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1 Introduction

Let D be a set of positive integers, called a distance set. The distance graph
generated by D, denoted G(Z,D), is the graph with vertex set of the integers and
an edge between any pair of vertices a and b if |a − b| ∈ D. The chromatic number
of distance graphs was first studied by Eggleton et al. [5] in 1985. The subject has
been studied extensively since [1–4, 6, 9–15, 17–20, 22]. We denote the chromatic
number of G(Z,D) by χ(D).

Let P denote the set of prime numbers. In [6] prime distance graphs were
considered, that is, graphs with distance set D ⊆ P . It was shown and easy to
see that χ(P ) = 4. Thus, given that D is a subset of P , χ(D) ∈ {1, 2, 3, 4}, since
D ⊆ D′ implies χ(D) � χ(D′). The task considered is to classify a set of primes
D according to its chromatic number. We say D is class i if χ(D) = i. Clearly the
only set that is class 1 is the empty set, and every singleton is class 2. If |D| � 2,
then D is class 2 if and only if 2 �∈ D. Also if 2 ∈ D but 3 �∈ D, then D is class 3. A
less trivial result is that {2, 3, p} is class 4 if p = 5, and class 3 otherwise (see [6]).
In view of these results, the remaining problem is to classify prime sets D ⊃ {2, 3}
with |D| � 4 into either class 3 or class 4.

It was shown in [6] that if D = {2, 3, p, p+2} where p and p+2 are twin primes,
then D is class 4. Voigt and Walther [19] classified all prime sets with cardinality 4:
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Theorem 1 Let D = {2, 3, p, q} be a set of primes with p � 7 and q > p + 2.
Then D is class 4 if and only if

(p,q)∈{(11, 19), (11, 23), (11, 37), (11, 41), (17, 29), (23, 31), (23, 41), (29, 37)}.

Since Voigt’s paper in 1994, little progress has been made on the subject. It
is interesting to note that, besides the potentially infinite family of distance sets
containing twin primes, there are only finitely many class 4 sets of four primes.
Thus it is natural to ask whether the same is true when D has five primes. A result
from [6] shows that the set of potentially infinite families of class 4 distance sets
will necessarily be more complicated than just those containing twin primes:

Theorem 2 The set {2, 3} ∪ {p, p + 8, 2p + 13} is class 4 whenever p, p + 8 and
2p + 13 are all primes.

In this article we begin to look at prime distance sets with 5 elements that do
not contain twin primes nor any of the eight minimal class 4 sets of cardinality 4
obtained in Theorem 1. We call a prime distance set D minimal class 4, or just
minimal, if D is class 4 but every proper subset is class 3 or less. Thus we are
interested in distance sets which do not contain twin primes or any of the minimal
class 4 sets in Theorem 1. We present the following main result:

Theorem 3 A prime set of the form D = {2, 3, 7, p, q} is class 3 if none of the
following is true:

1. D contains a proper subset that is class 4.
2. The pair (p, q) is one of the following 31 pairs:

(19, 31) (19, 37) (19, 41) (19, 43) (19, 47) (19, 53) (19, 67)

(19, 73) (19, 79) (19, 83) (19, 89) (19, 109) (19, 131) (19, 151)

(19, 157) (19, 167) (19, 193) (29, 41) (29, 73) (29, 109) (31, 43)

(37, 59) (41, 53) (47, 59) (61, 73) (67, 79) (71, 83) (89, 101)

(97, 109) (139, 151) (181, 193).

3. p ≡ 2311139, 2311163 (mod 4622310) and q = p + 8.

Moreover, the D sets with pairs (19, q) in 2 are all class 4.

In Sect. 3, we give a proof of Theorem 3, except the moreover part, which is
presented in Sect. 4. In order to show that a distance set is class 3, we will make
extensive use of the number theoretic function κ : P(Z+) → R+ ∪ {0}. For a real
number x, let ||x|| denote the minimum distance from x to an integer, that is ||x|| =
min{
x� − x, x − �x}. For any real t , denote by ||tD|| the smallest value ||td||
among all d ∈ D. The kappa value of D, denoted by κ(D), is the supremum of
||tD|| among all reals t . That is, κ(D) := sup{||tD|| : t ∈ R+ ∪ {0}}. The fact that
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the kappa value of D is always a rational number with denominator dividing a sum
of two elements in D gives an effective algorithm for computing κ(D) (see [8]).

The primary connection which we use in this paper is that (see [21])

χ(D) �
⌈

1

κ(D)

⌉
.

Thus, if κ(D) � 1/3, then χ(D) � 3. In particular, since we assume {2, 3} ⊂ D, if
κ(D) � 1/3, then D is class 3.

2 Three Lemmas on κ(D)

An alternative definition of κ(D) introduced by Gupta in [7] involves looking at the
sets of “good times” for each element d ∈ D, that is, the times t ∈ [0, 1) such that
||td|| is greater than some desired value. For α ∈ [0, 1/2] and an element d ∈ D,
let Id(α) = {t ∈ [0, 1) : ||td|| � α}. Let ID(α) be the intersection over D of Id(α).
If ID(α) is not empty, then κ(D) � α. Thus,

κ(D) = sup{α ∈ [0, 1/2] : ID(α) �= ∅}.

Note that if κ(D) > α, then ID(α) is a union of intervals, and if κ(D) = α, then
ID(α) is a union of singletons.

