
Depth of Powers of Squarefree Monomial
Ideals (Research)

Louiza Fouli, Huy Tài Hà, and Susan Morey

Mathematics Subject Classfication (2010): 13C15, 13D05, 13F55, 05E40

1 Introduction

During the past two decades, many papers have appeared with various approaches to
computing lower bounds for the depth, or equivalently upper bounds for the projec-
tive dimension, of R/I for a squarefree monomial ideal I (cf. [7, 8, 22, 25, 26, 31]).
The general idea has been to associate to the ideal I a graph or hypergraph G and
use dominating or packing invariants of G to bound the depth of R/I .

In general, given an ideal I ⊆ R, it is not just the depth of R/I that
attracts significant attention; rather, it is the entire depth function depth R/I s , for
s ∈ N. A result by Burch, which was later improved by Brodmann, states that
lim

s→∞ depth R/I s ≤ dim R − �(I ), where �(I ) is the analytic spread of I [3, 5].

Moreover, Eisenbud and Huneke [9] showed that if, in addition, the associated
graded ring, grI (R), of I is Cohen-Macaulay, then the above inequality becomes
an equality. Therefore, one can say that the limiting behavior of the depth R/I s is
quite well understood. It is then natural to consider the initial behavior of the depth
function (cf. [1, 11, 16, 17, 19, 21, 23, 24, 27–30, 33]).

Examples have been exhibited to show that the initial behavior of depth R/I s

can be wild, see [1]. In fact, it was conjectured by Herzog and Hibi [19] that for
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any numerical function f : N → Z≥0 that is asymptotically constant, there exists
an ideal I in a polynomial ring R such that f (s) = depth R/I s for all s ≥ 1. This
conjecture has recently been resolved affirmatively in [15]. It was proven in [15]
that the depth function of a monomial ideal can be any numerical function that is
asymptotically constant. Yet, it is still not clear what depth functions are possible
for squarefree monomial ideals.

Unlike the case for depth R/I , few lower bounds for depth R/I s , s ∈ N, are
known (cf. [11, 29, 33]). One reason for this is that powers of squarefree monomial
ideals are not squarefree and so many of the known bounds for R/I do not apply to
R/I s . To address this situation, we adapt a proof technique from [2] to generalize
bounds for depth R/I that were given by Dao and Schweig [8] in terms of the
edgewise domination number, and by the authors [12] in terms of the length of
an initially regular sequence. We provide lower bounds for the depth function
depth R/I s , s ∈ N, when I is a squarefree monomial ideal corresponding to a
hyperforest or a forest, Theorems 1 and 2.

Our results, Theorems 1 and 2, predict correctly the general behavior, as
computation indicates for random hyperforests and forests, that the depth function
depth R/I (G)s decreases incrementally as s increases. For specific examples, our
bound in Theorem 1 could be far from the actual values of the depth function—and
this is because the starting bound for depth R/I in terms of the edgewise domination
number is not always optimal. For forests, Theorem 2 could provide a more accurate
starting bound for depth R/I using initially regular sequences and, thus, be closer
to the depth function.

The common underlying idea behind Theorems 1 and 2 is that if α(G) is an
invariant associated to a hyperforest G that gives depth R/I (G) ≥ α(G) and
satisfies a certain inequality when restricted to subhypergraphs then one should have

depth R/I (G)s ≥ max{α(G) − s + 1, 1}.

Our work in this paper, thus, could be interpreted as the starting point of a research
program in finding such combinatorial invariants α(G) to best describe the depth
function of squarefree monomial ideals, which we hope to continue to pursue in
future works.

2 Background

For unexplained terminology, we refer the reader to [4] and [18]. Throughout the
paper, R = k[x1, . . . , xn] is a polynomial ring over an arbitrary field k and all
hypergraphs will be assumed to be simple, that is, there are no containments among
the edges. For a hypergraph G = (VG,EG) over the vertex set VG = {x1, . . . , xn},
the edge ideal of G is defined to be
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I (G) =
〈∏

x∈e

x

∣∣∣ e ∈ EG

〉
⊆ R.

This construction gives a one-to-one correspondence between squarefree monomial
ideals in R = k[x1, . . . , xn] and (simple) hypergraphs on the vertex set V =
{x1, . . . , xn}.

