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1 Introduction

This paper concerns classification problems when each data point is a large
network. In neuroscience, for instance, the brain can be represented by a structural
connectome or a functional connectome, both are large graphs that model connec-
tions between brain regions. In ecology, an ecosystem is represented as a species
interaction network. On these data, one may want to classify diseased vs healthy
brains, or a species network before and after an environmental shock. Existing
approaches for graph classification can be divided broadly into three groups: (1)
use of graph parameters such as edge density, degree distribution, or densities of
motifs as features, (2) parametric models such as the stochastic k-block model [1],
and (3) graph kernels [18], and graph embeddings [29]. Amongst these methods,
motif counting is perhaps the least rigorously studied. Though intuitive, only small
motifs are feasible to compute, and thus motif counting is often seen as an ad-hoc
method with no quantitative performance guarantee.
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1.1 Contributions

In this paper, we formalize the use of motifs to distinguish graphs using graphon
theory, and give a tight, explicit quantitative bound for its performance in classifi-
cation (cf. Theorem 1). Furthermore, we use well-known results from graph theory
to relate the spectrum (eigenvalues) of the adjacency matrix one-to-one to cycle
homomorphism densities, and give an analogous quantitative bound in terms of the
spectrum (cf. Theorem 2). These results put motif counting on a firm theory, and
justify the use of spectral graph kernels for counting a family of motifs. We apply
our method to detect the autoimmune disease Lupus Erythematosus from diffusion
tensor imaging (DTI) data, and obtain competitive results to previous approaches
(cf. Sect. 4).

Another contribution of our paper is the first study of a general model for random
weighted graphs, decorated graphons, in a machine learning context. The proof
technique can be seen as a broad tool for tackling questions on generalisations
of graphons. There are three key ingredients. The first is a generalization of the
Counting Lemma [see 22, Theorem 10.24], on graphons to decorated graphons. It
allows one to lower bound the cut metric by homomorphism densities of motifs, a
key connection between motifs and graph limits. The second is Kantorovich duality
[see 37, Theorem 5.10], which relates optimal coupling between measures and
optimal transport over a class of functions and which is used in relating spectra
to homomorphism densities. In this, Duality translates our problem to questions
on function approximation, to which we use tools from approximation theory to
obtain tight bounds. Finally, we use tools from concentration of measure to deal
with sampling error an generalise known sample concentration bounds for graphons
[see 6, Lemma 4.4].

Our method extends results for discrete edge weights to the continuous edge
weight case. Graphs with continuous edge weights naturally arise in applications
such as neuroscience, as demonstrated in our dataset. The current literature for
methods on such graphs is limited [16, 26], as many graph algorithms rely on
discrete labels [10, 34].

1.2 Related Literature

Graphons, an abbreviation of the words “graph” and “function”, are limits of
large vertex exchangeable graphs under the cut metric. For this reason, graphons
and their generalizations are often used to model real-world networks [8, 12, 36].
Originally appeared in the literature on exchangeable random arrays [4], it was later
rediscovered in graph limit theory and statistical physics [14, 22].

There is an extensive literature on the inference of graphons from one obser-
vation, i.e. one large but finite graph [3, 9, 21, 40]. This is distinct from our
classification setup, where one observes multiple graphs drawn from several
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graphons. In our setting, the graphs might be of different sizes, and crucially, they
are unlabelled: There is no a priori matching of the graph nodes. That is, if we
think of the underlying graphon as an infinitely large random graph, then the graphs
in our i.i.d sample could be glimpses into entirely different neighborhoods of this
graphon, and they are further corrupted by noise. A naïve approach would be to
estimate one graphon for each graph, and either average over the graphs or over the
graphons obtained. Unfortunately, our graphs and graphons are only defined up to
relabelings of the nodes, and producing the optimal labels between a pair of graphs
is NP-complete (via subgraph isomorphism). Thus, inference in our setting is not
a mere “large sample” version of the graphon estimation problem, but an entirely
different challenge.

A method closer to our setup is graph kernels for support-vector machines
[18, 38]. The idea is to embed graphs in a high-dimensional Hilbert space, and
compute their inner products via a kernel function. This approach has successfully
been used for graph classification [39]. Most kernels used are transformations of
homomorphism densities/motifs as feature vectors for a class of graphs [cf 41,
subsection 2.5]: [33] propose so-called graphlet counts as features. These can be
interpreted as using induced homomorphism densities [cf 22, (5.19)] as features
which can be linearly related to homomorphism densities as is shown in [22,
(5.19)]. The random walk kernel from [18, p. 135 center] uses the homomorphism
densities of all paths as features. Finally [28, Prop. 5 and discussion thereafter] uses
homomorphism densities of trees of height ≤ k as features.

