Some *q***-Exponential Formulas Involving the Double Lowering Operator** *ψ* **for a Tridiagonal Pair (Research)**

Sarah Bockting-Conrad

1 Introduction

Throughout this paper, K denotes an algebraically closed field. We begin by recalling the notion of a tridiagonal pair. We will use the following terms. Let *V* denote a vector space over K with finite positive dimension. For a linear transformation $A: V \to V$ and a subspace $W \subseteq V$, we say that *W* is an *eigenspace* of *A* whenever $W \neq 0$ and there exists $\theta \in \mathbb{K}$ such that $W = \{v \in V | Av = \theta v\}.$ In this case, θ is called the *eigenvalue* of *A* associated with *W*. We say that *A* is *diagonalizable* whenever *V* is spanned by the eigenspaces of *A*.

Definition 1 ([\[9,](#page-24-0) Definition 1.1]) Let *V* denote a vector space over K with finite positive dimension. By a *tridiagonal pair* (or *TD pair*) on *V* we mean an ordered pair of linear transformations $A: V \rightarrow V$ and $A^*: V \rightarrow V$ that satisfy the following four conditions.

- (i) Each of *A, A*∗ is diagonalizable.
- (ii) There exists an ordering ${V_i}_{i=0}^d$ of the eigenspaces of *A* such that

$$
A^* V_i \subseteq V_{i-1} + V_i + V_{i+1} \qquad (0 \le i \le d), \tag{1}
$$

where $V_{-1} = 0$ and $V_{d+1} = 0$.

(iii) There exists an ordering ${V_i^*}$ $\delta_{i=0}^{\delta}$ of the eigenspaces of A^* such that

$$
AV_i^* \subseteq V_{i-1}^* + V_i^* + V_{i+1}^* \qquad (0 \le i \le \delta), \tag{2}
$$

S. Bockting-Conrad (\boxtimes)

DePaul University, Chicago, IL, USA

e-mail: sarah.bockting@depaul.edu

[©] The Author(s) and the Association for Women in Mathematics 2020

B. Acu et al. (eds.), *Advances in Mathematical Sciences*, Association for

Women in Mathematics Series 21, https://doi.org/10.1007/978-3-030-42687-3_2

where $V_{-1}^* = 0$ and $V_{\delta+1}^* = 0$.

(iv) There does not exist a subspace *W* of *V* such that $AW \subseteq W$, $A^*W \subseteq W$, $W \neq 0, W \neq V$.

We say the pair *A, A*[∗] is *over* K.

Note 1 According to a common notational convention *A*[∗] denotes the conjugatetranspose of *A*. We are not using this convention. In a TD pair *A, A*∗ the linear transformations *A* and A^* are arbitrary subject to (i)–(iv) above.

Referring to the TD pair in Definition [1,](#page-0-0) by [\[9,](#page-24-0) Lemma 4.5] the scalars *d* and *δ* are equal. We call this common value the *diameter* of *A, A*∗. To avoid trivialities, throughout this paper we assume that the diameter is at least one.

TD pairs first arose in the study of *Q*-polynomial distance-regular graphs and provided a way to study the irreducible modules of the Terwilliger algebra associated with such a graph. Since their introduction, TD pairs have been found to appear naturally in a variety of other contexts including representation theory [\[1,](#page-24-1) [7,](#page-24-2) [10–](#page-24-3)[12,](#page-24-4) [14,](#page-24-5) [15,](#page-24-6) [25\]](#page-24-7), orthogonal polynomials [\[23,](#page-24-8) [24\]](#page-24-9), partially ordered sets [\[22\]](#page-24-10), statistical mechanical models [\[3,](#page-24-11) [6,](#page-24-12) [19\]](#page-24-13), and other areas of physics [\[16,](#page-24-14) [18\]](#page-24-15). As a result, TD pairs have become an area of interest in their own right. Among the above papers on representation theory, there are several works that connect TD pairs to quantum groups [\[1,](#page-24-1) [5,](#page-24-16) [7,](#page-24-2) [11,](#page-24-17) [12\]](#page-24-4). These papers consider certain special classes of TD pairs. We call particular attention to [\[5\]](#page-24-16), in which the present author describes a new relationship between TD pairs in the *q*-Racah class and quantum groups. The present paper builds off of this work.

In the present paper, we give a new relationship between the maps Δ, ψ : $V \rightarrow V$ introduced in [\[4\]](#page-24-18), as well as describe a new decomposition of the underlying vector space that, in some sense, lies between the first and second split decompositions associated with a TD pair. In order to motivate our results, we now recall some basic facts concerning TD pairs. For the rest of this section, let *A, A*∗ denote a TD pair on *V*, as in Definition [1.](#page-0-0) Fix an ordering $\{V_i\}_{i=0}^d$ (resp. $\{V_i^*\}_{i=0}^d$) of the eigenspaces of *A* (resp. *A*^{*}) which satisfies [\(1\)](#page-0-1) (resp. [\(2\)](#page-0-2)). For $0 \le i \le d$ let *θ_i* (resp. *θ*_{*i*}^{*}) denote the eigenvalue of *A* (resp. *A*^{*}) corresponding to *V_i* (resp. *V*_{*i*}^{*}). By [\[9,](#page-24-0) Theorem 11.1] the ratios

$$
\frac{\theta_{i-2} - \theta_{i+1}}{\theta_{i-1} - \theta_i}, \qquad \frac{\theta_{i-2}^* - \theta_{i+1}^*}{\theta_{i-1}^* - \theta_i^*}
$$

are equal and independent of *i* for $2 \le i \le d-1$. This gives two recurrence relations, whose solutions can be written in closed form. There are several cases [\[9,](#page-24-0) Theorem 11.2]. The most general case is called the *q*-Racah case [\[12,](#page-24-4) Section 1]. We will discuss this case shortly.

We now recall the split decompositions of *V* [\[9\]](#page-24-0). For $0 \le i \le d$ define

$$
U_i = (V_0^* + V_1^* + \cdots + V_i^*) \cap (V_i + V_{i+1} + \cdots + V_d),
$$

$$
U_i^{\Downarrow} = (V_0^* + V_1^* + \cdots + V_i^*) \cap (V_0 + V_1 + \cdots + V_{d-i}).
$$

By [\[9,](#page-24-0) Theorem 4.6], both the sums $V = \sum_{i=0}^{d} U_i$ and $V = \sum_{i=0}^{d} U_i^{\psi}$ are direct. We call ${U_i}_{i=0}^d$ (resp. ${U_i^{\downarrow}}_{i=0}^d$) the first split decomposition (resp. second split decomposition) of V_i In [0] the surface abound that A_i^* act on the first and decomposition) of *V*. In [\[9\]](#page-24-0), the authors showed that *A*, A^* act on the first and second split decomposition in a particularly attractive way. This will be described in more detail in Sect. [3.](#page-6-0)

We now describe the *q*-Racah case. We say that the TD pair *A, A*∗ has *q-Racah type* whenever there exist nonzero scalars *q, a, b* \in K such that $q^4 \neq 1$ and

$$
\theta_i = aq^{d-2i} + a^{-1}q^{2i-d}, \qquad \theta_i^* = bq^{d-2i} + b^{-1}q^{2i-d}
$$

for $0 \le i \le d$. For the rest of this section assume that A, A^* has q-Racah type.

We recall the maps *K* and *B* [\[13,](#page-24-19) Section 1.1]. Let $K: V \rightarrow V$ denote the linear transformation such that for $0 \le i \le d$, U_i is an eigenspace of K with eigenvalue *q*^{*d*−2*i*}. Let *B* : *V* → *V* denote the linear transformation such that for $0 \le i \le d$, U_i^{ψ} is an eigenspace of *B* with eigenvalue q^{d-2i} . The relationship between *K* and *B* is discussed in considerable detail in [\[5\]](#page-24-16).

We now bring in the linear transformation $\Psi : V \to V$ [\[4,](#page-24-18) Lemma 11.1]. As in [\[5\]](#page-24-16), we work with the normalization $\psi = (q - q^{-1})(q^d - q^{-d})\Psi$. A key feature of ψ is that by [\[4,](#page-24-18) Lemma 11.2, Corollary 15.3],

$$
\psi U_i \subseteq U_{i-1}, \qquad \qquad \psi U_i^{\Downarrow} \subseteq U_{i-1}^{\Downarrow}
$$

for $1 \le i \le d$ and both $\psi U_0 = 0$ and $\psi U_0^{\psi} = 0$. In [\[5\]](#page-24-16), it is shown how ψ is related to several maps, including the maps K, B , as well as the map Δ which we now recall. By [\[4,](#page-24-18) Lemma 9.5], there exists a unique linear transformation $\Delta : V \to V$ such that

$$
\Delta U_i \subseteq U_i^{\psi} \qquad (0 \le i \le d),
$$

$$
(\Delta - I)U_i \subseteq U_0 + U_1 + \dots + U_{i-1} \quad (0 \le i \le d).
$$

In [\[4,](#page-24-18) Theorem 17.1], the present author showed that both

$$
\Delta = \sum_{i=0}^{d} \left(\prod_{j=1}^{i} \frac{aq^{j-1} - a^{-1}q^{1-j}}{q^j - q^{-j}} \right) \psi^i, \ \Delta^{-1} = \sum_{i=0}^{d} \left(\prod_{j=1}^{i} \frac{a^{-1}q^{j-1} - aq^{1-j}}{q^j - q^{-j}} \right) \psi^i.
$$

The primary goal of this paper is to provide factorizations of these power series in ψ and to investigate the consequences of these factorizations. We accomplish this goal using a linear transformation $M: V \rightarrow V$ given by

22 S. Bockting-Conrad

$$
\mathcal{M} = \frac{aK - a^{-1}B}{a - a^{-1}}.
$$

By construction, $\mathcal{M}^{\psi} = \mathcal{M}$. One can quickly check that M is invertible. We show that the map M is equal to each of

$$
(I - a^{-1}q\psi)^{-1}K
$$
, $K(I - a^{-1}q^{-1}\psi)^{-1}$, $(I - aq\psi)^{-1}B$, $B(I - aq^{-1}\psi)^{-1}$.