For a vertex x in a graph or hypergraph G, we say y is a neighbor of x if there
exists an edge E ∈ EG such that x, y ∈ E. The neighborhood of x in G is NG(x) =
{y ∈ VG | y is a neighbor of x}. The closed neighborhood of x in G is NG[x] =
NG(x) ∪ {x}. Note that the G in the notation will be suppressed when it is clear
from the context.

Simplicial forests were defined by Faridi in [10], where it was shown that the
edge ideals of these hypergraphs are always sequentially Cohen-Macaulay. They
have also been used in the study of standard graded (symbolic) Rees algebras of
squarefree monomial ideals [20]. We first recall the definition of a simplicial forest
(or a hyperforest for short).

Definition 1 Let G = (V ,E) be a simple hypergraph.

1. An edge e ∈ E is called a leaf if either e is the only edge in G or there exists
e 	= g ∈ E such that for any e 	= h ∈ E, e ∩ h ⊆ e ∩ g.

2. A leaf e in G is called a good leaf if the set {e ∩ h | h ∈ E} is totally ordered
with respect to inclusion.

3. G is called a simplicial forest (or simply, a hyperforest) if every subhypergraph
of G contains a leaf. A simplicial tree (or simply, a hypertree) is a connected
hyperforest.

It follows from [20, Corollary 3.4] that every hyperforest contains good leaves.
It is also immediate that every graph that is a forest is also a hyperforest.

Example 1 For the hypergraphs depicted below, the first one is not a hypertree while
the second one is, see also [10, Examples 1.4, 3.6].

a
b

c

d
x

y

z

u

v

In this paper, we will focus on two invariants that are known to bound the
depth of R/I when I is the edge ideal of an arbitrary hypergraph. When G is a
simplicial forest, we will provide a linearly decreasing lower bound for the depths
of the powers of I using each of these invariants. The first of these bounds for the
depth function of a squarefree monomial ideal is the edgewise domination number
introduced in [8]. Recall that for a hypergraph G = (V ,E), a subset F ⊆ E is
called edgewise dominant if for every vertex v ∈ V either {v} ∈ E or v is adjacent
to a vertex contained in an edge of F .
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Definition 2 ([8]) The edgewise domination number of G is defined to be

ε(G) = min{|F | | F ⊆ E is edgewise dominant}.

The second invariant used in this paper will be a variation on the depth bound for
monomial ideals introduced in [12]. For an arbitrary vertex b0 in a hypergraph G,
define a star on b0 to be a linear sum b0+b1+· · ·+bt such that for each edge Ei of G,
if b0 ∈ Ei , then there exists a j > 0 such that bj ∈ Ei . It was shown in [12, Theorem
3.11] that a set of vertex-disjoint stars that can be embedded in a hypergraph G

forms an initially regular sequence and, thus, gives a lower bound for the depth of
R/I (G). While much of [12] focuses on strengthening this bound by weakening the
disjoint requirement and allowing for additional types of linear sums, in this article
we will apply the bound to graphs, where the situation is more restricted. Notice
that for a graph G, a star on b0 is the sum of all vertices in the closed neighborhood
of b0, while for a hypergraph, a subset of the closed neighborhood can suffice. A
star packing is a collection S of vertex-disjoint stars in G such that if x ∈ VG then
NG[x] ∩ Supp(S) 	= ∅. In other words, S is maximal in the sense that no additional
disjoint stars exist. This leads to the following definition, whose notation reflects its
relationship to a 2-packing of closed neighborhoods in graph theory.

Definition 3 The star packing number α2 of a hypergraph G is given by

α2(G) = max{|S| | S is a star packing of G}.

Remark 1 If x1, . . . , xk ∈ R are variables in R that do not appear in any edge of
G, then x1, . . . , xk is a regular sequence on R/I (G) and depth R/I (G) = k +
depth R/(x1, . . . , xk, I (G)).

Note that if S is any set of disjoint stars in a hypergraph G, then α2(G) ≥ |S|
since S can be extended to a full star packing. Note also that for the special case
when G is a graph, a star packing is equivalent to a closed neighborhood packing
and, by focusing on the centers of the stars, to a maximal set of vertices such that
the distance between any two is at least 3.

