4)

The optimization problem (6.4) is called the dual problem associated to the primal
problem (6.2). Obviously, this dual problem is equivalent to the optimization
problem

max λ
subject to the constraints

f (x) + u(g(x)) ≥ λ for all x ∈ Ŝ

λ ∈ R, u ∈ C∗.

(6.5)

If ū ∈ C∗ is a maximal solution of the dual problem (6.4) with the maximal value
λ̄, then (λ̄, ū) is a maximal solution of the problem (6.5). Conversely, for every
maximal solution (λ̄, ū) of the problem (6.5) ū is a maximal solution of the dual
problem with the maximal value λ̄.

Example 6.2 (primal and dual problem).

We investigate the very simple primal problem

min −2x1 + x2

subject to the constraints
x1 + x2 − 3 ≤ 0

x ∈ Ŝ :=
{(

0
0

)
,

(
0
4

)
,

(
4
4

)
,

(
4
0

)
,

(
1
2

)
,

(
2
1

)}
.

(6.6)

It is obvious that the constraint set S consists of the three points

(
0
0

)
,

(
1
2

)

and

(
2
1

)
. Then x̄ :=

(
2
1

)
is a minimal solution of problem (6.6) with

the minimal value −3. According to (6.4) the dual problem associated to
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problem (6.6) can be written as

max
u≥0

inf
x∈Ŝ

−2x1 + x2 + u(x1 + x2 − 3)

= max
u≥0

min{−3u, 4 + u, −4 + 5u, −8 + u, 0, −3}

= max
u≥0

⎧
⎨

⎩

−4 + 5u, if u ≤ −1
−8 + u, if − 1 ≤ u ≤ 2
−3u, if u ≥ 2

⎫
⎬

⎭
. (6.7)

2 4 u

(2,−6)−6

−8

−10

Fig. 6.1 Illustration of the objective of the dual problem (6.7)

Figure 6.1 illustrates the objective function of this maximization problem.
It is evident that ū := 2 is a maximal solution of the dual problem with the
maximal value −6. Notice that minimal and maximal value of the primal
and dual problem, respectively, do not coincide.

For fundamental results in duality one needs some type of convexity. We start
with the definition of convex mappings.

Definition 6.3 (convex mapping).

Let Ŝ be a nonempty convex subset of a real linear space, and let Y be
a partially ordered real linear space with an ordering cone C. A mapping
g : Ŝ → Y is called convex, if for all x, y ∈ Ŝ:

λg(x) + (1 − λ) g(y) − g(λx + (1 − λ)y) ∈ C for all λ ∈ [0, 1].
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C0Y

g(Ŝ) g(Ŝ) + C

Fig. 6.2 Illustration of a convex-like mapping g

Example 6.4 (convex mapping).

Let Ŝ be a nonempty convex subset of a real linear space, and let f1, . . . , fn :
Ŝ → R be convex functionals. If the linear space R

n is supposed to be
partially ordered in a natural way (i.e., C := R

n+), then the vector function
f = (f1, . . . , fn) : Ŝ → R

n is convex.

Now we turn our attention to a class of mappings which are slightly more general
than convex ones.

Definition 6.5 (convex-like mapping).

Let Ŝ be a nonempty subset of a real linear space and let Y be a partially
ordered real linear space with an ordering cone C. A mapping g : Ŝ → Y

is called convex-like, if the set g(Ŝ) + C is convex (Fig. 6.2 illustrates this
notion).

The following example shows that the class of convex-like mappings includes
the class of convex mappings, and, in fact, it goes beyond this class slightly.

Example 6.6 (convex-like mappings).

(a) Let Ŝ be a nonempty convex subset of a real linear space, and let Y

be a partially ordered real linear space with an ordering cone C. Every
convex mapping g : Ŝ → Y is also convex-like.
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Proof We have to show that the set g(Ŝ) + C is a convex set. For that
purpose choose arbitrary elements y1, y2 ∈ g(Ŝ) + C and an arbitrary
number λ ∈ [0, 1]. Then there are elements x1, x2 ∈ Ŝ and c1, c2 ∈ C

with

y1 = g(x1) + c1

and

y2 = g(x2) + c2.

Consequently, we get with the convexity of g

λy1 + (1 − λ) y2

= λ g(x1) + (1 − λ) g(x2) + λc1 + (1 − λ) c2

∈ {g(λx1 + (1 − λ) x2)} + C + λC + (1 − λ) C

= {g(λx1 + (1 − λ) x2)} + C,

i.e.

λy1 + (1 − λy2) ∈ g(Ŝ) + C.

Hence the set g(Ŝ) + C is convex, and the mapping g is convex-like.

�

(b) We consider the mapping g : R → R
2 with

g(x) =
(

x

sin x

)
for all x ∈ R.

Let the real linear space R
2 be partially ordered in a natural way (i.e.,

C := R
2+). Then the mapping g is convex-like but it is certainly not

convex (see Fig. 6.3).
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1

2

1
π 2π 3π 4π−π−2π−3π−4π x

y

g(R)g(R) + R
2+

−
Fig. 6.3 Illustration of the result in Example 6.6,(b)

If under the assumption (6.1) the set Ŝ is convex, if the objective functional f

is convex and if the constraint mapping g is convex, then the composite mapping
(f, g) : Ŝ → R × Y is convex-like (with respect to the product cone R+ × C in
R× Y ). With the assumption of the convex-likeness of (f, g) it is even possible to
treat certain nonconvex optimization problems with this duality theory.

6.2 Duality Theorems

In this section the relationships between the primal problem (6.2) and the dual
problem (6.4) are investigated. We present a so-called weak duality theorem and
a so-called strong duality theorem which says in which sense the primal and dual
problem are equivalent.

First we formulate a so-called weak duality theorem.

Theorem 6.7 (weak duality theorem).

Let the assumption (6.1) be satisfied. For every x̂ ∈ S (i.e., for every
feasible element of the primal problem (6.2)) and for every û ∈ C∗ (i.e., for
every feasible element of the dual problem (6.4)) the following inequality is
satisfied:

inf
x∈Ŝ

f (x) + û(g(x)) ≤ f (x̂).

Proof For arbitrary elements x̂ ∈ S and û ∈ C∗ it follows

inf
x∈Ŝ

f (x) + û(g(x)) ≤ f (x̂) + û(g(x̂)) ≤ f (x̂)

because g(x̂) ∈ −C. 
�

It follows immediately from the weak duality theorem that the maximal value of
the dual problem is bounded from above by the minimal value of the primal problem
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(if these values exist and the assumption (6.1) is satisfied). In particular, one obtains
a lower bound of the minimal value of the primal problem, if one determines the
value of the objective functional of the dual problem at an arbitrary element of the
constraint set of the dual problem.

If the primal and dual problem are solvable, then it is not guaranteed in general
that the extremal values of these two problems are equal. If these two problems are
solvable and the extremal values are not equal, then one speaks of a duality gap. In
Example 6.2 an optimization problem is presented for which a duality gap arises.

Next, we come to an important result concerning the solvability of the dual
problem and the obtained maximal value. With the aid of a generalized Slater
condition it can be shown that a duality gap cannot arise. The following theorem
is also called a strong duality theorem.

Theorem 6.8 (strong duality theorem).

Let the assumption (6.1) be satisfied, and in addition let the ordering cone
C have a nonempty interior int(C) and let the composite mapping (f, g) :
Ŝ → R × Y be convex-like (with respect to the product cone R+ × C in
R × Y ). If the primal problem (6.2) is solvable and the generalized Slater
condition is satisfied, i.e., there is a vector x̂ ∈ Ŝ with g(x̂) ∈ −int(C), then
the dual problem (6.4) is also solvable and the extremal values of the two
problems are equal.

Proof In the following we investigate the set

M := { (f (x) + α, g(x) + y) ∈ R× Y | x ∈ Ŝ, α ≥ 0, y ∈ C }
= (f, g) (Ŝ) + R+ × C.

By assumption the composite mapping (f, g) : Ŝ → R × Y is convex-like, and
therefore the set M is convex. Because of int(C) �= ∅ the set M has a nonempty
interior int(M) as well. Since the primal problem is solvable there is a vector x̄ ∈ S

with

f (x̄) ≤ f (x) for all x ∈ S.

Consequently we have

(f (x̄), 0Y ) /∈ int(M)

and

int(M) ∩ { (f (x̄), 0Y ) } = ∅.
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By the Eidelheit separation theorem (Theorem C.2) there are real numbers μ and γ

and a continuous linear functional u ∈ Y ∗ with (μ, u) �= (0, 0Y ∗) and

μβ + u(z) > γ ≥ μf (x̄) for all (β, z) ∈ int(M). (6.8)

Since every convex subset of a real normed space with nonempty interior is con-
tained in the closure of the interior of this set, we conclude from the inequality (6.8)

μ(f (x) + α) + u(g(x) + y) ≥ γ ≥ μf (x̄) for all x ∈ Ŝ, α ≥ 0, y ∈ C. (6.9)

For x = x̄ and α = 0 it follows from the inequality (6.9)

u(y) ≥ −u(g(x̄)) for all y ∈ C. (6.10)

With standard arguments we get immediately u ∈ C∗. For y = 0Y it follows from
the inequality (6.10) u(g(x̄)) ≥ 0. Because of g(x̄) ∈ −C and u ∈ C∗ we also have
u(g(x̄)) ≤ 0 which leads to

u(g(x̄)) = 0.

For x = x̄ and y = 0Y we get from the inequality (6.9)

μα ≥ 0 for all α ≥ 0

which implies μ ≥ 0. For the proof of μ > 0 we assume that μ = 0. Then it follows
from the inequality (6.9) with y = 0Y

u(g(x)) ≥ 0 for all x ∈ Ŝ.

Because of the generalized Slater condition there is one x̂ ∈ Ŝ with g(x̂) ∈ −int(C),
and then we have

u(g(x̂)) = 0.

Now we want to show that u = 0Y ∗ . For that purpose we assume that u �= 0Y ∗ , i.e.,
there is one y ∈ Y with u(y) > 0. Then we have

u(λy + (1 − λ) g(x̂)) > 0 for all λ ∈ (0, 1], (6.11)

and because of g(x̂) ∈ −int(C) there is one λ̄ ∈ (0, 1) with

λy + (1 − λ) g(x̂) ∈ −C for all λ ∈ [0, λ̄].
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Then we get

u(λy + (1 − λ) g(x̂)) ≤ 0 for all λ ∈ [0, λ̄]

which contradicts the inequality (6.11). With the assumption μ = 0 we also obtain
u = 0Y ∗ , a contradiction to (μ, u) �= (0, 0Y ∗). Consequently, we have μ �= 0 and
therefore μ > 0. Then we conclude from the inequality (6.9) with α = 0 and y = 0Y

μf (x)+ u(g(x)) ≥ μf (x̄) for all x ∈ Ŝ

and

f (x) + 1

μ
u(g(x)) ≥ f (x̄) for all x ∈ Ŝ.

If we define ū := 1
μ
u ∈ C∗, we obtain with ū(g(x̄)) = 0

inf
x∈Ŝ

f (x) + ū(g(x)) ≥ f (x̄) + ū(g(x̄)).

Hence we have

f (x̄) + ū(g(x̄)) = inf
x∈Ŝ

f (x) + ū(g(x)),

and with the weak duality theorem ū ∈ C∗ is a maximal solution of the dual
problem (6.4). Obviously, the extremal values of the primal and dual problem are
equal. 
�

In the following we discuss the practical importance of the strong duality
theorem. If one wants to solve the primal problem and if one is interested in the
minimal value in particular, then under suitable assumptions one can also solve the
dual problem and determine the maximal value which is then equal to the minimal
value of the primal problem. If the dual problem is simpler to solve than the primal
problem, then this method is very useful.

6.3 Saddle Point Theorems

Relationships between the primal and the dual problem can also be described by
a saddle point behavior of the Lagrange functional. These relationships will be
investigated in this section.

First, we define the notion of the Lagrange functional which has already been
mentioned in the context of the generalized Lagrange multiplier rule in Sect. 5.2.
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Definition 6.9 (Lagrange functional).

Let the assumption (6.1) be satisfied. The functional L : Ŝ × C∗ → R with

L(x, u) = f (x) + u(g(x)) for all x ∈ Ŝ and all u ∈ C∗

is called Lagrange functional.

Since we will investigate saddle points of the Lagrange functional L, we
introduce the following notion.

Definition 6.10 (saddle point).

Let the assumption (6.1) be satisfied. A point (x̄, ū) ∈ Ŝ × C∗ is called a
saddle point of the Lagrange functional L if

L(x̄, u) ≤ L(x̄, ū) ≤ L(x, ū) for all x ∈ Ŝ and all u ∈ C∗.

A saddle point of the Lagrange functional can be characterized by a “min sup =
max inf” result which goes back to a known John von Neumann11 saddle point
theorem .

Theorem 6.11 (characterization of a saddle point).

Let the assumption (6.1) be satisfied. A point (x̄, ū) ∈ Ŝ × C∗ is a saddle
point of the Lagrange functional L if and only if

L(x̄, ū) = min
x∈Ŝ

sup
u∈C∗

L(x, u) = max
u∈C∗ inf

x∈Ŝ

L(x, u). (6.12)

Proof First we assume that the equation (6.12) is satisfied. Then we have with x̄ ∈ Ŝ

and ū ∈ C∗

sup
u∈C∗

L(x̄, u) = L(x̄, ū) = inf
x∈Ŝ

L(x, ū).

Hence (x̄, ū) is a saddle point of the Lagrange functional L.
Next we assume that (x̄, ū) ∈ Ŝ × C∗ is a saddle point of L. Then we obtain

max
u∈C∗ L(x̄, u) = L(x̄, ū) = min

x∈Ŝ

L(x, ū). (6.13)

11J. von Neumann, “Zur Theorie der Gesellschaftsspiele”, Math. Ann. 100 (1928) 295–320.
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For arbitrary x̂ ∈ Ŝ and û ∈ C∗ we have

inf
x∈Ŝ

L(x, û) ≤ L(x̂, û),

and therefore we conclude

sup
u∈C∗

inf
x∈Ŝ

L(x, u) ≤ sup
u∈C∗

L(x̂, u)

and

sup
u∈C∗

inf
x∈Ŝ

L(x, u) ≤ inf
x∈Ŝ

sup
u∈C∗

L(x, u).

With this inequality and the equation (6.13) it follows

L(x̄, ū) = inf
x∈Ŝ

L(x, ū) ≤ sup
u∈C∗

inf
x∈Ŝ

L(x, u)

≤ inf
x∈Ŝ

sup
u∈C∗

L(x, u) ≤ sup
u∈C∗

L(x̄, u)

= L(x̄, ū).

Consequently, we have

L(x̄, ū) = max
u∈C∗ inf

x∈Ŝ

L(x, u) = min
x∈Ŝ

sup
u∈C∗

L(x, u)

which has to be shown. 
�

Using the preceding theorem we are able to present a relationship between a
saddle point of the Lagrange functional and the solutions of the primal and dual
problem.

Theorem 6.12 (characterization of a saddle point).

Let the assumption (6.1) be satisfied, and in addition, let the ordering cone
C be closed. A point (x̄, ū) ∈ Ŝ × C∗ is a saddle point of the Lagrange
functional L if and only if x̄ is a solution of the primal problem (6.2), ū

is a solution of the dual problem (6.4) and the extremal values of the two
problems are equal.
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Proof We assume that (x̄, ū) ∈ Ŝ ×C∗ is a saddle point of the Lagrange functional
L. By Theorem 6.11 we then have

L(x̄, ū) = min
x∈Ŝ

sup
u∈C∗

L(x, u) = max
u∈C∗ inf

x∈Ŝ

L(x, u).

Consequently, x̄ is a minimal solution of the problem (6.3) and with Lemma 6.1 x̄ is
then also a minimal solution of the primal problem (6.2). Moreover, ū is a maximal
solution of the dual problem (6.4) and the extremal values of the primal and dual
problem are equal.

Next, we assume that x̄ is a minimal solution of the primal problem (6.2), ū is
a maximal solution of the dual problem (6.4) and the extremal values of the two
problems are equal. Then we have

λ := inf
x∈Ŝ

L(x, ū) = max
u∈C∗ inf

x∈Ŝ

L(x, u),

and with Lemma 6.1 we get

f (x̄) = sup
u∈C∗

L(x̄, u) = min
x∈Ŝ

sup
u∈C∗

L(x, u).

Because of λ = f (x̄) we obtain

ū(g(x̄)) ≥ −f (x̄) + inf
x∈Ŝ

f (x) + ū(g(x)) = −f (x̄) + λ = 0

and because of g(x̄) ∈ −C, ū ∈ C∗ we have ū(g(x̄)) ≤ 0 resulting in ū(g(x̄)) = 0
which implies f (x̄) = L(x̄, ū). Then it follows

L(x̄, ū) = min
x∈Ŝ

sup
u∈C∗

L(x, u) = max
u∈C∗ inf

x∈Ŝ

L(x, u),

and by Theorem 6.11 it follows that (x̄, ū) is a saddle point of the Lagrange
functional L. 
�

With the aid of the strong duality theorem we also present a sufficient condition
for the existence of a saddle point of the Lagrange functional.

Corollary 6.13 (sufficient condition for the existence of a saddle point).

Let the assumption (6.1) be satisfied, and in addition, let the ordering cone
C be closed, let C have a nonempty interior int(C) and let the composite
mapping (f, g) : Ŝ → R × Y be convex-like (with respect to the product
cone R+ × C in R × Y ). If x̄ ∈ S is a minimal solution of the primal
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problem (6.2) and the generalized Slater condition is satisfied, i.e., there is
one x̂ ∈ Ŝ with g(x̂) ∈ −int(C), then there is a ū ∈ C∗ so that (x̄, ū) is a
saddle point of the Lagrange functional.

Proof If x̄ ∈ S is a minimal solution of the primal problem then, by Theorem 6.8,
there is a maximal solution ū ∈ C∗ of the dual problem and the extremal values of
the two problems are equal. Consequently, by Theorem 6.12, (x̄, ū) is a saddle point
of the Lagrange functional. 
�

The preceding corollary can also be proved directly without the assumption that
the ordering cone is closed.

6.4 Linear Problems

An excellent application of the duality theory can be given for linear optimization
problems because the dual problem of a linear minimization problem is equivalent
to a linear maximization problem. It is the aim of this section to transform this dual
problem in an appropriate way so that one gets a problem formulation which is
useful from the point of view of the applications.

In the following we specialize the problem (6.2). For that purpose we need the
following assumption:

Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be partially ordered real
normed spaces with the ordering cones CX and CY ,
respectively;
let c ∈ X∗ be a continuous linear functional;
let A : X → Y be a continuous linear mapping;
let b ∈ Y be a given element;
let the constraint set S := {x ∈ CX | A(x) − b ∈ CY } be
nonempty.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.14)

Under this assumption we consider the primal problem

min c(x)

subject to the constraints
A(x)− b ∈ CY

x ∈ CX.

(6.15)

In the problem formulation (6.2) we have replaced the objective functional f

by the continuous linear functional c and the constraint mapping g by b − A(·).
The set Ŝ equals the ordering cone CX. Notice that under the assumption (6.14) the
composite mapping (c(·), b − A(·)) : CX → R× Y is also convex-like.
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In this case the dual problem reads (by (6.4))

max
u∈C∗

Y

inf
x∈CX

c(x)+ u(b − A(x)).

This problem is equivalent to the problem (compare (6.5))

max λ

subject to the constraints
c(x) + u(b − A(x)) ≥ λ for all x ∈ CX

λ ∈ R, u ∈ C∗
Y .

(6.16)

If we define the constraint set of the problem (6.16) as

S∗ := {(λ, u) ∈ R× C∗
Y | c(x) + u(b − A(x)) ≥ λ for all x ∈ CX}, (6.17)

then we can reformulate this constraint set using the following lemma.

Lemma 6.14 (reformulation of the constraint set S∗).

Let the assumption (6.14) be satisfied, and let the set S∗ be given by (6.17).
Then it follows

S∗ = {(λ, u) ∈ R× C∗
Y | c − A∗(u) ∈ C∗

X and λ ≤ u(b)}

(C∗
X and C∗

Y denote the dual cone of CX and CY , respectively; A∗ : Y ∗ →
X∗ denotes the adjoint mapping of A ).

Proof First we assume that a pair (λ, u) ∈ S∗ is given arbitrarily. Then it follows

c(x) + u(b − A(x)) ≥ λ for all x ∈ CX

and

(c − u ◦ A)(x) ≥ λ − u(b) for all x ∈ CX. (6.18)

For x = 0X we get especially

λ ≤ u(b).

From the inequality (6.18) we also obtain

(c − u ◦ A)(x) ≥ 0 for all x ∈ CX
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(because the assumption that (c − u ◦ A)(x) < 0 for some x ∈ CX leads to a
contradiction to the inequality (6.18)). Consequently we have

c − u ◦ A ∈ C∗
X

resulting in

c − A∗(u) ∈ C∗
X.

This proves the first part of the assertion.
Next, we choose an arbitrary pair (λ, u) ∈ R × C∗

Y with c − A∗(u) ∈ C∗
X and

λ ≤ u(b). Then we conclude

(c − u ◦ A)(x) ≥ 0 ≥ λ − u(b) for all x ∈ CX,

and therefore it follows (λ, u) ∈ S∗. 
�

With Lemma 6.14 the equivalent dual problem (6.16) is also equivalent to the
problem

max λ

subject to the constraints
c − A∗(u) ∈ C∗

X

λ ≤ u(b)

λ ∈ R, u ∈ C∗
Y .

Because of the second constraint this problem is again equivalent to the problem

max u(b)

subject to the constraints
c − A∗(u) ∈ C∗

X

u ∈ C∗
Y .

(6.19)

The problem (6.19) generalizes the dual optimization problem known from linear
programming.

Example 6.15 (duality in linear programming).

Let A11 ∈ R
(m1,n1), A12 ∈ R

(m1,n2), A21 ∈ R
(m2,n1) and A22 ∈ R

(m2,n2)

with n1, n2,m1,m2 ∈ N be given matrices, and let b1 ∈ R
m1 , b2 ∈ R

m2 ,



178 6 Duality

c1 ∈ R
n1 and c2 ∈ R

n2 be given vectors. Consider the finite dimensional
linear optimization problem

min cT
1 x1 + cT

2 x2

subject to the constraints
A11x1 + A12x2 = b1

A21x1 + A22x2 ≥ b2

x1 ≥ 0Rn1 , x2 ∈ R
n2 .

“≥” (and “≤” in the dual problem) has to be understood in a componentwise
sense. If we set X := R

n1 × R
n2 , Y := R

m1 × R
m2 , CX := R

n1+ × R
n2 and

CY := {0Rm1 } × R
m2+ , then it is evident that the dual problem (6.19) can be

written as

max bT
1 u1 + bT

2 u2

subject to the constraints
AT

11u1 + AT
21u2 ≤ c1

AT
12u1 + AT

22u2 = c2

u1 ∈ R
m1 , u2 ≥ 0Rm2 .

So, we obtain the dual problem known from linear programming.

Since the equivalent dual problem (6.19) is also a linear optimization problem,
one can again formulate a dual problem of this dual one. If one assumes in addition
that X is reflexive and the ordering cones CX and CY are closed, one can show that
by double dualization one comes back to the primal problem.

6.5 Application to Approximation Problems

In this section we investigate a special linear optimization problem. This is a
problem of the linear Chebyshev approximation. For this approximation problem we
formulate the dual problem which we transform in an appropriate way. Moreover,
with the aid of the duality theory we prove an alternation theorem of the linear
Chebyshev approximation.
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First we formulate the assumptions of this section:

Let M be a compact metric space;
let C(M) denote the linear space of continuous real-valued functions
on M equipped with the maximum norm ‖ · ‖ where
‖x‖ = max

t∈M
|x(t)| for all x ∈ C(M);

let v1, . . . , vn, v̂ ∈ C(M) be given functions.

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(6.20)

Under this assumption we investigate the following problem of linear Chebyshev
approximation :

min
x∈Rn

∥
∥
∥v̂ −

n∑

i=1

xivi

∥
∥
∥. (6.21)

Hence we are looking for a linear combination of the functions v1, . . . ,

vn which uniformly approximates the function v̂ in the best possible way. The
problem (6.21) is equivalent to the problem

min λ

subject to the constraints
∥∥
∥v̂ −

n∑

i=1

xivi

∥∥
∥ ≤ λ

λ ∈ R, x ∈ R
n

which can also be written as:

min λ

subject to the constraints

λ +
n∑

i=1

xivi(t) ≥ v̂(t)

λ −
n∑

i=1

xivi(t) ≥ −v̂(t)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

for all t ∈ M

λ ∈ R, x ∈ R
n.

(6.22)

If M contains infinitely many elements, then the problem (6.22) is a semi-infinite
optimization problem . A problem of this type is discussed in Example 1.5.

Question: What is the dual problem to (6.22)?
In order to answer this question we introduce some notations: X :=

R
n+1; CX := R

n+1; let E denote the finite dimensional linear subspace of
C(M) spanned by the functions v1, . . . , vn, v̂, e (where e ∈ C(M) with e(t) = 1
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for all t ∈ M); Y := E × E; and CY := {(f1, f2) ∈ Y | f1(t) ≥ 0 and f2(t) ≥
0 for all t ∈ M}. If we define c := (1, 0, . . . , 0) ∈ R

n+1, b := (v̂,−v̂) ∈ Y and the
mapping A : X → Y with

A(λ, x) =

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎝

λe +
n∑

i=1

xivi

λe −
n∑

i=1

xivi

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎠

for all (λ, x) ∈ R
n+1,

then the problem (6.22) can also be written as follows:

min cT (λ, x)

subject to the constraints
A(λ, x) − b ∈ CY

(λ, x) ∈ CX.

(6.23)

This is a linear optimization problem which was already discussed in the preceding
section. For the formulation of the equivalent dual problem (by (6.19)) we need the
adjoint mapping A∗ of A, among other things. The mapping A∗ : Y ∗ → X∗ (=
R

n+1) is defined by

A∗(u1, u2) (λ, x) = (u1, u2) (A(λ, x))

=u1

(

λe +
n∑

i=1

xivi

)

+ u2

(

λe −
n∑

i=1

xivi

)

for all (λ, x) ∈ R
n+1.

The statement

c − A∗(u1, u2) ∈ C∗
X

is equivalent to

λ − u1

(

λe +
n∑

i=1

xivi

)

− u2

(

λe −
n∑

i=1

xivi

)

= 0 for all (λ, x)∈Rn+1

resulting in

λ(1 − u1(e) − u2(e)) +
n∑

i=1

xi(u2(vi) − u1(vi)) = 0 for all (λ, x) ∈ R
n+1.
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This equation is also equivalent to

u1(vi) − u2(vi) = 0 for all i ∈ {1, . . . , n}

and

u1(e) + u2(e) = 1.

Consequently, the equivalent dual problem (by (6.19)) which is associated to the
problem (6.23) reads as follows:

max u1(v̂) − u2(v̂)

subject to the constraints
u1(vi) − u2(vi) = 0 for all i ∈ {1, . . . , n}

u1(e) + u2(e) = 1
(u1, u2) ∈ C∗

Y .

(6.24)

This problem is also a semi-infinite optimization problem which has finitely
many constraints in the form of equalities. With the following representation
theorem for positive linear forms on C(M) the problem (6.24) can be simplified
essentially. A proof of this representation theorem can be found in the book [211,
p. 184] by Krabs.

Theorem 6.16 (representation theorem).

Let F be a finite dimensional linear subspace of C(M) (compare (6.20))
spanned by functions f1, . . . , fm ∈ C(M). Let F be partially ordered in a
natural way, and assume that there is a function f̃ ∈ F with

f̃ (t) > 0 for all t ∈ M.

Then every continuous linear functional l ∈ C∗
F (dual cone in F ∗) can be

represented as

l(f ) =
k∑

j=1

λjf (tj ) for all f ∈ F

where k ∈ N, t1, . . . , tk ∈ M are different points, and λ1, . . . , λk are
nonnegative real numbers.

Now we apply this theorem to the linear subspace E. Since e ∈ E with

e(t) = 1 > 0 for all t ∈ M,
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all assumptions of Theorem 6.16 are fulfilled, and therefore we obtain the following
representations for u1, u2 ∈ C∗

E (dual cone in E∗)

u1(v) =
k1∑

j=1

λ1j v(t1j ) for all v ∈ E

and

u2(v) =
k2∑

j=1

λ2j v(t2j ) for all v ∈ E.

Here we have k1, k2 ∈ N; t11, . . . , t1k1
∈ M are different points; t21, . . . , t2k2

∈ M

are different points; and it is λ11, . . . , λ1k1
, λ21 , . . . , λ2k2

≥ 0.
Consequently, the problem (6.24) is equivalent to the following problem:

max
k1∑

j=1

λ1j v̂(t1j ) −
k2∑

j=1

λ2j v̂(t2j )

subject to the constraints
k1∑

j=1

λ1j vi (t1j ) −
k2∑

j=1

λ2j vi (t2j ) = 0 for all i ∈ {1, . . . , n}
k1∑

j=1

λ1j +
k2∑

j=1

λ2j = 1

λ11, . . . , λ1k1
, λ21 , . . . , λ2k2

≥ 0

t11, . . . , t1k1
∈ M

t21, . . . , t2k2
∈ M.

(6.25)

Before simplifying this problem we discuss the question of solvability.