However, as there are many motifs, this approach has the same problem as plain
motif counting: In theory, performance bounds are difficult, in practice, one may
need to make ad hoc choices. Due to the computational cost [18], in practice,
only small motifs of size up to 5 have been used for classification [33]. Other
approaches chose a specific class of subgraphs such as paths [18] or trees [34], for
which homomorphism densities or linear combinations of them can be computed
efficiently. In this light, our Theorem 2 is a theoretical advocation for cycles, which
can be computed efficiently via the graph spectrum.

1.3 Organization

We recall the essentials of graphon theory in Sect. 2. For an extensive reference, see
[22]. Main results are in Sect. 3, followed by applications in Sect. 4. Our proofs can
be found in the appendix.

2 Background

A graph G = (V ,E) is a set of vertices V and set of pairs of vertices, called edges
E. A label on a graph is a one-to-one embedding of its vertices onto N. Say that a
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random labelled graph is vertex exchangeable if its distribution is invariant under
relabelings.

A labelled graphon W is a symmetric function from [0, 1]2 to [0, 1]. A relabelling
φ is an invertible, measure-preserving transformation on [0, 1]. An unlabelled
graphon is a graphon up to relabeling. For simplicity, we write “a graphon W” to
mean an unlabelled graphon equivalent to the labelled graphon W . Similarly, by a
graph G we mean an unlabelled graph which, up to vertex permutation, equals to
the labelled graph G.

The cut metric between two graphons W,W ′ is

δ�(W,W ′) = inf
φ,ϕ

sup
S,T

∣
∣
∣
∣

ˆ
S×T

W(ϕ(x), ϕ(y)) − W ′(φ(x), φ(y)) dx dy

∣
∣
∣
∣
,

where the infimum is taken over all relabelings ϕ of W and φ of W ′, and the
supremum is taken over all measurable subsets S and T of [0, 1]. That is, δ�(W,W ′)
is the largest discrepancy between the two graphons, taken over the best relabeling
possible. A major result of graphon theory is that the space of unlabelled graphons is
compact and complete w.r.t. δ�. Furthermore, the limit of any convergent sequence
of finite graphs in δ� is a graphon [see 22, Theorem 11.21]. In this way, graphons
are truly limits of large graphs.

A motif is an unlabelled graph. A graph homomorphism φ : F → G is a map
from V (F ) to V (G) that preserves edge adjacency, that is, if {u, v} ∈ E(F), then
{φ(u), φ(v)} ∈ E(G). Often in applications, the count of a motif F in G is the
number of different embeddings (subgraph isomorphisms) from F to G. However,
homomorphisms have much nicer theoretical and computational properties [22, par.
2.1.2]. Thus, in our paper, “motif counting” means “computation of homomorphism
densities”. The homomorphism density t (F,G) is the number of homomorphisms
from F to G, divided by |V (G)||V (F )|, the number of mappings V (F ) → V (G).
Homomorphisms extend naturally to graphons through integration with respect to
the kernel W [22, subsec. 7.2.]. That is, for a graph F with e(F ) many edges,

t (F,W) =
ˆ

[0,1]e(F )

∏

{x,y}∈E(F)

W(x, y) dxdy.

The homomorphism density for a weighted graph G on k nodes is defined by
viewing G as a step-function graphon, with each vertex of G identified with a set
on the interval of Lebesgue measure 1/k. For a graph G and a graphon W , write
t (•,G) and t (•,W) for the sequence of homormophism densities, defined over all
possible finite graphs F .

A finite graph G is uniquely defined by t (•,G). For graphons, homomorphism
densities distinguish them as well as the cut metric, that is, δ�(W,W ′) =
0 iff t (•,W) = t (•,W ′) [22, Theorem 11.3]. In other words, if one could
compute the homomorphism densities of all motifs, then one can distinguish
two convergent sequences of large graphs. Computationally this is not feasible,
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as (t (•,W))F finite graph is an infinite sequence. However, this gives a sufficient
condition test for graphon inequality: If t (F,W) �= t (F,W ′) for some motif F ,
then one can conclude that δ�(W,W ′) > 0. We give a quantitative version of this
statement in the appendix, which plays an important part in our proof. Theorem 1 is
an extension of this result that accounts for sampling error from estimating t (F,W)

through the empirical distribution of graphs sampled from W .

2.1 Decorated graphons

Classically, a graphon generates a random unweighted graph G(k,W) via uniform
sampling of the nodes,

U1, . . . , Uk
iid∼ Unif[0,1]

(G(k,W)ij |U1, . . . , Uk)
iid∼ Bern(W(Ui, Uj )),∀i, j ∈ [k].

Here, we extend this framework to decorated graphons, whose samples are random
weighted graphs.

Definition 1 Let �([0, 1]) be the set of probability measures on [0, 1]. A decorated
graphon is a function W : [0, 1]2 → �([0, 1]).

For k ∈ N, the k-sample of a measure-decorated graphon G(k,W) is a
distribution on unweighted graphs on k nodes, generated by

U1, . . . , Uk
iid∼ Unif[0,1]

(G(k,W)ij |U1, . . . , Uk)
iid∼ W(Ui, Uj ),∀i, j ∈ [k].