We give a number of different relations involving the maps M, K, B, ψ , the most significant of which are the following:

$$
K \exp_q \left(\frac{a^{-1}}{q - q^{-1}} \psi \right) = \exp_q \left(\frac{a^{-1}}{q - q^{-1}} \psi \right) M,
$$

$$
B \exp_q \left(\frac{a}{q - q^{-1}} \psi \right) = \exp_q \left(\frac{a}{q - q^{-1}} \psi \right) M.
$$

Using these equations, we obtain our main result which is that both

$$
\Delta = \exp_q\left(\frac{a}{q-q^{-1}}\psi\right)\exp_{q^{-1}}\left(-\frac{a^{-1}}{q-q^{-1}}\psi\right),\newline \Delta^{-1} = \exp_q\left(\frac{a^{-1}}{q-q^{-1}}\psi\right)\exp_{q^{-1}}\left(-\frac{a}{q-q^{-1}}\psi\right).
$$

Due to its important role in the factorization of Δ , we explore the map M further. We show that M is diagonalizable with eigenvalues q^d , $q^{\tilde{d}-2}$, q^{d-4} , ..., q^{-d} . For $0 \leq i \leq d$, let W_i denote the eigenspace of M corresponding to the eigenvalue *q*^{*d*−2*i*}. We show that for $0 ≤ i ≤ d$,

$$
U_i = \exp_q\left(\frac{a^{-1}}{q-q^{-1}}\psi\right)W_i, \qquad U_i^{\Downarrow} = \exp_q\left(\frac{a}{q-q^{-1}}\psi\right)W_i,
$$

$$
W_i = \exp_{q^{-1}}\left(-\frac{a^{-1}}{q-q^{-1}}\psi\right)U_i, \qquad W_i = \exp_{q^{-1}}\left(-\frac{a}{q-q^{-1}}\psi\right)U_i^{\Downarrow}.
$$

In light of this result, we interpret the decomposition ${W_i}_{i=0}^d$ as a sort of halfway point between the first and second split decompositions. We explore this decomposition further and give the actions of ψ , K, B, Δ , A, A^{*} on $\{W_i\}_{i=0}^d$. We then give the actions of $\mathcal{M}^{\pm 1}$ on $\{U_i\}_{i=0}^d$, $\{U_i^{\downarrow}\}_{i=0}^d$, $\{V_i\}_{i=0}^d$, $\{V_i^*\}_{i=0}^d$. We conclude the paper with a discussion of the special case when *A, A*∗ is a Leonard pair.

The present paper is organized as follows. In Sect. [2](#page-4-0) we discuss some preliminary facts concerning TD pairs and TD systems. In Sect. [3](#page-6-0) we discuss the split decompositions of *V* as well as the maps *K* and *B*. In Sect. [4](#page-7-0) we discuss the map ψ . In Sect. [5](#page-9-0) we recall the map Δ and give Δ as a power series in ψ . In Sect. [6](#page-10-0) we introduce the map M and describe its relationship with A, K, B, ψ . In Sect. [7](#page-12-0) we express Δ as a product of two linear transformations; one is a *q*-exponential in ψ and the other is a q^{-1} -exponential in ψ . In Sect. [8](#page-14-0) we describe the eigenvalues and

eigenspaces of M and discuss how the eigenspace decomposition of M is related to the first and second split decompositions. In Sect. [9](#page-15-0) we discuss the actions of ψ , K, B, Δ , A, A^{*} on the eigenspace decomposition of M. In Sect. [10](#page-16-0) we describe the action of M on the first and second split decompositions of V , as well as on the eigenspace decompositions of *A, A*∗. In Sect. [11](#page-17-0) we consider the case when *A, A*∗ is a Leonard pair.

2 Preliminaries

When working with a tridiagonal pair, it is useful to consider a closely related object called a tridiagonal system. In order to define this object, we first recall some facts from elementary linear algebra [\[9,](#page-24-0) Section 2].

We use the following conventions. When we discuss an algebra, we mean a unital associative algebra. When we discuss a subalgebra, we assume that it has the same unit as the parent algebra.

Let *V* denote a vector space over K with finite positive dimension. By a *decomposition* of *V*, we mean a sequence of nonzero subspaces whose direct sum is V . Let End (V) denote the K-algebra consisting of all linear transformations from *V* to *V*. Let *A* denote a diagonalizable element in End (V) . Let ${V_i}_{i=0}^d$ denote an ordering of the eigenspaces of *A*. For $0 \le i \le d$ let θ_i be the eigenvalue of *A* corresponding to *V_i*. Define $E_i \in \text{End}(V)$ by $(E_i - I)V_i = 0$ and $E_i V_j = 0$ if $j \neq i$ ($0 \leq j \leq d$). In other words, E_i is the projection map from *V* onto V_i . We refer to E_i as the *primitive idempotent* of *A* associated with θ_i . By elementary linear algebra, (i) $AE_i = E_i A = \theta_i E_i$ ($0 \le i \le d$); (ii) $E_i E_j = \delta_{ij} E_i$ ($0 \le i, j \le d$); (iii) $V_i = E_i V$ ($0 \le i \le d$); (iv) $I = \sum_{i=0}^{d} E_i$. Moreover

$$
E_i = \prod_{\substack{0 \le j \le d \\ j \ne i}} \frac{A - \theta_j I}{\theta_i - \theta_j} \qquad (0 \le i \le d).
$$

Let *M* denote the subalgebra of $End(V)$ generated by *A*. Note that each of ${A^i}_{i=0}^d$, ${E_i}_{i=0}^d$ is a basis for the K-vector space *M*.

Let *A, A*∗ denote a TD pair on *V* . An ordering of the eigenspaces of *A* (resp. *A*^{*}) is said to be *standard* whenever it satisfies [\(1\)](#page-0-1) (resp. [\(2\)](#page-0-2)). Let ${V_i}_{i=0}^d$ denote a standard ordering of the eigenspaces of *A*. By [\[9,](#page-24-0) Lemma 2.4], the ordering ${V_{d-i}}_{i=0}^d$ is standard and no further ordering of the eigenspaces of *A* is standard. A similar result holds for the eigenspaces of *A*∗. An ordering of the primitive idempotents of *A* (resp. *A*∗) is said to be *standard* whenever the corresponding ordering of the eigenspaces of *A* (resp. *A*∗) is standard.

Definition 2 ([\[17,](#page-24-20) Definition 2.1]) Let *V* **denote a vector space over K with finite** positive dimension. By a *tridiagonal system* (or *TD system*) on *V ,* we mean a sequence

$$
\Phi = (A; \{E_i\}_{i=0}^d; A^*; \{E_i^*\}_{i=0}^d)
$$

that satisfies (i)–(iii) below.

- (i) *A, A*∗ is a tridiagonal pair on *V* .
- (ii) ${E_i}^d_{i=0}$ is a standard ordering of the primitive idempotents of *A*.
- (iii) ${E_i^* }_{i=0}^d$ is a standard ordering of the primitive idempotents of *A*[∗].

We call d the *diameter* of Φ , and say Φ is *over* \mathbb{K} . For notational convenience, set $E_{-1} = 0, E_{d+1} = 0, E_{-1}^* = 0, E_{d+1}^* = 0.$

In Definition [2](#page-4-1) we do not assume that the primitive idempotents ${E_i}\}_{i=0}^d$, ${E_i^*}\}_{i=0}^d$ all have rank 1. A TD system for which each of these primitive idempotents has rank 1 is called a Leonard system [\[20\]](#page-24-21). The Leonard systems are classified up to isomorphism [\[20,](#page-24-21) Theorem 1.9].

For the rest of this paper, fix a TD system Φ on *V* as in Definition [2.](#page-4-1) Our TD system Φ can be modified in a number of ways to get a new TD system [\[9,](#page-24-0) Section 3]. For example, the sequence

$$
\Phi^{\Downarrow} = (A; \{E_{d-i}\}_{i=0}^d; A^*; \{E_i^*\}_{i=0}^d)
$$

is a TD system on *V*. Following [\[9,](#page-24-0) Section 3], we call Φ^{ψ} the *second inversion* of Φ . When discussing Φ^{ψ} , we use the following notational convention. For any object *f* associated with Φ , let f^{ψ} denote the corresponding object associated with Φ^{ψ} .

Definition 3 For $0 \le i \le d$ let θ_i (resp. θ_i^*) denote the eigenvalue of *A* (resp. A^*) associated with E_i (resp. E_i^*). We refer to $\{\theta_i\}_{i=0}^d$ (resp. $\{\theta_i^*\}_{i=0}^d$) as the *eigenvalue sequence* (resp. *dual eigenvalue sequence*) of .

By construction $\{\theta_i\}_{i=0}^d$ are mutually distinct and $\{\theta_i^*\}_{i=0}^d$ are mutually distinct. By [\[9,](#page-24-0) Theorem 11.1], the scalars

$$
\frac{\theta_{i-2} - \theta_{i+1}}{\theta_{i-1} - \theta_i}, \qquad \frac{\theta_{i-2}^* - \theta_{i+1}^*}{\theta_{i-1}^* - \theta_i^*}
$$

are equal and independent of *i* for $2 < i < d - 1$. For this restriction, the solutions have been found in closed form [\[9,](#page-24-0) Theorem 11.2]. The most general solution is called *q*-Racah [\[12,](#page-24-4) Section 1]. This solution is described as follows.

Definition 4 Let Φ denote a TD system on *V* as in Definition [2.](#page-4-1) We say that Φ has *q*-Racah type whenever there exist nonzero scalars $q, a, b \in \mathbb{K}$ such that such that $q^4 \neq 1$ and

$$
\theta_i = aq^{d-2i} + a^{-1}q^{2i-d}, \qquad \theta_i^* = bq^{d-2i} + b^{-1}q^{2i-d} \tag{3}
$$

for $0 \le i \le d$.

Note 2 Referring to Definition [4,](#page-5-0) the scalars q , a , b are not uniquely defined by Φ . If *q, a, b* is one solution, then their inverses give another solution.