If ID(α) contains a nontrivial interval or, equivalently, if κ(D) > α, one might
be interested in how large a number x must be to guarantee that the intersection of
ID(α) and Ix(α) is not empty, that is, κ(D ∪ {x}) � α. Note that Ix(α) is the union
of x disjoint intervals with center (2n + 1)/2x for n ∈ {0, 1, . . . , x − 1} and length
(1 − 2α)/x, that is,

Ix(α) =
x−1⋃
n=0

[
n + α

x
,
n + 1 − α

x

]
.

We call these x-intervals. The length of the space between any two consecutive x-
intervals is 2α/x. Now let [a, b] be a connected subset of ID(α). If the length of the
space between each pair of consecutive intervals of Ix(α) is less than the length of
that subset, b − a, then it must be that one of the intervals of Ix(α) hits the interval
[a, b]. This can be summarized in the following lemma:

Lemma 1 Let [a, b] ⊆ ID(α) with a < b for some set D. If x is an integer, x �
2α/(b − a), then ID(α) ∩ Ix(α) �= ∅. Consequently, κ(D ∪ {x}) � α.

Considering two elements to be added to a set D, we describe an upper bound
for the length of an interval of time in which the two sets Ix(α) and Ix+i (α) can
be disjoint. If this bound is smaller than the length of a target interval contained in
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ID(α), we can similarly guarantee that the intersection of ID(α), Ix(α) and Ix+i (α)

is not empty.

Lemma 2 Let 1/4 � α � 1/3 and [a, b] ⊆ ID(α) with a < b. If x and i are
integers with 4α−1

i
+ 2

x
� b − a, then ID(α) ∩ Ix(α) ∩ Ix+i (α) �= ∅. Consequently,

κ(D ∪ {x, x + i}) � α.

Proof Similar to Lemma 1, it is enough to show that Ix ∩ Ix+i ∩ I �= ∅ for any
interval I ⊆ [0, 1] of length 4α−1

i
+ 2

x
.

We introduce some notation to make it easier to keep track of the different
intervals. As noted above,

Ix(α) =
x−1⋃
n=0

[
n + α

x
,
n + 1 − α

x

]
.

Fixing 1/4 � α � 1/3, let [n+α
x

, n+1−α
x

] be denoted by In
x . Let L(In

x ) and R(In
x )

denote the left and the right endpoint of In
x , respectively.

Assume i � x. We first claim that every x-interval must intersect at least one
(x+i)-interval. It suffices to show that the length of the gap between two consecutive
(x + i)-intervals is less than the length of an x-interval, that is, 2α

x+i
� 1−2α

x
. This is

true with the assumptions α � 1/3 and x � i.
Therefore, R(In

x ) − L(In−1
x ) = 2−2α

x
is an upper bound on the length of an

interval during which Ix and Ix+i are disjoint. By our assumption that α � 1/4, the
result follows, as 2−2α

x
< 4α−1

i
+ 2

x
� b − a.

Now assume i < x. Let Im
x be any x-interval. If m = 0, then with the

assumptions α � 1/3 and i < x, it can be shown that L(I 0
x ) � R(I 0

x+i ), and
therefore there is some intersection between the two intervals.

If m � 1, then let In
x+i be the closest (x + i)-interval to Im

x such that R(In
x+i ) �

L(Im
x ) (that is, n is the largest such integer), and set L(Im

x ) − R(In
x+i ) = �. Note

that L(Im
x ) − L(Im−1

x ) = 1/x. This implies that the separation between previous
pairs of x and (x + i)-intervals decreases until the left point of an x-interval is less
than the right point of an (x + i)-interval. More precisely,

L(Im−r
x ) − R(In−r

x+i ) =
(

L(Im
x ) − r

x

)
−

(
R(In

x+i ) − r

x + i

)

= L(Im
x ) − R(In

x+i ) − r

x
+ r

x + i

= � − ir

x(x + i)
.

Fix j � 0 so that � − ij
x(x+i)

� 0 but � − i(j−1)
x(x+i)

> 0. This implies that

R(I
n−j
x+i ) − L(I

m−j
x ) = ij

x(x + i)
− � � i

x(x + i)
.
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With the assumptions that i � x and α � 1/3, it can be shown that

i

x(x + i)
� 1 − 2α

x
+ 1 − 2α

x + i
. (1)

The right-hand side of the above inequality is the sum of the lengths of an x-interval
and an (x + i)-interval. Therefore, since R(I

n−j
x+i )−L(I

m−j
x ) � 1−2α

x
+ 1−2α

x+i
, there

must be some intersection between I
m−j
x and I

n−j
x+i .

Having found an intersection between an x-interval and an (x + i)-interval at or
before Im

x , we now move forward, looking at the right endpoint of the x-intervals.
Notice,

L(In+1+r
x+i ) − R(Im+r

x ) =L(In+1
x+i ) − R(Im

x ) − ir

x(x + i)

=R(In
x+i ) + 2α

x + i
− R(Im

x ) − ir

x(x + i)

=L(Im
x ) − � + 2α

x + i
− R(Im

x ) − ir

x(x + i)

= 2α

x + i
−

(
1 − 2α

x
+ ir

x(x + i)
+ �

)
.

Fix k � 0 so that k is the smallest such that 2α
x+i

� 1−2α
x

+ ik
x(x+i)

+ �, that is,

the smallest with L(In+1+k
x+i ) � R(Im+k

x ). We now show that Lm+k
x ∩ Ln+k+1

x+i �= ∅.

