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Preface

This volume highlights the mathematical research presented at the 2019 Association
for Women in Mathematics (AWM) Research Symposium. This event, fifth in
the biennial series launched in 2011, was held at Rice University on April 6–
7, 2019. The objective of the AWM Research Symposia Series is to showcase
research from women across the mathematical sciences, working in academia,
government, and industry. Additionally, these symposia facilitate the creation of
new research collaboration networks and support the ones already existing in many
areas of mathematics. They feature women across the whole career spectrum:
undergraduates, graduate students, postdocs, and professionals. The symposia also
include career panels and social events to enable networking among women in
different paths or career stages while promoting the discussion of prospects,
visibility, and recognition.

v
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About the 2019 AWM Research Symposium

The 2019 AWM Research Symposium was organized by Ruth Haas, Shelly
Harvey, Raegan Higgins, Magnhild Lien, Omayra Ortega, Karoline Pershell, Ami
Radunskaya, and Beatrice Rivière. The event was attended by over 340 participants,
gathering from 42 states in the USA, Canada, Colombia, Germany, Mexico, and
Turkey. The Symposium featured:

• 3 plenary talks by distinguished women mathematicians (see Table 1);
• 16 special sessions addressing a broad range of research in pure mathematics,

applied mathematics, and mathematics education (Table 2);

Table 1 Plenary talks

Speaker Title

Susanne C. Brenner Higher Order Elliptic Problems

Kristin Lauter How to Keep Your Secrets in a Post-Quantum World

Chelsea Walton Quantum Symmetry

Table 2 Special sessions

Title Organizers

Analysis and Numerical Methods for Kinetic
Transport and Related Models

Liu Liu

Applied and Computational Harmonic Analysis Julia Dobrosotskaya and Xuemei Chen

Braid Groups and Quantum Computing Colleen Delaney, Jennifer Vasquez, and Helen
Wong

Combinatorial Algebra Christine Berkesch and Laura Felicia
Matusevich

Combinatorial Commutative Algebra Sara Faridi and Susan Morey

Current Challenges in Mathematical Biology Renee Dale

Education Partnerships: University
Mathematics Faculty and K-12 Mathematics
Teachers

Evan Rushton

Graph Theory Carolyn Reinhart and Kate Lorenzo

Math on the EDGE Sarah Chehade

Multiphysics and Multiscale problems Yue Yu and Xingjie Li

New Advances in Symplectic and Contact
Topology

Jo Nelson and Morgan Weiler

New Developments in Algebraic Biology Anne Shiu and Brandilyn Stigler

Origami, Belyi Maps, and Dessins D’Enfants Rachel Davis and Edray Goins

Recent Developments in the Analysis of
Obstacle problems

Donatella Danielli and Camelia Pop

On Advances and New Techniques of Fluid
Dynamics and Dispersive Equations

Betul Orcan Ekmekci

Topology of 3- and 4-Manifolds Allison N. Miller and Arunima Ray

WDS: Women in Data Science Jing Qin and Yifei Lou
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Table 3 Invited sessions by research networks supported by the AWM ADVANCE Grant

Title Organizers

ACxx: Women in Algebraic Combinatorixx:
Enumerative and Algebraic Combinatorics

Elizabeth Niese and Elizabeth Drellich

WIC: Women in Control: Control in Infinite
Dimensional Systems

Lorena Bociu and Irena Lasiecka

WICA: Women in Commutative Algebra Sandra Spiroff and Adela Vraciu

WIG: Women in Geometry Liz Stanhope and Chikako Mese

WIMB: Women in Math Biology: Advances in
Mathematical Biology

Angela Peace and Wenjing Zhang

WIMM: Women in Math Materials Malena Espanol and Hala AH Shehadeh

WIN: Women in Numbers Michelle Manes, Ila Varma

WINART: Women in Noncommutative
Algebra and Representation Theory:
Homological Methods in Noncommutative
Algebra and Representation Theory

Van C. Nguyen, Julia Plavnik, and Sarah
Witherspoon

WINASC: Women in Numerical Analysis and
Scientific Computing: Recent advances in
numerical methods and its applications

Bo Dong and Adrianna Gillman

WinCompTop: Women in Computational
Topology: Trends in Computational Topology

Erin Chambers, Brittany Terese Fasy, and
Elizabeth Munch

WiSDM: Women in the Science of Data and
Mathematics: Data Science Theory and
Practice

Linda Ness and Carlotta Domeniconi

WiSh: Women in Shape Modeling Kathryn Leonard and Terry Knight

WIT: Women in Topology: Topics in
Homotopy Theory

Sarah Yeakel and Martina Rovelli

• 14 invited sessions organized by research networks supported by the AWM
ADVANCE grant (Table 3);

• a poster session for graduate students and recent Ph.D.s;
• a Wikipedia Edit-a-Thon;
• a professional development panel on mathematics in government and industry;
• a presentation of funding opportunities by the NSF Program Director Yuliya

Gorb, followed by a Q&A session;
• an informational meeting about establishing and maintaining research networks,

hosted by AWM ADVANCE Director Magnhild Lien and co-PI Kristin Lauter;
• a reception and a banquet.

The keynote speakers at the banquet were: Provost Marie Lynn Miranda (Rice
University) and PhD candidate and Science Master Teacher Mariam Manuel
(teachHOUSTON). Provost Miranda shared insights about her efforts towards
diversifying faculty at Rice University and asked the audience to be role models for
the next generation. Manuel talked about cultivating creative confidence in girls and
women. As a part of the banquet program, local initiatives that make a difference
in encouraging girls and women to pursue mathematics were recognized. The
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honored individuals were: Anne Papakonstantinou (Rice University Mathematics
School Project Director), Paula Myrick Short (University of Houston Provost,
Director of the Center for ADVANCING UH Faculty Success), Kelsey Friedemann
(Houston Museum of Natural Science, Girls Exploring Math and Science Program),
Tricia Berry (UT Austin, Director, Texas Girls Collaborative Project), and Joanna
Papakonstantinou (Episcopal High School, Math Educator).

The Symposium also featured the Remembering Maryam Mirzakhani Exhibit,
which includes photos of, and artwork based on the life of Maryam Mirzakhani,
the first woman to be awarded the Fields Medal. The exhibition was created by the
International Mathematical Union’s Committee for Women in Mathematics (CWM)
with Curator Thais Jordao and Designer Rafael Meireles Barroso. It was first shown
at the 2018 World Meeting for Women in Mathematics in Rio and during the
International Congress of Mathematicians (ICM2018).

For the full symposium schedule with a list of all talks, poster sessions,
presenters, and other activities, please follow the program link on the conference’s
website: https://awm-math.org/meetings/awm-research-symposium/.

About This Volume

This volume opens with a part entitled From the Plenary Talks, featuring a survey
of the finite element methods for an elliptic optimal control problem with pointwise
state constraints, written by Susanne Brenner. After that, the papers are grouped
together in several parts based on subject areas. Part II, Algebraic Combinatorics
and Graph Theory, contains both original research and survey papers written by
presenters in the session “ACxx: Women in Algebraic Combinatorics” and “Graph
Theory.” Part III, Algebraic Biology, consists of four papers based on talks in the
session “New Developments in Algebraic Biology.” Part IV, Commutative Algebra,
features original research presented in the session “Combinatorial Commutative
Algebra,” and a survey by a speaker in the session “WICA: Women in Commutative
Algebra.” Part V, Analysis, Probability, and PDEs, collects research featured in the
sessions “WDS: Women in Data Science” and “On Advances and New Techniques
of Fluid Dynamics and Dispersive Equations,” together with a survey paper written
by a speaker in the session “Recent Developments in the Analysis of Obstacle
problems.” Part VI, Topology, consists of an original contribution by a presenter
in the session “WIT: Women in Topology” and a survey by a speaker in the session
“New Advances in Symplectic and Contact Topology.” This is followed by Part VII,
“Applied Mathematics,” which collects original research presented in the session
“WIC: Women in Control,” together with survey papers authored by speakers in the
sessions “WIMM: Women in Math Materials,” “WISDM: Women in the Science
of Data and Mathematics,” and “WiSh: Women in Shape Modeling.” The volume
concludes with Part VIII, Math Education, containing survey articles by presenters
in the session “Education Partnerships: University Mathematics Faculty and K-12
Mathematics Teachers.”

https://awm-math.org/meetings/awm-research-symposium/
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Finite Element Methods for Elliptic
Distributed Optimal Control Problems
with Pointwise State Constraints (Survey)

Susanne C. Brenner

1 Model Problem

Let � be a convex bounded polygonal/polyhedral domain in R
2/R3, yd ∈ L2(�),

β be a positive constant, ψ ∈ H 3(�) ∩ W 2,∞(�) and ψ > 0 on ∂�. The model
problem [1] is to find

(ȳ, ū) = argmin
(y,u)∈K

1

2

[
‖y − yd‖2

L2(�) + β‖u‖2
L2(�)

]
, (1)

where (y, u) ∈ H 1
0 (�)× L2(�) belongs to K if and only if

ˆ
�

∇y · ∇z dx =
ˆ
�

uz dx ∀ z ∈ H 1
0 (�), (2)

y ≤ ψ a.e. on �. (3)

Throughout this paper we will follow the standard notation for operators,
function spaces and norms that can be found for example in [2, 3].

In this model problem y (resp., u) is the state (resp., control) variable, yd
is the desired state and β is a regularization parameter. Similar linear-quadratic
optimization problems also appear as subproblems when general PDE constrained
optimization problems are solved by sequential quadratic programming (cf. [4, 5]).

In view of the convexity of �, the constraint (2) implies y ∈ H 2(�) (cf. [6–8]).
Therefore we can reformulate (1)–(3) as follows:

S. C. Brenner (�)
Department of Mathematics and Center for Computation & Technology, Louisiana State
University, Baton Rouge, LA, USA
e-mail: brenner@math.lsu.edu

© The Author(s) and the Association for Women in Mathematics 2020
B. Acu et al. (eds.), Advances in Mathematical Sciences, Association for
Women in Mathematics Series 21, https://doi.org/10.1007/978-3-030-42687-3_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-42687-3_1&domain=pdf
mailto:brenner@math.lsu.edu
https://doi.org/10.1007/978-3-030-42687-3_1
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Find ȳ = argmin
y∈K

1

2

[
‖y − yd‖2

L2(�) + β‖�y‖2
L2(�)

]
, (4)

where

K = {y ∈ H 2(�) ∩H 1
0 (�) : y ≤ ψ on �}. (5)

Note that K is nonempty because ψ > 0 on ∂�. It follows from the classical
theory of calculus of variations [9] that (4)–(5) has a unique solution ȳ ∈ K

characterized by the fourth order variational inequality

a(ȳ, y − ȳ) ≥
ˆ
�

yd(y − ȳ)dx ∀ y ∈ K, (6)

where

a(y, z) = β

ˆ
�

(�y)(�z)dx +
ˆ
�

yz dx. (7)

Furthermore, by the Riesz-Schwartz Theorem for nonnegative linear functionals
[10, 11], we can rewrite (6) as

a(ȳ, z) =
ˆ
�

ydz dx +
ˆ
�

z dμ ∀ z ∈ H 2(�) ∩H 1
0 (�), (8)

where

μ is a nonpositive finite Borel measure (9)

that satisfies the complementarity condition

ˆ
�

(ȳ − ψ)dμ = 0. (10)

Note that (10) is equivalent to the statement that

μ is supported onA, (11)

where the active setA = {x ∈ � : ȳ(x) = ψ(x)} satisfies

A ⊂⊂ � (12)

because ψ > 0 on ∂� and ȳ = 0 on ∂�.
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According to the elliptic regularity theory in [6–8, 12, 13], we have

ȳ ∈ H 3
loc(�) ∩W

2,∞
loc (�) ∩H 2+α(�), (13)

where α ∈ (0, 1] is determined by the geometry of �. It then follows from (8), (11)–
(13) and integration by parts that

μ ∈ H−1(�). (14)

Details for (13) and (14) can be found in [14].

Remark 1 Note that (cf. [6, 15])

ˆ
�

(�y)(�z)dx =
ˆ
�

D2y : D2z dx ∀ y, z ∈ H 2(�) ∩H 1
0 (�),

where D2y : D2z denotes the Frobenius inner product between the Hessian matrices
of y and z. Therefore we can rewrite the bilinear form a(·, ·) in (7) as

a(y, z) = β

ˆ
�

D2y : D2z dx +
ˆ
�

yz dx. (15)

2 Finite Element Methods

In the absence of the state constraint (3), we have K = H 2(�) ∩ H 1
0 (�) and (6)

becomes the boundary value problem

a(ȳ, z) =
ˆ
�

ydz dx ∀ z ∈ H 2(�) ∩H 1
0 (�). (16)

Since (16) is essentially a bending problem for simply supported plates, it can
be solved by many finite element methods such as (1) conforming methods, (2)
classical nonconforming methods, (3) discontinuous Galerkin methods, and (4)
mixed methods. For the sake of brevity, below we will consider these methods for
� ⊂ R

2. But all the results can be extended to three dimensions.
Let Vh be a finite element space associated with a triangulation Th of �. The

approximate solution ȳh ∈ Vh is determined by

ah(ȳh, z) =
ˆ
�

ydz dx ∀ z ∈ Vh, (17)

where the choice of the bilinear form ah(·, ·) depends on the type of finite element
method being used.
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2.1 Conforming Methods

In this case Vh ⊂ H 2(�) ∩ H 1
0 (�) is a C1 finite element space and we can take

ah(·, ·) to be a(·, ·). This class of methods includes the Bogner-Fox-Schmit element
[16], the Argyris elements [17], the macro elements [18–20], and generalized finite
elements [21–23].

2.2 Classical Nonconforming Methods

In this case Vh ⊂ L2(�) consists of finite element functions that are weakly
continuous up to first order derivatives across element boundaries, and the bilinear
form ah(·, ·) is given by

ah(y, z) = β
∑

T ∈Th

ˆ
�

D2y : D2z dx +
ˆ
�

yz dx. (18)

Here we are using the piecewise version of (15), which provides better local control
of the nonconforming energy norm ‖ · ‖ah =

√
ah(·, ·).

This class of methods includes the Adini element [24], the Zienkiewicz element
[25], the Morley element [26], the Fraeijs de Veubeke element [27], and the
incomplete biquadratic element [28].

2.3 Discontinuous Galerkin Methods

In this case Vh consists of functions that are totally discontinuous or only discon-
tinuous in the normal derivatives across element boundaries, and stabilization terms
are included in the bilinear form ah(·, ·). The simplest choice is a Lagrange finite
element space Vh ⊂ H 1

0 (�), resulting in the C0 interior penalty methods [29–31],
where the bilinear form ah(·, ·) is given by

ah(y, z) = β

[ ∑

T ∈Th

ˆ
T

D2y : D2z dx +
∑

e∈Ei
h

ˆ
e

{{∂2y/∂n2}}[[∂z/∂n]] ds

+
∑

e∈Ei
h

ˆ
e

{{∂2z/∂n2}}[[∂y/∂n]] ds (19)

+ σ
∑

e∈Ei
h

|e|−1
ˆ
e

[[∂y/∂n]][[∂z/∂n]] ds
]
+
ˆ
�

yz dx.
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Here Eih is the set of the interior edges of Th, {{∂2y/∂n2}} (resp., [[∂y/∂n]]) is
the average (resp., jump) of the second (resp., first) normal derivative of y across
the edge e, |e| is the length of the edge e, and σ is a (sufficiently large) penalty
parameter.

Other discontinuous Galerkin methods for fourth order problems can be found in
[32–34].

2.4 Mixed Methods

In this case Vh ⊂ H 1
0 (�) is a Lagrange finite element space. The approximate

solution ȳh is determined by

ˆ
�

ȳhz dx + β

ˆ
�

∇ūh · ∇z dx =
ˆ
�

ydz dx ∀ z ∈ Vh, (20)

ˆ
�

∇ȳh · ∇v dx −
ˆ
�

ūhv dx = 0 ∀ v ∈ Vh. (21)

By eliminating ūh from (20)–(21), we can recast ȳh as the solution of (17) where

ah(y, z) = β

ˆ
�

(�hy)(�hz) dx +
ˆ
�

yz dx, (22)

and the discrete Laplace operator �h : Vh −→ Vh is defined by

ˆ
�

(�hy)z dx = −
ˆ
�

∇y · ∇z dx ∀ y, z ∈ Vh. (23)

2.5 Finite Element Methods for the Optimal Control Problem

With the finite element methods for (16) in hand, we can now simply discretize the
variational inequality (6) as follows: Find ȳh ∈ Vh such that

ah(ȳh, y − ȳh) ≥
ˆ
�

yd(y − ȳh)dx ∀ y ∈ Kh, (24)

where

Kh = {y ∈ Vh : Ihy ≤ Ihψ on �}, (25)

and Ih is the nodal interpolation operator for the conforming P1 finite element space
associated with Th. In other words, the constraint (3) is only imposed at the vertices
of Th.
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Remark 2 Conforming, nonconforming, C0 interior penalty and mixed methods
for (6) were investigated in [14, 35–41].

3 Convergence Analysis

For simplicity, we will only provide details for the case of conforming finite element
methods and briefly describe the extensions to other methods at the end of the
section.

For conforming finite element methods, we have ah(·, ·) = a(·, ·) and the energy
norm ‖ · ‖a = √

a(·, ·) satisfies, by a Poincaré-Friedrichs inequality [42],

‖v‖a ≈ ‖v‖H 2(�) ∀ v ∈ H 2(�). (26)

Our goal is to show that

‖ȳ − ȳh‖a ≤ Chα, (27)

where α is the index of elliptic regularity that appears in (13).
We assume (cf. [43]) that there exists an operator 	h : H 2(�)∩H 1

0 (�) −→ Vh

such that

	hζ = ζ at the vertices of Th (28)

and

‖ζ −	hζ‖L2(�) + h|ζ −	hζ |H 1(�) + h2|ζ −	hζ |H 2(�) ≤ Ch2+α|ζ |H 2+α(�)

(29)
for all ζ ∈ H 2+α(�) ∩ H 1

0 (�), where h = maxT ∈Th
diam T is the mesh size of

the triangulation Th. Here and below we use C to denote a generic positive constant
independent of h.

In particular (5), (25) and (28) imply

	h maps K into Kh. (30)

Therefore Kh is nonempty and the discrete problem defined by (24)–(25) has a
unique solution.

We will also use the following standard properties of the interpolation operator
Ih (cf. [2, 3]):

‖ζ − Ihζ‖L∞(T ) ≤ Ch2
T |ζ |W 2,∞(T ) ∀ ζ ∈ W 2,∞(T ), T ∈ Th, (31)

|ζ − Ihζ |H 1(T ) ≤ ChT |ζ |H 2(T ) ∀ ζ ∈ H 2(T ), T ∈ Th, (32)

where hT is the diameter of T .
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We begin with the estimate

‖ȳ − ȳh‖2
a = a(ȳ − ȳh, ȳ − ȳh)

= a(ȳ − ȳh, ȳ −	hȳ)+ a(ȳ,	hȳ − ȳh)− a(ȳh,	hȳ − ȳh) (33)

≤ C1‖ȳ − ȳh‖ahα +
[
a(ȳ,	hȳ − ȳh)−

ˆ
�

yd(	hȳ − ȳh)dx
]

that follows from (13), (24), (26), (29), (30) and the Cauchy-Schwarz inequality.

Remark 3 Note that an estimate analogous to (33) also appears in the error analysis
for the boundary value problem (16). Indeed the second term on the right-hand side
of (33) vanishes in the case of (16) and we would have arrived at the desired estimate
‖ȳ − ȳh‖a ≤ Chα .

The idea now is to show that

a(ȳ,	hȳ − ȳh)−
ˆ
�

yd(	hȳ − ȳh)dx ≤ C2
[
h2α + hα‖ȳ − ȳh‖a

]
, (34)

which together with (33) implies

‖ȳ − ȳh‖2
a ≤ C3h

α‖ȳ − ȳh‖a + C2h
2α. (35)

The estimate (27) then follows from (35) and the inequality

ab ≤ ε

2
a2 + 1

2ε
b2

that holds for any positive ε.
Let us turn to the derivation of (34). Since Kh ⊂ Vh ⊂ H 2(�) ∩ H 1

0 (�), we
have, according to (8),

a(ȳ,	hȳ − ȳh)−
ˆ
�

yd(	hȳ − ȳh)dx =
ˆ
�

(	hȳ − ȳh)dμ

=
ˆ
�

(	hȳ − ȳ)dμ+
ˆ
�

(ȳ − ψ)dμ+
ˆ
�

(ψ − Ihψ)dμ

(36)

+
ˆ
�

(Ihψ − Ihȳh)dμ+
ˆ
�

(Ihȳh − ȳh)dμ,

and, in view of (9), (10) and (25),

ˆ
�

(ȳ − ψ)dμ = 0 and
ˆ
�

(Ihψ − Ihȳh)dμ ≤ 0. (37)
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We can estimate the other three integrals on the right-hand side of (36) as follows:

ˆ
�

(	hȳ − ȳ)dμ ≤ ‖μ‖H−1(�)‖	hȳ − ȳ‖H 1(�) ≤ Ch1+α (38)

by (13), (14) and (29);

ˆ
�

(ψ − Ihψ)dμ ≤ |μ(�)|‖ψ − Ihψ‖L∞(�) ≤ Ch2 (39)

by (9) and (31);

ˆ
�

(Ihȳh − ȳh)dμ =
ˆ
�

[
Ih(ȳh − ȳ)− (ȳh − ȳ)

]
dμ+

ˆ
�

(Ihȳ − ȳ)dμ

≤ ‖μ‖H−1(�)|Ih(ȳh − ȳ)− (ȳh − ȳ)|H 1(�) + |μ(�)|‖Ihȳ − ȳ‖L∞(A)

(40)

≤ C
[
h|ȳh − ȳ|H 2(�) + h2]

≤ C
(
h‖ȳ − ȳh‖a + h2]

by (11)–(13), (26), (31) and (32).
The estimate (34) follows from (36)–(40) and the fact that α ≤ 1.
The estimate (27) can be extended to the other finite element methods in Sect. 2

provided ‖ · ‖a is replaced by ‖ · ‖ah =
√
ah(·, ·).

For classical nonconforming finite element methods and discontinuous Galerkin
methods, the key ingredient for the convergence analysis, in addition to an operator
	H : H 2(�) ∩ H 1

0 (�) −→ Vh that satisfies (28) and (29), is the existence of an
enriching operator Eh :−→ H 2(�) ∩H 1

0 (�) with the following properties:

(Ehv)(p) = v(p) for all vertices p of Th, (41)

‖v − Ehv‖L2(�) + h
( ∑

T ∈Th

|v − Ehv|2H 1(T )

) 1
2 + h2|Ehv|H 2(�)

≤ Ch2‖v‖h ∀ v ∈ Vh, (42)

‖ζ − Eh	hζ‖H 1(�) ≤ Ch1+α‖ζ‖H 2+α(�) ∀ ζ ∈ H 2+α(�) ∩H 1
0 (�), (43)

|ah(	hζ, v)− a(ζ, Ehv)| ≤ Chα‖ζ‖H 2+α(�)‖v‖h (44)

for all ζ ∈ H 2+α(�) ∩H 1
0 (�) and v ∈ Vh.

Property (41) is related to the fact that the discrete constraints are imposed at the
vertices of Th; property (42) indicates that in some sense ‖v −Ehv‖h measures the
distance between Vh and H 2(�)∩H 1

0 (�); property (43) means that Eh	h behaves
like a quasi-local interpolation operator; property (44) states that Eh is essentially
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the adjoint of 	h with respect to the continuous and discrete bilinear forms. The
idea is to use (42) and (44) to reduce the error estimate to the continuous level,
and then the error analysis can proceed as in the case of conforming finite element
method by using (41) and (43). Details can be found in [44].

Remark 4 The operator Eh maps Vh to a conforming finite element space and its
construction is based on averaging. The history of using such enriching operators to
handle nonconforming finite element methods is discussed in [45].

In the case of the mixed method where Vh ⊂ H 1
0 (�) is a Lagrange finite element

space, the operator Eh : Vh −→ H 2(�) ∩H 1
0 (�) is defined by

ˆ
�

∇Ehv · ∇w dx =
ˆ
�

∇v · ∇w dx ∀v ∈ Vh, w ∈ H 1
0 (�). (45)

The properties (42)–(44) remain valid provided 	h is replaced by the Ritz projection
operator Rh : H 1

0 (�) −→ Vh defined by

ˆ
�

∇Rhζ · ∇v dx =
ˆ
�

∇ζ · ∇v dx ∀ v ∈ Vh. (46)

In fact (45) and (46) imply ζ − EhRhζ = 0 and property (43) becomes trivial.
However the properties (28) and (41) no longer hold, which necessitates the use of
the more sophisticated interior error estimates (cf. [46]) in the convergence analysis.
Details can be found in [14].

Remark 5 Since the elliptic regularity index α in (13) is determined by the
singularity of the Laplace equation near the boundary of �, various finite element
techniques [47, 48] can be employed to improve the estimate (27) to

‖ȳ − ȳh‖ah ≤ Ch. (47)

One can also compute an approximation ūh for the optimal control ū from the
approximate optimal state ȳh through post-processing processes [49].

Remark 6 The discrete problems generated by the finite element methods in Sect. 2,
which only involve simple box constraints, can be solved efficiently by a primal-dual
active set algorithm [50–52].

4 Concluding Remarks

In this paper finite element methods for elliptic distributed optimal control problems
with pointwise state constraints are treated from the perspective of finite element
methods for the boundary value problem of simply supported plates.
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The discussion in Sect. 2 shows that one can solve elliptic distributed optimal
control problems with pointwise state constraints by a straightforward adaptation of
many finite element methods for simply supported plates. The convergence analysis
in Sect. 3 demonstrates that the gap between the finite element analysis for boundary
value problems and the finite element analysis for elliptic optimal control problems
is in fact quite narrow. Thus the vast arsenal of finite element techniques developed
for elliptic boundary value problems over several decades can be applied to elliptic
optimal control problems with only minor modifications.

Note that in the traditional approach to elliptic optimal control problems, the
optimal control ū is treated as the primary unknown and the resulting finite element
methods in [35, 39] are equivalent to the method defined by (24), where the bilinear
form is given by (22). Therefore the approach based on the reformulation (4)–(5)
expands the scope of finite element methods for elliptic optimal control problems
from a special class of methods (i.e., mixed methods) to all classes of methods. In
addition to the finite element mentioned in Sect. 2, one can also consider recently
developed finite element methods for fourth order problems on polytopal meshes
[53–60].

The new approach has been extended to problems with the Neumann boundary
condition [61, 62] and to problems with pointwise constraints on both control and
state [63]. It has also been extended to problems on nonconvex domains [14, 62, 64].

Below are some open problems related to the finite element methods presented
in Sect. 2.

1. It follows from the error estimates (27) and (47) that

‖ȳ − ȳh‖H 1(�) + ‖ȳ − ȳh‖L∞(�) ≤ Chγ , (48)

where γ = α (without special treatment) or 1 (with special treatments). For
conforming or mixed finite element methods, the estimate (48) is a direct
consequence of the fact that the energy norm is equivalent to the H 2(�) norm
and that we have the Sobolev inequality

‖ζ‖L∞(�) ≤ C‖ζ‖H 2(�).

For classical nonconforming and discontinuous Galerkin methods, the esti-
mate (48) follows from the Poincaré-Friedrichs inequality and Sobolev inequality
for piecewise H 2 functions in [65, 66].

Comparing to ‖ · ‖H 2(�), the norms ‖ · ‖H 1(�) and ‖ · ‖L∞(�) are lower order
norms and, based on experience with finite element methods for the boundary
value problem (16), the convergence in ‖ · ‖H 1(�) and ‖ · ‖L∞(�) should be of
higher order, and this is observed in numerical experiments. But the theoretical
justifications for the observed higher order convergence is missing. In the case
of the boundary value problem (16), one can show higher order convergence for
lower order norms through a duality argument. However duality arguments do
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not work for variational inequalities even in one dimension [67]. New ideas are
needed.

2. An interesting phenomenon concerning fourth order variational inequalities is
that a posteriori error estimators originally designed for fourth order boundary
value problems can be directly applied to fourth order variational inequalities
[61, 68]. This is different from the second order case where a posteriori error
estimators for boundary value problems are not directly applicable to variational
inequalities. This difference is essentially due to the fact that Dirac point
measures belong to H−2(�) but not H−1(�).

Optimal convergence of these adaptive finite element methods have been
observed in numerical experiments. However the proofs of convergence and
optimality are missing.

3. Fast solvers for fourth order variational inequalities is an almost completely open
area. Some recent work on additive Schwarz preconditioners for the subsystems
that appear in the primal-dual active set algorithm can be found in [69, 70]. Much
remains to be done.
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Some q-Exponential Formulas Involving
the Double Lowering Operator ψ for a
Tridiagonal Pair (Research)

Sarah Bockting-Conrad

1 Introduction

Throughout this paper, K denotes an algebraically closed field. We begin by
recalling the notion of a tridiagonal pair. We will use the following terms. Let
V denote a vector space over K with finite positive dimension. For a linear
transformation A : V → V and a subspace W ⊆ V , we say that W is an eigenspace
of A whenever W �= 0 and there exists θ ∈ K such that W = {v ∈ V |Av = θv}.
In this case, θ is called the eigenvalue of A associated with W . We say that A is
diagonalizable whenever V is spanned by the eigenspaces of A.

Definition 1 ([9, Definition 1.1]) Let V denote a vector space over K with finite
positive dimension. By a tridiagonal pair (or TD pair) on V we mean an ordered
pair of linear transformations A : V → V and A∗ : V → V that satisfy the
following four conditions.

(i) Each of A,A∗ is diagonalizable.
(ii) There exists an ordering {Vi}di=0 of the eigenspaces of A such that

A∗Vi ⊆ Vi−1 + Vi + Vi+1 (0 ≤ i ≤ d), (1)

where V−1 = 0 and Vd+1 = 0.
(iii) There exists an ordering {V ∗

i }δi=0 of the eigenspaces of A∗ such that

AV ∗
i ⊆ V ∗

i−1 + V ∗
i + V ∗

i+1 (0 ≤ i ≤ δ), (2)
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where V ∗−1 = 0 and V ∗
δ+1 = 0.

(iv) There does not exist a subspace W of V such that AW ⊆ W , A∗W ⊆ W ,
W �= 0, W �= V .

We say the pair A,A∗ is over K.

Note 1 According to a common notational convention A∗ denotes the conjugate-
transpose of A. We are not using this convention. In a TD pair A,A∗ the linear
transformations A and A∗ are arbitrary subject to (i)–(iv) above.

Referring to the TD pair in Definition 1, by [9, Lemma 4.5] the scalars d and δ

are equal. We call this common value the diameter of A,A∗. To avoid trivialities,
throughout this paper we assume that the diameter is at least one.

TD pairs first arose in the study of Q-polynomial distance-regular graphs
and provided a way to study the irreducible modules of the Terwilliger algebra
associated with such a graph. Since their introduction, TD pairs have been found
to appear naturally in a variety of other contexts including representation theory
[1, 7, 10–12, 14, 15, 25], orthogonal polynomials [23, 24], partially ordered sets
[22], statistical mechanical models [3, 6, 19], and other areas of physics [16, 18].
As a result, TD pairs have become an area of interest in their own right. Among the
above papers on representation theory, there are several works that connect TD pairs
to quantum groups [1, 5, 7, 11, 12]. These papers consider certain special classes of
TD pairs. We call particular attention to [5], in which the present author describes a
new relationship between TD pairs in the q-Racah class and quantum groups. The
present paper builds off of this work.

