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1 Model Problem

Let � be a convex bounded polygonal/polyhedral domain in R
2/R3, yd ∈ L2(�),

β be a positive constant, ψ ∈ H 3(�) ∩ W 2,∞(�) and ψ > 0 on ∂�. The model
problem [1] is to find

(ȳ, ū) = argmin
(y,u)∈K

1

2

[
‖y − yd‖2

L2(�) + β‖u‖2
L2(�)

]
, (1)

where (y, u) ∈ H 1
0 (�) × L2(�) belongs to K if and only if

ˆ
�

∇y · ∇z dx =
ˆ

�

uz dx ∀ z ∈ H 1
0 (�), (2)

y ≤ ψ a.e. on �. (3)

Throughout this paper we will follow the standard notation for operators,
function spaces and norms that can be found for example in [2, 3].

In this model problem y (resp., u) is the state (resp., control) variable, yd

is the desired state and β is a regularization parameter. Similar linear-quadratic
optimization problems also appear as subproblems when general PDE constrained
optimization problems are solved by sequential quadratic programming (cf. [4, 5]).

In view of the convexity of �, the constraint (2) implies y ∈ H 2(�) (cf. [6–8]).
Therefore we can reformulate (1)–(3) as follows:
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Find ȳ = argmin
y∈K

1

2

[
‖y − yd‖2

L2(�) + β‖�y‖2
L2(�)

]
, (4)

where

K = {y ∈ H 2(�) ∩ H 1
0 (�) : y ≤ ψ on �}. (5)

Note that K is nonempty because ψ > 0 on ∂�. It follows from the classical
theory of calculus of variations [9] that (4)–(5) has a unique solution ȳ ∈ K

characterized by the fourth order variational inequality

a(ȳ, y − ȳ) ≥
ˆ

�

yd(y − ȳ)dx ∀ y ∈ K, (6)

where

a(y, z) = β

ˆ
�

(�y)(�z)dx +
ˆ

�

yz dx. (7)

Furthermore, by the Riesz-Schwartz Theorem for nonnegative linear functionals
[10, 11], we can rewrite (6) as

a(ȳ, z) =
ˆ

�

ydz dx +
ˆ

�

z dμ ∀ z ∈ H 2(�) ∩ H 1
0 (�), (8)

where

μ is a nonpositive finite Borel measure (9)

that satisfies the complementarity condition

ˆ
�

(ȳ − ψ)dμ = 0. (10)

Note that (10) is equivalent to the statement that

μ is supported on A, (11)

where the active set A = {x ∈ � : ȳ(x) = ψ(x)} satisfies

A ⊂⊂ � (12)

because ψ > 0 on ∂� and ȳ = 0 on ∂�.
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According to the elliptic regularity theory in [6–8, 12, 13], we have

ȳ ∈ H 3
loc(�) ∩ W

2,∞
loc (�) ∩ H 2+α(�), (13)

where α ∈ (0, 1] is determined by the geometry of �. It then follows from (8), (11)–
(13) and integration by parts that

μ ∈ H−1(�). (14)

Details for (13) and (14) can be found in [14].

Remark 1 Note that (cf. [6, 15])

ˆ
�

(�y)(�z)dx =
ˆ

�

D2y : D2z dx ∀ y, z ∈ H 2(�) ∩ H 1
0 (�),

where D2y : D2z denotes the Frobenius inner product between the Hessian matrices
of y and z. Therefore we can rewrite the bilinear form a(·, ·) in (7) as

a(y, z) = β

ˆ
�

D2y : D2z dx +
ˆ

�

yz dx. (15)

2 Finite Element Methods

In the absence of the state constraint (3), we have K = H 2(�) ∩ H 1
0 (�) and (6)

becomes the boundary value problem

a(ȳ, z) =
ˆ

�

ydz dx ∀ z ∈ H 2(�) ∩ H 1
0 (�). (16)

Since (16) is essentially a bending problem for simply supported plates, it can
be solved by many finite element methods such as (1) conforming methods, (2)
classical nonconforming methods, (3) discontinuous Galerkin methods, and (4)
mixed methods. For the sake of brevity, below we will consider these methods for
� ⊂ R

