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Review on Health Indices Extraction and
Trend Modeling for Remaining Useful
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8.1 Introduction

Because of the growing demands of equipment availability, performance, and
maintenance, the scientific community has been developing methods for forecasting
failures, and for the estimation of the Remaining Useful Life (RUL) for scheduling
Condition-Based Maintenance (CBM) and Predictive Maintenance (PM). The
National Aeronautics and Space Administration (NASA) was among the first to
work on prognosis, because in the aerospace field, prognosis of failure can avoid
catastrophes. Performance evaluation is a key element in fault prognosis and
several methods have been proposed, based on different evaluation criteria. The
work presented in [63, 100, 101] goes in the direction of a standardization of
these criteria and proposes performance metrics applicable to different methods
of fault prognosis. These metrics allow, on the one hand, establishing design
requirements by quantifying acceptable performance limits and on the other hand,
comparing different methods. In [101], a structured synthesis of the used metrics
for the evaluation of the performance of fault prognosis methods that adapt to
different application domains is presented, including Prognosis Horizon (PH),
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Alpha-Lambda Performance, Relative Accuracy (RA), and Convergence Rate. Fault
prognosis methods are compared with respect to these metrics.

From the methodological viewpoint, several classifications of fault prognosis
methods are proposed, like the pyramidal classification proposed in [19], which
provides a classification into three approaches: expert approaches, physical model-
based approaches, and data-driven approaches. The originality of this classification
is related to the fact that these approaches are positioned in a pyramidal organization
chart according to the scope of application, cost, and complexity of each approach.
The evolution of hardware and software resources for data acquisition, storage, and
processing has favored the widening of the application scope and the accuracy of
the data-driven methods of fault prognosis. In addition, hybrid approaches have
emerged to benefit from the combination of these approaches [35, 36].

This paper focuses on fault prognosis with a horizontal approach, which offers
the advantage of relating fault diagnosis and prognosis. Unlike other existing
reviews [45, 57, 103, 108], which only focus on RUL prediction, this paper offers
a review of approaches that deal with the problem including fault diagnosis and
allowing RUL estimation also when the only available data relate to normal
operation. Since the health indices (HIs) generated by the methods initially used
for fault diagnosis are not all usable for failure prognosis, evaluation methods of
the properties that a HI must satisfy to be usable for RUL estimation, namely
the Monotonicity, Trendability, and Prognosability [10, 24], are presented and
then used to evaluate the usability for failure prognosis of HIs generated by fault
diagnosis methods. The methods are presented in their basic version to facilitate
the understanding of the ideas and the formal analysis, followed by indications and
references to their extensions for particular practical cases.

As illustrated in Fig. 8.1, the structure of the horizontal approaches has two main
parts: HI generation based on condition monitoring and HI trend modeling for
RUL estimation. Correspondingly, this paper is organized as follows: the studied
framework and definitions are presented in Sect. 8.2. Section 8.3 is devoted to formal
description of methods for the definition of HIs and an analysis of their use for
the estimation of the RUL. Then, the techniques for the estimation of the RUL
by trend modeling are presented in Sect. 8.4, with an analysis of their complexity
and performance. The purpose is to provide an overview of existing techniques and
guidance for choosing approaches according to the field of application and available

Fig. 8.1 Structure of the horizontal approach of fault prognosis
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knowledge (physical knowledge, expert knowledge, data-driven). In the horizontal
approach, the methods used for generating the HIs can be completely different from
the method used to model trends for RUL estimation. For this reason, in this work,
we have opted for a separate classification of the two parts: a classification of the
methods used for the generation of HIs and a classification of the HIs trend modeling
techniques for RUL estimation. In both parts, metrics are proposed for performance
evaluation.

8.2 Study Framework

By definition, a fault is an unauthorized and unexpected deviation from the normal
condition, whereas a degradation refers to the deterioration of performance in an
irreversible manner. Degradation becomes failure when performance falls below a
critical threshold defined in the functional specification of the equipment: the system
is no longer able to perform the required function. According to the international
standard (ISO 13381-1:2004), fault prognosis is defined as the estimation of the
Remaining Useful Life (RUL) or the End of Life (EoL), and the estimation of the
risk of subsequent development or existence of one or more faulty modes. However,
in the literature, the definition of the fault prognosis concept is adapted to the
context, the objectives, and the field of application, among these interpretations:

• Wang et al. [114]: In the industrial and manufacturing areas, prognosis is
interpreted to answer the question: what is the RUL of a machine or a component
once an impending failure condition is detected and identified.

• Mathur et al. [78]: Prognosis is an assessment of the future health.
• Lebold et al. [64]: Prognostics is the ability to perform a reliable and sufficiently

accurate prediction of the RUL of equipment in service. The primary function
of prognostics is the projection into the future of the current health state of
equipment, taking into account the estimate of future usage profiles.

• Byington et al. [19]: Prognostics is the ability to predict the future condition of a
machinery based on the current diagnostic state of the machinery and its available
operating and failure history data.

• Jardine et al. [57]: Prognostics deals with fault prediction before it occurs. Fault
prediction is a task to determine whether a fault is impending and estimate how
soon and how likely a fault will occur.

• Muller et al. [87]: Prognostics is the ability to predict the future state of an item
from its present, its past, its degradation laws, and the maintenance actions to be
investigated.

In recent publications, the notion of prognosis is increasingly associated with the
estimation of the RUL:

• Tobon et al. [109]: Fault prognostics can be defined as the prediction of when a
failure might take place.
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• Gucik-Derigny [50]: The prognosis consists in predicting the evolution of the
future state of health of a system and estimating the remaining lifetime of a
system before one or more failures appear on the system.

• Singleton et al. [104]: Effective diagnostic and prognostic tools are essential for
timely fault detection and Remaining Useful Life prediction.

• Sun et al. [107]: Prognostics usually focuses on the prediction of the failure time
or the Remaining Useful Life of a system or component in service by analysis of
data collected from sensors.

• Lee et al. [66]: Prognostics can be interpreted as the process of health assessment
and prediction, which includes detecting incipient failures and predicting RUL.

• Lim et al. [69]: Prognostics is the analysis of the symptoms to predict future
conditions and Remaining Useful Life.

It can be noticed that the references cited above define prognosis as the prediction
of the RUL based on an analysis of the monitoring condition data and the current
state of the system.

8.2.1 Formal Definitions of the RUL

The RUL is sometimes also called Remaining Service Life, Residual Life, or
Remnant Life [57], and refers to the time left before observing a failure given the
current machine age and condition, and the past and future operation profile. In
[103], the RUL of an asset or system is defined as the time-span from the current
time to the end of the useful life. In [105], the RUL at any time t is defined as
the remaining lifetime of a unit given that it is running at time t and given all
the available information related to the unit at time t . Two main mathematical
definitions of the RUL can be found in the literature, depending on the method used
for estimating this quantity and depending on the available information: a definition
of the RUL as a function of the condition monitoring (CM) and a definition of the
RUL as a function of the reliability function (RF ).

8.2.1.1 Definition of the RUL as a Function of CM

The definitions of the RUL given above are in agreement with the formal definition
given in Jardine et al. [57], where the RUL is defined as a function of the CM of the
system (Z(t)), which gathers all the prior knowledge on the past operating state of
the system as well as the co-variables that describe its current operating state, and is
expressed as follows:

RUL(t |Zt) = T − t |T > t, Z (t) (8.1)
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Fig. 8.2 Illustration of RUL

with:

• T: random variable of time to failure
• t: current age
• Z(t): past condition profile up to the current time.