Suppose k = 0, that is, L(In+1
x+i ) � R(Im

x ). By our choice of n as the largest such

that R(In
x+i ) � L(Im

x ), we have R(In+1
x+i ) > L(Im

x ). This, together with the fact that

L(In+1
x+i ) � R(Im

x ), implies Lm
x ∩ Ln+1

x+i �= ∅.

Assume k � 1. Then R(Im+k−1
x ) < L(In+k

x+i ). The only possibility that Im+k
x ∩

In+1+k
x+i = ∅ is when the following inequality holds:

1 − 2α

x
+ 1 − 2α

x + i
< R(Im+k

x ) − L(In+1+k
x+i )

= R(Im+k−1
x ) − L(In+k

x+i ) + i

x(x + i)

<
i

x(x + i)
.

This contradicts Eq. (1). Hence, Im+k
x ∩ In+1+k

x+i �= ∅

In summary, given that j = 
 x(x+i)�
i

� and k = 
 4αx+2αi−x−i−x(x+i)�
i

�, we

know that both I
m−j
x and Im+k

x intersect an (x + i)-interval. Moreover, the length
between these two intersections is bounded by the following:
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R(Im+k
x ) − L(I

m−j
x ) = k + j

x
+ 1 − 2α

x

�
4αx+2αi−x−i

i
+ 3 − 2α

x

= 4α − 1

i
+ 2

x
.

Therefore, the result follows. Note that if m+ k � x, then R(Im+k
x ) is undefined. In

this case the bound 1−L(I
m−j
x ) is smaller than the bound above. Similar arguments

apply if m − j < 0. Note that 1/4 � α � 1/3 implies that Ix ∩ Ix+i �= ∅, since
κ({x, x + i}) � 1/3. ��

The final result of this section rationalizes the set of good times by expanding the
unit circle to a circle of circumference q. This proposition will be useful because,
fixing a rational point and an α, the proposition gives a finite list of residue classes
of x modulo q such that the point will be in Ix(α).

Lemma 3 Fix an integer x and an α ∈ [0, 1/2], and let p/q be a point in (0, 1).
Then p/q ∈ Ix(α) if and only if qα � xp (mod q) � q(1 − α).

Proof To say that p/q ∈ Ix(α) is equivalent to saying that there exists an n ∈
{0, 1, . . . , x − 1} such that (n + α)/x � p/q � (n + 1 − α)/x. Rearranging this
inequality gives qα � px − qn � q(1 − α). ��

3 Class 3 Prime Sets of the Form {2, 3, 7, p, q}

We apply the lemmas presented in the previous section to prove Theorem 3, except
the moreover part, which will be shown in the next section. Recall, if κ(D) � 1/3,
then χ(D) � 3. Thus we fix α = 1/3 in the following.

While the proof of Theorem 3 is conceptually simple, using nothing more sophis-
ticated than modular arithmetic, there are many cases to check. Full verification
requires a computer. For a more detailed discussion with all cases explained, see
[16].

Let D = {2, 3, 7, x, x + i} where x and x + i are primes. First, Lemma 2 is
applied to show that if both x and i are sufficiently large, then D must be class 3. As
can be seen from Fig. 1, [4/21, 2/9] ⊆ I{2,3,7}(1/3), and the length of this interval
is 2/63. The smallest gap i such that 1/(3i) < 2/63 is i = 11. Since the difference
between any odd prime numbers is even, we only need to consider the cases of even
integers i � 12. For each i � 12, there exists a bound Mi such that, whenever
p � Mi and q � p + i, the set {2, 3, 7, p, q} is class 3.

For example, fixing i = 12, we solve the following inequality from Lemma 2 for
p: 1

3i
+ 2

p
� 2

63 . Thus if p � 504 and q � p+12, then, by Lemma 2, {2, 3, 7, p, q}
will be class 3. Noting that as i increases the bound Mi decreases, we can repeat
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Fig. 1 The set I{2,3,7}(1/3)

this process. The bound M52 = 79, and by computing the kappa value for all sets
{2, 3, 7, p, p + i} where 12 � i < 52 and 79 � p � Mi , we obtain the following
proposition.

Proposition 1 If i � 12 and p � 79 and D = {2, 3, 7, p, p + i}, then D is class 3
for any pair of primes (p, p + i) �∈ {(89, 101), (97, 109), (139, 151), (181, 193)}.

The next step in the process is to remove the bound that p must be greater than
79. To accomplish this, for each set D = {2, 3, 7, p} for primes 7 < p < 79, we
apply Lemma 1 to get a bound on q such that {2, 3, 7, p, q} is class 3 for every q

exceeding the bound. Then we check whether κ(D) � 1/3 for each of the small
primes q which are below the bound. This work is summarized in Table 1 and
justifies the following proposition. Note that the table includes twin primes and the
known results from Theorem 1.

Proposition 2 If i � 12 and 7 < p < 79 and D = {2, 3, 7, p, p + i} does not
contain a proper subset that is class 4, then D is class 3 for any pair of primes
(p, p + i) not listed below:

(19, 31) (19, 37) (19, 41) (19, 43) (19, 47) (19, 53) (19, 67)

(19, 73) (19, 79) (19, 83) (19, 89) (19, 109) (19, 131) (19, 151)

(19, 157) (19, 167) (19, 193) (29, 41) (29, 73) (29, 109) (31, 43)

(37, 59) (41, 53) (47, 59) (61, 73) (67, 79) (71, 83).