Theorem 6.17 (solvability of problem (6.25)).

Let the assumption (6.20) be satisfied. Then the optimization prob-
lem (6.25) has at least one maximal solution (λ11, . . . , λ1k1

, λ21, . . . , λ2k2
,

t11, . . . , t1k1
, t21, . . . , t2k2

), and the extremal value of this problem equals
the extremal value of the problem (6.21).

Proof By Theorem 2.18 the problem (6.21) of linear Chebyshev approximation is
solvable. Then the equivalent linear optimization problem (6.23) is also solvable.
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The ordering cone CY has a nonempty interior; and the generalized Slater condition
is satisfied, because for an arbitrary x̂ ∈ R

n we obtain with

λ̂ :=
∥
∥
∥v̂ −

n∑

i=1

x̂ivi

∥
∥
∥+ 1

also b − A(λ̂, x̂) ∈ −int(C). Then by Theorem 6.8 the problem (6.24) which
is equivalent to the dual problem of (6.23) is also solvable. With the preceding
remarks this problem is also equivalent to the maximization problem (6.25) which
has therefore a solution. Finally, we conclude with Theorem 6.8 that the extremal
values of the corresponding problems are equal. 
�

The maximization problem (6.25) is a finite optimization problem with finitely
many variables and finitely many constraints. But it is unwieldy because k1 and k2
are not known. One can show that k1 + k2 ≤ n+ 1 (we refer to Krabs [211, p. 54]).
But even if we restrict the number of variables in the maximization problem (6.25)
in this way, this problem is a finite nonlinear optimization problem which, from a
numerical point of view, is not easier to solve than the original problem of linear
Chebyshev approximation.

Finally, we formulate a so-called alternation theorem for the investigated
problem of linear Chebyshev approximation .

Theorem 6.18 (alternation theorem).

Let the assumption (6.20) be satisfied. A vector x̄ ∈ R
n is a solution of the

problem (6.21) of linear Chebyshev approximation (i.e.,
n∑

i=1

x̄ivi is a best

approximation to v̂ in E) if and only if there are k ≤ n + 1 different points
t1, . . . , tk ∈ M with

∣
∣∣v̂(tj ) −

n∑

i=1

x̄ivi(tj )

∣
∣∣ =

∥
∥∥v̂ −

n∑

i=1

x̄ivi

∥
∥∥ for all j = 1, . . . , k (6.26)
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and there are numbers λ1, . . . , λk ∈ R with

k∑

j=1

|λj | = 1, (6.27)

k∑

j=1

λjvi(tj ) = 0 for all i = 1, . . . , n, (6.28)

λj �= 0 for j = 1, . . . , k ⇒ v̂(tj )−
n∑

i=1

x̄ivi (tj ) =
∥
∥
∥v̂ −

n∑

i=1

x̄ivi

∥
∥
∥ sgn(λj ).

(6.29)

Proof First we assume that for some x̄ ∈ R
n there are k ≤ n + 1 different points

t1, . . . , tk ∈ M so that the conditions (6.26), (6.27), (6.28) and (6.29) are satisfied.
Then we obtain for every x ∈ R

n

∥
∥
∥v̂ −

n∑

i=1

x̄ivi

∥
∥
∥ =

k∑

j=1

|λj |
∥
∥
∥v̂ −

n∑

i=1

x̄ivi

∥
∥
∥ (by (6.27))

=
k∑

j=1

|λj | sgn(λj )

(

v̂(tj ) −
n∑

i=1

x̄ivi (tj )

)

(by (6.29))

=
k∑

j=1

λj v̂(tj ) −
n∑

i=1

x̄i

k∑

j=1

λjvi(tj )

=
k∑

j=1

λj v̂(tj ) (by (6.28))

=
k∑

j=1

λj v̂(tj ) −
n∑

i=1

xi

k∑

j=1

λjvi(tj ) (by (6.28))

=
k∑

j=1

λj

(

v̂(tj ) −
n∑

i=1

xivi(tj )

)

≤
k∑

j=1

|λj |
∥
∥
∥v̂ −

n∑

i=1

xivi

∥
∥
∥

=
∥
∥
∥v̂ −

n∑

i=1

xivi

∥
∥
∥ (by (6.27)).
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Consequently, x̄ is a solution of the problem (6.21) of the linear Chebyshev
approximation.

Next, we assume that x̄ ∈ R
n solves the problem (6.21). By Theorem 6.17

the optimization problem (6.25) has a maximal solution (λ11, . . . , λ1k1
, λ21 , . . . ,

λ2k2
, t11, . . . , t1k1

, t21, . . . , t2k2
) (with positive λ11 , . . . , λ1k1

, λ21, . . . , λ2k2
, other-

wise, if λij = 0 for some i ∈ {1, 2} and some j ∈ {1, . . . , ki}, we can drop the
variable λij together with the point tij without changing the minimal value of the
problem (6.25)), and the extremal values of the two problems are equal, i.e.

β :=
∥
∥
∥v̂ −

n∑

i=1

x̄ivi

∥
∥
∥ =

k1∑

j=1

λ1j v̂(t1j ) −
k2∑

j=1

λ2j v̂(t2j ). (6.30)

Because of the constraint

k1∑

j=1

λ1j vi (t1j ) −
k2∑

j=1

λ2j vi (t2j ) = 0 for all i ∈ {1, . . . , n} (6.31)

it follows

k1∑

j=1

λ1j

n∑

i=1

x̄ivi (t1j ) −
k2∑

j=1

λ2j

n∑

i=1

x̄ivi (t2j ) = 0, (6.32)

and with the constraint

k1∑

j=1

λ1j +
k2∑

j=1

λ2j = 1 (6.33)

and the equations (6.32) and (6.30) we conclude

k1∑

j=1

λ1j

[

−v̂(t1j ) +
n∑

i=1

x̄ivi (t1j ) + β

]

+
k2∑

j=1

λ2j

[

v̂(t2j ) −
n∑

i=1

x̄ivi (t2j ) + β

]

= −
k1∑

j=1

λ1j v̂(t1j ) +
k2∑

j=1

λ2j v̂(t2j ) + β

⎛

⎝
k1∑

j=1

λ1j +
k2∑

j=1

λ2j

⎞

⎠

= 0.
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Then the following equations are satisfied:

v̂(t1j ) −
n∑

i=1

x̄ivi(t1j ) = β for all j ∈ {1, . . . , k1},

v̂(t2j ) −
n∑

i=1

x̄ivi(t2j ) = −β for all j ∈ {1, . . . , k2}.

If we define the variables

μj := λ1j for j = 1, . . . , k1,

sj := t1j for j = 1, . . . , k1

and

μk1+j := −λ2j for j = 1, . . . , k2,

sk1+j := t2j for j = 1, . . . , k2,

we get with the equation (6.33)

k1+k2∑

j=1

|μj | = 1,

and with the equation (6.31) it follows

k1+k2∑

j=1

μj vi(sj ) = 0 for all i = 1, . . . , n.

Moreover, the following equation is satisfied:

v̂(sj ) −
n∑

i=1

x̄ivi(sj ) =
∥
∥∥v̂ −

n∑

i=1

x̄ivi

∥
∥∥ sgn(μj ) for all j ∈ {1, . . . , k1 + k2}.

If we notice that k1 + k2 ≤ n + 1, then the assertion follows immediately. 
�
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Example 6.19 (determination of a best approximation).

We consider again Example 1.5 and ask for a solution of the problem

min
x∈R max

t∈[0,2] | sinh t − xt|.

By the alternation theorem the necessary and sufficient conditions for a
minimal solution x̄ ∈ R of this problem read as follows:

|λ1| + |λ2| = 1
λ1t1 + λ2t2 = 0

λ1 �= 0 ⇒ sinh t1 − x̄t1 = ‖ sinh − x̄ id‖ sgn(λ1)

λ2 �= 0 ⇒ sinh t2 − x̄t2 = ‖ sinh − x̄ id‖ sgn(λ2)

| sinh t1 − x̄t1| = ‖ sinh − x̄ id‖
| sinh t2 − x̄t2| = ‖ sinh − x̄ id‖

λ1, λ2 ∈ R; t1, t2 ∈ [0, 2].

One obtains from these conditions that x̄ is a minimal solution of the
considered approximation problem if and only if x̄ ≈ 1.600233 (see
Fig. 1.5).

Exercises

(6.1) Determine a maximal solution of the dual problem associated to the primal
problem

min x1 + 2(x2 − 1)2

subject to the constraint
−x1 − x2 + 1 ≤ 0

x1, x2 ∈ R.



188 6 Duality

(6.2) Let the following primal minimization problem be given:

min 2α +
1∫

0

t x(t) dt

subject to the constraints

1 − α −
1∫

t

x(s) ds ≤ 0 almost everywhere on [0, 1]

x(t) ≥ 0 almost everywhere on [0, 1]
α ≥ 0

x ∈ L2[0, 1], α ∈ R.

(a) Formulate the equivalent dual problem (6.5) of this minimization problem.
(b) Show that the minimal value of this problem is 2 and that the maximal

value of the dual problem (6.4) is 1. Consequently, there is a duality gap.
(6.3) Consider the problem (6.21) of the linear Chebyshev approximation with M =

[0, 1], v̂(t) = t2 for all t ∈ [0, 1], n = 1, v1(t) = t for all t ∈ [0, 1]. With
the aid of the alternation theorem (Theorem 6.18) determine a solution of this
problem.



7Application to Extended Semidefinite
Optimization

In semidefinite optimization one investigates nonlinear optimization problems in
finite dimensions with a constraint requiring that a certain matrix-valued function
is negative semidefinite. This type of problems arises in convex optimization,
approximation theory, control theory, combinatorial optimization and engineering.
In system and control theory so-called linear matrix inequalities (LMI’s) and
extensions like bilinear matrix inequalities (BMI’s) fit into this class of constraints.
Our investigations include various partial orderings for the description of the matrix
constraint and in this way we extend the standard semidefinite case to other types of
constraints. We apply the theory on optimality conditions developed in Chap. 5 and
the duality theory of Chap. 6 to these extended semidefinite optimization problems.

7.1 Löwner Ordering Cone and Extensions

In the so-called conic optimization one investigates finite dimensional optimization
problems with an inequality constraint with respect to a special matrix space. To be
more specific, let Sn denote the real linear space of symmetric (n, n)-matrices. It is
obvious that this space is a finite dimensional Hilbert space with the scalar product
〈·, ·〉 defined by

〈A,B〉 = trace(A · B) for all A,B ∈ Sn. (7.1)

Recall that the trace of a matrix is defined as sum of all diagonal elements of the
matrix. Let C be a convex cone in Sn inducing a partial ordering �. Then we
consider a matrix function G : Rm → Sn defining the inequality constraint

G(x) � 0Sn . (7.2)
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If f : R
m → R denotes a given objective function, then we obtain the conic

optimization problem

min f (x)

subject to the constraints
G(x) � 0Sn

x ∈ R
m.

(7.3)

The name of this problem comes from the fact that the matrix inequality has to be
interpreted using the ordering cone C. Obviously, the theory developed in this book
is fully applicable to this problem structure.

In the special literature one often investigates problems of the form

min f̂ (X)

subject to the constraints
Ĝ(X) � 0Sn

X ∈ Sp

(7.4)

with given functions f̂ : Sp → R and Ĝ : Sp → Sn. In this case the matrix
X ∈ Sp can be transformed to a vector x ∈ R

p·p where x consists of all columns
of X by stacking up columns of X from the first to the p-th column. The dimension

can be reduced because X is symmetric. Then we obtain x ∈ R
p(p+1)

2 . If ϕ denotes
the transformation from the vector x to the matrix X, then the problem (7.4) can be
written as

min (f̂ ◦ ϕ)(x)

subject to the constraints
(Ĝ ◦ ϕ)(x) � 0Sn

x ∈ R
p(p+1)

2 .

Hence, the optimization problem is of the form of problem (7.3) and it is not
necessary to study the nonlinear optimization problem (7.4) separately.

In practice, one works with special ordering cones for the Hilbert space Sn. The
Löwner12 ordering cone and further cones are discussed now.

12K. Löwner, “Über monotone Matrixfunktionen”, Mathematische Zeitschrift 38 (1934) 177–216.
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Remark 7.1 (ordering cones in Sn).

Let Sn denote the real linear space of symmetric (n, n) matrices.

(a) The convex cone

Sn+ := {X ∈ Sn | X is positive semidefinite}

is called the Löwner ordering cone.
The partial ordering induced by the convex cone Sn+ is also called
Löwner partial ordering � (notice that we use the special symbol �
for this partial ordering). The problem (7.3) equipped with the Löwner
partial ordering is then called a semidefinite optimization problem. The
name of this problem is caused by the fact that the inequality constraint
means that the matrix G(x) has to be negative semidefinite.
Although the semidefinite optimization problem is only a finite dimen-
sional problem, it is not a usual problem in R

m because the Löwner
partial ordering makes the inequality constraint complicated. In fact, the
inequality (7.2) is equivalent to infinitely many inequalities of the form

yT G(x)y ≤ 0 for all y ∈ R
n.

(b) The K-copositive ordering cone is defined by

Cn
K := {X ∈ Sn | yT Xy ≥ 0 for all y ∈ K}

for a given convex cone K ⊂ R
n, i.e., we consider only matrices for

which the quadratic form is nonnegative on the convex cone K . If the
partial ordering induced by this convex cone is used in problem (7.3),
then we speak of a K-copositive optimization problem.
It is evident that Sn+ ⊂ Cn

K for every convex cone K and Sn+ = Cn
Rn .

Therefore, we have for the dual cones (Cn
K)∗ ⊂ (Sn+)∗.

If K equals the positive orthantRn+, then Cn
R

n+
is simply called copositive

ordering cone and the problem (7.3) is then called copositive optimiza-
tion problem.

(c) The nonnegative ordering cone is defined by

Nn := {X ∈ Sn | Xij ≥ 0 for all i, j ∈ {1, . . . , n}}.
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In this case the optimization problem (7.3) with the partial ordering
induced by the convex cone Nn reduces to a standard optimization
problem of the form

min f (x)

subject to the constraints
Gij (x) ≤ 0 for all i, j ∈ {1, . . . , n}

x ∈ R
m.

The number of constraints can actually be reduced to n(n+1)
2 because

the matrix G(x) is assumed to be symmetric. So, such a problem can be
investigated with the standard theory of nonlinear optimization in finite
dimensions.

(d) The doubly nonnegative ordering cone is defined by

Dn := Sn+ ∩ Nn

= {X ∈ Sn | X is positive semidefinite and

elementwise nonnegative}.
If we use the partial ordering induced by this convex cone in the
constraint (7.2), then the optimization problem (7.3) can be written as

min f (x)

subject to the constraints
G(x) � 0Sn

Gij (x) ≤ 0 for all i, j ∈ {1, . . . , n}
x ∈ R

m.

So, we have a semidefinite optimization problem with additional finitely
many nonlinear constraints. Obviously, for every convex cone K we
have Dn ⊂ Cn

K and (Cn
K)∗ ⊂ (Dn)∗.

Before discussing some examples we need an important lemma on the Schur
complement.

Lemma 7.2 (Schur complement).

Let X =
(

A BT

B C

)
∈ Sk+l with A ∈ Sk , C ∈ S l and B ∈ R

(l,k) be given,

and assume that A is positive definite. Then we have for the Löwner partial
ordering �

−X � 0Sk+l ⇐⇒ −(C − BA−1BT ) � 0S l

(the matrix C − BA−1BT is called the Schur complement of A in X).
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Proof We have

−X � 0Sk+l ⇐⇒ 0 ≤ (xT , yT )

(
A BT

B C

)(
x

y

)

= xT Ax + 2xT BT y + yT Cy for all x ∈ R
k

and all y ∈ R
l

⇐⇒ 0 ≤ min
x∈Rk

xT Ax + 2xT BT y + yT Cy for all y ∈ R
l .

Since A is positive definite, for an arbitrarily chosen y ∈ R
l this optimization

problem has the minimal solution −A−1BT y with the minimal value

−yT BA−1BT y + yT Cy = yT (C − BA−1BT )y.

Consequently we get

−X � 0Sk+l ⇐⇒ yT (C − BA−1BT )y ≥ 0 for all y ∈ R
l

⇐⇒ −(C − BA−1BT ) � 0S l . 
�

The following example illustrates the significance of semidefinite optimization.

Example 7.3 (semidefinite optimization).

(a) The problem of determining the smallest among the largest eigenvalues
of a matrix-valued function A : R

m → Sn leads to the semidefinite
optimization problem

min λ

subject to the constraints
A(x)− λI � 0Sn

x ∈ R
m

(with the identity matrix I ∈ Sn and the Löwner partial ordering
�). Indeed, A(x) − λI is negative semidefinite if and only if for all
eigenvalues λ1, . . . , λn of A(x) the inequality λi ≤ λ is satisfied. Hence,
with the minimization of λ we determine the smallest among the largest
eigenvalues of A(x).
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(b) We consider a nonlinear optimization problem with a quadratic con-
straint in a finite dimensional setting, i.e. we have

min f (x)

subject to the constraints
(Ax + b)T (Ax + b) − cT x − α ≤ 0

x ∈ R
m

(7.5)

with an objective function f : Rm → R, a given matrix A ∈ R
(k,m),

given vectors b ∈ R
k and c ∈ R

m and a real number α. If � denotes
again the Löwner partial ordering, we consider the inequality

−
(

I Ax + b

(Ax + b)T cT x + α

)
� 0Sk+1 (7.6)

(I ∈ Sk denotes the identity matrix). By Lemma 7.2 this inequality is
equivalent to the quadratic constraint

(Ax + b)T (Ax + b)− cT x − α ≤ 0.

If the i-th column of the matrix A (with i ∈ {1, . . . , k}) is denoted by
a(i) ∈ R

m, then we set

A(0) :=
(

I b

bT α

)

and

A(i) :=
(

0Sk a(i)

a(i)T ci

)

for all i ∈ {1, . . . , k},

and the inequality (7.6) is equivalent to

−A(0) − A(1)x1 − · · · − A(k)xk � 0Sk+1 .

Hence, the original problem (7.5) with a quadratic constraint can be
written as a semidefinite optimization problem with a linear constraint

min f (x)

subject to the constraints
−A(0) − A(1)x1 − · · · − A(k)xk � 0Sk+1

x ∈ R
m.
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Although the partial ordering used in the constraint becomes more
complicated by this transformation, the type of the constraint which
is now linear and not quadratic, is much simpler to handle. A similar
transformation can be carried out in the case that, in addition, the
objective function f is also quadratic. Then we minimize an additional
variable and use this variable as an upper bound of the objective
function.

(c) We consider a system of autonomous linear differential equations

ẋ(t) = Ax(t) + Bu(t) almost everywhere on [0,∞) (7.7)

with given matrices A ∈ R
(k,k) and B ∈ R

(k,l). Using a feedback control

u(t) = Fx(t) almost everywhere on [0,∞)

with an unknown matrix F ∈ R
(l,k) we try to make the system (7.7)

asymptotically stable , i.e. we require for every solution x of (7.7) that

lim
t→∞‖x(t)‖ = 0

for the Euclidean norm ‖ · ‖ in R
k . In control theory the autonomous

linear system (7.7) is called stabilizable, if there exists a matrix F ∈
R

(l,k) so that the system (7.7) is asymptotically stable.
For the determination of an appropriate matrix F we investigate the so-
called Lyapunov function v : Rk → R with

v(x̃) = x̃T P x̃ for all x̃ ∈ R
k

(P ∈ Sk is arbitrarily chosen and should be positive definite). Since P

is positive definite we have

v(x̃) > 0 for all x̃ ∈ R
k\{0Rk }. (7.8)

For a solution x of the system (7.7) we obtain

v̇(x(t))

= d

dt
x(t)T Px(t)

= ẋ(t)T Px(t) + x(t)T P ẋ(t)

= (Ax(t) + BFx(t)
)T

Px(t) + x(t)T P
(
Ax(t) + BFx(t)

)

= x(t)T
(
(A + BF)T P + P(A + BF)

)
x(t).
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If the matrices P and F are chosen in such a way that (A + BF)T P +
P(A + BF) is negative definite, then there is a positive number α with

v̇(x(t)) ≤ −α‖x(t)‖2 for all t ∈ [0,∞). (7.9)

The inequalities (7.8) and (7.9) imply

lim
t→∞ v(x(t)) = 0. (7.10)

Since P is assumed to be positive definite, there is a positive number
β > 0 with

v(x̃) ≥ β‖x̃‖2 for all x̃ ∈ R
k.

Then we conclude with (7.10)

lim
t→∞‖x(t)‖ = 0,

i.e. the autonomous linear system (7.7) is stabilizable. Hence, we obtain
the stabilization of (7.7) by a feedback control, if we choose a positive
definite matrix P ∈ Sk and a matrix F ∈ R

(l,k) so that (A+ BF)T P +
P(A + BF) is negative definite.
In order to fulfill this requirement we consider the semidefinite opti-
mization problem

min λ

subject to the constraints
−λI + (A + BF)T P + P(A + BF) � 0Sk

−λI − P � 0Sk

λ ∈ R, P ∈ Sk, F ∈ R
(l,k)

(7.11)

(I ∈ Sk denotes the identity matrix and recall that � denotes the Löwner
partial ordering). By a suitable transformation this problem formally fits
into the class (7.3) of semidefinite problems. Here G has to be defined
in an appropriate way. It is important to note that it is not necessary
to solve the problem (7.11). Only a feasible solution with λ < 0 is
requested. Then the matrices P and F fulfill the requirements for the
stabilization of the autonomous linear system (7.7).

(d) Finally we discuss an applied problem from structural optimization and
consider a structure of k elastic bars connecting a set of p nodes (see
Fig. 7.1). The design variables xi (i = 1, . . . , k) are the cross-sectional
areas of the bars. We assume that nodal load forces f1, . . . , fp are given.
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Fig. 7.1 Cantilever with
seven nodes and the load
force f7

f7

l1, . . . , lk denote the length of the bars, v is the maximal volume, and
xi > 0 and x̄i are the lower and upper bounds of the cross-sectional
areas. The so-called stiffness matrix A(x) ∈ Sp is positive definite for
all x1, . . . , xk > 0. We want to find a feasible structure with minimal
elastic stored energy. Then we obtain the optimization problem

min f T A(x)−1f

subject to the constraints
k∑

i=1

lixi ≤ v

xi ≤ xi ≤ x̄i for all i ∈ {1, . . . , k}
or

min λ

subject to the constraints
f T A(x)−1f − λ ≤ 0

k∑

i=1

lixi ≤ v

xi ≤ xi ≤ x̄i for all i ∈ {1, . . . , k}.

By Lemma 7.2 the inequality constraint

f T A(x)−1f − λ ≤ 0
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is equivalent to

−
(

A(x) f

f T λ

)
� 0Sp+1

(recall that � denotes the Löwner partial ordering). Hence, we get a
standard semidefinite optimization problem with an additional linear
inequality constraint and upper and lower bounds:

min λ

subject to the constraints

−
(

A(x) f

f T λ

)
� 0Sp+1

k∑

i=1

lixi ≤ v

xi ≤ xi ≤ x̄i for all i ∈ {1, . . . , k}.

Although the Löwner partial ordering is mostly used for describing the inequality
constraint (7.2), we mainly investigate the more general conic optimization problem
(7.3) covering the standard semidefinite problem. For the application of the general
theory of this book we now investigate properties of the presented ordering cones in
more detail.

Lemma 7.4 (properties of the Löwner ordering cone).

For the Löwner ordering cone Sn+ we have:

(a) int(Sn+) = {X ∈ Sn | X is positive definite}
(b) (Sn+)∗ = Sn+, i.e. Sn+ is self-dual.

Proof
(a) First, we show the inclusion int(Sn+)⊂{X ∈Sn |X is positive definite}.

Let X ∈ int(Sn+) be arbitrarily chosen. Then we get for a sufficiently small
λ > 0 X − λI ∈ Sn+ (I ∈ Sn denotes the identity matrix), i.e.

0 ≤ xT (X − λI)x = xT Xx − λxT x for all x ∈ R
m

implying

xT Xx ≥ λxT x > 0 for all x ∈ R
m\{0Rm}.
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Consequently, the matrix X is positive definite.
Next we prove the converse inclusion. Let a positive definite matrix X ∈ Sn

be arbitrarily given. Then all eigenvalues of X are positive. Since the minimal
eigenvalue continuously depends on the elements of the matrix, it follows
immediately that X belongs to the interior of Sn+.

(b) First, we show the inclusion (Sn+)∗ ⊂ Sn+. Let an arbitrary matrix X ∈ (Sn+)∗
be chosen and assume that X /∈ Sn+. Then there exists some y ∈ R

m so that
yT Xy < 0. If we set Y := yyT , we have Y ∈ Sn+ and we obtain

〈X,Y 〉 = trace(XyyT ) = yT Xy < 0,

a contradiction to X ∈ (Sn+)∗.
Now, we prove the converse inclusion. Let X ∈ Sn+ be arbitrarily given.

Choose any Y ∈ Sn+. Since X and Y are symmetric and positive semidefinite it is
known that there are matrices

√
X,

√
Y ∈ Sn+ with (

√
X)2 = X and (

√
Y )2 = Y

and we obtain

〈X,Y 〉 = trace(
√

X
√

X
√

Y
√

Y )

= trace(
√

X
√

Y
√

Y
√

X)

= 〈√X
√

Y ,
√

X
√

Y 〉
≥ 0.

Hence, we conclude X ∈ (Sn+)∗. 
�

The result of Lemma 7.4,(b) is also called Féjèr theorem in the special literature.
For the K-copositive ordering cone we obtain similar results.

Lemma 7.5 (properties of the K-copositive ordering cone).

Let K ⊂ R
n be a convex cone. For the K-copositive ordering cone Cn

K we
have:

(a) {X ∈ Sn | X is positive definite} ⊂ int(Cn
K).

(b) In addition, if K is closed, then for HK := convex hull {xxT | x∈ K}
(i) HK is closed

(ii) (Cn
K)∗ = HK .

Proof
(a) By definition we have Sn+ ⊂ Cn

K . Consequently, the assertion follows from
Lemma 7.4,(a).

(b) (i) Let an arbitrary sequence Xk ∈ HK be chosen with the limit X ∈ Sn (with
respect to the spectral norm). Since K is a cone, for every k ∈ N there are
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vectors x(1k), . . . , x(pk) ∈ K with the property

Xk =
p∑

i=1

x(ik)x(ik)
T

(notice that by the Carathéodory theorem the number p of vectors is
bounded by n + 1). Every x(ik) ∈ K (i ∈ {1, . . . , p}, k ∈ N) can be
written as

x(ik) = μik s
(ik)

with μik ≥ 0 and

s(ik) ∈ K ∩ {x ∈ R
n | ‖x‖ = 1}

(‖ · ‖ denotes the Euclidean norm in R
n). This set is compact because K is

assumed to be closed. Consequently, we obtain for every k ∈ N

Xk =
p∑

i=1

μ2
ik
s(ik)s(ik)

T
.

Since s(1k), . . . , s(pk) belong to a compact set and (Xk)k∈N converges to
X, the numbers μ1k , . . . , μpk are bounded and there are subsequences
(s(ikl ))l∈N and (μikl

)l∈N (with i ∈ {1, . . . p}) converging to s(i) ∈ K and
μi ∈ R, respectively, with the property

X =
p∑

i=1

μ2
i s

(i)s(i)T .

This implies X ∈ HK . Hence, HK is a closed set.
(ii) First we show the inclusion HK ⊂ (Cn

K)∗. For an arbitrary X ∈ HK we
have the representation

X =
p∑

i=1

x(i)x(i)T for some x(1), . . . , x(p) ∈ K

(notice here that K is a cone). Then we obtain for every Y ∈ Cn
K

〈Y,X〉 = trace(Y · X)

= trace

(

Y

p∑

i=1

x(i)x(i)T

)
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=
p∑

i=1

trace(Yx(i)x(i)T )

=
p∑

i=1

x(i)T Yx(i)

≥ 0,

i.e. X ∈ (Cn
K)∗.

For the proof of the converse inclusion we first show H ∗
K ⊂ Cn

K . Let an arbitrary
X /∈ Cn

K be given. Then there is some y ∈ K with yT Xy < 0. If we set
Y := yyT , then we have Y ∈ HK and

〈Y,X〉 = trace(Y · X) = trace(XyyT ) = yT Xy < 0,

i.e. X /∈ H ∗
K . Consequently H ∗

K ⊂ Cn
K and for the dual cones we get

(Cn
K)∗ ⊂ (H ∗

K)∗. (7.12)

Next, we show that (H ∗
K)∗ ⊂ HK . For this proof let Z ∈ (H ∗

K)∗ be arbitrarily
given and assume that Z /∈ HK . Since HK is closed by part (i) and convex, by
Theorem C.3 there exists some V ∈ Sn\{0Sn} with

〈V,Z〉 < inf
U∈HK

〈V,U〉. (7.13)

This inequality implies

〈V,Z〉 < 0, (7.14)

if we set U = 0Sn . Now assume that V /∈ H ∗
K . Then there is some Ũ ∈ HK

with 〈V, Ũ 〉 < 0. Since HK is a cone, we have λŨ ∈ HK for all λ > 0 and

0 > λ〈V, Ũ 〉 = 〈V, λŨ 〉 for all λ > 0.