This expression is illustrated in Fig. 8.2. According to the knowledge in Z(t),
the RUL can be calculated as a deterministic, statistic (as an expectation), or
probabilistic variable (as a probability density function). The dashed gray envelope
defines the margin of uncertainty about future operating conditions and the system
environment.

8.2.1.2 Definition of the RUL as a Function of RF

In [8, 9], it is stated that information from condition monitoring can be included in
reliability analysis by considering the hazard rate function as a probabilistic func-
tion. There are several methods for calculating the conditional and unconditional
reliability functions (RFs) and for computing the Remaining Useful Life (RUL) as a
function of the current conditions. In classical reliability, the RF is calculated mainly
for two cases: as an unconditional RF, assuming that the item has not yet been put
into operation (P(T > t)), and as a conditional RF, assuming that the item has not
yet failed up to sometime x (P(T > t |T > x)).

Assuming that the system is operating at time t, the RUL is expressed in [112]
as a time v for which the probability that the state of the system Z at time t + v,
noted P [Z(t + v) ≥ L|Z(t)] approximates the probability of failure q assumed to
be known. The RUL expression is given as follows:

RUL(t, q) = sup{v : P [Z(t + v) ≥ L|Z(t)] ≤ q} (8.2)
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where L is the failure threshold and P [Z(t + v) ≥ L|Z(t)] is defined as the
reliability of the system.

8.3 Health Indices Definition Methods

Existing methods of fault diagnosis have been reviewed in recent years, such as
[45, 46, 108]. The most recent is proposed by D. Gao et al. [45], in which the
authors propose a first classification of fault diagnosis methods into two groups:
hardware redundancy-based fault diagnosis and analytical redundancy-based fault
diagnosis. The fault diagnosis techniques based on analytical redundancy are
structured in five classes according to the mathematical tools and prior knowledge
used: model-based fault diagnosis, signal-based fault diagnosis, knowledge-based
fault diagnosis, hybrid fault diagnosis, and active fault diagnosis. In this work, the
methods for defining health indices are gathered in two classes: physical model-
based, data analysis and signal processing. The focus is on methods that can be used
for the generation of health indices sensitive to progressive degradation and whose
trend can be modeled for RUL estimation. The presented methods of HI generation
are summarized in Table 8.1.

8.3.1 Physical Model-Based Methods

These methods are based on a physical representation of the process. They require
a good understanding of the behavior of the system but does not require the
availability of data on the operation of the system in degraded modes. Physical
models are usually described by partial differential equations [3, 67] or state
representation equations [72, 98]. Once the physical model is available, the behavior
of the current process is compared with that of the model in normal operation to
detect the start of degradation. After degradation has been detected, trend models
are used to predict the evolution of degradation over time until reaching a failure
threshold, usually predefined. The RUL corresponds to the time taken by the
degradation to reach this failure threshold.

8.3.1.1 Analytical Redundancy Relations

The analytical redundancy relations (ARRs) are obtained from an over-constrained
system by eliminating the unknown variables [18], assuming that all functions are
differentiable with respect to their arguments. For a nonlinear deterministic system
(Eq. (8.3)) where x ∈ �n is the state vector, u ∈ �mu is the control vector, d ∈ �md

is the disturbance vector, θ ∈ �mf is a fault vector, and y ∈ �p is the measurement
vector:
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ẋ = h(x, u, d, θ)

y = g(x, u, d, θ)
(8.3)

the derivative of order q of the output y gives rise to the following set of (q + 1)p

constraints:

y(q) = γ q
(
x, ū(q), d̄(q), θ̄ (q)

)
(8.4)

where ū(q) ∈ �(q+1)mu , d̄(q) ∈ �(q+1)md , and θ̄ (q) ∈ �(q+1)mθ .
Under the condition that (q + 1)p > n + (q + 1)md and the Jacobian[

∂γ (q)

∂x
∂γ (q)

∂d

]
is of rank n + (q + 1)md [22], both the state x and the unknown

input d can be eliminated, leading to the set of ARRs.

HI = r
(
ȳ(q), ū(q), θ̄ (q)

)
= 0 (8.5)

In normal operation, Eq. (8.5) is true, whereas it is not in presence of a fault.
Equation (8.5) shows that the set of residuals r is a function of the set of
parameters θ identified on the system in normal operation, and corresponding
to well-identified hardware components or physical phenomena. The appearance
of a progressive degradation in the system manifests a progressive deviation
of the parameter affected by the degradation from its nominal value identified
during normal operation. Thus, the residuals that are a function of this parameter
progressively deviate from zero, enabling the detection of the start of degradation.
The use of the failure signature matrix makes it possible to check the isolability
of the degradation: even if the isolation of the degraded component or physical
phenomenon is not always possible, the subsystem that degrades in a complex
system is often possible. The identification of the component or subsystem at the
origin of the degradation is a relevant knowledge for practical purposes, exploitable
in the modeling of the degradation trend for RUL estimation. In addition, ARRs
can be generated automatically using a bipartite graph [18] or a bond graph model
[60], and are easy to implement once the parameters of the state model have been
identified.

8.3.1.2 Parity Space

This method is applicable to linear state models and consists in eliminating the
internal variables of the system by projection onto an input-output representation
space, called parity space [48]. It is generally applied in a discrete time space,
taking measurements over a time interval called observation window. Information
redundancy is, thus, created without resorting to successive derivations of the
measurements. Consider the following example of a system described by the
following state model (linear or linearized around an operating point):
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{
ẋ (t) = Ax (t) + Bu (t)

x (t) = Cx (t)
(8.6)

First, the observability matrix Oobs of the system is computed by Eq. (8.7), using
the individual observability matrix of each sensor [73]:

Oobs = (
C1 C2 · · · Cp

)
with Ci = (

ci ciA · · · ciA
n−1

) (8.7)

The observability matrix is, then, used to calculate the left null observability
matrix noted W , which is not unique. In practice, it is not possible to calculate
a matrix W that is perfectly orthogonal to the matrix Oobs , adding thus a further
uncertainty to the structured and unstructured uncertainties of the model and giving
rise to non-zero residuals.

After computing the matrix W , the observability matrix is reformulated in terms
of inputs, outputs, and their derivatives. The derived observability given for the ith

output is

Oi =

⎡
⎢⎢⎢⎣

y (t)
d
dt

y (t)
...

dn

dtn
y (t)

⎤
⎥⎥⎥⎦ −

⎡
⎢⎢⎢⎣

0 0 · · · 0
ciB 0 · · · 0
...

...
. . .

...

ciA
n−1B ciAB · · · ciB

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

u (t)
d
dt

u (t)
...

dn−1

dtn−1 y (t)

⎤
⎥⎥⎥⎥⎦

(8.8)

The residuals are calculated using Eq. (8.9), multiplying the global derived
observability noted OD , computed for all outputs with the matrix W :

HI = R = WOD

with OD = [
o1 o2 · · · op

]T (8.9)

After analyzing the equations, especially the observability matrix Oobs and the
global derived observability matrix OD , it is noted that the Ci and the Oi are
functions of the state matrix A, whose parameters represent the physical elements of
the system (physical components or physical phenomena). Thus, the occurrence of
a system degradation will cause a variation of the parameters of the matrix A and,
consequently, a deviation of the residuals from their values in normal operation.
The residuals are, therefore, sensitive to the degradation of the system. However,
the causal relationship between the residuals R and the variations of the parameters
of the matrix A is not explicit: it is drawn in the process of projection in the parity
space. For this reason, the parity space is used only for the detection of sensor faults,
with an extension to the actuators, under the strong assumption that there are no
system faults.
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8.3.1.3 Observer Methods

Observers theory is widely used in the literature for the estimation of observable but
unmeasured states [43, 82]. It has been used in fault diagnosis for the generation
of health indices through the development of the unknown inputs observers. The
stability and convergence analysis, the gains calculation, and assumptions on matrix
rank and model inversion have been the subject of several research works [82, 84,
86] and will not be detailed in this work. Only the relevance of the use of the health
indices generated using an observer in the context of fault prognosis is analyzed.

