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1 Introduction

Polynomial systems are ubiquitous across the sciences. While linear approximations
are often desired for computational and analytic feasibility, certain problems may
not permit such reductions. In 1965 Bruno Buchberger introduced Gröbner bases,
which are multivariate nonlinear generalizations of echelon forms [3, 5]. Since this
landmark thesis, the adoption of Gröbner bases has expanded into diverse fields,
such as geometry [24], image processing [18], oil production [23], quantum field
theory [20], and systems biology [17].

While working with a Gröbner basis (GB) of a system of polynomial equations
is just as natural as working with a triangularization of a linear system, their
complexity can make them cumbersome with which to work: for a general system,
the complexity of Buchberger’s Algorithm is doubly exponential in the number of
variables [4]. The complexity improves in certain settings, such as systems with
finitely many real-valued solutions ([6] is a classic example, whereas [12] is a
more contemporary example), or solutions over finite fields [15]. Indeed much
research has been devoted to improving Buchberger’s Algorithm and analyzing the
complexity and memory usage in more specialized settings (for example, [11, 19]),
and even going beyond traditional ways of working with Gröbner bases [16];
however most results are for characteristic-0 fields, such R or Q.

The goal of our work is to consider the number of Gröbner bases for a system
of polynomial equations over a finite field (which has positive characteristic and
consequently all systems have finitely many solutions). The motivation comes
from the work of [17], in which the authors presented an algorithm to reverse
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engineer a model for a biological network from discretized experimental data and
made a connection between the number of distinct reduced GBs and the number
of (possibly) distinct minimal polynomial models. The number of reduced GBs
associated to a data set gives a quantitative measure for how “underdetermined”
the problem of reverse engineering a model for the underlying biological system is.

The Gröbner fan geometrically encapsulates all reduced Gröbner bases [21].
In [13] the authors provided an algorithm to compute all reduced GBs. When their
number is too large for enumeration, the method in [9] allows one to sample from
the fan. Finally in [22], the authors provide an upper bound for systems with finitely
many solutions; however this bound is much too large for data over a finite field. To
our knowledge, there is no closed form for the number of reduced Gröbner bases, in
particular for systems over finite fields with finitely many solutions.

In this paper we make the following contributions:

1. a formula and some upper bounds of the number of reduced Gröbner bases for
data sets over finite fields

2. geometric characterization of data associated with different numbers of reduced
Gröbner bases.

In Sect. 2, we provide the relevant background, definitions, and results. In Sect. 3,
we discuss the connection between the number of distinct reduced Gröbner bases
for ideals of two points and the geometry of the points; furthermore, we provide a
formula to two-point data sets. We provide upper bounds for data sets of three points
in Sect. 4 and geometric observations for larger sets in Sect. 5. Then in Sect. 6, we
consider the general setting of any fixed number of points over any finite field and
provide an upper bound. We close with a discussion of possible future directions. We
have verified all of the computations referenced in this work, provided illustrative
examples throughout the text, and listed data tables in the Appendix.

2 Background

2.1 Algebraic Geometry Preliminaries

Let K be a field and let R = K[x1, . . . , xn] be a polynomial ring over K . Most
definitions and known results in this section can be found in [8].

A monomial order ≺ is a total order on the set of all monomials in R that is
closed with respect to multiplication and is a well-ordering. The leading term of a
polynomial g ∈ R is thus the largest monomial for the chosen monomial ordering,
denoted as LT≺(g). Also we call LT≺(I ) = 〈LT≺(g) : g ∈ I 〉 the leading term
ideal for an ideal I .

Definition 1 Let ≺ be a monomial order on R and let I be an ideal in R. Then
G ⊂ I is a Gröbner basis for I with respect to ≺ if for all f ∈ I there exists g ∈ G

such that the leading term LT≺(g) divides LT≺(f ).
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It is well known that Gröbner bases exist for every ≺ and make multivariate
polynomial division well defined in that remainders are unique; for example, see [8].
While there are infinitely many orders, there are only finitely many reduced GBs
for a given ideal, that is monic polynomials whose leading terms do not divide
other terms. This results in an equivalence relation where the leading terms of the
representative of each equivalence class can be distinguished (underlined) [21]. In
fact there is a one-to-one correspondence between marked reduced Gröbner bases
and leading term ideals [7].

In this work all Gröbner bases are reduced.

Definition 2 The monomials which do not lie in LT≺(I ) are standard with respect
to ≺; the set of standard monomials for an ideal I is denoted by SM≺(I ).

A set of standard monomials SM≺(I ) for a given monomial order forms a basis
for R/I as a vector space over K . Given their construction, it follows that the sets of
standard monomials associated to an ideal I are in bijection with the leading term
ideals of I .

It is straightforward to check that standard monomials satisfy the following
divisibility property: if xα ∈ SM≺(I ) and xβ divides xα , then xβ ∈ SM≺(I ).
This divisibility property on monomials is equivalent to the following geometric
condition on lattice points.