Consequently, 〈V, λŨ 〉 can be made arbitrarily small contradicting to the
inequality (7.13). So V ∈ H ∗

K and because of Z ∈ (H ∗
K)∗ we obtain 〈V,Z〉 ≥ 0

contradicting (7.14). Hence we get Z ∈ HK . With the inclusions (H ∗
K)∗ ⊂ HK

and (7.12) we then conclude (Cn
K)∗ ⊂ HK which has to be shown. 
�

In the special literature elements in the dual cone (Cn
R

n+
)∗ = HR

n+ (i.e. we set

K = R
n+) are called completely positive matrices.

Finally we present similar results for the nonnegative ordering cone and the
doubly nonnegative ordering cone.
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Lemma 7.6 (properties of the nonnegative and doubly nonnegative
ordering cone).

For the nonnegative ordering cone Nn and the doubly nonnegative ordering
cone Dn we have:

(a) int(Nn) = {X ∈ Sn | Xij > 0 for all i, j ∈ {1, . . . , n}}
(b) (Nn)∗ = Nn, i.e. Nn is self-dual
(c) int(Dn) = {X ∈ Sn | X is positive definite and elementwise

positive}
(d) (Dn)∗ = Dn, i.e. Dn is self-dual.

Proof
(a) This part is obvious.
(b) (i) Let X ∈ Nn be arbitrarily chosen. Then we get for all M ∈ Nn

〈X,M〉 = trace(X · M) =
n∑

i=1

n∑

j=1

Xij︸︷︷︸
≥0

· Mji︸︷︷︸
≥0

≥ 0.

Consequently, we have X ∈ (Nn)∗.
(ii) Now let X ∈ (Nn)∗ be arbitrarily chosen. If we consider M ∈ Nn with

Mij =
{

1 for i = k and j = l

0 otherwise

for arbitrary k, l ∈ {1, . . . , n}, then we conclude

0 ≤ 〈X,M〉 = Xkl.

So, we obtain X ∈ Nn.
(c) With Lemma 7.4,(a) and part (a) of this lemma we get

int(Dn) = int(Sn+ ∩ Nn)

= int(Sn+) ∩ int(Nn)

= {X ∈ Sn+ | X positive definite and elementwise positive}.

(d) With Lemma 7.4,(b) and part (b) of this lemma we obtain

(Dn)∗ = (Sn+)∗ ∩ (Nn)∗ = Sn+ ∩ Nn = Dn. 
�
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7.2 Optimality Conditions

The necessary optimality conditions presented in Sect. 5.2 are now applied to the
conic optimization problem (7.3) with the partial ordering � inducing the ordering
cone C. To be more specific, let f : Rm → R and G : Rm → Sn be given functions
and consider the conic optimization problem

min f (x)

subject to the constraints
G(x) � 0Sn

x ∈ R
m.

First, we answer the question under which assumptions the matrix function G is
Fréchet differentiable.

Lemma 7.7 (Fréchet derivative of G).

Let the matrix function G : Rm → Sn be elementwise differentiable at some
x̄ ∈ R

m. Then the Fréchet derivative of G at x̄ is given by

G′(x̄)(h) =
m∑

i=1

Gxi (x̄) hi for all h ∈ R
m

with

Gxi :=

⎛

⎜
⎜
⎝

∂
∂xi

G11 · · · ∂
∂xi

G1n

...
...

∂
∂xi

Gn1 · · · ∂
∂xi

Gnn

⎞

⎟
⎟
⎠ for all i ∈ {1, . . . ,m}.

Proof Let h ∈ R
m be arbitrarily chosen. Since G is elementwise differentiable at

x̄ ∈ R
m, we obtain for the Fréchet derivative of G

G′(x̄)(h) =
⎛

⎜
⎝

∇G11(x̄)T h · · · ∇G1n(x̄)T h
...

...

∇Gn1(x̄)T h · · · ∇Gnn(x̄)T h

⎞

⎟
⎠
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=

⎛

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎝

m∑

i=1

G11xi
(x̄) hi · · ·

m∑

i=1

G1nxi
(x̄) hi

...
...

m∑

i=1

Gn1xi
(x̄) hi · · ·

m∑

i=1

Gnnxi
(x̄) hi

⎞

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎠

=
m∑

i=1

Gxi (x̄) hi . 
�

Now we present the Lagrange multiplier rule for the conic optimization problem
(7.3).

Theorem 7.8 (Lagrange multiplier rule).

Let f : Rm → R and G : Rm → Sn be given functions, and let x̄ ∈ R
m

be a minimal solution of the conic optimization problem (7.3). Let f be
differentiable at x̄ and let G be elementwise differentiable at x̄. Then there
are a real number μ ≥ 0 and a matrix L ∈ C∗ with (μ,L) �= (0, 0Sn),

μ∇f (x̄) +
⎛

⎜
⎝

〈L,Gx1(x̄)〉
...

〈L,Gxm(x̄)〉

⎞

⎟
⎠ = 0Rm (7.15)

and

〈L,G(x̄)〉 = 0. (7.16)

If, in addition to the above assumptions the equality

G′(x̄)(Rm) + cone (C + {G(x̄)}) = Sn (7.17)

is satisfied, then it follows μ > 0.

Proof Because of the differentiability assumptions we have that f and G are
Fréchet differentiable at x̄. Then we apply Corollary 5.4 and obtain the existence
of a real number μ ≥ 0 and a matrix L ∈ C∗ with (μ,L) �= (0, 0Sn),

μ∇f (x̄) + L ◦ G′(x̄) = 0Rm (7.18)
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and

〈L,G(x̄)〉 = 0.

For every h ∈ R
m we obtain with Lemma 7.7

(L ◦ G′(x̄))(h) = 〈L,G′(x̄)(h)〉

= 〈L,

m∑

i=1

Gxi (x̄)hi〉

=
m∑

i=1

〈L,Gxi (x̄)〉hi

=
⎛

⎜
⎝

〈L,Gx1(x̄)〉
...

〈L,Gxm(x̄)〉

⎞

⎟
⎠

T

h.

Then the equality (7.18) implies

μ∇f (x̄) +
⎛

⎜
⎝

〈L,Gx1(x̄)〉
...

〈L,Gxm(x̄)〉

⎞

⎟
⎠ = 0Rm.

Hence, one part of the assertion is shown. If we consider the Kurcyusz-Robinson-
Zowe regularity assumption (5.9) for the special problem (7.3), we have Ŝ = R

m

and cone(Ŝ − {x̄}) = R
m. So, the equality (7.17) is equivalent to the regularity

assumption (5.9). This completes the proof. 
�

In the case of μ > 0 we can set U := 1
μ
L ∈ C∗ and the equalities (7.15) and

(7.16) can be written as

fxi (x̄) + 〈U,Gxi (x̄)〉 = 0 for all i ∈ {1, . . . ,m}

and

〈U,G(x̄)〉 = 0.

This gives the extended Karush-Kuhn-Tucker conditions to matrix space problems.
In Theorem 7.8 the Lagrange multiplier L is a matrix in the dual cone C∗.

According to the specific choice of the ordering cone C discussed in Lem-
mas 7.4, 7.5 and 7.6 we take the dual cones given in Lemmas 7.4,(b), 7.5,(b),(ii)
and 7.6,(b),(d). For instance, if C denotes the Löwner ordering cone, then the
multiplier L is positive semidefinite.
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Instead of the regularity assumption (7.17) used in Theorem 7.8 we can also
consider a simpler condition.

Lemma 7.9 (regularity condition).

Let the assumption of Theorem 7.8 be satisfied and let C denote the K-
copositive ordering cone Cn

K for an arbitrary convex cone K . If there exists

a vector x̂ ∈ R
m so that G(x̄) +

m∑

i=1

Gxi (x̄)(x̂i − x̄i) is negative definite,

then the regularity assumption in Theorem 7.8 is fulfilled.

Proof By Lemma 7.5,(a) we have

G(x̄) + G′(x̄)(x̂ − x̄) = G(x̄) +
m∑

i=1

Gxi (x̄)(x̂i − x̄i) ∈ −int(Cn
K)

and with Theorem 5.6 the Kurcyusz-Robinson-Zowe regularity assumption is
satisfied, i.e. the equality (7.17) is fulfilled. 
�

It is obvious that in the case of the Löwner partial ordering Sn+ = Cn
Rn Lemma 7.9

is also applicable. Notice that a similar result can be shown for the ordering cones
discussed in Lemma 7.6. For the interior of these cones we can then use the results
in Lemma 7.6,(a) and (c).

Next, we answer the question under which assumptions the Lagrange multiplier
rule given in Theorem 7.8 as a necessary optimality condition is a sufficient
optimality condition for the conic optimization problem (7.3).

Theorem 7.10 (sufficient optimality condition).

Let f : R
m → R and G : Rm → Sn be given functions. Let for some

x̄ ∈ R
m f be differentiable and pseudoconvex at x̄ and let G be elementwise

differentiable and (−C + cone({G(x̄)})− cone({G(x̄)}))-quasiconvex at x̄.
If there is a matrix L ∈ C∗ with

∇f (x̄) +
⎛

⎜
⎝

〈L,Gx1(x̄)〉
...

〈L,Gxm(x̄)〉

⎞

⎟
⎠ = 0Rm (7.19)

and

〈L,G(x̄)〉 = 0,

then x̄ is a minimal solution of the conic optimization problem (7.3).
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Proof With Lemma 7.7 the equality (7.19) implies

∇f (x̄) + L ◦ G′(x̄) = 0Rm.

By Lemma 5.16 and Corollary 5.15 the assertion follows immediately. 
�

The quasiconvexity assumption in Theorem 7.10 (compare Definition 5.12)
means that for all feasible x ∈ R

m

G(x) − G(x̄) ∈ −C + cone({G(x̄)}) − cone({G(x̄)})

�⇒
m∑

i=1

Gxi (x̄)(xi − x̄i) ∈ −C + cone({G(x̄)}) − cone({G(x̄)}).

For all feasible x ∈ R
m this implication can be rewritten as

G(x) + (α − 1 − β)G(x̄) ∈ −C for some α, β ≥ 0

�⇒
m∑

i=1

Gxi (x̄)(xi − x̄i) + (γ − δ)G(x̄) ∈ −C for some γ, δ ≥ 0

or

G(x) + ᾱG(x̄) ∈ −C for some ᾱ ∈ R

�⇒
m∑

i=1

Gxi (x̄)(xi − x̄i) + γ̄ G(x̄) ∈ −C for some γ̄ ∈ R.

7.3 Duality

The duality theory developed in Chap. 6 is now applied to the conic optimization
problem (7.3) with given functions f : Rm→ R and G : Rm → Sn and the partial
ordering � inducing the ordering cone C.

For convenience we recall the primal optimization problem

min f (x)

subject to the constraints
G(x) � 0Sn

x ∈ R
m.

According to Sect. 6.1 the dual problem can be written as

max
U∈C∗ inf

x∈Rm
f (x) + 〈U,G(x)〉 (7.20)
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or equivalently

max λ

subject to the constraints
f (x) + 〈U,G(x)〉 ≥ λ for all x ∈ R

m

λ ∈ R, U ∈ C∗.

We are now able to formulate a weak duality theorem for the conic optimization
problem (7.3).

Theorem 7.11 (weak duality theorem).

For every feasible x̂ of the primal problem (7.3) and for every feasible Û of
the dual problem (7.20) the following inequality is satisfied

inf
x∈Rm

f (x) + 〈Û ,G(x)〉 ≤ f (x̂).

Proof This result follows immediately from Theorem 6.7. 
�

The following strong duality theorem is a direct consequence of Theorem 6.8.

Theorem 7.12 (strong duality theorem).

Let the composite mapping (f,G) : Rm → R × Sn be convex-like and let
the ordering cone have a nonempty interior int(C). If the primal problem
(7.3) is solvable and the generalized Slater condition is satisfied, i.e., there
is a vector x̂ ∈ R

m with G(x̂) ∈ −int(C), then the dual problem (7.20) is
also solvable and the extremal values of the two problems are equal.

For instance, if the ordering cone C is the K-copositive ordering cone Cn
K for

some convex cone K ⊂ R
n, then by Lemma 7.5,(a) the generalized Slater condition

in Theorem 7.12 is satisfied whenever G(x̂) is negative definite for some x̂ ∈ R
m.

In this case a duality gap cannot appear.
With the investigations in Sect. 6.4 it is simple to state the dual problem of a

linear semidefinite optimization problem. If we specialize the problem (7.3) to the
linear problem

min cT x

subject to the constraints
B � A(x)

x1, . . . , xm ≥ 0

(7.21)
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with c ∈ R
m, a linear mapping A : Rm → Sn and a matrix B ∈ Sn. Since A is

linear, there are matrices A(1), . . . , A(m) ∈ Sn so that

A(x) = A(1)x1 + . . . + A(m)xm for all x ∈ R
m.

Then the primal linear problem (7.21) can also be written as

min cT x

subject to the constraints
B � A(1)x1 + . . . + A(m)xm

x1, . . . , xm ≥ 0.

(7.22)

For the formulation of the dual problem of (7.22) we need the adjoint mapping
A∗ : Sn → R

m defined by

A∗(U)(x) = 〈U,A(x)〉
= 〈U,A(1)x1 + . . .+ A(m)xm〉
= 〈U,A(1)〉x1 + . . . + 〈U,A(m)〉xm

=
(
〈U,A(1)〉, . . . , 〈U,A(m)〉

)
· x

for all x ∈ R
m and all U ∈ Sn.

Using the general formulation (6.19) we then obtain the dual problem

max 〈B,U〉
subject to the constraints

〈A(1), U〉 ≤ c1
...

〈A(m), U〉 ≤ cm

U ∈ C∗.

(7.23)

In the special literature on semidefinite optimization the dual problem (7.23) is very
often the primal problem with C∗ = Sn+. In this case our primal problem is then the
dual problem in the literature.

Exercises

(7.1) Show that the Löwner ordering cone Sn+ is closed and pointed.
(7.2) Show for the Löwner ordering cone

Sn+ = convex hull {xxT | x ∈ R
n}.
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(7.3) As an extension of Lemma 7.2 prove the following result: Let X =(
A BT

B C

)
∈ Sk+l with A ∈ Sk , C ∈ S l and B ∈ R

(l,k) be given, and

assume that A is positive definite. Then we have for an arbitrary convex cone
K ⊂ R

l :

X ∈ Ck+l

Rk×K
⇐⇒ C − BA−1BT ∈ Cl

K.

(7.4) Show for arbitrary A,B ∈ Sn+

〈A,B〉 = 0 ⇐⇒ AB = 0Sn .

(7.5) Let A be a given symmetric (n, n) matrix. Show for an arbitrary (j−i+1, j−
i + 1) block matrix Aij (1 ≤ i ≤ j ≤ n) with

A
ij
kl = Ai+k−1, i+l−1 for all k, l ∈ {1, . . . , j − i + 1} :

A positive semidefinite �⇒ Aij positive semidefinite.

(7.6) Show that the linear semidefinite optimization problem

min x2

subject to the constraints

−
(

x1 1
1 x2

)
� 0S2

x1, x2 ∈ R

(where � denotes the Löwner partial ordering) is not solvable.
(7.7) Let the linear mapping G : R2 → S2 with

G(x1, x2) =
(

x1 x2

x2 0

)
for all (x1, x2) ∈ R

2

be given. Show that G does not fulfill the generalized Slater condition given
in Theorem 7.12 for C = S2+.

(7.8) Let c ∈ R
m, B ∈ Sn and a linear mapping A : Rm → Sn with

A(x) = A(1)x1 + . . . + A(m)xm for all x ∈ R
m
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for A(1), . . . , A(m) ∈ Sn be given. Show that for the linear problem

min cT x

subject to the constraints
B � A(x)

x ∈ R
m

the dual problem is given by

max 〈B,U〉
subject to the constraints

〈A(1), U〉 = c1
...

〈A(m), U〉 = cm

U ∈ C∗.

(7.9) Consider the linear semidefinite optimization problem

min x1

subject to the constraints
⎛

⎝
0 −x1 0

−x1 −x2 0
0 0 −x1 − 1

⎞

⎠ � 0S3

x1, x2 ∈ R

(where � denotes the Löwner partial ordering). Give the corresponding dual
problem and show that the extremal values of the primal and dual problem are
not equal. Why is Theorem 7.12 not applicable?



8Extension to Discrete-Continuous Problems

Many optimization problems in practice have continuous and discrete variables.
Formally, one can plug the discrete variables in the superset (called Ŝ) of the
constraint set, but then this set is nonconvex and the Lagrange multiplier rule
in Chap. 5 is not applicable and the duality theory in Chap. 6 is only limitedly
applicable. For a Lagrange theory and a duality theory in discrete-continuous
nonlinear optimization one needs a different approach,13 which is developed in this
chapter. The main key for such a theory is a special separation theorem for discrete
sets. Using this theory we present optimality conditions as well as duality results.

It is known from Chap. 5 that the Lagrange multiplier rule in continuous
optimization is based on the fact that to each constraint one Lagrange multiplier
is associated, which is then used for the formulation of the Lagrange functional. In
mixed discrete-continuous optimization it turns out that this point is completely dif-
ferent. In general, to each constraint of a discrete-continuous problem more than one
Lagrange multiplier are associated.

8.1 Problem Formulation

In this chapter we follow the definition of a discrete set often used in discrete
optimization.

13J. Jahn and M. Knossalla, “Lagrange theory of discrete-continuous nonlinear optimization”,
Journal of Nonlinear and Variational Analysis 2 (2018) 317–342.
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Definition 8.1 (discrete set).

A nonempty subset of a real linear space is called discrete, if its number of
elements is either finite or countably infinite.

This definition differs from that in a topological setting where for every vector of
the considered set there is a neighborhood so that no other vector of this set belongs
to this neighborhood. In a real topological linear space every vector of such a set is
also called isolated.

Example 8.2 (discrete set).

The number of elements of the set A := {0} ∪ { 1
n
}n∈N is countably infinite

and, therefore, A is a discrete set. But there is no neighborhood of 0 so that
no nonzero element of A belongs to such a neighborhood, i.e. 0 is not an
isolated point.

Based on Definition 8.1 we generally write a discrete subset A of a real linear
space as A = {ai}i∈N with N := {1, 2, . . . , n} for some n ∈ N or N := N, where
a1, a2, . . . are elements of the real linear space.

One can also extend Definition 8.1 to a more general class of sets.

Definition 8.3 (extendedly discrete set).

A nonempty subset A of a real linear space E is called extendedly discrete,
if A = ⋃

i∈N Ai for N := {1, 2, . . . , n} (with n ∈ N) or N := N and for
nonempty sets Ai ⊂ E (i ∈ N).

It is obvious that every discrete set is also extendedly discrete. The concept of
extendedly discrete sets is needed in the next section.

Next, we investigate discrete-continuous nonlinear optimization problems under
the following assumption where discrete and continuous variables are indexed by a
subscript d and c, respectively. For real normed spaces we also use these subscripts
in a similar way.
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The standard assumption of this chapter reads as follows:

Let (Xd, ‖ · ‖Xd ), (Xc, ‖ · ‖Xc), (Y, ‖ · ‖Y ) and (Z, ‖ · ‖Z)

be real normed spaces,
and let C ⊂ Y be a convex cone in Y ;
let Sd be a discrete subset of Xd, i.e. Sd = {xi

d}i∈N for
N := {1, 2, . . . , n}(with n ∈ N) or N := N

with elements x1
d, x2

d , . . . ∈ Xd ;
let Sc be a nonempty subset of Xc;
let f : Sd × Sc → R, g : Sd × Sc → Y and
h : Sd × Sc → Z be given mappings;
furthermore let the constraint set
S := {(xd, xc) ∈ Sd × Sc | g(xd, xc) ∈ −C, h(xd, xc) = 0Z}
be nonempty.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8.1)

Under this assumption we study the discrete-continuous optimization problem

min
(xd , xc)∈S

f (xd, xc). (8.2)

Such a discrete-continuous optimization problem is much more complicated than
standard problems of continuous optimization. For instance, the constraint set S of
this problem can be written as

S =
⋃

i∈N

{(xi
d, xc) ∈ Xd × Sc | g(xi

d , xc) ∈ −C, h(xi
d, xc) = 0Z}

so that the constraint set is a union of layered subsets of Xd × Xc. Figure 8.1
illustrates this multi-layered structure. Even if these layered subsets are convex, its
union is not convex in general. Therefore, these nonconvex constraint sets cannot be
treated with standard approaches of continuous optimization. It seems to be obvious
that separation theorems with certain nonlinear separating functionals are needed.

8.2 Separation Theorems for Discrete Sets

It is well-known that separation results are the fundamental tool for the theoretical
investigation of continuous optimization problems. In discrete-continuous optimiza-
tion one needs special separation results being the topic of this section. Our first
separation theorem can be formulated for extendedly discrete sets.
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Fig. 8.1 Illustration of a possible constraint set of problem (8.2) with Sd = {1, 2, . . . , 7} and
Sc = R

2

Theorem 8.4 (first separation version).

Let (E, ‖ · ‖) be a real normed space, let A be a nonempty subset of E, and
let B be an extendedly discrete subset of E with the representation B =⋃

i∈N int(conv(Bi)) for N := {1, 2, . . . , n} (with n ∈ N) or N := N where
Bi ⊂ E and int(conv(Bi)) �= ∅ for all i ∈ N . Then conv(A) ∩ B = ∅
if and only if for every i ∈ N there exist a continuous linear functional
�i ∈ E∗\{0E∗ } and a real number αi with

0 < �i(y) + αi for all y ∈ int(conv(Bi)), (8.3)

and the inequalities

sup
i∈N

{�i(x)+ αi} ≤ 0 ≤ inf
i∈N

{�i(y) + αi} for all x ∈ conv(A)

and all y ∈
⋃

i∈N

conv(Bi) (8.4)

are fulfilled.
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Proof
(a) For all i ∈ N let there exist a continuous linear functional �i ∈ E∗\{0E∗} and

a real number αi so that the inequalities (8.3) and in (8.4) are fulfilled, i.e. we
have for all k ∈ N

sup
i∈N

{�i(x) + αi} ≤ 0 < �k(y) + αk for all x ∈ conv(A) and all y ∈ B.

Then it is obvious that conv(A) ∩ B = ∅.

(b) Now assume that conv(A)∩B = ∅, i.e. conv(A)∩
(⋃

i∈N int(conv(Bi))
)
= ∅.

This implies

conv(A) ∩ int(conv(Bi)) = ∅ for all i ∈ N.

Let i ∈ N be arbitrarily chosen. By Eidelheit’s separation theorem (Theo-
rem C.2) there exist a continuous linear functional �i ∈ E∗\{0E∗} and a real
number −αi with

�i(x) ≤ −αi ≤ �i(y) for all x ∈ conv(A) and all y ∈ conv(Bi)

and

−αi < �i(y) for all y ∈ int(conv(Bi)).

Then we get

�i(x)+αi ≤ 0 ≤ �i(y)+αi for all x ∈ conv(A) and all y ∈ conv(Bi) (8.5)

and

0 < �i(y) + αi for all y ∈ int(conv(Bi)).

So, the inequality (8.3) is shown. Since the left inequality in (8.5) holds for all
i ∈ N , we conclude

sup
i∈N

{�i(x) + αi} ≤ 0 for all x ∈ conv(A)

and the left inequality in (8.4) is shown. The right inequality in (8.5) immedi-
ately implies

0 ≤ inf
i∈N

{�i(y) + αi} for all y ∈
⋃

i∈N

conv(Bi)

and the right inequality in (8.4) is shown. 
�
Figure 8.2 illustrates the separation result of Theorem 8.4. Since the set B

in Theorem 8.4 may be nonconvex, a separation is carried out with a nonlinear
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conv(A)
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Fig. 8.2 Separation of the sets conv(A) and B := ⋃i∈{1,2,3,4} int(conv(Bi)) by Theorem 8.4

functional. From a geometrical point of view the separation of the sets conv(A) and
B is done with a separating hyperface.

Remark 8.5 (first separation version).

(a) The proof of Theorem 8.4 is based on the standard case of convex
separation. But here we work with the supremum and infimum of
continuous affine linear functionals. If the index set N consists of finitely
many indices, then the inf and sup terms reduce to a min and max term,
respectively.

(b) Since the sets A,B1, B2, . . . in Theorem 8.4 may be discrete sets, the
separation result can be applied to certain discrete problems.

(c) Theorem 8.4 can also be extended to a real linear space without normed
structure.

Next we specialize Theorem 8.4 to a singleton set A.
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Corollary 8.6 (separation with a singleton).

Let an element x of a real normed space (E, ‖ · ‖) be given, and let
B be an extendedly discrete subset of E with the representation B =⋃

i∈N int(conv(Bi)) for N := {1, 2, . . . , n} (with n ∈ N) or N := N where
Bi ⊂ E and int(conv(Bi)) �= ∅ for all i ∈ N . Then x /∈ B if and only if for
every i ∈ N there exists a continuous linear functional �i ∈ E∗\{0E∗} with

0 < �i(y − x) for all y ∈ int(conv(Bi)). (8.6)

In this case we additionally have

0 ≤ inf
i∈N

{�i(y − x)} for all y ∈
⋃

i∈N

conv(Bi). (8.7)

Proof
(a) First, for every i ∈ N let �i ∈ E∗\{0E∗} be a continuous linear functional so that

the inequality (8.6) holds. If we assume that x ∈ B, then we get a contradiction
from the inequality (8.6), if we set y = x.

(b) Next let x /∈ B, which is equivalent to the condition 0E /∈ B − {x}. This
condition is again equivalent to conv(A) ∩ (B − {x}) = ∅ for A := {0E}.
By Theorem 8.4 for every i ∈ N there exist a continuous linear functional
�i ∈ E∗\{0E∗} and a real number αi with

0 < �i(y − x) + αi for all y ∈ int(conv(Bi)), (8.8)

and the inequalities

sup
i∈N

{αi} ≤ 0 ≤ inf
i∈N

{�i(y − x) + αi} for all y ∈
⋃

i∈N

conv(Bi) (8.9)

are fulfilled. The left inequality in (8.9) implies

αi ≤ 0 for all i ∈ N (8.10)

and the right inequality in (8.9) gives

0 ≤ inf
i∈N

{�i(y − x) + αi} ≤ inf
i∈N

{�i(y − x)} for all y ∈
⋃

i∈N

conv(Bi).

So, the inequality (8.7) is shown. The proof of the inequality (8.6) follows
from the inequality (8.8) together with the inequality (8.10). This completes
the proof. 
�
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Another strict separation result can be shown for a singleton set.

Theorem 8.7 (separation with a singleton).

Let an element x of a real normed space (E, ‖ · ‖) be given, and let
B be an extendedly discrete subset of E with the representation B =⋃

i∈N cl(conv(Bi)) for N := {1, 2, . . . , n} (with n ∈ N) or N := N where
conv(Bi) are nonempty subsets of E for all i ∈ N . Then x /∈ B if and only
if for every i ∈ N there exists a continuous linear functional �i ∈ E∗\{0E∗}
with

0 < �i(y − x) for all y ∈ cl(conv(Bi)). (8.11)

Proof
(a) As in the part (a) of the proof of Corollary 8.6 we obtain that the condition

(8.11) implies x /∈ B.
(b) Now assume that x /∈ B. Then for every i ∈ N the origin 0E does not belong

to the set cl(conv(Bi)) − {x}. By a strict separation theorem (Theorem C.3) for
every i ∈ N there is a continuous linear functional �i ∈ E∗\{0E∗} with

0 = �i(0E) < �i(y) for all y ∈ cl(conv(Bi)) − {x}

implying

0 < �i(y − x) for all y ∈ cl(conv(Bi)),

which has to be shown. 
�

We now present a variant of the separation result of Theorem 8.4.

Theorem 8.8 (second separation version).

Let (E, ‖ · ‖) be a real normed space, let A be a subset of E with
int(conv(A)) �= ∅, and let B be an extendedly discrete subset of E with
the representation B =⋃i∈N conv(Bi) for N := {1, 2, . . . , n} (with n ∈ N)
or N := N where ∅ �= Bi ⊂ E for all i ∈ N . Then int(conv(A)) ∩ B = ∅
if and only if for every i ∈ N there exist a continuous linear functional
�i ∈ E∗\{0E∗ } and a real number αi with

0 < �i(x) + αi for all x ∈ int(conv(A)), (8.12)
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and the inequalities

sup
i∈N

{�i(y) + αi} ≤ 0 ≤ inf
i∈N

{�i(x) + αi} for all x ∈ conv(A)

and all y ∈ B (8.13)

are fulfilled.

Proof
(a) First we assume that for every i ∈ N there exist a continuous linear functional

�i ∈ E∗\{0E∗} (with i ∈ N) and a real number αi (with i ∈ N) so that the
inequalities in (8.13) and (8.12) are fulfilled. Then we have for every k ∈ N

sup
i∈N

{�i(y) + αi} ≤ 0 < �k(x) + αk for all x ∈ int(conv(A)) and all y ∈ B,

and this implies int(conv(A)) ∩ B = ∅.
(b) Next, we assume that

∅ = int(conv(A)) ∩ B = int(conv(A)) ∩
(
⋃

i∈N

conv(Bi)

)

.

Then we have

int(conv(A)) ∩ conv(Bi) = ∅ for all i ∈ N.

For an arbitrarily chosen i ∈ N we now apply Eidelheit’s separation theorem
(Theorem C.2). Then there exist a continuous linear functional−�i ∈ E∗\{0E∗}
and a real number αi with

−�i(x) ≤ αi ≤ −�i(y) for all x ∈ conv(A) and all y ∈ conv(Bi)

and

−�i(x) < αi for all x ∈ int(conv(A)).

