
Chapter 1
Prologue: Artificial Intelligence for
Energy Transition

Moamar Sayed-Mouchaweh

1.1 Energy Transition: Definition, Motivation,
and Challenges

Facing the problem of global climate change and the scarcity of fossil sources
requires the transition to a sustainable energy generation, distribution, and con-
sumption system. Energy transition [1] aims at pushing towards replacing large,
fossil-fuel plants with clean and renewable resources, such as wind and solar energy,
with distributed generation. The latter allows generating electricity from sources,
often renewable energy sources, near the point of use in contrary to centralized
generation from power plants in traditional power grids.

Energy transition aims also at integrating more efficient technologies, practices,
and services in order to reduce the energy losses and wastes. However, the
increasing penetration rate of renewable energy into the grid entails to increase the
uncertainty and complexity in both the business transactions and in the physical
flows of electricity into the grid because of their intermittency due to their strong
dependence on weather conditions. As an example, the electricity production of
solar photovoltaic panels is high in the morning when demand is low, while it is low
in the evening when the demand is high. This can impact the grid stability, i.e., the
balance between supply and demand.

The energy consumption is continuing to increase as electrification rate grows.
Therefore, the use of distributed energy resources (DERs) [2] through shifting users
from being only consumers to be also producers, called prosumers, leads to increase
significantly the gridcapacity. A DER is a small-size energy generator used locally
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and is connected to a larger energy grid at the distribution level. DERs include
solar photovoltaic panels, small natural gas-fuel generators, electric vehicles and
controllable loads, such as electric water heaters. The major interest of a DER is
that the energy it produces is consumed locally, i.e., close to the power source. This
allows reducing the transmission wastes. A set of DERs that operates connected to
the main grid or disconnect (island mode) is called a microgrid [3].

However, the energy transition faces multiple challenges such as ensuring:
• grid stability with a large penetration of renewable energy resources into the

grid,
• active participation of users in order to optimize their energy consumption and

to improve the balance between supply and demand,
• maximal use of renewable energy produced locally in particular during peak

demand or load periods.
To cope with these challenges, the traditional electricity grid requires undergoing

a transition to be more resilient, reliable, and efficient. This can be achieved by a
transition towards a smart grid (SG) in which a two-way flow of power and data
between suppliers and consumers is provided. SG [4] includes an intelligent layer
that analyzes these data volumes produced by users and production side in order
to optimize the consumption and the production according to weather conditions
and the consumer profile and habits. The goal of this analysis and treatment is to
maximize the grid flexibility, stability, efficiency, and safety.

Flexibility [5] can be defined as the ability of the electricity system to respond
to fluctuations of supply and demand while, at the same time, maintaining system
reliability. As an example, grid operators can use a set of photovoltaic panels,
batteries, electrical vehicles, chargers, etc., in order to modify generation or con-
sumption to stabilize grid frequency and voltage. Power retailers can reduce costs
during peak demand periods by using stored energy or deleting (shifting) deferrable
loads in order to reduce consumption based on price or incentive signals. Energy
storage through distributed batteries can increase the resilience and reliability of
grid thanks to their aggregated stored energy that can be used during outages or peak
demands hours knowing that the majority of outages are caused by disturbances in
the distribution system.

In addition, it is important to detect both internal and external faults during
operations and react quickly in order to find a safe state to reach it. Internal faults
are related to the system’s internal components (generators, converters, actuators,
etc.), while external faults are related to environmental interactions not expected
or not modeled during system development. Moreover, due to the extensive use of
advanced Information and Communication Technologies (ICT), such as Internet of
Things, in the SG, the latter becomes vulnerable to hacker attacks. Indeed the use
of ICT allows hackers to have multiple entry points to the grid in order to infiltrate
the control centers of several power plants. These attacks can impact significantly
the reliability of the grid by turning off the power of entire cities (airports, road
networks, hospitals, etc.).
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Therefore, it is essential to develop advanced management and control tools in
order to ensure the safety, reliability, efficiency, and stability of the SG. To this end,
the intelligent layer of the SG uses artificial intelligence techniques and tools in
order to achieve prediction [6, 7] and/or optimization [8], as it is discussed in the
next section.