We can write every decorated graphon W as WW,μ with W(x, y) being the
expectation of W(x, y), and μ(x, y) being the centered measure corresponding
to W(x, y). This decomposition will be useful in formulating our main results,
Theorems 1 and 2.

One important example of decorated graphons are noisy graphons, that is,
graphons perturbed by an error term whose distribution does not vary with the
latent parameter: Given a graphon W : [0, 1]2 → [0, 1] and a centered noise
measure ν ∈ �([0, 1]), the ν-noisy graphon is the decorated graphon WW,μ, where
μ(x, y) = ν is constant, i.e. the same measure for all latent parameters. Hence, in
the noisy graphon, there is no dependence of the noise term on the latent parameters.

As weighted graphs can be regarded as graphons, one can use the definition
of homomorphisms for graphons to define homomorphism numbers of samples
from a decorated graphon (which are then random variables). The k-sample from a
decorated graphon is a distribution on weighted graphs, unlike that from a graphon,
which is a distribution on unweighted (binary) graphs. The latter case is a special
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case of a decorated graphon, where the measure at (x, y) is a centered variable
taking values W(x, y) and 1 − W(x, y). Hence, our theorems generalise results for
graphons.

2.2 Spectra and Wasserstein Distances

The spectrum λ(G) of a weighted graph G is the set of eigenvalues of its adjacency
matrix, counting multiplicities. Similarly, the spectrum λ(W) of a graphon W is its
set of eigenvalues when viewed as a symmetric operator [22, (7.18)]. It is convenient
to view the spectrum λ(G) as a counting measure, that is, λ(G) = ∑

λ δλ, where the
sum runs over all λ’s in the spectrum. All graphs considered in this paper have edge
weights in [0, 1]. Therefore, the support of its spectrum lies in [−1, 1]. This space
is equipped with the Wasserstein distance (a variant of the earth-movers distance)

W1(μ, ν) = inf
γ∈�([−1,1]2)

ˆ
(x,y)∈[−1,1]2

|x − y|dγ (x, y) (1)

for μ, ν ∈ �([−1, 1]), where the first (second) marginal of γ should equal μ

(ν). Analogously, equip the space of random measures �(�([−1, 1])) with the
Wasserstein distance

W1(μ̄, ν̄) = inf
γ∈�(�([−1,1])2)

ˆ
(μ,ν)∈�([−1,1])2

W1(μ, ν)dγ (μ, ν). (2)

where again the first (second) marginal of γ should equal μ̄ (ν̄).
Equation (2) says that one must first find an optimal coupling of the eigenvalues

for different realisations of the empirical spectrum and then an optimal coupling
of the random measures. Equation (1) is a commonly used method for comparing
point clouds, which is robust against outliers [25]. Equation (2) is a natural choice
of comparison of measures on a continuous space. Similar definitions have appeared
in stability analysis of features for topological data analysis [11].

3 Graphons for Classification: Main Results

Consider a binary classification problem where in each class, each data point is
a finite, weighted, unlabelled graph. We assume that in each class, the graphs
are i.i.d realizations of some underlying decorated graphon W = WW,μ resp.
W′ = WW ′,μ′ . Theorem 1 says that if the empirical homomorphism densities are
sufficiently different in the two groups, then the underlying graphons W and W ′
are different in the cut metric. Theorem 2 gives a similar bound, but replaces the
empirical homomorphism densities with the empirical spectra. Note that we allow
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for the decorated graphons to have different noise distributions and that noise may
depend on the latent parameters.

Here is the model in detail. Fix constants k, n ∈ N. Let WW,μ and WW ′,μ′ be
two decorated graphons. Let

G1, . . . ,Gn
iid∼ G(k,WW,μ)

G′
1, . . . ,G

′
n

iid∼ G(k,WW ′,μ′)

be weighted graphs on k nodes sampled from these graphons. Denote by δ• the
Dirac measure on the space of finite graphs. For a motif graph F with e(F ) edges,
let

t̄ (F ) := 1

n

n
∑

i=1

δt(F,Gi)

be the empirical measure of the homomorphism densities of F with respect
to the data (G1, . . . ,Gn) and analogously t̄ ′(F ) the empirical measure of the
homomorphism densities of (G′

1, . . . ,G
′
n).

Theorem 1 There is an absolute constant c such that with probability

1 − 2 exp

(

kn− 2
3

2e(F )2

)

− 2e−.09cn
2
3

and weighted graphs Gi , G′
i , i = 1, . . . , n generated by decorated graphons WW,μ

and WW ′,μ′ ,

δ�(W,W ′) ≥ e(F )−1(W1(t̄ , t̄ ′) − 9n− 1
3 ). (3)

Note that the number of edges affect both the distance of the homomorphism
densities W1(t̄ , t̄ ′) and the constant e(F )−1 in front, making the effect of e(F )

on the right-hand-side of the bound difficult to analyze. Indeed, for any fixed v ∈ N,
one can easily construct graphons where the lower bound in Theorem 1 is attained
for k, n → ∞ by a graph with v = e(F ) edges. Note furthermore, that the bound
is given in terms of the expectation of the decorated graphon, W , unperturbed by
variations due to μ resp. μ′. Therefore, in the large-sample limit, motifs as features
characterise exactly the expectation of decorated graphons.

