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1 Introduction and Background

Humans and animals perceive their surroundings based on previous encounters.
Their brains have to store information about those encounters to be accessed in the
future, and the way this information is stored and processed is the subject of active
research in neuroscience. Great strides have also been made towards a mathematical
understanding of the brain. For example, the theory of neural codes studies how the
brain represents external stimulation. These codes are extracted from stereotyped
stimulus-response maps, associating to each neuron a convex receptive field. An
important problem confronted by the brain is to infer properties of a represented
stimulus space without knowledge of the receptive fields, using only the intrinsic
structure of the neural code. To understand how the brain does this, one must first
determine what stimulus space features can be extracted from neural codes.

In this paper, we study neural codes through an algebraic object called a
neural ideal which was introduced in [5] to better understand the combinatorial
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structure of neural codes. More specifically, we focus on convex neural codes (and
their corresponding ideals) since they have been observed experimentally in brain
activity. In Sect. 2 we begin with a survey on what is known so far about convex
neural codes. In Sect. 3 we discuss the structure of neural ideals and their Gröbner
bases. We then introduce results on the connection between the canonical form of
a neural ideal and its reduced Gröbner basis, suggesting that neural ideals which
have a unique reduced Gröbner bases are of particular interest. Thus, in Sect. 4, we
introduce a method for identifying neural codes with unique Gröbner bases. These
results suggest a conjecture, stated in Sect. 5, that provides a characterization of
convex neural codes based on their Gröbner bases.

We first review some terminology and results here (see [5]). Given a neural code
C written as a set of binary strings of length n (alternatively, it can be written as
subsets of [n]), we can construct the ideal of polynomials that vanish on C:

IC := {p ∈ F2[x1, . . . , xn] : p(c) = 0 for all c ∈ C}, (1)

where F2 is the finite field of two elements (0 and 1), and F2[x1, . . . , xn] is the
polynomial ring in n variables with coefficients in F2. Note that since 02 = 0 and
12 = 1, IC always contains the set of Boolean relations B = 〈x2

i − xi : i ∈ [n]〉.
We can construct a generating set for the rest of the elements of IC , via indicator

functions: Given a codeword v ∈ F
2, define

ρv :=
∏

i:vi=1

xi

∏

j :vj =0

(1 + xj ).

Note that ρv(v) = 1 and ρv(c) = 0 for c �= v. From these functions, we can build
the neural ideal of C:

JC := 〈ρv : v ∈ F
n
2 \ C〉

Note that IC = B + JC [5]. The functions ρv that generate JC are examples of
pseudo-monomials: these are polynomials f ∈ F2[x1, . . . , xn] of the form

f = xσ

∏

j∈τ

(1 + xj ),

where xσ := ∏
i∈σ xi and σ, τ ⊆ [n] with σ ∩ τ = ∅.

Given an ideal J ⊂ F2[x1, . . . , xn], a pseudo-monomial f ∈ J is minimal if
there does not exist another pseudo-monomial g ∈ J with deg(g) < deg(f ) and
f = hg for some h ∈ F2[x1, . . . , xn]. We define the canonical form of JC to be the
set of all minimal pseudo-monomials of JC , denoted CF(JC). For any neural code
C, the set CF(JC) is a generating set for the neural ideal JC . The canonical form
CF(JC) can be constructed algorithmically from the code C (see [5, 13]).
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Example 1 Given the code C = {000, 100, 110, 101, 001, 111}, there are two
elements in F

3
2 that are not in C: 010 and 011. From these, we construct the neural

ideal:

JC = 〈x2(1 + x1)(1 + x3), x2x3(1 + x1)〉

The canonical form is CF(JC) = {x2(1 + x1)}. Observe that if a codeword c

satisfies x2(1 + x1) = 0, then whenever neuron 2 is firing (x2 = 1), we must have
neuron 1 firing, as well (x1 = 1).