In the present paper, we give a new relationship between the maps �,ψ :
V → V introduced in [4], as well as describe a new decomposition of the
underlying vector space that, in some sense, lies between the first and second split
decompositions associated with a TD pair. In order to motivate our results, we now
recall some basic facts concerning TD pairs. For the rest of this section, let A,A∗
denote a TD pair on V , as in Definition 1. Fix an ordering {Vi}di=0 (resp. {V ∗

i }di=0)
of the eigenspaces of A (resp. A∗) which satisfies (1) (resp. (2)). For 0 ≤ i ≤ d let
θi (resp. θ∗i ) denote the eigenvalue of A (resp. A∗) corresponding to Vi (resp. V ∗

i ).
By [9, Theorem 11.1] the ratios

θi−2 − θi+1

θi−1 − θi
,

θ∗i−2 − θ∗i+1

θ∗i−1 − θ∗i

are equal and independent of i for 2 ≤ i ≤ d−1. This gives two recurrence relations,
whose solutions can be written in closed form. There are several cases [9, Theorem
11.2]. The most general case is called the q-Racah case [12, Section 1]. We will
discuss this case shortly.

We now recall the split decompositions of V [9]. For 0 ≤ i ≤ d define

Ui = (V ∗
0 + V ∗

1 + · · · + V ∗
i ) ∩ (Vi + Vi+1 + · · · + Vd),
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U
⇓
i = (V ∗

0 + V ∗
1 + · · · + V ∗

i ) ∩ (V0 + V1 + · · · + Vd−i ).

By [9, Theorem 4.6], both the sums V = ∑d
i=0 Ui and V = ∑d

i=0 U
⇓
i are direct.

We call {Ui}di=0 (resp. {U⇓
i }di=0) the first split decomposition (resp. second split

decomposition) of V . In [9], the authors showed that A,A∗ act on the first and
second split decomposition in a particularly attractive way. This will be described
in more detail in Sect. 3.

We now describe the q-Racah case. We say that the TD pair A,A∗ has q-Racah
type whenever there exist nonzero scalars q, a, b ∈ K such that q4 �= 1 and

θi = aqd−2i + a−1q2i−d , θ∗i = bqd−2i + b−1q2i−d

for 0 ≤ i ≤ d. For the rest of this section assume that A,A∗ has q-Racah type.
We recall the maps K and B [13, Section 1.1]. Let K : V → V denote the linear

transformation such that for 0 ≤ i ≤ d, Ui is an eigenspace of K with eigenvalue
qd−2i . Let B : V → V denote the linear transformation such that for 0 ≤ i ≤ d,
U
⇓
i is an eigenspace of B with eigenvalue qd−2i . The relationship between K and

B is discussed in considerable detail in [5].
We now bring in the linear transformation � : V → V [4, Lemma 11.1]. As in

[5], we work with the normalization ψ = (q − q−1)(qd − q−d)�. A key feature of
ψ is that by [4, Lemma 11.2, Corollary 15.3],

ψUi ⊆ Ui−1, ψU
⇓
i ⊆ U

⇓
i−1

for 1 ≤ i ≤ d and both ψU0 = 0 and ψU
⇓
0 = 0. In [5], it is shown how ψ is related

to several maps, including the maps K,B, as well as the map � which we now
recall. By [4, Lemma 9.5], there exists a unique linear transformation � : V → V

such that

�Ui ⊆ U
⇓
i (0 ≤ i ≤ d),

(�− I )Ui ⊆ U0 + U1 + · · · + Ui−1 (0 ≤ i ≤ d).

In [4, Theorem 17.1], the present author showed that both

� =
d∑

i=0

⎛
⎝

i∏
j=1

aqj−1 − a−1q1−j

qj − q−j

⎞
⎠ψi, �−1 =

d∑
i=0

⎛
⎝

i∏
j=1

a−1qj−1 − aq1−j

qj − q−j

⎞
⎠ψi.

The primary goal of this paper is to provide factorizations of these power series in
ψ and to investigate the consequences of these factorizations. We accomplish this
goal using a linear transformationM : V → V given by



22 S. Bockting-Conrad

M = aK − a−1B

a − a−1
.

By construction,M⇓ = M. One can quickly check thatM is invertible. We show
that the mapM is equal to each of

(I − a−1qψ)−1K, K(I − a−1q−1ψ)−1, (I − aqψ)−1B, B(I − aq−1ψ)−1.

We give a number of different relations involving the mapsM,K,B,ψ , the most
significant of which are the following:

K expq

(
a−1

q−q−1 ψ
)
= expq

(
a−1

q−q−1 ψ
)
M,

B expq

(
a

q−q−1 ψ
)
= expq

(
a

q−q−1 ψ
)
M.

Using these equations, we obtain our main result which is that both

� = expq

(
a

q−q−1 ψ
)

expq−1

(
− a−1

q−q−1 ψ
)
,

�−1 = expq

(
a−1

q−q−1 ψ
)

expq−1

(
− a

q−q−1 ψ
)
.

Due to its important role in the factorization of �, we explore the mapM further.
We show thatM is diagonalizable with eigenvalues qd, qd−2, qd−4, . . . , q−d . For
0 ≤ i ≤ d, let Wi denote the eigenspace of M corresponding to the eigenvalue
qd−2i . We show that for 0 ≤ i ≤ d,

Ui = expq

(
a−1

q−q−1 ψ
)
Wi, U

⇓
i = expq

(
a

q − q−1 ψ

)
Wi,

Wi = expq−1

(
− a−1

q−q−1 ψ
)
Ui, Wi = expq−1

(
− a

q − q−1 ψ

)
U
⇓
i .

In light of this result, we interpret the decomposition {Wi}di=0 as a sort of
halfway point between the first and second split decompositions. We explore this
decomposition further and give the actions of ψ,K,B,�,A,A∗ on {Wi}di=0. We

then give the actions ofM±1 on {Ui}di=0, {U⇓
i }di=0, {Vi}di=0, {V ∗

i }di=0. We conclude
the paper with a discussion of the special case when A,A∗ is a Leonard pair.

The present paper is organized as follows. In Sect. 2 we discuss some prelim-
inary facts concerning TD pairs and TD systems. In Sect. 3 we discuss the split
decompositions of V as well as the maps K and B. In Sect. 4 we discuss the map
ψ . In Sect. 5 we recall the map � and give � as a power series in ψ . In Sect. 6 we
introduce the map M and describe its relationship with A,K,B,ψ . In Sect. 7 we
express � as a product of two linear transformations; one is a q-exponential in ψ

and the other is a q−1-exponential in ψ . In Sect. 8 we describe the eigenvalues and
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eigenspaces of M and discuss how the eigenspace decomposition of M is related
to the first and second split decompositions. In Sect. 9 we discuss the actions of
ψ,K,B,�,A,A∗ on the eigenspace decomposition ofM. In Sect. 10 we describe
the action ofM on the first and second split decompositions of V , as well as on the
eigenspace decompositions of A,A∗. In Sect. 11 we consider the case when A,A∗
is a Leonard pair.

2 Preliminaries

When working with a tridiagonal pair, it is useful to consider a closely related object
called a tridiagonal system. In order to define this object, we first recall some facts
from elementary linear algebra [9, Section 2].

We use the following conventions. When we discuss an algebra, we mean a unital
associative algebra. When we discuss a subalgebra, we assume that it has the same
unit as the parent algebra.

Let V denote a vector space over K with finite positive dimension. By a
decomposition of V, we mean a sequence of nonzero subspaces whose direct sum
is V . Let End(V ) denote the K-algebra consisting of all linear transformations from
V to V . Let A denote a diagonalizable element in End(V ). Let {Vi}di=0 denote an
ordering of the eigenspaces of A. For 0 ≤ i ≤ d let θi be the eigenvalue of A

corresponding to Vi . Define Ei ∈ End(V ) by (Ei − I )Vi = 0 and EiVj = 0 if
j �= i (0 ≤ j ≤ d). In other words, Ei is the projection map from V onto Vi . We
refer to Ei as the primitive idempotent of A associated with θi . By elementary linear
algebra, (i) AEi = EiA = θiEi (0 ≤ i ≤ d); (ii) EiEj = δijEi (0 ≤ i, j ≤ d);
(iii) Vi = EiV (0 ≤ i ≤ d); (iv) I =∑d

i=0 Ei . Moreover

Ei =
∏

0≤j≤d
j �=i

A− θj I

θi − θj
(0 ≤ i ≤ d).

Let M denote the subalgebra of End(V ) generated by A. Note that each of
{Ai}di=0, {Ei}di=0 is a basis for the K-vector space M .

Let A,A∗ denote a TD pair on V . An ordering of the eigenspaces of A (resp.
A∗) is said to be standard whenever it satisfies (1) (resp. (2)). Let {Vi}di=0 denote
a standard ordering of the eigenspaces of A. By [9, Lemma 2.4], the ordering
{Vd−i}di=0 is standard and no further ordering of the eigenspaces of A is standard.
A similar result holds for the eigenspaces of A∗. An ordering of the primitive
idempotents of A (resp. A∗) is said to be standard whenever the corresponding
ordering of the eigenspaces of A (resp. A∗) is standard.

Definition 2 ([17, Definition 2.1]) Let V denote a vector space over K with finite
positive dimension. By a tridiagonal system (or TD system) on V, we mean a
sequence
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� = (A; {Ei}di=0;A∗; {E∗i }di=0)

that satisfies (i)–(iii) below.

(i) A,A∗ is a tridiagonal pair on V .
(ii) {Ei}di=0 is a standard ordering of the primitive idempotents of A.

(iii) {E∗i }di=0 is a standard ordering of the primitive idempotents of A∗.

We call d the diameter of �, and say � is over K. For notational convenience, set
E−1 = 0, Ed+1 = 0, E∗−1 = 0, E∗d+1 = 0.

In Definition 2 we do not assume that the primitive idempotents {Ei}di=0, {E∗i }di=0
all have rank 1. A TD system for which each of these primitive idempotents has
rank 1 is called a Leonard system [20]. The Leonard systems are classified up to
isomorphism [20, Theorem 1.9].

For the rest of this paper, fix a TD system � on V as in Definition 2. Our TD
system � can be modified in a number of ways to get a new TD system [9, Section
3]. For example, the sequence

�⇓ = (A; {Ed−i}di=0;A∗; {E∗i }di=0)

is a TD system on V . Following [9, Section 3], we call �⇓ the second inversion of
�. When discussing �⇓, we use the following notational convention. For any object
f associated with �, let f ⇓ denote the corresponding object associated with �⇓.

Definition 3 For 0 ≤ i ≤ d let θi (resp. θ∗i ) denote the eigenvalue of A (resp. A∗)
associated with Ei (resp. E∗i ). We refer to {θi}di=0 (resp. {θ∗i }di=0) as the eigenvalue
sequence (resp. dual eigenvalue sequence) of �.

By construction {θi}di=0 are mutually distinct and {θ∗i }di=0 are mutually distinct.
By [9, Theorem 11.1], the scalars

θi−2 − θi+1

θi−1 − θi
,

θ∗i−2 − θ∗i+1

θ∗i−1 − θ∗i

are equal and independent of i for 2 ≤ i ≤ d − 1. For this restriction, the solutions
have been found in closed form [9, Theorem 11.2]. The most general solution is
called q-Racah [12, Section 1]. This solution is described as follows.

Definition 4 Let � denote a TD system on V as in Definition 2. We say that � has
q-Racah type whenever there exist nonzero scalars q, a, b ∈ K such that such that
q4 �= 1 and

θi = aqd−2i + a−1q2i−d , θ∗i = bqd−2i + b−1q2i−d (3)

for 0 ≤ i ≤ d.
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Note 2 Referring to Definition 4, the scalars q, a, b are not uniquely defined by �.
If q, a, b is one solution, then their inverses give another solution.

For the rest of the paper, we make the following assumption.

Assumption 1 We assume that our TD system � has q-Racah type. We fix q, a, b

as in Definition 4.

Lemma 1 ([5, Lemma 2.4]) With reference to Assumption 1, the following hold.

(i) Neither of a2, b2 is among q2d−2, q2d−4, . . . , q2−2d .
(ii) q2i �= 1 for 1 ≤ i ≤ d.

Proof The result follows from the comment below Definition 3. ��

3 The First and Second Split Decomposition of V

Recall the TD system � from Assumption 1. In this section we consider two decom-
positions of V associated with �, called the first and second split decomposition.

For 0 ≤ i ≤ d define

Ui = (E∗0V + E∗1V + · · · + E∗i V ) ∩ (EiV + Ei+1V + · · · + EdV ).

For notational convenience, define U−1 = 0 and Ud+1 = 0. Note that for 0 ≤ i ≤ d,

U
⇓
i = (E∗0V + E∗1V + · · · + E∗i V ) ∩ (E0V + E1V + · · · + Ed−iV ).

By [9, Theorem 4.6], the sequence {Ui}di=0 (resp. {U⇓
i }di=0) is a decomposition of V .

Following [9], we refer to {Ui}di=0 (resp. {U⇓
i }di=0) as the first split decomposition

(resp. second split decomposition) of V with respect to �. By [9, Corollary 5.7], for
0 ≤ i ≤ d the dimensions of EiV , E∗i V , Ui , U

⇓
i coincide; we denote the common

dimension by ρi . By [9, Theorem 4.6],

EiV + Ei+1V + · · · + EdV = Ui + Ui+1 + · · · + Ud, (4)

E0V + E1V + · · · + EiV = U
⇓
d−i + U

⇓
d−i+1 + · · · + U

⇓
d , (5)

E∗0V + E∗1V + · · ·E∗i V = U0 + U1 + · · · + Ui = U
⇓
0 + U

⇓
1 + · · · + U

⇓
i . (6)

By [9, Theorem 4.6], A and A∗ act on the first split decomposition in the following
way:

(A− θiI )Ui ⊆ Ui+1 (0 ≤ i ≤ d − 1), (A− θdI )Ud = 0,

(A∗ − θ∗i I )Ui ⊆ Ui−1 (1 ≤ i ≤ d), (A∗ − θ∗0 I )U0 = 0.
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By [9, Theorem 4.6], A and A∗ act on the second split decomposition in the
following way:

(A− θd−iI )U
⇓
i ⊆ U

⇓
i+1 (0 ≤ i ≤ d − 1), (A− θ0I )U

⇓
d = 0,

(A∗ − θ∗i I )U
⇓
i ⊆ U

⇓
i−1 (1 ≤ i ≤ d), (A∗ − θ∗0 I )U

⇓
0 = 0.

Definition 5 ([5, Definitions 3.1 and 3.2]) Define K,B ∈ End(V ) such that for
0 ≤ i ≤ d, Ui (resp. U⇓

i ) is the eigenspace of K (resp. B) with eigenvalue qd−2i .
In other words,

(K−qd−2iI )Ui = 0, (B−qd−2iI )U
⇓
i = 0 (0 ≤ i ≤ d). (7)

Observe that B = K⇓.

By construction each of K,B is invertible and diagonalizable on V .
We now describe how K and B act on the eigenspaces of the other one.

Lemma 2 ([5, Lemma 3.3]) For 0 ≤ i ≤ d,

(B − qd−2iI )Ui ⊆ U0 + U1 + · · · + Ui−1, (8)

(K − qd−2iI )U
⇓
i ⊆ U

⇓
0 + U

⇓
1 + · · · + U

⇓
i−1. (9)

Next we describe how A,K,B are related.

Lemma 3 ([13, Section 1.1]) Both

qKA− q−1AK

q − q−1 = aK2 + a−1I,
qBA− q−1AB

q − q−1 = a−1B2 + aI.

(10)

Lemma 4 ([5, Theorem 9.9]) We have

aK2 − a−1q − aq−1

q − q−1 KB − aq − a−1q−1

q − q−1 BK + a−1B2 = 0. (11)

4 The Linear Transformation ψ

We continue to discuss the situation of Assumption 1. In [4, Section 11] we
introduced an element � ∈ End(V ). In [5] we used the normalization ψ =
(q − q−1)(qd − q−d)�. In [5, Theorem 9.8], we showed that ψ is equal to some
rational expressions involving K,B. We now recall this result. We start with a
comment.

Lemma 5 ([5, Lemma 9.7]) Each of the following is invertible:
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aI − a−1BK−1, a−1I − aKB−1, (12)

aI − a−1K−1B, a−1I − aB−1K. (13)

Lemma 6 ([5, Theorem 9.8]) The following four expressions coincide:

I − BK−1

q(aI − a−1BK−1)
,

I −KB−1

q(a−1I − aKB−1)
, (14)

q(I −K−1B)

aI − a−1K−1B
,

q(I − B−1K)

a−1I − aB−1K
. (15)

In (14), (15) the denominators are invertible by Lemma 5.

Definition 6 Define ψ ∈ End(V ) to be the common value of the four expressions
in Lemma 6.

We now recall some facts concerning ψ .

Lemma 7 ([5, Lemma 5.4]) Both

Kψ = q2ψK, Bψ = q2ψB. (16)

Lemma 8 ([4, Lemma 11.2, Corollary 15.3]) We have

ψUi ⊆ Ui−1, ψU
⇓
i ⊆ U

⇓
i−1 (1 ≤ i ≤ d) (17)

and also ψU0 = 0 and ψU
⇓
0 = 0. Moreover ψd+1 = 0.

In Lemma 6 we obtained ψ as a rational expression in BK−1 or K−1B. Next we
solve for BK−1 and K−1B as a rational function in ψ . In order to state the answer,
we will need the following result.

Lemma 9 ([5, Lemma 9.2]) Each of the following is invertible:

I − aqψ, I − a−1qψ, I − aq−1ψ, I − a−1q−1ψ. (18)

Their inverses are as follows:

(I − aqψ)−1 =∑d
i=0 aiqiψi, (I − a−1qψ)−1 =

d∑
i=0

a−iqiψi,(19)

(I − aq−1ψ)−1 =∑d
i=0 aiq−iψi, (I − a−1q−1ψ)−1 =

d∑
i=0

a−iq−iψi .(20)

The next result is an immediate consequence of Lemma 6, Definition 6, and
Lemma 9.
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Theorem 1 ([5, Theorem 9.4]) The following hold:

BK−1 = I − aqψ

I − a−1qψ
, KB−1 = I − a−1qψ

I − aqψ
, (21)

K−1B = I − aq−1ψ

I − a−1q−1ψ
, B−1K = I − a−1q−1ψ

I − aq−1ψ
. (22)

In (21), (22) the denominators are invertible by Lemma 9.

Lemma 10 ([5, Equation (22)]) We have

ψA− Aψ

q − q−1 = (I − aqψ)K −
(
I − a−1q−1ψ

)
K−1. (23)

Proof This result is a reformulation of [5, Equation (22)] using [5, Equation (14)].
��

5 The Linear Transformation �

We continue to discuss the situation of Assumption 1. In [4, Section 9] we
introduced an invertible element � ∈ End(V ). In [4] we showed that �,ψ commute
and in fact both �,�−1 are power series in ψ . These power series will be the central
focus of this paper. We will show that each of those power series factors as a product
of two power series, each of which is a quantum exponential in ψ .

Lemma 11 ([4, Lemma 9.5]) There exists a unique � ∈ End(V ) such that

�Ui ⊆ U
⇓
i (0 ≤ i ≤ d), (24)

(�− I )Ui ⊆ U0 + U1 + · · · + Ui−1 (0 ≤ i ≤ d). (25)

Lemma 12 ([4, Lemmas 9.3 and 9.6]) The map � is invertible. Moreover �−1 =
�⇓ and

(�−1 − I )Ui ⊆ U0 + U1 + · · · + Ui−1 (0 ≤ i ≤ d). (26)

Lemma 13 The map �− I is nilpotent. Moreover �K = B�.

Proof The first assertion follows from (25). The last assertion follows from (24)
and Definition 5. ��

The map � is characterized as follows.

Lemma 14 ([4, Lemma 9.8]) The map � is the unique element of End(V ) such
that
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(�− I )E∗i V ⊆ E∗0V + E∗1V + · · · + E∗i−1V (0 ≤ i ≤ d),

(27)

�(EiV + Ei+1V + · · · + EdV ) = E0V + E1V + · · · + Ed−iV (0 ≤ i ≤ d).

(28)

Theorem 2 ([4, Theorem 17.1]) Both

� =
d∑

i=0

⎛
⎝

i∏
j=1

aqj−1 − a−1q1−j

qj − q−j

⎞
⎠ψi, (29)

�−1 =
d∑

i=0

⎛
⎝

i∏
j=1

a−1qj−1 − aq1−j

qj − q−j

⎞
⎠ψi. (30)

In (29) and (30), the elements �,�−1 are expressed as a power series in ψ .
In the present paper, we factor these power series and interpret the results. This
interpretation will involve a linear transformationM. We introduceM in the next
section.

6 The Linear TransformationM

We continue to discuss the situation of Assumption 1. In this section we introduce
an elementM ∈ End(V ). We explain howM is related to K,B,ψ,A.

Definition 7 DefineM ∈ End(V ) by

M = aK − a−1B

a − a−1
. (31)

By construction,M⇓ = M. Evaluating (31) using Lemma 5, we see thatM is
invertible.

Lemma 15 The mapM is equal to each of:

(I−a−1qψ)−1K, K(I−a−1q−1ψ)−1, (I−aqψ)−1B, B(I−aq−1ψ)−1.

Proof We first show thatM = (I − a−1qψ)−1K . By Definition 7,

(a − a−1)MK−1 = aI − a−1BK−1.

The result follows from this fact along with the equation on the left in (21).
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The remaining assertions follow from Theorem 1. ��
Lemma 15 can be reformulated as follows.

Lemma 16 We have

K = (I − a−1qψ
)
M, K =M

(
I − a−1q−1ψ

)
, (32)

B = (I − aqψ)M, B =M
(
I − aq−1ψ

)
. (33)

For later use, we give several descriptions ofM±1.

Lemma 17 The mapM−1 is equal to each of:

K−1(I − a−1qψ), (I − a−1q−1ψ)K−1, B−1(I − aqψ), (I − aq−1ψ)B−1.

Proof Immediate from Lemma 15. ��
Lemma 18 The mapM is equal to each of:

K

d∑
n=0

a−nq−nψn,

d∑
n=0

a−nqnψnK, B

d∑
n=0

anq−nψn,

d∑
n=0

anqnψnB

(34)

Proof Use Lemmas 9 and 15. ��
We now give some attractive equations that show how M is related to

ψ,K,B,A.

Lemma 19 We have

Mψ = q2ψM. (35)

Proof Use Lemma 7 and Definition 7. ��
Lemma 20 We have

qM−1K − q−1KM−1

q − q−1 = I,
qM−1B − q−1BM−1

q − q−1 = I. (36)

Proof Use Lemma 17. ��
Lemma 21 We have

qAM−1 − q−1M−1A

q − q−1 = (a + a−1)I − (q + q−1)ψ. (37)

Proof Use Lemmas 3, 7, 10, and 17. ��
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Lemma 22 We have

M−2A−(q2+q−2)M−1AM−1+AM−2 = −(q−q−1)2(a+a−1)M−1. (38)

Proof Use Lemmas 19 and 21. ��

7 A Factorization of �

We continue to discuss the situation of Assumption 1. We now bring in the q-
exponential function [8]. In [4, Theorem 17.1] we expressed � as a power series
in ψ . In this section we strengthen this result in the following way. We express � as
a product of two linear transformations; one is a q-exponential in ψ and the other is
a q−1-exponential in ψ .

For an integer n, define

[n]q = qn − q−n

q − q−1
(39)

and for n ≥ 0, define

[n]!q = [n]q [n− 1]q · · · [1]q . (40)

We interpret [0]!q = 1.
We now recall the q-exponential function [8]. For a nilpotent T ∈ End(V ),

expq(T ) =
∞∑
n=0

q(
n
2)

[n]!q
T n. (41)

The map expq(T ) is invertible. Its inverse is given by

expq−1(−T ) =
∞∑
n=0

(−1)nq−(
n
2)

[n]!q
T n. (42)

Using (41) we obtain

(I − (q2 − 1)T ) expq(q
2T ) = expq(T ). (43)

For S ∈ End(V ) such that ST = q2T S, we have

S expq(T )S−1 = expq(ST S−1) = expq(q
2T ).
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Consequently

S expq(T ) = expq(q
2T )S. (44)

Combining (43) and (44),

(I − (q2 − 1)T )S expq(T ) = expq(T )S. (45)

We return our attention to K,B,ψ,M.

Proposition 1 Both

K expq

(
a−1

q − q−1
ψ

)
= expq

(
a−1

q − q−1
ψ

)
M, (46)

B expq

(
a

q − q−1 ψ

)
= expq

(
a

q − q−1 ψ

)
M. (47)

Proof Recall from Lemma 19 that Mψ = q2ψM. We first obtain (46). To do
this, in (45) take S = M and T = a−1

q−q−1 ψ . Evaluate the result using the equation

M = (I − a−1qψ)−1K from Lemma 15.
Next we obtain (47). To do this, in (45) take S =M and T = a

q−q−1 ψ . Evaluate

the result using the equationM = (I − aqψ)−1B from Lemma 15. ��
The following is our main result.

Theorem 3 Both

� = expq

(
a

q − q−1 ψ

)
expq−1

(
− a−1

q − q−1 ψ

)
, (48)

�−1 = expq

(
a−1

q − q−1 ψ

)
expq−1

(
− a

q − q−1 ψ

)
. (49)

Proof We first show (48). Let �̃ denote the expression on the right in (48).
Combining (46) and (47), we see that �̃K = B�̃. Therefore �̃Ui = U

⇓
i for

0 ≤ i ≤ d. Observe that �̃ − I is a polynomial in ψ with zero constant term.
By Lemma 8, (�̃ − I )Ui ⊆ U0 + U1 + · · · + Ui−1 for 0 ≤ i ≤ d. By Lemma 11,
�̃ = �.

To obtain (49) from (48), use (42). ��
Corollary 1 We have

expq

(
a

q − q−1 ψ

)
expq−1

(
− a−1

q − q−1 ψ

)
=

d∑
i=0

⎛
⎝

i∏
j=1

aqj−1 − a−1q1−j

qj − q−j

⎞
⎠ψi,
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expq

(
a−1

q − q−1 ψ

)
expq−1

(
− a

q − q−1 ψ

)
=

d∑
i=0

⎛
⎝

i∏
j=1

a−1qj−1 − aq1−j

qj − q−j

⎞
⎠ψi.

Proof Combine Theorems 2 and 3. The equations can also be obtained directly by
expanding their left-hand sides using (41) and (42), and evaluating the results using
the q-binomial theorem [2, Theorem 10.2.1]. ��

8 The Eigenvalues and Eigenspaces ofM

We continue to discuss the situation of Assumption 1. In Sect. 6 we introduced the
linear transformationM. Proposition 1 indicates the role ofM in the factorization
of � in Theorem 3. In this section we show thatM is diagonalizable. We describe
the eigenvalues and eigenspaces of M. We also explain how the eigenspace
decomposition forM is related to the first and second split decompositions.

Lemma 23 The mapM is diagonalizable with eigenvalues qd, qd−2, qd−4, . . . , q−d .

Proof Let E = expq

(
a−1

q−q−1 ψ
)

. By (46), M = E−1KE. By construction K is

diagonalizable with eigenvalues qd, qd−2, qd−4, . . . , q−d . The result follows. ��
Definition 8 For 0 ≤ i ≤ d, let Wi denote the eigenspace ofM corresponding to
the eigenvalue qd−2i . Note that {Wi}di=0 is a decomposition of V , and that W⇓

i = Wi

for 0 ≤ i ≤ d. For notational convenience, let W−1 = 0 and Wd+1 = 0.

Proposition 2 For 0 ≤ i ≤ d,

Ui = expq

(
a−1

q−q−1 ψ
)
Wi, U

⇓
i = expq

(
a

q − q−1 ψ

)
Wi, (50)

Wi = expq−1

(
− a−1

q−q−1 ψ
)
Ui, Wi = expq−1

(
− a

q − q−1
ψ

)
U
⇓
i . (51)

Proof Define E as in the proof of Lemma 23. We show that Ui = EWi .
By (46), KE = EM. Recall that Ui (resp. Wi) is the eigenspace of K (resp. M)
corresponding to the eigenvalue qd−2i . By these comments Ui = EWi .

Define F = expq(
a

q−q−1 ψ). We show U
⇓
i = FWi . By (47), BF = FM. Recall

that U⇓
i (resp. Wi) is the eigenspace of B (resp.M) corresponding to the eigenvalue

qd−2i . By these comments U
⇓
i = FWi .

To obtain (51) from (50), use (42). ��
Lemma 24 For 0 ≤ i ≤ d, the dimension of Wi is ρi .

Proof This follows from Proposition 2 and the fact that Ui,U
⇓
i have dimension ρi .

��
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Recall from (6) that

i∑
h=0

E∗hV =
i∑

h=0

Uh =
i∑

h=0

U
⇓
h (52)

for 0 ≤ i ≤ d.

Lemma 25 For 0 ≤ i ≤ d, the sum
∑i

h=0 Wh is equal to the common value of (52).

Proof Define W = ∑i
h=0 Wh and let U denote the common value of (52). We

show that W = U . By Lemma 8 and the equation on the left in (51), W ⊆ U . By
Lemma 24, W and U have the same dimension. Thus W = U . ��

9 The Actions of ψ,K,B,�,A,A∗ on {Wi}di=0

We continue to discuss the situation of Assumption 1. Recall the eigenspace decom-
position {Wi}di=0 forM. In this section, we discuss the actions of ψ,K,B,�,A,A∗
on {Wi}di=0.

Lemma 26 For 0 ≤ i ≤ d,

ψWi ⊆ Wi−1. (53)

Proof Use Lemma 19. ��
Lemma 27 For 0 ≤ i ≤ d,

(K − qd−2iI )Wi ⊆ Wi−1, (B − qd−2iI )Wi ⊆ Wi−1. (54)

Proof Use Lemmas 16 and 26. ��
Lemma 28 For 0 ≤ i ≤ d,

(�− I )Wi ⊆ W0 +W1 + · · · +Wi−1, (55)

(�−1 − I )Wi ⊆ W0 +W1 + · · · +Wi−1. (56)

Proof To show (55), use (25) and Lemma 25.
To show (56), use (26) and Lemma 25. ��

Lemma 29 For 0 ≤ i ≤ d,

(A− (a + a−1)qd−2iI )Wi ⊆ Wi−1 +Wi+1. (57)

Proof By Lemma 22, the expression
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(M−1 − q2i+2−dI )(M−1 − q2i−2−dI )(A− (a + a−1)qd−2iI )

vanishes on Wi . Therefore (M−1−q2i+2−dI )(M−1−q2i−2−dI ) vanishes on (A−
(a + a−1)qd−2iI )Wi . The result follows. ��
Lemma 30 For 0 ≤ i ≤ d,

(A∗ − θ∗i I )Wi ⊆ W0 +W1 + · · · +Wi−1. (58)

Proof Use (A∗ − θ∗i I )E∗i V = 0 together with (25) and Lemma 25. ��

10 The Actions ofM±1 on {Ui}di=0,{U⇓
i

}d
i=0, {EiV }d

i=0,
{E∗

i
V }d

i=0

We continue to discuss the situation of Assumption 1. In Sect. 8 we saw how various
operators act on the decomposition {Wi}di=0. In this section we investigate the action
ofM on the first and second split decompositions of V , as well as on the eigenspace
decompositions of A,A∗.