Definition 3 A set λ ⊂ N
n is a staircase if for all u ∈ λ, v ∈ N

n and vi ≤ ui for
1 ≤ i ≤ n imply v ∈ λ.

Let
(
N

n

m

)
denote the collection of all sets of m points in N

n. Then for λ =
{λ1, . . . , λm} ∈ (

N
n

m

)
, let

∑
λ denote the vector sum

∑m
i=1 λi ∈ N

n. Let � denote

the set of all staircases in
(
N

n

m

)
. The staircase polytope of � is the convex hull of all

points
∑

λ where λ ∈ � (see [2, 22] for more details). For an ideal I , we call P the
staircase polytope of I if P is the staircase polytope of the exponent vectors of the
standard monomial sets associated to I for any monomial order.

For S ⊆ Kn, we call the set I (S) := {h ∈ R | h(s) = 0 ∀s ∈ S} of polynomials
that vanish on S an ideal of points. An ideal is zero dimensional if dimK R/I < ∞;
when K is algebraically closed and |S| = m < ∞, then m = dimK R/I (S). The
number of reduced Gröbner bases for an ideal is in bijection with the number of
vertices of the staircase polytope, which was proved for ideals of points in [22] and
for all other zero-dimensional ideals in [2].

The following results provide an upper bound for the number of reduced Gröbner
bases for an ideal over any field.

Lemma 1 ([1]) The number of vertices of a lattice polytope P ⊂ R
n is #vert (P ) =

O
(
vol(P )(n−1)/(n+1)

)
.

Theorem 1 ([2, 22]) Let I be an ideal such that dimKR/I = m. Let �(I) be the
set of standard monomial sets for I over all monomial orders. Then the number of
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distinct reduced Gröbner bases of I is in bijection with the number of vertices of the

staircase polytope of I ; that is, #GBs = O
(
m2n n−1

n+1

)
.

Example 1 Let S = {(1, 1), (2, 3), (3, 5), (4, 6)} ⊂ R
2. So dimRR[x, y]/I (S) = 4.

Also �(I (S)) = {(1, x, x2, x3), (1, x, x2, y), (1, x, y, y2), (1, y, y2, y3)}.
So the number of reduced Gröbner bases for I (S) is four. Note that there

are five staircases in
(
N

2

4

)
, namely � = {{(0, 0), (1, 0), (2, 0), (3, 0)},

{(0, 0), (1, 0), (2, 0), (0, 1)}, {(0, 0), (1, 0), (0, 1), (1, 1)}, {(0, 0), (1, 0), (0, 1),

(0, 2)}, {(0, 0), (0, 1), (0, 2), (0, 3)}}. The staircase polytope of � is the convex hull
of the vector sums {(6,0), (3,1), (2,2), (1,3), (0,6)}, which has vertices (6,0), (3,1),
(1,3), and (0,6), corresponding to the four standard monomial sets of I (S).

Now we summarize the bijective correspondences for the number of reduced
Gröbner bases for an ideal of points.

Theorem 2 Let I be an ideal. There is a one-to-one correspondence among the
following:

1. distinct marked reduced Gröbner bases of I

2. leading term ideals of I

3. sets of standard monomials for I

4. vertices of the staircase polytope of I .

Proof Equivalence 1 ⇐⇒ 2 is a result in [7]; 2 ⇐⇒ 3 is by construction of
standard monomials; and 1 ⇐⇒ 4 was proved in [22] for ideals of points and in
[2] for other zero-dimensional ideals. �

2.2 Ideals Over Finite Fields

In this section and following, we will work over a finite base field. Let F be a
finite field of characteristic p > 0. We will typically consider the finite field Zp =
{0, 1, . . . , p − 1}, that is the field of remainders of integers upon division by p with
modulo-p addition and multiplication. Let R = F [x1, . . . , xn] be a polynomial ring
over F . Finally let m denote the number of points in a subset of Fn.

A polynomial dynamical system (PDS) over F is a function f = (f1, . . . , fn) :
Fn → Fn where each component fi is a polynomial in R. Below is an algorithm,
first introduced in [17], to compute a PDS from a given set of data written using the
ideal of the input points. This algorithm motivates the leading question in this work.

The general strategy is given input-output data V = {(s1, t1), . . . , (sm, tm)} ⊂
Fn × Fn, find all PDSs that fit V and select a minimal PDS with respect to
polynomial division. This is done as follows. For each xj , compute one interpolating
function fj ∈ R such that fj (si) = tij ; note that si ∈ Fn while tij ∈ F . Then
compute the ideal I := I ({s1, . . . , sm}) of the inputs in V . The model space for V

is the set
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f + I := {(f1 + h1, . . . , fn + hn) : hi ∈ I }

of all PDSs which fit the data in V and where f = (f1, . . . , fn) is as computed
above. A PDS can be selected from f + I by choosing a monomial order ≺,
computing a Gröbner basis G for I , and then computing the remainder (normal

form) f
G

of each fi by dividing fi by the polynomials in G. We call

(f1
G
, f2

G
, . . . , fn

G
)

the minimal PDS with respect to ≺, where G is a Gröbner basis for I with respect
to ≺.

