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1 Introduction

Throughout this paper, K denotes an algebraically closed field. We begin by
recalling the notion of a tridiagonal pair. We will use the following terms. Let
V denote a vector space over K with finite positive dimension. For a linear
transformation A : V → V and a subspace W ⊆ V , we say that W is an eigenspace
of A whenever W �= 0 and there exists θ ∈ K such that W = {v ∈ V |Av = θv}.
In this case, θ is called the eigenvalue of A associated with W . We say that A is
diagonalizable whenever V is spanned by the eigenspaces of A.

Definition 1 ([9, Definition 1.1]) Let V denote a vector space over K with finite
positive dimension. By a tridiagonal pair (or TD pair) on V we mean an ordered
pair of linear transformations A : V → V and A∗ : V → V that satisfy the
following four conditions.

(i) Each of A,A∗ is diagonalizable.
(ii) There exists an ordering {Vi}di=0 of the eigenspaces of A such that

A∗Vi ⊆ Vi−1 + Vi + Vi+1 (0 ≤ i ≤ d), (1)

where V−1 = 0 and Vd+1 = 0.
(iii) There exists an ordering {V ∗

i }δi=0 of the eigenspaces of A∗ such that

AV ∗
i ⊆ V ∗

i−1 + V ∗
i + V ∗

i+1 (0 ≤ i ≤ δ), (2)
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where V ∗−1 = 0 and V ∗
δ+1 = 0.

(iv) There does not exist a subspace W of V such that AW ⊆ W , A∗W ⊆ W ,
W �= 0, W �= V .

We say the pair A,A∗ is over K.

Note 1 According to a common notational convention A∗ denotes the conjugate-
transpose of A. We are not using this convention. In a TD pair A,A∗ the linear
transformations A and A∗ are arbitrary subject to (i)–(iv) above.

Referring to the TD pair in Definition 1, by [9, Lemma 4.5] the scalars d and δ

are equal. We call this common value the diameter of A,A∗. To avoid trivialities,
throughout this paper we assume that the diameter is at least one.

TD pairs first arose in the study of Q-polynomial distance-regular graphs
and provided a way to study the irreducible modules of the Terwilliger algebra
associated with such a graph. Since their introduction, TD pairs have been found
to appear naturally in a variety of other contexts including representation theory
[1, 7, 10–12, 14, 15, 25], orthogonal polynomials [23, 24], partially ordered sets
[22], statistical mechanical models [3, 6, 19], and other areas of physics [16, 18].
As a result, TD pairs have become an area of interest in their own right. Among the
above papers on representation theory, there are several works that connect TD pairs
to quantum groups [1, 5, 7, 11, 12]. These papers consider certain special classes of
TD pairs. We call particular attention to [5], in which the present author describes a
new relationship between TD pairs in the q-Racah class and quantum groups. The
present paper builds off of this work.

In the present paper, we give a new relationship between the maps �,ψ :
V → V introduced in [4], as well as describe a new decomposition of the
underlying vector space that, in some sense, lies between the first and second split
decompositions associated with a TD pair. In order to motivate our results, we now
recall some basic facts concerning TD pairs. For the rest of this section, let A,A∗
denote a TD pair on V , as in Definition 1. Fix an ordering {Vi}di=0 (resp. {V ∗

i }di=0)
of the eigenspaces of A (resp. A∗) which satisfies (1) (resp. (2)). For 0 ≤ i ≤ d let
θi (resp. θ∗

i ) denote the eigenvalue of A (resp. A∗) corresponding to Vi (resp. V ∗
i ).

By [9, Theorem 11.1] the ratios

θi−2 − θi+1

θi−1 − θi

,
θ∗
i−2 − θ∗

i+1

θ∗
i−1 − θ∗

i

are equal and independent of i for 2 ≤ i ≤ d−1. This gives two recurrence relations,
whose solutions can be written in closed form. There are several cases [9, Theorem
11.2]. The most general case is called the q-Racah case [12, Section 1]. We will
discuss this case shortly.

We now recall the split decompositions of V [9]. For 0 ≤ i ≤ d define

Ui = (V ∗
0 + V ∗

1 + · · · + V ∗
i ) ∩ (Vi + Vi+1 + · · · + Vd),
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U
⇓
i = (V ∗

0 + V ∗
1 + · · · + V ∗

i ) ∩ (V0 + V1 + · · · + Vd−i ).

By [9, Theorem 4.6], both the sums V = ∑d
i=0 Ui and V = ∑d

i=0 U
⇓
i are direct.

We call {Ui}di=0 (resp. {U⇓
i }di=0) the first split decomposition (resp. second split

decomposition) of V . In [9], the authors showed that A,A∗ act on the first and
second split decomposition in a particularly attractive way. This will be described
in more detail in Sect. 3.

We now describe the q-Racah case. We say that the TD pair A,A∗ has q-Racah
type whenever there exist nonzero scalars q, a, b ∈ K such that q4 �= 1 and

θi = aqd−2i + a−1q2i−d , θ∗
i = bqd−2i + b−1q2i−d

for 0 ≤ i ≤ d. For the rest of this section assume that A,A∗ has q-Racah type.
We recall the maps K and B [13, Section 1.1]. Let K : V → V denote the linear

transformation such that for 0 ≤ i ≤ d, Ui is an eigenspace of K with eigenvalue
qd−2i . Let B : V → V denote the linear transformation such that for 0 ≤ i ≤ d,
U

⇓
i is an eigenspace of B with eigenvalue qd−2i . The relationship between K and

B is discussed in considerable detail in [5].
We now bring in the linear transformation � : V → V [4, Lemma 11.1]. As in

[5], we work with the normalization ψ = (q − q−1)(qd − q−d)�. A key feature of
ψ is that by [4, Lemma 11.2, Corollary 15.3],

ψUi ⊆ Ui−1, ψU
⇓
i ⊆ U

⇓
i−1

for 1 ≤ i ≤ d and both ψU0 = 0 and ψU
⇓
0 = 0. In [5], it is shown how ψ is related

to several maps, including the maps K,B, as well as the map � which we now
recall. By [4, Lemma 9.5], there exists a unique linear transformation � : V → V

such that

�Ui ⊆ U
⇓
i (0 ≤ i ≤ d),

(� − I )Ui ⊆ U0 + U1 + · · · + Ui−1 (0 ≤ i ≤ d).

In [4, Theorem 17.1], the present author showed that both

� =
d∑

i=0

⎛

⎝
i∏

j=1

aqj−1 − a−1q1−j

qj − q−j

⎞

⎠ ψi, �−1 =
d∑

i=0

⎛

⎝
i∏

j=1

a−1qj−1 − aq1−j

qj − q−j

⎞

⎠ ψi.