Lemma 31 For 0 ≤ i ≤ d,

(M− qd−2iI )Ui ⊆ U0 + U1 + · · · + Ui−1, (59)

(M− qd−2iI )U
⇓
i ⊆ U

⇓
0 + U

⇓
1 + · · · + U

⇓
i−1. (60)

Proof To show (59), use Definition 5, Lemma 2, and Definition 7.
To show (60), use (59) applied to �⇓, along withM⇓ =M. ��

Lemma 32 For 0 ≤ i ≤ d,

(M−1 − q2i−dI )Ui ⊆ Ui−1, (M−1 − q2i−dI )U
⇓
i ⊆ U

⇓
i−1. (61)

Proof We first show the equation on the left in (61). By Lemma 17,

M−1 = (I − a−1q−1ψ)K−1. (62)

From this and Definition 5, it follows that on Ui ,

M−1 − q2i−dI = a−1q2i−d−1ψ. (63)

The result follows from this along with Lemma 8.
The proof of the equation on the right in (61) follows from the equation on the

left in (61) applied to �⇓, along with the fact thatM⇓ =M. ��
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Lemma 33 For 0 ≤ i ≤ d,

M−1EiV ⊆ Ei−1V + EiV + Ei+1V. (64)

Proof We first show that M−1EiV ⊆ ∑i+1
h=0 EhV . Recall from (5) that EiV ⊆∑d

h=d−i U
⇓
h . By this, Lemma 32, and (5), we obtainM−1EiV ⊆∑i+1

h=0 EhV .

We now show that M−1EiV ⊆ ∑d
h=i−1 EhV . Recall from (4) that EiV ⊆∑d

h=i Uh. By this, Lemma 32, and (4), we obtainM−1EiV ⊆∑d
h=i−1 EhV .

ThusM−1EiV is contained in the intersection of
∑i+1

h=0 EhV and
∑d

h=i−1 EhV ,
which is Ei−1V + EiV + Ei+1V . ��
Lemma 34 For 0 ≤ i ≤ d,

(M− qd−2iI )E∗i V ⊆ E∗0V + E∗1V + · · · + E∗i−1V,

(M−1 − q2i−dI )E∗i V ⊆ E∗0V + E∗1V + · · · + E∗i−1V.

Proof Note that E∗i V ⊆ E∗0V + E∗1V + · · · + E∗i V = W0 + W1 + · · · + Wi by
Lemma 25. The result follows from this fact along with Definition 8. ��

11 When � Is a Leonard System

We continue to discuss the situation of Assumption 1. For the rest of the paper we
assume ρi = 1 for 0 ≤ i ≤ d. In this case � is called a Leonard system.

We use the following notational convention. Let {vi}di=0 denote a basis for V .
The sequence of subspaces {Kvi}di=0 is a decomposition of V said, to be induced by
the basis {vi}di=0.

We display a basis {ui}di=0 (resp. {u⇓i }di=0) (resp. {wi}di=0) that induces the

decomposition {Ui}di=0 (resp. {U⇓
i }di=0) (resp. {Wi}di=0). We find the actions of

ψ,K,B,�±1, A on these bases. We also display the transition matrices between
these bases.

For the rest of this section fix 0 �= u0 ∈ U0. Let M denote the subalgebra of
End(V ) generated by A. By [21, Lemma 5.1], the map M → V , X �→ Xu0 is an iso-
morphism of vector spaces. Consequently, the vectors {Aiu0}di=0 form a basis for V .

We now define a basis {ui}di=0 of V that induces {Ui}di=0. For 0 ≤ i ≤ d, define

ui =
⎛
⎝

i−1∏
j=0

(
A− θj I

)
⎞
⎠ u0. (65)

Observe that ui �= 0. By [9, Theorem 4.6], ui ∈ Ui . So ui is a basis for Ui .
Consequently, {ui}di=0 is a basis for V that induces {Ui}di=0.



Some q-Exp. Formulas Involving The Double Lowering Operator ψ for a. . . 37

Next we define a basis {u⇓i }di=0 of V that induces {U⇓
i }di=0. For 0 ≤ i ≤ d, define

u
⇓
i =

⎛
⎝

i−1∏
j=0

(
A− θd−j I

)
⎞
⎠ u0. (66)

Observe that u
⇓
i �= 0. By Lemma 11, u

⇓
i ∈ U

⇓
i . So u

⇓
i is a basis for U

⇓
i .

Consequently, {u⇓i }di=0 is a basis for V that induces {U⇓
i }di=0.

Lemma 35 For 0 ≤ i ≤ d,

u
⇓
i = �ui. (67)

Proof By Lemma 11, �Ui = U
⇓
i . So there exists 0 �= λ ∈ K such that �ui = λu

⇓
i .

We show that λ = 1. By [4, Lemma 7.3] and (25), �ui−Aiu is a linear combination
of {Aju}i−1

j=0. Also, u
⇓
i − Aiu is a linear combination of {Aju}i−1

j=0. The vectors

{Aju}i−1
j=0 are linearly independent. By these comments λ = 1. ��

We next define a basis {wi}di=0 of V that induces {Wi}di=0. For 0 ≤ i ≤ d, define

wi = expq−1

(
− a−1

q − q−1
ψ

)
ui. (68)

Since {ui}di=0 is a basis of V and expq−1(− a−1

q−q−1 ψ) is invertible, wi is a basis for

Wi . Consequently, {wi}di=0 is a basis for V that induces {Wi}di=0.

Lemma 36 For 0 ≤ i ≤ d,

ui = expq

(
a−1

q−q−1 ψ
)
wi, u

⇓
i = expq

(
a

q − q−1
ψ

)
wi, (69)

wi = expq−1

(
− a−1

q−q−1 ψ
)
ui, wi = expq−1

(
− a

q − q−1 ψ

)
u
⇓
i . (70)

Proof Use (68) to obtain the equations on the left in (69),(70). To obtain the
equations on the right in (69),(70), use Theorem 3, Lemma 35, and (68). ��

We now describe the actions of ψ,K,B,M,�,A on the bases {ui}di=0, {u⇓i }di=0,
{wi}di=0. First we recall a notion from linear algebra. Let Matd+1(K) denote the K-
algebra of (d + 1) × (d + 1) matrices that have all entries in K. We index the
rows and columns by 0, 1, . . . , d . Let {vi}di=0 denote a basis of V . For T ∈ End(V )

and X ∈ Matd+1(K), we say that X represents T with respect to {vi}di=0 whenever

T vj =∑d
i=0 Xijvi for 0 ≤ j ≤ d.

By (65) and (66), the matrices that represent A with respect to {ui}di=0 and

{u⇓i }di=0 are, respectively,
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⎛
⎜⎜⎜⎝

θ0 0
1 θ1

. . .
. . .

0 1 θd

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

θd 0
1 θd−1

. . .
. . .

0 1 θ0

⎞
⎟⎟⎟⎠ . (71)

By construction, the matrix diag(qd, qd−2, . . . , q−d) represents K with respect
to {ui}di=0, and B with respect to {u⇓i }di=0, andM with respect to {wi}di=0.

Definition 9 We define a matrix ψ̂ ∈ Matd+1(K). For 1 ≤ i ≤ d, the (i − 1, i)-
entry is (qi − q−i )(qd−i+1 − qi−d−1). All other entries are 0.

Proposition 3 The matrix ψ̂ represents ψ with respect to each of the bases {ui}di=0,

{u⇓i }di=0, {wi}di=0.

Proof By [5, Line (23)], ψ̂ represents ψ with respect to {ui}di=0. The remaining
assertions follow from Lemma 36. ��

Next we give the matrices that representM±1 with respect to the bases {ui}di=0,

{u⇓i }di=0.

Lemma 37 We give the matrix in Matd+1(K) that represents M with respect to
{ui}di=0. This matrix is upper triangular. For 0 ≤ i ≤ j ≤ d, the (i, j)-entry is

ai−j qd−j−i
(
q − q−1

)2(j−i) [j ]!q [d − i]!q
[i]!q [d − j ]!q

. (72)

Proof The matrix diag(qd, qd−2, . . . , q−d) represents K with respect to {ui}di=0.
Use this fact along with Lemma 18 and Proposition 3. ��
Lemma 38 We give the matrix in Matd+1(K) that representsM−1 with respect to
{ui}di=0. For 0 ≤ i ≤ d, the (i, i)-entry is q2i−d . For 1 ≤ i ≤ d, the (i − 1, i)-entry
is

−a−1q2i−d−1
(
qi − q−i

) (
qd−i+1 − qi−d−1

)
.

All other entries are zero.

Proof The matrix diag(q−d , q2−d , . . . , qd) represents K−1 with respect to {ui}di=0.
Use this fact along with Lemma 17 and Proposition 3. ��
Lemma 39 We give the matrix in Matd+1(K) that represents M with respect to
{u⇓i }di=0. This matrix is upper triangular. For 0 ≤ i ≤ j ≤ d, the (i, j)-entry is

aj−iqd−j−i
(
q − q−1

)2(j−i) [j ]!q [d − i]!q
[i]!q [d − j ]!q

. (73)
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Proof The matrix diag(qd, qd−2, . . . , q−d) represents B with respect to {u⇓i }di=0.
Use this fact along with Lemma 18 and Proposition 3. ��
Lemma 40 We give the matrix in Matd+1(K) that representsM−1 with respect to
{u⇓i }di=0. For 0 ≤ i ≤ d, the (i, i)-entry is q2i−d . For 1 ≤ i ≤ d, the (i − 1, i)-entry
is

−aq2i−d−1
(
qi − q−i

) (
qd−i+1 − qi−d−1

)
.

All other entries are zero.

Proof The matrix diag(q−d , q2−d , . . . , qd) represents B−1 with respect to {u⇓i }di=0.
Use this fact along with Lemma 17 and Proposition 3. ��

Next we give the matrices that represent K with respect to the bases {u⇓i }di=0,
{wi}di=0.

Lemma 41 We give the matrix in Matd+1(K) that represents K with respect to
{u⇓i }di=0. For 0 ≤ i ≤ d, the (i, i)-entry is qd−2i . For 0 ≤ i < j ≤ d, the (i, j)-
entry is

(
1− a−2

)
aj−iqd−j−i

(
q − q−1

)2(j−i) [j ]!q [d − i]!q
[i]!q [d − j ]!q

. (74)

All other entries are zero.

Proof Evaluating the equation on the right in (14) using the equation on the left
in (12) we get

K =
(
a−2I + (1− a−2)

d∑
n=0

anqnψn

)
B. (75)

The result follows from this along with Proposition 3 and the fact that the matrix
diag(qd, qd−2, . . . , q−d) represents B with respect to {u⇓i }di=0. ��
Lemma 42 We give the matrix in Matd+1(K) that represents K with respect to
{wi}di=0. For 0 ≤ i ≤ d, the (i, i)-entry is qd−2i . For 1 ≤ i ≤ d, the (i − 1, i)-entry
is

−a−1qd−2i+1(qi − q−i )(qd−i+1 − qi−d−1).

All other entries are zero.

Proof The matrix diag(qd, qd−2, . . . , q−d) representsM with respect to {wi}di=0.
Use this fact along with Proposition 3 and the equation on the left in (32). ��
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Next we give the matrices that represent B with respect to the bases {ui}di=0,
{wi}di=0.

Lemma 43 We give the matrix in Matd+1(K) that represents B with respect to
{ui}di=0. For 0 ≤ i ≤ d, the (i, i)-entry is qd−2i . For 0 ≤ i < j ≤ d, the (i, j)-entry
is

(
1− a2

)
ai−j qd−j−i

(
q − q−1

)2(j−i) [j ]!q [d − i]!q
[i]!q [d − j ]!q

. (76)

All other entries are zero.

Proof Evaluating the equation on the left in (14) using the equation on the right
in (12) we get

B =
(
a2I + (1− a2)

d∑
n=0

a−nqnψn

)
K. (77)

The result follows from this along with Proposition 3 and the fact that the matrix
diag(qd, qd−2, . . . , q−d) represents K with respect to {ui}di=0. ��
Lemma 44 We give the matrix in Matd+1(K) that represents B with respect to
{wi}di=0. For 0 ≤ i ≤ d, the (i, i)-entry is qd−2i . For 1 ≤ i ≤ d, the (i − 1, i)-entry
is

−aqd−2i+1(qi − q−i )(qd−i+1 − qi−d−1).

All other entries are zero.

Proof The matrix diag(qd, qd−2, . . . , q−d) representsM with respect to {wi}di=0.
Use this fact along with Proposition 3 and the equation on the left in (33). ��

Next we consider the matrices

expq

(
a

q − q−1 ψ̂

)
, expq

(
a−1

q − q−1 ψ̂

)
. (78)

Their inverses are

expq−1

(
− a

q − q−1 ψ̂

)
, expq−1

(
− a−1

q − q−1 ψ̂

)
(79)

respectively. The matrices in (78), (79) are upper triangular. We now consider the
entries of (78), (79).

Lemma 45 For 0 �= x ∈ K, the matrix expq(xψ̂) is upper triangular. For 0 ≤ i ≤
j ≤ d, the (i, j)-entry is
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xj−iq(
j−i

2 )
(
q − q−1

)2(j−i) · [j ]!q [d − i]!q
[i]!q [j − i]!q [d − j ]!q

. (80)

The matrix expq−1(xψ̂) is upper triangular. For 0 ≤ i ≤ j ≤ d, the (i, j)-entry is

xj−iq−(
j−i

2 )
(
q − q−1

)2(j−i) · [j ]!q [d − i]!q
[i]!q [j − i]!q [d − j ]!q

. (81)

Lemma 46 The transition matrices between the basis {wi}di=0 and the bases

{ui}di=0, {u⇓i }di=0 are given in the table below.

From To Transition matrix

{ui}di=0 {wi}di=0 expq−1

(
− a−1

q−q−1 ψ̂
)

{wi}di=0 {ui}di=0 expq

(
a−1

q−q−1 ψ̂
)

{u⇓i }di=0 {wi}di=0 expq−1

(
− a

q−q−1 ψ̂
)

{wi}di=0 {u⇓i }di=0 expq

(
a

q−q−1 ψ̂
)

Proof Use Lemma 36 and Proposition 3. ��
We next consider the product

expq

(
a

q − q−1 ψ̂

)
expq−1

(
− a−1

q − q−1 ψ̂

)
. (82)

The inverse of (82) is

expq

(
a−1

q − q−1
ψ̂

)
expq−1

(
− a

q − q−1
ψ̂

)
. (83)

The matrices in (82), (83) are upper triangular.

Lemma 47 The transition matrices between the bases {ui}di=0, {u⇓i }di=0 are given
in the table below.

From To Transition matrix

{ui}di=0 {u⇓i }di=0 expq

(
a

q−q−1 ψ̂
)

expq−1

(
− a−1

q−q−1 ψ̂
)

{u⇓i }di=0 {ui}di=0 expq

(
a−1

q−q−1 ψ̂
)

expq−1

(
− a

q−q−1 ψ̂
)

Proof Use Lemma 46. ��
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Lemma 48 With respect to each of the bases {ui}di=0, {u⇓i }di=0, {wi}di=0, the matri-

ces that represent � and �−1 are expq

(
a

q−q−1 ψ̂
)

expq−1

(
− a−1

q−q−1 ψ̂
)

and

expq

(
a−1

q−q−1 ψ̂
)

expq−1

(
− a

q−q−1 ψ̂
)

respectively.

Proof Use Theorem 3 and Proposition 3. ��
We give the entries of the matrices representing �,�−1 in the following lemma.

Lemma 49 The matrix in (82) is upper triangular. For 0 ≤ i ≤ j ≤ d, the (i, j)-
entry of (82) is

(
q − q−1

)j−i [j ]!q [d − i]!q
[i]!q [j − i]!q [d − j ]!q

j−i∏
n=1

(
aqn−1 − a−1q1−n

)
. (84)

The matrix in (83) is upper triangular. For 0 ≤ i ≤ j ≤ d, the (i, j)-entry of (83)
is

(
q − q−1

)j−i [j ]!q [d − i]!q
[i]!q [j − i]!q [d − j ]!q

j−i∏
n=1

(
a−1qn−1 − aq1−n

)
. (85)

Proof Use Corollary 1 and Proposition 3. ��
We finish the paper by giving the matrix that represents A with respect to {wi}di=0.

Lemma 50 We give the matrix in Matd+1(K) that represents A with respect to
{wi}di=0. For 1 ≤ i ≤ d, the (i, i − 1)-entry is 1. For 0 ≤ i ≤ d, the (i, i)-entry is
(a + a−1)qd−2i . For 1 ≤ i ≤ d, the (i − 1, i)-entry is

−qd−2i+1(qi − q−i )(qd−i+1 − qi−d−1).

All other entries are zero.

Proof Let A denote the matrix that represents A with respect to {wi}di=0. By
Lemma 29,A is tridiagonal with (i, i)-entry given by (a+a−1)qd−2i for 0 ≤ i ≤ d.

We now show that the subdiagonal entries of A are all 1. Let A′ denote the
matrix that represents A with respect to {ui}di=0. Recall that this matrix is displayed

on the left in (71). Observe thatA is equal to expq−1(− a−1

q−q−1 ψ̂)A′ expq(
a−1

q−q−1 ψ̂).
It follows from this fact that the subdiagonal entries ofA are all 1.

We next obtain the superdiagonal entries ofA. Let 0 ≤ i ≤ d. Apply both sides
of (37) to wi . Evaluate the result using Proposition 3 and the fact that the wi is an
eigenvector forM with eigenvalue q2i−d . Analyze the result in light of the above
comments concerning the entries ofA to obtain the desired result. ��
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Distance Graphs Generated by Five
Primes (Research)

Daphne Der-Fen Liu, Grant Robinson, and Angel Chavez

1 Introduction

Let D be a set of positive integers, called a distance set. The distance graph
generated by D, denoted G(Z,D), is the graph with vertex set of the integers and
an edge between any pair of vertices a and b if |a − b| ∈ D. The chromatic number
of distance graphs was first studied by Eggleton et al. [5] in 1985. The subject has
been studied extensively since [1–4, 6, 9–15, 17–20, 22]. We denote the chromatic
number of G(Z,D) by χ(D).

Let P denote the set of prime numbers. In [6] prime distance graphs were
considered, that is, graphs with distance set D ⊆ P . It was shown and easy to
see that χ(P ) = 4. Thus, given that D is a subset of P , χ(D) ∈ {1, 2, 3, 4}, since
D ⊆ D′ implies χ(D) � χ(D′). The task considered is to classify a set of primes
D according to its chromatic number. We say D is class i if χ(D) = i. Clearly the
only set that is class 1 is the empty set, and every singleton is class 2. If |D| � 2,
then D is class 2 if and only if 2 �∈ D. Also if 2 ∈ D but 3 �∈ D, then D is class 3. A
less trivial result is that {2, 3, p} is class 4 if p = 5, and class 3 otherwise (see [6]).
In view of these results, the remaining problem is to classify prime sets D ⊃ {2, 3}
with |D| � 4 into either class 3 or class 4.

It was shown in [6] that if D = {2, 3, p, p+2}where p and p+2 are twin primes,
then D is class 4. Voigt and Walther [19] classified all prime sets with cardinality 4:
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Theorem 1 Let D = {2, 3, p, q} be a set of primes with p � 7 and q > p + 2.
Then D is class 4 if and only if

(p,q)∈{(11, 19), (11, 23), (11, 37), (11, 41), (17, 29), (23, 31), (23, 41), (29, 37)}.

Since Voigt’s paper in 1994, little progress has been made on the subject. It
is interesting to note that, besides the potentially infinite family of distance sets
containing twin primes, there are only finitely many class 4 sets of four primes.
Thus it is natural to ask whether the same is true when D has five primes. A result
from [6] shows that the set of potentially infinite families of class 4 distance sets
will necessarily be more complicated than just those containing twin primes:

Theorem 2 The set {2, 3} ∪ {p, p + 8, 2p + 13} is class 4 whenever p, p + 8 and
2p + 13 are all primes.

In this article we begin to look at prime distance sets with 5 elements that do
not contain twin primes nor any of the eight minimal class 4 sets of cardinality 4
obtained in Theorem 1. We call a prime distance set D minimal class 4, or just
minimal, if D is class 4 but every proper subset is class 3 or less. Thus we are
interested in distance sets which do not contain twin primes or any of the minimal
class 4 sets in Theorem 1. We present the following main result:

Theorem 3 A prime set of the form D = {2, 3, 7, p, q} is class 3 if none of the
following is true:

1. D contains a proper subset that is class 4.
2. The pair (p, q) is one of the following 31 pairs:

(19, 31) (19, 37) (19, 41) (19, 43) (19, 47) (19, 53) (19, 67)

(19, 73) (19, 79) (19, 83) (19, 89) (19, 109) (19, 131) (19, 151)

(19, 157) (19, 167) (19, 193) (29, 41) (29, 73) (29, 109) (31, 43)

(37, 59) (41, 53) (47, 59) (61, 73) (67, 79) (71, 83) (89, 101)

(97, 109) (139, 151) (181, 193).

3. p ≡ 2311139, 2311163 (mod 4622310) and q = p + 8.

Moreover, the D sets with pairs (19, q) in 2 are all class 4.

In Sect. 3, we give a proof of Theorem 3, except the moreover part, which is
presented in Sect. 4. In order to show that a distance set is class 3, we will make
extensive use of the number theoretic function κ : P(Z+) → R+ ∪ {0}. For a real
number x, let ||x|| denote the minimum distance from x to an integer, that is ||x|| =
min{�x� − x, x − �x�}. For any real t , denote by ||tD|| the smallest value ||td||
among all d ∈ D. The kappa value of D, denoted by κ(D), is the supremum of
||tD|| among all reals t . That is, κ(D) := sup{||tD|| : t ∈ R+ ∪ {0}}. The fact that
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the kappa value of D is always a rational number with denominator dividing a sum
of two elements in D gives an effective algorithm for computing κ(D) (see [8]).

The primary connection which we use in this paper is that (see [21])

χ(D) �
⌈

1

κ(D)

⌉
.

Thus, if κ(D) � 1/3, then χ(D) � 3. In particular, since we assume {2, 3} ⊂ D, if
κ(D) � 1/3, then D is class 3.

2 Three Lemmas on κ(D)

An alternative definition of κ(D) introduced by Gupta in [7] involves looking at the
sets of “good times” for each element d ∈ D, that is, the times t ∈ [0, 1) such that
||td|| is greater than some desired value. For α ∈ [0, 1/2] and an element d ∈ D,
let Id(α) = {t ∈ [0, 1) : ||td|| � α}. Let ID(α) be the intersection over D of Id(α).
If ID(α) is not empty, then κ(D) � α. Thus,

κ(D) = sup{α ∈ [0, 1/2] : ID(α) �= ∅}.

Note that if κ(D) > α, then ID(α) is a union of intervals, and if κ(D) = α, then
ID(α) is a union of singletons.

If ID(α) contains a nontrivial interval or, equivalently, if κ(D) > α, one might
be interested in how large a number x must be to guarantee that the intersection of
ID(α) and Ix(α) is not empty, that is, κ(D ∪ {x}) � α. Note that Ix(α) is the union
of x disjoint intervals with center (2n+ 1)/2x for n ∈ {0, 1, . . . , x − 1} and length
(1− 2α)/x, that is,

Ix(α) =
x−1⋃
n=0

[
n+ α

x
,
n+ 1− α

x

]
.

We call these x-intervals. The length of the space between any two consecutive x-
intervals is 2α/x. Now let [a, b] be a connected subset of ID(α). If the length of the
space between each pair of consecutive intervals of Ix(α) is less than the length of
that subset, b − a, then it must be that one of the intervals of Ix(α) hits the interval
[a, b]. This can be summarized in the following lemma:

Lemma 1 Let [a, b] ⊆ ID(α) with a < b for some set D. If x is an integer, x �
2α/(b − a), then ID(α) ∩ Ix(α) �= ∅. Consequently, κ(D ∪ {x}) � α.

Considering two elements to be added to a set D, we describe an upper bound
for the length of an interval of time in which the two sets Ix(α) and Ix+i (α) can
be disjoint. If this bound is smaller than the length of a target interval contained in
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ID(α), we can similarly guarantee that the intersection of ID(α), Ix(α) and Ix+i (α)

is not empty.

Lemma 2 Let 1/4 � α � 1/3 and [a, b] ⊆ ID(α) with a < b. If x and i are
integers with 4α−1

i
+ 2

x
� b− a, then ID(α)∩ Ix(α)∩ Ix+i (α) �= ∅. Consequently,

κ(D ∪ {x, x + i}) � α.

Proof Similar to Lemma 1, it is enough to show that Ix ∩ Ix+i ∩ I �= ∅ for any
interval I ⊆ [0, 1] of length 4α−1

i
+ 2

x
.

We introduce some notation to make it easier to keep track of the different
intervals. As noted above,

Ix(α) =
x−1⋃
n=0

[
n+ α

x
,
n+ 1− α

x

]
.

Fixing 1/4 � α � 1/3, let [n+α
x

, n+1−α
x

] be denoted by In
x . Let L(In

x ) and R(In
x )

denote the left and the right endpoint of In
x , respectively.

Assume i � x. We first claim that every x-interval must intersect at least one
(x+i)-interval. It suffices to show that the length of the gap between two consecutive
(x + i)-intervals is less than the length of an x-interval, that is, 2α

x+i
� 1−2α

x
. This is

true with the assumptions α � 1/3 and x � i.
Therefore, R(In

x ) − L(In−1
x ) = 2−2α

x
is an upper bound on the length of an

interval during which Ix and Ix+i are disjoint. By our assumption that α � 1/4, the
result follows, as 2−2α

x
< 4α−1

i
+ 2

x
� b − a.

Now assume i < x. Let Im
x be any x-interval. If m = 0, then with the

assumptions α � 1/3 and i < x, it can be shown that L(I 0
x ) � R(I 0

x+i ), and
therefore there is some intersection between the two intervals.

If m � 1, then let In
x+i be the closest (x + i)-interval to Im

x such that R(In
x+i ) �

L(Im
x ) (that is, n is the largest such integer), and set L(Im

x ) − R(In
x+i ) = �. Note

that L(Im
x ) − L(Im−1

x ) = 1/x. This implies that the separation between previous
pairs of x and (x + i)-intervals decreases until the left point of an x-interval is less
than the right point of an (x + i)-interval. More precisely,

L(Im−r
x )− R(In−r

x+i ) =
(
L(Im

x )− r

x

)
−
(
R(In

x+i )−
r

x + i

)

= L(Im
x )− R(In

x+i )−
r

x
+ r

x + i

= �− ir

x(x + i)
.

Fix j � 0 so that �− ij
x(x+i)

� 0 but �− i(j−1)
x(x+i)

> 0. This implies that

R(I
n−j
x+i )− L(I

m−j
x ) = ij

x(x + i)
−� � i

x(x + i)
.
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With the assumptions that i � x and α � 1/3, it can be shown that

i

x(x + i)
� 1− 2α

x
+ 1− 2α

x + i
. (1)

The right-hand side of the above inequality is the sum of the lengths of an x-interval
and an (x+ i)-interval. Therefore, since R(I

n−j
x+i )−L(I

m−j
x ) � 1−2α

x
+ 1−2α

x+i
, there

must be some intersection between I
m−j
x and I

n−j
x+i .

Having found an intersection between an x-interval and an (x + i)-interval at or
before Im

x , we now move forward, looking at the right endpoint of the x-intervals.
Notice,

L(In+1+r
x+i )− R(Im+r

x ) =L(In+1
x+i )− R(Im

x )− ir

x(x + i)

=R(In
x+i )+

2α

x + i
− R(Im

x )− ir

x(x + i)

=L(Im
x )−�+ 2α

x + i
− R(Im

x )− ir

x(x + i)

= 2α

x + i
−
(

1− 2α

x
+ ir

x(x + i)
+�

)
.

Fix k � 0 so that k is the smallest such that 2α
x+i

� 1−2α
x

+ ik
x(x+i)

+ �, that is,

the smallest with L(In+1+k
x+i ) � R(Im+k

x ). We now show that Lm+k
x ∩Ln+k+1

x+i �= ∅.

Suppose k = 0, that is, L(In+1
x+i ) � R(Im

x ). By our choice of n as the largest such

that R(In
x+i ) � L(Im

x ), we have R(In+1
x+i ) > L(Im

x ). This, together with the fact that

L(In+1
x+i ) � R(Im

x ), implies Lm
x ∩ Ln+1

x+i �= ∅.

Assume k � 1. Then R(Im+k−1
x ) < L(In+k

x+i ). The only possibility that Im+k
x ∩

In+1+k
x+i = ∅ is when the following inequality holds:

1− 2α

x
+ 1− 2α

x + i
< R(Im+k

x )− L(In+1+k
x+i )

= R(Im+k−1
x )− L(In+k

x+i )+
i

x(x + i)

<
i

x(x + i)
.

This contradicts Eq. (1). Hence, Im+k
x ∩ In+1+k

x+i �= ∅

In summary, given that j = � x(x+i)�
i

� and k = � 4αx+2αi−x−i−x(x+i)�
i

�, we

know that both I
m−j
x and Im+k

x intersect an (x + i)-interval. Moreover, the length
between these two intersections is bounded by the following:
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R(Im+k
x )− L(I

m−j
x ) = k + j

x
+ 1− 2α

x

�
4αx+2αi−x−i

i
+ 3− 2α

x

= 4α − 1

i
+ 2

x
.

Therefore, the result follows. Note that if m+ k � x, then R(Im+k
x ) is undefined. In

this case the bound 1−L(I
m−j
x ) is smaller than the bound above. Similar arguments

apply if m − j < 0. Note that 1/4 � α � 1/3 implies that Ix ∩ Ix+i �= ∅, since
κ({x, x + i}) � 1/3. ��

The final result of this section rationalizes the set of good times by expanding the
unit circle to a circle of circumference q. This proposition will be useful because,
fixing a rational point and an α, the proposition gives a finite list of residue classes
of x modulo q such that the point will be in Ix(α).

Lemma 3 Fix an integer x and an α ∈ [0, 1/2], and let p/q be a point in (0, 1).
Then p/q ∈ Ix(α) if and only if qα � xp (mod q) � q(1− α).

Proof To say that p/q ∈ Ix(α) is equivalent to saying that there exists an n ∈
{0, 1, . . . , x − 1} such that (n + α)/x � p/q � (n + 1 − α)/x. Rearranging this
inequality gives qα � px − qn � q(1− α). ��

3 Class 3 Prime Sets of the Form {2, 3, 7, p, q}

We apply the lemmas presented in the previous section to prove Theorem 3, except
the moreover part, which will be shown in the next section. Recall, if κ(D) � 1/3,
then χ(D) � 3. Thus we fix α = 1/3 in the following.

While the proof of Theorem 3 is conceptually simple, using nothing more sophis-
ticated than modular arithmetic, there are many cases to check. Full verification
requires a computer. For a more detailed discussion with all cases explained, see
[16].

Let D = {2, 3, 7, x, x + i} where x and x + i are primes. First, Lemma 2 is
applied to show that if both x and i are sufficiently large, then D must be class 3. As
can be seen from Fig. 1, [4/21, 2/9] ⊆ I{2,3,7}(1/3), and the length of this interval
is 2/63. The smallest gap i such that 1/(3i) < 2/63 is i = 11. Since the difference
between any odd prime numbers is even, we only need to consider the cases of even
integers i � 12. For each i � 12, there exists a bound Mi such that, whenever
p � Mi and q � p + i, the set {2, 3, 7, p, q} is class 3.

For example, fixing i = 12, we solve the following inequality from Lemma 2 for
p: 1

3i + 2
p
� 2

63 . Thus if p � 504 and q � p+12, then, by Lemma 2, {2, 3, 7, p, q}
will be class 3. Noting that as i increases the bound Mi decreases, we can repeat
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Fig. 1 The set I{2,3,7}(1/3)

this process. The bound M52 = 79, and by computing the kappa value for all sets
{2, 3, 7, p, p + i} where 12 � i < 52 and 79 � p � Mi , we obtain the following
proposition.