Changing the monomial order may change the resulting minimal PDS. While it
is possible for two reduced Gröbner bases to give rise to the same normal form (see
[17]), it is still the case that in general a set of data points may have many GBs
associated to it. In this way, the number of distinct reduced GBs of I gives an upper
bound for the number of different minimal PDSs. Therefore, we aim to find the
number of distinct reduced Gröbner bases for a given data set.

Example 2 Consider two inputs S = {(0, 0), (1, 1)} ⊂ (Z2)
2. The corresponding

ideal I of the points in S has 2 distinct reduced Gröbner bases, namely

G1 = {x1 − x2, x
2
2 − x2},G2 = {x2 − x1, x

2
1 − x1}

Here, ‘_’ marks the leading terms of the polynomials in a Gröbner basis. There
are two resulting minimal models: any minimal PDS with respect to G1 will be in
terms of x2 only as all x1’s are divided out, while any minimal PDS with respect to
G2 will be in terms of x1 only as all x2’s are divided out. Instead if the inputs are
{(0, 0), (0, 1)}, then I has a unique GB, {x2

2 −x2, x1}, resulting in a unique minimal
PDS.

It is the polynomial g = x1 − x2 that has different leading terms for different
monomial orders. In fact, for monomial orders with x1 � x2, the leading term of g

is x1, while for orders with x2 � x1 the opposite will be true. We say that g has
ambiguous leading terms. We will mark only ambiguous leading terms.

As the elements of the quotient ring R/I are equivalence classes of functions
defined over the inputs S = {s1, . . . sm} in V and since a set of standard monomials

is a basis for R/I , it follows that each reduced polynomial f
G

is written in terms of
standard monomials. When working over a finite field, extensions of classic results
in algebraic geometry state that when the number m of input points is finite, then
m coincides with the dimension of the vector space R/I (S) over F [14], which is
stated below for convenience.

Theorem 3 ([14]) Let S ⊆ F
n and I (S) be the ideal of the points in S. Then |S| =

dimF R/I (S).

Next we state a result about data sets and their complements.
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Theorem 4 ([10]) Let I be the ideal of input points S, and let I c be ideal of the
complement Fn \ S of S. Then we have SM≺(I ) = SM≺(I c) and LT≺(I ) =
LT≺(I c) for a given monomial order ≺. Hence, we have #GB(S) = #GB(Fn \ S).

We say that a polynomial f ∈ R is factor closed if every monomial m ∈ supp(f )

is divisible by all monomials in supp(f ) smaller than m with respect to an order
≺. The following result gives an algebraic description of ideals with unique reduced
Gröbner bases for any monomial order.

Theorem 5 ([10]) A reduced Gröbner basis G with factor-closed generators is
reduced for every monomial order; that is, G is the unique reduced Gröbner basis
for its corresponding ideal.

We end this section with a discussion on the number of distinct reduced Gröbner
bases for extreme cases. The set Zn

p contains pn points. For n = 1, all ideals have
a unique reduced GB since all polynomials are single-variate and as such are factor
closed. We consider cases for n > 1. For empty sets or singletons in Z

n
p, it is

straightforward to show that the ideal of points has a unique reduced GB for any
monomial order; that is, for a point s = (s1, . . . , sn), the ideal of s is I = 〈x1 −
s1, . . . , xn − sn〉 whose generators form a Gröbner basis and hence is unique (via
Theorem 5). According to Theorem 4, the same applies to pn − 1 points. In the rest
of this work, we consider the number of reduced Gröbner bases for an increasing
number of points.

Note that over a finite field, the relation xp − x always holds.

3 Data Sets with m = 2 Points

In this section we consider bounds for the number of Gröbner bases for ideals of
two points and relate the geometry of the points to these numbers.

Define NGB(p, n,m) to be the number of reduced Gröbner bases for ideals of m

points in Z
n
p. The following theorem provides a formula for sets with m = 2 points

in any number of coordinates and over any finite field Zp.

Theorem 6 Let P = (p1, . . . , pn),Q = (q1, . . . , qn) ∈ Z
n
p where P �= Q, and let

I ⊂ Zp[x1, . . . , xn] be the ideal of the points P,Q. The number of distinct reduced
Gröbner bases for I is given by

NGB(p, n, 2) =
∑

pi �=qi
i=1,...,n

1.

Proof Let S = {P,Q} ⊂ Z
n
p with P = (p1, . . . , pn),Q = (q1, . . . , qn). Let

I ⊂ Zp[x1, . . . , xn] be the ideal of the points in S. By Theorem 3, the number of
elements of any set of standard monomials for I is |S| = 2. Since sets of standard
monomials must be closed under division, the only option for such a set is {1, xi}
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for some i = 1, . . . , n. So the possible associated minimally generated leading term
ideals are of the form 〈x1, . . . , xi−1, x

2
i , xi+1, . . . , xn〉. We consider the number of

leading terms ideals in regards to the number of coordinate changes between the
points.