1.2 Artificial Intelligence for Energy Transition

The AI methods are used for prediction and/or optimization. The goal of prediction
is to predict the electrical energy consumption or demand [6, 7], the produced energy
by wind turbines or photovoltaic panels, the health state [9] of a component or
machine. The optimization aims mainly to perform cost minimization, peak reduc-
tion, and flexibility maximization. The cost minimization [8] aims at optimizing the
energy consumption or/and the energy bill or price for a customer as well as the
potential risk related to a cyber-attack or to a fault. The peak reduction problem [10]
aims at ensuring the balance between the energy demand and energy production
during the periods where the demand is very high. Flexibility maximization [11]
aims at finding the maximal energy that can be deleted at a certain point of time
based on energy-consuming and energy-producing devices in residential buildings.
The flexibility is then used to ensure the balance between demand and supply.

The use of AI techniques to perform prediction and/or optimization within the
energy transition faces several challenges. Prediction of energy consumption as a
function of time plays an essential role for the efficiency of the decision strategies
for energy optimization and saving. The variability introduced by the growing
penetration of wind and solar generations hinders significantly the prediction
accuracy. In addition, this energy prediction is performed at different time horizons
and levels of data aggregation. The learnt models must be enough flexible in order
to be easily extendable to these different time scales and aggregation levels.

In addition, the learnt model requires historical data about the build-
ing/user/renewable energy resources consumption behavior (users’ energy
consumption behavior, building’s energy performance, weather conditions, etc.)
such as energy prices, physical parameters of the building, meteorological
conditions or information about the user behavior. However, sometimes there is
no historical data available due, as example, to the appearance of new buildings.
Therefore, the energy prediction must be performed without the use of historical
data about the energy behavior of the building under consideration.

Finally, the built model in order to perform prediction and optimization requires
adapting in response to building renovation and/or introduction of new technologies
as well as user’s consumption behavior. This adaptation in the model’s parameters
and/or structure is necessary in order to maintain the prediction accuracy and
optimization efficiency.
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1.3 Beyond State-of-the-Art: Contents of the Book

According to the aforementioned challenges discussed in the previous section, the
book is structured into three main parts, where in each of them different AI methods
(Artificial Neural Networks, Multi-Agent Systems, Hidden Markov Models, Fuzzy
rules, Support Vector Machines, first order logic, etc.), energy transition challenges
(availability of data, processing time, kind of learning, sampling frequency, time
horizon and physical-scale granularity, etc.) operational conditions (centralized,
distributed), and application objectives (prediction, control, optimization) as well
as domains (demand side management, energy management, flexibility maximiza-
tion, load monitoring, battery configuration, conversion system or power system
monitoring, etc.) are discussed:

• Artificial intelligence for Smart Energy Management (Chaps. 2, 3, 4, and 5),
• Artificial intelligence for Reliable Smart Power Systems (Chaps. 6, 7, 8, and 9),
• Artificial intelligence for Control of Smart Appliances and Power Systems

(Chaps. 10, 11, 12, and 13).

1.3.1 Chapter 2: Large-Scale Building Thermal Modeling
Based on Artificial Neural Networks: Application
to Smart Energy Management

This chapter proposes a smart building energy management system (SBEMS) in
order to help users to reduce their consumption, in particular by optimizing their
use of heating, ventilation, and air condition system. The proposed SBEMS is
based on the prediction of thermal dynamics in different instrumented and non-
instrumented zones in a large scale building. This prediction is based on the use
of neural networks. The latter have as inputs the electric power consumption for
heating, in instrumented (equipped with sensors) and non-instrumented zones as
well as the weather conditions (outdoor temperature, outdoor humidity, and solar
radiation). The output of the neural networks is the estimated indoor temperature for
both instrumented and non-instrumented zones. The inputs of the neural networks
are discretized into segments, with minimal and maximal values, indicating different
meaningful behaviors (states). Moving from one segment to another generates an
event. A recommender is built as a finite state automaton composed by these states
and events. At each state, a recommendation is provided to users in order to invite
them to adopt a “green behavior and/or activity.” As an example, if the indoor
temperature is in the upper level, then the recommendation could be to lower the
thermostat for one graduation to save energy. The proposed approach is applied
for smart energy management of student residential building. Different thermal
behaviors are recorded in order to obtain a rich learning and testing data set. The
proposed approach (neural networks and the recommender) is implemented and

http://dx.doi.org/10.1007/978-3-030-42726-9_2
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tested using a smart interactive interface composed of different levels (webpages)
allowing users to obtain information about their thermal zone (energy consumed, its
cost, average temperature, trend of electrical consumption, etc.) and to display the
recommendations linked to the user activity and the quantity of energy saved thanks
to the application of these recommendations.