Our next result utilizes , Theorem 1 and Kantorovich duality to give a bound on
δ� with explicit dependence on v. Let λ, λ

′
be the empirical random spectra in the

decorated graphon model, that is, λ = 1
n

∑n
i=1 λ(Gi), λ

′ = 1
n

∑n
i=1 λ(G′

i ).
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Theorem 2 There is an absolute constant c such that the following holds: Let v ∈
N. With probability 1−2v exp

(

kn
− 2

3

2v2

)

−2ve−.09cn
2
3 , for weighted graphs generated

by decorated graphons WW,μ and WW ′,μ′ ,

δ�(W,W ′) ≥ v−22−1(4e)−v

(

W1

W1(λ̄, λ̄′) − 3

πv
− 18v(4e)vn− 1

3

)

Through the parameter v, Theorem 2 defines a family of lower bounds for the cut
distance between the underlying graphons. The choice of v depends on the values
of n and the Wasserstein distance of the empirical spectra. The parameter v can
be thought of as a complexity control of transformations of eigenvalues that are
used in a lower bound: If one restricts to differences in distribution of low-degree
polynomials, the approximation with respect to the measure μ, the sampling of edge
weights, is good, implying a small additive error. In this case, however, the sampling
of the nodes from a graphon, i.e. of the latent node features Ui , i ∈ [n] has a large
error, which is multiplicative. We refer to the appendix for further details.

Theorems 1 and 2 give a test for graphon equality. Namely, if W1(λ̄′, λ̄) is large,
then the underlying graphons W and W ′ of the two groups are far apart. This type of
sufficient condition is analogous to the result of [11, Theorem 5.5] from topological
data analysis. It should be stressed that this bound is purely nonparametric. In
addition, we do not make any regularity assumption on either the graphon or the
error distribution μ. The theorem is stable with respect to transformations of the
graph: A bound analogous to Theorem 2 holds for the spectrum of the graph
Laplacian and the degree sequence, as we show in the appendix in Sect. 8. In
addition, having either k or n fixed is merely for ease of exposition. We give a
statement with heterogenous k and n in the appendix in Sect. 9.

We conclude with a remark on computational complexity. The exact computation
of eigenvalues of a real symmetric matrix through state-of-the-art numerical linear
algebra takes O(n3) time, where n is the number of the rows of the matrix [13]. In
these algorithms, a matrix is transformed in O(n3) in tridiagonal form. Eigenvalues
are computed in O(kn2) time, where k is the number of largest eigenvalues that are
sought.

This is competitive with other graph kernels in the literature. The random walk
kernel [18] has a runtime of O(n3), the subtree kernel from [28] enumerates all
possible subtrees in both graphs and hence has, depending on the depth of the trees,
doubly exponential runtime. The same holds for the graphlet kernels [32], which
are computable in quadratic time for a constant bound on the size of the subgraph
homomorphism taken into consideration, but have doubly exponential dependency
on this parameter as well. Finally, the paper [16] has, in the sparse, but not ultra-
sparse regime (|E(G)| ∈ 
(|V (G)|) and without node labels (corresponding to
the Kronecker node kernel) a runtime of �(n3) for graphs with small diameter
(O(

√|V (G))) and for a graph with high diameter a runtime of �(n4).
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4 An Application: Classification of Lupus Erythematosus

Systemic Lupus Erythematosus (SLE) is an autoimmune disease of connective
tissue. Between 25–70% of patients with SLE have neuropsychiatric symptoms
(NPSLE) [15]. The relation of neuropsychiatric symptoms to other features of the
disease is not completely understood. Machine learning techniques in combination
with expert knowledge have successfully been applied in this field [20].

We analyse a data set consisting of weighted graphs. The data is extracted
from diffusion tensor images of 56 individuals, 19 NPSLE, 19 SLE without
neuropsychiatric symptoms and 18 human controls (HC) from the study [30]. The
data was preprocessed to yield 6 weighted graphs on 1106 nodes for each individual.
Each node in the graphs is a brain region of the hierarchical Talairach brain atlas by
[35].

The edge weights are various scalar measures commonly used in DTI, averaged
or integrated along all fibres from one brain region to another as in the pipeline
depicted in Fig. 1. These scalar measures are the total number (of fibers between two
regions), the total length (of all fibers between two regions), fractional anisotropy
(FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD) [cf
5].