2. But all the results can be extended to three dimensions.
Let Vh be a finite element space associated with a triangulation Th of �. The

approximate solution ȳh ∈ Vh is determined by

ah(ȳh, z) =
ˆ

�

ydz dx ∀ z ∈ Vh, (17)

where the choice of the bilinear form ah(·, ·) depends on the type of finite element
method being used.
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2.1 Conforming Methods

In this case Vh ⊂ H 2(�) ∩ H 1
0 (�) is a C1 finite element space and we can take

ah(·, ·) to be a(·, ·). This class of methods includes the Bogner-Fox-Schmit element
[16], the Argyris elements [17], the macro elements [18–20], and generalized finite
elements [21–23].

2.2 Classical Nonconforming Methods

In this case Vh ⊂ L2(�) consists of finite element functions that are weakly
continuous up to first order derivatives across element boundaries, and the bilinear
form ah(·, ·) is given by

ah(y, z) = β
∑

T ∈Th

ˆ
�

D2y : D2z dx +
ˆ

�

yz dx. (18)

Here we are using the piecewise version of (15), which provides better local control
of the nonconforming energy norm ‖ · ‖ah

= √
ah(·, ·).

This class of methods includes the Adini element [24], the Zienkiewicz element
[25], the Morley element [26], the Fraeijs de Veubeke element [27], and the
incomplete biquadratic element [28].

2.3 Discontinuous Galerkin Methods

In this case Vh consists of functions that are totally discontinuous or only discon-
tinuous in the normal derivatives across element boundaries, and stabilization terms
are included in the bilinear form ah(·, ·). The simplest choice is a Lagrange finite
element space Vh ⊂ H 1

0 (�), resulting in the C0 interior penalty methods [29–31],
where the bilinear form ah(·, ·) is given by

ah(y, z) = β

[ ∑

T ∈Th

ˆ
T

D2y : D2z dx +
∑

e∈Ei
h

ˆ
e

{{∂2y/∂n2}}[[∂z/∂n]] ds

+
∑

e∈Ei
h

ˆ
e

{{∂2z/∂n2}}[[∂y/∂n]] ds (19)

+ σ
∑

e∈Ei
h

|e|−1
ˆ

e

[[∂y/∂n]][[∂z/∂n]] ds

]
+

ˆ
�

yz dx.
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Here Ei
h is the set of the interior edges of Th, {{∂2y/∂n2}} (resp., [[∂y/∂n]]) is

the average (resp., jump) of the second (resp., first) normal derivative of y across
the edge e, |e| is the length of the edge e, and σ is a (sufficiently large) penalty
parameter.

Other discontinuous Galerkin methods for fourth order problems can be found in
[32–34].

2.4 Mixed Methods

In this case Vh ⊂ H 1
0 (�) is a Lagrange finite element space. The approximate

solution ȳh is determined by

ˆ
�

ȳhz dx + β

ˆ
�

∇ūh · ∇z dx =
ˆ

�

ydz dx ∀ z ∈ Vh, (20)

ˆ
�

∇ȳh · ∇v dx −
ˆ

�

ūhv dx = 0 ∀ v ∈ Vh. (21)

By eliminating ūh from (20)–(21), we can recast ȳh as the solution of (17) where

ah(y, z) = β

ˆ
�

(�hy)(�hz) dx +
ˆ

�

yz dx, (22)

and the discrete Laplace operator �h : Vh −→ Vh is defined by

ˆ
�

(�hy)z dx = −
ˆ

�

∇y · ∇z dx ∀ y, z ∈ Vh. (23)

2.5 Finite Element Methods for the Optimal Control Problem

With the finite element methods for (16) in hand, we can now simply discretize the
variational inequality (6) as follows: Find ȳh ∈ Vh such that

ah(ȳh, y − ȳh) ≥
ˆ

�

yd(y − ȳh)dx ∀ y ∈ Kh, (24)

where

Kh = {y ∈ Vh : Ihy ≤ Ihψ on �}, (25)

and Ih is the nodal interpolation operator for the conforming P1 finite element space
associated with Th. In other words, the constraint (3) is only imposed at the vertices
of Th.
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Remark 2 Conforming, nonconforming, C0 interior penalty and mixed methods
for (6) were investigated in [14, 35–41].