If P and Q have one different coordinate, say p1 �= q1, then the only possible
minimal generating set for the leading term ideal of I is {x2

1 , x2, . . . , xn}. If P , Q

have two different coordinates, say pi �= qi for i = 1, 2, then the possible minimal
generating sets for the leading term ideal of I are {x2

1 , x2, . . . , xn} when x1 ≺ x2 and
{x1, x

2
2 , x3, . . . , xn} when x2 ≺ x1. Increasing the number of coordinate changes

will add another leading term ideal. In general, if pi �= qi for i = 1, . . . , k where
k ≤ n, then the possible minimal generating sets for the leading term ideal of I are
as follows:

1. {x2
1 , x2, . . . , xn} when x1 is the smallest variable in the monomial order among

x1, . . . , xk

2. {x1, x
2
2 , x3, . . . , xn} when x2 is smallest among x1, . . . , xk

...

k. {x1, . . . , xk−1, x
2
k , xk+1, . . . , xn} when xk is smallest among x1, . . . , xk .

�
Corollary 1 The maximum number of distinct reduced Gröbner bases for an ideal
of two points in Z

n
p is NGB(p, n, 2) ≤ n.

With different choices of smallest coordinate, there are up to n different sets of
standard monomials, each corresponding to a distinct reduced Gröbner basis. So,
there are up to n reduced Gröbner bases, with the maximum achieved by two points
with no coordinates in common.

In applications, modeling is often driven by data. So geometric descriptions
of data sets can reveal essential features in the underlying network. We illustrate
the above results by considering different configurations of points. We begin with
Boolean data.

Example 3 Consider two points in Z
2
2. The left graph in Fig. 1 is the plot of all points

in Z
2
2. By decomposing the 2-square on which they lie, we find that pairs of points

that lie along horizontal lines have unique reduced Gröbner bases for any monomial
order; see Fig. 2. For example, {(0, 0), (0, 1)} has ideal of points 〈x1, x

2
2 − x2〉. By

Theorem 5 we see that the generators of I form a unique reduced GB. Similarly

Fig. 1 The lattice of points
in Z

2
2 (left), in Z

3
2 (center),

and in Z
2
3 (right)
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Fig. 2 Four configurations of pairs of points in Z
2
2. From left to right: {(1, 0), (0, 1)} and

{(0, 0), (1, 0)} each have 1 GB, while {(0, 0), (1, 1)} and {(1, 0), (0, 1)} have 2 distinct GBs

Fig. 3 Four configurations of pairs of points in Z
3
2. From left to right: {(1, 0, 1), (1, 1, 1)} and

{(0, 0, 0), (0, 0, 1)} have 1 GB; {(1, 1, 1), (0, 1, 0)} has 2 GBs; and {(1, 0, 1), (0, 1, 0)} has 3 GBs

{(1, 0), (1, 1)} has ideal of points 〈x1 −1, x2
2 −x2〉, which also has a unique reduced

GB. Note that while they have different GBs, they have the same leading term ideal,
namely, 〈x1, x

2
2 〉. In the same way, pairs of points that lie along vertical lines have

unique reduced GBs: sets {(0, 0), (1, 0)} and {(0, 1), (1, 1)} have the unique leading
term ideal 〈x2

1 , x2〉. In each case, these sets have points with one coordinate change.
On the other hand, pairs of points that lie on diagonals have 2 distinct reduced

Gröbner bases as such points have two coordinate changes. For example, the set of
points {(0, 0), (1, 1)} has GBs {x1 −x2, x

2
2 −x2} and {x2

1 −x1, x2 −x1} with leading
term ideals 〈x1, x

2
2 〉 and 〈x2

1 , x2〉 respectively. Similarly the set {(0, 1), (1, 0)} has
{x1 − x2 − 1, x2

2 − x2} and {x2
1 − x1, x2 − x1 − 1} as Gröbner bases with leading

term ideals 〈x1, x
2
2 〉 and 〈x2

1 , x2〉 respectively.

Example 4 Now consider two points in Z
3
2. The center graph in Fig. 1 is the plot

of all points in Z
3
2. In Fig. 3, pairs of points that lie on edges of the 3-cube have 1

reduced Gröbner basis, as the points have one coordinate change: for example the
set {(1, 0, 1), (1, 1, 1)} (first from the left in Fig. 3) has the unique reduced GB {x1−
1, x2

2 −x2, x3 −1} and {(0, 0, 0), (0, 0, 1)} (second) has the unique GB {x1, x2, x
2
3 −

x3}. Points that lie on faces of the 3-cube have 2 GBs as they have 2 coordinate
changes: the third set {(1, 1, 1), (0, 1, 0)} in Fig. 3 has GBs {x1 −x3, x2 −1, x2

3 −x3}
and {x2

1 − x1, x2 − 1, x3 − x1}. Finally points that lie on lines through the interior
have 3 GBs as they have 3 coordinate changes: the fourth set {(1, 0, 1), (0, 1, 0)}
has GBs {x1 − x3, x2 − x3 − 1, x2

3 − x3}, {x1 − x2 − 1, x2
2 − x2, x3 − x2 − 1}, and

{x2
1 − x1, x2 − x1 − 1, x3 + x1}.
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Fig. 4 Three configurations of points in Z
2
3. From left to right: {(0, 0), (0, 2)} has 1 GB, while

{(1, 2), (2, 1)} and {(0, 2), (1, 0)} each have 2 distinct GBs

Next we consider data over the field Z3.