The paper [20] used the same dataset [30], and considered two classification
problems: HC vs NPSLE, and HC vs SLE. Using 20 brain fibers selected from
all over the brain (such as the fornix and the anterior thalamic radiation) they
used manifold learning to track the values AD, MD, RD and FA along fibers in
the brain. Using nested cross-validation, they obtain an optimal disretisation of the
bundles, and use average values on parts of the fibers as features for support-vector
classification. They obtained an accuracy of 73% for the HC vs. NPSLE and 76%
for HC vs. SLE, cf Table 1.

Fig. 1 Preprocessing pipeline for weighted structural connectomes. A brain can be seen as a
tensor field B : R3 → R

3×3 of flows. The support of this vector field is partitioned into regions
A1, . . . , An, called brain regions. Fibers are parametrized curves from one region to another. Each
scalar function F : R

3 → R (such as average diffusivity (AD) and fractional anisotropy (FA))
converts a brain into a weighted graph on n nodes, where the weight between regions i and j is F

averaged or integrated over all fibers between these regions
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Table 1 Result comparison. Our spectral method performs comparable to [20], who used manifold
learning and expert knowledge to obtain the feature vectors. Our method is significantly simpler
computationally and promises to be a versatile tool for graph classification problems

HC vs. NPSLE HC vs. SLE

[20] 76% 73%

Eigenvalues 78.3% 67.5%

Fig. 2 Density of first and last ten eigenvalues (normalised to zero mean unit standard deviation)
of the graph Laplacian for all six values. (a) Length. (b) Average diffusivity. (c) Fractional
anisotropy. (d) Number. (e) Radial diffusivity. (f) Mean diffusivity

To directly compare ourselves to [20], we consider the same classification
problems. For each weighted graph we reduce the dimension of graphs by averaging
edge weights of edges connecting nodes in the same region on a coarser level of
the Talairach brain atlas [35]. Inspired by Theorem 2, we compute the spectrum
of the adjacency matrix, the graph Laplacian and the degree sequence of the
dimension-reduced graphs. We truncate to keep the eigenvalues smallest and largest
in absolute value, and plotted the eigenvalue distributions for the six graphs,
normalized for comparisons between the groups and graphs (see Fig. 2). We noted
that the eigenvalues for graphs corresponding to length and number of fibers show
significant differences between HC and NPSLE. Thus, for the task HC vs NPSLE,
we used the eigenvalues from these two graphs as features (this gives a total of
40 features), while in the HC vs SLE task, we use all 120 eigenvalues from the
six graphs. Using a leave-one-out cross validation with �1-penalty and a linear



Classification of Large Networks (Research) 117

support-vector kernel, we arrive at classification rates of 78% for HC vs. NPSLE
and 67.5% for HC vs. SLE both for the graph Laplacian. In a permutation test as
proposed in [27], we can reject the hypothesis that the results were obtained by pure
chance at 10% accuracy. Table 1 summarises our results.

5 Conclusion

In this paper, we provide estimates relating homomorphism densities and distribu-
tion of spectra to the cut metric without any assumptions on the graphon’s structure.
This allows for a non-conclusive test of graphon equality: If homomorphism
densities or spectra are sufficiently different, then also the underlying graphons are
different. We study the decorated graphon model as a general model for random
weighted graphs. We show that our graphon estimates also hold in this generalised
setting and that known lemmas from graphon theory can be generalised. In a
neuroscience application, we show that despite its simplicity, our spectral classifier
can yield competitive results. Our work opens up a number of interesting theoretical
questions, such as restrictions to the stochastic k-block model.

6 Proof of Theorem 1

Theorem 1 There is an absolute constant c such that with probability

1 − 2 exp

(

kn− 2
3

2e(F )2

)

− 2e−.09cn
2
3

and weighted graphs Gi , G′
i , i = 1, . . . , n generated by decorated graphons WW,μ

and WW ′,μ′ ,

δ�(W,W ′) ≥ e(F )−1(W1(t̄ , t̄ ′) − 9n− 1
3 ). (3)

6.1 Auxiliary Results

The following result is a generalisation of [6, Lemma 4.4] to weighted graph limits.

Lemma 1 Let W = WW,μ be a decorated graphon, G ∼ G(k,W). Let F be an

unweighted graph with v nodes. Then with probability at least 1 − 2 exp
(

kε2

2v2

)

,



118 A. Haupt et al.

|t (F,G) − t (F,W)| < ε. (4)

Proof We proceed in three steps. First, give a different formulation of t (F,W)

in terms of an expectation. Secondly, we show that this expectation is not too far
from the expectation of t (F,G). Finally, we conclude by the method of bounded
differences that concentration holds.

1. Let tinj(F,G) be the injective homomorphism density, which restricts the
homomorphisms from F to G to all those ones that map distinct vertices of
F to distinct vertices in G [cf 22, (5.12)]. Let G ∼ G(k,W) and X be G’s
adjacency matrix. As a consequence of exchangeability of X, it is sufficient in
the computation of tinj to consider one injection from V (F ) to V (G) instead
of the average of all such. Without loss, we may assume that V (F ) = [v] and
V (G) = [k]. Hence, for the identity injection [k] ↪→ [n],

E[tinj(F,Xn)] = E

⎡

⎣
∏

{i,j}∈E(G)

Xij

⎤

⎦ .