Then it follows

�i(y) + αi ≤ 0 ≤ �i(x) + αi for all x ∈ conv(A) and all y ∈ conv(Bi)
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and

0 < �i(x) + αi for all x ∈ int(conv(A)).

Hence, the inequality (8.12) is shown. Following the lines of the proof of
Theorem 8.4 we conclude

sup
i∈N

{�i(y) + αi} ≤ 0 ≤ inf
i∈N

{�i(x) + αi} for all x ∈ conv(A) and all y ∈ B,

which completes the proof. 
�

In contrast to the first separation result (Theorem 8.4) Theorem 8.8 has the
advantage that the sets Bi (with i ∈ N) may be singletons, i.e. Bi := {bi} for some
vectors bi ∈ E. In this special case the extended discrete set B =⋃i∈N conv(Bi) =
{b1, b2, . . .} is a discrete set. If A is a discrete set as well, i.e. A := {a1, a2, . . .}
for some a1, a2, . . . ∈ E, then we can separate the sets int(conv{a1, a2, . . .}) and
{b1, b2, . . .}. Figure 8.3 illustrates this special type of separation. The nonlinear
separating functional makes use of only three affine linear functionals where one of
them could be dropped. So, in Fig. 8.3 one needs only two affine linear functionals
for the nonlinear separation. This shows that the number of involved affine linear
functionals may be less than expected.

It is well-known for a separation result in the finite dimensional space R
m that

the interior of one of the two sets is not needed to be nonempty. This fact simplifies
the two Theorems 8.4 and 8.8. This additional result is formulated in the following
theorem.

a1

a2

a3 a4

a5a6

a7

b1

b2

b3

b5

b4

Fig. 8.3 Separation of the sets int(conv{a1, a2, . . . , a7}) and {b1, b2, . . . , b5} by Theorem 8.8
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Theorem 8.9 (separation in R
m).

Let A be a nonempty subset of Rm (with m ∈ N), let B be an extendedly
discrete subset of Rm with the representation B =⋃i∈N conv(Bi) for N :=
{1, 2, . . . , n} (with n ∈ N) or N := N where ∅ �= Bi ⊂ R

m for all i ∈ N . If
conv(A) ∩ B = ∅, then for every i ∈ N there exist a vector �i ∈ R

m\{0Rm}
and a real number αi with

sup
i∈N

{�iT y + αi} ≤ 0 ≤ inf
i∈N

{�iT x + αi} for all x ∈ conv(A) and all y ∈ B.

Proof The proof follows the lines of the proof of Theorem 8.4 or 8.8. Assume that
the sets conv(A) and B are disjunct. This implies

conv(A) ∩ conv(Bi) = ∅ for all i ∈ N.

For every i ∈ N we then apply a finite dimensional separation theorem (e.g., see
[134, Satz 2.22]). Hence, for every i ∈ N there exist a vector �i ∈ R

m\{0Rm} and a
number αi ∈ R so that

−�iT x ≤ αi ≤ −�iT y for all x ∈ conv(A) and all y ∈ conv(Bi).

As in the proof of Theorem 8.4 we then get

sup
i∈N

{�iT y + αi} ≤ 0 ≤ inf
i∈N

{�iT x + αi} for all x ∈ conv(A) and all y ∈ B

and the proof is complete. 
�

8.3 Optimality Conditions

In this section optimality conditions in discrete-continuous nonlinear optimization
are given, which are based on the separation result of Corollary 8.6. We begin with
a first necessary optimality condition for the optimization problem (8.2).
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Theorem 8.10 (necessary optimality condition).

Let the assumption (8.1) be satisfied and in addition, let int(Sc) �= ∅ and
int(C) �= ∅. Let x̄ = (x

j
d , x̄c) (for some j ∈ N) be a minimal solution of the

discrete-continuous optimization problem (8.2). For every i ∈ N let the set

Bi :=
{(f (xi

d, xc) − f (x̄) + α

g(xi
d, xc) + y

h(xi
d, xc)

)
∈ R× Y × Z

∣
∣
∣
∣ xc ∈ int(Sc),

α > 0, y ∈ int(C)

}

be convex and let h(xi
d, int(Sc)) be an open set. Then for every i ∈ N there

exist a real number μi ≥ 0 and continuous linear functionals �i
g ∈ C∗ and

�i
h ∈ Z∗ with (μi, �i

g, �i
h) �= (0, 0Y ∗, 0Z∗), and the inequality

0 ≤ inf
i∈N

{
μi
(
f (xi

d, xc) − f (x̄)
)
+ �i

g

(
g(xi

d, xc)
)
+ �i

h

(
h(xi

d, xc)
)}

for all xc ∈ Sc (8.14)

and the equality

�
j
g (g(x̄)) = 0 (8.15)

are fulfilled.

Proof Let x̄ = (x
j
d , x̄c) (for some j ∈ N) be a minimal solution of the optimization

problem (8.2). Choose an arbitrary i ∈ N . For the nonempty set Bi we show
(0, 0Y , 0Z) /∈ Bi . Assume that (0, 0Y , 0Z) ∈ Bi . Then there are some xc ∈ int(Sc),
some α > 0 and some y ∈ int(C) with

f (xi
d, xc) − f (x̄) = −α (8.16)

g(xi
d , xc) = −y (8.17)

h(xi
d, xc) = 0Z. (8.18)



8.3 Optimality Conditions 225

With xc ∈ int(Sc) and y ∈ int(C) the equations (8.17) and (8.18) imply (xi
d, xc) ∈ S.

Because of α > 0 the equation (8.16) contradicts the assumption that x̄ is a minimal
solution of problem (8.2). Hence, we conclude

(0, 0Y , 0Z) /∈ Bi for all i ∈ N,

which implies

(0, 0Y , 0Z) /∈
⋃

i∈N

Bi.

Since the sets Bi (with i ∈ N) are convex and open, the separation result in
Corollary 8.6 is applicable and for every i ∈ N there exist a real number μi

and continuous linear functionals �i
g ∈ Y ∗ and �i

h ∈ Z∗ with (μi, �i
g, �i

h) �=
(0, 0Y ∗, 0Z∗), and the inequality

0 ≤ inf
i∈N

{
μi
(
f (xi

d, xc) − f (x̄) + α
)
+ �i

g

(
g(xi

d, xc) + y
)

+ �i
h

(
h(xi

d, xc)
) }

for all xc ∈ Sc, α ≥ 0 and y ∈ C (8.19)

is fulfilled (notice that Sc ⊂ cl(int(Sc)) and C ⊂ cl(int(C))). For an arbitrary k ∈ N

we get with xc = x̄c and y = 0Y from the inequality (8.19)

0 ≤ inf
i∈N

{
μi
(
f (xi

d, x̄c) − f (x̄) + α
)
+ �i

g

(
g(xi

d, x̄c)
)
+ �i

h

(
h(xi

d, x̄c)
)}

≤ μk
(
f (xk

d, x̄c) − f (x̄) + α
)
+ �k

g

(
g(xk

d , x̄c)
)
+ �k

h

(
h(xk

d , x̄c)
)

for all α ≥ 0.

This implies for some β ∈ R

μkα ≥ β for all α ≥ 0

and μk ≥ 0. Since k ∈ N is arbitrarily chosen we conclude

μi ≥ 0 for all i ∈ N.

If we set xc = x̄c and α = 0, we obtain from the inequality (8.19) for an arbitrary
k ∈ N

0 ≤ inf
i∈N

{
μi
(
f (xi

d, x̄c) − f (x̄)
)
+ �i

g

(
g(xi

d , x̄c) + y
)
+ �i

h

(
h(xi

d, x̄c)
)}

≤ μk
(
f (xk

d, x̄c) − f (x̄)
)
+ �k

g

(
g(xk

d , x̄c) + y
)
+ �k

h

(
h(xk

d , x̄c)
)

for all y ∈ C.
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We then conclude for some γ ∈ R

�k
g(y) ≥ γ for all y ∈ C.

This inequality implies �k
g ∈ C∗ and since k ∈ N is arbitrarily chosen we have

�i
g ∈ C∗ for all i ∈ N.

If we set α = 0 and y = 0Y in the inequality (8.19), we immediately get the
assertion (8.14). From the inequality (8.14) we obtain with xc = x̄c

0 ≤ inf
i∈N

{
μi
(
f (xi

d, x̄c) − f (x̄)
)
+ �i

g

(
g(xi

d , x̄c)
)
+ �i

h

(
h(xi

d, x̄c)
)}

≤ μj(f (x̄) − f (x̄)
︸ ︷︷ ︸

=0

) + �
j
g (g(x̄)) + �

j
h(h(x̄)︸︷︷︸

=0Z

)

︸ ︷︷ ︸
=0

= �
j
g (g(x̄))

which implies �
j
g (g(x̄)) ≥ 0. Since g(x̄) ∈ −C and �

j
g ∈ C∗, we also get

�
j
g (g(x̄)) ≤ 0. Hence, we conclude �

j
g (g(x̄)) = 0, and the proof is complete. 
�

Remark 8.11 (necessary optimality condition).

In Theorem 8.10 it is assumed that for every i ∈ N the set Bi is convex.
It is well-known that the set Bi (for every i ∈ N) is convex, if the set Sc

is convex, the objective functional f is convex, the constraint mapping g

is convex and the mapping h is affine linear. But these conditions can be
weakened, if one extends the notion of convex-likeness (see Definition 6.5)
to the interior of a cone.
Moreover, for every i ∈ N it is assumed that the set h(xi

d, int(Sc)) is open.
For instance, this assumption is satisfied by the open mapping theorem, if
Xc and Z are real Banach spaces and the mapping h(xi

d, ·) is continuous,
linear and surjective.
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Corollary 8.12 (necessary optimality condition with CQ).

Let the assumptions of Theorem 8.10 be satisfied. Again, let x̄ = (x
j

d , x̄c)

(for some j ∈ N and some x̄c ∈ Sc) denote a minimal solution of the
discrete-continuous optimization problem (8.2). In addition, we assume

∀ i ∈ N ∃ xc ∈ Sc : 0 > �i
g

(
g(xi

d , xc)
)
+ �i

h

(
h(xi

d, xc)
)

. (8.20)

Then for every i ∈ N there exist continuous linear functionals �̄i
g ∈ C∗ and

�̄i
h ∈ Z∗, and the inequality

f (x̄) ≤ inf
i∈N

{
f (xi

d, xc) + �̄i
g

(
g(xi

d, xc)
)
+ �̄i

h

(
h(xi

d , xc)
)}

for all xc ∈ Sc (8.21)

and the equality

�̄
j
g (g(x̄)) = 0 (8.22)

are fulfilled.

Proof By Theorem 8.10 for every i ∈ N there exist a real number μi ≥ 0
and continuous linear functionals �i

g ∈ C∗ and �i
h ∈ Z∗ with (μi, �i

g, �i
h) �=

(0, 0Y ∗, 0Z∗), and the inequality (8.14) and the equality (8.15) are fulfilled. We first
show that

μi > 0 for all i ∈ N. (8.23)

Assume that there exists some k ∈ N with μk = 0. Then we conclude with the
additional assumption (8.20) for some xc ∈ Sc

0 > �k
g

(
g(xk

d , xc)
)
+ �k

h

(
h(xk

d , xc)
)

= μk
(
f (xk

d, xc) − f (x̄)
)
+ �k

g

(
g(xk

d , xc)
)
+ �k

h

(
h(xk

d , xc)
)

≥ inf
i∈N

{
μi
(
f (xi

d, xc) − f (x̄)
)
+ �i

g

(
g(xi

d , xc)
)
+ �i

h

(
h(xi

d, xc)
)}

which contradicts the inequality (8.14). So, the inequality (8.23) is proven.
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For every i ∈ N we now set �̄i
g := 1

μi �
i
g ∈ C∗ and �̄i

h := 1
μi �

i
h ∈ Z∗. From the

inequality (8.14) it then follows

0 ≤ inf
i∈N

{
f (xi

d, xc) − f (x̄) + �̄i
g

(
g(xi

d, xc)
)
+ �̄i

h

(
h(xi

d, xc)
)}

for all xc ∈ Sc,

which implies

f (x̄) ≤ inf
i∈N

{
f (xi

d, xc) + �̄i
g

(
g(xi

d , xc)
)
+ �̄i

h

(
h(xi

d, xc)
)}

for all xc ∈ Sc.

Hence, the inequality (8.21) is shown. The equality (8.22) immediately follows from
the equality (8.15). 
�

The condition (8.20) ensures that the multipliers μi (for all i ∈ N) are nonzero,
i.e. it is a constraint qualification (CQ). This CQ extends the known Slater condition
to discrete-continuous optimization problems.

The necessary optimality condition (8.21) can also be given in a different form.

Corollary 8.13 (necessary optimality condition).

Let the assumptions of Corollary 8.12 be satisfied, and let x̄ = (x
j

d , x̄c) (for
some j ∈ N and some x̄c ∈ Sc) denote a minimal solution of the discrete-
continuous optimization problem (8.2). Then for every i ∈ N there exist
continuous linear functionals �̄i

g ∈ C∗ and �̄i
h ∈ Z∗, and the inequality

inf
i∈N

{
f (xi

d, x̄c) + �̄i
g

(
g(xi

d, x̄c)
)+ �̄i

h

(
h(xi

d, x̄c)
)}

≤ inf
i∈N

{
f (xi

d, xc) + �̄i
g

(
g(xi

d, xc)
)
+ �̄i

h

(
h(xi

d , xc)
)}

for all xc ∈ Sc (8.24)

and the equality

�̄
j
g (g(x̄)) = 0

are fulfilled.
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Proof This corollary is a direct consequence of Corollary 8.12, if we prove the
inequality (8.24). With the inequality (8.21) we obtain with x̄ = (x

j
d , x̄c)

inf
i∈N

{
f (xi

d, x̄c) + �̄i
g

(
g(xi

d , x̄c)
)+ �̄i

h

(
h(xi

d, x̄c)
)}

≤ f (x
j

d , x̄c) + �̄
j
g

(
g(x

j

d , x̄c)
)+ �̄

j

h

(
h(x

j

d , x̄c)
)

= f (x̄) + �̄
j
g(g(x̄))
︸ ︷︷ ︸

=0

+ �̄
j
h(h(x̄))
︸ ︷︷ ︸

=0

= f (x̄)

≤ inf
i∈N

{
f (xi

d, xc) + �̄i
g

(
g(xi

d, xc)
)+ �̄i

h

(
h(xi

d, xc)
)}

for all xc ∈ Sc,

which has to be shown. 
�

Corollary 8.13 motivates the following definition of a Lagrange functional in
discrete-continuous optimization.

Definition 8.14 (Lagrange functional).

Let the assumption (8.1) be satisfied. The functional L : Sc ××
i∈N

C∗ ×
×
i∈N

Z∗ → R with

L
(
xc, (�

i
g)i∈N, (�i

h)i∈N

)

= inf
i∈N

{
f (xi

d, xc) + �i
g

(
g(xi

d, xc)
)+ �i

h

(
h(xi

d, xc)
)}

for all xc ∈ Sc, �1
g, �

2
g, . . . ∈ C∗, �1

h, �
2
h, . . . ∈ Z∗

is called Lagrange functional of the discrete-continuous optimization prob-
lem (8.2).

Remark 8.15 (Lagrange functional).

Using the Lagrange functional the result of Corollary 8.13 can be simplified.
Under the assumptions of Corollary 8.13 for every minimal solution x̄ =
(x

j
d , x̄c) of the discrete-continuous optimization problem (8.2) there are

continuous linear functionals �̄i
g ∈ C∗ (for all i ∈ N) and �̄i

h ∈ Z∗ (for
all i ∈ N) with

L
(
x̄c, (�̄

i
g)i∈N, (�̄i

h)i∈N

) = min
xc∈Sc

L
(
xc, (�̄

i
g)i∈N, (�̄i

h)i∈N

)
.



230 8 Extension to Discrete-Continuous Problems

Corollary 8.16 (saddle point property).

Let the assumptions of Corollary 8.13 be satisfied, and let x̄ = (x
j

d , x̄c) (for
some j ∈ N and some x̄c ∈ Sc) denote a minimal solution of the discrete-
continuous optimization problem (8.2). Then for every i ∈ N there exist
continuous linear functionals �̄i

g ∈ C∗ and �̄i
h ∈ Z∗, and the Lagrange

functional L fulfills the inequalities

L
(
x̄c, (�

i
g)i∈N, (�i

h)i∈N

) ≤ L
(
x̄c, (�̄

i
g)i∈N, (�̄i

h)i∈N

)

≤ L
(
xc, (�̄

i
g)i∈N, (�̄i

h)i∈N

)

for all xc ∈ Sc, �1
g, �

2
g, . . . ∈ C∗, �1

h, �
2
h, . . . ∈ Z∗. (8.25)

Proof The right inequality in (8.25) is shown by Corollary 8.13. For the proof of the
left inequality in (8.25) choose for every i ∈ N arbitrary linear functionals �i

g ∈ C∗

and �i
h ∈ Z∗. Then we get with Corollary 8.12

L
(
x̄c, (�

i
g)i∈N, (�i

h)i∈N

)

= inf
i∈N

{
f (xi

d, x̄c) + �i
g

(
g(xi

d, x̄c)
)+ �i

h

(
h(xi

d, x̄c)
)}

≤ f (x̄) + �
j
g(g(x̄))
︸ ︷︷ ︸

≤0

+ �
j
h(h(x̄))
︸ ︷︷ ︸

=0

≤ f (x̄)

≤ L
(
x̄c, (�̄

i
g)i∈N, (�̄i

h)i∈N

)
,

which completes the proof. 
�

The inequalities in (8.25) mean that
(
x̄c, (�̄

i
g)i∈N, (�̄i

h)i∈N

)
is a saddle point of

the Lagrange functional L. Corollary 8.16 implies a necessary optimality condition
using the subdifferential of the Lagrangian.

Corollary 8.17 (subdifferential version).

Let the assumptions of Corollary 8.13 be satisfied, and in addition, let
Sc = Xc. Let x̄ = (x

j
d , x̄c) (for some j ∈ N and some x̄c ∈ Xc) denote

a minimal solution of the discrete-continuous optimization problem (8.2).
Then for every i ∈ N there exist continuous linear functionals �̄i

g ∈ C∗ and

�̄i
h ∈ Z∗ with

0X∗
c
∈ ∂xcL

(
x̄c, (�̄

i
g)i∈N, (�̄i

h)i∈N

)
(8.26)
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and

�̄
j
g (g(x̄)) = 0, (8.27)

where

∂xcL
(
x̄c, (�̄

i
g)i∈N, (�̄i

h)i∈N

)

:= {� ∈ X∗
c | L(xc, (�̄

i
g)i∈N, (�̄i

h)i∈N

) ≥ L
(
x̄c, (�̄

i
g)i∈N, (�̄i

h)i∈N

)

+ �(xc − x̄c) for all xc ∈ Xc

}

denotes the subdifferential (w.r.t. xc) of the Lagrange functional
L
(·, (�̄i

g)i∈N, (�̄i
h)i∈N

)
at x̄c.

Proof By Corollary 8.16 for every i ∈ N there exist continuous linear functionals
�̄i
g ∈ C∗ and �̄i

h ∈ Z∗ with

L
(
xc, (�̄

i
g)i∈N, (�̄i

h)i∈N

) ≥ L
(
x̄c, (�̄

i
g)i∈N, (�̄i

h)i∈N

)+ 0X∗
c
(xc − x̄c)

for all xc ∈ Xc,

and the condition (8.26) is proven. The condition (8.27) is already shown in
Corollary 8.13. 
�

Using the Lagrange functional L the inequality (8.21) as part of a necessary
optimality condition in Corollary 8.12 can be written as

f (x̄) ≤ L
(
xc, (�̄

i
g)i∈N, (�̄i

h)i∈N

)
for all xc ∈ Sc.

The next theorem says that this inequality is even a sufficient optimality condition.

Theorem 8.18 (sufficient optimality condition).

Let the assumption (8.1) be satisfied, and let x̄ := (x
j

d , x̄c) be a feasible
vector of the discrete-continuous optimization problem (8.2). If for every
i ∈ N there exist continuous linear functionals �̄i

g ∈ C∗ and �̄i
h ∈ Z∗ and if

the inequality

f (x̄) ≤ L
(
xc, (�̄

i
g)i∈N, (�̄i

h)i∈N

)
for all xc ∈ Sc (8.28)

is satisfied, then x̄ is a minimal solution of problem (8.2).
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Proof Let (xk
d, xc) ∈ S (with k ∈ N) be arbitrarily chosen. Then it follows from

the inequality (8.28)

f (x̄) ≤ L
(
xc, (�̄

i
g)i∈N, (�̄i

h)i∈N

)

= inf
i∈N

{
f (xi

d, xc) + �̄i
g

(
g(xi

d, xc)
)
+ �̄i

h

(
h(xi

d, xc)
)}

≤ f (xk
d, xc) + �̄k

g

(
g(xk

d , xc)
)

︸ ︷︷ ︸
≤0

+ �̄k
h

(
h(xk

d , xc)
)

︸ ︷︷ ︸
=0

≤ f (xk
d, xc).

This implies that x̄ is a minimal solution of problem (8.2). 
�

8.3.1 Specialization to Discrete Sets with Finite Cardinality

The optimality conditions are now specialized to discrete-continuous optimization
problems with finitely many discrete points, i.e. we have Sd = {x1

d, . . . , xn
d } for

some n ∈ N.
We now specialize the assumption (8.1):

Let the assumption (8.1) be satisfied with N := {1, . . . , n}
for some n ∈ N.

}
(8.29)

Theorem 8.19 (multiplier rule).

Let the assumption (8.29) and the assumptions of Corollary 8.12 be satisfied,
and let x̄ = (x

j
d , x̄c) (for some j ∈ {1, . . . , n} and some x̄c ∈ Sc) denote a

minimal solution of the discrete-continuous optimization problem (8.2). For
every i ∈ {1, . . . , n} let the functional f (xi

d, ·) and the mappings g(xi
d, ·)

and h(xi
d, ·) be Fréchet differentiable at x̄c. Then there exist continuous

linear functionals �̄1
g, . . . , �̄n

g ∈ C∗ and �̄1
h, . . . , �̄

n
h ∈ Z∗, and the inequality

min
i∈I (x̄c)

{(
f ′(xi

d, x̄c) + �̄i
g

(
g′(xi

d, x̄c)
)+ �̄i

h

(
h′(xi

d, x̄c)
))

(xc − x̄c)
}

≥ 0 for all xc ∈ Sc (8.30)

and the equality

�̄
j
g (g(x̄)) = 0 (8.31)



8.3 Optimality Conditions 233

are fulfilled. Here we use the abbreviation

I (x̄c) :=
{
i ∈ {1, . . . , n}

∣
∣
∣ f (xi

d, x̄c) + �̄i
g

(
g(xi

d, x̄c)
)
+ �̄i

h

(
h(xi

d, x̄c)
)

= min
1≤k≤n

{
f (xk

d, x̄c) + �̄k
g

(
g(xk

d , x̄c)
)+ �̄k

h

(
h(xk

d, x̄c)
)}}

.

(8.32)

Proof Let x̄ = (x
j

d , x̄c) (for some j ∈ {1, . . . , n} and some x̄c ∈ Sc) be a minimal
solution of problem (8.2). By Remark 8.15 there exist continuous linear functionals
�̄1
g, . . . , �̄

n
g ∈ C∗ and �̄1

h, . . . , �̄
n
h ∈ Z∗ with

L
(
x̄c, (�̄

1
g, . . . , �̄

n
g), (�̄1

h, . . . , �̄n
h)
)
= min

xc∈Sc

L
(
xc, (�̄

1
g, . . . , �̄n

g), (�̄1
h, . . . , �̄

n
h)
)

where L denotes the Lagrange functional, i.e.

L
(
xc, (�̄

1
g, . . . , �̄

n
g), (�̄

1
h, . . . , �̄n

h)
)

= inf
1≤i≤n

{
f (xi

d, xc) + �̄i
g

(
g(xi

d , xc)
)
+ �̄i

h

(
h(xi

d, xc)
)}

= min
1≤i≤n

{
f (xi

d, xc) + �̄i
g

(
g(xi

d , xc)
)
+ �̄i

h

(
h(xi

d, xc)
)}

for all xc ∈ Sc.

Since the equation (8.31) is already shown in Corollary 8.12, it remains to
prove the inequality (8.30). x̄c is a minimal point of the Lagrange functional
L
(·, (�̄1

g, . . . , �̄
n
g), (�̄

1
h, . . . , �̄n

h)
)

on Sc and, therefore, we obtain the known
necessary optimality condition

L′ (x̄c, (�̄
1
g, . . . , �̄

n
g), (�̄

1
h, . . . , �̄n

h)
)

(xc − x̄c) ≥ 0 for all xc ∈ Sc (8.33)

where L′ denotes the Gâteaux derivative (compare Theorem 3.8,(a) for directional
derivatives). For simplification, for every i ∈ {1, . . . , n} we use the functional ϕi :
Sc → R with

ϕi(xc) = f (xi
d, xc) + �̄i

g

(
g(xi

d , xc)
)
+ �̄i

h

(
h(xi

d, xc)
)

for all xc ∈ Sc.



234 8 Extension to Discrete-Continuous Problems

Since f (xi
d, ·), �̄i

g

(
g(xi

d, ·)) and �̄i
h

(
h(xi

d, ·)) are Fréchet differentiable at x̄c, we
obtain the Fréchet derivative ϕ′

i (x̄c)(·) with

ϕ′
i (x̄c)(d)

= f ′(xi
d, ·)(x̄c)(d) +

(
�̄i
g

(
g(xi

d , ·)
))′

(x̄c)(d) +
(
�̄i
h

(
h(xi

d, ·)
))′

(x̄c)(d)

=
(
f ′(xi

d, x̄c) + �̄i
g

(
g′(xi

d, x̄c)
)
+ �̄i

h

(
h′(xi

d, x̄c)
))

(d)

for all d ∈ Xc. (8.34)

The Gâteaux derivative of the Lagrange functional at x̄c can be written as

L′ (x̄c, (�̄
1
g, . . . , �̄n

g), (�̄1
h, . . . , �̄

n
h)
)

(d) =
(

min
1≤i≤n

{ϕi(·)}
)′

(x̄c)(d)

for all d ∈ Xc. (8.35)

If we notice that with

I (x̄c) =
{
i ∈ {1, . . . , n}

∣
∣∣ ϕi(x̄c) = min

1≤k≤n
{ϕk(x̄c)}

}

we have

min
1≤k≤n

{ϕk(x̄c)} = ϕi(x̄c) for all i ∈ I (x̄c)

and because of the continuity of the functionals ϕ1, . . . , ϕn at x̄c

min
1≤i≤n

{ϕi(x̄c + λd)} = min
i∈I (x̄c)

{ϕi(x̄c + λd)} for all d ∈ Xc and

all λ sufficiently close to 0,

we then get the Gâteaux derivative

(
min

1≤i≤n
{ϕi(·)}

)′
(x̄c)(d)

= lim
λ→0

1

λ

(
min

1≤i≤n
{ϕi(x̄c + λd)} − min

1≤i≤n
{ϕi(x̄c)}

)

= lim
λ→0

1

λ

(
min

i∈I (x̄c)
{ϕi(x̄c + λd)} − min

1≤i≤n
{ϕi(x̄c)}

)

= lim
λ→0

min
i∈I (x̄c)

{
1

λ

(
ϕi(x̄c + λd)} − ϕi(x̄c)

)}

= min
i∈I (x̄c)

{
ϕ′

i (x̄c)(d)
}

for all d ∈ Xc
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(compare Exercise (8.3) for directional derivatives) where ϕ′
i (with i ∈ I (x̄c))

denotes the Fréchet derivative, which equals the Gâteaux derivative. With the
equation (8.35) we then conclude

L′ (x̄c, (�̄
1
g, . . . , �̄n

g), (�̄1
h, . . . , �̄

n
h)
)

(d) = min
i∈I (x̄c)

{
ϕ′

i (x̄c)(d)
}

for all d ∈ Xc,

and with the inequality (8.33) and the equality (8.34) we obtain

min
i∈I (x̄c)

{(
f ′(xi

d, x̄c) + �̄i
g

(
g′(xi

d, x̄c)
)+ �̄i

h

(
h′(xi

d, x̄c)
))

(xc − x̄c)
}
≥ 0

for all xc ∈ Sc,

which has to be shown. 
�

If the set Sc equals the whole linear space Xc, we can simplify the result of
Theorem 8.19.

Corollary 8.20 (specialized multiplier rule).

Let the assumptions of Theorem 8.19 be satisfied and, in addition, let Sc =
Xc. Again, let x̄ = (x

j
d , x̄c) (for some j ∈ {1, . . . , n} and some x̄c ∈ Sc)

denote a minimal solution of the discrete-continuous optimization problem
(8.2). Then there exist continuous linear functionals �̄1

g, . . . , �̄
n
g ∈ C∗ and

�̄1
h, . . . , �̄

n
h ∈ Z∗, and the inequality

f ′(xi
d, x̄c) + �̄i

g

(
g′(xi

d, x̄c)
)+ �̄i

h

(
h′(xi

d, x̄c)
) = 0X∗

c
for all i ∈ I (x̄c)

(8.36)

(where I (x̄c) is defined in (8.32)) and the equality

�̄
j
g (g(x̄)) = 0 (8.37)

are fulfilled.