Proposition 1 If i � 12 and p � 79 and D = {2, 3, 7, p, p + i}, then D is class 3
for any pair of primes (p, p+ i) �∈ {(89, 101), (97, 109), (139, 151), (181, 193)}.

The next step in the process is to remove the bound that p must be greater than
79. To accomplish this, for each set D = {2, 3, 7, p} for primes 7 < p < 79, we
apply Lemma 1 to get a bound on q such that {2, 3, 7, p, q} is class 3 for every q

exceeding the bound. Then we check whether κ(D) � 1/3 for each of the small
primes q which are below the bound. This work is summarized in Table 1 and
justifies the following proposition. Note that the table includes twin primes and the
known results from Theorem 1.

Proposition 2 If i � 12 and 7 < p < 79 and D = {2, 3, 7, p, p + i} does not
contain a proper subset that is class 4, then D is class 3 for any pair of primes
(p, p + i) not listed below:

(19, 31) (19, 37) (19, 41) (19, 43) (19, 47) (19, 53) (19, 67)

(19, 73) (19, 79) (19, 83) (19, 89) (19, 109) (19, 131) (19, 151)

(19, 157) (19, 167) (19, 193) (29, 41) (29, 73) (29, 109) (31, 43)

(37, 59) (41, 53) (47, 59) (61, 73) (67, 79) (71, 83).

The fact that we switch from using Lemma 2 to Lemma 1 at p < 79 is arbitrary.
Computationally, the hardest part of using Lemma 1 is finding the length of the
longest interval in {2, 3, 7, p}, which is why Lemma 2 was used as long as it was.

Thus far we have shown that, as long as i � 12, there are only finitely many
minimal prime sets with κ({2, 3, 7, p, p + i}) < 1/3. If i = 2, then p and p + 2
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Table 1 Applying Lemma 1 to {2, 3, 7, p} for primes 7 < p < 79

p [a, b] ⊂ I{2,3,7,p} Bound on q Primes q > p with κ({2, 3, 7, p, q}) < 1/3

11 [7/33,2/9] 66 13, 19, 23, 37, 41

13 [4/21, 8/39] 46

17 [10/51, 11/51] 34 19, 29

19 [4/21,11/57] 266 31,37,41,43,47,53,

67,73,79,83,89,109,

131,151,157,167,193

23 [4/21, 14/69] 54 31,41

29 [4/21, 17/87] 136 31,37,41,73,109

31 [19/93, 20/93] 62 43

37 [22/111, 23/111] 74 59

41 [25/123, 26/123] 82 43,53

43 [25/129, 26/129] 86

47 [28/141, 29/141] 94 59

53 [34/159, 35/159] 106

59 [37/177, 38/177] 118 61

61 [37/183, 38/183] 122 73

67 [43/201, 44/201] 134 79

71 [46/213, 47/213] 142 73,83

73 [46/219, 47/219] 146

The new results from Theorem 3 are underlined; others are known results

are twin primes and the set is class 4. The last step in the process is to show that, for
i ∈ {4, 6, 8, 10}, all prime sets of the form {2, 3, 7, p, p+ i} that do not contain one
of the known class 4 sets are class 3.

Consider the case when p and p + 4 are both primes. Note that this implies that
p ≡ 1 (mod 6). We want to apply Lemma 3 to check if any rational points in the
interval [4/21, 2/9] ⊂ I{2,3,7} are in both Ip and Ip+4. A natural place to start is
by checking points with reduced denominator of 126, the least common multiple of
6, 21 and 9. The target interval [4/21, 2/9] = [24/126, 28/126], so we will apply
Lemma 3 for the points {n/126 : 24 � n � 28}. After removing the residue classes
modulo 126 for which p �≡ 1 (mod 6), we are left with Table 2.

From Table 2 we see that, for each of the rows that is not highlighted,
I{2,3,7,p,p+4} will contain the point in the rightmost column, implying that
{2, 3, 7, p, p+4} is class 3. To investigate the highlighted rows further, we increase
the number of rational points to check by a factor of 5. The new denominator
q = 630, and we must accordingly expand the undetermined list of residues to
check. This gives Table 3.

From Table 3 we see that if p ≡ 1 (mod 630), then p+4 is not prime, if p ≡ 625
(mod 630), then p is not prime, and if p �≡ 307, 319 (mod 630), then I{2,3,7,p,p+4}
is not empty. Iterating again, this time just increasing by a factor of 2 gives Table 4,
which has no highlighted rows. This means, no matter the residue class of a prime
p modulo 1260, there exists some point in I{2,3,7,p,p+4}. Thus, this is the final table
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Table 2 Rational points in I{2,3,7} ∩ I{p,p+4} (Round 1)

p (mod 126) gcd(p, 126) gcd(p + 4, 126) Point in I{p,p+4}
1

7 7 27/126

13 25/126

19 24/126

25 28/126

31 7 27/126

37 26/126

43 28/126

49 7 27/126

55

61 24/126

67

73 7 27/126

79 28/126

85 26/126

91 7 27/126

97 28/126

103 24/126

109 25/126

115 7 27/126

121

needed to finish the case when i = 4. Tables 2, 3, and 4 show that {2, 3, 7, p, p+4}
is class 3 for every pair of primes p and p + 4.

The cases when i ∈ {6, 10} can be established similarly, but the case when i = 8
is much more difficult (see [16]). This is not surprising, as we have already have seen
from Theorem 1 that {2, 3, 5, 13}, {2, 3, 11, 19}, {2, 3, 23, 31}, and {2, 3, 29, 37} are
all class 4 sets. Using similar methods to those above, we were able to show that, if
{2, 3, 7, p, p + 8} is a minimal class 4 set, it must be that p ≡ 2311139, 2311163
(mod 4622310). Note that 4622310 = 2·32 ·5·7·11·23·29. At this point it becomes
computationally intractable to inspect the millions of rational points considered by
Lemma 3. From this work we obtain the following proposition.

Proposition 3 If i < 12 and D = {2, 3, 7, p, p + i} does not contain a proper
subset that is class 4, then D is class 3 for any pair of primes (p, p + i) where
p �≡ 2311139, 2311163 (mod 4622310) when i = 8.

We have shown how Lemma 2 generates Proposition 1, Lemma 1 generates
Proposition 2, and Lemma 3 generates Proposition 3. Together Propositions 1 to 3
imply Theorem 3, except for the moreover part, which is the subject of the next
section.



54 D. D.-F. Liu et al.

Table 3 Rational points in I{2,3,7} ∩ I{p,p+4} (Round 2)

p (mod 630) gcd(p, 630) gcd(p + 4, 630) Point in I{p,p+4}
1 5

55 5 122/630

67 128/631

121 5 123/630

127 122/631

181 5 124/630

193 126/631

247 124/630

253 121/630

307

319

373 121/630

379 124/630

433 126/630

445 5 124/630

499 122/630

505 5 123/630

559 128/630

571 5 122/630

625 5

Table 4 Rational points in I{2,3,7} ∩ I{p,p+4} (Round 3)

p (mod 1260) gcd(p, 1260) gcd(p + 4, 1260) Point in I{p,p+4}
307 253/1260

319 251/1260

937 251/1260

949 253/1260

4 Class 4 Prime Sets of the Form {2, 3, 7, 19, p}

In this section, we prove the moreover part of Theorem 3. Precisely, we show that
any 3-coloring of the distance graph generated by {2, 3, 7, 19} cannot be extended
to a 3-coloring of the distance graph generated by {2, 3, 7, 19, p} for any p in the
following set:

{31, 37, 41, 43, 47, 53, 67, 73, 79, 83, 89, 109, 131, 151, 157, 167, 193}.

Our notation will follow that of Eggleton in [4]. Let c be a function c : Z →
{0, 1, 2}. For a set D of positive integers, we say c is a D-consistent coloring if for
every i, j ∈ Z,
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|i − j | ∈ D �⇒ c(i) �= c(j).

It follows from the definition that c is a 3-coloring for a set D if and only if c is a
D′-consistent coloring for any D′ ⊆ D.

In the following we will consider a coloring c as a two-way infinite sequence,
c := {c(i)}i∈Z . The structure of a coloring sequence c can be described by breaking
it apart into the three constituent color classes. The k-color-class is defined as the set
{i ∈ Z : c(i) = k}. Let c be a {2, 3}-consistent coloring. Since each five consecutive
integers in the distance graph generated by {2, 3} contains the 5-cycle {i + 1, i +
3, i + 5, i + 2, i + 4}, the difference between any two consecutive elements in a
color class is at most 5, otherwise the five cycle must be properly colored with just
two colors, which is impossible. In light of this we can consider each color class as
a strictly increasing sequence of integers k := {ki}i∈Z where c(ki) = k for every
i and ki < ki+1. The structure of a color class is primarily captured by the gaps
or differences between consecutive elements in the ordered color class sequence.
The gap sequence of a k-color-class k is defined as �k(c) = d = {di}i∈Z where
di = ki+1 − ki .

For any gap sequence d = �k(c), let σ(d) be the set of all partial sums of
consecutive terms in d. Equivalently,

σ(d) = {x : c(a) = c(x + a) = k for some a ∈ Z}.

Given a coloring c, let σ(c) :=⋃i σ (�i(c)). By definition, we obtain

Proposition 4 Let c be a function c : Z → {0, 1, 2}. Then c is a D-consistent
coloring if and only if σ(c) ∩D = ∅.

Often the colorings considered are periodic. This is denoted by enclosing the
repeated block in parenthesis. As an example of these definitions, consider the
periodic coloring function c defined by

c(i) =

⎧
⎪⎪⎨
⎪⎪⎩

0 if i ≡ 0, 1, 5, 6, 10, 11, 16 (mod 21)

1 if i ≡ 2, 7, 8, 12, 13, 17, 18 (mod 21)

2 if i ≡ 3, 4, 9, 14, 15, 19, 20 (mod 21).

The corresponding coloring sequence is c = (001220011200112201122), and
the three color classes are:

0 = {. . . 0, 1, 5, 6, 10, 11, 16, . . . }
1 = {. . . 2, 7, 8, 12, 13, 17, 18, . . . }
2 = {. . . 3, 4, 9, 14, 15, 19, 20, . . . }.

The three gap sequences are:
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�0(c) = (1, 4, 1, 4, 1, 5, 5)

�1(c) = (5, 1, 4, 1, 4, 1, 5)

�2(c) = (1, 5, 5, 1, 4, 1, 4).

Since each of these gap sequences is a cyclic permutation of the others, the partial
sums are the same for each:

σ(�0(c)) = σ(c) = {x : x ≡ 0,±1,±4,±5,±6,±9,±10 (mod 21)}

Since {2, 3, 7, 19} ∩ σ(c) = ∅, by Proposition 4, c is a {2, 3, 7, 19}-consistent 3-
coloring.

4.1 Characterizing Gap Sequences

For either a color sequence or a gap sequence, we call any finite set of consecutive
terms a block of the sequence. In this section we will investigate what blocks are
possible for the gap sequences of a {2,3,7,19}-consistent coloring. Blocks of length
l will be called l-blocks. In order to show that certain blocks are not possible,
we will need to investigate how all three color classes interact. A gap sequence
d almost completely determines a color sequence, as made precise by the following
proposition from [4]:

Proposition 5 If d is a {2, 3}-consistent gap sequence, then d = �0(c) where, up
to a permutation of the labels, c is given by the following rule that assigns terms of
the gap sequence to blocks of a color sequence:

θ(di) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if di = 1

0112 if di−1 > 1 and di = 4

01z2 if di−1didi+1 = 141

0122 if di = 4 and di+1 > 1

01122 if di = 5

where z ∈ {1, 2} can be arbitrarily chosen for each 141 block in d.

The only possible gaps between consecutive elements of a color class are 1, 4
and 5. The fact that 2 or 3 cannot be gaps follows clearly from the definition, and
the fact that no gap can be greater than 5 follows from existence of a 5-cycle in any
block of five consecutive integers.

There are 9 possible 2-blocks of 1, 4, and 5: 11, 14, 15, 41, 44, 45, 51, 54, 55.
Of these, 11 is impossible since it contains a partial sum of 2. In the following we
prove that 44, 45, and 54 are also impossible.
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Proposition 6 Any {2, 3, 7, 19}-consistent gap sequence cannot contain a 2-blocks
of the form 44, 45, or 54.

Proof We consider each case separately.

Case 1: Let d be a {2, 3, 7, 19}-consistent gap sequence containing a 44 block.
By Proposition 5, the corresponding color sequence must have the form c =
. . . 012201120 . . . . Without loss of generality, let c0 = 0, c1 = 1, c3 = 2, etc.
We can now make the following chain of inferences:

(c0 = 0) ∧ (c1 = 1) ∧ (c2 = 2) �⇒ (c−2 = 2) ∧ (c−1 = 0)

(c7 = 2) ∧ (c8 = 0) �⇒ c10 = 1

(c−2 = 2) ∧ (c10 = 1) �⇒ c17 = 0

(c6 = 1) ∧ (c7 = 2) ∧ (c17 = 0) �⇒ (c9 = 0) ∧ (c14 = 1) �⇒ c16 = 2

(c9 = 0) ∧ (c5 = 1) �⇒ c12 = 2

(c12 = 2) ∧ (c8 = 0) �⇒ c15 = 1

The fact that c−1 = 0, c15 = 1 and c16 = 2 implies that c18 cannot be properly
colored, contradicting that d is a {2, 3, 7, 19}-consistent gap sequence.

Case 2: Let d be a {2, 3, 7, 19}-consistent gap sequence containing the 2-block
45. By Proposition 5, we can assume the associated coloring sequence c contains
the following block: c0 . . . c9 = 0122011220. Then

(c0 = 0) ∧ (c1 = 1) �⇒ c−2 = 2

(c5 = 1) ∧ (c9 = 0) �⇒ c12 = 2

(c0 = 0) ∧ (c12 = 2) ∧ (c11 = 1) �⇒ (c19 = 1) ∧ (c14 = 0) �⇒ c17 = 2.

This is a contradiction as c−2 = c17.
Case 3: Let d be a {2, 3, 7, 19}-consistent gap sequence containing the 2-block

54. By Proposition 5, we can assume the associated coloring sequence c contains
the following block: c0 . . . c9 = 0112201120. Then

(c7 = 1) ∧ (c8 = 2) ∧ (c9 = 0) �⇒ (c10 = 0) ∧ (c11 = 1) �⇒ c13 = 2

(c9 = 0) ∧ (c13 = 2) ∧ (c1 = 1) �⇒ (c16 = 1) ∧ (c20 = 0) �⇒ c23 = 2.

This is a contradiction, since c4 = c23.
��

From the five allowable 2-blocks, nine 3-blocks can be built: 141, 151, 155, 414,
415, 514, 515, 551, 555. Of these, 151 produces a partial sum of 7, and is therefore
not possible. In the following we prove 515 is also not possible.
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Proposition 7 Any {2, 3, 7, 19}-consistent gap sequence cannot contain the 3-
block 515.

Proof Let d be a {2, 3, 7, 19}-consistent gap sequence containing the 3-block 515.
By Proposition 5, we can assume the associated coloring sequence c contains the
following block: c0 . . . c11 = 011220011220. Then the fact that c1 = c8 = 1
contradicts the fact that c is a proper coloring. ��

Finally three larger blocks are not allowed: 5555, 14141414 and 51415. The
block 14141414 contains a partial sum of 19, and therefore cannot be in a
{2, 3, 7, 19}-consistent gap sequence. In the following we prove that 5555 and 51415
are also impossible.

Proposition 8 Any {2, 3, 7, 19}-consistent gap sequence cannot contain the block
5555 nor 51415.

Proof First, assume d is a {2, 3, 7, 19}-consistent gap sequence containing 5555.
By Proposition 5, the associated color sequence contains the following block:

c0 . . . c19 = 01122011220112201122.

The fact that c1 = 1 and c13 = 2 implies c20 = 0, but this together with the fact that
c4 = 2 and c16 = 1 means that c23 cannot be properly colored.

Next, assume d is a {2, 3, 7, 19}-consistent gap sequence containing the block
51415. By Proposition 5, the associated color sequence must contain the following
block:

c0 . . . c15 = 01122001x2001122

where c8 = x ∈ {1, 2} is not determined by the θ -rule. But the fact that c1 = 1,
c6 = 0 and c15 = 2 implies that c8 cannot be properly colored. ��

With the above classification of allowable blocks, we can characterize the
possible {2, 3, 7, 19}-consistent gap sequences. The fact that 151, 45, 54 and 5555
are all impossible implies that any time a 5 occurs it must be part of a 1551 or a
15551 block. The fact that 11, 44 and 14141414 are all impossible implies that a 5
must occur in all gap sequences. The fact that 515 and 51415 are impossible implies
that any {2, 3, 7, 19}-consistent gap sequence can be partitioned into a sequence
consisting entirely of the following four blocks:

C1 = 1414155, C2 = 14141555, C3 = 141414155, C4 = 1414141555.
(2)
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4.2 Characterizing Color Sequences

The monochromatic gap sequences are not sufficient to classify all sets
{2, 3, 7, 19, p}, as 43 �∈ σ(d) when d := (C1C2). As we are concerned with
{2, 3, 7, 19}-consistent colorings we can strengthen Proposition 5 to the following:

Lemma 4 If d is a {2, 3, 7, 19}-consistent gap sequence, then d = �0(c) where,
up to a permutation of the labels, c is given by the following rule:

η(di) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if di = 1

0112 if di−6 · · · di = 5551414 or di · · · di+2 = 415

01z2 if di−6 · · · di+6 = 1551414141551

0122 if di−2 · · · di = 514 or di · · · di+6 = 4141555

01122 if di = 5

where z ∈ {1, 2} can be chosen arbitrarily for each 1551414141551 block in d.

Proof By Proposition 5, we need only prove the cases where di = 4.

Case 1: Suppose di−6 · · · di = 5551414. Then by Proposition 5

θ(di−6 · · · di) = 011220112201122001z12001z22.

The integer 19 spaces before z2 is colored with a 2, so z2 = 1 and η(di) = 0112.
Case 2: Suppose didi+1di+2 = 415. Then

θ(didi+1di+2) = 01z2001122.

The integer 7 spaces after z is colored with a 2, so z = 1 and η(di) = 0112.
Case 3: Suppose di−2di−1di = 514. Then

θ(di−2di−1di) = 01122001z2.

The integer 7 spaces before z is colored with a 1, so z = 2 and η(di) = 0122.
Case 4: Suppose di · · · di+6 = 4141555. Then

θ(di · · · di+6) = 01z12001z220011220112201122.

The integer 19 spaces after z1 is colored with a 1, so z1 = 2 and η(di) = 0122.
Case 5: The only block that has not been covered by the previous four cases is:

di−6 · · · di+6 = 1551414141551,

where the indeterminate color z in θ(di) can still be either 1 or 2.
��
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Our four gap sequence blocks can now be expanded to color sequence blocks.
The strengthened η in Lemma 4 completely determines the color sequences from
C1, C2 and C4. The block C3 can expand into two different color sequence blocks,
depending on the choice for z.

A1 := η(C1) = 001220011200112201122

A2 := η(C2) = 00122001120011220112201122

A3 := η(C3) = 00122001120011200112201122 (with z = 1)

A′3 := η(C3) = 00122001220011200112201122 (with z = 2)

A4 := η(C4) = 0012200122001120011220112201122.

It is more convenient to work with gap sequence triples rather than undiffer-
entiated color sequences, so we unravel the above color sequences into the gap
sequences for each color class.

�0(A1) = 1414155 �1(A1) = 5141415 �2(A1) = 1551414

�0(A2) = 14141555 �1(A2) = 514141415 �2(A2) = 155141414

�0(A3) = 141414155 �1(A3) = 514141415 �2(A3) = 15551414

�0(A
′
3) = 141414155 �1(A

′
3) = 55141415 �2(A

′
3) = 141551414

�0(A4) = 1414141555 �1(A4) = 5514141415 �2(A4) = 14155141414.

Thus any color sequence c can be partitioned into a sequence of blocks {Xi}
where Xi ∈ {A1, A2, A3, A

′
3, A4}. But we need to put some restrictions on which

blocks can follow one another. Considering �2(c), it is clear that A2 cannot be
followed by either A′3 or A4, since this would create a 14141414 block. Similarly
A4 cannot be followed by either A′3 or A4. Otherwise the blocks can be freely
concatenated.

4.3 Guaranteed Partial Sums

Theorem 4 If p ∈ {31, 37, 41}, then {2, 3, 7, 19, p} is class 4.

Proof Let p ∈ {31, 37, 41}, and assume that c is a {2, 3, 7, 19, p}-consistent 3-
coloring. We know that d := �0(c) must contain at least one of the blocks C1,
C2, C3 or C4. Let |Ci | denote the sum of all the terms in Ci . That is, |C1| = 21,
|C2| = |C3| = 26, and |C4| = 31. By the structure of {2, 3, 7, 19}-consistent gap
sequences (the blocks of (2)), we know that, regardless of what block precedes or
follows Ci , the sequence must have the form
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d = · · · 55Ci14141 · · ·

Thus we know σ(d) will contain the set {|Ci |+n:n∈{1, 5, 6, 10, 11, 15, 16, 20, 21}}.
Since

31 = |C1| + 10 = |C2| + 5 = |C3| + 5 = |C4|,
37 = |C1| + 16 = |C2| + 11 = |C3| + 11 = |C4| + 6,

41 = |C1| + 20 = |C2| + 15 = |C3| + 15 = |C4| + 10,

we know that {21, 37, 41} ⊂ σ(d), and by Proposition 4 this contradicts the claim
that c is a {2, 3, 7, 19, p}-consistent 3-coloring. ��
Theorem 5 {2, 3, 7, 19, 43} is class 4.

Proof Assume that c is a {2, 3, 7, 19, 43}-consistent 3-coloring.

Case 1: Suppose c contains the block A1. The fact that |�2(A1)| = 21 and, no
matter what blocks follow, �2(c) has an initial sum of 22 implies that c has a
partial sum of 43, contradicting the claim that c is a consistent coloring.

Case 2: Suppose c contains A2, A3 or A′3. Each of these blocks has sum 26. Thus
the fact that �2(c) has an initial sum of 17 no matter what block follows implies
c contains a partial sum of 43, a contradiction.

Case 3: Suppose c contains A4. Note that |A4| = 31. As the block after A4 cannot
be A′3 or A4, �1(c) must be of the form

· · · 15�1(A4)51 · · ·

This gives a partial sum of 43, a contradiction.

In all three cases c cannot be a consistent 3-coloring, and the result follows. ��
For the rest of the primes, the arguments only get more involved. We leave the

verification that the partial sums of each color sequence of the prescribed form
contain each prime listed at the beginning of this section to a computer (see [16]). To
do so we construct an infinite tree colorings shown in Fig. 2. The tree is mutually
recursively defined with the tree colorings’ shown in Fig. 3. Any path of the tree
colorings, concatenating the color sequence blocks at each vertex, will produce
a color sequence of the form

∑
Ai . Any path producing either a block A2 or A4

must be followed by a path producing either A1, A2 or A3. This is represented by
the pruned tree colorings’. Conversely, any one way infinite coloring sequence
will be contained in a path of colorings. Thus it suffices to show that each path
in colorings contains a partial sum of p for each prime p considered.

This is done by the pair of functions pathsToLists and check. The function
pathsToLists tree n creates a list of lists of length n, representing all the
paths of length n in tree. Then the function check p is a Boolean function that,
when applied to a list, returns True if the list contains a pair of equal elements with
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Fig. 2 The tree colorings

Fig. 3 The tree
colorings’

indices differing by p. This is equivalent to checking whether the coloring block
represented by the list contains a partial sum of p. In this way, running the Haskell
code in [16] verifies the following proposition.

Proposition 9 The set D = {2, 3, 7, 19, p} is class 4 for any p in the following set:

{31, 37, 41, 43, 47, 53, 67, 73, 79, 83, 89, 109, 131, 151, 157, 167, 193}.

5 Conclusion

By establishing Theorem 3 we completely classify the prime sets {2, 3, 7, 19, p}
and settle most of the more general family of the form {2, 3, 7, p, q}. Further we
propose the following conjecture:

Conjecture 1 A prime set of the form D = {2, 3, 7, p, q} is minimal class 4 if and
only if the pair (p, q) is one of the 31 pairs listed in Theorem 3 part 2.

In order to establish this conjecture, the 14 prime pairs not covered by Proposi-
tion 9 would need to be proven class 4. While the block method developed in Sect. 4
could be extended to more general distance sets, the results of that section are very
tied to the fact that both 7 and 19 are in D. This makes it seem unlikely that the
method would be tractable to the other 14 sets of the form {2, 3, 7, p, q}.

To confirm the conjecture, in addition the condition that p �≡ 2311139, 2311163
(mod 4622310) when q = p + 8 would need to be removed. We believe that the
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most economical way to prove those D sets are indeed class 3 might be to find
periodic 3-colorings for the associated distance graphs.
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Combinatorial Characterization of Queer
Supercrystals (Survey)

Maria Gillespie, Graham Hawkes, Wencin Poh, and Anne Schilling

1 Introduction

The representation theory of Lie algebras is of fundamental importance, and
hence combinatorial models for representations, especially those amenable to
computation, are of great use. In the 1990s, Kashiwara [1] showed that integrable
highest weight representations of the Drinfeld–Jimbo quantum groups Uq(g), where
g is a symmetrizable Kac–Moody Lie algebra, in the q → 0 limit result in
a combinatorial skeleton of the integrable representation. He coined the term
crystal bases, reflecting the fact that q corresponds to the temperature of the
underlying physical system. Since then, crystal bases have appeared in many
areas of mathematics, including algebraic geometry, combinatorics, mathematical
physics, representation theory, and number theory. One of the major advances in the
theory of crystals for simply-laced Lie algebras was the discovery by Stembridge [2]
of local axioms that uniquely characterize the crystal graphs corresponding to Lie
algebra representations. These local axioms provide a completely combinatorial
approach to the theory of crystals; this viewpoint was taken in [3].

Lie superalgebras [4] arose in physics in theories that unify bosons and fermions.
They are essential in modern string theories [5] and appear in other areas of
mathematics, such as the projective representations of the symmetric group. The
crystal basis theory has been developed for various quantum superalgebras [6–
12]. In this paper, we are in particular interested in the queer superalgebra
q(n) (see for example [13]). A theory of highest weight crystals for the queer
superalgebra q(n) was recently developed by Grantcharov et al. [7–9]. They provide
an explicit combinatorial realization of the highest weight crystal bases in terms of
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semistandard decomposition tableaux and show how these crystals can be derived
from a tensor product rule and the vector representation. They also use the tensor
product rule to derive a Littlewood–Richardson rule. Choi and Kwon [14] provide a
new characterization of Littlewood–Richardson–Stembridge tableaux for Schur P -
functions by using the theory of q(n)-crystals. Independently, Hiroshima [15] and
Assaf and Oguz [16, 17] defined a queer crystal structure on semistandard shifted
tableaux, extending the type A crystal structure of [18] on these tableaux.

In this paper, we provide a characterization of the queer supercrystals in analogy
to Stembridge’s [2] characterization of crystals associated to classical simply-laced
root systems. Assaf and Oguz [16, 17] conjecture a local characterization of queer
crystals in the spirit of Stembridge [2], which involves local relations between the
odd crystal operator f−1 with the type An−1 crystal operators fi for 1 � i < n.
However, we provide a counterexample to [17, Conjecture 4.16], which conjectures
that these local axioms uniquely characterize the queer supercrystals. Instead, we
define a new graph G(C) on the relations between the type A components of the
queer supercrystal C, which together with Assaf’s and Oguz’ local queer axioms
and further new axioms uniquely fixes the queer crystal structure (see Theorem 3).
We provide a combinatorial description of G(C) by providing the combinatorial
rules for all odd queer crystal operators f−i on certain highest weight elements for
1 � i < n. A long version of this paper containing all proofs is available in [19].

2 Queer Supercrystals

An (abstract) crystal of type An is a nonempty set B together with the maps
ei, fi : B → B � {0} for i ∈ I and wt : B → �, where � = Z

n+1
�0 is the weight

lattice of the root of type An and I = {1, 2, . . . , n} is the index set, subject to several
conditions. Denote by αi = εi − εi+1 for i ∈ I the simple roots of type An, where
εi is the i-th standard basis vector of Zn+1. Then we require:

A1. For b, b′ ∈ B, we have fib = b′ if and only if b = eib
′. Also wt(b′) =

wt(b)− αi .

For b ∈ B, we also define ϕi(b) = max{k ∈ Z�0 | f k
i (b) �= 0} and εi(b) =

max{k ∈ Z�0 | eki (b) �= 0}. For further details, see for example [3, Definition 2.13].
There is an action of the symmetric group Sn on a type An crystal B given by the

operators

si(b) =
{
f k
i (b) if k � 0,

e−k
i (b) if k < 0,

(1)

for b ∈ B, where k = ϕi(b) − εi(b). An element b ∈ B is called highest weight if
ei(b) = 0 for all i ∈ I . For a subset J ⊆ I , we say that b is J -highest weight if
ei(b) = 0 for all i ∈ J . We are now ready to define an abstract queer crystal.
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Fig. 1 q(n+ 1)-queer crystal
of letters B

Definition 1 ([8, Definition 1.9]) An abstract q(n+ 1)-crystal is a type An crystal
B together with the maps e−1, f−1 : B → B � {0} satisfying the following
conditions:

Q1. wt(B) ⊂ �;
Q2. wt(e−1b) = wt(b)+ α1 and wt(f−1b) = wt(b)− α1;
Q3. for all b, b′ ∈ B, f−1b = b′ if and only if b = e−1b

′;
Q4. if 3 � i � n, we have (a) the crystal operators e−1 and f−1 commute with ei

and fi and (b) if e−1b ∈ B, then εi(e−1b) = εi(b) and ϕi(e−1b) = ϕi(b).

Given two q(n + 1)-crystals B1 and B2, Grantcharov et al. [8, Theorem 1.8]
provide a crystal on the tensor product B1 ⊗ B2, which we state here in reverse
convention. It consists of the type An tensor product rule (see for example [3,
Section 2.3]) and the tensor product rule for b1 ⊗ b2 ∈ B1 ⊗ B2

e−1(b1 ⊗ b2) =
{
b1 ⊗ e−1b2 if wt(b1)1 = wt(b1)2 = 0,

e−1b1 ⊗ b2 otherwise,
(2)

and similarly for f−1. Queer supercrystals are connected components ofB⊗�, where
B is the q(n+ 1)-queer crystal of letters depicted in Fig. 1.

In addition to the queer crystal operators f−1, f1, . . . , fn and e−1, e1, . . . , en, we
define crystal operators f−i := s

w−1
i

f−1swi
and e−i := s

w−1
i

e−1swi
for 1 < i � n,

where swi
= s2 · · · sis1 · · · si−1 with si as in (1). By [8, Theorem 1.14], with all

operators ei, fi for i ∈ {±1,±2, . . . ,±n} each connected component of B⊗� has a
unique highest weight vector.

The operators fi for i ∈ I0 have an easy combinatorial description on b ∈ B⊗�

given by the signature rule, which can be directly derived from the tensor product
rule (see for example [3, Section 2.4]). One can consider b as a word in the alphabet
{1, 2, . . . , n+1}. Consider the subword of b consisting only of the letters i and i+1.
Pair any consecutive letters i + 1, i in this order, remove this pair, and repeat. Then
fi changes the rightmost unpaired i to i + 1; if there is no such letter fi(b) = 0.
Similarly, ei changes the leftmost unpaired i + 1 to i; if there is no such letter
ei(b) = 0.

