
Moamar Sayed-Mouchaweh   Editor

Artificial 
Intelligence 
Techniques for a 
Scalable Energy 
Transition
Advanced Methods, Digital 
Technologies, Decision Support Tools, 
and Applications



Artificial Intelligence Techniques for a Scalable
Energy Transition



Moamar Sayed-Mouchaweh
Editor

Artificial Intelligence
Techniques for a Scalable
Energy Transition
Advanced Methods, Digital Technologies,
Decision Support Tools, and Applications



Editor
Moamar Sayed-Mouchaweh
Institute Mines-Telecom Lille Douai
Douai, France

ISBN 978-3-030-42725-2 ISBN 978-3-030-42726-9 (eBook)
https://doi.org/10.1007/978-3-030-42726-9

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-42726-9


Preface

Energy transition aims also at integrating more efficient technologies, practices,
and services in order to reduce energy losses and wastes. However, the increasing
penetration rate of renewable energy into the grid is a challenging task because
of their intermittency due to their strong dependence on weather conditions. To
this end, the traditional electricity grid requires undergoing a transition to be more
resilient, reliable, and efficient. This can be achieved by a transition towards a
smart grid (SG) in which a two-way flow of power and data between suppliers
and consumers is provided. SG includes an intelligent layer that analyzes these
data volumes produced by users and production side in order to optimize the
consumption and production according to weather conditions and the consumer
profile and habits. The goal of this analysis and treatment is to maximize the grid
flexibility, stability, efficiency, and safety.

The use of SG within the context of energy transiting is facing several challenges
related to the grid stability, reliability, security as well as the energy produc-
tion/consumption optimization in the presence of renewable energy resources.
Addressing these challenges requires the development of scalable advanced meth-
ods and tools able to manage and process efficiently and online the huge data
streams produced by heterogeneous technologies and systems in order to extract
useful knowledge, recommendations, or rules. The latter are then used to opti-
mize the energy consumption, to facilitate the penetration (integration) of dis-
tributed/centralized renewable energy systems into electric grids, to reduce the peak
load, to balance and optimize generation and consumption, to reinforce the grid
protection as well as cybersecurity and privacy issues.

This book focuses on the use of Artificial Intelligence (AI) techniques in order
to develop decision support tools allowing to tackle and address these challenges in
different applications and use-cases. The gathered methods and tools are structured
into three main parts: Artificial Intelligence for Smart Energy Management, Artifi-
cial Intelligence for Reliable Smart Power Systems, and Artificial Intelligence for
Control of Smart Appliances and Power Systems. In each part, different AI methods
(artificial neural networks, multi-agent systems, hidden Markov models, fuzzy rules,
support vector machines, first-order logic, etc.), energy transition challenges (avail-
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vi Preface

ability of data, processing time, kind of learning, sampling frequency, time-horizon,
and physical-scale granularity), operational conditions (centralized, distributed),
and application objectives (prediction, control, optimization) as well as domains
(demand side management, energy management, flexibility maximization, load
monitoring, battery configuration, conversion system or power system monitoring,
etc.) are discussed.

Finally, the editor is very grateful to all the authors and reviewers for their
valuable contributions. He would like also to acknowledge Mrs. Mary E. James
for establishing the contract with Springer and supporting the editor in any
organizational aspects. The editor hopes that this book will be a useful basis for
further fruitful investigations for researchers and engineers as well as a motivation
and inspiration for newcomers in order to address the challenges related to energy
transition.

Douai, France Moamar Sayed-Mouchaweh
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Chapter 1
Prologue: Artificial Intelligence for
Energy Transition

Moamar Sayed-Mouchaweh

1.1 Energy Transition: Definition, Motivation,
and Challenges

Facing the problem of global climate change and the scarcity of fossil sources
requires the transition to a sustainable energy generation, distribution, and con-
sumption system. Energy transition [1] aims at pushing towards replacing large,
fossil-fuel plants with clean and renewable resources, such as wind and solar energy,
with distributed generation. The latter allows generating electricity from sources,
often renewable energy sources, near the point of use in contrary to centralized
generation from power plants in traditional power grids.

Energy transition aims also at integrating more efficient technologies, practices,
and services in order to reduce the energy losses and wastes. However, the
increasing penetration rate of renewable energy into the grid entails to increase the
uncertainty and complexity in both the business transactions and in the physical
flows of electricity into the grid because of their intermittency due to their strong
dependence on weather conditions. As an example, the electricity production of
solar photovoltaic panels is high in the morning when demand is low, while it is low
in the evening when the demand is high. This can impact the grid stability, i.e., the
balance between supply and demand.

The energy consumption is continuing to increase as electrification rate grows.
Therefore, the use of distributed energy resources (DERs) [2] through shifting users
from being only consumers to be also producers, called prosumers, leads to increase
significantly the gridcapacity. A DER is a small-size energy generator used locally
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2 M. Sayed-Mouchaweh

and is connected to a larger energy grid at the distribution level. DERs include
solar photovoltaic panels, small natural gas-fuel generators, electric vehicles and
controllable loads, such as electric water heaters. The major interest of a DER is
that the energy it produces is consumed locally, i.e., close to the power source. This
allows reducing the transmission wastes. A set of DERs that operates connected to
the main grid or disconnect (island mode) is called a microgrid [3].

However, the energy transition faces multiple challenges such as ensuring:
• grid stability with a large penetration of renewable energy resources into the

grid,
• active participation of users in order to optimize their energy consumption and

to improve the balance between supply and demand,
• maximal use of renewable energy produced locally in particular during peak

demand or load periods.
To cope with these challenges, the traditional electricity grid requires undergoing

a transition to be more resilient, reliable, and efficient. This can be achieved by a
transition towards a smart grid (SG) in which a two-way flow of power and data
between suppliers and consumers is provided. SG [4] includes an intelligent layer
that analyzes these data volumes produced by users and production side in order
to optimize the consumption and the production according to weather conditions
and the consumer profile and habits. The goal of this analysis and treatment is to
maximize the grid flexibility, stability, efficiency, and safety.

Flexibility [5] can be defined as the ability of the electricity system to respond
to fluctuations of supply and demand while, at the same time, maintaining system
reliability. As an example, grid operators can use a set of photovoltaic panels,
batteries, electrical vehicles, chargers, etc., in order to modify generation or con-
sumption to stabilize grid frequency and voltage. Power retailers can reduce costs
during peak demand periods by using stored energy or deleting (shifting) deferrable
loads in order to reduce consumption based on price or incentive signals. Energy
storage through distributed batteries can increase the resilience and reliability of
grid thanks to their aggregated stored energy that can be used during outages or peak
demands hours knowing that the majority of outages are caused by disturbances in
the distribution system.

In addition, it is important to detect both internal and external faults during
operations and react quickly in order to find a safe state to reach it. Internal faults
are related to the system’s internal components (generators, converters, actuators,
etc.), while external faults are related to environmental interactions not expected
or not modeled during system development. Moreover, due to the extensive use of
advanced Information and Communication Technologies (ICT), such as Internet of
Things, in the SG, the latter becomes vulnerable to hacker attacks. Indeed the use
of ICT allows hackers to have multiple entry points to the grid in order to infiltrate
the control centers of several power plants. These attacks can impact significantly
the reliability of the grid by turning off the power of entire cities (airports, road
networks, hospitals, etc.).
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Therefore, it is essential to develop advanced management and control tools in
order to ensure the safety, reliability, efficiency, and stability of the SG. To this end,
the intelligent layer of the SG uses artificial intelligence techniques and tools in
order to achieve prediction [6, 7] and/or optimization [8], as it is discussed in the
next section.

1.2 Artificial Intelligence for Energy Transition

The AI methods are used for prediction and/or optimization. The goal of prediction
is to predict the electrical energy consumption or demand [6, 7], the produced energy
by wind turbines or photovoltaic panels, the health state [9] of a component or
machine. The optimization aims mainly to perform cost minimization, peak reduc-
tion, and flexibility maximization. The cost minimization [8] aims at optimizing the
energy consumption or/and the energy bill or price for a customer as well as the
potential risk related to a cyber-attack or to a fault. The peak reduction problem [10]
aims at ensuring the balance between the energy demand and energy production
during the periods where the demand is very high. Flexibility maximization [11]
aims at finding the maximal energy that can be deleted at a certain point of time
based on energy-consuming and energy-producing devices in residential buildings.
The flexibility is then used to ensure the balance between demand and supply.

The use of AI techniques to perform prediction and/or optimization within the
energy transition faces several challenges. Prediction of energy consumption as a
function of time plays an essential role for the efficiency of the decision strategies
for energy optimization and saving. The variability introduced by the growing
penetration of wind and solar generations hinders significantly the prediction
accuracy. In addition, this energy prediction is performed at different time horizons
and levels of data aggregation. The learnt models must be enough flexible in order
to be easily extendable to these different time scales and aggregation levels.

In addition, the learnt model requires historical data about the build-
ing/user/renewable energy resources consumption behavior (users’ energy
consumption behavior, building’s energy performance, weather conditions, etc.)
such as energy prices, physical parameters of the building, meteorological
conditions or information about the user behavior. However, sometimes there is
no historical data available due, as example, to the appearance of new buildings.
Therefore, the energy prediction must be performed without the use of historical
data about the energy behavior of the building under consideration.

Finally, the built model in order to perform prediction and optimization requires
adapting in response to building renovation and/or introduction of new technologies
as well as user’s consumption behavior. This adaptation in the model’s parameters
and/or structure is necessary in order to maintain the prediction accuracy and
optimization efficiency.
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1.3 Beyond State-of-the-Art: Contents of the Book

According to the aforementioned challenges discussed in the previous section, the
book is structured into three main parts, where in each of them different AI methods
(Artificial Neural Networks, Multi-Agent Systems, Hidden Markov Models, Fuzzy
rules, Support Vector Machines, first order logic, etc.), energy transition challenges
(availability of data, processing time, kind of learning, sampling frequency, time
horizon and physical-scale granularity, etc.) operational conditions (centralized,
distributed), and application objectives (prediction, control, optimization) as well
as domains (demand side management, energy management, flexibility maximiza-
tion, load monitoring, battery configuration, conversion system or power system
monitoring, etc.) are discussed:

• Artificial intelligence for Smart Energy Management (Chaps. 2, 3, 4, and 5),
• Artificial intelligence for Reliable Smart Power Systems (Chaps. 6, 7, 8, and 9),
• Artificial intelligence for Control of Smart Appliances and Power Systems

(Chaps. 10, 11, 12, and 13).

1.3.1 Chapter 2: Large-Scale Building Thermal Modeling
Based on Artificial Neural Networks: Application
to Smart Energy Management

This chapter proposes a smart building energy management system (SBEMS) in
order to help users to reduce their consumption, in particular by optimizing their
use of heating, ventilation, and air condition system. The proposed SBEMS is
based on the prediction of thermal dynamics in different instrumented and non-
instrumented zones in a large scale building. This prediction is based on the use
of neural networks. The latter have as inputs the electric power consumption for
heating, in instrumented (equipped with sensors) and non-instrumented zones as
well as the weather conditions (outdoor temperature, outdoor humidity, and solar
radiation). The output of the neural networks is the estimated indoor temperature for
both instrumented and non-instrumented zones. The inputs of the neural networks
are discretized into segments, with minimal and maximal values, indicating different
meaningful behaviors (states). Moving from one segment to another generates an
event. A recommender is built as a finite state automaton composed by these states
and events. At each state, a recommendation is provided to users in order to invite
them to adopt a “green behavior and/or activity.” As an example, if the indoor
temperature is in the upper level, then the recommendation could be to lower the
thermostat for one graduation to save energy. The proposed approach is applied
for smart energy management of student residential building. Different thermal
behaviors are recorded in order to obtain a rich learning and testing data set. The
proposed approach (neural networks and the recommender) is implemented and

http://dx.doi.org/10.1007/978-3-030-42726-9_2
http://dx.doi.org/10.1007/978-3-030-42726-9_3
http://dx.doi.org/10.1007/978-3-030-42726-9_4
http://dx.doi.org/10.1007/978-3-030-42726-9_5
http://dx.doi.org/10.1007/978-3-030-42726-9_6
http://dx.doi.org/10.1007/978-3-030-42726-9_7
http://dx.doi.org/10.1007/978-3-030-42726-9_8
http://dx.doi.org/10.1007/978-3-030-42726-9_9
http://dx.doi.org/10.1007/978-3-030-42726-9_10
http://dx.doi.org/10.1007/978-3-030-42726-9_11
http://dx.doi.org/10.1007/978-3-030-42726-9_12
http://dx.doi.org/10.1007/978-3-030-42726-9_13
http://dx.doi.org/10.1007/978-3-030-42726-9_2


1 Prologue: Artificial Intelligence for Energy Transition 5

tested using a smart interactive interface composed of different levels (webpages)
allowing users to obtain information about their thermal zone (energy consumed, its
cost, average temperature, trend of electrical consumption, etc.) and to display the
recommendations linked to the user activity and the quantity of energy saved thanks
to the application of these recommendations.

1.3.2 Chapter 3: Automated Demand Side Management
in Buildings: Lessons from Practical Trials

This chapter discusses the problem of demand side management (DSM) in particular
within the context of energy transition (smart grids, distributed energy resources,
etc.). It focuses on the use of artificial intelligence techniques to answer the chal-
lenges (response time, data available, privacy issues, etc.) related to this problem.
It presents the DSM’s motivations and objectives around demand reduction (energy
efficiency), demand response (local or self-consumption of energy generated by dis-
tributed energy resources), user engagement (interaction between energy companies
and building occupants), engagement on investments, engagement on operations,
price optimization, and providing ancillary services (load and production modula-
tion, frequency regulation). The chapter divides the DSM problem into problem
of forecasting and problem of automated control. Then, it divides the methods
of the state of the art used for forecasting and control into artificial intelligence
(data-driven, model-free) and model-based (model predictive control, model-based
reinforcement learning, etc.). The goal is to discuss the advantages and drawbacks
of these methods according to the challenges related to the problem of DSM within
the context of energy transition. The chapter highlights the use of transfer learning
in order to avoid the problem of lack of availability of data and to improve the model
accuracy as well as its training or learning time. It provides also guidance to select
the adapted methods for forecasting and control.

1.3.3 Chapter 4: A Multi-Agent Approach to Energy
Optimization for Demand-Response Ready Buildings

This chapter proposes a distributed energy optimization approach as a multi-agent
system in order to perform energy management in buildings that are equipped with
a wide range of energy-consuming and energy-producing devices such as house-
hold appliances in residential buildings, photovoltaic, and local generators. The
consuming energy-devices consist of fixed and flexible (sheddable and shiftable)
load while energy-producing generators are curtailable local energy sources. Each
type of devices is represented by an agent an objective function that incorporates
user constraints and demand-response incentives. The optimization of the objective

http://dx.doi.org/10.1007/978-3-030-42726-9_3
http://dx.doi.org/10.1007/978-3-030-42726-9_4
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function is performed using the alternating direction method of multipliers. The
goal of the optimization is to obtain the optimal energy flow (i.e., consumption and
generation) that takes into account the incentives for demand-responses schemes,
the electricity prices (real-time pricing or time-of-use pricing) while respecting user
constraints (inconveniences). The advantage of the proposed approach is twofold: it
takes into account both price-based demand response as well as incentive-based
demand response together with consumers’ inconvenience when applicable and
preserves user privacy since each agent performs its local optimization based on
its local model. The proposed approach is applied to a prosumer building with a
connection to an energy supplier (i.e., external tie) and equipped with a photovoltaic
(PV) for local uses. Several scenarios simulating different consumption, production,
and demand-response requests with time horizon of 24 h divided into 96 time
periods (TP) of 15-min interval are conducted. The goal is to measure the reduction
in energy bill and imported energy from grid for different fixed amounts of
consumption (i.e., fixed load) that must be satisfied, and amounts of flexible
consumption (i.e., shiftable load and sheddable load) that can be shifted or shed
to some extent over a given time frame.

1.3.4 Chapter 5: A Review on Non-Intrusive Load Monitoring
Approaches Based on Machine Learning

This chapter presents a survey about the problem of residential non-intrusive load
monitoring (NILM) and discusses its challenges and requirements. Residential
NILM aims at recognizing the individual household appliances that are active (con-
suming) from the total load in the house (the total consumption). This recognition is
performed without the need for any additional sensor but only the total consumption
provided by the smart meter. The goal of residential NILM is twofold. First, it
allows inviting consumers to adapt a conservative “green” consumption behavior
by optimizing their consumption according to their profile or activity (e.g., his
presence and behavior). Second, it can improve their involvement in the demand-
response program by scheduling their activities (consumption) while respecting
their comfort. The chapter presents the three steps of a NILM framework: data
acquisition, feature extraction, and inference and learning. Data acquired about
the user consumption can be samples either at low or at high frequency. The
sampling frequency determines the features that can be extracted in the second
step of NILM framework. Indeed, the extracted features can be related either to
the appliance stable consumption states or conditions such as the active power.
In this case, low frequency sampling is adapted. However, features related to
the transition dynamics between different stable states require a high frequency
sampling rate because of the very short time laps of the transition. Contextual
features, such as time of use or its duration, can also be extracted in order to better

http://dx.doi.org/10.1007/978-3-030-42726-9_5
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distinguish appliances of close consumption behaviors. Then, the chapter studies the
machine learning approaches used to perform the appliance active state recognition.
It divides them into event-based and probabilistic model-based. The chapter focuses
on probabilistic model-based approaches, in particular hidden Markov models. For
the latter, the chapter discusses their performances around their kind of learning
(supervised, unsupervised, semi-supervised) and the used features (stable, transient,
and contextual).

1.3.5 Chapter 6: Neural Networks and Statistical Decision
Making for Fault Diagnosis in Energy Conversion
Systems

This chapter presents a model-free approach based on the use of feed-forward neural
networks (FNNs) in order to perform the fault diagnosis of DC-DC conversion
systems. Indeed, DC-DC conversion systems, widely used in many applications,
such as photovoltaic power pumps or in desalination units, undergo different
faults impacting their efficiency, reliability, and lifetime. These faults can impact
either their mechanical part (DC motor) or electrical part (DC-DC conversion).
This chapter proposes the development of a model based on the use of FNNs
with Gauss-Hermite activation functions in order to model the power conversion
systems’ dynamics in normal operation conditions. In FNNs with Gauss-Hermite,
the activation function satisfies the property of orthogonality as the case of Fourier
series expansions. A fault is detected when the difference between the FNNs output
and the real output is greater than a certain threshold. The latter is determined
using the χ2 statistical change detection test with 98% confidence interval. For the
fault isolation, the χ2 statistical change detection test is applied to the individual
components of the DC-DC converter and DC motor energy conversion system. The
fault is isolated by finding out the individual component that exhibits the highest
score. The proposed approach has been tested using several simulation experiments
in normal operation conditions and in presence of faults generated using an energy
conversion system turning solar power into mechanical power.

1.3.6 Chapter 7: Support Vector Machine Classification
of Current Data for Fault Diagnosis and Similarity-Based
Approach for Failure Prognosis in Wind Turbine Systems

This chapter proposes a data-driven approach based on the combination of physical
and reasoning models in order to perform the fault diagnosis and prognosis of wind
turbine systems. The goal is to decrease the maintenance costs of wind turbines.

http://dx.doi.org/10.1007/978-3-030-42726-9_6
http://dx.doi.org/10.1007/978-3-030-42726-9_7
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The physical model is built using the Bond Graph (BG) methodology. This allows
to exploit the already available knowledge about the wind turbine dynamics (the
phenomena of transformation of wind power into mechanical power and then into
electrical power, the phenomena of power conservation and dissipation, etc.). This
model is then used to generate data sets about faults in critical components for which
it is hard to obtain enough of data. The reasoning model is based on the use of a
Multi-Class Support Vector Machine (MC-SVM) classifier. The goal of the latter is
to detect online the occurrence of degradation. When degradations are detected, the
fault prognosis is activated. The goal is to estimate the remaining useful life before
the wind turbine reaches the failure threshold (end of life). This estimation is based
on the geometrical degradation speed in the feature space. The chapter evaluates
the proposed approach using two evaluation metrics: the prognosis horizon and α—
λ performance. The obtained results show that the proposed approach is able to
perform the fault diagnosis and prognosis of four tested faults: unbalance caused by
a deformation of the blade, unbalance in high speed shaft, stator eccentricity in the
generator, and electrical faults in the stator resistance.

1.3.7 Chapter 8: Review on Health Indices Extraction
and Trend Modeling for Remaining Useful Life
Estimation

In this chapter, an overview of approaches used for fault prognosis is presented.
These approaches aim at estimating the remaining useful life before the failure
(end of life) occurs. The interest of fault prognosis is twofold: alerting supervision
operators of the future occurrence of a failure, and giving them a sufficient time
to plan the maintenance actions. The chapter focuses on fault prognosis as a
horizontal approach allowing to link fault diagnosis and fault prognosis. It classifies
these approaches into three major categories: expert, physical model-based, and
data-driven approaches. Then, it focuses on data-driven approaches by showing
how the health indices are built and evaluated. Indeed, health indices are used to
follow the evolution (decrease) of the system health (ability) to perform a task.
Therefore, it is used to estimate the remaining useful life. The chapter presents some
meaningful criteria (monotonicity, trendability, prognosability, prognosis horizon,
relative accuracy) in order to evaluate the built health indices and the estimated
remaining useful life. The chapter compares the performances of several major
approaches of fault prognosis and discusses their limits as well as their future
challenges.

http://dx.doi.org/10.1007/978-3-030-42726-9_8
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1.3.8 Chapter 9: How Machine Learning Can Support
Cyber-Attack Detection in Smart Grids

This chapter provides an overview of the major components of smart grids, kinds
of attacks against them, and the machine learning techniques used for the attack
detection. Through the presentation of the different components (generation, trans-
mission, distribution, communication, consumption) of a smart grid, the chapter
highlights its vulnerability to cyber-attacks against its cyber and physical layers. The
chapter classifies these attacks around three categories: attacks on confidentiality
(gaining access to data belonging to others), attacks on integrity (someone other
than the legitimate device fraudulently claims to be that component), and attacks on
availability (generating lots of traffic to overwhelm the capacity of target devices
to render the services). Then, the chapter presents the detection methods that are
used for the attack detection. They are classified into signature-based, anomaly-
based, and specification-based detection. It highlights the advantages and drawbacks
of three decision (attack detection) structures: centralized, partially distributed
(hierarchical), and fully distributed. Then, the chapter focuses on Machine Learning
approaches (Support Vector Machine, Neural Networks, K means, Hoeffding
tree, etc.) used for the attack detection. It discusses the use of these methods
(classification and regression) by dividing them into supervised, unsupervised,
and semi-supervised learning approaches. The chapter shows the advantages and
drawbacks of these different categories of approaches for the detection of the
different attacks that can occur in smart grids. The chapter ends by discussing the
open problems and the challenges to be addressed related to the problem of cyber
security in smart grids.

1.3.9 Chapter 10: Neurofuzzy Approach for Control of Smart
Appliances for Implementing Demand Response in Price
Directed Electricity Utilization

This chapter proposes an approach in order to conduct the demand-response
program at the appliance level by considering the evolution of electricity prices.
Indeed, the amount of consumption of a set of aggregated loads is determined by a
set of used appliances by the corresponding consumers. The proposed approach
is based on two steps. In the first step, an extreme learning machine (ELM) is
used in order to predict the future price of electricity during the time use of an
appliance. To this end, a rolling time window of the ten previous prices of electricity
is used as well as the current price. After the reception of a new current price, it
replaces the oldest one in order to keep tracking the prices evolution with a fixed
size of training set. The second step is a set of fuzzy rules. The goal of these
rules is to determine the period of use (full, reduced) of an appliance according
to the predicted and current electricity prices as well as the appliance’s operational
variables. The advantage of this approach is its short time of training and processing

http://dx.doi.org/10.1007/978-3-030-42726-9_9
http://dx.doi.org/10.1007/978-3-030-42726-9_10
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in order to provide the output (the decision on the period of use of an appliance).
Therefore, it is adapted for the implementation of demand-response program since
the latter requires quick decision making. The proposed approach is applied to
the demand-response program for heat, ventilation, and air condition appliance.
The approach considers as input the actual temperature, the minimum desired
temperature, the maximum desired temperature, and time for reaching the minimum
desired temperature from the current temperature. Its output is the operational time
of the appliance.

1.3.10 Chapter 11: Using Model-Based Reasoning for
Self-Adaptive Control of Smart Battery Systems

This chapter discusses the use of model-based reasoning, in particular the first order
logic, for the fault diagnosis and configuration of smart battery systems. The latter
become increasingly important within the context of energy transition through their
use in distributed energy resources, electric and autonomous cars. The chapter high-
lights the interest of performing the fault diagnosis and reconfiguration for smart
battery systems in order to guarantee their safety during operation and to extend
their lifetime. The chapter describes in detail a smart battery system comprising
n batteries and k-1 wire cells. The different valid and invalid configurations are
presented. The invalid configurations correspond to the ones that cause harm on
side of batteries or the electronic or do not deliver the specified properties. Then,
the chapter details the use of a model-based reasoning, in particular the first order
logic, in order to avoid these invalid configurations in presence of faults (a battery
run out of power when being used causing the given voltage to drop, or the required
current cannot be delivered due to a faulty battery). The chapter shows how the
developed approach sets up the right reconfiguration (connect, disconnect, or re-
charge batteries) for fulfilling given electrical requirements (required voltage and
current) and a diagnosis problem during operation of such battery systems.

1.3.11 Chapter 12: Data-Driven Predictive Flexibility
Modeling of Distributed Energy Resources

This chapter treats the problem of the use of distributed energy resources (DERs)
in order to assist conventional generators in providing ancillary grid services such
as instantly overcoming local supply shortages, reducing costs during peak price
hours, maintaining grid stability, etc. To this end, the chapter proposes an approach
allowing quantifying the available load flexibility of an ensemble of DERs, in
particular air conditioners and electric water heaters, to provide grid services. The
proposed approach uses the notion of virtual battery (VB) in which the aggregated

http://dx.doi.org/10.1007/978-3-030-42726-9_11
http://dx.doi.org/10.1007/978-3-030-42726-9_12
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load flexibility of the ensemble of DERs is represented (stored) in the form of
thermal energy. The modeling of the VB (first order) is based on the following
components: Stacked Auto Encoder (SAE), Long-Short-Term-Memory (LSTM)
network, Convolution Network (ConvNet), and Probabilistic Encoder and Decoder.
They are used to find the VB model’s parameters (self-dissipation rate and lower
and upper power limits) allowing quantifying the load flexibility that best tracks
the regulation signal by respecting the consumer comfort. The aim of this model
is to estimate the state of charge (soc) of the VB at time t with the initial soc and
the regulation signal as input. In addition, the proposed approach combines two
transfer learning Net2Net strategies, namely Net2WiderNet and Net2DeeperNet in
order to update the VB’s parameters in the case of adding or removing DERs. Both
of these two strategies are based on initializing the “target” network to represent the
same function as the “source” network. The proposed approach is applied in order
to quantify the soc of a set of 100 air conditioner devices and 150 electric water
heaters by considering uncertainties in the water draw profile.

1.3.12 Chapter 13: Applications of Artificial Neural Networks
in the Context of Power Systems

This chapter treats the use of machine learning techniques, in particular artificial
neural networks (ANNs), to predict power flows (the bus voltage and the line current
magnitudes), in power grids. The chapter focuses on the interest of using ANNs in
order to provide an accurate estimation of line loadings and bus voltages magnitudes
in distribution grids with a high percentage of distributed energy resources (DER).
The estimation accuracy of power flows is crucial in order to identify fast and in
reliable manner the critical loading situations and the energy losses in particular
in low voltage (LV) grids. The goal is to improve the real-time monitoring of
power systems, in particular at low and medium voltage level, for grid planning
and operation. The chapter uses the open-source simulation tool Pandapower in
order to generate suitable training and test sets for the built ANNs. Two ANNs are
trained, one to estimate line loading and the other to estimate voltage magnitude.
The estimation accuracy and the computation time of these ANNs are considered
as performance criteria. The chapter presents the obtained results around the use
of the trained ANNs for two case-studies: the estimation of grid losses and the
grid equivalents. The grid equivalent aims at approximating the interaction at
the interconnection of two interconnected areas operated by two different grid
operators. The chapter highlights clearly the interest of using ANNs in order to
address the challenges of power systems analysis related to the intermittent nature of
DER and their increasing rate in power grids within the context of energy transition,
the changing load behavior in particular with the increasing role of users as local
producers, and the huge number of grid assets and their incomplete measurements.

http://dx.doi.org/10.1007/978-3-030-42726-9_13
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Chapter 2
Large-Scale Building Thermal Modeling
Based on Artificial Neural Networks:
Application to Smart Energy
Management

Lala Rajaoarisoa

2.1 Introduction

Today in the world and more particularly in Europe, the building sector consumes
more than a third of global energy. Indeed, the residential, academic, and commer-
cial building sector is considered with transportation, as the largest savings energy
potential. Thus, the improvement of energy efficiency is a priority characterized by
the European Directive [1], which aims in reducing the Greenhouse Gases (GHG)
emissions by 2020 while simultaneously increasing the building energy efficiency
by 20% [2, 3]. In this way, various national/international level initiatives have been
set out by proposing a home energy management systems to minimize the building
energy consumption. Typically in smart building, for instance, tools and methods
developed in [4–7]. Globally for recent work in smart energy management system
applied onto different applications, including the residential building, reader can
refer to the literature review [8] and check also all the references herein.

So, most of the time, action to reduce energy consumption is associated with
the control and/or the improvement of the thermal performance of the building by
finding an optimal controller in combining operational parameters (e.g., climate,
building use, owner requirements, control, etc.) with passive (e.g., building envelop
materials, insulation, roofing materials, finishing materials, window types, etc.)
and particularly the active system components (e.g., heating, air conditioning,
cooling, ventilation, alternative energy sources, building management systems, etc.).
Therefore, the optimization of the heating, ventilation, and air conditioning (HVAC)
systems is particularly important [9], and inefficient operation and maintenance
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of the HVAC systems can cause energy wastage, customer complaints [10], poor
indoor air quality, and even environmental damage [11].

The building services and energy system control had been discussed by several
researchers over the last decade. In this framework, two main research directions
are pursued in advanced control of building energy management of HVAC systems.
Firstly learning-based methods of artificial intelligence [12–14] and secondly
model-based predictive control (MBPC) [15–18], which has its own advantages
and inconveniences. A major challenge with MBPC is in accurately modeling the
dynamics of the underlying physical system. The task is much more complicated
and time consuming in case of a large-scale building and often times, the use and
exploitation can be more complex than the controller design itself [19]. On the other
hand, the energy performance of HVAC systems is impacted by operating conditions
as well as the response time (inertia) to a building’s heating and cooling but also
occupants’ energy needs. Indeed, studies in literature have extensively evaluated the
sensitivity of models to the building technical design parameters, where the areas
of organizational energy management policies/regulations and human factors (i.e.,
energy users’ behavior), are very important elements influencing building energy
consumption [20–22].

Moreover, works realized into [23–26] show that more than half of the total
building energy is typically consumed during the non-working hours mainly due to
occupancy related actions (e.g., equipment and lighting after-hours usage) and can
be reduced through behavioral changes. As also argued into [27, 28], occupancy
presence and behavior in buildings has shown to have large impacts on space
heating, cooling and ventilation demand, energy consumption of lighting and space
appliances, and building controls where careless behavior can add one-third to a
building’s designed energy performance, while conservation behavior can save a
third.

As a result, this chapter presents the development of a smart building energy
management system with which we would like to reach two main goals. Firstly, by
using an artificial neural network (from artificial intelligence technique), we want to
estimate and predict the thermal behavior of a large-scale building while including
instrumented and non-instrumented thermal zone. This information will be used in
the next to appreciate the energy users’ behavior. In this way via a human graphical
interface, we provide different advice to users to educate and attract them about
energy reduction challenges. Thus, the originality of this chapter is close to the
nature of the intervention of the system itself. Indeed, it does not act directly on the
HVAC building systems, as an automation system could realize, but on the USER.
In other terms, we propose an interface which provides for users access to assets,
controls, data among any others, for enhancing their life’s quality through comfort,
convenience, reduced costs, and increased connectivity. This approach will allow us
to validate the thermal behavior model developed and also realize different factors
analysis which may affect the energy consumption for optimization purposes. This
leads in setting well the human interface to be sure that each user sticks to each
advice in order to guarantee an efficient smart building energy management (SBEM)
system design.
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The chapter is organized as follows. Section 2.2 states on the formulation of
the problem to predict the thermal dynamics in different zones of the building
and also design an efficient SBEM solution. Section 2.3 presents the principle
and methodology that allows to identify and estimate the large-scale building
model parameters and finally provide a new approach of inviting user to adopt
a “green behavior and/or activity.” The results in terms of thermal modeling and
energy consumption will be presented in Sect. 2.4. It will present also a smart
and interactive system which was implemented on the Lavoisier student residential
building, located in Douai, in the north of the France, to illustrate the effectiveness
of the methodology.

2.2 Problem Formulation

This chapter is specifically aimed at developing a smart building energy manage-
ment system. In order to reach this goal, the first problem we face and we have to
solve is the prediction of indoor temperature (y) in different zone of the large-scale
building. After that, comes the formulation of different advice for the user (Ad). So,
let us consider that the thermal dynamic of a large-scale building (LSB) is driven by
the following expressions:

LSB =
{
y(t) = f (u,w, β, t)
mi = 〈Ad, I,O, δint , δext , λ, ta〉, (2.1)

where f is a nonlinear function defining the relationship between the input
(disturbances and controlled inputs) u and the indoor temperature y mapping and
both observed from the system. This is simply the model used to describe the
thermal behavior of the LSB considered. β is an adjustment parameter, w is the
parameter of the nonlinear model, and t is the discrete time. The discrete system
mi defines the sequential evolution of the situation in the building. In other terms,
with the state mi we will know if the ambient climate, for instance, is suitable, or
not according to the dual comfort-energy efficiency point of view. Ad is the set of
the personalized advice issued for user. I is the set of input event values (i.e., all the
values that input event can take). The events may be considered as defined by output
y(t) of the system and any internal yk-dependent variable, where k is the output
number of the system. λ is the output function which warrants the activity execution.
δint is the internal transition function. It ensures recommended advice evolves even
if no exogenous events come out before elapsed time e and the maximum dwell-
time into the situation, called also time advance ta , i.e., Adj = δint (Adi, e + ta).
δext is the external transit function that will be used when exogenous events come
out, i.e. Adj = δext (Adi, e, Ii).

Then, the design of SBEM system problem consists in the proposal of method-
ology that allows to predict and estimate all parameters of the LSB model, and
provides a new approach of inviting user to adopt a “green behavior and/or activity.”
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However, these actions must not be to the detriment of well-being in the building.
Hereafter is given more details about the approach.

2.3 Principle and Methodology

Aim of this work is to propose a smart energy management system to reduce energy
consumption by focusing on users and their behavior (i.e., thermal behavior). By
proceeding in this manner, we could appreciate the buildings’ thermal behavior and
predict energy consumption according to their usage. In other terms, by estimating
the ambient temperature in different building’s area, our approach consists in com-
paring it with a comfort temperature and providing advice and recommendations
to users by inviting each of them to have the best behavior in terms of reducing
housing energy consumption. However, this implies that buildings must be equipped
with sensors to provide usage data. And yet, installing sensors in all thermal zones
of a large-scale building quickly becomes economically unfeasible. That is why
we propose this methodology as an alternative energy management solution that
requires neither investment nor capital expenditures or a huge operation.

So, the system will be built according to the following steps (Fig. 2.1):

• Setting the data project and construction in order to create the relationship
between building energy performance and sensors data,

• Connecting the digital tools with the physical system,
• Identifying the thermal model parameters by using artificial intelligence tech-

niques, both in instrumented and non-instrumented thermal zone,
• Defining the dashboard and various advises to the users according to the usage

of the building,
• Evaluating feedback from users in order to reduce efficiently energy consump-

tion.

Each part of them is detailed in the following paragraphs.

Data project and construction

Sensors data

Physical system information

Learn from behavior 
and history

Dashboard and users
advising

Behavior predictive 
analysis

Fig. 2.1 Procedure to implement the SBEM system
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2.3.1 Data Project and Construction

Data will be collected onto the buildings according to the nature and objectives
of the action. For instance, to evaluate the thermal environment, Fanger in [29]
proposes to use six quantities: four physical parameters (air humidity, air temper-
ature, mean radiant temperature, and air velocity) and two subjectives (clothing
thermal insulation and metabolic rate). These parameters have to be measured or
estimated to evaluate and monitor efficiently thermal comfort [30]. Besides, Fugate
et al. [31], for their part, proposed three categories for building sensors and meters
for measuring and sensing different building performance parameters: occupants
comfort perception and facility characteristics. Temperature, occupancy, humidity,
CO2, and air quality sensors are used to sense occupant comfort and activity.
On the other hand; building energy meter, sub-metering, plug-load measurements,
natural gas meters, and other sources of energy meters are used to measure energy
consumption.

In other terms, the sensor kits should be capable to measure environmental
features of an enclosed space, such as an office or hospital room or basement,
buildings, etc. and to report any number of factors, including: temperature, humidity,
movement, light, and noise. This data can be used to more efficiently deliver needed
services on demand or to track utilization of any area. But also should be deployed
to enhance the data gathered from external environment. Indeed, by correlating the
external temperature and other information with the internal sensor data, a building’s
complete environment can be monitored.

Basically, the data construction should deliver all kinds of crucial information
according to the performance we want to evaluate. As studied previously in [32],
the input-output mapping is defined between the performance and the goals as given
in Table 2.1. However, for large-scale building it is difficult or impossible to mount
all the necessary sensors to all the building parts. That is why in this study we

Table 2.1 Data collection

Data acquisition for performance evaluation

Performance Goals Input/output

Thermal comfort Temperature range BIM

Indoor temperature

Heating system

Experimental model Flux meter

Indoor humidity

Adaptive model Windows and door systems

Outside temperature

Controller design Solar radiation

Outside temperature

Indoor environment quality Renovation guide Wind speed

Outside humidity
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Table 2.2 Wireless sensor characteristics

Measured Measuring
parameter range Accuracy Type of sensor Units

Temperature −40 to 125 ◦C ±0.4 ◦C (max), at −10
to 85 ◦C

Thermistor ◦C

Heat flux 0–2000 W/m2 40 μV/(W/m2) HFP W/m2

Relative
humidity

0–100% ±3% (max), at 0–80% Capacitive polymer %

Solar
radiation

1 – 65536 Lux +/− 100 Lux Light sensor Lux to W/m2

Electrical
power

Up to 3500 W Up to 16 A on 220 V Power meter W

limit ourselves to using weather sensors and electrical power consumption for few
instrumented zones and we estimate by means of a learning technique the thermal
behavior of all non-instrumented ones.

Table 2.2 below defines each sensor characteristic used to collect data. These
components are developed by CLEODE™ company (French company), and based
on wireless system network (WSN) technology. This is today the most popular
technology used in smart system. Moreover, many WSN platforms have been
developed [33], ZigBee/IEEE 802.15.4 protocols are often part of them. These
protocols are a global hardware and software standard designed for WSN requiring
high reliability, low cost, low power, scalability, and low data rate [34].

2.3.2 Physical System and Data Connection

According to the results obtained in [35] and also argued in [32], the thermal
behavior of the building could be mainly influencing by the (1) building services
and energy systems, (2) occupant activities and behavior, (3) and location or the
orientation of the building. Therefore, we propose in this chapter to subdivide the
building into two main zones, the east (green-back part) and the west (red-front part)
as shown in Fig. 2.2. Also, we choose the first floor as the reference zone to estimate
the thermal behavior of the whole non-instrumented zones. Depending on the size
of the building, we deploy a sufficient number of sensors to cover all the monitored
zones. In other terms, a thermal zone (marked by red or green polygon) is defined
as the mix of several parts of the building, which means the temperature will be
considered identical in each of them. Moreover, each zone is delimited by a certain
number of walls, themselves divided into meshes, with the assumption that the
temperature is homogeneous in each thermal zone. Thus, we can use data collected
from this reference instrumented zone (east and west zones in the first floor here) to
estimate and predict the thermal behavior in different non-instrumented zones (east
and west zone for the second to nth floor). This is particularly interesting because
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Fig. 2.2 Building and sensors connection

real data collected from buildings is used to reset the model and predict accurately
the temperature in all building’s areas.

So, data required for following the thermal behavior is complete here. The next
step consists in modeling the thermal behavior of the building.

Remark 1 Let us notice to perform the estimation and prediction of the temperature
in different non-instrumented zone, we assume here each connected building’s area
has the same topology whether for instrumented or non-instrumented zone.

2.3.3 Building Thermal Modeling

Artificial intelligence approaches have been used for this last decades to estimate
thermal behavior and predict the energy consumption of buildings. As examples
artificial neural networks (ANN) and support vector machine (SVM) [36–38]. These
methods are well recognized for their accuracy in explaining the complex nonlinear
energy consumption behavior in buildings with limited parameters of buildings and
has shown better performance than physical and statistical regression methods. In
addition due to the ability of ANN model to solve many problems by learning
directly from data, they have been widely applied to various fields [39]. Indeed,
they are today considered to be a powerful technique and smart tool for modeling,
prediction, and optimization of the performance of different engineering systems.
This technique will be used hereafter to model the thermal behavior of a LSB
defined by Eq. (2.1).
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2.3.3.1 Artificial Neural Networks Model

An ANN model is basically composed by a group of neuron model [40] as illustrated
in Fig. 2.3. This group is connected by links called synapses and each of them has its
own weight wkj . This weight is multiplied by its own input uj before summing all
weighted inputs as well as an externally bias bk which is responsible for lowering or
increasing the summation’s output vk . Then an activation function ϕ(.) is applied to
that output to decrease the amplitude range of the output signal yk into a finite value;
different types of activation functions are tabulated in Table 2.3. The computation
of the output yk can be write formally as follows:

yk = ϕ
⎛
⎝ n∑
j=1

wkjuj + bk
⎞
⎠ . (2.2)

In this chapter, ANN model is used to lead onto the creation of a global model of
a large-scale building. To reach this goal, we use another class of a feedforward
neural network distinguishes itself by the presence of one or more hidden layers,
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Fig. 2.3 Nonlinear model of neuron

Table 2.3 Activation function examples

Activation function Formulation Remark

Threshold function

ϕ(υ) =

⎧⎪⎨
⎪⎩

1 if υ > 0

0 si υ = 0

−1 si υ < 0

Equivalent to Heaviside function

Identity function ϕ(υ) = υ Linear function

Logistic function ϕ(υ) = log f (υ) = 1
1+exp(−aυ) Sigmoidal nonlinearity and a is

the slope parameter

Hyperbolic tangent
function

ϕ(υ) = tanh(υ) = 2
(1+exp(−aυ))−1 Sigmoidal nonlinearity



2 Large-Scale Building Thermal Modeling Based on Artificial Neural Networks 23

known by multilayer perceptron (MLP) neural network model. A MLP are special
configurations of neural networks where the neurons are arranged in successive
layers. It can then be viewed as a complex mathematical function made of linear
combinations and compositions of the function ϕ(.) that links a number of input
variables to a number of output variables. The structure of the model used for our
study-application is detailed in the following paragraph.

2.3.3.2 Input-Output Mapping

According to the notion introduced in Sect. 2.3.1, the main inputs and outputs of
the MLP-thermal model are illustrated in Fig. 2.4. Basically, we have the following
elements:

• weather inputs collected by sensors such as outdoor temperature (To), outdoor
humidity (Ho), and solar radiation (Ra),

• energy measurement given by an electrical consumption meter placed, respec-
tively, in the instrumented (Pzim) and non-instrumented zone (Pznp),

• the outputs which are the estimation of the indoor temperature, both for the
reference zone (T̂ zim) and all non-instrumented zone (T̂ znp). Here the subscripts
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Fig. 2.4 MLP structure of an ANN-thermal model for modeling a large-scale building



24 L. Rajaoarisoa

m and p are, respectively, the number of instrumented and non-instrumented
zones. However, for the sake of ease, we assume m = p for this study.

Briefly, the input-output mapping can be represented by the following expres-
sions:

u = [Pzi1 . . . P zim Pzn1 . . . P znp To Ho Ra
]T
. (2.3)

The temperature measured into the different instrumented zone is given by

y = [T zi1 T zi2 . . . T zim−1 T zim
]T
, (2.4)

and the output estimated by the ANN-thermal model is

ŷ = [T̂ zi1 . . . T̂ zim T̂ zn1 . . . T̂ znp
]T
. (2.5)

So, the output of the multilayer perceptron network (MLP) becomes

ŷk(u) = h
⎛
⎝ M∑
k=0

w
(2)
ki g

⎛
⎝ D∑
j=0

w
(1)
ij uj + b(1)j

⎞
⎠+ b(2)k

⎞
⎠ , (2.6)

and in its compact form, we have

ŷ(u) = h(w(2)g(w(1)u+ b(1))+ b(2)), (2.7)

where w and b are the parameters (weights and biases) for the neuron’s processing
node. g and h can be threshold (sign) units or continuous ones. However, h can be
linear but not g (otherwise only one layer). Moreover, to take into account directly
the nonlinear relationship between the input-output data, the activation functions h,
and/or g could be a logistic sigmoid (log f ) or a hyperbolic tangent sigmoid (tanh)
transfer function as defined in Table 2.3.

Thus, given input-output data (uk, yk) with k = 1, . . . , N finding the best
MLP network is formulated as a data fitting problem. Model will be provided with
sufficient training data from which it learns the underlying input/output mapping
[41]. Of course, to achieve the learning of the neural networks model, a 3D thermal
model building was designed and several realistic operating ranges were simulated.
The simulation data combined with the real data will thus make it possible to build
the learning base of the predictive model, particularly for the non-instrumented
zone.

The parameters to be determined are (wikj , b
i
j ) for the ith layer of the neural

model. Several algorithms exist to solve this problem. Here we use the Levenberg–
Marquardt (LM) algorithm one [42] to identify each parameter. Basically, the LM
algorithm optimizes the following performance index:



2 Large-Scale Building Thermal Modeling Based on Artificial Neural Networks 25

F(w) =
K∑
k=1

⎡
⎣ P∑
p=1

(ykp − ŷkp)
⎤
⎦ , (2.8)

where w = [w1 w2 . . . w	] consists of all weights of the network, ykp is the desired
value of the kth output and the pth pattern, ŷkp is the actual value of the kth output
and the pth pattern. 	 is the number of the weights, P is the number of patterns,
and K is the number of the network outputs.

Readers can refer to [40, 42] for further information about this algorithm.
Therefore, it is still important to notify here that the improvement of weighting
parameters w is realized according to the desired level of performance index by
minimizing the mean square error:

MSE = 1

N

N∑
k=1

(yk − ŷk)2 = 1

N

N∑
q=1

(ek)
2, (2.9)

where ŷk is the estimated zone temperature.
On the other hand, the multilayer perceptron network model could have different

structure according to the number of hidden layer considerate or the number of the
perceptron node. To compare one structure to another one the FIT criterion value
is adopted. The FIT represents the similarity between the measured output y and
the output reconstructed from the model ŷ. Formally, it is given by the following
relation:

FIT =
(

1−
∥∥yk − ŷk∥∥
‖yk − ȳ‖

)
× 100%, (2.10)

where ȳ is the mean of the observation yk , and ŷk is the estimate of the measures yk
at each sample time.

Once the MLP-thermal model is validated, we can begin designing the inter-
active interface on which the estimated temperature will be displayed, as well as
recommendations for users to revisit their behavior to save more energy.

2.3.4 Smart Interactive System Design

Energy efficiency is one of the primary cost-saving opportunities for building
managers. But it can be challenging for owners and managers of multistory offices,
schools, etc., who need energy management solutions that do not require huge
investments or operating expenses. We suggest for them this SBEM system as an
alternative. The implementation of that allows them to collect data gathering and
understanding of a wide range of their building. This will help building-stakeholders
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create policies to control consumption and waste. In other words this system leads
to make stronger and more confident all collaborators with regard to their energy
footprint, all of this from a smart functional graphical interface.

So, to expect a greater operational performance, the graphical user interface
(GUI) should provide important insights on the health of energy-using systems and
facilities, alerting users to overheating, for instance. Of course, this is not possible
without the knowledge of the thermal behavior in each zone of the building.

Remark 2 For the last point above, the solution is already given in the last section.

2.3.4.1 SBEM System Architecture

The architecture of the smart building energy system is illustrated in Fig. 2.5.
Herein, the left part is associated with the graphical user interface used mainly
to control energy performance. The middle part is the local area networks (resp.
world-wide communication) interface which provides for users access to overall
information from the building and its environment anyway. The right part is the
control acquisition data system. This last can be based on different technologies.
We use especially wireless sensors gathering by CLEODE™ company to capture a
number of insights. Mostly, to measure the indoor and outdoor temperature, indoor
and outdoor humidity, solar radiation and incident solar radiation on the floor for
different periods. A control (ON/OFF) system is also used in this study to control
the heating system operation but also to measure and control the electrical power
consumption into each thermal zone.

Remote access
Dashboard:
- Visualiza�on
- Alert
- Report

Web and 
Database server

Real-�me 
systems

INTRANET

Gateway

Temperature and Humidity
sensors

Power meter

SCADA SYSTEMENERGY MONITORING COMMUNICATION

Fig. 2.5 Smart building energy management system architecture
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Moreover, aside from sensors and actuators, the application requires two main
components. The first one is the real-time system necessary to launch the neural
network model. It can be seen as just a laptop where Microsoft Windows operating
system runs. The second one is a master coordinator node that controls all connected
sensors or elements to perform the data acquisition. For this purpose, WiBee product
also made by CLEODE™ company is used in this work.

WiBee is a WIFI-ZigBee™ gateway allowing to generate a wireless mesh home
networking based on ZigBee™ protocol. In fact, WiBee is not only a gateway,
it is a stand-alone controller capable of managing a ZigBee™ network from the
PC using an Ethernet or a WIFI interface, a Web Interface or CleoBee™ and a
remote access Cleoweb from a PAD, laptop, iphone, and Smartphone. Besides,
WiBee runs natively with an embedded Linux, a database and a Web Server,
and integrates embedded Linux. It is also available natively via Ethernet and/or
optional WiFi and/or optional GSM/GPRS, 3G. Integrated to the WiBee system,
a scenario manager allows for simple and easy configuration, management, and
program behavior such as (examples among any others):

• http command, Email on alert (intrusion, drop, . . .),
• Automatic switching off lights,
• Management opening depending on climatic parameters.

Remark 3 Reader can refer to Table 2.2 for sensor and actuator characteristics.

2.3.4.2 Graphical User Interface Design

The interactive graphical user interface (GUI) is the most widely used technique
among all others to allow users to access assets, system controls and data. With
this GUI, users can improve their life’s quality by paying attention to their comfort,
their convenience and their energy consumption. As data is critical to understanding
how energy is consumed and where it wasted. The GUI (Fig. 2.6) offers complete
information on the thermal behavior of the building and its energy performance. We
can thus ensure and supply personalized advice and a matter for all stakeholders to
measure their energy-saving.

Subsequently, the dashboard will give a persistent information for making best
decision for energy consumed reduction, provides different insights, such that: daily
and monthly thermal behavior and precise monthly and annual energy consumed.

Moreover, the dashboard could compare users in the workgroup. They can note
then the similarity of their energy consumed to others, check standings in energy
competitions and assess if their “green behavior” is making an impact globally on
the energy efficiency of the large-scale building.

2.3.4.3 Users Recommendation Formulation

There are many different methods and approaches to model a recommender system.
Reader can look at [44, 45] and the references herein for further information about
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Fig. 2.6 Main page example of the graphical user interface [43]

it. In this chapter, we use a discrete event atomic modelmi to describe the sequential
evolution of the situation in the building [46]:

mi = 〈Ad, I,O, δint , δext , λ, ta〉. (2.11)

Let us recall this kind of model represents sequences of events with the condition
that the state has a finite number of changes in any finite interval of time.

So, an event is the representation of an instantaneous change in the building that
can be associated with one recommendation. But, an event can be characterized
by a value and an occurrence time also. To formulate each recommendation, let us
consider the following definition and procedure:

Definition 1 (Advice Variables) The discrete state variables are

Ad = {phase, I, ta}, (2.12)

where phase variable is introduced in order to have a clear and precise interpretation
of the model behavior, I and ta are, respectively, the set of the input variables
and the time advance for each recommendation. To obtain the different values
(I1, I2, . . . , Is) of the input variable I , we choose to take up the following definition:

Definition 2 (Input Variables)

I = {ev1, ev2, . . . , I1, I2, . . . , Is}, (2.13)

where (ev1, ev2, . . . , evs) is the set of event variables, (I1, I2, . . . , Is) are the set of
different input values, and s is the maximum number of values that the input can
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Table 2.4 Example of
threshold definition to
discretize a quantitative
decision variable

��������Input
Values

I1 I2 I3

I ≤ R1 ≤ R2 > R2

> R1 and

take. These values are obtained from a discretization of continuous input variables
to piecewise continuous segment following the next procedure:

• define a threshold Ri, i = 1, . . . , l, where l is a performance index for
quantifying the input descriptive variable (see, for instance, Table 2.4), in order
to transform the continuous segment in a piecewise constant segment (note that
the discretization procedure is in the variable values regardless of the time, i.e.,
this is not the output of classical sample and hold),

• a discrete event is then associated with each change of value in the piecewise
constant segment.

Definition 3 (Output Variables) An atomic model processes an input event tra-
jectory and, according to that trajectory and its own initial conditions, provokes an
output event trajectory. Notice that, when an input event arrives, this implies the
building behavior changes instantaneously. Thus, the output variables O values can
be associated with one advice defined by the input-output mapping (yk, uk). So, we
can write

O = {O1,O2, . . . , Os} → {yk(t), uk(t)}/Ad. (2.14)

Basically, the recommender model works as follows. If we have the recommen-
dation Adi at time ti , after ta(Adi) units of time (i.e., at time ta(Adi) + t1) the
recommender system performs an internal transition, going to a new recommen-
dation Adj . The new recommendation is estimated as Adj = δint (Adi), where
δint : Ad → Ad is called the internal transition function. When the system goes
from Adi to Adj an output event is produced with value Ii = λ(Adi), where
λ : Ad → O ∪ {∅} is called output function. Functions ta, δint , and λ define
the autonomous behavior of a discrete event model. When an input event arrives,
the situation changes instantaneously. The new recommendation value depends not
only on the input event value but also on the previous recommendation value and
the elapsed time since the last transition. If the system suggests the recommendation
Adi at time ti and then an input event arrives at time ti + e with value Oi , the new
recommendation is calculated as Adi+1 = δext (Adi, e,Oi) (note that ta(Adi) > e).
In this case, we say that the recommender system performs an external transition
δext defined as (δext : Adi × I → Adj ). No output event is produced during an
external transition. This allows us to define the transition relation T which is a subset
of (Ad × O × Ad) as follows: T = {〈Adi, e,Oi, Adj 〉 : ∃ transitionfrom Adi to
Adj by O} computed over arbitrary time intervals (e). Let us notice that this time e
takes on values ranging from 0 to ta(Adi).
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2.4 Experimental Results

2.4.1 Case Studies

To show the effectiveness of our methodology, we are experimenting it on the
Lavoisier student residential building, located in Douai, in the north of the France
(Fig. 2.7). The total area of the building is approximately 3500 m2 and it is
subdivided into two sub-building parts. The first part is composed by four floors
and the second one by five floors. Moreover, in the first sub-building part each floor
consists of ten rooms of 11 m2, while the second one has 32 rooms with the same
surfaces. We focus on the second part of the building during this study. Especially
for this part, half of the rooms is in the east side and the other half is in the west
side.

To recover a persistent database for identifying the underlying causal thermal
model of the building, several experimental scenarios have been taken into consid-
eration. Which are: two different orientations “East-West,” heating sequence and
different floor levels (first and third floors). The different rooms are subjected to
different thermal excitation driven by a heating system supply and the influence of

Fig. 2.7 Top: Lavoisier student residence in Douai. Bottom: Lavoisier student residence in 3D
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Fig. 2.8 Student room
configuration within sensor
and actuator location

the solar radiation. Precisely, as the heating power has a strong link with the control
system, the heating supply will be controlled on two different sequences such as
a controlled sequence and random heating sequence. So, for each scenario we can
appreciate and evaluate the thermal environment, thanks to different sensors and
actuators placed in each room. Figure 2.8 above gives an example of sensors and
actuators placement for the evaluation of thermal environment. Once again, reader
can refer to Table 2.2 for sensor and actuator characteristics.

Knowing that during the experiments, the scenarios considered do not worry
about thermal comfort. The main purpose of the thermal excitation being to have a
different thermal behavior and to enrich the database for obtaining a good estimate
of the model parameters. Therefore, for each experiment, each measure is saved
in a database in CSV format, thanks to an internally-LAB developed application
using LABVIEW™ and NetBeans™ software. So, this historical data is used after
that to train the MLP-thermal model from instrumented zone side according to the
experimental planning detailed before. Figure 2.9 shows different trends for the
indoor temperature (on the top), the electrical power consumption (in the middle)
and the weather conditions (on the bottom), respectively, for the east (blue solid
line) and the west (red solid line) zone. The weather data is common for the two
sides of the building.
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Fig. 2.9 Historical data for training the MLP model from instrumented zone side. Indoor temper-
ature (top), electrical power consumption (middle), and weather conditions: outside temperature,
solar radiation, and outside humidity (bottom)

2.4.2 MLP-Thermal Model Identification and Validation

As given and shown in Sect. 2.3.3, the structure of the MLP-thermal model is
defined with (m+ p + 3)-inputs which represent the number of the

• weather inputs collected by sensors such as outdoor temperature (To), outdoor
humidity (Ho), and solar radiation (Ra),

• energy measurement given by an electrical consumption meter placed, respec-
tively, in the instrumented and non-instrumented zone (Pzim, Pznp),

and with (m+ p)-outputs which correspond to

• the estimation of the indoor temperature, both for the reference zone (T̂ zim) and
all non-instrumented zone (T̂ znp).

Remark 4 Recall, the subscripts m and p are, respectively, the number of instru-
mented and non-instrumented zone. However, for the sake of clarity, we assume
m = p = 4 for this experimental setting, two thermal zones, respectively, for the
east and west side. For each of them the first floor is considered as the instrumented
reference zone and the third floor is considered as the non-instrumented one.
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So, the main parameters of the MLP-thermal model have been defined as
follows:

• the architecture is totally connected between each layer;
• the convergence of the learning is guaranteed by gradient descent approach;
• the model has one hidden layer; we use sigmoid type activation function for the

hidden layer and identity function for the output layer;
• the learning-rate is fixed at 0.01 and the momemtum at 0.9.

Regarding the learning base, it is composed of 70% of the samples corresponding
to the different scenarios of temperature and energy consumed collected during
the experiment. Whereas the test base is composed of 30% of remaining samples
(Fig. 2.9).

On the other hand, in order to determine the most efficient architecture, several
learning procedures have been performed by varying the number of hidden neurons.
For a model with one hidden layer, the output error and a FIT criteria are computed
to evaluate different numbers of hidden neurons (see Table 2.5). The best parsimony-
performance and computational time is established for a number of 56 neurons for
the east side and 80 neurons for the west one (resp. performance colored in blue and
in cyan in Table 2.5).

For each approved structure of the model (resp. East and West side), in the top
of Figs. 2.10 and 2.11, we can see, respectively, the validation of the MLP-thermal
model according to each reference instrumented zone (temperature measured in blue
and temperature estimated by the MLP-thermal model in red). Whereas the bottom
parts of these same figures illustrate, respectively, the evolution of the predicted
temperature of the non-instrumented zone (curve in red) according to the reference
instrumented one (curve in blue). Moreover, we can see that the temperature is rather
homogeneous and correlated from the East side of the building in comparison with
the West one. This is just due to the impact of the solar radiation on the thermal
behavior of the building. It explains also the results obtained in Table 2.5 why

Table 2.5 Best fitting for the MLP vs hidden neurons number

East zone West zone
Hidden neurons number MSE (%) FIT (%) MSE (%) FIT (%)

8 92.4311 55.4290 97.2306 68.5097

20 94.2601 67.1542 97.9027 76.1309

32 94.8171 70.7114 98.1812 79.3920

44 66.9926 61.5786 98.6911 84.8270

56 96.6320 80.5964 98.5833 83.8154

68 96.5228 79.9239 98.7373 85.5983

80 95.8277 76.1634 98.9294 87.5942

92 95.9771 76.9680 97.5796 72.3654

104 96.9267 82.0202 98.0041 77.2123

116 94.8809 70.2009 97.9899 77.1547
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Fig. 2.10 East zone: estimation of the temperature in the instrumented zone (top) and non-
instrumented zone (bottom)
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Fig. 2.12 Outdoor solar radiation and its incidence in the floor

we need to considerate different number of hidden layer for each zone to have
satisfactory results. Indeed, if we check the evolution of the solar radiation received,
respectively, on the east and west wall during this period (Fig. 2.12), it reaches a
maximum value of 15 W/m2 and 95 W/m2 (red dot line), while the incident solar
radiation on the floor is in the order of 0.45 W/m2 and 40 W/m2 (blue solid line).

Otherwise, Fig. 2.13 also shows, respectively, the error distribution for the East
(left) and West (right) zone of the trained neural network for the training, validation,
and testing steps. This one shows that the data fitting errors are normally distributed
within a reasonably good range around zero. However, the differences can be more
clearly seen from the corresponding error histograms which indicate that the MLP-
thermal model was able to accurately generalize the experimental data with only a
very small number of predictions exceeding a 3% error margin. Moreover, Fig. 2.14
shows the best performance for the training, test and validation can be reached with
about 400 and 800 epochs, respectively, for the East and West data sets.

Remark 5 Let us notice that the performance of the neural network model is
sensitive to the amount of representative training data. Thus, the above results can
change significantly (negatively or positively) if the learning database presents or
not more situations or scenarios in order to appreciate the thermal performance of
the overall building.
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Fig. 2.13 Error distribution for the training, validation and test for the East zone (top) and West
zone (bottom)

2.4.3 Smart Interactive Interface

As claimed in the previous paragraph, the human-machine interface should be as
efficient as possible. That is, the information disseminated should be complete and
precise but simple and easily understood by the user. To continue along the same
directive, in this experiment the SBEM system is composed wholly by seven web
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Fig. 2.14 Performance index for the training, validation and test for the East zone (top) and West
zone (bottom)

pages. The first one is the login page. Indeed, to access relevant information from
anywhere, at any time, users must identify themselves at the login page (Fig. 2.15).
Once logged, users can access to the main homepage which presents particularly
the main layout of the building.
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Fig. 2.15 Login page of the graphical user interface

Herein, they can choose their thermal zone, or room or office number to check
their energy consumed evolution via the energy performance monitoring page. This
last is illustrated in Fig. 2.16. Moreover, part 1 of the energy monitoring page relates
the cost of energy consumed (daily and monthly) and the average temperature
in the zone. However, part 2 illustrates temperature, humidity, and the electrical
consumption trends of the zone considered. The last part is associated to display
the recommendation linked to the users activity and information about energy-
saving that they can realize by adopting the recommendation displayed. Let us
notice that the advice are displayed according to the following parameters: the
outside temperature and humidity (To and Ho), the indoor temperature estimated
(Tz), and the heating power (Pz) for the thermal zone considered. These variables
are discretized to compute the recommender model (see specification in Table 2.6).

Here, we just focus onto two situations where each variable can take a lower or
upper value. In fact, a lower value is as if IL ≡ {TzL | PzL | ToL | HoL}. In this case
the situation is not really suitable for comfort purposes. On the other hand, if the
variable takes an upper value (i.e., IU ≡ {TzU | PzU | ToU | HoU }), that means the
situation is maybe critic. By this definition, we can write as follows, for example,
for the temperature of the zone Tz (each variable will be discretized in the same
manner):

Tz =
{
TzL ifTz ≤ Trz − εz
TzU ifTz > Trz + εz,
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Fig. 2.16 Energy performance dashboard

Table 2.6 Input specification
and discretization

��������Input
Values

Lower Upper

Indoor temperature
zone (◦C)

Tz ≤ Tzr − εz Tz > Tzr + εz

Power consumption
zone (W)

Pz ≤ Pr − � Pz > Pr + �

Outdoor humidity
(%)

Ho ≤ Hor − η Ho > Hor + η

Outdoor temperature
(◦C)

To ≤ Tor − εo To > Tor + εo

where εz is the hysteresis threshold and Trz is the temperature setpoint in the zone
considered.

So, the combination of the descriptive variable values allows us to have 16
tips defining the thermal zone behavior, and for each of them we can associate a
personalized advice for the user. Reader can see, for instance, in Table 2.7 an extract
of this personalized tips for three particular conditions. The relationship between all
tips is described by the recommender model as illustrated in Fig. 2.17.

Besides these main pages, the SBEM system offers other functionalities. For
instance, users can set their comfort setpoint in the parameter page. Also, they
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Table 2.7 Extract from the table of personalized advice [47]

Advice State Inputs value Personalized advice

Ad0 S0 I1 = {ToL, TzL,HoU , PzU } It is Tz (◦C) in your zone. Your zone is fresh. If
you want to have warmer, ensure that the win-
dow is closed and put the heating thermostat
by two graduations between the current one

.

.

.
.
.
.

.

.

.
.
.
.

Ad6 S6 I6 = {ToL, TzU ,HoL, PzL} It is Tz (◦C) in your zone. Your zone is warm.
This does not result in additional consump-
tion. If you have too hot, slightly open your
window, but think of closing it before leaving

.

.

.
.
.
.

.

.

.
.
.
.

Ad15 S15 I15 = {ToL, TzU ,HoL, PzU } It is Tz (◦C) in your zone. Your zone is warm,
you could lower your thermostat for one grad-
uation to save energy

S1

S10S9

S7 S6

S2

S4

S8

S5

S14S3

S1
1

S12

S13

S15

S0

ev2

ev1

ev1

ev2

ev2

ev2 ev1

ev1

ev2

ev2

ev1

ev1

Fig. 2.17 Recommender discrete event model
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Table 2.8 Extract from the table generic advice displayed into energy information page

Number Main field Advice

1 HVAC Turn off the radiators when windows are open to ventilate
.
.
.

.

.

.
.
.
.

5 HVAC Avoid overheating. The recommended temperature is 19 ◦C in
zone with no more activity or people and 16 ◦C otherwise

.

.

.
.
.
.

.

.

.

10 Electronic devices Turn off the devices instead of leaving them in standby. Their
standby consumption can represent up to 10% of the non-
heating electricity bill

.

.

.
.
.
.

.

.

.

25 Electronic devices Unplug electronic devices systematically: laptop charger, small
appliances, PC, etc.

can have an overview of the thermal performance in different zones via the global
view page as well as numerical data associated with their zone via data tables page.
Finally, to make this system more generic we have implemented a general energy
information table. Reader can see an extract of that in Table 2.8 below. Let us notice
that this table is used particularly to familiarize the user to have a green-activity
and be more confident with regard to their energy footprint. In addition, to make
the system scalable, a specific page for the web administrator has been designed to
easily add/or remove a generic recommendation provided on the homepage.

Finally, the results in terms of energy consumption are estimated by comparing
the overall consumption of the building from its energy balance and the sum of the
estimated consumption, thanks to the MLP-thermal model. The difference, which
represents the realized energy gain, is estimated by integrating a weighting between
the weather indices of the current season and those of the reference one. In terms of
energy efficiency, this system should help all building-stakeholders to reduce their
energy cost by 10%.

2.5 Conclusion and Perspectives

This chapter presents the development of a smart building energy management
(SBEM) system for a large-scale building. A class of building where energy-saving
is clearly important and real source of economy. However, designing such a solution
does not require huge investments or operating expenses. That is why we present an
alternative solution in this work. A solution based especially on the USERS. Indeed,
the system does not act directly on the HVAC building systems, as an automation
system could realize, but on the USER. However, in order to provide important and
persistent insights to control consumption and energy-waste to users, an artificial
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neural networks model is computed. This plays an important role in estimating and
predicting the thermal behavior of the studied building including instrumented and
non-instrumented thermal zone.

All of this information is displayed later on smart interactive interface such as
assets, controls, data among any others, for enhancing user life’s quality through
comfort, convenience, and of course reduced energy costs. Experimental test was
done on the academic building located in Douai in the North of the France to show
the effectiveness of the methodology. We wish to save up to 10% per year if all
occupants adopt the system.

In the short term, we plan to extend this system to other academic building
in Douai in order to reduce globally the heating energy costs by 10–20%. In
the long term, a survey of information on occupancy models may be of interest
in redefining control strategies to optimize energy performance. Indeed, it can
provide quantitative information, mainly occupants’ profile and electric equipment
scheduling and operation.
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Chapter 3
Automated Demand Side Management in
Buildings

Hussain Kazmi and Johan Driesen

3.1 Introduction

There is widespread scientific consensus that greenhouse gas emissions, especially
as a result of using fossil fuels to power civilization, are among the primary drivers
of anthropogenic climate change [1, 2]. In light of this realization, the overall energy
system in general and the built environment in particular are undergoing a profound
shift towards decarbonization. Decarbonizing the building sector can be seen as a
two-layered process, which comprises of the dual goals of electrifying everything
and decarbonizing the electricity mix. Electrification is primarily concerned with
the demand side (e.g. electrification of heat, transport, lighting and cooking, etc.),
while decarbonizing electricity tackles the supply part (e.g. by replacing fossil fuel
plants with renewable energy sources (RES)). The continuous drive towards greater
efficiency, resulting from optimization in both design and operation, unifies the
supply and demand side. It is obvious therefore that weaning the built environment
from fossil fuels will require a cross-sectoral transformation in the energy domain.

3.1.1 Decarbonization

On the supply side, replacing fossil fuel based generation with renewable energy
sources offers substantial benefits. The climate change potential for renewable
energy sources, such as wind and solar, is much lower than that of their fossil
fuel based counterparts, such as coal, oil and even gas [3]. At the same time, the

H. Kazmi (�) · J. Driesen
KU Leuven, Leuven, Belgium
e-mail: hussainsyed.kazmi@kuleuven.be; johan.driesen@esat.kuleuven.be

© Springer Nature Switzerland AG 2020
M. Sayed-Mouchaweh (ed.), Artificial Intelligence Techniques for a
Scalable Energy Transition, https://doi.org/10.1007/978-3-030-42726-9_3

45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-42726-9_3&domain=pdf
mailto:hussainsyed.kazmi@kuleuven.be
mailto:johan.driesen@esat.kuleuven.be
https://doi.org/10.1007/978-3-030-42726-9_3


46 H. Kazmi and J. Driesen

economic equation is becoming increasingly more favourable for these renewable
sources because of economies of scale: by 2020, IRENA data shows that 77% of
onshore wind and 83% of utility scale solar photovoltaic (PV) generated electricity
will be cheaper than the most economical fossil fuel based competitors [4]. An
interesting development in this context has been the rise of distributed energy
resources (DER) such as rooftop solar PV panels. These can act, in practice, as
‘negative loads’ on the grid, i.e. they reduce the offtake of energy from the grid.
When supply does not match demand, they can however also result in substantial
problems, including to the stability of the grid. These include the infamous ‘duck
curve’, which identifies very high ramping rates in the evening when peak demand
coincides with diminishing solar electricity production. Large scale reverse power
flows can also undermine grid stability and equipment longevity [5].

3.1.2 Electrification

After a number of faltering starts, today electrification of demand continues apace.
The built environment and transportation sectors can benefit massively in their
decarbonization drive by utilizing cleaner energy. These can be distinguished
into areas which are cost-effective to electrify today, and those which require
technological breakthroughs or economies of scale before they can become feasible.
Fully electrifying newly constructed buildings, by focusing on major draws such
as heating, cooling and hot water production, are possible today and have been
demonstrated in a number of pilot projects. This principle is enshrined in, for
instance, the Dutch drive to fully electrify and decarbonize the social housing sector
in the coming decades [6]. Carefully drafted building codes aimed at nearly or net-
zero energy buildings have also driven the market in this direction in Europe [7], and
similar trends can be seen in many other affluent regions such as California. Vehicles
which were conventionally not a household electricity draw are also increasingly
becoming part of the household demand. While fully electrifying transportation
will take decades, regions with favourable policies, such as The Netherlands and
Norway, have seen a massive surge in uptake of electric vehicles (EVs) in recent
years [8].