The primary goal of this paper is to provide factorizations of these power series in
ψ and to investigate the consequences of these factorizations. We accomplish this
goal using a linear transformationM : V → V given by
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M = aK − a−1B

a − a−1
.

By construction,M⇓ = M. One can quickly check thatM is invertible. We show
that the mapM is equal to each of

(I − a−1qψ)−1K, K(I − a−1q−1ψ)−1, (I − aqψ)−1B, B(I − aq−1ψ)−1.

We give a number of different relations involving the mapsM,K,B,ψ , the most
significant of which are the following:

K expq

(
a−1

q−q−1 ψ
)

= expq

(
a−1

q−q−1 ψ
)
M,

B expq

(
a

q−q−1 ψ
)

= expq

(
a

q−q−1 ψ
)
M.

Using these equations, we obtain our main result which is that both

� = expq

(
a

q−q−1 ψ
)

expq−1

(
− a−1

q−q−1 ψ
)

,

�−1 = expq

(
a−1

q−q−1 ψ
)

expq−1

(
− a

q−q−1 ψ
)

.

Due to its important role in the factorization of �, we explore the mapM further.
We show thatM is diagonalizable with eigenvalues qd, qd−2, qd−4, . . . , q−d . For
0 ≤ i ≤ d, let Wi denote the eigenspace of M corresponding to the eigenvalue
qd−2i . We show that for 0 ≤ i ≤ d,

Ui = expq

(
a−1

q−q−1 ψ
)

Wi, U
⇓
i = expq

(
a

q − q−1 ψ

)

Wi,

Wi = expq−1

(
− a−1

q−q−1 ψ
)

Ui, Wi = expq−1

(

− a

q − q−1 ψ

)

U
⇓
i .

In light of this result, we interpret the decomposition {Wi}di=0 as a sort of
halfway point between the first and second split decompositions. We explore this
decomposition further and give the actions of ψ,K,B,�,A,A∗ on {Wi}di=0. We

then give the actions ofM±1 on {Ui}di=0, {U⇓
i }di=0, {Vi}di=0, {V ∗

i }di=0. We conclude
the paper with a discussion of the special case when A,A∗ is a Leonard pair.

The present paper is organized as follows. In Sect. 2 we discuss some prelim-
inary facts concerning TD pairs and TD systems. In Sect. 3 we discuss the split
decompositions of V as well as the maps K and B. In Sect. 4 we discuss the map
ψ . In Sect. 5 we recall the map � and give � as a power series in ψ . In Sect. 6 we
introduce the map M and describe its relationship with A,K,B,ψ . In Sect. 7 we
express � as a product of two linear transformations; one is a q-exponential in ψ

and the other is a q−1-exponential in ψ . In Sect. 8 we describe the eigenvalues and
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eigenspaces of M and discuss how the eigenspace decomposition of M is related
to the first and second split decompositions. In Sect. 9 we discuss the actions of
ψ,K,B,�,A,A∗ on the eigenspace decomposition ofM. In Sect. 10 we describe
the action ofM on the first and second split decompositions of V , as well as on the
eigenspace decompositions of A,A∗. In Sect. 11 we consider the case when A,A∗
is a Leonard pair.

2 Preliminaries

When working with a tridiagonal pair, it is useful to consider a closely related object
called a tridiagonal system. In order to define this object, we first recall some facts
from elementary linear algebra [9, Section 2].

We use the following conventions. When we discuss an algebra, we mean a unital
associative algebra. When we discuss a subalgebra, we assume that it has the same
unit as the parent algebra.

Let V denote a vector space over K with finite positive dimension. By a
decomposition of V, we mean a sequence of nonzero subspaces whose direct sum
is V . Let End(V ) denote the K-algebra consisting of all linear transformations from
V to V . Let A denote a diagonalizable element in End(V ). Let {Vi}di=0 denote an
ordering of the eigenspaces of A. For 0 ≤ i ≤ d let θi be the eigenvalue of A

corresponding to Vi . Define Ei ∈ End(V ) by (Ei − I )Vi = 0 and EiVj = 0 if
j �= i (0 ≤ j ≤ d). In other words, Ei is the projection map from V onto Vi . We
refer to Ei as the primitive idempotent of A associated with θi . By elementary linear
algebra, (i) AEi = EiA = θiEi (0 ≤ i ≤ d); (ii) EiEj = δijEi (0 ≤ i, j ≤ d);
(iii) Vi = EiV (0 ≤ i ≤ d); (iv) I = ∑d

i=0 Ei . Moreover

Ei =
∏

0≤j≤d
j �=i

A − θj I

θi − θj

(0 ≤ i ≤ d).

Let M denote the subalgebra of End(V ) generated by A. Note that each of
{Ai}di=0, {Ei}di=0 is a basis for the K-vector space M .

Let A,A∗ denote a TD pair on V . An ordering of the eigenspaces of A (resp.
A∗) is said to be standard whenever it satisfies (1) (resp. (2)). Let {Vi}di=0 denote
a standard ordering of the eigenspaces of A. By [9, Lemma 2.4], the ordering
{Vd−i}di=0 is standard and no further ordering of the eigenspaces of A is standard.
A similar result holds for the eigenspaces of A∗. An ordering of the primitive
idempotents of A (resp. A∗) is said to be standard whenever the corresponding
ordering of the eigenspaces of A (resp. A∗) is standard.

Definition 2 ([17, Definition 2.1]) Let V denote a vector space over K with finite
positive dimension. By a tridiagonal system (or TD system) on V, we mean a
sequence
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� = (A; {Ei}di=0;A∗; {E∗
i }di=0)

that satisfies (i)–(iii) below.

(i) A,A∗ is a tridiagonal pair on V .
(ii) {Ei}di=0 is a standard ordering of the primitive idempotents of A.

(iii) {E∗
i }di=0 is a standard ordering of the primitive idempotents of A∗.

We call d the diameter of �, and say � is over K. For notational convenience, set
E−1 = 0, Ed+1 = 0, E∗−1 = 0, E∗

d+1 = 0.

In Definition 2 we do not assume that the primitive idempotents {Ei}di=0, {E∗
i }di=0

all have rank 1. A TD system for which each of these primitive idempotents has
rank 1 is called a Leonard system [20]. The Leonard systems are classified up to
isomorphism [20, Theorem 1.9].

For the rest of this paper, fix a TD system � on V as in Definition 2. Our TD
system � can be modified in a number of ways to get a new TD system [9, Section
3]. For example, the sequence

�⇓ = (A; {Ed−i}di=0;A∗; {E∗
i }di=0)

is a TD system on V . Following [9, Section 3], we call �⇓ the second inversion of
�. When discussing �⇓, we use the following notational convention. For any object
f associated with �, let f ⇓ denote the corresponding object associated with �⇓.