For the rest of the paper, we make the following assumption.

Assumption 1 *We assume that our TD system has q-Racah type. We fix q, a, b as in Definition [4.](#page-5-0)*

Lemma 1 ([\[5,](#page-24-16) Lemma 2.4]) *With reference to Assumption [1,](#page-6-1) the following hold.*

(i) *Neither of a*², b^2 *is among a*^{2*d*−2}*, a*^{2*d*−4}*,...,a*^{2−2*d*}*.* (ii) $q^{2i} \neq 1$ *for* $1 \leq i \leq d$.

Proof The result follows from the comment below Definition [3.](#page-5-1)

 \Box

3 The First and Second Split Decomposition of *V*

Recall the TD system Φ from Assumption [1.](#page-6-1) In this section we consider two decompositions of V associated with Φ , called the first and second split decomposition.

For $0 \le i \le d$ define

$$
U_i = (E_0^* V + E_1^* V + \dots + E_i^* V) \cap (E_i V + E_{i+1} V + \dots + E_d V).
$$

For notational convenience, define $U_{-1} = 0$ and $U_{d+1} = 0$. Note that for $0 \le i \le d$,

$$
U_i^{\Downarrow} = (E_0^* V + E_1^* V + \dots + E_i^* V) \cap (E_0 V + E_1 V + \dots + E_{d-i} V).
$$

By [\[9,](#page-24-0) Theorem 4.6], the sequence $\{U_i\}_{i=0}^d$ (resp. $\{U_i^{\Downarrow}\}_{i=0}^d$) is a decomposition of *V*. Following [\[9\]](#page-24-0), we refer to $\{U_i\}_{i=0}^d$ (resp. $\{U_i^{\{1\}}\}_{i=0}^d$) as the *first split decomposition* (resp. *second split decomposition*) of *V* with respect to . By [\[9,](#page-24-0) Corollary 5.7], for $0 \le i \le d$ the dimensions of $E_i V$, $E_i^* V$, U_i , U_i^{ψ} coincide; we denote the common dimension by ρ_i . By [\[9,](#page-24-0) Theorem 4.6],

$$
E_i V + E_{i+1} V + \dots + E_d V = U_i + U_{i+1} + \dots + U_d, \quad (4)
$$

$$
E_0V + E_1V + \dots + E_iV = U_{d-i}^{\downarrow} + U_{d-i+1}^{\downarrow} + \dots + U_d^{\downarrow}, \quad (5)
$$

$$
E_0^* V + E_1^* V + \cdots E_i^* V = U_0 + U_1 + \cdots + U_i = U_0^{\downarrow} + U_1^{\downarrow} + \cdots + U_i^{\downarrow}.
$$
 (6)

By [\[9,](#page-24-0) Theorem 4.6], *A* and *A*∗ act on the first split decomposition in the following way:

$$
(A - \theta_i I)U_i \subseteq U_{i+1} \qquad (0 \le i \le d - 1), \qquad (A - \theta_d I)U_d = 0,
$$

$$
(A^* - \theta_i^* I)U_i \subseteq U_{i-1} \qquad (1 \le i \le d), \qquad (A^* - \theta_0^* I)U_0 = 0.
$$

By [\[9,](#page-24-0) Theorem 4.6], *A* and *A*∗ act on the second split decomposition in the following way:

$$
(A - \theta_{d-i}I)U_i^{\Downarrow} \subseteq U_{i+1}^{\Downarrow} \qquad (0 \le i \le d-1), \qquad (A - \theta_0I)U_d^{\Downarrow} = 0,
$$

$$
(A^* - \theta_i^*I)U_i^{\Downarrow} \subseteq U_{i-1}^{\Downarrow} \qquad (1 \le i \le d), \qquad (A^* - \theta_0^*I)U_0^{\Downarrow} = 0.
$$

Definition 5 ([\[5,](#page-24-16) Definitions 3.1 and 3.2]) Define *K, B* \in End(*V*) such that for $0 \le i \le d$, *U_i* (resp. *U_i*^{\downarrow}) is the eigenspace of *K* (resp. *B*) with eigenvalue q^{d-2i} . In other words,

$$
(K - q^{d-2i} I)U_i = 0, \qquad (B - q^{d-2i} I)U_i^{\Downarrow} = 0 \qquad (0 \le i \le d). \tag{7}
$$

Observe that $B = K^{\downarrow}$.

By construction each of K , B is invertible and diagonalizable on V .

We now describe how *K* and *B* act on the eigenspaces of the other one.

Lemma 2 ([\[5,](#page-24-16) **Lemma 3.3**]) *For* $0 \le i \le d$,

$$
(B - q^{d-2i} I)U_i \subseteq U_0 + U_1 + \dots + U_{i-1},
$$
\n(8)

$$
(K - q^{d-2i} I)U_i^{\Downarrow} \subseteq U_0^{\Downarrow} + U_1^{\Downarrow} + \dots + U_{i-1}^{\Downarrow}.
$$
 (9)

Next we describe how *A, K, B* are related.

Lemma 3 ([\[13,](#page-24-19) Section 1.1]) *Both*

$$
\frac{qKA - q^{-1}AK}{q - q^{-1}} = aK^2 + a^{-1}I, \qquad \frac{qBA - q^{-1}AB}{q - q^{-1}} = a^{-1}B^2 + aI. \tag{10}
$$

Lemma 4 ([\[5,](#page-24-16) Theorem 9.9]) *We have*

$$
aK^2 - \frac{a^{-1}q - aq^{-1}}{q - q^{-1}}KB - \frac{aq - a^{-1}q^{-1}}{q - q^{-1}}BK + a^{-1}B^2 = 0.
$$
 (11)

4 The Linear Transformation *ψ*

We continue to discuss the situation of Assumption [1.](#page-6-1) In [\[4,](#page-24-18) Section 11] we introduced an element $\Psi \in \text{End}(V)$. In [\[5\]](#page-24-16) we used the normalization $\psi =$ $(q - q^{-1})(q^d - q^{-d})\Psi$. In [\[5,](#page-24-16) Theorem 9.8], we showed that ψ is equal to some rational expressions involving K, B . We now recall this result. We start with a comment.

Lemma 5 ([\[5,](#page-24-16) Lemma 9.7]) *Each of the following is invertible:*

$$
aI - a^{-1}BK^{-1}, \qquad a^{-1}I - aKB^{-1}, \qquad (12)
$$

$$
aI - a^{-1}K^{-1}B, \qquad a^{-1}I - aB^{-1}K. \tag{13}
$$

Lemma 6 ([\[5,](#page-24-16) Theorem 9.8]) *The following four expressions coincide:*

$$
\frac{I - BK^{-1}}{q(aI - a^{-1}BK^{-1})}, \qquad \frac{I - KB^{-1}}{q(a^{-1}I - aKB^{-1})}, \qquad (14)
$$

$$
\frac{q(I - K^{-1}B)}{aI - a^{-1}K^{-1}B}, \qquad \frac{q(I - B^{-1}K)}{a^{-1}I - aB^{-1}K}.
$$
 (15)

In [\(14\)](#page-8-0)*,* [\(15\)](#page-8-0) *the denominators are invertible by Lemma [5.](#page-7-1)*

Definition 6 Define $\psi \in \text{End}(V)$ to be the common value of the four expressions in Lemma [6.](#page-8-1)

We now recall some facts concerning *ψ*.

Lemma 7 ([\[5,](#page-24-16) Lemma 5.4]) *Both*

$$
K\psi = q^2\psi K, \qquad B\psi = q^2\psi B. \qquad (16)
$$

Lemma 8 ([\[4,](#page-24-18) Lemma 11.2, Corollary 15.3]) *We have*

$$
\psi U_i \subseteq U_{i-1}, \qquad \psi U_i^{\Downarrow} \subseteq U_{i-1}^{\Downarrow} \qquad (1 \le i \le d) \qquad (17)
$$

and also $\psi U_0 = 0$ *and* $\psi U_0^{\psi} = 0$ *. Moreover* $\psi^{d+1} = 0$ *.*

In Lemma [6](#page-8-1) we obtained ψ as a rational expression in BK^{-1} or $K^{-1}B$. Next we solve for BK^{-1} and $K^{-1}B$ as a rational function in ψ . In order to state the answer, we will need the following result.

Lemma 9 ([\[5,](#page-24-16) Lemma 9.2]) *Each of the following is invertible:*

$$
I - aq\psi
$$
, $I - a^{-1}q\psi$, $I - aq^{-1}\psi$, $I - a^{-1}q^{-1}\psi$. (18)

Their inverses are as follows:

$$
(I - aq\psi)^{-1} = \sum_{i=0}^{d} a^i q^i \psi^i, \qquad (I - a^{-1}q\psi)^{-1} = \sum_{i=0}^{d} a^{-i} q^i \psi^i, \qquad (I - aq^{-1}\psi)^{-1} = \sum_{i=0}^{d} a^{-i} q^i \psi^i, \qquad (I - a^{-1}q^{-1}\psi)^{-1} = \sum_{i=0}^{d} a^{-i} q^{-i} \psi^i \tag{20}
$$

The next result is an immediate consequence of Lemma [6,](#page-8-1) Definition [6,](#page-8-2) and Lemma [9.](#page-8-3)

Theorem 1 ([\[5,](#page-24-16) Theorem 9.4]) *The following hold:*

$$
BK^{-1} = \frac{I - aq\psi}{I - a^{-1}q\psi}, \qquad KB^{-1} = \frac{I - a^{-1}q\psi}{I - aq\psi}, \qquad (21)
$$

$$
K^{-1}B = \frac{I - aq^{-1}\psi}{I - a^{-1}q^{-1}\psi}, \qquad B^{-1}K = \frac{I - a^{-1}q^{-1}\psi}{I - aq^{-1}\psi}.
$$
 (22)

In [\(21\)](#page-9-1)*,* [\(22\)](#page-9-1) *the denominators are invertible by Lemma [9.](#page-8-3)*

Lemma 10 ([\[5,](#page-24-16) Equation (22)]) *We have*

$$
\frac{\psi A - A\psi}{q - q^{-1}} = (I - aq\psi) K - \left(I - a^{-1}q^{-1}\psi\right) K^{-1}.
$$
 (23)

Proof This result is a reformulation of [\[5,](#page-24-16) Equation (22)] using [5, Equation (14)]. Ч

5 The Linear Transformation

We continue to discuss the situation of Assumption [1.](#page-6-1) In [\[4,](#page-24-18) Section 9] we introduced an invertible element $\Delta \in \text{End}(V)$. In [\[4\]](#page-24-18) we showed that Δ , ψ commute and in fact both Δ , Δ^{-1} are power series in ψ . These power series will be the central focus of this paper. We will show that each of those power series factors as a product of two power series, each of which is a quantum exponential in *ψ*.