2 Convexity of Neural Codes

We will now investigate combinatorial codes arising from covers of a stimulus
space. Let X be a topological space. A collection of non-empty open sets U =
{U1, U2, . . . , Un}, Ui ⊂ X, is called an open cover. Given an open cover U, the
code of the cover is the neural code defined as:

C(U) = {σ ⊆ [n] :
⋂

i∈σ

Ui \
⋃

j∈[n]\σ
Uj �= ∅}.

Given a combinatorial code C, we say that C is realized by an open cover U if
C = C(U). If C can be realized by U, where U = {U1, . . . , Un} with each Ui a
convex subset of Rd , then C is a convex code with geometric realization U.

Not all combinatorial codes are convex. For example, the code C =
{∅, 1, 2, 13, 23} cannot be realized with convex sets, as the set U3 is the disjoint
union of open sets U1 ∩ U3 and U2 ∩ U3, forcing it to be disconnected (and thus,
non-convex). A complete condition for convexity is still unknown; we summarize
here the known results.

Note that in the previous example the relationship in the receptive fields forced
the non-convexity of one of the sets, and the presence of the single codeword
3 would eliminate this topological inconsistency. This is an example of a local
obstruction to convexity, instrinsic to the combinatorial structure of the code itself.

Definition 1 ([3]) Let C = C(U) be a code on n neurons, with U = {U1, . . . , Un}
a realization of C. Let Uσ =

⋂

i∈σ

Ui . A receptive field relationship (RF relationship)

of C is a pair (σ, τ ) corresponding to the set containment

Uσ ⊆
⋃

i∈τ

Ui,

where σ �= ∅, σ∩τ = ∅, and Uσ ∩Ui �= ∅ for all i ∈ τ. A receptive field relationship
is minimal if no single neuron from σ or τ can be removed without destroying the
containment.
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Fig. 1 Convex realization of
C1

145 14 124 12 123

In general, we can detect local obstructions via the simplicial complex of a code.
Given a code C, its simplicial complex is �(C) := {σ ⊆ [n] : σ ⊆ c for some c ∈
C}. For a simplicial complex �, the restriction of � to σ is the simplicial complex
�|σ := {ω ∈ � : ω ⊂ σ }. For any σ ∈ �, the link of σ in � is Lkσ (�) = {w ∈
� : σ ∩ w = ∅, σ ∪ w ∈ �}.
Definition 2 ([3]) Let (σ, τ ) be a receptive field relationship, and let � = �(C).
We say that (σ, τ ) is a local obstruction of C if τ �= ∅ and Lkσ (�|σ∪τ ) is not
contractible.

Note that in C = {∅, 1, 2, 13, 23}, (σ, τ ) = ({3}, {1, 2}) is a receptive field
relationship (U3 ⊆ U1 ∪ U2), and Lk3(�|123) = {1, 2}, which is disconnected
(and thus, not contractible).

Notice that the simplicial complex of a code C is defined by its maximal
codewords. A maximal codeword σ of a code C is maximal under inclusion in C. A
code is max intersection-complete if it is closed under taking all intersections of its
maximal codewords.

We can now state necessary and sufficient conditions for convexity:

Proposition 1 For a neural code C:

1. If C is max intersection-complete, then C is convex.
2. If C is convex, then C has no local obstructions.

Part 1 of Proposition 1 is due to [2], while Part 2 is due to [3] as a consequence
of the Nerve Lemma.

The converses of Part 1 and Part 2 of Proposition 1 hold for n ≤
4 (see [3]); however, these statements fail for n ≥ 5. An example of
a convex code which is not max intersection-complete can be seen via
C1 = {123, 124, 145, 14, 12} in Fig. 1. An example of a non-convex
code which has no local obstructions was found in [12], which is code
C4 = {2345, 123, 134, 145, 13, 14, 23, 34, 45, 3, 4,∅}. The case for n = 5 neurons
has also been fully classified; see [9].