Definition 3 For 0 ≤ i ≤ d let θi (resp. θ∗
i ) denote the eigenvalue of A (resp. A∗)

associated with Ei (resp. E∗
i ). We refer to {θi}di=0 (resp. {θ∗

i }di=0) as the eigenvalue
sequence (resp. dual eigenvalue sequence) of �.

By construction {θi}di=0 are mutually distinct and {θ∗
i }di=0 are mutually distinct.

By [9, Theorem 11.1], the scalars

θi−2 − θi+1

θi−1 − θi

,
θ∗
i−2 − θ∗

i+1

θ∗
i−1 − θ∗

i

are equal and independent of i for 2 ≤ i ≤ d − 1. For this restriction, the solutions
have been found in closed form [9, Theorem 11.2]. The most general solution is
called q-Racah [12, Section 1]. This solution is described as follows.

Definition 4 Let � denote a TD system on V as in Definition 2. We say that � has
q-Racah type whenever there exist nonzero scalars q, a, b ∈ K such that such that
q4 �= 1 and

θi = aqd−2i + a−1q2i−d , θ∗
i = bqd−2i + b−1q2i−d (3)

for 0 ≤ i ≤ d.
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Note 2 Referring to Definition 4, the scalars q, a, b are not uniquely defined by �.
If q, a, b is one solution, then their inverses give another solution.

For the rest of the paper, we make the following assumption.

Assumption 1 We assume that our TD system � has q-Racah type. We fix q, a, b

as in Definition 4.

Lemma 1 ([5, Lemma 2.4]) With reference to Assumption 1, the following hold.

(i) Neither of a2, b2 is among q2d−2, q2d−4, . . . , q2−2d .
(ii) q2i �= 1 for 1 ≤ i ≤ d.

Proof The result follows from the comment below Definition 3. 
�

3 The First and Second Split Decomposition of V

Recall the TD system � from Assumption 1. In this section we consider two decom-
positions of V associated with �, called the first and second split decomposition.

For 0 ≤ i ≤ d define

Ui = (E∗
0V + E∗

1V + · · · + E∗
i V ) ∩ (EiV + Ei+1V + · · · + EdV ).

For notational convenience, define U−1 = 0 and Ud+1 = 0. Note that for 0 ≤ i ≤ d,

U
⇓
i = (E∗

0V + E∗
1V + · · · + E∗

i V ) ∩ (E0V + E1V + · · · + Ed−iV ).

By [9, Theorem 4.6], the sequence {Ui}di=0 (resp. {U⇓
i }di=0) is a decomposition of V .

Following [9], we refer to {Ui}di=0 (resp. {U⇓
i }di=0) as the first split decomposition

(resp. second split decomposition) of V with respect to �. By [9, Corollary 5.7], for
0 ≤ i ≤ d the dimensions of EiV , E∗

i V , Ui , U
⇓
i coincide; we denote the common

dimension by ρi . By [9, Theorem 4.6],

EiV + Ei+1V + · · · + EdV = Ui + Ui+1 + · · · + Ud, (4)

E0V + E1V + · · · + EiV = U
⇓
d−i + U

⇓
d−i+1 + · · · + U

⇓
d , (5)

E∗
0V + E∗

1V + · · · E∗
i V = U0 + U1 + · · · + Ui = U

⇓
0 + U

⇓
1 + · · · + U

⇓
i . (6)

By [9, Theorem 4.6], A and A∗ act on the first split decomposition in the following
way:

(A − θiI )Ui ⊆ Ui+1 (0 ≤ i ≤ d − 1), (A − θdI )Ud = 0,

(A∗ − θ∗
i I )Ui ⊆ Ui−1 (1 ≤ i ≤ d), (A∗ − θ∗

0 I )U0 = 0.
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By [9, Theorem 4.6], A and A∗ act on the second split decomposition in the
following way:

(A − θd−iI )U
⇓
i ⊆ U

⇓
i+1 (0 ≤ i ≤ d − 1), (A − θ0I )U

⇓
d = 0,

(A∗ − θ∗
i I )U

⇓
i ⊆ U

⇓
i−1 (1 ≤ i ≤ d), (A∗ − θ∗

0 I )U
⇓
0 = 0.

Definition 5 ([5, Definitions 3.1 and 3.2]) Define K,B ∈ End(V ) such that for
0 ≤ i ≤ d, Ui (resp. U

⇓
i ) is the eigenspace of K (resp. B) with eigenvalue qd−2i .

In other words,

(K−qd−2iI )Ui = 0, (B−qd−2iI )U
⇓
i = 0 (0 ≤ i ≤ d). (7)

Observe that B = K⇓.

By construction each of K,B is invertible and diagonalizable on V .
We now describe how K and B act on the eigenspaces of the other one.

Lemma 2 ([5, Lemma 3.3]) For 0 ≤ i ≤ d,

(B − qd−2iI )Ui ⊆ U0 + U1 + · · · + Ui−1, (8)

(K − qd−2iI )U
⇓
i ⊆ U

⇓
0 + U

⇓
1 + · · · + U

⇓
i−1. (9)

Next we describe how A,K,B are related.

Lemma 3 ([13, Section 1.1]) Both

qKA − q−1AK

q − q−1 = aK2 + a−1I,
qBA − q−1AB

q − q−1 = a−1B2 + aI.

(10)

Lemma 4 ([5, Theorem 9.9]) We have

aK2 − a−1q − aq−1

q − q−1 KB − aq − a−1q−1

q − q−1 BK + a−1B2 = 0. (11)

4 The Linear Transformation ψ

We continue to discuss the situation of Assumption 1. In [4, Section 11] we
introduced an element � ∈ End(V ). In [5] we used the normalization ψ =
(q − q−1)(qd − q−d)�. In [5, Theorem 9.8], we showed that ψ is equal to some
rational expressions involving K,B. We now recall this result. We start with a
comment.

Lemma 5 ([5, Lemma 9.7]) Each of the following is invertible:
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aI − a−1BK−1, a−1I − aKB−1, (12)

aI − a−1K−1B, a−1I − aB−1K. (13)

Lemma 6 ([5, Theorem 9.8]) The following four expressions coincide:

I − BK−1

q(aI − a−1BK−1)
,

I − KB−1

q(a−1I − aKB−1)
, (14)

q(I − K−1B)

aI − a−1K−1B
,

q(I − B−1K)

a−1I − aB−1K
. (15)

In (14), (15) the denominators are invertible by Lemma 5.

Definition 6 Define ψ ∈ End(V ) to be the common value of the four expressions
in Lemma 6.