3 Convergence Analysis

For simplicity, we will only provide details for the case of conforming finite element
methods and briefly describe the extensions to other methods at the end of the
section.

For conforming finite element methods, we have ah(·, ·) = a(·, ·) and the energy
norm ‖ · ‖a = √

a(·, ·) satisfies, by a Poincaré-Friedrichs inequality [42],

‖v‖a ≈ ‖v‖H 2(�) ∀ v ∈ H 2(�). (26)

Our goal is to show that

‖ȳ − ȳh‖a ≤ Chα, (27)

where α is the index of elliptic regularity that appears in (13).
We assume (cf. [43]) that there exists an operator 	h : H 2(�) ∩ H 1

0 (�) −→ Vh

such that

	hζ = ζ at the vertices of Th (28)

and

‖ζ − 	hζ‖L2(�) + h|ζ − 	hζ |H 1(�) + h2|ζ − 	hζ |H 2(�) ≤ Ch2+α|ζ |H 2+α(�)

(29)
for all ζ ∈ H 2+α(�) ∩ H 1

0 (�), where h = maxT ∈Th
diam T is the mesh size of

the triangulation Th. Here and below we use C to denote a generic positive constant
independent of h.

In particular (5), (25) and (28) imply

	h maps K into Kh. (30)

Therefore Kh is nonempty and the discrete problem defined by (24)–(25) has a
unique solution.

We will also use the following standard properties of the interpolation operator
Ih (cf. [2, 3]):

‖ζ − Ihζ‖L∞(T ) ≤ Ch2
T |ζ |W 2,∞(T ) ∀ ζ ∈ W 2,∞(T ), T ∈ Th, (31)

|ζ − Ihζ |H 1(T ) ≤ ChT |ζ |H 2(T ) ∀ ζ ∈ H 2(T ), T ∈ Th, (32)

where hT is the diameter of T .
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We begin with the estimate

‖ȳ − ȳh‖2
a = a(ȳ − ȳh, ȳ − ȳh)

= a(ȳ − ȳh, ȳ − 	hȳ) + a(ȳ,	hȳ − ȳh) − a(ȳh,	hȳ − ȳh) (33)

≤ C1‖ȳ − ȳh‖ah
α +

[
a(ȳ,	hȳ − ȳh) −

ˆ
�

yd(	hȳ − ȳh)dx
]

that follows from (13), (24), (26), (29), (30) and the Cauchy-Schwarz inequality.

Remark 3 Note that an estimate analogous to (33) also appears in the error analysis
for the boundary value problem (16). Indeed the second term on the right-hand side
of (33) vanishes in the case of (16) and we would have arrived at the desired estimate
‖ȳ − ȳh‖a ≤ Chα .

The idea now is to show that

a(ȳ,	hȳ − ȳh) −
ˆ

�

yd(	hȳ − ȳh)dx ≤ C2
[
h2α + hα‖ȳ − ȳh‖a

]
, (34)

which together with (33) implies

‖ȳ − ȳh‖2
a ≤ C3h

α‖ȳ − ȳh‖a + C2h
2α. (35)

The estimate (27) then follows from (35) and the inequality

ab ≤ ε

2
a2 + 1

2ε
b2

that holds for any positive ε.
Let us turn to the derivation of (34). Since Kh ⊂ Vh ⊂ H 2(�) ∩ H 1

0 (�), we
have, according to (8),

a(ȳ,	hȳ − ȳh) −
ˆ

�

yd(	hȳ − ȳh)dx =
ˆ

�

(	hȳ − ȳh)dμ

=
ˆ

�

(	hȳ − ȳ)dμ +
ˆ

�

(ȳ − ψ)dμ +
ˆ

�

(ψ − Ihψ)dμ

(36)