3 Structure of the Neural Ideal

We now turn to a discussion relating convexity to the structure of the neural ideal. As
we saw in Example 1 in Sect. 1, the canonical form encodes minimal descriptions of
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the relationships between the sets Ui . The following lemma given in [5] generalizes
this observation:

Lemma 1 Let C = C(U) be a neural code on n neurons with neural ideal JC . For
σ, τ ∈ [n] with σ ∩ τ = ∅, xσ

∏
j∈τ (1 + xj ) ∈ JC if and only if (σ, τ ) is an RF

relationship (i.e., Uσ ⊆ ⋃
j∈τ Uj .).

Moreover, xσ

∏
j∈τ (1 + xj ) ∈ CF(JC) if and only if (σ, τ ) is a minimal RF

relationship.

From Example 1, the minimal pseudo-monomial x2(1+x1) gives us the minimal
relationship U2 ⊆ U1.

3.1 Gröbner Basis of a Neural Ideal

The canonical form CF(JC) is a particular generating set for JC that gives
information about the structure of the sets Ui . Another well-known generating set
for a polynomial ideal is a Gröbner basis.

Given an ideal in a polynomial ring R = k[x1, . . . , xn] and a monomial ordering
< on R, we can let LT<(I) denote the ideal generated by the leading terms of
elements in I . If G is a finite subset of I whose leading terms generate LT<(I),
then G is a Gröbner basis for I . A Gröbner basis for I is always a generating set
for the ideal I . A Gröbner basis G is reduced if, given any element f ∈ G, f has
leading coefficient 1 and no term of f is divisible by the leading term of any g ∈ G

with g �= f . We often also talk about marked reduced Gröbner bases to emphasize
that the leading term of each polynomial in a Gröbner basis is distinguished. For a
given monomial order <, the marked reduced Gröbner basis exists and is unique.

A universal Gröbner basis for an ideal I is a Gröbner basis that is a Gröbner basis
with respect to any monomial order. The universal Gröbner basis Ĝ of an ideal I

is the union of all reduced Gröbner bases of I . Since the set of all reduced Gröbner
bases is finite, the universal Gröbner basis always exists and is unique.

If a set is a Gröbner basis, it is not necessarily a reduced Gröbner basis nor a
universal Gröbner basis. However, it was shown in [10] that if the canonical form
is a Gröbner basis, then it is in fact the universal Gröbner basis for JC . This result
leads to the following proposition:

Proposition 2 ([10]) Let C be a neural code with neural ideal JC . The following
are equivalent:

1. The canonical form of JC is a Gröbner basis of JC .
2. The canonical form of JC is the universal Gröbner basis of JC .
3. The universal Gröbner basis of JC consists of pseudo-monomials.

In particular, this gives a way to certify that the canonical form is not a Gröbner
basis: If, for a given term order, the reduced Gröbner basis contains polynomials
which are not pseudo-monomials, this implies that the canonical form is not a
Gröbner basis.
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The following proposition refines Proposition 2 by replacing its second statement
with “The canonical form of JC has a unique marked reduced Gröbner basis.”

Proposition 3 Let C be a code and JC its neural ideal. CF(JC) is a Gröbner basis
if and only if JC has a unique marked reduced Gröbner basis.

Proof In [7], it is shown that an ideal has a unique marked reduced Gröbner basis if
and only if all marked reduced Gröbner basis generators are factor-closed, i.e., the
non-leading terms of each polynomial divide its leading term. Furthermore, in [10]
the authors prove that if the universal Gröbner basis of JC consists solely of pseudo-
monomials, then its canonical form is a Gröbner basis. Since over F2 all polynomials
that are factor-closed and square-free are pseudo-monomials, the result follows. 
�

Notice that by Proposition 3, the goal of classifying codes whose neural ideals
have canonical forms that are Gröbner bases becomes identical to classifying codes
whose ideals of points (or neural ideals) have unique marked reduced Gröbner basis.
In Sect. 4 we present an efficient algorithm for testing whether a code has a neural
ideal with a unique marked reduced Gröbner basis.