Remark 1 From (2), one may also derive a simple combinatorial rule for f−1 and
e−1. Consider the subword v of b ∈ B⊗� consisting of the letters 1 and 2. The crystal
operator f−1 on b is defined if the leftmost letter of v is a 1, in which case it turns it
into a 2. Otherwise f−1(b) = 0. Similarly, e−1 on b is defined if the leftmost letter
of v is a 2, in which case it turns it into a 1. Otherwise e−1(b) = 0.

We now give explicit descriptions of ϕ−i (b) and f−ib for J -highest-weight
elements b ∈ B⊗� for certain J ⊆ I0 := {1, 2, . . . , n} (see Proposition 1 and
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Theorem 1). We will need these results in Sect. 4 when we characterize certain
graphs on the type A components of the queer crystal.

Definition 2 The initial k-sequence of a word b = b1 . . . b� ∈ B⊗�, if it exists, is
the sequence of letters bpk

, bpk−1 , . . . , bp1 , where bpk
is the leftmost k and bpj

is
the leftmost j to the right of bpj+1 for all 1 � j < k.

Let i ∈ I0 and b ∈ B⊗� be {1, 2, . . . , i}-highest weight with wt(b)i+1 > 0,
where wt(b)i+1 is the (i + 1)-st entry in wt(b) ∈ Z

n+1. Then note that b has an
initial (i + 1)-sequence, say bpi+1 , bpi

, . . . , bp1 . Also let bqi , bqi−1 , . . . , bq1 be the
initial i-sequence of b. Note that pi+1 < pi < · · · < p1 and qi < qi−1 < · · · < q1
by the definition of initial sequence. Furthermore either qj = pj or qj < pj+1 for
all 1 � j � i.

Proposition 1 Let b ∈ B⊗� be {1, 2, . . . , i}-highest weight for i ∈ I0. Then
ϕ−i (b) = 1 if and only if wt(b)i > 0 and either wt(b)i+1 = 0 or pj �= qj for
all j ∈ {1, 2, . . . , i}.
Example 1 Take b = 1331242312111 and i = 3. Then p4 = 6, p3 = 8, p2 =
10, p1 = 11 and q3 = 2, q2 = 5, q1 = 9. We indicate the chosen letters pj by
underlines and qj by overlines: b = 1331242312111. Since no letter has a both an
overline and underline (meaning pj �= qj for all j ), we have ϕ−3(b) = 1.

Recall that in a queer crystal B an element b ∈ B is highest-weight if ei(b) = 0
for all i ∈ I0 ∪ I−, where I0 = {1, 2, . . . , n} and I− = {−1,−2, . . . ,−n}.
Proposition 2 ([8, Prop.1.13]) Let b ∈ B⊗� be highest weight. Then wt(b) is a
strict partition.

Next, we provide an explicit description of f−i (b) for i ∈ I0, when b is
{1, 2, . . . , i}-highest weight. Recall that the sequence bqi , bqi−1 , . . . , bq1 is the
leftmost sequence of letters i, i − 1, . . . , 1 from left to right. Set r1 = q1 and
recursively define rj < rj−1 for 1 < j � i to be maximal such that brj = j .
Note that by definition qj � rj . Let 1 � k � i be maximal such that qk = rk .

Theorem 1 Let b ∈ B⊗� be {1, 2, . . . , i}-highest weight for i ∈ I0 and ϕ−i (b) = 1
(see Proposition 1). Then f−i (b) is obtained from b by changing bqj = j to j − 1
for j = i, i − 1, . . . , k + 1 and brj = j to j + 1 for j = i, i − 1, . . . , k.

Example 2 Let us continue Example 1 with b = 1331242312111 and i = 3. We
overline bqj and underline brj , so that b = 1331242312111. From this we read
off q3 = 2, q2 = 5, q1 = 9, r3 = 3, r2 = 7, r1 = 9, k = 1 and f−3(b) =
1241143322111.

As another example, take b = 545423321211 in the q(6)-crystalB⊗12 and i = 5.
Again, we overline bqj and underline brj , so that b = 545423321211. This means
that q5 = 1, q4 = 2, q3 = 6, q2 = 8, q1 = 9, r5 = 3, r4 = 4, r3 = 7, r2 = 8,
r1 = 9, k = 2, and f−5(b) = 436522431211.
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Corollary 1 Let b ∈ B⊗� be J -highest weight for {1, 2, . . . , i} ⊆ J ⊆ I0 and
ϕ−i (b) = 1 for some i ∈ I0. Then:

1. Either f−i (b) = fi(b) or f−i (b) is J -highest weight.
2. f−i (b) is I0-highest weight only if b = fi+1fi+2 · · · fh−1u for some n + 1 �

h > i and u a I0-highest weight element.

3 Local Axioms

In [17, Definition 4.11], Assaf and Oguz give a definition of regular queer crystals.
In essence, their axioms are rephrased in the following definition, where Ĩ := I0 ∪
{−1}.
Definition 3 (Local Queer Axioms) Let C be a graph with labeled directed edges
given by fi for i ∈ I0 and f−1. If b′ = fjb for j ∈ Ĩ define ej by b = ej b

′.

LQ1. The subgraph with all vertices but only edges labeled by i ∈ I0 is a type An

Stembridge crystal.
LQ2. ϕ−1(b), ε−1(b) ∈ {0, 1} for all b ∈ C.
LQ3. ϕ−1(b)+ ε−1(b) > 0 if wt(b)1 + wt(b)2 > 0.
LQ4. Assume ϕ−1(b) = 1 for b ∈ C.

(a) If ϕ1(b) > 2, we have f1f−1(b) = f−1f1(b), ϕ1(b) = ϕ1(f−1(b)) + 2,
and ε1(b) = ε1(f−1(b)).

(b) If ϕ1(b) = 1, we have f1(b) = f−1(b).

LQ5. Assume ϕ−1(b) = 1 for b ∈ C.

(a) If ϕ2(b) > 0, we have f2f−1(b) = f−1f2(b), ϕ2(b) = ϕ2(f−1(b)) − 1,
and ε2(b) = ε2(f−1(b)).

(b) If ϕ2(b) = 0, we have

ϕ2(b) = ϕ2(f−1(b))− 1 = 0, or ϕ2(b) = ϕ2(f−1(b)) = 0,

ε2(b) = ε2(f−1(b)), ε2(b) = ε2(f−1(b))+ 1.

LQ6. Assume that ϕ−1(b) = 1 and ϕi(b) > 0 with i � 3 for b ∈ C. Then
fif−1(b) = f−1fi(b), ϕi(b) = ϕi(f−1(b)), and εi(b) = εi(f−1(b)).

Axioms LQ4 and LQ5 are illustrated in Fig. 2.

Proposition 3 ([17]) The queer crystal of words B⊗� satisfies the axioms in
Definition 3.

In [17, Conjecture 4.16], Assaf and Oguz conjecture that every regular queer
crystal is a normal queer crystal. In other words, every connected graph satisfying
the local queer axioms of Definition 3 is isomorphic to a connected component
in some B⊗�. We provide a counterexample to this claim in [19, Figure 3]. This
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Fig. 2 Illustration of axioms
LQ4 (left) and LQ5 (right).
The (−1)-arrow at the bottom
of the right figure might or
might not be there

counterexample is based on the I0-components of the q(3)-crystal of highest weight
(4, 2, 0). In addition to the usual queer crystal, there is another choice of arrows that
does not violate the conditions of Definition 3.

The problem with Axiom LQ5 illustrated in Fig. 2 is that the (−1)-arrow at
the bottom of the 2-strings is not closed at the top. Hence, as demonstrated by
the counterexample in switching components with the same I0-highest weights can
cause non-uniqueness.

4 Graph on Type A Components

Definition 4 Let C be a crystal with index set I0∪{−1} that is a Stembridge crystal
of type An when restricted to the arrows labeled I0. We define the component graph
of C, denoted by G(C), as the following simple directed graph. The vertices of
G(C) are the type An components of C (typically labeled by their highest weight
elements). There is a directed edge from vertex C1 to vertex C2, if there is an element
b1 in component C1 and an element b2 in component C2 such that f−1b1 = b2.

Example 3 Let C be the connected component in the q(3)-crystal B⊗6 with highest
weight element 1⊗ 2⊗ 1⊗ 1⊗ 2⊗ 1 of highest weight (4, 2, 0). The graph G(C)
is given in Fig. 3 on the left. The graph G(C′) for the counterexample C′ in [19,
Figure 3] is given in Fig. 3 on the right. Since the two graphs are not isomorphic
as unlabeled graphs, this confirms that the purple dashed arrows in [19, Figure 3]
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Fig. 3 Left: G(C) for the crystals of Example 3. Right: G(C′) for the crystals of Example 3

do not give the queer crystal even though the induced crystal satisfies the axioms in
Definition 3.

Next we show that the arrows in G(C), where C is a connected component in
B⊗�, can be modeled by e−i on type A highest weight elements.

Proposition 4 Let C be a connected component in the q(n + 1)-crystal B⊗�. Let
C1 and C2 be two distinct type An components in C and let u2 be the I0-highest
weight element in C2. Then there is an edge from C1 to C2 in G(C) if and only if
e−iu2 ∈ C1 for some i ∈ I0.

By Proposition 4, there is an edge from component C1 to component C2 in G(C)
if and only if e−iu2 ∈ C1 for some i ∈ I0, where u2 is the I0-highest weight element
of C2.

We call the arrow combinatorial if e−iu2 is {1, 2, . . . , i}-highest weight. Define
f(−i,h) := f−ifi+1fi+2 · · · fh−1.

Theorem 2 Let C be a connected component in B⊗�. Then each combinatorial
edge in G(C) can be obtained by f(−i,h) for some i ∈ I0 and h > i minimal such
that f(−i,h) applies.

In [19], we showed that it suffices to know the combinatorial edges to construct
all vertices in G(C). By Theorem 2, every combinatorial edge in the graph is labeled
by the operator f(−i,h), where f−i is given by the combinatorial rules stated in
Theorem 1 and connects an I0-highest weight element to another I0-highest weight
element. Hence, all vertices of G(C) can be constructed from the q(n + 1)-highest
weight element u by the application of these combinatorial arrows.
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Remark 2 The construction of the component graph of C with highest weight λ

produces a Schur expansion of the Schur-P polynomial Pλ(x1, . . . , xn+1). This
expansion is obtained by counting the multiplicities of highest weights for all type
An components that are present in G(C). For example, the component graph in
Example 3 yields the expansion P42 = s42 + s33 + s411 + 2s321 + s222.

5 Characterization of Queer Crystals

Our main theorem gives a characterization of the queer supercrystals.

Theorem 3 Let C be a connected component of a generic abstract queer crystal
(see Definition 1). Suppose that C satisfies the following conditions:

1. C satisfies the local queer axioms of Definition 3.
2. C satisfies the connectivity axioms of [19, Definition 4.4].
3. G(C) is isomorphic to G(D), whereD is some connected component of B⊗�.

Then the queer supercrystals C andD are isomorphic.
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Enumerating in Coxeter Groups (Survey)

Bridget Eileen Tenner

1 Introduction

A Coxeter group is defined by a set of generators S and relations of the form

(ss′)m(s,s′) = e

for s, s′ ∈ S, with m(s, s) = 1. There are many so-called “types” of Coxeter
groups, with, perhaps, the most well-studied being the finite Coxeter group of type
A, also known as the symmetric group. Due to the length of this article, we focus
our discussion on the symmetric group and, as appropriate, cite analogous results
for Coxeter groups of other types. The other types referenced will most often be B

and D, which have interpretations as signed permutations and signed permutations
with restrictions, respectively. The reader will notice that several of the enumerative
problems discussed here do not have such analogues, and we close this paper by
highlighting a selection of these for future research.

The symmetric group Sn consists of all permutations of {1, . . . , n}, and it is
generated by the adjacent transpositions {si : 1 ≤ i < n}, where si is the
permutation that swaps i and i + 1, and fixes all other elements. (Note that there
are other generating sets for Sn, as well, but the one of interest to us here is the set
of adjacent transpositions.) In addition to being involutions, these generators satisfy
the commutation relation

sisj = sj siwhen|i − j | > 1
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and the braid relation

sisi+1si = si+1sisi+1.

Further information about general Coxeter groups and their combinatorial properties
can be found in the aptly titled [2].

Despite the great interest in Coxeter groups from a variety of mathematical per-
spectives, many questions about them remain unanswered. Combinatorial aspects
of these objects are no outlier in this sense, and open combinatorial questions range
from an understanding of intricate structural features to fundamental enumerative
issues.

Counting questions about Coxeter groups can take a range of forms, including
the enumeration of Coxeter group elements that possess certain properties, and the
quantification of particular features of the group elements themselves. In this article,
we present problems in both of these categories. We also hint at large classes of open
questions. In this way, we hope to attract and inspire new work in this area, where
this is much yet to be done and much potential interest in the results.

2 Main Tools

The main tools for our work are two theorems from the literature. Before we can
state these, we make a few important definitions. We phrase these in terms of the
symmetric group because that is the focus of this work, but analogous objects exist
for Coxeter groups of other types, too.

Definition 1 A reduced decomposition of a permutation w ∈ Sn is a decomposition
of w into minimally many generators: w = si1 · · · si�(w)

. This minimal value �(w) is
the length of w. The set of all reduced decompositions of w is denoted R(w).

A permutation can have many reduced decompositions, as demonstrated below.
The number of reduced decompositions of a permutation was calculated in [10] in
terms of standard Young tableaux.

Example 1 Let w ∈ S4 be such that w(1) = 3, w(2) = 2, w(3) = 4, and w(4) = 1.
This permutation has three reduced decompositions:

w = s2s1s2s3 = s1s2s1s3 = s1s2s3s1,

where we think of the adjacent transpositions as maps, and thus compose them from
right to left.

The Coxeter relations described above can act on reduced decompositions. They
do this by replacing sisj by sj si when |i − j | > 1, and sisi+1si by si+1sisi+1. Each
of these actions suggests an equivalence relation on the elements of R(w).
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Definition 2 Let w be a permutation and R(w) its set of reduced decompositions.
This set has two natural partitions, arising from the Coxeter relations:

• the commutation classes of w are C(w) := R(w)/(sisj ∼ sj si) when |i−j | > 1,
and

• the braid classes of w are B(w) := R(w)/(sisi+1si ∼ si+1sisi+1).

In [1, §3], the authors consider such relation-based partitions more generally, for
arbitrary Coxeter groups.

That is, any two reduced decompositions that are in the same commutation class
C ∈ C(w) (respectively, braid class B ∈ B(w)) can be obtained from each other
by a sequence of commutation (respectively, braid) moves. We demonstrate these
partitions by continuing the previous example.

Example 2 Let w be as in Example 1. Then

C(w) =
{
{s2s1s2s3}, {s1s2s1s3, s1s2s3s1}

}
and

B(w) =
{
{s2s1s2s3, s1s2s1s3}, {s1s2s3s1}

}
.

Up to now, we have written permutations as products of adjacent transpositions.
In fact, there are many ways to represent permutations, including as products of
different generating sets, as products of cycles, as graphs, as arrow diagrams, and
in one-line notation. The final definition that we need at this point concerns a
seemingly (but not for long!) unrelated feature of permutations, related to the one-
line notation for a permutation.

Definition 3 Let w ∈ Sn be a permutation and write w, in one-line notation, as the
word w(1) · · ·w(n). Let p ∈ Sk be a permutation written similarly, with k ≤ n. The
permutation w contains a p-pattern if there exist j1 < j2 < · · · < jk such that the
subword w(j1) · · ·w(jk) is in the same relative order as the word for p. If this is the
case, then we write p ≺ w. If not, then w avoids p, written p �≺ w.

Example 3 The permutation w from Example 1 is written in one-line notation
as 3241. This permutation has a 231-pattern (in fact, it has two: the subwords
w(1)w(3)w(4) = 341 and w(2)w(3)w(4) = 241 are both order isomorphic to
231). On the other hand, 123 �≺ w.

Although Definition 3 is specific to the symmetric group Sn, there is a notion of
signed pattern for the finite Coxeter groups of types B and D. Despite obvious
parallels between patterns and signed patterns, however, the (unsigned) pattern
literature is notably richer than the literature for signed patterns. The reader is
referred to [6, 7], among many other works.

The two theorems that have been most useful for tackling the problems discussed
here each have a number of technical details. While important, pausing to define
and characterize those details could be distracting in an article of this length. As a
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compromise, we give “big picture” statements of the theorems here, with citations
to their full statements in other works.

Dictionary. There is a way to translate between statements about permutation
patterns and statements about reduced decompositions. (See [11, Theorem 3.8]
and its generalization [13, Theorem 3.9].)

Rhombic Tilings. There is a bijection between rhombic tilings of certain poly-
gons and commutation classes of reduced decompositions. (See [3, Theorem
2.2].)

Elnitsky developed analogous tiling-to-commutation class bijections for types B

and D, as well [3, §§6–7]. In those settings, the tilings have reflective requirements
to account for sign and, in the case of type D, so-called “megatiles” are permitted.

3 Counting Special Elements: An Example

One type of enumerative problem about Coxeter groups would be to count the
elements with a particular property or feature. We given an example of this type
of work here.

There is a natural partial ordering on Coxeter group elements defined in terms of
reduced decompositions.

Definition 4 Let G be a Coxeter group with elements v and w. Then v ≤ w in the
(strong) Bruhat order if a reduced decomposition of v is a subword of a reduced
decomposition of w.

Despite the fact that both v and w in Definition 4 can have multiple reduced
decompositions, this ordering is well-defined. (The weak Bruhat order, which we
do not study here, requires that the reduced decomposition of v appear as a prefix
(or suffix) of a reduced decomposition of w, whereas the Bruhat order does not even
require the reduced decomposition of v to appear as a consecutive subword in the
reduced decomposition of w.)

Viewed as posets under the Bruhat order, Coxeter groups can have quite snarly
structure. The principal order ideal of an element w is the set of all elements that are
less than or equal to w in the poset, and even the principal order ideals in the Bruhat
order need not be well-behaved. To get a sense of which elements might have “nice”
principal order ideals, we consider the following classification.

Definition 5 In a Coxeter group, an element w is a boolean element if its principal
order ideal {v : v ≤ w in the Bruhat order} is a boolean poset.

We demonstrate Definition 5 by looking at boolean elements in the Coxeter group
S4. This group has 13 boolean elements. The poset structure of S4, with those 13
boolean elements highlighted, is shown in Fig. 1.

To support interest in these boolean elements, we note that they describe a
structure with beautiful topology. Indeed, the collection of boolean elements in any
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4132 4213

4312

Fig. 1 The Coxeter group S4, drawn as a poset under the Bruhat order. Group elements are written
as permutations in one-line notation, and the 13 boolean elements of the group are circled

Coxeter group forms a simplicial poset. This poset, then, is the face poset of a regular
cell complex called the boolean complex. If the Coxeter group has rank n, then that
boolean complex is homotopy equivalent to a wedge of (n−1)-dimensional spheres.
This topology is discussed, and in more depth, in [8, 9].

It turns out (see [12]) that, in any Coxeter group, boolean elements can be
identified by whether or not their reduced decompositions have repeated letters. In
the case of the symmetric group, among others, this can also be characterized by
pattern avoidance.

Theorem 1 ([12]) A permutation is boolean iff it avoids 321 and 3412.

Boolean elements in the finite Coxeter groups of types B and D can also be
characterized by (signed, in these cases) pattern avoidance [12, §7].

Having identified these elements, and with such attractive characterizations, it is
enticing to try to enumerate them. In fact, they can be enumerated, both overall and
by length.

Theorem 2 ([4, 14]) The number of boolean permutations in Sn is F2n−1, the odd-
indexed Fibonacci number.

Theorem 3 ([12]) The number of boolean permutations in Sn of length k is
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k∑
i=1

(
n− i

k + 1− i

)(
k − 1

i − 1

)
.

Boolean elements in the finite Coxeter groups of types B and D can be
enumerated [4], and enumerated by length [12, §7]. For type B, these enumerations
closely resemble the type A results cited above, while the results for type D are
notably different and more complicated to state.

Boolean elements are just one example of a noteworthy class of elements in a
Coxeter group whose enumeration might be of interest. Moreover, in enumerating
such a class of objects, one might develop a new characterization for them that could
shed light on other topics or unanswered questions. Depending on the enumerative
technique used, this might even hint at a deeper structure in the group.

4 Counting an Element’s Special Features: An Example

The second category of enumerative problems that we present for Coxeter groups is
to calculate the size of a particular feature of a group element. To demonstrate this,
we look at the reduced decompositions R(w), the commutation classes C(w), and
the braid classes B(w) of a permutation w.

The natural first approach to evaluating the sizes of these sets—to evaluating
the size of anything, really—is a straightforward calculation. Indeed, as discussed
above, Stanley computes |R(w)| by counting Young tableaux of particular shape(s),
with the special case that just one shape is needed iff w is 2143-avoiding [10]. On
the other hand, outside of special cases like classifying the permutations for which
|C(w)| = 1 or those for which |B(w)| = 1, there are no known similar results for
|C(w)| or |B(w)|.

This leads us to a second approach, which is not to evaluate the absolute sizes
of these sets, but to determine relative sizes. “Relative to what?” one might ask.
Recall the Dictionary mentioned above, and the link it provides between reduced
decompositions and permutation patterns. Inspired by that result, we consider
pattern containment as a possible yardstick against which to measure these set sizes.
(Note that the idea of ordering the set of all permutations—of any size—by pattern
containment is not new. Indeed, this leads to a poset whose Möbius function has
been the subject of great interest since at least [15].)

Not only does pattern containment seem to be an appropriate yardstick, but it
yields more information about the sizes of these sets than was previously known.

Theorem 4 ([13])

(a) If p ≺ w then |R(p)| ≤ |R(w)|. Moreover, if p ≺ w and |R(w)| > 1, then
|R(p)| = |R(w)| iff �(p) = �(w); equivalently, iff p and w have equally many
21-patterns.

(b) If p ≺ w then |C(p)| ≤ |C(w)|. Moreover, if p ≺ w, then |C(p)| = |C(w)| iff
p and w have equally many 321-patterns.
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Any analysis of commutation classes is greatly helped by the Rhombic Tilings
result mentioned above. Unfortunately, similar machinery has not (yet) been
developed for studying braid classes. This seems to be more an issue of oversight
than the result of any great complexity to braid classes that might prevent such
machinery’s existence. Braid classes have received some attention (see [1, 16]),
but not nearly as much as commutation classes. Recently, in an attempt to begin
to remedy this, important strides were made in understanding the set B(w) by
considering it simultaneously with C(w) [5].

The strength of that technique is that it recognizes that B(w) and C(w) are both
partitions of the same set, R(w), and so knowledge about one of the partitions might
imply knowledge about the other. In fact, this turns out to be the case, and the sets
can be leveraged against each other to good effect.

In an important sense, these two sets are orthogonal to each other: as shown in
[5], for any permutation w and any B ∈ B(w) and C ∈ C(w),

|B ∩ C| ≤ 1.

Thus, one can index the reduced decompositions of R(w) by ordered pairs (B,C)

representing their braid and commutation classes, and each possible pair appears
at most once in this list. This gives an upper bound to |R(w)| in terms of |B(w)|
and |C(w)|. A lower bound follows from the fact (see, for example, [2]) that any
reduced decomposition for w can be obtained from any other by a sequence of braid
and commutation moves. These bounds are combined in the following theorem.

Theorem 5 ([5]) For any permutation w,

|B(w)| + |C(w)| − 1 ≤ |R(w)| ≤ |B(w)| · |C(w)|.

With so little known about the structure and behavior of braid classes, it is
instructive to try to understand the bounds of Theorem 5. As shown in [5], those
bounds are sharp, and the permutations achieving them can be characterized and
enumerated.

We have used this section to give a sense of this category of enumerative
questions about Coxeter group elements, and the results and implications that they
might have. Certainly there is a substantial range of topics still to be studied, both
related to the discussion above and independent of it.

5 Directions for Future Research

The goal of this article is to demonstrate the different ways that enumerative
combinatorialists might approach the study of Coxeter groups. Although we have
listed many results and cited many sources, the reader should not assume that this is
a “closed” field of study. There is much still to be uncovered about the combinatorics
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of these objects, including questions that have been studied for many years and
others that, themselves, have not yet been identified.

In particular, while some of the results described for the symmetric group have
analogues in Coxeter groups of other types, much remains to be uncovered. There
is every reason to expect, for example, a type B analogue of Theorem 5 relating
braid classes, commutation classes, and the classes R(w)/(s0s1s0s1 ∼ s1s0s1s0).
Similarly, just as Enlitsky’s tiling bijections can be constructed for types B and
D, there may well be a Dictionary for groups of other types. Finally, we reiterate
that while much has studied about commutation classes of reduced decompositions,
much less attention has been given to partitions based on other Coxeter relations.

Acknowledgement Research partially supported by Simons Foundation Collaboration Grant for
Mathematicians 277603.
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Part III
Algebraic Biology



From Chaos to Permanence Using
Control Theory (Research)

Sherli Koshy-Chenthittayil and Elena Dimitrova

1 Introduction

Different aspects of stable coexistence and survival of species in an ecological
system have been studied by biologists and mathematicians. Ecologists have also
considered whether chaotic behavior occurs in biological systems. Schaffer and Kot
[28] give examples of real world chaos in systems such as the Canadian lynx cycle,
outbreaks of Thrips imaginis, and others. Costantino et al. [8] famously observed
chaotic behavior in cultures of flour beetles (Tribolium castaneum) in the 1990s.
Around the same time, Sugihara and May [33] investigated the chaotic trajectories
of real world time series data on measles, chickenpox and marine phytoplankton.
Becks et al. [4] also observed chaotic behavior for certain values of dilution rates
of a chemostat experiment. They studied a predator-prey system consisting of a
bacterivorous ciliate and two bacterial prey species.

Furthermore, models of two prey and one predator [12], a three species food
chain [13], microbial systems [19], multi-trophic ecological systems [32], and
plankton models [10, 16, 23] have exhibited chaos for biologically relevant param-
eters. In [39], instances in the biomedical field are presented where chaos has been
observed. Some examples are the response of cardiac and neural tissue to pacing
stimuli, fluctuations in leukocyte counts in patients with chronic myelogenous
leukemia, and ventricular tachycardia. It is also observed that there is no real insight
on how to prevent or eliminate chaotic arrhythmia and the concept of making small
perturbations to the chaotic system might be more useful. In [9], it is suggested that
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chaotic behavior of populations carries evolutionary advantages. They argue that
since very small changes in the initial conditions of a chaotic system can greatly
alter the system’s trajectory, one doesn’t need to change the system completely to
obtain a desired outcome.

However, survival and chaos have mostly been studied as separate topics. The
goal of this work is to demonstrate how chaotic behavior can indeed be used to
ensure the survival and thriving of the species involved in a system by employing
a practical control such as harvesting of the predator. We provide such a control
algorithm that takes advantage of chaotic trajectories to lead a system from a
situation where one or more of the species may not survive to a state where in the
long term all the species are sufficiently far from extinction.

The outline of the remainder of the paper is as follows: Sect. 2 presents a
mathematical definition of survival of the species in a system and discusses methods
for control through chaos. Section 3 presents the control algorithm we propose.
Section 4 contains applications of the algorithm to predator-prey models which
include harvesting of species.

2 Survival and Chaos

During the 1960s, there were doubts among biologists that either local or global
asymptotic stability was not enough to describe population behavior. R.C. Lewontin
[21] and J. Maynard Smith [22] give an intuitive approach to dynamic boundedness
and permanence, where permanence means that the species remain at a safe
threshold from extinction. There were, however, no mathematical ideas that seemed
helpful in treating these concepts. To remedy this, the idea of persistence, that is

lim sup
t→∞

xi(t) > 0 for all species xi

was introduced in [11] for the autonomous model ẋi = xifi(x) for i = 1, . . . , n.
A disadvantage of this concept is that orbits of a persistent system may approach

the boundary ∂Rn+, thus bringing species dangerously close to extinction. In his
paper, Schreiber [29] discusses multiple definitions of persistence based on [6, 7]
and their dependence on perturbations.

The stronger condition of permanence that avoids this difficulty was introduced
in [30] and is based on the boundary ∂Rn+ being repelling. Proving that a system is
permanent is far from trivial. Below we present several approaches for showing that
a system has the property of permanence.

In [2], a system is said to be permanent if the boundary (including infinity) is an
unreachable repeller or, equivalently, if there exists a compact subset in the interior
of the state space where all orbits starting from the interior eventually end up. The
focus in [2] is primarily on ecological systems of the type
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ẋi = xifi(x) on R
n+

and replicator equations

ẋi = xi(fi(x)−
∑

xifi)

which have been widely investigated in population genetics, population ecology,
the theory of prebiotic evolution of self-replicating polymers and socio-biological
studies of evolution. The concept of permanence, however, can be applied to a wide
range of systems of differential and difference equations.

A sufficient condition for permanence is also presented in [2] with the help of
an average Lyapunov function P . The function P is defined on the state space,
vanishing on the boundary and strictly positive in the interior, such that Ṗ = Pψ

where ψ is a continuous function with the property that for some T > 0,

1

T

ˆ T

0
ψ(x(t))dt > 0 for all x on the boundary.

Another method for proving that a system is permanent is given in [15] and will
be restated here as Theorem 1.We first need the following definitions.

Definition 1 ([15]) Consider a system of the type

ẋi = xifi(x) for i = 1, . . . , n. (1)

• A rest point (steady state) x̄ is saturated if fi(x̄) ≤ 0 for all i (the equality sign
must hold whenever x̄i > 0). A rest point in the interior is trivially saturated.
The quantities fi(x̄) are the eigenvalues of the Jacobian at x̄ whose eigenvectors
are transversal to the boundary face of x̄. Thus they are called transversal
eigenvalues.

• A degenerate saturated rest point is one which has a zero transversal eigenvalue.
• A regular rest point is one which has non-zero eigenvalues.
• If x̄ is a regular rest point, then the index i(x̄) is the sign of the Jacobian Dx̄f .

Hence

i(x̄) = (−1)k

where k is the number of real negative eigenvalues of the Jacobian. For n = 2,
for example, the index of a center, a sink, or a source is+1, while that of a saddle
is −1.

• A boundary rest point is a rest point with at least one zero coordinate.

Theorem 1 ([15]) If the system (1), does not have regular saturated boundary rest
points, then it is permanent.
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Our goal is to take advantage of the chaotic behavior of a non-permanent system
in order to make it permanent. To this end, we employ control theory on the chaotic
orbits to push the system into permanence.

We first notice the following connection between survival and chaos.

Theorem 2 Three-dimensional continuous chaotic systems are persistent.

Proof If a system is not persistent and one of the species dies out, then the
dimension is reduced to two and thus the system cannot be chaotic by the Poincaré–
Bendixson Theorem. ��

Among the first proponents of using a chaotic attractor to control a system were
E. Ott et al. [25]. They observed that a chaotic attractor has typically embedded
within it an infinite number of unstable periodic orbits. In their method (OGY), the
approach was to first determine some of the unstable low-period periodic orbits that
are embedded in the chaotic attractor and then choose one which yields improved
system performance. They then tailored their small time-dependent parameter
perturbations so as to stabilize the existing orbit.