Two kinds of models are most used for the synthesis of observers in the
framework of fault diagnosis and prognosis. The first model, given in Eq. (8.10)
below, allows the simultaneous description of the state of the system and the
degradation. These models are interconnected and are of multiple time scales, in
order to highlight the difference in the evolution between the fast dynamics of the
system behavior and the slow evolution of the degradation:

ẋ = f (x, λ(θ), u) (8.10)

θ̇ = εg(x, θ)

y = Cx + Du + v

where x ∈ R
n is the set of state variables associated with the fast dynamics of the

system; θ ∈ R
m is the set of slow-dynamic variables related to the degradation of

the system; u ∈ R
l is the input vector. The parameter vector λ ∈ R

q is a function
of θ . The rate constant 0 < ε � 1 defines the time scale separation between fast
dynamics and slow drift. y ∈ R

p is the output vector and v is the measurements
noise.

The general pattern of the observer-based fault prognosis begins with the joint
estimation of the state and the unknown input, with precision, and in a finite time.
Then, the estimation of the RUL is carried out by a time projection of the evolution
of the slow and fast dynamics until the total failure. The finite-time convergence of
an observer is a less common notion in the literature than asymptotic convergence;
yet it is necessary in the context of fault prognosis. New conditions of stability and
convergence in finite time have been developed in Lyapunov theory, and presented
in [16, 17, 85] and [86]. Methods for the synthesis of observers with finite-time
convergence have been proposed in [38, 56] and [82] for linear systems, and in [79–
81] and [84] for nonlinear systems. In the case of observers with unknown input and
finite-time convergence, synthesis work has been developed in [97] for the linear
case, and in [43] for sliding mode observers.

Although the model of Eq. (8.10) is closest to the reality of the degradation
phenomenon and its interaction with the state of the system, it is strongly nonlinear
and, moreover, the interaction between the state and the degradation is difficult
to formalize (to model). Thus, the most used model for the generation of health
indices is the second type of model given in Eq. (8.11) below [71], where the
nonlinear system considered consists of a linear part exploited for the synthesis
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of the observer’s gain, and a nonlinear part satisfying some more or less restrictive
assumptions:

{
ẋ = l (x, f, u)

y = h (x, u) + W (u) f
(8.11)

x ∈ Rn is the state vector. u ∈ U is the known input vector. y ∈ Rp is the output
vector. f ∈ Rm is the vector of unknown inputs whose number is equal to or less
than the number of measurements (mp). W is the transfer matrix of the degradation
to the output and it is a function of the conditions of use (of the input u). Once
the state x is estimated, it is possible to derive an estimate of the unknown input as
follows:

HI = f̂ = W+
1 (u)

(
y1 − h1

(
x̂, u

))
(8.12)

where W+
1 is the pseudo-inverse of W .

Thus, finite-time convergence is a necessary condition for the use of the unknown
input observer for fault prognosis. Equation (8.10) also shows that the prior
knowledge of the effect of degradation on the system is necessary, as it makes it
possible to calculate the matrix W , which must be invertible. As the name implies,
degradation is considered to be an unknown input, implying that any change in
the dynamics of the system is considered as a degradation. Since the degradation
is introduced in an additive way into the model of the system, it can be assumed
that:

• The health index aggregates all the faults that may occur in the system.
• The prior knowledge necessary for the calculation of the matrix W can be used

to identify the nature of the degradation.

8.3.1.4 Algebraic Methods

In the algebraic framework, the HIs are expressed as an algebraic equation of the
system’s variables (u and y) and their derivatives. In fact, in Fliess’s theory [40],
and differently from Kalman’s theory, a nonlinear system is defined by a differential
field extension L/K finitely generated, where L is the system field which contains
the system variables and the algebraic equations that links the variables; K is the
ground field that contains the coefficients of the system.

The input u of a system L/K is a set u = {u1, . . . , um} of L such that
the extension L/K < u > is differentially algebraic, which means that any
element ω ∈ L satisfies an algebraic differential equation over K < u > of
the form P(ω, u1, . . . , um, . . . , u̇1, . . . , u̇m). The output of a system L/K is a set
y = {y1, . . . , yp} of L. A transcendence basis x = {x1, . . . , xn} of the differential
field extension L/K < u > is the state of the system L/K . Any component of the
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derivative ẋ = {ẋ1, . . . , ẋn} and y are K < u > algebraic on x, which leads to the
following generalized state variables representation:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F1
(
ẋ1, x, . . . , u, u̇, . . . , u(α1)

) = 0
...

Fn

(
ẋn, x, . . . , u, u̇, . . . , u(αn)

) = 0
H1

(
y1, x, . . . , u, u̇, . . . , u(β1)

) = 0
...

Hp

(
yp, x, . . . , u, u̇, . . . , u(βp)

) = 0

(8.13)

where Fi ,Hj are polynomials over k and αi , βj ∈ N ; x is called a generalized state.
In the presence of faults (f ), the nonlinear system is denoted as an algebraic

differential field extension k(u : y, f )/k(u, f ) [27]. If the fault f is a differential
algebraic equation with coefficients over the field K(u, y), then it is said to be
diagnosable. In other words, the fault variable is written in polynomial form, as
function of the input variables, the output variables and their respective derivatives
as follows:

f = h
(
u, u̇, ü, . . . , u(m), y, ẏ, ÿ, . . . , y(n)

)
(8.14)

The residuals (r̂) given by Eq. (8.15) below are used to evaluate the obtained fault
indicator (Eq. (8.14)):

r̂ = s−n dn

dsn
F̂ (8.15)

where the sign
(̂)

means that the variable is written in the Laplace domain.
The following steps are used to obtain the residuals [11, 41]:

• Put the fault indicator in Laplace domain,
• Differentiate the result n times with respect to s in order to eliminate the initial

conditions, which may be unknown,
• Multiply by s−n and return back to time domain.

These residuals are performed by using the integrals of the measured signals. In
the case of noisy signals, these integrals produce a filtering effect. The derivative
with respect to s of order n ( dn

dsn ) in Laplace domain results in a multiplication
by (−1)ntn in the time domain, and the multiplication by s−n in Laplace domain
corresponds to an integration of order n in the time domain.

The fault diagnosis based on the algebraic approach is mainly applied to linear
systems, and some nonlinear systems for actuator and sensor fault diagnosis. In
[15], the algebraic approach in association with a bond graph tool was extended to
component fault diagnosis, under the assumption that the system inputs and outputs
are fault free. The residuals of Eq. (8.15) reflect only the cumulative sum of the
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fault indicator from the degradation start until failure time, which means that the
residuals do not reflect the degradation dynamics but only its effect. It should also
be pointed out that this method does not need prior knowledge on the degradation
nature and it has not been used yet for fault prognosis. Finally, this method can only
handle additive faults and any change in the system dynamics can be considered as
degradation.