3.1.3 Optimization: The Need for Demand Side Management

Demand side management (DSM), as a concept, has existed for a long time.
However, it is only in conjunction with increasing electrification of demand and
changes in the supply mix that it has become a central figure in the future of
energy systems. At its heart, DSM can refer to both demand reduction and demand
response, both of which can entail different things for the operative grid [9]. Despite
their differences, which we will explore in greater detail, both refer to optimizing
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energy flows either on a building or a grid level. This paves the way to applying
sophisticated artificial intelligence algorithms to achieve the objectives associated
with DSM (i.e. either demand reduction or response). The remainder of this section
introduces and motivates key concepts from DSM literature, while the next one takes
a closer look at the data-driven algorithms which can be used to unlock its potential.

3.1.4 Demand Reduction

Demand reduction, in itself, is a key component of the broader transition to a
more sustainable energy mix. It is eventually much more sustainable to reduce
overall energy usage, irrespective of the source especially if it can be done while
maintaining human comfort and economic productivity. There is also a more subtle
reason for focusing on demand reduction. This has to do with the increasing
electrification and its multi-level impact on the electricity grids:

1. Increasing electrification in buildings will substantially increase the electrical
energy demand in buildings. While monitoring one hundred recently refurbished
net-zero energy households in The Netherlands over a year, we discovered
that the additional energy demand caused by the heat pump (to provide space
heating and hot water) led to a considerable increase in overall electricity
demand (sometimes by more than 50%). The problem was especially acute
during the winter months due to the concentration of space heating, and the
summer months due to the DER generation. This information, along with the
power draws associated with the hot water production and space heating, is
visualized in Fig. 3.1. It is obvious that while the hot water circuit induces a
higher instantaneous power demand, the space heating load causes sustained
loading on the grid during the winter months.

2. Increasing electrification in buildings also considerably contributes to higher
peak power load on the grid. This is both due to electrification of heat, which
causes a higher draw during the winter in many houses simultaneously, and
due to distributed energy resources (DERs), such as solar panels which lead
to significant reverse power flows. These higher peaks often necessitate grid
reinforcement investments to maintain stability—an expensive proposition.

Energy efficiency improvements, either through automation or user engagement,
seek to address these issues by reducing the load.

3.1.4.1 Demand Response

As opposed to demand reduction, the objective of demand response is to shift
demand in time. This does not necessarily reduce demand and may in fact increase
it. However, the objective of demand response programs is frequently to increase
local (or self-)consumption of energy generated by DERs to solve local congestion



48 H. Kazmi and J. Driesen

Fig. 3.1 (Top-left): Energy consumed by appliances (e.g. lighting, refrigeration, plug loads) and
heat pump (space heating and hot water production); (Top-right): Power consumption by the heat
pump for space heating and hot water production; (Bottom): Average additional load [kW] induced
by an air source heat pump used for space heating and domestic hot water production: winter
consumption spikes due to space heating demand, while summer demand is mostly due to domestic
hot water production

or voltage issues, as well as for peak shaving and valley filling [10, 11]. Increasingly,
pilot projects are being undertaken with an aim to use the energy flexibility of
these buildings to also provide ancillary services to the transmission grid, such
as frequency regulation [12, 13]. As with demand reduction, these services can
be enabled through automation and user engagement, making use of techniques
developed in the artificial intelligence community.

3.2 Artificial Intelligence and DSM

While DSM represents enormous potential in untapped flexibility, there are practical
challenges which must be overcome before it can be deployed in practice. This
is especially true for the case of residential buildings, which represent extremely
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limited flexibility individually, but offer tremendous DSM potential collectively.
Recent advances in artificial intelligence (AI) can help realize many of these
opportunities. This section highlights the current state-of-the-art in using data-
driven methods for DSM in buildings. The discussion begins with an overview of
use of data-driven methods to engage building users in their energy demand. It then
introduces aspects of automated DSM and presents some of the most interesting
avenues arising out of contemporary research in the topic.

3.2.1 User Engagement

User engagement, in the context of building energy systems, refers to the interaction
between energy companies and building occupants. The energy companies can be
utilities, but they can also be other service providers such as software companies.
This engagement, which is often enabled by data-driven methods in practice, can
be distinguished along two dimensions: (1) getting occupants to make cost-optimal
investments in the building and (2) providing feedback to occupants to modify their
behaviour in a manner that supports (or does not harm) grid’s operation. This section
highlights the framework that governs both of these objectives.

3.2.1.1 Engagement on Investments

Service providers or utilities can offer much-needed visibility and information
to users to replace less efficient appliances or carbon intensive loads with more
efficient or sustainable options. This type of engagement is more of a one-and-
done deal, as once the less efficient equipment has been replaced, the engagement
cannot continue as-is, and must take on a different form. Common examples of this
paradigm include:

1. Lighting, which is arguably the lowest hanging fruit in the efficiency value chain,
where both regulatory and market frameworks have come together in recent years
to drastically improve efficiency. This has led to remarkable energy efficiency
gains when comparing LED technology with older, incandescent bulbs. Another
cost-effective example is replacing older appliances such as refrigerators.

2. Thermal loads (for space or water heating and cooling) are among the largest
draws for energy in many buildings around the world. Even in high efficiency
buildings, thermal loads, as represented by the heat pump in Fig. 3.1, constitute
roughly one-third of total electric demand. In older buildings, this figure can be
twice as high. By replacing inefficient and carbon intensive heating technologies
such as resistance heating and gas boilers with modern heat pumps, it is
possible to improve the overall efficiency. Likewise, this information can be used
by households to make better informed decision making about the costs and
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benefits of a possible refurbishment (this could involve, for instance, investing
in improving the insulation of the building facade, etc.).

3. Depending on the ambient conditions and type of the building and the prevailing
electricity tariffs, installing solar panels can be an economically viable invest-
ment, either with or without electrical storage. This information, in the form of
optimally sized solar panels (and potentially battery storage systems), can be
communicated directly to users based on their historical consumption patterns.

The widely used cost-optimal strategy can be used to perform this analysis [14].
However, historically, this advice was provided to building occupants in a rather
generic manner, i.e. it was not tailored to the individual needs of a household (e.g.
informing everyone in a utility’s operating area that investing in a more energy
efficient heat pump can be more cost-effective than resistance heating). This was
mostly done because there was scant data on individual demand and tailored advice
could only be obtained by conducting detailed energy audits. With the rise of
smart meters, data-driven algorithms have shown great potential in this regard to
better understand user behaviour, either through sub-metering where individual
loads are monitored or through disaggregation which signifies non-intrusive load
monitoring [15]. Disaggregation can help automatically identify individual loads in
the building, often through some form of high resolution pattern matching, which
can then feed into a recommendation system to provide users tailored feedback.
Despite considerable research, this field of work is still very much in its nascency,
primarily owing to the existence of multitudes of different devices, all of which
can have different electrical signatures. The high frequency sampling required to
observe consumption data in real time is also an expensive proposition from both
a processing and storage perspective. Future developments in disaggregation are
therefore expected to bring these algorithms closer to real world deployment.

3.2.1.2 Engagement on Operation

Besides informing building occupants about the benefits of shifting to more efficient
or less carbon intensive appliances, it is also possible to communicate with users
about their day-to-day operation of these appliances. Many companies have already
trialled such services, with OPower being arguably the most well-known [16].
In such projects, building occupants are informed about their energy usage in
the context of other similar households, with the objective of reducing demand.
Access to data and meta-data about buildings allows such companies to provide
this feedback in a visually appealing and statistically consistent manner. These tests
rely on the concept of randomized controlled trials (RCTs) whereby buildings are
divided into different test groups to make statistically significant judgements about
the effect on demand of providing feedback. Consistent efficiency gains of 2–4%
have been shown in the trials by OPower [17].

Other options also exist for operational engagement with building occupants.
Utilities or other service providers can engage with building owners or occupants
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to avoid demand during peak times for a specified time period during a year. This
can be done in exchange for reduced tariffs and/or installation of new appliances
to the buildings. This is typically realized by messages pushed to end consumers.
Alternatively, real time or surge pricing can be activated for these consumers.
However research has shown that there is an optimal amount of information
exchange between the utility and the end consumers—exceeding this frequently
leads to information fatigue and users not paying attention. Furthermore, consumers
are typically risk-averse as the savings arising from switching from fixed to dynamic
tariffs are limited while the risks can be substantial. These results, especially in
the context of demand response, were typified in LINEAR, a large scale project
investigating demand flexibility in Belgium [18]. For demand reduction, it is
important to keep in mind that the elasticity of electricity usage has been historically
known to be quite low, so simple price-based mechanisms are unlikely to lead to
substantial energy conservation [19].

3.2.1.3 Discussion on Data-Driven User Engagement

The impact and adoption of the solutions provided by such data-driven algorithms
can vary considerably. Deep refurbishment of the building, for instance, can have a
high impact on the building energy demand. However, it is a costly investment with a
lengthy payback period. On the other hand, replacing lighting in a building is easily
adoptable, but its impact on overall energy demand is quite limited. Worryingly,
engaging users to modify their behaviour seems to yield only limited benefits. This
is further hampered by information overload which can often lead users to churn.
Another common problem is the transience of user response change, i.e. it can often
revert to the baseline once the engagement program is withdrawn.

3.2.2 Data-Driven Learning and Modelling

While technological advances have made it possible to engage building users for
DSM, it has also become increasingly possible to directly control appliances in
buildings. The same data required to create models to engage users can typically
also be used to create the models necessary to control devices, although real time
control places strict constraints on data availability and reliability. This data enables
a service provider to create forecasts for both user behaviour and the energy systems
under consideration over a specified time horizon. Often, these appliances can
be split into controllable and non-controllable loads. These forecasts can then be
used to optimize the behaviour of controllable appliances to provide demand side
management, while maintaining occupant comfort.

Automation can be seen as the converse of user engagement. While user
engagement takes observed (historic) consumption data as input and seeks human
intervention to elicit changes in this usage of household appliances, automation



52 H. Kazmi and J. Driesen

modifies device behaviour directly in a way that is cognizant of the human user’s
behaviour and device limitations. In this way, automation operates in a more
confined space than user engagement. However, at the same time, it does away with
requiring users to change their behaviour and is therefore often the path of least
resistance.

For planning and optimization purposes to track total demand and generation
at all times, it is imperative to have good forecasts of user demand. This can be
done by analyzing historical consumption and production trends, and using this as
the basis for making forecasts for the future. The problem of forecasting requires
several high level decisions to be made, including the forecast time horizon, the
inputs to the forecast algorithm, whether learning needs to be online or offline, and
the choice of the forecast algorithm. This section highlights the differences these
choices can make in practice.

3.2.2.1 Creating Forecasts

For forecasting energy demand and production, a number of principles apply from
research in data-driven algorithms which can be broadly classified as falling under
the umbrella of artificial intelligence. More concretely, there are at least three
different, albeit connected, approaches to create forecasts, two of which are directly
data-driven. These are frequently termed as white-box, black-box and grey-box
models [20]. Here, white-box models refer to the use of domain knowledge (or
human expertise) to create a model which explains the dynamics of the process
generating data (e.g. the energy usage in a household or electricity production
from rooftop solar PV panels). Black-box methods lie on the opposite end of the
spectrum, and usually operate in a purely data-driven fashion. Grey-box methods
typically combine the two approaches. This information is summarized in Fig. 3.2.
In practice, white-box models can be impractical to construct as there are millions
of different device types installed in buildings all over the planet, and the dynamics
governing them may not be well understood yet in any case. Black-box methods,
which rely on data-driven techniques, remove this reliance on a human domain
expert, and are consequently much more scalable in practice.

As black-box models require access to observational data to learn a model to
create forecasts, the first question that naturally arises is how does learning takes
place. This can take one of the following three forms:

1. Forecasting from raw time series data: this is arguably the panacea for
black-box learning systems, where a function approximation algorithm attempts
to learn a dynamics model directly from observational data, with no human
involvement whatsoever, shown in Fig. 3.3a. While this can work for some
relatively simple tasks, there are nevertheless several practical limitations to this
approach. The first is the choice of input training data. The training data dictates
the quality of the forecast, however this involves both human judgement (i.e.
which data streams are required for a forecast application) and observability (i.e.
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Fig. 3.2 Typical application of different learning and control algorithms to energy systems
operating in buildings: a process is a conceptual representation of an energy system in a building;
the flowchart shows loosely the white-, grey- and black-box modelling techniques, and also shows
the range of different control strategies available to the practitioner. The same models, regardless of
their type, can also be used to engage users by providing feedback and to improve design choices.
The control component of the figure will be explained in a subsequent section
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Fig. 3.3 Different techniques used to forecast from raw time series data
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if those required data streams are available in a cost-effective manner). This
also typically involves choosing a temporal window which defines the amount
of past observations that can be used to predict future outcomes. Longer time
windows allow a function approximator to learn more complicated relationships
(i.e. potentially from further back in time or discover low frequency events).
However it also considerably increases the input dimensionality which leads
to more stringent requirements on the amount of data required for learning a
good model. Likewise, reducing the temporal window length reduces the feature
vector dimensionality, but might also make the learning agent unable to properly
comprehend system dynamics. The second key limitation of using this method
is in the choice of the learning algorithm; the no free lunch theorem states
that there is no single learning mechanism which outperforms every other in
every situation. This requires testing a handful of staple algorithms in practice
to evaluate which one works best. Very recent innovations such as the attention
mechanism [21] and recurrent neural networks [22] have considerably expanded
the prowess of true sequence models while incorporating explainability into the
prediction process. This is however very much an active area of research.

2. Forecasting using feature engineering: this is the classical paradigm for
machine learning algorithms for tasks where learning directly from raw data
is considered impractical, as shown in Fig. 3.3b. In fact, a review of over 50
different forecasting studies of energy systems reveals that most commonly used
features used in black-box modelling include historic data, ambient conditions
(temperature, wind speed, etc.) and calendar features (time of day, weekend
vs. weekday, etc.) [23]. Feature engineering can range from extracting a large
number of features which explain some characteristic of the data to making use of
detailed domain knowledge to extract specific features. In many cases, extracting
meaningful features can be the difference between a machine learning system
that converges to a meaningful solution and one that does not. Feature engineer-
ing allows direct integration of (some) human knowledge into the problem which
can solve many problems such as interpretability (since features are engineered,
they can be interpreted), transferability (features can be engineered in a way
that they transfer across domains) and performance in low data regimes (feature
extraction typically reduces the dimensionality). However, these methods also
introduce some new problems. Foremost among these is the choice or selection
of features which is, at best, a hazy area in machine learning research. In many
instances, this problem is solved by extracting a large number of features and
then optimizing over their selection in a way that achieves the best predictive
performance through cross-validation.

3. Forecasting using automatically extracted features: extracting features from
the time series used for forecasting future demand can be particularly useful in
poorly explored domains or when training data is sparse. However, while the
learner remains black-box in the sense that it is still learning directly from data,
some human bias is incorporated into the problem in the selection of features.
This can be avoided by using automatic feature extraction algorithms such as
principal component analysis [24] or nonlinear autoencoders, etc. [25]. Such
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an approach has been investigated in, for instance, [26], albeit in the context
of learning value functions used in reinforcement learning to control energy
systems. Two potential problems with such automatically extracted features
can often be their non-interpretability (i.e. extracted features have no physical
meaning) and non-transferability (i.e. extracted features in one domain are not
necessarily transferable to a different domain). Arguably the biggest limitation
of such techniques is their data requirement; however, in order to learn feature
mappings, they require copious amounts of data. In a regime where data might be
limited, this creates problems and undesired delays while data is being gathered
for automatic feature extraction, rather than learning.

In practice, forecasting generally works best with engineering features, as
evidenced by their popularity in published literature. It is important to note however
that new developments in machine learning may well change this in the near-future
with increasing amount of data and compute power.

3.2.2.2 Online vs. Offline Learning

The model used to create a forecast can be learned either in an online or offline
manner.

1. Offline learning refers to the fact that the model is learned once, using gathered
data, and is not subsequently updated. An example of this appears in [27].
The obvious benefit of this approach is that it leads to models which can be
extensively tested before deployment. Where the test data matches the training
data, the performance of such offline learning is well-known in advance. This
however is also the greatest disadvantage of learning in an offline manner.
First, offline learning is often carried out in controlled settings, for instance,
in a laboratory which may not represent the many different ways in which
building occupants may use energy. This offline availability of devices is also
not guaranteed; further, models learned in this manner can often be oblivious to
real world changes in operative conditions of the device itself.

2. Online learning can be summarized as ‘learning on the job’, whereby the model
is continuously updated based on observed interactions between systems and the
environment as well as human users. Often, past observations are weighted less
heavily to focus on more recent observations, which is useful when the system
dynamics underpinning the forecasting problem may change over time. While
this reflects the real world use case, in practice it has a significant drawback as
well. Since the agent starts off with no prior knowledge about the system, it can
drive the system to dangerous regions in the state-space during the exploration
phase. This is especially risky when user comfort or grid stability is on the line.
An example of such behaviour can be found for space heating systems can be
found in [28]. In practice, carefully designed exploration functions such as upper
confidence bound [29] should be employed rather than ε-greedy ones [30].
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3.2.2.3 Choice of Forecasting Algorithm

The choice of algorithm also influences the quality of the resulting forecast,
although in the energy domain, where inputs are typically of much lower dimen-
sionality than in computer vision, this is often less of a concern. In practice, a
wide array of algorithms are available to the practitioner, and it is not always
clear which algorithm will yield the best results. A large scale review of published
case studies found that almost three quarters of such projects made use of either
support vector machines or neural networks for prediction and modelling [23]. The
motivation for focusing solely on these techniques is often suspect however, and
it is not at all clear whether other methods would have outperformed them, or
achieved the same performance at a lower computational expense. Therefore, while
it is certainly possible, and even advisable, to test different algorithms, it is also
important to know the strengths and limitations of different algorithm classes to
avoid unpleasant surprises during deployment. The following presents an overview
of different forecasting algorithm for function approximation in building energy
systems, with an emphasis on real world deployability and common pitfalls:

1. Linear and autoregressive models are adept at capturing linear dependencies
between input and output variables; autoregressive models are a special class
of these algorithms which treat historic observations of a time series as input
features for the future [31]. While least squares regression with extracted features
from observational data is arguably the most popular variant of this class
of algorithms, it is possible to fit nonlinear functions with the same models
if the input features are converted into a different basis first. This however
increases space complexity in a combinatorial manner (as the number of possible
combinations of input features grows exponentially). Training a linear least
squares model has typically cubic complexityO(p3) with the number of training
features p, while making predictions is linear with p, and therefore extremely
fast.

2. Kernel-based methods, of which support vector machines and regression are
perhaps the most well-known algorithms, are another function approximation
technique that has become extremely popular for predicting behaviour of energy
systems. These algorithms work by performing the so-called kernel trick, which
allows them to calculate higher dimensional feature spaces implicitly, unlike
the case of fitting transformed input features to nonlinear basis as described
earlier. This makes them more practical from a memory perspective. However,
their computational complexity can be much greater, as training is cubic in n,
the number of training examples, i.e. it scales poorly with increasing amounts
of data. Gaussian processes, another powerful kernel-based approximation
technique, allow computation of uncertainty bounds and are therefore useful for
active and reinforcement learning tasks. However, they also scale poorly with
increasing amounts of training data.

3. Tree-based methods, such as random forests and gradient boosting, are typically
the workhorse in many prediction problems. By employing either bagging or
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boosting, they combine a number of weak learners into one strong learner which
outperforms the individual models. These methods offer a great balance between
computational requirements and predictive performance, and are well capable of
fitting both linear and nonlinear functions. Their performance when extrapolating
beyond the observed feature space, as opposed to interpolating between observed
data points, can often be suspect however. Finally, they scale much better with
increasing amounts of training data, and can therefore be more suitable for big
data applications than kernel-based methods in their unoptimized form.

4. Neural networks are universal function approximators, which means that they
can capture any level of complexity in a training dataset, given a high enough
model capacity. In fact, the recent boom in AI research has been driven in large
part by state-of-the-art results achieved by deep neural networks. While these
methods are extremely flexible and increasingly accessible because of open-
source tools, they are also prone to overfitting, i.e. memorizing input data as
opposed to generalizing well to unseen examples. Their computational complex-
ity too, especially during training, is a huge concern. In fact, recent analysis
of large scale deep neural networks trained for natural language processing
shows that these models have a massive carbon footprint (ranging from tens of
kilograms to tons) [32]. As neural networks trained for energy related tasks grow
deeper and ever more pervasive, it is important to keep in mind that training the
model should not outweigh the savings it achieves.

In the end, the choice of modelling algorithm should be driven not by hype, but by
practical performance and real world constraints on data and computational budget.

3.2.2.4 Forecast Time Horizon

The required forecast time horizon depends on the application and can be distin-
guished into three classes:

1. Long-term forecasting, often focused on creating multi-year horizon forecasts,
is typically done for systems planning. An example application of this type of
forecasting is forecasting household loads and DER proliferation to aid in the
design of the distribution grid.

2. Day-scale forecasting, which is often on a day-ahead horizon, is necessary
for operational planning and optimization with building loads. This type of
forecasting forms the foundation of many classical demand side management
programs which require nominating energy demand and production 24 h ahead
in time.

3. Very short-term forecasting, or nowcasting, is an emerging field of study and
typically concerns itself with forecasts on the scale of a few seconds or minutes.
This level of forecasting is usually suitable for reactive control, which can react
to real time disturbances in planned operation in a more effective manner.

It is important to note that different errors and concerns tend to dominate in all
these forecasts, ranging from occupant behaviour to ambient conditions.
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Fig. 3.4 Autocorrelation function calculated for different load types (appliances and heat pump
load) and levels of aggregation (single vs. 20 households). A higher level of load aggregation
results in a smoother, more periodic autocorrelation function for the aggregated load, hinting
at a predictable time series. Single appliance load usage also results in a somewhat periodic
autocorrelation function, albeit with lots of noise caused by human behaviour stochasticity. Finally,
the heat pump load is not periodic showing that to predict its behaviour exogenous variables (such
as ambient conditions and/or a model for the heat pump) are required

3.2.2.5 Aggregation Level

While the forecast time horizon deals with how far ahead we are looking into for
planning purposes, aggregation concerns the actual time series that needs to be
forecast. This can be distinguished into:

1. The scale aspect refers to the particular energy draw being forecast. This
could refer to multiple levels: device level, household level or commu-
nity/neighbourhood level forecasts. Going from device level to community level,
the forecast quality generally improves to a certain level before plateauing. This
is because human stochasticity becomes less of an issue and the autocorrelation
of the time series rises and becomes more smooth, as visualized in Fig. 3.4. The
same behaviour can be seen, albeit to a lesser extent with energy production
through rooftop solar PV panels. Here the improvement in forecastability stems
not from suppression of human stochasticity, but of small variations in ambient
conditions.

2. According to the temporal aspect, finer grained forecasts tend to be less accurate
as the stochasticity of human behaviour is generally reduced by aggregating
demand over several time periods. This can be noted, for example, from the fact
that it is generally easier and far more accurate to predict energy demand for the
whole day as opposed to the demand for any single minute or hour of the day.
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On a temporal scale, it is easy to predict that the heating circuit will be activated
if the weather will be cold. On the other hand, to know the precise moment when
it will be activated requires not just access to how the building has responded to
the cold historically, but also the human behaviour modifying it in the moment, for
instance, opening or closing windows or occupancy patterns, etc. As the prediction
time scale becomes less fine-grained, these random variations caused by individual
user behaviour are smoothed out. Furthermore, as seen in Fig. 3.4, it is not always
possible to predict the behaviour of an energy draw (e.g. the heat pump) simply
looking at the historical time series. However, by incorporating exogenous variables
such as temperature forecasts, etc., it might become possible to forecast these.
Furthermore, it is possible to create specific forecasts for controllable loads, which
take into account human stochasticity which we discuss next.

3.2.2.6 Point and Interval Forecasts

It is often desirable to make stochastic forecasts which capture the variability
inherent in the future to some extent. Unlike a point estimate of future energy
consumption or production which returns a single value, a stochastic forecast either
returns the expected variance in this prediction or multiple scenarios which have a
certain probability of occurring. The higher the prediction variance (or the spread
between different scenarios), the less likely it is that a single point forecast will be
realized. This fact is especially relevant for data which is generated from bimodal
(or multimodal) distributions: here, making a point forecast can actually smear the
signal to be forecast to values that would never be realized. In the context of energy
consumption, consider the case of energy usage during the night. Most of the time,
the energy consumption will be very low, but occasionally there will be a load such
as a microwave oven, etc. A stochastic forecast would be able to correctly assign
these probabilities, while a naively designed point forecast would make misleading
predictions.

The utility of stochastic forecasts also arises from the different sources of noise
encountered in the prediction problem and the different types of uncertainty they
give rise to, including aleatoric and epistemic uncertainty. Aleatoric uncertainty
is a function of the process generating the data and is a property that cannot be
altered by more sophisticated prediction models or gathering greater amounts of
data. Epistemic uncertainty, on the other hand, refers to the uncertainty caused
by lack of sufficient data to learn a reliable model for the process. In practice it
is possible to squash epistemic uncertainty by driving exploration to improve the
quality of the model. At the same time, while it is true that aleatoric uncertainty is
irreducible, this too can be quantified by creating stochastic forecasts. These can
then be used to make risk-averse (or risk-aware) decisions; for instance, in the
framework of stochastic or robust optimization [33]. A number of reinforcement
learning algorithms, especially of the model-based variety, can also utilize such
forecasts. There are a number of algorithms which can be used in practice to create
stochastic forecasts. These range from quantile random forests [34] to, very recently,
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using dropout as a Bayesian approximation in deep neural networks [35]. This latter
is particularly attractive as it can be seamlessly incorporated into many existing
forecast workflows which make use of neural networks.

3.2.2.7 Measuring the Quality of Forecasts

In this section, we will elaborate on the different performance metrics used
commonly to evaluate different models, and where they may be useful. These
methods can be used to compare different methods against one another, but can also
be used to combine different models in an ensemble which is designed to outperform
all of its constituents.

Model Accuracy
As forecasting is usually posed as a regression problem, one way of defining model
accuracy is through the mean absolute error (MAE) metric, which measures the
average absolute difference between the observations and (model) predictions on a
held-out test set. This is given as:

MAE = 1

n

n∑
i=1

|yi − ŷi | (3.1)

Common alternatives to the MAE metric include the mean squared error
(MSE) or root mean squared error (RMSE). These are also often the primary
objective the function approximation method (e.g. a neural network) is trained
to minimize, in addition to a regularization term used to minimize overfitting.
The MAE is in the same units as the observations ŷi , and is therefore useful to
get a quick idea about the efficacy of the forecast algorithm. The related mean
absolute percentage error (MAPE) scales the error relative to the observations.
It is important to note here that in practice, squared error terms as the ones used
in MSE and RMSE metrics weigh large prediction errors much more severely
than MAE. This can be either desirable or undesirable depending on the learning
problem, the quality of observation data and the probability of anomalies.

Another performance metric used extensively in literature is the R-squared (R2),
also known as the coefficient of determination, a statistical measure of how close
the predictions and observations are. Its value lies between 0 and 1, where a value
closer to 0 indicates that the model explains very little variability of the response
data around its mean, while a value of 1 indicates that the model explains all of this
variability. Higher values of R2 usually indicate a better fit.

It is important to note here that both the MAE (and its variants) and the R2

metrics measure only the magnitude of error in the prediction (and not its direction).
This has implications for learned model quality, as residuals must be analyzed
to determine if they are unbiased. One way to do this is by simply dropping the
absolute term in the MAE formulation: this gives an idea about potential bias
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in the forecast. Thus while MAE measures how far the predictions vary from
observations in general, the mean error (ME) is a measure of whether the model
systematically under- or over-predicts observation data. Another way of doing this
is by carrying out tests for normality on the residuals (i.e. the residuals must be
Gaussian distributed about zero). This can identify if there is a systematic prediction
error. Finally, a more sophisticated alternative is to calculate the autocorrelation
function of the residuals. If no significant autocorrelations exist at any time besides
lag zero, this means that the prediction model has been able to capture all the trends
and seasonalities in the input data, so the error term is completely random. Where
this is not the case, either more data is required (when the model is overfitting) or a
larger capacity model needs to be used to create the predictions (when the model is
underfitting).

The Temporal Dimension
The model forecast accuracy is not a fixed term, especially for the online case
discussed above. Rather, it evolves over time as more data is gathered about
the system. This characteristic is captured by considering three dimensions for
whichever error statistic (MAE, MAPE, etc.) is considered.

1. Initial performance. Model performance at the beginning of the learning pro-
cess (possibly after an initial stabilization period) is an important consideration
as it identifies how well the system behaves in the absence of much data. A model
which has a much higher accuracy than another model is therefore considered to
exhibit jumpstart performance.

2. Learning rate. Learning rate reflects the rate at which the model performance
improves over time, i.e. with the acquisition of additional data points.

3. Asymptotic performance. Model performance in the limit is an important
concern, especially for control and simulation purposes. If the model never
converges to a reasonable accuracy, it should not be used for active control or
user engagement purposes. Additional data should help the model improve its
performance until it plateaus. This plateau should not be induced by limitations
of the learning algorithm, and should be at the level dictated by the noise inherent
to the system.

3.2.3 Advanced Topics in Modelling

Two key limitations hinder the real world applicability of data-driven approaches.
These include (1) huge dataset requirements and (2) data privacy concerns. This
section provides an overview of some concepts which have arisen to address these
issues.
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3.2.3.1 Transfer Learning

In many real world situations, it is possible to use previously collected data or
trained models to bootstrap a new forecasting model, i.e. providing a jumpstart to
the predictive performance, as shown in Fig. 3.6. The objective of doing this is to
learn a highly accurate model of the system under consideration in as little time
and at as little cost as possible. This transcends the traditional limitations of data
inefficiency associated with black-box techniques. It can also considerably lower
the computational budget required to train the model from scratch.

Transfer learning, which allows this accelerated black-box modelling in a prin-
cipled manner, refers to the case where knowledge—in some form—is transferred
from a source to a target [36]. In general, transfer learning makes sense when plenty
of data has been collected for a source domain or task, which can be utilized to
improve the predictive accuracy of forecasts made for a different target domain or
task. Figure 3.5 shows a visualization of the main concept behind transfer learning.

If black-box modelling is to go beyond the performance levels we have already
witnessed in the past few years, transfer learning is likely to play a role in this, even
though adoption in the energy domain has been fairly limited. Very recently, some
research has appeared which addresses this shortcoming [20, 37–39]. Practically,
transfer learning involves two key concepts: a domain and a task [36, 39] which can
be defined as:

1. The domain D consists of a feature space X and a marginal probability
distribution P(X) over the feature space where X = {x1, x2, . . . , xn} ∈ X. Here
X includes the space of all possible feature vectors, whereas xi is a particular
feature vector corresponding to some input andX is a particular learning sample.

Fig. 3.5 A visual overview of traditional machine learning workflows, as opposed to those
incorporating transfer learning; transfer is especially useful in settings where there is limited
amount of annotated data (represented by dataset two in this case). A typical machine learning
algorithm would have poor performance for this generalization, while with transfer learning it is
possible to bootstrap its performance using knowledge gained from learning with dataset one
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2. Given a domain, D = {X, P (X)}, a task T consists of a label space Y and
a conditional probability distribution P(Y |X), which is typically to be learned
from the training data in the form of pairs xi ∈ X and yi ∈ Y. The task T is then
given by {Y, P (Y |X)}.
Thus, in the context of creating load forecasts, an example of the input feature

space X can be all possible combinations of historical smart meter data as well
as other relevant sensor readings such as temperature sensors, etc. The marginal
distribution P(X) over this feature space then quantifies the probability of observing
a specific feature vector (e.g. a specific energy consumption pattern occurring
in a household). This depends on consumer behaviour, device characteristics and
ambient conditions. Y is the set of all possible labels, which in this case would be
the set of real numbers, in case energy can be both generated and consumed locally.
The conditional distribution P(Y |X) is the specific mapping between historical user
behaviour, device specifications and ambient conditions, and future energy demand
that we are interested in learning.

There are four possibilities in which transfer learning can be applied (where
either of source domain and task can differ from the target domain and task).
The most practical ones among these are when either the marginal or conditional
probability distribution are different across the source and target, i.e. P(Xs) �=
P(Xt ) and P(Ys |Xs) �= P(Yt |Xt), respectively. The former refers to the case
of homogeneous populations, where household behavioural patterns or ambient
conditions cause the state-space to be explored differently, but the underlying data
generating process (e.g. appliance type) remains the same. This can be contrasted
with the latter where conditional probabilities differ, i.e. heterogeneous populations
are considered. This can lead to transfer across devices which do not share identical
dynamics. Following the terminology in [36], we refer to the former as transductive
transfer and the latter as inductive transfer. While similar techniques may be
applied to achieve both, a differentiation can be made between:

1. Feature sharing is the form of transfer learning where features from a different
but related source domain or task are directly shared with a target to improve
learning performance. Both raw observations and extracted features can be used
for this purpose, as long as the training input and output feature vectors share
the same dimensionality across source and target. Which features to share for
transfer is still an open area of research, and different studies have shown
different results employing various metrics such as similarity, diversity, etc. [40].

2. Parameter sharing usually involves the training of a function approximator
such as a neural network with a large amount of source data. The weights of
this neural network are then used as initialization for the target domain or task
which fine-tunes the network weights with observed data in the target domain.
The fine-tuning is usually done with a much smaller learning rate to retain the
representations already learned by the network while nudging it to adapt to the
new learning problem [41].
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Fig. 3.6 A demonstration of
different ways in which
transfer learning can
accelerate learning; the
jumpstart is illustrated by the
higher starting point, the
difference in learning rate is
captured by the higher slope,
and the improved asymptotic
performance is illustrated by
the higher asymptote, adapted
from [42]

On an abstract level, feature sharing corresponds to sharing experiences across
learners, while parameter sharing encourages transfer of knowledge. The choice
of which one is more suitable depends on the nature of the problem and the
disparity between the source and target in the transfer learning problem. Transfer
through parameter sharing is generally associated with deep learning, while sharing
raw features can be seen as a naive alternative which is not guaranteed to work
in heterogeneous settings, and can sometimes even lead to negative transfer.
The benefits encapsulated by transfer learning are summarized in Fig. 3.6. It is
straightforward to see why this technique can help with reducing the data intensity
of learning algorithms.

3.2.3.2 Privacy-Preserving and Privacy-Aware Learning

Privacy concerns underpin most contemporary innovations in data-driven learning
and forecasting. This is definitely the case in creating forecasts and models for
energy usage and production in buildings, which require gathering and sharing
smart meter or other sensor data with a central server. While a number of
different solutions have been proposed which address parts of the problem including
differential privacy [43], homomorphic encryption [44] and secure multi-party
communication [45], federated learning is an end-to-end solution which allows
learning in a centralized manner with distributed data gathering mechanisms [46].
This is especially desirable when shared representations are being learned which can
make use of transfer learning as described above. The central idea behind federated
learning arises from performing decentralized model updates on individual devices
(or nodes). These model updates (or a subset thereof) are then pushed to a central
server where they are aggregated across multiple devices. This helps with not just
smoothing out individual anomalous behaviour, but also further anonymises user
data, as it is might still be possible to infer user behaviour from individual model
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updates. The final model at the central server is then pushed back to individual
nodes for consumption. This ensures that user data never leaves their premises, and
addresses a large part of the data privacy debate.

3.2.4 Control

Learning is only one part of the larger problem space, as shown in the pipeline in
Fig. 3.2. The learning agent also needs to make decisions and execute actions based
on the model it has learned so far, or it needs to provide actionable input to the
building occupants. This allows it to gather even more data to improve its repre-
sentation of the system. Here, we briefly present some objective functions which
agents controlling buildings, or clusters of buildings, can optimize towards. This is
followed by a discussion of the algorithms which practitioners and researchers can
make use of to achieve this optimization in practice.

3.2.4.1 Objective Functions

The structure of optimizing energy usage in buildings for enabling DSM derives
from the interactions between the energy loads, the building occupant, any DERs
and storage elements and the energy grid. The control agent in this case, which
is also learning and creating forecasts for the future, controls the flexible (or
controllable) devices in a building following a policy, πn. This policy is designed to
maximize a specified objective function such as energy efficiency, subject to certain
constraints which can depend on both physical aspects of the energy system and
consumer preferences. These objectives include both local optimization objectives
where buildings are treated on their own, and global optimization objectives where
multiple buildings are aggregated together to achieve a shared objective such as grid
stability. Typically, it is easier to optimize towards local objectives as the sensing
and coordination costs are more limited. Some of the most commonly employed
objectives for DSM programs include:

1. Energy efficiency, or demand reduction, refers to the goal whereby the overall
energy used by a building or a cluster of buildings is minimized while still
respecting constraints based on user and system preferences. A number of prac-
tical examples of such optimization exist in literature for a number of different
loads including building space heating and hot water systems [20, 47, 48].
Typically, the focus of these studies is thermal draws as these represent untapped
flexibility potential in the system due to use of naive control mechanisms.
Optimizing energy efficiency is usually a local optimization problem in the sense
that the energy demand reduction of a building does not influence the energy
demand of its neighbours.
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2. Price optimization is a generalization of the energy efficiency case, where the
price of electricity is allowed to vary according to the time of day and/or year.
In this case, the objective of the control agent is to minimize energy costs. The
simplest case of a variable tariff is the dual pricing scheme offered to households
in many countries [28, 49]. However, in many places such as The Netherlands,
it is becoming increasingly possible for households to directly access real time
pricing. One drawback of this mechanism means the exposure of households to
large scale price fluctuations which will likely increase with growing variable
renewable energy proliferation. This can be mitigated by placing price caps, but
also by smart agents controlling flexible loads in the building.

3. Self-consumption of local DER energy production is a specialized objective
which is designed to promote consumption of locally produced resources such
as solar energy. Primarily, this targets maximizing the usage of local electricity
generation from rooftop solar panels in households to minimize grid interaction.
Large scale injection of electricity during the summer months can easily overload
the local low-voltage grid, especially when coupled with low consumption—
as is frequently the case in many Northern European countries during summer.
Local consumption, either at the household or neighbourhood level, is meant to
alleviate this problem [50].

4. Providing ancillary services to the energy grid can work on two different levels:
distribution and transmission. On the distribution side, load (or production)
can be modulated to alter the power flow or voltage in the distribution grid.
This problem typically requires at least a few controllable appliances (or solar
panels) in a neighbourhood [6, 51]. On the other hand, ancillary services for the
transmission grid are typically centred on frequency regulation. When frequency
drops below the standard (50 Hz in Europe), demand should be reduced or
production should be increased instantaneously. When the frequency rises above
the standard, demand must be ramped up or production must go down. As we
transition to more variable renewable energy sources, where supply side controls
will not necessarily be sufficient, demand needs to be made flexible too. Both
heating and electric vehicles will be the ideal fit for this [52]. However, to ensure
stability, the market rules for ancillary services require strict compliance and,
as the resources required to participate in these services are typically in the
megawatt range, exclude demand side management in buildings. This will slowly
change in the coming years as the energy grid undergoes rapid decarbonization
and electrification.

In addition to these objective functions, there are usually constraints placed on
the optimization problem as well. These include device limitations and occupant
comfort bounds. Sometimes, when these constraints need not be strictly enforceable,
they can also be made part of the objective function that the agent optimizes. While
historically control of appliances in most buildings took a naive rule-based form,
there are two main alternatives which have developed over time to improve its
performance. There are two different ways to look at this. The more common view is
to distinguish them as model predictive control and reinforcement learning. This is
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rather disingenuous as it lumps the model-based variants of reinforcement learning,
some of which are actually closer to model predictive control, with the model-
free reinforcement learning algorithms. Therefore, in this section, we distinguish
these classes of control along model-based and model-free controllers, while also
highlighting the conceptual differences and similarities between model predictive
control and model-based reinforcement learning.

3.2.4.2 Model-Based Algorithms

Unlike rule-based controllers which do not possess any anticipatory prowess,
model-based controllers make use of a model of the system dynamics to look
into the future and explicitly optimize operation. This model can be obtained by
making use of the techniques discussed earlier in this chapter, whereas the actual
optimization can be based either on a passive formulation such as conventional
model predictive control, or one based on active learning such as reinforcement
learning.

Model Predictive Control (MPC)
MPC combines a model of the system with conventional solvers making use of
convex or non-convex optimization algorithms to arrive at optimal control actions
for the future [47]. The discussion of convexity derives from the structure of the
problem, although in many practical cases convex relaxations have been introduced
to solve non-convex problems. This is, in many practical situations, a trade-off
between computational complexity and the actual performance of the controller.
Regardless of the optimization method chosen, the objective is to improve the
operational performance of the device compared to some baseline, usually obtained
via naive rule-based control.

A distinctive feature of MPC is that the objective (or cost) function to be
minimized or maximized has to be explicitly stated. Economic MPC (EMPC),
where the objective is to reduce operational costs (e.g. energy prices as described
above), is arguably the most popular formulation. Where the cost is constant, this
reduces to the standard form of demand reduction (or improving energy efficiency).
This formulation has the following cost function [53]:

Je =
∑
i

pel(i)Ẇel(i) (3.2)

where Ẇel(i) is the power consumed and pel is the electricity price, which varies
in time according to the tariff structure. By minimizing Je over a receding time
horizon, it is possible to obtain monetary savings. This process fundamentally
pushes energy usage from times of higher energy prices to when it is cheaper. pel can
be the actual price, or it can be a forecast of the price. Other formulations seeking to
optimize user thermal comfort, by minimizing temperature variations outside some
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predefined criterion [54], or to provide ancillary services to the grid by demand
response exist as well.

In addition to defining the objective function, a model predictive controller typ-
ically also explicitly defines the constraints placed upon the optimization problem.
These can take on many forms, but are mostly derived from physical limitations of
the device. For instance, a controller might be forced to make binary decisions while
controlling a heat pump, because it can only turn the system on or off. Likewise,
while a modulatable heat pump can theoretically consume continuous-valued power
at any given time, the amount of this consumption is bounded above by its nominal
capacity, and below by zero.

Typically model predictive control has been deployed in a deterministic setting.
This assumes that future consumption and production of energy, as well as energy
prices, is forecast as point estimates. As we have discussed previously, this is seldom
the case. Especially with the proliferation of distributed generation and greater
electrification of loads, this forecast error is a source of considerable problems
in optimal control. A popular alternative is to employ a variant of stochastic
programming for the actual optimization. This paradigm makes use of a stochastic
forecast, reduced to a set of scenarios each with a distinct probability. These
scenarios are then used by the optimizing agent to reduce the possibility of a worst
case scenario occurring. In many services, such as the provision of heat to end users
during winter or ancillary services to the grid, it is important to plan keeping this
uncertainty in mind.

Despite widespread usage, there are some key limitations of MPC in its
conventional form:

1. Defining an objective function and constraints in a rigid manner can lead to issues
during the operational phase, especially if different components of the system
are replaced or upgraded over time. A common practical example is when the
constraints originally defined in the optimization problem do not hold due to a
system upgrade.

2. The requirement for a model to use with the controller and the potential
computational cost. The limitation surrounding the existence of a prior model
can be side-stepped by learning the model online, an approach we refer to as
data-driven MPC. It is important to keep in mind here that the only learning in
this paradigm is of system dynamics (i.e. how the system behaves over time). In
other words, the optimization problem is still solved at every time step.

3. The MPC formulation is especially wasteful in domains where the controller is
expected to solve the same (or similar) optimization problem on a recurring basis
(e.g. when it revisits similar states on a recurring basis). In other words, it is a
memory-less optimization framework, which can exacerbate its computational
complexity problems. This renders it unsuitable for problems which require
very fast response times such as frequency regulation. This concern has been
addressed partly by formulations such as explicit MPC, which create a tabular
mapping of optimal control actions from all possible states of the system.
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However, this is only feasible when the problem dimensionality is very low. As
the state-action space grows, this quickly becomes infeasible.

Model-Based Reinforcement Learning
Model-based reinforcement learning (RL) lies somewhere between conventional
data-driven MPC formulations and model-free RL algorithms, which we discuss in
the next section. While the lines are continuously shifting, there are two fundamental
conceptual differences between MPC and model-based RL, as most practitioners
employ it:

1. Exploration ensures that there is a principled way for the treatment of uncer-
tainty inherent to data-driven models. When the agent is uncertain about its
representation or the optimal course of action to adopt, it takes more exploratory
steps in the hopes of discovering something useful about the environment (or its
own dynamics). When it has learned an accurate representation and/or control
policy, it turns its attention to exploiting this knowledge, rather than exploring
needlessly. There are many ways of ensuring exploring agents which have
already been mentioned in the section on point and interval forecasts.

2. Policy-side learning ensures that, over time, the controller learns optimal
policies in addition to a model for the system. This means that, when faced
with similar optimization problems, it does not need to perform expensive
computations repeatedly, but can just run inference on a function approximation
algorithm. This learning can therefore considerably speed-up real world perfor-
mance and, in doing so, it addresses a major shortcoming of model predictive
controllers.

3.2.4.3 Model-Free Methods

At the opposite end of the control spectrum lie model-free reinforcement learning
based algorithms, which learn (optimal) policies directly from acting in and
interacting with the environment [30]. This can be, in many instances, an attractive
proposition because it does away with the need to learn a model for the system
altogether. In recent years, a number of increasingly complex formulations have
been proposed to solve specific problems with basic formulations such as Q-learning
or SARSA. These algorithms can be especially effective in domains where the input
space is high dimensional and learning an appropriate model might be impractical
because of the task’s complexity [55].

A note on the terminology used in reinforcement learning is necessary here.
Markov decision processes (MDPs) form the foundation of many RL formulations
which allow us to interleave modelling and control of energy systems. An MDP is a
special type of a stochastic process, where the state transition probabilities (i.e. the
conditional probability distribution of future stures) follow the Markov property,
and are influenced not just by the stochasticity of the environment, but also by
the actions of a decision making agent. An MDP is typically defined by the tuple:
{S,A, P,R}. Here, the control agent is in some state s ∈ S, whereupon it can
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choose an (allowed) action a ∈ A. Given this decision and the stochasticity inherent
to the MDP, the agent moves to a new state s′, based on the state transition function
Pa(s, s

′), and receives a reward based on Ra(s, s′). In MDPs, the state transition
function is conditionally independent of all previous states and actions, except for
the current state s and action a. This ensures that an MDP satisfies the Markov
property [30]. Based on the MDP, the agent learns a policy, π , to perform control
actions given its present state, given as:

π : S × A→ [0, 1] (3.3)

π(a | s) = P(at = a | st = s) (3.4)

which defines the probability of taking control action a in state s, and marks a
probabilistic policy. This does not however say anything about how good this certain
policy is at maximizing rewards. Therefore, to determine the optimal policy, a value
function is defined for each state as the expected return the agent will receive (and
reflects the goodness of the state). The value of a policy can therefore be defined as:

V π(s) = E[R | s, π ] (3.5)

A policy, π , is then considered to be optimal, π∗, if it achieves the highest
expected return, starting from any initial state, and is given as:

V ∗(s) = max
π
V π(s) (3.6)

It is also possible to take a step further, and define the state-action values rather
than simply the state-values. This is typically given by the Q-value of a state-action
pair, and is defined as:

Qπ(s, a) = E[R | s, a, π ] (3.7)

Once a Q-value has been learned for each state-action pair, it is straightforward to
obtain the optimal policy. A number of algorithms have been devised to learn either
the Q-value or the optimal policy directly from data, including Q-learning, SARSA,
Fitted Q-iteration and Deep Q-Networks, besides many others [30]. One key
distinguishing factor in modern RL algorithms is the use of function approximation
to replace tabular Q-values, which allows for much better generalization, especially
in high dimensional spaces.

Despite impressive advances, it is well established in control circles in general
that model-free controllers cannot compete with their model-based counterparts on
most realistic control tasks [56]. Similar findings have been reported for the energy
domain [28]. One reason for this is the fact that model-based algorithms can use
the learned models to simulate many trajectories of possible futures, thereby further
accelerating the discovery of good policies. Model-free controllers are constrained
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to only make use of observations which have been gathered in the past and cannot
usually generate their own data.

3.3 Practical Challenges

This section highlights some of the most important technical challenges still
plaguing many smart grid projects of the type discussed in this chapter. Besides
technical challenges, economic and social issues can often derail such projects.
These include the problem of diffuse rewards, high installation and maintenance
costs of sensors, as well as data privacy and security issues. Often, there are
promising technical solutions to these challenges that are yet to be commercialized,
but for brevity these are not discussed further. This section instead focuses on the
technical challenges that still need to be addressed while implementing data-driven
algorithms to perform demand side management in buildings.

3.3.1 Challenges with Function Approximation

3.3.1.1 Data Requirements

The lack of availability of data can often hinder adoption of smart solutions.
This need for data can manifest both in terms of requirements for extensive
sensing (to perform state estimation) and historical data (to train models for system
identification). Where the input state-space has been inadequately explored, the
modelling algorithm will typically make incorrect predictions. Furthermore, as the
dimensionality of the input state-space grows, the amount of training data required
to learn a reliable model can quickly become unmanageable. Transfer learning is
generally intended to serve as a general-purpose solution for this practical challenge
of generalization from limited data. However, it does not address the very real
possibility of physical changes to an operative device which can fundamentally
alter the data generating process. Likewise, the question of what the model actually
knows and what it does not know is an important one, and can be addressed by
making use of Bayesian or ensemble based methods. Getting reliable uncertainty
estimates with deep learning remains however an active area of research. Finally,
using existing models to explain the behaviour of previously unseen devices remains
an open research problem.

3.3.1.2 Practical Costs of Deep Learning

Deep learning has, for better or worse, become the method of choice for most
function approximation tasks in the energy domain. Often where simpler methods
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would suffice, practitioners employ deep neural networks because of the hype
surrounding these methods. While highly versatile machine learning tools, there
are however considerable hidden costs associated with this choice. Deep neural
networks can easily learn the noise in the training data and thus fail to generalize
to unseen examples. Even when ample training data has been gathered, deep
neural networks require a lot of computational power to train, which is not
always available, and is in any case counterproductive because of the associated
environmental footprint. Finally, neural networks, or any data-driven method for
that matter, need to be periodically retrained as more data becomes available. This
represents further computational expense. At the same time, retraining a neural
network repeatedly with different training data introduces an additional point of
failure in the system. It is entirely possible for the neural network to fail to converge
to a suitable minima during training due to their stochastic nature. This can be
avoided by careful test-driven development, a practice often eschewed in practice.
This issue can only be addressed as development tools and processes in the data
pipeline mature.

3.3.2 Challenges with Control

3.3.2.1 Response Times

As already mentioned, a number of ancillary services require extremely fast
response times. This is especially true for the frequency reserve, where some
services require even sub-second response times, a feat almost certainly impossible
to achieve with a central controller which involves both network latency and
planning time. Instead, it is much more practical to perform control at a local level
in this case, directly in response to fluctuations in frequency measurements, even
though it may increase local sensing costs. Learning optimal control policies over
time offers a practical means to achieve this goal. Similarly, response times may
be constrained by the device itself. For instance, many heat pumps on the market
nowadays have a rather lengthy response time (after being switched on). This means
that these devices may typically not be suitable for providing very fast frequency
response to the grid on their own. Finally, there is also a substantial asymmetry in the
amount of flexibility different devices can offer to the grid, i.e. the potential upward
modulation of energy demand for a flexible load is not the same as how much its
energy can be reduced at any given time. In general, aggregating multiple different
sources of flexibility can increase the robustness of demand side management. The
less correlated these sources of flexibility are, the greater their impact on making
the aggregation portfolio resilient to random variations caused by user behaviour
and ambient conditions.
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3.3.2.2 Distributed vs. Centralized Control

The discussion about centralized vs. distributed controllers goes beyond the device
response time. Centralized approaches involve a single agent gathering data from
multiple agents (buildings), performing an optimization or learning task, and com-
municating results to the agents (typically in the form of actions to take). This allows
the central agent to directly optimize towards a single, global objective, and reduces
complexity if information about the individual agents is readily available (in real
time). On the other hand, this approach has high computational complexity, incurs
substantial communication costs and suffers from network latency. Decentralized
algorithms, on the other hand, operate on an individual agent level and can remove
the effects of network latency. These approaches have the potential to be more
resilient as they do not have a single point of failure. However, they often suffer from
several other limitations, such as requiring different agents to learn how to cooperate
and compete to obtain shared objectives, which can be both data and compute
intensive. Furthermore, for critical services, testing and debugging decentralized
agents can be highly challenging due to the wide variety of scenarios that can be
experienced in practice.

3.3.2.3 Demonstrability

Demonstrability refers to the fact that a provider of ancillary services is contrac-
tually obligated to provide the service that has been committed. This can take the
form of providing a certain amount of upwards or downwards flexibility, and can
invoke both capacity and activation based mechanisms [52, 57]. Failure to comply
might lead to penalties, and even exclusion from the pool. However, demonstrability
is far from straightforward in many cases with DSM. Occasionally, this can be
due to failures in sensing and/or communication networks, but more frequently
it is due to the requirement for a model which defines a reference baseline to
which the service provider’s response is compared against. Human stochasticity and
unexpected ambient condition changes (and their interaction) can adversely affect
how this plays out in the real world, and there is no universally accepted solution to
handling this at this point in time.

3.4 Conclusion

Despite the challenges highlighted in this chapter, demand side management
powered by data-driven methods will enable the next generation of smart buildings
and grids. This is a timely development that will enable societal level electrification
and decarbonization of the building stock. Technological innovations in machine
learning research, such as large scale transfer learning across disparate domains and
tasks, federated learning which allows model-learning without access to user data
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and reinforcement learning which avoids the pitfalls of model predictive control,
seem particularly promising. At the same time, practitioners must ensure that these
algorithms are implemented in a way that is cognizant of not just their strengths, but
also their limitations.
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Chapter 4
A Multi-Agent Approach to Energy
Optimisation for Demand-Response
Ready Buildings

Oudom Kem and Feirouz Ksontini

4.1 Introduction

For decades, electric grids have been employed to deliver electricity from utilities
to customers. This classical approach, in which power generation is centralised,
provides a uni-lateral communication between the utilities and the customers
subscribing to the “generation follows loads” principle. The increasing penetration
of renewable energy sources has led the transition towards the next generation of
grids, the smart grids, which allows a bilateral communication between the utilities
and their customers. This new paradigm empowers the demand side, providing the
possibility for the customers to offer electricity and flexibility. From the system
point of view, benefits such as reduced peak demands, more efficient transmission
and distribution, and improved quality of services can be achieved. From the
demand side perspective, customers are more in charge of managing their electricity
bills through flexible consumption as well as additional revenue streams from the
network, and they are less dependent on the utilities.

To reap the aforementioned benefits, customers need to be ready for this
paradigm-shift. The challenge addressed in this work is enabling customers to
adopt flexible consumption patterns and to support the demands from the system.
Our purpose is to render the customers capable of providing the flexibility and
participating in demand-response schemes. To this end, we aim at optimising the
energy consumption and generation on the demand side and at the building level.
The objectives of the optimisation are threefold: optimise the consumption and
injection to grids of locally generated power, support demand-response signals from
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external parties, and exploit the flexibility to reduce energy bills considering the
revenues from subscribing to demand-response schemes.

In the optimisation, we consider a wide range of dynamic devices providing
different types of flexibility such as shiftable/deferrable devices, sheddable devices,
and curtailable generators. Each device possesses its own dynamic constraints and
objectives. The optimisation needs to take into account the constraints of each
device and the demand-response requests, while ensuring that the constraints of the
customers are satisfied. Performing such an optimisation over a time horizon entails
dealing with a large number of variables, making it computationally impractical to
solve in a centralised manner. To solve this optimisation problem in a distributed
fashion, thereby ensuring efficiency, scalability, and privacy, we propose a multi-
agent optimisation approach that is based on the Alternating Direction Method
of Multipliers (ADMM) [9, 12, 15]. For each type of devices, we model its
objective function and constraints incorporating user constraints and demand-
response incentives, when applicable. The result of the optimisation is the optimal
energy flow (i.e., consumption and generation profiles) that takes into account the
incentives from demand-responses schemes, while respecting user constraints.

The remainder of this chapter is organised as follows. Section 4.2 presents
the context and background of this work providing details on the flexibility and
the demand-response schemes considered in the optimisation. Section 4.3 reviews
related work from the literature. Section 4.4 describes the proposed models for
different types of demand-response requests. Section 4.5 presents a conceptual
model of the building, the optimisation problem, and the algorithm upon which
our system is based to solve the problem. Section 4.6 describes our main proposal,
the multi-agent system for energy management as well as the optimisation models
to incorporate demand response in the optimisation. Section 4.7 details the experi-
ments conducted to validate the proposal and the analysis of the empirical results.
Section 4.8 discusses various aspects of the current state of the proposal. Section 4.9
concludes the chapter and presents the directions for our future work.

4.2 Context

4.2.1 Building Flexibility

In this work, we address energy management in buildings that are equipped with
a wide range of energy-consuming devices and energy-producing devices such as
household appliances in residential buildings, photovoltaic, and local generators.
Building energy consumption normally consists of fixed consumption and flexible
consumption. Fixed consumption refers to the consumption that cannot be changed
in any manner. Flexible consumption, in contrast, may be modified to a certain
extent, thus providing some sort of flexibility. In [10], flexibility is defined as “the
modification of a power pattern of an energy resource at various time scales in
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reaction to an external signal in order to provide a technical service for an energy
system and/or an economical service for a system stakeholder”. In other words,
flexibility represents the aggregated consumption and generation of flexible devices
(i.e., devices whose consumption may be changed in some way). In the context of
this work, the following types of devices, distinguished based on the flexibility of
their consumption or production, are considered:

• fixed loads: devices whose consumption cannot be altered in any way,
• shiftable loads: devices whose consumption can be shifted within a specified time

interval,
• sheddable loads: devices whose consumption can be shed to a certain extent at a

specified time interval,
• and curtailable generator: energy-producing devices whose production may be

curtailed at a specified time interval.

The flexibility provided by each device is determined by its user. For instance, lights
and TVs are usually considered as fixed loads by their users as they are not to be
switched off by the system when the users need them. However, in some cases, users
may explicitly indicate that their lights are sheddable (on/off or shed to a lower
level of brightness), in which case the lights are considered as sheddable loads.
Typical examples of shiftable loads are washing machines and dish washers as their
consumption usually can be scheduled within a time interval without affecting user
comfort.

Each type of devices possesses its own constraints. Users of the devices may
also impose their preferences on how the devices should operate. User preferences
for each device should be private to each device as to respect user privacy, a
criterion particularly important in a multi-user environment. Device constraints, user
preferences, and privacy concern need to be taken into account in building energy
management.

4.2.2 Demand-Response Schemes

As a part of demand side management, demand response is designed to motivate
changes in consumption patterns of customers by providing financial incentives
in the form of changes in energy prices over time or as direct payments [28].
Unlike energy reduction, which is also a demand side management program,
demand response is concerned with shifting consumption to different points in time
rather than reducing the overall energy consumption [10]. Demand response can
be categorised into price-based and incentive-based. Price-based demand response
or implicit demand response provides customers with time-varying energy tariffs.
Incentive-based programs offer direct payments to customers to change their
consumption patterns upon request.

The ability to participate in demand-response programs depends on the flexibility
voluntarily provided by the consumers. Such flexibility can be exploited to adapt the
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consumption and/or generation to benefit from the revenues from demand-response
participation. Each customer subscribing to a demand-response program receives
a set of demand-response requests customised based on their consumption and
generation. In this work, both price-based and incentive-based demand-response
schemes are considered in the optimisation to align with our objective to render
buildings ready for demand response.

4.3 Related Work

Energy optimisation addressed in this work involves various types of dynamic
devices connected by both alternating current (AC) and direct current (DC) lines,
forming a network of devices. The aim is to minimise a network objective, which is
the sum of the objective functions of the devices, subject to the constraints of devices
and lines. This problem is considered as a dynamic optimal power flow problem
as mentioned in [20]. In the literature, many algorithms and techniques have been
proposed for building energy optimisation such as artificial neural network-based
model [14, 23], ant colony optimisation algorithm [16], reinforcement learning [24],
and genetic programming with fuzzy logic [1], just to name a few. However, each
device possesses its own dynamic constraints, objectives, and preferences provided
by its user. Performing an optimisation with such devices over a time horizon entails
dealing with a large number of variables, making it computationally impractical to
solve in a centralised manner [20].

Distributed optimisation techniques are naturally applied to power networks
considering the inherent graph-structured nature of the distribution networks.
Solving complex problems using a distributed technique has become prevalent in the
literature. Distributed optimisation has been shown to be applicable for the optimal
power flow problem [3]. In [11], the authors propose some strategies for distributed
problem decomposition to achieve desirable properties such as scalability. Dual
decomposition [4] is an example of distributed optimisation methods. It preserves
the privacy of the cost function and local constraints of each solver agent. However,
it is not robust in the sense that it requires many conditions such as strict convexity of
all local cost functions for convergence to optimality. An advance in decomposition
methods, ADMM provides robustness and possesses the privacy-preserving feature.
Its applicability for solving the dynamic optimal power flow is shown in [20].

Various optimisation models [18, 20] have been proposed for different types of
devices. They are generic models that incorporate device cost function and con-
straints. One of the main objectives of our approach is to take into account also the
revenues from participating in demand-response programs, and thus incorporating
demand-response incentives in the models. Many works have been done to address
demand response in building energy optimisation such as [21, 27, 31], but they focus
mainly on price-based demand response such as real-time pricing or time-of-use
pricing. Optimisation considering the participation in different types of incentive-
based demand-response programs, however, is much less investigated. Existing
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works addressing incentive-based demand response such as [25] and [29] propose
models that take into account an incentive offered to the consumer during peak
times. This method motivates consumers to modify their behaviour the same manner
as the energy tariff is used in price-based demand response. It is incompatible
for more elaborated demand-response requests such as load shedding and load
shifting that require a specific amount of consumption to be shed or shifted in some
specified time interval. In [25], the authors go further to include also the notion
of consumers’ inconvenience level in the model to represent the disparity between
the base consumption and the deviated consumption as a result of modifying the
consumption in response to the incentive. The inconvenience is an important notion
that we will also consider in our approach.

Multi-agent systems (MAS) is a powerful tool for modelling and developing
complex and distributed systems due to the properties offered by the agents, namely
autonomy, social ability, reactivity, and pro-activity [13]. The distributed nature
of problem solving inherent in MAS introduces reliability in the event of agent
failure as tasks can be reassigned to other agents [8]. MAS has been proven an
efficient solution to tackle problems in the context of power systems as shown
in various works [2, 5–7, 17, 22, 30]. Owing to the aforementioned properties of
MAS, in our approach, MAS is used as an abstraction for modelling, designing,
and implementing the distributed optimisation algorithm, namely ADMM. Agents’
ability to autonomously operate and to interact or communicate with one another,
enabling privacy for each decision-making entity and coordination among the
agents, renders MAS compatible for our approach. Each agent performs its local
optimisation based on their model that incorporates demand-response incentives as
well as consumers’ inconvenience when applicable.

4.4 Demand-Response: Models, Incentives, and Scales

In this section, we provide the conceptual models for different types of demand-
response requests encapsulating the parameters necessary for a customer to adapt
their consumption pattern to respond to the requests. An analysis on demand-
response incentives, their values, and scales are provided.

4.4.1 Price-Based Demand-Response Model

A price-based demand response is essentially a tariff (e.g., time-of-use or real-
time pricing). The tariff is modelled according to the optimisation time horizon and
sampling time. For instance, in a case where the optimisation is done for the next
24-h horizon with 15-min sampling time, the tariff consists of energy prices for the
next 24 h discretised into 15 min.
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4.4.2 Incentive-Based Demand Response

Incentive-based demand-response requests are defined with respect to the base
consumption, which is the expected imported energy of a customer (i.e., predicted
energy import). They provide incentive payments to motivate customers to modify
their consumption patterns.

4.4.2.1 Load Shedding Request Model

A load shedding request is characterised by the following parameters:

• deviation period: the time period in which the requested shedding is to be
executed,

• deviated consumption: the target consumption after shedding. This parameter is
expressed with respect to the base consumption (e.g., shed 10% from the base
consumption),

• and incentive: the payments rewarded to the customer provided that the load
shedding request is fulfilled.

4.4.2.2 Load Shifting Request Model

A load shifting procedure consists of two phases: deviation phase and recovery
phase. In the deviation phase, a specified amount of consumption is to be reduced
from a given time interval defined as the deviation period. In the recovery phase,
the amount of consumption reduced from the deviation period is supposed to be
consumed within a given time interval of the recovery phase, called the recovery
period. A load shifting request is characterised by the following parameters:

• deviation period: the time period during which the consumption is to be shifted,
• deviated consumption: the target consumption after shifting,
• recovery period: the time period during in which the shifted consumption is

recovered (i.e., consumed in addition to the base consumption),
• and incentive: the payments rewarded to the customer provided that the load

shifting request is fulfilled.

4.4.2.3 Incentives, Inconvenience, and Scales

Customers may experience inconvenience when adapting their consumption to
respect demand-response requests, especially so in the case of load shedding.
Inconvenience may be defined as the disparity between the base consumption and
the consumption following demand-response requests, which reflects consumers’
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discomfort. To make an optimal decision whether to shift or shed the consumption,
we factor in the inconvenience as well as the incentives.

Load shedding is carried out by reducing the consumption of sheddable loads.
The model for sheddable loads factoring in the incentive and the inconvenience
are provided later in Sect. 4.6.2.2. Similarly, load shifting is executed by shifting
the consumption of shiftable loads. The model incorporating the incentive for load
shifting is provided in Sect. 4.6.2.6. In the proposed models, we require that the
values of the incentives and inconvenience are expressed in the same unit as the
energy price since the system currently optimises the consumption to reduce energy
bills. However, it is noteworthy that the values may be expressed in other units
depending on the objective of the optimisation (e.g., reducing carbon footprint).

4.5 Distributed Building Energy Optimisation

In this section, we provide a conceptual model of the building that captures the
integral aspects considered in the optimisation. Then, we describe concisely the
optimisation problem and the algorithm upon which we base our system to solve
the problem.

4.5.1 Conceptual Model of the Building

To capture the elements of the building that are integral in energy management, we
model a given building as follows.

Definition 1 (Model of the Building) Let U be a set of users in a given building E
and D a set of devices consuming or producing energy in the building. Let further
C be a set of device constraints and UPref the preferences of users on how each
device should operate (e.g., interval in which a device is allowed to operate). Then,
a building defined as follows:

E = (U,D,C,UPref , S) (4.1)

where

• U is a set of users in E;
• D is a set of devices located in E and considered in the optimisation. We make a

separation between static devices SD ⊂ D, whose state is either constant or has
no impact on the optimisation, and dynamic devices DD ⊂ D, whose state may
evolve over time;

• C is a set of constraints of the devices in E. A device d ∈ D has a set of
constraints Cd ⊂ C;
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• UPref represents a set of user preferences on the devices in E. A user u ∈ U
owns a set of devices Du ⊂ D, and has a set of preferences on their devices
UPrefu ⊂ UPref . For each device they own du ∈ Du, the user may configure du
based on their preferences UPref d

u ⊂ UPrefu;
• S represents the external sources supplying energy for the building.

4.5.2 Dynamic Optimal Power Flow Problem

The devices, whose energy consumption or production profile is to be optimised,
are connected at the building level, forming a network of devices. Figure 4.1 depicts
an example of the network. Optimising the energy flow in such a network is to
minimise the network objective function subject to the constraints of each device in
the network.

We model the network as an energy coordination network [20] composed of a
set of terminals T , a set of devices D, and a set of nets N . A terminal models a
transfer point through which the energy flows between a device and a net. A net
represents an exchange zone that constrains the energy schedules of its associated
devices. Each device and each net is associated with a set of terminals.

Each terminal t ∈ T has an associated energy flow schedule pt =
((pt (1), . . . , pt (H)) ∈ R

H over a time horizon H ∈ N
+. A time horizon is a

set of time periods. For instance, a time horizon of 24 h consist of 96 time periods,
with the interval of 15 min between each time period. Then, pt (τ) where τ ∈ [1,H ]

Fig. 4.1 Example of energy-consuming and energy-producing devices in a building
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is the amount of energy consumed (pt(τ) > 0) or generated (pt(τ) < 0) by device
d ∈ D in time period τ through terminal t , where t is associated with d.

Each device d ∈ D has a set of energy schedules denoted by pd = {pt |t ∈ d},
which can be associated with a |d| × H matrix. The set of all energy schedules
associated with a net n ∈ N is denoted by pn = {pt |t ∈ n}. Using the same
notation, we denote the set of all terminal energy schedules by p = {pt |t ∈ T },
which we can associate with a |T | ×H matrix.

For each device d ∈ D, we use ′d ′ to refer to both the devices and the set of
terminals associated with the device. Each device d possesses a set of |d| terminals
and has an objective function fd : R|d|×H → R. Then, fd(pd) extends over the
time horizonH and encodes the cost (e.g., energy cost, fuel consumption, or carbon
emission) of operating device d according to the schedule pd . Furthermore, every
device has a set of constraints Cd which pd must satisfy. Similarly, each net n ∈ N
has a set of |n| terminals, an objective function fn : R|n|×H → R, and a set of
constraints Cn to satisfy. Provided an energy coordination network, we define the
optimisation problem as follows:

minp∈RH×|T |
∑
d∈D

fd(pd)+
∑
n∈N

fn(pn)

subject to pd ∈ Cd, ∀d ∈ D (4.2)

pn ∈ Cn, ∀n ∈ N

The previous example of a building energy network can be transformed as
an energy coordination network as shown in Fig. 4.2. The devices consuming or
producing electrical power are connected to the electricity net (E-Net). Heat pump

Fig. 4.2 Example of a building energy coordination network
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(HP) converts electrical power to heat and supplies the heat to space heating (SH)
via a heat net (H-Net).

4.5.3 Alternating Direction Method of Multipliers

To solve the optimisation problem specified in Eq. (4.2), we implemented a solution
based on ADMM. ADMM iteratively solves the problem until the convergence is
reached. In each iteration, ADMM performs the following steps:

Step 1 Device-minimisation step (executed in parallel by each device)

∀d ∈ D, pk+1
d = argminpd∈Cd (fd(pd)+

ρ

2
||pd − ṗkd + vkd ||22) (4.3)

Step 2 Net-minimisation step (executed in parallel by each net)

∀n ∈ N, ṗk+1
n = argminpn∈Cn(fn(pn)+

ρ

2
||pn − pkn − vkn||22) (4.4)

Step 3 Price update (i.e., scaled dual variables) (executed in parallel by each net)

∀n ∈ N, vk+1
n = vkn + (pk+1

n − ṗk+1
n ) (4.5)

In the first step, each device computes in parallel its best response to the price
and energy requested by nets. At any iteration k + 1, pk+1

d represents the device’s
response to the request <ṗkd + vkd>. Upon receiving the offers from all the devices
connected to it, each net checks if the convergence has been reached. If there is no
convergence, nets compute a new request for the devices considering the devices’
previous offers and send the new request to the devices, which corresponds to the
second step. In the third step, nets update the scaled dual variables.

The convergence criteria for ADMM applied locally for each net are based on the
net’s local primal and dual residuals. The primal residual is defined as the difference
between the energy schedule offered by the devices and those required by the net,
formally:

∀n ∈ N, rkn = pkn − ṗkn (4.6)

The dual residual is defined as the difference between the energy required by the
net in the two consecutive iterations weighted by a scaling parameter, formally:

∀n ∈ N, skn = ρ(ṗkn − ṗk−1
n ) (4.7)

The stopping criterion requires that the primal and dual residuals are small,
formally:
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||rkn ||2 ≤ εprin and ||skn||2 ≤ εdualn (4.8)

where εprin > 0 and εdualn > 0 are, respectively, the feasibility tolerance for the
primal and dual feasibility conditions. These tolerances can be chosen using an
absolute and relative criteria such as

ε
pri
n =

√
|rk|εabs + εrelmax{||pkn||2, ||ṗkn||2}

εdualn =
√
|sk|εabs + εrel ||ρvkn||2

(4.9)

where |x| returns the cardinality of vector x. The choice of the absolute stopping
criterion (i.e., εabs) depends on the scale of the typical variable values. Semantically,
εabs stands for the maximum error allowed for each constraint when assuming that
errors are distributed uniformly among nets. For the relative stopping criteria, a
reasonable value might be εrel = 10−3 or 10−4, depending on the application. The
cost functions and constraints of the devices and nets differ according to their types,
and are presented in the following section.