Proof We write the inequality (8.30) as

(
f ′(xi

d, x̄c) + �̄i
g

(
g′(xi

d, x̄c)
)+ �̄i

h

(
h′(xi

d, x̄c)
))

(xc − x̄c) ≥ 0

for all i ∈ I (x̄c) and xc ∈ Sc.
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With Sc = Xc and the linearity of the Fréchet derivative we then get

f ′(xi
d, x̄c) + �̄i

g

(
g′(xi

d, x̄c)
)+ �̄i

h

(
h′(xi

d, x̄c)
) = 0X∗

c
for all i ∈ I (x̄c)

and the condition (8.36) is shown. 
�

The optimality conditions (8.36), (8.37) which are valid in infinite dimensional
spaces (also compare Corollary 5.4) are already very close to the Karush-Kuhn-
Tucker (KKT) conditions in finite dimensional spaces. KKT conditions are formu-
lated in the next corollary, which is a direct consequence of Corollary 8.20.

Corollary 8.21 (KKT conditions).

Let the assumptions of Theorem 8.19 be satisfied and, in addition, let
Xd = R

nd , Xc = Sc = R
nc , Y = R

m, Z = R
p and C = R

nc+ .

Again, let x̄ = (x
j

d , x̄c) (for some j ∈ {1, . . . , n} and some x̄c ∈ Sc)
denote a minimal solution of the discrete-continuous optimization problem
(8.2). For every i ∈ {1, . . . , n} let f (xi

d, ·), g1(x
i
d, ·), . . . , gm(xi

d, ·) and
h1(x

i
d, ·), . . . , hp(xi

d, ·) be differentiable at x̄c. Then there exist vectors
u1, . . . , un ∈ R

nc+ and v1, . . . , vn ∈ R
nc with

∇xcf (xi
d, x̄c) +

m∑

k=1

ui
k∇xcgk(x

i
d, x̄c) +

p∑

k=1

vi
k∇xchk(x

i
d, x̄c) = 0Rnc

for all i ∈ I (x̄c)

(where I (x̄c) is defined in (8.32)) and

u
j

kgk(x
j

d , x̄c) = 0 for all k ∈ {1, . . . ,m}.

Example 8.22 (KKT conditions).

In the assumption (8.29) we set Xd = Xc = Y = R, Sc = R and Sd =
{−10,−8,−6, . . . , 10} (i.e. we have n = 11). Let ψ : Sd → R be an
arbitrary function with

ψ(xi
d ) > 0 for all i ∈ {1, . . . , n},

and let x
j
d for some j ∈ {1, . . . , 11} be a unique minimal point of ψ , i.e.

ψ(x
j
d ) < ψ(xi

d ) for all i ∈ {1, . . . , 11}\{j }.
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Then we consider the discrete-continuous optimization problem

min ψ(xd) · xc
2

subject to the constraints
xc ≥ 1

xd ∈ {−10,−8, . . . , 10}, xc ∈ R.

It is evident that x̄ := (x
j
d , 1) is the unique minimal solution of this

optimization problem. Next, we define the objective function f : Sd ×R →
R with

f (xd, xc) = ψ(xd) · xc
2 for all xd ∈ Sd and all xc ∈ R

and the constraint function g : Sd × R → R with

g(xd, xc) = 1 − xc for all xd ∈ Sd and all xc ∈ R.

Notice that there is no equality constraint. Then the Lagrangian L can be
written as

L
(
xc, (u

1, . . . , u11)
) = inf

1≤i≤11

{
f (xi

d, xc) + uig(xi
d, xc)

}

= min
1≤i≤11

{
ψ(xi

d ) · xc
2 + ui(1 − xc)

}

for all xc ∈ R and all u1, . . . , u11 ∈ R+.

For the determination of the index set I (1) we notice that

f (x
j
d , 1) + ujg(x

j
d , 1) = ψ(x

j
d )

= min
1≤i≤11

ψ(xi
d )

= min
1≤i≤11

{
f (xi

d, 1) + uig(xi
d , 1)

}
,

i.e. j ∈ I (1). Since x
j

d is a unique minimal point of ψ , we obtain for every
i ∈ {1, . . . , 11}\{j }

f (xi
d, 1) + uig(xi

d, 1) = ψ(xi
d)

> min
1≤k≤11

ψ(xk
d)

= min
1≤k≤11

{
f (xk

d, 1) + ukg(xk
d , 1)

}
,
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i.e. i /∈ I (1). Hence, we conclude I (1) = {j }. Then we get the KKT
condition

0 = ∇xcf (x
j
d , 1) + uj∇xcg(x

j
d , 1)

= 2ψ(x
j

d ) − uj ,

which gives uj = 2ψ(x
j
d ) > 0. So, the minimal solution x̄ fulfills the

necessary optimality conditions in Corollary 8.21.

Finally we show under which assumptions the optimality conditions in Theo-
rem 8.19 are sufficient optimality conditions, at least in a local sense.

Theorem 8.23 (sufficient optimality condition).

Let Assumption 8.29 be satisfied, and let x̄ = (x
j
d , x̄c) ∈ S (for some j ∈

{1, . . . , n} and some x̄c ∈ Sc) be a feasible vector of the discrete-continuous
optimization problem (8.2). For every i ∈ {1, . . . , n} let the functional
f (xi

d, ·) and the mappings g(xi
d, ·) and h(xi

d, ·) be Fréchet differentiable
at x̄c. Let there exist continuous linear functionals �̄1

g, . . . , �̄
n
g ∈ C∗ and

�̄1
h, . . . , �̄

n
h ∈ Z∗, and let the inequality (8.30) and the equality (8.31) be

satisfied. Moreover, let there exist some ε > 0 so that

j ∈ I (xc) for all xc ∈ Sc ∩ B(x̄c, ε)

(where I (xc) is defined in (8.32) and B(x̄c, ε) denotes the ball with center
x̄c and radius ε) and the functional f (x

j
d , ·)+ �̄

j
g

(
g(x

j
d , ·))+ �̄

j
h

(
h(x

j
d , ·)) is

convex on Sc ∩ B(x̄c, ε). Then x̄ is a local minimal solution of the discrete-
continuous optimization problem (8.2).

Proof From the proof of Theorem 8.19 it is evident that the inequality (8.30) is
equivalent to the inequality (8.33). Since by assumption the Lagrange functional

L
(
·, (�̄1

g, . . . , �̄n
g), (�̄1

h, . . . , �̄
n
h)
)

with

L
(
xc, (�̄

1
g, . . . , �̄n

g), (�̄1
h, . . . , �̄

n
h)
)

= min
1≤1≤n

{
f (xi

d, xc) + �̄i
g

(
g(xi

d, xc)
)
+ �̄i

h

(
h(xi

d, xc)
)}

= f (x
j
d , xc) + �̄

j
g

(
g(x

j
d , xc)

)
+ �̄

j
h

(
h(x

j
d , xc)

)
for all xc ∈ Sc ∩ B(x̄c, ε)
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is convex on Sc ∩ B(x̄, ε), we conclude with Theorem 3.16 and the equality (8.33)

L
(
xc, (�̄

1
g, . . . , �̄

n
g), (�̄

1
h, . . . , �̄n

h)
)

≥ L
(
x̄c, (�̄

1
g, . . . , �̄n

g), (�̄1
h, . . . , �̄

n
h)
)

+L′ (x̄c, (�̄
1
g, . . . , �̄n

g), (�̄1
h, . . . , �̄

n
h)
)

(xc − x̄c)
︸ ︷︷ ︸

≥0

≥ L
(
x̄c, (�̄

1
g, . . . , �̄n

g), (�̄1
h, . . . , �̄

n
h)
)

= f (x
j
d , x̄c) + �̄

j
g

(
g(x

j
d , x̄c)

)
+ �̄

j
h

(
h(x

j
d , x̄c)

)

= f (x̄) + �̄
j
g(g(x̄))
︸ ︷︷ ︸

=0

+ �̄
j

h(h(x̄))
︸ ︷︷ ︸

=0

= f (x̄) for all xc ∈ Sc ∩ B(x̄c, ε).

If we then apply Theorem 8.18 with the set Sc ∩ B(x̄c, ε) instead of the set Sc, x̄

is a locally minimal solution of the discrete-continuous optimization problem (8.2).

�

Remark 8.24 (sufficient optimality condition).

Since in general, the constraint set of a discrete-continuous optimization
problem is nonconvex (compare Fig. 8.1), a local minimal solution does not
need to be a (global) minimal solution, if the objective functional is convex
(compare Theorem 2.16).

Example 8.25 (sufficient optimality condition).

We investigate the discrete-continuous optimization problem in Exam-
ple 8.22. Since x

j
d (for some j ∈ {1, . . . , 11}) is a unique minimal point

of ψ , we have

ψ(x
j
d ) < min

1≤i≤11
i �=j

{
ψ(xi

d )
}

.

It is already discussed in Example 8.22 that x̄ = (x
j
d , 1) fulfills the KKT

conditions. Notice that the Lagrange multipliers u1, . . . , u11 ≥ 0 are given
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as ui = 2ψ(xi
d ) for all i ∈ {1, . . . , 11}. For a sufficiently small ε > 0 we

then conclude

L
(
xc, (u

1, . . . , u11)
) = min

1≤i≤11

{
ψ(xi

d ) · xc
2 + ui · (1 − xc)

}

= min
1≤i≤11

{
ψ(xi

d ) · xc
2 + 2ψ(xi

d) · (1 − xc)
}

= min
1≤i≤11

{
ψ(xi

d ) + ψ(xi
d ) · (xc − 1)2

}

= ψ(x
j
d ) + ψ(x

j
d ) · (xc − 1)2

for all xc ∈ [1 − ε, 1 + ε].

This means that

j ∈ I (xc) for all xc ∈ [1 − ε, 1 + ε].

The functional f (x
j
d , ·) + uj · g(x

j
d , ·) with

f (x
j

d , xc) + uj · g(x
j

d , xc) = ψ(x
j

d ) · x2
c + uj · (1 − xc) for all xc ∈ R

is convex so that all assumptions of Theorem 8.23 are fulfilled. Hence, x̄ =
(x

j
d , 1) is a local minimal solution of the considered discrete-continuous

optimization problem.

8.4 Duality

Under the assumption (8.1) we continue to investigate the discrete-continuous
optimization problem (8.2)

min f (xd, xc)

subject to the constraints
g(xd, xc) ∈ −C

h(xd, xc) = 0Z

(xd, xc) ∈ Sd × Sc,

(8.38)
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which is now called primal problem (8.38). To this problem we associate a so-called
dual problem (8.39) given by

max inf
i∈N

xc∈Sc

{
f (xi

d, xc) + �i
g

(
g(xi

d , xc)
)+ �i

h

(
h(xi

d, xc)
)}

subject to the constraints
�i
g ∈ C∗ for all i ∈ N

�i
h ∈ Z∗ for all i ∈ N.

(8.39)

Notice that the variables of the dual problem (8.39) are elements of the dual spaces
Y ∗ and Z∗, respectively.

A first relationship between the primal and dual problem is given by the following
weak duality theorem, which is simple to prove.

Theorem 8.26 (weak duality theorem).

Let the assumption (8.1) be satisfied. For every x̂ ∈ S (feasible element of
(8.38)) and for all �̂1

g, �̂2
g, . . . ∈ C∗ and �̂1

h, �̂2
h, . . . ∈ Z∗ (feasible elements

of (8.39)) the following inequality holds

inf
i∈N

xc∈Sc

{
f (xi

d, xc) + �i
g

(
g(xi

d , xc)
)+ �i

h

(
h(xi

d, xc)
)} ≤ f (x̂).

Proof For an arbitrary feasible vector x̂ = (x
j
d , x̂c) (for some j ∈ N and some

x̂c ∈ Sc) and arbitrary linear functionals �̂1
g, �̂

2
g, . . . ∈ C∗ and �̂1

h, �̂2
h, . . . ∈ Z∗ we

conclude

inf
i∈N

xc∈Sc

{
f (xi

d, xc) + �̂i
g

(
g(xi

d, xc)
)+ �̂i

h

(
h(xi

d, xc)
)}

≤ f (x̂) + �̂
j
g

(
g(x̂)

)

︸ ︷︷ ︸
≤0

+ �̂
j
h

(
h(x̂)

)

︸ ︷︷ ︸
=0

≤ f (x̂),

which has to be shown. 
�

The next strong duality theorem answers the question under which assumptions
the dual problem is solvable.
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Theorem 8.27 (strong duality theorem).

Let the assumptions of Corollary 8.12 be satisfied and let x̄ = (x
j

d , x̄c) ∈ S

(for some j ∈ N and some x̄c ∈ Sc) denote a minimal solution of the primal
problem (8.38). Then the dual problem (8.39) is solvable and the extremal
values of both problems are equal.

Proof By Corollary 8.12 we get for some continuous linear functionals �̄i
g ∈ C∗

(with i ∈ N) and �̄i
h ∈ Z∗ (with i ∈ N)

f (x̄) ≤ inf
i∈N

{
f (xi

d, xc) + �̄i
g

(
g(xi

d , xc)
)
+ �̄i

h

(
h(xi

d, xc)
)}

for all xc ∈ Sc,

which can also be written as

f (x̄) ≤ inf
i∈N

xc∈Sc

{
f (xi

d, xc) + �̄i
g

(
g(xi

d , xc)
)+ �̄i

h

(
h(xi

d, xc)
)}

.

By the weak duality theorem (Theorem 8.26) we then obtain

f (x̄) = inf
i∈N

xc∈Sc

{
f (xi

d, xc) + �̄i
g

(
g(xi

d , xc)
)+ �̄i

h

(
h(xi

d, xc)
)}

.

This means that the dual problem (8.39) is solvable and the extremal values of both
problems are equal. 
�

8.4.1 Specialization to Extendedly Linear Problems

Since the dual problem (8.39) seems to be quite general, we now investigate linear
discrete-continuous optimization problems in an extended form. In this case the dual
problem (8.39) has a simpler structure.
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Now we assume:

Let (Xd, ‖ · ‖Xd ), (Xc, ‖ · ‖Xc), (Y, ‖ · ‖Y ) and
(Z, ‖ · ‖Z) be real normed spaces;
let CY ⊂ Y and CXc ⊂ Xc be convex cones
in Y and Xc, respectively;
let Sd be a discrete subset of Xd,

i.e. Sd = {xi
d}i∈N for N := {1, 2, . . . , n}

(with n ∈ N) or N := N with x1
d, x2

d , . . . ∈ Xd;
let c ∈ X∗

c be a continuous linear functional;
let A : Xc → Y be a linear mapping;
let b ∈ Y be a given element;
let fd : Sd → R be a given functional;
let gd : Sd → Y be a given mapping;
and let the constraint set
S := {(xd, xc) ∈ Sd × CXc | gd(xd) + A(xc) − b ∈ CY }
be nonempty.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8.40)

Notice that fd and gd do not need to be linear or convex. Under the assumption
(8.40) we now consider the discrete-continuous optimization problem

min fd(xd) + c(xc)

subject to the constraints
gd(xd) + A(xc) − b ∈ CY

xd ∈ Sd, xc ∈ CXc.

(8.41)

This is an extendedly linear primal problem, which is more general than standard
linear optimization problems. According to our general formulation of the dual
problem (8.39) we associate the extendedly linear dual problem

max inf
i∈N

xc∈CXc

{
fd(xi

d) + c(xc) + �i
(− gd(xi

d) − A(xc) + b
)}

subject to the constraints
�i ∈ C∗

Y for all i ∈ N

(8.42)

to the original problem (8.41). Then the following lemma simplifies this problem in
a way that it is more suitable in applications.
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Lemma 8.28 (simplification of the extendedly linear dual problem).

Under the assumption (8.40) the extendedly linear dual problem (8.42) is
equivalent to the problem

max inf
i∈N

{
fd(xi

d) − (�i ◦ gd

)
(xi

d) + �i(b)
}

subject to the constraints
c − �i ◦ A ∈ C∗

Xc
for all i ∈ N

�i ∈ C∗
Y for all i ∈ N.

(8.43)

Proof
(a) Problem (8.42) is equivalent to the problem

max λ

subject to the constraints

λ ≤ inf
i∈N

xc∈CXc

{
fd(xi

d) + c(xc) + �i
(− gd(xi

d) − A(xc) + b
)}

λ ∈ R, �i ∈ C∗
Y for all i ∈ N.

(8.44)

The inequality constraint in problem (8.44) can also be written as

λ ≤ fd(xi
d) + c(xc) + �i

(− gd(xi
d) − A(xc) + b

)

for all i ∈ N and all xc ∈ CXc

or

c(xc) −
(
�i ◦ A

)
(xc) ≥ λ − fd(xi

d) + (�i ◦ gd

)
(xi

d) − �i(b)

for all i ∈ N and all xc ∈ CXc . (8.45)

Since the right hand side of the inequality (8.45) does not depend on xc, we
conclude

c(xc) −
(
�i ◦ A

)
(xc) ≥ 0 for all xc ∈ CXc,

i.e.

c − �i ◦ A ∈ C∗
Xc

,
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and the constraint in problem (8.43) is shown. If we set xc = 0Xc in the
inequality (8.45), we obtain

λ ≤ fd(xi
d) − (�i ◦ gd

)
(xi

d) + �i(b) for all i ∈ N

or

λ ≤ inf
i∈N

{
fd(xi

d) − (�i ◦ gd

)
(xi

d) + �i(b)
}

.

By maximization of λ we then get the formulation in (8.43).
(b) In a similar way we rewrite problem (8.43) in an equivalent form and we get the

constraints

c(xc) −
(
�i ◦ A

)
(xc) ≥ 0

≥ λ − fd(xi
d) + (�i ◦ gd

)
(xi

d) − �i(b)

for all i ∈ N and all xc ∈ CXc.

This leads to problem (8.42). 
�

Remark 8.29 (simplification of the extendedly linear dual problem).

In the finite dimensional case, i.e. Xd = R
nd , Xc = R

nc , Y = R
m, A ∈

R
(m,nc), c ∈ R

nc and b ∈ R
m, the equivalent dual problem (8.43) can be

written as

max inf
i∈N

{
fd(xi

d) + �iT
(
b − gd(xi

d)
)}

subject to the constraints
c − AT �i ∈ C∗

Rnc for all i ∈ N

�i ∈ C∗
Rm for all i ∈ N.

In Example 6.2 we have already investigated a discrete problem with the standard
duality theory based on only one Lagrange multiplier per constraint. With the theory
of this chapter we investigate this problem again and we find out that the duality gap
disappears.
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Example 8.30 (extendedly linear dual problem).

As a very simple example we investigate the linear problem in Example 6.2
with only discrete variables:

min −2(xd)1 + (xd)2

subject to the constraints
(xd)1 + (xd)2 − 3 ≤ 0

xd ∈ Sd :=
{(

0
0

)
,

(
0
4

)
,

(
4
4

)
,

(
4
0

)
,

(
1
2

)
,

(
2
1

)}
.

(8.46)

Here we have Xd = R
2, Y = R, CY = R+, fd(·) = (−2, 1)

( · ), gd(·) =
(−1,−1)

( · ) and b = −3. By Lemma 8.28 the equivalent dual problem
reads

max
�1,...,�6≥0

min
1≤i≤6

{
(−2, 1)xi

d + �i(1, 1)xi
d − 3�i

}
. (8.47)

The objective function of this problem can be written as

min
1≤i≤6

{
(−2, 1)xi

d + �i(1, 1)xi
d − 3�i

}

= min
{
−3�1, 4 + �2, −4 + 5�3, −8 + �4, 0, −3

}
,

and problem (8.47) is equivalent to

max λ

subject to the constraints
λ ≤ −3�1

λ ≤ 4 + �2

λ ≤ −4 + 5�3

λ ≤ −8 + �4

λ ≤ 0
λ ≤ −3

λ ∈ R, �1, . . . , �4 ≥ 0.
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Notice that the second and fifth inequality constraint are redundant so that
the variable �2 can also be dropped. Then we get the equivalent dual problem

max λ

subject to the constraints
λ ≤ −3�1

λ ≤ −4 + 5�3

λ ≤ −8 + �4

λ ≤ −3
λ ∈ R, �1, �3, �4 ≥ 0.

It is evident that the maximal value of this problem equals −3. Notice that
the primal problem (8.46) has only the three feasible points (0, 0), (1, 2)

and (2, 1) with the minimal value −3. Hence, the extremal values of the
primal and dual problem coincide. In contrast to the classical Lagrange
theory in continuous optimization (compare Example 6.2) there is no duality
gap because we work with more than one Lagrange multiplier.

8.5 Application to Discrete-Continuous Semidefinite
and Copositive Optimization

It is known that semidefinite and copositive optimization have important appli-
cations in practice (compare Chap. 7). Now we extend these problems in such a
way that the variables may be discrete and continuous. Since these problems are
optimization problems in a finite dimensional Hilbert space, the discrete-continuous
theory can be used for this problem class.

As in Chap. 7 let Sk (for some k ∈ N) denote the real linear space of symmetric
(k, k)-matrices. In the following let C ⊂ Sk denote either the Löwner ordering cone,
i.e.

C :=
{
M ∈ Sk | M is positive semidefinite

}
=: Sk+, (8.48)

or the copositive ordering cone, i.e.

C :=
{
M ∈ Sk | yT My ≥ 0 for all y ∈ R

k+
}

(8.49)
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(compare Remark 7.1). Furthermore, we assume:

Let md,mc ∈ N be given integers;
let Sd := {x1

d , x2
d, . . . , xn

d

} ⊂ R
md be a discrete set with n ∈ N;

let f : Sd × R
mc → R be a given function;

let G : Sd ×R
mc → Sk be a given mapping;

and let the constraint set
S := {(xd, xc) ∈ Sd × R

mc | G(xd, xc) ∈ −C}
be nonempty.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8.50)

As mentioned on page 189 the space Sk is a finite dimensional Hilbert space with
the scalar product 〈·, ·〉 defined by

〈A,B〉 = trace (A · B) for all A,B ∈ Sk.

Under the assumption (8.50) we investigate the semidefinite/copositive optimiza-
tion problem

min f (xd, xc)

subject to the constraints
G(xd, xc) ∈ −C

(xd, xc) ∈ Sd × R
mc .

(8.51)

If the cone C is given by (8.48), then problem (8.51) is a discrete-continuous
semidefinite optimization problem. If C is given by (8.49), then problem (8.51) is a
discrete-continuous copositive optimization problem.

We restrict our investigation to the formulation of extended KKT conditions for
problem (8.51).

Theorem 8.31 (extended KKT conditions).

Let the assumption (8.50) be satisfied and let x̄ = (x
j
d , x̄c) (for some

j ∈ {1, . . . , n}) be a minimal solution of the discrete-continuous semidefi-
nite/copositive optimization problem (8.51). For every i ∈ {1, . . . , n} let the
set

Bi :=
{(

f (xi
d, xc) − f (x̄) + α

G(xi
d, xc) + Y

)

∈ R× Sk

∣
∣∣
∣ xc ∈ R

mc ,

α > 0, Y ∈ int(C)

}
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be convex. For every i ∈ {1, . . . , n} let the function f (xi
d, ·) be differentiable

at x̄c and let the mapping G(xi
d, ·) be Fréchet differentiable at x̄c. Then there

exist real numbers μ1, . . . , μn ≥ 0 and matrices L1, . . . , Ln ∈ C∗ with
(μi, Li) �= (0, 0Sk ) for all i ∈ {1, . . . , n}, and the equality

μi∇xcf (xi
d, x̄c) +

⎛

⎜
⎝

〈Li,G(xc)1(x̄)〉
...

〈Li,G(xc)mc
(x̄)〉

⎞

⎟
⎠ = 0Rmc for all i ∈ I (x̄c)

with

G(xc)i :=

⎛

⎜
⎜
⎝

∂
∂(xc)i

G11 · · · ∂
∂(xc)i

G1k

...
...

∂
∂(xc)i

Gk1 · · · ∂
∂(xc)i

Gkk

⎞

⎟
⎟
⎠ for all i ∈ {1, . . . ,mc}.

and

I (x̄c) :=
{
i ′ ∈ {1, . . . , n}

∣∣
∣ f (xi′

d , x̄c) + 〈Li′ ,G(xi′
d , x̄c)〉

= min
1≤i≤n

{
f (xi

d, x̄c) + 〈Li,G(xi
d, x̄c)〉

}}

is fulfilled together with the equality

〈Lj ,G(x̄)〉 = 0.

If in addition to the above assumptions the condition

∀ i ∈ {1, . . . , n} ∃ xc ∈ R
mc : 0 > 〈Li,G(xi

d, xc)〉

is satisfied, then it follows

μi > 0 for all i ∈ {1, . . . , n}.

Proof To the minimal solution x̄ = (x
j
d , x̄c) we apply Theorem 8.10 and follow

the proof of Theorem 8.19 and Corollary 8.20. Using the known formula for the
Fréchet derivative of G(xi

d, ·) for every i ∈ {1, . . . , n} (see Lemma 7.7) we then get
the first part of the assertion. The second part is a consequence of the CQ given in
Corollary 8.12. 
�

Theorem 8.31 holds for the semidefinite variant of problem (8.51) and for
the copositive case. The only difference is the dual cone C∗. Since the Löwner
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ordering cone is self-dual, the condition L1, . . . , Ln ∈ C∗ means that the matrices
L1, . . . , Ln are positive semidefinite. If C equals the copositive ordering cone, then
its dual cone is given by

C∗ = convex hull
{
yyT | y ∈ R

k+
}

and elements of C∗ are called completely positive matrices (compare Lemma 7.5
and the subsequent remark).

Finally, we turn our attention to the dual problem of the semidefinite/copositive
problem (8.51). This dual problem is given by

max inf
1≤i≤n

xc∈Rmc

{
f (xi

d, xc) + 〈Li,G(xi
d, xc)〉

}

subject to the constraints
L1, . . . , Ln ∈ C∗.

(8.52)

So, the n variables of the dual semidefinite problem are positive semidefinite sym-
metric (k, k)-matrices and in the copositive case the dual variables are completely
positive matrices. The weak duality theorem (Theorem 8.26) and the strong duality
theorem (Theorem 8.27) are directly applicable to the primal problem (8.51) and its
dual formulation (8.52).

Exercises

(8.1) Are the two discrete-continuous optimization problems

min 1
x4

1
+ 1

x2
2

subject to
x1 ∈ N, x2 ∈ R

and

min
x2

2
x4

1

subject to
x1 ∈ N, x2 ∈ R

solvable?
(8.2) Let (Xd, ‖ · ‖Xd ) be a real normed space, and let (Xc, ‖ · ‖Xc) be a reflexive

real Banach space. Let the set Sd ⊂ Xd consist of finitely many elements, and
let Sc ⊂ Xc be a nonempty, convex, closed and bounded set. Moreover, let
the functional f : Sd × Sc → R have the property that for every xd ∈ Sd
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the functional f (xd, ·) is continuous and quasiconvex. Prove that the discrete-
continuous optimization problem

min
(xd ,xc)∈Sd×Sc

f (xd, xc)

is solvable.
(8.3) Let S be a nonempty subset of a real normed space (X, ‖ · ‖) and for some

n ∈ N let ϕ1, . . . , ϕn : S → R be given functionals being continuous and
directionally differentiable at an arbitrary x̄ ∈ S. Show that the directional
derivative of the functional f : S → R with

f (x) = min
1≤i≤n

{ϕi(x)} for all x ∈ S

at x̄ ∈ S is given by

(
min

1≤i≤n
{ϕi(·)}

)′
(x̄)(h) = min

i∈I (x̄)

{
ϕ′

i (x̄)(h)
}

for all h ∈ X

where

I (x̄) :=
{
i ∈ {1, . . . , n}

∣
∣
∣ ϕi(x̄) = min

1≤k≤n
{ϕk(x̄)}

}
.

(8.4) Consider the discrete-continuous optimization problem

min
(
1 + (xd)1

)2(
2 + (xd)2

)4(
1 + (xc)1 + (xc)

3
2

)

subject to the constraints

(xd)1 , (xd)2 ∈ {1, 2, . . . , 20}
(xc)1 ≥ 0, (xc)2 ≥ 0.

Determine the unique minimal solution of this problem and the Lagrange
multipliers associated to this minimal solution.

(8.5) Consider the simple primal discrete-continuous optimization problem

min (xd)2
1 + ln (xd)2 + xc

subject to the constraints

e(xd )2
1+(xd)2

2 + 3xc ≥ 1

xd ∈ Sd :=
{(

1
1

)
,

(
2
1

)
,

(
3
2

)}
, xc ≥ 0

and formulate its dual problem. Determine a maximal solution and the
maximal value of the dual problem.



9Direct Treatment of Special Optimization
Problems

Many of the results derived in this book are concerned with a generally formulated
optimization problem. But if a concrete problem is given which has a rich math-
ematical structure, then solutions or characterizations of solutions can be derived
sometimes in a direct way. In this case one takes advantage of the special structure
of the optimization problem and can achieve the desired results very quickly.

In this final chapter we present two special optimal control problems and show
how they can be treated without the use of general theoretical optimization results.
The first problem is a so-called linear quadratic optimal control problem. For the
given quadratic objective functional one gets a minimal solution with the aid of
a simple quadratic completion without using necessary optimality conditions. The
second problem is a time-minimal optimal control problem which can be solved
directly by the application of a separation theorem.