8.3.1.5 Parameter Estimation Method

The fault diagnosis based on the parameter estimation consists to parametric
identification of the system model using the system inputs (u) and outputs (y), and
monitoring the estimated system parameters. For a nonlinear system described by
the following state-space model:

{
ẋ = h (x, u, θ) + d

y = g(x)
(8.16)

where x is the state vector, h is the state function, g is the output function, and d

represents the system disturbances that are assumed to be a bounded signal, and
under the assumption that the system model parameters vary depending on the
occurrence of a fault on the physical system. In the normal operation, θ takes the
nominal values of the physical parameters; however, in faulty operation, the value
of θ varies as a function of fault severity on the physical system. The model of
Eq. (8.16) is, then, used for an on-line nonlinear parameter estimation problem, for
which unknown fault parameters are estimated using system inputs and outputs,
and appropriate approaches such as neural networks [115], fuzzy models [13],
and Takagi–Sugeno (TS) models [88], and for linear systems, least-squares (LS)
approaches are used. The estimation error (Eq. (8.17)) between the reference model
parameters estimated in normal operation and the parameters estimated under faulty
conditions is taken as HIs for diagnosis purposes [21].

HI = θ̂ − θn (8.17)

The fault diagnosis via parameter estimation can handle only additive faults on
parameters with slow rate dynamic. The main limit of this method is the difficulty
of concluding on fault isolability conditions, since the parameters being estimated
are model parameters and they do not represent the system physical parameters.
This problem has been partially solved by studying the influence of each physical
parameter on the model parameters [55]. As the gradual variations in degradation
cause progressive changes in system parameters from their nominal values, which
leads to a gradual deviation of HIs from zero, the HI trend can be analyzed to
construct prediction models for RUL estimation.
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8.3.1.6 Practical Constraints

Data Availability At the beginning of operation, data describing the system
degradation process and expert knowledge are not available. In this case, the HIs
generated from the physical knowledge are the most suitable. In the majority of the
practical cases, the faulty operation is defined by thresholds that the parameters of
the system must not exceed. These thresholds are used in the literature to estimate
the failure thresholds for HIs whose parameters have a clear physical meaning
[14, 31]. The estimation of the RUL is then performed using trend modeling methods
that do not require prior knowledge of the dynamics of degradation presented in the
second part of this chapter.

System Instrumentation The observability is a necessary condition for the imple-
mentation of the methods presented above, for the implementation of the AR method
the system must be, in addition, over-constrained. This property is easily verifiable
on a state model or a bond graph model. The identification of an optimal placement
of sensors to obtain an observable system (or over-constrained for the application of
the AR method) is also possible. But in practice, it is not always possible to place
all the necessary sensors for the observability of a system, for reasons of cost, lack
of space on the system, the non-availability of the sensor, and the consequences
of placing a given sensor on the system. Among the practical cases of systems
on which the authors of this paper have encountered difficulties of instrumentation
for the application of the methods presented above: electric motors [14], where the
torque sensor is rarely available, which makes it impossible to generate HIs whose
electrical part and mechanical part are decoupled. Indeed, in the example of the HIs
generated for the mechanical transmission system, the torque Γ (t) is not measured,
but, rather, it is estimated using the model of the interaction between the electrical
part and the mechanical part of the brushless motor, given as follows:

e(t) = keθ̇(t)

Γ (t) = kt i(t)
(8.18)

where ke is the electromotive force (EMF) and kt is the motor torque constant.
The use of the current variable to calculate the torque creates a matching of the
HIs generated from the electrical part of the motor with the HI generated from the
mechanical part. Consequently, it is not possible to locate the degraded subsystem.
On thermal engines, in particular marine diesel engines [61], there are many sensors,
but the system is not observable. The available sensors are mostly effort sensors
(temperature, pressure), while flow sensors (volume flow, mass flow, heat flow,
entropy flow) are not available. This is due to the unavailability of some sensors
(such as the entropy flow sensors) and the consequence that the sensor placement
may have on the system (for example, a mass-flow sensor must be inserted in the
pipe, which may promote the appearance of fluid leaks). The same instrumentation
constraints are encountered on the electricity production and management systems,
and industrial equipment [75, 122].
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8.3.2 Data-Driven and Signal Processing Methods

Among the data-driven methods of HIs generation for fault diagnosis, several
are used also for the generation of HIs for failure prognosis [124]. Methods of
multivariate analysis, such as principal component analysis (PCA) and its variants
(IsoMap, PCA-Kernel, . . . ), are widely used [2, 68, 90, 96] due to the fact that
they allow, in addition to generating the HI , extracting a degradation profile from
raw data, assuming that this information is initially contained in the raw data. The
time and frequency attributes of the measurement signals are also widely used,
especially when the instrumentation of the system is poor, and is limited to just
one or two sensors. These techniques allow a separation of the features contained in
the signal highlighting dynamics which are not perceptible on the raw signal. The
features presenting progressive trends that are not related to the normal operation
of the system are often related to the process of degradation of the system, and can
be exploited for the prognosis of failure [49, 51, 94]. Signal processing methods
the most used for generating HIs are: statistical indices [74], empirical modes
decomposition (EMD) [54], low pass filters [92], fast Fourier transform (FFT)
[77], and wavelet decomposition [76]. In the area of failure prognosis, Ref. [74]
uses statistical indices to extract the characteristics susceptible to failure and robust
to noise from vibration data pump oil sands; Ref. [44] also uses these statistical
indices on the raw data measured on bearings; Ref. [119] applies the EMD to
bearings vibration signals to identify and diagnose faults. For the diagnosis of
bearing faults from acceleration signals, Ref. [4] applies filtering with several levels
of bandwidth to improve the signal-to-noise ratio. For the application of the wavelet
transformation, Ref. [70] applies it to the voltage data of the rolling elements of a
gearbox to characterize symptoms of early fatigue and cracking.

The principle of analytical redundancy can also be applied by creating redun-
dancy through data-driven models, such as neural networks, support vector machine
(SVM), and auto-regressive models. This technique is applied in [31] for the
prognosis of failures of the embedded electronic systems, where a NARX neural
network is used for the estimation of the consumed power and an ARMAX model is
used for the estimation of the temperature. These two estimates are then compared
to the measured values to generate health indices for fault diagnosis and failure
prognosis. A multilayer perceptron (MLP) neural network is used in [47] for health
condition monitoring of a wind turbine gearbox, and a recurrent neural network
(RNN)is proposed in [7] for or early fault detection of gearbox bearings. In [102] an
adaptive network-based fuzzy inference system (ANFIS) is implemented for wind
turbine condition monitoring using normal behavior models.

8.3.2.1 Practical Constraints

Data Availability The data-driven methods presented above are all based on the
assumption that data containing the degradation process is available, so they are
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complementary to the physical model-based methods that only require data from
the normal operation of the system, used for parameter identification, and a physical
knowledge of the system. These two types of approaches are complementary,
covering thus a wide field of application.

Properties of the Generated HIs Unlike HIs generated using physical model-
based methods, the properties analysis (Monotonicity, Trendability, and Prognos-
ability) of HIs generated by data-driven methods has been the subject of several
research works [10, 24, 25, 52]. Monotonicity is related to the irreversibility
assumption of degradation phenomena. Trendability is related to the degradation
profile, i.e. it is related to the fact that the HI value is representative of the
degradation value at any moment of the evolution of the degradation. Prognosability
is related to the amplitude of the HI corresponding to the total failure; this property
is respected when the threshold of HI corresponding to the total failure is constant.
The metrics presented below are the ones proposed in [24] and [10], as their score is
easily interpretable (between 0 and 1), where 1 indicates the most satisfactory and
0 the less satisfactory level of the specific HI property:

Monotonicity = 1

N

∣∣∣∣∣
N∑

i=1

Mi

∣∣∣∣∣ (8.19)

where Mi is the monotonicity of a single run-to-failure trajectory given by:

Mi = n+
i

ni − 1
− n−

i

ni − 1
, i = 1, . . . , N (8.20)

ni is the total number of observations in the ith run-to-failure trajectory and n+
i (n−

i )
the number of observations characterized by a positive (negative) first derivative.