4.6 Multi-Agent System for Energy Management

The distributed energy optimisation is modelled as a multi-agent system, enabling
the coordination and the execution of the tasks necessary to perform the optimisa-
tion. This section presents the conceptual model of the system, how the system takes
into account demand-response requests in the optimisation, and how it addresses
device constraints and the privacy concerns.

4.6.1 System Conceptual Model

The multi-agent energy management system (MEM) is composed of agents assum-
ing different roles required to carry out the optimisation. The conceptual model of
the system is a tuple:

MEM = (NA,DA) (4.10)

where

• NA is the model of net agents assuming the role of the nets in the energy
coordination network;

• DA is the model of device agents representing the devices in the network.
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The role of an agent determines the knowledge it possesses, the actions it can
perform, and the behaviour it comports. Each of the roles in the system is described
in the following subsections.

4.6.1.1 Net Agent Model

A net agent assumes the role of a net modelled in the energy coordination network.
Its role is to ensure that, in each time period, there is a balance between the energy
flowing into and out of its terminals. To enable net agents to perform their role, each
net agent is modelled as follows:

NA = (Optnet , Cnet , Commnet ) (4.11)

where

• Optnet is the optimisation steps, namely net-minimisation (Eq. 4.4) and price
update (Eq. 4.5), executed locally by a net agent;

• Cnet represents the energy balance constraint upheld by a net. Nets are lossless
energy carriers. They require that in each time period there is a balance between
energy flowing into and out of their terminals. Such a constraint is expressed
formally as below:

∑
t∈n
pt (τ) = 0, τ = 1, . . . , H (4.12)

• Commnet is the communication ability of the agent, enabling it to send and
receive messages with other agents. Concretely, this corresponds to the imple-
mentation of the functions required for sending, receiving, and processing
messages. In some agent-based platforms, such functions are already available
and ready to be used when developing the agents.

Each net agent iteratively computes the optimisation steps Optnet until a conver-
gence is reached, while ascertaining that Cnet is respected.

4.6.1.2 Device Agent Model

The role of a device agent, which represents a device in the energy coordination
network, is to perform a local optimisation, while respecting the constraints of the
device and its user(s). The optimisation result is communicated to its associated net
agent(s). Formally, the model of a device agent is as follows:

DA = (Optdev, Cdev,Pref , Idev, Commdev) (4.13)

where
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• Optdev is the device-minimisation step (Eq. 4.3) executed by the device agent.
The cost function considered in this step varies according to the device type (e.g.,
fixed load, shiftable load, or sheddable load). The cost function for each type is
presented in the following subsection;

• Cdev represents the constraints of the device to be satisfied. The constraints are
device-specific and presented in the following subsection;

• Pref consists of the preferences of the device’s user(s) regarding the manner in
which the device may operate (e.g., the interval in which the device is allowed to
be switched on or off);

• Idev refers to additional information required by the device agent to perform the
optimisation (e.g., energy prices);

• Commdev is the communication capacity of the agent required for communicat-
ing with its associated net agent(s).

Each device agent executes its device-minimisation step iteratively considering the
updates from its associated net(s).

4.6.2 Optimisation Models for Demand-Respond Ready Agents

In this section, we provide a detailed description of the device optimisation models
for different types of device flexibility, which include the cost functions and the
constraints of the devices as well as demand-response incentives and inconvenience
when applicable.

4.6.2.1 Fixed Load

A fixed load (FL) [20] models a device whose power consumption profile must be
satisfied, thus providing no flexibility. Fixed loads have a zero cost function. Their
sole constraint cFL ∈ Cdev ensures that their required consumption preq is satisfied
in each time period, formally:

pFL(τ) = preq(τ), τ = 1, . . . , H (4.14)

where pFL is the actual consumption of FL.

4.6.2.2 Sheddable Load

A sheddable load (ShL) [20] models a device whose consumption can be shed, to
a certain extent and at a cost, when there is a need to reduce the demands (e.g.,
lighting system - on/off or selecting a lower level of brightness). The cost function
of sheddable loads considers the inconvenience pinc ∈ Pref resulting from the
shedding and the demand-response incentive pshed , formally:
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fShL(τ) = (pinc(τ)− pshed(τ)) ∗ (preq(τ)− pShL(τ)) (4.15)

where pshed(τ) ≥ 0, preq is the required consumption, and pShL the actual
consumption after shedding. In this model, for a shedding to be carried out at
time period τ, the value pshed(τ) needs to be big enough to compensate for the
inconvenience such that:

pinc(τ)− pshed(τ) < energy price(τ) (4.16)

In this way, the algorithm chooses to shed the consumption as the shedding cost is
inferior to the price for importing energy to fulfill the load’s consumption if it were
not shed. ShL’s constraint cShL ∈ Cdev ensures that the consumption after shedding
does not surpass the required consumption, formally:

0 ≤ pShL(τ) ≤ preq(τ), τ = 1, . . . , H (4.17)

4.6.2.3 Shiftable-Volume Load

A shiftable-volume load (SVL) [20] represents a device that must consume a certain
amount of energy (i.e., the volume) within a given time interval. A distinct property
of shiftable-volume loads is that there is no constraint on the consumption in each
time period as long as the total consumption required is met during the given
interval. For example, a battery-powered vacuum cleaner can be considered as a
shiftable-volume load as it requires a certain amount of consumption to charge the
battery but can be spread over a time interval.

The time interval allowed to activate the device is a user preference prefSVL ∈
Pref and imparted to the device agent as part of its knowledge. Shiftable-volume
loads have a zero cost function. First, they encode a hard constraint cSVL−1 ∈ Cdev
mandating that the required amount of consumption V is satisfied within a time
interval between a given earliest time period A and a latest time periodD, formally:

D∑
τ=A

pSVL(τ) = V (4.18)

where pSVL is the actual consumption of SVL. The second constraint cSVL−2 ∈ Cdev
limits the consumption in each time period by a specified amount Lmax , expressed
as follows:

0 ≤ pSVL(τ) ≤ Lmax, τ = A, . . . ,D (4.19)
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4.6.2.4 Shiftable-Profile Load

A shiftable-profile load (SPL) models a device whose consumption can be shifted
within a given time interval. The difference from shiftable-volume loads is that
shiftable-profile loads have a constraint on the amount of energy consumed in each
time period. For instance, washing machines are a typical example of shiftable-
profile loads. The activation of the machines can be scheduled within an interval,
but once activated, it requires a specific amount of consumption in each time period
throughout its running time.

As in the case of SVL, the time interval is provided by the device’s user prefSPL ∈
Pref and passed to the device agent as part of its knowledge. Shiftable-profile loads
have a zero cost function. They encode a hard constraint cSPL−1 ∈ Cdev requiring
the consumption pSPL to be within a given time interval between the earliest time
period A and the latest time period D, formally:

pSPL(τ) = 0, τ = 1, . . . , (A− 1)

pSPL(τ) = 0, τ = (D + 1), . . . , H
(4.20)

where pSPL is the actual consumption of SPL. The second constraint cSPL−2 ∈ Cdev
ensures that the actual consumption matches the required profile preq , formally:

D−δ⋃
τ=A

(
pSPL(τ) = preq(1)

)
∩
(
pSPL(τ+ 1) = preq(2)

)
∩ . . .

∩
(
pSPL(τ+ δ − 1) = preq(δ)

)
(4.21)

where δ = |preq |.

4.6.2.5 (Curtailable) Generator

A generator represents a source of locally produced energy (e.g., photovoltaics). A
curtailable generator (CG) refers to a source of energy whose production can be
curtailed. The cost function of curtailable generators incorporates a curtailment cost
pcurt ∈ Pref , formally defined as follows:

fCG(τ) = pcurt(τ) ∗ (pgen(τ)− pCG(τ)) (4.22)

where pgen is the expected generation and pCG the generation after curtailment. CG
encodes the following constraint cCG ∈ Cdev:

pCG(τ) ≤ pgen(τ), τ = 1, . . . , H (4.23)
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A non-curtailable generator has a zero cost function. Its sole constraint ensures
that the actual energy flow from the generator pG matches the energy produced by
the generator pgen, formally described as follows:

pG(τ) = pgen(τ), τ = 1, . . . , H (4.24)

4.6.2.6 External Tie

An external tie (ET) [20] is not an actual physical device. It is an abstract notion
used to represent a connection of the building to an external source of energy.
Transactions with ET consist in pulling energy from the source or injecting energy
to it. Its cost function factors in the prices of importing P imp ∈ Idev and exporting
P exp ∈ Idev energy defined as follows:

pET(τ) < 0, fET(τ) = P exp(τ) ∗ pET(τ)

pET(τ) = 0, fET(τ) = 0

pET(τ) > 0, fET(τ) = (P imp(τ)+ pshif t ) ∗ pET(τ)

(4.25)

where pET(τ) is the amount of pulled (positive value) or injected (negative value)
energy at a given time period τ. Price-based demand-response (i.e., energy tariffs)
is considered in the model as P imp.

The incentive for load shifting pshif t is also incorporated in the model. A positive
value of pshif t incentivises the reduction of consumption which can be used to shift
the consumption for load shifting, while a negative value encourages consumption,
applicable for recovering the shifted load in the recovery period. The constraint
cET ∈ Cdev encoded by ET restricts importing and exporting energy by some
specified limit Pmax , expressed formally as follows:

|pET(τ)| ≤ Pmax, τ = 1, . . . , H (4.26)

4.6.2.7 Converter

A converter (CON) [20] models the device that transforms energy from one form
A to another form B. Some instances of converters are gas boiler and heat pump.
Therefore, converters are connected to two different energy networks. Converters
have a zero cost function. The first constraint cCON−1 ∈ Cdev to be satisfied is
the conversion equation based on the conversion efficiency k of the converter. The
constraint is formally expressed as follows:

− pB(τ) = k · pA(τ), τ = 1, . . . , H (4.27)
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where pA(τ) is the input energy profile and pB(τ) the output energy profile at time
period τ. Note that the value of pB(τ) is negative as it models the generated energy,
and not the consumption. The second constraint cCON−2 ∈ Cdev assures that the
amount of energy input at each time period of the transaction does not exceed some
specified limit, which is described as follows:

Cmin(τ) ≤ pA(τ) ≤ Cmax(τ), τ = 1, . . . , H (4.28)

where Cmax(τ) is the maximum energy input at a given time period τ and Cmin(τ)
the minimum energy input.

4.6.2.8 Space Heating

A space heating or a thermal load [20] models a physical space (e.g., room, building)
with temperature profile T and whose temperature must be kept within minimum
T min and maximum T max temperature limits. The temperature of the space evolves
as follows:

T (τ+ 1) = T (τ)+
(μ
c

)(
T amb(τ)− T (τ)

)
− (η

c

)
ptherm(τ), τ = 1, . . . , H − 1

(4.29)
where T (1) is the initial temperature of the space, T amb the outdoor temperature,
μ the ambient conduction coefficient, η the heating or cooling efficiency, c the heat
capacity of indoor air, and ptherm the heating or cooling power consumption profile.

Thermal loads have a zero cost function. First, a thermal power input has power
schedule ptherm that is constrained as follows:

0 ≤ ptherm(τ) ≤ Qmax, τ = 1, . . . , H (4.30)

where Qmax ∈ R
H is the maximum heating power. Second, its temperature profile

T ∈ R
H must be kept between a minimum temperature T min ∈ R

H and a maximum
temperature T max ∈ R

H , formally described as follows:

T min(τ) ≤ T (τ) ≤ T max(τ), τ = 1, . . . , H (4.31)

4.6.3 Analysis on Constraints and Privacy

4.6.3.1 Constraints and User Preferences

In the proposed multi-agent model, device constraints, defined previously in the
device agent model as Cdev , are expressed as hard constraints to be satisfied in the
optimisation. Such constraints are imparted to each corresponding device agent as a
part of its knowledge when the agent is instantiated. Thus, while conducting its local
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optimisation, each agent can ensure that the constraints are not violated. Similarly,
user’s preferences Pref for each device are encoded as hard constraints in the device
agent model, enabling the agents to ensure its upholding.

4.6.3.2 Privacy

User preferences and constraints for a device are known only to the device agent
representing the device. Such data are stored locally and used in the agent’s local
optimisation process. They are not shared with neither other device agents nor net
agents. Moreover, employing ADMM enables the coordination exchanges in which
the preferences, the constraints, and the cost structures of each device are reflected in
its private cost function. More precisely, as described in Sect. 4.5.3, the coordinated
messages pk+1

d sent to the associated net agent are simply the representation of the
device agent’s response to the net agent’s request < ṗkd + vkd >.

4.7 Validation of the Approach

We implement the proposed multi-agent energy optimisation system using JADE
(Java Agent DEvelopment),1 a framework for developing agent-based applications.
JADE provides a simple yet complete agent abstraction, supports asynchronous
peer-to-peer agent communication, and facilitates the overall development of a dis-
tributed system. Tasks to be carried out by an agent are implemented as behaviours
to be executed by the agent. Agent knowledge can be passed as arguments to an
agent when it is instantiated. All the experiments are executed on an Intel Core i7
CPU at 1.90 GHz computer with a 16 GB RAM. Various experiments are conducted
to validate the system with regard to the following criteria: reduction of energy
bills and the participation to demand-response programs, while ensuring that user
preferences and device constraints are satisfied and privacy preserved.

4.7.1 Case Study

The evaluations are conducted using a case study which represents a prosumer
building with a connection to an energy supplier (i.e., external tie) and equipped with
a photovoltaic (PV) for local uses. The building has a fixed amount of consumption
(i.e., fixed load) that must be satisfied. It also provides a certain amount of flexible
consumption (i.e., shiftable load and sheddable load) that can be shifted or shed
to some extent over a given time frame. Various scenarios, with different levels of

1https://jade.tilab.com/.

https://jade.tilab.com/


4 A Multi-Agent Approach to Energy Optimisation for Demand-Response. . . 95

flexibility, are used in the experiments. The configurations of the experiments for
each scenario are as follows:

• Time horizon: the time horizon for the experiments is 24 h divided into 96 time
periods (TP) of 15-min interval;

• Building consumption: for the next 24-h predicted consumption of the building,
we use, as sample data, the consumption data from UK Elexon’s non-domestic
unrestricted consumers2;

• Fixed load: in each scenario, the fixed consumption represents a certain percent-
age of the overall consumption. It varies depending on the scenario;

• Flexible load: for each scenario, a certain percentage of the overall consumption
is considered flexible. The percentage varies depending on the scenario;

• PV production: the production of the PV is based on the data from one of our
projects;

• Energy tariffs: we use the two-banded Time-Of-Use tariffs from EDF (i.e., an
energy supplier in France) consisting of a peak price (from Monday to Friday
between 7:00 and 23:00): e0.158/kWh and an off-peak price (from Monday to
Friday between 23:00 and 7:00 and weekends starting from Friday 23:00 until
Monday 7:00): e0.11/kWh.

In the experiments, flexibility is concretely modelled by means of shiftable
devices and sheddable devices, whose consumption accounts for the amount of
flexibility provided in each scenario. User preferences such as the earliest and the
latest TPs to activate each shiftable device and device constraints, based on the
technical specifications of the devices, are encoded in the corresponding device
agents. It is important to note that each device agent is instantiated with the
knowledge of its user preferences and device constraints, unknown to other agents,
in order to preserve the privacy. The output of the optimisation is a schedule for all
the devices over the time horizon, essentially indicating whether to turn on or turn
off each device at the beginning of each 15 min.

4.7.2 Reduction of Energy Bills Through Flexibility and
Price-Based Demand-Response

In the first validation, we experiment with four different scenarios, with varying
percentages of flexibility proportional to the total consumption of the building. The
first scenario has no flexibility at all, second with 20% flexibility, third with 50%
flexibility, and fourth with 100% flexibility. Figure 4.3 depicts the energy imported
for each of the scenarios. The imported energy is the energy pulled from the supplier
via the external tie. Since the building also produces energy, the imported energy is
the amount required after self-consumption using the energy from PV.

2https://www.elexon.co.uk/knowledgebase/profile-classes/.

https://www.elexon.co.uk/knowledgebase/profile-classes/
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Fig. 4.3 Comparison of energy imported in function of different levels of flexibility

In the first scenario (shown as Import baseline), we suppose that all the
consumption is fixed, providing no flexibility. Therefore, the system is not able to
optimise the consumption based on the energy tariffs. By introducing flexibility, the
system can optimise the flexible consumption to benefit the off-peak price, the result
of which can be seen in Fig. 4.3. The amount of imported energy during the peak
period between TP 29 (i.e., 7:00) and TP 91 (i.e., 23:00) decreases as the flexibility
increases, with no import when the flexibility reaches 100% (i.e., no fixed loads
and all consumption considered flexible). The reason behind this result is that the
optimisation algorithm schedules the flexible consumption in the off-peak periods.

Figure 4.4 illustrates the reduction of energy bills as the amount of flexibility
increases. The reduction is nearly linear to the increment of flexibility. In the
best-case scenario, in which all the consumption is flexible and can be shifted,
the reduction attains over 20%. In a more realistic scenario where approximately
20%3 of the consumption is shiftable, the energy bill decreases roughly 5%. Energy
bills are the consequence of importing energy. The system exploits the provided
flexibility to schedule the flexible consumption to benefit from both off-peak periods
and self-generated energy.

It is noteworthy that, in the aforementioned results, all the flexible consumption
can be scheduled freely by the system without any constraints. In reality, it is
common for users to specify the interval in which the shiftable consumption
is allowed to be scheduled. To validate the system’s capacity to respect such
preferences from users, in the second validation, we simulate user preferences on
shiftable devices. For this experiment, a set of shiftable devices are only allowed to
be shifted within an interval between TP 41 and 61 (i.e., 10:00–15:00).

3Different studies have shown that around 10–20% of demand can be time-shifted [26].
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Fig. 4.4 Reduction of energy bills in function of different levels of flexibility

Fig. 4.5 Satisfying user preferences on shiftable loads

Figure 4.5 demonstrates the comparison of imported energy between the scenario
of 20% flexibility without any constraint and that with the previously mentioned
constraint. Without constraints, all the shiftable devices are scheduled to operate in
the off-peak period, while, with the constraint, they are set to execute as specified in
the constraint regardless of the energy price.
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4.7.3 Prioritising Self-Consumption and Injection to Grids

The aim of this validation is to investigate the system’s ability in optimising the
consumption of the energy self-produced by the building (i.e., generated by PV
installed in the building). We conduct an experiment based on the same use case
as in the first validation. In this experiment, we consider the worst-case scenario
in which all the consumption is fixed, providing no flexibility. The motivation
behind this choice is to evaluate self-consumption independently of the flexibility.
As demonstrated in Fig. 4.6, the energy imported between TP 22 and TP 70 is lower
than the consumption, as depicted by the Import baseline curve in the figure. This is
due to the fact that the optimisation prioritises the use of energy from PV and only
imports the rest. It is important to note that in this scenario all the energy generated
by PV is consumed even without flexibility as the amount of consumption is much
more significant than the amount of self-produced energy throughout the whole 24 h.
Therefore, introducing flexibility has no impact on the result.

Flexibility becomes essential for self-consumption when the self-produced
energy is more than the consumption during certain period of the horizon. In such
a case, the optimal decision is to shift the flexible consumption from other periods
to the period with residual self-produced energy. To study this particular case, we
conduct an experiment with the same configuration as the previous one, except
that we use a lower amount of consumption which is based on the consumption

Fig. 4.6 Self-consumption without flexibility
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Fig. 4.7 Domestic self-consumption without flexibility

data from UK Elexon’s domestic economy 7 consumer4 for the autumn season.
The results shown in Fig. 4.7 show the consumption, PV production, and import
without any flexibility. It is worth noticing that between TP 25 and TP 70, there
is no power imported. The reason is that the power produced by PV exceeds the
required consumption.

By introducing flexibility, the system is able to schedule the flexible consumption
in the period where there is more production from PV to benefit from the
locally generated power as shown in Fig. 4.8. The percentage of self-consumption
after optimisation in function of the flexibility is demonstrated in Fig. 4.9. The
explanation for such a result is that when there is more flexible consumption, more
loads can be shifted to benefit the self-produced power.

In the same scenario, the energy produced from PV and left over from the
local consumption is injected to the grid. The amount of exported energy for
different levels of flexibility is depicted in Figs. 4.10 and 4.11. The results show
that with more flexibility the optimisation leads to more self-consumption, and thus
less energy exported to the grid. A particularity in this scenario is that there is
approximately 9 kWh of energy exported even though the flexibility is 100%. This
is owing to the fact that PV produces more power than the total consumption over
the 24-h horizon.

4https://www.elexon.co.uk/knowledgebase/profile-classes/.

https://www.elexon.co.uk/knowledgebase/profile-classes/
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Fig. 4.8 Domestic self-consumption with flexibility
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Fig. 4.9 Percentage of self-consumption after optimisation in function of different levels of
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Fig. 4.10 Energy injected to grid over a 24 h horizon in function of different amounts of flexibility
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Fig. 4.11 Total energy injected to grid in function of different levels of flexibility

4.7.4 Participation to Incentive-Based Demand-Response

This validation investigates the ability of the system in exploiting the flexibility to
participate in incentive-based demand-response programs including load shedding
and load shifting requests.
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4.7.4.1 Load Shedding

To experiment with load shedding, we simulate a load shedding request to shed the
consumption such that the imported energy between TP 5 and TP 14 (i.e., deviation
period) is reduced to 3 kW. Various inconvenience values pinc and incentive values
for load shedding pshed were generated in an empirical manner for the validation
purpose. Figure 4.12 demonstrates the results of the experiment. Providing the
incentive pshed that compensates the inconvenience value during the deviation
period pinc, we obtain the desired result (shown in Fig. 4.12 as Import shed).

In reality, users may find load shedding at a certain time more acceptable than
at another time. Therefore, the inconvenience level should also vary accordingly.
To simulate this case, we experiment the load shedding request with varying
inconvenience levels by increasing pinc value between TP 8 and TP 10. Since
the incentive cannot compensate the inconvenience between TP 8 and TP 10, no
load shedding is carried out in that period (shown in Fig. 4.12 as Import varying
inconveniences).

4.7.4.2 Load Shifting

This experiment aims at validating the feasibility of carrying out load shifting
requests. We simulate a request to shift 10% of the imported energy between TP 1
and TP 28 (i.e., deviation period) to between TP 56 and TP 75 (i.e., recovery period).
Figure 4.13 depicts the results of the experiment. To reduce the consumption in the
deviation period, we provide an incentive pshif t that compensates the energy price
during that period. This actually encourages more consumption during the deviation

Fig. 4.12 Carrying out a load shedding request
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Fig. 4.13 Carrying out a load shifting request

period, which is contradictory to the objective of shifting. However, we set the
import limit Pmax in the deviation period to Import baseline −10%. Therefore, the
consumption, though encouraged, will not surpass the limit, but attains the desired
limit. The same mechanism is applied in the recovery period, except with the import
limit of Import baseline +10%, to encourage consumption of the shifted amount
from the deviation period.

4.8 Discussion

4.8.1 Handling Inapplicable Demand-Response Requests

The rewards for customers’ participation to price-based demand response are
directly reflected in their energy bills as the scheme is embodied in the energy
tariffs. For incentive-based demand response, however, the extent to which a
consumer is rewarded is more complex to determine. The remuneration can be
done for consumers individually, for instance, via a contract between DSO and the
consumers, or through a contract with an aggregator. Demand-response requests
meant for a consumer could be generated with the knowledge of the consumer’s
aggregated consumption or even the overall flexibility, but not the flexibility
provided at different time periods by different flexible devices. In consequence,
there is a possibility that a request demands shedding or shifting of loads more
than the actual consumption of sheddable or shiftable loads, respectively.
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The solution to this situation depends on the contract between the consumer
and the aggregator or DSO. If participation to a demand-response program means
following the request in its entirety, then, in this situation, the consumer is unable
to change their consumption as request, and thus is not rewarded. In a more
compromising case, the consumer should try to adjust their consumption as close
as possible to the request, and they are remunerated accordingly. Both of the cases
are suitable with our approach. For the first case, the request (e.g., load to shed or
shift) can be considered as a hard constraint, so the optimiser can either realise it, in
which case the consumer gets the total payment, or not at all. For the second case,
the optimisation models already incorporate the incentive, so the optimiser can find
the optimal consumption considering the incentive.

4.8.2 Validation on Real Test Sites

In the framework of this research, further validation of the system will be conducted
on real test sites. As mentioned in the previous section, the current validation
of the approach is based on a case study, and the experiments were conducted
using simulated data. The case study used for the validation is intentionally
designed to bear resemblance to the real test sites from the types of devices to the
consumption and production. The values for demand-response requests, incentives,
and inconvenience used in the experiments were generated in an empirical manner.
We are actively working with partners who are responsible for generating demand-
response requests in order to calibrate the values to reflect the real cases in which
the solution will eventually be deployed. It is noteworthy that there are no empirical
comparisons of our system to existing solutions. The main reason is that, to the best
of our knowledge, there are no solutions in the literature that take into account both
price-based demand response as well as incentive-based demand response to such
an elaborated extent and that share the same set of validation criteria, which can be
used for the comparison.

4.9 Conclusions and Future Work

In this paper, we propose a multi-agent energy management that optimises energy
consumption in a distributed and efficient manner. The aims of the system are to
reduce energy bills and enable participation to various demand-response schemes,
while respecting user preferences as well as device constraints, and preserving
privacy. The architecture of the system modelled as a multi-agent system is
proposed. A set of device optimisation models are provided to address different
types of devices based on their flexibility and to incorporate demand response. Con-
crete specifications of the both price-based and incentive-based demand-response
requests encapsulating the necessary parameters required in the optimisation are
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proposed. It has been shown that the system is able to reduce energy bills up to
over 20% in the best-case scenario by exploiting the flexibility of the consumption
and the production offered by the building to benefit the off-peak price of the time-
of-use tariffs. The system is able to carry out the simulated load shifting and load
shedding requests. In all the experiments, user preferences and device constraints
are satisfied.

The results demonstrated in this chapter focus primarily on the building energy
consumers. The benefits gained from using the approach are from consumers’
perspective. The impacts of demand response on the energy management also
benefit other actors at the higher levels of the chain such as aggregators and utilities.
The study of the impacts of our approach in enabling buildings to participate in
demand-response schemes on a larger scale such as at the district level consisting
of multiple buildings is one of the directions worthy of our future investigation.
Furthermore, energy storage devices such as battery and hot water storage have not
been considered in the experiments. All excess energy is directly injected to the
grid. However, the storage devices present an interesting potential for cost saving,
especially in the situation where there is a lot of PV production, which is to be
investigated in the next step of our work.

These days, the shifting towards smart buildings with the support of Internet of
Things (IoT), while offering numerous advantages, poses necessary challenges that
need to be addressed. Smart buildings are not limited to residential buildings, but
cover a wide range of building types from connected industrial buildings to smart
transit stations and airports. Such buildings are dynamic and open in the sense that
devices may enter or exit the environments at any time. Furthermore, there may
be multiple users in an environment, each of whom possesses a set of devices in
the environment and is able to configure their devices based on their preferences.
On top of this, certain devices may be activated or deactivated at any moment by
their owners, requiring them to be included in or excluded from the optimisation
process. The energy management system should be designed to support dynamic
changes of their components and to allow dynamic additions of new components.
The system should be able to detect and handle such dynamics and openness of
the environment. Building upon our multi-agent infrastructure, agents could be
equipped with the capability to acquire information concerning the devices (e.g.,
via sensors) to update their knowledge of the devices and to detect the activation or
deactivation, thus allowing them to inform their associated net agent of the events
to include or exclude certain devices in the next optimisation iteration. In [19], the
authors present an attempt at addressing energy management in such complex and
multi-user environments, handling the dynamics and openness.
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Chapter 5
A Review on Non-intrusive Load
Monitoring Approaches Based on
Machine Learning

Hajer Salem , Moamar Sayed-Mouchaweh , and Moncef Tagina

5.1 Introduction

The energy consumption is increasing. Electricity consumption in the average
EU-25 household has been increasing by about 2% per year during the past
decade. Moreover, the demand in peak periods (especially in winter) is increasing
dramatically compared to the baseline. The peak power in France increases by
1600 MW per year, which is equal to the activation of two nuclear reactors of
900 MW per year [4]. As the main purpose of the electric grid is to ensure the
balance between the energy supply and demand, this is hard to reach at peak
periods when demand is higher. The traditional method at peak times, called
direct control, consists of increasing energy production by activating thermal power
stations which produces a large part of man-made CO2 emissions to the atmosphere.
Henceforth new solutions are proposed to overcome these shortcomings. Namely,
these strategies are called demand side management. It is defined as the actions
that influence the way consumers use electricity to achieve savings and higher
efficiency in energy use. The aim is to reduce the stress of the electrical grid and
decrease congestion situations and load shedding. These actions result in reducing
the consumer electrical bill and better manage the peak loads by the electrical
utilities.

Non-Intrusive Load Monitoring is an area in computational sustainability that
aims at determining which appliances are operating from the aggregated load
reported by a smart meter. Non-Intrusive Load Monitoring may include com-

H. Salem (�) · M. Tagina
University of Manouba, Manouba, Tunisia
e-mail: hajer.salem@imt-lille-douai.fr; moncef.tagina@ensi-uma.tn

M. Sayed-Mouchaweh
Institute Mines-Telecom Lille Douai, Douai, France
e-mail: moamar.sayed-mouchaweh@mines-douai.fr

© Springer Nature Switzerland AG 2020
M. Sayed-Mouchaweh (ed.), Artificial Intelligence Techniques for a
Scalable Energy Transition, https://doi.org/10.1007/978-3-030-42726-9_5

109

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-42726-9_5&domain=pdf
http://orcid.org/0000-0002-7433-7226
http://orcid.org/0000-0002-6929-986X
mailto:hajer.salem@imt-lille-douai.fr
mailto:moncef.tagina@ensi-uma.tn
mailto:moamar.sayed-mouchaweh@mines-douai.fr
https://doi.org/10.1007/978-3-030-42726-9_5


110 H. Salem et al.

munities, industrial sites, commercial sites, office towers, buildings, and homes.
In this review, we focus on residential NILM which consists of recognizing the
appliances that are active from the aggregated load in houses. Residential homes
consume within 20–30% of the total power consumption in Europe [32] which
means consumers will be charged higher prices and more supply is produced using
unclean sources.

An interesting point highlighted in recent studies [28] is that occupant presence
and behavior in buildings have been shown to have large impacts on space
heating, cooling and ventilation demand, the energy consumption of lighting and
space appliances, and building controls. Careless behavior can add one-third to
a building’s designed energy performance, while conservation behavior can save
a third [26] (see Fig. 5.1). One particularly interesting example is an experiment
regularly performed by the company 3M at their headquarters in Minnesota: office
workers are asked to switch off all office devices, lights, etc. not in use during peak-
price periods. The results of such that experiment were profound: the building’s
electricity consumption dropped from 15 MW to 13 MW in 15 min and further to
11 MW over 2 h [26]. For this purpose making residents aware of their consumption
in detail, by bias of NILM systems, is important for energy sustainability.

An example of Non-Intrusive load Monitoring system input and the desired
output is illustrated in Figs. 5.2 and 5.3. The main question is how to disaggregate
this load especially in cases where appliances consume in different states? Usually, a
NILM system is composed of a smart meter that performs data acquisition, a model
that models appliances or household power profiles, a disaggregator that infers the
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Fig. 5.1 Energy-unaware behavior uses twice as much energy as the minimum that can be
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Fig. 5.2 Aggregate load data example: Input to a NILM system

Fig. 5.3 Disaggregated loads of active appliances: Desired NILM system output

sequence states of active appliances, and an estimator that maps these states to a
consumption profile.

Many approaches in the literature tackled this problem but many challenges
still have to be addressed. In the sequel of this paper, we focus on NILM state
of the art. We extend NILM requirements introduced in [40] to present two new
requirements that have been claimed by residents. Furthermore, we highlight the
challenges facing NILM giving deep explanations. We also discuss NILM open
problems. An overview of different NILM state-of-the-art approaches is presented.
Approaches are categorized according to the sampling rate of data used, the learning
type and we distinguish between event-based and model-based approaches. This
review focuses on machine learning and data mining techniques adopted. It also
highlights NILM challenges from a data processing perspective.

The remainder of this paper is organized as follows: Sect. 5.2 introduces the
NILM problem, a NILM framework, and challenges facing NILM. Section 5.3
reviews approaches based on machine learning and focuses mainly on approaches
based on hidden Markov models (HMM) in Sect. 5.3.3. Finally, the paper is
concluded in Sect. 5.3.5 and a comparative study is discussed.
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5.2 NILM Framework and Requirements

The problem of disaggregating single appliances consumption from the total load
in a house can be stated as follows: Given the aggregate power consumption of
a house for T time instants, Y = {y1, y2, . . . , yT }, the goal is to find the set of
appliances’ active states contributing to this total load and estimate their respective
consumption. Hence the total load at a time instant t is yt = {y1

t , y
2
t , . . . , y

m
t ., y

M
t }

whereM is the total number of appliances in a household. This problem is composed
of two stages: operational state classification and power estimation [43]. The first
stage aims at detecting the operational state of an appliance from the aggregated
load composed of several appliances with different active operational states. The
second stage looks to convert an appliance’s operational state to an estimation of its
power demand. Hart [8] and Zoha [43] identified four appliance types: ON/OFF,
finite number of active states, constantly on, and continuously variable. Simple
on/off appliances are the easiest to detect. Such appliances are lamps, toaster, or a
kettle. Finite-state appliances are more complex and can be modeled using a finite-
state machine [8]. They are also called multi-state appliances. More recent works
modeled these appliances based on probabilistic graphical models such as hidden
Markov models. Appliances like dishwashers, clothes dryers, washing machines
have several electrical components within them that may be turned ON and OFF at
different times. For instance, a dishwasher has many wash cycles that start and stop,
a water pump that drains the water between wash cycles, and a heating element that
heats water (during wash cycles), dries the dishes, and can keep plates warm [18].
The power drill is an example of a continuously variable device because it has a
variable speed. Constantly ON devices remain active throughout days consuming a
fixed rate of electricity such as smoke detectors. Almost appliances in households
fall under the category of multi-state appliances.

NILM has many practical applications in the smart grid. For instance, it helps
to reduce a consumer electricity bill by providing details to consumers about the
consumption of each used appliance. Furthermore, NILM has a direct application to
propose new consumption plans that avoid peak periods where electricity prices are
the most expensive. The use of highly consuming appliances (e.g., a clothes dryer)
can be deferred until off peak hours and consequently, ensuring power grid stability.

5.2.1 NILM Framework

A NILM framework is composed of three main modules: data acquisition, feature
extraction, inference and learning as depicted in Fig. 5.4. In the following, we
explain the different sampling rates (low and high frequency) of consumption data.
Then we discuss the different feature categories that could be extracted from data
and their dependence on the sampling rate. Finally, we discuss the different methods
for inference and learning.
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Fig. 5.4 NILM framework
example

5.2.1.1 Data Acquisition

The data acquisition module refers to the hardware used to collect the consumption
data. We distinguish two frequency sampling rates; High-frequency rate that is
around 10–100 MHz and low-frequency rate that is up to 1 Khz. The sampling rate
determines the type of information that can be extracted from the electrical signals
[43].

– Low frequency: Traditional power metrics such as real power, reactive power,
root mean square (RMS) voltage and current values can be computed at a
low sampling rate (e.g., 120 Hz). The computed metrics are either reported to
the backend server via a network interface card (NIC) or processed inside the
meter [43]. Although these smart meters are unable to capture the transient-state
features, they are more suited for residential deployment because of the return of
investment issues.

– High frequency: To capture the transient events or the electrical noise generated
by the electrical signals, the waveforms must be sampled at a much higher
frequency in a range of 10–100 MHz. These types of high-frequency energy
meters are often custom-built and expensive due to sophisticated hardware and
are tailored to the type of features that needs to be extracted from the signal. They
are often deployed for commercial or industrial NILM [27].

5.2.1.2 Feature Extraction

NILM approaches use the information provided by smart meters to identify single
appliances consumption from the total load. Many smart meters with different
sampling frequencies are available to measure the aggregated load of the house.
The smart meter frequency rate influences the type of information collected and
hence the features extracted and the machine learning and data mining techniques
that could be deployed. Approaches for feature extraction could be classified into
(1) steady-state analysis, (2) transient-state analysis and (3) whole usage analysis
as the combination of both and (4) non-traditional features. In the following, we
discuss these four categories in brief.
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– Steady-state features: Steady state refers to the stable operational state where
features remain constant. Steady-state analysis uses typically the active power
where values remain constant and the difference between two power readings
is different than a threshold. Approaches in the literature based on steady state
demonstrated their effectiveness to disaggregate a small number of appliances
from the total load. Nevertheless, these approaches fail to distinguish between
two appliances that draw a similar level of power. Indeed, different appliances
could have similar power level consumption in several states. Considering only
the active power to distinguish between these states is not enough discriminant.
To overcome this shortcoming many approaches proposed the use of more fea-
tures. The combination of active and reactive power is proposed to differentiate
between appliances drawing a similar level of active power. Besides, features
like RMS current, RMS voltage, active and reactive power, and power factor
are proposed to differentiate between similar appliances with similar power
consumption at steady states. However, the acquisition of such data requires
high-frequency sampling rates that could not be provided by residential smart
meters. Indeed smart meters with high-frequency sampling rates are expensive
to be deployed in the residential sector and for a large scale deployment [34].
Another solution is to consider non-traditional features like the ones discussed
below.

– Transient-state analysis: It uses short periods between appliance steady state to
disaggregate a household total load. However, the transient state may occur in
a small lapse of time that is less than 1 s and hence requires a high sampling
frequency rate to be captured. Moreover, transient state does not reflect the
appliance real consumption.

– Whole usage analysis: An alternative approach to the two aforementioned
methods was proposed by Hart [8]. It is a combination of features extracted by
steady and transient-state analysis. Indeed he modeled the appliance operation
using finite-state machine where states represent the steady state and arcs
represent transitions. This approach succeeds to represent multi-state appliances
but fails to represent continuously variable appliances. Many approaches have
extended finite-state machine models using probabilistic approaches and more
precisely variants of hidden Markov models. Indeed, the Markov assumption
that a current state depends on the previous state describes perfectly appliances’
behavior. To sum up, hidden Markov models represent a suitable trade-off
between the representation of the physical structure of appliances (finite state
of operational states) and the representation of conditionally dependent events.

– Non-traditional features: Non-traditional features refer to contextual and
behavioral-based features. They have been considered as additional features
to steady-state regime features to distinguish between appliances with similar
consumption profile. Time of usage, duration of usage, and seasonal context
patterns have been used in recent works and improved accuracy results. For
instance, cooling appliances (i.e., fridge, freezer) have discriminating duration
patterns. Figures 5.5 and 5.6 show an example of two fridge states duration that
are concentrated, respectively, around 12 and 23 min. Besides, some appliances
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Fig. 5.5 Histogram of a steady-state fridge dwelling time

Fig. 5.6 Histogram of a stand by state fridge dwelling time

have a discriminating time of usage. Figure 5.7 illustrates THE time of usage
histograms of a lamp, a television, a stereo, and an entertainment appliance.

The data acquisition for NILM can further be categorized into whole-house and
circuit-level data [43]. As almost NILM systems use whole-house data, the approach
proposed in [23] suggests using circuit-level data to identify low-power appliances
(stand by states of several appliances) in presence of high-power appliances (more
than 150 W). The approach seems to alleviate the complexity of the problem but on
the extent of installation cost.

5.2.1.3 Inference and Learning

Inference in NILM refers to the problem of recognizing the set of active states from
the aggregated load in real-time. Two main approaches tackle the inference problem
in NILM: optimization and machine learning [25, 43]. Optimization approaches
show limits facing computational complexity [1, 9]. Machine learning approaches
may be divided into two types: approaches based on events and approaches based
on models. Approaches based on events aim at detecting a change in the aggregated
load and classify this change to match an appliance state consumption. Approaches
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Fig. 5.7 Histograms of usage time probabilities over hours of the day: (a) Lamp, (b) Television,
(c) Stereo, (d) Entertainment

based on models aim at learning an appliance model parameters or a household
power profile, then recognize the appliance consumption in real-time. Approaches
differ according to the available data and consequently according to their learning
type: supervised, semi-supervised, and unsupervised learning. Machine learning
based approaches are the core of this paper and are discussed in detail in Sect. 5.3.

5.2.2 Requirements

To attain a successful implementation of a NILM approach, Zeifman [40] presented
in 2012 some requirements that should be fulfilled. Many of these requirements
have been met in different state-of-the-art approaches. However, the installation of
smart meters in residential and new scientific studies points out the need to meet
new requirements. We extend the requirements presented in [40] to the following
ones:

– Non-intrusiveness: The approach must only require consumption data to be
collected from a single point of measurement to avoid the cost of installing
sensors for each appliance.

– Adaptability to low sampling frequency data: The approach must be able to
monitor appliances given aggregate power measurements at 1 min intervals since
it represents available residential smart meters frequency sampling in Europe.
This allows for avoiding the cost of additional hardware (storage, acquisition,
etc.) installation.
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– Unsupervised disaggregation: The training phase should be automatic and
independent of the user. The user does not have to label the consumption
measurements of appliances, their number, or to switch them ON/OFF to obtain
data about each active state of each appliance.

– Ability to generalize to unseen houses: It is very unlikely to have available
ground truth consumption data for each appliance because sub-metered data are
very expensive to be collected. Generalization of the built model to identify
appliances used in unseen households is a popular property in machine learning
but few NILM approaches considered this aspect to date [31].

– Protecting consumer privacy: Recently, many smart meters have been
deployed in Europe. However, resident feedback following the smart meter
installation in households points out the need to protect privacy requirement.
A big issue facing NILM deployment is privacy loss because residents usually
complain about sharing their personal data with utility companies. A potential
solution is to perform data processing at the household level. Henceforth,
personal data are not shared with external parts.

– Near real-time capabilities: The approach must be able to infer active appli-
ances, their states, and consumption in real-time. This requirement is fulfilled in
many NILM approaches. However, we notice a lack of approaches able to learn
online the parameters of a specific appliance from a generic model.

– Adaptability to new appliances: The learning approach has to be able to be
extended to recognize new appliances when they are added to the load.

5.2.3 Difficult Scenarios for Disaggregation

In addition to the aforementioned requirements, NILM faces some challenges.
Indeed, disaggregation is particularly difficult in some scenarios as follows:

– States that have a small power level consumption: The energy consumption
of certain appliances active states can be less than the event detection threshold or
could be considered as noise. These states cannot be detected from the aggregated
load. For instance, tablet or smartphone consumes during charging less than 5 W
which is within the consumption variance of several appliances.

– Appliances that have states with similar consumption: Different appliances
could have similar energy consumption in several states. As illustrated in
Figs. 5.8, 5.9, and 5.10, the circled states of the laptop, stereo, and freezer have
often equivalent consumption readings. Considering only the active power to
distinguish between these states may not be enough (Fig. 5.11).

– Unknown appliances: A sequence of consumption data may be generated by a
new appliance which does not have a prior model. A challenge is to detect this
new appliance and distinguish its consumption from an aggregation of two or
more of already known states that are active.
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Fig. 5.8 Laptop consumption

Fig. 5.9 Stereo consumption

Fig. 5.10 Freezer consumption
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Fig. 5.11 Example of multi-state appliances

5.3 Review of Machine Learning Based Approaches for
NILM

Machine learning approaches could be divided into two main categories: approaches
based on events and approaches based on models. These approaches differ according
to the granularity of data used and the learning type. Different models and classifi-
cation algorithms are used in the literature. Figure 5.12 illustrates a taxonomy of the
discussed approaches. In the sequel, we discuss these two families of approaches
with a main focus on the one based on models.

5.3.1 Approaches Based on Event Detection

Event-based approaches aim at classifying appliances based on detected switch
events in the aggregated load. These approaches follow usually the steps depicted
in Fig. 5.14. First, data are collected from a meter in a household. A pre-processing
is performed that depends on the frequency of collected data. Second, edge change
is detected and classified as an appliance state power profile. Edge change detection
consists in detecting if an appliance changes its state from one to another (from a
power profile to another).

A big issue facing this type of approach is the used change detection mechanism.
Indeed, it is highly dependent on the used threshold. On the one hand, a small
threshold increases the rate of false detection of state changes (see Fig. 5.13a). On
the other hand, a big threshold may miss the detection of appliances with small
consumption profiles (see Fig. 5.13a). A naive approach deployed in almost power
disaggregation approaches [14, 38] is to monitor power consumption readings and to
flag an event when the power change deviates beyond a fixed threshold. For instance,
a change in the active power of 5 W between two successive readings (yt−1 and yt )
is considered as an indication of a transition between two states according to the
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Fig. 5.13 Event detection based on a threshold, (a): δ = 5 W, (b): δ = 20 W

switch continuity principle (SCP) in NILM [19].1 A method for adaptive threshold
selection which is based on the generalized likelihood ratio (GLR) has been
proposed [3]. This method succeeds to properly distinguish between state transition
events, noise, and consumption variance within an appliance state consumption.
However, computing the likelihood at each observation point leads to computational
complexity and is not appropriate for real-time application (Fig. 5.14).

An unsupervised NILM event detector based on a sliding window kernel Fisher
discriminant analysis (KFDA) has been proposed [2]. It determines accurately start
and end times of transient states instead of returning only a change point and thus
provides a good segmentation into steady states and transient states. However, this
approach requires data sampled at high rates (12 KHz) to extract the needed features.

1The SCP assumes that only one appliance ever changes state at any given point in time. This
assumption holds if the sampling time is reasonably short.
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Third, feature extraction is performed to select the most discriminating features
to distinguish between appliances. The final task is to classify which appliance
has triggered an event-based on the features extracted in the previous step and the
labeled data.

Several machine learning algorithms were proposed recently for NILM to
perform the classification including supervised methods such as neural networks
[33], support vector machine (SVM) [17]. Event-based detection approaches are
usually supervised [38]. Indeed, they require appliances annotation in each house
which shows an intrusive behavior and a burden on users’ dailies. For instance,
occupants have to switch on and off devices to allow the system to learn appliances
power profiles [38].

Some works proposed unsupervised approaches that are mainly based on a
signature database to classify an appliance [3] based on its signature (or the
appliance transient profile). However, it is impossible and very expensive to collect
all appliances’ signatures in a database because many models (brands/instances)
exist for each appliance type. More recently, an event detection method based on
signal processing [42] has been proposed. The approach uses median filtering and
window processing to detect appliances in active states. Classification is performed
based on graph filtering. However, the approach is not totally event-based, since the
disaggregation is performed based on inference algorithms such as the one proposed
for Factorial HMM [14]. Finally, we have to point out that one prominent drawback
of event-based methods is that they assume all appliances’ switch events are
independent. This is not the case for multi-state appliances because each appliance
state depends on its previous one.

5.3.2 Approaches Based on Probabilistic Models for NILM

The problem of power disaggregation is time-dependent by nature. NILM
researchers have always thought models of sequential data and time as possible
solution. For this reason, most of the modern approaches for NILM are based on
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hidden Markov models and deep learning. Several deep learning based approaches
[12, 16, 24, 41] have been proposed for NILM. They showed very promising results
regarding generalization to unseen appliances and presented major improvements
in terms of complexity. However this performance is still prone to: the need to
high-frequency data which is impractical in the residential sector due to the return
of investment issues; the difficult process of training; and sometimes dependency on
labeled data. Deep learning training is computationally expensive. Indeed, training
takes days of processing on a fast GPU which cannot be an embedded process
inside a smart meter.

Probabilistic models based approaches follow the steps depicted in Fig. 5.15.
First, data acquisition and feature extraction are performed. The most discriminating
features are used to build the model structure. The model parameters are learned
during the training phase using available training data. Finally, the updated model is
used for disaggregation. We distinguish three main different learning and inference
algorithms categories for NILM: supervised ones which usually use sub-metered
data for training, unsupervised algorithms which are free of training, and semi-
supervised algorithms which use an aggregated load for training. The most adopted
probabilistic graphical model for NILM is hidden Markov model and its extensions.
In the following, we review the state-of-the-art approaches based HMM for NILM
discussing their strengths, shortcomings, and limitations.

5.3.3 Review of Hidden Markov Models (HMM) for NILM

The most popular disaggregation approaches are based on hidden Markov models
(HMMs) solutions [7, 11, 13–15, 20–22, 30, 31, 39, 40] because they succeed to cor-
rectly model dependence between event transitions and steady-states consumption.
Several versions of HMMs have been deployed and have shown interesting results
[25]. Despite the arithmetic complexity of inference algorithms, these models still
present the best compromise in terms of meeting NILM requirements. In the sequel,
we discuss the state-of-the-art methods based on HMMs. We categorize these
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approaches according to supervised, unsupervised, semi-supervised learning, and
non-parametric Bayesian learning and we discuss HMM-based approaches using
additional features to active power. A comparative discussion is proposed in the end
of this section underlining the limits of the state of the art.

5.3.3.1 Supervised HMM-Based Approaches

Supervised learning algorithms are trained based on data collected from sub-
metered data [7, 13, 15, 20, 39, 40]. Accuracy results are very promising and reach
80% [20]. However, these approaches are impractical for large scale applications
because spreading sensors in each circuit level is expensive. A sparse HMM is
proposed [20] where each HMM state is considered as the composition of all
appliances’ states and called superstate HMM. In other words, the HMM state
represents the state of the household (all the appliances states in the house). This
model differs from FHMM representation for NILM by adding the representability
of loads dependence. Indeed, the transition matrix of such a model incorporates
the probability of switching from one appliance state to another state from a
different appliance. An exact inference algorithm has been proposed for the super
state HMM. It can recognize more than twenty appliances in real-time and shows
promising disaggregation accuracy results. Unfortunately, according to our opinion,
this approach violates the main requirement of NILM which is “unsupervised
disaggregation.” Indeed, the disaggregator is based on a prior model that is built
from sub-metered data.

To tackle continuously consuming appliances, particle filter has been used to
approximate the PDFs of HMM states with the nonlinear appliance (drill, dimmer,
. . .) behavior. The approach called “Paldi” [7] considers also non-Gaussian noise
that cannot be handled by HMM and FHMM. In the first step, HMMs are built
based on sub-metered data to model each appliance consumption behavior. The
HMM structure, the transition matrix, and the observation distributions are learned
offline. Then, a FHMM is constructed as a combination of the built HMMs to model
a household total consumption. Particle filters are used to estimate the posterior
density of the FHMM. Paldi succeeds to identify nonlinear appliance behavior such
as the drill. However, it is dependent on the choice of an appliance power demand
specified offline and cannot work properly if appliances with similar power profiles
exist in the same household.

5.3.3.2 Unsupervised HMM-Based Approaches

A bench of unsupervised approaches based on variants of factorial hidden Markov
models (FHMM) have been proposed [5, 14, 29]. These approaches share almost the
same scalability issues. Indeed, they are not applicable for a number of appliances
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greater than eighteen [25]. The first unsupervised approach without the use of any
prior knowledge has been proposed for power disaggregation in [14]. The proposed
approach selects the number of appliances, the number of states per appliance and
extracts training samples for each appliance from the aggregated load. It uses a
snippet heuristic that looks for periods (samples in the aggregated load) where
an appliance is turning ON then OFF. However, this is indecipherable for almost
appliances because appliance states that consume for long-duration could not be
captured consuming consequently in the aggregated load and are interrupted by the
activation of other appliances. The proposed inference algorithm called AFAMAP
for additive factorial approximate MAP is a variational approximate inference based
on integer programming which overcomes the expensive computation procedure of
exact inference. On the one hand, the algorithm constrains the posterior to allow
only one Markov chain to change its state at any given time. This constraint is
called the one at a time assumption and it follows the SCP principle. On the other
hand, it performs inference using both an additive factorial HMM (AFHMM) and
a difference factorial HMM (DFHMM) but constrains the posterior over the hidden
variables in both models to agree. This constraint is used to alleviate the sensibility
of the model to noise. AFAMAP improved significantly accuracy results and showed
robustness to noise in factorial models for NILM and inference for FHMMs in
general. However, it is intractable for an important number of appliances (parallel
Markov chains). Finally, this approach still needs an expert to label disaggregated
appliances in the house.

A more recent work [5] extends the AFAMAP algorithm proposed in [14] to
a bivariate Gaussian observation model considering both the active and reactive
power. The approach proposes a model training method that is different from the
one deployed in [14]. A method for extracting an appliance footprint from an
aggregated power signal is proposed. Appliances activation is detected based on a
fixed threshold. However, temporal information has to be specified a priori to detect
ON and OFF states. Several footprints have to be detected for complex appliances
such as washing machines. Clustering is performed to group states belonging to the
same appliance and approximate states power consumption profiles where bivariate
Gaussian distributions are approximated to each appliance state active and reactive
power. The extended version of AFAMAP algorithm proposed in [14] improves
the state-of-the-art results. However, it shares the same complexity issues as his
predecessors.

To sum up, recent unsupervised approaches improved disaggregation accuracy;
however, they still suffer from scalability issues and the need for expert annotation
after the disaggregation phase.

5.3.3.3 Semi-Supervised HMM-Based Approaches

Approaches for NILM based on machine learning have been either supervised or
unsupervised. Both learning approaches have their advantages and limits. Parson et
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al. [30] proposed a semi-supervised approach to combine their respective strengths.
The aim is to take advantage of available appliances data extracted from public
data sets and to avoid sensors intrusiveness. Therefore, the approach main idea
is to create generic appliances models for all houses and to update these models
during the training phase using the aggregate load from each specific house. Authors
demonstrate that using prior knowledge for creating generic models gives the same
results as using sub-metered data [31] and outperforms the state of the art using
factorial hidden Markov model (FHMM). However, a major drawback of this
approach is the adopted training phase. Indeed, the approach aims at looking for
periods where only one appliance is operating in the house to extract its signature.
This entails the storage of all training samples which has a spatial complexity
of O(T ∗ D) where T is the training data size and D is the data dimension.
Besides, the training samples selection method has to iterate on all training data
for each appliance. Such training data cannot be stored or processed at the level
of the smart meter because the deployed training algorithm needs several days
of household consumption multiplied by the sampling frequency which involves
the need for high storage and processing capabilities. For instance, training in the
context of [30] approach is performed on the cloud. Unfortunately, this solution
presents privacy issues regarding sharing consumers’ personal data. We believe
that this is impractical because of the following reasons: First, almost appliances
are rarely deployed alone. The approach is more adapted for cooling appliances.
Second, waiting for long periods to find training samples for a single appliance
pushes occupants to lose confidence in the proposed system; finally, the proposed
method for generic prior models creation is not the most appropriate because expert
information cannot handle operation behavior of all appliances’ types.

5.3.3.4 HMM-Based Approaches with Non-traditional Features

Integrating non-traditional based features seems to alleviate scalability issues [29]
in FHMM. Non-traditional features refer to contextual based and behavioral based
features. Hour of the day, day of the week, and duration have been proposed as
additional features for FHMM [13]. Variants of FHMM using contextual features
are proposed such as factorial hidden semi-Markov model (FHSMM) where the
duration is approximated to a Gamma distribution. Moreover, a conditional FHMM
(CFHMM) is developed where the transition probabilities are not constant but
conditioned on the time of the day and day of the week. Furthermore, a combination
of the aforementioned models is developed and called CFHSMM for conditional
factorial hidden semi-Markov model. A modified expectation-maximization algo-
rithm is developed for this model to estimate the model parameters and a simulated
annealing algorithm is deployed to infer the sequence of hidden states because
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Viterbi algorithm is intractable for the CFHSMM. The proposed model improved
the disaggregation accuracy which may be explained by the discriminating behavior
of contextual features. However, the effect of each feature on the disaggregation
accuracy has not been investigated through the paper. Besides, the accuracy
improvement has been at the expense of increasing the model complexity. Indeed,
the proposed model is not tractable for a number of appliances greater than ten
[22]. Besides, the approach is claimed to be unsupervised; however, training and
evaluation are performed on the same data which makes us unable to evaluate the
generalization capabilities of the approach.

Time of the day and seasonal context-based patterns have been incorporated into
a recent NILM approach [6] to discriminate between appliances. A whole year of
usage data has been used for training to build usage patterns which is impractical
for real-world applications. Besides, generalization to unseen houses has not been
tested. Power consumption patterns of appliances, user presence, and time usage
have been investigated in [29]. Data analysis has been performed to highlight the
discriminating power of these additional features. The adopted inference algorithm
is an extension of the AFAMAP algorithm proposed in [14] with contextual
features. This extension shows promising results where the precision increased by
approximately 15%. Nevertheless, the approach is considered as supervised because
the same appliances are used for training and testing and its performance in the case
of unseen appliances cannot be evaluated. Besides, non-intrusiveness is violated
because user presence is detected by installing presence sensors in each room in the
house.

5.3.4 Non-parametric HMM-Based Approaches

The aforementioned approaches are not fully unsupervised because they still need
a prior on the number of appliances in the household. Non-parametric Bayesian
models have been proposed to tackle the issue of setting a fixed number of
appliances in NILM [10, 11, 36, 37]. A first attempt has been proposed in [11].
Semi-Markov chain is combined with hierarchical Dirichlet process and a Bayesian
non-parametric hidden semi-Markov models (HSMM) has been proposed. The
model explicitly models the duration distributions and can model multi-state
appliances. The approach does not rely on training data but prior information and
learns the model parameters during inference. Non-parametric Bayesian models are
used to fulfill generalization requirement; however, the proposed Bayesian non-
parametric HSMM has been evaluated on only one data set and only some data
segments have been chosen which makes us enable to evaluate its generalization
capabilities.
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A more recent approach proposed in [37] can be extended to an infinite number
of appliances and an unbounded number of states per appliance called (IUFHMM)
for infinite unbounded factorial hidden Markov model. The approach is generic for
all households because it is independent of prior knowledge. Only parameters’ prior
distribution hyper have been set a priori. All the model parameters, including the
number of appliances per house and the number of states per appliance, are learned
from data. Experiments showed that inferring the number of appliances from data
gives better results than FHMM. However, inferring the number of states from
data has not improved significantly the obtained results. Indeed, almost appliances
have a number of states less than four. Hence, setting the state’s number at four
gives approximately the same results than inferring this number from data. One
shortcoming of this work remains in the fact that it is unable to determine the label
of chains (appliances). Besides, experiments with a high number of devices have not
been reported which makes us unable to evaluate the inference algorithm tractability.

5.3.5 Conclusion and Discussion

In this paper, Non-Intrusive Load Monitoring (NILM) has been introduced and
the NILM framework has been detailed. Existing approaches for NILM have
been discussed. Then, machine learning based approaches for NILM have been
categorized according to learning type and the used features. Table 5.1 presents
our classification of NILM approaches according to NILM requirements introduced
in Sect. 5.2.

The goal behind this comparative analysis is to point out the state-of-the-art
limits. Firstly, the conducted analysis showed the importance of prior information
for the model robustness. Indeed, unsupervised learning can identify up to ten
appliances but shows inaccuracy for twenty or more appliances. Moreover, none of
the works proposed in the literature proposed an online training approach which
makes training heavy processing that cannot be performed on the level of the
smart meter. Furthermore, meeting consumers privacy is requested by users in
particular due to smart meter deployments in real households at large scale Europe.
Finally, almost proposed approaches in the literature are unable to propose a generic
approach that can be adaptive to the number of appliances and can label appliances
after disaggregation without the need for expert annotation.
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Chapter 6
Neural Networks and Statistical Decision
Making for Fault Diagnosis in Energy
Conversion Systems

Gerasimos Rigatos, Dimitrios Serpanos, Vasilios Siadimas, Pierluigi Siano,
and Masoud Abbaszadeh

6.1 Introduction

Energy conversion systems that include DC-DC converters are often used for energy
conversion purposes [1–4]. DC-DC converters find several applications in DC
electric power generation systems such as photovoltaics. DC power transmission
systems, in the control of motors as well as of several appliances, and in the
actuation of robots and in the traction systems of electric vehicles [5–8]. DC-
DC converters undergo failures and condition monitoring for them is important
so as to prolong their life-time and to avoid critical conditions [9–12]. Condition
monitoring of DC-DC converters is part of the wider fault diagnosis problem of
the electricity grid [13–15]. There have been several attempts to solve the fault
detection and isolation problem for DC-DC converters [16–20]. These are mainly
grouped in two classes: (1) model-based approaches [21–24], and (2) model-free
approaches [25–28]. In the case of (1) it is considered that a dynamic model of the
DC-DC converters is available and this allows to develop software that emulates the
fault-free functioning of the converters, for instance in the form of state-observers
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or filters [29–32]. In the case of (2) there is no available model of the DC-DC
converter’s dynamics; however, one can generate a nonparametric model in the
form of a neural or neurofuzzy network through the processing of raw data of the
converter’s input and output measurements [33–36]. To perform fault diagnosis, in
both cases (1) and (2) the sequence of the real outputs of the converter is compared
against the output of the estimated outputs which are generated by the previously
mentioned state-observer/filter or the neural network [37–41]. The fault threshold
definition problem has been also the subject of intensive research [42–45]. In this
area, the local statistical approach to fault diagnosis, allows for optimal selection
of the fault threshold and for the early detection of incipient parametric changes
[46–50].

In the present chapter, a model-free approach for fault diagnosis of an energy
conversion system that consists of a DC-DC converter connected to a DC motor
is developed. This method relies on neural modeling of the energy conversion
system’s dynamics and on the use of a statistical decision making procedure
for detecting the existence of a failure [1]. To develop the dynamic model of
this energy conversion system, data sets are generated consisting of input–output
measurements accumulated from its functioning at different operating conditions.
The neural model comprises (1) a hidden layer of basis functions having the
form of Gauss–Hermite polynomials, (2) a weights output layer [41]. Weights’
adaptation and learning take place in the form of a first-order gradient algorithm.
The approximation error is minimized. The neural model that is obtained through
this learning procedure is considered to represent the fault-free functioning of the
DC-DC converter and of the DC motor system. Next, real output measurements
from the energy conversion system are used for diagnosing the appearance of faults.

The real values of the system’s outputs are subtracted from the estimated values
which come from the neural model. Thus the residuals’ sequence is generated
[1, 37]. The residuals’ data set undergoes statistical processing. It is shown that
the sum of the squares of the residuals’ vector, being multiplied by the inverse of
the associated covariance matrix, stands for a stochastic variable which follows
the χ2 distribution. Next, with the use of the 96% or of the 98% confidence
intervals of the χ2 distribution, one can define fault thresholds which designate with
significant accuracy and undebatable certainty the appearance of a fault in the DC-
DC converter and DC motor energy conversion system. As long as the value of the
aforementioned stochastic variable remains within the upper and the lower bound
of the confidence interval it can be concluded that the functioning of the DC-DC
converter and of the DC motor remains normal [1]. On the other side, whenever the
previously noted bounds are exceeded it can be concluded that the functioning of
this energy conversion system has been subject to fault. Moreover, by using different
outputs from the energy conversion system, and by repeating the statistical test into
subspaces of its state-space model, one can also achieve fault isolation which shows
the specific part of the energy conversion system that has exhibited the failure (for
instance failure in its mechanical part that is the DC motor, or failure in its electrical
part that is the DC-DC converter).
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The structure of the paper is as follows: in Sect. 6.2 the dynamic model of the
energy conversion system that comprises the DC-DC converter and the DC motor is
analyzed and the associated state-space description is given. In Sect. 6.3 modeling of
the dynamics of the energy conversion system is performed with the use of Gauss–
Hermite neural networks. In Sect. 6.4 a statistical decision making method which is
based on the χ2 distribution is proposed as a tool for performing fault diagnosis in
the energy conversion system. In Sect. 6.5 the performance of this fault diagnosis
scheme is tested through simulation experiments considering the functioning under
different operating conditions of the energy conversion system that incorporates the
DC-DC converter and the DC motor. Finally, in Sect. 6.6 concluding remarks are
stated.

6.2 Dynamic Model of the Energy Conversion System

Energy conversion systems comprising DC motors controlled through DC-DC
converters can be found in several applications, as for instance in photovoltaics-
powered pumps or in desalination units (Fig. 6.1). Control is implemented through
a pulse-width-modulation (PWM) approach [1]. The equivalent circuit of the system
that is formed after connecting a DC motor to a DC-DC (buck) converter is depicted
in Fig. 6.2.

Pulse width modulation (PWM) is applied for the converter’s control. The
amplitude of the output voltage Vo is determined by the duty cycle of the PWM.
The on/off state of the switch Q sets voltage u to E or to 0 for specific time intervals
within the sampling period. The ratio between the time interval in which u = E

DC motor 
/ pump 

Water 
resources

Ba�ery

Converter

Photovoltaic
Cells

To irriga�on

Fig. 6.1 Energy conversion system turning solar power into mechanical power
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Fig. 6.2 Circuit of the DC-DC converter connected to a DC motor

and the sampling period defines the duty cycle. By varying the duty cycle one can
control the voltage output Vo, as if a variable input voltage E was applied to the
circuit.

The dynamics of the electrical part of the circuit comes from the application of
Kirchhoff’s laws. It holds

L
dI

dt
+ Vc = u

Lm
dIa

dt
+ RmIa +Keω = Vc

I = Ic + IR + Ia or I = C dVc
dt

+ Vc
R
+ Ia (6.1)

The dynamics of the mechanical part of the circuit comes from the laws of rotational
motion. It holds that

θ̇ = ω
J ω̇ = −Bω +KaIa + τL (6.2)

where τL is the load’s torque. By defining the state variables x1 = θ , x2 = ω,
x3 = I , x4 = Vc, and x5 = Ia one obtains the following state-space model:

ẋ1 = x2

ẋ2 = −B
J
x2 + Ka

J
x5 + 1

J
τd

ẋ3 = − 1

L
x4 + 1

L
u
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ẋ4 = 1

C
x3 − 1

RC
x4 + 1

C
x5

ẋ5 = 1

Lm
x4 − Rm

Lm
x5 + Ke

Lm
x2 (6.3)

Without loss of generality it is considered that the load’s torque is τL =
mgl sin(x1) (the motor is considered to be lifting a rod of length l having a mass
m at its end), the previous state-space description is written in the following matrix
form:

⎛
⎜⎜⎜⎜⎜⎝

ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

⎞
⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎝

x2

−B
J
x2 + Ka

J
x5 + 1

J
mgl sin(x1)

− 1
L
x4

1
C
x3 − 1

RC
x4 + 1

C
x5

Ke
Lm
x2 + 1

Lm
x4 − Rm

Lm
x5

⎞
⎟⎟⎟⎟⎟⎠
+

⎛
⎜⎜⎜⎜⎜⎝

0
0
1
L

0
0

⎞
⎟⎟⎟⎟⎟⎠
u (6.4)

6.3 Modeling of the Energy Conversion System with the Use
of Neural Networks

6.3.1 Feed-Forward Neural Networks for Nonlinear Systems
Modeling

The proposed fault diagnosis approach for energy conversion systems that exhibit
nonlinear dynamics, can be implemented with the use of feed-forward neural
networks. The idea of function approximation with the use of feed-forward neural
networks (FNN) comes from generalized Fourier series. It is known that any
function ψ(x) in a L2 space can be expanded, using generalized Fourier series in a
given orthonormal basis, i.e. [1, 37]

ψ(x) =
∞∑
k=1

ckψk(x), a ≤ x ≤ b (6.5)

Truncation of the series yields in the sum

SM(x) =
M∑
k=1

akψk(x) (6.6)

If the coefficients ak are taken to be equal to the generalized Fourier coefficients,
i.e. when ak = ck =

∫ b
a
ψ(x)ψk(x)dx, then Eq. (6.6) is a mean square optimal

approximation of ψ(x).
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Fig. 6.3 (a) Feed-forward neural network (b) Neural network with Gauss–Hermite basis functions

Unlike generalized Fourier series, in FNN the basis functions are not necessarily
orthogonal. The hidden units in a FNN usually have the same activation functions
and are often selected as sigmoidal functions or Gaussians. A typical feed-forward
neural network consists of n inputs xi, i = 1, 2, . . . , n, a hidden layer ofm neurons
with activation function h : R → R and a single output unit (see Fig. 6.3a). The
FNN’s output is given by

ψ(x) =
n∑
j=1

cjh

(
n∑
i=1

wjixi + bj
)

(6.7)

The root mean square error in the approximation of function ψ(x) by the FNN
is given by

ERMS =
√√√√ 1

N

N∑
k=1

(
ψ
(
xk
)− ψ̂ (xk))2

(6.8)

where xk = [xk1 , xk2 , . . . , xkn] is the k-th input vector of the neural network. The
activation function is usually a sigmoidal function h(x) = 1

1+e−x while in the case
of radial basis functions networks it is a Gaussian [41]. Several learning algorithms
for neural networks have been studied. The objective of all these algorithms is to
find numerical values for the network’s weights so as to minimize the mean square
error ERMS of Eq. (6.8). The algorithms are usually based on first and second order
gradient techniques. These algorithms belong to: (1) batch-mode learning, where to
perform parameters update the outputs of a large training set are accumulated and
the mean square error is calculated (back-propagation algorithm, Gauss–Newton
method, Levenberg–Marquardt method, etc.), (2) pattern-mode learning, in which
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training examples are run in cycles and the parameters update is carried out each
time a new datum appears (Extended Kalman Filter algorithm) [42].

Unlike conventional FNN with sigmoidal or Gaussian basis functions, Hermite
polynomial-based FNN remain closer to Fourier series expansions by employing
activation functions which satisfy the property of orthogonality [41]. Other basis
functions with the property of orthogonality are Hermite, Legendre, Chebyshev, and
Volterra polynomials [41].

6.3.2 Neural Networks Using Gauss–Hermite Activation
Functions

6.3.2.1 The Gauss–Hermite Series Expansion

Next, as orthogonal basis functions of the feed-forward neural network Gauss–
Hermite activation functions are considered [1, 37]:

Xk(x) = Hk(x)e−x
2

2 , k = 0, 1, 2, · · · (6.9)

whereHk(x) are the Hermite orthogonal functions (Fig. 6.4). The Hermite functions
Hk(x) are also known to be the eigenstates of the quantum harmonic oscillator. The
general relation for the Hermite polynomials is

−10 −5 0 5 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

H
(x

)

Hermite basis functions

−10 −5 0 5 10
−1

−0.5

0

0.5

1

time

H
1(

x)

1st Hermite basis function

−10 −5 0 5 10
−1

−0.5

0

0.5

1

time

H
2(

x)

2nd Hermite basis function

−10 −5 0 5 10
−1

−0.5

0

0.5

1

time

H
3(

x)

3rd Hermite basis function

−10 −5 0 5 10
−1

−0.5

0

0.5

1

time

H
4(

x)

4th Hermite basis function

Fig. 6.4 (a) First five one-dimensional Hermite basis functions (b) Analytical representation of
the 1D Hermite basis function
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Hk(x) = (−1)kex
2 d(k)

dx(k)
e−x2

(6.10)

According to Eq. (6.10) the first five Hermite polynomials are

H0(x) = 1, H1(x) = 2x, H2(x) = 4x2 − 2, H3(x) = 8x3 − 12x,

H4(x) = 16x4 − 48x2 + 12

It is known that Hermite polynomials are orthogonal, i.e. it holds

∫ +∞

−∞
e−x2

Hm(x)Hk(x)dx =
{

2kk!√π if m = k
0 if m �=k (6.11)

Using now, Eq. (6.11), the following basis functions can be defined [41]:

ψk(x) =
[
2kπ

1
2 k!
]− 1

2
Hk(x)e

− x2
2 (6.12)

where Hk(x) is the associated Hermite polynomial. From Eq. (6.11), the orthogo-
nality of basis functions of Eq. (6.12) can be concluded, which means

∫ +∞

−∞
ψm(x)ψk(x)dx =

{
1 if m = k
0 if m �=k (6.13)

Moreover, to achieve multi-resolution analysis Gauss–Hermite basis functions of
Eq. (6.12) are multiplied with the scale coefficient α. Thus the following basis
functions are derived [41]:

βk(x, α) = α− 1
2ψk

(
α−1x

)
(6.14)

which also satisfy the orthogonality condition

∫ +∞

−∞
βm(x, α)βk(x, α)dx =

{
1 if m = k
0 if m �=k (6.15)

Any function f (x), x ∈ R can be written as a weighted sum of the above
orthogonal basis functions, i.e.

f (x) =
∞∑
k=0

ckβk(x, α) (6.16)

where coefficients ck are calculated using the orthogonality condition
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ck =
∫ +∞

−∞
f (x)βk(x, α)dx (6.17)

Assuming now that instead of infinite terms in the expansion of Eq. (6.16),M terms
are maintained, then an approximation of f (x) is achieved. The expansion of f (x)
using Eq. (6.16) is a Gauss–Hermite series. Equation (6.16) is a form of Fourier
expansion for f (x). Equation (6.16) can be considered as the Fourier transform of
f (x) subject only to a scale change. Indeed, the Fourier transform of f (x) is given
by

F(s) = 1

2π

∫ +∞

−∞
f (x)e−jsxdx ⇒ f (x) = 1

2π

∫ +∞

−∞
F(s)ejsxds (6.18)

The Fourier transform of the basis function ψk(x) of Eq. (6.12) satisfies [41]

�k(s) = jkψk(s) (6.19)

while for the basis functions βk(x, α) using scale coefficient α it holds that

Bk(s, α) = jkβk
(
s, α−1

)
(6.20)

Therefore, it holds

f (x) =
∞∑
k=0

ckβk(x, α)
F

⇒F(s) =
∞∑
k=0

ckj
nβk

(
s, α−1

)
(6.21)

which means that the Fourier transform of Eq. (6.16) is the same as the initial
function, subject only to a change of scale. The structure of a feed-forward neural
network with Hermite basis functions is depicted in Fig. 6.3b.