1.3.2 Chapter 3: Automated Demand Side Management
in Buildings: Lessons from Practical Trials

This chapter discusses the problem of demand side management (DSM) in particular
within the context of energy transition (smart grids, distributed energy resources,
etc.). It focuses on the use of artificial intelligence techniques to answer the chal-
lenges (response time, data available, privacy issues, etc.) related to this problem.
It presents the DSM’s motivations and objectives around demand reduction (energy
efficiency), demand response (local or self-consumption of energy generated by dis-
tributed energy resources), user engagement (interaction between energy companies
and building occupants), engagement on investments, engagement on operations,
price optimization, and providing ancillary services (load and production modula-
tion, frequency regulation). The chapter divides the DSM problem into problem
of forecasting and problem of automated control. Then, it divides the methods
of the state of the art used for forecasting and control into artificial intelligence
(data-driven, model-free) and model-based (model predictive control, model-based
reinforcement learning, etc.). The goal is to discuss the advantages and drawbacks
of these methods according to the challenges related to the problem of DSM within
the context of energy transition. The chapter highlights the use of transfer learning
in order to avoid the problem of lack of availability of data and to improve the model
accuracy as well as its training or learning time. It provides also guidance to select
the adapted methods for forecasting and control.

1.3.3 Chapter 4: A Multi-Agent Approach to Energy
Optimization for Demand-Response Ready Buildings

This chapter proposes a distributed energy optimization approach as a multi-agent
system in order to perform energy management in buildings that are equipped with
a wide range of energy-consuming and energy-producing devices such as house-
hold appliances in residential buildings, photovoltaic, and local generators. The
consuming energy-devices consist of fixed and flexible (sheddable and shiftable)
load while energy-producing generators are curtailable local energy sources. Each
type of devices is represented by an agent an objective function that incorporates
user constraints and demand-response incentives. The optimization of the objective

http://dx.doi.org/10.1007/978-3-030-42726-9_3
http://dx.doi.org/10.1007/978-3-030-42726-9_4
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function is performed using the alternating direction method of multipliers. The
goal of the optimization is to obtain the optimal energy flow (i.e., consumption and
generation) that takes into account the incentives for demand-responses schemes,
the electricity prices (real-time pricing or time-of-use pricing) while respecting user
constraints (inconveniences). The advantage of the proposed approach is twofold: it
takes into account both price-based demand response as well as incentive-based
demand response together with consumers’ inconvenience when applicable and
preserves user privacy since each agent performs its local optimization based on
its local model. The proposed approach is applied to a prosumer building with a
connection to an energy supplier (i.e., external tie) and equipped with a photovoltaic
(PV) for local uses. Several scenarios simulating different consumption, production,
and demand-response requests with time horizon of 24 h divided into 96 time
periods (TP) of 15-min interval are conducted. The goal is to measure the reduction
in energy bill and imported energy from grid for different fixed amounts of
consumption (i.e., fixed load) that must be satisfied, and amounts of flexible
consumption (i.e., shiftable load and sheddable load) that can be shifted or shed
to some extent over a given time frame.

1.3.4 Chapter 5: A Review on Non-Intrusive Load Monitoring
Approaches Based on Machine Learning

This chapter presents a survey about the problem of residential non-intrusive load
monitoring (NILM) and discusses its challenges and requirements. Residential
NILM aims at recognizing the individual household appliances that are active (con-
suming) from the total load in the house (the total consumption). This recognition is
performed without the need for any additional sensor but only the total consumption
provided by the smart meter. The goal of residential NILM is twofold. First, it
allows inviting consumers to adapt a conservative “green” consumption behavior
by optimizing their consumption according to their profile or activity (e.g., his
presence and behavior). Second, it can improve their involvement in the demand-
response program by scheduling their activities (consumption) while respecting
their comfort. The chapter presents the three steps of a NILM framework: data
acquisition, feature extraction, and inference and learning. Data acquired about
the user consumption can be samples either at low or at high frequency. The
sampling frequency determines the features that can be extracted in the second
step of NILM framework. Indeed, the extracted features can be related either to
the appliance stable consumption states or conditions such as the active power.
In this case, low frequency sampling is adapted. However, features related to
the transition dynamics between different stable states require a high frequency
sampling rate because of the very short time laps of the transition. Contextual
features, such as time of use or its duration, can also be extracted in order to better