The fact that we switch from using Lemma 2 to Lemma 1 at p < 79 is arbitrary.
Computationally, the hardest part of using Lemma 1 is finding the length of the
longest interval in {2, 3, 7, p}, which is why Lemma 2 was used as long as it was.

Thus far we have shown that, as long as i � 12, there are only finitely many
minimal prime sets with κ({2, 3, 7, p, p + i}) < 1/3. If i = 2, then p and p + 2
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Table 1 Applying Lemma 1 to {2, 3, 7, p} for primes 7 < p < 79

p [a, b] ⊂ I{2,3,7,p} Bound on q Primes q > p with κ({2, 3, 7, p, q}) < 1/3

11 [7/33,2/9] 66 13, 19, 23, 37, 41

13 [4/21, 8/39] 46

17 [10/51, 11/51] 34 19, 29

19 [4/21,11/57] 266 31,37,41,43,47,53,

67,73,79,83,89,109,

131,151,157,167,193

23 [4/21, 14/69] 54 31,41

29 [4/21, 17/87] 136 31,37,41,73,109

31 [19/93, 20/93] 62 43

37 [22/111, 23/111] 74 59

41 [25/123, 26/123] 82 43,53

43 [25/129, 26/129] 86

47 [28/141, 29/141] 94 59

53 [34/159, 35/159] 106

59 [37/177, 38/177] 118 61

61 [37/183, 38/183] 122 73

67 [43/201, 44/201] 134 79

71 [46/213, 47/213] 142 73,83

73 [46/219, 47/219] 146

The new results from Theorem 3 are underlined; others are known results

are twin primes and the set is class 4. The last step in the process is to show that, for
i ∈ {4, 6, 8, 10}, all prime sets of the form {2, 3, 7, p, p + i} that do not contain one
of the known class 4 sets are class 3.

Consider the case when p and p + 4 are both primes. Note that this implies that
p ≡ 1 (mod 6). We want to apply Lemma 3 to check if any rational points in the
interval [4/21, 2/9] ⊂ I{2,3,7} are in both Ip and Ip+4. A natural place to start is
by checking points with reduced denominator of 126, the least common multiple of
6, 21 and 9. The target interval [4/21, 2/9] = [24/126, 28/126], so we will apply
Lemma 3 for the points {n/126 : 24 � n � 28}. After removing the residue classes
modulo 126 for which p �≡ 1 (mod 6), we are left with Table 2.

From Table 2 we see that, for each of the rows that is not highlighted,
I{2,3,7,p,p+4} will contain the point in the rightmost column, implying that
{2, 3, 7, p, p+4} is class 3. To investigate the highlighted rows further, we increase
the number of rational points to check by a factor of 5. The new denominator
q = 630, and we must accordingly expand the undetermined list of residues to
check. This gives Table 3.

From Table 3 we see that if p ≡ 1 (mod 630), then p+4 is not prime, if p ≡ 625
(mod 630), then p is not prime, and if p �≡ 307, 319 (mod 630), then I{2,3,7,p,p+4}
is not empty. Iterating again, this time just increasing by a factor of 2 gives Table 4,
which has no highlighted rows. This means, no matter the residue class of a prime
p modulo 1260, there exists some point in I{2,3,7,p,p+4}. Thus, this is the final table
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Table 2 Rational points in I{2,3,7} ∩ I{p,p+4} (Round 1)

p (mod 126) gcd(p, 126) gcd(p + 4, 126) Point in I{p,p+4}
1

7 7 27/126

13 25/126

19 24/126

25 28/126

31 7 27/126

37 26/126

43 28/126

49 7 27/126

55

61 24/126

67

73 7 27/126

79 28/126

85 26/126

91 7 27/126

97 28/126

103 24/126

109 25/126

115 7 27/126

121

needed to finish the case when i = 4. Tables 2, 3, and 4 show that {2, 3, 7, p, p +4}
is class 3 for every pair of primes p and p + 4.

The cases when i ∈ {6, 10} can be established similarly, but the case when i = 8
is much more difficult (see [16]). This is not surprising, as we have already have seen
from Theorem 1 that {2, 3, 5, 13}, {2, 3, 11, 19}, {2, 3, 23, 31}, and {2, 3, 29, 37} are
all class 4 sets. Using similar methods to those above, we were able to show that, if
{2, 3, 7, p, p + 8} is a minimal class 4 set, it must be that p ≡ 2311139, 2311163
(mod 4622310). Note that 4622310 = 2·32 ·5·7·11·23·29. At this point it becomes
computationally intractable to inspect the millions of rational points considered by
Lemma 3. From this work we obtain the following proposition.

Proposition 3 If i < 12 and D = {2, 3, 7, p, p + i} does not contain a proper
subset that is class 4, then D is class 3 for any pair of primes (p, p + i) where
p �≡ 2311139, 2311163 (mod 4622310) when i = 8.