6.3.2.2 Neural Networks Using 2D Hermite Activation Functions

Two-dimensional Hermite polynomial-based neural networks can be constructed
by taking products of the one-dimensional basis functions Bk(x, α). Thus, setting
x = [x1, x2]T one can define the following basis functions [1, 37]:

Bk(x, α) = 1

α
Bk1(x1, α)Bk2(x2, α) (6.22)

These two-dimensional basis functions are again orthonormal, i.e. it holds

∫
d2xBn(x, α)Bm(x, α) = δn1m1δn2m2 (6.23)
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The basis functions Bk(x) are the eigenstates of the two-dimensional harmonic
oscillator and form a complete basis for integrable functions of two variables. A
two-dimensional function f (x) can thus be written in the series expansion:

f (x) =
∞∑
k1,k2

ckBk(x, α) (6.24)

The choice of an appropriate scale coefficient α and maximum order kmax is of
practical interest. The coefficients ck are given by

ck =
∫
dx2f (x)Bk(x, α) (6.25)

Indicative basis functions B2(x, α), B6(x, α), B9(x, α), B11(x, α) and B13(x, α),
B15(x, α) of a 2D feed-forward neural network with Hermite basis functions are
depicted in Figs. 6.5, 6.6, and 6.7. Following, the same method N -dimensional
Hermite polynomial-based neural networks (N > 2) can be constructed. The asso-
ciated high-dimensional Gauss–Hermite activation functions preserve the properties
of orthogonality and invariance to Fourier transform.
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Fig. 6.5 2D Hermite polynomial activation functions: (a) basis function B2(x, α) (b) basis
function B6(x, α)
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Fig. 6.6 2D Hermite polynomial activation functions: (a) basis function B9(x, α) (b) basis
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Fig. 6.7 2D Hermite polynomial activation functions: (a) basis function B13(x, α) (b) basis
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6.4 Statistical Fault Diagnosis Using the Neural Network

6.4.1 Fault Detection

A Gauss–Hermite neural network has been used to learn the dynamics of the energy
conversion system. For each functioning mode, the training set comprised N =
2000 vectors of input–output data. In each vector the input data were x1(k), x1(k −
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Q
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Fig. 6.8 Residuals’ generation for the energy conversion system that comprises the DC-DC
converter and DC motor, with the use of a neural network

1), x1(k − 2) standing for the three most recent values of the first state variable
x1 of the energy conversion system. It was considered that each input variable can
be expressed in a series expansion form using the first four Gauss–Hermite basis
functions. The output of the neural network was the estimated value of the first
state variable x̂1(k+ 1). Following the previous concept, the Gauss–Hermite neural
network which has been used for learning, comprised 43 = 64 basis functions in its
hidden layer and 64 weights in its output layer.

The residuals’ sequence, that is, the differences between (1) the real outputs
of the energy conversion power unit and (2) the outputs estimated by the neural
network (Fig. 6.8) is a discrete error process ek with dimension m×1 (here m = N
is the dimension of the output measurements vector). Actually, it is a zero-mean
Gaussian white-noise process with covariance given by Ek [1].

A conclusion can be stated that the energy conversion system which comprises
the DC-DC converter and the DC motor has not been subjected to a fault. To this
end, the following normalized error square (NES) is defined [1]:

εk = eTk E−1
k ek (6.26)

The sum of this normalized residuals’ square follows a χ2 distribution, with a
number of degrees of freedom that is equal to the dimension of the residuals’ vector.
The form of the χ2 distribution for various degrees of freedom is shown in Fig. 6.9.
An appropriate test for the normalized error sum is to numerically show that the
following condition is met within a level of confidence (according to the properties
of the χ2 distribution):
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Fig. 6.9 (a) Probability density function of the χ2 distribution for p = 6 degrees of freedom,
(b) Probability density function of the distribution for several values of the degrees of freedom
(variable p)

E{εk} = m (6.27)

This can be achieved using statistical hypothesis testing, which is associated with
confidence intervals. A 95% confidence interval is frequently applied, which is
specified using 100(1−a)with a = 0.05. Actually, a two-sided probability region is
considered cutting-off two end tails of 2.5% each. For M runs the normalized error
square that is obtained is given by

ε̄k = 1

M

M∑
i=1

εk(i) = 1

M

M∑
i=1

eTk (i)E
−1
k (i)ek(i) (6.28)

where εi stands for the i-th run at time tk . Then Mε̄k will follow a χ2 density
with Mm degrees of freedom. This condition can be checked using a χ2 test. The
hypothesis holds, if the following condition is satisfied:

ε̄k∈[ζ1, ζ2] (6.29)

where ζ1 and ζ2 are derived from the tail probabilities of the χ2 density. For
example, for m = 1 (dimension of the measurements vector) and M = 2000
(total number of the output vector’s samples) one has χ2

Mm(0.025) = 1878 and
χ2
Mm(0.975) = 2126. Using that M = 100 one obtains ζ1 = χ2

Mm(0.025)/M =
0.948 and ζ2 = χ2

Mm(0.975)/M = 1.052.
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6.4.2 Fault Isolation

By applying the statistical test into the individual components of the DC-DC
converter and DC motor energy conversion unit, it is also possible to find out the
specific component that has been subjected to a fault [1]. For an energy conversion
system of n parameters suspected for change one has to carry out n χ2 statistical
change detection tests, where each test is applied to the subset that comprises
parameters i − 1, i and i + 1, i = 1, 2, . . . , n. Actually, out of the n χ2 statistical
change detection tests, the one that exhibits the highest score are those that identify
the parameter that has been subject to change.

In the case of multiple faults one can identify the subset of parameters that
has been subjected to change by applying the χ2 statistical change detection test
according to a combinatorial sequence. This means that

(
n

k

)
= n!

k!(n−k)! (6.30)

tests have to take place, for all clusters in the energy conversion system, that finally
comprise n, n − 1, n − 2, . . ., 2, 1 parameters. Again the χ2 tests that give the
highest scores indicate the parameters which are most likely to have been subjected
to change.

As a whole, the concept of the proposed fault detection and isolation method is
simple. The sum of the squares of the residuals’ vector, weighted by the inverse
of the residuals’ covariance matrix, stands for a stochastic variable which follows
the χ2 distribution. Actually, this is a multi-dimensional χ2 distribution and the
number of its degrees of freedom is equal to the dimension of the residuals’ vector.
Since, there is one measurable output of the energy conversion system, the residuals’
vector is of dimension 1 and the number of degrees of freedom is also 1. Next,
from the properties of the χ2 distribution, the mean value of the aforementioned
stochastic variable in the fault-free case should be also 1. However, due to having
sensor measurements subject to noise, the value of the statistical test in the fault-
free case will not be precisely equal to 1 but it may vary within a small range
around this value. This range is determined by the confidence intervals of the χ2

distribution. For a probability of 98% to get a value of the stochastic variable about
1, the associated confidence interval is given by the lower bound L = 0.934 and by
the upper bound U = 1.066. Consequently, as long as the statistical test provides an
indication that the aforementioned stochastic variable is in the interval [L,U ] the
functioning of the power unit can be concluded to be free of faults. On the other side,
when the bounds of the previously given confidence interval are exceeded it can be
concluded that the power unit has been subject to a fault or cyber-attack. Finally, by
performing the statistical test into subspaces of the DC-DC converter and DC motor
energy conversion unit’s state-space model, where each subspace is associated with
different components, one can also achieve fault isolation. This signifies that the
specific component that has caused the malfunctioning of the power unit can be
identified.
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6.5 Simulation Tests

The performance of the proposed fault diagnosis method for the energy conversion
system that comprises the DC-DC converter and the DC motor has been tested
through simulation experiments. Six different functioning modes have been con-
sidered. These are depicted in Figs. 6.10, 6.11, and 6.12. The induced changes and
disturbances in the energy conversion system were incipient and as confirmed by the
previously noted diagrams they can be hardly distinguished by human supervisors
of the system. By applying the previously analyzed statistical test which relies on the
properties of the χ2 distribution, results have been obtained about the detection of
failures in the energy conversion system. These results are depicted in Figs. 6.13,
6.14, 6.15, 6.16, 6.17, and 6.18. Actually, two types of fault detection tests are
presented: (1) consecutive statistical tests carried out on the energy conversion
system and (2) mean value of the statistical tests.

The number of monitored outputs in the energy conversion system was n = 1.
Consequently, according to the previous analysis, in the fault-free case the mean
value of the statistical test should be very close to the value 1. In particular
considering 98% confidence intervals, the bounds of the normal functioning of the
system were U = 1.066 (upper bound) and L = 0.934 (lower bound). As long as
the mean value of the statistical test remains within the bounds of this confidence
interval it can be concluded that the functioning of the energy conversion system
remains normal. This is shown in the test cases 2, 4, and 5. On the other side,
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Fig. 6.10 (a) Test case 1 (tracking of setpoint 1 and fault at the output of the energy conversion
system): Real value (blue) of the system’s output x1 vs estimated value x̂1 (red), (b) Test case 2
(tracking of setpoint 2 and no-fault): Real value (blue) of the system’s output x1 vs estimated value
x̂1 (red)
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Fig. 6.11 (a) Test case 3 (tracking of setpoint 3 and fault at the output of the energy conversion
system): Real value (blue) of the system’s output x1 vs estimated value x̂1 (red), (b) Test case 4
(tracking of setpoint 4 and no-fault): Real value (blue) of the system’s output x1 vs estimated value
x̂1 (red)
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Fig. 6.12 (a) Test case 5 (tracking of setpoint 5 and no-fault): Real value (blue) of the system’s
output x1 vs estimated value x̂1 (red), (b) Test case 6 (tracking of setpoint 6 and fault at the output
of the energy conversion system): Real value (blue) of the system’s output x1 vs estimated value
x̂1

whenever the value of the statistical test exceeds persistently the aforementioned
bounds, then one can infer the appearance of a parametric change or of a strong
external perturbation. This is shown in test cases 1, 3, and 6. Finally, it is noted that
by performing the statistical test in subspaces of its state-space model one can also
achieve fault isolation. For instance, it is possible to conclude the existence of a
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Fig. 6.13 Test case 1: fault (additive disturbance) at the output of the energy conversion system,
(a) individual χ2 tests and related confidence intervals, (b) mean value of the χ2 test and related
confidence intervals
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Fig. 6.14 Test case 2: no-fault, (a) individual χ2 tests and related confidence intervals, (b) mean
value of the χ2 test and related confidence intervals

failure in the mechanical part of the energy conversion unit (that is the DC-motor),
or the existence of a failure in the electrical part of the energy conversion system
(that is the DC-DC converter).
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Fig. 6.15 Test case 3: fault (additive disturbance) at the output of the energy conversion system,
(a) individual χ2 tests and related confidence intervals, (b) mean value of the χ2 test and related
confidence intervals
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Fig. 6.16 Test case 4: no-fault, (a) individual χ2 tests and related confidence intervals, (b) mean
value of the χ2 test and related confidence intervals

6.6 Conclusions

The chapter has proposed neural modeling and statistical decision making approach
for performing condition monitoring in energy conversion systems. As a case study
the dynamic model of a solar power unit is considered, when this is connected
to DC-DC converter and the latter is used to control precisely a DC motor. First,
a neural model of the functioning of the energy conversion unit in the fault-free
case is generated. The neural model comprises a hidden layer of Gauss–Hermite
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Fig. 6.17 Test case 5: no-fault, (a) individual χ2 tests and related confidence intervals, (b) mean
value of the χ2 test and related confidence intervals
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Fig. 6.18 Test case 6L fault (additive disturbance) at the output of the energy conversion system,
(a) individual χ2 tests and related confidence intervals, (b) mean value of the χ2 test and related
confidence intervals

polynomial activation functions and an output layer of linear weights. The neural
network is trained from input–output data of the energy conversion system with the
use of a first-order gradient algorithm. Next, by comparing the sequence of the real
outputs of the monitored system against the estimated outputs of the neural network
the residuals’ sequence is generated. The statistical processing of the residuals
allows for solving the fault diagnosis problem for the energy conversion unit.
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It is shown that the sum of the residuals’ vector, being multiplied by the inverse
of the associated covariance matrix, stands for a stochastic variable (statistical test)
which follows the χ2 distribution. By exploiting the statistical properties of this
distribution one can define a 96% or a 98% confidence interval which reveals in an
almost certain, precise, and undebatable manner whether a fault (parametric change)
has taken place in the energy conversion unit. As long as the previously noted
stochastic variable falls within the upper and the lower bound of the confidence
interval one can infer that the functioning of the energy conversion unit remains
normal. On the other side, when these bounds are persistently exceeded one could
infer that the DC-DC converter and DC-motor energy conversion unit has been
subjected to failure. Finally, by performing the statistical test in subspaces of the
state-space model of the energy conversion unit fault isolation can be also achieved.
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Chapter 7
Support Vector Machine Classification of
Current Data for Fault Diagnosis and
Similarity-Based Approach for Failure
Prognosis in Wind Turbine Systems

Samir Benmoussa, Mohand Arab Djeziri, and Roberto Sanchez

7.1 Introduction

Wind turbines (WTs) are complex systems, subject to a hostile environment that
promotes accelerated aging of components, which increases maintenance cost and
operational expenditure (OPEX). So, the development of methods of fault diagnosis
and remaining useful life (RUL) estimation will make it possible to substitute pre-
ventive or corrective maintenance strategies by a conditional maintenance strategy
to reduce the downtime for maintenance, as well as the number and the cost of
interventions.

Although many physical models have been developed for the design control of
WTs, fault diagnosis and prognosis methods based on physical models such as
observer-based methods, parity space, or analytical redundancy are not widely used
compared to data-driven approaches because they require system observability, a
condition often unverified because of the cost of the required instrumentation and
the difficulty of deploying some sensors on the system. Data-driven methods are
the most used in this field, but the cost of maintenance and the high number of
downtimes for maintenance show the limitations of these approaches, related to the
facts that the databases available for learning are incomplete and do not cover all
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the normal, degraded, and failure modes of the system. In addition, the correlations
between the measured variables and the degradation phenomena are not formally
demonstrated, but based on expert knowledge.

To address these issues, a hybrid method for fault diagnosis and failure prognosis
is proposed in this work. The proposed method is implementable on all existing
WTs as it does not require additional sensor placement, since it is based on the
current measurement available on all WTs. To compensate the unavailability of data
for learning, the deep physical knowledge of the phenomena of transformation of
wind power into mechanical power and then into electrical power, the phenomena
of power conservation and dissipation, as well as the hardware components that
make up the wind turbine (blades, hub, main Bearing, main shaft, gearbox, brake,
high speed shaft, and generator) and their interactions, are used in this work to
build a physical model using the Bond Graph (BG) methodology. The causal and
structural properties of the bond graph allow this model to be viewed as a directed
graph, while respecting the cause-to-effect relationships. These properties are used
to demonstrate the causal relation between the measured variable and the considered
degradation, i.e., to demonstrate that the measured variable carries information
about the degradation. The model is then used to generate a database that covers all
the features needed for fault diagnosis and prognosis. Structured and unstructured
uncertainties are taken into account by generating thresholds in the classification
stage.

The fault diagnosis task is based on the classification of the attributes like
the root mean square (RMS) and the absolute mean extracted from the current
measurements of the WT generator using a multi-class support vector machine
(MC-SVM) classifier. The result of the classifier is taken as the fault detection
and location decision. In some cases, and due to an overlapping in the extracted
attributes, the location of the fault is not correctly determined. To provide an
accurate and a reliable decision on the fault class, a criterion based on the rate
of appearance of a class on a moving window is used. The idea is to compare
this rate with a fixed threshold a priori defined. Regarding the fault prognosis,
the proposed method for RUL estimation is based on the similarity measurement
between the reference attributes of the failure operation, identified offline, and
the current attributes calculated continuously online at each sampling time. This
geometric approach based on Euclidean distance calculation does not require prior
knowledge about the profile of the degradation process.

7.2 Related Works

To assess the operation of WT systems, several methods have been developed.
They can be divided into four main approaches: Reliability based approach,
Similarity-based approach, Model based approach, and Data-driven based approach.
Data-driven approaches, including vibration signals processing, statistical and
artificial intelligence, are the most used. Since the WT system is an assembly of
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mechanical and electrical systems, subjected to strong vibrations whose features
change depending on the conditions of use and the operating state of the system, the
vibration-based methods for fault diagnosis are widely used [21]. These methods use
velocity and acceleration measurements and signal processing techniques such as
Fast Fourier Transform (FFT) [9, 24, 32] or time-frequency analysis [5, 16, 29, 31].
These methods require the installation of sensors and equipment in each part of
the WT, hence the efficiency and cost effectiveness of these methods remain an
open field for researchers. To overcome the issue related to the instrumentation
cost, methods based on demodulation techniques of current generator signals have
emerged [1, 10], as they need few sensors for implementation. These techniques are
limited to mechanical faults that lead to stator current amplitude modulation such as
air gap eccentricity and bearing wear.

When enough information is available on the degradation profile and its matching
with the use conditions, stochastic models as the Wiener and Gamma processes are
used [7, 18] for modeling fault indicators generated using techniques of multivariate
analysis as the principal component analysis [8] or independent component analysis
for non-Gaussian and nonlinear processes [34]. These methods are preferred
over the vibration-based methods when the measured signals are non-stationary.
However, an accurate and well identified model is necessary.

AI methods for fault diagnosis of WTs are based on attributes extraction from the
historical data in different system operation and their classification in normal and
faulty operation classes. Examples of used classifiers are: SVM [14], auto-adaptive
dynamical clustering (AuDyC) [25], and artificial neural network (ANN) [33]. The
used data are often provided by a supervisory control and data acquisition (SCADA)
system information, which is standard equipment on WTs. The state of the system
operation can be concluded through a thorough and rigorous analysis of these data,
in association with an intelligent decision system. Chen et al.[4] use the SCADA
information with an adaptive neuro-fuzzy inference system to detect a pitch fault.
Verma [28] proposes a data-mining approach of SCADA operation data to monitor
the WT components. The power curve and operation data obtained from SCADA are
analyzed for fault diagnosis and prognosis in WT [27]. The most advantages of these
methods are: the evolutionary aspect as learning can be improved throughout the
operating life of the system whenever new real databases are available especially on
systems like WTs, designed to operate for decades, the ability to use different types
of data, the ability to integrate expert knowledge, and the availability of increasingly
powerful data processing and calculation tools. However, in practice, the available
data do not cover all the characteristics of the system in normal, degraded, and faulty
operation.

In the light of the above, designing a fault diagnosis for WT system, one must
take into consideration the complex and the nonlinear aspect of the system, its
architecture measurements, and the available historical data in different operation.

Regarding the fault prognosis for WT which is defined as the estimation of
the remaining useful life (RUL), and the estimation of the risk of subsequent
development or existence of one or more faulty mode (Norm ISO 13381-1:2004);
few works exist in the literature. Most are based on SCADA data exploration in
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association with AI based methods. In these prognostic approaches, two modules
are generally distinguished, a diagnostic module used to extract health indices from
raw data and a prognostic module where time series prediction methods associated
with online update algorithms. The projection of the evolution of health indices until
the predefined thresholds of total failure allows the RUL prediction.

In [13], a data-mining approach is applied on data provided by SCADA to build
models predicting possible faults. Based on the wind data and the power output data
provided by SCADA, the fault-related data is analyzed at three levels: the existence
of a status or a fault is predicted in level 1, the fault category is determined in level
2, and the specific fault is predicted in level 3. After a pre-processing of a raw
data, several data-mining algorithms are applied to extract the prediction models,
including the neural network (NN), the Standard Classification and Regression
Tree (CART), the Boosting Tree Algorithm (BTA), and SVM. To compare the
prediction results, three metrics are used: Accuracy, which provides the percentage
of correctly made predictions, sensitivity, expressed as the percentage of correctly
predicted faults, and specificity, defined as the percentage of correctly predicted
normal instances. Chen et al. [3] propose a priori knowledge-based adaptive neuro-
fuzzy inference system (APK-ANFIS) applied to pitch fault SCADA data. Zhao et
al.[35] use SVM method to detect abnormality in WT generator based on SCADA
data, and an autoregressive integrated moving average (ARIMA) based statistical
model to conduct fault prognosis task.

7.3 Modeling and Structural Analysis

7.3.1 WT Modeling

The case study considered in this work is a 750 kW WT. It consists of a three-bladed
rotor, a hub, a main bearing, a main shaft, a gearbox with a braking system, a high
speed shaft, and a generator connected to a three-phase network as illustrated by the
word BG of Fig. 7.1 [8, 22].

In the considered model, the blade is divided into two sections of lengths l and
massesM andM2 (see Fig. 7.2). It is considered as a system with a flexible structure
which can be divided into several sections, and which represents a rotational
movement and a translation movement generated by aerodynamic forces. This

Fig. 7.1 Word BG of the WT system
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Fig. 7.2 BG model of the blade

Fig. 7.3 Schematic of the gearbox. (a) cross section of WT gearbox (b) corresponding schema

dynamic can be modeled by a C-multiport element and a R-multiport element in
order to take into the account the two movements, the blade rigidity (element C) and
the structural damping (element R) of the blades. The aerodynamic load is caused
by the flow (wind) that flows through the structure. The aerodynamic forces applied
on the blades are calculated using the fundamental laws of aerodynamics, especially
the blade element momentum theory (BEM). The latter is described in detail in [22].

The gearbox of the WT considered in this work consists of three stages: one
planetary stage and two other parallel stages to increase the angular velocity
(Fig. 7.3) with a complete gain of 60. The corresponding BG model (Fig. 7.4) shows
the three planetary gears represented by their moment of inertia Jpi(i=1,...,3). These
planets are connected to the sun and the crown by meshes of stiffnessKspi(i=1,...,3)
and Krpi(i=1,...,3), respectively. In the model, Zj(j=p,s,r) represents the number of
teeth of each gear. The flux junctions 11−3, 14, 15, 16 represent the angular velocities
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of the planets, the support, the ring, and the sun, respectively. They are linked to one
another by TF elements. For example, the planet 1 (see model of Fig. 7.4) is modeled
by a junction 01, between the transformer T F1, T F2, and T F3, which represents
the force variable that ensures the displacement in the tangential direction. In this
junction, the stiffness of the mesh between the planet and the sun is modeled by
element C. The transformers T F1 : Zs, T F1 : 1/Zs, T F3 : Zp allow obtaining the
rotation speed of the sun gear, the linear speed of revolution of the planet revolution
around the sun gear as well as the planet autorotation. This structure is the same
for junction 02 but considering the relationship between the planet, the ring, and the
carrier.

The BG model of the electrical part of the generator explicitly shows the three
phases of the stator and the rotor. Rs and Rr are the resistances of the stator and the
rotor, the multiport IC represents the inductance (LS ,LR) and the mutual inductance
(LM ) between the stator and the rotor. The mechanical part is characterized by the
inertia Jind , the torque T (which is supplied by the gearbox stage, link 127)), and the
electromagnetic torque T e (link 129). In order to allow a direct connection to the
electrical network, a squirrel configuration of the rotor cage is used (connections
144, 146, and 148). Elements L and R, in series between the generator and the
three-phase electric network (3 MTF elements), are used as load.

All numerical values of the BG elements are identified based on real data of the
750 kW WT [22], and they are given in Table 7.4.

The most exposed parts to defects in WT system are the rotor hub with the blades,
the gearbox, and the generator [1, 6, 28]. In this work, these faults are considered
and modeled as follows:

• Unbalance caused by a deformation of the blade, it is modeled by a modulated
source of effort (Mse : F1) whose excitation signal has the form A1 sin(2πf1)

where A1 is the unbalance amplitude and f1 is the unbalance frequency equal to
the hub rotation frequency.

• Unbalance in high speed shaft affects the shaft between the gearbox and the
generator, it is modeled by a modulated source of effort (Msf : F2) whose
excitation signal has the formA2 sin(2πf2)whereA2 is the unbalance amplitude
and f2 is the unbalance frequency equal to the high speed shaft rotation
frequency.

• Stator eccentricity in the generator modeled by a modulated source of effort
(Mse : F3) whose excitation signal has the form A3 sin(2πf3) where A3 is the
eccentricity amplitude and f3 is the network frequency (50 hz)

• Electrical fault, which affects the stator resistive element R : Rs , modeled by
a modulated source of effort (Mse : F4). The considered electrical fault is an
abrupt fault of an amplitude f4 introduced at time t .

To conduct the simulation, a RL load (596 kW, 447 kVAR) is connected to an
induction machine of 1000 Hp, 460 V at 50 Hz. The following assumptions are
considered:

– Wind never exceeds its nominal values; this allows the wind turbine to operate
without pitch control.
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– There are no power losses at the gearbox stage.
– A load is connected between generator and the power network, this allows

to have an exchange of power. Actually, this consideration allows the wind
turbine to work without speed control, since induction machine rotates
depending on network frequency and pole number. It means that omega
(angular velocity) is imposed by the generator.

– The sampling frequency is imposed by the simulation software.

7.3.2 Causal and Structural Analysis

Thanks to the causal properties of the BG tool, an analysis of the observability
of the considered faults can be done directly on the BG model of the WT system
(Fig. 7.4) by following the causal paths relying the modulated sources of effort or
flow associated with faults to the sensors.

A causal path in a junction structure (0, 1, T F , or GY ) is defined as an
alternation of bonds and elements (R, C, or I ) called nodes such that all nodes have
a complete and correct causality, and two bonds of the causal path have opposite
causal orientations in the same node. Depending on the causality, the variable
crossed is effort or flow. To change this variable it is necessary to pass through a
junction element GY , or through a passive element (I , C, or R).

Let us consider the example of an electrical circuit given in Fig. 7.5a and its bond
graph model given in Fig. 7.5b. The causal path relying the input voltage Se : E and
the output voltage De : UC is illustrated on the model and given as follows:

Se : E→ e1, e2 → I : L→ f2, f4, f5 → C : C
→ e5, e6 → De : UC (7.1)

The same reasoning is considered when the input of the system is a fault, the causal
path makes it possible to visualize the fault path in the system up to the measured
output, as well as the components of the system that will be affected by the presence

1

R:R1

I:L

0

R:R2

C:C

Se:E De:UC
e1

e2 f2
e4

e5 f5
e6

(a) (b)

E

L

C

R1

R2

e3f3 e7f7

f
4

Fig. 7.5 Example of an electrical circuit (a) and its corresponding BG model (b)
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of the fault. The presence of such paths permits to conclude on the detectability
of these faults and the benefit of using only current sensors for fault diagnosis and
prognosis since these sensors already exist on this system. Concerning the first fault,
the following causal path is identified:

MSe : F1 → e68a → I : Jhub → f68a, f69, f70, f72 → C : kms
→ e72, e70, e71, e90 → I : Jc → f90, f91, f88b,,f86 → C : ksp3
→ e86, e87, e119, e120 → I : Js → f120, f121, f123, f124, f126 → C : khs
→ e126, e124, e127, e128 → I : JInd1 → f128, f129 → IC

(7.2)
From IC element, three causal paths are identified as follows:

IC → f135, f144, f145, f153 → Df : i1
IC → f134, f146, f147, f154 → Df : i2
IC → f133, f148, f149, f155 → Df : i3

(7.3)

The causal paths, identified above, from the unbalance fault to the three current
sensors, prove that these sensors carry the unbalance fault. The same conclusion
can be made for other considered faults (Eq. (7.4)).

Msf : F2 → f124, f126 → C : khs → e126, f124, f127, f128

→ J : Ind1 → e128, e129 → IC

Msf : F3 → e128 → I : JInd1 → e128, e129 → IC

Msf : F4 → e135 → IC

(7.4)

7.4 Proposed Method

The considered fault diagnosis and prognosis method is illustrated in Fig. 7.6 and
consists of two stages, offline stage and online one:

• The offline stage is composed of two steps: step #1 simulation of healthy and
faulty operations, where the bond graph model of the system in normal and
faulty operations is used for the generation of data in different operation modes
of the WT (normal, faulty, and failure). The faulty operation is considered as
the minimal degraded mode and the failure one corresponds to the maximal
degraded mode of the WT. In step #2, the attributes are extracted offline from the
generated data and used for training a MC-SVM classifier (step #3). In this step,
the SVM model of faulty and failure operations are identified and implemented
in the online stage.

• The online stage, step #4, the fault diagnosis module assesses online the operation
of the WT. Once a fault is detected and located, the failure prognosis module,
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Fig. 7.6 The proposed fault diagnosis and prognosis diagram

summarized in three steps (step #5: similarity measure, step #6: similarity speed,
step #7: RUL prediction), is triggered in order to estimate the RUL before
observing the system failure.

7.4.1 Learning

7.4.1.1 Step #2: Attributes Extraction

The performance of the fault diagnosis based on data mining is related mainly to
the available data on system operation, the choice of observed variables, and the
attributes. Generally, diagnosis based on vibration analysis relies on frequency or
time-frequency analysis of speed or acceleration measurements. In this work, the
WT monitoring is developed based on current measurements of the three phases
of the generator. This choice is motivated by the presence of such sensors on most
WTs and no need to install additional sensors and equipment in each part of the
system. Therefore the proposed method is interesting from the point of view of cost-
effectiveness. In order to detect degradation from the observed variables (current),
the use of temporal methods is more appropriate compared to the frequency one.
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Table 7.1 Most used
temporal attributes Root mean square (RMS) RMS =

√
1
N

∑N
i=1 x

2
i

Standard deviation (std) std =
√

1
N

∑N
i=1 (xi − x̄)2

Kurtosis V k = 1/N
∑N
i=1 (xi−x̄)4

RMS4

Skewness Sk = 1/N
∑N
i=1 (xi−x̄)3
std3

Peak value (Pv) Pv = 1
2 [max (xi)−min (xi)]

Crest factor FC = Pv
RMS

Form factor FF = RMS
1/n
∑N
i=1 |xi |

Impulse factor FI = Pv

1/n
∑N
i=1 |xi |

The most used temporal attributes in the literature are: the root mean square (RMS),
the standard deviation (std), the peak value (Pv), the Kurtosis, the skewness, the
crest factor, the form factor, the impulse factor, Table 7.1 [17].

To identify degradation trends in temporal measurements for diagnosis and

prognosis purposes, the RMS, the Pv, and the absolute mean (

∣∣∣∣ 1
N

N∑
i=1
xi

∣∣∣∣) are the

most suitable. The Kurtosis value is inversely proportional to the RMS, so it
cannot describe the degradation. The skewness is a division of two quantities which
represent the dispersion of the moving window around its mean value, so it does
not describe the degradation trend. The crest factor, the form factor, and the impulse
factor are obtained by division of two increasing quantities in the same magnitude,
so they cannot represent the irreversible dynamics of degradation. In this work, only
the absolute mean and the RMS value are used as attributes for classifying current
signals in different WT operation (normal and faulty).

7.4.1.2 Steps #3: MC-SVM Classifier

In this work, the MC-SVM in its “one against one” variant [11] is used. For that,
n(n + 1)binary SVM classifiers are built (n is the number of classes) and each
one trains data from two classes. The classification results are obtained by a voting
strategy: a pattern is classified to the class where the maximum number of votes is
obtained. SVM is well suited for supervised and unsupervised learning, and its use
in fault diagnosis purposes has shown its advantage compared to the conventional
methods such as artificial neural networks or Bayesian network [30] since it is
usually impossible to obtain data that cover all the faulty condition. Using SVM
and due to ability in classification process, reliable and better results with small
number of learning samples can be obtained. However, in the case of large dataset
(a significant number of samples and classes), using standard SVM (by solving
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quadratic problem) is time and memory consuming and not suited in real time
application. To overcome this issue, a decomposition algorithm proposed in [19]
can be used.

The theory behind binary SVM (Algorithm 1) classification lies on separating
data on learning data and testing sets. Let us consider that the learning data matrix
(x) is composed of m attributes or variables representing monitoring indicators and
a corresponding assigned label value (y = Cl) (l = 1, . . . , n). SVM classifier aims
to build a model which predicts the target class (y) of the testing data based only
on the data attributes. This is performed by finding an optimal hyperplane (Fig. 7.7)
optimizing a quadratic problem formalized in Eq. (7.5):

min J (a) = 1
2

N∑
i=1

N∑
j=1

aiajgi (x) gj (x) k (x, x)−
N∑
i=1
ai

s.t :
N∑
i=1
aigi (x) = 0, 0 ≤ ai ≤ D for i = 1, . . . , N

(7.5)

where g(x) = 1 if x ∈ C1 and g(x) = −1 if x ∈ C2, a = [a1, a2, . . . , aN ]T are the
Lagrange multipliers,D is the penalty parameter, and k(x, x) is the Kernel function.

In online stage, the classification of a new sample data is performed by using the
following decision function:

y =
⎧⎨
⎩

1, if sign

(
S∑
i=1
aSi g

S
i k(x

S
i , x)+ b

)
= 1

−1, elsewhere
(7.6)

where b = 1
S

S∑
j=1

(
gSj −

S∑
i=1
aSi g

S
i k(x

S
i , x

S
j )

)
.

Support
vectors

Maximum 
margin

Op�mal separa�ng 
hyperplane
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A�ribute 2

Learning pa�ern � class 1

Learning pa�ern � class 2

Tes�ng pa�ern

Fig. 7.7 Schematic dedicated to SVM classification
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7.4.2 Step #4: Fault Detection and Location

The fault detection and location are the results of MC-SVM classification decision
(Algorithm 2). Thus, a fault is detected if the classifier result passes, during oper-
ation, from the class of the normal operation C1 to the fault class Ci/i = 2 . . . n.
The fault location takes as class the one identified by the SVM classifier. However,
in some cases, the extracted attributes cannot be perfectly classified due to an
overlapping in the attributes. In this case, an additional criterion should be designed
to provide a precise and a reliable decision on the fault class. This criterion Fri is
based on the rate of appearance of a class on a moving window, it is computed as
follows:

Fri =

N∑
j=1

y == Ci

N
(7.7)

where y is the classifier result, and N is the number of sample in a window. The
fault location is then determined if the occurrence of a class exceeds a previously
fixed threshold th (Eq. (7.8)).

Fri ≥ th (7.8)

7.4.3 Fault Prognosis

The RUL prediction method (Algorithm 3) is based on the similarity measure S(t)
between the reference attributes xr of the failure operation, identified offline, and
the current attributes xt calculated continuously online at each sampling time t . The
main advantage of this method is the no need of the degradation model or trend.

7.4.3.1 Step #5: Similarity Measure

The considered metric for similarity measure is based on the Euclidean distance
between xr and xt as follows:

S(t) = 1−
√√√√ m∑
i=1

(xri − xti)2 (7.9)

where m is the number of considered attributes.
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To get similarity score between [0, 1], data has to be normalized. The attributes
are similar when the similarity score is equal to one. Else, they are different. The
choice of the Euclidean distance is motivated by the fact that it is a derivable
function [15], which is a peremptory property for the similarity speed calculation.

7.4.3.2 Step #6: Similarity Speed

The similarity speed v, expressed by Eq. (7.10), is obtained by the numerical
differentiation of the similarity measure S(t). It characterizes how the actual
attributes move to the failure attributes and at which speed.

v (t) = S (t + ηTs)− S (t)
ηTs

(7.10)

where Ts is the sampling time and η is the prediction window.

7.4.3.3 Step #7: RUL Estimation

To predict the RUL before observing a failure, both the similarity measure S and the
similarity speed v are considered. The RUL is expressed as the quotient between the
two variables as follows:

rul (t) =
∣∣∣∣S (t)v (t)

∣∣∣∣ (7.11)

7.4.4 Performance Evaluation

In order to evaluate the accuracy and the performance of the proposed method, the
prognosis horizon (PH ) and the α − λ metrics, proposed by Saxena et al. [23], are
used.

• The PH determines if the prediction performance meets the desired specifica-
tions. It ranges within [0,∞] and it is calculated using the following formula:

PH (i) = EOP − i (7.12)

It represents the difference between the actual time index (i) and the end of
prediction time index (EOP ). The latter is obtained when the prediction cross
the failure threshold.

• The α − λ performance is calculated by using the following formula:

(1− α) rul∗ (t) ≤ rul (tλ) ≤ (1+ α) rul∗ (t) (7.13)
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where α is the accuracy bound and tλ = tp + λ
(
EOL− tp

)
such that tp is time

prediction and EoL represents End of Life time.
The α−λ performance determines if the accuracy prediction is within α ∗100

of the actual RUL at specific time instance tλ.

7.5 Results and Discussion

The BG model of the WT is implemented under 20− sim software [26] to generate
a database describing the normal and faulty operations. The simulation is carried
out using real wind data. These data are introduced in the simulator with a “data
from file” block, which takes the numerical values from a table each step time. The
simulations have been conducted with the backward differentiation formula method
of 20 − sim, and using an absolute integral error of 1e−4 and a relative integral
error of 1e−5. From the generated database, samples representing different WT
operations are used as the training dataset from which the RMS and absolute mean
are extracted. For MC-SVM procedures, the toolbox provided by Canu et al. [2] is
used. The used kernel is the Gaussian one (Eq. (7.14)), the penalty parameterD, and
the kernel parameter σ have been chosen by using the cross validation.

k (xn, xm) = exp

(
−‖xn − xm‖

2

σ

)
(7.14)

7.5.1 Fault Diagnosis Results

The projection in the attributes space of the extracted attributes in normal and faulty
operations is given in Fig. 7.8, where the fault #1 corresponds to unbalance fault
caused by a blade deformation, the fault #2 corresponds to the unbalance affecting
high speed shaft. Fault #3 and #4 are the stator eccentricity in the generator and the
electrical fault, which affects the stator resistive element R : Rs , respectively.

The classification results of the training data using the trained SVM model are
given in Table 7.2, where the global classification accuracy rate is 83.57%. It could
be observed that the classification accuracy rate of the samples in normal operation
and faulty operation subject to fault #2 and #4 are high. In other words, under normal
operation, the risk of a false alarm due to wrong classification is extremely low.

However, when the WT system is subject to fault #1 (resp, #3), the classification
results swing between normal operation (C1), fault #3 (C4), and fault #1 (C2) as
illustrated in Fig. 7.9. In that case, the classification accuracy is 51.39% for fault
#1 and 66.49% for fault #3. This wrong classification is due to an overlapping in
attributes extracted from current signals. This can be explained by the fact that an
unbalance fault caused by a blade deformation and a stator eccentricity have the
same effect on current signals of the generator. In this case, no decision can be
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Fig. 7.8 Data projection in the attributes space

Table 7.2 Prediction class matrix

WT subjects to Predicted class

– C1 C2 C3 C4 C5

Normal (C1) 100% 0 0 0 0

Fault #1 (C2) 31.26% 51.39% 0 17.33% 0

Fault #2 (C3) 0 0 100% 0 0

Fault #3 (C4) 2.92% 30.49% 0.08% 66.49% 0

Fault #4 (C5) 0 0 0 0 100%

made regarding the fault location. By using the additional criterion and threshold,
the classification rate is improved and the fault is located. Figure 7.10 shows the
prediction class of SVM classifier for WT system subject to fault #1 and #3. As
shown in the figure, the classification results are improved to reach a classification
accuracy rate of 64.06% for fault #1 and 85.71% for fault #3, which are acceptable
values to conclude on fault location.

To highlight the performance of SVM-based fault diagnosis regarding the earlier
detection of a fault, the following scenario is considered:

• Normal operation of WT from t = 0 h to t = 40 h,
• WT is subject to a fault #4 from t = 40 h to t = 150 h.

Figure 7.11 shows the classification result of the test scenario. The fault is
detected and located in time. The wrong classification in the transition from normal
operation to fault #4 operation is due to changes in the characteristics of the current
measurement signals.
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Fig. 7.9 Prediction results under fault #1 (class 2) / fault #3 (class 4) operation

0 50 100 150
1

2

3

4

5

C
la

ss

0 50 100 150
1

2

3

4

5

Time (h)

C
la

ss

Fig. 7.10 Prediction class considering additional criteria under fault #1 (C2)/Fault #3 (C4)
operation

Since a fault is detected and located, the fault prognosis is triggered to estimate
the RUL before observing a failure in WT system. In the next section, the
performance of the proposed method is analyzed.
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Fig. 7.11 Fault diagnosis result subject to fault #4

7.5.2 Fault Prognosis Results

The BG model of the WT is used for online introduction of a progressive
degradation stator resistance (fault #4) until the total failure, with no consideration
about the degradation profile. Once the fault is detected and located (Fig. 7.11),
the similarity measure and speed similarity are calculated in order to estimate the
RUL. Figures 7.12 and 7.13 show, respectively, the similarity measure score and
similarity speed function of time (h). As illustrated by the similarity measure plot,
the similarity score between data in actual operation and data in failure operation is
about 0% at the beginning of the prediction (detection time), and then reaches 100%
at the end of prediction. Figure 7.12 shows also that the similarity measure is linear
in the considered case. Regarding the similarity speed, illustrated by Fig. 7.13, the
evolution over time of the similarity speed is not constant.

The evolution of the RUL estimation over the time is given in Fig. 7.14, it
shows that after a convergence time t = 28 h, the estimated RUL joins the
real one with small error. The performance of the proposed method is evaluated
using the prognosis horizon and α − λ performance whose scores are given in
Figs. 7.15 and 7.16, respectively. The PH is about 88 h, which is widely sufficient for
condition-based maintenance scheduling. It can also be observed that the estimated
RUL is inside the interval (1+ α)RUL∗ where α = 0.2 and RUL∗ is the reference
RUL.
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7.5.3 Discussion

To highlight the contribution of the proposed approach, examples of the most used
approaches in the literature [12, 20] compared the approach proposed in this work,
in terms of analysis tools, measured variables, and prior knowledge necessary for
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Fig. 7.15 RUL evaluation using prognosis horizon (10%)

implementation are summarized in Table 7.3. These articles are representative of
the existing prognosis approaches for RUL estimation (vibratory analysis and trend
analysis). This table illustrates the tools used in each case as well as the knowledge
necessary for the implementation of each method. From this table, the following
points are highlighted:
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Fig. 7.16 RUL evaluation using α − λ (α = 0.2)

Table 7.3 Comparison study

Proposed method Hu et al. [12] Saidi et al. [20]

Power WT used 750 kW 1.5 MW 2.2 MW

A priori knowledge Physical knowledge
and data in normal
operation

Data in normal and
degraded operation

Data in normal and
degraded operation

Used measurement Current Temperature Vibration

HI modeling Attributes extraction Wiener process
model

Attributes extraction

Trend modeling for
RUL pred.

Geometric
model-based

Inverse Gaussian
distribution

Kalman smoother

Prognosis perf.
analysis

PH and α − λ Relative error Confidence bounds

• The method proposed by Hu et al. [12] uses the temperature measurement and
the one proposed by Saidi et al. [20] uses the vibration measurement, but the
cause-effect relationships between these measurements and the faults are not
formally demonstrated. In the proposed method, these relations are formally
demonstrated.

• The method [12] and method [20] use a Wiener process and a Kalman smoother,
respectively. These two methods are easier to implement but require a priori
knowledge of the degradation profile for the identification of the parameters as
well as prior knowledge of the distribution of the data, they therefore require the
availability of data describing partially or totally the profile of the degradation.
The geometric approach proposed in this work does not require prior knowledge
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of the profile of the degradation or distribution of the data. In addition, the use
of the MC-SVM makes it possible to take into account the significant number of
possible faults on the wind turbines.

The proposed method and the obtained results can be discussed according to the
following points:

• The first point is the use of the physical model that is subject to uncertainties:
in this work, the parameters of the system in normal operation are identified
using real data for a 750 kW WT system. SVM tool allows taking into account
unstructured uncertainties by the calculation of the accuracy rate and by the
using of the additional criterion based on the idea of a threshold to improve
the classification rate. In addition, the performance of the fault prognosis can be
adjusted according to the data quality by increasing or decreasing the confidence
interval (α).

• The second point is the use of the derivative: the speed similarity is calculated
by differentiating the similarity measure. So, in the presence of the noise, a
pre-processing (filtering) step of the data can be added to avoid the noise
amplification.

• The last point is the transient operating modes: the fault diagnosis results shown
in this work do not consider the transient operation as it is time-limited, it
concerns only the starting and the stopping modes of the WT operation. Only
data in permanent operating modes are considered.

7.6 Conclusion and Prospects

In this chapter, an approach of wind turbines fault diagnosis and prognosis, based on
a physical modeling, a multi-class support vector machine classifier, and a similarity
approach, is presented. The proposed method uses the current measurements
available on all existing wind turbines, so its implementation does not require
additional sensor placement. The lack of prior knowledge about the cause-to-effect
relationships between the degradation phenomena and the measured variable is
overcome in this work by the using of a bond graph model whose causal and
structural properties are used to formally demonstrate that current measurements
carry information on the considered degradation. The physical model is then used to
supplement the existing database by generating data representing different operating
modes of the system. The fault diagnosis task is performed by a multi-class support
vector machine classification of attributes extracted from current measurement of
wind turbine generator. The wrong attributes classification is avoided by comparing
the fault class rate with a predefined threshold. The remaining useful life estimation
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is launched once degradation beginning is detected and located, and it is calculated
without needing for prior knowledge on the degradation profile, by using the
similarity measure and similarity speed between attributes of the current operation
calculated online and attributes of the failure operation. The performance of the
proposed fault diagnosis and prognosis method is demonstrated using evaluation
metrics of fault prognosis performance showing the effectiveness of this method.

Appendix

Table 7.4 Wind turbine data Section 7.1 Section 7.2

Blade structure data

E = 1.7e10 E = 1.7e10

l = 11.7 m l = 11.7 m

M = 1208 kg M2 = 487 kg

J = 3.3 kg m2 J2 = 2.33 kg m2

μ = 0.01 μ = 0.01

Jwhole = 1000 kg m2

Blade aerodynamic conversion

c1 = 1.9 c2 = 1

bt1 = 11 bt2 = 1.7

qair = 1.225 qair = 1.225

r1 = 5.85 m r2 = 17.5 m

l1 = 11.7 m l2 = 11.7 m

Hub and main shaft

Jhub = 5000 kg m2, Dhub = 1000 N/m

Kms = 3.67e7 N/m, Dms = 200 N/m

Gearbox

Js = 3.2 kg m2, Jr = 144.2 kg m2

Jc = 59.1 kg m2, Jp = 3.2 kg m2

Zp = 39, Zr = 99, Zs = 21, Ksp = 16.9e9 N/m

Krp = 19.2e9 N/m, Tfg = 10.5

High speed shaft

Khs = 10e7 N/m, Dhs = 1e − 3 N/m

Generator

Vn = 460 V, S = 746 kW, f =
50 Hz,

Rs = 4.92e−4�

Rr = 2.7e−4�,p = 2, Lls =
4.66e−5 H, Lm = 1.99e−3 H

Jind = 18.7 kg m2
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Algorithm 1 Binary SVM
• Offline training

1. Initialize D and σ ,
2. Collect x1, x2,. . . , xN distributed in the 1st and 2nd classes,
3. Solve the quadratic problem:

min J (a) = 1
2

N∑
i=1

N∑
j=1

aiaj gi (x) gj (x) k (x, x)−
N∑
i=1
ai

s.t :
N∑
i=1
aigi (x) = 0, 0 ≤ ai ≤ D for i = 1, . . . , N

(7.15)

where g(x) = 1 if x ∈ C1 and g(x) = −1 if x ∈ C2, a = [a1, a2, . . . , aN ]T are the
Lagrange multipliers, and k(x, x) is the Gaussian Kernel given by:

k (xn, xm) = exp

(
−‖xn − xm‖

2

σ

)
(7.16)

4. Save support vectors xs1, xs2,. . . , xsS and corresponding gn and an denoted by {gsn} and {asn}
for which an > 0, where S is the number of support vectors.

• Online performing
• collect new sample x

y =
⎧⎨
⎩

1 , if sign

(
S∑
i=1
aSi g

S
i k(x

S
i , x)+ b

)
= 1

−1 , elsewhere

(7.17)

where b = 1
S

S∑
j=1

(
gSj −

S∑
i=1
aSi g

S
i k(x

S
i , x

S
j )

)
. S is the number of support vectors.

Algorithm 2 Fault diagnosis and decision
1. collect new sample x
2. divide x into N windows
3. yj = perform MC-SVM for N new samples

for i = 1 to n do

• Compute Fri according to Eq. (7.7)

if Fri > T hi then
fault i is detected

else
No fault

end if
end for
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Algorithm 3 RUL estimation
1. Initialize T s and η,
2. collect xt
3. performMC − SVM
4. a. Compute the similarity measurement S using Eq. (7.9),

b. Compute the similarity speed v using Eq. (7.10),
c. Compute the RUL using Eq. (7.11),
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Chapter 8
Review on Health Indices Extraction and
Trend Modeling for Remaining Useful
Life Estimation

Mohand Arab Djeziri, Samir Benmoussa, and Enrico Zio

8.1 Introduction

Because of the growing demands of equipment availability, performance, and
maintenance, the scientific community has been developing methods for forecasting
failures, and for the estimation of the Remaining Useful Life (RUL) for scheduling
Condition-Based Maintenance (CBM) and Predictive Maintenance (PM). The
National Aeronautics and Space Administration (NASA) was among the first to
work on prognosis, because in the aerospace field, prognosis of failure can avoid
catastrophes. Performance evaluation is a key element in fault prognosis and
several methods have been proposed, based on different evaluation criteria. The
work presented in [63, 100, 101] goes in the direction of a standardization of
these criteria and proposes performance metrics applicable to different methods
of fault prognosis. These metrics allow, on the one hand, establishing design
requirements by quantifying acceptable performance limits and on the other hand,
comparing different methods. In [101], a structured synthesis of the used metrics
for the evaluation of the performance of fault prognosis methods that adapt to
different application domains is presented, including Prognosis Horizon (PH),
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Alpha-Lambda Performance, Relative Accuracy (RA), and Convergence Rate. Fault
prognosis methods are compared with respect to these metrics.

From the methodological viewpoint, several classifications of fault prognosis
methods are proposed, like the pyramidal classification proposed in [19], which
provides a classification into three approaches: expert approaches, physical model-
based approaches, and data-driven approaches. The originality of this classification
is related to the fact that these approaches are positioned in a pyramidal organization
chart according to the scope of application, cost, and complexity of each approach.
The evolution of hardware and software resources for data acquisition, storage, and
processing has favored the widening of the application scope and the accuracy of
the data-driven methods of fault prognosis. In addition, hybrid approaches have
emerged to benefit from the combination of these approaches [35, 36].

This paper focuses on fault prognosis with a horizontal approach, which offers
the advantage of relating fault diagnosis and prognosis. Unlike other existing
reviews [45, 57, 103, 108], which only focus on RUL prediction, this paper offers
a review of approaches that deal with the problem including fault diagnosis and
allowing RUL estimation also when the only available data relate to normal
operation. Since the health indices (HIs) generated by the methods initially used
for fault diagnosis are not all usable for failure prognosis, evaluation methods of
the properties that a HI must satisfy to be usable for RUL estimation, namely
the Monotonicity, Trendability, and Prognosability [10, 24], are presented and
then used to evaluate the usability for failure prognosis of HIs generated by fault
diagnosis methods. The methods are presented in their basic version to facilitate
the understanding of the ideas and the formal analysis, followed by indications and
references to their extensions for particular practical cases.

As illustrated in Fig. 8.1, the structure of the horizontal approaches has two main
parts: HI generation based on condition monitoring and HI trend modeling for
RUL estimation. Correspondingly, this paper is organized as follows: the studied
framework and definitions are presented in Sect. 8.2. Section 8.3 is devoted to formal
description of methods for the definition of HIs and an analysis of their use for
the estimation of the RUL. Then, the techniques for the estimation of the RUL
by trend modeling are presented in Sect. 8.4, with an analysis of their complexity
and performance. The purpose is to provide an overview of existing techniques and
guidance for choosing approaches according to the field of application and available

Fig. 8.1 Structure of the horizontal approach of fault prognosis
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knowledge (physical knowledge, expert knowledge, data-driven). In the horizontal
approach, the methods used for generating the HIs can be completely different from
the method used to model trends for RUL estimation. For this reason, in this work,
we have opted for a separate classification of the two parts: a classification of the
methods used for the generation of HIs and a classification of the HIs trend modeling
techniques for RUL estimation. In both parts, metrics are proposed for performance
evaluation.

8.2 Study Framework

By definition, a fault is an unauthorized and unexpected deviation from the normal
condition, whereas a degradation refers to the deterioration of performance in an
irreversible manner. Degradation becomes failure when performance falls below a
critical threshold defined in the functional specification of the equipment: the system
is no longer able to perform the required function. According to the international
standard (ISO 13381-1:2004), fault prognosis is defined as the estimation of the
Remaining Useful Life (RUL) or the End of Life (EoL), and the estimation of the
risk of subsequent development or existence of one or more faulty modes. However,
in the literature, the definition of the fault prognosis concept is adapted to the
context, the objectives, and the field of application, among these interpretations:

• Wang et al. [114]: In the industrial and manufacturing areas, prognosis is
interpreted to answer the question: what is the RUL of a machine or a component
once an impending failure condition is detected and identified.

• Mathur et al. [78]: Prognosis is an assessment of the future health.
• Lebold et al. [64]: Prognostics is the ability to perform a reliable and sufficiently

accurate prediction of the RUL of equipment in service. The primary function
of prognostics is the projection into the future of the current health state of
equipment, taking into account the estimate of future usage profiles.

• Byington et al. [19]: Prognostics is the ability to predict the future condition of a
machinery based on the current diagnostic state of the machinery and its available
operating and failure history data.

• Jardine et al. [57]: Prognostics deals with fault prediction before it occurs. Fault
prediction is a task to determine whether a fault is impending and estimate how
soon and how likely a fault will occur.

• Muller et al. [87]: Prognostics is the ability to predict the future state of an item
from its present, its past, its degradation laws, and the maintenance actions to be
investigated.

In recent publications, the notion of prognosis is increasingly associated with the
estimation of the RUL:

• Tobon et al. [109]: Fault prognostics can be defined as the prediction of when a
failure might take place.
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• Gucik-Derigny [50]: The prognosis consists in predicting the evolution of the
future state of health of a system and estimating the remaining lifetime of a
system before one or more failures appear on the system.

• Singleton et al. [104]: Effective diagnostic and prognostic tools are essential for
timely fault detection and Remaining Useful Life prediction.

• Sun et al. [107]: Prognostics usually focuses on the prediction of the failure time
or the Remaining Useful Life of a system or component in service by analysis of
data collected from sensors.

• Lee et al. [66]: Prognostics can be interpreted as the process of health assessment
and prediction, which includes detecting incipient failures and predicting RUL.

• Lim et al. [69]: Prognostics is the analysis of the symptoms to predict future
conditions and Remaining Useful Life.

It can be noticed that the references cited above define prognosis as the prediction
of the RUL based on an analysis of the monitoring condition data and the current
state of the system.

8.2.1 Formal Definitions of the RUL

The RUL is sometimes also called Remaining Service Life, Residual Life, or
Remnant Life [57], and refers to the time left before observing a failure given the
current machine age and condition, and the past and future operation profile. In
[103], the RUL of an asset or system is defined as the time-span from the current
time to the end of the useful life. In [105], the RUL at any time t is defined as
the remaining lifetime of a unit given that it is running at time t and given all
the available information related to the unit at time t . Two main mathematical
definitions of the RUL can be found in the literature, depending on the method used
for estimating this quantity and depending on the available information: a definition
of the RUL as a function of the condition monitoring (CM) and a definition of the
RUL as a function of the reliability function (RF ).

8.2.1.1 Definition of the RUL as a Function of CM

The definitions of the RUL given above are in agreement with the formal definition
given in Jardine et al. [57], where the RUL is defined as a function of the CM of the
system (Z(t)), which gathers all the prior knowledge on the past operating state of
the system as well as the co-variables that describe its current operating state, and is
expressed as follows:

RUL(t |Zt) = T − t |T > t, Z (t) (8.1)
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Z(t) (CM) Time

Failure threshold

RUL
Tt

pdf of RUL at time t 

Fig. 8.2 Illustration of RUL

with:

• T: random variable of time to failure
• t: current age
• Z(t): past condition profile up to the current time.

This expression is illustrated in Fig. 8.2. According to the knowledge in Z(t),
the RUL can be calculated as a deterministic, statistic (as an expectation), or
probabilistic variable (as a probability density function). The dashed gray envelope
defines the margin of uncertainty about future operating conditions and the system
environment.

8.2.1.2 Definition of the RUL as a Function of RF

In [8, 9], it is stated that information from condition monitoring can be included in
reliability analysis by considering the hazard rate function as a probabilistic func-
tion. There are several methods for calculating the conditional and unconditional
reliability functions (RFs) and for computing the Remaining Useful Life (RUL) as a
function of the current conditions. In classical reliability, the RF is calculated mainly
for two cases: as an unconditional RF, assuming that the item has not yet been put
into operation (P(T > t)), and as a conditional RF, assuming that the item has not
yet failed up to sometime x (P(T > t |T > x)).

Assuming that the system is operating at time t, the RUL is expressed in [112]
as a time v for which the probability that the state of the system Z at time t + v,
noted P [Z(t + v) ≥ L|Z(t)] approximates the probability of failure q assumed to
be known. The RUL expression is given as follows:

RUL(t, q) = sup{v : P [Z(t + v) ≥ L|Z(t)] ≤ q} (8.2)
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where L is the failure threshold and P [Z(t + v) ≥ L|Z(t)] is defined as the
reliability of the system.

8.3 Health Indices Definition Methods

Existing methods of fault diagnosis have been reviewed in recent years, such as
[45, 46, 108]. The most recent is proposed by D. Gao et al. [45], in which the
authors propose a first classification of fault diagnosis methods into two groups:
hardware redundancy-based fault diagnosis and analytical redundancy-based fault
diagnosis. The fault diagnosis techniques based on analytical redundancy are
structured in five classes according to the mathematical tools and prior knowledge
used: model-based fault diagnosis, signal-based fault diagnosis, knowledge-based
fault diagnosis, hybrid fault diagnosis, and active fault diagnosis. In this work, the
methods for defining health indices are gathered in two classes: physical model-
based, data analysis and signal processing. The focus is on methods that can be used
for the generation of health indices sensitive to progressive degradation and whose
trend can be modeled for RUL estimation. The presented methods of HI generation
are summarized in Table 8.1.

8.3.1 Physical Model-Based Methods

These methods are based on a physical representation of the process. They require
a good understanding of the behavior of the system but does not require the
availability of data on the operation of the system in degraded modes. Physical
models are usually described by partial differential equations [3, 67] or state
representation equations [72, 98]. Once the physical model is available, the behavior
of the current process is compared with that of the model in normal operation to
detect the start of degradation. After degradation has been detected, trend models
are used to predict the evolution of degradation over time until reaching a failure
threshold, usually predefined. The RUL corresponds to the time taken by the
degradation to reach this failure threshold.

8.3.1.1 Analytical Redundancy Relations

The analytical redundancy relations (ARRs) are obtained from an over-constrained
system by eliminating the unknown variables [18], assuming that all functions are
differentiable with respect to their arguments. For a nonlinear deterministic system
(Eq. (8.3)) where x ∈ �n is the state vector, u ∈ �mu is the control vector, d ∈ �md
is the disturbance vector, θ ∈ �mf is a fault vector, and y ∈ �p is the measurement
vector:
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ẋ = h(x, u, d, θ)
y = g(x, u, d, θ) (8.3)

the derivative of order q of the output y gives rise to the following set of (q + 1)p
constraints:

y(q) = γ q
(
x, ū(q), d̄(q), θ̄ (q)

)
(8.4)

where ū(q) ∈ �(q+1)mu , d̄(q) ∈ �(q+1)md , and θ̄ (q) ∈ �(q+1)mθ .
Under the condition that (q + 1)p > n + (q + 1)md and the Jacobian[
∂γ (q)

∂x
∂γ (q)

∂d

]
is of rank n + (q + 1)md [22], both the state x and the unknown

input d can be eliminated, leading to the set of ARRs.

HI = r
(
ȳ(q), ū(q), θ̄ (q)

)
= 0 (8.5)

In normal operation, Eq. (8.5) is true, whereas it is not in presence of a fault.
Equation (8.5) shows that the set of residuals r is a function of the set of
parameters θ identified on the system in normal operation, and corresponding
to well-identified hardware components or physical phenomena. The appearance
of a progressive degradation in the system manifests a progressive deviation
of the parameter affected by the degradation from its nominal value identified
during normal operation. Thus, the residuals that are a function of this parameter
progressively deviate from zero, enabling the detection of the start of degradation.
The use of the failure signature matrix makes it possible to check the isolability
of the degradation: even if the isolation of the degraded component or physical
phenomenon is not always possible, the subsystem that degrades in a complex
system is often possible. The identification of the component or subsystem at the
origin of the degradation is a relevant knowledge for practical purposes, exploitable
in the modeling of the degradation trend for RUL estimation. In addition, ARRs
can be generated automatically using a bipartite graph [18] or a bond graph model
[60], and are easy to implement once the parameters of the state model have been
identified.

8.3.1.2 Parity Space

This method is applicable to linear state models and consists in eliminating the
internal variables of the system by projection onto an input-output representation
space, called parity space [48]. It is generally applied in a discrete time space,
taking measurements over a time interval called observation window. Information
redundancy is, thus, created without resorting to successive derivations of the
measurements. Consider the following example of a system described by the
following state model (linear or linearized around an operating point):
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{
ẋ (t) = Ax (t)+ Bu (t)
x (t) = Cx (t) (8.6)

First, the observability matrixOobs of the system is computed by Eq. (8.7), using
the individual observability matrix of each sensor [73]:

Oobs =
(
C1 C2 · · · Cp

)
with Ci =

(
ci ciA · · · ciAn−1

) (8.7)

The observability matrix is, then, used to calculate the left null observability
matrix noted W , which is not unique. In practice, it is not possible to calculate
a matrix W that is perfectly orthogonal to the matrix Oobs , adding thus a further
uncertainty to the structured and unstructured uncertainties of the model and giving
rise to non-zero residuals.

After computing the matrixW , the observability matrix is reformulated in terms
of inputs, outputs, and their derivatives. The derived observability given for the ith

output is

Oi =

⎡
⎢⎢⎢⎣

y (t)
d
dt
y (t)
...

dn

dtn
y (t)

⎤
⎥⎥⎥⎦−
⎡
⎢⎢⎢⎣

0 0 · · · 0
ciB 0 · · · 0
...

...
. . .

...

ciA
n−1B ciAB · · · ciB

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

u (t)
d
dt
u (t)
...

dn−1

dtn−1 y (t)

⎤
⎥⎥⎥⎥⎦ (8.8)

The residuals are calculated using Eq. (8.9), multiplying the global derived
observability noted OD , computed for all outputs with the matrixW :

HI = R = WOD
with OD =

[
o1 o2 · · · op

]T (8.9)

After analyzing the equations, especially the observability matrix Oobs and the
global derived observability matrix OD , it is noted that the Ci and the Oi are
functions of the state matrixA, whose parameters represent the physical elements of
the system (physical components or physical phenomena). Thus, the occurrence of
a system degradation will cause a variation of the parameters of the matrix A and,
consequently, a deviation of the residuals from their values in normal operation.
The residuals are, therefore, sensitive to the degradation of the system. However,
the causal relationship between the residuals R and the variations of the parameters
of the matrix A is not explicit: it is drawn in the process of projection in the parity
space. For this reason, the parity space is used only for the detection of sensor faults,
with an extension to the actuators, under the strong assumption that there are no
system faults.
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8.3.1.3 Observer Methods

Observers theory is widely used in the literature for the estimation of observable but
unmeasured states [43, 82]. It has been used in fault diagnosis for the generation
of health indices through the development of the unknown inputs observers. The
stability and convergence analysis, the gains calculation, and assumptions on matrix
rank and model inversion have been the subject of several research works [82, 84,
86] and will not be detailed in this work. Only the relevance of the use of the health
indices generated using an observer in the context of fault prognosis is analyzed.

Two kinds of models are most used for the synthesis of observers in the
framework of fault diagnosis and prognosis. The first model, given in Eq. (8.10)
below, allows the simultaneous description of the state of the system and the
degradation. These models are interconnected and are of multiple time scales, in
order to highlight the difference in the evolution between the fast dynamics of the
system behavior and the slow evolution of the degradation:

ẋ = f (x, λ(θ), u) (8.10)

θ̇ = εg(x, θ)
y = Cx +Du+ v

where x ∈ R
n is the set of state variables associated with the fast dynamics of the

system; θ ∈ R
m is the set of slow-dynamic variables related to the degradation of

the system; u ∈ R
l is the input vector. The parameter vector λ ∈ R

q is a function
of θ . The rate constant 0 < ε � 1 defines the time scale separation between fast
dynamics and slow drift. y ∈ R

p is the output vector and v is the measurements
noise.

The general pattern of the observer-based fault prognosis begins with the joint
estimation of the state and the unknown input, with precision, and in a finite time.
Then, the estimation of the RUL is carried out by a time projection of the evolution
of the slow and fast dynamics until the total failure. The finite-time convergence of
an observer is a less common notion in the literature than asymptotic convergence;
yet it is necessary in the context of fault prognosis. New conditions of stability and
convergence in finite time have been developed in Lyapunov theory, and presented
in [16, 17, 85] and [86]. Methods for the synthesis of observers with finite-time
convergence have been proposed in [38, 56] and [82] for linear systems, and in [79–
81] and [84] for nonlinear systems. In the case of observers with unknown input and
finite-time convergence, synthesis work has been developed in [97] for the linear
case, and in [43] for sliding mode observers.

Although the model of Eq. (8.10) is closest to the reality of the degradation
phenomenon and its interaction with the state of the system, it is strongly nonlinear
and, moreover, the interaction between the state and the degradation is difficult
to formalize (to model). Thus, the most used model for the generation of health
indices is the second type of model given in Eq. (8.11) below [71], where the
nonlinear system considered consists of a linear part exploited for the synthesis
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of the observer’s gain, and a nonlinear part satisfying some more or less restrictive
assumptions:

{
ẋ = l (x, f, u)

y = h (x, u)+W (u) f
(8.11)

x ∈ Rn is the state vector. u ∈ U is the known input vector. y ∈ Rp is the output
vector. f ∈ Rm is the vector of unknown inputs whose number is equal to or less
than the number of measurements (mp).W is the transfer matrix of the degradation
to the output and it is a function of the conditions of use (of the input u). Once
the state x is estimated, it is possible to derive an estimate of the unknown input as
follows:

HI = f̂ = W+
1 (u)

(
y1 − h1

(
x̂, u
))

(8.12)

whereW+
1 is the pseudo-inverse ofW .

Thus, finite-time convergence is a necessary condition for the use of the unknown
input observer for fault prognosis. Equation (8.10) also shows that the prior
knowledge of the effect of degradation on the system is necessary, as it makes it
possible to calculate the matrix W , which must be invertible. As the name implies,
degradation is considered to be an unknown input, implying that any change in
the dynamics of the system is considered as a degradation. Since the degradation
is introduced in an additive way into the model of the system, it can be assumed
that:

• The health index aggregates all the faults that may occur in the system.
• The prior knowledge necessary for the calculation of the matrix W can be used

to identify the nature of the degradation.

8.3.1.4 Algebraic Methods

In the algebraic framework, the HIs are expressed as an algebraic equation of the
system’s variables (u and y) and their derivatives. In fact, in Fliess’s theory [40],
and differently from Kalman’s theory, a nonlinear system is defined by a differential
field extension L/K finitely generated, where L is the system field which contains
the system variables and the algebraic equations that links the variables; K is the
ground field that contains the coefficients of the system.

The input u of a system L/K is a set u = {u1, . . . , um} of L such that
the extension L/K < u > is differentially algebraic, which means that any
element ω ∈ L satisfies an algebraic differential equation over K < u > of
the form P(ω, u1, . . . , um, . . . , u̇1, . . . , u̇m). The output of a system L/K is a set
y = {y1, . . . , yp} of L. A transcendence basis x = {x1, . . . , xn} of the differential
field extension L/K < u > is the state of the system L/K . Any component of the
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derivative ẋ = {ẋ1, . . . , ẋn} and y are K < u > algebraic on x, which leads to the
following generalized state variables representation:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F1
(
ẋ1, x, . . . , u, u̇, . . . , u

(α1)
) = 0

...

Fn
(
ẋn, x, . . . , u, u̇, . . . , u

(αn)
) = 0

H1
(
y1, x, . . . , u, u̇, . . . , u

(β1)
) = 0

...

Hp
(
yp, x, . . . , u, u̇, . . . , u

(βp)
) = 0

(8.13)

where Fi ,Hj are polynomials over k and αi , βj ∈ N ; x is called a generalized state.
In the presence of faults (f ), the nonlinear system is denoted as an algebraic

differential field extension k(u : y, f )/k(u, f ) [27]. If the fault f is a differential
algebraic equation with coefficients over the field K(u, y), then it is said to be
diagnosable. In other words, the fault variable is written in polynomial form, as
function of the input variables, the output variables and their respective derivatives
as follows:

f = h
(
u, u̇, ü, . . . , u(m), y, ẏ, ÿ, . . . , y(n)

)
(8.14)

The residuals (r̂) given by Eq. (8.15) below are used to evaluate the obtained fault
indicator (Eq. (8.14)):

r̂ = s−n d
n

dsn
F̂ (8.15)

where the sign
(̂)

means that the variable is written in the Laplace domain.
The following steps are used to obtain the residuals [11, 41]:

• Put the fault indicator in Laplace domain,
• Differentiate the result n times with respect to s in order to eliminate the initial

conditions, which may be unknown,
• Multiply by s−n and return back to time domain.

These residuals are performed by using the integrals of the measured signals. In
the case of noisy signals, these integrals produce a filtering effect. The derivative
with respect to s of order n ( d

n

dsn
) in Laplace domain results in a multiplication

by (−1)ntn in the time domain, and the multiplication by s−n in Laplace domain
corresponds to an integration of order n in the time domain.

The fault diagnosis based on the algebraic approach is mainly applied to linear
systems, and some nonlinear systems for actuator and sensor fault diagnosis. In
[15], the algebraic approach in association with a bond graph tool was extended to
component fault diagnosis, under the assumption that the system inputs and outputs
are fault free. The residuals of Eq. (8.15) reflect only the cumulative sum of the
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fault indicator from the degradation start until failure time, which means that the
residuals do not reflect the degradation dynamics but only its effect. It should also
be pointed out that this method does not need prior knowledge on the degradation
nature and it has not been used yet for fault prognosis. Finally, this method can only
handle additive faults and any change in the system dynamics can be considered as
degradation.