We now recall some facts concerning ψ .

Lemma 7 ([5, Lemma 5.4]) Both

Kψ = q2ψK, Bψ = q2ψB. (16)

Lemma 8 ([4, Lemma 11.2, Corollary 15.3]) We have

ψUi ⊆ Ui−1, ψU
⇓
i ⊆ U

⇓
i−1 (1 ≤ i ≤ d) (17)

and also ψU0 = 0 and ψU
⇓
0 = 0. Moreover ψd+1 = 0.

In Lemma 6 we obtained ψ as a rational expression in BK−1 or K−1B. Next we
solve for BK−1 and K−1B as a rational function in ψ . In order to state the answer,
we will need the following result.

Lemma 9 ([5, Lemma 9.2]) Each of the following is invertible:

I − aqψ, I − a−1qψ, I − aq−1ψ, I − a−1q−1ψ. (18)

Their inverses are as follows:

(I − aqψ)−1 = ∑d
i=0 aiqiψi, (I − a−1qψ)−1 =

d∑

i=0

a−iqiψi,(19)

(I − aq−1ψ)−1 = ∑d
i=0 aiq−iψi, (I − a−1q−1ψ)−1 =

d∑

i=0

a−iq−iψi .(20)

The next result is an immediate consequence of Lemma 6, Definition 6, and
Lemma 9.
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Theorem 1 ([5, Theorem 9.4]) The following hold:

BK−1 = I − aqψ

I − a−1qψ
, KB−1 = I − a−1qψ

I − aqψ
, (21)

K−1B = I − aq−1ψ

I − a−1q−1ψ
, B−1K = I − a−1q−1ψ

I − aq−1ψ
. (22)

In (21), (22) the denominators are invertible by Lemma 9.

Lemma 10 ([5, Equation (22)]) We have

ψA − Aψ

q − q−1 = (I − aqψ) K −
(
I − a−1q−1ψ

)
K−1. (23)

Proof This result is a reformulation of [5, Equation (22)] using [5, Equation (14)].

�

5 The Linear Transformation �

We continue to discuss the situation of Assumption 1. In [4, Section 9] we
introduced an invertible element � ∈ End(V ). In [4] we showed that �,ψ commute
and in fact both �,�−1 are power series in ψ . These power series will be the central
focus of this paper. We will show that each of those power series factors as a product
of two power series, each of which is a quantum exponential in ψ .

Lemma 11 ([4, Lemma 9.5]) There exists a unique � ∈ End(V ) such that

�Ui ⊆ U
⇓
i (0 ≤ i ≤ d), (24)

(� − I )Ui ⊆ U0 + U1 + · · · + Ui−1 (0 ≤ i ≤ d). (25)

Lemma 12 ([4, Lemmas 9.3 and 9.6]) The map � is invertible. Moreover �−1 =
�⇓ and

(�−1 − I )Ui ⊆ U0 + U1 + · · · + Ui−1 (0 ≤ i ≤ d). (26)

Lemma 13 The map � − I is nilpotent. Moreover �K = B�.

Proof The first assertion follows from (25). The last assertion follows from (24)
and Definition 5. 
�

The map � is characterized as follows.

Lemma 14 ([4, Lemma 9.8]) The map � is the unique element of End(V ) such
that
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(� − I )E∗
i V ⊆ E∗

0V + E∗
1V + · · · + E∗

i−1V (0 ≤ i ≤ d),

(27)

�(EiV + Ei+1V + · · · + EdV ) = E0V + E1V + · · · + Ed−iV (0 ≤ i ≤ d).

(28)

Theorem 2 ([4, Theorem 17.1]) Both

� =
d∑

i=0

⎛

⎝
i∏

j=1

aqj−1 − a−1q1−j

qj − q−j

⎞

⎠ ψi, (29)

�−1 =
d∑

i=0

⎛

⎝
i∏

j=1

a−1qj−1 − aq1−j

qj − q−j

⎞

⎠ ψi. (30)

In (29) and (30), the elements �,�−1 are expressed as a power series in ψ .
In the present paper, we factor these power series and interpret the results. This
interpretation will involve a linear transformationM. We introduceM in the next
section.

6 The Linear TransformationM

We continue to discuss the situation of Assumption 1. In this section we introduce
an elementM ∈ End(V ). We explain howM is related to K,B,ψ,A.

Definition 7 DefineM ∈ End(V ) by

M = aK − a−1B

a − a−1
. (31)

By construction,M⇓ = M. Evaluating (31) using Lemma 5, we see thatM is
invertible.

Lemma 15 The mapM is equal to each of:

(I−a−1qψ)−1K, K(I−a−1q−1ψ)−1, (I−aqψ)−1B, B(I−aq−1ψ)−1.

Proof We first show thatM = (I − a−1qψ)−1K . By Definition 7,

(a − a−1)MK−1 = aI − a−1BK−1.

The result follows from this fact along with the equation on the left in (21).
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The remaining assertions follow from Theorem 1. 
�
Lemma 15 can be reformulated as follows.

Lemma 16 We have

K = (
I − a−1qψ

)
M, K =M

(
I − a−1q−1ψ

)
, (32)

B = (I − aqψ)M, B =M
(
I − aq−1ψ

)
. (33)

For later use, we give several descriptions ofM±1.

Lemma 17 The mapM−1 is equal to each of:

K−1(I − a−1qψ), (I − a−1q−1ψ)K−1, B−1(I − aqψ), (I − aq−1ψ)B−1.

Proof Immediate from Lemma 15. 
�
Lemma 18 The mapM is equal to each of:

K

d∑

n=0

a−nq−nψn,

d∑

n=0

a−nqnψnK, B

d∑

n=0

anq−nψn,

d∑

n=0

anqnψnB

(34)

Proof Use Lemmas 9 and 15. 
�
We now give some attractive equations that show how M is related to

ψ,K,B,A.

Lemma 19 We have

Mψ = q2ψM. (35)

Proof Use Lemma 7 and Definition 7. 
�
Lemma 20 We have

qM−1K − q−1KM−1

q − q−1 = I,
qM−1B − q−1BM−1

q − q−1 = I. (36)

Proof Use Lemma 17. 
�
Lemma 21 We have

qAM−1 − q−1M−1A

q − q−1 = (a + a−1)I − (q + q−1)ψ. (37)

Proof Use Lemmas 3, 7, 10, and 17. 
�
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Lemma 22 We have

M−2A−(q2 +q−2)M−1AM−1 +AM−2 = −(q −q−1)2(a+a−1)M−1. (38)

Proof Use Lemmas 19 and 21. 
�

7 A Factorization of �

We continue to discuss the situation of Assumption 1. We now bring in the q-
exponential function [8]. In [4, Theorem 17.1] we expressed � as a power series
in ψ . In this section we strengthen this result in the following way. We express � as
a product of two linear transformations; one is a q-exponential in ψ and the other is
a q−1-exponential in ψ .