Example 5 Let p = 3 and n = 2. The right graph in Fig. 1 is the plot of all points
in Z

2
3. Similar to the Boolean case in Fig. 2, pairs of points that lie on horizontal

or vertical lines have one associated reduced Gröbner basis for any monomial
order, while pairs of points that lie on any skew line have two distinct GBs. For
example, the set {(0, 0), (0, 2)} in Fig. 4 has ideal of points 〈x1, x

2
2 + x2〉, which has

a unique reduced Gröbner basis via Theorem 5. On the other hand, the set of points
{(1, 2), (2, 1)} has two GBs, namely {x1 + x2, x

2
2 + 1} and {x2

1 − 1, x2 + x1} with
leading term ideals 〈x1, x

2
2 〉 and 〈x2

1 , x2〉 respectively.

In the case of m = 2 points, we see that data that lie on horizontal or vertical
edges have ideals of points with unique Gröbner bases, that is unique models, while
data whose coordinates change simultaneously have multiple models associated
with them. Though the number n of coordinates impacts the number of resulting
models, the field cardinality p does not.

4 Data Sets with m = 3 Points

Theorem 7 The number of distinct reduced Gröbner bases for ideals of three points
in Z

n
p is

NGB(p, n, 3) ≤
{

n(n−1)
2 for p = 2

n(n+1)
2 for p ≥ 3.

Proof We begin by considering the Boolean base field. By Theorem 3, the form
of a set of standard monomials for an ideal of three points is {1, xi, xj } for
xi �= xj . Considering the choice of xi and xj , there are up to n(n−1)

2 different
standard monomial sets, each corresponding to a distinct reduced Gröbner basis
by Theorem 2.

For a base field with p > 2, the two possible forms of standard monomial
sets are {1, xi, xj } for xi �= xj , and {1, xi, x

2
i }. As we showed above, there are

up to n(n−1)
2 distinct reduced Gröbner bases corresponding to {1, xi, xj }. Further,
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the maximum number for the standard monomial form {1, xi, x
2
i } is n. As the two

standard monomial forms can both be associated to the same data set, the upper
bound for a non-Boolean field is n(n−1)

2 + n = n(n+1)
2 . �

Example 6 Let p = 2 and n = 2. Then NGB(2, 2, 3) ≤ 1; that is, all ideals of
three points in Z

2
2 have a unique reduced Gröbner basis, which is corroborated by

Theorem 4 and the fact that ideals of a single point have only one distinct Gröbner
basis for any monomial order.

Unlike the bound for two points, there are sets of three points for which the upper
bound is not sharp. For example when n = 4, the upper bound is NGB(2, 4, 3) ≤ 6;
however the maximum number is 5, which we tested exhaustively (data not shown).

Next we connect configurations of three points to the number of associated
Gröbner bases. We start with Boolean data.

Example 7 Let p = 2 and n = 3. In this case, NGB(2, 3, 3) ≤ 3. Consider the
configurations of points in Z

3
2 in Fig. 5. The data set corresponding to the green

triangle on the top “lid” of the leftmost 3-cube is S1 = {(0, 0, 1), (0, 1, 1), (1, 0, 1)}
and its ideal of points has a unique Gröbner basis, namely {x2

2+x2, x3+1, x1x2, x
2
1 +

x1}. The data set corresponding to the pink triangle in the center 3-cube is S2 =
{(0, 0, 1), (0, 1, 1), (1, 1, 0)} and has two distinct associated GBs, with ambiguous
leading terms distinguished:

{x2
3 +x3, x2x3 +x2 +x3 +1, x2

2 +x2, x1 +x3 +1}, {x1 +x3 +1, x2
2 +x2, x1x2 +x1, x2

1 +x1}.

Finally the data set corresponding to the red triangle in the rightmost 3-cube is
S3 = {(1, 0, 0), (0, 1, 0), (1, 1, 1)} and has three GBs:

{x2
3 + x3, x2x3 + x3, x

2
2 + x2, x1 + x2 + x3 + 1},

{x2
3 + x3, x1 + x2 + x3 + 1, x1x3 + x3, x

2
1 + x1},

{x1 + x2 + x3 + 1, x2
2 + x2, x1x2 + x1 + x2 + 1, x2

1 + x1}.

The example illustrates that points that lie on faces of the 3-cube have 1 Gröbner
basis; points forming a triangle which lies in the interior with 2 collinear vertices
have 2 distinct GBs, and points in other configurations have 3 GBs.

Now we consider data in Z3.