Lemma 11 ([\[4,](#page-24-18) Lemma 9.5]) *There exists a unique* $\Delta \in \text{End}(V)$ *such that*

$$
\Delta U_i \subseteq U_i^{\Downarrow} \qquad (0 \le i \le d), \qquad (24)
$$

$$
(\Delta - I)U_i \subseteq U_0 + U_1 + \dots + U_{i-1} \qquad (0 \le i \le d). \tag{25}
$$

Lemma 12 ($[4, \text{Lemma 9.3 and 9.6}]$ $[4, \text{Lemma 9.3 and 9.6}]$ **)** *The map* Δ *is invertible. Moreover* Δ^{-1} = Δ^{\Downarrow} and

$$
(\Delta^{-1} - I)U_i \subseteq U_0 + U_1 + \dots + U_{i-1} \qquad (0 \le i \le d). \tag{26}
$$

Lemma 13 *The map* $\Delta - I$ *is nilpotent. Moreover* $\Delta K = B\Delta$.

Proof The first assertion follows from [\(25\)](#page-9-2). The last assertion follows from [\(24\)](#page-9-2) and Definition [5.](#page-7-2) \Box

The map Δ is characterized as follows.

Lemma 14 ([\[4,](#page-24-18) Lemma 9.8]) *The map* Δ *is the unique element of* End(V) *such that*

$$
(\Delta - I)E_i^* V \subseteq E_0^* V + E_1^* V + \dots + E_{i-1}^* V \qquad (0 \le i \le d),
$$
\n(27)

$$
\Delta(E_i V + E_{i+1} V + \dots + E_d V) = E_0 V + E_1 V + \dots + E_{d-i} V \qquad (0 \le i \le d).
$$
\n(28)

Theorem 2 ([\[4,](#page-24-18) Theorem 17.1]) *Both*

$$
\Delta = \sum_{i=0}^{d} \left(\prod_{j=1}^{i} \frac{aq^{j-1} - a^{-1}q^{1-j}}{q^j - q^{-j}} \right) \psi^i,
$$
 (29)

$$
\Delta^{-1} = \sum_{i=0}^{d} \left(\prod_{j=1}^{i} \frac{a^{-1} q^{j-1} - a q^{1-j}}{q^j - q^{-j}} \right) \psi^i.
$$
 (30)

In [\(29\)](#page-10-1) and [\(30\)](#page-10-1), the elements Δ , Δ^{-1} are expressed as a power series in ψ . In the present paper, we factor these power series and interpret the results. This interpretation will involve a linear transformation M . We introduce M in the next section.

6 The Linear Transformation M

We continue to discuss the situation of Assumption [1.](#page-6-1) In this section we introduce an element $M \in End(V)$. We explain how M is related to K, B, ψ , A.

Definition 7 Define $M \in \text{End}(V)$ by

$$
\mathcal{M} = \frac{aK - a^{-1}B}{a - a^{-1}}.
$$
\n(31)

By construction, $M^{\Downarrow} = M$. Evaluating [\(31\)](#page-10-2) using Lemma [5,](#page-7-1) we see that M is invertible.

Lemma 15 *The map* M *is equal to each of:*

$$
(I - a^{-1}q\psi)^{-1}K
$$
, $K(I - a^{-1}q^{-1}\psi)^{-1}$, $(I - aq\psi)^{-1}B$, $B(I - aq^{-1}\psi)^{-1}$.

Proof We first show that $M = (I - a^{-1}q\psi)^{-1}K$. By Definition [7,](#page-10-3)

$$
(a - a^{-1})MK^{-1} = aI - a^{-1}BK^{-1}.
$$

The result follows from this fact along with the equation on the left in [\(21\)](#page-9-1).

 \Box

 \Box

 \Box

 \Box

 \Box

The remaining assertions follow from Theorem [1.](#page-9-3)

Lemma [15](#page-10-4) can be reformulated as follows.

Lemma 16 *We have*

$$
K = \left(I - a^{-1}q\psi\right)M, \qquad K = \mathcal{M}\left(I - a^{-1}q^{-1}\psi\right), \qquad (32)
$$

$$
B = (I - aq\psi) M, \qquad B = M\left(I - aq^{-1}\psi\right). \tag{33}
$$

For later use, we give several descriptions of $M^{\pm 1}$.

Lemma 17 *The map* M^{-1} *is equal to each of:*

$$
K^{-1}(I - a^{-1}q\psi), \quad (I - a^{-1}q^{-1}\psi)K^{-1}, \quad B^{-1}(I - aq\psi), \quad (I - aq^{-1}\psi)B^{-1}.
$$

Proof Immediate from Lemma [15.](#page-10-4)

Lemma 18 *The map* M *is equal to each of:*

$$
K\sum_{n=0}^{d} a^{-n}q^{-n}\psi^n, \qquad \sum_{n=0}^{d} a^{-n}q^n\psi^n K, \qquad B\sum_{n=0}^{d} a^nq^{-n}\psi^n, \qquad \sum_{n=0}^{d} a^nq^n\psi^n B
$$
\n(34)

Proof Use Lemmas [9](#page-8-3) and [15.](#page-10-4)

We now give some attractive equations that show how M is related to *ψ, K,B, A*.

Lemma 19 *We have*

$$
\mathcal{M}\psi = q^2 \psi \mathcal{M}.
$$
 (35)

Proof Use Lemma [7](#page-8-4) and Definition [7.](#page-10-3)

Lemma 20 *We have*

$$
\frac{qM^{-1}K - q^{-1}KM^{-1}}{q - q^{-1}} = I, \qquad \frac{qM^{-1}B - q^{-1}BM^{-1}}{q - q^{-1}} = I. \qquad (36)
$$

Proof Use Lemma [17.](#page-11-0)

Lemma 21 *We have*

$$
\frac{qAM^{-1} - q^{-1}M^{-1}A}{q - q^{-1}} = (a + a^{-1})I - (q + q^{-1})\psi.
$$
 (37)

Proof Use Lemmas [3,](#page-7-3) [7,](#page-8-4) [10,](#page-9-4) and [17.](#page-11-0)

Lemma 22 *We have*

$$
\mathcal{M}^{-2}A - (q^2 + q^{-2})\mathcal{M}^{-1}A\mathcal{M}^{-1} + A\mathcal{M}^{-2} = -(q - q^{-1})^2(a + a^{-1})\mathcal{M}^{-1}.
$$
 (38)

Proof Use Lemmas [19](#page-11-1) and [21.](#page-11-2)

7 A Factorization of

We continue to discuss the situation of Assumption [1.](#page-6-1) We now bring in the *q*-exponential function [\[8\]](#page-24-22). In [\[4,](#page-24-18) Theorem 17.1] we expressed Δ as a power series in ψ . In this section we strengthen this result in the following way. We express Δ as a product of two linear transformations; one is a *q*-exponential in ψ and the other is a q^{-1} -exponential in ψ .

For an integer *n*, define

$$
[n]_q = \frac{q^n - q^{-n}}{q - q^{-1}}\tag{39}
$$

and for $n \geq 0$, define

$$
[n]_q^! = [n]_q [n-1]_q \cdots [1]_q.
$$
 (40)

We interpret $[0]_q^! = 1$.

We now recall the *q*-exponential function [\[8\]](#page-24-22). For a nilpotent $T \in \text{End}(V)$,

$$
\exp_q(T) = \sum_{n=0}^{\infty} \frac{q^{\binom{n}{2}}}{[n]_q^!} T^n.
$$
\n(41)

The map $exp_a(T)$ is invertible. Its inverse is given by

$$
\exp_{q^{-1}}(-T) = \sum_{n=0}^{\infty} \frac{(-1)^n q^{-\binom{n}{2}}}{[n]_q^!} T^n.
$$
 (42)

Using (41) we obtain

$$
(I - (q2 - 1)T) \expq(q2T) = \expq(T).
$$
 (43)

For $S \in \text{End}(V)$ such that $ST = q^2TS$, we have

$$
S \exp_q(T)S^{-1} = \exp_q(STS^{-1}) = \exp_q(q^2T).
$$

Consequently

$$
S \exp_q(T) = \exp_q(q^2 T) S. \tag{44}
$$

Combining [\(43\)](#page-12-2) and [\(44\)](#page-13-0),

$$
(I - (q2 - 1)T)S \exp_q(T) = \exp_q(T)S.
$$
 (45)

We return our attention to K, B, ψ, M .

Proposition 1 *Both*

$$
K \exp_q\left(\frac{a^{-1}}{q-q^{-1}}\psi\right) = \exp_q\left(\frac{a^{-1}}{q-q^{-1}}\psi\right)M,\tag{46}
$$

$$
B \exp_q \left(\frac{a}{q - q^{-1}} \psi \right) = \exp_q \left(\frac{a}{q - q^{-1}} \psi \right) M. \tag{47}
$$

Proof Recall from Lemma [19](#page-11-1) that $M\psi = q^2 \psi M$. We first obtain [\(46\)](#page-13-1). To do this, in [\(45\)](#page-13-2) take $S = M$ and $T = \frac{a^{-1}}{q - q^{-1}} \psi$. Evaluate the result using the equation $M = (I - a^{-1}q\psi)^{-1}K$ from Lemma [15.](#page-10-4)

Next we obtain [\(47\)](#page-13-1). To do this, in [\(45\)](#page-13-2) take $S = M$ and $T = \frac{a}{q-q^{-1}}\psi$. Evaluate the result using the equation $M = (I - aq\psi)^{-1}B$ from Lemma [15.](#page-10-4) \Box

The following is our main result.