For an integer n, define

[n]q = qn − q−n

q − q−1
(39)

and for n ≥ 0, define

[n]!q = [n]q [n − 1]q · · · [1]q . (40)

We interpret [0]!q = 1.
We now recall the q-exponential function [8]. For a nilpotent T ∈ End(V ),

expq(T ) =
∞∑

n=0

q(n
2)

[n]!q
T n. (41)

The map expq(T ) is invertible. Its inverse is given by

expq−1(−T ) =
∞∑

n=0

(−1)nq−(n
2)

[n]!q
T n. (42)

Using (41) we obtain

(I − (q2 − 1)T ) expq(q2T ) = expq(T ). (43)

For S ∈ End(V ) such that ST = q2T S, we have

S expq(T )S−1 = expq(ST S−1) = expq(q2T ).
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Consequently

S expq(T ) = expq(q2T )S. (44)

Combining (43) and (44),

(I − (q2 − 1)T )S expq(T ) = expq(T )S. (45)

We return our attention to K,B,ψ,M.

Proposition 1 Both

K expq

(
a−1

q − q−1
ψ

)

= expq

(
a−1

q − q−1
ψ

)

M, (46)

B expq

(
a

q − q−1 ψ

)

= expq

(
a

q − q−1 ψ

)

M. (47)

Proof Recall from Lemma 19 that Mψ = q2ψM. We first obtain (46). To do
this, in (45) take S = M and T = a−1

q−q−1 ψ . Evaluate the result using the equation

M = (I − a−1qψ)−1K from Lemma 15.
Next we obtain (47). To do this, in (45) take S =M and T = a

q−q−1 ψ . Evaluate

the result using the equationM = (I − aqψ)−1B from Lemma 15. 
�
The following is our main result.

Theorem 3 Both

� = expq

(
a

q − q−1 ψ

)

expq−1

(

− a−1

q − q−1 ψ

)

, (48)

�−1 = expq

(
a−1

q − q−1 ψ

)

expq−1

(

− a

q − q−1 ψ

)

. (49)

Proof We first show (48). Let �̃ denote the expression on the right in (48).
Combining (46) and (47), we see that �̃K = B�̃. Therefore �̃Ui = U

⇓
i for

0 ≤ i ≤ d. Observe that �̃ − I is a polynomial in ψ with zero constant term.
By Lemma 8, (�̃ − I )Ui ⊆ U0 + U1 + · · · + Ui−1 for 0 ≤ i ≤ d. By Lemma 11,
�̃ = �.

To obtain (49) from (48), use (42). 
�
Corollary 1 We have

expq

(
a

q − q−1 ψ

)

expq−1

(

− a−1

q − q−1 ψ

)

=
d∑

i=0

⎛

⎝
i∏

j=1

aqj−1 − a−1q1−j

qj − q−j

⎞

⎠ ψi,
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expq

(
a−1

q − q−1 ψ

)

expq−1

(

− a

q − q−1 ψ

)

=
d∑

i=0

⎛

⎝
i∏

j=1

a−1qj−1 − aq1−j

qj − q−j

⎞

⎠ ψi.

Proof Combine Theorems 2 and 3. The equations can also be obtained directly by
expanding their left-hand sides using (41) and (42), and evaluating the results using
the q-binomial theorem [2, Theorem 10.2.1]. 
�

8 The Eigenvalues and Eigenspaces ofM

We continue to discuss the situation of Assumption 1. In Sect. 6 we introduced the
linear transformationM. Proposition 1 indicates the role ofM in the factorization
of � in Theorem 3. In this section we show thatM is diagonalizable. We describe
the eigenvalues and eigenspaces of M. We also explain how the eigenspace
decomposition forM is related to the first and second split decompositions.

Lemma 23 The mapM is diagonalizable with eigenvalues qd, qd−2, qd−4, . . . , q−d .

Proof Let E = expq

(
a−1

q−q−1 ψ
)

. By (46), M = E−1KE. By construction K is

diagonalizable with eigenvalues qd, qd−2, qd−4, . . . , q−d . The result follows. 
�
Definition 8 For 0 ≤ i ≤ d, let Wi denote the eigenspace ofM corresponding to
the eigenvalue qd−2i . Note that {Wi}di=0 is a decomposition of V , and that W

⇓
i = Wi

for 0 ≤ i ≤ d. For notational convenience, let W−1 = 0 and Wd+1 = 0.

Proposition 2 For 0 ≤ i ≤ d,

Ui = expq

(
a−1

q−q−1 ψ
)

Wi, U
⇓
i = expq

(
a

q − q−1 ψ

)

Wi, (50)

Wi = expq−1

(
− a−1

q−q−1 ψ
)

Ui, Wi = expq−1

(

− a

q − q−1
ψ

)

U
⇓
i . (51)

Proof Define E as in the proof of Lemma 23. We show that Ui = EWi .
By (46), KE = EM. Recall that Ui (resp. Wi) is the eigenspace of K (resp. M)
corresponding to the eigenvalue qd−2i . By these comments Ui = EWi .

Define F = expq( a
q−q−1 ψ). We show U

⇓
i = FWi . By (47), BF = FM. Recall

that U
⇓
i (resp. Wi) is the eigenspace of B (resp.M) corresponding to the eigenvalue

qd−2i . By these comments U
⇓
i = FWi .

To obtain (51) from (50), use (42). 
�
Lemma 24 For 0 ≤ i ≤ d, the dimension of Wi is ρi .

Proof This follows from Proposition 2 and the fact that Ui,U
⇓
i have dimension ρi .


�
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Recall from (6) that

i∑

h=0

E∗
hV =

i∑

h=0

Uh =
i∑

h=0

U
⇓
h (52)

for 0 ≤ i ≤ d.

Lemma 25 For 0 ≤ i ≤ d, the sum
∑i

h=0 Wh is equal to the common value of (52).

Proof Define W = ∑i
h=0 Wh and let U denote the common value of (52). We

show that W = U . By Lemma 8 and the equation on the left in (51), W ⊆ U . By
Lemma 24, W and U have the same dimension. Thus W = U . 
�

9 The Actions of ψ,K,B,�,A,A∗ on {Wi}di=0

We continue to discuss the situation of Assumption 1. Recall the eigenspace decom-
position {Wi}di=0 forM. In this section, we discuss the actions of ψ,K,B,�,A,A∗
on {Wi}di=0.