8.3.1.5 Parameter Estimation Method

The fault diagnosis based on the parameter estimation consists to parametric
identification of the system model using the system inputs (u) and outputs (y), and
monitoring the estimated system parameters. For a nonlinear system described by
the following state-space model:

{
ẋ = h (x, u, θ)+ d
y = g(x) (8.16)

where x is the state vector, h is the state function, g is the output function, and d
represents the system disturbances that are assumed to be a bounded signal, and
under the assumption that the system model parameters vary depending on the
occurrence of a fault on the physical system. In the normal operation, θ takes the
nominal values of the physical parameters; however, in faulty operation, the value
of θ varies as a function of fault severity on the physical system. The model of
Eq. (8.16) is, then, used for an on-line nonlinear parameter estimation problem, for
which unknown fault parameters are estimated using system inputs and outputs,
and appropriate approaches such as neural networks [115], fuzzy models [13],
and Takagi–Sugeno (TS) models [88], and for linear systems, least-squares (LS)
approaches are used. The estimation error (Eq. (8.17)) between the reference model
parameters estimated in normal operation and the parameters estimated under faulty
conditions is taken as HIs for diagnosis purposes [21].

HI = θ̂ − θn (8.17)

The fault diagnosis via parameter estimation can handle only additive faults on
parameters with slow rate dynamic. The main limit of this method is the difficulty
of concluding on fault isolability conditions, since the parameters being estimated
are model parameters and they do not represent the system physical parameters.
This problem has been partially solved by studying the influence of each physical
parameter on the model parameters [55]. As the gradual variations in degradation
cause progressive changes in system parameters from their nominal values, which
leads to a gradual deviation of HIs from zero, the HI trend can be analyzed to
construct prediction models for RUL estimation.
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8.3.1.6 Practical Constraints

Data Availability At the beginning of operation, data describing the system
degradation process and expert knowledge are not available. In this case, the HIs
generated from the physical knowledge are the most suitable. In the majority of the
practical cases, the faulty operation is defined by thresholds that the parameters of
the system must not exceed. These thresholds are used in the literature to estimate
the failure thresholds for HIs whose parameters have a clear physical meaning
[14, 31]. The estimation of the RUL is then performed using trend modeling methods
that do not require prior knowledge of the dynamics of degradation presented in the
second part of this chapter.

System Instrumentation The observability is a necessary condition for the imple-
mentation of the methods presented above, for the implementation of the AR method
the system must be, in addition, over-constrained. This property is easily verifiable
on a state model or a bond graph model. The identification of an optimal placement
of sensors to obtain an observable system (or over-constrained for the application of
the AR method) is also possible. But in practice, it is not always possible to place
all the necessary sensors for the observability of a system, for reasons of cost, lack
of space on the system, the non-availability of the sensor, and the consequences
of placing a given sensor on the system. Among the practical cases of systems
on which the authors of this paper have encountered difficulties of instrumentation
for the application of the methods presented above: electric motors [14], where the
torque sensor is rarely available, which makes it impossible to generate HIs whose
electrical part and mechanical part are decoupled. Indeed, in the example of the HIs
generated for the mechanical transmission system, the torque Γ (t) is not measured,
but, rather, it is estimated using the model of the interaction between the electrical
part and the mechanical part of the brushless motor, given as follows:

e(t) = keθ̇(t)
Γ (t) = kt i(t) (8.18)

where ke is the electromotive force (EMF) and kt is the motor torque constant.
The use of the current variable to calculate the torque creates a matching of the
HIs generated from the electrical part of the motor with the HI generated from the
mechanical part. Consequently, it is not possible to locate the degraded subsystem.
On thermal engines, in particular marine diesel engines [61], there are many sensors,
but the system is not observable. The available sensors are mostly effort sensors
(temperature, pressure), while flow sensors (volume flow, mass flow, heat flow,
entropy flow) are not available. This is due to the unavailability of some sensors
(such as the entropy flow sensors) and the consequence that the sensor placement
may have on the system (for example, a mass-flow sensor must be inserted in the
pipe, which may promote the appearance of fluid leaks). The same instrumentation
constraints are encountered on the electricity production and management systems,
and industrial equipment [75, 122].
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8.3.2 Data-Driven and Signal Processing Methods

Among the data-driven methods of HIs generation for fault diagnosis, several
are used also for the generation of HIs for failure prognosis [124]. Methods of
multivariate analysis, such as principal component analysis (PCA) and its variants
(IsoMap, PCA-Kernel, . . . ), are widely used [2, 68, 90, 96] due to the fact that
they allow, in addition to generating the HI , extracting a degradation profile from
raw data, assuming that this information is initially contained in the raw data. The
time and frequency attributes of the measurement signals are also widely used,
especially when the instrumentation of the system is poor, and is limited to just
one or two sensors. These techniques allow a separation of the features contained in
the signal highlighting dynamics which are not perceptible on the raw signal. The
features presenting progressive trends that are not related to the normal operation
of the system are often related to the process of degradation of the system, and can
be exploited for the prognosis of failure [49, 51, 94]. Signal processing methods
the most used for generating HIs are: statistical indices [74], empirical modes
decomposition (EMD) [54], low pass filters [92], fast Fourier transform (FFT)
[77], and wavelet decomposition [76]. In the area of failure prognosis, Ref. [74]
uses statistical indices to extract the characteristics susceptible to failure and robust
to noise from vibration data pump oil sands; Ref. [44] also uses these statistical
indices on the raw data measured on bearings; Ref. [119] applies the EMD to
bearings vibration signals to identify and diagnose faults. For the diagnosis of
bearing faults from acceleration signals, Ref. [4] applies filtering with several levels
of bandwidth to improve the signal-to-noise ratio. For the application of the wavelet
transformation, Ref. [70] applies it to the voltage data of the rolling elements of a
gearbox to characterize symptoms of early fatigue and cracking.

The principle of analytical redundancy can also be applied by creating redun-
dancy through data-driven models, such as neural networks, support vector machine
(SVM), and auto-regressive models. This technique is applied in [31] for the
prognosis of failures of the embedded electronic systems, where a NARX neural
network is used for the estimation of the consumed power and an ARMAX model is
used for the estimation of the temperature. These two estimates are then compared
to the measured values to generate health indices for fault diagnosis and failure
prognosis. A multilayer perceptron (MLP) neural network is used in [47] for health
condition monitoring of a wind turbine gearbox, and a recurrent neural network
(RNN)is proposed in [7] for or early fault detection of gearbox bearings. In [102] an
adaptive network-based fuzzy inference system (ANFIS) is implemented for wind
turbine condition monitoring using normal behavior models.

8.3.2.1 Practical Constraints

Data Availability The data-driven methods presented above are all based on the
assumption that data containing the degradation process is available, so they are



8 Review on Health Indices Extraction and Trend Modeling for Remaining. . . 199

complementary to the physical model-based methods that only require data from
the normal operation of the system, used for parameter identification, and a physical
knowledge of the system. These two types of approaches are complementary,
covering thus a wide field of application.

Properties of the Generated HIs Unlike HIs generated using physical model-
based methods, the properties analysis (Monotonicity, Trendability, and Prognos-
ability) of HIs generated by data-driven methods has been the subject of several
research works [10, 24, 25, 52]. Monotonicity is related to the irreversibility
assumption of degradation phenomena. Trendability is related to the degradation
profile, i.e. it is related to the fact that the HI value is representative of the
degradation value at any moment of the evolution of the degradation. Prognosability
is related to the amplitude of the HI corresponding to the total failure; this property
is respected when the threshold of HI corresponding to the total failure is constant.
The metrics presented below are the ones proposed in [24] and [10], as their score is
easily interpretable (between 0 and 1), where 1 indicates the most satisfactory and
0 the less satisfactory level of the specific HI property:

Monotonicity = 1

N

∣∣∣∣∣
N∑
i=1

Mi

∣∣∣∣∣ (8.19)

whereMi is the monotonicity of a single run-to-failure trajectory given by:

Mi = n+i
ni − 1

− n−i
ni − 1

, i = 1, . . . , N (8.20)

ni is the total number of observations in the ith run-to-failure trajectory and n+i (n−i )
the number of observations characterized by a positive (negative) first derivative.

Trendability = min
(∣∣corrcoef ij ∣∣) , i, j = 1, . . . , N (8.21)

corrcoefij is the linear correlation coefficient between the ith and the j th run-
to-failure trajectories. The computation of the correlation coefficient between two
vectors requires that they are formed by the same number of patterns.

Prognosability = exp
(

−std (HIfail)
mean

∣∣HIstart −HIfail∣∣
)

(8.22)

where HIstart and HIfail are the HI values at the beginning and end of the run-to-
failure trajectories, respectively; std

(
HIfail

)
is standard deviation of the HI values

at the end of the trajectories. mean |HIstart | and mean
∣∣HIfail∣∣ are the average

variation of the HI values between the beginning and the end of the trajectories,
respectively.
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Recent researches are directed towards the development of methods allowing the
extraction of a set of features optimizing the scores of the three properties, as in
[10], where the HIs identification is formulated as the problem of selecting the best
combination of features to be used, and a multi-objective optimization that considers
as objectives the metrics of Monotonicity, Trendability, and Prognosability. The
proposed method is based on a binary differential evolution (BDE) algorithm for
the multi-objective optimization.

The HI generation methods presented in this paper have been applied by the
authors of this review paper on real cases. The details of the application of each
method can be found in [14] and [35] for AR method, [33] for parity space method,
[15] for algebraic methods, [36, 90] for PCA method, [89] for EMD method, [34, 89]
for WD method, and [31, 32] for HI generated using machine learning methods.
Table 8.1 summarizes the constraints of use, the advantages, and limitations of the
methods presented above.

8.4 HI Trend Modeling for RUL Estimation

As illustrated in Fig. 8.3, the modeling approaches of HI trends for the estimation of
RUL can be decomposed into three main families: physical approaches, data-driven
approaches, and expert methods. Another classification is proposed in [2], where
the RUL estimation methods are classified into: reliability based, similarity based,
model based, and data-driven based approaches. The most used physical model form
is the differential one, whose order and parameters are identified according to the
physical knowledge and data available on the degradation process. The updating
of the parameters makes it possible to compensate the modeling uncertainties
and the adaptation of the model to changes in the degradation rate. Data-driven
approaches are the most used and can be decomposed into five families: statistical
models, stochastic models, deterministic models, probabilistic models, and machine
learning model. The third family of trend modeling comprises those approaches that
formalize the knowledge of industry experts through the tools of fuzzy logic and
Bayes probabilities. Only data-driven methods able to include expert knowledge
into the prediction models are presented in this paper.

8.4.1 Data-Driven Models

Four kinds of models are presented in this section:

• Stochastic models, especially continuous and discrete Markov processes.
• Probabilistic models, based on Bayes probability theory.
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Fig. 8.3 Classification of RUL estimation approaches

• Statistical models, with a focus on the auto-regressive (AR) models and the
auto-regressive moving average (ARMA) model, which is representative of these
methods.

• Deterministic models, which are geometric models allowing to estimate the RUL
as a deterministic variable.

8.4.1.1 Stochastic Models

Markov processes are the most used stochastic models for fault prognosis. These
models describe processes without memory, where the probability of the future state
Xn depends only on the current state Xn−1 as shown in the following equation:

P(Xn = xn|Xn−1 = xn−1, . . . , X0 = x0) = P(Xn = xn|Xn−1 = xn−1) (8.23)

x1, . . . , xn are linked to the different states of the system. These processes can
be divided into two categories: continuous Markov processes and discrete Markov
processes.

Continuous Markov Processes
The most common continuous Markov processes used in the literature for prognosis
are Wiener and Gamma processes. The hypothesis of independent increments leads
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these processes to Markov properties because: X(t +Δt)−X(t) is independent of
X(t) and X(t + Δt) = X(t) + (X(t + Δt) − X(t)); the process {X(t), t ≥ 0} is,
therefore, a Markov process [91].

• Wiener processes are continuous Markov processes [Xt, t > 0], with a drift
parameter μ and a variance parameter σ 2, σ > 0. They are well adapted to the
modeling of degradation processes which vary over time with a Gaussian noise.
These processes are described as follows [103]:

Xt = x0 + μt + σB(t) (8.24)

where B(t) is the Brownian motion. The RUL Hti at a time ti is defined as the
time taken by the variable Xt , with t > ti to reach a predefined failure threshold
w such that:

Hti = inf{Δti : Xti+Δti ≥ w|Xti < w} (8.25)

In the literature, the RUL is often given with a confidence interval, obtained
by the calculation of a probability density function given by the following
expression [26]:

fHti (hti ) =
w −Xti√

2πt3ti σ
2
exp

(
− (w −Xti − μtti )

2

2tti σ
2

)
(8.26)

Many work apply this process and its variants [95, 105, 110, 111, 113], and
particularly [116] which proposes a Wiener process with an updated drift
parameter μt .

• Gamma process is the most appropriate for modeling a monotonic and gradual
deterioration [91]. Reference [1] proposed to use it as a deterioration model
randomly introduced over time [6, 23, 42, 62]. Mathematically, a random quantity
X follows a Gamma distribution with a shape parameter υ > 0 and a scale
parameter u > 0 if its probability density function (PDF) is given as follows:

Ga(x|υ, u) = uυ

Γ (υ)
xυ−1exp(−ux)I(0,∞)(x) (8.27)

where I(0,∞)(x) = 1 for x ∈ (0,∞) and I(0,∞)(x) = 0 for x /∈ (0,∞), Γ (υ) =∫∞
z=0 z

υ−1e−zdz is the Gamma function for υ > 0.
Given a non-decreasing function υ(t), Gamma process with the form function

Υ (t) > 0 and the scale parameter u > 0 is a continuous stochastic process with
the following characteristics:

1. X(0) = 0 with a probability of 1
2. X(τ)−X(t) ∼ Ga(υ(τ)− υ(t), u) for all τ > t ≥ 0
3. X(t) has independent increments.
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Let X(t) be the deterioration at time t, t ≥ 0: the PDF of X(t) is as follows:

fX(t)(x) = Ga(x|υ(t), u) (8.28)

HIs expectation and variance are as follows:

E(X(t)) = υ(t)

u
, VAR(X(t)) = υ(t)

u2 (8.29)

A system is said to be faulty when its degradation reaches a predefined threshold
S. From Eq. (8.28), the distribution of the failure time at time t is written as
follows:

F(t) = Pr{TS ≤ t} = Pr{X(t) ≥ S}
=
∫ ∞

x=S
fX(t)(x)dx = Γ (υ(t), Su)

Γ (υ(t))
(8.30)

where Γ (a, x) = ∫∞
z=x z

a−1e−zdz is the incomplete gamma function with x ≥ 0
et a > 0. The PDF of the failure time at time t is, thus:

f (t) = ∂

∂t

[Γ (υ(t), Su)
Γ (υ(t))

]
(8.31)

The mean failure time and the average RUL are given in the following equations:

Tt =
∫ +∞

t=0
tf (t)dt (8.32)

RULt = Tt − t (8.33)

The two Markov processes presented above are widely used to model degrada-
tion, covering the majority of degradation profiles: linear and nonlinear, noisy
and monotonous. However, these processes require the calculation of a HI
X(t), which estimates the current level of degradation of the system and which
can be calculated using one of the methods presented in Sect. 8.3. The main
limitation is related to the central property of Markov models, called memoryless
assumption, which is a relatively strong assumption and thus may lead to strong
approximation for real applications. To overcome this issue, a reliability model
can be developed to consider the changes in the operating modes of the systems
[89]. This model is based on two assumptions: (1) the future value of the HI is a
function of the current state of the system, given by the present value of the HI,
time, operating modes assumed known, and external noises supposed to follow a
Gaussian law; (2) the HI is non-negative and monotonous.

Given these two hypotheses, the dynamics of the HI can be described as
follows:
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ΔXt = βtβ−1

ηβ
exp(γZt + ε) (8.34)

where β > 0 is the shape parameter of the model, η > 0 is its scale parameter,
γ = [γ1, . . . , γm] ∈ R

m is a vector of m elements, describing the influence
of changes in operating modes Zt = [Z1,t , . . . , Zm,t ] on the degradation. The
uncertainties of the model are represented by the variable ε assumed to follow
a normal distribution N(0,Q). The first term βtβ−1/ηβ depends on time and
means that ΔXt depends on the system aging.

The HI evolution Xt is defined as the accumulation of all segments ΔXt :

Xt =
t∑
τ=0

ΔXτ (8.35)

Based on the linearity of mathematical expectation, the value of the mathematical
expectation of X(t) is calculated as follows:

E
[
Xt
] = E

[
t∑
τ=0

ΔXτ

]

=
t∑
τ=0

E
[
ΔXτ

]

=
t∑
τ=0

E

[
βτβ−1

ηβ
exp(ε)

]

=
t∑
τ=0

βτβ−1

ηβ
E
[
exp(ε)

]
(8.36)

ε ∼ N(0,Q) being a normal distribution variable, exp(ε) is a log-normal
distribution variable with mean value exp(Q/2):

E
[
Xt
] =

t∑
τ=0

βτβ−1

ηβ
exp(Q/2)

= exp(Q/2)
t∑
τ=0

βτβ−1

ηβ
(8.37)

Assuming that k is he RUL and L > Xt the predefined failure threshold, the RUL
can be estimated as follows:
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P(k|Xt < L) = P(Xt+k < L|Xt < L)
= P

(
Xt +

t+k∑
i=t+1

ΔXi < L

)

= P
(
t+k∑
i=t+1

ΔXi < L−Xt
)

= F t+k∑
i=t+1

ΔXi

(L−Xt)

(8.38)

F∑t+k
i=t+1ΔXi

(L − Xt) is the distribution function (fr) of the sum Sk =∑t+k
i=t+1ΔXi to the value L−Xt .

Discrete Markov Processes
These methods are based on the principle of Markov chains for modeling processes
that evolve through a finite number of states [37, 59]. By definition, it is assumed
that the probability associated with each state, the probability associated with
the transition from one state to another, and the probability of future failure can
be estimated. The main property of Markov models is the assumption that the
future state depends only on the current state, called conditionally independent
or memoryless assumption. The most commonly used models for fault prognosis
are the Hidden Markov models (HMMs), characterized by two parameters: (1)
number of states of the system, (2) number of observations by state, and three
probability distributions: (1) probability distribution of transitions between states,
(2) probability distribution of observations, and (3) an initial probability distribution
of states [12, 37, 83]. The HMM presents an appropriate mathematical model to
describe the failure mechanisms of systems, which evolve in several degraded health
states over the time prior to failure, as it can estimate the unobservable health states
using observable sensor signals. The word “hidden” is related to the fact that the
states are hidden from direct observations, so they only manifest themselves via a
probabilistic behavior. HMM can exactly capture the characteristics of each state of
the failure process, which is the basis of HMM prognosis [37]. These methods allow,
thus, to model several operating conditions of the system and failure scenarios.
However, their implementation requires a large amount of data and knowledge
for learning, and the calculation intensity, which is proportional to the number
of states, can become important for systems with several operating states. The
three basic issues in HMMs implementation are: (1) Evaluation/Classification that
represents what is the probability to get the model given an observation sequence,
(2) Decoding/Recognition that represents what sequence of hidden states is the
most optimal or is most probably the one that generates the given sequence of
observations, and (3) Learning/Training that represents how to adjust the model
parameters.

In the fault prognosis area, a widely used algorithm is the backward–forward
algorithm, where the RUL at the time n can be defined as:

Xn = inf
{
xn : Yn+xn = N/Yn �= N

}
(8.39)
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where Yn is the nth observation. The calculation of RUL using Markov chains
usually involves the use of the phase-type distribution. As a result, the distribution
and the expectation of the RUL are given as:

Pr(Xn = k) = αnP̃ k−1(I − P̃ )e (8.40)

E(Xn) = αn(I − P̃ )−1e (8.41)

where

P =
(
P̃ P0

0 1

)
with P0 =

(
1− P̃

)
e (8.42)

HMM is suitable for nonlinear systems. It can estimate the data distribution
of normal operation with nonlinear and multimodal characteristics, assuming that
predictable fault patterns are not available. It is applicable to non-stationary systems.
It has been widely applied in real applications. The main reason is that the plant
operation condition can be divided into several meaningful states, such as “Good,”
“OK,” “Minor Defects Only,” “Maintenance Required,” “Unserviceable,” so that
the state definition is closer to what is used in industry. It can be used for fault
and degradation diagnosis on non-stationary signals and dynamical systems. It is
appropriate for multi-failure modes [37, 59, 66].

The main limitation is related to the property of Markov models, i.e. the mem-
oryless assumption. The health state visit time is assumed to follow an exponential
distribution, which could be inappropriate for some cases. The transition probability
among the system states in Markov models is often determined by empirical
knowledge or by a large number of samples, which is not always available. A large
amount of data is needed for accurate modeling [37, 59, 66].

The hidden semi-Markov model (HSMM) is an improved HMM, which over-
comes the inherent limitation of assuming exponential distributions. Unlike the
HMM, the HSMM does not follow the unrealistic Markov chain assumption
and therefore provides more powerful modeling and analysis capability for real
problems. In addition, the HSMM allows modeling the time duration of the hidden
states and therefore is well suited for fault prognosis. A practical example is given
in [28], where an approach for RUL estimation from heterogeneous fleet data under
variable operating conditions is proposed in three steps:

– Identification of the degradation states of an homogeneous discrete-time finite-
state semi-Markov model using unsupervised ensemble clustering approach.

– The maximum likelihood estimation (MLE) method and the Fisher information
matrix (FIM) are used for parameter identification of the discrete Weibull
distributions describing the transitions among the states and their uncertainties.

– The direct Monte Carlo (MC) simulation based on the degradation model is used
to estimate the RUL of fleet equipment.
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The proposed approach is applied to two case studies: heterogeneous fleets of
aluminum electrolytic capacitors and turbofan engines. Another solution proposed
in [53] to overcome the lack of knowledge on the condition monitoring is the online
updating of the parameters of the degradation model formulated as a first-order
Markov process. The originality of this work consists of the combination of Particle
Filtering (PF) technique with a Kernel Smoothing (KS) one, for simultaneously
estimating the degradation state and the unknown parameters in the degradation
model, while significantly overcoming the problem of particle impoverishment.

8.4.1.2 Conditional Probabilistic Models

These models are based on Bayes theorem, which describes relationship between the
conditional and marginal probabilities of two stochastic events A and B as follows:

P(A|B) = P(B|A)P (A)
P (B)

(8.43)

These methods describe the current state as a conditional probability function
and, then, apply Bayes theorem to update the probability assessment of future
behavior. The most used modeling tool is the Bayesian network, which is a
probabilistic graphical model representing random variables in the form of an
acyclic oriented graph. In the field of aeronautics, [39] uses the network with
variables such as aircraft weight, landing speed, and brake operation to predict brake
failure. In other research work, Bayesian networks are associated with the Kalman
filter [22, 69] or particle filter [20, 93, 106] for failure prognosis.

8.4.1.3 Statistical Models

The ARMA, the ARIMA (Auto-Regressive Integrated Moving Average), and the
ARMAX (Auto-Regressive Moving Average eXogenous inputs) models, initially
used for time series prediction, have been used to estimate the RUL by considering
the future value of the degradation as a linear function of system inputs, past obser-
vations, and random noise. To show how these methods are used for prognostics,
let us take the example of the ARMA model. A time series {xt |t = 1, 2, . . .} is
generated by an ARMA model (p, q) as follows:

xt =
p∑
i=1

φixt−i +
q∑
j=0

θj εt−j , (θ0 = 1) (8.44)

where xt is a series at the instant t , p and q are non-zero integers, p is the order
of the auto-regressive part, q is the order of the moving average part, {εt } indicates
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the noise series, {φi, i = 1, . . . , p} et {θj , j = 1, . . . , q} are the parameters to be
estimated.

To use this model for fault prognosis, the variable xt is considered as the HI
which represents the system condition state and the failure threshold D is supposed
known. The RUL at instant t of the system is calculated by the following equation:

rult = min{Δt : xt+Δt ≥ D|xt < D} (8.45)

Yan et al. [118] have used ARMA model for fault prognosis. An ARMA model
is incorporated in a software for data fusion and prognosis [65]. An extension of an
ARMA model by usingbootstrap forecasting is proposed in [117].

The use of these models is simple for prognosis. However, they assume that the
future state of the system is a linear function of the system inputs, past observations,
and noise, which is not often the case in reality. Moreover, their results are sensitive
to the initial conditions, thus leading to an accumulation of systematic errors in the
prediction.

8.4.1.4 Deterministic Models

This approach is supervised by the calculation of the Euclidean distance (d) between
the actual status of the system, given by the actual HIs values and the faulty HIs
identified offline. The degradation speed (v), which indicates how the degradation
moves from the normal operation to the faulty one, is used to compute the RUL as
follows:

rul (t) =
∣∣∣∣d (t)v (t)

∣∣∣∣ (8.46)

To compute the distance d(t) between the n HIs in real time operation and
the barycenter of the identified faulty operating cluster (Cf (c1, c2, . . . , cn)), the
following Euclid metric is considered:

d (t) =
√
(r1(t)− c1)

2 + (r2(t)− c2)
2 + · · · + (rn(t)− cn)2 (8.47)

where r1(t), r2(t),. . . rn(t) is a set of HIs defining the monitoring space. This set
can be generated using one of the HI generation methods presented in the previous
section.

The numerical differentiation of the distance variable d is taken to compute the
degradation speed v:

v (t) = d (t +ΔT )− d (t)
ΔT

(8.48)
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where ΔT is the sampling time for speed degradation computation. whose value is
chosen so that the noise is not amplified.

The main interest of this method is the fact that no knowledge is required on the
tendency or the pattern of degradation. It is accurate when the faulty operation is
clearly identified and successfully applied to a wind turbine system [36] for RUL
estimation.

Other deterministic models are used in the literature, especially when the
degradation profile is known. The models are identified by using the fitting
methods applied on the available profile of the degradation. Linear, exponential,
and polynomial models are the most used [120].

8.4.1.5 Learning Techniques

Learning techniques are widely used in the literature for trend modeling in the
field of failure prognosis. These regression models, such as neural networks and
support vector regression (SVR), are scalable and able to accommodate nonlinear
dynamics, but require a large amount of data for learning. For unsupervised learning
cases, an example of using SVR for RUL prediction is proposed in [32] for failure
prognosis of embedded systems. The prediction is realized using a SVR at a step of
the evolution of the health index. The SVR expression is given as follows:

Ĥ I (k + 1) =
N−1∑

[i=(m−1)τ+1]
α∗i K(HI (i),HI (k))+ b∗ (8.49)

where α∗i are Lagrange multipliers and τ the delay. In this work, the standard SVR
toolbox is used without making any special changes to the prediction of temporal
overlays. The free parameters, C, ε, the size of the kernel (Gaussian), and the
dipping dimension m are selected from a comprehensive search in the parameter
space to optimize the performance of the prediction on the validation set. The
available N observations are therefore shared between two sets of training and
validation of respective sizes Ne and Nv. Values for which the prediction error at a
step on the validation set is minimal are retained for the final prediction. Once the
parameters are fixed, the prediction is made using all the N observations available.
The predictions at several steps, i.e. for the values (k ≥ N + 1), are realized by the
ratio of the prediction at one step, using the estimated vectors Ĥ I (k) at the previous
iterations and not the observations themselves.

In addition to machine learning techniques, deep learning techniques like long
short-term memory (LSTM), which can remember information for long periods
of time, are used for trend modeling and RUL prediction. An application case is
proposed in [121], where a long short-term memory recurrent neural network is
used for RUL prediction of lithium-ion batteries.
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8.4.2 Physical Models

RUL estimation based on a physical model consists of considering that degradation
follows a parametric trend, which can take one of the following ordinary differential
equations (ODE):

Ḟ = β1F

Ḟ = β2F
2

F̈ = β3Ḟ + F + β4

F̈ = β5Ḟ
2 + β6F + β7

(8.50)

where F is the fault component value describing the degradation and βi (i = 1 . . . 7)
represent the degradation model coefficients which are identified on-line by using
the least square method [30] or particle filter [29, 58]. For example, the RUL
associated with the degradation model of the form Ḟ = β1F is given by:

RUL =
ln
(

1−th
1−HIi

)
β

−NTs (8.51)

where N represents the sample data, Ts is the sampling time, and th is the failure
threshold.

Other trend modeling approaches for RUL estimation can be found in the
literature, such as [99] where the RUL estimation is treated as an uncertainty
propagation problem, [103] where the review is focused on statistical data-driven
approaches, relying only on available past observed data and statistical models,
[5] which provides practical options for prognostics so that beginners can select
appropriate methods for their fields of application.

8.4.3 Practical Constraints

The purpose of the RUL estimate is to give to the maintenance experts’ two pieces
of information: the first is that the system will undergo the occurrence of a total
failure, the second is to give a sufficient time horizon for the maintenance experts in
order to plan a maintenance strategy. A metric proposed in [101], called Prognosis
Horizon (PH), is used to evaluate this time horizon in a confidence interval which
can be defined by the user. Prognosis Horizon (PH ) ranges within [0,∞[ and is
calculated as follows:

PH (i) = EoP − CT (8.52)
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(a) (b)

Fig. 8.4 Illustration of the PH RA metrics calculated for a wind turbine system in presence of an
unbalance fault caused by a progressive deformation of the blade

It represents the difference between the Current Time index (CT ) and the End
of Prediction time index (EoP ), obtained when the prediction crosses the failure
threshold. A practical example of the PH calculation is illustrated in Fig. 8.4a which
represents the PH calculated for a wind turbine system in presence of an unbalance
fault caused by a progressive deformation of the blade. In this practical example,
the HIs are generated using the PCA method and the trend modeling for RUL
estimation is performed using a deterministic model, based on Euclidean distance
[36]. Figure 8.4a shows that the obtained PH, by considering a confidence interval of
18%, is equal to 65 h. The maintenance expert can, then, make a decision, whether
or not this HP is sufficient to plan a maintenance strategy in good conditions. If it
judges that this PH is insufficient it is possible to increase it but by increasing the
confidence interval.

To give the user an easily interpretable measurement tool of the confidence that
can be given to the PH metric, another metric is proposed in [101] where the
accuracy is quantified according to the real RUL. This metric is called relative
accuracy (RA) and expressed as follows:

RA (t) = 1− |RUL∗ (t)− RUL (t)|
RUL∗ (t)

(8.53)

RUL∗ is the real RUL. The range score of the RA metric is between [0, 1], and the
best score is close to 1. A practical example of the results of this metric applied to
the estimated RUL before the total degradation of the wind turbine system is given
in Fig. 8.4b. It shows that the RA is greater than 0.7 in average over the PH, but has
a great variability. All these measures will enable maintenance experts to assess the
risks and make the right decisions for the maintenance of the systems.
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Fig. 8.5 Practical illustration of the use of PH and RA metrics for the performance comparison of
the RUL estimation methods

Table 8.2 Performance
comparison of the considered
RUL estimation methods by
universal metrics

PH RAmin RAmax RAmean

RUL Hybrid 18.9 s 0.5 1 0.8509

RUL AR 19 s 0.6207 1 0.8504

RUL BM+ KF 19 s 0.2702 1 0.8487

RUL PF 16 s 0 1 0.7155

In addition, these two metrics can be used to compare the performances of
different methods in a given context. A practical example is given in Fig. 8.5,
where the PH and RA are calculated for four prognostic methods applied to
the RUL prediction on the mechanical transmission system presented in [14]. In
this paper, the analytical redundancy method is used for HIs generation and four
trend modeling methods are applied for RUL estimation: an auto-regressive (AR)
model, whose parameters are estimated using the least square methods, an updated
Wiener process, whose drift parameter is updated using a Kalman filter, a first-
order differential model whose parameter is updated using a particle filter (PF),
and a deterministic model based on the calculation of the Euclidean distance [14].
The performance results of the considered RUL estimation methods are given in
Table 8.2, which shows that the AR model and the Wiener model have the largest
PH , thus giving the user more time to react, whereas the Wiener model is less stable
since it presents a greater variability in its RA.

It would be also better to evaluate the RUL prediction accuracy using—accuracy
and cumulative relative accuracy (CRA) proposed in [100, 101].
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8.5 Discussion and Future Challenges

8.5.1 Discussion

After analyzing the methods described above, one can see that discrete Markov
models are the most complex to implement because they require expert knowledge
and rich databases on the previous operation of the system and its failures; the
uncertainty brought by expert knowledge is often taken into account using fuzzy
logic. The memoryless assumption, which is the main property of discrete Markov
processes, and that they also share with continuous processes, is a major limitation
in the use of these processes for the estimation of the RUL. To overcome it, the
hidden semi-Markov models (HSMMs), that do not follow the unrealistic Markov
chain assumption, to provide more powerful modeling and analysis capabilities for
real fault prognosis problems.

Continuous Markov processes, especially the Wiener and Gamma processes, are
widely used in the literature as they are easy to implement and are well adapted
to modeling the progressive dynamics of degradation phenomena. The updating of
the parameters by increasingly powerful techniques such as maximum likelihood,
the Kalman filter, and the particle filter makes it possible to adapt the estimation
to the possible changes in the rate of degradation and provide in part a solution to
the limit related to the memoryless assumption. Research works have gone even
further in modeling, drawing on the Cox model, by proposing a reliability function
that takes into account the covariates representing changes in the operating modes
of a system: the limit of this model is related to the fact that the evolution of the
covariates must be known beforehand, which is difficult to obtain on systems such
as energy and transport systems where covariates are environment variables that are
not controlled.

The representation of degradation processes by adaptive differential models
makes it possible to take into account the physical knowledge available on these
phenomena for the choice of the order of the models. Continuous parameter
updating adapts to the change in degradation rate, and structured and unstructured
uncertainties are taken into account by the generation of normal operating thresholds
and total failure thresholds. The main limitation of this type of model is related
to problems of amplification of the noises generated by the successive derivations
of the outputs, as well as the lack of physical knowledge about the degradation
processes, which generally leads to an arbitrary choice of the order of the model.
Geometric models are efficient and accurate, but require complex classification
work to identify clusters, using the physical model for generating the useful
databases for learning.

The choice of the HI modeling approach depends on the context of use, the
complexity of the system. and the information available on its previous operating
modes, especially for the definition of the structure of the model as well as for
the identification of its parameters. Table 8.3 summarizes a set of criteria, not
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exhaustive, that can be used as a basis for choosing the HI modeling methodology
for the estimation of RUL.

8.5.2 Future Challenges

The general formulation of the Remaining Useful Life (RUL) of a system can
be expressed in a general form, as a function of the time t , the current condition
monitoring CM(t) and the current health state HS(t) (Eq. (8.54) below). However,
in practice, the state of degradation is neither available nor measurable in the
majority of cases, health indices must be deduced from the physical knowledge,
expert knowledge, and available measurements [90]:

RUL = g(t,HS(t), CM(t)) (8.54)

– The use of the techniques initially developed for fault detection and isolation
(FDI ) to estimate the health state (HS) of the system is a good idea, but in the
context of failure prognosis, the early detection becomes a major issue, as it is
necessary to estimate the RUL well in advance to allow maintenance operators
to plan their maintenance interventions. FDI techniques treat uncertainties in a
probabilistic or deterministic manner to generate thresholds that provide a better
compromise between false alarms and non-detections. In the context of failure
prognosis, it is necessary to take into account also the Prognosis Horizon [100,
101]. In addition, the problems related to the occurrence of multiple faults, their
interaction, their effect on the HS of the system remain.

– Condition monitoring (CM(t)), necessary for RUL estimation, is not always
known especially in systems operating in a randomly variable environment, such
as offshore wind turbines and transportation systems. The solution proposed in
the literature consists in taking account of the known or controlled CMs by using,
for example, the modified Cox model [89], and in compensating the lack of
knowledge about the unknown CMs by an online update of the model parameters.
This solution is effective in some application cases, but in the case where these
CMs vary strongly and continuously, the RUL estimate will change considerably
and continuously, which will prevent the use of the estimated RUL for planning
the maintenance. The solution may be to associate the RUL estimate with risk
analysis methods taking into account several operating and degradation scenarios
[123, 125].

8.6 Conclusion

This review of horizontal approaches for RUL estimation has highlighted the
diversity of methods proposed in the literature as well as their formal description
and context of use. The analysis shows that the two major stages of the procedure



8 Review on Health Indices Extraction and Trend Modeling for Remaining. . . 217

can be synthesized independently, but that the context of use, the complexity of
the systems as well as the history of available data and expertise are common
elements that govern the relevance of the choice of the HI generation methods and
the method of modeling its tendency for the estimation of the RUL. The diversity of
methods for generating health indices can cover a wide range of applications. The
PCA makes it possible to simultaneously reduce the size of the data and generate
health indices from large databases with linear, bilinear, or nonlinear dependencies.
When the instrumentation of the systems is not rich, the statistical, frequency, and
time-frequency attributes can be extracted from the signals and, then, analyzed
to make them HIs for the estimation of the RUL. When physical knowledge is
relevant enough to take modeling assumptions, build and validate physical models,
these latter are, then, associated with health index generation methods such as
analytical redundancy, observers, and parameter estimation. In this paper, we have
also presented the trend modeling methods that are the simplest to implement and
that are adapted to the physical properties of degradation processes, such as the
progressive aspect and the influence of the environment and operating modes of
the systems. The choice of the model depends on the context of use, the physical
knowledge available on degradation processes, the expert feedback, and available
data. The RUL can be presented as a stochastic, probabilistic, or deterministic
variable.
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Chapter 9
How Machine Learning Can Support
Cyberattack Detection in Smart Grids

Bruno Bogaz Zarpelão, Sylvio Barbon Jr., Dilara Acarali,
and Muttukrishnan Rajarajan

9.1 Introduction

The world’s demand for electricity has been steadily growing due to several aspects
of modern life, causing a push in industrial production and giving rise to new
electricity-dependent technologies. At the same time, society has refused the idea of
increasing the use of fossil fuels as power sources, given that they are responsible
for several environmental problems we have faced. To cope with these challenges,
power grids have been reshaped to become more resilient, reliable, and efficient.
Renewable and alternative power sources have been increasingly adopted to reduce
greenhouse gas emissions. The new power grids emerging from this modernisation
process are named smart grids [1–3].

To reach their goals, smart grids rely on advanced control and communication
technologies. Although these technologies have been used to make power grids
more reliable, they are also responsible for introducing new vulnerabilities. Smart
grids are complex and large-scale systems, composed of multiple domains involving
customers, utilities, operators, and service providers. Attackers can target any part
of these systems, from smart meters at customer premises to core devices at
transmission networks or power plants. As smart grids are highly interconnected,
an attack on a particular point, which at first sight does not seem to be significant,
can escalate quickly to a massive disruption of the whole system [3–5].
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Cybersecurity measures must be set over the entire smart grid to ensure its
reliability. Among all the available security solutions, attack detection systems
are particularly important. As smart grids are complex and large, it is impossible
to make sure that there are no security breaches in any part of the system.
Researchers discover new vulnerabilities on a daily basis even in long-used devices,
and well-known vulnerabilities may remain unpatched due to the lack of sufficient
resources to cover such a huge attack surface. Therefore, attack detection systems
are necessary to monitor the whole system continuously and alert the administrators
when needed.

Attackers have evolved along with the defence tools. They are usually able
to bypass or evade existing attack detection systems, and capable of developing
smarter attacks that can adapt to new security measures. Machine learning is a
promising solution for creating attack detection systems capable of dealing with
these advanced adversaries in smart grids, having been successfully applied to detect
attacks in other domains.

In this chapter, we present a survey about the application of machine learning
for attack detection in smart grids. Our goal is to enable a better understanding
of the attack types that affect smart grids, the aspects that drive detection systems
development (detection methods, data collection, and system distribution), and how
machine learning algorithms are employed in this context. Finally, we discuss open
issues related to the current usage of machine learning-based detection in smart
grids and point out some paths to address them.

The rest of the chapter is organised as follows. Section 9.2 presents an overview
of smart grids to build a foundation for the rest of the study. Section 9.3 discusses
the types of attacks that affect smart grids, while Sect. 9.4 shows the main aspects
of detection systems. Section 9.5 details the foundations of the machine learning
algorithms used for attack detection in smart grids. Section 9.6 presents the surveyed
solutions, and Sect. 9.7 discusses their open issues and possible improvements.
Finally, Sect. 9.8 presents the concluding remarks.

9.2 Smart Grids Overview

Smart grids are the convergence of power grids and Information and Communica-
tion Technology (ICT). They have been developed as a response to the growing
demand for electrical power and the rise of renewable energy sources. In this
context, ICT tools are used to improve the management and control of the whole
cycle of power generation, transmission, and distribution, making sure that multiple
power sources are explored and faults and outages are significantly reduced even
with the system under constant pressure [1–3].

Power grid operation is divided into generation, transmission, and distribution.
Energy is generated in power plants of different kinds (e.g. nuclear, thermal, wind,
hydroelectric, or solar) and transmitted over long distances through high-voltage
transmission lines to electrical substations. From electrical substations, energy is
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distributed to end customers, according to their demand. As these systems spread
over wide geographical areas, they are structured in a hierarchical fashion. A control
centre monitors the power grid activity to ensure that multiple parameters like
voltage, frequency, and current are within the expected range. Situational awareness
is a key term to define the central control mission. Additionally, the power grid
has some protection mechanisms, like breakers and relays, that take action when
a fault occurs to keep the system up and avoid significant damage. Protection
mechanisms can operate automatically or under the central control command.
Summing up, power grids are huge and complex systems that operate under strict
requirements and are monitored continuously to prevent outages that might have
serious consequences [6–9].

In smart grids, ICT is used to enable two-way communication between the
control centre and different parts of the power grid. Data about the power grid
state are collected in real-time from all over the system, providing controllers with
updated information that can be used to respond to unexpected behaviour, make
demand predictions, and coordinate multiple power sources, among other tasks
related to management and control. Most of these needs always existed in power
grids. However, the reality has changed in recent years, making more sophisticated
ICT solutions necessary to cope with rising challenges. For instance, renewable
energy sources like wind power or solar power may generate energy intermittently,
as less wind, cloudy weather or some other natural and unavoidable condition may
affect their generation potential. In this sense, ICT solutions can help to forecast
these occurrences and coordinate the use of these sources accordingly [6–9].

According to a conceptual model proposed by NIST (National Institute of Stan-
dards and Technology) [1], smart grids are organised into seven domains: customer,
markets, service provider, operations, generation, transmission, and distribution.
The customer domain encompasses electricity end-users. Smart grids include some
differentials, such as dynamic pricing and generation of electricity by end-users,
which add more complexity to the customer’s role. For this reason, customers need
a two-way communication interface with the grid, named ESI (Energy Services
Interface). This interface sets the boundary between the customer and the utility
and is usually deployed at the meter or local management system. Customers can
have smart devices, which interact with the smart grid to provide details of their
consumption and other energy parameters, while receiving commands from service
providers that deliver management services.

The market domain consists of the operators responsible for commercialising
grid assets, from bulk electricity suppliers to retailers that supply electricity to end-
users. Organisations that deliver services such as billing, account management,
and maintenance and installation to customers and utilities make up the service
provider domain. The operations domain encompasses those who are responsible
for ensuring that the smart grid’s operations run smoothly. Their activities include
grid monitoring and control, fault management, grid estimates calculation, analytics,
planning, and maintenance. All of these tasks are performed from a control centre,
which hosts some management systems, such as the EMS (Energy Management
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System), dedicated to generation and transmission processes, and the DMS (Distri-
bution Management System), responsible for distribution processes.

Electricity generation is the key process of the generation domain. Several energy
sources such as nuclear fission, flowing water, wind, and solar radiation can be used
to create electricity. The generation domain has a plant control system, which is used
to monitor and control the power generation. It must report performance measures
continuously, so the operators can predict possible issues and mitigate their effects.
The transmission domain encompasses all the actors and functions needed to
transmit the electrical power produced in the generation domain to the distribution
domain. The transmission domain has the essential responsibility of balancing
electricity generation and load. Any disturbance in this delicate balance can affect
the grid frequency, leading to power outages or other kinds of damages to the
system. The distribution domain is responsible for interconnecting the transmission
domain and the customer domain. It also informs the operations domain about the
power flow situation.

All of these domains have to interact and cooperate to reach their goals, and
several technologies are available to support this need. Smart meters are deployed
at the customers’ side to measure their energy consumption and gather other
management information in real-time (typically every 30 min) to report to other
domains. These meters are part of a communication infrastructure referred to as
AMI (Advanced Metering Infrastructure). In addition to smart meters, an AMI
includes data concentrators for aggregating data collected from smart meters,
and head-end systems, which are responsible for connecting smart meters and
data concentrators to management information systems. Together, smart meters
and AMIs behave as typical IoT (Internet of Things) systems, adding the many
particularities of this paradigm [10].

SCADA (Supervisory Control and Data Acquisition) systems are also used
to support data exchange among these domains. These systems are made up of
three main components, RTUs (Remote Terminal Unit), MTUs (Master Terminal
Unit), and HMI (Human Machine Interface). RTUs are deployed close to or at
devices that are remotely controlled. MTUs (Master Terminal Units) are responsible
for sending requests periodically to RTUs, asking for data about the monitored
device, in a process referred to as polling. The polling frequency can range from
multiple requests per second to one request every few minutes, depending on the
importance of the monitored device. MTUs can also send commands to RTUs
asking them to act over the controlled system. Human operators interact with these
components through HMIs. In smart grids, RTUs can be deployed in the generation,
transmission, and distribution domains. The control centre’s management systems
provide human operators with HMIs to monitor and control these RTUs.

Another solution to collect measurements from the transmission domain is
the PMU (Phasor Measurement Unit). In a smart grid, PMUs are deployed at
transmission substations to collect current and voltage phasor information. They
operate at very high sampling rates, and are, therefore, able to collect many
more measurements per second than a common RTU. All PMU measurements
are timestamped, and GPS (Global Positioning System) devices are needed to
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synchronise measurements from PMUs at different locations. PDCs (Phasor Data
Concentrators) aggregate data from PMUs, perform quality checks, and then
forward these measurements to EMSs, where the collected data is analysed for state
estimation, monitoring, control, and protection.

Although smart meters, RTUs, and PMUs have some particularities that make
them unlike one another, all of these devices share at least a common characteristic:
they generate continuous data streams. Therefore, management and control systems
for smart grids, which consume these data, have to be designed to handle continuous
streams. This means they have to be able to learn incrementally, to manage the
constant inflow of huge amounts of data, and to cope with real-time changes in the
statistical distributions underlying the collected data.

Communication networks underpin all of these domains. As smart grid networks
have to connect a great number of endpoints over wide geographical areas, they
are organised hierarchically. At the customer end, there are HANs (Home Area
Network), which connect smart devices within the customer’s premises to the smart
grid structure, enabling the energy usage management at the customer level. HANs
are connected to the distribution system’s networks, referred to as FAN (Field Area
Network). These networks connect components such as RTUs in the distribution
domain and smart meters to control centres. Networks in the distribution domain are
also named NAN (Neighbour Area Network). Finally, WANs (Wide Area Network)
connect distant sites, making up a backbone for the integration of the networks
that compose smart grids. They are responsible for connecting the transmission
and generation domains to the control centre and for transmitting information like
PMU measurements and RTU readings. Also, they establish a communication path
between FANs and control centres, which are usually separated by long distances.

Figure 9.1 presents an overview of the seven domains along with devices and
communication networks that compose a smart grid.
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Fig. 9.1 Overview of main smart grid components and their relationships
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9.3 Smart Grid Attacks

Smart grids are complex systems consisting of various specialised components
working collaboratively to exchange sensitive data, process inputs, and make
decisions, all in real-time. This combined complexity and sensitivity produces many
vulnerabilities that can be exploited by malicious individuals. Furthermore, the
accurate and sustained functionality of power infrastructures are non-negotiable;
power is in constant demand. These issues are further exasperated by the vulnera-
bilities of wireless network technologies, and the presence of many potential access
points (i.e. smart meters) [8]. All of this makes the smart grid a highly attractive
target for those looking to cause large-scale disruption. A successful attack on the
grid hinders everything in the affected region, as experienced in Ivano-Frankivsk
in Ukraine in 2016, where thousands of people were left without electricity [11].
Despite the level of disruption caused in that incident, attacks on smart grids
theoretically and feasibly have much a larger damage potential.

This section provides a taxonomy of smart grid attacks, along with detailed
explanations of each category. In keeping with the basic principles of cybersecurity,
the CIA triad is used to divide attacks into three main categories based on what
they threaten: confidentiality, integrity, and availability. Each one is then further
divided to distinguish between attack aims and methods. It should be noted that
some categories inevitably have overlaps as attacks often interleave in complex
campaigns. The outline given here aims to highlight individual malicious actions
taken against the smart grid. In comparison to the taxonomy presented in [8], we
consider “data attacks” and “device attacks” to fall under the integrity category, as
the aim of both is to compromise the integrity of the grid network. Meanwhile,
privacy attacks are directly analogous to attacks on confidentiality, and network
availability attacks are captured in the same way.

Another important consideration is that attacks on smart grids can be considered
over two planes: the cyber and the physical [8, 12–14]. This is because the grid
is a digitised system that regulates and manages a physical utility. Hence, Cyber-
Physical Threats (CPTs) are defined as attacks where a malicious action in the cyber
plane has repercussions in the physical (and vice versa) [12, 13]. Examples of this
include acts of remote sabotage (like the Stuxnet incident [13]), manipulation of the
grid topology, and damage to hardware [13]. In [12], this idea is combined with big
data concepts to categorise attacks by (a) data on the cyber plane, (b) data on the
physical plane, and (c) metadata combining the cyber and physical planes. While
Wu et al. [13] focus on manufacturing systems and Wang et al. [12] only consider
false data injections (discussed in detailed in Sect. 9.3.2), the principles of CPTs can
be applied across the attack spectrum. Therefore, the cross-plane nature of smart
grid threats should be noted for the rest of the attacks discussed in this section.

Figure 9.2 presents the categories and attacks that are discussed in the rest of this
section.
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Fig. 9.2 Overview of the discussed attacks

9.3.1 Attacks on Confidentiality

Confidentiality is the quality of maintaining the privacy of data. By their nature,
smart grids collect vast quantities of data that must be transmitted and processed
in a secure manner. Recent regulations such as GDPR (General Data Protection
Regulation) enshrine the privacy rights of users in law. Furthermore, grid devices
generate very rich data, including user profiles, energy measurements, service spec-
ifications, telemetry details, and hardware information. Hence, the threat surface
against confidentiality covers the whole of the smart grid infrastructure.

An example of a privacy-targeting attack is snooping. This is where malicious
individuals aim to gain access to or visibility of data belonging to others. In the smart
grid context, the communications between appliances, smart meters, and controllers
are vulnerable to this. The power usage profiles of appliances are captured in
readings and measurements made by smart meters; collectively these readings form
a usage profile for the customers themselves [8]. An adversary may wish to capture
this information to infer the activities and behaviours of users [8], which they may
then use to plan intrusions or physical attacks on households/premises that appear to
be unoccupied [8]. Similarly, such user profiling may form the basis of energy theft
attacks (discussed in Sect. 9.3.3) to determine which accounts to steal electricity
from with the least risk of detection [15].

Meanwhile, similar methods may also be used to infer the current topology of
the smart grid. In their study of false data injections, Huang et al. [16] found that
intelligence regarding the grid’s structure could be mined from measurement data.
To achieve this, the adversary requires some understanding of the grid’s stochastic
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behaviour [4], and a length of time over which to observe readings—a single set of
measurements taken at one point in time is not sufficiently revealing [16]. However,
using linear Independent Component Analysis (ICA) techniques, Huang et al. [16]
were able to demonstrate that measurements collected over time can be used to build
a model of the grid. Their approach was based on the principle that the physical
topology and the load change independently. In other words, the variation in load
(which changes more frequently) can be analysed given the relative stability of the
topology (which changes less frequently) [4].

9.3.2 Attacks on Integrity

Integrity is the quality of maintaining the intended states of systems (and/or the data
within them) so that those systems can continue to serve their intended purposes. In
smart grids, the preservation of integrity ensures the timely and accurate exchange
of the data signals used to make decisions about delivery and distribution. It also
ensures that all grid components are truthful about their identities. This is crucial to
the correctness of measurements, given that meters and sensors are numerous and
distributed widely over geographic regions.

One way to damage integrity is to spoof the identities of grid components.
This is where someone other than the legitimate device fraudulently claims to
be that component, thus allowing an adversary to interact with the system under
false pretences. For example, smart meters may be spoofed to send fake data to
controllers [12, 15]. Similarly, spoofed devices can send incorrect timestamps to
PMUs, disrupting grid synchronisation [17]. Another method is device hi-jacking.
This is slightly different to spoofing because while the compromised device can be
wielded by a potential attacker, its identity is still intact. The primary version of
this attack is the recruitment of grid devices into a botnet. A bot binary is injected
into devices via a virus or a worm [18]. This binary then automatically executes and
connects to a remote command and control (C&C) network from which it receives
attack instructions. Adversaries may also harvest data from devices via the same
C&C network. Botnets, which provide foundations for other types of attack, are
a known threat to WSNs (Wireless Sensor Network) and IoT networks [11]. A
prominent example is the Mirai botnet, which hijacked IoT routers and cameras
and was used to launch massive-scale DDoS attacks in multiple countries [11].

The biggest threat to smart grid integrity comes from False Data Injection
(FDI) attacks. As the name suggests, this involves the introduction of maliciously
crafted data into sensitive communication streams, with the aim of manipulating
system outputs. Hence, FDI attacks are mainly targeted at data-reliant management
processes [2, 4, 19, 20]. They may be considered analogous to man-in-the-middle
attacks. Some possible scenarios explored in literature include attacks on state
estimation systems [19], the EMS [4], AMIs [21], SCADA systems [22], local
systems with clustered measurement hierarchies [23], and in wind farms [2].
Generally, attackers engaging in FDI will compromise a subset of grid components
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but will not have visibility of the whole grid given its complexity and size [4].
However, due to the hierarchical structure, an FDI at one point in the network is still
capable to causing widespread repercussions. Additionally, Anwar et al. [21] found
that the impact of an FDI changes based on the characteristics of the targeted nodes,
while Chen et al. [4] suggested that sophisticated script-based FDIs can learn the
best injection approach through trial and error. This shows that even with incomplete
information, this type of attack has great potential for damage and disruption.

FDI attacks are typically modelled using the formulation z = Hx + a + n
[2, 22, 24], where z is a set of measurements, x is the state vector (or bus voltage
phase [24]), n is the measurement error or environmental noise [2, 24], and H
is a Jacobian matrix of measurements that describe the current grid topology
[2, 22]. Together these values determine the state of the grid. Then the attack
vector a (describing the fake data and variables targeted) is added [2, 22, 24].
Attacks can be classified as normal or stealthy. For the latter, it is assumed that
adversaries have some visibility of H, which allows them to set up their attacks
intelligently so as to avoid threshold-based detection (i.e. residual test) mechanisms
[2, 16, 19, 20, 22, 25]. Additionally, they may aim to manipulate the state variables
corresponding to the targeted measurement variables to avoid noticeable anomalies
[21]. An alternative approach is given by Chen et al. [4], who modelled FDIs as
partially-observed Markov decision processes (POMDP), where the focus is on
attackers (who have limited target visibility) aiming to learn the optimal setup [4].

The rest of the integrity-based attacks discussed in this section is specific sub-
categories of FDI as identified in the smart grid literature.

Command spoofing is the intersection of identity spoofing and FDI attacks;
fake data—styled as commands—is injected into the network, claiming to come
from legitimate sources. Aurora is a type of command spoofing attack that targets
the circuit breakers used to determine grid topology and the generators that they
serve [26]. Specifically, fake control signals are sent to the breakers, instructing
them constantly open and close at a high speed [5, 17]. Eventually, this causes
the associated generators to desynchronise from the rest of the grid [17]. If a
critical level is reached, this attack can cause physical damage to the generators
[17], knocking them offline. Depending on the degree of physical damage and the
positions of the affected breakers and generators, Aurora attacks can result in a
significant drop in a smart grid’s functional capacity and efficiency.

Another example of command spoofing is trip command injection attacks. These
target protection relays (devices designed to respond to faults in power transmission
lines) with fake relay trip commands, causing circuit breakers at the ends of
transmission lines to open [5]. When this happens, additional strain is placed upon
secondary transmission lines, as the system tries to meet demand [5]. Given the
hierarchical nature of smart grid infrastructure, this can then result in cascading
failures [5] and large-scale power outages. An alternative involves the disabling
of relays so that faults do not trigger trip commands at all [5]. Meanwhile, fault
replay attacks combine fake trip commands with fake transmission line faults [5].
To achieve this, measurements are altered to look like real-life faults either via
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some hijacked devices or through data injections [5]. These false readings cause
controllers to make incorrect management and distribution decisions.

Attacks on integrity may be directed at specific devices in the grid. An example is
against PMUs, as explained by Wang et al. [12]. These devices are used to measure
and synchronise phasor values collected from distributed sensors and meters; these
measurements are then used to perform state estimations. FDIs can be applied
directly to PMU data to manipulate the resulting state estimations [12]. Examples of
how this may be achieved include playback attacks (where captured data is played
in reverse order, giving incorrect readings) [12] and time attacks (where captured
data is sampled at varying rates, distorting the true readings) [12].

Attacks may also target specific functionalities. For example, load forecast
attacks hinder the grid’s ability to determine where to distribute power and the
correct load [27]. This is achieved using data injections designed specifically to
distort these forecasts, applied continuously for the duration of the attack [27]. In
implementation, there are several variations defined by Cui et al. [27]. Pulse attacks
change the forecast values at regular intervals to be higher or lower than the true
reading [27]. Scaling attacks tamper with values by multiplying them by a scaler
[27]. Random attacks insert randomly-generated positive values [27]. Ramping
attacks use a ramping function to either increase values over time (“up-ramping”)
or increase and decrease values repeatedly (“up and down-ramping”) [27]. Finally,
smooth curve attacks change forecasts’ start and end points [27]. Given that each of
these approaches causes a different impact on controller behaviours, adversaries are
able to fine-tune attacks to suit their specific goals.

9.3.3 Attacks on Availability

Availability is the quality of maintaining the accessibility and functionality of a
system to a satisfactory degree at all times. Power is a basic utility, and so power
grids are fundamental parts of urban and rural infrastructure. Furthermore, smart
grids require efficient feeds of real-time data and a high level of responsiveness
from all components (e.g. controllers, synchronisers, smart meters, and sensors) for
accurate decision making. In other words, components must have high availability
for the grid’s internal functionality.

The primary attack against availability is Denial-of-Service (DoS). This is where
an attacker generates lots of traffic to overwhelm the capacity of target devices,
causing them to crash and hence, rendering the services they provide unavailable.
When this flood of traffic comes from multiple distributed sources, it is known as a
distributed DoS (DDoS). Smart grids are highly susceptible to such attacks because
they (a) house a large consumer device population [18], (b) consist of many low-
power devices, and (c) have a hierarchical infrastructure [11]. This indicates a large
potential attack surface of low-capacity devices, and many centralised control points
to target. Devices may be compromised physically, have their identities spoofed, or
engage in DDoS as part of a botnet [18]. As DoS attacks inject lots of malicious
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data into the network, they may also be considered a form of FDI [28]. Typically,
attacks take place between sensors and smart meters [18], or between smart meters
and system controllers [3].

For example, sensors may be manipulated to send streams of malicious authenti-
cation requests to meters [18]. In the process of trying to verify request details, the
capacity of the meter is exhausted, and so the authentication service is knocked
offline [18]. A similar attack between meters and controllers would disrupt the
collection of measurement data, causing controllers to make the wrong decisions
about power management and distribution [3]. Smart grids are also vulnerable
to typical application layer DDoS attacks like SYN flooding [29]. This is where
3-way TCP handshakes are intentionally left half-open (because the client never
responds the server’s SYN/ACK message), consuming server resources and causing
their backlog queues to fill up so that new, legitimate requests are automatically
dropped [29]. Choi et al. [29] demonstrated such an attack on the multicast-
based communications of smart grid IEDs (Intelligent Electronic Device). Other
documented examples of DDoS in the smart grid are those originating from
buffer overflow attacks (where program code is tampered with) [29] and selective
forwarding (where packets relating to a particular service are consistently dropped)
[28].

Smart grids are based on wireless sensor technology, which uses broadcasting
on open channels to enable the easy exchange of data between geographically
distributed devices [30, 31]. This makes grids vulnerable to a special type of DDoS
attack known as jamming, where attackers add random noise signals to wireless
channels to corrupt the traffic exchanged between grid components [3, 31]. As
with standard DDoS, this attack can disrupt traffic between appliances and meters
or between meters and controllers [31]. In both cases, the accurate gathering of
measurement data is denied, and where this causes controllers to make incorrect
calculations about load, large-scale outages and mismanagement may result [31].
Additionally, jamming attacks may be easier to perform than conventional DDoS
because they do not require a base of compromised devices to launch them [31].

To perform the attack, a jammer device or program selects a channel and then
injects it with random noise [3, 30]. This is similar to the injection of fake requests
into the network in DDoS. Generally, there are four jammer types identified in WSN
literature, sorted into two categories. In the first category are “oblivious” jammers,
i.e. those which operate only based on current channel availability [30]. These are
static jammers (which always use the same channel) and random jammers (which
switch channels randomly over time) [30, 31]. The second category consists of
“intelligent” jammers, i.e. those that use historical data to make complex decisions
[30]. These are myopic jammers (which learn users’ channel usage patterns)
and Multi-armed Bandits (MABs) (which use machine learning to predict user
behaviours) [30]. In some cases, myopic and MAB jammers may be considered
as one [31]. As suggested in [30], jamming attacks may be kept hidden by avoiding
the use of licensed channels.

The attacks discussed so far cause disruptions in power distribution services
by affecting particular functionalities provided or required by the grid. However,
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the availability of power can also be attacked directly through resource exhaustion
attacks and energy theft. In resource exhaustion, adversaries demand large quantities
of electricity by sending many requests in quick succession [28]. This maximises the
amount of power drawn from the grid and can eventually lead to the depletion of the
available energy [28]. Such an attack can feasibly be launched at the appliance level
by malicious “consumers” using energy-inefficient or high-consumption devices
[28]. Meanwhile, energy theft involves the consumption of power without providing
proper compensation for this service [15]. There are three types of energy theft:
those launched by malicious consumers, those launched by industry insiders, and
those conducted by organised criminals [15]. Malicious consumers may tamper with
their appliances and meters to avoid making payments as due [15]. Industry insiders
(i.e. utility company employees) may manipulate internal records and readings [15],
either for their own benefit or as part of a larger campaign. Lastly, organised crime
syndicates may use both of the previous methods to syphon energy from paying
customers to sell illegally [15] or for further criminal activity.

Resource exhaustion and energy theft tend to occur alongside attacks on integrity
(like FDI, tampering, and spoofing) and attacks on confidentiality (like user
profiling). For example, the energy theft process requires a disruption of the
communications to and from smart meters. This prevents the grid from learning
consumers’ energy usage levels. Then smart meters can be spoofed, and fake
readings be sent to controllers [15]. To prevent tracing, existing audit logs and
records may also be deleted from the meters [15]. Meanwhile, criminals targeting
other consumers can use profiling techniques to infer their usage patterns from
sensor data, allowing them to plan out their attacks.

9.4 Attack Detection

The area of attack detection has been driven by some core concepts that must be
considered when this kind of solution is developed or deployed. The first one is the
detection method, which is essential because it defines which situations the detection
system sees as an attack. Alongside this, the types of data collected and the system
distribution are also pillars of attack detection. They can impact various functions,
including the system’s processing performance and the attacks that can be detected.
Figure 9.3 outlines these concepts and the related techniques, which are discussed
in the context of smart grids in this section.

9.4.1 Detection Methods

Smart grid defence incorporates classical intrusion detection methods, broadly
categorised as signature-based and anomaly-based. In the former, systems use
templates derived from historic attack instances to recognise new instances of the
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Fig. 9.3 Overview of attack detection core concepts and related techniques for smart grids

same or similar attacks. Typically, each attack on a system or network consists
of a particular sequence of actions. These activities, observed in succession, can,
therefore, be used to identify malicious activity. Signatures may be stored in a
database and updated as new attacks are discovered. Popular attacks with generally
well-understood methodologies (such as DDoS and FDI) may have strong patterns
that make it easy and appropriate to model them [28]. Furthermore, one-to-one
matching makes signatures very effective at detecting particular attacks. However,
previously-unseen attacks will be missed, causing false negatives.

In contrast, anomaly-based detection observes the network or system for activity
that deviates from a pre-defined norm. These norms may be derived from empirical
baselines or heuristics. Given their malicious nature, many attacks fall outside
the standard behavioural profile for systems or services, which results in unusual
fluctuations in activity. Unlike the use of signatures, anomaly analysis is not limited
by knowledge of historic incidents and is, therefore, capable of identifying day-
zero attacks. Smart grids provide a wealth of data that can be used to generate
complex and detailed activity profiles. However, not every anomaly corresponds
to an attack attempt, and so a large number of false positives may be generated.
This is especially true for smart grid sensors which are influenced by environmental
factors. For example, high temperature readings may represent a sabotage attempt
or may simply be caused by hot weather [32].

Novelty detection methods may be particularly useful for anomaly-based sys-
tems, once they can make the detection system reliable against previously-unseen
attacks. The aim of these methods is to identify events that differ from the previously
available data. New attack patterns, which were not present in the model induction,
are placed out of the cluster of known patterns, and categorised as a novelty [33].
Novelty detection with multiple known classes is also widely applied in data stream
classification, meaning that new classes may appear and previously known classes
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may change [34]. The most traditional methods are based on clustering algorithms,
such as k-means [35].

A more recent addition is specification-based detection. This is similar to
anomaly-based approaches, but the baseline profile used is created to reflect the
expected behaviours of a particular application or protocol [11, 26]. Each is given
its own set of expected behaviours and the detection system flags up instances where
related activity deviates from this set. This overcomes the limitation of signature-
based detection because unknown attacks may be discovered. In addition to this,
the granular definition of expected behaviour can improve upon the false positive
rates of anomaly-based detection. This approach applies well to metering systems
in smart grids where state monitoring is an integral process and there are known
thresholds for safe operation [5, 11, 26]. Conversely, the need to generate multiple
specifications may make specification-based detection unscalable in larger grid
networks [5]. An alternative approach is to shift focus from expected behaviours
to the characteristics of a medium to determine the best attack vector [36]. This can
be difficult to achieve in complex cases but enables pre-emptive actions.

9.4.2 Data Collection

Attack detection is essentially a data-driven process. No matter which detection
method is followed (anomaly, signature or specification-based), the attack detection
system always gathers data from the protected system, analyses it, and determines
whether there is an ongoing attack. Smart grids offer several data sources that attack
detection systems can use.

Multiple features can be extracted from network traffic data [14, 29]. The
contents of protocol headers and payloads, rate of packets of a particular type,
number of malformed packets, time of packet round trips, average packet size, and
average volume of bytes per second are all examples of information that can reveal
some change as a consequence of an attack. Network packets can be gathered at
different points in the smart grid’s networks, but it is important to consider that this
choice will define which types of attacks can be detected. For instance, if the attack
detection system analyses the packets carrying measurements from smart meters
to the control centre, it will be certainly able to detect attacks involving the smart
meters or the AMI, like a DDoS. However, if only packet statistics are checked,
but not the payload content, an FDI will be hardly detected. As many smart grid
sites will be located in remote locations, wireless technologies are good candidates
to connect these sites to the rest of the network. With this in view, measuring
wireless channels’ conditions may be useful to detect some attacks like jamming.
A possible way of measuring a channel condition is to transmit control packets in
selected channels and wait for ACK packets to analyse the channel performance
[30]. Signal Strength Intensity (SSI) of smart meters and data concentrators can
also be checked to detect jamming attacks [28]. If the sensed SSI is much higher
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than an expected value, it can indicate a rogue or compromised device trying to jam
legitimate transmissions.

Data about the status and events related to different devices in the smart grids
can also be a good source of attack indicators. A power grid has several specialised
devices (e.g. breakers) deployed across the system to control its operation and make
sure that it is running correctly. Status flags collected periodically from these devices
can reveal unexpected behaviours linked to command spoofing attacks, for example
[26]. Several logs can also be processed to identify events that can help to uncover an
attack episode [5]. Relay logs provide information about events involving breakers,
while the control panel log can show whether there was scheduled maintenance for
a particular grid component. Logs from Snort, a signature-based intrusion detection
system for TCP/IP networks, can also be used to detect the presence of packets with
some particular characteristics in the system. For example, it is possible to create a
rule in Snort to trigger an alarm every time a packet carrying a command to change a
breaker status is detected. Lastly, utilisation of hardware resources such as memory
and CPU can also be monitored at the protected devices, as DoS/DDoS attacks may
cause sudden changes in these measurements [29].

The data sources presented so far are particularly related to the operation of
smart grids’ infrastructure, such as breakers, relays, and networking devices. They
encompass network packets, status flags, event logs, and resource utilisation data
related to the daily routine of these devices. Smart grids also have another rich
source of insights for attack detection: domain-specific data. Data about energy
consumption and electrical quantities are already collected in real-time at multiple
points of the grid for management and control purposes, and attacks (such as FDI
and energy theft) can cause subtle but detectable changes in their behaviour.

FDI attacks typically affect the system state estimation. Therefore, measurements
such as active and reactive power, current flow, voltage magnitude, and phase angles
that feed the state estimation are used to detect these attacks [2–5, 12, 16, 19, 20, 22–
26]. SCADA systems are usually employed to collect these measurements [4, 19,
22]. RTUs at different points in the power grid transmit these measurements every
2–5 s [19] to targets like the control centre. PMUs are also applied to collect this
kind of data and send it to the control centre [5, 12, 23, 26]. They are much more
precise than SCADA systems, reaching a sampling rate of 2880 samples per second
[12]. However, this precision comes with a high computational cost, which poses a
great challenge to management and control activities, including attack detection [5].

Alongside PMUs and SCADA systems, AMIs are also dedicated to collecting
domain-specific data from smart grids for management and control. The main
elements of AMIs are the smart meters, which are deployed at the customer end
to send data related to energy consumption, power quality, and pricing to the utility
provider [11]. Among them, energy consumption data has been used to detect energy
theft [15], DoS [11], and FDI attacks [21]. The latter case is of particular interest
here because it shows that AMI data improves state estimation, which usually
takes energy consumption forecasts as input, instead of real consumption data.
However, if the grid has an AMI, real-time energy consumption data is available
and, consequently, consumption forecasts can be replaced by real data during state
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estimation. It is worth noting that due to the huge number of customers and frequent
collections, control centres face significant difficulties in storing and processing
smart meter data [15].

There are yet other data sources that, despite being used infrequently, can also
be helpful in attack detection. Some attacks can be directed to load forecasting
data, which is important in enabling operators to foresee the system’s conditions
and get ready for upcoming events. Hence, data that is typically used by feed load
forecasting processes, such as historical load data, weather data (e.g. temperature
and humidity), and time data (e.g. time of the day and day of the week), becomes
useful for attack detection [27].

9.4.3 Detection System Distribution

Attack detection is a process composed of data collection, system profiling, detec-
tion, and response. As smart grids are huge and hierarchically-arranged systems,
data collection is usually distributed. In the case of detection based on network
traffic data, packets must be sniffed at multiple points of the several networks that
compose a smart grid communication infrastructure. Unlike traditional enterprise
networks, where there is often a single point of connection to an external network
(e.g. the Internet) which is monitored for attack detection, smart grid networks
present a wider attack surface with several points to monitor. Likewise, when system
logs are used as a data source, there are different critical systems to be monitored
and, hence, multiple data collection points. Approaches based on SCADA systems
or PMUs are naturally distributed in terms of data collection, as there are always
several RTUs and PMUs deployed over the power grid to perform their primary
function: controlling and monitoring the power grid.

The goal of system profiling changes according to the detection method. For
anomaly and specification-based approaches, system profiling is responsible for
building the notion of which activities are normal, while for signature-based ones
it specifies what defines an abnormal activity. Then, during the detection task, data
collected in real-time is analysed according to the knowledge built during the system
profiling, and the response takes place when an attack is detected. The response
can vary, from alerts that are presented in a management console to an action to
mitigate the attack, such as blocking the attacker’s access to the protected asset. For
simplicity’s sake, system profiling, detection, and response can be summarised with
a single term: decision making.