Theorem 3 *Both*

$$
\Delta = \exp_q \left(\frac{a}{q - q^{-1}} \psi \right) \exp_{q^{-1}} \left(-\frac{a^{-1}}{q - q^{-1}} \psi \right),\tag{48}
$$

$$
\Delta^{-1} = \exp_q\left(\frac{a^{-1}}{q - q^{-1}}\psi\right) \exp_{q^{-1}}\left(-\frac{a}{q - q^{-1}}\psi\right). \tag{49}
$$

Proof We first show [\(48\)](#page-13-3). Let $\tilde{\Delta}$ denote the expression on the right in (48). Combining [\(46\)](#page-13-1) and [\(47\)](#page-13-1), we see that $\tilde{\Delta}K = B\tilde{\Delta}$. Therefore $\tilde{\Delta}U_i = U_i^{\Downarrow}$ for $0 \leq i \leq d$. Observe that $\tilde{\Delta} - I$ is a polynomial in ψ with zero constant term. By Lemma [8,](#page-8-5) $({\tilde$ Delta} − I)U_i \subseteq U_0 + U_1 + \cdots + U_{i-1} for $0 \le i \le d$. By Lemma [11,](#page-9-5) $\Delta = \Delta.$

To obtain (49) from (48) , use (42) .

Corollary 1 *We have*

$$
\exp_q\left(\frac{a}{q-q^{-1}}\psi\right)\exp_{q^{-1}}\left(-\frac{a^{-1}}{q-q^{-1}}\psi\right) = \sum_{i=0}^d \left(\prod_{j=1}^i \frac{aq^{j-1}-a^{-1}q^{1-j}}{q^j-q^{-j}}\right)\psi^i,
$$

$$
\Box
$$

$$
\exp_q\left(\frac{a^{-1}}{q-q^{-1}}\psi\right)\exp_{q^{-1}}\left(-\frac{a}{q-q^{-1}}\psi\right)=\sum_{i=0}^d\left(\prod_{j=1}^i\frac{a^{-1}q^{j-1}-aq^{1-j}}{q^j-q^{-j}}\right)\psi^i.
$$

Proof Combine Theorems [2](#page-10-5) and [3.](#page-13-4) The equations can also be obtained directly by expanding their left-hand sides using [\(41\)](#page-12-1) and [\(42\)](#page-12-3), and evaluating the results using the *q*-binomial theorem $[2,$ Theorem 10.2.1]. \Box

8 The Eigenvalues and Eigenspaces of M

We continue to discuss the situation of Assumption [1.](#page-6-1) In Sect. [6](#page-10-0) we introduced the linear transformation M . Proposition [1](#page-13-5) indicates the role of M in the factorization of Δ in Theorem [3.](#page-13-4) In this section we show that M is diagonalizable. We describe the eigenvalues and eigenspaces of M . We also explain how the eigenspace decomposition for M is related to the first and second split decompositions.

Lemma 23 *The map M is diagonalizable with eigenvalues* q^d , q^{d-2} , q^{d-4} , ..., q^{-d} .

Proof Let $E = \exp_q \left(\frac{a^{-1}}{q - q^{-1}} \psi \right)$. By [\(46\)](#page-13-1), $\mathcal{M} = E^{-1} K E$. By construction *K* is diagonalizable with eigenvalues q^d , q^{d-2} , q^{d-4} , ..., q^{-d} . The result follows. □

Definition 8 For $0 \le i \le d$, let W_i denote the eigenspace of M corresponding to the eigenvalue q^{d-2i} . Note that ${W_i}_{i=0}^d$ is a decomposition of *V*, and that $W_i^{\Downarrow} = W_i$ for $0 \le i \le d$. For notational convenience, let $W_{-1} = 0$ and $W_{d+1} = 0$.

Proposition 2 *For* $0 \le i \le d$ *,*

$$
U_i = \exp_q\left(\frac{a^{-1}}{q-q^{-1}}\psi\right)W_i, \qquad U_i^{\Downarrow} = \exp_q\left(\frac{a}{q-q^{-1}}\psi\right)W_i, \qquad (50)
$$

$$
W_i = \exp_{q^{-1}}\left(-\frac{a^{-1}}{q - q^{-1}}\psi\right)U_i, \qquad W_i = \exp_{q^{-1}}\left(-\frac{a}{q - q^{-1}}\psi\right)U_i^{\Downarrow}.
$$
 (51)

Proof Define *E* as in the proof of Lemma [23.](#page-14-1) We show that $U_i = EW_i$. By [\(46\)](#page-13-1), $KE = EM$. Recall that U_i (resp. W_i) is the eigenspace of *K* (resp. *M*) corresponding to the eigenvalue q^{d-2i} . By these comments $U_i = EW_i$.

Define $F = \exp_q(\frac{a}{q-q^{-1}}\psi)$. We show $U_i^{\Downarrow} = FW_i$. By [\(47\)](#page-13-1), $BF = FM$. Recall that U_i^{ψ} (resp. W_i) is the eigenspace of *B* (resp. *M*) corresponding to the eigenvalue q^{d-2i} . By these comments $U_i^{\Downarrow} = FW_i$. \Box

To obtain [\(51\)](#page-14-2) from [\(50\)](#page-14-2), use [\(42\)](#page-12-3).

Lemma 24 *For* $0 \le i \le d$ *, the dimension of* W_i *is* ρ_i *.*

Proof This follows from Proposition [2](#page-14-3) and the fact that U_i , U_i^{ψ} have dimension ρ_i . Ч Recall from [\(6\)](#page-6-2) that

$$
\sum_{h=0}^{i} E_h^* V = \sum_{h=0}^{i} U_h = \sum_{h=0}^{i} U_h^{\Downarrow}
$$
 (52)

for $0 \le i \le d$.

Lemma 25 *For* $0 \le i \le d$ *, the sum* $\sum_{h=0}^{i} W_h$ *is equal to the common value of* [\(52\)](#page-15-1)*.*

Proof Define $W = \sum_{h=0}^{i} W_h$ and let *U* denote the common value of [\(52\)](#page-15-1). We also will be also with $\sum_{h=0}^{i} W_h$ show that $W = U$. By Lemma [8](#page-8-5) and the equation on the left in [\(51\)](#page-14-2), $W \subseteq U$. By Lemma [24,](#page-14-4) *W* and *U* have the same dimension. Thus $W = U$. \Box

9 The Actions of ψ , K , B , Δ , A , A^* on $\{W_i\}_i^d$ *i***=0**

We continue to discuss the situation of Assumption [1.](#page-6-1) Recall the eigenspace decomposition $\{W_i\}_{i=0}^d$ for M. In this section, we discuss the actions of ψ , K, B, Δ , A, A^{*} on $\{W_i\}_{i=0}^d$.

Lemma 26 *For* $0 \le i \le d$ *,*

$$
\psi W_i \subseteq W_{i-1}.\tag{53}
$$

Proof Use Lemma [19.](#page-11-1)

Lemma 27 *For* $0 \le i \le d$ *,*

$$
(K - q^{d-2i} I)W_i \subseteq W_{i-1}, \qquad (B - q^{d-2i} I)W_i \subseteq W_{i-1}.
$$
 (54)

Proof Use Lemmas [16](#page-11-3) and [26.](#page-15-2)

Lemma 28 *For* $0 < i < d$ *,*

$$
(\Delta - I)W_i \subseteq W_0 + W_1 + \cdots + W_{i-1},\tag{55}
$$

$$
(\Delta^{-1} - I)W_i \subseteq W_0 + W_1 + \dots + W_{i-1}.
$$
 (56)

Proof To show [\(55\)](#page-15-3), use [\(25\)](#page-9-2) and Lemma [25.](#page-15-4)

To show (56) , use (26) and Lemma 25 .

Lemma 29 *For* $0 \le i \le d$ *,*

$$
(A - (a + a^{-1})q^{d-2i}I)W_i \subseteq W_{i-1} + W_{i+1}.
$$
\n(57)

Proof By Lemma [22,](#page-12-4) the expression

 \Box

 \Box

$$
(\mathcal{M}^{-1} - q^{2i+2-d} I)(\mathcal{M}^{-1} - q^{2i-2-d} I)(A - (a+a^{-1})q^{d-2i} I)
$$

vanishes on *W_i*. Therefore $(M^{-1} - q^{2i+2-d}I)(M^{-1} - q^{2i-2-d}I)$ vanishes on $(A (a + a^{-1})q^{d-2i} I$ *W_i*. The result follows. □ \Box

Lemma 30 *For* $0 < i < d$ *,*

$$
(A^* - \theta_i^* I)W_i \subseteq W_0 + W_1 + \dots + W_{i-1}.
$$
 (58)

Proof Use $(A^* - \theta_i^* I)E_i^* V = 0$ together with [\(25\)](#page-9-2) and Lemma [25.](#page-15-4) \Box

10 The Actions of $\mathcal{M}^{\pm 1}$ on $\{U_i\}_{i=0}^d$, $\{U_i^{\Downarrow}\}_{i=0}^d$, $\{E_i V\}_{i=0}^d$, ${E_i^*V}_{i}$ *i***=0**

We continue to discuss the situation of Assumption [1.](#page-6-1) In Sect. [8](#page-14-0) we saw how various operators act on the decomposition ${W_i}_{i=0}^d$. In this section we investigate the action of M on the first and second split decompositions of *V* , as well as on the eigenspace decompositions of *A, A*∗.