We have shown how Lemma 2 generates Proposition 1, Lemma 1 generates
Proposition 2, and Lemma 3 generates Proposition 3. Together Propositions 1 to 3
imply Theorem 3, except for the moreover part, which is the subject of the next
section.
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Table 3 Rational points in I{2,3,7} ∩ I{p,p+4} (Round 2)

p (mod 630) gcd(p, 630) gcd(p + 4, 630) Point in I{p,p+4}
1 5

55 5 122/630

67 128/631

121 5 123/630

127 122/631

181 5 124/630

193 126/631

247 124/630

253 121/630

307

319

373 121/630

379 124/630

433 126/630

445 5 124/630

499 122/630

505 5 123/630

559 128/630

571 5 122/630

625 5

Table 4 Rational points in I{2,3,7} ∩ I{p,p+4} (Round 3)

p (mod 1260) gcd(p, 1260) gcd(p + 4, 1260) Point in I{p,p+4}
307 253/1260

319 251/1260

937 251/1260

949 253/1260

4 Class 4 Prime Sets of the Form {2, 3, 7, 19, p}

In this section, we prove the moreover part of Theorem 3. Precisely, we show that
any 3-coloring of the distance graph generated by {2, 3, 7, 19} cannot be extended
to a 3-coloring of the distance graph generated by {2, 3, 7, 19, p} for any p in the
following set:

{31, 37, 41, 43, 47, 53, 67, 73, 79, 83, 89, 109, 131, 151, 157, 167, 193}.

Our notation will follow that of Eggleton in [4]. Let c be a function c : Z →
{0, 1, 2}. For a set D of positive integers, we say c is a D-consistent coloring if for
every i, j ∈ Z,
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|i − j | ∈ D �⇒ c(i) �= c(j).

It follows from the definition that c is a 3-coloring for a set D if and only if c is a
D′-consistent coloring for any D′ ⊆ D.

In the following we will consider a coloring c as a two-way infinite sequence,
c := {c(i)}i∈Z . The structure of a coloring sequence c can be described by breaking
it apart into the three constituent color classes. The k-color-class is defined as the set
{i ∈ Z : c(i) = k}. Let c be a {2, 3}-consistent coloring. Since each five consecutive
integers in the distance graph generated by {2, 3} contains the 5-cycle {i + 1, i +
3, i + 5, i + 2, i + 4}, the difference between any two consecutive elements in a
color class is at most 5, otherwise the five cycle must be properly colored with just
two colors, which is impossible. In light of this we can consider each color class as
a strictly increasing sequence of integers k := {ki}i∈Z where c(ki) = k for every
i and ki < ki+1. The structure of a color class is primarily captured by the gaps
or differences between consecutive elements in the ordered color class sequence.
The gap sequence of a k-color-class k is defined as �k(c) = d = {di}i∈Z where
di = ki+1 − ki .

For any gap sequence d = �k(c), let σ(d) be the set of all partial sums of
consecutive terms in d. Equivalently,

σ(d) = {x : c(a) = c(x + a) = k for some a ∈ Z}.

Given a coloring c, let σ(c) := ⋃
i σ (�i(c)). By definition, we obtain

Proposition 4 Let c be a function c : Z → {0, 1, 2}. Then c is a D-consistent
coloring if and only if σ(c) ∩ D = ∅.

Often the colorings considered are periodic. This is denoted by enclosing the
repeated block in parenthesis. As an example of these definitions, consider the
periodic coloring function c defined by

c(i) =

⎧⎪⎪⎨
⎪⎪⎩

0 if i ≡ 0, 1, 5, 6, 10, 11, 16 (mod 21)

1 if i ≡ 2, 7, 8, 12, 13, 17, 18 (mod 21)

2 if i ≡ 3, 4, 9, 14, 15, 19, 20 (mod 21).

The corresponding coloring sequence is c = (001220011200112201122), and
the three color classes are:

0 = {. . . 0, 1, 5, 6, 10, 11, 16, . . . }
1 = {. . . 2, 7, 8, 12, 13, 17, 18, . . . }
2 = {. . . 3, 4, 9, 14, 15, 19, 20, . . . }.

The three gap sequences are:
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�0(c) = (1, 4, 1, 4, 1, 5, 5)

�1(c) = (5, 1, 4, 1, 4, 1, 5)

�2(c) = (1, 5, 5, 1, 4, 1, 4).

Since each of these gap sequences is a cyclic permutation of the others, the partial
sums are the same for each:

σ(�0(c)) = σ(c) = {x : x ≡ 0,±1,±4,±5,±6,±9,±10 (mod 21)}

Since {2, 3, 7, 19} ∩ σ(c) = ∅, by Proposition 4, c is a {2, 3, 7, 19}-consistent 3-
coloring.

4.1 Characterizing Gap Sequences

For either a color sequence or a gap sequence, we call any finite set of consecutive
terms a block of the sequence. In this section we will investigate what blocks are
possible for the gap sequences of a {2,3,7,19}-consistent coloring. Blocks of length
l will be called l-blocks. In order to show that certain blocks are not possible,
we will need to investigate how all three color classes interact. A gap sequence
d almost completely determines a color sequence, as made precise by the following
proposition from [4]:

Proposition 5 If d is a {2, 3}-consistent gap sequence, then d = �0(c) where, up
to a permutation of the labels, c is given by the following rule that assigns terms of
the gap sequence to blocks of a color sequence:

θ(di) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if di = 1

0112 if di−1 > 1 and di = 4

01z2 if di−1didi+1 = 141

0122 if di = 4 and di+1 > 1

01122 if di = 5

where z ∈ {1, 2} can be arbitrarily chosen for each 141 block in d.

The only possible gaps between consecutive elements of a color class are 1, 4
and 5. The fact that 2 or 3 cannot be gaps follows clearly from the definition, and
the fact that no gap can be greater than 5 follows from existence of a 5-cycle in any
block of five consecutive integers.

There are 9 possible 2-blocks of 1, 4, and 5: 11, 14, 15, 41, 44, 45, 51, 54, 55.
Of these, 11 is impossible since it contains a partial sum of 2. In the following we
prove that 44, 45, and 54 are also impossible.
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Proposition 6 Any {2, 3, 7, 19}-consistent gap sequence cannot contain a 2-blocks
of the form 44, 45, or 54.