9.1 Linear Quadratic Optimal Control Problems

In this section we consider a system of autonomous linear differential equations

ẋ(t) = Ax(t) + Bu(t) almost everywhere on [0, T̂ ] (9.1)

and an initial condition

x(0) = x0 (9.2)

(where T̂ > 0 and x0 ∈R
n are arbitrarily given). Let A and B be (n, n) and (n,m)

matrices with real coefficients, respectively. Let every control u ∈ Lm∞([0, T̂ ])
be feasible (i.e. the controls are unconstrained). It is our aim to steer the sys-
tem (9.1), (9.2) as close to a state of rest as possible at the terminal time T̂ . In other

© The Editor(s) (if applicable) and The Author(s), under exclusive
licence to Springer Nature Switzerland AG 2020
J. Jahn, Introduction to the Theory of Nonlinear Optimization,
https://doi.org/10.1007/978-3-030-42760-3_9
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words: For a given positive definite symmetric (n, n) matrix G with real coefficients
the quadratic form x(T̂ )T Gx(T̂ ) should be minimal. Since we want to reach our
goal with a minimal steering effort, for a given positive definite symmetric (m,m)

matrix R with real coefficients the expression
T̂∫

0
u(t)T Ru(t) dt should be minimized

as well. These two goals are used for the definition of the objective functional
J : Lm∞([0, T̂ ]) → R with

J (u) = x(T̂ )T Gx(T̂ ) +
T̂∫

0

u(t)T Ru(t) dt for all u ∈ Lm∞([0, T̂ ]).

Under these assumptions the considered linear quadratic optimal control problem
then reads as follows:

Minimize the objective functional J with respect to all controls
u ∈ Lm∞([0, T̂ ]) for which the resulting trajectory is given
by the system (9.1) of differential equations and the initial
condition (9.2).

⎫
⎪⎬

⎪⎭
(9.3)

In order to be able to present an optimal control for the problem (9.3) we need
two technical lemmas.

Lemma 9.1 (relationship between control and trajectory).

Let P(·) be a real (n, n) matrix function which is symmetric and differen-
tiable on [0, T̂ ]. Then it follows for an arbitrary control u ∈ Lm∞([0, T̂ ])
and a trajectory x of the initial value problem (9.1), (9.2):

0 = x0T
P (0)x0 − x(T̂ )T P (T̂ )x(T̂ ) +

T̂∫

0

[
2u(t)T BT P (t)x(t)

+x(t)T
(
Ṗ (t) + AT P(t) + P(t)A

)
x(t)

]
dt.

Proof For an arbitrary control u ∈ Lm∞([0, T̂ ]) and a corresponding trajectory x

of the initial value problem (9.1), (9.2) and an arbitrary real matrix function P(·)
defined on [0, T̂ ] and being symmetric and differentiable it follows:

d

dt

[
x(t)T P (t)x(t)

]
= ẋ(t)T P (t)x(t) + x(t)T

(
Ṗ (t)x(t) + P(t)ẋ(t)

)

= (Ax(t) + Bu(t)
)T

P (t)x(t)
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+x(t)T
(
Ṗ (t)x(t) + P(t) (Ax(t) + Bu(t))

)

= x(t)T
(
Ṗ (t) + AT P(t) + P(t)A

)
x(t)

+2u(t)T BT P (t)x(t) almost everywhere on [0, T̂ ].

With the initial condition (9.2) we get immediately by integration

x(T̂ )T P (T̂ )x(T̂ ) − x0T
P (0)x0

=
T̂∫

0

[
2u(t)T BT P (t)x(t) + x(t)T

(
Ṗ (t) + AT P(t) + P(t)A

)
x(t)

]
dt

which implies the assertion. 
�

Lemma 9.2 (Bernoulli matrix differential equation).

The (n, n) matrix function P(·) with

P(t) =
[
eA(t−T̂ )G−1eAT (t−T̂ ) +

T̂∫

t

eA(t−s)BR−1BT eAT (t−s) ds

]−1

for all t ∈ [0, T̂ ] (9.4)

is a solution of the Bernoulli matrix differential equation

Ṗ (t) + AT P(t) + P(t)A − P(t)BR−1BT P(t) = 0(n,n) for all t ∈ [0, T̂ ]
(9.5)

with the terminal condition

P(T̂ ) = G. (9.6)

The matrix function P(·) defined by (9.4) is symmetric.

Proof First we define the (n, n) matrix function Q(·) by

Q(t) = eA(t−T̂ )G−1eAT (t−T̂ ) +
T̂∫

t

eA(t−s)BR−1BT eAT (t−s) ds for all t ∈ [0, T̂ ]
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(notice that the matrix exponential function is defined as a matrix series). It is
evident that Q(·) is a symmetric matrix function. For an arbitrary z ∈ R

n, z �= 0Rn ,
we obtain

zT Q(t)z = zT eA(t−T̂ )G−1eAT (t−T̂ )z︸ ︷︷ ︸
> 0

+
T̂∫

t

zT eA(t−s)BR−1BT eAT (t−s)z︸ ︷︷ ︸
≥ 0

ds

> 0 for all t ∈ [0, T̂ ].

Consequently, for every t ∈ [0, T̂ ] the matrix Q(t) is positive definite and therefore
invertible, i.e. the matrix function P(·) with

P(t) = Q(t)−1 for all t ∈ [0, T̂ ]

is well-defined. Since Q(·) is symmetric, P(·) is also symmetric.
It is obvious that P(·) satisfies the terminal condition (9.6). Hence, it remains to

be shown that P(·) is a solution of the Bernoulli matrix differential equation (9.5).
For this proof we calculate the derivative (notice the implications for arbitrary t ∈
[0, T̂ ]: Q(t) · Q(t)−1 = I �⇒ Q̇(t)Q(t)−1 + Q(t) d

dt

(
Q(t)−1

) = 0(n,n) �⇒
d
dt

(
Q(t)−1

) = −Q(t)−1Q̇(t) Q(t)−1 )

Ṗ (t) = d

dt

(
Q(t)−1

)

= −Q(t)−1Q̇(t)Q(t)−1

= −Q(t)−1
[
AeA(t−T̂ )G−1eAT (t−T̂ ) + eA(t−T̂ )G−1eAT (t−T̂ )AT

+
T̂∫

t

(
AeA(t−s)BR−1BT eAT (t−s)

+eA(t−s)BR−1BT eAT (t−s)AT

)
ds − BR−1BT

]
Q(t)−1

= −Q(t)−1
[
AQ(t) + Q(t)AT − BR−1BT

]
Q(t)−1

= −Q(t)−1A − AT Q(t)−1 + Q(t)−1BR−1BT Q(t)−1

= −P(t)A − AT P(t) + P(t)BR−1BT P(t) for all t ∈ [0, T̂ ].

Consequently, P(·) satisfies the Bernoulli matrix differential equation (9.5). 
�

With the aid of the two preceding lemmas it is now possible to present the optimal
control of the linear quadratic problem (9.3).
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Theorem 9.3 (feedback control).

The so-called feedback control ū given by

ū(t) = −R−1BT P(t)x(t) almost everywhere on [0, T̂ ]

is the only optimal control of the linear quadratic control problem (9.3)
where the matrix function P(·) is given by (9.4).

Proof In the following let P(·) be the matrix function defined by (9.4). Then we
have with Lemmas 9.1 and 9.2 for every control u ∈ Lm∞([0, T̂ ]) with u �= ū:

J (u) = x(T̂ )T Gx(T̂ ) +
T̂∫

0

u(t)T Ru(t) dt

= x0T
P (0)x0 + x(T̂ )T [G − P(T̂ )]x(T̂ )

+
T̂∫

0

[
u(t)T Ru(t) + 2u(t)T BT P (t)x(t)

+x(t)T
(
Ṗ (t) + AT P(t) + P(t)A

)
x(t)

]
dt

(from Lemma 9.1)

= x0T
P (0)x0 +

T̂∫

0

[
u(t)T Ru(t) + 2u(t)T BT P (t)x(t)

+x(t)T P (t)BR−1BT P(t)x(t)

]
dt

(from Lemma 9.2)

= x0T
P (0)x0 +

T̂∫

0

(
u(t) + R−1BT P(t)x(t)

)T

R

(
u(t) + R−1BT P(t)x(t)

)
dt

> x0T
P (0)x0

= J (ū).

Hence ū is the only minimal point of the functional J . 
�
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ẋ(t) = Ax(t) + Bū(t)

ū(t) = −R−1BT P (t)x(t)

ū(t) x(t)

Fig. 9.1 Feedback control of Theorem 9.3

The optimal control presented in Theorem 9.3 depends on the time variable t and
the current state x(t). Such a control is called a feedback or a closed loop control
(see Fig. 9.1).

If the control function depends only on t and not on the state x(t), then it is called
an open loop control. Feedback controls are of special importance for applications.
Although feedback controls are also derived from the mathematical model, they
make use of the real state of the system which is described mathematically only in
an approximate way. Hence, in the case of perturbations which are not included in
the mathematical model, feedback controls are often more realistic for the regulation
of the system.

Since the matrix function P is analytic and the trajectory x is absolutely
continuous, the optimal control ū in Theorem 9.3 is an absolutely continuous vector
function. In fact, a solution of the linear quadratic optimal control problem lies in a
smaller subspace of Lm∞([0, T̂ ]).

Notice that the proof of Theorem 9.3 could be done with the aid of an optimality
condition. Instead of this we use a quadratic completion with Lemmas 9.1 and 9.2
which is simpler from a mathematical point of view.

The linear quadratic control problem (9.3) can be formulated more generally. If
one defines the objective functional J by

J (u) = x(T̂ )T Gx(T̂ ) +
T̂∫

0

(
x(t)T Qx(t) + u(t)T Ru(t)

)
dt

for all u ∈ Lm∞([0, T̂ ])

where Q is a positive definite symmetric (n, n) matrix with real coefficients, then
the result of Theorem 9.3 remains almost true for the modified control problem.
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The only difference is that then the matrix function P(·) is a solution of the Riccati
matrix differential equation

Ṗ (t) + AT P(t) + P(t)A + Q − P(t)BR−1BT P(t) = 0(n,n) for all t ∈ [0, T̂ ]

with the terminal condition P(T̂ ) = G.

Example 9.4 (feedback control).

As a simple model we consider the differential equation

ẋ(t) = 3x(t) + u(t) almost everywhere on [0, 1]

with the initial condition

x(0) = x0

where x0 ∈ R is arbitrarily chosen. The objective functional J reads as
follows:

J (u) = x(1)2 + 1

5

1∫

0

u(t)2 dt for all u ∈ L∞([0, 1]).

Then we obtain the function P as

P(t) =
⎡

⎣e3(t−1)e3(t−1) + 5

1∫

t

e3(t−s)e3(t−s) ds

⎤

⎦

−1

=
⎡

⎣e6(t−1) + 5

1∫

t

e6(t−s) ds

⎤

⎦

−1

=
[
e6(t−1) − 5

6
e6(t−1) + 5

6

]−1

= 6

5 + e6(t−1)
for all t ∈ [0, 1].
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Hence, the optimal control ū is given by

ū(t) = −5
6

5 + e6(t−1)
x(t)

= − 30

5 + e6(t−1)
x(t) almost everywhere on [0, 1]. (9.7)

If we plug the feedback control ū in the differential equation, we can
determine the trajectory x:

ẋ(t) = 3x(t) + ū(t)

= 3x(t) − 30

5 + e6(t−1)
x(t)

=
(

3 − 30

5 + e6(t−1)

)
x(t).

Then we obtain the trajectory x as

x(t) = x0 e

t∫

0

(
3− 30

5+e6(s−1)

)
ds

= x0 e

(
3s−6(s−1)+ln(e6(s−1)+5)

)∣∣t
0

= x0 e−3t+ln(e6(t−1)+5)−ln(e−6+5)

= x0

e−6 + 5
e−3t

(
e6(t−1) + 5

)
for all t ∈ [0, 1]. (9.8)

If we plug the equation (9.8) in the equation (9.7), we get the optimal control
ū in the open loop form

ū(t) = − 30x0

e−6 + 5
e−3t almost everywhere on [0, 1]

(compare Fig. 9.2). This optimal control is even a smooth function.
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2

4
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−4

−6

1 t

x

ū

Fig. 9.2 Illustration of the optimal control ū and the trajectory x

9.2 TimeMinimal Control Problems

An important problem in control theory is the problem of steering a linear system
with the aid of a bounded control from its initial state to a desired terminal point in
minimal time. In this section we answer the questions concerning the existence and
the characterization of such a time minimal control. As a necessary condition for
such an optimal control we derive a so-called weak bang-bang principle. Moreover,
we investigate a condition under which a time minimal control is unique.

In this section we consider the system of linear differential equations

ẋ(t) = A(t)x(t) + B(t)u(t) almost everywhere on [0, T̂ ] (9.9)

with the initial condition

x(0) = x0 (9.10)

and the terminal condition

x(T̂ ) = x1 (9.11)

where T̂ > 0, x0, x1 ∈ R
n, A and B are (n, n) and (n,m) matrix functions

with real coefficients, respectively, which are assumed to be continuous on [0, T̂ ],
and controls u are chosen from Lm∞([0, T̂ ]) with ‖ui‖L∞([0,T̂ ]) ≤ 1 for all

i ∈ {1, . . . ,m}. Then we ask for a minimal time T̄ ∈ [0, T̂ ] so that the linear
system (9.9) can be steered from x0 to x1 on the time interval [0, T̄ ].
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If we consider the linear system (9.9) on a time interval [0, T ] with T ∈ [0, T̂ ]
we use the abbreviation

U(T ) := {u ∈ Lm∞([0, T ]) | for every k ∈ {1, . . . ,m} we have

|uk(t)| ≤ 1 almost everywhere on [0, T ]}
for all T ∈ [0, T̂ ] (9.12)

for the set of all feasible controls with terminal time T .

Definition 9.5 (set of attainability).

For any T ∈ [0, T̂ ] consider the linear system (9.9) on [0, T ] with the initial
condition (9.10). The set

K(T ) := {x(T ) ∈ R
n | u ∈ U(T ) and x satisfies the linear

system (9.9) on [0, T ] and the initial condition (9.10)}

(with U(T ) given in (9.12)) is called the set of attainability.

The set of attainability consists of all terminal points to which the system can be
steered from x0 at the time T . Since we assume by (9.11) that the system can be
steered to x1 we have x1 ∈ K(T̂ ). Hence, the problem of finding a time minimal
control for the linear system (9.9) satisfying the conditions (9.10), (9.11) can be
transformed to a problem of the following type: Determine a minimal time T̄ ∈
[0, T̂ ] for which x1 ∈ K(T̄ ) (see Fig. 9.3).

x0

x1
K(T̂ )

K(T̄ )

K(T )

Fig. 9.3 Illustration of the set of attainability with T ∈ (0, T̄ )
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Before going further we recall that for an arbitrary u ∈ Lm∞([0, T ]) the solution
of the initial value problem (9.9), (9.10) with respect to the time interval [0, T ], T ∈
[0, T̂ ], can be written as

x(t) = �(t)x0 + �(t)

t∫

0

�(s)−1B(s)u(s) ds for all t ∈ [0, T̄ ]

where � is the fundamental matrix with

�̇(t) = A(t)�(t) for all t ∈ [0, T ],

�(0) = I (identity matrix)14.

Notice that in the case of a time independent matrix A, the fundamental matrix �

is given as

�(t) = eAt =
∞∑

i=0

Ai t
i

i! for all t ∈ [0, T ].

In the following, for reasons of simplicity, we use the abbreviations

Y (t) := �−1(t)B(t) for all t ∈ [0, T ]

and

R(T ) :=
{ T∫

0

Y (t)u(t)dt

∣
∣
∣
∣ u ∈ U(T )

}
for all T ∈ [0, T̂ ].

The set R(T ) is sometimes called the reachable set. A connection between K and
R is given by

K(T ) = �(T )
(
x0 + R(T )

)

= {�(T )x0 + �(T )y | y∈R(T )} for all T ∈[0, T̂ ]. (9.13)

First we investigate properties of the set of attainability.

14A proof of this existence result can be found e.g. in [212, p. 121–122].
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Lemma 9.6 (properties of the set of attainability).

For every T ∈ [0, T̂ ] the set K(T ) of attainability for the initial value
problem (9.9), (9.10) with respect to the time interval [0, T ] is nonempty,
convex and compact.

Proof We present a proof of this lemma only in a short form. Let some T ∈ [0, T̂ ]
be arbitrarily given. Because of the initial condition (9.10) it is obvious that R(T ) �=
∅. Next we show that the reachable set

R(T ) =
{ T∫

0

Y (t)u(t) dt

∣
∣∣
∣ u ∈ U(T )

}

is convex and compact. U(T ) is the closed unit ball in Lm∞([0, T ]) and therefore
weak*-compact. Next we define the linear mapping L : Lm∞([0, T ]) → R

n with

L(u) =
T∫

0

Y (t)u(t) dt for all u ∈ Lm∞([0, T ]).

L is continuous with respect to the norm topology in Lm∞([0, T ]), and therefore it
is also continuous with respect to the weak*-topology in Lm∞([0, T ]). Since L is
continuous and linear and the set U(T ) is weak*-compact and convex, the image
R(T ) = L(U(T )) is compact and convex. Because of the equation (9.13) the set
K(T ) is also compact and convex. 
�

As a first important result we present an existence theorem for time minimal
controls.

Theorem 9.7 (existence of a time minimal control).

If there is a control which steers the linear system (9.9) with the initial
condition (9.10) to a terminal state x1 within a time T̃ ∈ [0, T̂ ], then there
is also a time minimal control with this property.

Proof We assume that x1 ∈ K(T̃ ). Next we set

T̄ := inf{T ∈ [0, T̂ ] | x1 ∈ K(T )}.
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Then we have T̄ ≤ T̃ , and there is a monotonically decreasing sequence (Ti)i∈N
with the limit T̄ and a sequence (ui)i∈N of feasible controls with

x1 =: x(Ti, u
i) ∈ K(Ti)

(let x(Ti, u
i) denote the terminal state at the time Ti with the control ui). Then it

follows

‖x1 − x(T̄ , ui)‖
= ‖x(Ti, u

i) − x(T̄ , ui)‖

=
∥∥
∥
∥�(Ti)x

0 + �(Ti)

Ti∫

0

Y (t)ui(t) dt − �(T̄ )

Ti∫

0

Y (t)ui(t) dt

−�(T̄ )x0 − �(T̄ )

T̄∫

0

Y (t)ui(t) dt + �(T̄ )

Ti∫

0

Y (t)ui(t) dt

∥∥
∥
∥

≤ ∥∥(�(Ti) − �(T̄ ))x0
∥
∥+

∥
∥
∥
∥(�(Ti) − �(T̄ ))

Ti∫

0

Y (t)ui(t) dt

∥
∥
∥
∥

+
∥
∥
∥
∥�(T̄ )

Ti∫

T̄

Y (t)ui(t) dt

∥
∥
∥
∥

which implies because of the continuity of �

x1 = lim
i→∞ x(T̄ , ui).

Since x(T̄ , ui) ∈ K(T̄ ) for all i ∈ N and the set K(T̄ ) is closed, we get x1 ∈ K(T̄ )

which completes the proof. 
�

In our problem formulation we assume that the terminal condition (9.11) is
satisfied. Therefore Theorem 9.7 ensures that a time minimal control exists without
additional assumptions. For the presentation of a necessary condition for such a time
minimal control we need some lemmas given in the following.

Lemma 9.8 (property of the set of attainability).

Let the linear system (9.9) with the initial condition (9.10) be given. Then
the set-valued mapping K : [0, T̂ ] → 2R

n
(where K(·) denotes the set of

attainability) is continuous (with respect to the Hausdorff distance).
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Proof First we prove the continuity of the mapping R. For that proof let T̄ , T ∈
[0, T̂ ], with T̄ �= T , be arbitrarily chosen. Without loss of generality we assume
T̄ < T . Then for an arbitrary ȳ ∈ R(T̄ ) there is a feasible control ū with

ȳ =
T̄∫

0

Y (t)ū(t) dt.

For the feasible control u given by

u(t) =
{

ū(t) almost everywhere on [0, T̄ ]
(1, . . . , 1)T for all t ∈ (T̄ , T ]

}

we have

T∫

0

Y (t)u(t) dt ∈ R(T ).

Consequently we get

d(ȳ, R(T )) := min
y∈R(T )

‖ȳ − y‖

≤
∥
∥∥
∥ȳ −

T∫

0

Y (t)u(t) dt

∥
∥∥
∥

=
∥∥
∥
∥

T∫

T̄

Y (t)(1, . . . , 1)T dt

∥∥
∥
∥

≤ √
m

T∫

T̄

|||Y (t)||| dt

and

max
ȳ∈R(T̄ )

d(ȳ, R(T )) ≤ √
m

T∫

T̄

|||Y (t)||| dt
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(here ‖ · ‖ denotes the Euclidean norm in R
n and ||| · ||| denotes the spectral norm).

Similarly one can show

max
y∈R(T )

d(R(T̄ ), y) ≤ √
m

T∫

T̄

|||Y (t)||| dt.

Hence, we obtain for the metric �:

�(R(T̄ ), R(T )) := max
ȳ∈R(T̄ )

min
y∈R(T )

‖ȳ − y‖ + max
y∈R(T )

min
ȳ∈R(T̄ )

‖ȳ − y‖

≤ 2
√

m

T∫

T̄

|||Y (t)||| dt.

Since the matrix function Y is continuous, there is a constant α > 0 with

|||Y (t)||| ≤ α for all t ∈ [0, T̂ ].

Then we get

�(R(T̄ ), R(T )) ≤ 2α
√

m(T − T̄ ).

Consequently, the set-valued mapping R is continuous. Since the fundamental
matrix � is continuous and the images of the set-valued mapping R are bounded
sets, we obtain with the equation (9.13) (notice for T̄ , T ∈[0, T̂ ] and a constant β >0
the inequality �(K(T̄ ),K(T )) ≤ β|||�(T̄ )−�(T )|||+|||�(T̄ )||| �(R(T̄ ), R(T ))) that
the mapping K is continuous. 
�

Lemma 9.9 (property of the set of attainability).

Let the linear system (9.9) with the initial condition (9.10) and some
T̄ ∈ [0, T̂ ] be given. Let ȳ be a point in the interior of the set K(T̄ ) of
attainability, then there is a time T ∈ (0, T̄ ) so that ȳ is also an interior
point of K(T ).

Proof Let ȳ be an interior point of the set K(T̄ ) (this implies T̄ > 0). Then there
is an ε > 0 so that B(ȳ, ε) ⊂ K(T̄ ) for the closed ball B(ȳ, ε) around ȳ with
radius ε. Now we assume that for all T ∈ (0, T̄ ) ȳ is not an interior point of the
set K(T ). For every T ∈ (0, T̄ ) the set K(T ) ⊂ R

n is closed and convex. Then
for every T ∈ (0, T̄ ) there is a hyperplane separating the set K(T ) and the point
ȳ (compare Theorems C.5 and C.3). Consequently, for every T ∈ (0, T̄ ) there is a
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point yT ∈ B(ȳ, ε) whose distance to the set K(T ) is at least ε. But this contradicts
the continuity of the set-valued mapping K . 
�

The next lemma is the key for the proof of a necessary condition for time minimal
controls. For the formulation of this result we use the function sgn : R → R given
by

sgn(y) =
⎧
⎨

⎩

1 for y > 0
0 for y = 0

−1 for y < 0

⎫
⎬

⎭
.

Lemma 9.10 (property of the set of attainability).

Let the linear system (9.9) with the initial condition (9.10) and some T̄ ∈
(0, T̂ ] be given. If x̄(T̄ , ū) ∈ ∂K(T̄ ) for some ū ∈ U(T̄ ), then there is a
vector η �= 0Rn so that for all k ∈ {1, . . . ,m}:

ūk(t) = sgn[ηT Yk(t)] almost everywhere on {t ∈ [0, T̄ ] | ηT Yk(t) �= 0}

(x̄(T̄ , ū) denotes the state at the time T̄ with respect to the control ū; Yk(t)

denotes the k-th column of the matrix Y (t)).

Proof Let an arbitrary point ȳ := x̄(T̄ , ū) ∈ ∂K(T̄ ) be given. Since the set K(T̄ ) is
a convex and closed subset of Rn, by a separation theorem (see Theorem C.5) there
is a vector η̄ �= 0Rn with the property

η̄T ȳ ≥ η̄T y for all y ∈ K(T̄ ).

Because of

η̄T ȳ = η̄T �(T̄ )x0 + η̄T �(T̄ )

T̄∫

0

Y (t)ū(t) dt

and

η̄T y = η̄T �(T̄ )x0 + η̄T �(T̄ )

T̄∫

0

Y (t)u(t) dt for all y ∈ K(T̄ )
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we obtain for ηT := η̄T �(T̄ )

ηT

T̄∫

0

Y (t)ū(t) dt ≥ ηT

T̄∫

0

Y (t)u(t) dt (9.14)

for all feasible controls steering the linear system (9.9) with the initial condi-
tion (9.10) to a state in the set K(T̄ ) of attainability. From the inequality (9.14)
we conclude

ηT Y (t)ū(t) ≥ ηT Y (t)u(t) almost everywhere on [0, T̄ ]. (9.15)

For the proof of the implication “(9.14) �⇒ (9.15)” we assume that the inequal-
ity (9.15) is not true. Then there is a feasible control u and a set M ⊂ [0, T̄ ] with
positive measure so that

ηT Y (t)ū(t) < ηT Y (t)u(t) almost everywhere on M.

If one defines the feasible control u∗ by

u∗(t) =
{

ū(t) almost everywhere on [0, T̄ ] \ M

u(t) almost everywhere on M

}
,

then it follows

ηT

T̄∫

0

Y (t)u∗(t) dt = ηT

∫

M

Y(t)u(t) dt + ηT

∫

[0,T̄ ]\M
Y(t)ū(t) dt

> ηT

∫

M

Y(t)ū(t) dt + ηT

∫

[0,T̄ ]\M
Y(t)ū(t) dt

= ηT

T̄∫

0

Y (t)ū(t) dt

which contradicts the inequality (9.14). Hence, the inequality (9.15) is true.
From the inequality (9.15) we get for all k ∈ {1, . . . ,m}

ūk(t) = sgn [ηT Yk(t)] almost everywhere on {t ∈ [0, T̄ ] | ηT Yk(t) �= 0}. 
�



270 9 Direct Treatment of Special Optimization Problems

Now we present the afore-mentioned necessary condition for time minimal
controls.

Theorem 9.11 (necessary condition for time minimal controls).

Let the linear system (9.9) with the initial condition (9.10) and the terminal
condition (9.11) be given. If ū is a time minimal control with respect to the
minimal terminal time T̄ ∈ [0, T̂ ], then there is a vector η �= 0Rn so that for
all k ∈ {1, . . . ,m}:

ūk(t) = sgn[ηT Yk(t)] almost everywhere on {t ∈ [0, T̄ ] | ηT Yk(t) �= 0}.
(9.16)

Proof The assertion is obvious for T̄ = 0. Therefore we assume T̄ > 0 for the
following. We want to show that

ȳ := �(T̄ )x0 + �(T̄ )

T̄∫

0

Y (t)ū(t) dt ∈ ∂K(T̄ ). (9.17)

Suppose that ȳ were an interior point of the set K(T̄ ) of attainability. Then by
Lemma 9.9 there is a time T ∈ (0, T̄ ) so that ȳ is also an interior point of the
set K(T ). But this contradicts the fact that T̄ is the minimal time. Hence, the
condition (9.17) is true. An application of Lemma 9.10 completes the proof. 
�

The statement (9.16) is also called a weak bang-bang principle. If the measure
of the set {t ∈ [0, T̄ ] | ηT Yk(t) = 0} equals 0 for every k ∈ {1, . . . ,m}, the
statement (9.16) is called a strong bang-bang principle. Theorem 9.11 can also be
formulated as follows:

For every time minimal control ū there is a vector η �= 0Rn

so that ū satisfies the weak bang-bang principle (9.16).

The next example illustrates the applicability of Theorem 9.11.

Example 9.12 (necessary condition for time minimal controls).

We consider the harmonic oscillator mathematically formalized by

ÿ(t) + y(t) = u(t) almost everywhere on [0, T̂ ],

‖u‖
L∞([0,T̂ ]) ≤ 1
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where T̂ > 0 is sufficiently large. An initial condition is not given explicitly.
The corresponding linear system of first order reads

ẋ(t) =
(

0 1
−1 0

)

︸ ︷︷ ︸
=: A

x(t) +
(

0
1

)

︸ ︷︷ ︸
=: B

u(t).

We have

�(t) = eAt =
∞∑

i=0

Ai t
i

i! =
(

cos t sin t

− sin t cos t

)

and

Y (t) = �(t)−1B = e−AtB =
(− sin t

cos t

)
.

Then we obtain for an arbitrary vector η �= 0Rn

ηT Y (t) = −η1 sin t + η2 cos t .

Consequently, we get for a number α ∈ R and a number δ ∈ [−π, π]

ηT Y (t) = α sin(t + δ)

and therefore

sgn[ηT Y (t)] = sgn[α sin(t + δ)]

(see Fig. 9.4).