Trendability = min
(∣∣corrcoef ij

∣∣) , i, j = 1, . . . , N (8.21)

corrcoefij is the linear correlation coefficient between the ith and the j th run-
to-failure trajectories. The computation of the correlation coefficient between two
vectors requires that they are formed by the same number of patterns.

Prognosability = exp

(
−std

(
HIf ail

)

mean
∣∣HIstart − HIf ail

∣∣
)

(8.22)

where HIstart and HIf ail are the HI values at the beginning and end of the run-to-
failure trajectories, respectively; std

(
HIf ail

)
is standard deviation of the HI values

at the end of the trajectories. mean |HIstart | and mean
∣∣HIf ail

∣∣ are the average
variation of the HI values between the beginning and the end of the trajectories,
respectively.
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Recent researches are directed towards the development of methods allowing the
extraction of a set of features optimizing the scores of the three properties, as in
[10], where the HIs identification is formulated as the problem of selecting the best
combination of features to be used, and a multi-objective optimization that considers
as objectives the metrics of Monotonicity, Trendability, and Prognosability. The
proposed method is based on a binary differential evolution (BDE) algorithm for
the multi-objective optimization.

The HI generation methods presented in this paper have been applied by the
authors of this review paper on real cases. The details of the application of each
method can be found in [14] and [35] for AR method, [33] for parity space method,
[15] for algebraic methods, [36, 90] for PCA method, [89] for EMD method, [34, 89]
for WD method, and [31, 32] for HI generated using machine learning methods.
Table 8.1 summarizes the constraints of use, the advantages, and limitations of the
methods presented above.

8.4 HI Trend Modeling for RUL Estimation

As illustrated in Fig. 8.3, the modeling approaches of HI trends for the estimation of
RUL can be decomposed into three main families: physical approaches, data-driven
approaches, and expert methods. Another classification is proposed in [2], where
the RUL estimation methods are classified into: reliability based, similarity based,
model based, and data-driven based approaches. The most used physical model form
is the differential one, whose order and parameters are identified according to the
physical knowledge and data available on the degradation process. The updating
of the parameters makes it possible to compensate the modeling uncertainties
and the adaptation of the model to changes in the degradation rate. Data-driven
approaches are the most used and can be decomposed into five families: statistical
models, stochastic models, deterministic models, probabilistic models, and machine
learning model. The third family of trend modeling comprises those approaches that
formalize the knowledge of industry experts through the tools of fuzzy logic and
Bayes probabilities. Only data-driven methods able to include expert knowledge
into the prediction models are presented in this paper.

8.4.1 Data-Driven Models

Four kinds of models are presented in this section:

• Stochastic models, especially continuous and discrete Markov processes.
• Probabilistic models, based on Bayes probability theory.
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Fig. 8.3 Classification of RUL estimation approaches

• Statistical models, with a focus on the auto-regressive (AR) models and the
auto-regressive moving average (ARMA) model, which is representative of these
methods.

• Deterministic models, which are geometric models allowing to estimate the RUL
as a deterministic variable.

8.4.1.1 Stochastic Models

Markov processes are the most used stochastic models for fault prognosis. These
models describe processes without memory, where the probability of the future state
Xn depends only on the current state Xn−1 as shown in the following equation:

P(Xn = xn|Xn−1 = xn−1, . . . , X0 = x0) = P(Xn = xn|Xn−1 = xn−1) (8.23)

x1, . . . , xn are linked to the different states of the system. These processes can
be divided into two categories: continuous Markov processes and discrete Markov
processes.

Continuous Markov Processes
The most common continuous Markov processes used in the literature for prognosis
are Wiener and Gamma processes. The hypothesis of independent increments leads
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these processes to Markov properties because: X(t + Δt) − X(t) is independent of
X(t) and X(t + Δt) = X(t) + (X(t + Δt) − X(t)); the process {X(t), t ≥ 0} is,
therefore, a Markov process [91].

• Wiener processes are continuous Markov processes [Xt, t > 0], with a drift
parameter μ and a variance parameter σ 2, σ > 0. They are well adapted to the
modeling of degradation processes which vary over time with a Gaussian noise.
These processes are described as follows [103]:

Xt = x0 + μt + σB(t) (8.24)

where B(t) is the Brownian motion. The RUL Hti at a time ti is defined as the
time taken by the variable Xt , with t > ti to reach a predefined failure threshold
w such that:

Hti = inf{Δti : Xti+Δti
≥ w|Xti < w} (8.25)

In the literature, the RUL is often given with a confidence interval, obtained
by the calculation of a probability density function given by the following
expression [26]:

fHti
(hti ) = w − Xti√

2πt3
ti
σ 2

exp

(
− (w − Xti − μtti )

2

2tti σ
2

)
(8.26)

Many work apply this process and its variants [95, 105, 110, 111, 113], and
particularly [116] which proposes a Wiener process with an updated drift
parameter μt .

• Gamma process is the most appropriate for modeling a monotonic and gradual
deterioration [91]. Reference [1] proposed to use it as a deterioration model
randomly introduced over time [6, 23, 42, 62]. Mathematically, a random quantity
X follows a Gamma distribution with a shape parameter υ > 0 and a scale
parameter u > 0 if its probability density function (PDF) is given as follows:

Ga(x|υ, u) = uυ

Γ (υ)
xυ−1exp(−ux)I(0,∞)(x) (8.27)

where I(0,∞)(x) = 1 for x ∈ (0,∞) and I(0,∞)(x) = 0 for x /∈ (0,∞), Γ (υ) =∫∞
z=0 zυ−1e−zdz is the Gamma function for υ > 0.

Given a non-decreasing function υ(t), Gamma process with the form function
Υ (t) > 0 and the scale parameter u > 0 is a continuous stochastic process with
the following characteristics:

1. X(0) = 0 with a probability of 1
2. X(τ) − X(t) ∼ Ga

(
υ(τ) − υ(t), u

)
for all τ > t ≥ 0

3. X(t) has independent increments.
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Let X(t) be the deterioration at time t, t ≥ 0: the PDF of X(t) is as follows:

fX(t)(x) = Ga(x|υ(t), u) (8.28)

HIs expectation and variance are as follows:

E(X(t)) = υ(t)

u
, V AR(X(t)) = υ(t)

u2 (8.29)

A system is said to be faulty when its degradation reaches a predefined threshold
S. From Eq. (8.28), the distribution of the failure time at time t is written as
follows:

F(t) = Pr{TS ≤ t} = Pr{X(t) ≥ S}
=
∫ ∞

x=S

fX(t)(x)dx = Γ (υ(t), Su)

Γ (υ(t))
(8.30)

where Γ (a, x) = ∫∞
z=x

za−1e−zdz is the incomplete gamma function with x ≥ 0
et a > 0. The PDF of the failure time at time t is, thus:

f (t) = ∂

∂t

[Γ (υ(t), Su)

Γ (υ(t))

]
(8.31)

The mean failure time and the average RUL are given in the following equations:

Tt =
∫ +∞

t=0
tf (t)dt (8.32)

RULt = Tt − t (8.33)

The two Markov processes presented above are widely used to model degrada-
tion, covering the majority of degradation profiles: linear and nonlinear, noisy
and monotonous. However, these processes require the calculation of a HI
X(t), which estimates the current level of degradation of the system and which
can be calculated using one of the methods presented in Sect. 8.3. The main
limitation is related to the central property of Markov models, called memoryless
assumption, which is a relatively strong assumption and thus may lead to strong
approximation for real applications. To overcome this issue, a reliability model
can be developed to consider the changes in the operating modes of the systems
[89]. This model is based on two assumptions: (1) the future value of the HI is a
function of the current state of the system, given by the present value of the HI,
time, operating modes assumed known, and external noises supposed to follow a
Gaussian law; (2) the HI is non-negative and monotonous.