T. L. Vincent [37] first provides a motivation of why chaotic behavior in nonlinear
systems is useful to set up a control design. He mentions that chaotic behavior is
useful in moving a system to various points in the state space without changing the
system drastically. The reasoning is very similar to the one used for the OGY method
in [25]. The chaotic control algorithm in [37] requires two ingredients: a chaotic
attractor and a controllable target. If chaos does not exist, it can be created using
open loop control (where the control function is a function of time). A controllable
target is any subset of the domain of attraction to an equilibrium point, under a
corresponding feedback control law, that has a non-empty intersection with the
chaotic attractor. The controllable target should be large enough so that one does
not have to wait too long for the system to reach it. The algorithm is applied on
three different systems: the Hénon map, bouncing ball system, two-link pendulum
system. The first two are discrete and the third is a four-dimensional continuous
system. Further detailed examples on how to control an inverted pendulum and a
bouncing ball were provided in [38].

Several other control methods were described in [24, 26, 27, 31], to name a few.
Here, we adopt the algorithm in [37] as a foundation of our control method due to
ease of computation and adaptability to different models.

The next two sections provide details on the control algorithm we propose and
its applications to predator-prey models.

3 The Chaotic Control Algorithm (CCA)

We are introducing a control algorithm, CCA (chaotic control algorithm), which
is based on the algorithm presented in [37, 38]. CCA is designed to be applied on
systems which already have chaotic orbits but are not permanent. The output of the
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algorithm is the required closed loop control (i.e. a control function of the state of
the system) which pushes the system into permanence.

Consider the system of non-linear differential equations given by

Ẋ = F [X,U ] (2)

where F = [F1, . . . FNX

]
is an NX-dimensional vector function of the state vector

X = [X1, . . . XNX
], and control vector U = [U1, . . . UNU

]. The control will, in
general, be bounded. Assume that for all t there exists a control Û (t) such that (2)
has a chaotic attractor and is non-permanent. Also assume that for a specified
constant control, Ū , there is a corresponding rest point of interest which is near
the chaotic attractor where the system is permanent. The rest point X̄ is such that

F(X̄, Ū) = 0 (3)

Notice that the rest point need not be stable after optimal control is applied since we
are only interested in making the system permanent.

The steps of the CCA are outlined next.

Input: Rest point X̄ and control Ū such that (3) is satisfied. In particular, Ū is
chosen such that (2) is permanent.

Output: Optimal closed loop control which pushes the chaotic, non-permanent
system into permanence.

1. Linearizing Ẋ = F [X,U ] about the rest point X̄ we have

ẋ = Ax + Bu (4)

where

x = X − X̄, u = U − Ū , A = ∂F

∂X

∣∣∣
X̄,Ū

, and B = ∂F

∂U

∣∣∣
X̄,Ū

.

Now the origin is the rest point for (4) with control u(t) ≡ 0. We are going
to obtain a control such that the origin becomes stable.

2. The linear quadratic regulator (LQR) method determines gains K such
that under full state feedback of the form

u(x) = −Kx (5)

a quadratic performance index is minimized. The performance index is the
infinite integral of the quadratic form xtQx + utRu where Q and R are
symmetric positive definite matrices to be chosen as part of the control
design process.
The gain matrix K is given by

K = R−1BT S
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and the matrix S is determined by solving the Riccati equation given by

SA+ AT S − SBR−1BT S = −Q.

3. Under full state feedback control given by (5), the linearized system is
given by

ẋ = Âx (6)

where

Â = A− BK.

A Lyapunov function of the form

V (x) = xtP x (7)

may now be determined for the linear stable controlled system (6) using
the continuous Lyapunov equation

P Â+ ÂT P = −Q̂

where Q̂ is a positive definite matrix.
For the stable linear system, starting from any point in state space, the

solution obtained for P will result in the property that V̇ < 0 for every
point of the linear system (6) except at the origin where V = 0. This will
prove that the origin is asymptotically stable for (4). This, in turn, implies
that for the nonlinear system (2), the rest point will be asymptotically stable
in some neighborhood containing the rest point.

Figure 1 is a flowchart depicting CCA.
We next apply the CCA and demonstrate how using the chaotic nature of a

system, one can transform it from non-permanent to permanent.

4 Applications of the CCA to Predator-Prey Models

We now investigate two different types of predator-prey models. The models are of
Lotka-Volterra type and Leslie-Gower type. In each case harvesting of one species
is introduced and chaotic behavior is observed for certain parameter values. For
the same parameter values, non-permanence of the species is also observed. Using
the CCA from Sect. 3, we construct a closed loop control (i.e. a control which is a
function of the state of the system) which steers the system towards permanence.
The systems were chosen for their different types of functional responses and since
harvesting of one species was relatively easy to introduce.
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Fig. 1 Flowchart for the
chaotic control algorithm
(CCA) described in Sect. 3

4.1 Control Through Harvesting in a Predator-Prey Model

First we apply the control algorithm to a Lotka-Volterra type two-prey, one-predator
model from [3] where the predator is harvested at a constant rate. Here the
harvesting of the predator will act as a control.

The population dynamics model involves three interacting species, namely the
prey N1 and N2 and the predator P . The harvesting is given by a harvesting function
H(P ). The dynamics is described by Lotka-Volterra type equations given by



92 S. Koshy-Chenthittayil and E. Dimitrova

Ṅ1 = N1(r1 − a11N1 − a12N2 − a13P)

Ṅ2 = N2(r2 − a21N1 − a22N2 − a23P)

Ṗ = P(−r3 + a31N1 + a32N2)−H(P ).

(8)

We consider the harvesting function H(P ) = Hp where Hp is a constant and
0 < Hp < 1. This is known as constant harvest quota. The parameters chosen are
the same as in [3] and are as follows:

r1 = r2 = r3 = a11 = a12 = a22 = a23 = 1, a21 = 1.5, a32 = 0.5, a13 =
5, a31 = 2.5.

Since a12 < a21, the first prey has a competitive advantage, i.e. N1 is the
dominant and N2 the sub-dominant prey. Consider the two-dimensional subsystem
of the preys without predation:

Ṅ1 = N1(r1 − a11N1 − a12N2)

Ṅ2 = N2(r2 − a21N1 − a22N2).

The relation

a11a22 − a12a21 < 0

implies that the system does not have an interior rest point, that is, the species N1
and N2 cannot coexist. This shows that without predation, either one of the prey
species N1 or N2 will die out [40].

4.1.1 Boundedness of the Solutions

Following methods similar to those in [1, 5, 34], we now prove that all solutions
of (8) which initiate in R

3+ are uniformly bounded.
Let W = N1 +N2 + 2P . Then Ẇ = Ṅ1 + Ṅ2 + 2Ṗ . Along the solutions of (8),

we have

Ẇ = N1(1−N1 −N2 − 5P)

+N2(1− 1.5N1 −N2 − P)

+ 2P(−1+ 2.5N1 + 0.5N2)− 2Hp

= N1(1−N1)+N2(1−N2)− 2.5N1N2 − 2P − 2Hp

≤ N1(1−N1)+N2(1−N2)− 2P.

For each constant D > 0, the following inequality holds:

Ẇ +DW ≤ N1(1−N1 +D)+N2(1−N2 +D)+ 2P(D − 1).
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Now if we take D such that 0 < D < 1 and the maximum value
1+D

2
of

both the expressions N1(1 − N1 + D) and N2(1 − N2 + D) with respect to
N1 and N2 respectively, we see that Ẇ + DW ≤ 1 + D = K which implies

that 0 ≤ W(N1, N2, P ) ≤ K

D
+ W(N1(0), N2(0), P (0))e−Dt and so 0 < W ≤

K

D
as t →∞. Therefore, all solutions of (8) that initiate in R

3+ are confined in the

region.

4.1.2 The Harvesting Model

We now consider the harvesting model

Ṅ1 = N1(1−N1 −N2 − 5P)

Ṅ2 = N2(1− 1.5N1 −N2 − P)

Ṗ = P(−1+ 2.5N1 + 0.5N2)−Hp

(9)

with control U = Hp. The control Û for which chaos is observed is Û = Hp = 0.02
[3]. The chaos is indicated by a positive Lyapunov exponent 0.0474 at the initial
conditions (0.4899, 0.2040, 0.0612). This is the interior rest point.

Since we want to demonstrate how the system can be steered towards perma-
nence, we first check that the original system is non-permanent for these parameter
values. The system is of the form ẋi = xif (xi) where x1 = N1, x2 = N2, x3 = P

and

f1(N1, N2, P ) = 1−N1 −N2 − 5P

f2(N1, N2, P ) = 1− 1.5N1 −N2 − P

f3(N1, N2, P ) = −1+ 2.5N1 + 0.5N2 − 0.02

P
.

According to Theorem 1, the system is permanent if it does not have regular,
saturated boundary rest points, i.e for the rest point x̄, fi(x̄) > 0 for some i when
x̄i = 0.

For this particular system, consider the biologically valid rest points x̄ =
(N̄1, N̄2, P̄ ) and the values of fi(x̄) > 0 for some i when x̄i = 0.

We see in Table 1 that the system does indeed have a saturated rest point, namely
B = (0.9236067978, 0, 0.1527864045e − 1), so it is not permanent.

Figure 2 is a representation of the chaotic manifold with the chosen set of
parameters and initial condition set to the interior rest point.
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Table 1 Check for permanence of (9) using boundary rest points

Rest point Value of fi

A = (0.4763932022, 0, 0.1047213596) f2(A) = 0.18 > 0

B = (0.9236067978, 0, 0.1527864045e − 1) f2(B) = −0.4013 < 0

0.02
0.25

0.04

0.06

0.2 0.7

0.08

0.6

0.1

0.15

0.12

0.5
0.1 0.4

0.05 0.3

Fig. 2 Chaotic manifold for h = 0.02 [3] and the initial conditions (N1 = 0.4899, N2 =
0.2040, P = 0.0612)

4.1.3 Application of CCA [18]

The specific control that will lead the harvesting model towards permanence is Ū =
Hp = 0.035 and the interior rest point of the system

Ṅ1 = N1(1−N1 −N2 − 5P)

Ṅ2 = N2(1− 1.5N1 −N2 − P)

Ṗ = P(−1+ 2.5N1 + 0.5N2)− 0.035

is X̄ = (N1, N2, P ) = (0.5816, 0.0549, 0.0727). The system is found to be
permanent by checking the boundary rest points using the MATLAB code [18] given
in the Appendix. In the code, the boundary rest points are calculated and checked to
see if they are regular saturated rest points. If the rest points are not saturated, it is
concluded that the system is permanent by Theorem 1.
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So X̄ = (0.5816, 0.0549, 0.0727).
For the linearization step we calculate the matrices A and B as

A = ∂F

∂X
|X̄,Ū =

⎡
⎣
−0.5816 −0.5816 −2.9080
−0.0824 −0.0549 −0.0549
0.1817 0.0363 0.4814

⎤
⎦ ,

B = ∂F

∂U
|X̄,Ū =

⎡
⎣

0
0
−1

⎤
⎦ .

We choose the matrices Q = I3 and R=[1] which are positive definite.
Applying the lqr routine of MATLAB, the gains matrix K is obtained as

K = [0.2761 −0.2112 −2.1591
]
.

Thus our feedback control given by (5) is

u(x) = −Kx

= −0.2761N1 − 0.2112N2 − 2.1591P.

To confirm that the origin is asymptotically stable, the Lyapunov function has also
been calculated. From Step 3 of the algorithm, we have

Â = A− BK

=
⎡
⎣
−0.5816 −0.5816 −2.9080
−0.0824 −0.0549 −0.0549
0.4579 −0.1749 −1.6777

⎤
⎦ .

We choose Q̂ = Q = I3 and we obtain P using the lyap function in MATLAB:

P =
⎡
⎣

1.4209 −4.0725 0.7023
−4.0725 17.5405 −2.3263
0.7023 −2.3263 0.7322

⎤
⎦ .

For the above matrix, V (x) = xtP x will satisfy V̇ < 0 by construction of P .
The chaotic nature disappears when h = 0.035 as seen in Fig. 3.

The system is now permanent, with harvesting still possible thanks to the chaotic
orbit which we took advantage of as we applied the CCA.
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0.072
0.0554

0.0725

0.0552 0.584

0.073

0.5830.055 0.582

0.0735

0.5810.0548
0.58

0.0546 0.579

Fig. 3 Permanence and absence of a chaotic manifold when h = 0.035, initial conditions (N1 =
0.5816, N2 = 0.0549, P = 0.0727)

4.2 Control Through Harvesting in a Food-Chain System

The next system consider is of a simple prey-specialist predator-generalist predator
(for example, plant-insect pest-spider) interaction based on the model found in [17,
20, 35]. In the system below, harvesting of the prey is considered as a control.

ẋ = a1x − b1x
2 − wxy

x +D
− hx

ẏ = −a2y + w1xy

x +D1
− w2yz

y +D2

ż = cz2 − w3z
2

y +D3
.

(10)

In this model, a prey population of size x serves as the only food for the specialist
predator population of size y. This population, in turn, serves as favorite food for
the generalist predator population of size z. The equations for rate of change of
population size for prey and specialist predator are according to the Volterra scheme
(predator population dies out exponentially in absence of its prey). The interaction
between this predator y and the generalist predator z is modeled by the Leslie-Gower
scheme where the loss in a predator population is proportional to the reciprocal of
per capita availability of its most favorite food. The basic characteristic of the Leslie-
Gower model is that it leads to a solution which is asymptotically independent of
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the initial conditions and depends only on the intrinsic attributes of the interacting
system, that is, the parameters w, w1, and so on [36].

After introducing harvesting to the existing model, we observed chaos and non-
permanence [18]. The hx term models the harvesting function being proportional to
the population of the prey (constant harvest effort).

The constants are all positive and are described as follows.

a1: intrinsic growth rate of the prey population x;
b1: strength of intra-specific competition among the prey species;
w,w1, w2, w3: the maximum values which per capita growth can attain;
D,D1: the extent to which the environment provides protection to the

prey x;
a2: intrinsic death rate of the predator y in the absence of the only

food x;
D2: the value of y at which the per capita removal rate of y becomes

w2/2;
D3: the residual loss in z population due to severe scarcity of its

favorite food y;
c: the rate of self-reproduction of the generalist predator z. The

square term signifies the mating frequency is directly proportional
to the number of males and females;

h: harvesting rate of the prey x.

The parameter values (except for h) are taken as in [35] and are given below.

a1 = 1.93, b1 = 0.06, w = 1, D = 10, a2 = 1, w1 = 2
D1 = 10, w2 = 0.405, D2 = 10, c = 0.03, w3 = 1, D3 = 20.

The above parameter choices are so that the system is bounded and there is
possibility of chaotic behavior for different values of h.

4.2.1 Equilibrium Analysis [18]

The possible biologically viable equilibria are E0 = (0, 0, 0), E1 = (
a1 − h

b1
, 0, 0),

E2 = (x̄, ȳ, 0), and the interior rest point E3 = (x∗, y∗, z∗).
For E1 to be biologically relevant, we need

a1 − h > 0 �⇒ h < a1 = 1.93. (11)

E2 is obtained by solving the subsystem

a1 − b1x − wy

x +D
− h = 0

−a2 + w1x

x +D1
= 0.
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Thus E2 = (x̄, ȳ, 0) = (10, 20(1.33 − h), 0). Again for E2 to be biologically
viable we need

1.33− h > 0 �⇒ h < 1.33. (12)

E3 = (x∗, y∗, z∗) is the solution of the following system.

a1 − b1x − wy

x +D
− h = 0 (13a)

−a2 + w1x

x +D1
− w2z

y +D2
= 0 (13b)

cz− w3z

y +D3
= 0. (13c)

From (13c), we have

cz− w3z

y +D3
= 0

c − w3

y +D3
= 0

�⇒ y∗ = w3

c
−D3 = 13.33 > 0.

From (13a),

(a1 − h− b1x)(x +D) = wy∗

0.06x2 − (1.33− h)x + (−5.97+ 10h) = 0.

For real roots, we need

(1.33− h)2 − 4(0.06)(−5.97+ 10h) ≥ 0.

Solving for h using Maple’s solve command (up to four significant figures), we get

h ≤ 0.7411 or h ≥ 4.3189.

For the rest point to be biologically valid, we need at least one positive root to the
equation 0.06x2 − (1.33− h)x + (−5.97+ 10h).

According to Descartes’ Rule of Signs, if h ≤ 0.7411, then we have one sign
change of the coefficients. So there is at least one positive root.
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Therefore, x∗ exists if

h ≤ 0.7411. (14)

From (13b),

w2z
∗

y∗ +D2
= −a2 + w1x

∗

x∗ +D1

z∗ = y∗ +D2

w2
(−a2 + w1x

∗

x∗ +D1
)

z∗ = 57.605(
x∗ − 10

x∗ + 10
)

z∗ exists if x∗ > 10.

4.2.2 Conditions for Permanence

We use Lyapunov functions to derive conditions for permanence [14, 18]. Assume

the boundary rest points E0 = (0, 0, 0), E1 = (
a1 − h

b1
, 0, 0), E2 = (10, 20(1.33−

h), 0) exist and there are no periodic orbits on the boundary. We need h < 1.33 for
the system (10) to be permanent. To see this, let the Lyapunov function be σ(X) =
xp1yp2zp3 , where p1, p2, p3 are positive constants. Clearly σ(X) is a non-negative
C1 function defined in R

3+. Consider

ψ(X) = σ̇ (X)

σ(X)

= p1
ẋ

x
+ p2

ẏ

y
+ p3

ż

z

= p1

(
a1 − b1x − wy

x +D
− h

)

+ p2

(
−a2 + w1x

x +D1
− w2z

y +D2

)

+ p3

(
cz− w3z

y +D3

)
.

To show permanence, we need ψ(X) > 0 for all equilibria X ∈ bdR3+, i.e. the
following conditions have to be satisfied.

ψ(E0) = p1(a1 − h)− p2a2 > 0 (15a)



100 S. Koshy-Chenthittayil and E. Dimitrova

ψ(E1) = p2(−a2 + w1(a1 − h)/b1

(a1 − h)/b1 +D1
) > 0 (15b)

ψ(E2) = 0. (15c)

We note that by (11) and by increasing p to a sufficiently large value, ψ(E0) can be
made positive.

From (15b) we have the following requirement.

−a2 + w1(a1 − h)/b1

(a1 − h)/b1 +D1
> 0

−a2 + w1(a1 − h)

(a1 − h)+ b1D1
> 0

2(1.93− h)

(1.93− h)+ 0.06 ∗ 10
> 1.

Solving we get

h < 1.33. (16)

Therefore, from inequalities (11), (12), (14), and (16) we see that we need h ≤
0.7411 for the existence of an interior rest point and permanence.

4.2.3 Control Algorithm Using Harvesting [18]

Now suppose the harvesting coefficient h = 0.93. This violates the condition for
permanence and we also notice that the system is chaotic by the presence of a
positive Lyapunov exponent 1.4427. We can use the chaos to bring the system back
to permanence with final control U(t) = h = 0.1. The system

ẋ = 1.93x − 0.06x2 − xy

x + 10
− 0.1x

ẏ = −y + 2xy

x + 10
− 0.405yz

y + 10

ż = 0.03z2 − z2

y + 20

(17)

has interior rest point X̄ = (x = 23.955, y = 13.333, z = 23.679). The system is
in fact permanent using the boundary rest points and the analysis in Sect. 4.2.2.
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Applying CCA, we find the matrices A and B:

A = ∂F

∂X

∣∣∣
X̄,Ū

=
⎡
⎣
−1.1603 −0.7055 0
0.2313 0.2349 −0.2314

0 0.5046 0

⎤
⎦

B = ∂F

∂U

∣∣∣
X̄,Ū

=
⎡
⎣
−23.9555

0
0

⎤
⎦ .

We again choose the matrices Q = I3 and R = [1].
Applying the lqr routine of MATLAB, the gains matrix K is obtained as

K = [−0.9630 −1.0716 −0.9891
]
.

Thus our feedback control given by (5) is

u(x) = −Kx = −0.9630x − 1.0716y − 0.9891z.

To confirm that the origin as asymptotically stable, the Lyapunov function is also
been calculated. From Step 3 of the CCA, we have

Â = A− BK

=
⎡
⎣
−24.2299 −26.3759 −23.6950

0.2313 0.2349 −0.2314
0 0.5046 0

⎤
⎦ .

We choose Q̂ = Q = I3 and we obtain P using the lyap function in MATLAB.

P =
⎡
⎣

179.7359 −85.1218 −89.0194
−85.1218 80.7233 −0.9909
−89.0194 −0.9909 90.3612

⎤
⎦ .

For the above matrix, V (x) = xtP x will satisfy V̇ < 0 by construction of P .
In [35], harvesting was introduced and chaos was also observed. Non-

permanence was also observed but with the CCA, we calculated an optimal
harvesting level that led to permanence.
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5 Conclusions

By demonstrating that the chaotic behavior of a system can be used as a control to
obtain permanence for the system, we shed more light over the significance of chaos
in ecological systems.

We investigated two predator-prey models in which instances of chaos and non-
permanence were observed for different values of a harvesting parameter. To take
advantage of the chaos present in the system, we applied a control algorithm (CCA)
which used the chaotic orbits in the system to obtain a closed loop control which
pushed the system into a permanent state. Thus chaos enabled the species to remain
at a safe threshold value from extinction.

6 MATLAB Code to Determine Permanence Using
Boundary Rest Points [18]

This code determines the permanence of the systems considered in Sect. 4 using
boundary rest points. The system is said to be permanent if it does not have regular,
saturated rest points. The code first finds the boundary rest points and then checks
to see if they are saturated.

%Check for permanence
function [r,check] = Perm_Check2(system, p)
sys_harvest=1;%From the harvesting paper by Azar et.al
sys_Upad=3;%Multiple attractors and crisis route
-Upadhyay

if system == sys_harvest
syms x1 x2 x3;
%parameters
r1 = p(1);
r2 = p(2);
r3 = p(3);

a_11=p(4);
a_12=p(5);
a_13=p(6);
a_21 = p(7);
a_22=p(8);
a_23=p(9);
a_31=p(10);
a_32=p(11);
H = p(12); %Harvesting function
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f1=(r1-a_11*x1-a_12*x2-a_13*x3);
f2=(r2-a_21*x1-a_22*x2-a_23*x3);
f3=(-r3+a_31*x1+a_32*x2 - H/x3);
xp1 = x1*f1== 0;
xp2 = x2*f2== 0;
xp3 = x3*f3== 0;
S = solve([xp1,xp2,xp3]);
V=double([S.x1 S.x2 S.x3]);%gives us the rest points
F= double([subs(f1,S) subs(f2,S) subs(f3,S) ]);
%F gives f_i values at the rest points
end

%Multiple attractors and crisis route -Upadhyay
if system ==sys_Upad
syms x1 x2 x3 real;
%parameters
a1=p(1);
b1=p(2);
w=p(3);
D=p(4);
a2=p(5);
w1=p(6);
D1=p(7);
w2=p(8);
D2=p(9);
c=p(10);
w3=p(11);
D3=p(12);
h=p(13); %harvesting coefficient
f1= a1-b1*x1-(w*x2/(x1+D))-h;
f2= -a2+w1*x1/(x1+D1)-w2*x3/(x2+D2);
f3= c*x3-w3*x3/(x2+D3);
xp1 = x1*f1== 0;
xp2 = x2*f2== 0;
xp3 = x3*f3== 0;
S = solve([xp1,xp2,xp3]);
V=double([S.x1 S.x2 S.x3]);%gives us the rest points
F= double([subs(f1,S) subs(f2,S) subs(f3,S) ]);
%F gives f_i values at the rest points
end

[m,n]=size(V);
for i = 1:m %To get the interior rest point

if all(V(i,:)>0)
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r=V(i,:);
break;

else
r=[0 0 0];

end
if any(V(i,:)<0)

V1=V([1:i-1,i+1:end],:); %To make sure rest
pts are valid biologically

F1=F([1:i-1,i+1:end],:);
else

V1=V;
end

end
flag=0;
[m1,n1]=size(V1);
if all(r>0) %doing the check for permanence if there

is an interior rest point
for i=1:m1

for j=1:n1
if V1(i,j)==0

if F1(i,j) >=0
check = 1;
flag=1;
break;

else
check =0;

end
end
if (flag==1)

break;
end

end
if (flag==1)

break;
end

end
else

check=0;
end
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Classification on Large Networks: A
Quantitative Bound via Motifs and
Graphons (Research)

Andreas Haupt, Thomas Schultz, Mohammed Khatami, and Ngoc Tran

1 Introduction

This paper concerns classification problems when each data point is a large
network. In neuroscience, for instance, the brain can be represented by a structural
connectome or a functional connectome, both are large graphs that model connec-
tions between brain regions. In ecology, an ecosystem is represented as a species
interaction network. On these data, one may want to classify diseased vs healthy
brains, or a species network before and after an environmental shock. Existing
approaches for graph classification can be divided broadly into three groups: (1)
use of graph parameters such as edge density, degree distribution, or densities of
motifs as features, (2) parametric models such as the stochastic k-block model [1],
and (3) graph kernels [18], and graph embeddings [29]. Amongst these methods,
motif counting is perhaps the least rigorously studied. Though intuitive, only small
motifs are feasible to compute, and thus motif counting is often seen as an ad-hoc
method with no quantitative performance guarantee.
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1.1 Contributions

In this paper, we formalize the use of motifs to distinguish graphs using graphon
theory, and give a tight, explicit quantitative bound for its performance in classifi-
cation (cf. Theorem 1). Furthermore, we use well-known results from graph theory
to relate the spectrum (eigenvalues) of the adjacency matrix one-to-one to cycle
homomorphism densities, and give an analogous quantitative bound in terms of the
spectrum (cf. Theorem 2). These results put motif counting on a firm theory, and
justify the use of spectral graph kernels for counting a family of motifs. We apply
our method to detect the autoimmune disease Lupus Erythematosus from diffusion
tensor imaging (DTI) data, and obtain competitive results to previous approaches
(cf. Sect. 4).

Another contribution of our paper is the first study of a general model for random
weighted graphs, decorated graphons, in a machine learning context. The proof
technique can be seen as a broad tool for tackling questions on generalisations
of graphons. There are three key ingredients. The first is a generalization of the
Counting Lemma [see 22, Theorem 10.24], on graphons to decorated graphons. It
allows one to lower bound the cut metric by homomorphism densities of motifs, a
key connection between motifs and graph limits. The second is Kantorovich duality
[see 37, Theorem 5.10], which relates optimal coupling between measures and
optimal transport over a class of functions and which is used in relating spectra
to homomorphism densities. In this, Duality translates our problem to questions
on function approximation, to which we use tools from approximation theory to
obtain tight bounds. Finally, we use tools from concentration of measure to deal
with sampling error an generalise known sample concentration bounds for graphons
[see 6, Lemma 4.4].

Our method extends results for discrete edge weights to the continuous edge
weight case. Graphs with continuous edge weights naturally arise in applications
such as neuroscience, as demonstrated in our dataset. The current literature for
methods on such graphs is limited [16, 26], as many graph algorithms rely on
discrete labels [10, 34].

1.2 Related Literature

Graphons, an abbreviation of the words “graph” and “function”, are limits of
large vertex exchangeable graphs under the cut metric. For this reason, graphons
and their generalizations are often used to model real-world networks [8, 12, 36].
Originally appeared in the literature on exchangeable random arrays [4], it was later
rediscovered in graph limit theory and statistical physics [14, 22].

There is an extensive literature on the inference of graphons from one obser-
vation, i.e. one large but finite graph [3, 9, 21, 40]. This is distinct from our
classification setup, where one observes multiple graphs drawn from several
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graphons. In our setting, the graphs might be of different sizes, and crucially, they
are unlabelled: There is no a priori matching of the graph nodes. That is, if we
think of the underlying graphon as an infinitely large random graph, then the graphs
in our i.i.d sample could be glimpses into entirely different neighborhoods of this
graphon, and they are further corrupted by noise. A naïve approach would be to
estimate one graphon for each graph, and either average over the graphs or over the
graphons obtained. Unfortunately, our graphs and graphons are only defined up to
relabelings of the nodes, and producing the optimal labels between a pair of graphs
is NP-complete (via subgraph isomorphism). Thus, inference in our setting is not
a mere “large sample” version of the graphon estimation problem, but an entirely
different challenge.

A method closer to our setup is graph kernels for support-vector machines
[18, 38]. The idea is to embed graphs in a high-dimensional Hilbert space, and
compute their inner products via a kernel function. This approach has successfully
been used for graph classification [39]. Most kernels used are transformations of
homomorphism densities/motifs as feature vectors for a class of graphs [cf 41,
subsection 2.5]: [33] propose so-called graphlet counts as features. These can be
interpreted as using induced homomorphism densities [cf 22, (5.19)] as features
which can be linearly related to homomorphism densities as is shown in [22,
(5.19)]. The random walk kernel from [18, p. 135 center] uses the homomorphism
densities of all paths as features. Finally [28, Prop. 5 and discussion thereafter] uses
homomorphism densities of trees of height ≤ k as features.

However, as there are many motifs, this approach has the same problem as plain
motif counting: In theory, performance bounds are difficult, in practice, one may
need to make ad hoc choices. Due to the computational cost [18], in practice,
only small motifs of size up to 5 have been used for classification [33]. Other
approaches chose a specific class of subgraphs such as paths [18] or trees [34], for
which homomorphism densities or linear combinations of them can be computed
efficiently. In this light, our Theorem 2 is a theoretical advocation for cycles, which
can be computed efficiently via the graph spectrum.

1.3 Organization

We recall the essentials of graphon theory in Sect. 2. For an extensive reference, see
[22]. Main results are in Sect. 3, followed by applications in Sect. 4. Our proofs can
be found in the appendix.

2 Background

A graph G = (V ,E) is a set of vertices V and set of pairs of vertices, called edges
E. A label on a graph is a one-to-one embedding of its vertices onto N. Say that a
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random labelled graph is vertex exchangeable if its distribution is invariant under
relabelings.

A labelled graphon W is a symmetric function from [0, 1]2 to [0, 1]. A relabelling
φ is an invertible, measure-preserving transformation on [0, 1]. An unlabelled
graphon is a graphon up to relabeling. For simplicity, we write “a graphon W” to
mean an unlabelled graphon equivalent to the labelled graphon W . Similarly, by a
graph G we mean an unlabelled graph which, up to vertex permutation, equals to
the labelled graph G.

The cut metric between two graphons W,W ′ is

δ�(W,W ′) = inf
φ,ϕ

sup
S,T

∣∣∣∣
ˆ
S×T

W(ϕ(x), ϕ(y))−W ′(φ(x), φ(y)) dx dy

∣∣∣∣ ,

where the infimum is taken over all relabelings ϕ of W and φ of W ′, and the
supremum is taken over all measurable subsets S and T of [0, 1]. That is, δ�(W,W ′)
is the largest discrepancy between the two graphons, taken over the best relabeling
possible. A major result of graphon theory is that the space of unlabelled graphons is
compact and complete w.r.t. δ�. Furthermore, the limit of any convergent sequence
of finite graphs in δ� is a graphon [see 22, Theorem 11.21]. In this way, graphons
are truly limits of large graphs.

A motif is an unlabelled graph. A graph homomorphism φ : F → G is a map
from V (F ) to V (G) that preserves edge adjacency, that is, if {u, v} ∈ E(F), then
{φ(u), φ(v)} ∈ E(G). Often in applications, the count of a motif F in G is the
number of different embeddings (subgraph isomorphisms) from F to G. However,
homomorphisms have much nicer theoretical and computational properties [22, par.
2.1.2]. Thus, in our paper, “motif counting” means “computation of homomorphism
densities”. The homomorphism density t (F,G) is the number of homomorphisms
from F to G, divided by |V (G)||V (F )|, the number of mappings V (F ) → V (G).
Homomorphisms extend naturally to graphons through integration with respect to
the kernel W [22, subsec. 7.2.]. That is, for a graph F with e(F ) many edges,

t (F,W) =
ˆ
[0,1]e(F )

∏
{x,y}∈E(F)

W(x, y) dxdy.