3 Depth of Powers of Squarefree Monomial Ideals

In this section, we use a technique introduced in [2] to give a general lower bound for
the depth function of a squarefree monomial ideal when the underlying hypergraph
is a hyperforest. In the case of a forest, we extend the result to show that an
additional, often stronger, bound holds. For simplicity of notation, we write VG and
EG to denote the vertex and edge sets of a hypergraph G.
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Theorem 1 Let G be a hyperforest with at least one edge of cardinality at least 2,
and let I = I (G). Then for all s ≥ 1,

depth R/I s ≥ max{ε(G) − s + 1, 1}.

Proof It follows from [20, Corollary 3.3] (see also [13]) that the symbolic Rees
algebra of I is standard graded. That is, I (s) = I s for all s ≥ 1. In particular, this
implies that I s has no embedded primes for all s ≥ 1. Thus, depth R/I s ≥ 1 for all
s ≥ 1.

It remains to show that depth R/I s ≥ ε(G) − s + 1. Indeed, this statement and,
hence, Theorem 1 follows from the following slightly more general result. �
Proposition 1 Let G be a hyperforest. Let H and T be subhypergraphs of G such
that

EH ∪ ET = EG and EH ∩ ET = ∅.

Then we have

depth R/[I (H) + I (T )s] ≥ max{ε(G) − s + 1, 0}.

Proof It suffices to show that depth R/[I (H)+I (T )s] ≥ ε(G)−s+1. We shall use
induction on |ET | and s. If |ET | = 0 then the statement follows from [7, Theorem
3.2]. If s = 1 then the statement also follows from [7, Theorem 3.2]. Suppose that
|ET | ≥ 1 and s ≥ 2.

Let e be a good leaf of T . Then by the proof of [6, Theorem 5.1], we have
I (T )s : e = I (T )s−1. This implies that

(I (H) + I (T )s) : e = (I (H) : e) + I (T )s−1.

Moreover,

I (H) + I (T )s + (e) = I (H + e) + I (T \ e)s .

Thus, we have the exact sequence

0→R/[(I (H) : e)+I (T )s−1] → R/[I (H)+I (T )s]→R/[I (H+e)+I (T \e)s]→0

which, in turns, gives

depth R/[I (H) + I (T )s] ≥
min{depth R/[(I (H) : e) + I (T )s−1], depth R/[I (H + e) + I (T \ e)s]}. (1)

Observe that G = (H + e) + (T \ e) and EH+e ∩ ET \e = ∅. Thus, by induction
on |ET |, we have
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depth R/[I (H + e) + I (T \ e)s] ≥ ε(G) − s + 1.

On the other hand, let Z = {z ∈ VH | ∃h ∈ EH such that {z} = h \ e}. Let H ′ be
the hypergraph obtained from I (H) : e by deleting the vertices in Z and any vertex
in H that does not belong to any edge. Let T ′ be the hypergraph whose edges are
obtained from edges of T after deleting all those that contain any vertex in VT ∩ Z.
Then

I (H) : e = I (H ′) + (z | z ∈ Z).

Let G′ = H ′ +T ′, let R′ = k[VH ′ ∪VT ′ ], and let W = VG \ (VG′ ∪Z). It follows
by induction on s that

depth R/[(I (H) : e) + I (T )s−1] = depth R/[I (H ′) + I (T ′)s−1 + (z | z ∈ Z)]
= depth R′/[I (H ′) + I (T ′)s−1] + |W |
≥ ε(G′) − (s − 1) + 1 + |W |
= (

ε(G′) + 1 + |W |) − s + 1.

Now, let F ′ ⊆ EG′ be an edgewise dominant set in G′. By the construction of
H ′, for each f ′ ∈ F ′ ∩ EH ′ , there is an edge f ∈ EH such that f ′ = f \ e. Let F

be the set obtained from F ′ by replacing each f ′ ∈ F ′ ∩EH ′ by such an f . Observe
that for any vertex v ∈ VG, either v ∈ W , or v ∈ Z, or v ∈ VG′ . If v ∈ Z, then v is
dominated by e. If v ∈ VG′ , then v is dominated by some edge in F ′. Thus, F ∪ {e}
together with one edge for each vertex in W will form an edgewise dominant set in
G. This implies that

ε(G′) + 1 + |W | ≥ ε(G).

Therefore,

depth R/[(I (H) : e) + I (T )s−1] ≥ ε(G) − s + 1.