Lemma 26 For 0 ≤ i ≤ d,

ψWi ⊆ Wi−1. (53)

Proof Use Lemma 19. 
�
Lemma 27 For 0 ≤ i ≤ d,

(K − qd−2iI )Wi ⊆ Wi−1, (B − qd−2iI )Wi ⊆ Wi−1. (54)

Proof Use Lemmas 16 and 26. 
�
Lemma 28 For 0 ≤ i ≤ d,

(� − I )Wi ⊆ W0 + W1 + · · · + Wi−1, (55)

(�−1 − I )Wi ⊆ W0 + W1 + · · · + Wi−1. (56)

Proof To show (55), use (25) and Lemma 25.
To show (56), use (26) and Lemma 25. 
�

Lemma 29 For 0 ≤ i ≤ d,

(A − (a + a−1)qd−2iI )Wi ⊆ Wi−1 + Wi+1. (57)

Proof By Lemma 22, the expression
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(M−1 − q2i+2−dI )(M−1 − q2i−2−dI )(A − (a + a−1)qd−2iI )

vanishes on Wi . Therefore (M−1 −q2i+2−dI )(M−1 −q2i−2−dI ) vanishes on (A−
(a + a−1)qd−2iI )Wi . The result follows. 
�
Lemma 30 For 0 ≤ i ≤ d,

(A∗ − θ∗
i I )Wi ⊆ W0 + W1 + · · · + Wi−1. (58)

Proof Use (A∗ − θ∗
i I )E∗

i V = 0 together with (25) and Lemma 25. 
�

10 The Actions ofM±1 on {Ui}di=0,{U⇓
i

}d
i=0, {EiV }d

i=0,
{E∗

i
V }d

i=0

We continue to discuss the situation of Assumption 1. In Sect. 8 we saw how various
operators act on the decomposition {Wi}di=0. In this section we investigate the action
ofM on the first and second split decompositions of V , as well as on the eigenspace
decompositions of A,A∗.

Lemma 31 For 0 ≤ i ≤ d,

(M− qd−2iI )Ui ⊆ U0 + U1 + · · · + Ui−1, (59)

(M− qd−2iI )U
⇓
i ⊆ U

⇓
0 + U

⇓
1 + · · · + U

⇓
i−1. (60)

Proof To show (59), use Definition 5, Lemma 2, and Definition 7.
To show (60), use (59) applied to �⇓, along withM⇓ =M. 
�

Lemma 32 For 0 ≤ i ≤ d,

(M−1 − q2i−dI )Ui ⊆ Ui−1, (M−1 − q2i−dI )U
⇓
i ⊆ U

⇓
i−1. (61)

Proof We first show the equation on the left in (61). By Lemma 17,

M−1 = (I − a−1q−1ψ)K−1. (62)

From this and Definition 5, it follows that on Ui ,

M−1 − q2i−dI = a−1q2i−d−1ψ. (63)

The result follows from this along with Lemma 8.
The proof of the equation on the right in (61) follows from the equation on the

left in (61) applied to �⇓, along with the fact thatM⇓ =M. 
�
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Lemma 33 For 0 ≤ i ≤ d,

M−1EiV ⊆ Ei−1V + EiV + Ei+1V. (64)

Proof We first show that M−1EiV ⊆ ∑i+1
h=0 EhV . Recall from (5) that EiV ⊆

∑d
h=d−i U

⇓
h . By this, Lemma 32, and (5), we obtainM−1EiV ⊆ ∑i+1

h=0 EhV .

We now show that M−1EiV ⊆ ∑d
h=i−1 EhV . Recall from (4) that EiV ⊆

∑d
h=i Uh. By this, Lemma 32, and (4), we obtainM−1EiV ⊆ ∑d

h=i−1 EhV .

ThusM−1EiV is contained in the intersection of
∑i+1

h=0 EhV and
∑d

h=i−1 EhV ,
which is Ei−1V + EiV + Ei+1V . 
�
Lemma 34 For 0 ≤ i ≤ d,

(M− qd−2iI )E∗
i V ⊆ E∗

0V + E∗
1V + · · · + E∗

i−1V,

(M−1 − q2i−dI )E∗
i V ⊆ E∗

0V + E∗
1V + · · · + E∗

i−1V.

Proof Note that E∗
i V ⊆ E∗

0V + E∗
1V + · · · + E∗

i V = W0 + W1 + · · · + Wi by
Lemma 25. The result follows from this fact along with Definition 8. 
�

11 When � Is a Leonard System

We continue to discuss the situation of Assumption 1. For the rest of the paper we
assume ρi = 1 for 0 ≤ i ≤ d. In this case � is called a Leonard system.

We use the following notational convention. Let {vi}di=0 denote a basis for V .
The sequence of subspaces {Kvi}di=0 is a decomposition of V said, to be induced by
the basis {vi}di=0.

We display a basis {ui}di=0 (resp. {u⇓
i }di=0) (resp. {wi}di=0) that induces the

decomposition {Ui}di=0 (resp. {U⇓
i }di=0) (resp. {Wi}di=0). We find the actions of

ψ,K,B,�±1, A on these bases. We also display the transition matrices between
these bases.

For the rest of this section fix 0 �= u0 ∈ U0. Let M denote the subalgebra of
End(V ) generated by A. By [21, Lemma 5.1], the map M → V , X �→ Xu0 is an iso-
morphism of vector spaces. Consequently, the vectors {Aiu0}di=0 form a basis for V .

We now define a basis {ui}di=0 of V that induces {Ui}di=0. For 0 ≤ i ≤ d, define

ui =
⎛

⎝
i−1∏

j=0

(
A − θj I

)
⎞

⎠ u0. (65)

Observe that ui �= 0. By [9, Theorem 4.6], ui ∈ Ui . So ui is a basis for Ui .
Consequently, {ui}di=0 is a basis for V that induces {Ui}di=0.
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Next we define a basis {u⇓
i }di=0 of V that induces {U⇓

i }di=0. For 0 ≤ i ≤ d, define

u
⇓
i =

⎛

⎝
i−1∏

j=0

(
A − θd−j I

)
⎞

⎠ u0. (66)

Observe that u
⇓
i �= 0. By Lemma 11, u

⇓
i ∈ U

⇓
i . So u

⇓
i is a basis for U

⇓
i .

Consequently, {u⇓
i }di=0 is a basis for V that induces {U⇓

i }di=0.

Lemma 35 For 0 ≤ i ≤ d,

u
⇓
i = �ui. (67)

Proof By Lemma 11, �Ui = U
⇓
i . So there exists 0 �= λ ∈ K such that �ui = λu

⇓
i .