In smart grids, decision making in attack detection can be centralised, partially
(hierarchically) distributed, or fully distributed. For the rest of this chapter, when
used to classify a detection approach architecture, the terms centralised, hierar-
chically distributed and fully distributed will refer to how decision making is
performed.

In centralised architectures, all of the data collected is transmitted to the control
centre, where decision making is performed. Attack detection approaches based
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on data used for state estimation and event logs are usually centralised because
this data is already transmitted to the central control as part of other control and
management tasks [3, 12, 16, 19, 22, 26]. In these scenarios, data processing may
rely on tools such as Hadoop, which runs in distributed computing environments
[12]. Nevertheless, decision making is still centralised, meaning that there are no
multiple instances concurrently determining whether an attack is occurring. Indeed,
the main challenge for centralised architectures is to cope with the huge volume of
data to be stored and processed, as smart grids have multiple data collection points
operating at high sampling frequencies.

Hierarchically distributed architectures are directly linked to the hierarchical
topology of smart grids. As mentioned in Sect. 9.2, smart grid networks are organ-
ised in three levels: HAN, FAN (or NAN), and WAN. Hierarchically distributed
architectures seek to spread the decision-making process across network levels and,
at the same time, keep some degree of central coordination. In other words, they
transfer part of the burden of storing and analysing huge amounts of data from a
central point to multiple points, while ensuring that a central element supervises
attack detection. Hierarchically distributed solutions can rely on network traffic data
[14], as well as on domain-specific data [11, 28]. Detection system agents are placed
to monitor the communication traffic or the data collected from smart meters in
HANs, FANs, and the WAN. Attacks detected in a particular network level can be
checked in the next level up. For example, an attack detected in a smart meter after
analysing data collected in a HAN can trigger an alert, that is sent to the detection
system of the FAN where this HAN is connected. Then, that FAN’s detection system
analyses these alerts before confirming them [28]. Likewise, when a detection agent
cannot decide if an attack is occurring based on the data it has, the decision can be
passed up to the next level [14].

Alerts are not the only information that detection agents in lower levels send to
their counterparts in upper levels. In some cases, the lower level detection agent
can forward high-level statistics (e.g. a measure of anomaly evidence [11]) to the
upper level agent. It is important to note that devices in lower network levels
can face difficulties in hosting computationally costly processes because they are
usually resource-constrained. A smart meter, for instance, may not be able to host a
detection agent that runs a machine learning classifier. On the other hand, lower
level monitoring can offer more detailed data for attack detection, particularly
in situations where devices at the lower level are the targets. Therefore, those
responsible for designing hierarchically distributed architectures have to consider
this trade-off between computational capacity and data granularity.

Fully distributed architectures are not frequently proposed because the absence
of any central control is seen as incompatible with the level of reliability demanded
from smart grids. However, a fully distributed solution may be applicable in some
specific situations. For example, to defend jamming attacks, distributed agents can
be responsible for sensing communication channels and pointing out which ones
are free from jamming attacks and, consequently, more suitable for transmission
[30, 31].
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9.5 Machine Learning

Machine Learning (ML) is a field that emerged from artificial intelligence and
involves the use of algorithms belonging to different categories, such as supervised,
semi-supervised, and unsupervised learning. In this chapter, we use the term ML
to refer to algorithms where computers learn how to process their inputs, without
this being explicitly implemented. In other words, with ML, computers are able to
perform a task by making use of inference or based on observed patterns, and not
by relying only on instructions that specify clearly how it should be done. Due to
the vast number of ML algorithms, we focus on the widely used and most accurate
ones in the smart grid field.

An ML model is a mathematical model that receives the description of a given
problem as an input and delivers a generated solution as an output. This model is
constantly updated by a data-driven induction towards making reliable predictions
or decisions. Most ML models are induced using supervised algorithms, which
demand a dependent variable. In classification problems, the dependent variable,
commonly referred to as a label, is linked to the problem class of a given sample.
For instance, to induce a supervised classification model to be embedded into a
smart grid attack detection system, various examples of the attacks to be detected
are needed, alongside instances of non-malicious behaviour. These examples are
presented to the algorithm along with their respective labels, which inform the
example’s class. Examples and labels are then used to build a model capable of
classifying new instances.

In an attack detection scenario, the classification problem is usually modelled
as a binary classification task, as it supports two opposite classes: normal or
anomalous behaviour. However, in some cases, there are more than two classes
to be predicted, defining a multi-class problem. Multi-class detection systems are
generally focused on identifying specific cyberattacks (energy theft, jamming, DoS,
and FDI), supporting efficient countermeasures to minimise their damage and
to combat the attack source. The most widely used algorithms for cyberattack
detection in smart grids, for both binary and multi-class problems, are Support
Vector Machine (SVM) [37], Artificial Neural Networks (ANN) [38], k Nearest
Neighbours (kNN) [39], Naive Bayes (NB) [40], and Random Forest (RF) [41].

SVM is an algorithm developed to find a hyperplane in high-dimensional
space from training samples, while attempting to maximise the minimum distance
between that hyperplane and any training sample according to its class. The model
(hyperplane) obtained by SVM is used for predicting new unlabelled samples.
The default hyperparameters of SVM are the regularisation parameter (C) and the
kernel. Some kernels, such as radial basis function (RBF) and polynomial, require
additional hyperparameters.

The usage of ANN has been boosted by the advent of deep learning approaches.
Its inducing architecture is based on connected artificial neurons used to simulate the
learning process of a biological brain. From the shallow (Perceptron and Multilayer
Perceptron) to the deep learning structure (Long Short-term Memory and Convolu-
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tional Neural Networks), ANN has several architectures and hyperparameters to be
defined.

Unlike SVM and ANN, kNN is a simple machine learning method, which
predicts new samples based only on the distance between a given sample and the
training pattern. Using the k hyperparameter as the number of relevant neighbours,
kNN classifies a new sample based on its closest training examples in the feature
space. Another simple ML algorithm is NB, grounded on the assumption of
independence among features for modelling a classifier. Although the conditional
independence premise is rarely true in most real-life applications, NB generates
competitive models in practice. The reason for this is that an NB classifier will
be successful as long as the actual and estimated distributions agree on the most
probable class, regardless of feature independence.

RF is an algorithm based on classification trees. More precisely, it is an ensemble
of decision trees created through bagging strategy, which combines multiple random
predictors to generate its final result. RF presents some important advantages, such
as the ranking of features and the reduced possibility of overfitting. Furthermore, as
hyperparameters, it requires only the number of decision trees and the number of
variables available for splitting at each tree node.

In addition to classification, another important application of supervised ML
algorithms is grounded on regression problems. Instead of using categorical outputs
(i.e. dependent variables), regression problems require the prediction of continuous
values, e.g. power flow in smart grids. In this scenario, the attack detection relies
on a threshold-based strategy and statistical control techniques, such as Cumulative
Sum (CUSUM) [11, 16, 17]. CUSUM follows the premise that an attack modifies
the typical behaviour of the evaluated stream. Detection based on CUSUM is
usually performed by computing some stream signatures such as mean value, root
mean square value, peak values, amplitude probability density function, rate of
signal change variations, and zero crossings per unit time. When one or more
signatures are changed, the cumulative sum is computed for detecting an increase in
the mean value of a sequence of independent Gaussian random variables. If the
CUSUM’s value exceeds a threshold, an attack is characterised. The success of
attack detection depends on proper hyperparameters setup, which are related to the
tolerance interval, the probability of false alarms, and the detection delay from the
observed stream.

In several cases, the dependent variable is not completely available due to the
cost or complexity of its extraction. Attack detection in smart grids is an example,
as it typically suffers from scarcity of labelled data. In smart grid scenarios, there are
several security behaviours that should be simulated, studied, and stored to produce
labelled data for supervised learning. Thus, when it is challenging to obtain labelled
data, we can employ semi-supervised approaches [42].

Unsupervised clustering is a third category of machine learning approaches
applied to smart grid attack detection. More precisely, it is tailored for scenarios with
a total absence of labels [43]. The most used algorithm of this category is k-means,
which, coupled with a heuristic algorithm (e.g. Particle Swarm Optimisation or
PSO), is able to assume the likely number of clusters (k value) required to properly



244 B. B. Zarpelão et al.

distinguish attacks from normal situations. The k-means algorithm follows the
premise that all evaluated instances can be associated with one of the k clusters. As
the instances are grouped according to their behaviour, attack and normal instances
will be clustered into different partitions. More recently, Bayesian clustering has
also been used to address smart grid problems. For instance, Dasgupta et al. [44]
made use of techniques from elastic shape analysis along with a Bayesian approach
to cluster and evaluate electricity consumption curves according to their shapes.

Supervised, semi-supervised, and unsupervised categories cover most of the
algorithms applied to cyberattack detection on smart grids. However, the current call
for real-time (online) detection and high predictive performance paves the way for
more recent paradigms of machine learning. On the one hand, dealing with real-time
detection, we have the Hoeffding Tree (HT), an incremental decision tree for high-
speed data streams classification [45]. On the other hand, focused on leveraging high
predictive performance, we have Deep Learning (DL) methods [46].

HT is a supervised ML algorithm designed to induce models online in an
incremental way (i.e. instance-by-instance) based on anytime learning as required
for data stream processing. Therefore, the usage of HT for attack detection consists
of the induction and classification of data flows from smart grids without apriori
knowledge, i.e. there is no offline phase to train a model. Unlike offline learning,
which assumes that all training data needed to create a model is already available,
online learning assumes that new data can arrive at any time, which can make a
model outdated [47]. Like in traditional ML processing, data stream mining can
be performed by supervised and unsupervised algorithms. Considering high-speed
stream scenarios, which may be the case for smart grids, unsupervised approaches
have been reported as more feasible. In [48], an online unsupervised clustering
algorithm was used for load profiling. The proposed approach takes advantage of the
stream structure of the data, keeping the identified profiles updated in accordance
with newly collected data. It is worth mentioning that the kernel of the proposed
solution is based on the k-means algorithm.

In recent years, DL methods have drawn academic and industrial attention.
These methods are grounded on discovering the intricate structure of inputs to learn
representations of data with various levels of abstraction. Among all DL methods,
some deep variants of multi-layer perceptron (MLP) were used to detect FDI. In
[19], deep MLP was applied to identify attacks on smart grids using active power-
flows, active power-injections, reactive power, and voltage measurements as features
to induce the DL model.

All the algorithms, methods, and categories mentioned so far in this section are
applied as unmixed or hybrid approaches when addressing attack detection in smart
grids. Most of the works surveyed are designed as a pipeline composed of steps such
as pre-processing, feature selection, and ML predictive algorithms. A hierarchical
overview of ML algorithms and their combination is presented in Fig. 9.4.
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Fig. 9.4 Overview of machine learning algorithms (Hoeffding Tree, k Nearest Neighbours,
Random Forest, Artificial Neural Networks, Deep Learning and Support Vector Machine) and their
correlations with Statistics (Cumulative Sum) and Optimisation (Particle Swarm Optimisation)
techniques

9.6 Existing Solutions

Solutions proposed in the literature for cyberattack detection in smart grids are
diverse, which reveals the many decisions a researcher has to make when developing
a new approach. Which attacks will be addressed, which data will be collected,
how to distribute the system, and how to combine machine learning techniques are
among the questions that must be answered. This section presents a literature review
of proposals to tackle cyberattacks in smart grids using machine learning, providing
a discussion of how the different authors addressed these issues.

FDI is the most addressed threat in works on attack detection in smart grids.
Its high potential of disrupting smart grid operations is probably the leading cause
for this concern. To identify both standard and stealthy FDIs, Huang et al. [16]
contributed a centralised anomaly detection scheme applied to state estimation
data. They define Gaussian-based vectors for observation and for an unknown data
injection (commencing at a random time) with the aim of identifying the change in
the observation vector’s distribution from the idle state to the attack state. Based on
the time of detection, the average run length (ARL) is calculated. Then, the detection
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time and a threshold h are used in multi-thread processing (with a linear solver and
Rao tests) to solve the problem recursively. The alarm is raised when a cumulative
score reaches h. Based on tests on a 4-bus environment, the authors reported that
the best detection is achieved at higher ARLs, and that the value of h influences the
timeliness of detections.

Qiu et al. [49] addressed FDI attacks as part of their investigation into the appli-
cation of cognitive radio networks for smart grids. They proposed the centralised use
of Independent Component Analysis (ICA) to overcome FDI attacks, characterising
them as instances of high interference. A data transmission matrix Z is defined,
which contains a matrix X of source signals originating from smart meters. The
aim is to fill out X with signal estimations. To do so, the attacker’s signals must
first be filtered out. This is achieved using the statistical properties of signals, with
Principal Component Analysis (PCA) used to deal with differing power levels in
the interference. Through simulations, the authors were able to demonstrate that
ICA can effectively separate different signals.

Esmalifalak et al. [20] also used PCA to tackle FDI attacks but in a different
way. The authors proposed two methods to detect stealth FDI attacks. The data
used to detect the attacks consisted of measurements for state estimation, which
is collected from multiple points in the power grid. These data can present some
redundancies, and the number of dimensions in the detection problem is linked to
the power system size. For instance, a 118 bus system used in this work for tests
generated 304 dimensions. In the two methods, to avoid the curse of dimensionality,
the authors employed PCA. Their underlying assumption is that normal data is
generated according to physical laws, while tampered data is not, so these data
should be separated in the projected space. The first detection method was based
on a statistical anomaly detection technique, which made use of a threshold learnt
from historical data. It is centralised and relies on data sent to the control centre.
The second method was built upon distributed SVM, which, unlike the first method,
requires labelled data from both classes (normal and attack) for training. To test their
system, they used an IEEE 118-bus test system.

Ozay et al. made extensive use of machine learning classifiers to detect FDIs
in two different works [23, 24]. In the first one [24], they proposed a centralised
signature-based method for state estimation data. Supervised learning is used
to classify samples as either “secure” or “attacked”. Three machine learning
algorithms were used: kNN, SVM, and sparse logic regression (SPR). kNN sorts
feature vectors into neighbourhoods based on Euclidean distance. SVM identifies
hyperplanes for the binary splitting of samples. SPR uses Alternating Direction
Method of Multipliers (ADMM) with distributions for labels-to-samples matching.
Testing on IEEE 9-, 30-, 57-, and 118-bus systems revealed that both kNN and SVM
are negatively impacted by data sparsity, unlike SPR [24]. The authors suggested
that kNN is suited for smaller systems, and SVM and sparse logistic regression for
larger ones.

In [23], Ozai et al. presented a thorough study exploring multiple families of
machine learning algorithms, including supervised, semi-supervised, and online
machine learning. In their evaluations, the authors employed feature-level fusion
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and ensemble methods. IEEE 9-, 57-, and 118-bus test systems were used again
in the experiments. The authors pointed out that semi-supervised algorithms were
more robust against sparse data than supervised ones. Also, feature-level fusion and
ensemble methods were shown to be robust against changes in system size. Lastly,
the performance of online classifiers was comparable to batch ones.

Yan et al. [25] also presented a comparative study exploring multiple machine
learning classifiers. In their work, three supervised algorithms, namely SVM, kNN,
and eNN, were used to detect FDI attacks on measurements for state estimation.
The authors considered balanced and imbalanced cases, and analysed the impact of
the magnitude of false data in the detection performance. Tests were based on the
IEEE 30-bus test system, with the SVM classifier obtaining the best overall results.

In [12], the authors described the additional challenge of detecting FDIs in
the vast amounts of data collected in smart grids. Based on experiments using
a 6-bus power network in a wide area measurement system environment, these
authors proposed a Margin Setting Algorithm (MSA). The proposed algorithm was
compared to the SVM and ANN algorithms in a binary classification scenario for
detecting playback and time attacks. Results demonstrated that the MSA achieved
minimal errors and better accuracy than traditional machine learning algorithms
with conventional hyperparameters.

Unlike the works presented so far, Hink et al. [26] approached FDI detection
with three different classification schemes. They aimed to study the performance of
multiple machine learning algorithms in distinguishing power system disturbances
as malicious or natural. In the first classification scheme, each type of event
was modelled as a class, meaning that it was a multi-class problem with 37
distinct classes. The second scheme took into account three classes: malicious
event, non-malicious event, and no event; the latter corresponds to data related
to normal operations. The last classification scheme had two classes: attack or
normal. Seven machine learning algorithms were tested, namely OneR, NNge,
RF, NB, SVM, JRipper, and AdaBoost. Although the results varied significantly
for different classification schemes, the authors pointed out the combination of
Adaboost, JRipper, and the 3-class model as the best solution among the studied
ones.

Neural networks were also used as a feasible solution for FDI detection.
Hamedani et al. [2] made use of Reservoir Computing (RC), an energy-efficient
computing paradigm grounded on neural networks. The proposal was implemented
by combining DFN (Delayed Feedback Network) and MLP to support spatio-
temporal pattern recognition. Considering wind turbines as the major source of
electrical power generation, collected measurements (i.e. temporal data) were
encoded as feature vectors to be the input of the binary classification task, which
distinguished instances between normal or under attack. Simulation results showed
DFN+MLP could detect attacks under different conditions, such as different
magnitudes and number of compromised meters, overcoming the performance of
single MLP and SVM algorithms.

Another solution based on neural networks for detecting FDI was proposed by He
et al. [22]. In this work, CDBN (Conditional Deep Belief Network) was explored to
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extract high-dimensional temporal features for recognising the differences between
the patterns in data compromised by FDI attacks and in normal data. The system
architecture, composed of five hidden layers, obtained the best results when
comparing three different numbers of layers. In comparison with SVM (Gaussian
kernel) and ANN (MLP with a single hidden layer), CDBN achieved superior
accuracy, followed by MLP and SVM. The authors claimed that they performed
online attack detection, but it is important to mention that the training and updating
were performed offline.

Following a different path, the proposal by Adhikari et al. [5] is based on pure
online modelling. The authors proposed the use of the Hoeffding Tree coupled with
a mechanism to handle concept drift when classifying binary and multi-class power
system events and cyberattacks. A total of 45 classes of cyber-power issues were
addressed using a combination of attributes from power and network transactions
(such as voltage, current, and frequency), and logs from Snort. The authors put
effort into tuning all the algorithms and deployed real-time analysis with a high
level of accuracy. The main advantages of the proposed method are related to
consuming less memory than traditional batch processing, as well as providing
real-time analysis to classify a broad number of power system contingencies and
cyberattacks. However, HT is a supervised machine learning algorithm, which
depends on a labelling step. This becomes a pitfall for real-time applications.

Semi-supervised learning methods are an attractive alternative to ease the need
for the labelling step. In [50], cyber-physical attacks on power systems were
addressed using Reinforcement Learning (RL), more precisely a Q-learning semi-
supervised algorithm. A contingency analysis system was proposed to handle
sequential attacks in power transmission grids, such as blackout damage and hidden
line failures. Based on simulated study cases with IEEE 5-bus, RTS-79, and 300-bus,
it was possible to discover a more vulnerable target sequence in sequential attacks.
Furthermore, when varying the blackout size and topology of attacks, the proposed
solution was capable of reducing the number of successful attacks by excluding
failed attack sequences.

Chen et al. [4] improved on the usage of the Q-learning algorithm in their
proposal to enable the online learning of non-malicious and attack behaviour.
Focused on detecting FDI attacks that affect the normal operation of a power system
regulated by automatic voltage controls (AVCs), the authors proposed to model
the attacks as a POMDP. An FDI mitigation method was developed, consisting of
offline and online modules capable of detecting multiple attacks. The experiments
performed on an IEEE 118-bus system assessed the scalability of the proposed
solution and its ability to provide insights about attacks and their impact in the whole
power system. The main contribution was the study of the RL usage, providing
theoretical assumptions about scalability and feasibility of FDI detection, as well
as further results from a mitigation system. However, the paper lacks real-life cases
(very sparse attacks) and considers a naive virus spreading strategy.

Deep learning was the method used by Ashrafuzzaman et al. [19] to deal with
FDI attacks. The experiment was carried out using a simulated IEEE 14-bus system.
Four different architectures of deep learning models based on MLP were compared
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to Gradient Boosting Machines (GBM), Generalised Linear Models (GLM), and
Random Forest (RF). The authors explored 122 measurement features to find the 20
most important with RF importance. As an outcome, deep MLP structures obtained
the best accuracy results. Also, the use of a smaller set of selected features resulted
in training time speed-up. Lastly, the deep learning training cost was mentioned as
a challenge that needs to be handled for speeding up the process. To obtain more
confidence, the authors planned to use real-life datasets as future work.

Instead of detecting FDI attacks, Anwar et al. [21] just clustered AMI nodes
according to their vulnerability to such attacks. Their idea is that some nodes, due
to their inter-dependency to other ones, can cause more damage to the entire system
when attacked. Therefore, these nodes should be identified to be better protected. To
cluster the AMI nodes, the authors applied the k-means algorithm combined with
CF-PSO over the nodes’ voltage stability index. Three clusters were defined: one
for the least vulnerable nodes, other for the nodes with moderate vulnerability, and
the last one for the most vulnerable. Experiments were performed in a 33-bus and a
69-bus test systems.

Alongside FDI, DoS attacks are among the top concerns regarding smart grids
cybersecurity. Fadlullah et al. [18] proposed a centralised Bayesian approach for
early DoS detection. The DoS attack is modelled as an attacker with access to
one or more smart meters (via a worm), which they use to generate many fake
authentication requests to saturate the network and strain target devices. The system
uses Gaussian process regression to create an attack forecast based on the current
state of communications. A composite covariance function is used to analyse trends,
and samples are taken to create a set of real observations. The method was tested in
a simulated BAN (Building Area Network), with 50% of smart meters vulnerable
to worm infection. The authors found the forecasting system to be effective with
both long and short training times, noting that the BAN gateway can be impacted at
different times depending on attack particularities.

Comparative studies on machine learning algorithms were also carried out for
DoS detection. To achieve this, Choi et al. [29] simulated a SYN flood attack
and a buffer overflow attack on the bay and the station levels of the grid. PCs
were implemented to emulate IEDs, with the GOOSE protocol’s publisher-to-
subscriber multicast feature used to spread attack commands via a router. The data
generated was then collected, and a set of traffic-based metric attributes extracted
(consisting of both normal and attack state information). The authors used Weka’s
machine learning library to process the data using various algorithms including
Bayes classifiers, neural networks, SVM, lazy classifiers, Voting Feature Intervals
(VFI), rule-based classifiers, RF, and decisions trees. They reported that for both
attack types, the use of key attributes improved detection ratings, and that decision
trees produced the best results overall.

Yilmaz and Uludag [11] explored the online classification paradigm to develop
the MIAMI-DIL (Minimally Invasive Attack Mitigation via Detection Isolation
and Localization) approach. It focuses on detecting DoS attacks against nodes on
the distribution and customer domains such as data concentrators, smart meters,
and smart appliances. Their approach is based on an online and non-parametric
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detector named ODIT, which combines features from GEM (Geometric Entropy
Minimization) and CUSUM. ODIT is applied at different levels of the network,
so an anomaly evidence score is computed for smart appliances (HAN level), smart
meters, and data concentrators (FAN level). Anomaly evidence scores from different
levels are gathered to decide whether any node in the system is under attack. If so, a
mitigation procedure is carried out, which isolates the node involved in the detected
attack.

As smart grid networks rely on wireless networks due to their capacity of
covering long distances and reaching remote spots, jamming attacks are also a
significant threat. Su et al. [31] and Niu et al. [30] proposed a distributed jamming-
avoidance strategy where the efficient use of channels for secondary users (SU) is
defined as a POMDP. Each SU uses the MAB algorithm to generate a set of possible
strategies (i.e. channels it can sense), weighted by availability. It then selects a
random strategy to try, calculating the distribution for the channel set. Estimated and
actual success rates are then compared to update weightings. Simulations revealed
that the more sophisticated the jammer, the more difficult the problem. However, the
authors reported that over time, SUs could achieve a highly unified view of channel
availability and were less likely to be affected by jammed channels. It is important
to note that these works do not propose a jamming attack detection scheme, but a
solution to avoid channels under this kind of attack.

As load forecasting is helpful to improve the smart grid operation and planning,
attacks against this activity can lead operators to make wrong decisions. Cui et al.
[27] employed some classical machine learning algorithms in a three-stage anomaly
detection approach to address this issue. In the first stage, the data is reconstructed to
deliver a suitable forecast based on feature selection. Afterwards, the attack template
is detected via k-means clustering. Finally, in the third step, the identification of the
occurrence of a cyberattack is performed using Naive Bayes algorithm and dynamic
programming. Five different attack templates were studied: pulse attack, scaling
attack, ramping attack, random attack, and smooth curve attack, with the latter ones
being the more difficult to detect. The authors discussed the importance of feature
selection in enhancing the accuracy of attack prediction. They also discussed the
impact of adversaries in the anomaly detection model and detection performance,
highlighting this topic as an important challenge for future works in cybersecurity.

Some works proposed schemes to address multiple types of attacks. Kurt et al.
[3] explored RL and POMDP to detect FDI, DoS, and jamming attacks. They also
claimed that the proposed solution would allow new unknown attack types to be
detected. The authors implemented a framework to track slight deviations of mea-
surements from normal system operation. To evaluate the results, the proposal was
compared to a Euclidean detector and a Cosine-similarity detector. The best results
were achieved by the RL proposed detector, followed by the Euclidean detector and
the Cosine-similarity detector. The proposed solution achieved satisfactory results
but, throughout the experiments, the authors had to handle several hyperparameters
to tune the algorithms appropriately. This might present a challenge to this method’s
wide-scale adoption. Furthermore, when discussing the results, some concerns were
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raised about the memory cost, and the possibility of improving performance with a
DL algorithm was suggested.

Sedjelmaci and Senouci [28] also targeted multiple types of attack. They
proposed a hierarchically distributed system to detect FDI, DoS, and energy theft by
analysing data collected from smart meters. The system is composed of three agents,
with one for each hierarchy level. The LLIDS (Low Level IDS) is deployed at smart
meters, the MLIDS (Medium Level IDS) is embedded in data concentrators, and
the control centre hosts the HLIDS (High-Level IDS). Firstly, a rule-based system
analyses collected data. This system has a specific threshold for each kind of attack,
FDI, DoS, or energy theft. When the rule-based system detects a threshold violation,
it passes the analysis on to the IDS agent of the next upper level. Then, an SVM
classifier is used to confirm whether the anomaly is an attack.

Works such as [32] and [14] do not specify the types of attacks they are aiming
at. They build their approaches to detect anomalies or unusual behaviours that can
signal an attack, but do not focus on any specific threat. Kher et al. [32] developed
a hierarchical sensor model for anomaly detection using sensor data, covering both
the lower node and the upper cluster head levels. The proposed protocol initially
has all nodes in sleep mode (for synchronisation). Clusters are formed through the
exchange of “Hello” messages (at the lower level), a cluster head is selected, and
multiple cluster heads establish linear links with each other (at the upper level).
Data from each cluster is integrated before being sent up the chain. Data received
at towers is integrated again before being sent to the base station. This integrated
data can then be analysed for anomalies. The authors used Weka-implemented
supervised learning for this purpose, and reported that the decision tree classifier
(J48) achieved the best performance compared to other algorithms like ZeroR,
decision table, RF, and ADTree [32].

Zhang et al. [14] proposed a distributed IDS system that uses intelligent analysis
modules (AMs) sitting across HAN, NAN, and WAN layers. AMs at each level
work with other modules to form a self-contained IDS on that grid layer. At the
NAN and WAN levels, the lower level IDS is used together with the local IDS,
such that the overall system is formed hierarchically. For difficult decisions, data
may be sent to higher layers for further analysis. Either unsupervised SVM (with
a Gaussian radial basis function) or Artificial Immune System (AIS) algorithms
(with a focus on clustering) are used for detection. Clonal selection algorithms
CLONALG and AIRS2Parallel were tested, and the authors found that SVM had
better overall performance, especially for remote-to-user (R2L) and user-to-root
(U2R) attacks. They suggested that the detection accuracy of the AIS algorithms
could be improved with a larger sample of attack data.

Table 9.1 presents a summary of all the reviewed works and their main
characteristics in chronological order. In some cases, the reviewed work does not
define the data source used or how the solution would be distributed. In these cases,
the table presents “–” for the undefined feature.
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9.7 Open Issues

Considerable progress has been made in smart grids scenarios when applying
machine learning for cyberattack detection. However, several key issues need to be
handled to allow the development of feasible solutions capable of achieving suitable
performance in real-life scenarios.

The main challenges are related to the real-time nature of the problem, the need
for labels in supervised learning, demand for more comprehensive and human-
friendly models, and solution scalability. Additionally, some inherent challenges of
machine learning (such as hyperparameter tuning and the capacity of algorithms for
dealing with imbalanced data) open new paths for further research in applied smart
grid security.

Real-time classification algorithms are often demanded in the literature. This
type of algorithm could be implemented by an offline induction and online classifi-
cation, as in most of the current proposals. However, these solutions require some
additional effort to leverage reliable models since they become obsolete when the
smart grid behaviour changes, culminating in the concept drift problem. Also, the
cost of feature extraction needs to be suitable to support a real-time classification.
The algorithms that meet the real-time classification requirements are grounded on
stream mining. Stream mining algorithms are able to induce a model online, which
eliminates the offline step and keeps the model updated. Some algorithms such as
Very Fast Decision Tree [45] and Strict Very Fast Decision Tree [47] are important
examples of stream algorithms.

Even though online classification algorithms pave the way for more useful
solutions, their requirement for labelled instances is a hindrance. In other words,
it is impossible to label each instance on the smart grid data flow. Thus, it is
necessary to rely on semi-supervised approaches or unsupervised algorithms. The
DenStream algorithm [51] is an unsupervised algorithm for stream clustering. Based
on three types of clusters, DenStream can point out the core, potential, and outlier
behaviours, giving insights into the smart grid’s behaviour.

Changes are expected in smart grid behaviour during an attack, and consequently,
the recognition of these pattern deviations allows a machine learning model to detect
the attack. For this reason, the predictive performance of detection systems has
been the main focus of current systems, avoiding false positives and improving the
computational complexity of the designed solutions. However, some concerns on
how the attacks happen, the importance of features used to describe the event, and a
user-friendly model for supporting attack comprehension are also relevant demands
from industry. In addition to being highly accurate, a machine learning model needs
to produce meaningful results and help operators to make better decisions through
the usage of more descriptive modelling.

Meaningful results from descriptive models support suitable incident compre-
hension and mitigation. Thus, choosing an algorithm that matches certain model
legibility criteria is necessary. However, the amount of data collected from a smart
grid environment poses an additional constraint: scalability. A highly accurate
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algorithm that is able to output a user-friendly model considering the current smart
grid scenario also needs to be scalable to handle huge amounts of data. Scalability is
related to the parallelism inherent in an algorithm and can be measured according to
its speed-up on a particular architecture [52]. Most of the current works are limited
to experimental scenarios with controlled, finite, and synthetic data sets, which do
not offer a close-to-reality challenge in terms of data volume.

Another problem related to synthetically-produced data is that they usually result
in a balanced dataset, which promotes an unrealistically smooth model induction.
Attack detection problems are usually imbalanced, since deviations caused by
attacks are much less frequent than expected behaviour episodes. More precisely, the
attack-related samples provided by a smart grid to induce a machine learning model
are often much fewer than the non-malicious samples, making up an imbalanced
dataset. Highly imbalanced problems generally present high non-uniform error,
which compromises the overall performance when errors occur in the minority
classes. There are several approaches to work around this issue. The most commonly
used are based on undersampling the majority class or oversampling the minority
one. Considering the possibility of losing important samples with the former
approach, oversampling strategies, such as the Synthetic Minority Over-sampling
Technique (SMOTE) [53], can be used to balance the original dataset and provide a
reliable scenario for the machine learning algorithms.

However, if the synthetic data design is driven by simple constraints and
deterministic behaviour, the performance achieved during the experiments can be
biased by patterns that are easier to learn than they would be in real scenarios.
Therefore, when applied to real-life scenarios, the solutions can demand a more
complex pipeline or unfeasible modifications, which prevents their adoption. The
same reasoning applies to the adversarial model design. In some works, researchers
assume simple or very specific attack models, which can hinder the effective
application of the proposed solutions in production environments.

The open issues mentioned so far are related to the application of machine learn-
ing to the smart grid domain. Nevertheless, the machine learning area has its own
challenges, which are intrinsic to its algorithms and must be addressed regardless
of the application domain. Hyperparameters tuning [54], temporal vulnerabilities
[55], stream classification trade-offs [56], and more recent topics like adversarial
machine learning attacks [57] are examples of these issues and pave the way for
future studies.

Lastly, for some authors like [13, 17, 58], the use of multiple sources of data
leads to improvements in detection performance. For example, the amalgamation of
features extracted from computer network traffic and smart grid measurements can
form a more robust feature vector, which covers a wider range of attacks. Working
on the several possible combinations of smart grid data sources to assess how they
enhance the range of detected attacks is another possible subject for future work.
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9.8 Conclusion

As smart grids are critical infrastructures, cyberattacks against these systems have
a high potential for causing large-scale disruption to electricity supplies. To assist
in the fight against this threat, we have provided a study of how machine learning
algorithms can be applied to detect attacks on smart grids. We outlined the possible
attacks types, as well as the concepts that underpin the detection of such attacks.
Then, we presented the machine learning algorithms that have been employed in
proposed detection schemes. Following this discussion, a list of existing attack
detection approaches based on machine learning was given, detailing how each one
addressed the characteristics of this problem.

Some open issues were identified in the reviewed approaches, such as algorithms
depending on a labelling process, approaches not prepared to deal with imbalanced
datasets and real-time aspects of smart grids, algorithms producing poor descriptive
models, experiments relying on poorly designed synthetic data, and testing with a
limited range of attack behaviours. Among the recommendations for future work are
suggestions to use stream mining algorithms and oversampling techniques, multiple
data sources, and to invest more effort into producing more realistic data sets.
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Chapter 10
Neurofuzzy Approach for Control
of Smart Appliances for Implementing
Demand Response in Price Directed
Electricity Utilization

Miltiadis Alamaniotis and Iosif Papadakis Ktistakis

10.1 Introduction

Advancements in information technologies have led the efforts in the so-called
fourth revolution of technology. Society, cities, cars, and homes—to name a
few—are aspects of the modern world that have been significantly benefited and
transformed by the use of the new wave of information technologies. The new and
widely used terms of “smart grid,” “smart city,” and “smart homes” are coined to
those advancements, and more particularly to the coupling of current infrastructure
with information networks [1].

Of profound significance toward moving to a smart world is the use of artificial
intelligence (AI). AI offers the necessary tools to automate the processes involved
in processing data, extracting information, and making decisions [2]. Furthermore,
AI compensates for physical constraints imposed in decision-making: for instance,
humans cannot monitor incoming data and make decision 24/7—this is physically
impossible. Driven by the above motives, AI is expected to infiltrate in various
aspects of our human activities and improve the quality of our daily lives [3].

One of the domains that is expected to significantly benefit from the use of
AI technologies is the energy domain. In particular, the use of AI has already
significantly contributed to the development of smart grid technologies and will
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play a significant role in the implementation and deployment of a truly smart grid
in the near future [4]. One of the areas that will be greatly influenced by the use
of artificial intelligence is the demand response programs. Smart grid technologies
will enable the use of price signals for shaping the electricity demand in a way that
satisfies the physical constraints of the delivery systems [5].

In the traditional delivery grid, demand was satisfied by controlling the gener-
ation, i.e. usually by operating as many generation units as needed to satisfy the
demand. In demand response program the level of control has been shifted from
generation units to consumers: demand response aspires in shaping the demand in
such a way to meet the generation capacity [6, 7].

One of the ways to conduct demand response is by utilization of price signals.
Market operator utilizes the available generation capacity in order to determine
prices that will drive the consumers to reduce their demand at levels that meets
the generated amount. These programs target the individual consumer’s demand
but in practice their aggregation is the one that is mainly shaped by the demand
response program [8]. To make it clearer, the broadcasted prices are sent to all
market consumers, which subsequently decide the amount of consumption that will
be reduced in order for each consumer to stay within the limits of its desired budget
[9]. In this example, though the individual consumers make decisions over their
consumption, their aggregated behavior is the one observed by the system operator.

In this chapter, we present a new approach for demand response at the appliance
level. We assume that the demand response of each consumer is determined by the
operation of the electric appliances [10]. In particular, we assume that the consumer
consumption is the sum of the individual appliance consumption. Therefore,
controlling the consumption of each appliance impacts the overall consumption of
the individual consumer and subsequently the power flow at the grid level. The
proposed approach implements a neurofuzzy approach to control the amount of
time that the appliance shall operate in the next duty cycle [11]. The neuro part
is comprised of a neural network and more particularly by an extreme learning
machine (ELM) [12], while the fuzzy part is comprised of a set of fuzzy rules [11].
The ELM is used for making predictions of the future electricity prices and then
using this prediction together with the current conditions to make a decision over
the operational time [13] in the next duty cycle of the appliance.

The structure of the paper is as follows. In the next section, the ELM is introduced
and a brief introduction to fuzzy sets and inference is provided. Section 10.3 presents
the neurofuzzy method, while Sect. 10.4 describes its application for demand
response in smart appliances. The last section, i.e., Sect. 10.5, concludes the paper
and highlights its main points.
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10.2 Background

10.2.1 Extreme Learning Machines

Artificial neural network (ANN) is the widest used artificial intelligence tool [2].
ANN has been used in classification and regression problems, with numerous
applications. The key “ingredient” in ANN is the utilization of a set of parameters
known as weights. The ability of weights to be evaluated based on a set of training
data (i.e., known outputs for known inputs) is the main strength of the ANN [11],
given that they can be used to approach the underlying function that associates
the inputs to the outputs. There are several types of neural networks, spanning a
wide range of architectures and forms. One type of ANN, which attracts attention
recently, is the extreme learning machine [14].

ELM is a special case of ANN comprised of two layers (it should be noted that
the input layer is not considered as a computing layer). In particular, ELM is a
feedforward neural network whose architecture contains a single hidden layer, an
input and an output layer [14]. Based on that architecture, there are two sets of
parameters in the ELM architecture: the set of weights between the input and the
hidden layer, and the set of weights between the hidden layer and the output layer.
For visualization purposes, a general architecture of ELM is provided in Fig. 10.1.

The essential feature of ELM that distinguishes it from the rest types of the neural
networks is the way the weights are evaluated [15]. As it was mentioned above there
are two types of weights in the ELM architecture, with each of them being evaluated
based on a different procedure. Regarding the weights of the first layer (i.e., hidden
layer in Fig. 10.1), a set of values is randomly assigned to the weights. With regard

Fig. 10.1 General architecture of ELM
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to the output weights (see Fig. 10.1), weight values are taken as the solution to a
simple linear optimization problem. The objective function is evaluated based on
the difference between the available training data and the output of the hidden layer.
A detailed description of the ELM structure and training process may be found in
[15] and (Tang et al. 2006).

Analytically, an ELM can be expressed as:

f (x) =
N∑
i=1

wihi(x), (10.1)

where w are the output weights, N is the number of hidden nodes, and hi() expresses
the output of the hidden node i. Going further, the hidden layer output mapping gets
the following vector form:

h (x) = [G(h1 (x) , . . . , hL (x))] , (10.2)

where x is the input vector. Moreover, by assuming that there is an availability of L
datapoints, then the hidden layer matrix becomes

H =
⎡
⎣ h (x1)

. . .

h (xN)

⎤
⎦ =

⎡
⎣G(a1, b1, x1) . . . G (aN, bN , x1)

. . . . . .

G (a1, b1, xL) . . . G (aN, bN , xL)

⎤
⎦ (10.3)

with αi, bi being the parameters of the hidden node i. By consolidating the training
data targets in a matrix T, then it is obtained:

T = [t1 . . . tL]T (10.4)

that can be used to set the training problem of the output layer. In particular, the
evaluation of the output weights is the solution to the following problem:

min : ‖w‖σ1
p + C‖Hβ − T‖σ2

q , (10.5)

where σ 1 > 0, σ 2 > 0, p, q = 0, 1/2, 1, . . . ,+∞. The values of σ 1, σ 2, p, q
define the type of problems—various combinations determined different problem—
like regression, classification, clustering. By assuming a single hidden layer with
sigmoid functions then the training process is reduced to:
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Ŷ = W2σ (W1x) (10.6)

with W1 being the matrix of the hidden layer weights, σ the activation function,
and W2 the output weights. The solution to (10.6) is taken by a least square fit—for
known target in Y—with the solution taking the form:

W2 = σ(W1X)+Y, (10.7)

where the symbol + denoted the pseudoinverse matrix of the quantity W1X. In the
case of ill-posed pseudoinverse matrix, resulting by noisy data, then a regularization
techniques are used to secure that the pseudomatrix is not ill-posed [11].

At this point, it should be noted that the main strength of the ELM is its very
short training time. This mainly results because the weights of the first layer are
randomly evaluated and are not further changed. Hence, this very short training time
is a characteristic that promotes ELM in real time application scenarios, especially
at cases where adaptiveness—via training—is needed. Regarding the current work,
it should be emphasized that the demand response at the level of appliance should
be fast, and thus, making the use of ELM suitable for this type of applications.

10.2.2 Elements of Fuzzy Inference

In the classical set theory, an object in the world of the problem either belongs
to a set or not. In other words, objects are imposed to a binary logic that can be
analytically expressed by

fA(x) =
{

1, if x ∈ A
0, if x /∈ A , (10.8)

where A denotes the set at hand, and x denotes the object. To make it clearer,
classical set theory excludes the concurrent participation of an object in multiple
sets. In practice, there are several complex problems that demand the participation
of an object in more than one sets: hence, an object does not strictly belong to one
set but to multiple ones at the same time [11].

Fuzzy logic comes to extend the classical set theory by allowing the partial
participation of an object to more than one set. The essential idea is that every
object belongs to a set with some degree [11]. The degree value is determined by
the membership function as given below:

μA(x) =
{
d, if x ∈ A, (10.9)
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Fig. 10.2 Example of
membership function for
fuzzy sets A1, A2, and A3 of
the variable X

where the degrees of membership take a value in the range:

d ∈ [0 1] (10.10)

with 0 denoting the object does not belong to set A, and 1 that it fully belongs to the
set A. The above schema allows an object to be a member with different degrees of
membership to more than one set. A set that is expressed via a membership function
(i.e., Eq. (10.9)) is called fuzzy set.

For visualization purposes, an example of fuzzy sets is given in Fig. 10.2, where
it is clear that the membership functions of fuzzy sets are allowed to overlap. The
overlapped parts assign the associated objects to more than one set with degrees of
membership determined by the respective membership function. It should be noted
that in the example of Fig. 10.2 the membership functions have a triangle shape,
with the peak being equal to 1.

The fuzzy set representation allows the development of inference mechanism
using empirical IF/THEN rules. In particular, spanning the input space with a
group of fuzzy sets, and the output space with another group of fuzzy sets allows
the correlation among the input–output sets using rules. For instance, if the input
variable is spanned by three sets I1, I2, I3 and the output with O1, O2, O3,
respectively, then a possible example of fuzzy rules is the following:

• IF Input is I1, THEN Output is O1
• IF Input is I2, THEN Output is O2
• IF Input is I3, THEN Output is O3,

where the input is the condition and the output is the consequence. By using
linguistics terms for inputs and output, then the fuzzy rules closely mimic the
human way of thinking—i.e., association of linguistic terms via empirical rules—
as given in the example here: IF Temperature is High, THEN Season is Summer.
Furthermore, fuzzy logic allows the IF/THEN rules to have several conditions and
several consequence parts. Multiple conditions and consequences are connected via
the logical operators AND and OR depending on the semantics of the problem at
hand [16]. It should be noted that in a fuzzy inference system there may be more
than one rule that may be fired because of the overlap among the fuzzy sets. In that
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case, the output of the system is also a fuzzy set that goes under defuzzification.
Defuzzification transforms a fuzzy set into a single value; the most popular method
of defuzzifying a fuzzy set is the mean of area method [11], whose analytic formula
is given by

ydefuz =

N∑
n=1

ynμout (yn)

N∑
n=1

μout (yn)

(10.11)

with yn being the elements of the output fuzzy set and N stands for the population
of set elements.

Therefore, the association of two or more variables via fuzzy rules allows the
development of fuzzy inference systems that are able to make decisions based
on complex scenarios [17]. The use of fuzzy rules allows those decisions to be
computational inexpensive and fast [18].

10.3 Methodology

Demand response programs target to driving consumers to morph their demand in
such a way that is secure and safe for the power grid infrastructure [19]. Given that
electricity demand is heavily associated with the number of electric appliances that
operate at every time instance, then it is rational to approach the demand response
as an appliance control problem [20]. Controlling the operation of each appliance
in a given operational cycle, implicitly implements a demand response program
[21]. The demand response program in a smart home can be seen as the aggregated
operation of the set of smart appliances [22, 23].

In this work, we assume that each smart appliance can be autonomous and
make optimal decisions over its operation [24]. Thus, each appliance utilizes
the information from the smart grid and promotes decisions without any human
intervention [25]. The proposed methodology is based on two basic principles:

– Demand response is connected to the electricity prices [26],
– Forecasting of prices is a mechanism that allows decision-making [27].

The proposed methodology implements a two-stage data processing process. In
the first stage the ELM is utilized to make predictions over the variables of interest
to the operation of the appliance, while the fuzzy inference utilizes the forecasting
values as well as the current ones to make a decision over the operational time of the
appliance for the next cycle [10]. The individual steps that comprise the proposed
demand response methodology of an electric appliance are depicted in Fig. 10.3,
where we can observe the individual steps taken to determine the operational cycle
of the appliance.
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Fig. 10.3 Block sketch of the proposed neurofuzzy methodology for deciding the operational
cycle of the appliance

The first step contains the determination of the operation variables of the electric
appliance. This step is crucial in order to make the decision. For instance, the
operational variable of an HVAC system refers to the determination of the variable
temperature that expresses the temperature of the environment that needs to be
controlled [28]. Another example may include the coffee maker and the operational
variable is the temperature of the coffee that needs to be retained for an interval of
time. Therefore, every appliance will determine its own set of operational variables.

Essential in our methodology is the values of the electricity market price. To that
end, the ELM component provides an anticipation of the near future prices. The
goal is to utilize the current price together with the anticipated ones to facilitate the
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Fig. 10.4 ELM training
process for price forecasting
based on a rolling window of
ten values

decision-making. It is a common sense that predicting whether the prices will be
lower or higher in the near future is an essential factor in scheduling our electricity
consumption. As seen in Fig. 10.3, ELM is utilized for price forecasting by using
the most recent ten electricity prices as training set. Notably, the training dataset is
based on a rolling window of length ten and therefore it is different at each time.
The training process for ELM with regard to prices is depicted in Fig. 10.4.

The predicted values by ELM are forwarded to a fuzzy inference system together
with the current operational values and the current price value. The goal of the fuzzy
inference system is to utilize the predicted and the current values and provide a final
decision over the operational time of the appliance for the next cycle. Therefore, the
fuzzy inference system is comprised of two types of rules:

1. IF Variable(t) is A1, THEN Operation Time is B2
2. IF Variable(t) AND Variable(t + 1) is A2, THEN Operation Time is B3

where we observe that the rule of type (1) utilizes only the current information, while
rules of type (2) utilize the current as well as the predicted values. The number of
rules depends on the electric appliance at hand and the demand response strategy
that the user wants to follow.

The presented neurofuzzy system provides the operational time of the appliance
for the next cycle. By assuming that the full length of an operational cycle of an
appliance is denoted as OCf then the neurofuzzy system aims at determining a value
in the range [0 OCf ] as is shown in Fig. 10.5. The value defined by the neurofuzzy
system is named reduced operational cycle and is denoted as OCr.

Overall, the neurofuzzy system outputs the value OCr that defines the length of
the operational time of the appliance in the next cycle. The proposed methodology
is mainly price driven given that the market electricity prices are taken into consid-
eration to make a decision. However, the proposed methodology also considers the
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Fig. 10.5 Full operational cycle notion against the reduced cycle determined by the neurofuzzy
method

future value of operational variables as part of its decision-making process. It should
be noted that the ELMs for predicting the operational variables are already trained
in the available data and they do not use rolling window as is the case for prices.

The final decision is made by a fuzzy inference mechanism, whose input contains
the current and the predicted values by the ELM. Lastly, it should be noted that
both ELM and fuzzy inference have very short execution times, thus making the
presented methodology suitable for cases that decision can be made in very short-
term time intervals.

10.4 Application to HVAC System

In this section, the presented methodology is applied for controlling an HVAC
system. The HVAC system is deployed in a smart house and though the house digital
infrastructure is connected to the information of the grid. Therefore, the HVAC
system is able to receive the electricity price values at any time.

The HVAC data are simulated using the GridLAB-d software and the interface
that has been developed by Nasiakou et al. [29]. The operational variables used for
the HVAC are the following:

– Actual temperature
– Minimum desired temperature
– Maximum desired temperature
– Time for reaching the minimum desired temperature from the current tempera-

ture

where the last variable is a time driven variable and could not be simulated via
GridLAB-D software. Furthermore, the “time for reaching the min desired value”
depends on several randomly varying factors that cannot be accurately predicted
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Fig. 10.6 Price signal utilized for testing the proposed demand response methodology for the
HVAC system

or known a priori (e.g., leaving the room door open for long time). Therefore, to
simulate data for this variable we created a randomizer by using Matlab. To that
end, the training dataset was created based on the randomizer and contained a set of
300 values.

The price signal used in this manuscript for assessing the demand response cost
benefit was randomly selected from the available data summer values from the New
England ISO [30]. The resolution of the signal was taken in hourly intervals for a
whole day (price signal changed every hour) and its curve is depicted in Fig. 10.6.

With regard to the neurofuzzy methodology we adopted 5 ELMs: The first four
were assigned to one of the four operational variables, while the fifth was used for
price forecasting. Their architecture was as follows:

• Operational parameter ELM

– 1 input neuron
– 10 hidden neurons
– 1 output neuron

• Price signal ELM

– 1 input neuron
– 2 hidden neurons
– 1 output neuron.

The training data for the operational variables (the first 4 ELMs) were obtained
from the GridLAB-D and includes simulated HVAC every 5 min for 3 days—for
the three parameters, namely, actual temperature, minimum desired temperature,
and maximum desired temperature,—while the fourth variable training dataset was
populated by the developed randomizer as we mentioned earlier.
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Fig. 10.7 Fuzzy sets for
variable actual temperature

Fig. 10.8 Fuzzy sets for
variable minimum desired
temperature

Fig. 10.9 Fuzzy sets for
variable maximum desired
temperature

The fuzzy inference mechanism gets ten inputs (the current values and the
predicted values of the operational parameter and electricity price) and one output
(i.e., the operational time of appliance). The fuzzy sets adopted for fuzzifying each
of the operational parameters is given in Figs. 10.7, 10.8, 10.9, and 10.10, for price
in Fig. 10.11 and for the output operational time in Fig. 10.12, respectively. It should
be noted, that both the current and the predicted values use the same fuzzy sets.

In the current work, the HVAC cycle has been set to 8 min, and this is the reason
that the operational time variable lies in the range of [0–8] min. However, this range
can be modified based on the appliance and the current needs. The strength of fuzzy
sets is that their range can be easily modified without affecting the computational
cost of the system. Furthermore, it should be mentioned that the predicted values of
the operational variables refer to the end of the cycle (every 8 min).
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Fig. 10.10 Fuzzy sets for
variable time to reach
minimum temperature

Fig. 10.11 Fuzzy sets for
electricity price

Fig. 10.12 Fuzzy sets for
variable operational time
(output value)

Regarding the fuzzy rules, the developed inference mechanism is comprised of
40 IF/THEN rules, a subset of which is provided in Table 10.1. The number of rules
may vary depending on the appliance and the modeler’s choices in demand respond
strategy. The specific set of rules was developed based on our own experience and
the response strategy we wanted our methodology to follow. Different modelers,
which follow different response strategies, may derive different number and type of
rules. For instance, the second rule is fired, when the both the current and predicted
prices are between 0 and 20 dollars, and the min_temp is between 9 and 27 ◦C,
providing as an output the fuzzy set VERY LOW. Then the defuzzification method
will select a value from 0 to 4 min. In case more than one rule are fired then the
output will be a fuzzy set that combines the respective output fuzzy sets using the
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Table 10.1 Fuzzy inference rules

Rules

IF price is LOW AND predicted price is LOW,
THEN operational time is NORMAL
IF price is LOW AND predicted price is LOW AND MIN_TEMP is DESIRED,
THEN operational time is VERY LOW
IF price is LOW AND predicted price is HIGH AND MIN_TEMP is DESIRED,
THEN operational time is LOW
IF price is HIGH AND predicted price is HIGH AND MIN_TEMP is LOWER AND
ACTUAL_TEMP is HIGH,
THEN operational time is LOW
IF price is HIGH AND predicted price is REGULAR AND MAX_TEMP is LOWER AND
ACTUAL_TEMP is HIGH,
THEN operational time is LOW
IF price is REGULAR AND predicted price is HIGH AND MIN_TEMP is NORMAL AND
ACTUAL_TEMP is NORMAL,
THEN operational time is VERY LOW
IF price is REGULAR AND predicted price is HIGH AND MIN_TEMP is NORMAL AND
ACTUAL_TEMP is NORMAL,
THEN operational time is VERY LOW
IF price is HIGH AND predicted price is HIGH AND predicted MIN_TEMP is NORMAL
AND ACTUAL_TEMP is HIGH,
THEN operational time is VERY LOW
IF price is REGULAR AND predicted price is LOW AND MIN_TEMP is NORMAL AND
predicted MIN_TEMP is NORMAL,
THEN operational time is VERY LOW
IF price is HIGH AND predicted price is HIGH AND MAX_TEMP is NORMAL AND
TIME_to_MIN is LOW,
THEN operational time is LOW
IF price is HIGH AND predicted price is REGULAR AND MIN_TEMP is LOWER AND
Predicted_Max-Temp is NORMAL and ACTUAL_TEMP is HIGH and TIME_to_MIN is
HIGH,
THEN operational time is NORMAL

AND operator (as explained in previous section), and the defuzzification will select
a value from the synthesized fuzzy set. If the synthesized set includes the VERY
LOW and LOW sets, then the defuzzification will select a value between 0 and
6 min.

Next, the neurofuzzy methodology for the HVAC system is tested for 3 days.
Based on the 8 min cycle that we have selected, for every day the appliance has to
make 450 decisions. The values obtained for the 3 days are given in Fig. 10.13 in
the form of curve that expresses OCr against # of cycle.

The values of the operational cycles of the HVAC system presented in Fig. 10.13
provide economical benefit to the user. At this point, we need to mention that we
compare the benefit attained by the neurofuzzy methods with two cases: (a) in the
first case the HVAC operates fully (8 min) for all cycles (#450 cycles), and (b) in this
case the HVAC operates fully in 50% of the cycles (#225 cycles). The results are
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Fig. 10.13 Reduced operational cycle values for the three test days

provided in Table 10.2, where we observe an average of about $6.5 reduction in cost
of appliance operation by using the neurofuzzy methodology as compared to case 1
and an approximate reduction of $2 compared to case 2. Furthermore, we observe
that our methodology provided lower cost for all three tested cases. In addition,
our methodology presented a more sophisticated operational way by adapting to
current operation conditions; the latter was attained by considering several variables
in determining the operational time as compared to the simple on/off for a whole
cycle.

10.5 Conclusion

In this chapter, a new intelligent methodology for demand response at the electric
appliance level was introduced. The methodology assumes that the electric appli-
ance is part of a smart home that participates in a price directed electricity market. In
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Table 10.2 Test results with regard to economic benefit attained (amounts expressed in US
Dollars $)

# Day Case 1 (100% cycles used) Case 2 (50% cycles used) Neurofuzzy method

Day 1 $ 19 $ 14 $ 13.5
Day 2 $ 19 $ 15.2 $ 12.1
Day 3 $ 19 $13.6 $ 12.9
Average $ 19 $ 14.26 $ 12.8

this type of market, the price varies dynamically in order to encourage or discourage
the consumption of electrical energy. In the ideal case, prices will be announced by
the market operator in very short-term time intervals. In that case, it is impossible
for human consumer to monitor 24/7 and make consumption decisions. Therefore,
automated systems will be able to respond with the electricity demand.

The presented neurofuzzy method implements automated demand response at
the appliance level. It is comprised of two parts: the ELM that makes prediction
over the future values of the appliance operational values as well over the future
electricity prices. The current and the predicted values are forwarded to the second
methodology part that implements a fuzzy inference system. The inference is done
with the aid of fuzzy sets and a set of IF/THEN rules.

The presented methodology was tested on simulated HVAC systems, comprised
of 480 operational cycles, and shown to be more efficient than a simple on/off
system. The benefit was quantified in terms of cost consumption: the neurofuzzy
methodology provided lower cost as compared to the other two cases taken into
consideration.

Future work will focus on extensive testing of the neurofuzzy methodology in
other electrical appliances beyond the HVAC system. Furthermore, more advanced
neural networks will be studied such as deep neural networks.
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Chapter 11
Using Model-Based Reasoning for
Self-Adaptive Control of Smart Battery
Systems

Franz Wotawa

11.1 Introduction

Self-adaptive systems are characterized by their ability to change their behavior by
themself during operation. Ordinary systems are designed to fit a certain purpose
where requirements are used that describe how a system must behave considering
boundaries between the system and its environment. All changes of the behavior
of such systems are foreseen during system design and appropriately implemented.
Hence, behavioral changes are usually deterministic relying on the system’s state
and its current input values obtained from the environment. In truly autonomous
self-adaptive systems this needs not to be the case anymore. Such systems change
their behavior in a way that might not be predicted during design in order to react on
certain input stimuli. For such systems usually we are using a monitoring system for
assuring that these systems’ behavioral changes do not lead to an unwanted situation
during operation.

In this chapter, we want to discuss the foundations behind self-adaptive and
autonomous systems but this time taking an approach that limits potential behavioral
changes. In particular, we focus on model-based reasoning systems that take a model
of themself and utilize this model for behavioral changes. In this way, the system
and its decision are well-informed and the final decision can be explained using the
system model and the current set of inputs. Such systems can react on internal and
external faults, i.e., faults related to internal components, the perceptions system,
or the actuators, and faults related to environmental interactions not expected or
not foreseen during system development. Such adaptive systems are becoming of
increasing interest due to application areas like smart cities or autonomous driving.
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In autonomous driving, for example, it is necessary not only to detect a failure
during operation but also to react in a safe way. In ordinary cars with or without
automated driving functions this means to give control back to the driver, which
cannot be achieved when dealing with truly autonomous driving, where there is no
driver behind a steering wheel anymore. In this case there must be an emergency
procedure to be executed in order to find a safe state and to reach it. When
considering hardware faults, such a procedure must be able to compensate a fault or
ideally to repair it before continuing driving for reaching a place where the car might
stop safely. Please note that there are many situations like driving through a tunnel
where emergency braking and finally stopping the car can hardly be considered
reaching a safe state.

When considering the domain of smart battery systems, we are interested in
two possible adaptations required at runtime. The first is due to changes in the
required electrical characteristics, i.e., the maximum required current or voltage
such a system should deliver, or to change the configuration of the battery system
in order to replace empty battery cells with charged ones. The second is due to
faults that might happen during operation. The charge of the battery might drop and
reach a not acceptable limit, or a battery that was consider recharged might not work
because it reached its lifetime expectation. As a consequence we need to implement
two different functionalities in a smart battery system, i.e., (1) the functionality of
re-configuring itself, and (2) to diagnose itself. Using model-based reasoning we are
able to provide both configuration and diagnosis functionality.

Although both functionalities can be implemented based on the same founda-
tions, it is inevitable to use different models of the same system. For the smart
battery system, we will introduce a model that allows configuring the battery
based on electrical requirements and available battery cells. Furthermore, we will
introduce another model that is capable of providing diagnosis capabilities and to
identify the causes of an observed misbehavior. Hence, instead of requiring the
implementation of two different functions, we only need to change the models and
can re-use existing implementations of model-based reasoning systems.

The intention behind this chapter is to show how model-based reasoning can be
applied to smart battery systems. We outline the foundations and also cite related
literature that is important to implement model-based reasoning systems. However,
the given explanations should be sufficient to introduce the basic ideas and necessary
prerequisites.

This chapter is organized as follows: First, we are going to introduce a smart
battery system where cells can be arranged in parallel or sequentially in order to
deliver more current, more voltage, or both. In the description we focus on basic
principles but ignore details like how to switch from one configuration to another,
or details about electrical issues that have to be considered when coming up with
a real implementation of a smart battery. Second, we introduce the foundations
behind model-based reasoning, show how to use it for diagnosis, and adopt it for
configuration. In addition, we show how to use model-based reasoning in the context
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of smart batteries, where we use the smart battery as case study for configuration
and diagnosis. Afterwards, we discuss related research. Finally, we conclude this
chapter.

11.2 Smart Battery Description

In this section, we outline the concept of a smart battery comprising an arbitrary size
of re-chargeable batteries and other components for providing the required voltage
and current. The objective behind the smart battery is to allow its reconfiguration
to meet the specific needs during operation. For this purpose, we first have a look
at the schematics of a base module (or cell) depicted in Fig. 11.1. A base module
either has one battery or wire that can be switched for connecting two consecutive
outputs from x1, . . . , xk+1. The idea is that we are able to place a battery or wire
in a stack at a position 1, . . . , k for a fixed value of k allowing to obtain a higher
output voltage. For example, if we have k = 5 and we place five batteries at each
of the positions 1 to 5 connecting lines x1, x2 with the first battery up to x5, x6 with
the 5th one, we obtain an output voltage between x1 and x6 of five times the voltage
of each individual battery. If we want to obtain more power, we can set two or more
batteries on each of the lines. In addition, the system enables to disconnect or re-
charge batteries that are not used. Hence, such a system enables re-charging each
battery separately.
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Fig. 11.1 The base module or cell for a smart battery stack of size k. Note that the base module
can be either a battery cell or a wire cell. In the latter case we do not use the loadm and loadp
ports, which are, therefore, not considered in any schematics representing a wire cell
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Designing a smart battery, i.e., choosing the right value for the stack size k and
the right number of batteries n, we have to consider the specification of a single
battery used in a cell. The required specification includes at least the battery voltage
vB in Volt, its internal resistor value rB in Ohm, and the available electrical power
pB in Ampere hours. The value of k can be determined by the maximum voltage
vmax that should be delivered by the smart battery, i.e., k = vmax

vB
rounded to the next

larger integer value. The number of required batteries depends on the maximum
current imax to be requested and has to be computed using the internal resistor value
and its corresponding voltage drop imax · rB that shall be allowed. If we allow a
vd, e.g., 10%, voltage drop, the number of batteries to be put in parallel should be
an integer value np larger than (1−vd)·vB

imax ·rB . The number of required batteries (and,
therefore, cells) n has to be at least np · k. It is worth noting that the number of
batteries obtained should be increased also to allow re-charging batteries. Hence,
the overall number of batteries n must be as large as required to deliver enough
current and also to allow re-charging over time. In addition, we might also consider
redundancies in order to cope with faults in a battery cell that should not be used
anymore. Furthermore, we have also to add k − 1 wire components (or wire cells)
in order to allow the smart battery to deliver output voltage between vB and k · vB .

In Fig. 11.2 we depict a smart battery comprising six battery cells, one wire
cell, and having a stack size of 2, i.e., the maximum voltage is 2 · vB . In the
following, we discuss potential configurations of such a smart battery system.
A configuration for a base module, i.e., a cell, corresponds to the value of the
two switches, which are assumed to be synchronized. Hence, a cell can be in
configuration (or state) off , load, or 1 to k. In case of configuration 1 ≤ i ≤ k

the cell is connected with line xi and xi+1. The configuration of a smart battery
system is a set of configuration for all the cells in the system. For example, for
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Fig. 11.2 Schematics of a power module of stack size k = 2 comprising six batteries and one wire
component. Note the connections for loading the batteries and controlling all the components are
not in the schematics
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Fig. 11.3 Configuration 1: a valid configuration comprising battery cell BM1 and the wire cellW
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Fig. 11.4 Configuration 2: a
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Fig. 11.5 Configuration 3: a valid configuration with two battery cells in parallel (BM1, BM2 and
BM6, BM3) and both connected in series for delivering a higher current and an output voltage of
2 · vB

Fig. 11.6 Configuration 4:
an invalid configuration that
does not allow to deliver a
higher current to the output
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Fig. 11.7 Configuration 5: an invalid configuration causing battery cell BM1 to be short circuited

the smart battery from Fig. 11.2 every configuration specifies a state for each of
the 7 cells (BM1, . . . , BM6,W ). In Figs. 11.3, 11.4, 11.5, 11.6, and 11.7 we depict
five different configuration. The first configuration shows a setting where we only
have one battery cell attached delivering electrical power. The second configuration
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represents two batteries connected in series in order to increase the output voltage.
The third configuration shows the same configuration but including batteries in
parallel for increasing the current to be delivered to the output. The fourth and the
fifth configuration represent invalid configurations that should not occur in practice.
In Fig. 11.6 the configuration is missing one battery connected in parallel and cannot
deliver more current as expected. The last configuration has a wire connected in
parallel with a battery. This configuration would cause the battery to uncharge at
the maximum current most likely leading to a severe damage of the battery cell,
which cannot be used again. Hence, it is important to avoid configurations that are
either not delivering specified properties or cause harm on side of batteries or the
electronics.

As a consequence, the control module of a smart battery as outlined in this section
has to assure the following:

1. Fulfill given electrical requirements like the maximum output current iout and
output voltage vout .

2. Never connect wire cells in parallel with battery cells.
3. Always assure that the same number of battery cells are connected at each level

of the stack.

Furthermore, we are interested in coming up with implementations of such a
control module. In particular, we are going to discuss the use of model-based
reasoning [8, 38] for obtaining valid configurations given a smart battery comprising
a stack size of k, n battery cells, and k − 1 wire cells, and the given specification
of the power to be delivered to the output. We make use of the smart battery system
depicted in Fig. 11.2 to illustrate the approach.

In the following, we summarize the parameters, possible specifications, and
system constraints given for configuring a smart battery system based on battery and
wire cells. For the overall smart battery system we know the maximum stack size k,
and the number of batteries nB . Obviously, the number of battery cells nB must be
larger than or equal to k. For battery cells, we know their maximum supply voltage
vB , and current iB . In order to use the full configuration space, i.e., all different
output voltage levels, the number of wire cells must be equal to k − 1 allowing to
have one and up to k batteries on the stack. Hence, a smart battery systems of stack
size k has to have b1, . . . , bnB battery cells, and w1, . . . , wk−1 wire cells as base
modules.

The behavior, i.e., the provided output voltage and current, depends on the
batteries on the stack and the batteries in parallel, i.e., on the configuration of the
system, and has to fulfill its requirements, i.e., the expected output voltage and
current, which is limited to the following values: vout = m · vB for m ∈ {1, . . . , k}
and iout = p · iB for p ∈ {1, . . . , �nB

k
�}.1 In order to formalize the behavior,

we introduce a predicate state for cells indicating the state of the given cell.
To distinguish battery cells from wire cells we use a function bat and wire,

1The function �� rounds to the nearest smaller integer value.
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respectively. Hence, state(bat (b1), 1) indicates that battery b1 is in state 1, i.e.,
used in the first level of the battery stack. state(wire(w2), off ) states that wire w2
is not connected to any level of the stack, i.e., is in an off-state. A configuration now
is an assignment of states to every battery and every wire where we have possible
states fromDB = {1, . . . , k, off, load} for battery cells andDW = {1, . . . , k, off }
for wire cells. Formally, we write

〈
state(bat (b1, s1)), . . . , state(bat (bnB , snB )),

state(wire(w1, t1)), . . . , wire(wk−1, tk−1))

〉

for a configuration where states s1, . . . , snB are fromDB and t1, . . . , tk−1 fromDW .
In order to be valid a configuration has to fulfill constraints as already discussed.

We now are able to state these constraints formally:

vmax = m · vB
↔

∃c1, . . . , cm, cm+1, . . . , ck : state(bat (c1), l1) ∧ . . . ∧ state(bat (cm), lm)∧
state(wire(cm+1), lm+1) ∧ . . . ∧ state(wire(ck), lk)∧

(∀li , lj ∈ {1, . . . , k} : i �= j → li �= lj )
(11.1)

imax = p · iB
↔

∀l ∈ {1, . . . k} : (state(bat (cl1), l) ∧ . . . ∧ state(bat (clp), l)
∨state(wire(wl), l))

(11.2)

� ∃l ∈ {1, . . . k} : state((bat (c), l) ∧ state(wire(c′), l) (11.3)

Equation (11.1) states that in a battery stack of size k we need m batteries and
k − m wires to assure that vmax = m · vB . Equation (11.2) is for stating that in
each level of the stack where we have batteries, we need p of them to deliver the
required current of p · iB . Equation (11.3) assures that in none of the levels of
the stack we have wire and battery cells in parallel. Equations (11.1)–(11.3) are
for assuring that the configured structure of the smart battery system provides the
expected specification parameters. However, what is missing is assuring that the
batteries themselves are able to provide their nominal voltage and current if working
as expected, i.e., they are not empty. We formalize that a battery is empty using a
predicate empty having the battery as parameter and being true if and only if the
given battery cannot deliver electrical power for a predefined time.

∀p ∈ {1, . . . k} : ∀l ∈ {1, . . . k} : state(bat (clp), l)→ ¬empty(bat (clp))
(11.4)

In Eq. (11.4) we formalize this constraint stating that all batteries that are attached
to the smart battery systems are not empty.
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Computing a valid configuration for a given specification of the smart battery
system is not trivial and has a high computational complexity. The whole search
space is restricted by the number of cells and their particular domains of the
configuration. Hence, the computational complexity of finding a valid configuration
for a given specification is of order O((k+ 2)nB + (k+ 1)k−1). For larger values of
k the search for valid configuration becomes infeasible. However, we can simplify
the search for a valid configuration a little bit. We only need to configure m × p
batteries correctly. All k−m levels on the stack where we do not have a battery can
be filled with a wire. Hence, we are able to write a program selecting the batteries
accordingly to the specification, and setting the wires afterwards. Such a program,
however, is rather inflexible hardly able to handle cases where certain batteries have
to be replaced or recharged during operation and are no longer available. We would
need to capture all critical cases and have to verify that the battery system will
always work as expected. The solution, we are going to discuss, avoids such troubles
because it is delivering results only based on models and the available specification.

It is worth noting that in this section, we only have focussed on the configuration
part of a smart battery system stating constraints for fulfilling certain (electrical)
requirements. We have not discussed other issues like the concrete dynamic
behavior, the necessity to provide reconfigurations over time in order to cope
with batteries becoming empty, the re-charging of batteries so that we always
have a certain number of spare batteries available, nor implementation details. The
smart battery system as explained in this section, however, will be used as an
example illustrating and explaining how AI methodology can be used for providing
configurations of such a system.

In addition to the configuration challenge of dealing with finding the right setup
of batteries for fulfilling given electrical requirements, we may face also a diagnosis
problem during operation of such battery systems. For example, a battery run out of
power when being used causing the given voltage to drop, or the required current
cannot be delivered due to a faulty battery. Such a behavior can be identified using
given sensor information, causing actions to bring the smart battery again into
a good state. For this purpose, we have to identify first the cause of a detected
misbehavior, i.e., the battery that is not working as expected anymore, and second,
to re-configure the system using the health state of batteries as further information.
This can be achieved by assigning faulty or empty batteries a certain fault state and
constraining configuration search to only consider batteries that are not faulty.