Hence, by (1), we have

depth R/[I (H) + I (T )s] ≥ ε(G) − s + 1,

which concludes the proof. �
A close examination of the proof of Proposition 1 shows that we can replace ε(G)

by any invariant α(G), for which depth R/I (G) ≥ α(G) and α(G′) + 1 + |W | ≥
α(G), where G′ and W are defined as in the proof of Proposition 1.

Corollary 1 If α(G) is any invariant of a hyperforest G for which depth R/I (G) ≥
α(G) and α(G′) + 1 + |W | ≥ α(G), then
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depth R/I s ≥ max{α(G) − s + 1, 0}.

For a random hypertree G, computations indicate that the depth function
depth R/I (G)s decreases incrementally as s increases as predicted by Theorem 1.
However, for low powers of I , the ε-bound is often less than optimal, as can be
seen by comparing the results to the bounds on depth R/I (G) obtained from [12].
For hypertrees G for which depth R/I (G) = ε, the depth function depth R/I (G)s

usually does not initially decrease incrementally as s increases. These statements
are illustrated by the following pair of examples.

Example 2 Let I = (x1x2, x2x3, x3x4, x3x5, x3x6, x6x7, x6x8, x8x9, x8x10, x8x11,

x8x12) in R = Q[x1, . . . , x12] be the edge ideal of the graph G depicted below.

x1 x2 x3

x4

x5

x6

x7

x8

x9

x10 x11

x12

Computation in Macaulay 2 [14] shows that the depth function of I is
4, 3, 2, 1, 1, . . .. Thus, Theorem 1 predicts correctly how the depth function behaves.
However, in this example, ε(G) = 2 does not give the right value for depth R/I .

Example 3 Let I = (x1x2, x1x3, x1x4, x4x5, x5x6, x5x7, x4x8, x8x9, x8x10,

x8x11, x8x12) in R = Q[x1, . . . , x12] be the edge ideal of the graph G depicted
below.

x1

x2

x3

x4

x5

x6 x7

x8

x9

x10

x11

x12

Then ε(G) = 3. Computation in Macaulay 2 [14] shows that the depth function
of I is 3, 3, 3, 1, 1, . . .. The bound in Theorem 1 gives the depth function of I

to be at least 3, 2, 1, 1, 1, . . .. In this example, while ε(G) gives the right value
for depth R/I , Theorem 1 does not predict correctly how the depth function of I

behaves.

Examples 2 and 3 show that to get a sharp bound for the depth function of random
hypertrees, we may want to start with invariants other than ε(G) which give stronger
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bounds for depth R/I (G). In order to do so, one often needs to assume additional
structure on G. For example, if G is a forest, the invariant from Definition 3 can be
used.

Proposition 2 Let G be a forest with connected components G1, . . . ,Gt . Let H

and T be subforests of G such that EH ∪ ET = EG, EH ∩ ET = ∅, and T ∩ Gi is
connected for each i. Then

depth R/[I (H) + I (T )s] ≥ max{α2(G) − s + 1, 0}.

Proof The proof follows the outline of that of Proposition 1 with special care
toward the end. If |ET | = 0 or s = 1, then the statement follows from [12, Theorem
3.11], so we assume |ET | ≥ 1 and s ≥ 2.

Consider an edge {x, y} of H . Then, {x, y} ∈ Gi for some i. Since T ∩ Gi is
connected, if x, y ∈ VT , then there is a path in T from x to y. This path, together
with {x, y}, forms a cycle in G, which is a contradiction. Thus, no edge of H can
have both endpoints in VT .

Let e be a leaf of T . Since T is a forest, e is a good leaf of T . Thus, as in the
proof of Proposition 1, we have

depth R/[I (H) + I (T )s] ≥
min{depth R/[(I (H) : e) + I (T )s−1], depth R/[I (H + e) + I (T \ e)s]}. (2)

Observe further that G = (H + e) + (T \ e), EH+e ∩ ET \e = ∅, and (T \ e) ∩ Gi

is connected for each i. Thus, by induction on |ET |, we have

depth R/[I (H + e) + I (T \ e)s] ≥ α2(G) − s + 1.