Proof We consider each case separately.

Case 1: Let d be a {2, 3, 7, 19}-consistent gap sequence containing a 44 block.
By Proposition 5, the corresponding color sequence must have the form c =
. . . 012201120 . . . . Without loss of generality, let c0 = 0, c1 = 1, c3 = 2, etc.
We can now make the following chain of inferences:

(c0 = 0) ∧ (c1 = 1) ∧ (c2 = 2) �⇒ (c−2 = 2) ∧ (c−1 = 0)

(c7 = 2) ∧ (c8 = 0) �⇒ c10 = 1

(c−2 = 2) ∧ (c10 = 1) �⇒ c17 = 0

(c6 = 1) ∧ (c7 = 2) ∧ (c17 = 0) �⇒ (c9 = 0) ∧ (c14 = 1) �⇒ c16 = 2

(c9 = 0) ∧ (c5 = 1) �⇒ c12 = 2

(c12 = 2) ∧ (c8 = 0) �⇒ c15 = 1

The fact that c−1 = 0, c15 = 1 and c16 = 2 implies that c18 cannot be properly
colored, contradicting that d is a {2, 3, 7, 19}-consistent gap sequence.

Case 2: Let d be a {2, 3, 7, 19}-consistent gap sequence containing the 2-block
45. By Proposition 5, we can assume the associated coloring sequence c contains
the following block: c0 . . . c9 = 0122011220. Then

(c0 = 0) ∧ (c1 = 1) �⇒ c−2 = 2

(c5 = 1) ∧ (c9 = 0) �⇒ c12 = 2

(c0 = 0) ∧ (c12 = 2) ∧ (c11 = 1) �⇒ (c19 = 1) ∧ (c14 = 0) �⇒ c17 = 2.

This is a contradiction as c−2 = c17.
Case 3: Let d be a {2, 3, 7, 19}-consistent gap sequence containing the 2-block

54. By Proposition 5, we can assume the associated coloring sequence c contains
the following block: c0 . . . c9 = 0112201120. Then

(c7 = 1) ∧ (c8 = 2) ∧ (c9 = 0) �⇒ (c10 = 0) ∧ (c11 = 1) �⇒ c13 = 2

(c9 = 0) ∧ (c13 = 2) ∧ (c1 = 1) �⇒ (c16 = 1) ∧ (c20 = 0) �⇒ c23 = 2.

This is a contradiction, since c4 = c23.
��

From the five allowable 2-blocks, nine 3-blocks can be built: 141, 151, 155, 414,
415, 514, 515, 551, 555. Of these, 151 produces a partial sum of 7, and is therefore
not possible. In the following we prove 515 is also not possible.
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Proposition 7 Any {2, 3, 7, 19}-consistent gap sequence cannot contain the 3-
block 515.

Proof Let d be a {2, 3, 7, 19}-consistent gap sequence containing the 3-block 515.
By Proposition 5, we can assume the associated coloring sequence c contains the
following block: c0 . . . c11 = 011220011220. Then the fact that c1 = c8 = 1
contradicts the fact that c is a proper coloring. ��

Finally three larger blocks are not allowed: 5555, 14141414 and 51415. The
block 14141414 contains a partial sum of 19, and therefore cannot be in a
{2, 3, 7, 19}-consistent gap sequence. In the following we prove that 5555 and 51415
are also impossible.

Proposition 8 Any {2, 3, 7, 19}-consistent gap sequence cannot contain the block
5555 nor 51415.

Proof First, assume d is a {2, 3, 7, 19}-consistent gap sequence containing 5555.
By Proposition 5, the associated color sequence contains the following block:

c0 . . . c19 = 01122011220112201122.

The fact that c1 = 1 and c13 = 2 implies c20 = 0, but this together with the fact that
c4 = 2 and c16 = 1 means that c23 cannot be properly colored.

Next, assume d is a {2, 3, 7, 19}-consistent gap sequence containing the block
51415. By Proposition 5, the associated color sequence must contain the following
block:

c0 . . . c15 = 01122001x2001122

where c8 = x ∈ {1, 2} is not determined by the θ -rule. But the fact that c1 = 1,
c6 = 0 and c15 = 2 implies that c8 cannot be properly colored. ��

With the above classification of allowable blocks, we can characterize the
possible {2, 3, 7, 19}-consistent gap sequences. The fact that 151, 45, 54 and 5555
are all impossible implies that any time a 5 occurs it must be part of a 1551 or a
15551 block. The fact that 11, 44 and 14141414 are all impossible implies that a 5
must occur in all gap sequences. The fact that 515 and 51415 are impossible implies
that any {2, 3, 7, 19}-consistent gap sequence can be partitioned into a sequence
consisting entirely of the following four blocks:

C1 = 1414155, C2 = 14141555, C3 = 141414155, C4 = 1414141555.

(2)
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4.2 Characterizing Color Sequences

The monochromatic gap sequences are not sufficient to classify all sets
{2, 3, 7, 19, p}, as 43 �∈ σ(d) when d := (C1C2). As we are concerned with
{2, 3, 7, 19}-consistent colorings we can strengthen Proposition 5 to the following:

Lemma 4 If d is a {2, 3, 7, 19}-consistent gap sequence, then d = �0(c) where,
up to a permutation of the labels, c is given by the following rule:

η(di) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if di = 1

0112 if di−6 · · · di = 5551414 or di · · · di+2 = 415

01z2 if di−6 · · · di+6 = 1551414141551

0122 if di−2 · · · di = 514 or di · · · di+6 = 4141555

01122 if di = 5

where z ∈ {1, 2} can be chosen arbitrarily for each 1551414141551 block in d.