http://dx.doi.org/10.1007/978-3-030-42726-9_5
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distinguish appliances of close consumption behaviors. Then, the chapter studies the
machine learning approaches used to perform the appliance active state recognition.
It divides them into event-based and probabilistic model-based. The chapter focuses
on probabilistic model-based approaches, in particular hidden Markov models. For
the latter, the chapter discusses their performances around their kind of learning
(supervised, unsupervised, semi-supervised) and the used features (stable, transient,
and contextual).

1.3.5 Chapter 6: Neural Networks and Statistical Decision
Making for Fault Diagnosis in Energy Conversion
Systems

This chapter presents a model-free approach based on the use of feed-forward neural
networks (FNNs) in order to perform the fault diagnosis of DC-DC conversion
systems. Indeed, DC-DC conversion systems, widely used in many applications,
such as photovoltaic power pumps or in desalination units, undergo different
faults impacting their efficiency, reliability, and lifetime. These faults can impact
either their mechanical part (DC motor) or electrical part (DC-DC conversion).
This chapter proposes the development of a model based on the use of FNNs
with Gauss-Hermite activation functions in order to model the power conversion
systems’ dynamics in normal operation conditions. In FNNs with Gauss-Hermite,
the activation function satisfies the property of orthogonality as the case of Fourier
series expansions. A fault is detected when the difference between the FNNs output
and the real output is greater than a certain threshold. The latter is determined
using the χ2 statistical change detection test with 98% confidence interval. For the
fault isolation, the χ2 statistical change detection test is applied to the individual
components of the DC-DC converter and DC motor energy conversion system. The
fault is isolated by finding out the individual component that exhibits the highest
score. The proposed approach has been tested using several simulation experiments
in normal operation conditions and in presence of faults generated using an energy
conversion system turning solar power into mechanical power.

1.3.6 Chapter 7: Support Vector Machine Classification
of Current Data for Fault Diagnosis and Similarity-Based
Approach for Failure Prognosis in Wind Turbine Systems

This chapter proposes a data-driven approach based on the combination of physical
and reasoning models in order to perform the fault diagnosis and prognosis of wind
turbine systems. The goal is to decrease the maintenance costs of wind turbines.

http://dx.doi.org/10.1007/978-3-030-42726-9_6
http://dx.doi.org/10.1007/978-3-030-42726-9_7
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The physical model is built using the Bond Graph (BG) methodology. This allows
to exploit the already available knowledge about the wind turbine dynamics (the
phenomena of transformation of wind power into mechanical power and then into
electrical power, the phenomena of power conservation and dissipation, etc.). This
model is then used to generate data sets about faults in critical components for which
it is hard to obtain enough of data. The reasoning model is based on the use of a
Multi-Class Support Vector Machine (MC-SVM) classifier. The goal of the latter is
to detect online the occurrence of degradation. When degradations are detected, the
fault prognosis is activated. The goal is to estimate the remaining useful life before
the wind turbine reaches the failure threshold (end of life). This estimation is based
on the geometrical degradation speed in the feature space. The chapter evaluates
the proposed approach using two evaluation metrics: the prognosis horizon and α—
λ performance. The obtained results show that the proposed approach is able to
perform the fault diagnosis and prognosis of four tested faults: unbalance caused by
a deformation of the blade, unbalance in high speed shaft, stator eccentricity in the
generator, and electrical faults in the stator resistance.