Lemma 31 *For* $0 \le i \le d$ *,*

$$
(\mathcal{M} - q^{d-2i} I)U_i \subseteq U_0 + U_1 + \dots + U_{i-1},
$$
\n(59)

$$
(\mathcal{M} - q^{d-2i} I) U_i^{\Downarrow} \subseteq U_0^{\Downarrow} + U_1^{\Downarrow} + \dots + U_{i-1}^{\Downarrow}.
$$
 (60)

Proof To show [\(59\)](#page-16-1), use Definition [5,](#page-7-2) Lemma [2,](#page-7-4) and Definition [7.](#page-10-3)

To show [\(60\)](#page-16-1), use [\(59\)](#page-16-1) applied to Φ^{\Downarrow} , along with $\mathcal{M}^{\Downarrow} = \mathcal{M}$. \Box

Lemma 32 *For* $0 \le i \le d$ *,*

$$
(\mathcal{M}^{-1} - q^{2i - d} I) U_i \subseteq U_{i-1}, \qquad (\mathcal{M}^{-1} - q^{2i - d} I) U_i^{\Downarrow} \subseteq U_{i-1}^{\Downarrow}.
$$
 (61)

Proof We first show the equation on the left in [\(61\)](#page-16-2). By Lemma [17,](#page-11-0)

$$
\mathcal{M}^{-1} = (I - a^{-1}q^{-1}\psi)K^{-1}.
$$
 (62)

From this and Definition [5,](#page-7-2) it follows that on *Ui*,

$$
\mathcal{M}^{-1} - q^{2i - d} I = a^{-1} q^{2i - d - 1} \psi.
$$
 (63)

The result follows from this along with Lemma [8.](#page-8-5)

The proof of the equation on the right in (61) follows from the equation on the left in [\(61\)](#page-16-2) applied to Φ^{\Downarrow} , along with the fact that $\mathcal{M}^{\Downarrow} = \mathcal{M}$. \Box **Lemma 33** *For* $0 < i < d$ *,*

$$
\mathcal{M}^{-1} E_i V \subseteq E_{i-1} V + E_i V + E_{i+1} V. \tag{64}
$$

Proof We first show that $M^{-1}E_iV \subseteq \sum_{h=0}^{i+1} E_hV$. Recall from [\(5\)](#page-6-2) that $E_iV \subseteq$ $\sum_{h=d-i}^{d} U_h^{\Downarrow}$. By this, Lemma [32,](#page-16-3) and [\(5\)](#page-6-2), we obtain $\mathcal{M}^{-1}E_iV \subseteq \sum_{h=0}^{i+1} E_hV$.

We now show that $M^{-1}E_iV \subseteq \sum_{h=i-1}^d E_hV$. Recall from [\(4\)](#page-6-2) that $E_iV \subseteq$ $\sum_{h=i}^{d} U_h$. By this, Lemma [32,](#page-16-3) and [\(4\)](#page-6-2), we obtain $\mathcal{M}^{-1}E_iV \subseteq \sum_{h=i-1}^{d} E_hV$.

Thus $\mathcal{M}^{-1}E_iV$ is contained in the intersection of $\sum_{h=0}^{i+1} E_hV$ and $\sum_{h=i-1}^{d} E_hV$. which is $E_{i-1}V + E_iV + E_{i+1}V$. Ч

Lemma 34 *For* $0 \le i \le d$ *,*

$$
(\mathcal{M} - q^{d-2i} I) E_i^* V \subseteq E_0^* V + E_1^* V + \dots + E_{i-1}^* V,
$$

$$
(\mathcal{M}^{-1} - q^{2i-d} I) E_i^* V \subseteq E_0^* V + E_1^* V + \dots + E_{i-1}^* V.
$$

Proof Note that $E_i^* V \subseteq E_0^* V + E_1^* V + \cdots + E_i^* V = W_0 + W_1 + \cdots + W_i$ by Lemma [25.](#page-15-4) The result follows from this fact along with Definition [8.](#page-14-5) Ч

11 When Is a Leonard System

We continue to discuss the situation of Assumption [1.](#page-6-1) For the rest of the paper we assume $\rho_i = 1$ for $0 \le i \le d$. In this case Φ is called a Leonard system.

We use the following notational convention. Let $\{v_i\}_{i=0}^d$ denote a basis for *V*. The sequence of subspaces $\{Kv_i\}_{i=0}^d$ is a decomposition of *V* said, to be *induced* by the basis $\{v_i\}_{i=0}^d$.

We display a basis $\{u_i\}_{i=0}^d$ (resp. $\{u_i^{\psi}\}_{i=0}^d$) (resp. $\{w_i\}_{i=0}^d$) that induces the decomposition ${U_i}_{i=0}^d$ (resp. ${U_i}_{i=0}^d$) (resp. ${W_i}_{i=0}^d$). We find the actions of ψ , K, B, $\Delta^{\pm 1}$, A on these bases. We also display the transition matrices between these bases.

For the rest of this section fix $0 \neq u_0 \in U_0$. Let M denote the subalgebra of End(V) generated by A. By [\[21,](#page-24-24) Lemma 5.1], the map $M \to V$, $X \mapsto Xu_0$ is an isomorphism of vector spaces. Consequently, the vectors $\{A^i u_0\}_{i=0}^d$ form a basis for *V*.

We now define a basis $\{u_i\}_{i=0}^d$ of *V* that induces $\{U_i\}_{i=0}^d$. For $0 \le i \le d$, define

$$
u_i = \left(\prod_{j=0}^{i-1} \left(A - \theta_j I\right)\right) u_0. \tag{65}
$$

Observe that $u_i \neq 0$. By [\[9,](#page-24-0) Theorem 4.6], $u_i \in U_i$. So u_i is a basis for U_i . Consequently, $\{u_i\}_{i=0}^d$ is a basis for *V* that induces $\{U_i\}_{i=0}^d$.

Next we define a basis $\{u_i^{\Downarrow}\}_{i=0}^d$ of *V* that induces $\{U_i^{\Downarrow}\}_{i=0}^d$. For $0 \le i \le d$, define

$$
u_i^{\Downarrow} = \left(\prod_{j=0}^{i-1} \left(A - \theta_{d-j} I\right)\right) u_0. \tag{66}
$$

Observe that $u_i^{\psi} \neq 0$. By Lemma [11,](#page-9-5) $u_i^{\psi} \in U_i^{\psi}$. So u_i^{ψ} is a basis for U_i^{ψ} . Consequently, $\{u_i^{\Downarrow}\}_{i=0}^d$ is a basis for *V* that induces $\{U_i^{\Downarrow}\}_{i=0}^d$.

Lemma 35 *For* $0 \le i \le d$ *,*

$$
u_i^{\Downarrow} = \Delta u_i. \tag{67}
$$

Proof By Lemma [11,](#page-9-5) $\Delta U_i = U_i^{\Downarrow}$. So there exists $0 \neq \lambda \in \mathbb{K}$ such that $\Delta u_i = \lambda u_i^{\Downarrow}$. We show that $\lambda = 1$. By [\[4,](#page-24-18) Lemma 7.3] and [\(25\)](#page-9-2), $\Delta u_i - A^i u$ is a linear combination of $\{A^j u\}_{j=0}^{i-1}$. Also, $u_i^{\Downarrow} - A^i u$ is a linear combination of $\{A^j u\}_{j=0}^{i-1}$. The vectors ${A^{j}}u_{j=0}^{i-1}$ are linearly independent. By these comments $\lambda = 1$. □ \Box

We next define a basis $\{w_i\}_{i=0}^d$ of *V* that induces $\{W_i\}_{i=0}^d$. For $0 \le i \le d$, define

$$
w_i = \exp_{q^{-1}}\left(-\frac{a^{-1}}{q - q^{-1}} \psi\right) u_i.
$$
 (68)

Since $\{u_i\}_{i=0}^d$ is a basis of *V* and $\exp_{q^{-1}}(-\frac{a^{-1}}{q-q^{-1}}\psi)$ is invertible, w_i is a basis for *W_i*. Consequently, $\{w_i\}_{i=0}^d$ is a basis for *V* that induces $\{W_i\}_{i=0}^d$.

Lemma 36 *For* $0 < i < d$ *,*

$$
u_i = \exp_q\left(\frac{a^{-1}}{q - q^{-1}}\psi\right)w_i, \qquad \qquad u_i^{\Downarrow} = \exp_q\left(\frac{a}{q - q^{-1}}\psi\right)w_i, \qquad (69)
$$

$$
w_i = \exp_{q^{-1}}\left(-\frac{a^{-1}}{q - q^{-1}}\psi\right)u_i, \qquad \qquad w_i = \exp_{q^{-1}}\left(-\frac{a}{q - q^{-1}}\psi\right)u_i^{\Downarrow}.
$$
 (70)

Proof Use (68) to obtain the equations on the left in (69) , (70) . To obtain the equations on the right in (69) , (70) , use Theorem [3,](#page-13-4) Lemma [35,](#page-18-2) and (68) . \Box

We now describe the actions of ψ , K, B, M, Δ , A on the bases $\{u_i\}_{i=0}^d$, $\{u_i^{\psi}\}_{i=0}^d$ $\{w_i\}_{i=0}^d$. First we recall a notion from linear algebra. Let Mat_{$d+1$}(K₎ denote the Kalgebra of $(d + 1) \times (d + 1)$ matrices that have all entries in K. We index the rows and columns by 0, 1, ..., *d*. Let $\{v_i\}_{i=0}^d$ denote a basis of *V*. For $T \in \text{End}(V)$ and $X \in Mat_{d+1}(\mathbb{K})$, we say that *X represents T* with respect to $\{v_i\}_{i=0}^d$ whenever $Tv_j = \sum_{i=0}^d X_{ij}v_i$ for $0 \le j \le d$.

By (65) and (66) , the matrices that represent *A* with respect to $\{u_i\}_{i=0}^d$ and ${u_i^{\Downarrow}}_{i=0}^d$ are, respectively,

38 S. Bockting-Conrad

$$
\begin{pmatrix} \theta_0 & \mathbf{0} \\ 1 & \theta_1 \\ \vdots & \vdots \\ \mathbf{0} & 1 & \theta_d \end{pmatrix}, \qquad \qquad \begin{pmatrix} \theta_d & \mathbf{0} \\ 1 & \theta_{d-1} \\ \vdots & \vdots \\ \mathbf{0} & 1 & \theta_0 \end{pmatrix} . \tag{71}
$$

By construction, the matrix diag $(q^d, q^{d-2}, \ldots, q^{-d})$ represents *K* with respect to $\{u_i\}_{i=0}^d$, and *B* with respect to $\{u_i^{\psi}\}_{i=0}^d$, and *M* with respect to $\{w_i\}_{i=0}^d$.