Let U1, . . . , Un be the rows and columns in sampling X from G. Then

E

⎡

⎣
∏

{i,j}∈E(G)

Xij

⎤

⎦ = E

⎡

⎣E

⎡

⎣
∏

{i,j}∈E(G)

Xij

∣
∣
∣
∣
∣
∣

U1, . . . , Un

⎤

⎦

⎤

⎦

= E

⎡

⎣
∏

{i,j}∈E(G)

(W(Ui, Uj ) + μ(Ui, Uj ))

⎤

⎦

We multiply out the last product, and use that μ(Ui, Uj ) are independent and
centered to see that all summands but the one involving only terms from the
expectation graphon vanish, i.e.

E

⎡

⎣
∏

{i,j}∈E(G)

Xij

⎤

⎦ = E

⎡

⎣
∏

{i,j}∈E(G)

W(Ui, Uj )

⎤

⎦ = t (F,W)

2. Note that the bound in the theorem is trivial for ε2 ≤ ln 2 2k2

n
= 4 ln 2 k2

2n
. Hence,

in particular, ε ≤ 4 ln 2 k2

2n
.

Furthermore, |t (F,X) − t (F,W)| ≤ 1
k

(
v
2

) + |t (F,X) − E[t (F,X)]| ≤
v2

2k
+ |t (F,X) − E[t (F,X)]| by the first part and the bound on the difference of

injective homomorphism density and homomorphism density [23, Lemma 2.1].
Hence
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P[|t (F,Xn)−t (F,EW)|≥ε] ≤ P

[

|t (F,Xn)−E[t (F,Xn)]|≥ε+1

n

(
k

2

)]

≤ P

[

|t (F,Xn)−E[t (F,Xn)]|≥ε

(

1− 1

4 ln 2

)]

.

Set ε′ = ε
(

1 − 1
4 ln 2

)

. Let X be the adjacency matrix of G ∼ G(n,W) sampled

with latent parameters U1, . . . , Un. Define a function depending on n vectors
where the i-th vector consists of all values relevant to the i-th column of the
array Xn, that is Ui,X1, . . . , Xn. In formulas,

f :
n×

i=1

[0, 1]i+1 → [0, 1],

(a1, . . . , an) = ((u1, x11), (u2, x12, x22), . . . , (un, x1n, . . . , xnn))

�→ E[t (F, (Xij )1≤i,j≤n)|U1 = u1, . . . , Un = un,X11 = x11, . . . , Xnn = xnn].

We note that the random vectors (Ui,X1i , X2i , . . . , Xni) are mutually indepen-
dent for varying i. Claim:

|f ((a1, . . . , an) − f ((b1, . . . , bn))| ≤
n

∑

i=1

k

n
1ai �=bi

If this claim is proved, then we have by McDiarmid’s inequality [24, (1.2)
Lemma],

P[|t (F,Xn) − t (F,EW)| ≥ ε′]

≤ 2 exp

(

− 2ε′2

n
(

k
n

)2

)

≤ 2 exp

(

−2ε′2n
k2

)

= 2 exp

(

−2nε′2

k2

)

,

Which implies the theorem by basic algebra.
Let us now prove the claim: It suffices to consider a, b differing in one

coordinate, say n. By the definition of the homomorphism density of a weighted
graph, t (F,X) can be written as

ˆ
g(x1, . . . , xk)dUnifk[n]((xi)i∈[k])

for g(x1, . . . , xk) = ∏

{i,k}∈E(G) Xxixk
. We observe 0 ≤ g ≤ 1 (in the case of

graphons, one has g ∈ {0, 1}). It hence suffices to bound the measure where the
integrand g depends on ai by k

n
. This is the case only if if x� = i at least for one

� ∈ [k]. But the probability that this happens is upper bounded by,
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1 −
(

1 − 1

n

)k

≤ k

n
,

by the Bernoulli inequality. This proves the claim and hence the theorem.
�

Lemma 2 ([22, Lemma 10.23]) Let W,W ′ be graphons and F be a motif. Then

|t (F,W) − t (F,W ′)| ≤ e(F )δ�(W,W ′)

Lemma 3 Let μ ∈ �([0, 1]) and let μn be the empirical measure of n iid samples
of μ. Then

E[W1(μ,μn)] ≤ 3.6462n− 1
3

The strategy of prove will be to adapt a proof in [19, Theorem 1.1] to the 1-
Wasserstein distance.

Proof Let X ∼ μ, Y ∼ N(0, 1) and μσ = Law(X + Y ). Then for any ν ∈
�([0, 1]), by results about the standard normal distribution, W(ν, νσ ) ≤ E[|Y |] =
σ

√

2
π

. Hence, by the triangle inequality

W1(μ,μn) ≤ 2

√

2

π
σ + W1(μσ , μσ

n ).