+
ˆ

�

(Ihψ − Ihȳh)dμ +
ˆ

�

(Ihȳh − ȳh)dμ,

and, in view of (9), (10) and (25),

ˆ
�

(ȳ − ψ)dμ = 0 and
ˆ

�

(Ihψ − Ihȳh)dμ ≤ 0. (37)
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We can estimate the other three integrals on the right-hand side of (36) as follows:

ˆ
�

(	hȳ − ȳ)dμ ≤ ‖μ‖H−1(�)‖	hȳ − ȳ‖H 1(�) ≤ Ch1+α (38)

by (13), (14) and (29);

ˆ
�

(ψ − Ihψ)dμ ≤ |μ(�)|‖ψ − Ihψ‖L∞(�) ≤ Ch2 (39)

by (9) and (31);

ˆ
�

(Ihȳh − ȳh)dμ =
ˆ

�

[
Ih(ȳh − ȳ) − (ȳh − ȳ)

]
dμ +

ˆ
�

(Ihȳ − ȳ)dμ

≤ ‖μ‖H−1(�)|Ih(ȳh − ȳ) − (ȳh − ȳ)|H 1(�) + |μ(�)|‖Ihȳ − ȳ‖L∞(A)

(40)

≤ C
[
h|ȳh − ȳ|H 2(�) + h2]

≤ C
(
h‖ȳ − ȳh‖a + h2]

by (11)–(13), (26), (31) and (32).
The estimate (34) follows from (36)–(40) and the fact that α ≤ 1.
The estimate (27) can be extended to the other finite element methods in Sect. 2

provided ‖ · ‖a is replaced by ‖ · ‖ah
= √

ah(·, ·).
For classical nonconforming finite element methods and discontinuous Galerkin

methods, the key ingredient for the convergence analysis, in addition to an operator
	H : H 2(�) ∩ H 1

0 (�) −→ Vh that satisfies (28) and (29), is the existence of an
enriching operator Eh :−→ H 2(�) ∩ H 1

0 (�) with the following properties:

(Ehv)(p) = v(p) for all vertices p of Th, (41)

‖v − Ehv‖L2(�) + h
( ∑

T ∈Th

|v − Ehv|2
H 1(T )

) 1
2 + h2|Ehv|H 2(�)

≤ Ch2‖v‖h ∀ v ∈ Vh, (42)

‖ζ − Eh	hζ‖H 1(�) ≤ Ch1+α‖ζ‖H 2+α(�) ∀ ζ ∈ H 2+α(�) ∩ H 1
0 (�), (43)

|ah(	hζ, v) − a(ζ, Ehv)| ≤ Chα‖ζ‖H 2+α(�)‖v‖h (44)

for all ζ ∈ H 2+α(�) ∩ H 1
0 (�) and v ∈ Vh.

Property (41) is related to the fact that the discrete constraints are imposed at the
vertices of Th; property (42) indicates that in some sense ‖v − Ehv‖h measures the
distance between Vh and H 2(�) ∩ H 1

0 (�); property (43) means that Eh	h behaves
like a quasi-local interpolation operator; property (44) states that Eh is essentially
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the adjoint of 	h with respect to the continuous and discrete bilinear forms. The
idea is to use (42) and (44) to reduce the error estimate to the continuous level,
and then the error analysis can proceed as in the case of conforming finite element
method by using (41) and (43). Details can be found in [44].

Remark 4 The operator Eh maps Vh to a conforming finite element space and its
construction is based on averaging. The history of using such enriching operators to
handle nonconforming finite element methods is discussed in [45].

In the case of the mixed method where Vh ⊂ H 1
0 (�) is a Lagrange finite element

space, the operator Eh : Vh −→ H 2(�) ∩ H 1
0 (�) is defined by

ˆ
�

∇Ehv · ∇w dx =
ˆ

�

∇v · ∇w dx ∀v ∈ Vh, w ∈ H 1
0 (�). (45)

The properties (42)–(44) remain valid provided 	h is replaced by the Ritz projection
operator Rh : H 1

0 (�) −→ Vh defined by

ˆ
�

∇Rhζ · ∇v dx =
ˆ

�

∇ζ · ∇v dx ∀ v ∈ Vh. (46)

In fact (45) and (46) imply ζ − EhRhζ = 0 and property (43) becomes trivial.
However the properties (28) and (41) no longer hold, which necessitates the use of
the more sophisticated interior error estimates (cf. [46]) in the convergence analysis.
Details can be found in [14].