Example 8 Let p = 3 and n = 2. By Theorem 7, we have that NGB(3, 2, 3) ≤ 3.
Consider the point configurations in Fig. 6. The data set corresponding to the green
triangle (left) is S1 = {(0, 0), (0, 1), (1, 1)} and has a unique reduced Gröbner basis:
{x2

2 −x2, x1x2−x1, x
2
1 −x1}. The data set corresponding to the pink triangle (center)

is S2 = {(0, 1), (1, 2), (2, 0)} and has two distinct associated reduced GBs:

{x3
2 − x2, x1 − x2 + 1}, {−x1 + x2 − 1, x3

1 − x1}.
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Fig. 5 Configurations of sets of three points in Z
3
2 corresponding to different numbers of GBs.

Points that are in configurations similar to the green triangles (left) have a unique reduced Gröbner
basis for any monomial order; the pink triangle (center) has two distinct GBs; and the red triangle
(right) has three distinct GBs

Fig. 6 Configurations of sets of three points in Z
2
3 corresponding to unique and non-unique

Gröbner bases. Points that are in configurations similar to the green triangle (left) have a unique
reduced Gröbner basis for any monomial order; the pink triangles (center and right) have two
distinct GBs

The data set corresponding to the pink triangle (right) is S3 = {(0, 1), (1, 2), (2, 0)}
and also has two GBs:

{x3
2 −x2, x1x2

2 −x1x2+x2
2 −x2, x2

1 −x1x2+x1−x2}, {x3
2 −x2, −x2

1 +x1x2−x1+x2, x3
1 −x1}.

Using Fig. 6, we see that three points that are collinear or have two adjacent
collinear points have unique Gröbner bases, while other configurations result in 2
distinct ones. There are no data sets of three points in Z

2
3 that have 3 associated

Gröbner bases which we verified exhaustively (data not shown). Therefore the upper
bound in Theorem 7 is not sharp for p = 3, n = 2.

5 Geometric Observations for Larger Sets

In this section, we offer empirical observations for the number r of distinct reduced
Gröbner bases for data sets of m points, where 2 ≤ m ≤ 6. Furthermore, we state a
conjecture for decreasing r by adding points in so-called linked positions, using the
geometric insights from m = 2, 3 points.
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To generalize the observations from small data sets to larger data sets, we start
with configurations of two points, and then consider changes in r as points are
added.

Definition 4 Given a set S of points, we say that a point q is in a linked position
with respect to the points in S if q is adjacent to a point in S and has minimal sum
of distances to the points in S.

Figure 7 shows the changes in the number of Gröbner bases when points are
added at either linked or non-linked positions.

Example 9 Consider the set S = {(0, 1), (1, 2)}, which has r = 2 Gröbner bases
associated to it. We aim to add a point so that the augmented set has r = 1. There
are four points adjacent to the points in S, namely (0, 0), (0, 2), (1, 1) and (2, 2);
see the green points in the top panel of Fig. 7. The sum of the distances between
(0, 0) and the points in S is

√
5 + 1; similarly for (2, 2). On the other hand, (0, 2)

and (1, 1) both have a distance sum of 2. So (0, 2) and (1, 1) are in linked positions
with respect to S. Note that inclusion of either (0, 2) or (1, 1) to S reduces r to 1,
while inclusion of either of (0, 0) or (2, 2) keeps r = 2.

Example 10 Consider the set S = {(0, 1), (1, 1)}, which has a unique Gröbner
basis. There are five points adjacent to S, namely (0, 0), (0, 2), (1, 0), (1, 2), and
(2, 1); see the green points in the bottom panel of Fig. 7. The first four points have a
distance sum of

√
2 + 1, while the last point (2, 1) has a distance sum of 3. So these

four points are in linked positions with respect to S and inclusion of any one of them
keeps r = 1. On the other hand, (2, 1) is not in linked position; nevertheless adding
it to S results in a unique Gröbner basis due to it being collinear to the points in S.

Adding a red point in Fig. 7, which is not in a linked position with respect to the
starting data set, will not reduce the number of Gröbner bases as its inclusion does
not aid in removing ambiguous leading terms. In fact, the pink triangles in the last
column in Fig. 7 give instances in which r increases.

For p = 3 and n = 2, we computed the number of Gröbner bases for data sets up
to six points; see Fig. 8. The points at the vertices of the green polygons have r = 1.
The uniqueness can be maintained by adding points in linked positions; however the
points at the vertices of the pink polygons have non-unique Gröbner bases.

Based on the geometric observations from Figs. 7 and 8, we provide heuristic
rules to aid in decreasing the number of candidate models as enumerated by the
number of Gröbner bases:

1. For two points, fewer changing coordinates in the data points will lead to fewer
Gröbner bases. In the simplest case, if only one coordinate changes, a unique
model will be generated.