As the discrete norm dominates the absolute value metric on [0, 1], W1(μσ , μσ
n ) ≤

‖μσ − μσ
n‖TV. Note that μσ

n and μσ have densities f σ , f σ
n . This means, as ‖μσ −

μσ
n‖TV = ´ |f σ

n (x) − f σ (x)|dx,

W1(μσ , μσ
n ) ≤

ˆ
|f σ

n (x)−f σ (x)|dx ≤ √
2π

√ˆ
(|x|2 + 1)|f σ

n (x) − f σ (x)|2dx,

where the last inequality is an application of [19, (2.2)]. Now observe that by the
definitions of f σ and f σ

n , E[|f σ
n (x)−f σ (x)|2 ≤ n−1

´
φ2

σ (x −y)dμ(y), where φσ

is the standard normal density. Hence

E[W1(μσ
n , μσ )] ≤ √

2πn− 1
2

√ˆ
(|x|2 + 1)

ˆ
φ2

σ (x − y)dμ(y)dx

By basic algebra, φ2
σ (x) = 1

2σ
π− 1

2 φ σ√
2
(x). This implies for Z ∼ N(0, 1) by a

change of variables
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ˆ
(|x|2 + 1)

ˆ
φ2

σ (x − y)dμ(y)dx

≤ 1

2σ
√

π
(1 + 2(σ 2

E[Z2] +
ˆ

|y|2dμ(y))) ≤ σ−12−1π− 1
2 (1 + 2(σ 2x + 1))

≤ σ−1π− 1
2

3

2

Hence E[W1(μσ
n , μσ )] ≤ 3

2

√
2n− 1

2 σ− 1
2 = 3√

2
n− 1

2 σ− 1
2 and

E[W1(μn, μ)] ≤ 2

√

2

π
σ + 3√

2
n− 1

2 σ− 1
2 .

Choosing σ optimally by a first-order condition, one arrives at the lemma. �
Lemma 4 ([17, Theorem 2]) Let μ ∈ P(R) such that for X ∼ μ, � = E[eγXα ] <

∞ for some choice of γ and α. Then one has with probability at least 1 − e−cnε2

W1(μn, μ) ≤ ε

for any ε ∈ [0, 1] and c only depending on �, γ and α.

6.2 Proof of Theorem 1

Proof (Proof of Theorem 1) Let G ∼ G(k,W) and G′ ∼ G(k,W′). By

combining Lemmas 3 and 4, we get that with probability at least 1 − 2e−.09cn
2
3 ,

W1(t̄ , t̄ ′) ≤ W1(t (F,G), t (F,G′)) + 8n− 1
3

In addition, by Lemma 1, with probability at least 1 − 2 exp

(

kn
− 2

3

2v2

)

− 2e−.09cn
2
3

one also has

W1(t (F,G), t (F,G′)) ≤ |t (F,W) − t (F,W ′)| + n− 1
3

Upon application of Lemma 2 and rearranging, one arrives at the theorem. �
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7 Proof of Theorem 2

Theorem 2 There is an absolute constant c such that the following holds: Let v ∈
N. With probability 1−2v exp

(

kn
− 2

3

2v2

)

−2ve−.09cn
2
3 , for weighted graphs generated

by decorated graphons WW,μ and WW ′,μ′ ,

δ�(W,W ′) ≥ v−22−1(4e)−v

(

W1

W1(λ̄, λ̄′) − 3

πv
− 18v(4e)vn− 1

3

)

7.1 Auxiliary Results

Lemma 5 ([7, (6.6)]) Let G be a weighted graph and λ the spectrum interpreted
as a point measure. Let Ck be the cycle of length kem. Then

t (Ck,G) =
∑

w∈λ

wk.

Lemma 6 (Corollary of [2, p. 200]) Let f be a 1-Lipschitz function on [−1, 1].
Then there is a polynomial p of degree v such that ‖f − p‖∞ ≤ 3

πv
.

Lemma 7 ([31, Lemma 4.1]) Let
∑v

i=0 aix
i be a polynomial on [−1, 1] bounded

by M . Then

|ai | ≤ (4e)vM.

7.2 Proof of Theorem 2

Proof (Proof of Theorem 2) Consider any coupling (λ, λ′) of λ̄ and λ̄′. One has by
the definition of the Wasserstein distance W1

W1 and Kantorovich duality

W1

W1(λ̄
′, λ̄) ≤ E

[

W1(λ, λ′)
]

= E

[

sup
Lip(f )≤1

ˆ
f (x)d(λ − λ′)

]

(5)

Fix any ω ∈ �. By Lemma 6 one can approximate Lipschitz functions by
polynomials of bounded degree,

sup
f : [−1,1]→R

Lip(f )≤1

ˆ
f (x)d(λ − λ′)(ω) ≤ sup

deg(f )≤v
|f |≤2

ˆ
f (x)d(λ − λ′)(ω) + 3

πv
.
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Here, |f | ≤ 2 can be assumed as f is defined on [−1, 1] and because of its 1-
Lipschitz continuity.