Lemma 2 If there is a pseudo-monomial f ∈ CF(JC) whose leading term is
divisible by any term of another pseudo-monomial g ∈ CF(JC), then the canonical
form is not a Gröbner basis for JC for any monomial order.

Proof If f ∈ CF(JC) has leading term that is divisible by a term of another pseudo-
monomial g ∈ CF(JC), then the canonical form cannot be a reduced Gröbner basis,
which by Proposition 2 implies that it is not a Gröbner basis. 
�

We will utilize this fact in the next subsection.

3.2 Canonical Form and Gröbner Bases of JC

Recall from Sect. 2 that if a code has a local obstruction, then it is not convex. Since
the canonical form CF(JC) encodes information about the minimal relationships
between the sets Ui , the canonical form can be used to detect certain local
obstructions in the code. The following definition was introduced in [4].

Definition 3 A local obstruction (σ, τ ) is CF-detectable if there exists a local
obstruction (σ ′, τ ′) with σ ′ ⊂ σ and τ ′ ⊂ τ such that (σ ′, τ ′) is a minimal RF
relationship.

The next proposition connects the convexity of C to the Gröbner basis of JC .

Proposition 4 Given a code C, if C has a CF-detectable local obstruction, then the
canonical form of JC is not a Gröbner basis.

Proof By Theorem 5.4 in [4], if C has a CF-detectable local obstruction, then there
exist σ, τ ⊂ [n], τ �= ∅ with xσ

∏
i∈τ (1 + xi) ∈ CF(JC) and xσ xτ ∈ JC . Since

xσ xτ is a pseudo-monomial in JC and CF(JC) is a generating set for JC , there
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exists xα ∈ CF(JC) with α ⊂ σ ∪ τ , so the canonical form is not a Gröbner basis
by Proposition 5. 
�

Thus, if a code C has a CF-detectable local obstruction, C is both not convex and
its canonical form is not a Gröbner basis for JC .

Proposition 5 Let C be a neural code with neural ideal JC and canonical form
CF(JC). If there exist two distinct pseudo-monomials f = xσ

∏
i∈τ (1 + xi) and

g = xα

∏
j∈β(1 + xj ) ∈ CF(JC) with α ∪ β ⊆ σ ∪ τ , then the canonical form

CF(JC) is not a Gröbner basis of JC .

Proof For any monomial order, the leading term of f is xσ xτ while the leading
term of g is xαxβ . Since α∪β ⊆ σ ∪τ implies that xαxβ divides xσ xτ , by Lemma 2
we have that the canonical form is not a Gröbner basis. 
�

Unfortunately, the converse of Proposition 5 fails as the following example
shows.

Example 2 The code
C = {∅, 1, 2, 3, 4, 5, 134, 1234, 234, 1235, 125, 13, 15, 23, 25, 14, 24, 235, 135,

1245, 35, 123, 12345} has canonical form CF(JC) = {x3x4(1 + x1)(1 +
x2), x1x2(1 + x3)(1 + x5), x4x5(1 + x1), x4x5(1 + x2)}, with leading terms
x1x2x3x4, x1x2x3x5, x1x4x5, x2x4x5, none of which are divisible by the others.
However, the universal Gröbner basis of JC has the polynomial x4(x1x2 + x1x3 +
x2x3 + x3x4 + x3 + x5), which is not a pseudo-monomial. Thus, by Proposition 2,
the canonical form of this code is not a Gröbner basis.

We do have the following partial converse to Proposition 5:

Proposition 6 Let C be a neural code with canonical form CF(JC). If, for all
minimal pseudomonomials xσ

∏
i∈τ (1 + xi) and xα

∏
j∈β(1 + xj ) ∈ CF(JC), we

have (σ ∪ τ) ∩ (α ∪ β) = ∅, then CF(JC) is a Gröbner basis for JC .