Remark 5 Since the elliptic regularity index α in (13) is determined by the
singularity of the Laplace equation near the boundary of �, various finite element
techniques [47, 48] can be employed to improve the estimate (27) to

‖ȳ − ȳh‖ah
≤ Ch. (47)

One can also compute an approximation ūh for the optimal control ū from the
approximate optimal state ȳh through post-processing processes [49].

Remark 6 The discrete problems generated by the finite element methods in Sect. 2,
which only involve simple box constraints, can be solved efficiently by a primal-dual
active set algorithm [50–52].

4 Concluding Remarks

In this paper finite element methods for elliptic distributed optimal control problems
with pointwise state constraints are treated from the perspective of finite element
methods for the boundary value problem of simply supported plates.
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The discussion in Sect. 2 shows that one can solve elliptic distributed optimal
control problems with pointwise state constraints by a straightforward adaptation of
many finite element methods for simply supported plates. The convergence analysis
in Sect. 3 demonstrates that the gap between the finite element analysis for boundary
value problems and the finite element analysis for elliptic optimal control problems
is in fact quite narrow. Thus the vast arsenal of finite element techniques developed
for elliptic boundary value problems over several decades can be applied to elliptic
optimal control problems with only minor modifications.

Note that in the traditional approach to elliptic optimal control problems, the
optimal control ū is treated as the primary unknown and the resulting finite element
methods in [35, 39] are equivalent to the method defined by (24), where the bilinear
form is given by (22). Therefore the approach based on the reformulation (4)–(5)
expands the scope of finite element methods for elliptic optimal control problems
from a special class of methods (i.e., mixed methods) to all classes of methods. In
addition to the finite element mentioned in Sect. 2, one can also consider recently
developed finite element methods for fourth order problems on polytopal meshes
[53–60].

The new approach has been extended to problems with the Neumann boundary
condition [61, 62] and to problems with pointwise constraints on both control and
state [63]. It has also been extended to problems on nonconvex domains [14, 62, 64].

Below are some open problems related to the finite element methods presented
in Sect. 2.

1. It follows from the error estimates (27) and (47) that

‖ȳ − ȳh‖H 1(�) + ‖ȳ − ȳh‖L∞(�) ≤ Chγ , (48)

where γ = α (without special treatment) or 1 (with special treatments). For
conforming or mixed finite element methods, the estimate (48) is a direct
consequence of the fact that the energy norm is equivalent to the H 2(�) norm
and that we have the Sobolev inequality

‖ζ‖L∞(�) ≤ C‖ζ‖H 2(�).

For classical nonconforming and discontinuous Galerkin methods, the esti-
mate (48) follows from the Poincaré-Friedrichs inequality and Sobolev inequality
for piecewise H 2 functions in [65, 66].

Comparing to ‖ · ‖H 2(�), the norms ‖ · ‖H 1(�) and ‖ · ‖L∞(�) are lower order
norms and, based on experience with finite element methods for the boundary
value problem (16), the convergence in ‖ · ‖H 1(�) and ‖ · ‖L∞(�) should be of
higher order, and this is observed in numerical experiments. But the theoretical
justifications for the observed higher order convergence is missing. In the case
of the boundary value problem (16), one can show higher order convergence for
lower order norms through a duality argument. However duality arguments do
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not work for variational inequalities even in one dimension [67]. New ideas are
needed.

2. An interesting phenomenon concerning fourth order variational inequalities is
that a posteriori error estimators originally designed for fourth order boundary
value problems can be directly applied to fourth order variational inequalities
[61, 68]. This is different from the second order case where a posteriori error
estimators for boundary value problems are not directly applicable to variational
inequalities. This difference is essentially due to the fact that Dirac point
measures belong to H−2(�) but not H−1(�).

Optimal convergence of these adaptive finite element methods have been
observed in numerical experiments. However the proofs of convergence and
optimality are missing.