The homomorphism density for a weighted graph G on k nodes is defined by
viewing G as a step-function graphon, with each vertex of G identified with a set
on the interval of Lebesgue measure 1/k. For a graph G and a graphon W , write
t (•,G) and t (•,W) for the sequence of homormophism densities, defined over all
possible finite graphs F .

A finite graph G is uniquely defined by t (•,G). For graphons, homomorphism
densities distinguish them as well as the cut metric, that is, δ�(W,W ′) =
0 iff t (•,W) = t (•,W ′) [22, Theorem 11.3]. In other words, if one could
compute the homomorphism densities of all motifs, then one can distinguish
two convergent sequences of large graphs. Computationally this is not feasible,
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as (t (•,W))F finite graph is an infinite sequence. However, this gives a sufficient
condition test for graphon inequality: If t (F,W) �= t (F,W ′) for some motif F ,
then one can conclude that δ�(W,W ′) > 0. We give a quantitative version of this
statement in the appendix, which plays an important part in our proof. Theorem 1 is
an extension of this result that accounts for sampling error from estimating t (F,W)

through the empirical distribution of graphs sampled from W .

2.1 Decorated graphons

Classically, a graphon generates a random unweighted graph G(k,W) via uniform
sampling of the nodes,

U1, . . . , Uk
iid∼ Unif[0,1]

(G(k,W)ij |U1, . . . , Uk)
iid∼ Bern(W(Ui, Uj )),∀i, j ∈ [k].

Here, we extend this framework to decorated graphons, whose samples are random
weighted graphs.

Definition 1 Let 	([0, 1]) be the set of probability measures on [0, 1]. A decorated
graphon is a functionW : [0, 1]2 → 	([0, 1]).

For k ∈ N, the k-sample of a measure-decorated graphon G(k,W) is a
distribution on unweighted graphs on k nodes, generated by

U1, . . . , Uk
iid∼ Unif[0,1]

(G(k,W)ij |U1, . . . , Uk)
iid∼W(Ui, Uj ),∀i, j ∈ [k].

We can write every decorated graphon W as WW,μ with W(x, y) being the
expectation of W(x, y), and μ(x, y) being the centered measure corresponding
to W(x, y). This decomposition will be useful in formulating our main results,
Theorems 1 and 2.

One important example of decorated graphons are noisy graphons, that is,
graphons perturbed by an error term whose distribution does not vary with the
latent parameter: Given a graphon W : [0, 1]2 → [0, 1] and a centered noise
measure ν ∈ 	([0, 1]), the ν-noisy graphon is the decorated graphonWW,μ, where
μ(x, y) = ν is constant, i.e. the same measure for all latent parameters. Hence, in
the noisy graphon, there is no dependence of the noise term on the latent parameters.

As weighted graphs can be regarded as graphons, one can use the definition
of homomorphisms for graphons to define homomorphism numbers of samples
from a decorated graphon (which are then random variables). The k-sample from a
decorated graphon is a distribution on weighted graphs, unlike that from a graphon,
which is a distribution on unweighted (binary) graphs. The latter case is a special
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case of a decorated graphon, where the measure at (x, y) is a centered variable
taking values W(x, y) and 1−W(x, y). Hence, our theorems generalise results for
graphons.

2.2 Spectra and Wasserstein Distances

The spectrum λ(G) of a weighted graph G is the set of eigenvalues of its adjacency
matrix, counting multiplicities. Similarly, the spectrum λ(W) of a graphon W is its
set of eigenvalues when viewed as a symmetric operator [22, (7.18)]. It is convenient
to view the spectrum λ(G) as a counting measure, that is, λ(G) =∑λ δλ, where the
sum runs over all λ’s in the spectrum. All graphs considered in this paper have edge
weights in [0, 1]. Therefore, the support of its spectrum lies in [−1, 1]. This space
is equipped with the Wasserstein distance (a variant of the earth-movers distance)

W1(μ, ν) = inf
γ∈	([−1,1]2)

ˆ
(x,y)∈[−1,1]2

|x − y|dγ (x, y) (1)

for μ, ν ∈ 	([−1, 1]), where the first (second) marginal of γ should equal μ

(ν). Analogously, equip the space of random measures 	(	([−1, 1])) with the
Wasserstein distance

W1(μ̄, ν̄) = inf
γ∈	(	([−1,1])2)

ˆ
(μ,ν)∈	([−1,1])2

W1(μ, ν)dγ (μ, ν). (2)

where again the first (second) marginal of γ should equal μ̄ (ν̄).
Equation (2) says that one must first find an optimal coupling of the eigenvalues

for different realisations of the empirical spectrum and then an optimal coupling
of the random measures. Equation (1) is a commonly used method for comparing
point clouds, which is robust against outliers [25]. Equation (2) is a natural choice
of comparison of measures on a continuous space. Similar definitions have appeared
in stability analysis of features for topological data analysis [11].

3 Graphons for Classification: Main Results

Consider a binary classification problem where in each class, each data point is
a finite, weighted, unlabelled graph. We assume that in each class, the graphs
are i.i.d realizations of some underlying decorated graphon W = WW,μ resp.
W′ =WW ′,μ′ . Theorem 1 says that if the empirical homomorphism densities are
sufficiently different in the two groups, then the underlying graphons W and W ′
are different in the cut metric. Theorem 2 gives a similar bound, but replaces the
empirical homomorphism densities with the empirical spectra. Note that we allow
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for the decorated graphons to have different noise distributions and that noise may
depend on the latent parameters.

Here is the model in detail. Fix constants k, n ∈ N. LetWW,μ andWW ′,μ′ be
two decorated graphons. Let

G1, . . . ,Gn
iid∼ G(k,WW,μ)

G′
1, . . . ,G

′
n

iid∼ G(k,WW ′,μ′)

be weighted graphs on k nodes sampled from these graphons. Denote by δ• the
Dirac measure on the space of finite graphs. For a motif graph F with e(F ) edges,
let

t̄ (F ) := 1

n

n∑
i=1

δt(F,Gi)

be the empirical measure of the homomorphism densities of F with respect
to the data (G1, . . . ,Gn) and analogously t̄ ′(F ) the empirical measure of the
homomorphism densities of (G′

1, . . . ,G
′
n).

Theorem 1 There is an absolute constant c such that with probability

1− 2 exp

(
kn− 2

3

2e(F )2

)
− 2e−.09cn

2
3

and weighted graphs Gi , G′
i , i = 1, . . . , n generated by decorated graphonsWW,μ

andWW ′,μ′ ,

δ�(W,W ′) ≥ e(F )−1(W1(t̄ , t̄ ′)− 9n−
1
3 ). (3)

Note that the number of edges affect both the distance of the homomorphism
densities W1(t̄ , t̄ ′) and the constant e(F )−1 in front, making the effect of e(F )

on the right-hand-side of the bound difficult to analyze. Indeed, for any fixed v ∈ N,
one can easily construct graphons where the lower bound in Theorem 1 is attained
for k, n → ∞ by a graph with v = e(F ) edges. Note furthermore, that the bound
is given in terms of the expectation of the decorated graphon, W , unperturbed by
variations due to μ resp. μ′. Therefore, in the large-sample limit, motifs as features
characterise exactly the expectation of decorated graphons.

Our next result utilizes , Theorem 1 and Kantorovich duality to give a bound on
δ� with explicit dependence on v. Let λ, λ

′
be the empirical random spectra in the

decorated graphon model, that is, λ = 1
n

∑n
i=1 λ(Gi), λ

′ = 1
n

∑n
i=1 λ(G′

i ).
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Theorem 2 There is an absolute constant c such that the following holds: Let v ∈
N. With probability 1−2v exp

(
kn
− 2

3

2v2

)
−2ve−.09cn

2
3 , for weighted graphs generated

by decorated graphonsWW,μ andWW ′,μ′ ,

δ�(W,W ′) ≥ v−22−1(4e)−v

(
W1

W1(λ̄, λ̄
′)− 3

πv
− 18v(4e)vn−

1
3

)

Through the parameter v, Theorem 2 defines a family of lower bounds for the cut
distance between the underlying graphons. The choice of v depends on the values
of n and the Wasserstein distance of the empirical spectra. The parameter v can
be thought of as a complexity control of transformations of eigenvalues that are
used in a lower bound: If one restricts to differences in distribution of low-degree
polynomials, the approximation with respect to the measure μ, the sampling of edge
weights, is good, implying a small additive error. In this case, however, the sampling
of the nodes from a graphon, i.e. of the latent node features Ui , i ∈ [n] has a large
error, which is multiplicative. We refer to the appendix for further details.

Theorems 1 and 2 give a test for graphon equality. Namely, ifW1(λ̄′, λ̄) is large,
then the underlying graphons W and W ′ of the two groups are far apart. This type of
sufficient condition is analogous to the result of [11, Theorem 5.5] from topological
data analysis. It should be stressed that this bound is purely nonparametric. In
addition, we do not make any regularity assumption on either the graphon or the
error distribution μ. The theorem is stable with respect to transformations of the
graph: A bound analogous to Theorem 2 holds for the spectrum of the graph
Laplacian and the degree sequence, as we show in the appendix in Sect. 8. In
addition, having either k or n fixed is merely for ease of exposition. We give a
statement with heterogenous k and n in the appendix in Sect. 9.

We conclude with a remark on computational complexity. The exact computation
of eigenvalues of a real symmetric matrix through state-of-the-art numerical linear
algebra takes O(n3) time, where n is the number of the rows of the matrix [13]. In
these algorithms, a matrix is transformed in O(n3) in tridiagonal form. Eigenvalues
are computed in O(kn2) time, where k is the number of largest eigenvalues that are
sought.

This is competitive with other graph kernels in the literature. The random walk
kernel [18] has a runtime of O(n3), the subtree kernel from [28] enumerates all
possible subtrees in both graphs and hence has, depending on the depth of the trees,
doubly exponential runtime. The same holds for the graphlet kernels [32], which
are computable in quadratic time for a constant bound on the size of the subgraph
homomorphism taken into consideration, but have doubly exponential dependency
on this parameter as well. Finally, the paper [16] has, in the sparse, but not ultra-
sparse regime (|E(G)| ∈ �(|V (G)|) and without node labels (corresponding to
the Kronecker node kernel) a runtime of �(n3) for graphs with small diameter
(O(

√|V (G))) and for a graph with high diameter a runtime of �(n4).
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4 An Application: Classification of Lupus Erythematosus

Systemic Lupus Erythematosus (SLE) is an autoimmune disease of connective
tissue. Between 25–70% of patients with SLE have neuropsychiatric symptoms
(NPSLE) [15]. The relation of neuropsychiatric symptoms to other features of the
disease is not completely understood. Machine learning techniques in combination
with expert knowledge have successfully been applied in this field [20].

We analyse a data set consisting of weighted graphs. The data is extracted
from diffusion tensor images of 56 individuals, 19 NPSLE, 19 SLE without
neuropsychiatric symptoms and 18 human controls (HC) from the study [30]. The
data was preprocessed to yield 6 weighted graphs on 1106 nodes for each individual.
Each node in the graphs is a brain region of the hierarchical Talairach brain atlas by
[35].

The edge weights are various scalar measures commonly used in DTI, averaged
or integrated along all fibres from one brain region to another as in the pipeline
depicted in Fig. 1. These scalar measures are the total number (of fibers between two
regions), the total length (of all fibers between two regions), fractional anisotropy
(FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD) [cf
5].

The paper [20] used the same dataset [30], and considered two classification
problems: HC vs NPSLE, and HC vs SLE. Using 20 brain fibers selected from
all over the brain (such as the fornix and the anterior thalamic radiation) they
used manifold learning to track the values AD, MD, RD and FA along fibers in
the brain. Using nested cross-validation, they obtain an optimal disretisation of the
bundles, and use average values on parts of the fibers as features for support-vector
classification. They obtained an accuracy of 73% for the HC vs. NPSLE and 76%
for HC vs. SLE, cf Table 1.

Fig. 1 Preprocessing pipeline for weighted structural connectomes. A brain can be seen as a
tensor field B : R3 → R

3×3 of flows. The support of this vector field is partitioned into regions
A1, . . . , An, called brain regions. Fibers are parametrized curves from one region to another. Each
scalar function F : R3 → R (such as average diffusivity (AD) and fractional anisotropy (FA))
converts a brain into a weighted graph on n nodes, where the weight between regions i and j is F

averaged or integrated over all fibers between these regions
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Table 1 Result comparison. Our spectral method performs comparable to [20], who used manifold
learning and expert knowledge to obtain the feature vectors. Our method is significantly simpler
computationally and promises to be a versatile tool for graph classification problems

HC vs. NPSLE HC vs. SLE

[20] 76% 73%

Eigenvalues 78.3% 67.5%

Fig. 2 Density of first and last ten eigenvalues (normalised to zero mean unit standard deviation)
of the graph Laplacian for all six values. (a) Length. (b) Average diffusivity. (c) Fractional
anisotropy. (d) Number. (e) Radial diffusivity. (f) Mean diffusivity

To directly compare ourselves to [20], we consider the same classification
problems. For each weighted graph we reduce the dimension of graphs by averaging
edge weights of edges connecting nodes in the same region on a coarser level of
the Talairach brain atlas [35]. Inspired by Theorem 2, we compute the spectrum
of the adjacency matrix, the graph Laplacian and the degree sequence of the
dimension-reduced graphs. We truncate to keep the eigenvalues smallest and largest
in absolute value, and plotted the eigenvalue distributions for the six graphs,
normalized for comparisons between the groups and graphs (see Fig. 2). We noted
that the eigenvalues for graphs corresponding to length and number of fibers show
significant differences between HC and NPSLE. Thus, for the task HC vs NPSLE,
we used the eigenvalues from these two graphs as features (this gives a total of
40 features), while in the HC vs SLE task, we use all 120 eigenvalues from the
six graphs. Using a leave-one-out cross validation with �1-penalty and a linear
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support-vector kernel, we arrive at classification rates of 78% for HC vs. NPSLE
and 67.5% for HC vs. SLE both for the graph Laplacian. In a permutation test as
proposed in [27], we can reject the hypothesis that the results were obtained by pure
chance at 10% accuracy. Table 1 summarises our results.

5 Conclusion

In this paper, we provide estimates relating homomorphism densities and distribu-
tion of spectra to the cut metric without any assumptions on the graphon’s structure.
This allows for a non-conclusive test of graphon equality: If homomorphism
densities or spectra are sufficiently different, then also the underlying graphons are
different. We study the decorated graphon model as a general model for random
weighted graphs. We show that our graphon estimates also hold in this generalised
setting and that known lemmas from graphon theory can be generalised. In a
neuroscience application, we show that despite its simplicity, our spectral classifier
can yield competitive results. Our work opens up a number of interesting theoretical
questions, such as restrictions to the stochastic k-block model.

6 Proof of Theorem 1

Theorem 1 There is an absolute constant c such that with probability

1− 2 exp

(
kn− 2

3

2e(F )2

)
− 2e−.09cn

2
3

and weighted graphs Gi , G′
i , i = 1, . . . , n generated by decorated graphonsWW,μ

andWW ′,μ′ ,

δ�(W,W ′) ≥ e(F )−1(W1(t̄ , t̄ ′)− 9n−
1
3 ). (3)

6.1 Auxiliary Results

The following result is a generalisation of [6, Lemma 4.4] to weighted graph limits.

Lemma 1 LetW =WW,μ be a decorated graphon, G ∼ G(k,W). Let F be an

unweighted graph with v nodes. Then with probability at least 1− 2 exp
(

kε2

2v2

)
,
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|t (F,G)− t (F,W)| < ε. (4)

Proof We proceed in three steps. First, give a different formulation of t (F,W)

in terms of an expectation. Secondly, we show that this expectation is not too far
from the expectation of t (F,G). Finally, we conclude by the method of bounded
differences that concentration holds.

1. Let tinj(F,G) be the injective homomorphism density, which restricts the
homomorphisms from F to G to all those ones that map distinct vertices of
F to distinct vertices in G [cf 22, (5.12)]. Let G ∼ G(k,W) and X be G’s
adjacency matrix. As a consequence of exchangeability of X, it is sufficient in
the computation of tinj to consider one injection from V (F ) to V (G) instead
of the average of all such. Without loss, we may assume that V (F ) = [v] and
V (G) = [k]. Hence, for the identity injection [k] ↪→ [n],

E[tinj(F,Xn)] = E

⎡
⎣ ∏
{i,j}∈E(G)

Xij

⎤
⎦ .

Let U1, . . . , Un be the rows and columns in sampling X from G. Then

E

⎡
⎣ ∏
{i,j}∈E(G)

Xij

⎤
⎦ = E

⎡
⎣E
⎡
⎣ ∏
{i,j}∈E(G)

Xij

∣∣∣∣∣∣
U1, . . . , Un

⎤
⎦
⎤
⎦

= E

⎡
⎣ ∏
{i,j}∈E(G)

(W(Ui, Uj )+ μ(Ui, Uj ))

⎤
⎦

We multiply out the last product, and use that μ(Ui, Uj ) are independent and
centered to see that all summands but the one involving only terms from the
expectation graphon vanish, i.e.

E

⎡
⎣ ∏
{i,j}∈E(G)

Xij

⎤
⎦ = E

⎡
⎣ ∏
{i,j}∈E(G)

W(Ui, Uj )

⎤
⎦ = t (F,W)

2. Note that the bound in the theorem is trivial for ε2 ≤ ln 2 2k2

n
= 4 ln 2 k2

2n . Hence,

in particular, ε ≤ 4 ln 2 k2

2n .
Furthermore, |t (F,X) − t (F,W)| ≤ 1

k

(
v
2

) + |t (F,X) − E[t (F,X)]| ≤
v2

2k + |t (F,X)− E[t (F,X)]| by the first part and the bound on the difference of
injective homomorphism density and homomorphism density [23, Lemma 2.1].
Hence
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P[|t (F,Xn)−t (F,EW)|≥ε] ≤ P

[
|t (F,Xn)−E[t (F,Xn)]|≥ε+1

n

(
k

2

)]

≤ P

[
|t (F,Xn)−E[t (F,Xn)]|≥ε

(
1− 1

4 ln 2

)]
.

Set ε′ = ε
(

1− 1
4 ln 2

)
. Let X be the adjacency matrix of G ∼ G(n,W) sampled

with latent parameters U1, . . . , Un. Define a function depending on n vectors
where the i-th vector consists of all values relevant to the i-th column of the
array Xn, that is Ui,X1, . . . , Xn. In formulas,

f :
n×

i=1

[0, 1]i+1 → [0, 1],

(a1, . . . , an) = ((u1, x11), (u2, x12, x22), . . . , (un, x1n, . . . , xnn))

�→ E[t (F, (Xij )1≤i,j≤n)|U1 = u1, . . . , Un = un,X11 = x11, . . . , Xnn = xnn].

We note that the random vectors (Ui,X1i , X2i , . . . , Xni) are mutually indepen-
dent for varying i. Claim:

|f ((a1, . . . , an)− f ((b1, . . . , bn))| ≤
n∑

i=1

k

n
1ai �=bi

If this claim is proved, then we have by McDiarmid’s inequality [24, (1.2)
Lemma],

P[|t (F,Xn)− t (F,EW)| ≥ ε′]

≤ 2 exp

(
− 2ε′2

n
(
k
n

)2
)
≤ 2 exp

(
−2ε′2n

k2

)
= 2 exp

(
−2nε′2

k2

)
,

Which implies the theorem by basic algebra.
Let us now prove the claim: It suffices to consider a, b differing in one

coordinate, say n. By the definition of the homomorphism density of a weighted
graph, t (F,X) can be written as

ˆ
g(x1, . . . , xk)dUnifk[n]((xi)i∈[k])

for g(x1, . . . , xk) = ∏
{i,k}∈E(G) Xxixk . We observe 0 ≤ g ≤ 1 (in the case of

graphons, one has g ∈ {0, 1}). It hence suffices to bound the measure where the
integrand g depends on ai by k

n
. This is the case only if if x� = i at least for one

� ∈ [k]. But the probability that this happens is upper bounded by,
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1−
(

1− 1

n

)k

≤ k

n
,

by the Bernoulli inequality. This proves the claim and hence the theorem.
��

Lemma 2 ([22, Lemma 10.23]) Let W,W ′ be graphons and F be a motif. Then

|t (F,W)− t (F,W ′)| ≤ e(F )δ�(W,W ′)

Lemma 3 Let μ ∈ 	([0, 1]) and let μn be the empirical measure of n iid samples
of μ. Then

E[W1(μ,μn)] ≤ 3.6462n−
1
3

The strategy of prove will be to adapt a proof in [19, Theorem 1.1] to the 1-
Wasserstein distance.

Proof Let X ∼ μ, Y ∼ N(0, 1) and μσ = Law(X + Y ). Then for any ν ∈
	([0, 1]), by results about the standard normal distribution, W(ν, νσ ) ≤ E[|Y |] =
σ

√
2
π

. Hence, by the triangle inequality

W1(μ,μn) ≤ 2

√
2

π
σ +W1(μσ , μσ

n ).

As the discrete norm dominates the absolute value metric on [0, 1],W1(μσ , μσ
n ) ≤

‖μσ − μσ
n‖TV. Note that μσ

n and μσ have densities f σ , f σ
n . This means, as ‖μσ −

μσ
n‖TV =

´ |f σ
n (x)− f σ (x)|dx,

W1(μσ , μσ
n ) ≤

ˆ
|f σ

n (x)−f σ (x)|dx ≤ √2π

√ˆ
(|x|2 + 1)|f σ

n (x)− f σ (x)|2dx,

where the last inequality is an application of [19, (2.2)]. Now observe that by the
definitions of f σ and f σ

n , E[|f σ
n (x)−f σ (x)|2 ≤ n−1

´
φ2
σ (x−y)dμ(y), where φσ

is the standard normal density. Hence

E[W1(μσ
n , μ

σ )] ≤ √2πn−
1
2

√ˆ
(|x|2 + 1)

ˆ
φ2
σ (x − y)dμ(y)dx

By basic algebra, φ2
σ (x) = 1

2σ π− 1
2 φ σ√

2
(x). This implies for Z ∼ N(0, 1) by a

change of variables
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ˆ
(|x|2 + 1)

ˆ
φ2
σ (x − y)dμ(y)dx

≤ 1

2σ
√
π
(1+ 2(σ 2

E[Z2] +
ˆ
|y|2dμ(y))) ≤ σ−12−1π−

1
2 (1+ 2(σ 2x + 1))

≤ σ−1π−
1
2

3

2

Hence E[W1(μσ
n , μ

σ )] ≤ 3
2

√
2n− 1

2 σ− 1
2 = 3√

2
n− 1

2 σ− 1
2 and

E[W1(μn, μ)] ≤ 2

√
2

π
σ + 3√

2
n−

1
2 σ−

1
2 .

Choosing σ optimally by a first-order condition, one arrives at the lemma. ��
Lemma 4 ([17, Theorem 2]) Let μ ∈ P(R) such that for X ∼ μ, � = E[eγXα ] <
∞ for some choice of γ and α. Then one has with probability at least 1− e−cnε2

W1(μn, μ) ≤ ε

for any ε ∈ [0, 1] and c only depending on �, γ and α.

6.2 Proof of Theorem 1

Proof (Proof of Theorem 1) Let G ∼ G(k,W) and G′ ∼ G(k,W′). By

combining Lemmas 3 and 4, we get that with probability at least 1− 2e−.09cn
2
3 ,

W1(t̄ , t̄ ′) ≤W1(t (F,G), t (F,G′))+ 8n−
1
3

In addition, by Lemma 1, with probability at least 1 − 2 exp

(
kn
− 2

3

2v2

)
− 2e−.09cn

2
3

one also has

W1(t (F,G), t (F,G′)) ≤ |t (F,W)− t (F,W ′)| + n−
1
3

Upon application of Lemma 2 and rearranging, one arrives at the theorem. ��
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7 Proof of Theorem 2

Theorem 2 There is an absolute constant c such that the following holds: Let v ∈
N. With probability 1−2v exp

(
kn
− 2

3

2v2

)
−2ve−.09cn

2
3 , for weighted graphs generated

by decorated graphonsWW,μ andWW ′,μ′ ,

δ�(W,W ′) ≥ v−22−1(4e)−v

(
W1

W1(λ̄, λ̄
′)− 3

πv
− 18v(4e)vn−

1
3

)

7.1 Auxiliary Results

Lemma 5 ([7, (6.6)]) Let G be a weighted graph and λ the spectrum interpreted
as a point measure. Let Ck be the cycle of length kem. Then

t (Ck,G) =
∑
w∈λ

wk.

Lemma 6 (Corollary of [2, p. 200]) Let f be a 1-Lipschitz function on [−1, 1].
Then there is a polynomial p of degree v such that ‖f − p‖∞ ≤ 3

πv
.

Lemma 7 ([31, Lemma 4.1]) Let
∑v

i=0 aix
i be a polynomial on [−1, 1] bounded

by M . Then

|ai | ≤ (4e)vM.

7.2 Proof of Theorem 2

Proof (Proof of Theorem 2) Consider any coupling (λ, λ′) of λ̄ and λ̄′. One has by
the definition of the Wasserstein distanceW1

W1 and Kantorovich duality

W1

W1(λ̄
′, λ̄) ≤ E

[
W1(λ, λ′)

]
= E

[
sup

Lip(f )≤1

ˆ
f (x)d(λ− λ′)

]
(5)

Fix any ω ∈ �. By Lemma 6 one can approximate Lipschitz functions by
polynomials of bounded degree,

sup
f : [−1,1]→R

Lip(f )≤1

ˆ
f (x)d(λ− λ′)(ω) ≤ sup

deg(f )≤v
|f |≤2

ˆ
f (x)d(λ− λ′)(ω)+ 3

πv
.
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Here, |f | ≤ 2 can be assumed as f is defined on [−1, 1] and because of its 1-
Lipschitz continuity.

Hence, by Lemma 7 and the triangle inequality

sup
deg(f )≤v
|f |≤2

ˆ
f (x)d(λ− λ′)(ω) ≤

v∑
i=1

2(4e)v
∣∣∣∣
ˆ

xkd(λ− λ′)
∣∣∣∣ (ω)

=
v∑

i=1

2(4e)v
∣∣∣∣∣
∑
w∈λ

wi −
∑
w′∈λ′

wi

∣∣∣∣∣ (ω)

Tanking expectations, one gets

W1

W1(λ̄, λ̄
′) ≤ 3

πv
+

v∑
i=1

2(4e)vE

[∣∣∣∣∣
∑
w∈λ

wi −
∑
w′∈λ′

wi

∣∣∣∣∣

]

for any coupling (λ, λ′) of λ̄ and λ̄′. Now consider a coupling (λ, λ′) of λ̄ and λ̄′
such that t̄ , t̄ ′ (which are functions of λ, λ′ by Lemma 5) are optimally coupled.
Then by the definition of λ̄, λ̄′, t̄ and t̄ ′,

W1(t̄k, t̄
′
k) = E

⎡
⎣
∣∣∣∣∣∣
∑
w∈ λ

wk −
∑

w∈λ̄′
w′k
∣∣∣∣∣∣

⎤
⎦

where t̄i = 1
n

∑n
j=1 δt(Ci ,Gj ) and t̄ ′i = 1

n

∑n
j=1 δt(Ci ,Gj ). Hence,

W1

W1(λ̄
′, λ̄) ≤

v∑
i=1

2(4e)vW1(t̄i , t̄
′
i )+

3

πv
. (6)

≤ 3

πv
+ v22(4e)vδ�(W,W ′)+ 18v(4e)vn−

1
3 .

The first equality follows by (5) and the second with probability at least 1 −
2v exp

(
kn
− 2

3

2v2

)
− 2ve−.09cn

2
3 from Theorem 1. ��

8 A Similar Bound for Degree Features

Let G be a graph and (di) be its degree sequence. Consider the point measure
d =∑i δdi of degrees. Denote by d̄ resp. d̄ ′ the empirical measure of degree point
measures of G1, . . . ,Gn resp. G′

1, . . . ,G
′
n.
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Proposition 1 Theorem 2 holds with the same guarantee with λ̄, λ̄′ replaced by d̄ ,
d̄ ′.

Lemma 8 Let Sv be the star graph on v nodes and G be a weighted graph. Then

t (Sv,G) =
∑
w∈d

wv

The proof of Proposition 1 is along the same lines as the one of Theorem 2, but
using Lemma 8 instead of 5.

9 Heterogenous Sample Sizes

Our bounds from Theorems 1 and 2 can also be formulated in a more general setting
of heterogenous sizes of graphs. In the following, we give an extension in two
dimensions. First, we allow for heterogenous numbers of observations n. Secondly,
we allow for random sizes of graphs k. Here is the more general model in details:
There is a measure ν ∈ 	(N) such that G1, . . . ,Gn1 are sampled iid as

k ∼ ν Gi ∼ G(k,WW,μ); (7)

sampling of G′
1, . . . ,G

′
n2

is analogously. Hence the samples Gi are sampled from
a mixture over the measures G(k,WW ′,μ′). We can define t̄ , t̄ ′, λ̄ and λ̄′ using the
same formulas as we did in the main text. Then the following result holds.

Corollary 1 There is an absolute constant c such that the following holds: Let
n1, n2 ∈ N and Gi, i = 1, . . . , n1, G′

i , i = 1, . . . , n2 sampled as in (7). Then

with probability at least 1− exp

(
kn
− 2

3
1

2e(F )2

)
− e−.09cn

2
3
1 − exp

(
kn
− 2

3
2

2e(F )2

)
− e−.09cn

2
3
2 ,

δ�(W,W ′) ≥ e(F )−1(W1(t, t̄)− 5n
− 1

3
1 + 5n

− 1
3

2 ).

Corollary 2 In the setting of Corollary 1 and with the same absolute constant, the

following holds: Let v ∈ N. With probability 1 − v exp

(
kn
− 2

3
1

2v2

)
− ve−.09cn

2
3
1 −

v exp

(
kn
− 2

3
2

2v2

)
− ve−.09cn

2
3
2 ,

δ�(W,W ′) ≥ v−22−1(4e)−v

(
W1

W1(λ̄, λ̄
′)− 3

πv
− 18v(4e)v(n

− 1
3

1 + n
− 1

3
2 )

)
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The proofs are very similar to the ones in the main text. For the differences in n1
and n2, the concentration results Lemmas 3 and 4 will have to be applied separately
with different values of n. For the random values k, we can choose a coupling that
couples random graphs of similar sizes, leading to the expressions in the Corollaries.
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Gröbner Bases of Convex Neural Code
Ideals (Research)

Kaitlyn Phillipson, Elena S. Dimitrova, Molly Honecker, Jingzhen Hu,
and Qingzhong Liang

1 Introduction and Background

Humans and animals perceive their surroundings based on previous encounters.
Their brains have to store information about those encounters to be accessed in the
future, and the way this information is stored and processed is the subject of active
research in neuroscience. Great strides have also been made towards a mathematical
understanding of the brain. For example, the theory of neural codes studies how the
brain represents external stimulation. These codes are extracted from stereotyped
stimulus-response maps, associating to each neuron a convex receptive field. An
important problem confronted by the brain is to infer properties of a represented
stimulus space without knowledge of the receptive fields, using only the intrinsic
structure of the neural code. To understand how the brain does this, one must first
determine what stimulus space features can be extracted from neural codes.