Definition 9 We define a matrix $\hat{\psi} \in \text{Mat}_{d+1}(\mathbb{K})$. For $1 \le i \le d$, the $(i - 1, i)$ -
ontwise $(id_i, \hat{\psi})$ $\hat{\psi}$ = $(\hat{\psi})$ $\hat{\psi}$ = $(\hat{\psi})$ entry is $(q^{i} - q^{-i}) (q^{d-i+1} - q^{i-d-1})$. All other entries are 0.

Proposition 3 *The matrix* $\widehat{\psi}$ *represents* ψ *with respect to each of the bases* $\{u_i\}_{i=0}^d$ *,* ${u_i^{\psi}\}_{i=0}^d$, ${w_i\}_{i=0}^d$.

Proof By [\[5,](#page-24-16) Line (23)], $\hat{\psi}$ represents ψ with respect to $\{u_i\}_{i=0}^d$. The remaining assertions follow from Lemma [36.](#page-18-4) Ч

Next we give the matrices that represent $\mathcal{M}^{\pm 1}$ with respect to the bases $\{u_i\}_{i=0}^d$, $\{u_i^{\Downarrow}\}_{i=0}^d$.

Lemma 37 *We give the matrix in* $Mat_{d+1}(\mathbb{K})$ *that represents M with respect to* ${u_i}_{i=0}^d$. This matrix is upper triangular. For $0 \le i \le j \le d$, the (i, j) -entry is

$$
a^{i-j}q^{d-j-i}\left(q-q^{-1}\right)^{2(j-i)}\frac{[j]_q^i[d-i]_q^i}{[i]_q^i[d-j]_q^i}.
$$
\n(72)

Proof The matrix diag $(q^d, q^{d-2}, \ldots, q^{-d})$ represents *K* with respect to $\{u_i\}_{i=0}^d$. Use this fact along with Lemma [18](#page-11-4) and Proposition [3.](#page-19-0) Ч

Lemma 38 *We give the matrix in* $Mat_{d+1}(\mathbb{K})$ *that represents* M^{-1} *with respect to* ${u_i}_{i=0}$ *, For* 0 ≤ *i* ≤ *d, the (i, i)-entry is* q^{2i-d} *. For* 1 ≤ *i* ≤ *d, the (i* − 1*, i)-entry is*

$$
-a^{-1}q^{2i-d-1}\left(q^i-q^{-i}\right)\left(q^{d-i+1}-q^{i-d-1}\right).
$$

All other entries are zero.

Proof The matrix diag $(q^{-d}, q^{2-d}, \ldots, q^d)$ represents K^{-1} with respect to $\{u_i\}_{i=0}^d$. Use this fact along with Lemma [17](#page-11-0) and Proposition [3.](#page-19-0) Ч

Lemma 39 *We give the matrix in* $Mat_{d+1}(\mathbb{K})$ *that represents* M *with respect to* ${u_i^{\Downarrow}}_{i=0}^d$. This matrix is upper triangular. For $0 \le i \le j \le d$, the (i, j) -entry is

$$
a^{j-i}q^{d-j-i}\left(q-q^{-1}\right)^{2(j-i)}\frac{[j]_q^![d-i]_q^!}{[i]_q^![d-j]_q^!}.
$$
\n(73)

Proof The matrix diag $(q^d, q^{d-2}, \ldots, q^{-d})$ represents *B* with respect to $\{u_i^{\Downarrow}\}_{i=0}^d$. Use this fact along with Lemma [18](#page-11-4) and Proposition [3.](#page-19-0) Ц

Lemma 40 *We give the matrix in* $Mat_{d+1}(\mathbb{K})$ *that represents* M^{-1} *with respect to* ${u_i^{\psi}}_{i=0}^{d}$. For $0 \le i \le d$, the (i, i) -entry is q^{2i-d} . For $1 \le i \le d$, the $(i - 1, i)$ -entry *is*

$$
-aq^{2i-d-1}\left(q^{i}-q^{-i}\right)\left(q^{d-i+1}-q^{i-d-1}\right).
$$

All other entries are zero.

Proof The matrix diag $(q^{-d}, q^{2-d}, \ldots, q^d)$ represents B^{-1} with respect to $\{u_i^{\psi}\}_{i=0}^d$. Use this fact along with Lemma [17](#page-11-0) and Proposition [3.](#page-19-0) Ч

Next we give the matrices that represent *K* with respect to the bases $\{u_i^{\Downarrow}\}_{i=0}^d$, $\{w_i\}_{i=0}^d$.

Lemma 41 *We give the matrix in* $Mat_{d+1}(\mathbb{K})$ *that represents K with respect to* ${u_i^{\downarrow}}_{i=0}^{\{d\}}$ *For* $0 \le i \le d$ *, the* (i, i) *-entry is* q^{d-2i} *. For* $0 \le i < j \le d$ *, the* (i, j) *entry is*

$$
\left(1-a^{-2}\right)a^{j-i}q^{d-j-i}\left(q-q^{-1}\right)^{2(j-i)}\frac{[j]_q^![d-i]_q^!}{[i]_q^![d-j]_q^!}.
$$
\n(74)

All other entries are zero.

Proof Evaluating the equation on the right in (14) using the equation on the left in (12) we get

$$
K = \left(a^{-2}I + (1 - a^{-2}) \sum_{n=0}^{d} a^n q^n \psi^n \right) B.
$$
 (75)

The result follows from this along with Proposition [3](#page-19-0) and the fact that the matrix diag $(q^d, q^{d-2}, \ldots, q^{-d})$ represents *B* with respect to $\{u_i^{\Downarrow}\}_i^d$ $\frac{d}{i=0}$. \Box

Lemma 42 *We give the matrix in* $Mat_{d+1}(\mathbb{K})$ *that represents K with respect to* {*wi*} *d ⁱ*=0*. For* ⁰ [≤] *ⁱ* [≤] *^d, the (i, i)-entry is ^qd*−2*ⁱ . For* 1 ≤ *i* ≤ *d, the (i* − 1*, i)-entry is*

$$
-a^{-1}q^{d-2i+1}(q^i-q^{-i})(q^{d-i+1}-q^{i-d-1}).
$$

All other entries are zero.

Proof The matrix diag $(q^d, q^{d-2}, \ldots, q^{-d})$ represents M with respect to $\{w_i\}_{i=0}^d$. Use this fact along with Proposition $\overline{3}$ $\overline{3}$ $\overline{3}$ and the equation on the left in [\(32\)](#page-11-5). Ч

Next we give the matrices that represent *B* with respect to the bases $\{u_i\}_{i=0}^d$, $\{w_i\}_{i=0}^d$.

Lemma 43 *We give the matrix in* $Mat_{d+1}(\mathbb{K})$ *that represents B with respect to* ${u_i}_{i=0}$ *, For* 0 ≤ *i* ≤ *d, the (i, i)-entry is* q^{d-2i} *. For* 0 ≤ *i* < *j* ≤ *d, the (i, j)-entry is*

$$
\left(1-a^2\right)a^{i-j}q^{d-j-i}\left(q-q^{-1}\right)^{2(j-i)}\frac{\left[j\right]_q^i[d-i]^i_q}{\left[i\right]_q^i[d-j]^l_q}.
$$
 (76)

All other entries are zero.

Proof Evaluating the equation on the left in [\(14\)](#page-8-0) using the equation on the right in (12) we get

$$
B = \left(a^2 I + (1 - a^2) \sum_{n=0}^{d} a^{-n} q^n \psi^n \right) K. \tag{77}
$$

The result follows from this along with Proposition [3](#page-19-0) and the fact that the matrix diag(q^d , q^{d-2} , ..., q^{-d}) represents *K* with respect to {*u_i*}^{*i*}_{*i*=0}. □ \Box

Lemma 44 *We give the matrix in* $Mat_{d+1}(\mathbb{K})$ *that represents B with respect to* {*wi*} *d ⁱ*=0*. For* ⁰ [≤] *ⁱ* [≤] *^d, the (i, i)-entry is ^qd*−2*ⁱ . For* 1 ≤ *i* ≤ *d, the (i* − 1*, i)-entry is*

$$
-aq^{d-2i+1}(q^i-q^{-i})(q^{d-i+1}-q^{i-d-1}).
$$

All other entries are zero.

Proof The matrix diag $(q^d, q^{d-2}, \ldots, q^{-d})$ represents M with respect to $\{w_i\}_{i=0}^d$. Use this fact along with Proposition [3](#page-19-0) and the equation on the left in [\(33\)](#page-11-5). Ч

Next we consider the matrices

$$
\exp_q\left(\frac{a}{q-q^{-1}}\widehat{\psi}\right), \qquad \exp_q\left(\frac{a^{-1}}{q-q^{-1}}\widehat{\psi}\right). \tag{78}
$$

Their inverses are

$$
\exp_{q^{-1}}\left(-\frac{a}{q-q^{-1}}\widehat{\psi}\right), \qquad \exp_{q^{-1}}\left(-\frac{a^{-1}}{q-q^{-1}}\widehat{\psi}\right) \qquad (79)
$$

respectively. The matrices in [\(78\)](#page-21-0), [\(79\)](#page-21-1) are upper triangular. We now consider the entries of [\(78\)](#page-21-0), [\(79\)](#page-21-1).