3. Fast solvers for fourth order variational inequalities is an almost completely open
area. Some recent work on additive Schwarz preconditioners for the subsystems
that appear in the primal-dual active set algorithm can be found in [69, 70]. Much
remains to be done.

Acknowledgements This paper is based on research supported by the National Science Founda-
tion under Grant Nos. DMS-13-19172, DMS-16-20273 and DMS-19-13035.

References

1. Casas, E.: Control of an elliptic problem with pointwise state constraints. SIAM J. Control
Optim. 24, 1309–1318 (1986)

2. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam
(1978)

3. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods (Third
Edition). Springer-Verlag, New York (2008)

4. Hinze, M. and Pinnau, R. and Ulbrich, M. and Ulbrich, S.: Optimization with PDE Constraints.
Springer, New York (2009)

5. Tröltzsch, F.: Optimal Control of Partial Differential Equations. American Mathematical
Society, Providence (2010)

6. Grisvard, P.: Elliptic Problems in Non Smooth Domains. Pitman, Boston (1985)
7. Dauge, M.: Elliptic Boundary Value Problems on Corner Domains. Springer-Verlag, Berlin-

Heidelberg (1988)
8. Maz’ya, V., Rossmann, J.: Elliptic Equations in Polyhedral Domains. American Mathematical

Society, Providence (2010)
9. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their

Applications. Society for Industrial and Applied Mathematics, Philadelphia (2000)
10. Rudin, W.: Real and Complex Analysis. McGraw-Hill, New York (1966)
11. Schwartz, L.: Théorie des Distributions. Hermann, Paris (1966)
12. Frehse, J.: Zum Differenzierbarkeitsproblem bei Variationsungleichungen höherer Ordnung.

Abh. Math. Sem. Univ. Hamburg 36, 140–149 (1971)
13. Frehse, J.: On the regularity of the solution of the biharmonic variational inequality.

Manuscripta Math. 9, 91–103 (1973)
14. Brenner, S.C., Gedicke, J., Sung, L.-Y.: P1 finite element methods for an elliptic optimal control

problem with pointwise state constraints. IMA J. Numer. Anal. (2018). https://doi.org/10.1093/
imanum/dry071

https://doi.org/10.1093/imanum/dry071
https://doi.org/10.1093/imanum/dry071


14 S. C. Brenner

15. Ladyženskaya, O.A.: On integral estimates, convergence, approximate methods, and solution
in functionals for elliptic operators. Vestnik Leningrad. Univ. 13, 60–69 (1958)

16. Bogner, F.K., Fox, R.L., Schmit, L.A.: The generation of interelement compatible stiffness
and mass matrices by the use of interpolation formulas. In: Proceedings Conference on Matrix
Methods in Structural Mechanics, pp. 397–444. Wright Patterson A.F.B., Dayton, Ohio (1965)

17. Argyris, J.H., Fried, I., Scharpf, D.W.: The TUBA family of plate elements for the matrix
displacement method. Aero. J. Roy. Aero. Soc. 72, 701–709 (1968)

18. Clough, R.W., Tocher, J.L.: Finite element stiffbess matrices for analysis of plate bending. In:
Proceedings Conference on Matrix Methods in Structural Mechanics, pp. 515–545. Wright
Patterson A.F.B., Dayton, Ohio (1965)

19. Ciarlet, P.G.: Sur l’élément de Clough et Tocher. RAIRO Anal. Numér. 8, 19–27 (1974)
20. Douglas J.Jr., Dupont, T., Percell, P., Scott, L.R.: A family of C1 finite elements with optimal

approximation properties for various Galerkin methods for 2nd and 4th order problems.
R.A.I.R.O. Modél. Math. Anal. Numér. 13, 227–255 (1979)

21. Melenk, J.M., Babuška, I.: The partition of unity finite element method: basic theory and
applications Comput. Methods Appl. Mech. Engrg. 139, 289–314 (1996)

22. Babuška, I. and Banerjee, U. and Osborn, J.E.: Survey of meshless and generalized finite
element methods: a unified approach. Acta Numer. 12, 1–125 (2003)