1.3.7 Chapter 8: Review on Health Indices Extraction
and Trend Modeling for Remaining Useful Life
Estimation

In this chapter, an overview of approaches used for fault prognosis is presented.
These approaches aim at estimating the remaining useful life before the failure
(end of life) occurs. The interest of fault prognosis is twofold: alerting supervision
operators of the future occurrence of a failure, and giving them a sufficient time
to plan the maintenance actions. The chapter focuses on fault prognosis as a
horizontal approach allowing to link fault diagnosis and fault prognosis. It classifies
these approaches into three major categories: expert, physical model-based, and
data-driven approaches. Then, it focuses on data-driven approaches by showing
how the health indices are built and evaluated. Indeed, health indices are used to
follow the evolution (decrease) of the system health (ability) to perform a task.
Therefore, it is used to estimate the remaining useful life. The chapter presents some
meaningful criteria (monotonicity, trendability, prognosability, prognosis horizon,
relative accuracy) in order to evaluate the built health indices and the estimated
remaining useful life. The chapter compares the performances of several major
approaches of fault prognosis and discusses their limits as well as their future
challenges.

http://dx.doi.org/10.1007/978-3-030-42726-9_8
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1.3.8 Chapter 9: How Machine Learning Can Support
Cyber-Attack Detection in Smart Grids

This chapter provides an overview of the major components of smart grids, kinds
of attacks against them, and the machine learning techniques used for the attack
detection. Through the presentation of the different components (generation, trans-
mission, distribution, communication, consumption) of a smart grid, the chapter
highlights its vulnerability to cyber-attacks against its cyber and physical layers. The
chapter classifies these attacks around three categories: attacks on confidentiality
(gaining access to data belonging to others), attacks on integrity (someone other
than the legitimate device fraudulently claims to be that component), and attacks on
availability (generating lots of traffic to overwhelm the capacity of target devices
to render the services). Then, the chapter presents the detection methods that are
used for the attack detection. They are classified into signature-based, anomaly-
based, and specification-based detection. It highlights the advantages and drawbacks
of three decision (attack detection) structures: centralized, partially distributed
(hierarchical), and fully distributed. Then, the chapter focuses on Machine Learning
approaches (Support Vector Machine, Neural Networks, K means, Hoeffding
tree, etc.) used for the attack detection. It discusses the use of these methods
(classification and regression) by dividing them into supervised, unsupervised,
and semi-supervised learning approaches. The chapter shows the advantages and
drawbacks of these different categories of approaches for the detection of the
different attacks that can occur in smart grids. The chapter ends by discussing the
open problems and the challenges to be addressed related to the problem of cyber
security in smart grids.

1.3.9 Chapter 10: Neurofuzzy Approach for Control of Smart
Appliances for Implementing Demand Response in Price
Directed Electricity Utilization

This chapter proposes an approach in order to conduct the demand-response
program at the appliance level by considering the evolution of electricity prices.
Indeed, the amount of consumption of a set of aggregated loads is determined by a
set of used appliances by the corresponding consumers. The proposed approach
is based on two steps. In the first step, an extreme learning machine (ELM) is
used in order to predict the future price of electricity during the time use of an
appliance. To this end, a rolling time window of the ten previous prices of electricity
is used as well as the current price. After the reception of a new current price, it
replaces the oldest one in order to keep tracking the prices evolution with a fixed
size of training set. The second step is a set of fuzzy rules. The goal of these
rules is to determine the period of use (full, reduced) of an appliance according
to the predicted and current electricity prices as well as the appliance’s operational
variables. The advantage of this approach is its short time of training and processing

http://dx.doi.org/10.1007/978-3-030-42726-9_9
http://dx.doi.org/10.1007/978-3-030-42726-9_10
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in order to provide the output (the decision on the period of use of an appliance).
Therefore, it is adapted for the implementation of demand-response program since
the latter requires quick decision making. The proposed approach is applied to
the demand-response program for heat, ventilation, and air condition appliance.
The approach considers as input the actual temperature, the minimum desired
temperature, the maximum desired temperature, and time for reaching the minimum
desired temperature from the current temperature. Its output is the operational time
of the appliance.