Proof Let g = xσ

∏
i∈τ (1 + xi) and h = xα

∏
j∈β(1 + xj ) ∈ CF(JC). Since the

leading terms of g and h are xσ xτ and xαxβ respectively, if (σ ∪ τ) ∩ (α ∪ β) = ∅,
then the leading terms of g and h are relatively prime. By Proposition 4 in [6], this
guarantees that the S-polynomial of g and h has standard representation. Since this
is true for any pair of pseudo-monomials, this shows that CF(JC) is a Gröbner basis
for JC by Theorem 3 in [6]. 
�

Note that the hypothesis of Proposition 6 is not a necessary condition for the
canonical form to be a Gröbner basis, as will be seen in Examples 3 and 4. We now
give several examples of convex and non-convex codes with their canonical forms
and universal Gröbner bases Ĝ. The labeling of the codes follow the classification
given in [9].

Example 3 The code C4 = {2345, 123, 134, 145, 13, 14, 23, 34, 45, 3, 4,∅} is
non-convex, non-max intersection complete, with no local obstructions (see [12]).
It has canonical form CF(C4) = {x5(1 + x4), x1x2x4, x2x4(1 + x5), x2(1 +
x3), x1x2x5, x1x3x5, x3x5(1+x2), x1(1+x3)(1+x4)}. The universal Gröbner basis
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is Ĝ(C4) = {x1x2x5, x1x2x4, x5(x2 + x3), x5(1 + x4), x2(1 + x3), x1(1 + x3)(1 +
x4), x1x3x5, x2x4 + x3x5, x2(x4 + x5)}.

It was shown in [12] that adding either the codeword 1 or the codewords 234 and
345 to C4 would make it convex. Upon adding 1, the universal Gröbner basis and
the canonical form lose pseudo-monomials, but Ĝ still does not equal the canonical
form. Adding the codewords 234 and 345 instead makes the canonical form equal to
the Gröbner basis: CF = {x1x2x5, x1x2x4, x1x3x5, x5(1 + x4), x2(1 + x3), x1(1 +
x3)(1 + x4)}. Note that it is still not max-intersection complete.

Example 4 The code C22 = {145, 124, 135, 235, 125, 123, 234, 35, 1, 23, 15,

25, 5, 13, 2, 24, 3, 14, 12} is convex with geometric realization in R
3 and not max-

intersection complete (see [9]). The universal Gröbner basis and the canonical form
are the same: CF(C22) = {x2x4x5, x1x2x3x5, x3x4(1 + x2), x3x4x5, x4x5(1 +
x1), x4(1 + x1)(1 + x2)}.

4 Identifying Neural Codes with Unique Marked Reduced
Gröbner Bases

Based on Proposition 3, the goal of classifying codes whose neural ideals have
canonical forms that are Gröbner bases becomes identical to classifying codes
whose ideals of points have unique marked reduced Gröbner basis. In this section
we outline a method for testing whether a neural ideal has a unique marked reduced
Gröbner basis. We begin with two relevant definitions from [1].

Definition 4 A staircase is a set λ ⊆ N
d of nonnegative integer vectors such that

u ≤ v ∈ λ (coordinatewise) implies u ∈ λ. The staircase of exponent vectors of
standard monomials of an ideal I is called an initial staircase.

Definition 5 A staircase λ is basic for an ideal I if the congruence classes modulo
I of the monomials xv with v ∈ λ form a vector space basis for Zp[x1, . . . , xn]/I .

As we will see in Proposition 7, if we want to find out whether I (V ) has a unique
marked reduced Gröbner basis, we just need to check whether I (V ) has a unique
basic staircase.

Definition 6 Given a staircase S on n variables and number of points m, let αS =
(α1

S, · · · , αn
S) be an n-dimensional vector, where αi

S = 0 if S has zeros for all points
in its ith direction. Otherwise αi

S = 1. We use
∑

αS to denote the summation of all
entries in αS , and call it the dimension of S.