Sensor in the context of diagnosis are used to obtain information, i.e., observa-
tions, about the current state of a system. Such sensor information for smart batteries
may include measurements of voltage levels, currents, or even the temperature of
a specific cell at particular points in time. From this information, we may obtain
further estimates, e.g., the available power of a battery. For the smart battery case
study, we make use of a simplified scenario comprising measuring the voltage drops
between the different battery levels and the overall current delivered to the output
at any particular time. In particular, we will use the scenario depicted in Fig. 11.8
where we consider two voltage sensors v1 and v2 and one current sensor iout . Note
that the name of the sensors correspond to the values they provide and we use these
names when referring to their values.
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Fig. 11.8 The placement of the voltage and the current sensors (v1, v2, iout ) for our smart power
module from Fig. 11.2

Obviously there must be some equations holding during operation in case the
smart power module works as expected. For example, the measured current must
be smaller or equal to the requested current, i.e., iout ≤ imax . Because of using
the same batteries we also assume that the measured voltages v1 and v2 are also
always either 0 or equal to the voltage provided by a single battery vB , i.e., v1 =
0 ∨ v1 = vB and v2 = 0 ∨ v2 = vB . Finally, the sum of the two voltages measured
must be equivalent to the voltage required, i.e., v1 + v2 = vmax . It is worth noting
that in practice the equations would not hold because of differences in underlying
component specification that has to fall within a known boundary. Hence, when
implementing in practice equivalence usually is interpreted as being close within a
predefined boundary. This can be achieved by mapping voltage values of 1.21 or
1.18 to the expected voltage level of 1.2 and use this value in an equation whenever
needed. After introducing the basic foundations behind model-based reasoning in
the next section, we will outline how we can use the behavior of the smart battery
module components and the observations in order to compute diagnoses, i.e., the
root causes of observed deviations between the expected behavior and the observed
one.

11.3 Model-Based Reasoning

Before discussing the underlying principles behind model-based reasoning and its
application to diagnosis and configuration, we discuss some necessary prerequisites.
In particular, we introduce the basics behind first-order logic, we are going to use for
modeling the systems and refer the interested reader to text books like [41] or [5] for
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more details. In first-order logic we have predicates p that basically represent either
attributes, properties, or relationships between concepts. We might, for example,
want to indicate that zero is an integer. This can be done using the predicate int
having one parameter, i.e., int (zero). Or we might want to say that Julia is taller
than Bob using a predicate taller taking two parameters, i.e., taller(julia, bob). A
predicate can be true or false in a particular world. For example, taller(julia, bob)
might be the case if there is a person Julia in this world who is taller than Bob.

In addition to predicates, we have logical operators like or (∨), and (∧), not
(¬), implication (→), or bi-implication (or logical equivalence ↔). These basic
operators have the same meaning than for classical propositional logic. Moreover, in
first-order logic we also have variables like X. Note that we write variables starting
with a capitalized letter to distinguish them from constants like zero, julia, or
bob. Variables can—in principle—take arbitrary values. However, in most cases we
restrict these values stating that they must be from a given set. Using variables in
first-order logic we are able to come up with generalized rules. We may want to say
that if a person A is taller than another person B who is also taller than a person C,
then A must be taller than C. We can formalize this using quantifiers, i.e., either the
for-all (∀) or the exists (∃) quantifier. The relationship between the size of persons
can be formalized as follows:

∀A : ∀B : ∀C : taller(A,B) ∧ taller(B,C)→ taller(A,C)

We might also write this in the form:

∀A,B,C : taller(A,B) ∧ taller(B,C)→ taller(A,C)

Or alternatively, we might skip the ∀ part completely assuming all variables
that are not having an exists quantification are all quantified. For example, let us
formulate that a person that is taller than every other person is the tallest person:

� ∃B : taller(B,A)→ tallest (A)

In this formulae, we say that a person A is tallest if there exists no other person
B that is taller.

We can use first-order logic for deriving new facts from known facts and
rules. For example, we might now that taller(julia, bob) and taller(bob, jeff ).
Let us now consider the rule taller(A,B) ∧ taller(B,C) → taller(A,C). It
would be great to use this rule and the known facts to derive that Julia should
also be taller than Jeff. This can be done using the substitution of variables.
If we “assign” julia to A, bob to B, and jeff to C, we come up with the
rule taller(julia, bob) ∧ taller(bob, jeff ) → taller(julia, jeff ). From the
semantics of the implication we know that if the left side is true, the right side
must be true. We know that taller(julia, bob) ∧ taller(bob, jeff ) is true, from
which we conclude that taller(julia, jeff ) must be true too. Hence, we are able
to derive the fact taller( julia, jeff ) given the other facts, rules, and substitution.
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Using first-order logic we are also able to derive contradictions, i.e., ⊥. For
example, we may measure the height of Julia and Jeff leading to the conclusion that
Julia is not taller than Jeff anymore, i.e., ¬taller(julia, jeff ). When using the
same facts as before and the new one, we obviously derive a contradiction because
¬taller(julia, jeff ) ∧ taller(julia, jeff ) cannot be true at the same time. In
this case, we say that the whole logical sentence

taller(julia, bob) ∧ taller(bob, jeff ) ∧ ¬taller(julia, jeff )∧
taller(A,B) ∧ taller(B,C)→ taller(A,C)

is a contradiction or not satisfiable. In the following, we assume that there is a
basic understanding of how to interpret first-order logic equations and that there
exists theorem provers that allow to check for satisfiability or to derive new facts
and knowledge. We are going to use first-order logic to write our models, i.e.,
representations of concrete systems, to be used for configuration and diagnosis.

11.3.1 Model-Based Diagnosis

The idea behind model-based reasoning arose in the 1980s of the last century. In
AI expert systems based on logical rules were becoming more and more important
and first issues emerged including reduced flexibility and maintainability of the used
knowledge base. As an answer to these issues Davis and colleagues [9] introduced
model-based diagnosis as a methodology for localizing root causes for a detected
misbehavior based on the system structure and functionality. The methodology was
further elaborated (see [8]) and formalized. Reiter [38], De Kleer and Williams [12],
and later De Kleer and colleagues [11] provided a well founded theory behind
model-based reasoning based on first-order logic. In Fig. 11.9 we depict the basic
principles behind model-based reasoning (MBR). There we have the system on the
left from which we obtain observations. On the right, we have a model of the system,
which covers the structure and behavior of the system in a way such that we are
able to deduce the expected behavior. When comparing the observations with the
expected behavior, we may obtain deviations. These deviations together with the
observations and the system model are used to compute diagnoses, i.e., components
of the system that when faulty explain the deviations. We will see that this kind of
reasoning can not only be applied to diagnosis but also to configuration.

Let us explain the basic idea and principle behind MBR using a simple example.
In Fig. 11.10 we see a battery connected to two bulbs in parallel. From our
experience, we know that both bulbs should be illuminated. Behind this prediction
there are more or less hidden assumptions like that both batteries are working
as expected and the battery itself delivers enough electricity. We often use such
assumptions during the day. These assumptions can be classified as common
sense knowledge that can be applied to a large extent when interacting with our
environment. However, sometimes common sense cannot be applied anymore, e.g.,
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Fig. 11.9 The basic principle behind model-based reasoning

Fig. 11.10 A simple electrical circuit comprising two bulbs connected in parallel to a battery.
There is a cable from the “+” pin of the battery to the “+” pin of the bulb and a cable connecting
the “+” pins of the two bulbs. The other cables are connecting the “−” pins of the components in
the same way

in case of faults. Let us consider that Bulb 1 in our example is glowing but Bulb 2 is
not. In this case, obviously there is a contradiction with our common sense reasoning
and we have to identify the reasons behind this unexpected behavior. How are we
now able to find the cause behind this deviation from expectations? We are using the
hidden assumptions. Assuming that Bulb 2 is not working perfectly explains why it
is not glowing but Bulb 1 is. Assuming that the battery is empty, however, is not a
valid solution, because in this case also Bulb 1 should not be illuminated. We know
that a bulb can only glow in case of electricity applied.

So what can we take with us from the simple battery example? First, we are
using basic physical principles, e.g., there must be electricity available to light a
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bulb. Second, we are relying on assumptions when providing predictions. These
assumptions in case of diagnosis, describe the health state of components, e.g., a
bulb is not broken. Third, we are more or less searching for a set of assumptions
that may be retracted in order to explain a situation that contradicts our expectations.
In the following, we discuss the basic definitions behind MBR, provide means for
applying MBR for finding valid configurations, and show how MBR can be used in
the context of our smart battery system.

We rely on Reiter’s definitions of model-based diagnosis (MBD) [38] but modify
some of them slightly. We start with defining a diagnosis problem, which comprises
a model of the system, which is called a system description SD in the context of
MBD, the components COMP of a system, which can be considered working as
expected or being faulty, and a set of observations OBS. In the system description,
we provide a model of the system comprising the behavior of the components in case
they are not faulty, and the structure of the system. The health state of a component
is an assumption that is represented using a predicate. In the classical definitions
of MBD, we use the predicate AB for stating a component to be abnormal or
faulty. Hence, in SD we use the negation of AB, i.e., ¬AB to specify a behavior
of a component. For example, the behavior of the battery and the bulbs for our
simple electrical circuit depicted in Fig. 11.10 can be stated using first-order logic
as follows:

¬AB(bat)→ electricity

¬AB(bulb1) ∧ electricity → glow(bulb1)
¬AB(bulb2) ∧ electricity → glow(bulb2)

In the first rule, we state that a battery bat is delivering electricity in case
of working appropriately. In the other two rules, we formalize that a bulb is
glowing if it is working as expected and electricity is available. These three
rules are part of SD for the simple battery example. For this example, we have
three components, i.e., COMP = {bat, bulb1, bulb2}. Observations OBS for this
example might be {glow(bulb1), glow(bulb2)} saying that both bulbs are lighting,
or {glow(bulb1),¬glow(bulb2)} where the first bulb is lighting but the second is
not. For the latter case we have a diagnosis problem, i.e., we want to identify the
causes behind the observation that one bulb is working but the other is not. In MBD
this means identifying a set of components that have to be assumed as not working
correctly in order to explain observations. Formally, we are able to formulate the
diagnosis problem as follows:

Definition 11.1 (Diagnosis Problem) A tuple (SD,COMP,OBS) states a diag-
nosis problem where SD is the system description, COMP is the set of system
components, and OBS is a set of observations.

A solution for a diagnosis problem is a set of components explaining the
given observations. In case of MBD, explaining observations is mapped to finding
components that when assumed to behave incorrect remove all inconsistencies with
the given observations. Components that are not in this set are assumed to work as



292 F. Wotawa

expected. In the following definition, we state solutions for a diagnosis problem,
i.e., the diagnoses, formally.

Definition 11.2 (Diagnosis) Given a diagnosis problem (SD,COMP,OBS). A
set� ⊆ COMP is a diagnosis (a solution) if and only if SD∪OBS∪{¬AB(c)|c ∈
COMP \�} ∪ {AB(c)|c ∈ �} is satisfiable (i.e., consistent).

In this definition SD ∪ OBS is a logical sentence comprising the model of the
system, i.e., SD, and the observationsOBS, {¬AB(c)|c ∈ COMP \�} is a logical
sentence stating that all components that are not in the diagnosis have to work as
expected, and {AB(c)|c ∈ �} is a logical sentence saying that all components in
the diagnosis are behaving in an abnormal way. If this sentence is consistent, then
� is a diagnosis, explaining which components to replace in order to retract all
inconsistencies.

Let us consider our simple battery example again. Let SD be {¬AB(bat) →
electricity,¬AB(bulb1) ∧ electricity → glow(bulb1),¬AB(bulb2) ∧
electricity → glow(bulb2)}, COMP be {glow(bulb1), glow(bulb2)}, and
OBS be {glow(bulb1), ¬glow(bulb2)}. Obviously assuming all components
to be working as expected leads to an inconsistency. In this case � = ∅
and we have {¬AB(bat),¬AB(bulb1), ¬AB(bulb2)}. From ¬AB(bat) and
¬AB(bat) → electricity we derive that there must be an electricity, i.e.,
electricity is true. From this fact together with ¬AB(bulb2), and the rule
¬AB(bulb2) ∧ electricity → glow(bulb2) we are able to derive glow(bulb2),
which obviously contradicts the observation ¬glow(bulb2). Therefore, � = ∅
cannot be a diagnosis. When assuming � = {bulb2}, there is no contradiction
anymore because the rule ¬AB(bulb2) ∧ electricity → glow(bulb2) can no
longer be applied, because of AB(bulb2). As a consequence {bulb2} is a diagnosis.

Unfortunately, when using this definition we also are able to identify {bat}, or
{bulb1, bulb2} among other subsets of COMP as diagnoses, which seems to be
counterintuitive. The first set {bat} is a diagnosis that is due to the fact that our
model does not capture the knowledge that a bulb can only glow if there is electricity
attached. If we add the following two rules to our model SD, we would not be able
to derive such a diagnosis anymore:

glow(bulb1)→ electricity

glow(bulb2)→ electricity

In this case, the observation glow(bulb1) allows to derive electricity, from
which we obtain a conflict using rule ¬AB(bulb2)∧ electricity → glow(bulb2),
the assumption¬AB(bulb2), and the observation¬glow(bulb2). In literature there
are a few papers describing how to improve models considering knowledge about
physical necessity or impossibilities (see e.g. [16]) for eliminating counterintuitive
diagnoses.

The second diagnosis {bulb1, bulb2} cannot be handled that easily. First of all,
from the definition of diagnosis (Definition 11.2) and assuming that models are only
considering the behavior of healthy components (of the form ¬AB(c)∧ . . .→ . . .),
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it easy to show that all supersets of diagnoses have to be diagnoses as well. Hence,
we either allow also to specify the behavior in case of a fault, e.g., via stating that
an abnormally behaving bulb bulbx can never glow ¬(AB(bulbx)∧ glow(bulbx)),
or to focus on parsimonious diagnoses, e.g., diagnoses that are smaller. Usually in
MBD we define minimal diagnoses as follows:

Definition 11.3 (Minimal Diagnosis) Given a diagnosis problem (SD,COMP,

OBS). A diagnosis � for (SD,COMP,OBS) is said to be minimal (or parsimo-
nious) if and only if there is no other diagnosis �′ of the same diagnosis problem
that is a subset of �, i.e., minimal(�)↔� ∃�′ ⊂ � ∧ diagnosis(�′).

For our example, it can be easily seen that {bulb1, bulb2} is not a minimal
diagnosis anymore because {bulb2} itself is a diagnosis, which is also a minimal
diagnosis.

Can we apply MBD directly to configure smart battery systems? Unfortunately
not, because for configuration we do not have a correct behavior of a certain
component but a set of possible states instead. Therefore, we have to slightly adapt
the definitions of MBD for the case of configuration. For more information about the
formalization of fault models used for diagnosis we refer the interested reader to [43]
and [11]. For an overview of different MBD approaches readers might consult [54].
In the next subsection, we discuss how MBR can be used for configuration purposes.

11.3.2 Model-Based Configuration

The idea of using MBR and in particular MBD for configuring systems is not
new. [7] and later [45] discussed the relationship between reconfiguration and
diagnosis. [15] provided insights for utilizing MBD in case of configuration. In
this section, we follow this previous research and adapt the definitions already
discussed in order to make them applicable for solving the configuration task. There
has been a lot of research in the area of automated configuration starting with
[29], where rule-based expert systems were used. Later representation languages
for configuration problems were introduced (see e.g. [30]) aiming at increasing
expressiveness of configuration knowledge, leading to representations based on
description logics [55], or general constraint satisfaction problems (CSPs) [20]
including extensions like Dynamic [18] or Generative CSPs [44, 46].

In this paper, we restrict configuration to parameter configuration where we
assume a fixed number of parameters for a system to be configured. Similar
to the diagnosis problem, we introduce a configuration problem comprising a
configuration knowledge base KB, system parameters PAR, and requirements
REQ. The rules in the knowledge base KB formalize the relationships between
parameters, and restrictions. The requirements REQ are for stating the expected
capabilities of a system. To illustrate parameter configuration, we make again use
of our simple electrical circuit depicted in Fig. 11.10. In contrast to diagnosis,
configuration deals with identifying components and parameters such that the final
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system fulfills its requirements. We illustrate the configuration problem for the two-
bulbs example in Fig. 11.11, where we depict a component library from which
components are selected in order to come up with a configured system. For the
two-bulb circuit, we have to identify the correct bulbs that fit to the battery. For
example, we may distinguish four different bulbs two with a nominal voltage of
1.5 V, one with 12 V, and one with 220 V. Each of the bulbs has a different electrical
characteristic like its power consumption, the underlying technology among other
factors. We assume that we only know the required power for each bulb. In addition,
we may have different batteries again with a different voltage and also with a
different nominal maximum current to be provided (Table 11.1).

When putting together two bulbs in parallel with a single battery, we have to
assure that the voltage levels are the same and that the sum of the current needed
to light the bulbs is less than the maximum current provided by the battery. From
physics we also know that electrical power is the product of voltage and current,
i.e., P = V · I . From these verbal requirements we are able to come up with the
following constraints representing the requirements formally where B1, B2 are the
selected bulbs and Bat represents the selected battery.

1.5V 0.09W

220V 18.0W

1.5V 0.18W

6.3V 1.26W

1.5V 0.2A 1.5V 0.8A

12.0V 4.0A

Component library

+ Requirements

Fig. 11.11 Configuring the two-bulbs example

Table 11.1 Available bulbs
and batteries to be used to
design the two-bulb circuit
from Fig. 11.10

Component Parameters

bulb1 vB = 1.5 V, pB = 0.09 W

bulb2 vB = 1.5 V, pB = 0.18 W

bulb3 vB = 6.3 V, pB = 1.26 W

bulb4 vB = 220 V, pB = 18 W

bat1 vBat = 1.5 V, iBat = 0.2 A

bat2 vBat = 1.5 V, iBat = 0.8 A

bat3 vBat = 12 V, iBat = 4 A
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vB1 = vB2 = vBat
pB1

vB1

+ pB1

vB1

≤ iBat

Using the available knowledge we are able to construct the circuit using many
different types of bulbs and batteries. Using both bulbs of type bulb1 and a battery of
type bat1 obviously fulfills all specified requirements. The same holds for selecting
both bulbs of type bulb2 and the battery of type bat2. In the latter case the higher
required current is compensated by the higher current of the battery. In addition, we
might select one bulb of type bulb1 and one from bulb2 together with a battery of
type bat1. Also in this case the constraints are fulfilled. For practical purposes it is
often the case to have additional constraints like selecting each bulb from the same
type. We now formally define configuration problems and their solutions.

Definition 11.4 (Parameter Configuration Problem (PCP)) A tuple (KB,PAR,
τ, REQ) states a parameter configuration problem where KB is a knowledge base
describing general knowledge of the system to be configured and its parameters,
PAR is a set of parameters to be configured, τ is a function mapping parameters to
their potential values, i.e., the parameter domain, and REQ is a set of requirements
the configured system has to fulfill.

Our small configuration example can be specified using a PCP as follows:

KB =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

type(X, bulb1)→ (vX = 1.5 V ∧ pX = 0.09 W) ,
type(X, bulb2)→ (vX = 1.5 V ∧ pX = 0.18 W) ,
type(X, bulb3)→ (vX = 6.3 V ∧ pX = 1.26 W) ,
type(X, bulb4)→ (vX = 220 V ∧ pX = 18 W) ,
type(X, bat1)→ (vX = 1.5 V ∧ iX = 0.2 A) ,
type(X, bat2)→ (vX = 1.5 V ∧ iX = 0.8 A) ,
type(X, bat3)→ (vX = 12 V ∧ iX = 4 A) ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

PAR = {B1, B2, Bat}

τ(B1) = τ(B2) = {bulb1, bulb2, bulb3, bulb4} and τ(Bat) = {bat1, bat2, bat3}

REQ =
{
vB1 = vB2 , vB2 = vBat ,

pB1

vB1

+ pB1

vB1

≤ iBat
}

A solution of a PCP is an assignment of values for each parameter such that the
knowledge base together with the requirements are not in contradiction.
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Definition 11.5 (Configuration) Given a PCP (KB,PAR, τ, REQ). A function
� mapping a value of τ(p) to each parameter p ∈ PAR is a configuration, i.e.,
a solution of the PCP, if and only if KB ∪ REQ ∪ {type(p,�(p))|p ∈ PAR} is
consistent.

Obviously the definition of diagnosis is similar to the definition of configuration.
However, instead of only distinguishing correct from incorrect behavior using ¬AB
and AB, respectively, we now allow to have different values, i.e., the one specified
in τ . In the above definition of configuration, we assume that all parameters must
have an assigned value from their domains. Note that in the example used to
illustrate PCP we specify system specific aspects using REQ. All other parts of
the knowledge are given in KB. In KB we might also specify rules that implement
further restrictions or necessities. One restriction might be that in case of specific
battery type we might not be able to choose all bulbs. Or we may want to say that in
case we have a certain component, we need to select the type of another component.

When using the definition of configuration, we are able to come up with the
same solutions than already discussed for our two-bulb example. For example,
�(B1) = �(B2) = bulb1,�(Bat) = bat1 is a configuration according to
Definition 11.5 but �(B1) = �(B2) = bulb2,�(Bat) = bat1 is not. In the latter
case, the second requirement is violated. Computing configurations can be easily
done using constraint solving. In this case, a configuration problem or specifically a
PCP is represented as a CSP. For more details about constraint solving have a look
at Rina Dechter’s book introducing the foundations behind CSPs [10].

11.3.3 Summarizing and Discussing Model-Based Reasoning

Model-based reasoning can be applied for a variety of tasks including diagnosis,
i.e., the identification of root causes of a detected misbehavior, and configuration. In
all these cases, the outcome of reasoning relies on the provided model. Faults in the
model of course may lead to wrong diagnoses or configurations. The granularity of
the model, i.e., the components or parameters represented in the model, influences
the obtained results as well. If we map several physical components of a system
to one component in the corresponding model, we are not able to distinguish the
physical components in diagnosis. Hence, modeling is the most important part when
applying model-based reasoning in practice. The outcome of model-based reasoning
is only good if the model captures the essential part of system’s behavior.

It is also worth noting that model-based diagnosis as introduced in Defini-
tion 11.2 basically is not restricted to a certain type of fault. In the introduced
definition only the correct behavior of a component is used for determining root
causes, i.e., diagnoses. Hence, model-based diagnosis can handle faults occurring
in operation that have not been seen before in a smart way. Diagnosis approaches
that rely on coding faults and their consequences can hardly deal with such
situations. However, using fault models may reduce the number of diagnoses and
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provides more information, i.e., the faulty components and as well the reasons
behind the faulty behavior. Let us illustrate the differences between model-based
diagnosis without and with fault models using an example. Consider a digital circuit
comprising basic logical gates like and-gates or inverters. When dealing with fault
models we may define what happens in case of a stuck at 1 fault. If we implement
diagnosis relying on stuck at 1 faults only, we may not be able to handle a case well
where we need stuck at 0 faults. This is not the case when relying on modeling the
correct behavior alone, where we can deal with stuck at 1 and stuck at 0 faults.

In addition, it might be not feasible to really explicitly consider all fault cases.
For example, let us assume to have a program that given all observations computes
potential root causes. For our two-bulbs example from Fig. 11.10 we would have to
come up with a program that looks as follows:

Explicitly Computing Diagnoses for the Two-Bulbs Example

if (glow(bulb1)) {
if (glow(bulb2)) {

return "all components correct";
} else {

return "bulb2 is broken";
}

} else {
if (glow(bulb2)) {

return "bulb1 is broken";
} else {

return "bat is empty or bulb1 and bulb2
are broken";

}
}

Using such programs for smaller systems might be appropriate. However, when
considering larger systems like 100 bulbs in parallel, handling all cases explicitly is
not feasible and someone might not handle more unlikely cases. When using model-
based reasoning all the information about which components might contribute to
a certain behavior is in the model. Even if there is a large number of diagnosis
candidates, all of them can be enumerated using model-based diagnosis algorithms.

Model-based reasoning can also be applied in predictive maintenance where
someone is interested in identifying situations where the system’s behavior starts
deviating from expectations for predicting when to carry out maintenance activities.
In such situations the system might work mostly in between its boundaries but also
exhibits unwanted behavior like vibrations. Model-based reasoning makes use of a
model for predicting values that can be compared with observations. We can use
these models also during operation for comparing the predicted outcome with the
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current one using monitoring. In such a way, we are able to identify discrepancies
and are also able to compute diagnosis candidates. During maintenance someone
might want to distinguish these candidates in order to find the right component to
be replaced. This idea is very much similar to the concept of digital twins, which
are virtual models of a processes, products, or services used during monitoring for
identifying discrepancies.

Because of the need for having the right models available for model-based
reasoning and the difficulties in providing such models, it would be very much
appealing to use machine learning for obtaining models. Surprisingly in the context
of model-based reasoning there is no work on extracting models from data directly.
Most closely there is work on extracting models to be used for diagnosis from
simulation models. Peischl et al. [33] introduced a method for extracting logic rules
from Modelica models using simulation. The approach makes use of fault models
where the corresponding physical behavior is modeled in the language Modelica.
However, obtaining models from data might rely on existing machine learning
approaches like decision tree induction or automata learning. What is required is
knowledge about the correct and faulty case as well as a more detailed description
of underlying root causes. Alternatively, someone might only want to learn the
correct behavior for each component using available data. The latter approach would
directly lead to a model that can be used for diagnosis as described in this chapter.

11.4 Smart Battery System Case Study

In this section, we apply MBR for computing diagnoses and configurations for a
smart battery system. We make use of the power module comprising six batteries,
and one wire component for a stack size k of 2 that is depicted in Fig. 11.2.
We start with providing a solution for the configuration problem mentioned in
Sect. 11.2. Afterwards, we illustrate how MBR can be applied to diagnose the
resulting configured system in case of a detected misbehavior.

Before discussing the case study in detail it is worth discussing differences
between solutions for diagnosis and configuration relying on specific programs that
explicitly compute diagnoses and configurations, and the model-based reasoning
approach. The latter makes use of models from which we obtain the results. Changes
in the system cause changes in the model, which can be usually introduced easily.
In case of the former approach, larger portions of the program might be changed
causing additional effort. In addition, we may also either miss certain cases to be
handled in a program or are even not able to describe all the different cases explicitly.
When relying on models, and assuming that the models appropriately reflect the
system, we always are able to return all solutions that can be correctly derived
from the models. Finally, in model-based diagnosis as discussed in this chapter,
we consider modeling the correct behavior only. Every behavior obtained from the
model that deviates from the observations lead to diagnoses not considering specific
faults or their corresponding fault models. Hence, we are able to provide diagnoses
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for all faults even when we do not know the specific fault model making the
approach smart, i.e., allowing to derive all correct results using available knowledge.

11.4.1 The Configuration Case

For configuring any system we need (1) a knowledge base describing the parts we
may use for combining together and the components’ provided functionality, and (2)
requirements the system has to fulfill. The latter usually refers to functionality we
want to obtain. In case of the smart battery system, we have to specify what batteries
are delivering when they are in a particular state and how this contributes to the
overall required electrical characteristics. In the following we discuss the parameters
needed according to Definition 11.4 for constituting a configuration problem. We
start introducing the involved parameters, which are in our case the six batteries and
the one wire:

PAR = {b1, b2, b3, b4, b5, b6, w}

For simplicity of formalizing the knowledge base we further introduce the subset
of parameters only comprising batteries:

PARB = PAR \ {w}

For configuring the system, we need the possible types, which are the possible
state for the given battery system:

τ(b1) = . . . = τ(b6) = {off, load, s1, s2} and τ(w) = {off, s1, s2}
Finally, we specify the knowledge base. For this purpose, we make use of the

constraints discussed in the previous section. In particular, we introduce different
rules. We start defining rules for mapping parameter types to states. Afterwards,
we introduce constraints for the parameter m that is used to specify the voltage
level required. We distinguish the two cases m = 1 and m = 2. For m = 1 we
need a battery and a wire. In the following formulation we specify all potential
combinations. We do the same for the second parameter p stating the required
current to be delivered. Again we consider different cases. In the rule we follow the
already discussed constraints. Finally, we introduce rules that have to be fulfilled
always, i.e., it is not allowed to concurrently use a wire and a battery at the same
battery stack level, and there are also restrictions for the parameters.
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KB =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀X ∈ PAR : type(X, off )→ state(X, off ),

∀X ∈ PARB : type(X, load)→ state(X, load),

∀X ∈ PAR : type(X, s1)→ state(X, s1),
∀X ∈ PAR : type(X, s2)→ state(X, s2),

m = 1 ↔ ∃X ∈ PARB :
(
(state(X, s1) ∧ state(w, s2))∨
(state(w, s1) ∧ state(X, s2))

)
,

m = 2 ↔ ∃X ∈ PARB : ∃Y ∈ PARB : state(X, s1) ∧ state(Y, s2),

p = 1 ↔ ∀S ∈ {s1, s2} :
(
∃X ∈ PARB : state(X, S)∧
(∀Y ∈ PARB : (Y �= X)→ ¬state(Y, S))

)
,

p = 2 ↔ ∀S ∈ {s1, s2} :

⎛
⎜⎜⎜⎝
∃X ∈ PARB : ∃Y ∈ PARB : X �= Y

∧state(X, S) ∧ state(Y, S)∧
(∀Z ∈ PARB : (Z �= X ∧ Z �= Y )

→ ¬state(Z, S))

⎞
⎟⎟⎟⎠ ,

p = 3 ↔ ∀S ∈ {s1, s2} :

⎛
⎜⎜⎜⎜⎜⎝

∃X ∈ PARB : ∃Y ∈ PARB : ∃Z ∈ PARB :
X �= Y �= Z ∧ state(X, S)∧
state(Y, S) ∧ state(Z, S)∧

(∀W ∈ PARB : (W �= X ∧W �= Y ∧W �= Z)
→ ¬state(W, S))

⎞
⎟⎟⎟⎟⎟⎠
,

∀X ∈ PARB : ¬(state(X, s1) ∧X �= w ∧ state(w, s1)),
∀X ∈ PARB : ¬(state(X, s2) ∧X �= w ∧ state(w, s2)),
m ≤ 2 ∧ p ≤ 3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

What remains to be specified are the requirements. In this case, we search for
configurations where we have twice the voltage of a single battery cell, but we
require only the current provided by one cell:

REQ = {m = 2, p = 1}

Let us now have a look whether the following mappings �1 and �2 are
configurations as specified in Definition 11.5:

�1 �2

b1 off off

b2 load s1
b3 s1 off

b4 s2 off

b5 load s2
b6 load off

w off s2
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Let us have a look at �1 first. Due to the first 4 rules in KB, we know
that state(b1, off ), state(b2, load), state(b3, s1), state(b4, s2), . . . must hold.
Because of the requirement m = 2, we have to check the rule m = 2 ↔ ∃X ∈
PARB : ∃Y ∈ PARB : state(X, s1) ∧ state(Y, s2) for satisfiability. When
assigning b3 to X and b4 to Y , we see that state(X, s1) ∧ state(Y, s2) must hold.
We do the same for requirement p = 1 and have a look at its corresponding rule

p = 1 ↔ ∀S ∈ {s1, s2} :
(∃X ∈ PARB : state(X, S)∧
(∀Y ∈ PARB : (Y �= X)→ ¬state(Y, S))

)
. Because

there is only one battery assigned to s1 and s2, respectively, the rule is not violated.
Finally, we have to check the last three rules in KB. All of them are obviously
fulfilled, because the wire w has an assigned state of off and the requirements
specify values within their boundaries. Consequently, �1 is a configuration for the
smart battery case study.

Obviously, �2 is not a configuration because state(b2, s2), state(w, s2), which
can be derived from the first rules of KB using the provided information in �2,
contradicts the rule ∀X ∈ PARB : ¬(state(X, s2) ∧ X �= w ∧ state(w, s2)).
When substituting X with b5, we obtain a logical rule state(b5, s2) ∧ b5 �=
w ∧ state(w, s2), which is true, and therefore its negation is false leading to the
contradiction and the final conclusion that �2 cannot be a configuration according
to Definition 11.5.

What we have discussed so far is that we are able to compute configurations
for smart battery systems (and other systems) only using models describing
functionalities, necessities, and restrictions together with given requirements. The
computation of configurations can be automated. We only need to take a mapping
of parameters to values and check whether this mapping is not in contradiction
with the model (i.e., the configuration knowledge base KB). In a smart battery
system we can compute configurations over time and not only when installing the
system. Hence, we are able to react to changes in the requirements over time and
re-configure the system accordingly. Moreover, we can also re-configure the system
in case of known faults. For example, if we know that a battery b is not working
anymore, we only need to set its state to off . This can be easily achieved by
searching for configurations � with �(b) = off . A similar approach can be used
when b has to be loaded and is not available anymore. Hence, the configurator is
flexible allowing to react to different faults or shortcomings over time. Note that
in practice of course, reconfiguration might be more complicated because of, for
example, physical requirements. We may need to add a battery first before removing
another one. However, with the proposed MBR solution, we are able to compute
different configurations under various circumstances and can leave the necessary
steps for configuration changes to the real implementation of the battery system.
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11.4.2 The Diagnosis Case

In the following, we outline how to apply model-based diagnosis for locating faults
in a configured smart battery system. For this purpose, we have to formulate the
diagnosis problem stated in Definition 11.1. A diagnosis problem comprises a
model of components and their interconnections, i.e., the system description SD,
the set of components COMP that might be faulty, and a set of observations
OBS we want to explain. Modeling components can be done is many different
ways and at many different levels of abstractions. For example, the simplest
model of a battery only states that a battery delivers a certain amount of voltage
between its poles. A more detailed model adds an internal resistor considering
that withdrawing a larger current influences also the provided voltage. In addition,
we might consider the uncharging characteristics, which varies in case of different
underlying technologies. Depending on the purpose of a model we might switch
models and consider different aspects of a component or system.

In diagnosis, it is often sufficient dealing with abstract models, which only
describe the behavior of components in a qualitative way, e.g., a battery provides
voltage, ignoring details like the exact amount of voltage. We are following this
principle and state that a non-empty battery delivers a voltage vB and a current
iB . If a battery is empty, no voltage is provided anymore. In the following formal
description of the model, we do not use the term empty but use the predicate AB
instead meaning that the battery is empty. In case ¬AB holds, we know that the
battery provides voltage. Furthermore, we only consider the case where the battery
is working as expected:

∀B ∈ COMP : bat (B)→ (¬AB(B)→ (volt (B, vB) ∧ cur(B, iB)))

For the wire component used in a smart battery, we know that there is no voltage
drop in case it is working, i.e., we can formalize this as follows:

∀W ∈ COMP : wire(W)→ (¬AB(W)→ volt (W, 0))

In addition, to this behavior, we have to formalize the structure of the system.
For the smart battery system example we have six batteries and one wire that might
be connected at position s1 or s2. When using the same predicate state as for
configuration, we are able to formulate whether a component is in a particular state,
e.g., battery b3 is at position s1. In this case, we write state(b3, s1) and add this
to our model. The structure of the smart battery system determines the behavior.
Depending on the number of batteries that are in parallel we get information about
the maximum current, and depending on the number of batteries in serial the voltage
we obtain. Because of stack size 2 we can only put two batteries in series at the
maximum. Hence, we have to state how this influences the output voltage level. For
the output voltage level we introduce a predicate vout . The serial behavior can be
expressed as follows:
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∀X, Y ∈ COMP :
state(X, s1) ∧ state(Y, s2) ∧ volt (X, 0) ∧ volt (Y, 0)→ vout (0)

∀X, Y ∈ COMP :
state(X, s1) ∧ state(Y, s2) ∧ volt (X, 0) ∧ volt (Y, vB)→ vout (vB)

∀X, Y ∈ COMP :
state(X, s1) ∧ state(Y, s2) ∧ volt (X, vB) ∧ volt (Y, 0)→ vout (vB)

∀X, Y ∈ COMP :
state(X, s1) ∧ state(Y, s2) ∧ volt (X, vB) ∧ volt (Y, vB)→ vout (2vB)

∀X, Y ∈ COMP :
state(X, s1) ∧ state(Y, s2) ∧ vout (0)→ (volt (X, 0) ∧ volt (Y, 0))

∀X, Y ∈ COMP :
state(X, s1) ∧ state(Y, s2) ∧ vout (2vB)→ (volt (X, vB) ∧ volt (Y, vB))

¬(vout (0) ∧ vout (vB)) ∧ ¬(vout (0) ∧ vout (2vB)) ∧ ¬(vout (vB) ∧ vout (2vB))
For the parallel composition of batteries for increasing the current, we may come

up with a very much similar model. We have to look at how many batteries are put
together in parallel. This determines the maximum current. There must be the same
number of batteries in parallel in order to deliver the combined current except in
case of a wire. The following first-order logic rules formalize this behavior, where
the first three rules are for obtaining the maximum current for each state and the
other rules are combining this information to finally obtain the maximum current
that is handled using the iout predicate:

∀S ∈ {s1, s2} : state(w, S)→ iout (0, S)
∀S ∈ {s1, s2} : ¬state(w, S) ∧ ∀X ∈ COMP : (bat (X) ∧ state(X, S)∧

(� ∃Y ∈ COMP : X �= Y ∧ state(Y, S)))→ iout (iB, S)

∀S ∈ {s1, s2} : ¬state(w, S) ∧ ∀X, Y ∈ COMP : (bat (X) ∧ state(X, S)∧
X �= Y ∧ bat (Y ) ∧ state(Y, S)
(� ∃Z ∈ COMP : X �= Z ∧ Y �= Z ∧ state(Z, S)))→ iout (2iB, S)

∀S ∈ {s1, s2} : ¬state(w, S) ∧ ∀X, Y,Z ∈ COMP : (bat (X) ∧ state(X, S)∧
X �= Y ∧ bat (Y ) ∧ state(Y, S) ∧X �= Z ∧ Y �= Z ∧ bat (Z) ∧ state(Z, S)
(� ∃W ∈ COMP : X �= W ∧ Y �= W ∧ Z �= W ∧ state(W, S)))→ iout (3iB, S)

∀X ∈ {0, iB, 2iB, 3iB} : ∀S ∈ {s1, s2} : iout (X, S)→ iout (X)

∀X ∈ {0, iB, 2iB, 3iB} : (iout (0, s1) ∧ iout (X, s2)→ iout (X)

∀X ∈ {iB, 2iB, 3iB} : (iout (iB, s1) ∧ iout (X, s2)→ iout (iB)

∀X ∈ {2iB, 3iB} : (iout (2iB, s1) ∧ iout (X, s2)→ iout (2iB)
∀X ∈ {0, iB, 2iB, 3iB} : (iout (X, s1) ∧ iout (0, s2)→ iout (X)

∀X ∈ {iB, 2iB, 3iB} : (iout (X, s1) ∧ iout (iB, s2)→ iout (iB)

∀X ∈ {2iB, 3iB} : (iout (X, s1) ∧ iout (2iB, s2)→ iout (2iB)

¬(iout (0) ∧ iout (iB)) ∧ ¬(iout (0) ∧ iout (2iB)) ∧ ¬(iout (0) ∧ iout (3iB))
¬(iout (iB) ∧ iout (2iB)) ∧ ¬(iout (iB) ∧ iout (3iB)) ∧ ¬(iout (2iB) ∧ iout (3iB))
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It is worth noting that depending on the underlying formalism models might
become easier readable. For example, when relying on constraint satisfaction [10]
the models would be much similar to mathematical equations.

In addition to the discussed equations, we have to add structural information
like the state of each component. Let us assume that battery b3 and b4 are in state
s1 and s2, respectively, and the other components of the six battery and one wire
system are either in the off or load state. Therefore, we have to add state(b3, s1),
state(b4, s2), and in addition state(b1, off ), state(b2, load), state(b5, load),
state(b6, load), state(w, off ) to the model. Let us further assume that we observe
an output voltage of vB and an output current of iB , i.e.

OBS = {vout (vB), iout (iB)}

For this example, when assuming all batteries and the wire to work correctly,
we obtain a conflict with the model SD. We know that ¬AB(b3) and ¬AB(b4)

from which we obtain volt (b3, vB), cur(b3, iB), volt (b4, vB), cur(b4, iB). From
this information, knowing that state(b3, s1) and state(b4, s2), and the equation
∀X, Y ∈ COMP : state(X, s1) ∧ state(Y, s2) ∧ volt (X, vB) ∧ volt (Y, vB) →
vout (2vB), we can derive that vout (2vB) has to hold, which contradicts our
observation vout (vB). Hence, there is a fault in the system, and we have to find the
reason behind it. Let us assumeAB(b3) and¬AB(b4). In this case, we cannot derive
volt (b3, vB) anymore. Therefore, we are also not able to derive vout (2vB) and there
is no contradiction anymore. Hence, {b3} is a diagnosis. A further analysis would
reveal that {b4} is also a diagnosis. To distinguish one diagnosis from the other we
need further information. Either we add new measurements like the voltage drop
at each battery, or we simply assume one battery to fail, i.e., assume one diagnosis
to be valid, and re-configure the system using our configuration model. If the re-
configured system meets its specification, we know that the assumption is right.
Otherwise, we would need another reconfiguration step but this time assuming the
other diagnosis to be valid. The latter procedure of distinguishing diagnoses is also
called active diagnosis, because it requires additional steps like the replacement of
components.

Obviously, this active diagnosis can only be applied if a change of the system
does not influence the health state of a component. For example, consider a fuse
connected with an electronic device. The fuse might be broken due to a fault in
the electronic device. Replacing the fuse alone, would lead to a broken new fuse.
Replacing the electronic device would also not be a valid repair. Hence, in such cases
we need to consider dependent faults in the overall diagnostic procedure. Weber and
Wotawa [51] introduced a solution to this problem based on the foundations behind
MBR as described in this chapter.

Let us consider that we have additional sensors for measuring the voltage like
specified in Fig. 11.8. In this case, diagnosis becomes easy because we would obtain
not only a value for vout but also for the different voltages at the different stages of
the battery stack. For example, if assuming that we have the same serial connection
of batteries than before but this time considering the observations to be:
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OBS = {vout (vB), volt (b3, vB), volt (b4, 0), iout (iB)}

We obtain only the one diagnosis {b4} that is needed to eliminate the inconsis-
tencies.

11.5 Related Research

Pell and colleagues [34] and Rajan and colleagues [37] were the first describing
a system based on model-based reasoning that was able to react on faults during
operation based on models. Their work was integrated into the control software of
NASA’s deep space one spacecraft for improving autonomy and also successfully
tested in space. In [21] Hofbauer et al. introduced a diagnostic system that is able
to adapt the kinematics model in order to compensate faults in motors of a robotics
drive. Steinbauer and Wotawa [42] discussed several approaches for implementing
self-adaptive systems utilizing model-based reasoning including repairing software
systems in case of faults. Most recently, Wotawa [54] showed how to use model-
based reasoning in the context of autonomous systems. Readers interested in more
details behind model-based reasoning including different diagnosis approaches like
abductive diagnosis shall consult [54].

Configuration has been in focus of research in Artificial Intelligence for a long
time. McDermott [29] introduced a rule-based system for configuration. Later on
configuration based on knowledge has been more in the focus of research including
Klein [24] or Klein et al. [25]. The use of configuration for technical system based
on reasoning has also been reported, e.g., in Biswas and colleagues [3] or Yost and
Rothenfluh [56]. Because of the switch from rule-based configuration to the use of
models and reasoning a theory behind modeling became more and more important,
e.g., see [47, 52], or [14]. Interestingly model-based reasoning has also been used
to debug such knowledge bases. Felfernig et al. [13] used model-based diagnosis as
introduced in this chapter for finding faults in configuration models. Most recently,
Uta and Felfernig [48] reported on the use of configuration in the area of energy
transmission networks.

Regarding model-based reasoning there is a lot of work dealing with algorithms
including Reiter’s hitting set algorithm [19, 38] that has been further improved since
then, e.g., see [53] and most recently [36]. Further improvements in computation
can be achieved combining the hitting set algorithm with algorithms that allow to
search for minimal conflicts effectively like QUICKXPLAIN [23]. There has also
been several algorithms introduced that directly return diagnosis not requiring to
compute conflicting assumptions, i.e., conflicts, see e.g. [31]. For a more recent
comparison of the runtime of several diagnosis algorithms we refer to Nica et
al. [32]. For a comparison of QUICKXPLAIN with MaxSAT have a look at Walter
et al. [50]. In addition to algorithms it is important to provide models. There
are a lot of papers dealing with modeling real systems including but not limited
to [2, 4, 27, 28, 35, 40, 49]. What is important to come up with the right model for
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diagnosis or configuration is to find the right level of abstraction. Sachenbacher and
Struss [39] provided the foundations behind automated domain abstraction to find
such models that fit a particular task. In addition, the use of models implemented in
different programming languages might also be of interest, see e.g. [26].

Diagnosis and health prediction for battery systems have been considered as
well. Andoni et al. [1] discussed the use of data analysis for prognostics and health
management. Similarly Chen and Pecht [6] tackled the problem of prognostics using
both model-based and data-driven methods. In [17] Gao et al. shows how to use
charging data to predict the remaining useful lifetime of Lithium-Ion batteries. For
a discussion on battery models we refer to Jongerden and Hverkort’s paper [22].

11.6 Conclusions

In this chapter, we discussed the use of model-based reasoning in the context of
smart batteries that can be adapted and diagnosed during runtime for achieving
their requirements and specifications. In particular, we introduced the application of
models describing potential functionality for coming up with parameter configura-
tion, and models capturing the system’s behavior for implementing diagnosis. Both
configuration and diagnosis can be fully automated using reasoning engines either
based on logic, constraint satisfaction, or any other means for deriving conflicts
based on models and observations or requirements. It is worth noting that we often
use a qualitative representation of values in models. In this case, we have to provide a
mapping between the real values and their corresponding representation. Noise and
uncertainty occurring in reality can be handled in this case if they do not impact the
outcome of the mapping. In addition, we illustrate the application of model-based
reasoning using a smart battery system focusing on basic principles, and discuss
related research where we mainly reference to literature dealing with applications.

The suggested model-based reasoning approach to be used for configuration and
diagnosis brings in the following advantages:

• The whole reasoning is based on available models only. Hence, when having a
model, we can fully automated both configuration and diagnosis.

• The presented approach is flexible and can be easily adapted for configuring and
diagnosing different systems. We only need to change the models.

• Providing that the models are correct, we know that all configurations and
diagnosis must be correct. Furthermore, we are able to compute all configuration
and diagnoses making the approach complete.

• There exists various algorithms for diagnosis and configuration. In the paper, we
introduced the most appropriate related scientific papers.

• Although computing configuration and diagnosis is computationally demanding,
current computers are able to deal with reasonably sized systems with up to
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10,000 components within a reasonable time from less to 1 s to minutes at
the maximum. Hence, the presented approach is feasible considering today’s
available computational resources.

Hence, in summary model-based reasoning offers a flexible, correct, complete
and feasible approach for solving tasks like diagnosis and configuration. Especially,
for systems that require increased flexibility and autonomy model-based reasoning
can be effectively used. We outline the application of model-based reasoning using
a smart battery system where we focussed on configuration and a more high-level
diagnosis. However, it would have also been possible to use more sophisticated
physical models of the battery and the electronics for diagnostic purposes. It
is important to recall that the requirements of models to reflect the physical
world accurately depend on the application domain. For the purpose of high-level
diagnostics the introduced model seems to be sufficient.
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Chapter 12
Data-Driven Predictive Flexibility
Modeling of Distributed Energy
Resources

Indrasis Chakraborty, Sai Pushpak Nandanoori, Soumya Kundu,
and Karanjit Kalsi

12.1 Introduction

The last couple of decades have seen a significant increase in the deployment
of renewable energy resources into the electricity grid. Renewable generation
is, however, mostly significantly more intermittent and uncertain compared to
traditional fossil-fueled generation, e.g., wind power generation is heavily reliant
on the variability in the wind speed [33]. Traditional techniques used by grid
operators to nullify any imbalance between the generation and load include the
use of spinning reserves, backup generators, as well as load curtailment methods,
depending on the nature of the power fluctuations [35]. However, these traditional
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methods are not suitable, nor sufficient, when there is a very high penetration of
renewable generation. For example, building large spinning reserves to compensate
for the variability in renewable generation is prohibitively expensive. Moreover, it
is counter-productive to deploy high carbon-footprint diesel generators as backup
while increasing renewable penetration. Finally, curtailment of loads to mitigate
variability in generation is not a desirable solution, either.

Concurrently over the last decade, use of flexible end-use loads and other devices
for grid services have gained increased attention both in the academia as well as the
industry. In the context of power grid operations, any energy (consuming and/or
generating) resource that is capable of offering some flexibility in its net electricity
demand (over a certain duration) is generally referred to as a distributed energy
resource (or, DER). Advanced sensing, controls and communications infrastructure,
especially at the medium-to-low voltage power distribution networks, have enabled
the proliferation of connected, smart DERs—such as heating, ventilating, and air
conditioning (HVAC) units, electric water heaters (EWHs), energy storage units,
lighting, washer/dryer units, refrigerators, etc.—which are able to communicate
with each other and/or a resource coordinator. In particular, Internet-of-Things
(IoT) devices, such as smart thermostats and sensors, are capable of operating
interactively and autonomously while remaining connected with other devices
and/or the building automation system, and are often enabled by low cost cloud and
computing platforms for local in-device data analytics and controls implementation
[34, 51]. It is becoming increasingly feasible for these distribution side end-use
resources to assist conventional generators in providing grid ancillary services
[9, 49]. Due to the increased communication capabilities and fast-acting nature of
these devices, it is imperative to use these existing resources for providing grid
services [2, 9, 10, 14, 17, 26, 28, 41, 49, 56], as relatively much faster, cleaner, and
cost-effective alternatives to more traditional measures.

Several works including [2–4, 9, 12, 15, 27–29, 32, 36–38, 40, 43, 48, 53, 55, 56]
have proposed that residential/commercial HVAC systems, EWHs, electric vehicles
(EVs), refrigerators, and heat pumps can be aggregated to provide certain grid
services by leveraging their capability to store thermal energy, thereby achieving
flexibility in power consumption. Furthermore, devices such as washer/dryer units
and EVs come under the category of deferrable loads and they can be scheduled to
provide grid services as well. The major challenge in deploying these DERs lies in
quantifying the amount of load flexibility available in order to provide grid services.
As there will be millions of these devices, it is not possible for the control authority
to communicate with each device individually. Hence, an aggregator is required
to establish faster communication and implement various control strategies. The
aggregator acts as a mediator between the grid and the individual DERs. It is the
task of an aggregator to characterize the available flexibility for the ensemble of
DERs to provide grid services.
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12.1.1 Virtual Battery Characterization of Flexibility

A straightforward method to achieve aggregation is by taking a Minkowski sum
of these loads to quantify the load flexibility [29]. However, this is a very
computationally expensive method when there are thousands of various DERs in
the ensemble. In this context, recent works [11, 16, 17, 22–25, 42] proposed the
notion of a virtual battery (VB) to characterize the aggregate flexibility similar
to a physical battery. It is important to mention that the use of virtual storage
to represent the flexibility of certain loads to retain/store thermal energy, not
necessarily electrochemical storage, is acquiring momentum in the community. This
VB has characteristics such as self-dissipation, capacity limits, power limits, and
charging/discharging rate limits similar to a real battery. Further to emphasize on
the difference between a real and VB, the energy in a real battery is stored in the
form of chemical energy, whereas in the VB it is stored in the form of thermal
energy. The mathematical representation of the VB model is not fixed and could
depend on the characteristics of the underlying devices in the ensemble. Most of the
recent works considering homogeneous/heterogeneous devices assume a first-order
linear model representation for VBs.

Most recent works on VB model identification can be seen in [17, 18, 24, 39].
These works include characterizing a VB model for a wide range of systems from
small residential thermostatically controllable loads (TCLs) to complex systems
such as commercial building HVAC loads. Similar to a real battery, the VB also has
self-dissipation, energy capacity, and power (charge/discharge) limits as parameters.
In this work, we propose an alternative, data-driven, deep neural network framework
of characterizing the aggregate flexibility of ensembles of air conditioners (ACs) and
water heaters (EWHs) using the available end-use measurements. Since the training
of the deep networks is an offline process requiring high computational effort, it
is not desirable to retrain the network if the number of TCLs in the ensemble
change over time due to changing availability of end-use appliances. Henceforth,
we propose a transfer learning based approach to identify the VB parameters of the
new ensemble with minimal retraining.

The VB model, in its simple form, is a linear continuous-time first-order system
with control input. The state of the VB indicates the energy of the underlying
ensemble. The VB parameters such as the battery capacity indicate the size of the
ensemble, self-dissipation indicates any leakage in the state of charge of the battery,
the charge/discharge limits (also referred to as ramp rates) indicate how fast or slow
can the battery be charged/discharged. The regulation signal that acts as an input to
the VB must remain within the power limits. Furthermore, depending on the type
of service, there exists lower level controllers that assign the frequency or power
thresholds to the individual devices as shown in [41]. Another important objective
is to maintain the end-user comfort constraints while simultaneously providing
the grid services. It is advantageous to represent the ensemble with an equivalent
resource representation such as VB as this helps to avoid unnecessary control and
communication complexity.
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12.1.2 Advancements in Deep Learning

In recent years, deep learning has been gaining popularity among researchers due to
its inherent nature imitating the human brain learning process. Specifically, several
research works show the applicability of deep learning in capturing representative
information from a raw dataset using multiple nonlinear transformations as shown
in [19]. Deep learning based methods can model high level abstractions in data
utilizing multiple processing layers, compared to shallow learning methods. In
[6], deep learning methods are used for simplifying a learning task from input
examples. Based on scientific knowledge in the area of biology, cognitive humanoid
autonomous methods with deep learning architecture have been proposed and
applied over the years [5, 20, 31, 52, 54]. Deep learning replaces handcrafted
feature extraction by learning unsupervised features as shown in [50]. Although
deep learning methods are very popular in applications like feature extraction, data
visualization, and forecasting, they are rarely visited in the context of power systems
applications. Our current application of using deep learning methods to identify the
VB state for an ensemble of devices has not been explored in existing literature,
although this application falls broadly under the scope of a dimensional reduction
problem.

12.2 Modeling

The VB model is presented in this section and the identification of VB parameters
such as power limits, initial state of charge is discussed for an ensemble of AC and
EWH devices. The temporal evolution of temperature for AC or EWH devices is
governed by a first-order differential equation and they are shown in [41, 44].

12.2.1 Virtual Battery

The evolution of the VB state is governed by the following dynamics:

ẋ(t) = −ax(t)− u(t) , x(0) = x0 (12.1a)

C1 ≤ x(t) ≤ C2, (12.1b)

P−(t) ≤ u(t) ≤ P+(t), (12.1c)

where x(t) ∈ R denotes the state of charge (soc) of the VB at time t with the
initial soc x0, a denoting the self-dissipation rate, and the lower and upper energy
limits of the VB are denoted by C1 and C2, respectively. The regulation signal
u(t) acts as an input to the VB and must always lie within the time-varying power
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limits P−(t) and P+(t). Finally, the VB parameters are denoted by vector φ =
[a, C1, C2, x0, P

−(t), P+(t)]. The first-order VB model is applied to characterize
the aggregated flexibility of DERs and many building loads [17, 18, 24].

Homogeneous or heterogeneous ensemble of DERs are represented using this
first-order VB model. For example, if an EV or a real battery is considered along
with ACs or EWHs, then the VB of ACs and EWHs appear in parallel to other
batteries. However, there will be additional challenges to dispatch EVs to provide
grid services due to their charging constraints and this needs further investigation.
The inclusion of solar photovoltaic (PV) results only in additional power limits
as this is a free, instantaneous source of energy, and hence does not result in
an increased battery capacity. This scenario changes if solar PV is connected to
battery storage. The scope of this work extends to ACs, EWHs, and a heterogeneous
ensemble of ACs and EWHs. In what follows, we discuss how the VB parameters
φ are computed.

12.2.1.1 VB Parameters: Power Limits

The time-varying power limits of the VB are identified by extending the binary
search algorithm proposed in [23] to all time points. The algorithm to compute
P+(t) is shown below.

Algorithm 1 Algorithm for finding upper power limit, P+(t) at each t
Input: Initialize α = 0, Lower bound

Initialize β = 1, Upper bound
Output: P+(t)

while the ensemble tracks û(t) = β + Pbase(t) do
No instant violation

α = β, β = 2× β Update α and β
end while
while (β − α)> ε do

Testing a new bound
γ = (α + β)/2
if ensemble tracks û(t) = γ + Pbase(t) then
α = γ

else
β = γ

end if
end while
P+(t) = α
return P+(t)

Similarly, the algorithm to find P−(t) can be formulated by changing β to −β
and γ to −γ in the above algorithm.

The power limits corresponding to an ensemble of 100 AC devices and 120 EWH
devices are shown in Fig. 12.1. In Fig. 12.1, the time-varying lower and upper power
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Fig. 12.1 Time-varying
power limits for 100 AC
devices and (scaled) PJM
regulation signals
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limits are shown in black and red. The regulation signals from PJM are considered
and scaled appropriately to the size of the ensemble. A few regulation signals that
satisfy the power limits are shown in blue in Fig. 12.1. If a regulation signal satisfies
the power limits, then it can be applied to the VB to track that regulation signal. The
charge/discharge limits corresponding to the VB are computed by taking the time
derivative of the power limits.

12.2.1.2 VB Parameters: Initial Condition of VB State

The initial condition of the VB system corresponding to an AC ensemble is denoted
by x0 = x(t)|t=0, where

x(t) =
∑
i

Ti(t)− (T seti − δT /2)
ηi/Ci

. (12.2)

Similarly, the initial condition to the first-order VB model corresponding to an EWH
ensemble is given by xw0 = xw(t)|t=0, where

xw(t) =
∑
i

T setwi
+ δTw/2− Twi (t)

1/Cwi
. (12.3)

Finally in the case of a VB for a heterogeneous ensemble with ACs and EWHs, the
initial condition for the VB can be obtained as a sum of initial conditions defined in
Eqs. (12.2) and (12.3).

After the time-varying power limits and initial condition of the VB corresponding
to the ensemble are computed, the self-dissipation and capacity limits of the VB
need to be computed. In VB parameter computation, it is important to ensure that if
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the ensemble fails to track a regulation signal, then the (linear first-order) VB also
fails to track the regulation signal. In order to ensure this, the time-series data for
the devices are generated after applying the regulation signals to the ensemble. Any
feasible regulation signal corresponding to an ensemble is computed by adding the
normalized regulation signals (from PJM) to the baseline power consumption of the
ensemble. The baseline power consumption is the actual power consumption of the
ensemble without any regulation signal being applied. Any regulation signal sent to
the ensemble for tracking is met by appropriately switching ON/OFF the devices,
which changes the aggregate power consumption of the ensemble to maintain it
close to the regulation signal. The following section discusses one such control
problem formulated as an optimization problem.

12.2.1.3 Tracking Regulation Signals

For a given ensemble of ACs/EWHs, the solution to the following optimization
problem gives a control law indicating which devices have to be in an ON/OFF
state such that the regulation signal is tracked at all times and user defined set points
are satisfied.

minimizes ||T (t +�T )− T set ||22 + ||Tw(t +�T )− T setw ||22 (12.4)

subject to T set − δT /2 ≤ T (t +�T ) ≤ T set + δT /2 (12.5)

T setw −δTw/2≤Tw(t +�T )≤T setw + δTw/2 (12.6)

|ui(t)− s%P | ≤ ε (12.7)

s ∈ {0, 1}, (12.8)

where

Ti(t +�T ) = e
−1
RiCi

�T
Ti(t)+

(
Tai − siηPiRi

) (
1− e −1

RiCi
�T
)
,

Twi (t +�T ) = e−ai (t)�T (Twi (t)+ 1)+
(
e−ai (t)�T − 1

) bi(si, t)
ai(t)

,

ε > 0, ui(t) is the ith regulation signal at time t and T (t), Tw(t) denote the vector
of temperatures corresponding to AC and EWH devices at time t , respectively. The
temperature set points and dead band temperature limits for AC (EWH) devices are
given by T set (T setw ) and δT (δTw).

The constraints, Eqs. (12.5) and (12.6), refer to the temperature bounds on AC
and EWH devices. Notice that this optimization problem is nonconvex due to
the binary constraints on the optimization variable si (ON/OFF status of each
device) given in Eq. (12.8). Equation (12.7) guarantees that the ensemble power
is maintained close to the regulation signal.
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The tracking optimization problem is a mixed integer quadratic program and
it can be solved by applying solvers such as Gurobi or the binary constraints on
switching status and can be relaxed and solved using IPOPT as shown in [42].
For each regulation signal, the tracking regulation signals optimization problem is
solved to identify whether the ensemble can be able to track the regulation signal at
every time step. If at any time-point, the solution does not exist, then it implies that
the ensemble failed to track the regulation signal.

An ensemble of 100 AC devices and 120 EWH ensemble devices are considered
here. The temperature evolution of AC and EWH devices is given in [42].
The parameters such as set-point temperature, outside air temperature, thermal
resistance, and thermal capacitance for the 100 AC devices are chosen such that
no two devices have the same parameters. Similarly, the device parameters for all
the EWHs are chosen. A medium water flow profile is considered for all the EWHs.
The baseline power corresponding to 100 AC devices and a regulation signal are
shown in Fig. 12.2.

Next, it remains to compute the VB parameters, capacity limits, and self-
dissipation. The time-series data for training the autoencoder for transfer learning or
for training the variational autoencoder is generated by applying several regulation
signals to the ensemble and solving the optimization problem given in Eqs. (12.4)–
(12.8) in order to make sure the regulation signal is tracked. If the ensemble of ACs
and EWHs fails to track the regulation signal, then the time-series data is considered
until the time-point at which the tracking fails. Sections 12.4 and 12.5 consider this
time-series data for the deep neural network training to identify the self-dissipation
and capacity limits of the VB.

Fig. 12.2 A regulation signal
and the baseline power of the
ensemble of 100 AC devices
and 120 EWHs
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12.2.2 Validation of VB Model

This section contains a brief discussion on validating the VB models. This work
proposes to use VB models as a measure of aggregate flexibility of the DERs such
as ACs and EWHs. The VB parameters are identified for an ensemble with varying
population as well as for an ensemble with uncertain device parameters. However,
these VB parameters need to be validated. This VB parameter validation can be
done in two different ways, open-loop and closed-loop. As the name suggests, the
open-loop method does not involve applying a regulation signal while in the closed-
loop method, a regulation signal is applied to the ensemble as well as the VB and
their performance is compared. As the open-loop method to validate VB parameters
seems intractable, the best way to compare these VB parameters is by applying
a regulation signal. For any given regulation signal, if the ensemble fails to track
that regulation signal, then an accurate fit of the VB model should capture this
phenomenon in terms of VB capacity or power limit violations. It is important to
mention here that the work by Hughes et al. [24] and Hughes [22] and subsequent
works [42] enforces the condition that the linear first-order VB fails when the
ensemble fails as a constraint in the computation of VB parameters.

12.2.3 Our Contributions

The aggregation of the DERs to form an equivalent battery can be based on several
factors such as heterogeneity of devices and location, among other factors. We
identified two major challenges in identifying the correct VB models for a given
ensemble.

1. Variability in the Ensemble Population (Sect. 12.4): The number of devices
in a given ensemble might vary as the end-use customers have the ability to
opt-in or opt-out of providing grid services. A transfer learning based approach
has been proposed to accommodate for these additional devices in the existing
ensemble. The proposed framework utilizes a stacked autoencoder to mimic the
dimensional reduction problem by finding VB representation at the encoding
dimension. Furthermore, the addition of Net2DeeperNet and Net2WiderNet
allows for the addition/subtraction of devices from the ensemble, which pro-
vides the required flexibility needed to account for variability in the ensemble
population.

2. Parametric Uncertainty in the Devices (Sect. 12.5): Uncertainty in device
parameters cannot be captured using the already proposed stacked autoencoder,
due to its inherent deterministic architecture. This type of uncertainty can be
classified into the aleatoric type. For example, one can introduce aleatoric
uncertainties (stochastic processes) by running the aggregate simulations with
different water flow profiles for EWHs. A machine learning algorithm utilizing a



320 I. Chakraborty et al.

Fig. 12.3 Schematic of our proposed framework

variational autoencoder is proposed to discover uncertainty propagation patterns
and thereby identifying a stochastic VB model.

Some preliminary findings of this work can be found in [11, 42]. The rest
of this chapter is organized as follows. Section 12.2 discusses the mathematical
models and describes how the VB parameters are identified. Section 12.3 discusses
the necessary preliminaries before going to the technical details of the proposed
frameworks. A transfer learning based VB computation is discussed in Sect. 12.4
to handle the variability in the ensemble population. Section 12.5 consists of
stochastic VB computations applying the variational autoencoder framework to
overcome the uncertainty in the device parameters. In Sect. 12.6, we discuss some
numerical results using the proposed method for few example ensemble of devices.
In Sect. 12.7 this chapter ends with final thoughts on this work and discusses future
extensions.

Now before describing the technical details on the proposed frameworks, we
draw the schematic of the whole framework and mention some preliminaries in the
next section (Fig. 12.3).

12.3 Preliminaries

In this section we will describe the major components of our proposed deter-
ministic and stochastic deep network based frameworks. The components are
stacked autoencoder (SAE), long short-term memory (LSTM) network, convolution
network (ConvNet), and probabilistic encoder and decoder.
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12.3.1 Description of Stacked Autoencoder (SAE)

Autoencoder [1] (AE) is a type of deep neural network which is trained by restricting
the output values to be equal to the input values. This also indicates both input and
output spaces have the same dimensionality. The reconstruction error between the
input and output of the network is used to adjust the weights of each layer. Therefore,
the features learned by AE can well represent the input data space. Moreover, the
training of AE is unsupervised, since it does not require label information.

We have considered a supervised learning problem with a training set of n
(input,output) pairs Sn = {(x(1), y(1)), . . . , (x(n), y(n))}, that is sampled from an
unknown distribution q(X, Y ). X is a d dimensional vector in R

d . Z ∈ R
d ′ is a

lower (d ′ < d) dimensional representation of X. Z is linked to X by a deterministic
mapping fθ , where θ is a vector of trainable parameters. We will now briefly
mention the terminology associated with AE.

Encoder Encoder involves a deterministic mapping fθ which transforms an input
vector x into hidden representation z. fθ is an affine nonlinear mapping defined as

fθ (x) = s(Wx + b), (12.9)

where θ = {W , b} is a set of parameters, and W is d ′ × d weight matrix, b is a bias
vector of dimension d ′, and s(.) is an activation function.

Decoder The hidden dimensional representation z is mapped to dimension d, using
mapping gθ ′ and represented as ŷ. The mapping gθ ′ is called the decoder. Similar to
fθ , gθ ′ is also an affine nonlinear mapping defined as

gθ ′(z) = s(W ′z+ b′), (12.10)

where θ ′ = {W ′, b′}. Also, ŷ is not an exact reconstruction of x, but rather in
probabilistic terms as the parameters of a distribution p(X|Ŷ = ŷ) that may
generate x with high probability. We can equate the encoded and decoded outputs
as p(X|Z = z) = p(X|Ŷ = gθ ′(ŷ)). The reconstruction error to be optimized
is L(x, ŷ) ∝ − logp(x|ŷ). For real valued x, L(x, ŷ) = L2(x, ŷ), where L2(., .)

represents the Euclidean distance between two variables. In other words, we will use
the squared error objective for training our autoencoder. For this current work, we
will use affine and linear encoder along with affine and linear decoder with squared
error loss.

Autoencoder training consists of minimizing the reconstruction error by carrying
out the optimization

JAE = arg min
θ,θ ′

Eq0(X)[L(X, Ŷ (X)],
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where E(.)[×] denotes the expectation, and q0 is the empirical distribution defined
by samples in Sn. For the loss function defined before, the optimization problem can
be rewritten as

JAE = arg min
θ,θ ′

Eq0(X)[logp(X|Ŷ )] = gθ ′(fθ (X))].

Intuitively, the objective of training an autoencoder is to minimize the reconstruction
error amounts by maximizing the lower bound on shared information betweenX and
hidden representation Z.

We utilize the proposed AE and stack them to initialize a deep network in a way
similar to deep belief networks [19] or ordinary AEs [6, 30, 46]. Once the AEs
have been properly stacked, the innermost encoding layer output is considered as a
VB representation of the ensemble of TCLs. Furthermore, the number of layers of
the stacked AEs are designed based on the reconstruction error for AEs. Keeping
in mind a sudden change in dimension in both encoding and decoding layers can
cause difficulty in minimizing the reconstruction error in JAE . The parameters of all
layers are fine-tuned using a stochastic-gradient descent approach [8].

12.3.2 Description of Long Short-Term Memory (LSTM)
Network

We have used LSTM [21] to learn the long range temporal dependencies of the
VB state of a given ensemble (encoded representation of the TCL states). For a
LSTM cell with N memory units, at each time step, the evolution of its parameters
is determined by

it = σ(Wxi xt +Whiht−1 +Wci ct−1 + bi1),
ft = σ(Wxf ut +Whf ht−1 +Wcf ct−1 + bif ),
zt = tanh(Wxcxt +Whcht−1 + bc),
ct = ft ' ct−1 + it ' zt ,
ot = σ(Wuout +Whoht−1 +Wcoct−1 + bio ),
ht = ot ' tanh(ct ),

where the Wx() and Wh() terms are the respective rectangular input and square
recurrent weight matrices, Wc() are peephole weight vectors from the cell to each
of the gates, σ denotes sigmoid activation functions (applied element-wise) and the
it , ft , and ot equations denote the input, forget, and output gates, respectively; zt
is the input to the cell ct . The output of a LSTM cell is ot and denotes pointwise
vector products. The forget gate facilitates resetting the state of the LSTM, while the
peephole connections from the cell to the gates enable accurate learning of timings.
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The goal of a LSTM cell training is to estimate the conditional probability
p(ot |it ) where it consists of a concatenated set of variables (VB state of previous
time steps and control input) and ot consists of the VB state of the current time
step. The proposed LSTM calculates this conditional probability by first obtaining
fixed dimensional representation vt of the input it given by the hidden state ht .
Subsequently, the conditional probability of ot is calculated by using the hidden
state representation ht . Given a training dataset with input S and output T , training
of the proposed LSTM is done by maximizing the log probability of the training
objective

JLSTM = 1

|S|
∑

(T ,S)∈S
logp(T |S), (12.11)

where S denotes training set. After successful training, the forecasting is done by
translating the trained LSTM as

T̂ = arg max
T
p(T |S), (12.12)

where T̂ is the LSTM based prediction of output dataset T .

12.3.3 Description of Convolution Neural Network (ConvNet)

A simple convolution neural network (ConvNet) is a sequence of layers, and every
layer of a ConvNet transforms one volume of activations to another through a
differentiable function. In this work, we used two types of layers to build ConvNet
architectures: a convolution layer and a pooling layer. We stacked these two layers
alternately to form a ConvNet. We can write the output of a one-dimensional
ConvNet as follows:

• One-dimensional convolution layer

– Accepts a volume of size W1 × H1 × D1, where W1 is the batch size of the
training data set

– Requires four hyperparameters: number of filters KC , their spatial extent FC ,
length of stride SC , and the amount of zero padding PC

– Produces a volume of sizeW2 ×H2 ×D2, where

W2 = W1

H2 = (H1 − FC + 2PC)/SC + 1

D2 = KC. (12.13)

– Each filter in a convolution layer introduces F ×F ×D1 weights, and in total
(F × F ×D1)×K weights and K biases
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• Pooling layer

– Accepts a volume of sizeW2 ×H2 ×D2
– Requires two hyperparameters: spatial extent FP and stride SP
– Produces a volume of sizeW3 ×H3 ×D3, where

W3 = W2

H3 = (H2 − FP )/SP + 1

D3 = D2. (12.14)

– Introduces zero weights and biases, since the pooling layer computes a fixed
function of the input.

Next, for our proposed ConvNet, we will outline the architecture as applied to
predict VB state and simultaneously learn and estimate VB parameters.

• Input [bs × lb × 1], where bs denotes the batch size of our training process (2 h,
with 1 s resolution).

• The convolutional (CONV) layer computes the output of neurons that are
connected to local regions in the input, each computing a dot product between
their weights and a small region they are connected to in the input volume. We
have multiple CONV layers in our proposed ConvNet, each with a different filter
sizeKC . For an input layer of size [bs × lb× 1], the output of a CONV layer will
be [bs × lb ×KC].

• The rectified linear unit (Relu) layer will apply an element-wise activation
function, such as max(0, x) thresholding at zero. This leaves the size of the output
volume unchanged to [bs × lb ×KC].