Proof By Proposition 5, we need only prove the cases where di = 4.

Case 1: Suppose di−6 · · · di = 5551414. Then by Proposition 5

θ(di−6 · · · di) = 011220112201122001z12001z22.

The integer 19 spaces before z2 is colored with a 2, so z2 = 1 and η(di) = 0112.
Case 2: Suppose didi+1di+2 = 415. Then

θ(didi+1di+2) = 01z2001122.

The integer 7 spaces after z is colored with a 2, so z = 1 and η(di) = 0112.
Case 3: Suppose di−2di−1di = 514. Then

θ(di−2di−1di) = 01122001z2.

The integer 7 spaces before z is colored with a 1, so z = 2 and η(di) = 0122.
Case 4: Suppose di · · · di+6 = 4141555. Then

θ(di · · · di+6) = 01z12001z220011220112201122.

The integer 19 spaces after z1 is colored with a 1, so z1 = 2 and η(di) = 0122.
Case 5: The only block that has not been covered by the previous four cases is:

di−6 · · · di+6 = 1551414141551,

where the indeterminate color z in θ(di) can still be either 1 or 2.
��
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Our four gap sequence blocks can now be expanded to color sequence blocks.
The strengthened η in Lemma 4 completely determines the color sequences from
C1, C2 and C4. The block C3 can expand into two different color sequence blocks,
depending on the choice for z.

A1 := η(C1) = 001220011200112201122

A2 := η(C2) = 00122001120011220112201122

A3 := η(C3) = 00122001120011200112201122 (with z = 1)

A′
3 := η(C3) = 00122001220011200112201122 (with z = 2)

A4 := η(C4) = 0012200122001120011220112201122.

It is more convenient to work with gap sequence triples rather than undiffer-
entiated color sequences, so we unravel the above color sequences into the gap
sequences for each color class.

�0(A1) = 1414155 �1(A1) = 5141415 �2(A1) = 1551414

�0(A2) = 14141555 �1(A2) = 514141415 �2(A2) = 155141414

�0(A3) = 141414155 �1(A3) = 514141415 �2(A3) = 15551414

�0(A
′
3) = 141414155 �1(A

′
3) = 55141415 �2(A

′
3) = 141551414

�0(A4) = 1414141555 �1(A4) = 5514141415 �2(A4) = 14155141414.

Thus any color sequence c can be partitioned into a sequence of blocks {Xi}
where Xi ∈ {A1, A2, A3, A

′
3, A4}. But we need to put some restrictions on which

blocks can follow one another. Considering �2(c), it is clear that A2 cannot be
followed by either A′

3 or A4, since this would create a 14141414 block. Similarly
A4 cannot be followed by either A′

3 or A4. Otherwise the blocks can be freely
concatenated.

4.3 Guaranteed Partial Sums

Theorem 4 If p ∈ {31, 37, 41}, then {2, 3, 7, 19, p} is class 4.

Proof Let p ∈ {31, 37, 41}, and assume that c is a {2, 3, 7, 19, p}-consistent 3-
coloring. We know that d := �0(c) must contain at least one of the blocks C1,
C2, C3 or C4. Let |Ci | denote the sum of all the terms in Ci . That is, |C1| = 21,
|C2| = |C3| = 26, and |C4| = 31. By the structure of {2, 3, 7, 19}-consistent gap
sequences (the blocks of (2)), we know that, regardless of what block precedes or
follows Ci , the sequence must have the form
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d = · · · 55Ci14141 · · ·

Thus we know σ(d) will contain the set {|Ci |+n:n∈{1, 5, 6, 10, 11, 15, 16, 20, 21}}.
Since

31 = |C1| + 10 = |C2| + 5 = |C3| + 5 = |C4|,
37 = |C1| + 16 = |C2| + 11 = |C3| + 11 = |C4| + 6,

41 = |C1| + 20 = |C2| + 15 = |C3| + 15 = |C4| + 10,

we know that {21, 37, 41} ⊂ σ(d), and by Proposition 4 this contradicts the claim
that c is a {2, 3, 7, 19, p}-consistent 3-coloring. ��
Theorem 5 {2, 3, 7, 19, 43} is class 4.

Proof Assume that c is a {2, 3, 7, 19, 43}-consistent 3-coloring.

Case 1: Suppose c contains the block A1. The fact that |�2(A1)| = 21 and, no
matter what blocks follow, �2(c) has an initial sum of 22 implies that c has a
partial sum of 43, contradicting the claim that c is a consistent coloring.

Case 2: Suppose c contains A2, A3 or A′
3. Each of these blocks has sum 26. Thus

the fact that �2(c) has an initial sum of 17 no matter what block follows implies
c contains a partial sum of 43, a contradiction.

Case 3: Suppose c contains A4. Note that |A4| = 31. As the block after A4 cannot
be A′

3 or A4, �1(c) must be of the form

· · · 15�1(A4)51 · · ·

This gives a partial sum of 43, a contradiction.