Example 5 The following two examples illustrate the concept of staircase dimen-
sion which is needed for the algorithm at the end of this section.

1. Let S = {(0, 0), (0, 1), (0, 2), (0, 3)}. Then αS = (0, 1) and
∑

αS = 1.
2. If S = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0)}, then αS = (1, 1, 1)

and
∑

αS = 3.



Gröbner Bases of Convex Neural Code Ideals 135

We now construct the following matrix. Let λ = {u1, . . . , ur } be an r-subset of
Z

n
p and let V = {v1, . . . , vs} be an s-subset of Zn

p. The evaluation matrix X(xλ, V )

is the s-by-r matrix whose element in position (i, j) is xuj
(vi), the evaluation of

xuj
at vi .

Example 6 Let λ1 = {(0, 0), (1, 0)}, λ2 = {(0, 0), (0, 1)}, and V = {(2, 0), (0, 1)}
be subsets of Z2

3. Then X(xλ1 , V ) =
[

1 2
1 0

]
and X(xλ2 , V ) =

[
1 0
1 1

]
.

Theorem 1 ([1]) Let λ and V be subsets of Zn
p. Then λ is basic for I (V ) if and

only if X(xλ, V ) is invertible.

An initial staircase must be basic, while a basic staircase might not be initial;
however, if I (V ) has a unique initial staircase (and thus a unique reduced Gröbner
basis), then I (V ) has a unique basic staircase. The following lemma is found in [8]
without proof.

Lemma 3 Let xα, xβ be monomials with xα
� xβ . There exists a weight vector γ

and monomial order ≺γ such that xβ ≺γ xα .

Proof Let xα
� xβ . As xα

� xβ , αj > βj for some coordinate j . Take γ to be a
vector in R

n with a sufficiently large rational value in entry j and square roots of
distinct prime numbers elsewhere such that γ · α > γ · β. Then the entries of γ are
linearly independent over Q and so γ defines a weight order. Define ≺γ to be the
monomial order weighted by γ . It follows that xβ ≺γ xα . 
�
Proposition 7 ([8]) An ideal I (V ) has a unique initial staircase if and only if I (V )

has a unique basic staircase.

Proof Follows directly from Proposition 2.2 in [1] and Lemma 3. 
�
Based on Proposition 7, if we want to find out whether I (V ) has a unique marked

reduced Gröbner basis, we just need to check if there exist a unique staircase λ ⊆ Z
n
p

such that X(xλ, V ) is invertible.
The above paragraph is the basis of the following method we propose for

identifying if a set of points has an ideal with a unique marked reduced Gröbner
basis: Given a set of points V , the algorithm goes over all possible staircases with
|V | elements and checks if the corresponding evaluation matrix is invertible. Notice
that no Gröbner basis computation is required. Unfortunately, finding all staircases
is equivalent to the NP-complete integer partitioning problem [11] but there are
pseudo-polynomial time dynamic programming solutions. For example, one can use
the Sherman-Morrison formula [14]: Given an invertible matrix A ∈ R

n×n, and two
column vectors u, v ∈ R

n, A + uvT is invertible if and only if 1 + vT A−1u �= 0.

The following algorithm is based on the theory summarized in this section. Its
goal is to identify data sets V ⊆ Zn

p of fixed size, dimension, and finite field
cardinality having an ideal with a unique marked reduced Gröbner basis. Before
we present it, we need one last definition.
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Definition 7 ([8]) For V1, V2 ⊂ Z
n
p with |V1| = |V2|, we say V1 is a linear shift of

V2, if there exists φ = (φ1, · · · , φn) : Zn
p → Z

n
p such that φ(V1) = V2 and for each

i ∈ {1, · · · , n}, φi(xi) = aixi + bi : Zp → Zp with ai ∈ (Zp\{0}) and bi ∈ Zp.