We show that λ = 1. By [4, Lemma 7.3] and (25), �ui −Aiu is a linear combination
of {Aju}i−1

j=0. Also, u
⇓
i − Aiu is a linear combination of {Aju}i−1

j=0. The vectors

{Aju}i−1
j=0 are linearly independent. By these comments λ = 1. 
�

We next define a basis {wi}di=0 of V that induces {Wi}di=0. For 0 ≤ i ≤ d, define

wi = expq−1

(

− a−1

q − q−1
ψ

)

ui. (68)

Since {ui}di=0 is a basis of V and expq−1(− a−1

q−q−1 ψ) is invertible, wi is a basis for

Wi . Consequently, {wi}di=0 is a basis for V that induces {Wi}di=0.

Lemma 36 For 0 ≤ i ≤ d,

ui = expq

(
a−1

q−q−1 ψ
)

wi, u
⇓
i = expq

(
a

q − q−1
ψ

)

wi, (69)

wi = expq−1

(
− a−1

q−q−1 ψ
)

ui, wi = expq−1

(

− a

q − q−1 ψ

)

u
⇓
i . (70)

Proof Use (68) to obtain the equations on the left in (69),(70). To obtain the
equations on the right in (69),(70), use Theorem 3, Lemma 35, and (68). 
�

We now describe the actions of ψ,K,B,M,�,A on the bases {ui}di=0, {u⇓
i }di=0,

{wi}di=0. First we recall a notion from linear algebra. Let Matd+1(K) denote the K-
algebra of (d + 1) × (d + 1) matrices that have all entries in K. We index the
rows and columns by 0, 1, . . . , d . Let {vi}di=0 denote a basis of V . For T ∈ End(V )

and X ∈ Matd+1(K), we say that X represents T with respect to {vi}di=0 whenever

T vj = ∑d
i=0 Xijvi for 0 ≤ j ≤ d.

By (65) and (66), the matrices that represent A with respect to {ui}di=0 and

{u⇓
i }di=0 are, respectively,
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⎛

⎜
⎜
⎜
⎝

θ0 0
1 θ1

. . .
. . .

0 1 θd

⎞

⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎝

θd 0
1 θd−1

. . .
. . .

0 1 θ0

⎞

⎟
⎟
⎟
⎠

. (71)

By construction, the matrix diag(qd, qd−2, . . . , q−d) represents K with respect
to {ui}di=0, and B with respect to {u⇓

i }di=0, andM with respect to {wi}di=0.

Definition 9 We define a matrix ψ̂ ∈ Matd+1(K). For 1 ≤ i ≤ d, the (i − 1, i)-
entry is (qi − q−i )(qd−i+1 − qi−d−1). All other entries are 0.

Proposition 3 The matrix ψ̂ represents ψ with respect to each of the bases {ui}di=0,

{u⇓
i }di=0, {wi}di=0.

Proof By [5, Line (23)], ψ̂ represents ψ with respect to {ui}di=0. The remaining
assertions follow from Lemma 36. 
�

Next we give the matrices that representM±1 with respect to the bases {ui}di=0,

{u⇓
i }di=0.

Lemma 37 We give the matrix in Matd+1(K) that represents M with respect to
{ui}di=0. This matrix is upper triangular. For 0 ≤ i ≤ j ≤ d, the (i, j)-entry is

ai−j qd−j−i
(
q − q−1

)2(j−i) [j ]!q [d − i]!q
[i]!q [d − j ]!q

. (72)

Proof The matrix diag(qd, qd−2, . . . , q−d) represents K with respect to {ui}di=0.
Use this fact along with Lemma 18 and Proposition 3. 
�
Lemma 38 We give the matrix in Matd+1(K) that representsM−1 with respect to
{ui}di=0. For 0 ≤ i ≤ d, the (i, i)-entry is q2i−d . For 1 ≤ i ≤ d, the (i − 1, i)-entry
is

−a−1q2i−d−1
(
qi − q−i

) (
qd−i+1 − qi−d−1

)
.

All other entries are zero.

Proof The matrix diag(q−d , q2−d , . . . , qd) represents K−1 with respect to {ui}di=0.
Use this fact along with Lemma 17 and Proposition 3. 
�
Lemma 39 We give the matrix in Matd+1(K) that represents M with respect to
{u⇓

i }di=0. This matrix is upper triangular. For 0 ≤ i ≤ j ≤ d, the (i, j)-entry is

aj−iqd−j−i
(
q − q−1

)2(j−i) [j ]!q [d − i]!q
[i]!q [d − j ]!q

. (73)
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Proof The matrix diag(qd, qd−2, . . . , q−d) represents B with respect to {u⇓
i }di=0.

Use this fact along with Lemma 18 and Proposition 3. 
�
Lemma 40 We give the matrix in Matd+1(K) that representsM−1 with respect to
{u⇓

i }di=0. For 0 ≤ i ≤ d, the (i, i)-entry is q2i−d . For 1 ≤ i ≤ d, the (i − 1, i)-entry
is

−aq2i−d−1
(
qi − q−i

) (
qd−i+1 − qi−d−1

)
.

All other entries are zero.

Proof The matrix diag(q−d , q2−d , . . . , qd) represents B−1 with respect to {u⇓
i }di=0.

Use this fact along with Lemma 17 and Proposition 3. 
�
Next we give the matrices that represent K with respect to the bases {u⇓

i }di=0,
{wi}di=0.

Lemma 41 We give the matrix in Matd+1(K) that represents K with respect to
{u⇓

i }di=0. For 0 ≤ i ≤ d, the (i, i)-entry is qd−2i . For 0 ≤ i < j ≤ d, the (i, j)-
entry is

(
1 − a−2

)
aj−iqd−j−i

(
q − q−1

)2(j−i) [j ]!q [d − i]!q
[i]!q [d − j ]!q

. (74)

All other entries are zero.

Proof Evaluating the equation on the right in (14) using the equation on the left
in (12) we get

K =
(

a−2I + (1 − a−2)

d∑

n=0

anqnψn

)

B. (75)

The result follows from this along with Proposition 3 and the fact that the matrix
diag(qd, qd−2, . . . , q−d) represents B with respect to {u⇓

i }di=0. 
�
Lemma 42 We give the matrix in Matd+1(K) that represents K with respect to
{wi}di=0. For 0 ≤ i ≤ d, the (i, i)-entry is qd−2i . For 1 ≤ i ≤ d, the (i − 1, i)-entry
is

−a−1qd−2i+1(qi − q−i )(qd−i+1 − qi−d−1).

All other entries are zero.

Proof The matrix diag(qd, qd−2, . . . , q−d) representsM with respect to {wi}di=0.
Use this fact along with Proposition 3 and the equation on the left in (32). 
�
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Next we give the matrices that represent B with respect to the bases {ui}di=0,
{wi}di=0.