In all three cases c cannot be a consistent 3-coloring, and the result follows. ��
For the rest of the primes, the arguments only get more involved. We leave the

verification that the partial sums of each color sequence of the prescribed form
contain each prime listed at the beginning of this section to a computer (see [16]). To
do so we construct an infinite tree colorings shown in Fig. 2. The tree is mutually
recursively defined with the tree colorings’ shown in Fig. 3. Any path of the tree
colorings, concatenating the color sequence blocks at each vertex, will produce
a color sequence of the form

∑
Ai . Any path producing either a block A2 or A4

must be followed by a path producing either A1, A2 or A3. This is represented by
the pruned tree colorings’. Conversely, any one way infinite coloring sequence
will be contained in a path of colorings. Thus it suffices to show that each path
in colorings contains a partial sum of p for each prime p considered.

This is done by the pair of functions pathsToLists and check. The function
pathsToLists tree n creates a list of lists of length n, representing all the
paths of length n in tree. Then the function check p is a Boolean function that,
when applied to a list, returns True if the list contains a pair of equal elements with
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Fig. 2 The tree colorings

Fig. 3 The tree
colorings’

indices differing by p. This is equivalent to checking whether the coloring block
represented by the list contains a partial sum of p. In this way, running the Haskell
code in [16] verifies the following proposition.

Proposition 9 The set D = {2, 3, 7, 19, p} is class 4 for any p in the following set:

{31, 37, 41, 43, 47, 53, 67, 73, 79, 83, 89, 109, 131, 151, 157, 167, 193}.

5 Conclusion

By establishing Theorem 3 we completely classify the prime sets {2, 3, 7, 19, p}
and settle most of the more general family of the form {2, 3, 7, p, q}. Further we
propose the following conjecture:

Conjecture 1 A prime set of the form D = {2, 3, 7, p, q} is minimal class 4 if and
only if the pair (p, q) is one of the 31 pairs listed in Theorem 3 part 2.

In order to establish this conjecture, the 14 prime pairs not covered by Proposi-
tion 9 would need to be proven class 4. While the block method developed in Sect. 4
could be extended to more general distance sets, the results of that section are very
tied to the fact that both 7 and 19 are in D. This makes it seem unlikely that the
method would be tractable to the other 14 sets of the form {2, 3, 7, p, q}.

To confirm the conjecture, in addition the condition that p �≡ 2311139, 2311163
(mod 4622310) when q = p + 8 would need to be removed. We believe that the
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most economical way to prove those D sets are indeed class 3 might be to find
periodic 3-colorings for the associated distance graphs.
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6. Eggleton, R.B., Erdős, P., Skilton, D.K.: Colouring prime distance graphs. Graphs Combin.
6(1), 17–32 (1990)

7. Gupta, S.: Sets of integers with missing differences. J. Combin. Theory Ser. A 89(1), 55–69
(2000)

8. Haralambis, N.M.: Sets of integers with missing differences. J. Combinatorial Theory Ser. A
23(1), 22–33 (1977)

9. Kemnitz, A., Kolberg, H.: Coloring of integer distance graphs. Discrete Math. 191(1–3), 113–
123 (1998). Graph theory (Elgersburg, 1996)

10. Kemnitz, A., Marangio, M.: Chromatic numbers of integer distance graphs. Discrete Math.
233(1–3), 239–246 (2001). Graph theory (Prague, 1998)

11. Lam, P.C.B., Lin, W.: Coloring of distance graphs with intervals as distance sets. European J.
Combin. 26(8), 1216–1229 (2005)

12. Liu, D.D.F.: T -colorings and chromatic number of distance graphs. Ars Comb. 56, 65–80
(2000)

13. Liu, D.D.F.: From rainbow to the lonely runner: a survey on coloring parameters of distance
graphs. Taiwanese J. Math. 12(4), 851–871 (2008)

14. Liu, D.D.F., Zhu, X.: Distance graphs with missing multiples in the distance sets. J. Graph
Theory 30(4), 245–259 (1999)

15. Liu, D.D.F., Zhu, X.: Fractional chromatic number and circular chromatic number for distance
graphs with large clique size. J. Graph Theory 47(2), 129–146 (2004)

16. Robinson, G.: Coloring prime distance graphs. Master’s thesis, California State University,
Los Angeles (2018).

17. Voigt, M.: Colouring of distance graphs. Ars Combin. 52, 3–12 (1999)
18. Voigt, M., Walther, H.: On the chromatic number of special distance graphs. Discrete Math.

97(1–3), 395–397 (1991)
19. Voigt, M., Walther, H.: Chromatic number of prime distance graphs. Discrete Appl. Math.

51(1–2), 197–209 (1994). 2nd Twenty Workshop on Graphs and Combinatorial Optimization
(Enschede, 1991)

20. Zhu, X.: Pattern periodic coloring of distance graphs. Journal of Combinatorial Theory, Series
B 73(2), 195–206 (1998)



64 D. D.-F. Liu et al.

21. Zhu, X.: Circular chromatic number: a survey. Discrete Math. 229(1–3), 371–410 (2001).
Combinatorics, graph theory, algorithms and applications

22. Zhu, X.: Circular chromatic number of distance graphs with distance sets of cardinality 3. J.
Graph Theory 41(3), 195–207 (2002)


	Distance Graphs Generated by Five Primes (Research)
	1 Introduction
	2 Three Lemmas on κ(D)
	3 Class 3 Prime Sets of the Form {2,3,7,p,q}
	4 Class 4 Prime Sets of the Form {2,3,7,19,p}
	4.1 Characterizing Gap Sequences
	4.2 Characterizing Color Sequences
	4.3 Guaranteed Partial Sums

	5 Conclusion
	References