Given these two hypotheses, the dynamics of the HI can be described as
follows:
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ΔXt = βtβ−1

ηβ
exp(γZt + ε) (8.34)

where β > 0 is the shape parameter of the model, η > 0 is its scale parameter,
γ = [γ1, . . . , γm] ∈ R

m is a vector of m elements, describing the influence
of changes in operating modes Zt = [Z1,t , . . . , Zm,t ] on the degradation. The
uncertainties of the model are represented by the variable ε assumed to follow
a normal distribution N(0,Q). The first term βtβ−1/ηβ depends on time and
means that ΔXt depends on the system aging.

The HI evolution Xt is defined as the accumulation of all segments ΔXt :

Xt =
t∑

τ=0

ΔXτ (8.35)

Based on the linearity of mathematical expectation, the value of the mathematical
expectation of X(t) is calculated as follows:

E
[
Xt

] = E

[
t∑

τ=0

ΔXτ

]

=
t∑

τ=0

E
[
ΔXτ

]

=
t∑

τ=0

E

[
βτβ−1

ηβ
exp(ε)

]

=
t∑

τ=0

βτβ−1

ηβ
E
[
exp(ε)

]
(8.36)

ε ∼ N(0,Q) being a normal distribution variable, exp(ε) is a log-normal
distribution variable with mean value exp(Q/2):

E
[
Xt

] =
t∑

τ=0

βτβ−1

ηβ
exp(Q/2)

= exp(Q/2)

t∑
τ=0

βτβ−1

ηβ
(8.37)

Assuming that k is he RUL and L > Xt the predefined failure threshold, the RUL
can be estimated as follows:
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P(k|Xt < L) = P(Xt+k < L|Xt < L)

= P

(
Xt +

t+k∑
i=t+1

ΔXi < L

)

= P

(
t+k∑

i=t+1
ΔXi < L − Xt

)

= F t+k∑
i=t+1

ΔXi

(L − Xt)

(8.38)

F∑t+k
i=t+1 ΔXi

(L − Xt) is the distribution function (fr) of the sum Sk =
∑t+k

i=t+1 ΔXi to the value L − Xt .

Discrete Markov Processes
These methods are based on the principle of Markov chains for modeling processes
that evolve through a finite number of states [37, 59]. By definition, it is assumed
that the probability associated with each state, the probability associated with
the transition from one state to another, and the probability of future failure can
be estimated. The main property of Markov models is the assumption that the
future state depends only on the current state, called conditionally independent
or memoryless assumption. The most commonly used models for fault prognosis
are the Hidden Markov models (HMMs), characterized by two parameters: (1)
number of states of the system, (2) number of observations by state, and three
probability distributions: (1) probability distribution of transitions between states,
(2) probability distribution of observations, and (3) an initial probability distribution
of states [12, 37, 83]. The HMM presents an appropriate mathematical model to
describe the failure mechanisms of systems, which evolve in several degraded health
states over the time prior to failure, as it can estimate the unobservable health states
using observable sensor signals. The word “hidden” is related to the fact that the
states are hidden from direct observations, so they only manifest themselves via a
probabilistic behavior. HMM can exactly capture the characteristics of each state of
the failure process, which is the basis of HMM prognosis [37]. These methods allow,
thus, to model several operating conditions of the system and failure scenarios.
However, their implementation requires a large amount of data and knowledge
for learning, and the calculation intensity, which is proportional to the number
of states, can become important for systems with several operating states. The
three basic issues in HMMs implementation are: (1) Evaluation/Classification that
represents what is the probability to get the model given an observation sequence,
(2) Decoding/Recognition that represents what sequence of hidden states is the
most optimal or is most probably the one that generates the given sequence of
observations, and (3) Learning/Training that represents how to adjust the model
parameters.

In the fault prognosis area, a widely used algorithm is the backward–forward
algorithm, where the RUL at the time n can be defined as:

Xn = inf
{
xn : Yn+xn = N/Yn 	= N

}
(8.39)
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where Yn is the nth observation. The calculation of RUL using Markov chains
usually involves the use of the phase-type distribution. As a result, the distribution
and the expectation of the RUL are given as:

Pr(Xn = k) = αnP̃
k−1(I − P̃ )e (8.40)

E(Xn) = αn(I − P̃ )−1e (8.41)

where

P =
(

P̃ P0

0 1

)
with P0 =

(
1 − P̃

)
e (8.42)

HMM is suitable for nonlinear systems. It can estimate the data distribution
of normal operation with nonlinear and multimodal characteristics, assuming that
predictable fault patterns are not available. It is applicable to non-stationary systems.
It has been widely applied in real applications. The main reason is that the plant
operation condition can be divided into several meaningful states, such as “Good,”
“OK,” “Minor Defects Only,” “Maintenance Required,” “Unserviceable,” so that
the state definition is closer to what is used in industry. It can be used for fault
and degradation diagnosis on non-stationary signals and dynamical systems. It is
appropriate for multi-failure modes [37, 59, 66].

The main limitation is related to the property of Markov models, i.e. the mem-
oryless assumption. The health state visit time is assumed to follow an exponential
distribution, which could be inappropriate for some cases. The transition probability
among the system states in Markov models is often determined by empirical
knowledge or by a large number of samples, which is not always available. A large
amount of data is needed for accurate modeling [37, 59, 66].

The hidden semi-Markov model (HSMM) is an improved HMM, which over-
comes the inherent limitation of assuming exponential distributions. Unlike the
HMM, the HSMM does not follow the unrealistic Markov chain assumption
and therefore provides more powerful modeling and analysis capability for real
problems. In addition, the HSMM allows modeling the time duration of the hidden
states and therefore is well suited for fault prognosis. A practical example is given
in [28], where an approach for RUL estimation from heterogeneous fleet data under
variable operating conditions is proposed in three steps:

– Identification of the degradation states of an homogeneous discrete-time finite-
state semi-Markov model using unsupervised ensemble clustering approach.

– The maximum likelihood estimation (MLE) method and the Fisher information
matrix (FIM) are used for parameter identification of the discrete Weibull
distributions describing the transitions among the states and their uncertainties.

– The direct Monte Carlo (MC) simulation based on the degradation model is used
to estimate the RUL of fleet equipment.
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The proposed approach is applied to two case studies: heterogeneous fleets of
aluminum electrolytic capacitors and turbofan engines. Another solution proposed
in [53] to overcome the lack of knowledge on the condition monitoring is the online
updating of the parameters of the degradation model formulated as a first-order
Markov process. The originality of this work consists of the combination of Particle
Filtering (PF) technique with a Kernel Smoothing (KS) one, for simultaneously
estimating the degradation state and the unknown parameters in the degradation
model, while significantly overcoming the problem of particle impoverishment.

8.4.1.2 Conditional Probabilistic Models

These models are based on Bayes theorem, which describes relationship between the
conditional and marginal probabilities of two stochastic events A and B as follows:

P(A|B) = P(B|A)P (A)

P (B)
(8.43)

These methods describe the current state as a conditional probability function
and, then, apply Bayes theorem to update the probability assessment of future
behavior. The most used modeling tool is the Bayesian network, which is a
probabilistic graphical model representing random variables in the form of an
acyclic oriented graph. In the field of aeronautics, [39] uses the network with
variables such as aircraft weight, landing speed, and brake operation to predict brake
failure. In other research work, Bayesian networks are associated with the Kalman
filter [22, 69] or particle filter [20, 93, 106] for failure prognosis.