0

1

−1
π π

sgn[α sin(· + δ)]
t

Fig. 9.4 Illustration of the time optimal control
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Conclusion: If there is a time minimal control ū, then it fulfills the strong
bang-bang principle, and therefore it is unique. After π time units one
always gets a change of the sign of ū.
With a standard result from control theory one can see that the considered
linear system is null controllable (i.e., it can be steered to the origin in a
finite time). Hence, by Theorem 9.7 there is also a time minimal control
ū which steers this system into a state of rest, and therefore the preceding
results are applicable.

Now we present an example for which the necessary condition for time minimal
controls does not give any information.

Example 9.13 (necessary condition for time minimal controls).

We investigate the simple linear system

ẋ1(t) = x1(t) + u(t)

ẋ2(t) = x2(t) + u(t)

}
almost everywhere on [0, T̂ ]

with

‖u‖
L∞[0,T̂ ] ≤ 1

and T̂ > 0. Here we set

A =
(

1 0
0 1

)
= I and B =

(
1
1

)
.

Then we obtain

Y (t) = e−AtB = e−t

(
1
1

)

and for any vector η �= 0R2 we get

ηT Y (t) = (η1 + η2)e
−t .

For example, for η =
(

1
−1

)
we conclude

ηT Y (t) = 0 for all t ∈ [0, T̂ ],

and Theorem 9.11 does not give a suitable necessary condition for time
minimal controls.
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Next we investigate the question under which conditions time minimal controls
are unique. For this investigation we introduce the notion of normality.

Definition 9.14 (normal linear system).

(a) The linear system (9.9) is called normal on [0, T ] (with T ∈ [0, T̂ ]), if
for every vector η �= 0Rn the sets

Gk(η) = {t ∈ [0, T ] | ηT Yk(t) = 0} with k ∈ {1, . . . ,m}

have the measure 0. Yk(t) denotes again the k-th column of the matrix
Y (t).

(b) The linear system (9.9) is called normal, if for every T ∈ [0, T̂ ] this
system is normal on [0, T ].

Theorem 9.15 (uniqueness of a time minimal control).

Let the linear system (9.9) with the initial condition (9.10) and the terminal
condition (9.11) be given. If ū is a time minimal control with respect to the
minimal terminal time T̄ ∈ [0, T̂ ] and if the linear system (9.9) is normal
on [0, T̄ ], then ū is the unique time minimal control.

Proof By Theorem 9.11 for every time minimal control ū there is a vector η �= 0Rn

so that for all k ∈ {1, . . . ,m}:

ūk(t) = sgn[ηT Yk(t)] almost everywhere on [0, T̄ ] \ Gk(η).

Then the assertion follows from the normality assumption (notice that in the proof
of Lemma 9.10 the vector η depends on the terminal state and not on the control).


�

A control ū which satisfies the assumptions of Theorem 9.15 fulfills the strong
bang-bang principle

ū(t) = sgn[ηT Yk(t)] almost everywhere on [0, T̄ ].

One obtains an interesting characterization of the concept of normality in the
case of an autonomous linear system (9.9) with constant matrix functions A and B.
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Theorem 9.16 (characterization of normality).

The autonomous linear system (9.9) with constant matrix functions A and
B is normal if and only if for every k ∈ {1, . . . ,m} either

rank (Bk,ABk, . . . , A
n−1Bk) = n (9.18)

or

rank (A − λI,Bk) = n for all eigenvalues λ of A. (9.19)

Here Bk denotes the k-th column of the matrix B.

Proof We fix an arbitrary terminal time T ∈ [0, T̂ ]. First notice that for every
k ∈ {1, . . . ,m} and every η ∈ R

n

ηT Yk(t) = ηT e−AtBk for all t ∈ [0, T ].
Consequently, the real-valued analytical function ηT Yk(·) on [0, T ] is either identi-
cal to 0 or it has a finite number of zeros on this interval. Therefore, the autonomous
linear system (9.9) is normal on [0, T ] if and only if the following implication is
satisfied:

ηT e−AtBk = 0 for all t ∈ [0, T ] and some k ∈ {1, . . . ,m} ⇒ η = 0Rn. (9.20)

Next we show that the implication (9.20) is equivalent to the condition (9.18).
For this proof we assume that the condition (9.18) is satisfied. Let a vector η ∈ R

n

with

ηT e−AtBk = 0 for all t ∈ [0, T ] and some k ∈ {1, . . . ,m}
be arbitrarily given. By repeated differentiation and setting “t = 0” we get

ηT (Bk,ABk, . . . , A
n−1Bk) = 0T

Rn for some k ∈ {1, . . . ,m}.
By assumption the system of row vectors of the matrix (Bk,ABk, . . . , An−1Bk) is
linear independent, and therefore we get η = 0Rn . Hence, the implication (9.20) is
satisfied, i.e. the autonomous linear system (9.9) is normal on [0, T ].

Now we assume that the condition (9.18) is not satisfied. This means
that for some k ∈ {1, . . . ,m} the system of row vectors of the matrix
(Bk,ABk, . . . , A

n−1Bk) is linear dependent. Then there is a vector η �= 0Rn

with

ηT (Bk,ABk, . . . , A
n−1Bk) = 0T

Rn
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which implies

ηT Bk = ηT ABk = · · · = ηT An−1Bk = 0. (9.21)

The Cayley-Hamilton theorem states that the matrix A satisfies its characteristic
equation, i.e.

An = α0I + α1A + · · · + αn−1A
n−1

with appropriate coefficients α0, α1, . . . , αn−1 ∈ R. Then we obtain with (9.21)

ηT AnBk = α0η
T Bk + α1η

T ABk + · · · + αn−1η
T An−1Bk = 0

and by induction

ηT AlBk = 0 for all l ≥ n. (9.22)

Equations (9.21) and (9.22) imply

ηT AlBk = 0 for all l ≥ 0

which leads to

ηT e−AtBk = ηT

( ∞∑

i=0

Ai (−t)i

i!

)

Bk = 0 for all t ∈ [0, T ].

Consequently, the implication (9.20) is not satisfied, i.e. the autonomous linear
system (9.9) is not normal on [0, T ].

Finally we show the equivalence of the two rank conditions (9.18) and (9.19).
Let k ∈ {1, . . . ,m} be arbitrarily chosen.

Assume that the condition (9.19) is not satisfied, i.e. for some possibly complex
eigenvalue λ of A we have

rank (A − λI,Bk) �= n.

Then there is a vector z ∈ R
n with z �= 0Rn and

zT (A − λI,Bk) = 0T
Rn+1,

i.e.

zT A = λzT (9.23)
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and

zT Bk = 0. (9.24)

With the equations (9.23) and (9.24) we conclude

zT ABk = λzT Bk = 0,

and by induction we get

zT AlBk = 0 for all l ≥ 0.

Hence we have

rank (Bk,ABk, . . . , A
n−1Bk) �= n.

Conversely, we assume now that the equation (9.18) is not satisfied. Then there
is a z �= 0Rn with

zT Bk = 0, zT ABk = 0, . . . , zT An−1Bk = 0.

Again with the Cayley-Hamilton theorem we conclude immediately

zT AlBk = 0 for all l ≥ 0.

Consequently, the linear subspace

S := {z̃ ∈ R
n | z̃T AlBk = 0 for all l ≥ 0}

has the dimension ≥ 1. Since the set S is invariant under AT (i.e. AT S ⊂ S), one
eigenvector z̄ of AT belongs to S. Hence, there is an eigenvalue λ of AT which is
also an eigenvalue of A so that

AT z̄ = λz̄

or alternatively

z̄T (A − λI) = 0T
Rn . (9.25)

Because of z̄ ∈ S we obtain with l = 0

z̄T Bk = 0. (9.26)
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Equations (9.25) and (9.26) imply

rank (A − λI,Bk) �= n for some eigenvalue λ of A.

This completes the proof. 
�

In control theory the condition

rank (B,AB, . . . , An−1B) = n

is called the Kalman condition. It is obvious that the condition

rank (Bk,ABk, . . . , A
n−1Bk) = n for all k ∈ {1, . . . ,m}

which is given in Theorem 9.16 implies the Kalman condition. Moreover, in control
theory the condition

rank (A − λI,B) = n for all eigenvalues λ of A

is called the Hautus condition which is implied by the condition

rank (A − λI,Bk) = n for all k ∈ {1, . . . ,m} and all eigenvalues λ of A.

One can show with the same arguments as in the proof of Theorem 9.16 that the
Kalman and Hautus conditions are equivalent. In control theory one proves that the
Kalman condition (or the Hautus condition) characterizes the controllability of an
autonomous linear system, i.e. in this case there is an unconstrained control which
steers the autonomous linear system from an arbitrary initial state to an arbitrary
terminal state in finite time.

The following example shows that the Kalman condition (or the Hautus condi-
tion) does not imply the condition (9.18) (and (9.19), respectively).

Example 9.17 (Kalman condition).

The following autonomous linear system satisfies the Kalman condition but
it is not normal:

ẋ1(t) = −x1(t) + u1(t)

ẋ2(t) = −2x2(t) + u1(t) + u2(t)

}
almost everywhere on [0, T̂ ]

with some T̂ > 0. Here we set

A =
(−1 0

0 −2

)
and B =

(
1 0
1 1

)
.
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Then we have

B1 =
(

1
1

)
, AB1 =

(−1
−2

)
,

B2 =
(

0
1

)
, AB2 =

(
0

−2

)
.

The matrix (B2, AB2) has the rank 1, and therefore the linear system is not
normal. On the other hand we have

rank (B,AB) = 2,

i.e. the Kalman condition is satisfied.

Exercises

(9.1) Consider the differential equation

ẋ(t) = 2x(t) − 3u(t) almost everywhere on [0, 2]

with the initial condition

x(0) = x0

for an arbitrarily chosen x0 ∈ R. Determine an optimal control ū ∈
L∞([0, 2]) as a minimal point of the objective functional J : L∞([0, 2]) → R

with

J (u) = 1

2
x(1)2 + 2

2∫

0

u(t)2 dt for all u ∈ L∞([0, 2]).

(9.2) ([51, p. 132–133]) Let the initial value problem

ẋ(t) = u(t) almost everywhere on [0, 1],

x(0) = 1
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be given. Determine an optimal control u ∈ L∞([0, 1]) for which the
objective functional J : L∞([0, 1]) → R with

J (u) =
1∫

0

(
u(t)2 + x(t)2

)
dt for all u ∈ L∞([0, 1])

becomes minimal.
(9.3) Consider the linear differential equation of n-th order

y(n)(t) + an−1y
(n−1)(t) + · · · + a0y(t) = u(t)

almost everywhere on [0, T̂ ]

where T̂ > 0 and a0, . . . , an−1 ∈ R are given constants. The control u

is assumed to be an L∞([0, T̂ ]) function. Show that the system of linear
differential equations of first order which is equivalent to this differential
equation of n-th order satisfies the Kalman condition.

(9.4) ([216, p. 22–24]) Let the system of linear differential equations

ẋ(t) = Ax(t) + Bu(t) almost everywhere on [0, T̂ ]

with

A =

⎛

⎜⎜
⎝

0 1 0 0
−α 0 0 0

0 0 0 1
0 0 0 0

⎞

⎟⎟
⎠ and B =

⎛

⎜⎜
⎝

0
−β

0
γ

⎞

⎟⎟
⎠

be given where T̂ > 0, α > 0, β > 0 and γ > 0 are constants. It is assumed
that u ∈ L∞([0, T̂ ]). Show that this system satisfies the Hautus condition.

(9.5) For the linear system in exercise (9.4) assume in addition that the terminal
time T̂ is sufficiently large. Moreover, let the initial condition

x(0) = x0

with x0 ∈ R
4 and the terminal condition

x(T̂ ) = 0R4

be given. For the control u we assume

‖u‖
L∞([0,T̂ ]) ≤ 1.
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It can be proved with a known result from control theory that this system
can be steered from x0 to 0R4 in finite time. Show then that a time minimal
control exists which is unique, and give a characterization of this time minimal
control.



AWeak Convergence

Definition A.1 (weakly convergent sequence).

Let (X, ‖ · ‖) be a normed space. A sequence (xn)n∈N of elements of X

is called weakly convergent to some x̄ ∈ X if for all continuous linear
functionals l on X

lim
n→∞ l(xn) = l(x̄).

In this case x̄ is called a weak limit of the sequence (xn)n∈N.

In a finite dimensional normed space a sequence is weakly convergent if and only
if it is convergent. In an arbitrary normed space every convergent sequence is also
weakly convergent; the converse statement does not hold in general.

Example A.2 (weakly convergent sequence).

Consider the Hilbert space l2 of all real sequences x = (xi)i∈N with
∞∑
i=1

|xi|2 < ∞. In this linear space we investigate the special sequence

x1 := (1, 0, 0, 0, . . .),

x2 := (0, 1, 0, 0, . . .),

x3 := (0, 0, 1, 0, . . .),
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and so on. This sequence converges weakly to 0l2 because for each
continuous linear functional l on l2 there is a y ∈ l2 with

l(x) = 〈y, x〉 for all x ∈ l2

so that

lim
n→∞ l(xn) = lim

n→∞〈y, xn〉 = lim
n→∞

∞∑

i=1

yixi
n = lim

n→∞ yn = 0.

On the other hand the sequence (xn)n∈N does not converge to 0l2 because

‖xn − 0l2‖ = ‖xn‖ =
√〈xn, xn〉 =

√√
√√

∞∑

i=1

(xi
n)

2 = 1 for all n ∈ N.

Definition A.3 (weakly sequentially closed set).

Let (X, ‖ ·‖) be a normed space. A nonempty subset S of X is called weakly
sequentially closed if for every weakly convergent sequence in S the weak
limit also belongs to S.

Every weakly sequentially closed subset of a normed space is also closed
(because every convergent sequence converges weakly to the same limit). The
converse statement is not true in general. But every nonempty convex closed subset
of a normed space is also weakly sequentially closed.

Definition A.4 (weakly sequentially compact set).

Let (X, ‖ ·‖) be a normed space. A nonempty subset S of X is called weakly
sequentially compact if every sequence in S contains a weakly convergent
subsequence whose weak limit belongs to S.

A nonempty subset of a normed space is weakly sequentially compact if and only
if it is weakly compact (i.e. compact with respect to the weak topology). In a finite
dimensional normed space a nonempty subset is weakly sequentially compact if and
only if it is closed and bounded.



BReflexivity of Banach Spaces

Definition B.1 (Banach space).

A complete normed space is called a Banach space.

Using a James theorem (e.g., compare [177, § 19]) a sufficient condition for the
weak sequence compactness of a nonempty subset of a real Banach space can be
given.

Theorem B.2 (weakly sequentially compact set).

Let S be a nonempty convex bounded closed subset of a real Banach space.
If every continuous linear functional attains its supremum on S, then the set
S is weakly sequentially compact.

Reflexive normed spaces are special Banach spaces. In specialist literature a
normed linear space (X, ‖ · ‖) is called reflexive if the canonical embedding of X

into X∗∗ is surjective — but here we use a known characterization for the definition
of this notion.

Definition B.3 (reflexive Banach space).

A Banach space (X, ‖ · ‖) is called reflexive if the closed unit ball {x ∈
X | ‖x‖ ≤ 1} is weakly sequentially compact.

Every finite dimensional normed space is reflexive. For instance, the linear space
L1[0, 1] of Lebesgue integrable real-valued functions on [0,1] is a Banach space,
but it is not reflexive.
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In a reflexive Banach space a simple sufficient condition for the weak sequence
compactness of a nonempty subset can be given (for instance, compare [365,
Cor. 6.1.9]).

Theorem B.4 (weakly sequentially compact set).

Every nonempty convex bounded closed subset of a reflexive Banach space
is weakly sequentially compact.

Notice that in a finite dimensional normed space the assumption of convexity can
be dropped.



CHahn-Banach Theorem

The following theorem is also called a basic version of the Hahn-Banach theorem
(for a proof, for instance, compare [190, Thm. 3.8]).

Theorem C.1 (basic version of the Hahn-Banach theorem).

Let X be a real linear space. For every sublinear functional f : X → R

there is a linear functional l on X with

l(x) ≤ f (x) for all x ∈ X

(see Fig. C.1).

f

l

x

y

0

Fig. C.1 Illustration of the result of Theorem C.1

Besides this basic version there are further versions of the Hahn-Banach theorem.
The following Eidelheit separation theorem can be deduced from Theorem C.1 (for
a proof see [190, Thm. 3.16]).
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Theorem C.2 (Eidelheit separation theorem).

Let S and T be nonempty convex subsets of a real topological linear space
X with int(S) �= ∅. Then we have int(S) ∩ T = ∅ if and only if there are a
continuous linear functional l ∈ X∗ \ {0X∗} and a real number γ with

l(s) ≤ γ ≤ l(t) for all s ∈ S and all t ∈ T

and

l(s) < γ for all s ∈ int(S)

(see Fig. C.2).

{x ∈ X | l(x) = γ }

S

T

Fig. C.2 Illustration of the result of Theorem C.2

The following separation theorem can be obtained from the preceding theorem.

Theorem C.3 (strict separation theorem).

Let S be a nonempty convex and closed subset of a real locally convex space
X. Then we have x ∈ X \ S if and only if there is a continuous linear
functional l ∈ X∗ \ {0X∗} with

l(x) < inf
s∈S

l(s). (C.1)

Proof
(a) Let any x ∈ X be given. If there is a continuous linear functional l ∈ X∗ \ {0X∗}

with the property (C.1), then it follows immediately x /∈ S.
(b) Choose an arbitrary element x ∈ X \ S. Since S is closed, there is a convex

neighborhood N of x with N ∩ S = ∅. By the Eidelheit separation theorem
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(Theorem C.2) there are a continuous linear functional l ∈ X∗ \ {0X∗} and a real
number γ with

l(x) < γ ≤ l(s) for all s ∈ S.

The inequality (C.1) follows directly from the previous inequality.

�

The next result is a special version of the Hahn-Banach theorem deduced by the
Eidelheit separation theorem.

Theorem C.4 (continuous linear functional with special property).

Let (X, ‖ · ‖X) be a real normed space. For every x ∈ X there is an l ∈ X∗
with ‖l‖X∗ = 1 and l(x) = ‖x‖X.

Proof For x = 0X the assertion is evident. Therefore assume in the following that
any x �= 0X is arbitrarily given. Let S denote the closed ball around zero with the
radius ‖x‖, and let T := {x}. Because of int(S)∩ T = ∅ by the Eidelheit separation
theorem (Theorem C.2) there are an l̄ ∈ X∗ \ {0X∗} and a γ ∈ R with

l̄(s) ≤ γ ≤ l̄(x) for all s ∈ S.

If we define l := 1
‖l̄‖X∗ l̄, we have ‖l‖X∗ = 1 and

l(s) ≤ l(x) for all s ∈ S.

Then we get

‖x‖X = ‖x‖X sup
‖y‖X≤1

|l(y)|

= sup
‖y‖X≤1

|l(‖x‖X y)|

= sup
s∈S

|l(s)|

= sup
s∈S

l(s)

≤ l(x). (C.2)

Since ‖l‖X∗ = 1 we have

sup
y �=0X

|l(y)|
‖y‖X

= 1
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resulting in

l(y) ≤ ‖y‖X for all y ∈ X. (C.3)

From the inequality (C.3) we obtain

l(x) ≤ ‖x‖X

and together with the inequality (C.2) we conclude

l(x) = ‖x‖X.

This completes the proof. 
�

Finally we present a special separation theorem in a finite dimensional space (for
instance, compare [365, Thm. 3.2.6]). This result is in general not true in an infinite
dimensional setting.

Theorem C.5 (separation in a finite dimensional space).

Let S be a nonempty convex and closed subset of a finite dimensional real
normed space (X, ‖ · ‖X). Then for every boundary point x̄ ∈ ∂S there is a
continuous linear functional l ∈ X∗ \ {0X∗} with

l(s) ≤ l(x̄) for all s ∈ S.



DPartially Ordered Linear Spaces

Definition D.1 (partially ordered linear space).

Let X be a real linear space.

(a) Every nonempty subset R of the product space X×X is called a binary
relation R on X (one writes xRy for (x, y) ∈ R).

(b) Every binary relation ≤ on X is called a partial ordering on X, if for
arbitrary w, x, y, z ∈ X:
(i) x ≤ x (reflexivity);

(ii) x ≤ y, y ≤ z ⇒ x ≤ z (transitivity);

(iii)x ≤ y, w ≤ z ⇒ x + w ≤ y + z (compatibility with the

addition);

(iv) x ≤ y, α ∈ R+ ⇒ αx ≤ αy (compatibility with the

scalar multiplication).

(c) A partial ordering≤ on X is called antisymmetric, if for arbitrary x, y ∈
X:

x ≤ y, y ≤ x ⇒ x = y.

(d) A real linear space equipped with a partial ordering is called a partially
ordered linear space.
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Example D.2 (partially ordered linear space).

(a) If one defines the componentwise partial ordering ≤ on R
n by

≤ := {(x, y) ∈ R
n ×R

n | xi ≤ yi for all i ∈ {1, . . . , n}},

then the linear space Rn becomes a partially ordered linear space.
(b) For −∞ < a < b < ∞ let C[a, b] denote the linear space of

all continuous real-valued functions on [a, b]. With the natural partial
ordering ≤ on C[a, b] given by

≤ := {(x, y) ∈ C[a, b] × C[a, b] | x(t) ≤ y(t) for all t ∈ [a, b]}

the space C[a, b] becomes a partially ordered linear space.

Notice that two arbitrary elements of a partially ordered linear space may not
always be compared with each other with respect to the partial ordering. For
instance, for the componentwise partial ordering ≤ on R

2 we have

(
1
2

)
�

(
2
1

)
and

(
2
1

)
�

(
1
2

)
.

The following theorem which is simple to prove says that partial orderings on
linear spaces can be characterized by convex cones.

Theorem D.3 (characterization of a partial ordering).

Let X be a real linear space.

(a) If ≤ is a partial ordering on X, then the set

C := {x ∈ X | 0X ≤ x}

is a convex cone. If, in addition, the partial ordering is antisymmetric,
then C is pointed .

(b) If C is a convex cone in X, then the binary relation

≤ := {(x, y) ∈ X × X | y − x ∈ C}

is a partial ordering on X. If, in addition, C is pointed, then the partial
ordering ≤ is antisymmetric .
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Definition D.4 (ordering cone).

A convex cone characterizing the partial ordering on a real linear space is
called an ordering cone (or also a positive cone).

Example D.5 (ordering cones).

(a) For the natural partial ordering given in Example D.2, (a) the ordering
cone reads

C := {x ∈ R
n | xi ≥ 0 for all i ∈ {1, . . . , n}} = R

n+

(compare Fig. D.1).

x1

x2

0

R
2+

Fig. D.1 Illustration of the ordering cone R
2+

(b) In Example D.2, (b) the ordering cone can be written as

C := {x ∈ C[a, b] | x(t) ≥ 0 for all t ∈ [a, b]}

(compare Fig. D.2).

a b t

x ∈ C

Fig. D.2 Illustration of a function x ∈ C

If a real linear space is partially ordered, then a partial ordering can also be
introduced on its dual space.
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Definition D.6 (dual cone).

Let X be a real linear space with an ordering cone C. The cone

C′ := {l ∈ X′ | l(x) ≥ 0 for all x ∈ C}

is called the dual cone for C (here X′ denotes the algebraical dual space of
X).

With the aid of the dual cone C′ a partial ordering is described on the dual space
X′. In the case of a real normed space (X, ‖ ·‖) the dual cone in the topological dual
space X∗ is denoted by C∗.



Answers to the Exercises

Chapter 2

(2.1) Use Definition 2.1 and notice that in a finite dimensional normed space weak
convergence is equivalent to norm convergence.

(2.2) Show for the functions f1, f2 : R → R with

f1(x) =
{

f (x) for all x ≤ −1
− 1

e
for all x > −1

}

and

f2(x) =
{ − 1

e
for all x < −1

f (x) for all x ≥ −1

}

that the level sets S
f1
α := {x ∈ R | f1(x) ≤ α} and S

f2
α := {x ∈ R | f2(x) ≤

α} are convex for all α ∈ R. Then the level set S
f
α = S

f1
α ∩ S

f2
α is convex as

well.
(2.3) For the “�⇒” part of this proof consider the level set Sα with α :=

max{f (x), f (y)}. Prove the converse case by showing that Sα is convex.
(2.4) Take an arbitrary sequence (xn)n∈N in a proximinal set S converging to some

x̄. Then the approximation problem min
x∈S

‖x − x̄‖ has a solution x̃ ∈ S. Since

‖x̃ − x̄‖ ≤ ‖xn − x̄‖ −→
n→∞ 0, we conclude x̄ = x̃ ∈ S.

(2.5) Apply Theorem 2.18.
(2.6) Notice the remarks at the end of Sect. 2.4.
(2.7) The constraint set S is not convex.
(2.8) In analogy to the proof of Theorem 2.23 show that f is convex and continuous.

The assertion then follows from Theorem 2.12.
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Chapter 3

(3.1) For h �= 0 we obtain

f ′(0)(h) = lim
λ→0+

1

λ

(
f (λh) − f (0)

) = lim
λ→0+

λh2 sin
1

λh
= 0,

and for h = 0 we immediately get f ′(0)(h) = 0.
(3.2) The result is trivial in the case of x̄ = x̂. For x̄ �= x̂ we obtain for the

directional derivative

f ′(x̄)(h)

= lim
λ→0+

1

λ

(‖x̄ + λh − x̂‖ − ‖x̄ − x̂‖)

= lim
λ→0+

1

λ

(
max
t∈M

|x̄(t) + λh(t) − x̂(t)| − max
t∈M

|x̄(t) − x̂(t)|
)

≥ max
t∈M(x̄)

sgn(x̄(t) − x̂(t))h(t) for all h ∈ C(M).

For every λ > 0 choose a tλ ∈ M with

|x̄(tλ) − x̂(tλ) + λh(tλ)| = ‖x̄ − x̂ + λh‖.

Then we conclude

lim
λ→0+

|x̄(tλ) − x̂(tλ) + λh(tλ)| = ‖x̄ − x̂‖.

This implies the existence of a sequence (λk)k∈N of positive numbers con-
verging to 0 with lim

k→∞ tλk = t0 ∈ M(x̄). Then we get for sufficiently large

k ∈ N

1

λk

|x̄(tλk ) − x̂(tλk ) + λkh(tλk )| − |x̄(t0) − x̂(t0)|
≤ sgn(x̄(t0) − x̂(t0))h(tλk )

implying

f ′(x̄)(h) ≤ max
t∈M(x̄)

sgn(x̄(t) − x̂(t))h(t).

(3.3) From Theorem 3.16 we obtain

f (x) ≥ f (x̄) + f ′(x̄)(x − x̄) for all x ∈ X.
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If f ′(x̄) = 0X∗ , then x̄ is a minimal point of f on X. The converse statement
follows from Theorem 3.17.

(3.4) ∂f (0) = {l ∈ R | |l| ≤ 1} = [−1, 1].
(3.5) One proves for l1, l2 ∈ ∂f (x̄) and λ ∈ [0, 1] that λl1 + (1 − λ)l2 ∈ ∂f (x̄).
(3.6) Since

f (x) − f (x̄) ≥ lim
λ→0+

1

λ

(
f (x̄ + λ(x − x̄)) − f (x̄)

) = ∇f (x̄)T (x − x̄),

we conclude ∇f (x̄) ∈ ∂f (x̄). For an arbitrary v ∈ ∂f (x̄) one gets for all unit
vectors e1, . . . , en ∈ R

n

vi ≤ lim
λ→0+

1

λ

(
f (x̄ + λei) − f (x̄)

) = ∂f (x̄)

∂xi

and

vi ≥ lim
λ→0−

1

λ

(
f (x̄ + λei) − f (x̄)

) = ∂f (x̄)

∂xi

which results in v = ∇f (x̄).
(3.7) The sub- and superdifferential can be chosen as

∂f (x1, x2) =

⎧
⎪⎨

⎪⎩

{(sgn x1|x2|, sgn x2|x1|)} if x1x2 �= 0

{(u, 0) | |u| ≤ |x2|} if x1 = 0

{(0, v) | |v| ≤ |x1|} if x2 = 0

and ∂f (x1, x2) = {(0, 0)}. Then Df (x1, x2) = (∂f (x1, x2), ∂f (x1, x2)) is a
quasidifferential of f at (x1, x2).

(3.8) Since the directional derivative f ′(x̄) is given by

f ′(x̄)(h) = |h1| − |h2| for all h = (h1, h2) ∈ R
2,

the function f is quasidifferentiable at x̄.
(3.9) Since f is a convex function, the Clarke derivative coincides with the

directional derivative f ′(x̄)(h). Then we obtain for all h ∈ R
n

f ′(x̄)(h) = lim
λ→0+

1

λ

(
max

1≤i≤n
{x̄i + λhi} − max

1≤i≤n
{x̄i}
)

= lim
λ→0+

1

λ
max
i∈I (x̄)

{x̄i + λhi − x̄i}

= max
i∈I (x̄)

{hi}.
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Chapter 4

(4.1) The inclusion int(C) ⊂ int(C) + C is trivial, and the converse inclusion is
simple to show.

(4.2) If f is sublinear, it is simple to show that the epigraph E(f ) is a cone. By
Theorem 2.8 this cone is convex. For the proof of the converse implication
one proves that

f (λx) = λf (x) for all λ > 0

and f (0) = 0. The subadditivity can be simply shown.
(4.3) Take x1, x2 ∈ cone(S), i.e. x1 = λ1s1 and x2 = λ2s2 for some λ1, λ2 ≥ 0

and s1, s2 ∈ S. Without loss of generality we assume λ1 + λ2 �= 0. Then

x1 + x2 = (λ1 + λ2
)
(

λ1

λ1 + λ2
s1 + λ2

λ1 + λ2
s2

)
∈ cone(S).