Lemma 45 *For* $0 \neq x \in \mathbb{K}$ *, the matrix* $\exp_a(x\widehat{\psi})$ *is upper triangular. For* $0 \leq i \leq$ $j < d$ *, the* (i, j) *-entry is*

$$
x^{j-i}q^{\binom{j-i}{2}}\left(q-q^{-1}\right)^{2(j-i)}\cdot\frac{[j]_q^![d-i]_q^!}{[i]_q^![j-i]_q^![d-j]_q^!}.
$$
\n(80)

The matrix $exp_{a^{-1}}(x\widehat{\psi})$ *is upper triangular. For* $0 \le i \le j \le d$ *, the* (i, j) *-entry is*

$$
x^{j-i}q^{-\binom{j-i}{2}}\left(q-q^{-1}\right)^{2(j-i)}\cdot\frac{\left[j\right]_q^l[d-i]_q^l}{\left[i\right]_q^l[j-i]_q^l[d-j]_q^l}.\tag{81}
$$

Lemma 46 *The transition matrices between the basis* $\{w_i\}_{i=0}^d$ *and the bases* ${u_i}_{i=0}^d$, ${u_i^{\downarrow}}_{i=0}^d$ are given in the table below.

Proof Use Lemma [36](#page-18-4) and Proposition [3.](#page-19-0)

We next consider the product

$$
\exp_q\left(\frac{a}{q-q^{-1}}\widehat{\psi}\right)\exp_{q^{-1}}\left(-\frac{a^{-1}}{q-q^{-1}}\widehat{\psi}\right).
$$
 (82)

The inverse of [\(82\)](#page-22-0) is

$$
\exp_q\left(\frac{a^{-1}}{q-q^{-1}}\widehat{\psi}\right)\exp_{q^{-1}}\left(-\frac{a}{q-q^{-1}}\widehat{\psi}\right).
$$
 (83)

The matrices in (82) , (83) are upper triangular.

Lemma 47 The transition matrices between the bases $\{u_i\}_{i=0}^d$, $\{u_i^{\downarrow}\}_{i=0}^d$ are given *in the table below.*

Lemma 48 *With respect to each of the bases* $\{u_i\}_{i=0}^d$, $\{u_i^{\psi}\}_{i=0}^d$, $\{w_i\}_{i=0}^d$, the matri*ces that represent* Δ *and* Δ^{-1} *are* $\exp_q\left(\frac{a}{q-q^{-1}}\widehat{\psi}\right)$ $\oint \exp_{q^{-1}} \left(-\frac{a^{-1}}{q-q^{-1}} \widehat{\psi}\right)$ *and* $\exp_q\left(\frac{a^{-1}}{q-q^{-1}}\widehat{\psi}\right)$ $\left(\frac{a}{q-q-1}\hat{\psi}\right)$ *respectively.*

Proof Use Theorem [3](#page-13-4) and Proposition [3.](#page-19-0)

We give the entries of the matrices representing Δ , Δ^{-1} in the following lemma. **Lemma 49** *The matrix in* [\(82\)](#page-22-0) *is upper triangular. For* $0 \le i \le j \le d$ *, the* (i, j) *entry of* [\(82\)](#page-22-0) *is*

$$
\frac{\left(q - q^{-1}\right)^{j-i} [j]_q^! [d-i]_q^!}{[i]_q^! [j-i]_q^! [d-j]_q^!} \prod_{n=1}^{j-i} \left(a q^{n-1} - a^{-1} q^{1-n} \right). \tag{84}
$$

The matrix in [\(83\)](#page-22-1) *is upper triangular. For* $0 \le i \le j \le d$ *, the (i, j)-entry of* (83) *is*

$$
\frac{\left(q-q^{-1}\right)^{j-i}\left[j\right]_q^![d-i]_q^!}{[i]_q^![j-i]_q^!}\prod_{n=1}^{j-i}\left(a^{-1}q^{n-1}-aq^{1-n}\right). \tag{85}
$$

Proof Use Corollary [1](#page-13-6) and Proposition [3.](#page-19-0)

We finish the paper by giving the matrix that represents *A* with respect to $\{w_i\}_{i=0}^d$.

Lemma 50 *We give the matrix in* $Mat_{d+1}(\mathbb{K})$ *that represents A with respect to* ${w_i}_{i=0}^d$ *. For* 1 ≤ *i* ≤ *d, the (i, i* − 1*)-entry is 1. For* 0 ≤ *i* ≤ *d, the (i, i)-entry is* $(a + a^{-1})q^{d-2i}$. For $1 \le i \le d$, the $(i − 1, i)$ *-entry is*

$$
-q^{d-2i+1}(q^i-q^{-i})(q^{d-i+1}-q^{i-d-1}).
$$

All other entries are zero.

Proof Let A denote the matrix that represents A with respect to $\{w_i\}_{i=0}^d$. By Lemma [29,](#page-15-5) \mathcal{A} is tridiagonal with *(i, i)*-entry given by $(a+a^{-1})q^{d-2i}$ for $0 \le i \le d$.

We now show that the subdiagonal entries of A are all 1. Let A' denote the matrix that represents *A* with respect to ${u_i}_{i=0}^d$. Recall that this matrix is displayed on the left in [\(71\)](#page-19-1). Observe that A is equal to $\exp_{q^{-1}}(-\frac{a^{-1}}{q-q^{-1}}\widehat{\psi})\mathcal{A}' \exp_q(-\frac{a^{-1}}{q-q^{-1}}\widehat{\psi})$. It follows from this fact that the subdiagonal entries of $\hat{\mathcal{A}}$ are all 1.

We next obtain the superdiagonal entries of \mathcal{A} . Let $0 \leq i \leq d$. Apply both sides of [\(37\)](#page-11-6) to w_i . Evaluate the result using Proposition [3](#page-19-0) and the fact that the w_i is an eigenvector for M with eigenvalue q^{2i-d} . Analyze the result in light of the above comments concerning the entries of A to obtain the desired result. Ч

Acknowledgement This research was partially supported by a grant from the College of Science and Health at DePaul University.

 \Box

References

- 1. H. Alnajjar and B. Curtin. A family of tridiagonal pairs related to the quantum affine algebra *Uq (*sl2*)*. *Electron. J. Linear Algebra* **¹³** (2005), 1–9.
- 2. G. Andrews and R. Askey and R. Roy. Special Functions. Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 1999.
- 3. P. Baseilhac. A family of tridiagonal pairs and related symmetric functions. *J. Phys. A* **39** (2006), 11773–11791.
- 4. S. Bockting-Conrad. Two commuting operators associated with a tridiagonal pair. *Linear Algebra Appl.* **437** (2012), 242–270.
- 5. S. Bockting-Conrad. Tridiagonal pairs of q -Racah type, the double lowering operator ψ , and the quantum algebra U_q (\mathfrak{sl}_2). *Linear Algebra Appl.* **445** (2014), 256–279.
- 6. L. Dolan and M. Grady. Conserved charges from self-duality. *Phys. Rev. D* **25** (1982), 1587– 1604.
- 7. D. Funk-Neubauer. Tridiagonal pairs and the *q*-tetrahedron algebra. *Linear Algebra Appl.* **431** (2009), 903–925.
- 8. G. Gasper and M. Rahman. Basic Hypergeometric Series, Second Ed. Cambridge University Press, New York, 2003.
- 9. T. Ito, K. Tanabe, and P. Terwilliger. Some algebra related to *P*- and *Q*-polynomial association schemes, in: *Codes and Association Schemes* (Piscataway NJ, 1999), Amer. Math. Soc., Providence RI, 2001, pp. 167–192.
- 10. T. Ito and P. Terwilliger. The *q*-tetrahedron algebra and its finite-dimensional irreducible modules. *Comm. Algebra* **35** (2007) 3415–3439.
- 11. T. Ito and P. Terwilliger. Tridiagonal pairs and the quantum affine algebra $U_q(\widehat{sl_2})$. *Ramanujan J.* **13** (2007), 39–62.
- 12. T. Ito and P. Terwilliger. Tridiagonal pairs of *q*-Racah type. *J. Algebra* **322** (2009), 68–93.
- 13. T. Ito and P. Terwilliger. The augmented tridiagonal algebra. *Kyushu J. Math* **64** (2010), 81– 144.
- 14. T.H. Koornwinder. The relationship between Zhedanov's algebra *AW (*3*)* and the double affine Hecke algebra in the rank one case. *SIGMA* **3** (2007), 063, 15 pages.
- 15. T.H. Koornwinder. Zhedanov's algebra *AW (*3*)* and the double affine Hecke algebra in the rank one case. II. The spherical subalgebra. *SIGMA* **4** (2008), 052, 17 pages.
- 16. A. Korovnichenko and A. S. Zhedanov. "Leonard pairs" in classical mechanics. *J. Phys. A* **35** (2002), 5767–5780.
- 17. K. Nomura and P. Terwilliger. Towards a classification of the tridiagonal pairs. *Linear Algebra Appl.* 429 (2008), 503–518.
- 18. S. Odake and R. Sasaki. Orthogonal polynomials from Hermitian matrices. *J. Math. Phys.* **49** (2008), 053503, 43 pages.
- 19. L. Onsager. Crystal statistics. I. A two-dimensional model with an order-disorder transition. *Phys. Rev.* **65** (1944), 117–149.
- 20. P. Terwilliger. Two linear transformations each tridiagonal with respect to an eigenbasis of the other. *Linear Algebra Appl.* 330 (2001), 149–203.
- 21. P. Terwilliger. Leonard pairs from 24 points of view. *Rocky Mountain J. Math*. 32 (2002), 827– 888.
- 22. P. Terwilliger. Introduction to Leonard pairs. OPSFA Rome 2001. *J. Comput. Appl. Math.* **153**(2) (2003), 463–475.
- 23. P. Terwilliger. Two linear transformations each tridiagonal with respect to an eigenbasis of the other; comments on the parameter array. *Des. Codes Cryptogr.* **34** (2005), 307–332.
- 24. P. Terwilliger. An algebraic approach to the Askey scheme of orthogonal polynomials. Orthogonal polynomials and special functions, Lecture Notes in Math., 1883 (Berlin), Springer, 2006, 255–330.
- 25. P. Terwilliger and R. Vidunas. Leonard pairs and the Askey-Wilson relations. *J. Algebra Appl.* **3** (2004), 411–426.