8.4.1.3 Statistical Models

The ARMA, the ARIMA (Auto-Regressive Integrated Moving Average), and the
ARMAX (Auto-Regressive Moving Average eXogenous inputs) models, initially
used for time series prediction, have been used to estimate the RUL by considering
the future value of the degradation as a linear function of system inputs, past obser-
vations, and random noise. To show how these methods are used for prognostics,
let us take the example of the ARMA model. A time series {xt |t = 1, 2, . . .} is
generated by an ARMA model (p, q) as follows:

xt =
p∑

i=1

φixt−i +
q∑

j=0

θj εt−j , (θ0 = 1) (8.44)

where xt is a series at the instant t , p and q are non-zero integers, p is the order
of the auto-regressive part, q is the order of the moving average part, {εt } indicates
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the noise series, {φi, i = 1, . . . , p} et {θj , j = 1, . . . , q} are the parameters to be
estimated.

To use this model for fault prognosis, the variable xt is considered as the HI
which represents the system condition state and the failure threshold D is supposed
known. The RUL at instant t of the system is calculated by the following equation:

rult = min{Δt : xt+Δt ≥ D|xt < D} (8.45)

Yan et al. [118] have used ARMA model for fault prognosis. An ARMA model
is incorporated in a software for data fusion and prognosis [65]. An extension of an
ARMA model by usingbootstrap forecasting is proposed in [117].

The use of these models is simple for prognosis. However, they assume that the
future state of the system is a linear function of the system inputs, past observations,
and noise, which is not often the case in reality. Moreover, their results are sensitive
to the initial conditions, thus leading to an accumulation of systematic errors in the
prediction.

8.4.1.4 Deterministic Models

This approach is supervised by the calculation of the Euclidean distance (d) between
the actual status of the system, given by the actual HIs values and the faulty HIs
identified offline. The degradation speed (v), which indicates how the degradation
moves from the normal operation to the faulty one, is used to compute the RUL as
follows:

rul (t) =
∣∣∣∣
d (t)

v (t)

∣∣∣∣ (8.46)

To compute the distance d(t) between the n HIs in real time operation and
the barycenter of the identified faulty operating cluster (Cf (c1, c2, . . . , cn)), the
following Euclid metric is considered:

d (t) =
√

(r1(t) − c1)
2 + (r2(t) − c2)

2 + · · · + (rn(t) − cn)
2 (8.47)

where r1(t), r2(t),. . . rn(t) is a set of HIs defining the monitoring space. This set
can be generated using one of the HI generation methods presented in the previous
section.

The numerical differentiation of the distance variable d is taken to compute the
degradation speed v:

v (t) = d (t + ΔT ) − d (t)

ΔT
(8.48)
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where ΔT is the sampling time for speed degradation computation. whose value is
chosen so that the noise is not amplified.

The main interest of this method is the fact that no knowledge is required on the
tendency or the pattern of degradation. It is accurate when the faulty operation is
clearly identified and successfully applied to a wind turbine system [36] for RUL
estimation.

Other deterministic models are used in the literature, especially when the
degradation profile is known. The models are identified by using the fitting
methods applied on the available profile of the degradation. Linear, exponential,
and polynomial models are the most used [120].

8.4.1.5 Learning Techniques

Learning techniques are widely used in the literature for trend modeling in the
field of failure prognosis. These regression models, such as neural networks and
support vector regression (SVR), are scalable and able to accommodate nonlinear
dynamics, but require a large amount of data for learning. For unsupervised learning
cases, an example of using SVR for RUL prediction is proposed in [32] for failure
prognosis of embedded systems. The prediction is realized using a SVR at a step of
the evolution of the health index. The SVR expression is given as follows:

Ĥ I (k + 1) =
N−1∑

[i=(m−1)τ+1]
α∗

i K(HI (i),HI (k)) + b∗ (8.49)

where α∗
i are Lagrange multipliers and τ the delay. In this work, the standard SVR

toolbox is used without making any special changes to the prediction of temporal
overlays. The free parameters, C, ε, the size of the kernel (Gaussian), and the
dipping dimension m are selected from a comprehensive search in the parameter
space to optimize the performance of the prediction on the validation set. The
available N observations are therefore shared between two sets of training and
validation of respective sizes Ne and Nv. Values for which the prediction error at a
step on the validation set is minimal are retained for the final prediction. Once the
parameters are fixed, the prediction is made using all the N observations available.
The predictions at several steps, i.e. for the values (k ≥ N + 1), are realized by the
ratio of the prediction at one step, using the estimated vectors Ĥ I (k) at the previous
iterations and not the observations themselves.

In addition to machine learning techniques, deep learning techniques like long
short-term memory (LSTM), which can remember information for long periods
of time, are used for trend modeling and RUL prediction. An application case is
proposed in [121], where a long short-term memory recurrent neural network is
used for RUL prediction of lithium-ion batteries.



210 M. A. Djeziri et al.

8.4.2 Physical Models

RUL estimation based on a physical model consists of considering that degradation
follows a parametric trend, which can take one of the following ordinary differential
equations (ODE):

Ḟ = β1F

Ḟ = β2F
2

F̈ = β3Ḟ + F + β4

F̈ = β5Ḟ
2 + β6F + β7

(8.50)

where F is the fault component value describing the degradation and βi (i = 1 . . . 7)
represent the degradation model coefficients which are identified on-line by using
the least square method [30] or particle filter [29, 58]. For example, the RUL
associated with the degradation model of the form Ḟ = β1F is given by:

RUL =
ln
(

1−th
1−HIi

)

β
− NTs (8.51)

where N represents the sample data, Ts is the sampling time, and th is the failure
threshold.

Other trend modeling approaches for RUL estimation can be found in the
literature, such as [99] where the RUL estimation is treated as an uncertainty
propagation problem, [103] where the review is focused on statistical data-driven
approaches, relying only on available past observed data and statistical models,
[5] which provides practical options for prognostics so that beginners can select
appropriate methods for their fields of application.

8.4.3 Practical Constraints

The purpose of the RUL estimate is to give to the maintenance experts’ two pieces
of information: the first is that the system will undergo the occurrence of a total
failure, the second is to give a sufficient time horizon for the maintenance experts in
order to plan a maintenance strategy. A metric proposed in [101], called Prognosis
Horizon (PH), is used to evaluate this time horizon in a confidence interval which
can be defined by the user. Prognosis Horizon (PH ) ranges within [0,∞[ and is
calculated as follows:

PH (i) = EoP − CT (8.52)
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(a) (b)

Fig. 8.4 Illustration of the PH RA metrics calculated for a wind turbine system in presence of an
unbalance fault caused by a progressive deformation of the blade

It represents the difference between the Current Time index (CT ) and the End
of Prediction time index (EoP ), obtained when the prediction crosses the failure
threshold. A practical example of the PH calculation is illustrated in Fig. 8.4a which
represents the PH calculated for a wind turbine system in presence of an unbalance
fault caused by a progressive deformation of the blade. In this practical example,
the HIs are generated using the PCA method and the trend modeling for RUL
estimation is performed using a deterministic model, based on Euclidean distance
[36]. Figure 8.4a shows that the obtained PH, by considering a confidence interval of
18%, is equal to 65 h. The maintenance expert can, then, make a decision, whether
or not this HP is sufficient to plan a maintenance strategy in good conditions. If it
judges that this PH is insufficient it is possible to increase it but by increasing the
confidence interval.