The linear shift is a bijection between two data sets, defining an equivalence relation.
We note that by a “good” representative of an equivalence class E we mean one of
the data sets with smallest total Euclidean distance to the origin among all data sets
in E.

4.1 Data Preparation

Input: n (dimension), p (characteristic of finite field), m (number of points in
the data set)
Purpose: Prepare the data for use in the main iterations
Steps:

1. Generate all staircases {S} and their corresponding dimensions {αS}.
2. For each S, calculate all evaluation matrices {X(xS, S)} and their inverses

{X(xS, S)−1}.
Note: Since {X(xS, S)} is a square Vandermonde matrix and S is a set of
distinct points, {X(xS, S)} is invertible.

3. Find “good” representatives {E�}, for all the equivalence classes.

Note: The number of staircases has an upper bound of O(m(log m)n−1) [1].

4.2 Main Iterations

Input: {S}, {αS}, {X(xS, S)}, {X(xS, S)−1}, {E�}.
Output: Good representatives of equivalence classes in which an ideal of the
data sets have unique reduced Gröbner bases.

Create a list called storage to store all the previous results
for � ∈ {E�} do

create an empty vector called flag = [ ]
for S ∈ {S} do

if � and S are only different in one point then
compute D = X(xS, �) − X(xS, S)

decompose D = uvT , where u, v ∈ F
m
p are two column vectors

if 1 + vT
X(xS, S)−1u = 0 ∈ Zp then

flag.append(False)
else

flag.append(True)
end if
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else if
∑

αS < n and storage has the result of �′ such that �′ have exactly
the same value of � at non-zero entries in αS then

flag.append(the previous result)
else if det(X(xS, �)) �= 0 ∈ Zp then

flag.append(True)
else

flag.append(False)
end if
if there are two Trues in flag then

use storage to store flags
break the inside loop

end if
end for
use storage to store flags
if flag has only one T then

print �

end if
end for

5 Discussion and Future Work

We explored convex neural codes by considering the canonical forms and Gröbner
bases of their ideals. While we still do not have a complete algebraic characterization
of convex codes, the results we presented lead us to believe that there is a strong
connection between convexity of a code and the number of the marked reduced
Gröbner bases of its ideal. In particular, it would seem that the relations among
the Ui from Definition 1 cannot be too “contradictory” for the canonical form of
a neural ideal to be a Gröbner basis. From the comparisons and computations of
canonical forms and Gröbner bases for convex and non-convex codes thus far, the
authors make the following conjecture to strengthen Proposition 4:

Conjecture 1 Given a neural code C with neural ideal JC , if the canonical form
CF(JC) is a Gröbner basis, then the code C is convex.

Notice that in light of Proposition 3, the above conjecture can also be stated as
“Given a neural code C with neural ideal JC , if JC has a unique marked reduced
Gröbner basis, then the code C is convex.”

In addition, Section 4 of [10] gives three examples of families of codes whose
canonical forms are Gröbner bases, which we can verify will always be convex
codes, thus further suggesting that Conjecture 1 is worth future work:

1. C is a simplicial complex: then C is intersection complete, so C is convex.
2. C is the singleton C = {(c1, . . . , cn)}. Then Ui = X for ci = 1, and Uj = ∅ for

cj = 0. If X is chosen to be convex, then the code will be convex.
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3. C is missing one codeword from [n]. If 11 · · · 1 ∈ C, then C is convex (see [3]).
If C = {0, 1}n \ {11 · · · 1}, then C is a simplicial complex, which is convex by
(1).

In [8] we characterize geometrically a family of codes whose ideals have a
unique marked reduced Gröbner basis and the codes above are in that family. By
Proposition 3, the above conjecture would imply that all codes in the family are
convex which remains to be verified. Furthermore, in [7], we show that if the neural
ideal of a code has a unique marked reduced Gröbner basis, so does the neural ideal
of its complement. It remains to be verified if convex codes whose neural ideals
have unique marked reduced Gröbner bases always have convex complements.
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