Lemma 43 We give the matrix in Matd+1(K) that represents B with respect to
{ui}di=0. For 0 ≤ i ≤ d, the (i, i)-entry is qd−2i . For 0 ≤ i < j ≤ d, the (i, j)-entry
is

(
1 − a2

)
ai−j qd−j−i

(
q − q−1

)2(j−i) [j ]!q [d − i]!q
[i]!q [d − j ]!q

. (76)

All other entries are zero.

Proof Evaluating the equation on the left in (14) using the equation on the right
in (12) we get

B =
(

a2I + (1 − a2)

d∑

n=0

a−nqnψn

)

K. (77)

The result follows from this along with Proposition 3 and the fact that the matrix
diag(qd, qd−2, . . . , q−d) represents K with respect to {ui}di=0. 
�
Lemma 44 We give the matrix in Matd+1(K) that represents B with respect to
{wi}di=0. For 0 ≤ i ≤ d, the (i, i)-entry is qd−2i . For 1 ≤ i ≤ d, the (i − 1, i)-entry
is

−aqd−2i+1(qi − q−i )(qd−i+1 − qi−d−1).

All other entries are zero.

Proof The matrix diag(qd, qd−2, . . . , q−d) representsM with respect to {wi}di=0.
Use this fact along with Proposition 3 and the equation on the left in (33). 
�

Next we consider the matrices

expq

(
a

q − q−1 ψ̂

)

, expq

(
a−1

q − q−1 ψ̂

)

. (78)

Their inverses are

expq−1

(

− a

q − q−1 ψ̂

)

, expq−1

(

− a−1

q − q−1 ψ̂

)

(79)

respectively. The matrices in (78), (79) are upper triangular. We now consider the
entries of (78), (79).

Lemma 45 For 0 �= x ∈ K, the matrix expq(xψ̂) is upper triangular. For 0 ≤ i ≤
j ≤ d, the (i, j)-entry is
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xj−iq(j−i
2 )

(
q − q−1

)2(j−i) · [j ]!q [d − i]!q
[i]!q [j − i]!q [d − j ]!q

. (80)

The matrix expq−1(xψ̂) is upper triangular. For 0 ≤ i ≤ j ≤ d, the (i, j)-entry is

xj−iq−(j−i
2 )

(
q − q−1

)2(j−i) · [j ]!q [d − i]!q
[i]!q [j − i]!q [d − j ]!q

. (81)

Lemma 46 The transition matrices between the basis {wi}di=0 and the bases

{ui}di=0, {u⇓
i }di=0 are given in the table below.

From To Transition matrix

{ui}di=0 {wi}di=0 expq−1

(
− a−1

q−q−1 ψ̂
)

{wi}di=0 {ui}di=0 expq

(
a−1

q−q−1 ψ̂
)

{u⇓
i }di=0 {wi}di=0 expq−1

(
− a

q−q−1 ψ̂
)

{wi}di=0 {u⇓
i }di=0 expq

(
a

q−q−1 ψ̂
)

Proof Use Lemma 36 and Proposition 3. 
�
We next consider the product

expq

(
a

q − q−1 ψ̂

)

expq−1

(

− a−1

q − q−1 ψ̂

)

. (82)

The inverse of (82) is

expq

(
a−1

q − q−1
ψ̂

)

expq−1

(

− a

q − q−1
ψ̂

)

. (83)

The matrices in (82), (83) are upper triangular.

Lemma 47 The transition matrices between the bases {ui}di=0, {u⇓
i }di=0 are given

in the table below.

From To Transition matrix

{ui}di=0 {u⇓
i }di=0 expq

(
a

q−q−1 ψ̂
)

expq−1

(
− a−1

q−q−1 ψ̂
)

{u⇓
i }di=0 {ui}di=0 expq

(
a−1

q−q−1 ψ̂
)

expq−1

(
− a

q−q−1 ψ̂
)

Proof Use Lemma 46. 
�
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Lemma 48 With respect to each of the bases {ui}di=0, {u⇓
i }di=0, {wi}di=0, the matri-

ces that represent � and �−1 are expq

(
a

q−q−1 ψ̂
)

expq−1

(
− a−1

q−q−1 ψ̂
)

and

expq

(
a−1

q−q−1 ψ̂
)

expq−1

(
− a

q−q−1 ψ̂
)

respectively.

Proof Use Theorem 3 and Proposition 3. 
�
We give the entries of the matrices representing �,�−1 in the following lemma.

Lemma 49 The matrix in (82) is upper triangular. For 0 ≤ i ≤ j ≤ d, the (i, j)-
entry of (82) is

(
q − q−1

)j−i [j ]!q [d − i]!q
[i]!q [j − i]!q [d − j ]!q

j−i∏

n=1

(
aqn−1 − a−1q1−n

)
. (84)

The matrix in (83) is upper triangular. For 0 ≤ i ≤ j ≤ d, the (i, j)-entry of (83)
is

(
q − q−1

)j−i [j ]!q [d − i]!q
[i]!q [j − i]!q [d − j ]!q

j−i∏

n=1

(
a−1qn−1 − aq1−n

)
. (85)

Proof Use Corollary 1 and Proposition 3. 
�
We finish the paper by giving the matrix that represents A with respect to {wi}di=0.

Lemma 50 We give the matrix in Matd+1(K) that represents A with respect to
{wi}di=0. For 1 ≤ i ≤ d, the (i, i − 1)-entry is 1. For 0 ≤ i ≤ d, the (i, i)-entry is
(a + a−1)qd−2i . For 1 ≤ i ≤ d, the (i − 1, i)-entry is

−qd−2i+1(qi − q−i )(qd−i+1 − qi−d−1).

All other entries are zero.

Proof Let A denote the matrix that represents A with respect to {wi}di=0. By
Lemma 29,A is tridiagonal with (i, i)-entry given by (a+a−1)qd−2i for 0 ≤ i ≤ d.

We now show that the subdiagonal entries of A are all 1. Let A′ denote the
matrix that represents A with respect to {ui}di=0. Recall that this matrix is displayed

on the left in (71). Observe thatA is equal to expq−1(− a−1

q−q−1 ψ̂)A′ expq( a−1

q−q−1 ψ̂).
It follows from this fact that the subdiagonal entries ofA are all 1.

We next obtain the superdiagonal entries ofA. Let 0 ≤ i ≤ d. Apply both sides
of (37) to wi . Evaluate the result using Proposition 3 and the fact that the wi is an
eigenvector forM with eigenvalue q2i−d . Analyze the result in light of the above
comments concerning the entries ofA to obtain the desired result. 
�
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