To give the user an easily interpretable measurement tool of the confidence that
can be given to the PH metric, another metric is proposed in [101] where the
accuracy is quantified according to the real RUL. This metric is called relative
accuracy (RA) and expressed as follows:

RA (t) = 1 − |RUL∗ (t) − RUL (t)|
RUL∗ (t)

(8.53)

RUL∗ is the real RUL. The range score of the RA metric is between [0, 1], and the
best score is close to 1. A practical example of the results of this metric applied to
the estimated RUL before the total degradation of the wind turbine system is given
in Fig. 8.4b. It shows that the RA is greater than 0.7 in average over the PH, but has
a great variability. All these measures will enable maintenance experts to assess the
risks and make the right decisions for the maintenance of the systems.
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Fig. 8.5 Practical illustration of the use of PH and RA metrics for the performance comparison of
the RUL estimation methods

Table 8.2 Performance
comparison of the considered
RUL estimation methods by
universal metrics

PH RAmin RAmax RAmean

RUL Hybrid 18.9 s 0.5 1 0.8509

RUL AR 19 s 0.6207 1 0.8504

RUL BM + KF 19 s 0.2702 1 0.8487

RUL PF 16 s 0 1 0.7155

In addition, these two metrics can be used to compare the performances of
different methods in a given context. A practical example is given in Fig. 8.5,
where the PH and RA are calculated for four prognostic methods applied to
the RUL prediction on the mechanical transmission system presented in [14]. In
this paper, the analytical redundancy method is used for HIs generation and four
trend modeling methods are applied for RUL estimation: an auto-regressive (AR)
model, whose parameters are estimated using the least square methods, an updated
Wiener process, whose drift parameter is updated using a Kalman filter, a first-
order differential model whose parameter is updated using a particle filter (PF),
and a deterministic model based on the calculation of the Euclidean distance [14].
The performance results of the considered RUL estimation methods are given in
Table 8.2, which shows that the AR model and the Wiener model have the largest
PH , thus giving the user more time to react, whereas the Wiener model is less stable
since it presents a greater variability in its RA.

It would be also better to evaluate the RUL prediction accuracy using—accuracy
and cumulative relative accuracy (CRA) proposed in [100, 101].
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8.5 Discussion and Future Challenges

8.5.1 Discussion

After analyzing the methods described above, one can see that discrete Markov
models are the most complex to implement because they require expert knowledge
and rich databases on the previous operation of the system and its failures; the
uncertainty brought by expert knowledge is often taken into account using fuzzy
logic. The memoryless assumption, which is the main property of discrete Markov
processes, and that they also share with continuous processes, is a major limitation
in the use of these processes for the estimation of the RUL. To overcome it, the
hidden semi-Markov models (HSMMs), that do not follow the unrealistic Markov
chain assumption, to provide more powerful modeling and analysis capabilities for
real fault prognosis problems.

Continuous Markov processes, especially the Wiener and Gamma processes, are
widely used in the literature as they are easy to implement and are well adapted
to modeling the progressive dynamics of degradation phenomena. The updating of
the parameters by increasingly powerful techniques such as maximum likelihood,
the Kalman filter, and the particle filter makes it possible to adapt the estimation
to the possible changes in the rate of degradation and provide in part a solution to
the limit related to the memoryless assumption. Research works have gone even
further in modeling, drawing on the Cox model, by proposing a reliability function
that takes into account the covariates representing changes in the operating modes
of a system: the limit of this model is related to the fact that the evolution of the
covariates must be known beforehand, which is difficult to obtain on systems such
as energy and transport systems where covariates are environment variables that are
not controlled.

The representation of degradation processes by adaptive differential models
makes it possible to take into account the physical knowledge available on these
phenomena for the choice of the order of the models. Continuous parameter
updating adapts to the change in degradation rate, and structured and unstructured
uncertainties are taken into account by the generation of normal operating thresholds
and total failure thresholds. The main limitation of this type of model is related
to problems of amplification of the noises generated by the successive derivations
of the outputs, as well as the lack of physical knowledge about the degradation
processes, which generally leads to an arbitrary choice of the order of the model.
Geometric models are efficient and accurate, but require complex classification
work to identify clusters, using the physical model for generating the useful
databases for learning.

The choice of the HI modeling approach depends on the context of use, the
complexity of the system. and the information available on its previous operating
modes, especially for the definition of the structure of the model as well as for
the identification of its parameters. Table 8.3 summarizes a set of criteria, not
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exhaustive, that can be used as a basis for choosing the HI modeling methodology
for the estimation of RUL.

8.5.2 Future Challenges

The general formulation of the Remaining Useful Life (RUL) of a system can
be expressed in a general form, as a function of the time t , the current condition
monitoring CM(t) and the current health state HS(t) (Eq. (8.54) below). However,
in practice, the state of degradation is neither available nor measurable in the
majority of cases, health indices must be deduced from the physical knowledge,
expert knowledge, and available measurements [90]:

RUL = g(t,HS(t), CM(t)) (8.54)

– The use of the techniques initially developed for fault detection and isolation
(FDI ) to estimate the health state (HS) of the system is a good idea, but in the
context of failure prognosis, the early detection becomes a major issue, as it is
necessary to estimate the RUL well in advance to allow maintenance operators
to plan their maintenance interventions. FDI techniques treat uncertainties in a
probabilistic or deterministic manner to generate thresholds that provide a better
compromise between false alarms and non-detections. In the context of failure
prognosis, it is necessary to take into account also the Prognosis Horizon [100,
101]. In addition, the problems related to the occurrence of multiple faults, their
interaction, their effect on the HS of the system remain.

– Condition monitoring (CM(t)), necessary for RUL estimation, is not always
known especially in systems operating in a randomly variable environment, such
as offshore wind turbines and transportation systems. The solution proposed in
the literature consists in taking account of the known or controlled CMs by using,
for example, the modified Cox model [89], and in compensating the lack of
knowledge about the unknown CMs by an online update of the model parameters.
This solution is effective in some application cases, but in the case where these
CMs vary strongly and continuously, the RUL estimate will change considerably
and continuously, which will prevent the use of the estimated RUL for planning
the maintenance. The solution may be to associate the RUL estimate with risk
analysis methods taking into account several operating and degradation scenarios
[123, 125].

8.6 Conclusion

This review of horizontal approaches for RUL estimation has highlighted the
diversity of methods proposed in the literature as well as their formal description
and context of use. The analysis shows that the two major stages of the procedure



8 Review on Health Indices Extraction and Trend Modeling for Remaining. . . 217

can be synthesized independently, but that the context of use, the complexity of
the systems as well as the history of available data and expertise are common
elements that govern the relevance of the choice of the HI generation methods and
the method of modeling its tendency for the estimation of the RUL. The diversity of
methods for generating health indices can cover a wide range of applications. The
PCA makes it possible to simultaneously reduce the size of the data and generate
health indices from large databases with linear, bilinear, or nonlinear dependencies.
When the instrumentation of the systems is not rich, the statistical, frequency, and
time-frequency attributes can be extracted from the signals and, then, analyzed
to make them HIs for the estimation of the RUL. When physical knowledge is
relevant enough to take modeling assumptions, build and validate physical models,
these latter are, then, associated with health index generation methods such as
analytical redundancy, observers, and parameter estimation. In this paper, we have
also presented the trend modeling methods that are the simplest to implement and
that are adapted to the physical properties of degradation processes, such as the
progressive aspect and the influence of the environment and operating modes of
the systems. The choice of the model depends on the context of use, the physical
knowledge available on degradation processes, the expert feedback, and available
data. The RUL can be presented as a stochastic, probabilistic, or deterministic
variable.
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