• The pooling (POOL) layer will perform a down-sampling operation along the
spatial dimension (width, height), resulting in an output volume such as [bs ×
(lb−FP )
SP

+ 1×KC], with a filter size of FP × SP .

12.3.4 Overview of Probabilistic Encoder and Decoder

Before we can say that our model is representative of our dataset, we need to make
sure that for every data point X in the dataset, there is one (or many) setting of the
latent variables which causes the model to generate something very similar to X.
Formally, say we have a vector of latent variables z in a single dimensional (VB)
space Z which we can easily sample according to some probability density function
(PDF) P(z) defined over Z. Then, say we have a family of deterministic functions
f (z; θ), parameterized by a vector θ in some space �,where f : Z ×�→ X. f is
deterministic, but if z is random and θ is fixed, then f (z; θ) is a random variable in
the space X. We wish to optimize θ such that we can sample z from P(z) and with
high probability f (z; θ) will be similar to X in our original dataset.
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Now we define the previous description mathematically, by aiming to maximize
the probability of each X in the original dataset under the entire generative process,
according to

P(X) =
∫
P(X|z; θ)P (z)dz. (12.15)

In our later proposed variational autoencoder, the choice of output distribution is
considered to be Gaussian, i.e., P(X|z; θ) = N(X|f (z; θ), σ 2 ∗ I ). In other words,
it has mean f (z; θ) and covariance of the product of the identity matrix and a
hyperparameter σ .

Now we describe the proposed framework for handling the variation in number
of devices in the ensemble.

12.4 Variability in DER Population

Before going into the details of describing the method of defining VB state
(x), along with the unknown VB modeling parameters (a, C1, and C2), we will
demonstrate two important parameters of the DER ensemble and their associated
variability and uncertainty. First, the variability is associated with the total number
of DERs in the ensemble. For example, we can compute a VB model for an
ensemble of 100 AC and 120 EWH devices. However, any addition/subtraction
of AC/EWH devices in this existing ensemble results in recalculation of VB
parameters. All the existing methods in literature fail to cope with the retraining
in any other way than the standard “vanilla” way of retraining from scratch, which
is not practically feasible and computationally burdensome. This motivates the
necessity of developing a transfer learning based method to answer the variability
in total number of devices and we will describe this method in detail in this current
section.

12.4.1 Dataset Description and Dataset Splitting

We propose VB state x and subsequently VB parameter φ mentioned in Sect. 12.2.1
for an ensemble of homogeneous (AC or EWH devices) and heterogeneous devices
(mixture of AC and EWH devices). The regulation signals from PJM [45] are
considered and scaled appropriately to match the ensemble of ACs and EWHs. The
devices in each ensemble have to change their state in order to follow a regulation
signal. In doing so, while keeping the aggregate power of the ensemble close to
the regulation signal, the switching action of the ensemble should not violate the
temperature constraints of individual devices. The switching strategy is determined
by the solution of an optimization problem as mentioned in Sect. 12.2.1.3.
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For an ensemble of AC devices, a combination of 100 ACs is considered and
the ON and OFF devices at every time instance are identified by solving an
optimization problem. This generates the temperature state of each device, T (t),
at each time iteration, for 200 distinct regulation signals. If the ensemble fails to
track a regulation signal, then the time-series data is considered up to the point
where tracking fails. The outside air temperature and user set-point for each device
are assumed to be same in this analysis.

The power limits of the ensemble are computed through a one-sided binary
search algorithm as described in the Algorithm in Sect. 12.2.1. The 100 AC
ensemble is simulated for 2 h with 1 s time resolution, for each regulation signal.
For some regulation signals the ensemble violates the power limits P− and P+
before the 2 h running time and only the temperature of each AC is considered, until
the time when the ensemble satisfies the power limit. Finally, for making a suitable
dataset for applying stacked autoencoder (SAE), we stack the temperature of each
AC device, followed by temperature set points for each device, and load efficiency
and thermal capacity of each AC device, by column, and then stack the data points
for each regulation signal by row. For the selected ensemble, this stacking results in a
dataset of dimension R

1440199×203. To obtain the input stack to SAE for an ensemble
of EWHs, a similar approach as described above for AC devices is followed. While
generating this data, it is assumed that water flow into the WHs is at a medium rate.

We have used a tenfold cross validation for training and validation of our
proposed SAE. We have kept the testing set separated as an indicator of generalized
performance. For the given dataset (Sect. 12.4.1) 30% of the dataset is separated and
kept as a test dataset. The remaining 70% of the dataset has been used in the random
cross validation, for both training and validation of the proposed SAE.

12.4.1.1 Transfer Learning via Net2Net for SAE

The structure (input node numbers) for the proposed SAE depends on the number of
TCLs in the ensemble. This requires retraining of the SAE if we change the number
of TCL in the ensemble. We are proposing to use the developed Net2Net strategy
[13] where there is a change in number or type of TCLs in the ensemble. In order to
explain this idea in the context of VB state modeling, we define “source system” (S)
as an ensemble of N devices (where N is a defined integer).1 We will further define
“target system” (T ) as an ensemble of M devices (where M �= N ). The goal is that
S will provide a good internal representation of the given task for T to copy and
begin refining. This idea was initially presented as FitNets [47] and subsequently
modified by Chen et al. in [13] as Net2Net.

We are proposing to combine two Net2Net strategies, namely Net2WiderNet and
Net2DeeperNet.2 Both of them are based on initializing the “target” network to

1For clarity we discuss Net2Net in the context of homogeneous device ensemble.
2Net2WiderNet and Net2DeeperNet were first introduced by Chen et al. in [13].
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represent the same function as the “source” network. As an example, let the SAE
representing S be represented by a function ŷ = f (x, θ), where x is input to the
SAE, ŷ is the output from the SAE (which for SAE is the reconstruction of input
x), and θ is the trainable parameters of the SAE. We propose to choose a new set of
parameters θ ′ for the SAE representing T such that

∀x, f (x, θ) = g(x, θ ′).

Net2DeeperNet As the name suggests, Net2DeeperNet allows us to transform
a network into a deeper one. Mathematically, Net2DeeperNet replaces one
layer with two layers, i.e., h(i) = φ(h(i−1)T W

(i)
1 ) gets replaced by h(i) =

φ(W
(i)T
2 φ(W

(i)T
1 h(i−1))). The new weight matrix W2 is initialized as identity

matrix and get updated in the training process. Moreover, we need to ensure that
φ(Iφ(v)) = φ(v) for all v, in order to ensure Net2DeeperNet can successfully
replace the original network with deeper ones.

Net2WiderNet Net2WiderNet allows a layer to be replaced with a wider layer,
meaning a layer that has more neurons (it can be also narrower if needed). Suppose
that layer i and layer i + 1 are both fully connected layers, and layer i uses an
element-wise non-linearity. To widen layer i, we replace W(i) withW(i+1). If layer
i has m inputs and n outputs, and layer i + 1 has p outputs, then W(i) ∈ R

m×n
and W(i+1) ∈ R

n×p. Net2WiderNet allows us to replace layer i with a layer that
has q outputs, with q > n. We will introduce a random mapping function g :
{1, 2, . . . , q} → {1, 2, . . . , n}, that satisfies

g(j) = j, j ≤ n
g(j) = randomsamplefrom1, 2, . . . , n, j > n.

The new weights in the network for target T is given by

U
(i)
k,j = W(i)

k,g(j),

U
(i+1)
j,h = 1

|{x|g(x) = g(j)}|W
(i+1)
g(j),h.

Here, the first n columns of W(i) are copied directly into U(i). Columns n + 1
through q of U(i) are created by choosing a random sample as defined in g.
The random selection is performed with replacement, so each column of W(i) is
potentially copied many times. For weights in U(i+1), we must account for the
replication by dividing the weight by replication factor given by 1

|{x|g(x)=g(j)}| , so
all the units have exactly the same value as the unit in the network in source S.

The addition of devices can be handled by the Net2Net architecture of the
proposed framework. Table 12.1 shows two examples of device addition for an
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ensemble of AC and EWH devices, along with the computational benefit of using
Net2Net based method. Device subtraction from the ensemble cannot be handled
in similar manner, as this results in empty (untrainable) neurons in the proposed
framework. Our future work will try to address this aspect.

12.4.2 Proposed Method Description–Example Problem
100 AC Device Ensemble

The SAE introduced in Sect. 12.4.1 is trained on the dataset described in Sect. 12.4.1
for an ensemble of 100 AC devices. The objective of the training of SAE is to
represent the given 203 dimensional dataset into a 1 dimensional encoded space, and
subsequently transforms the 1 dimensional encoded representation back into the 203
dimensional original data space, with tolerable loss. The selected layer dimension
of the proposed SAE is 203-150-100-50-20-1-20-50-100-150-203, where all the
activation functions are linear. Moreover, the variables in 203 input dimensions
are not normalized, to represent the VB state dependency on the input variables.
That also motivates the necessity of having unbounded linear activation functions,
throughout the proposed SAE.

Next, when more AC devices are added to the given 100 AC devices ensemble,
we leverage the proposed Net2Net framework introduced in Sect. 12.4.1.1, for the
retraining and subsequent representation of the VB state for the dataset representing
the new ensemble. Obviously the robust way is to retrain the proposed SAE
architecture from scratch for the new dataset, but that includes higher computation
cost and time. We can utilize the red network already trained on 100 AC devices
ensemble, for the new ensemble dataset, which results in significant savings of
computation cost and time.

Finally, we introduced a convolution based LSTM network for forecasting the
VB state evolution, given any regulation signal. Given the SAE is only able to
represent the VB state for the given time the state of TCL is available, we must
utilize a deep network for predicting time evolution of VB state for the ensemble of
TCLs. Simultaneously, this proposed convolution based LSTM network can be used
to estimate the remaining unknown parameter a in the vector φ, which represents
all the parameters related to VB.

12.4.3 Long Term VB State Prediction–Two-Stepped Training
Process

Figure 12.4 shows the proposed deep network architecture addresses the variability
of total number of DERs in the ensemble. We have to keep in mind the SAE
is only active during the time when we have measurements from devices in the
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Fig. 12.4 Proposed transfer learning based deterministic framework

ensemble. Outside of that time window, we depend on the prediction of VB state
from the proposed ConvNet+LSTM architecture (as shown in Fig. 12.4). For the
dataset described in Sect. 12.4.1, the VB state is predicted using a novel two-stepped
training process. During the first step, given X and Y , the network described in
Fig. 12.4 is trained to find a nonlinear mapping F1, which satisfies the tolerance
criteria (ε) associated with prediction accuracy. After successful first step training,
F1 is applied on the input testing matrix, X � [XT0 , XT1 , . . . , XTk ]T , k = nT +
1, nT + 2, . . . , N , and the mapping output F1(X) can be denoted as Ŷ , for the
testing data. Before going to the next training step, the previous VB state (identified
by the SAE) is replaced by Ŷ . This will ensure that while predicting VB state in long
term scale, we are using a previous prediction using the ConvNet+LSTM network
in Fig. 12.4 instead of identified VB state from the SAE.

Before explaining the two-stepped training algorithm, we want to point out
the motivation behind our definition of this training. Intuitively, the proposed
network will learn the unsupervised prediction problem during the first training
step. Successful satisfaction of stopping criteria defined by (ε) does not guarantee
the network’s performance in the testing phase (as the network is never trained
on the testing period). This results in an accumulation of prediction error, while
applying the trained network on the testing data, after the first step of training. We
are proposing a second step training process, where the network will learn a way to
mitigate this prediction error accumulation by looking at the desired output when
SAE is in operation. In Algorithm 2 we showed the necessary steps for the second
step training process. Output X̂ from Algorithm 2, replaces the input data X for the
proposed deep network for the second stepped training, while output Y of the deep
network remains unchanged. Traditional one-step training method cannot rectify the
prediction error accumulation problem over time, unlike the proposed two-stepped
training.
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Algorithm 2 Algorithm for 2nd step of the training process for finding long term
“accurate” prediction of VB state
Input: Trained Network after first step (F1), window size d , X, Y
Output: X̂

for i in range(0,N ) do
count=-d
if i < d then

for j in range(0,5d) do
α[0, j, 0] = X(j + 5d ∗ i)
γ [i, j, 0] = α[0, j, 0]

end for
β[i] = Y(i)

else
for j in range(1,5d) do
α[0, j, 0] = X(j + 5d ∗ i)
γ [i, j, 0] = α[0, j, 0]

end for
for k in range(0,5d,5) do
α[0, k, 0] = β[i + count]
γ [i, j, 0] = α[0, j, 0]
count = count + 1

end for
β[i] = F1(α)

end if
end for
X̂ = γ
return X̂

12.4.4 Probabilistic Moments

At this point, it is important to find the analytic expression of respective
(mean,standard deviation) of the VB state (single dimensional) representation,
given the (mean,standard deviation) of the input space, as we have normalized input
data using its mean and standard deviation. Let us consider X∼N(μX, X) is the
distribution of the input data X. Input data X, passes through a network of the
form (Affine, Affine, Affine, Relu) as shown in Fig. 12.5, before transforming
to VB state (z) in the encoding space. For calculation simplicity, we break
down this series of transformation into the following two-stepped structure

X
(Affine,Affine)−−−−−−−−→ Y

(Affine,Relu)−−−−−−−→ z, then we can write Y = W2

(
W1X + B1

)
+ B2,

where Y ∈ R
150, W2 ∈ R

150×200, B2 ∈ R
150×1, W1 ∈ R

200×295, and B1 ∈ R
200×1.

After some algebraic manipulations, equivalent (mean-standard deviation) for Y,
corresponding to (μX, X), can be written as:

 Y =  X, (12.16)

μY = W2W1μX + (1− X)
(

W2B1 + B2

)
. (12.17)
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Fig. 12.5 Deep network architecture of the proposed SAE based ConvNet+LSTM, for VB state
identification and prediction

Now using (12.17), we have designed B2 to enforce a zero mean distribution at Y,
i.e., Y∼N(0,  Y ). B2 is designed as:

B2 = −W2W1μX

(1− X) −W2B1, (12.18)

to achieve zero mean distribution at Y.
Let us consider Y∼N(μY = 0,  Y ) is the output in the Y space, as discussed

before where μY = 0 and  Y is the known mean and standard deviation of vector
Y. After passing Y, through a network of the form (Affine, ReLU, Affine), the
functional form of the network output is z = q(Y) = W4 max(W3Y+B3, 050)+B4,
where max(.) is an element-wise operator. For our application q : R

150 → R,
W3 ∈ R

50×150, W4 ∈ R
1×50, B3 ∈ R

50×1, B4 ∈ R, and 050 is a 50-dimensional
vector of zeros. Now we will state two theorems to give analytic expression of first
and second statistical moments of q(Y), where Y∼N(μY = 0,  Y ) (see [7] for
proof of these theorems).

Theorem First Moment Theorem: For any function in the form of q(Y), we get

E[qi(Y)] =
50∑
j=1

W4(i, j)

(
1

2
μj − 1

2
μj erf

( −μj√
(2)σj

)

+ 1√
2π
σj exp

(−μ2
j

2σ 2
j

))
+ B4(i), (12.19)
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where μj � W3μY + B3, σj �  ̄(j, j),  ̄ � W3 YWT
3 and erf (x) �

2√
π

∫ x
0 e

−t2dt .

Theorem Second Moment Theorem: For any function in the form of q(Y) where
Y∼N(0,  Y ) and B3 = 050 we get

E

[
q2
i (Y)
]
= 2

50∑
j1=1

j1−1∑
j2=1

W4(i, j1)W4(i, j2)

(
σj1,j2

2π
sin−1

(
σj1,j2

σj1σj2

)

+σj1σj2
2π

√√√√1− σ 2
j1,j2

σ 2
j1
σ 2
j2

+ σj1,j2
4

⎞
⎠+ 1

2

50∑
r=1

W4(i, r)
2σ 2
r + B4(i).

(12.20)

Now mean μz and standard deviation  z of single dimensional VB state Z can be
calculated using (12.19) and (12.20) as:

μz � E[qi(Y)],  z �
√
E[q2

i (Y)] −
(
E[qi(Y)]

)2
. (12.21)

Now we describe the framework for handling the parametric uncertainties in the
devices, in the next section.

12.5 Parametric Uncertainties in the Devices

In this section we consider uncertainty in one of the device parameters, namely the
water draw profile of the EWH in the ensemble. Furthermore, we have considered an
ensemble of 100 AC devices (no uncertainties of device parameters) and 150 EWH
devices (uncertainty in the water draw profile) for VB state calculation. As described
in Sect. 12.4.3, the long term prediction algorithm is borrowed in this section as
well. In Fig. 12.6, we have plotted the stochastic (on the right) and deterministic (on
the left) water draw profile, used in the EWH for generating device level data. We
propose a variational autoencoder (VAE) based framework to address these types of
uncertainties in the ensemble, and consequently SAE is replaced by this designed
VAE in Fig. 12.7.
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Fig. 12.6 Deterministic and stochastic water draw profile used for EWH, used for training the
SAE and VAE in Figs. 12.5 and 12.7, respectively

Fig. 12.7 Schematic architecture of proposed VAE, X represents the device level data from the
ensemble as described in Sect. 12.4.1, z represents the single dimensional VB state representation
and finally X′ represents the reconstruction of the original device level dataset. It is important to
note that this framework can also be used to create realistic synthetic device level dataset
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12.5.1 Description of the Proposed Variational Autoencoder
(VAE)

The key idea behind training our proposed VAE is to attempt to sample z, which is
likely to produce a data point similar to X, and simultaneously compute P(X), just
for the sample z. We now define a functionQ(z|X) which can take a value of X and
give us a distribution over z values that are likely to produce similar data points as
in X.

First we define Kullback–Leibler divergence between P(z|X) and Q(z), for
some arbitraryQ, i.e.,

D[Q(z)||P(z|X) = Ez∼Q[logQ(z)− logP(z|X)]. (12.22)

We next apply the Bayes rule to P(z|X) in Eq. (12.22), and rewrite Eq. (12.22) as

D[Q(z)||P(z|X) = Ez∼Q[logQ(z)−logP(X|z)−logP(z)]+logP(X). (12.23)

Now after negating both sides, and contracting part of Ez∼Q into a KL-divergence
the terms yield

logP(X)−D[Q(z)||P(z|X)] = Ez∼Q[logP(X|z)] −D[Q(z)||P(z)]. (12.24)

Since we want to infer P(X), we construct Q which does not depend on X, and in
particular makes D[Q(z)||P(z|X)] small, i.e.,

logP(X)−D[Q(z)||P(z|X)] = Ez∼Q[logP(X|z)] −D[Q(z|X)||P(z)].
(12.25)

We want to maximize the left-hand side of Eq. (12.25), while we also want to
optimize the right-hand side of Eq. (12.25) using stochastic-gradient descent, given
right choice of Q. Moreover, the right-hand side of Eq. (12.25) behaves similar to
an autoencoder, whereQ encodes X into z and P decodes it to reconstruct X.

In order to perform stochastic-gradient descent on the right side of Eq. (12.25),
we choose Q(z|X) = N(z|μ(X; θ), (X; θ)), where μ and  are deterministic
functions with parameters θ , that can be learned from data. In our framework  is
constrained to be a diagonal matrix. Because of the choice ofQ, the last term of the
right-hand side becomes

D[Q(z|X)||P(z)] = 1

2
(tr( (X))+ (μ(X))T (μ(X)− k − log(det( (X))))),

(12.26)
where k is the dimensionality of the distribution. Finally our objective function for
optimization associated with training of VAE (shown in Fig. 12.8) can be written as

EX∼D[logP(X)−D[Q(z|X)||P(z|X)]] = EX∼D[Ez∼Q[logP(X|z)]
−D[Q(z|X)||P(z)]]. (12.27)
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Fig. 12.8 Training algorithm of the proposed VAE in Fig. 12.7 is shown, where red color shows
sampling operations and blue shows loss functions. ε can be tuned to generate various realistic
device state information once the VAE is trained (especially using the Probabilistic Decoder block).
This adds as a byproduct of the proposed VAE architecture

In Fig. 12.7 we describe the proposed VAE architecture, with z denoting the single
dimensional VB state. Similar as before (as in Sect. 12.4.1), the dataset for this
VAE training consists of the individual device state and parameter for all the ACs
and WHs. Furthermore, in Fig. 12.8 we show a schematic of the proposed training
algorithm of the VAE. We have used stochastic gradient for this training.

Now we evaluate performance of proposed SAE and VAE and consequently
identify VB parameter (φ, as introduced in Sect. 12.2.1) for few example ensemble
of ACs and EWHs.

12.6 Numerical Results

We simulate few ensembles of a combination of ACs and EWHs ensembles,
for evaluating the performance of our proposed deterministic and stochastic VB
framework. The deterministic VB framework helps to address variability in the total
number of devices in the ensemble via the principle of transfer learning. Table 12.1
shows a comparison study between our proposed transfer learning based framework
and the “vanilla” way of retraining from scratch (without transfer learning), for two
different homogeneous ensembles, namely an ensemble of AC and an ensemble
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of EWH devices. In this context, Table 12.1 shows an average computation time3

savings of 77%, when identifying VB states for different ensembles.4

Figure 12.7 describes the proposed VAE architecture for addressing the para-
metric uncertainty, such as the uncertain water draw profile of EWHs in the
ensemble. We have selected an ensemble of 100 ACs and 150 EWHs for numerical
demonstration of this framework. Figures 12.9 and 12.10 show the identified VB
parameters along with their associated uncertainties (rest of the VB parameter,
namely P+ and P− are identified in Sect. 12.2.1.1). We have also calculated the
95% confidence interval values of both energy capacities and self-dissipation rate of
the proposed VB model, for the selected heterogeneous ensemble with parametric
uncertainty in water draw profile as in Fig. 12.6.

Similarly, identified VB state using the deterministic framework in Fig. 12.8 is
shown in Fig. 12.11, for a 2-h window of operation. We have also plotted temporal
evolution of a few AC and EWH devices subjected to a regulation signal, during the
same time period.

To sum up, we have showed performance of our proposed SAE and VAE
based frameworks for several homogeneous and heterogeneous ensembles. The
SAE based framework shows significant computational time savings without any
performance compromise. VAE based framework successfully identifies VB model
parameter in case of parametric uncertainty in the device level. We want to point out
that no information regarding the device level uncertainty is used while training the
proposed VAE based framework, which shows promise of utilization of this type of
framework on real device data.

12.7 Concluding Remarks and Future Directions

In this chapter we have proposed two deep learning based frameworks for identify-
ing VB state, along with the parameters in the first-order VB model. By virtue of
these two frameworks, we have addressed the variability of total number of devices
in the ensemble and the parametric uncertainty in the devices. The first framework
is a transfer learning based SAE, which identifies the VB state when there is
variability in the total number of devices in the ensemble, in addition we have
proposed a ConvNet+LSTm based extension of this proposed framework which
identifies the unknown parameter in the first-order VB model. We have to point out
that this framework identifies VB parameters in a deterministic fashion. However,
the second framework identifies VB parameters in case of presence uncertainty

3We used Epoch (number of training iterations) from Table 12.1 as a measure of computation time.
4There is no direct correlation between the reconstruction error and the flexibility of device
ensemble. However, we have used reconstruction error, a way to validate our claim that virtual
battery model is an equivalent model of the device ensemble. For future validation we have planned
to use tracking performance of device ensemble and the virtual battery representation.
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Fig. 12.9 Identified VB parameters and their associated uncertainties calculated using the pro-
posed VAE in Fig. 12.7. (a) Lower bound of VB energy capacity, C1. (b) Upper bound of VB
energy capacity, C2
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Fig. 12.10 Identified VB parameters (self-dissipation rate) and its associated uncertainties calcu-
lated using the proposed VAE in Fig. 12.7

in the device parameters. This framework utilized VAE based architecture to
identify first-order VB model parameters and their possible variations, in case of
presence uncertainty. Finally, we have shown several numerical demonstrations
of our proposed frameworks in the context of homogeneous and heterogeneous
ensembles of ACs and WHs.

Existing state of the art methods for identification of VB parameters for an
ensemble of thermostatic loads can be either via closed-form expressions or
via optimization-based techniques. Both of these require the knowledge of the
individual load models and parameters. In real-world applications, however, it
is expected that very little about the individual load models and parameters are
known. End-use measurements such as power consumption, room temperature, and
device on/off status are the only sources of information available. This motivates
the necessity of using our proposed frameworks for real in-field applications.
Furthermore, our proposed frameworks require the dataset to be generated by using
a series of regulation signals. These regulation signals might not be available in a
physical application. We want to explore our proposed frameworks in this context
and evaluate the effectiveness of our proposed frameworks when regulation signals
are not available.
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Fig. 12.11 Device states for both ACs and EWHs along with the time evolution of the determin-
istic VB state during a 2-h period

Furthermore, this framework requires sufficient device level data available for
sufficiently long time to handle the temporal transience. For our application we have
chosen to run the device level simulation for 2 h period of time, with 1 s resolution,
as previously mentioned. As we have worked with simulated dataset, data quality is
not a concern but for practical implementation of our framework, data quality can
be a concern while using stacked autoencoder. Our future work will try to address
this aspect.
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Chapter 13
Applications of Artificial Neural
Networks in the Context of Power
Systems

Jan-Hendrik Menke, Marcel Dipp, Zheng Liu, Chenjie Ma, Florian Schäfer,
and Martin Braun

13.1 Introduction

Grid operators face challenges due to an increasing number of volatile assets in their
grids. On the generation side, distributed energy resource (DER) such as photo-
voltaic generators, wind energy converters or combined heat and power plants feed
in according to weather conditions or individual plans. These conditions could result
in unstable grid states. On the demand side, volatile loads such as charging stations
for electric cars draw considerable power, sometimes tens to hundreds of kW, while
being subject to customer preference. Storage systems may put additional stress
on future power systems when they are optimized for maximum profits and not
operated in favor of the distribution system operator.

There are different key performance indicators and security measures a grid oper-
ator has to uphold. For example, in Germany, grid loss is a performance indicator
of how efficiently a grid is operated and therefore, an indicator that regulators use
to incentivize and penalize different grid operators. Real-time monitoring of power
grids is often a prerequisite for security measures, as a violation of operational limits
can be detected, allowing the operator to act accordingly. The single contingency
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policy is used to identify if the grid is inside operational limits even when one grid
asset fails. All these areas can benefit from machine learning, which can make use
of existing data to train a model in advance for specific tasks.

Another area of research, which complements grid operation, is grid planning.
The aforementioned changing conditions in today’s power grids often necessitate
reinforcement or extension of power grids. In grids with a high number of
substations and lines, the optimal reinforcement or extension path is not trivial to
calculate. To find the minimum necessary improvements, possible measures are
validated with a large number of scenarios. In this case, machine learning models
can speed up the validation process considerably while still retaining a high accuracy
for the validation.

Especially the use of artificial neural networks (ANN) [6] has gained popularity
in recent years due to breakthroughs in research and computing power catching
up to fulfill more complex tasks. Therefore, this chapter presents selected works
which apply machine learning techniques, especially using ANN, in the field of
power system analysis. These exemplified applications demonstrate the potential
of machine learning for different technical applications. The research is mainly
based on supervised learning, which is introduced in the next section. Another
popular field of study is reinforcement learning, which can be applied to a variety of
problems related to power systems. Possible applications of reinforcement learning
will be discussed at the end of the chapter.

13.2 Methodological Background

13.2.1 Supervised Learning

In general, machine learning algorithms fulfill specific tasks [6]. Tasks depend on
inputs, also called features and generate an output, called label. Tasks are often too
complex or challenging to be solved by analytic algorithms or rule-based approaches
or the calculation time with these methods is not within desired limits. To fulfill a
task, a model is usually selected and trained by an algorithm. Examples of popular
models are ANN, gradient boosted trees or support vector machines.

Two types of tasks are often used: classification and regression. Classification
tasks seek to assign a discrete label to a set of inputs, i.e., the N (numerical)
features are assigned to one of k specific categories or classes: RN (→ {1, . . . , k}.
Famous examples are found in computer vision, where neural networks can identify
individual animals in pictures. The types of animals, which can be identified, are the
classes of the classification task. On the other hand, there are regression tasks. Here,
the labels are continuous numerical values, so that the task is to transformN features
to a label: RN (→ R. Regression problems can describe technical processes, e.g.,
transform an array of sensor data into a relevant process variable. These problems
are often found in the field of power systems, as many load flow-related variables
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Fig. 13.1 Schema of a machine learning task. (a) During the training phase of a supervised
learning problem, an optimization algorithm uses the training dataset’s features and labels to adjust
the model parameters. At the end of the optimization, the model parameters are set in such a way,
that a given set of features is transformed into the corresponding labels. (b) Prediction/Inference
stage of the task [6]. After the model has been sufficiently trained, unseen features can be fed into
the model, which in turn predicts labels based on its learned parameters. The inference process is
usually very fast and, with suitable training, accurate

are numerical and continuous. Many problems can be defined as a regression task
for machine learning models to solve.

Supervised learning algorithms make use of a dataset which consists both of
features and corresponding labels. Thus, the algorithm which trains a model can
fit the model in such a way that the model output for the given features matches
those of the corresponding labels. The training dataset can be made up of historical
data, manual labeling by humans, or generated by performing expensive analytical
calculations. A model is trained from the dataset, which can, if correctly trained,
generalize for unknown data and predict labels features not seen or trained before.
Figure 13.1 depicts this process. The use cases presented in the following sections
generally make use of supervised learning to solve their particular problems.

13.2.2 Other Areas of Machine Learning

Before presenting applications of supervised learning and ANN, we want to take
a look at other disciplines of machine learning and their potentials in future
applications, namely unsupervised learning and reinforcement learning.

Figure 13.2 compares the different methods of machine learning using illustrative
examples. As introduced in the previous subsections, supervised learning is relying
on labeled data to be available, i.e., there exists a list of inputs for which the
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Fig. 13.2 Comparison of supervised learning, unsupervised learning, and reinforcement learning
with a short description and an application example

outputs are known in advance. With this knowledge, a model can be trained and
is then able to infer outputs for new inputs. An example, which is introduced in
detail in Sect. 13.4, is the monitoring of grid voltages from using a low number of
live measurements. A model is trained using a dataset consisting of a number of
measurements X and corresponding grid voltages y. Afterwards, the trained model
converts live measurements to grid voltages.

In unsupervised learning tasks, only the features of the dataset are known; the
data is not labeled [6], i.e., it dataset contains only features X without any known
outputs. Therefore, the task of unsupervised learning algorithms is to identify useful
structures hidden in the features, i.e., the underlying probability distribution that
generated a dataset. The result could be used to eliminate noise in the features or
to assign new samples into discrete clusters subsequently. A suitable method of
unsupervised learning, e.g., k-means clustering, can categorize the power systems
into a predefined number of clusters. The clusters can then be used for further
analyses. This example is used in Fig. 13.2.

Reinforcement learning means learning how to map situations to actions to
maximize a numerical reward signal [23]. An agent finds itself in a specific state
ST and is allowed to take an action aT ∈ A. It learns which action to take
by receiving reward signals from the actions taken in many subsequent episodes.
The agent is not told which actions to take, e.g., by a set of rules, but only by
discovering reward signals and maximizing them. In complex environments, the
situations following an action may depend on the taken action aT . Therefore, the
reward can be delayed if only a particular sequence of actions yields a high reward.
Contrary to supervised learning, where a labeled set of examples is available to learn
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and use for generalizing for unknown inputs, reinforcement learning is also suited
for interactive problems and problems for which an adequate training dataset cannot
be built beforehand. The agent learns from its own choices, which in turn are made
by using experience. It continually improves itself. The difference to unsupervised
learning is that reinforcement learning seeks to discover a reward signal from the
environment instead of finding a fixed structure or distribution in static features.

Reinforcement learning is used to tackle many different research questions
related to power system operation and planning. A deep policy gradient and
Q-learning as methods of reinforcement learning are used in [14] to optimize
energy flows for a building. Using online training, the reward increases over
many episodes, i.e., the system learns good behavior without training before use.
Further applications are presented in the review paper [28]: reinforcement learning
is employed to improve the decision making to maximize monetary value for
flexibilities, such as energy storage, in [9]. Cost reduction for a cluster of residential
loads is also achieved in [3] by employing convolutional neural networks and Q-
learning. The electricity cost for a cluster of water heaters, constrained by daily
time-of-use price profiles, is minimized through RL in [17]. Simulation results show
that Q-learning can be successfully applied to reduce costs for the operation of the
cluster of water heaters.

While many publications focus on one asset class, e.g., water heaters or electrical
energy storage, little research is available from the point of view of a grid operator.
Most relevant is microgrid operation, for which some research has been published
(e.g., [8, 25]). Yan et al. perform load frequency control of a stochastic power system
using deep reinforcement learning in [27]. Generator turbines are controlled by an
optimized policy, which is continuously improved. Compared to an optimized PID-
controller, the reinforcement learning approach yields fewer frequency deviations.
The researched grid, however, is also of limited scale.

To the authors’ knowledge, (deep) reinforcement learning is not yet applied to
whole interconnected distribution or transmission grids from the point of view of
the power system operator. Since reinforcement learning is a highly active field of
research, applying this research to power system operation could be promising. The
application example we give in Fig. 13.2 is the task of operating a grid within limits
even for unexpected issues. The environment could create several events after which
the grid’s operating limits are breached. The ideal strategy to counteract this problem
is found by reinforcement learning over the course of many runs of an algorithm.

13.2.3 Artificial Neural Networks

ANNs are a type of model used in supervised learning. An ANN consists of
multiple neurons. Mathematically, neurons perform a summing operation of dif-
ferent weighted inputs and “activate” if the summed signal is large enough to
trigger the neuron’s activation function. The resulting signal is often a scaled value,
e.g., between 0 and 1. Multiple neurons connect in layers. The signal undergoes
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several nonlinear transformations as it travels through the layers, depending on
the individual connection weights between the neurons in different layers. Parallel
neurons in a single layer increase the capacity of a model since they can generate
different signals for the same input signal. An ANN architecture is described by
the number of layers that are connected serially and the individual layer sizes (the
number of neurons in the layer). The activation function also considerably changes
the behavior of an ANN.

During training, an optimization algorithm adjusts the connection weights
between the individual neurons, so that a set of features yields the target labels
as outputs. Training-related parameters are the optimization algorithm, its learning
rate (for gradient-based algorithms) and other parameters like learning rate decrease
or weight decay. The following hyperparameters generally define an ANN model.
Specific values are given for the specific tasks in the later sections.

• Number of layers: The number of sequential layers used in the ANN
• Layer size: The number of parallel neurons inside a specific layer
• Activation function: Function used to activate a specific neuron
• Epochs: (Maximum) number of epochs the model is trained
• Batch size: The number of training samples processed per batch
• Learning rate: The learning rate used in the optimizer
• Learning rate decrease: If an adaptive learning rate is used, it describes the factor

with which the learning rate is multiplied at every decrease step

A more in-depth explanation of ANN and the relevant hyperparameters can be
found in the book Deep Learning by Ian Goodfellow et al. [6]. We choose ANNs
as the model to be used in the upcoming sections. ANNs provide state-of-the-art
performance on many data science tasks. They also have a key property required for
our research: support for multiple outputs without computational overhead. Many
machine learning models, e.g., linear regression or decision trees, support only a
single output and thus require an individual model to be fitted for every output. For
ANN, only the number of neurons and layers would be tuned to accommodate the
number of outputs, while a single model is fitted regardless of the number of outputs.

While ANNs are often used as the model for supervised learning problems,
reinforcement learning can be performed without the use of ANN. However,
ANNs are often used in state-of-the-art research of reinforcement learning, e.g.,
in the popular AlphaGo Zero program used to master the game of Go [21]. Here,
ANNs help accelerate the reinforcement learning process by providing estimates
on which action is most advantageous to take given the current observations.
While performing the reinforcement learning process, the ANN is continuously
trained with the current results. Over the course of many episodes, it can learn to
estimate beneficial actions depending on the current state and overall increase the
performance of reinforcement learning.
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13.3 Speeding Up Time Series Calculations

13.3.1 Introduction

Traditional power system planning approaches are based on the “fit-and-forget”
method, which is the analysis of few worst case scenarios. For this method, a small
number of power flow (PF) calculations are sufficient to evaluate compliance with
voltage limits or thermal transformer/line loading limits. Additional PF calculations
are necessary if the single contingency policy (SCP) is taken into account. The
SCP or “N-1 criterion” ensures that if a transmission line or transformer fails, the
system as a whole is still in an operational state. Testing for compliance with the
SCP requires to put every asset out of operation in a simulation for a given loading
situation of the grid. The computational effort is still manageable for grids with less
than a few hundred lines, so that full alternating current (AC) PF calculations can
be used. For larger grids, linearization methods such as the line outage distribution
factor (LODF) method exist.

Transmission planning or modern distribution planning methods are based on
time series. These sophisticated and computationally expensive simulations are
needed to model the time-depended characteristics of distributed energy resources,
storage systems or flexible loads. In time series-based planning, typically one or
multiple years are analyzed with quasi-static PF or optimal power flow (OPF)
simulations. To simulate one year in a 15 min resolution, T = 35,040 PF
calculations are required. If additionally, compliance with the SCP is taken into
account, an additional PF per outage is required for each time step. For a total of N
assets (N − 1 cases), N · T PF evaluations are necessary. For a grid with N = 100
lines and an average calculation time of 25 ms per AC power flow calculation, the
whole evaluation would take more than 24 h if not performed parallelly. Therefore,
a method is needed which checks if a system state complies with voltage limits, line
loading limits, and the SCP.

In this section, we describe a method, first mentioned in [19], which rapidly
evaluates system states based on an approximation of the PF calculation results.
The method is based on open-source machine learning libraries and tools [16] in
combination with pandapower [24], an open-source power system analysis tool.
With this combination a fast and automated regression calculation in Python is
possible. We show how an ANN must be trained to deliver fast and accurate results
for the PF approximation. Results are shown for the SimBench dataset [12]. To
benchmark accuracy and timings, results of the full AC PF calculations are taken
into account as reference values. We show the limitations of the ANN approach and
evaluate calculation times as well as prediction errors.
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13.3.2 Implementation

13.3.2.1 Overview: Regression Method

We train a multilayer perceptron (MLP), a specific architecture of ANNs, to predict
PF results for an annual simulation including the SCP analysis. The line current
flows In for each branch n, as well as the bus voltage magnitudes Vm for each bus
k, are predicted by a MLP-based regression method. Inputs X to the prediction are
the known variables of a power flow calculation (namely the voltage magnitude
Vm and voltage angle Va for slack buses, P , Vm for generator buses and P , Q for
PQ buses). The computationally expensive PF calculations are then substituted with
ANN predictions to speed up the time series simulation considerably.

The required inputs for training the ANN are the grid data, e.g., line and
transformer impedances, the distribution of loads and generators, and the P and
Q injections per bus. For the following analysis, we use time series of 1 year in
15-min resolution (T = 35,136 time steps) as provided in the SimBench dataset
[12].

Figure 13.3 shows an overview of the analysis process. Based on the input
data—the grid data and bus power injections for each time step T—AC PF
results are calculated. Results for the base case, with no line out of service, and
optionally results for the contingency cases, are calculated and stored. Only a certain
percentage of these previously calculated PF results are used to train the MLP.
For this, we randomly select Ttrain time steps and the corresponding results from
the previous simulation. The training data then consists of the input variables, X,
and output variables y. y contains the reference values of line loadings In and
bus voltage magnitudes Vm. For the remaining time steps Tpredict = T − Ttrain,

ANN Training

X = [Vm, Va, P, Q, Z]

y = [ Vm ]  y= [ I% ]

Training Data
Preparation

sample of
power flow

results

Input Data

grid data

time series

Calculate Power
Flow Results

base case

n-1 cases

Validation

mean error

max. error

ANN Prediction

y = [ Vm ]  y = [ I% ]

Fig. 13.3 Overview of the analysis process. Based on the input data, AC power flow results are
calculated for the base case and optionally for the N − 1 cases. A percentage of these results are
used for training of the ANN. The remaining results are then predicted and compared to the correct
values
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the PF results are predicted by the previously trained MLP. As a validation of the
ANN’s accuracy, the predictions are then compared with the calculated PF results
to evaluate the prediction error.

13.3.2.2 ANN Architecture

We use a MLP architecture for the ANN with a hidden layer size of 100 perceptrons
with the rectified linear unit (ReLU) activation function [6]. The ANN is fully
connected with bias. Training lasts for 200 epochs; the training process is performed
by the Adam optimizer [7]. Similar architectures have shown robust results for
multiple regression problems, e.g., in [19]. The hyperparameters are manually
optimized for the specific problem as is general practice. A normalizer scales
the inputs with the maximum norm and a principal component analysis (PCA)
is performed with a randomized singular value decomposition. A MinMaxScaler
scales the outputs. All implementations are taken from the scikit-learn library [16].

We generate the input matrix Xbase by stacking the values known before a
power flow calculation, as shown in Eq. (13.1). These values include the voltage
magnitudes and angles of the slack buses, the voltage magnitudes and real power
injections of the generators buses as well as real power injections P and reactive
power injections Q of PQ buses. Additionally, the impedances of all lines are
defined as inputs zl . If a line is out of service, the impedance is tripled, which has
shown to be sufficient so that the model can learn the influence of the line outage on
the power flow result.

Xbase =
[(
vm,s
) (
va,s
) (
vm,g
)
(pi) (qi) (zl)

]
(13.1)

(vm,s), (va,s) ∈ R
Ttrain×Nslack are the voltage magnitude and angle matrices for each

time step t ∈ Ttrain and slack bus s ∈ Nslack , with Nslack the number of slack
buses. (vm,g) ∈ R

Ttrain×Ngen are the voltage magnitude matrices for each time step
t ∈ Ttrain and generator bus g ∈ Ngen, with Ngen the number of generator buses.
(pi), (qi) ∈ R

Ttrain×Nbus are the bus power injection matrices for each time step
t ∈ Ttrain and bus i ∈ Nbus . (zi) ∈ R

Ttrain×Nline are the absolute magnitudes of the
line impedance values for each time step t ∈ Ttrain and line l ∈ Nline. An ANN
architecture trained with this data allows to predict results, without disconnected
lines, for the remaining time steps T − Ttrain. If results for line outages are to be
predicted, training data must be generated by taking the particular line out of service
and calculating power flow results. The impedance zo of the disconnected line o in
the input vector Xn−1 is then multiplied by a constant c to have an unusual high
impedance value. We chose c = 3, i.e., a tripling of the impedance. Xn−1 is then
stacked to Xbase so that the ANN model can learn the change in power flow results,
when a line is out of service. In total, X has Ttrain · (Nline + 1) rows (all outages +
without outages) and 2 ·Nslack +Ngen + 2 ·Nbus +Nline columns.
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The output matrix y contains the desired targets. We train separate ANNs to
predict either the relative line loadings or voltage magnitudes as outputs. For
the prediction of line loadings, the output matrix yloadings has a maximum of
R
(Ttrain·Nline)×(Nline+1) entries if all contingency cases are calculated. Similarly,

predicting voltages yields a total of R(Ttrain·Nbus)×(Nline+1) entries in the bus voltage
prediction matrix yvoltages .

yloadings =
[
(Il)
]
yvoltages =

[
(Vi)
]

(13.2)

13.3.3 Results

Results are shown for the SimBench high voltage (HV) “mixed” dataset [12], which
includes an annual time series in 15-min resolution. The topology of the grid is
depicted in Fig. 13.4. The grid, which is operated on the 110 kV level, consists of
306 buses, 95 lines, and three slack buses which are the connections to the 380 kV,
voltage level. Loads are connected to 58 of the buses, and 103 distributed generators
are installed in the grid—all other buses model busbars or bushings.

The method is evaluated on a modern consumer laptop (Intel i7-8550U CPU,
16 GB RAM). A single power flow calculation for the SimBench HV grid takes
about 17 ms, the whole year with 35,136 time steps takes 600 s, respectively. To
calculate each contingency case for Nline = 95 lines and for every time step takes
95 · 600 s = 16 h to complete. The time to generate training data for the ANNs is
1.6 h, since only 10% of the time steps are calculated directly. On top, the ANN
training, which includes training for the N − 1-cases, takes an additional 27 s. The
prediction for the remaining results only needs 20 ms. All in all, there is a large
difference in calculation time for the purely PF-based calculations compared to the
ANN-based approach.

The absolute values of the prediction results are shown for the base case
prediction in Fig. 13.5. The results are sorted in ascending order so that the
lines/buses with the smallest absolute error are shown on the left side. The mean
absolute errors of the line loading predictions are 0.1% and 6.3 · 10−5 p.u. for the
voltage magnitudes. Maximum errors are 7.7% for the line loading and 2 · 10−3 p.u.

Fig. 13.4 SimBench 110 kV
“mixed” grid with
Nslack = 3, Nbus = 306 and
Nline = 95
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Fig. 13.5 Absolute prediction errors for line loadings (top) and voltage magnitudes (bottom). Only
results for the base case was trained and predicted

Fig. 13.6 Absolute prediction errors for line loadings (top) and voltage magnitudes (bottom) with
N-1 cases included

for the voltage magnitude predictions. In 99.9% of all predictions the line loading
error is less than 2.19% and the voltage magnitude error less than 7.8 · 10−4 p.u.

Absolute prediction errors including N − 1-cases are shown in Fig. 13.6. When
taking the N − 1-cases into account, the mean errors and max. errors increase
compared to the base case prediction. For the line loadings, the absolute error is
twice as high (mean 0.35%, max. 16.8%). The voltage magnitude prediction error,
however, does not increase much (mean 8.85·10−5 p.u., max. 3·10−3 p.u.). In 99.9%
of all predictions the line loading error is less than 6.18% and the voltage magnitude
error less than 1.6 · 10−3 p.u.
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The proposed regression method to predict power flow results can accurately
predict voltage magnitudes and line loading values for a given time period. In
practice this can be applied to analyze multiple scenarios in power system planning
in a short time. The approach is promising to identify critical loading situations
fast. In future research we want to compare the required minimum amount of
training data within the range of an acceptable approximation error. Also we want
to test the approximation with different control strategies, such as the curtailment of
generation.

13.4 Monitoring of Power Systems Using Neural Networks

13.4.1 Introduction

The state of an electrical grid is commonly completely measured and determined on
the high- and extra-high voltage levels. On the medium and low-voltage level, only
a limited number of measuring devices are available. In the past, due to predictable
generation and consumption of electrical energy, the low measuring densities were
sufficient for the operation of distribution systems.

With the rapid expansion of volatile DER and the changing load behavior,
monitoring methods at the distribution grid level have become relevant to estimate
safety-relevant parameters such as line loadings and bus voltage magnitudes.
Whereas on the high- and extra-high voltage levels the state estimation based on
weighted least squares (WLS) state estimation (SE) has been state of the art for
decades, the measurement density on low and medium voltage levels is not sufficient
to identify the complete state of the power system. A method to solve this problem
is to create pseudo-measurements by using load profiles, historical time series, and
weather data to use WLS SE on the distribution level. Such data may not always be
available or in the case of load profiles, is not sufficient to achieve a high estimation
accuracy.

In this context, we have developed a monitoring method based on ANNs that
functions with only the available measurements and provides an accurate estimation
of electrical variables in distribution grids with a high percentage of DER. The
techniques covered in this section are based on detailed preliminary studies and
simulations, which are described in [13]. Figure 13.7 shows the flow chart of the
methodology.

A scenario generator is used to generate suitable training and test sets for the
ANN using the open-source tool pandapower. The creation and training of the ANNs
are accomplished with the deep learning library PyTorch [15].

This section describes our monitoring method based on ANNs. First, the scenario
generator and the training process are outlined. Then the ANN architectures and
the validation cases used for the simulations are illustrated. Finally, the simulation
results for estimating the security-relevant parameters line loading and voltage
magnitude are presented.
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Fig. 13.7 Flow chart of the monitoring scheme: the left side represents the preparation phase,
while the right box shows the operating phase, in which live measurements, the switching
configuration, and the position of the transformers tap changer for the trained ANN are used to
predict the target values

13.4.2 Scenario Generator

To achieve a high estimation accuracy, the ANN must be properly trained. There-
fore, a high number of potential grid states must be generated. We have developed
a scenario generator, which generates various grid states that are subsequently used
for the ANN training process. The trained ANN will then be capable of estimating
the output parameters for the corresponding input parameters. The scenario gener-
ator provides the option of scaling individual feed-ins or load components as well
as using time series to generate a suitable training and test set. Each component in
the SimBench dataset is scaled with its time series in a 30-min resolution over a
test year, which results in Tyear = 17,568 time steps. Next, a load flow calculation
is performed for every 30-min interval. The results of the power flow calculations,
the corresponding measurements, the switch configuration, and the current position
of the transformer tap are the input values. In this way, a training and test set is
generated to train and test the ANN. Predicted values are the voltage magnitude Vk
for each bus k and the line current flows Il for each line l.

13.4.3 Case Study and Results

Table 13.1 summarizes the applied hyperparameters. The number of neurons in the
hidden layers is set to two times the maximum size of the output data for each ANN.
Thus, the ANN has a hidden layer size of NI,hidden = 2 · (Nln,lv · Nln,mv) = 2 ·
(127+121) = 496 for estimating the line current flows Il and a size ofNV,hidden =
2 ·(Nbus,lv ·Nbus,mv) = 2 ·(115+128) = 486 for estimating the voltage magnitudes
Vk . The training of the ANNs is performed with the Adam optimizer [7].
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Table 13.1 Hyperparameters of the ANNs used for monitoring Il and VK

Hyperparameter ANN: line current flows Il ANN: voltage magnitudes UK
No./layer size/activation function Layer 1/496/ReLU Layer 1/486/ReLU

Layer 2/496/ReLU Layer 2/486/ReLU

Layer 3/248/linear Layer 3/243/linear

Epochs 500

Batch sizel 128

Learning rate 5e−4

Learning rate decrease 0.5

The SimBench grid (semi-urban variant) [12] used for the simulations includes
the low and medium voltage level and is connected to the high voltage level via two
parallel HV/MV transformers. The grid has Nln,mv = 121 cables in the medium
voltage level connecting a total of Nbus,mv = 115 nodes. In addition, a low-voltage
grid is connected by an MV/LV transformer containing Nln,lv = 127 cables and
Nbus,lv = 128 additional nodes. The remaining low-voltage grids attached to the
medium voltage level are represented as aggregated equivalents.

All measurement devices in the LV/MV are shown in Fig. 13.8. In the grid,
measuring devices are located at nine buses. They measure the active power P,
reactive power Q, and voltage magnitude V. Also, in the first line of each feeder
outgoing from the substation, P, Q, and I are measured. Measurement device
tolerance is given by accuracy classes, which describe the accuracy that can be
expected for a measured value. The accuracy class 0.5 is applied for voltage
measurements. The associated standard deviation is 0.5

3 ≈ 0.167%. Thus 99.7% of
all measurements have a maximum error of 0.5% within the 3 σ confidence interval.
For measurements of active and reactive power, a standard deviation of 0.67% is
assumed. Figure 13.8 shows one of three tested switching states.

We train two ANNs, one to estimate line loading and the other to estimate
voltage magnitude. The hyperparameters of the ANNs are selected according to the
specifications in Table 13.1. The training and test set is generated using the scenario
generator based on the time series specified in the SimBench dataset in 15-min
intervals over 1 year. The training set includes the first 6 months (January to June)
and the test set contains the last 6 months (July to December) of the respective year.
Three switching configurations are considered which combine different available
open ring structures. A total of seven different positions for the tap changers of the
HV/MV transformers are covered. This results in a total of 3 · 7 · 17,568 = 368,928
different scenarios for the respective training and test set.

Figures 13.9 and 13.10 show the mean and maximum estimation error for the
line loadings Il and the voltage magnitudes Uk for each line l and bus k over the
complete test period. The mean absolute error for estimating the line loading Il is
0.57% (max. error: 12.45%) at the medium voltage level and 0.32% (max. error:
7.42%) at the low-voltage level. The mean absolute error for the estimation of the
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Fig. 13.8 SimBench LV/MV semi-urban grid with the default switching configuration

voltage magnitude Uk at the medium voltage level is 3.5 · 10−4 p.u. (max. error:
8.3 · 10−3 p.u.) and 4.2 · 10−4 p.u. (max. error: 6 · 10−3 p.u.) at the low voltage the
level.

13.4.4 Conclusion

Monitoring methods capable of identifying safety-relevant parameters, such as Il
and Uk of a grid with a low measurement density, help to increase the reliability
of distribution grids economically. The presented approach of estimating grid
parameters with ANNs can consider the changed load behavior as well as the
volatile feed-in of renewable energies. Other components, such as storages, can
additionally be included in the methodology. Voltage magnitudes and line loadings
are estimated with high accuracy. These variables are important for the grid operator
to determine if the system’s operational constraints are met. In addition to the live
measurements as input values, various switching configurations and the transformer
tap changer are also considered. With this type of monitoring method, the grid
operator can identify critical grid states with high accuracy for most tested cases.
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Fig. 13.9 Monitoring error of line loadings and voltage magnitudes in the SimBench grid at the
LV level

Fig. 13.10 Monitoring error of line loadings and voltage magnitudes in the SimBench grid at the
MV level
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However, there are also limitations to this method. The results only include
the estimations of the test set. Furthermore, the computation time of the scenario
generator and the training time of the ANNs increase significantly with higher time
resolutions, increased switching states, or a higher number of transformers with tap
changers. Additional information on this methodology can be found in [13].

13.5 Using Neural Networks as Grid Equivalents

13.5.1 Introduction

Modern power systems often consist of areas, which are operated by different grid
operators but connected by tie lines. To perform grid analyses in one of the grid
areas, the other connected areas are typically represented by reduced models that
can approximate the behavior of the actual system. The reasons for using reduced
models can be as follows [1]:

• limitation of computing power for large-scale power systems;
• usually, the interconnected areas are operated by different grid operators, each of

which is often unwilling to share the complete system information to keep details
confidential.

Conventional grid equivalence techniques such as Ward equivalents and radial
equivalent independent (REI) equivalents or some variations of these two basic
methods are mostly used to deal with these issues. The accuracy of these approaches
is, however, limited for significant changes in the grid states, e.g., large power
fluctuations of some assets or topology changes [5, 20]. In this section, ANN is
used to approximate the interaction at the interconnection with increased accuracy.

13.5.2 Grid Equivalent Techniques

According to the representation of the model and its application, grid equivalent
techniques can be classified as static and dynamic [5]. In this section, the term “grid
equivalent” refers only to the static equivalent methods which are used for static
analysis only, such as power flow calculations and system operation. To create an
equivalent grid, the user has to determine the boundary which will divide a solved
load flow grid model into an internal and external area. The inner area is typically
modeled in detail because a regional utility is usually interested in this area. The
external area is represented by a reduced model through the grid equivalent methods,
Fig. 13.11.
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Fig. 13.11 Interconnected power system

13.5.2.1 Conventional Grid Equivalents

Assuming that the grid is at a stable operating condition, the basic Ward equivalent
[26] disregards all of the external buses and presents the external system by a set
of equivalent lines, shunts, and power injections attached at boundary buses. In this
process, the Gaussian elimination plays a crucial role in reducing the bus admittance
matrix of the original grid. To approximate the reactive power response of the
external grid, an extended Ward equivalent method is developed, i.e., an additional
PV bus is added without power injection at each boundary bus. Its voltage is equal to
the original boundary bus voltage. However, the accuracy of Ward class equivalents
is limited if either load or generator injections in the external network change. Over
the last decades, attempts have been made to minimize load flow errors; one of them
is called REI.

The idea behind REI equivalent is the aggregation of the power and current
injection in external areas to a fictitious REI bus [4, 18]. Depending on the number of
desired consumer and generator types, any number of REI buses can be created. In
principle, it is advantageous to separate at least consumer and generator types [22].
Then, the grid resulting from the power aggregation can be reduced by Gaussian
elimination. The aggregated consumers (loads) or generators at REI buses are still
existent and configurable. An adaptation to other operating scenarios is possible
without repeating the equivalent process, with the help of a simple scaling of the
operating point of the aggregated devices. REI equivalents are only sufficiently
accurate if the power changes in the external areas are not significant.

13.5.2.2 Grid Equivalents Using Artificial Neural Networks

The interaction between the connected areas is reflected by the power exchange at
the interconnection lines, which is essentially affected by continuously changing
load and DER feed-in. The relationship between the power exchange and the grid
state changes corresponds to the power flow calculation, which requires further grid
topology data. An ANN is an imitation of a biological neural network and can be
used to model any input–output relationship without the exact knowledge of the
system. Assuming that the historical time series of loads and DER, as well as the
related power exchange at the boundary lines, are available, and the other influential
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Fig. 13.12 Application of ANN for grid equivalents

factors such as grid topology, etc., remain constant, a training dataset can be built for
a supervised learning task. This dataset enables a suitable model such as an ANN
to learn the relationship between power exchange and grid state changes without
knowledge of other grid data. The variables related to the grid state are the features
while the power exchange at the boundary lines is the target. In this application,
the grid operators exchange the current grid state with each other so that the ANN
predicts power exchange at the boundary, Fig. 13.12.

The interconnected grid operators are sometimes reluctant to share their informa-
tion with others. Because of this situation, another kind of ANN for unsupervised
learning, autoencoder, could be used, whose primary purpose is to learn the
important properties in the dataset. Hence the dataset is compressed or rather
encrypted.

13.5.3 Case Study and Modeling

13.5.3.1 Test Case

DER are technically capable of providing ancillary services, which could be used in
various system services such as voltage control. Therefore, our test scenario focuses
on the performance of the equivalent grid by any changes in reactive power of
DER and variable load. Using pandapower [24] as the tool for grid simulation, an
interconnected 60 bus system, consisting of two IEEE 30-bus systems [2], is used
as the test case. It is shown in Fig. 13.13. The 30 buses in the left area are treated
as the internal grid. The remaining 30 buses on the right belong to the external grid.
Both grids are connected by the tie lines L2745 and L2347, and then 14 DER units
are added. We assume that the external grid will be reduced for this study. For the
conventional grid equivalent, all the required data are available, e.g., grid topology
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Fig. 13.13 60 bus benchmark grid used as a test case

data and power injections at buses. For the ANN training, dataset are generated
systematically as presented in the following section.

13.5.3.2 Modeling

To evaluate the performance of an ANN as a grid equivalent, extended Ward and
REI equivalents are implemented in pandapower. To obtain the REI equivalents,
three REI buses are created to aggregate the power of generators, load, and DER in
the external grid.

For an ANN to accurately approximate the power flow exchange at the intercon-
nection for a given grid state, it is important to obtain a meaningful training dataset,
which covers as many grid situations as possible. To this end, a scenario generator is
defined. Regarding the test case, the two parameters that are considered are changes
in load and DER power injections, which are independent of each other. Active
power of the loads and DERs are scaled randomly for each class of units between
0 and 100%. Additionally, the reactive power of DERs are scaled individually
and randomly in the available range (cosφ = 0.95) from −100% (inductive) to
100% (capacitive). The final training input consists of 1000 tuples with diverse
scaling values. For every scaling value, a power flow calculation generates the
corresponding power flow at the interconnection as the target for the training set.

Another crucial aspect of training the ANN is the determination of a feasible
model architecture and the selection of a learning algorithm, which perform well
for the given dataset. For this purpose, the optimization method in [10] is used to
obtain the number of layers and other hyperparameters for the ANN. Table 13.2 lists
the used hyperparameters for the presented task. The optimization algorithm Adam
is chosen to optimize the ANN’s weights, and the L1 loss function is used.
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Table 13.2 Model
architecture and
hyperparameters for the ANN
used to model a grid
equivalent

Hyperparameter Values

No./layer size/activation function Input size/116

Layer 1/270/PReLU layer

2/180/PReLU layer

3/4/linear

Epochs 243

Batch size 512

Learning rate 5e−4

Learning rate decrease 0.2

Fig. 13.14 Variation of bus voltage with change in reactive power of DER and loads

13.5.3.3 Results

The performances of the different types of grid equivalents are evaluated in terms
of their ability to estimate the bus voltages of the original grid, with changes in the
reactive power of DER and load. Reactive power injections of DER in the full grid
(internal area and external area) are varied in steps of 5% from 100% (capacitive) to
−100% (inductive). Also, load power injections in the full grid are varied randomly.
All the external buses of the test grid in Fig. 13.13 are replaced by the extended
Ward, REI, and ANN equivalents. The maximum deviation of voltage (magnitude
and phase angle) at the existing buses (buses in the internal area) are observed. It can
be seen from the plot above in Fig. 13.14 that, the per unit (p.u.) voltage magnitude
errors by the three methods are differently affected by the change in reactive power
of DER and loads. In most cases, extended Ward equivalent gives the worst result,
while REI equivalent has generally the better accuracy because of the configurable
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aggregated devices at REI buses. Due to the suitable dataset and hyperparameters,
the ANN equivalent is not very sensitive to the grid status change and thus provides
the best accuracy overall. All of the maximum voltage errors are at the boundary bus
23 or 27. The maximum deviations of voltage phase angles from the plot below in
Fig. 13.14 show that the differences between REI and ANN under various conditions
are not significant. They give better result than extended Ward for the test benchmark
grid.

13.5.4 Conclusion

Grid equivalents are very useful for stability and security analysis of interconnected
power systems. However, conventional equivalents are limited by accepting only
small changes in loads and DER power injections. If a large change in loads and
DER power injections occur, the conventional grid equivalents methods are not
capable to approximate the behavior of the actual system accurately. In this section,
we presented the application of ANNs to pose as grid equivalents. Due to the
suitable selection of data and the optimized setting of hyperparameters, the ANN
can approximate the power exchange at the interconnection with high accuracy even
for significant changes in grid states, e.g., large power fluctuation of some assets.
Existing grid equivalent methods would require the generation of a completely
new equivalent in such situations. The use of ANN for grid equivalents delivers
more flexibility. The user could include other parameters as features in the training
dataset, e.g., the switching states of a grid. An increasing amount of data could
further improve the accuracy and extend the application of the ANN as a grid
equivalent.

13.6 Estimating Power System Losses

13.6.1 Introduction

Efficient operations of power systems, which host DERs, is important to achieve
a sustainable energy system. An accurate determination of energy losses in large
power systems is a fundamental step. However, to evaluate the energy losses of
distribution grids at large scale is a difficult task, mainly due to the huge number
of grid assets and the incomplete measurement at this system level. Normally,
distribution system operators rely on very limited options to determine grid losses,
especially at the low-voltage (LV) level. The growing installation rate and the
intermittent nature of DER pose further difficulties and uncertainties upon the
loss evaluation. For this reason, an accurate evaluation method for grid losses is
highly relevant. The recent developments of machine learning techniques provide
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a promising way to evaluate high-dimensional data in many engineering fields. In
the following subsections, an application of the ANN-based regression approach to
estimate the energy losses of LV grids is presented.

13.6.2 Methodology

For this application, we look at a large number of real low-voltage grids in Germany.
Here, approximately 5000 LV grids in rural areas are investigated. The selected grid
area and the detailed modeling procedure are described in [11]. As currently the
smart meter measurement is not available in Germany, the standard load profile and
the average feed-in profile for each generator technology are provided by the DSO.
Using these annual time series for loads and DER, yearly power flow simulations are
carried out for all grids. These calculations yield the exact annual energy losses of
individual grids. To enhance the comparability among LV grids, the grid losses are
analyzed in the following case study as the relative losses (w.r.t. the total injection in
a grid) instead of the absolute energy losses. Secondly, we evaluate a large number of
grid features. A high-dimensional dataset containing both these features and the grid
losses can be formulated for all grids. To make different features comparable with
each other, these grid features are normalized, e.g., in the commonly applied min-
max scaling scheme. Features include, for example, the total line length of the grid,
data regarding different assets like switches, distribution cabinets, transformers, or
information about loads and distributed generators. Finally, the ANN method is
applied to the dataset to train regression models for estimating the relative losses
of these grids. The obtained estimation model can be further used for estimating
energy losses of other LV grids. The ANN regression scheme is implemented with
the help of a Python machine learning package scikit-learn [16].

13.6.3 Case Study

In order to validate the performance of the proposed evaluation approach, the
estimations of grid losses are compared against the exact results generated by
exhaustive calculations. For all the given samples, the dataset is randomly divided
into three equally sized partitions. One of the partitions is considered as test dataset,
while the remaining two partitions are used as training dataset, based on which the
estimation model is obtained. All validation tests in the case study are following this
threefolds cross-validation scheme. To assert the model’s capability to generalize,
500 tests are repeated for each method and parameter set so that the influences
of bad initialization and unfavorable cross-validation partitioning are minimized in
the statistical analysis. In the following, we focus on the average of all 500 tests.
Running a single test using the evaluation approach typically requires less than 10 s
on consumer-grade computer hardware.
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13.6.3.1 Parameter Selection for ANN models

The performance of machine learning methods can be significantly influenced by
the setting of hyperparameters. In the first case study, the issue of selecting these
parameters for ANN-based on a grid search method [16] is discussed. Due to the
large space of feasible parameters, the grid search approach can only be efficiently
implemented to perform large search steps for some parameters. Sample results of
these grid search tests for ANNs are presented in the following.

Here, both estimation accuracy for selected parameters and linearly interpolated
planes are illustrated in Fig. 13.15. Two parameters, the number of layers and the
size of each hidden layer, which are both related to the construction of hidden
layers, are the most important features for the ANN method. Based on the sample
test results, ANNs can estimate the objective value efficiently at a large range of
parameter combinations. Considering the accuracy and the model complexity of
ANNs, the combination of 3 layers and a hidden layer size of 100 is selected as
the optimum and recommended for further tests. Other related parameters for ANN
models also include the alpha value and the activation method. In particular, the
alpha value is a coefficient of an L2 regularization term that penalizes complex
models. After relevant tests, alpha is selected between 1 and 10 and the rectified
linear unit function is used for ANN activation.

Fig. 13.15 Grid search of hyperparameters for ANN models
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13.6.3.2 Feature Selection and Overall Performance

The second case study focuses on the evaluation accuracy of the proposed regression
approach and the impact of feature selection on its performance. Regarding
feature selection, recursive feature elimination (RFE) tests are implemented. In the
RFE scheme, starting from the complete dataset containing all available features,
unimportant features are eliminated step by step. One specific feature, which has
the least influence on the total estimation error, is removed in each step. The lowest
Mean square error (MSE) in each regression test is evaluated w.r.t. the number of
selected features. These results of estimation errors MSE are also determined as the
numerical average among the threefold cross-validation.

The convergence pattern of these RFE experiments is illustrated in Fig. 13.16.
Firstly, very fast convergence characteristics are correlated with increasing numbers
of features. The best performance using ANNs is achieved with a minimum MSE of
0.117 considering only four features among a total number of 60. Although the ANN
model starts with relative high errors with the first feature (the total line length), its
estimation error is significantly improved by including the second one (the median
of installed power of DER). This observation indicates the large impact of DER
on grid losses. By considering two additional features, the total number of nodes
and the total number of distribution cabinets, the ANN-based regression method
achieves its best performance. Adding further features leads to a slow increase of
the evaluation error. This result shows the importance of selecting the most relevant
features for representing the investigated dataset.

Fig. 13.16 Feature selection and MSE of relative grid losses using the proposed regression
approach
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13.6.4 Conclusion

In this section, we presented a typical application of machine learning techniques
in power distribution system studies. In particular, we developed an ANN-based
regression approach to estimate the LV grid losses from general grid data used as
features. Due to the optimized setting of hyperparameters and the efficient selection
of relevant features regarding loss evaluation, the proposed regression approach
can estimate grid losses with high accuracy. Its performance is validated based
on exhaustive simulation results of grid losses. Also, this approach provides a
significant improvement regarding evaluation speed, since the high time-consuming
simulation process for other grids can be saved. Moreover, the obtained regression
model is capable of addressing the impact of the installation of DER on grid
losses, which gives a useful tool for a currently unsolved question of grid operators.
Therefore, this evaluation approach gives the grid operators a useful tool to quantify
these impacts and specify the losses in individual grids. Subsequently, further
technical measures for reducing loss and improving energy efficiency can be carried
out more effectively.

13.7 Summary

In the last sections, we presented multiple applications of supervised learning in
the field of power system operation and planning. By defining several supervised
learning tasks and using the MLP ANN architecture with optimized hyperparame-
ters, different problems in the area of power system operation and planning could
be solved:

Time series-based grid planning uses a yearly time series to determine when
operational constraints are violated. The required calculations, already more than
30,000 for a single time series in 15-min steps, increase enormously when all single
line contingency cases have to be taken into account. Replacing up to 90% of the
calculations by a fast ANN prediction increases the calculation performance.

A different task is the estimation of grid variables like line loadings in real-
time if only a low number of measurements are available, which are exhibiting
measurement errors. Many methods are not suited to these conditions, but correctly
trained ANN deliver accurate estimates with very little measurement points.

Grid operators may not want to disclose their grid data openly to other grid
operators. For this reason, grid equivalents are used to approximate the power
flow on the boundary lines from and to external areas. Compared to established
techniques like the extended Ward equivalent or REI equivalent, ANNs can provide
estimations for such power flows under dynamic conditions, e.g., for dynamic
distributed feed-in in the external grid areas. Due to its nature, the original grid
topology cannot be reconstructed from the ANN’s parameters.
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Lastly, estimating power system losses without real-time measurements is not a
trivial task. While it is possible to calculate them directly using suitable time series
and power flow calculations, ANNs can take critical parameters of the grid as inputs
and predict relative power losses. The effectiveness of the approach is validated by
using the data of 5000 real LV grids in Germany.

The presented use cases for machine learning and especially ANNs are not
exhaustive, but a collection of examples on how to effectively use machine learning
for different types of tasks in power system analysis. We hope that by adopting and
adjusting these examples, many more tasks can be supported by the use of machine
learning.

Acronyms

AC alternating current
ANN artificial neural networks
DER distributed energy resource
HV high voltage
LODF line outage distribution factor
LV low voltage
MLP multilayer perceptron
MV medium voltage
MSE Mean square error
OPF optimal power flow
PCA principal component analysis
PF power flow
REI radial equivalent independent
ReLU rectified linear unit
RFE recursive feature elimination
SCP single contingency policy
SE state estimation
WLS weighted least squares
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Modern power systems, 361
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Multi-agent systems (MAS), 5, 81, 87
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energy management, 87
net agent, 88
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Multi-class support vector machine (MC-SVM)
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Naive Bayes algorithm, 250
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Neural networks, 57

grid equivalents
ANN, 361–363
application, 361
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modules, 112
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smart grid, 112
state-of-the-art approaches, 111

O
Observers theory, 193–194
Offline learning, 55
Online learning, 55
Optimization, 3

optimal energy flow, 6
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Parameter estimation method, 196
Parametric uncertainties, 333–334
Peak reduction problem, 3
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Physical model-based methods, 188, 191
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parameter estimation method, 196
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practical constraints, 197

Policy-side learning, 69
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Power systems

application, 367
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parameter selection, 368
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Price-based demand response, 79
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Price optimization, 66
Principal component analysis (PCA), 246
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R
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Recommender discrete event model, 39, 40
Recommender system, 27, 29
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expression, 187
formulation, 216
illustration, 187
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Second moment theorem, 333
Self-adaptive systems, 279
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smart battery systems, 280
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Signal Strength Intensity (SSI), 238–239
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Simulation tests
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Single contingency policy (SCP), 120, 124,
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parameters, 285
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sensor information, 286
specification, 286
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Smart battery system
components, 304
configuration case, 299–301
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first-order logic rules, 303
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Smart building energy management system
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energy efficiency, 25
formulation of problem, 17–18
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Douai, 30
physical system and data connection, 20–21
procedure, implementation, 18
recommender system, 27, 29
smart interactive interface, 36–41
smart interactive system, 25–29
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thermal modelling
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MLP-thermal model, 23–25

Smart energy management
SBEMS, 4
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attacks

availability, 234
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DDoS, 235
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Space heating/thermal load models, 93
Stacked autoencoder (SAE)
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AE, 321
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Statistical decision making, 136, 137
Statistical models, 201
Supervised learning
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classification and regression, 346
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machine learning task, 347
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reinforcement learning, 348–349
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thermal modeling, 21
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Two-stage data processing process, 267
Two-stepped training algorithm, 320

U
User behavior, 3
User engagement, building energy systems

automation, 51
cost-optimal strategy, 50
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operation, 50–51
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