(4.4) cone(S) = R
2+.

(4.5) T (S, (1, 2)) = {λ(a,−1) | λ ≥ 0, a ∈ [−1, 1
2 ]}.

(4.6) Simply apply Definition 4.6.
(4.7) (a) Apply Definition 4.6 and notice that S1 ⊂ S2.

(b) By part (a) one obtains T (S1 ∩ S2, x̄) ⊂ T (S1, x̄) and T (S1 ∩ S2, x̄) ⊂
T (S2, x̄) implying T (S1 ∩ S2, x̄) ⊂ T (S1, x̄) ∩ T (S2, x̄).

(4.8) See the remark under 4. on page 31 in [202].
(4.9) Apply Theorem 2.4.5 in [71]. The assertion then follows from Proposi-

tion 2.2.1 in [71]. This result is also proved on the pages 17–18 in [309,
Theorem 2E].

(4.10) f is not pseudoconvex at x̄ = 0.

Chapter 5

(5.1) Since x /∈ S = cl(S) and S is convex, the separation Theorem C.3 gives the
desired result.

(5.2) See Lemmas 1.1 and 2.1 in [202].
(5.3) The Slater condition given in Lemma 5.9 is satisfied (take x̄ := ( 1

2 , 1
2 )).

(5.4) (a) Since x1, x2 ≥ 0, it follows x1 + x2 ≥ 0 for all feasible (x1, x2) ∈ R
2.

(b) No.
(c) No.

(5.5) (a) (2, 1).
(b) (1.5, 2.25).
(c) ( 185

768 , 55
768 ,− 5

16 ).
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(5.6) Yes. For all feasible (x, y) it follows

x + 3y + 3

2x + y + 6
= 1

2
+

5
2y

2x + y + 6
≥ 1

2
.

Since
5
2 y

2x+y+6 > 0 for y > 0, we conclude that there are no other solutions.
(5.7) This problem satisfies the MFCQ. Then the Karush-Kuhn-Tucker conditions

give the desired assertion.
(5.8) Choose an arbitrary x ∈ S, show ∇f (x̄)T (x − x̄) ≥ 0 and conclude that x̄ is

a minimal point of f on S.
(5.9) The function p with

p(t) = 1

3

(
1 − et−1

)(1
2

)
for all t ∈ [0, 1]

satisfies the adjoint equation (5.36) and the transversality condition (5.37).
Then an optimal control ū = (ū1, ū2) is given as

ū1(t) =
{

5
2 − 3

4(1−et−1)
almost everywhere on [0, 1 + ln 7

10 ]
0 almost everywhere on [1 + ln 7

10 , 1]

}

and

ū2(t) =
{

23
8 − 3

4(1−et−1)
almost everywhere on [0, 1 + ln 17

23 ]
0 almost everywhere on [1 + ln 17

23 , 1]

}

.

Chapter 6

(6.1) The dual problem can be written as

max
u≥0

inf
x1,x2∈R

x1 + 2(x2 − 1)2 + u(−x1 − x2 + 1)︸ ︷︷ ︸
=(1−u)x1+2(x2−1)2+u(−x2+1)

= max
u≥0

{− 1
8 , if u = 1

−∞, if u �= 1

= −1

8
.
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The maximal value − 1
8 of the dual problem is attained at the maximal solution

ū := 1. x̄ :=
(
− 1

4 , 5
4

)
is a minimal solution of the primal problem with

minimal value − 1
8 . There is no duality gap.

(6.2) (a) The dual problem reads

max

1∫

0

u(t) dt

subject to the constraints
t∫

0

u(s) ds ≤ t almost everywhere on [0, 1]

u(t) ≥ 0 almost everywhere on [0, 1]
1∫

0

u(t) dt ≤ 2

u ∈ L2[0, 1].

(b) (α, x) = (1, 0L2[0,1]) is a solution of the primal problem with the minimal
value 2, and u with

u(t) = 1 almost everywhere on [0, 1]

is a solution of the dual problem with the maximal value 1.
(6.3) The solution reads x1 = 2(

√
2 − 1) ≈ 0.8284272 with the minimal value

1 − x1 = 3 − 2
√

2 ≈ 0.1715728.

Chapter 7

(7.1) Take any sequence (Xi)i∈N in Sn+ converging to some matrix X ∈ Sn.
The matrix Xi is symmetric and positive semidefinite for every i ∈ N

and, therefore, all eigenvalues of Xi are nonnegative. Since the eigenvalues
continuously depend on the entries of a matrix, we also obtain that the
eigenvalues of the matrix X are nonnegative or X ∈ Sn+. Consequently, Sn+ is
closed.

For the proof that Sn+ is also pointed take an arbitrary matrix X ∈ Sn+ ∩
(−Sn+). Then all eigenvalues of X are nonnegative and nonpositive, i.e. they
equal 0. So, we get X = 0Sn .
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(7.2) For K := R
n we obtain by Lemmas 7.4,(b) and 7.5,(b),(ii)

Sn+ = (Sn+)∗ = (Cn
Rn)

∗ = HRn = convex hull {xxT | x ∈ R
n}.

(7.3) We proceed as in the proof of Lemma 7.2. We have

X ∈ Ck+l

Rk×K
⇐⇒ 0 ≤ (xT , yT )

(
A BT

B C

)(
x

y

)

for all x ∈ R
k and all y ∈ K

⇐⇒ 0 ≤ yT (C − BA−1BT )y for all y ∈ K

⇐⇒ C − BA−1BT ∈ Cl
K.

(7.4) Since 〈A,B〉 = trace (AB), the implication “⇐” is obvious. For the proof
of the converse implication assume that 〈A,B〉 = 0 is fulfilled. With
Exercise (7.2) we can write for some p ∈ N

B =
p∑

i=1

x(i)x(i)T for appropriate x(1), . . . , x(p) ∈ R
n.

Since A ∈ Sn+, we have A = √
A
√

A for a matrix
√

A ∈ Sn+. Then we obtain

0 = 〈A,B〉
= trace(AB)

= trace

(√
A
√

A

p∑

i=1

x(i)x(i)T

)

=
p∑

i=1

trace
(
x(i)T

√
A
√

A x(i)
)

=
p∑

i=1

(√
A x(i)

)T (√
A x(i)

)

︸ ︷︷ ︸
≥0

implying

√
Ax(i) = 0Rn for all i = 1, . . . , p.
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With this equation we get

AB = √
A
√

A

p∑

i=1

x(i)x(i)T

= √
A

p∑

i=1

√
Ax(i)

︸ ︷︷ ︸
=0Rn

x(i)T

= 0Sn .

(7.5) Since A is positive semidefinite, we have

xT Ax ≥ 0 for all x ∈ R
n.

For x = (0, . . . , 0, xi, . . . , xj , 0, . . . , 0) ∈R
n with arbitrary xi, . . . , xj ∈ R

we then obtain

0 ≤ xT Ax

= (0, . . . , 0, xi, . . . , xj , 0, . . . , 0)

⎛

⎜
⎜
⎝

. . .

Aij

. . .

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎝

0
...
0
xi
...

xj

0
...
0

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎠

= (xi, . . . , xj )A
ij

⎛

⎜
⎝

xi

...

xj

⎞

⎟
⎠ .

Consequently, the block matrix Aij is positive semidefinite.

(7.6) For the matrix A :=
(

x1 1
1 x2

)
we obtain the eigenvalues

λ1/2 = x1 + x2

2
±
√

(x1 + x2)2

4
− x1x2 + 1

being nonnegative if and only if

x1x2 ≥ 1, x1 > 0, x2 > 0.
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Therefore, the feasible set of this problem can be written as

{(x1, x2) ∈ R
2 | x1x2 ≥ 1, x1 > 0, x2 > 0}.

It is obvious that the objective function has the lower bound 0 on this set but
this value is not attained at a point of the constraint set.

(7.7) By Lemma 9.4,(a) we have

−int(S2+) = {X ∈ S2 | X is negative definite}.

For arbitrary x1, x2 ∈ R the eigenvalues of G(x1, x2) are

λ1 = x1

2
+
√

x2
1

4
+ x2

2

and

λ2 = x1

2
−
√

x2
1

4
+ x2

2 .

If x1 ≤ 0, then we get λ1 ≥ 0 and in the case of x1 > 0 we have λ1 > 0.
Hence, there is no vector (x̂1, x̂2) ∈ R

2 with G(x̂1, x̂2) ∈ −int(S2+), i.e. the
generalized Slater condition is not satisfied.

(7.8) For an arbitrary x ∈ R
m we write

xi = yi − zi for all i ∈ {1, . . . ,m}

with y1, . . . , ym, z1, . . . , zm ≥ 0. Then the primal problem can be written as

min (c,−c)T
(

y

z

)

subject to the constraints

B � (A,−A)

(
y

z

)

y1, . . . , ym, z1, . . . , zm ≥ 0.
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This problem has the form of the primal problem (7.21) and its dual is given
by (7.23) as

max 〈B,U〉
subject to the constraints

〈A(1), U〉 ≤ c1
...

〈A(m), U〉 ≤ cm

−〈A(1), U〉 ≤ −c1
...

−〈A(m), U〉 ≤ −cm

U ∈ C∗.

This problem can be simplified to the dual problem

max 〈B,U〉
subject to the constraints

〈A(1), U〉 = c1
...

〈A(m), U〉 = cm

U ∈ C∗.

(7.9) The primal problem equals the primal problem in Exercise (7.8), if we set

c =
(

1
0

)
, B =

⎛

⎝
0 0 0
0 0 0
0 0 −1

⎞

⎠ and

A(x) = A(1)x1 + A(2)x2

with

A(1) =
⎛

⎝
0 1 0
1 0 0
0 0 1

⎞

⎠ , A(2) =
⎛

⎝
0 0 0
0 1 0
0 0 0

⎞

⎠ .

The eigenvalues of the matrix B − A(x) are

λ1 = −x2

2
+
√

x2
2

4
+ x2

1 ,

λ2 = −x2

2
−
√

x2
2

4
+ x2

1
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and

λ3 = −x1 − 1.

B − A(x) is negative semidefinite if and only if λ1, λ2, λ3 ≤ 0. These
eigenvalues are nonpositive if and only if x1 = 0 and x2 ≥ 0. So, the constraint
set of the primal problem can be written as {(x1, x2) ∈ R

2 | x1 = 0, x2 ≥ 0}
and, therefore, the extremal value of the primal problem equals 0.

With Exercise (7.8) the dual problem can be written in this special case as

max−U33

subject to the constraints
2U12 + U33 = 1

U22 = 0
U ∈ S3+

or equivalently

max−U33

subject to the constraint
⎛

⎝
U11

1
2 (1 − U33) U31

1
2 (1 − U33) 0 U32

U31 U32 U33

⎞

⎠ ∈ S3+.

Since the matrix defining the constraint is positive semidefinite, by Exer-
cise (7.5) the leading block matrices U11 := (U11) and

U12 :=
(

U11
1
2 (1 − U33)

1
2 (1 − U33) 0

)

have to be positive semidefinite as well. The eigenvalues of the matrix U12 are

λ1/2 = U11

2
±
√(

U11

2

)2

+ 1

4
(1 − U33)2.

They are nonnegative if and only if U11 ≥ 0 and U33 = 1. Then the extremal
value of the dual problem equals −1. So, the extremal values of the primal
and dual problem do not coincide.

We consider an arbitrary x ∈ R
2 for which the matrix B−A(x) is negative

semidefinite. Then one eigenvalue of this matrix equals 0. Therefore, B−A(x)

is not negative definite. Hence, the generalized Slater condition is not satisfied
and Theorem 7.12 is not applicable.
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Chapter 8

(8.1) The infimal value of the first problem is not attained because

1

x4
1

+ 1

x2
2

> 0 for all x1 ∈ N and x2 ∈ R

and

inf
x1∈N, x2∈R

1

x4
1

+ 1

x2
2

= inf
x1∈N

1

x4
1︸ ︷︷ ︸

=0

+ inf
x2∈R

1

x2
2︸ ︷︷ ︸

=0

= 0.

Hence, the first problem is not solvable.
For the second optimization problem we have

inf
x1∈N, x2∈R

x2
2

x4
1

= inf
x1∈N

1

x4
1︸ ︷︷ ︸

=0

· inf
x2∈R

x2
2

︸ ︷︷ ︸
=0

= 0.

This infimal value is attained at every vector (x1, 0) with arbitrary x1 ∈ N and,
therefore, the second optimization problem is solvable.

(8.2) Let for some n ∈ N the discrete set Sd be written as Sd =: {x1
d, . . . , xn

d

}
with

x1
d, . . . , xn

d ∈ Xd . Then we get

min
(xd ,xc)∈Sd×Sc

f (xd, xc) = min
1≤i≤n

{
min
xc∈Sc

f (xi
d, xc)

}
.

By Theorem 2.12 the interior optimization problems are solvable. Thus, the
exterior min term exists.

(8.3) The functionals ϕ1, . . . , ϕn are assumed to be continuous at x̄ and, therefore,
we get for an arbitrary h ∈ X

min
1≤i≤n

{ϕi(x̄ + λh)} = min
i∈I (x̄)

{ϕi(x̄ + λh)}

for all λ > 0 being sufficiently close to 0

because for i /∈ I (x̄) we have

ϕi(x̄) > min
1≤k≤n

{ϕk(x̄)}

implying

ϕi(x̄ + λh) > min
1≤k≤n

{ϕk(x̄ + λh)}
for all λ > 0 being sufficiently close to 0.
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Then the directional derivative of f at x̄ is given by

(
min

1≤i≤n
{ϕi(·)}

)′
(x̄)(h)

= lim
λ→0+

1

λ

(
min

i∈I (x̄)
{ϕi(x̄ + λh)} − min

1≤i≤n
{ϕi(x̄)}

)

= min
i∈I (x̄)

{
ϕ′

i (x̄)(h)
}

for all h ∈ X.

(8.4) It is obvious that the vector (x̄d , x̄c) :=
(
(1, 1), (0, 0)

)
is the unique minimal

solution of this optimization problem. If we define the sets Sd := {1, . . . , 20}
and Sc := R

2, the objective function f : Sd × Sc :→ R with

f (xd, xc) =
(
1 + (xd)1

)2(2 + (xd)2
)4(1 + (xc)1 + (xc)

3
2

)

for all xd ∈ Sd and xc ∈ Sc

and the constraint functions g1, g2 : Sd × Sc :→ R with

g1(xd, xc) = − (xc)1 for all xd ∈ Sd and xc ∈ Sc

and

g2(xd, xc) = − (xc)2 for all xd ∈ Sd and xc ∈ Sc,

then we obtain the KKT conditions at the minimal solution

∇xcf
(
(1, 1), (0, 0)

)+ u1∇xcg1
(
(1, 1), (0, 0)

)

+u2∇xcg2
(
(1, 1), (0, 0)

) =
(

0
0

)
.

with nonnegative Lagrange multipliers u1 and u2. By a simple calculation we
then get

u1

(−1
0

)
+ u2

(
0

−1

)
=
(−324

0

)

with the unique Lagrange multipliers u1 = 324 and u2 = 0. The remaining
Lagrange multipliers are obtained in analogy where the number −324 in the
right hand side of the linear system is replaced by another negative integer.
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(8.5) It is obvious that the inequality constraint is redundant and the minimal value

of the primal problem equals 1. With x1
d :=

(
1
1

)
, x2

d :=
(

2
1

)
and x3

d :=
(

3
2

)
the dual problem is given by Lemma 8.28 as

max inf
i∈{1,2,3}

{(
xi
d

)2

1
+ ln

(
xi
d

)

2
− �ie(xd)2

1+(xd )2
2 + �i

}

subject to the constraints

1 − 3�i ≥ 0 for all i ∈ {1, 2, 3}
�i ≥ 0 for all i ∈ {1, 2, 3}.

The inequality constraints mean that �1, �2, �3 ∈
[
0, 1

3

]
. Then the dual

problem can be written as

max
�1,�2,�3∈

[
0, 1

3

]min
{

1 + �1(1 − e2), 4 + �2(1 − e5),

9 + ln 2 + �3(1 − e13)
}
= 1.

The maximal value of the dual problem equals the minimal value of the primal
problem. A possible maximal solution of the dual problem is

(
�1, �2, �3

) =
(0, 0, 0).

Chapter 9

(9.1) An optimal (feedback) control ū is given by

ū(t) = 12

7e4(t−2) + 9
x(t) almost everywhere on [0, 2].

(9.2) An optimal (feedback) control ū is given by

ū(t) = −tanh (1 − t) x(t) almost everywhere on [0, 1].
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(9.3) The equivalent system of linear differential equations of first order reads

ẋ(t) =

⎛

⎜
⎜
⎜
⎜⎜
⎝

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−a0 −a1 −a2 · · · −an−1

⎞

⎟
⎟
⎟
⎟⎟
⎠

x(t) +

⎛

⎜
⎜
⎜
⎜⎜
⎝

0
0
...

0
1

⎞

⎟
⎟
⎟
⎟⎟
⎠

u(t)

almost everywhere on [0, T̂ ].

This system satisfies the Kalman condition.
(9.4) The eigenvalues of A are λ1 = √

α i, λ2 = −√
α i, λ3 = λ4 = 0. For every

eigenvalue of A we get the implication

zT (A − λj I, B) = 0T
R5 �⇒ z = 0R4

resulting in

Rank (A − λj I, B) = 4 for j = 1, . . . , 4.

Hence, the Hautus condition is fulfilled.
(9.5) By Theorem 9.7 there is a time minimal control ū, and by Theorem 9.11 there

is a vector η �= 0R4 with

ū(t) = sgn

[
η1β√

α
sin t

√
α − η2β cos t

√
α − η3γ t + η4γ

]

almost everywhere on [0, T̄ ]

(T̄ denotes the minimal time). Since the term in brackets has only finitely
many zeros, the time minimal control ū is unique.
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46. R.I. Boţ, S.-M. Grad, G. Wanka, Duality in vector optimization (Springer, Berlin, 2009).
47. M.J. Box, D. Davies and W.H. Swann, Non-linear optimization techniques (Oliver & Boyd,

Edinburgh, 1969).
48. S. Boyd and L. Vandenberghe, Convex optimization (Cambridge University Press, Cambridge,

2004).
49. J. Bracken and G.P. McCormick, Selected applications of nonlinear programming (Wiley,

New York, 1968).
50. S.J. Britvec, Stability and optimization of flexible space structures (Birkhäuser, Boston,

1995).
51. R.W. Brockett, Finite dimensional linear systems (Wiley, New York, 1970).
52. B. Brosowski, Parametric semi-infinite optimization (Lang, Frankfurt, 1982).
53. D. Bucur and G. Buttazzo, Variational methods in shape optimization problems (Birkhäuser,

Boston, 2005).
54. R. Bulirsch, A. Miele, J. Stoer and K.H. Well, Optimal control (Birkhäuser, Basel, 1992).
55. B.D. Bunday, Basic optimisation methods (Arnold, London, 1985).
56. R.E. Burkard and U.T. Zimmermann, Einführung in die Mathematische Optimierung

(Springer, Berlin, 2012).
57. E.R. Caianiello, Functional analysis and optimization (Academic Press, New York, 1966).



Bibliography 311

58. N. Cameron, Introduction to linear and convex programming (Cambridge University Press,
Cambridge, 1985).

59. M.D. Canon, C.D. Cullum and E. Polak, Theory of optimal control and mathematical
programming (McGraw-Hill, New York, 1970).

60. K.W. Cattermole, Optimierung in der Nachrichtentechnik (Verlag Chemie, Weinheim, 1990).
61. J. Cea, Optimisation (Dunod, Paris, 1971).
62. J. Cea, Lectures on optimization (Springer, Berlin, 1978).
63. Y. Censor and S.A. Zenios, Parallel optimization - theory, algorithms, and applications

(Oxford University Press, New York, 1997).
64. L. Cesari, Optimization, theory and applications (Springer, New York, 1983).
65. G.-y. Chen, X. Huang and X. Yang, Vector optimization - set-valued and variational analysis

(Springer, 2005).
66. E.K.P. Chong and S.H. Zak, An introduction to optimization (Wiley, 2001).
67. V. Chvátal, Linear programming (Freeman, New York, 1983).
68. P.G. Ciarlet, Introduction to numerical linear algebra and optimisation (Cambridge Univer-

sity Press, Cambridge, 1989).
69. S.J. Citron, Elements of optimal control (Holt, New York, 1969).
70. F.H. Clarke, Methods of dynamic and nonsmooth optimization (SIAM, Philadelphia, 1989).
71. F.H. Clarke, Optimization and nonsmooth analysis (SIAM, 1990).
72. F. Clarke, Necessary conditions in dynamic optimization (AMS, Providence, 2005).
73. T.F. Coleman, Large sparse numerical optimization (Springer, Berlin, 1984).
74. L. Collatz and W. Wetterling, Optimierungsaufgaben (Springer, Berlin, 1971).
75. L. Collatz and W. Wetterling, Optimization problems (Springer, Heidelberg, 1975).
76. Y. Collette and P. Siarry, Multiobjective optimization - principles and case studies (Springer,

Berlin, 2004).
77. A.R. Conn, N.I.M. Gould and P.L. Toint, Trust-region methods (SIAM, Philadelphia, 2000).
78. G. Cornuejols and R. Tutuncu, Optimization methods in finance (Cambridge University Press,

2007).
79. B.D. Craven, Mathematical programming and control theory (Chapman and Hall, London,

1978).
80. B.D. Craven, Fractional programming (Heldermann, Berlin, 1988).
81. B.D. Craven, Control and optimization (Chapman & Hall, London, 1995).
82. R.F. Curtain and A.J. Pritchard, Functional analysis in modern applied mathematics (Aca-

demic Press, London, 1977).
83. R.F. Curtain and H.J. Zwart, An introduction to infinite-dimensional linear systems theory

(Springer, 1995).
84. T.R. Cuthbert, Optimization using personal computers (Wiley, New York, 1987).
85. J.W. Daniel, The approximate minimization of functionals (Prentice-Hall, Englewood Cliffs,

1971).
86. R.W. Daniels, An introduction to numerical methods and optimization techniques (North-

Holland, New York, 1978).
87. S. Danoe, Nonlinear and dynamic programming (Springer, Wien, 1975).
88. R.B. Darst, Introduction to linear programming - applications and extensions (Dekker,

New York).
89. K. Deb, Multi-objective optimization using evolutionary algorithms (Wiley, Chichester,

2004).
90. D.G. de Figueiredo, The Ekeland variational principle with applications and detours

(Springer, Berlin, 1989).
91. S. Dempe, Foundations of bilevel programming (Kluwer, Dordrecht, 2002).
92. S. Dempe, V. Kalashnikov, G.A. Pérez-Valdés and N. Kalashnykova, Bilevel programming

problems - algorithms and applications to energy networks (Springer, Berlin, 2015).
93. V.F. Dem’yanov and A.M. Rubinov, Approximate methods in optimization problems (Else-

vier, New York, 1970).
94. V.F. Demyanov and A.M. Rubinov, Constructive nonsmooth analysis (Lang, Frankfurt, 1995).



312 Bibliography

95. V.F. Demyanov, G.E. Stavroulakis, L.N. Ployakova and P.D. Panagiotopoulos, Quasidiffer-
entiability and nonsmooth modelling in mechanics, engineering and economics (Kluwer,
Dordrecht, 1996).

96. V.F. Dem’yanov and L.V. Vasil’ev, Nondifferentiable optimization (Optimization Software,
New York, 1985).

97. M.M. Denn, Optimization by variational methods (McGraw-Hill, New York, 1969).
98. J.B. Dennis, Mathematical programming and electrical networks (MIT Press, Cambridge,

1959).
99. J.E. Dennis and R.B. Schnabel, Numerical methods for unconstrained optimization and

nonlinear equations (SIAM, Philadelphia, 1996).
100. W. Dinkelbach, Sensitivitätsanalysen und parametrische Programmierung (Springer, Berlin,

1969).
101. W. Dinkelbach, Entscheidungsmodelle (de Gruyter, Berlin, 1982).
102. S. Dischinger, Pivotauswahlverfahren in der Linearen Programmierung (Lang, Frankfurt,

1995).
103. U. Diwekar, Introduction to applied optimization (Springer, 2003).
104. L.C. Dixon, Numerical optimisation of dynamic systems (North- Holland, Amsterdam, 1980).
105. A. Dontchev and T. Zolezzi, Well-posed optimization problems (Springer, Berlin, 1993).
106. D.-Z. Du, P.M. Pardalos and W. Wu, Mathematical theory of optimization (Springer, 2001).
107. R.J. Duffin, E.L. Peterson and C. Zener, Geometric programming, theory and application

(Wiley, New York, 1967).
108. P. Dyer and S.R. McReynolds, The computation and theory of optimal control (Academic

Press, New York, 1970).
109. T.F. Edgar and D.M. Himmelblau, Optimization of chemical processes (McGraw-Hill,

New York, 1988).
110. M. Ehrgott, Multicriteria optimization (Springer, Berlin, 2005).
111. G. Eichfelder, Adaptive scalarization methods in multiobjective optimization (Springer,

Berlin, 2008).
112. G. Eichfelder, Variable ordering structures in vector optimization (Springer, Berlin, 2014).
113. H.A. Eiselt, G. Pederzoli and C.-L. Sandblom, Continuous optimization models (de Gruyter,

Berlin, 1987).
114. I. Ekeland and R. Témam, Convex analysis and variational problems (SIAM, 1999).
115. I. Ekeland and T. Turnbull, Infinite-dimensional optimization and convexity (University of

Chicago Press, Chicago, 1983).
116. K.-H. Elster, Nichtlineare Optimierung (Teubner, Leipzig, 1978).
117. K.-H. Elster, R. Reinhardt, M. Schäuble and G. Donath, Einführung in die nichtlineare

Optimierung (Teubner, Leipzig, 1977).
118. V.W. Eveleigh, Adaptive control and optimization techniques (McGraw-Hill, New York,

1967).
119. B.S. Everitt, Introduction to optimization methods and their application in statistics (Chap-

man and Hall, London, 1987).
120. J.G. Evtusenko, Numerical optimization techniques (Optimization Software, New York,

1985).
121. H.O. Fattorini, Infinite dimensional optimization and control theory (Cambridge University

Press, Cambridge, 1999).
122. A.V. Fiacco and G.P. McCormick, Nonlinear programming (Wiley, New York, 1968).
123. R. Fletcher, Practical methods of optimization (Wiley, Chichester, 2003).
124. M. Florenzano and C. Le Van, Finite dimensional convexity and optimization (Springer,

2001).
125. C.A. Floudas, Deterministic global optimization - theory, methods and applications (Kluwer,

Dordrecht, 2000).
126. C.A. Floudas and P.M. Pardalos, A collection of test problems for constrained global

optimization algorithms (Springer, Berlin, 1990).
127. L.R. Foulds, Optimization techniques (Springer, New York, 1981).



Bibliography 313

128. R.L. Fox, Optimization methods for engineering design (Addison-Wesley, Reading, 1971).
129. W. Frank, Mathematische Grundlagen der Optimierung (Oldenbourg, München, 1969).
130. H. Fränkel, Diskrete optimale Steuerungsprobleme und konvexe Optimierung (de Gruyter,

Berlin, 1971).
131. A. Fromm, Nichtlineare Optimierungsmodelle (Deutsch, Frankfurt, 1975).
132. R.H. Gallagher, Optimum structural design (Wiley, Chichester, 1977).
133. C. Geiger and C. Kanzow, Numerische Verfahren zur Lösung unrestringierter Opti-

mierungsaufgaben (Springer, 1999).
134. C. Geiger and C. Kanzow, Theorie und Numerik restringierter Optimierungsaufgaben

(Springer, 2002).
135. A.M. Geoffrion, Perspectives on optimization (Addison-Wesley, Reading, 1972).
136. M. Gerdts and F. Lempio, Mathematische Optimierungsverfahren des Operations Research

(De Gruyter, Berlin, 2011).
137. P. Gessner and K. Spremann, Optimierung in Funktionenräumen (Springer, Berlin, 1972).
138. F. Giannessi, Constrained optimization and image space analysis - volume 1: separation of

sets and optimality conditions (Springer, 2005).
139. P.E. Gill, Numerical methods for constrained optimization (Academic Press, London, 1974).
140. P.E. Gill, W. Murray and M.H. Wright, Practical optimization (Academic Press, London,

1981).
141. G. Giorgi, A. Guerraggio and J. Thierfelder, Mathematics of optimization: smooth and

nonsmooth case (Elsevier, 2004).
142. I.V. Girsanov, Lectures on mathematical theory of extremum problems (Springer, Berlin,

1972).
143. K. Glashoff and S.-A. Gustafson, Linear optimization and approximation (Springer,

New York, 1983).
144. F. Glover, N. Phillips and D. Klingman, Network models in optimization and their applica-

tions in practice (Wiley, New York, 1992).
145. A. Göpfert, Mathematische Optimierung in allgemeinen Vektorräumen (Teubner, Leipzig,

1973).
146. A. Göpfert, L. Bittner, K.-H. Elster, F. Nožička, J. Piehler and R. Tichatschke (eds.), Lexikon
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