On the other hand, let Z = {z ∈ VH | ∃h ∈ EH such that {z} = h \ e}. Let H ′
be the graph obtained from I (H) : e by deleting the vertices in Z and any vertex of
H that does not belong to any edge. Note that VT ∩ Z = ∅, since otherwise there
would be an edge of H having both endpoints in VT (one in Z and the other in e).
Then

I (H) : e = I (H ′) + (z | z ∈ Z).

Let G′ = H ′ + T , let R′ = k[VH ′ ∪ VT ], and let W = VG \ (VG′ ∪ Z). It follows
by induction on s that

depth R/[(I (H) : e) + I (T )s−1] = depth R/[I (H ′) + I (T )s−1 + (z | z ∈ Z)]
= depth R′/[I (H ′) + I (T )s−1] + |W |
≥ α2(G

′) − (s − 1) + 1 + |W |
= (

α2(G
′) + 1 + |W |) − s + 1.
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We will show that α2(G
′) + 1 + |W | ≥ α2(G). Fix a set of disjoint stars of G of

cardinality α2(G) and let S = {x1, . . . , xα2(G)} denote the set of the centers of these
stars.

Let S′ = {xi | xi ∈ R′} and notice that the set of stars in G′ centered at xi

for each xi ∈ R′ is a set of disjoint stars and thus α2(G
′) ≥ |S′|. If xi 	∈ R′, then

xi ∈ Z ∪ W . Since the stars with centers in S are disjoint, there can be at most two
elements in Z ∩ S. If |Z ∩ S| ≤ 1, then |S′| ≥ |S| − 1 − |W | = α2(G) − 1 − |W |,
and so α2(G

′) + 1 + |W | ≥ α2(G).
Suppose that |Z ∩ S| = 2. Write e = ab and notice that if either a or b is in

S, then Z ∩ S = ∅. Hence, we may assume that a, b 	∈ S. We will construct a
new set of stars in G′ of cardinality at least α2(G) − 1 − |W | and, thus, also give
α2(G

′) + 1 + |W | ≥ α2(G) in this case.
Indeed, let {z1, z2} = Z ∩ S. Then, z1, z2 ∈ NG(a) ∪ NG(b) and, without loss

of generality, we may assume that z1 ∈ NG(a) and z2 ∈ NG(b). Since e is a leaf
in T , we may also assume that b is a leaf vertex in T ; that is, NT (b) = a. Then,
NG(b) \ {a} ⊆ Z. Let Ŝ′ = S′ ∪ {b}. We claim that the stars in G′ centered on
the elements of Ŝ′ are disjoint. Any two stars centered at elements of S′ are already
disjoint. Consider then a star centered at an element xi ∈ S′ and the star centered
at b in G′. Since xi 	= z1, and the stars in G centered at xi and z1 are disjoint, we
have a 	∈ NG′(xi). Thus, NG′ [xi] ∩ NG′ [b] = ∅. Clearly, |Ŝ′| ≥ |S| − 1 − |W | =
α2(G) − 1 − |W |.

Now, we have

depth R/[(I (H) : e) + I (T )s−1] ≥ α2(G) − s + 1,

and the assertion now follows from (2). �
Using this result, we obtain the following bound which, while generally stronger

than that of Theorem 1 when applicable, applies only to graphs that are trees or
forests.

Theorem 2 Let G be a forest with at least one nontrivial edge, and let I = I (G).
Then,

depth R/I s ≥ max{α2(G) − s + 1, 1}.

Proof It follows from [32, Theorem 5.9] that I (s) = I s for all s ≥ 1 and so
depth R/I s ≥ 1 for all s ≥ 1. By Proposition 2, depth R/I s ≥ α2(G) − s + 1
and the result follows. �
Example 4 Let G be the graph in Example 2. Using x1, x5, x7, x9 as centers of
stars, we have α2(G) = 4. Thus, Theorem 2 gives the correct depth function
depth R/I (G)s , for all s ∈ N, for this graph.

On the other hand, let G be the graph as in Example 3. Then, α2(G) = 3 = ε(G),
and so Theorem 2 gives the same bound as that of Theorem 1 for this graph.
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It would be interesting to know whether the length of a more general initially
regular sequence with respect to I (G), or improved bounds for depth R/I (G)

obtained in [12, Section 4], could be used to get better bounds for the depth function
than those given in Theorem 1 when G is a hyperforest.
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