2. For three points, more points lying on horizontal or vertical edges will reduce the
number of Gröbner bases. A unique Gröbner basis arises when the data lie on a
horizontal line, a vertical line or form a right triangle.
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Fig. 7 The green points are adjacent to the blue points. Green triangles are associated with a
unique GB, while pink triangles are associated with non-unique GBs

3. In the process of adding points, to decrease or maintain the number of minimal
models, add points in linked positions with respect to an existing data set: this
guarantees more points lying on horizontal or vertical edges.

By adding points in linked positions, data sets with multiple Gröbner bases can
be transformed to data sets with unique one, as the following example suggests.

Example 11 Consider data sets in Z
4
2. Let Smax be a data set whose ideal of points

has the maximum number of Gröbner bases. Define Sunique = Smax ∪ Sadd where
Sadd is a collection of points such that the augmented data set Sunique has an ideal
of points with a unique GB. The table summarizes for different sized sets how many
points must be added to guarantee a unique Gröbner basis from a data set associated
with the maximum number of Gröbner bases.

max(#GBs) 4 5 6 13 12 13 9 13 12 13 6 5 4

|Smax | 2 3 4 5 6 7 8 9 10 11 12 13 14

|Sunique| 5 5 8 11 11 11 11 12 15 15 15 15 15

|Sadd | 3 2 4 6 5 4 3 3 5 4 3 2 1
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Fig. 8 Point configurations based on the number of Gröbner bases for 2 ≤ m ≤ 6. The left two
columns contain points that form green polygons and correspond to a unique Gröbner basis. The
right column contains the pink polygons corresponding to non-unique GBs

We end this discussion with a conjecture about points in linked positions.

Conjecture 1 Let S be a set of points, q �∈ S, and T = S ∪ {q}. If q is in a linked
position and the convex hull of the points in T does not contain “holes” (i.e., lattice
points not in T ), then #GB(T ) ≤ #GB(S).

6 Upper Bound for the Number of Gröbner Bases

We now focus on the general setting of subsets of any size m in Z
n
p, for any p and

any n.
In Theorem 1, the stated upper bound for the number of Gröbner bases for an

ideal I of m points in Kn is m2n n−1
n+1 , where K is any field; furthermore the number

of Gröbner bases coincides with the number of vertices of the staircase polytope
of I . When the base field is finite, however, this bound becomes unnecessarily
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Fig. 9 The staircase λ ⊂ R
2

(left) has
∑

λ = (0, 6) while
the staircase λ ⊂ Z

2
3 (right)

has
∑

λ = (1, 3)

Fig. 10 The staircase λ ⊂ Z
2
3

with red point (left) has∑
λ = (3, 3) while the

staircase λ ⊂ Z
2
3 with green

point (right) has
∑

λ = (2, 4)

large for even small m. Unlike in characteristic-0 fields, all coordinates in positive-
characteristic fields are bounded above by p; for example see Fig. 9. We will use
the fact that staircases in a finite field are contained in a hypercube of volume pn to
modify the bound. The only part of the construction of the staircase polytope that is
affected by the field characteristic is the maximum value of any vertex. As a vertex
is a vector sum

∑
λ of points in a staircase λ, the modification comes from placing

staircase points aimed to maximize the sum.
Consider any staircase λ of 5 elements. In the following discussion, we will

consider the placement of points so that the vector sum is maximized. We proceed
in a “greedy” manner by maximizing a fixed coordinate. Suppose four (blue) points
have already been placed so as to maximize the value of the second coordinate of∑

λ; see Fig. 10. Placing the green point (1, 1) contributes 1 to the running sum, that
is,

∑m
j=1 λj2 = 4 while placing the red point (2, 0) keeps the sum of the coordinate

unchanged. In fact, to maximize the sum of second coordinate, choose any point
whose second coordinate is largest among the available positions, that is so that the
configuration continues to be a staircase.

Theorem 8 The number of distinct reduced Gröbner bases for an ideal of m points
in Z

n
p is

NGB(p, n,m) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

O

((
p2 �m/p� + (m (mod p))2

)n n−1
n+1

)
: 0 < m ≤ �pn/2�

O

((
p2 �(pn − m)/p� + (−m (mod p))2

)n n−1
n+1

)
: �pn/2� ≤ m < pn

1 : m = 0, pn.

Proof Let I be an ideal of m points in Z
n
p. Recall that the number of Gröbner bases

of I is bijective with the number of vertices of the staircase polytope P of I by
Theorem 2. The cases m = 0, pn are trivial. So we proceed with 0 < m ≤ �pn/2�.
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As P is the convex hull of the points
∑

λ where λ is a staircase corresponding
to the exponent vectors of the standard monomial sets of I , we will show that the
staircase polytope of I is contained in a larger convex body whose volume can be
computed easily.

Let λ = {λ1, . . . , λm}. Then
∑

λ = ∑m
i=1 λi = ∑m

i=1

(∑m
j=1 λji

)
ei where λji

denotes the i-th coordinate of the j -th point and ei is the standard basis vector. Note
that the maximum sum of the i-th coordinate is

M := max
m∑

j=1

λji = (1 + . . . + p − 1)�m/p�
︸ ︷︷ ︸

p�m/p� points

+ (1 + . . . + m (mod p) − 1)
︸ ︷︷ ︸

remaining m (mod p) points

= p(p − 1)

2
�m/p� + (m (mod p))(m (mod p) − 1)

2
.