23. Oh, H.S., Davis, C.B., Jeong, J.W.: Meshfree particle methods for thin plates. Comput.
Methods Appl. Mech. Engrg. 209, 156–171 (2012)

24. Adini, A., Clough, R.W.: Analysis of plate bending by the finite element method. NSF Report
G. 7337 (1961)

25. Bazeley, G.P., Cheung, Y.K., Irons, B.M., Zienkiewicz, O.C.: Triangular elements in bending -
conforming and nonconforming solutions. In: Proceedings Conference on Matrix Methods in
Structural Mechanics, pp. 547–576. Wright Patterson A.F.B., Dayton, Ohio (1965)

26. Morley, L.S.D.: The triangular equilibrium problem in the solution of plate bending problems.
Aero. Quart. 19, 149–169 (1968)

27. de Veubeke, B.F.: Variational principles and the patch test. Internat. J. Numer. Methods Engrg.
8, 783–801 (1974)

28. Shi, Z.-C.: On the convergence of the incomplete biquadratic nonconforming plate element.
Math. Numer. Sinica. 8, 53–62 (1986)

29. Engel, G., Garikipati, K., Hughes, T.J.R., Larson, M.G., Mazzei, L., Taylor, R.L.: Continu-
ous/discontinuous finite element approximations of fourth order elliptic problems in structural
and continuum mechanics with applications to thin beams and plates, and strain gradient
elasticity. Comput. Methods Appl. Mech. Engrg. 191, 3669–3750 (2002)

30. Brenner, S.C., Sung, L.-Y.: C0 interior penalty methods for fourth order elliptic boundary value
problems on polygonal domains. J. Sci. Comput. 22/23, 83–118 (2005)

31. Brenner, S.C.: C0 Interior Penalty Methods. In Blowey, J., Jensen, M. (eds.) Frontiers in
Numerical Analysis-Durham 2010, pp. 79–147. Springer-Verlag, Berlin-Heidelberg (2012)

32. Süli, E., Mozolevski, I.: hp-version interior penalty DGFEMs for the biharmonic equation.
Comput. Methods Appl. Mech. Engrg. 196, 1851–1863 (2007)

33. Huang, J., Huang, X., Han, W.: A new C0 discontinuous Galerkin method for Kirchhoff plates.
Comput. Methods Appl. Mech. Engrg. 199, 1446–1454 (2010)

34. Huang, X. and Huang, J.: A superconvergent C0 discontinuous Galerkin method for Kirchhoff
plates: error estimates, hybridization and postprocessing. J. Sci. Comput. 69, 1251–1278
(2016)

35. Meyer, C.: Error estimates for the finite-element approximation of an elliptic control problem
with pointwise state and control constraints. Control Cybernet. 37, 51–83 (2008)

36. Liu, W., Gong, W., Yan, N.: A new finite element approximation of a state-constrained optimal
control problem. J. Comput. Math. 27, 97–114 (2009)

37. Gong, W., Yan, N.: A mixed finite element scheme for optimal control problems with pointwise
state constraints. J. Sci. Comput. 46, 82–203 (2011)

38. Brenner, S.C., Sung, L.-Y., Zhang, Y.: A quadratic C0 interior penalty method for an elliptic
optimal control problem with state constraints. The IMA Volumes in Mathematics and its
Applications. 157, 97–132 (2013)



Finite Element Methods for Elliptic Distributed Optimal Control Problems (Survey) 15

39. Casas, E., Mateos, M., Vexler, B.: New regularity results and improved error estimates for
optimal control problems with state constraints. ESAIM Control Optim. Calc. Var. 20, 803–
822 (2014)

40. Brenner, S.C., Davis, C.B., Sung, L.-Y.: A partition of unity method for a class of fourth order
elliptic variational inequalities. Comp. Methods Appl. Mech. Engrg. 276, 612–626 (2014)

41. Brenner, S.C., Oh, M., Pollock, S., Porwal, K., Schedensack, M., Sharma, N.: A C0 interior
penalty method for elliptic distributed optimal control problems in three dimensions with
pointwise state constraints. The IMA Volumes in Mathematics and its Applications. 160, 1–22
(2016)
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