Hence, by Lemma 7 and the triangle inequality

sup
deg(f )≤v

|f |≤2

ˆ
f (x)d(λ − λ′)(ω) ≤

v
∑

i=1

2(4e)v
∣
∣
∣
∣

ˆ
xkd(λ − λ′)

∣
∣
∣
∣
(ω)

=
v

∑

i=1

2(4e)v

∣
∣
∣
∣
∣

∑

w∈λ

wi −
∑

w′∈λ′
wi

∣
∣
∣
∣
∣
(ω)

Tanking expectations, one gets

W1

W1(λ̄, λ̄′) ≤ 3

πv
+

v
∑

i=1

2(4e)vE

[∣
∣
∣
∣
∣

∑

w∈λ

wi −
∑

w′∈λ′
wi

∣
∣
∣
∣
∣

]

for any coupling (λ, λ′) of λ̄ and λ̄′. Now consider a coupling (λ, λ′) of λ̄ and λ̄′
such that t̄ , t̄ ′ (which are functions of λ, λ′ by Lemma 5) are optimally coupled.
Then by the definition of λ̄, λ̄′, t̄ and t̄ ′,

W1(t̄k, t̄
′
k) = E

⎡

⎣

∣
∣
∣
∣
∣
∣

∑

w∈ λ

wk −
∑

w∈λ̄′
w′k

∣
∣
∣
∣
∣
∣

⎤

⎦

where t̄i = 1
n

∑n
j=1 δt(Ci ,Gj ) and t̄ ′i = 1

n

∑n
j=1 δt(Ci ,Gj ). Hence,

W1

W1(λ̄
′, λ̄) ≤

v
∑

i=1

2(4e)vW1(t̄i , t̄
′
i ) + 3

πv
. (6)

≤ 3

πv
+ v22(4e)vδ�(W,W ′) + 18v(4e)vn− 1

3 .

The first equality follows by (5) and the second with probability at least 1 −
2v exp

(

kn
− 2

3

2v2

)

− 2ve−.09cn
2
3 from Theorem 1. �

8 A Similar Bound for Degree Features

Let G be a graph and (di) be its degree sequence. Consider the point measure
d = ∑

i δdi
of degrees. Denote by d̄ resp. d̄ ′ the empirical measure of degree point

measures of G1, . . . ,Gn resp. G′
1, . . . ,G

′
n.
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Proposition 1 Theorem 2 holds with the same guarantee with λ̄, λ̄′ replaced by d̄ ,
d̄ ′.

Lemma 8 Let Sv be the star graph on v nodes and G be a weighted graph. Then

t (Sv,G) =
∑

w∈d

wv

The proof of Proposition 1 is along the same lines as the one of Theorem 2, but
using Lemma 8 instead of 5.

9 Heterogenous Sample Sizes

Our bounds from Theorems 1 and 2 can also be formulated in a more general setting
of heterogenous sizes of graphs. In the following, we give an extension in two
dimensions. First, we allow for heterogenous numbers of observations n. Secondly,
we allow for random sizes of graphs k. Here is the more general model in details:
There is a measure ν ∈ �(N) such that G1, . . . , Gn1 are sampled iid as

k ∼ ν Gi ∼ G(k,WW,μ); (7)

sampling of G′
1, . . . ,G

′
n2

is analogously. Hence the samples Gi are sampled from
a mixture over the measures G(k,WW ′,μ′). We can define t̄ , t̄ ′, λ̄ and λ̄′ using the
same formulas as we did in the main text. Then the following result holds.

Corollary 1 There is an absolute constant c such that the following holds: Let
n1, n2 ∈ N and Gi, i = 1, . . . , n1, G′

i , i = 1, . . . , n2 sampled as in (7). Then

with probability at least 1 − exp

(

kn
− 2

3
1

2e(F )2

)

− e−.09cn
2
3
1 − exp

(

kn
− 2

3
2

2e(F )2

)

− e−.09cn
2
3
2 ,

δ�(W,W ′) ≥ e(F )−1(W1(t, t̄) − 5n
− 1

3
1 + 5n

− 1
3

2 ).

Corollary 2 In the setting of Corollary 1 and with the same absolute constant, the

following holds: Let v ∈ N. With probability 1 − v exp

(

kn
− 2

3
1

2v2

)

− ve−.09cn
2
3
1 −

v exp

(

kn
− 2

3
2

2v2

)

− ve−.09cn
2
3
2 ,

δ�(W,W ′) ≥ v−22−1(4e)−v

(

W1

W1(λ̄, λ̄′) − 3

πv
− 18v(4e)v(n

− 1
3

1 + n
− 1

3
2 )

)
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The proofs are very similar to the ones in the main text. For the differences in n1
and n2, the concentration results Lemmas 3 and 4 will have to be applied separately
with different values of n. For the random values k, we can choose a coupling that
couples random graphs of similar sizes, leading to the expressions in the Corollaries.
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