So the staircase polytope P ⊂ R
n is contained in the hypercube [0,M]n, which has

volume Mn. Therefore vol(P) ≤ Mn. By Lemma 1 and Theorem 1, we have that

NGB(p, n,m) = O
(
vol(P)(n−1)/(n+1)

)

= O

((
Mn

) n−1
n+1

)

= O

((
p2 �m/p� + (m (mod p))2

)n n−1
n+1

)
. (1)

For the final case when m ≥ �pn/2�, the number of Gröbner bases can be
computed by plugging pn − m into the second argument of the above bound,
according to Theorem 4. �

It is straightforward to show that our bound grows much slower than the bound

O
(
m2n n−1

n+1

)
reported in [22], which we have also verified computationally. In the

Appendix Tables 1, 2, 3, and 4 contain numerical results of the new upper bound in
comparison to the values of the original upper bound in [22]. Figure 11 provides a
comparison for selected cases among p = 2, 3 and n = 2, 3, 4.

Not only are the values from Theorem 8 closer to the actual number of GBs,
including an application of Theorem 4 in our bound retains the symmetric nature of
the maximum number of Gröbner bases for ideals of points in Z

n
p. For example, for

p = 2, n = 4, and m = 5 in Fig. 11, the original bound is over 2000, while the
modified bound is in the same order of magnitude as the actual maximum number
of GBs.

The significance of this result is that Theorem 8 provides a more accurate
representation of the maximum number of models associated to a data set, which
may aid in experimental design.
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Fig. 11 Plots comparing the maximum number of Gröbner bases. The caption in each plot
indicates the values of p and n for Zn

p . In each case, all subsets of size m are computed, where
m ranges from 0 to pn and listed on the horizontal axis. The vertical axis is the maximum number
of GBs for a set of size m. The blue solid line with dots shows the actual maximum number of
GBs. The yellow dotted line with triangles is the original upper bound given by Theorem 1, where
the red dashed line with squares is the modified upper bound given by Theorem 8. The data for the
four plots is available in Tables 1, 2, 3, and 4 in the Appendix

7 Discussion

This work relates the geometric configuration of data points with the number of
associated Gröbner bases. In particular we provide some insights into which con-
figurations lead to uniqueness. We give an upper bound for the number of Gröbner
bases for any set over a finite field. We also provide a heuristic for decreasing the
number by adding points in so-called linked positions. An implication of this work
is a more computationally accurate way to predict the number of distinct minimal
models which may aid modelers in estimating the computational cost before running
physical experiments.

Increasing p, n or m inflates the difference between the estimated number of
Gröbner bases and the actual number. The performance of the bound in Theorem 8
works well for large p and m. Though the bound is tighter than the original bound
in [22], it still has large differences from the actual values for n > 4; see Table 5 in
the Appendix. Hence, improving this bound further or finding a closed form for the
number of Gröbner bases remains an important direction for future work.
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Appendix

We provide tables comparing of the maximum number of distinct reduced Gröbner
bases to the predictions made by the original bound (third column) in Theorem 1
and the modified bound (last column) in Theorem 8. In Tables 1, 2, 3, and 4, the
second column shows the actual maximum number as computed for all sets in Z

n
p

of size given in the first column. In Table 5, the maximum number of Gröbner bases
is compared to the predictions made by the two bounds with regards to an increasing
number of coordinates (first column). All values are rounded up to 2 decimal places.

Table 1 p = 2, n = 2

# of points Max # of GBs Original bound Modified bound

1 1 1 1

2 2 2.52 2.52

3 1 4.33 1

4 1 6.35 1

Table 2 p = 2, n = 3

# of points Max # of GBs Original bound Modified bound

1 1 1 1

2 3 8 8

3 3 27 11.18

4 3 64 22.63

5 3 125 11.18

6 3 216 8

7 1 343 1

8 1 512 1

Table 3 p = 2, n = 4

# of points Max # of GBs Original bound Modified bound

1 1 1 1

2 4 27.86 27.86

3 5 195.07 47.59

4 6 776.05 147.03

5 13 2264.94 195.07

6 12 5434.08 389.08

7 13 11,388.61 471.48

8 9 21,618.82 389.08

Half of the table is listed due to space constraints
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Table 4 p = 3, n = 2

# of points Max # of GBs Original bound Modified bound

1 1 1 1

2 2 2.52 2.52

3 2 4.33 4.33

4 2 6.35 4.64

5 2 8.55 4.64

6 2 10.90 4.33

7 2 13.39 2.52

8 1 16 1

9 1 18.72 1

Table 5 p = 2 and m = 4

# of coordinates Max # of GBs Original bound Modified bound

2 1 6.35 1

3 3 64 22.63

4 6 776.05 147.03

5 8 10,321.27 1024

Here we show how the number of Gröbner bases changes as the number of coordinates changes.
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