1.3.10 Chapter 11: Using Model-Based Reasoning for
Self-Adaptive Control of Smart Battery Systems

This chapter discusses the use of model-based reasoning, in particular the first order
logic, for the fault diagnosis and configuration of smart battery systems. The latter
become increasingly important within the context of energy transition through their
use in distributed energy resources, electric and autonomous cars. The chapter high-
lights the interest of performing the fault diagnosis and reconfiguration for smart
battery systems in order to guarantee their safety during operation and to extend
their lifetime. The chapter describes in detail a smart battery system comprising
n batteries and k-1 wire cells. The different valid and invalid configurations are
presented. The invalid configurations correspond to the ones that cause harm on
side of batteries or the electronic or do not deliver the specified properties. Then,
the chapter details the use of a model-based reasoning, in particular the first order
logic, in order to avoid these invalid configurations in presence of faults (a battery
run out of power when being used causing the given voltage to drop, or the required
current cannot be delivered due to a faulty battery). The chapter shows how the
developed approach sets up the right reconfiguration (connect, disconnect, or re-
charge batteries) for fulfilling given electrical requirements (required voltage and
current) and a diagnosis problem during operation of such battery systems.

1.3.11 Chapter 12: Data-Driven Predictive Flexibility
Modeling of Distributed Energy Resources

This chapter treats the problem of the use of distributed energy resources (DERs)
in order to assist conventional generators in providing ancillary grid services such
as instantly overcoming local supply shortages, reducing costs during peak price
hours, maintaining grid stability, etc. To this end, the chapter proposes an approach
allowing quantifying the available load flexibility of an ensemble of DERs, in
particular air conditioners and electric water heaters, to provide grid services. The
proposed approach uses the notion of virtual battery (VB) in which the aggregated

http://dx.doi.org/10.1007/978-3-030-42726-9_11
http://dx.doi.org/10.1007/978-3-030-42726-9_12
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load flexibility of the ensemble of DERs is represented (stored) in the form of
thermal energy. The modeling of the VB (first order) is based on the following
components: Stacked Auto Encoder (SAE), Long-Short-Term-Memory (LSTM)
network, Convolution Network (ConvNet), and Probabilistic Encoder and Decoder.
They are used to find the VB model’s parameters (self-dissipation rate and lower
and upper power limits) allowing quantifying the load flexibility that best tracks
the regulation signal by respecting the consumer comfort. The aim of this model
is to estimate the state of charge (soc) of the VB at time t with the initial soc and
the regulation signal as input. In addition, the proposed approach combines two
transfer learning Net2Net strategies, namely Net2WiderNet and Net2DeeperNet in
order to update the VB’s parameters in the case of adding or removing DERs. Both
of these two strategies are based on initializing the “target” network to represent the
same function as the “source” network. The proposed approach is applied in order
to quantify the soc of a set of 100 air conditioner devices and 150 electric water
heaters by considering uncertainties in the water draw profile.

1.3.12 Chapter 13: Applications of Artificial Neural Networks
in the Context of Power Systems

This chapter treats the use of machine learning techniques, in particular artificial
neural networks (ANNs), to predict power flows (the bus voltage and the line current
magnitudes), in power grids. The chapter focuses on the interest of using ANNs in
order to provide an accurate estimation of line loadings and bus voltages magnitudes
in distribution grids with a high percentage of distributed energy resources (DER).
The estimation accuracy of power flows is crucial in order to identify fast and in
reliable manner the critical loading situations and the energy losses in particular
in low voltage (LV) grids. The goal is to improve the real-time monitoring of
power systems, in particular at low and medium voltage level, for grid planning
and operation. The chapter uses the open-source simulation tool Pandapower in
order to generate suitable training and test sets for the built ANNs. Two ANNs are
trained, one to estimate line loading and the other to estimate voltage magnitude.
The estimation accuracy and the computation time of these ANNs are considered
as performance criteria. The chapter presents the obtained results around the use
of the trained ANNs for two case-studies: the estimation of grid losses and the
grid equivalents. The grid equivalent aims at approximating the interaction at
the interconnection of two interconnected areas operated by two different grid
operators. The chapter highlights clearly the interest of using ANNs in order to
address the challenges of power systems analysis related to the intermittent nature of
DER and their increasing rate in power grids within the context of energy transition,
the changing load behavior in particular with the increasing role of users as local
producers, and the huge number of grid assets and their incomplete measurements.

http://dx.doi.org/10.1007/978-3-030-42726-9_13
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