In this paper, we study neural codes through an algebraic object called a
neural ideal which was introduced in [5] to better understand the combinatorial
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structure of neural codes. More specifically, we focus on convex neural codes (and
their corresponding ideals) since they have been observed experimentally in brain
activity. In Sect. 2 we begin with a survey on what is known so far about convex
neural codes. In Sect. 3 we discuss the structure of neural ideals and their Gröbner
bases. We then introduce results on the connection between the canonical form of
a neural ideal and its reduced Gröbner basis, suggesting that neural ideals which
have a unique reduced Gröbner bases are of particular interest. Thus, in Sect. 4, we
introduce a method for identifying neural codes with unique Gröbner bases. These
results suggest a conjecture, stated in Sect. 5, that provides a characterization of
convex neural codes based on their Gröbner bases.

We first review some terminology and results here (see [5]). Given a neural code
C written as a set of binary strings of length n (alternatively, it can be written as
subsets of [n]), we can construct the ideal of polynomials that vanish on C:

IC := {p ∈ F2[x1, . . . , xn] : p(c) = 0 for all c ∈ C}, (1)

where F2 is the finite field of two elements (0 and 1), and F2[x1, . . . , xn] is the
polynomial ring in n variables with coefficients in F2. Note that since 02 = 0 and
12 = 1, IC always contains the set of Boolean relations B = 〈x2

i − xi : i ∈ [n]〉.
We can construct a generating set for the rest of the elements of IC , via indicator

functions: Given a codeword v ∈ F
2, define

ρv :=
∏

i:vi=1

xi
∏

j :vj=0

(1+ xj ).

Note that ρv(v) = 1 and ρv(c) = 0 for c �= v. From these functions, we can build
the neural ideal of C:

JC := 〈ρv : v ∈ F
n
2 \ C〉

Note that IC = B + JC [5]. The functions ρv that generate JC are examples of
pseudo-monomials: these are polynomials f ∈ F2[x1, . . . , xn] of the form

f = xσ
∏
j∈τ

(1+ xj ),

where xσ :=∏i∈σ xi and σ, τ ⊆ [n] with σ ∩ τ = ∅.
Given an ideal J ⊂ F2[x1, . . . , xn], a pseudo-monomial f ∈ J is minimal if

there does not exist another pseudo-monomial g ∈ J with deg(g) < deg(f ) and
f = hg for some h ∈ F2[x1, . . . , xn]. We define the canonical form of JC to be the
set of all minimal pseudo-monomials of JC , denoted CF(JC). For any neural code
C, the set CF(JC) is a generating set for the neural ideal JC . The canonical form
CF(JC) can be constructed algorithmically from the code C (see [5, 13]).
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Example 1 Given the code C = {000, 100, 110, 101, 001, 111}, there are two
elements in F

3
2 that are not in C: 010 and 011. From these, we construct the neural

ideal:

JC = 〈x2(1+ x1)(1+ x3), x2x3(1+ x1)〉

The canonical form is CF(JC) = {x2(1 + x1)}. Observe that if a codeword c

satisfies x2(1 + x1) = 0, then whenever neuron 2 is firing (x2 = 1), we must have
neuron 1 firing, as well (x1 = 1).

2 Convexity of Neural Codes

We will now investigate combinatorial codes arising from covers of a stimulus
space. Let X be a topological space. A collection of non-empty open sets U =
{U1, U2, . . . , Un}, Ui ⊂ X, is called an open cover. Given an open cover U, the
code of the cover is the neural code defined as:

C(U) = {σ ⊆ [n] :
⋂
i∈σ

Ui \
⋃

j∈[n]\σ
Uj �= ∅}.

Given a combinatorial code C, we say that C is realized by an open cover U if
C = C(U). If C can be realized by U, where U = {U1, . . . , Un} with each Ui a
convex subset of Rd , then C is a convex code with geometric realizationU.

Not all combinatorial codes are convex. For example, the code C =
{∅, 1, 2, 13, 23} cannot be realized with convex sets, as the set U3 is the disjoint
union of open sets U1 ∩ U3 and U2 ∩ U3, forcing it to be disconnected (and thus,
non-convex). A complete condition for convexity is still unknown; we summarize
here the known results.

Note that in the previous example the relationship in the receptive fields forced
the non-convexity of one of the sets, and the presence of the single codeword
3 would eliminate this topological inconsistency. This is an example of a local
obstruction to convexity, instrinsic to the combinatorial structure of the code itself.

Definition 1 ([3]) Let C = C(U) be a code on n neurons, withU = {U1, . . . , Un}
a realization of C. Let Uσ =

⋂
i∈σ

Ui . A receptive field relationship (RF relationship)

of C is a pair (σ, τ ) corresponding to the set containment

Uσ ⊆
⋃
i∈τ

Ui,

where σ �= ∅, σ∩τ = ∅, and Uσ∩Ui �= ∅ for all i ∈ τ. A receptive field relationship
is minimal if no single neuron from σ or τ can be removed without destroying the
containment.
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Fig. 1 Convex realization of
C1

145 14 124 12 123

In general, we can detect local obstructions via the simplicial complex of a code.
Given a code C, its simplicial complex is �(C) := {σ ⊆ [n] : σ ⊆ c for some c ∈
C}. For a simplicial complex �, the restriction of � to σ is the simplicial complex
�|σ := {ω ∈ � : ω ⊂ σ }. For any σ ∈ �, the link of σ in � is Lkσ (�) = {w ∈
� : σ ∩ w = ∅, σ ∪ w ∈ �}.
Definition 2 ([3]) Let (σ, τ ) be a receptive field relationship, and let � = �(C).
We say that (σ, τ ) is a local obstruction of C if τ �= ∅ and Lkσ (�|σ∪τ ) is not
contractible.

Note that in C = {∅, 1, 2, 13, 23}, (σ, τ ) = ({3}, {1, 2}) is a receptive field
relationship (U3 ⊆ U1 ∪ U2), and Lk3(�|123) = {1, 2}, which is disconnected
(and thus, not contractible).

Notice that the simplicial complex of a code C is defined by its maximal
codewords. A maximal codeword σ of a code C is maximal under inclusion in C. A
code is max intersection-complete if it is closed under taking all intersections of its
maximal codewords.

We can now state necessary and sufficient conditions for convexity:

Proposition 1 For a neural code C:

1. If C is max intersection-complete, then C is convex.
2. If C is convex, then C has no local obstructions.

Part 1 of Proposition 1 is due to [2], while Part 2 is due to [3] as a consequence
of the Nerve Lemma.

The converses of Part 1 and Part 2 of Proposition 1 hold for n ≤
4 (see [3]); however, these statements fail for n ≥ 5. An example of
a convex code which is not max intersection-complete can be seen via
C1 = {123, 124, 145, 14, 12} in Fig. 1. An example of a non-convex
code which has no local obstructions was found in [12], which is code
C4 = {2345, 123, 134, 145, 13, 14, 23, 34, 45, 3, 4,∅}. The case for n = 5 neurons
has also been fully classified; see [9].

3 Structure of the Neural Ideal

We now turn to a discussion relating convexity to the structure of the neural ideal. As
we saw in Example 1 in Sect. 1, the canonical form encodes minimal descriptions of
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the relationships between the sets Ui . The following lemma given in [5] generalizes
this observation:

Lemma 1 Let C = C(U) be a neural code on n neurons with neural ideal JC . For
σ, τ ∈ [n] with σ ∩ τ = ∅, xσ

∏
j∈τ (1 + xj ) ∈ JC if and only if (σ, τ ) is an RF

relationship (i.e., Uσ ⊆⋃j∈τ Uj .).
Moreover, xσ

∏
j∈τ (1 + xj ) ∈ CF(JC) if and only if (σ, τ ) is a minimal RF

relationship.

From Example 1, the minimal pseudo-monomial x2(1+x1) gives us the minimal
relationship U2 ⊆ U1.

3.1 Gröbner Basis of a Neural Ideal

The canonical form CF(JC) is a particular generating set for JC that gives
information about the structure of the sets Ui . Another well-known generating set
for a polynomial ideal is a Gröbner basis.

Given an ideal in a polynomial ring R = k[x1, . . . , xn] and a monomial ordering
< on R, we can let LT<(I) denote the ideal generated by the leading terms of
elements in I . If G is a finite subset of I whose leading terms generate LT<(I),
then G is a Gröbner basis for I . A Gröbner basis for I is always a generating set
for the ideal I . A Gröbner basis G is reduced if, given any element f ∈ G, f has
leading coefficient 1 and no term of f is divisible by the leading term of any g ∈ G

with g �= f . We often also talk about marked reduced Gröbner bases to emphasize
that the leading term of each polynomial in a Gröbner basis is distinguished. For a
given monomial order <, the marked reduced Gröbner basis exists and is unique.

A universal Gröbner basis for an ideal I is a Gröbner basis that is a Gröbner basis
with respect to any monomial order. The universal Gröbner basis Ĝ of an ideal I
is the union of all reduced Gröbner bases of I . Since the set of all reduced Gröbner
bases is finite, the universal Gröbner basis always exists and is unique.

If a set is a Gröbner basis, it is not necessarily a reduced Gröbner basis nor a
universal Gröbner basis. However, it was shown in [10] that if the canonical form
is a Gröbner basis, then it is in fact the universal Gröbner basis for JC . This result
leads to the following proposition:

Proposition 2 ([10]) Let C be a neural code with neural ideal JC . The following
are equivalent:

1. The canonical form of JC is a Gröbner basis of JC .
2. The canonical form of JC is the universal Gröbner basis of JC .
3. The universal Gröbner basis of JC consists of pseudo-monomials.

In particular, this gives a way to certify that the canonical form is not a Gröbner
basis: If, for a given term order, the reduced Gröbner basis contains polynomials
which are not pseudo-monomials, this implies that the canonical form is not a
Gröbner basis.
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The following proposition refines Proposition 2 by replacing its second statement
with “The canonical form of JC has a unique marked reduced Gröbner basis.”

Proposition 3 Let C be a code and JC its neural ideal. CF(JC) is a Gröbner basis
if and only if JC has a unique marked reduced Gröbner basis.

Proof In [7], it is shown that an ideal has a unique marked reduced Gröbner basis if
and only if all marked reduced Gröbner basis generators are factor-closed, i.e., the
non-leading terms of each polynomial divide its leading term. Furthermore, in [10]
the authors prove that if the universal Gröbner basis of JC consists solely of pseudo-
monomials, then its canonical form is a Gröbner basis. Since over F2 all polynomials
that are factor-closed and square-free are pseudo-monomials, the result follows. ��

Notice that by Proposition 3, the goal of classifying codes whose neural ideals
have canonical forms that are Gröbner bases becomes identical to classifying codes
whose ideals of points (or neural ideals) have unique marked reduced Gröbner basis.
In Sect. 4 we present an efficient algorithm for testing whether a code has a neural
ideal with a unique marked reduced Gröbner basis.

Lemma 2 If there is a pseudo-monomial f ∈ CF(JC) whose leading term is
divisible by any term of another pseudo-monomial g ∈ CF(JC), then the canonical
form is not a Gröbner basis for JC for any monomial order.

Proof If f ∈ CF(JC) has leading term that is divisible by a term of another pseudo-
monomial g ∈ CF(JC), then the canonical form cannot be a reduced Gröbner basis,
which by Proposition 2 implies that it is not a Gröbner basis. ��

We will utilize this fact in the next subsection.

3.2 Canonical Form and Gröbner Bases of JC

Recall from Sect. 2 that if a code has a local obstruction, then it is not convex. Since
the canonical form CF(JC) encodes information about the minimal relationships
between the sets Ui , the canonical form can be used to detect certain local
obstructions in the code. The following definition was introduced in [4].

Definition 3 A local obstruction (σ, τ ) is CF-detectable if there exists a local
obstruction (σ ′, τ ′) with σ ′ ⊂ σ and τ ′ ⊂ τ such that (σ ′, τ ′) is a minimal RF
relationship.

The next proposition connects the convexity of C to the Gröbner basis of JC .

Proposition 4 Given a code C, if C has a CF-detectable local obstruction, then the
canonical form of JC is not a Gröbner basis.

Proof By Theorem 5.4 in [4], if C has a CF-detectable local obstruction, then there
exist σ, τ ⊂ [n], τ �= ∅ with xσ

∏
i∈τ (1 + xi) ∈ CF(JC) and xσ xτ ∈ JC . Since

xσ xτ is a pseudo-monomial in JC and CF(JC) is a generating set for JC , there
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exists xα ∈ CF(JC) with α ⊂ σ ∪ τ , so the canonical form is not a Gröbner basis
by Proposition 5. ��

Thus, if a code C has a CF-detectable local obstruction, C is both not convex and
its canonical form is not a Gröbner basis for JC .

Proposition 5 Let C be a neural code with neural ideal JC and canonical form
CF(JC). If there exist two distinct pseudo-monomials f = xσ

∏
i∈τ (1 + xi) and

g = xα
∏

j∈β(1 + xj ) ∈ CF(JC) with α ∪ β ⊆ σ ∪ τ , then the canonical form
CF(JC) is not a Gröbner basis of JC .

Proof For any monomial order, the leading term of f is xσ xτ while the leading
term of g is xαxβ . Since α∪β ⊆ σ ∪τ implies that xαxβ divides xσ xτ , by Lemma 2
we have that the canonical form is not a Gröbner basis. ��

Unfortunately, the converse of Proposition 5 fails as the following example
shows.

Example 2 The code
C = {∅, 1, 2, 3, 4, 5, 134, 1234, 234, 1235, 125, 13, 15, 23, 25, 14, 24, 235, 135,
1245, 35, 123, 12345} has canonical form CF(JC) = {x3x4(1 + x1)(1 +
x2), x1x2(1 + x3)(1 + x5), x4x5(1 + x1), x4x5(1 + x2)}, with leading terms
x1x2x3x4, x1x2x3x5, x1x4x5, x2x4x5, none of which are divisible by the others.
However, the universal Gröbner basis of JC has the polynomial x4(x1x2 + x1x3 +
x2x3 + x3x4 + x3 + x5), which is not a pseudo-monomial. Thus, by Proposition 2,
the canonical form of this code is not a Gröbner basis.

We do have the following partial converse to Proposition 5:

Proposition 6 Let C be a neural code with canonical form CF(JC). If, for all
minimal pseudomonomials xσ

∏
i∈τ (1 + xi) and xα

∏
j∈β(1 + xj ) ∈ CF(JC), we

have (σ ∪ τ) ∩ (α ∪ β) = ∅, then CF(JC) is a Gröbner basis for JC .

Proof Let g = xσ
∏

i∈τ (1 + xi) and h = xα
∏

j∈β(1 + xj ) ∈ CF(JC). Since the
leading terms of g and h are xσ xτ and xαxβ respectively, if (σ ∪ τ) ∩ (α ∪ β) = ∅,
then the leading terms of g and h are relatively prime. By Proposition 4 in [6], this
guarantees that the S-polynomial of g and h has standard representation. Since this
is true for any pair of pseudo-monomials, this shows that CF(JC) is a Gröbner basis
for JC by Theorem 3 in [6]. ��

Note that the hypothesis of Proposition 6 is not a necessary condition for the
canonical form to be a Gröbner basis, as will be seen in Examples 3 and 4. We now
give several examples of convex and non-convex codes with their canonical forms
and universal Gröbner bases Ĝ. The labeling of the codes follow the classification
given in [9].

Example 3 The code C4 = {2345, 123, 134, 145, 13, 14, 23, 34, 45, 3, 4,∅} is
non-convex, non-max intersection complete, with no local obstructions (see [12]).
It has canonical form CF(C4) = {x5(1 + x4), x1x2x4, x2x4(1 + x5), x2(1 +
x3), x1x2x5, x1x3x5, x3x5(1+x2), x1(1+x3)(1+x4)}. The universal Gröbner basis
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is Ĝ(C4) = {x1x2x5, x1x2x4, x5(x2 + x3), x5(1+ x4), x2(1+ x3), x1(1+ x3)(1+
x4), x1x3x5, x2x4 + x3x5, x2(x4 + x5)}.

It was shown in [12] that adding either the codeword 1 or the codewords 234 and
345 to C4 would make it convex. Upon adding 1, the universal Gröbner basis and
the canonical form lose pseudo-monomials, but Ĝ still does not equal the canonical
form. Adding the codewords 234 and 345 instead makes the canonical form equal to
the Gröbner basis: CF = {x1x2x5, x1x2x4, x1x3x5, x5(1+ x4), x2(1+ x3), x1(1+
x3)(1+ x4)}. Note that it is still not max-intersection complete.

Example 4 The code C22 = {145, 124, 135, 235, 125, 123, 234, 35, 1, 23, 15,
25, 5, 13, 2, 24, 3, 14, 12} is convex with geometric realization in R

3 and not max-
intersection complete (see [9]). The universal Gröbner basis and the canonical form
are the same: CF(C22) = {x2x4x5, x1x2x3x5, x3x4(1 + x2), x3x4x5, x4x5(1 +
x1), x4(1+ x1)(1+ x2)}.

4 Identifying Neural Codes with Unique Marked Reduced
Gröbner Bases

Based on Proposition 3, the goal of classifying codes whose neural ideals have
canonical forms that are Gröbner bases becomes identical to classifying codes
whose ideals of points have unique marked reduced Gröbner basis. In this section
we outline a method for testing whether a neural ideal has a unique marked reduced
Gröbner basis. We begin with two relevant definitions from [1].

Definition 4 A staircase is a set λ ⊆ N
d of nonnegative integer vectors such that

u ≤ v ∈ λ (coordinatewise) implies u ∈ λ. The staircase of exponent vectors of
standard monomials of an ideal I is called an initial staircase.

Definition 5 A staircase λ is basic for an ideal I if the congruence classes modulo
I of the monomials xv with v ∈ λ form a vector space basis for Zp[x1, . . . , xn]/I .

As we will see in Proposition 7, if we want to find out whether I (V ) has a unique
marked reduced Gröbner basis, we just need to check whether I (V ) has a unique
basic staircase.

Definition 6 Given a staircase S on n variables and number of points m, let αS =
(α1

S, · · · , αn
S) be an n-dimensional vector, where αi

S = 0 if S has zeros for all points
in its ith direction. Otherwise αi

S = 1. We use
∑

αS to denote the summation of all
entries in αS , and call it the dimension of S.

Example 5 The following two examples illustrate the concept of staircase dimen-
sion which is needed for the algorithm at the end of this section.

1. Let S = {(0, 0), (0, 1), (0, 2), (0, 3)}. Then αS = (0, 1) and
∑

αS = 1.
2. If S = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0)}, then αS = (1, 1, 1)

and
∑

αS = 3.
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We now construct the following matrix. Let λ = {u1, . . . , ur } be an r-subset of
Z

n
p and let V = {v1, . . . , vs} be an s-subset of Zn

p. The evaluation matrix X(xλ, V )

is the s-by-r matrix whose element in position (i, j) is xuj
(vi), the evaluation of

xuj
at vi .

Example 6 Let λ1 = {(0, 0), (1, 0)}, λ2 = {(0, 0), (0, 1)}, and V = {(2, 0), (0, 1)}
be subsets of Z2

3. Then X(xλ1 , V ) =
[

1 2
1 0

]
and X(xλ2 , V ) =

[
1 0
1 1

]
.

Theorem 1 ([1]) Let λ and V be subsets of Zn
p. Then λ is basic for I (V ) if and

only if X(xλ, V ) is invertible.

An initial staircase must be basic, while a basic staircase might not be initial;
however, if I (V ) has a unique initial staircase (and thus a unique reduced Gröbner
basis), then I (V ) has a unique basic staircase. The following lemma is found in [8]
without proof.

Lemma 3 Let xα, xβ be monomials with xα
� xβ . There exists a weight vector γ

and monomial order ≺γ such that xβ ≺γ xα .

Proof Let xα
� xβ . As xα

� xβ , αj > βj for some coordinate j . Take γ to be a
vector in R

n with a sufficiently large rational value in entry j and square roots of
distinct prime numbers elsewhere such that γ · α > γ · β. Then the entries of γ are
linearly independent over Q and so γ defines a weight order. Define ≺γ to be the
monomial order weighted by γ . It follows that xβ ≺γ xα . ��
Proposition 7 ([8]) An ideal I (V ) has a unique initial staircase if and only if I (V )

has a unique basic staircase.

Proof Follows directly from Proposition 2.2 in [1] and Lemma 3. ��
Based on Proposition 7, if we want to find out whether I (V ) has a unique marked

reduced Gröbner basis, we just need to check if there exist a unique staircase λ ⊆ Z
n
p

such that X(xλ, V ) is invertible.
The above paragraph is the basis of the following method we propose for

identifying if a set of points has an ideal with a unique marked reduced Gröbner
basis: Given a set of points V , the algorithm goes over all possible staircases with
|V | elements and checks if the corresponding evaluation matrix is invertible. Notice
that no Gröbner basis computation is required. Unfortunately, finding all staircases
is equivalent to the NP-complete integer partitioning problem [11] but there are
pseudo-polynomial time dynamic programming solutions. For example, one can use
the Sherman-Morrison formula [14]: Given an invertible matrix A ∈ R

n×n, and two
column vectors u, v ∈ R

n, A+ uvT is invertible if and only if 1+ vT A−1u �= 0.
The following algorithm is based on the theory summarized in this section. Its

goal is to identify data sets V ⊆ Zn
p of fixed size, dimension, and finite field

cardinality having an ideal with a unique marked reduced Gröbner basis. Before
we present it, we need one last definition.
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Definition 7 ([8]) For V1, V2 ⊂ Z
n
p with |V1| = |V2|, we say V1 is a linear shift of

V2, if there exists φ = (φ1, · · · , φn) : Zn
p → Z

n
p such that φ(V1) = V2 and for each

i ∈ {1, · · · , n}, φi(xi) = aixi + bi : Zp → Zp with ai ∈ (Zp\{0}) and bi ∈ Zp.

The linear shift is a bijection between two data sets, defining an equivalence relation.
We note that by a “good” representative of an equivalence class E we mean one of
the data sets with smallest total Euclidean distance to the origin among all data sets
in E.

4.1 Data Preparation

Input: n (dimension), p (characteristic of finite field), m (number of points in
the data set)
Purpose: Prepare the data for use in the main iterations
Steps:

1. Generate all staircases {S} and their corresponding dimensions {αS}.
2. For each S, calculate all evaluation matrices {X(xS, S)} and their inverses
{X(xS, S)−1}.
Note: Since {X(xS, S)} is a square Vandermonde matrix and S is a set of
distinct points, {X(xS, S)} is invertible.

3. Find “good” representatives {E�}, for all the equivalence classes.

Note: The number of staircases has an upper bound of O(m(logm)n−1) [1].

4.2 Main Iterations

Input: {S}, {αS}, {X(xS, S)}, {X(xS, S)−1}, {E�}.
Output: Good representatives of equivalence classes in which an ideal of the
data sets have unique reduced Gröbner bases.

Create a list called storage to store all the previous results
for � ∈ {E�} do

create an empty vector called flag = [ ]
for S ∈ {S} do

if � and S are only different in one point then
compute D = X(xS, �)− X(xS, S)

decompose D = uvT , where u, v ∈ F
m
p are two column vectors

if 1+ vT
X(xS, S)−1u = 0 ∈ Zp then

flag.append(False)
else

flag.append(True)
end if
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else if
∑

αS < n and storage has the result of �′ such that �′ have exactly
the same value of � at non-zero entries in αS then

flag.append(the previous result)
else if det(X(xS, �)) �= 0 ∈ Zp then

flag.append(True)
else

flag.append(False)
end if
if there are two Trues in flag then

use storage to store flags
break the inside loop

end if
end for
use storage to store flags
if flag has only one T then

print �
end if

end for

5 Discussion and Future Work

We explored convex neural codes by considering the canonical forms and Gröbner
bases of their ideals. While we still do not have a complete algebraic characterization
of convex codes, the results we presented lead us to believe that there is a strong
connection between convexity of a code and the number of the marked reduced
Gröbner bases of its ideal. In particular, it would seem that the relations among
the Ui from Definition 1 cannot be too “contradictory” for the canonical form of
a neural ideal to be a Gröbner basis. From the comparisons and computations of
canonical forms and Gröbner bases for convex and non-convex codes thus far, the
authors make the following conjecture to strengthen Proposition 4:

Conjecture 1 Given a neural code C with neural ideal JC , if the canonical form
CF(JC) is a Gröbner basis, then the code C is convex.

Notice that in light of Proposition 3, the above conjecture can also be stated as
“Given a neural code C with neural ideal JC , if JC has a unique marked reduced
Gröbner basis, then the code C is convex.”

In addition, Section 4 of [10] gives three examples of families of codes whose
canonical forms are Gröbner bases, which we can verify will always be convex
codes, thus further suggesting that Conjecture 1 is worth future work:

1. C is a simplicial complex: then C is intersection complete, so C is convex.
2. C is the singleton C = {(c1, . . . , cn)}. Then Ui = X for ci = 1, and Uj = ∅ for

cj = 0. If X is chosen to be convex, then the code will be convex.
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3. C is missing one codeword from [n]. If 11 · · · 1 ∈ C, then C is convex (see [3]).
If C = {0, 1}n \ {11 · · · 1}, then C is a simplicial complex, which is convex by
(1).

In [8] we characterize geometrically a family of codes whose ideals have a
unique marked reduced Gröbner basis and the codes above are in that family. By
Proposition 3, the above conjecture would imply that all codes in the family are
convex which remains to be verified. Furthermore, in [7], we show that if the neural
ideal of a code has a unique marked reduced Gröbner basis, so does the neural ideal
of its complement. It remains to be verified if convex codes whose neural ideals
have unique marked reduced Gröbner bases always have convex complements.
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The Number of Gröbner Bases in Finite
Fields (Research)

Brandilyn Stigler and Anyu Zhang

1 Introduction

Polynomial systems are ubiquitous across the sciences. While linear approximations
are often desired for computational and analytic feasibility, certain problems may
not permit such reductions. In 1965 Bruno Buchberger introduced Gröbner bases,
which are multivariate nonlinear generalizations of echelon forms [3, 5]. Since this
landmark thesis, the adoption of Gröbner bases has expanded into diverse fields,
such as geometry [24], image processing [18], oil production [23], quantum field
theory [20], and systems biology [17].

While working with a Gröbner basis (GB) of a system of polynomial equations
is just as natural as working with a triangularization of a linear system, their
complexity can make them cumbersome with which to work: for a general system,
the complexity of Buchberger’s Algorithm is doubly exponential in the number of
variables [4]. The complexity improves in certain settings, such as systems with
finitely many real-valued solutions ([6] is a classic example, whereas [12] is a
more contemporary example), or solutions over finite fields [15]. Indeed much
research has been devoted to improving Buchberger’s Algorithm and analyzing the
complexity and memory usage in more specialized settings (for example, [11, 19]),
and even going beyond traditional ways of working with Gröbner bases [16];
however most results are for characteristic-0 fields, such R or Q.

The goal of our work is to consider the number of Gröbner bases for a system
of polynomial equations over a finite field (which has positive characteristic and
consequently all systems have finitely many solutions). The motivation comes
from the work of [17], in which the authors presented an algorithm to reverse
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engineer a model for a biological network from discretized experimental data and
made a connection between the number of distinct reduced GBs and the number
of (possibly) distinct minimal polynomial models. The number of reduced GBs
associated to a data set gives a quantitative measure for how “underdetermined”
the problem of reverse engineering a model for the underlying biological system is.

The Gröbner fan geometrically encapsulates all reduced Gröbner bases [21].
In [13] the authors provided an algorithm to compute all reduced GBs. When their
number is too large for enumeration, the method in [9] allows one to sample from
the fan. Finally in [22], the authors provide an upper bound for systems with finitely
many solutions; however this bound is much too large for data over a finite field. To
our knowledge, there is no closed form for the number of reduced Gröbner bases, in
particular for systems over finite fields with finitely many solutions.

In this paper we make the following contributions:

1. a formula and some upper bounds of the number of reduced Gröbner bases for
data sets over finite fields

2. geometric characterization of data associated with different numbers of reduced
Gröbner bases.

In Sect. 2, we provide the relevant background, definitions, and results. In Sect. 3,
we discuss the connection between the number of distinct reduced Gröbner bases
for ideals of two points and the geometry of the points; furthermore, we provide a
formula to two-point data sets. We provide upper bounds for data sets of three points
in Sect. 4 and geometric observations for larger sets in Sect. 5. Then in Sect. 6, we
consider the general setting of any fixed number of points over any finite field and
provide an upper bound. We close with a discussion of possible future directions. We
have verified all of the computations referenced in this work, provided illustrative
examples throughout the text, and listed data tables in the Appendix.

2 Background

2.1 Algebraic Geometry Preliminaries

Let K be a field and let R = K[x1, . . . , xn] be a polynomial ring over K . Most
definitions and known results in this section can be found in [8].

A monomial order ≺ is a total order on the set of all monomials in R that is
closed with respect to multiplication and is a well-ordering. The leading term of a
polynomial g ∈ R is thus the largest monomial for the chosen monomial ordering,
denoted as LT≺(g). Also we call LT≺(I ) = 〈LT≺(g) : g ∈ I 〉 the leading term
ideal for an ideal I .

Definition 1 Let ≺ be a monomial order on R and let I be an ideal in R. Then
G ⊂ I is a Gröbner basis for I with respect to ≺ if for all f ∈ I there exists g ∈ G

such that the leading term LT≺(g) divides LT≺(f ).
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It is well known that Gröbner bases exist for every ≺ and make multivariate
polynomial division well defined in that remainders are unique; for example, see [8].
While there are infinitely many orders, there are only finitely many reduced GBs
for a given ideal, that is monic polynomials whose leading terms do not divide
other terms. This results in an equivalence relation where the leading terms of the
representative of each equivalence class can be distinguished (underlined) [21]. In
fact there is a one-to-one correspondence between marked reduced Gröbner bases
and leading term ideals [7].

In this work all Gröbner bases are reduced.

Definition 2 The monomials which do not lie in LT≺(I ) are standard with respect
to ≺; the set of standard monomials for an ideal I is denoted by SM≺(I ).

A set of standard monomials SM≺(I ) for a given monomial order forms a basis
for R/I as a vector space over K . Given their construction, it follows that the sets of
standard monomials associated to an ideal I are in bijection with the leading term
ideals of I .

It is straightforward to check that standard monomials satisfy the following
divisibility property: if xα ∈ SM≺(I ) and xβ divides xα , then xβ ∈ SM≺(I ).
This divisibility property on monomials is equivalent to the following geometric
condition on lattice points.

Definition 3 A set λ ⊂ N
n is a staircase if for all u ∈ λ, v ∈ N

n and vi ≤ ui for
1 ≤ i ≤ n imply v ∈ λ.

Let
(
N

n

m

)
denote the collection of all sets of m points in N

n. Then for λ =
{λ1, . . . , λm} ∈

(
N

n

m

)
, let

∑
λ denote the vector sum

∑m
i=1 λi ∈ N

n. Let � denote

the set of all staircases in
(
N

n

m

)
. The staircase polytope of � is the convex hull of all

points
∑

λ where λ ∈ � (see [2, 22] for more details). For an ideal I , we call P the
staircase polytope of I if P is the staircase polytope of the exponent vectors of the
standard monomial sets associated to I for any monomial order.

For S ⊆ Kn, we call the set I (S) := {h ∈ R | h(s) = 0∀s ∈ S} of polynomials
that vanish on S an ideal of points. An ideal is zero dimensional if dimK R/I <∞;
when K is algebraically closed and |S| = m < ∞, then m = dimK R/I (S). The
number of reduced Gröbner bases for an ideal is in bijection with the number of
vertices of the staircase polytope, which was proved for ideals of points in [22] and
for all other zero-dimensional ideals in [2].

The following results provide an upper bound for the number of reduced Gröbner
bases for an ideal over any field.

Lemma 1 ([1]) The number of vertices of a lattice polytope P ⊂ R
n is #vert (P ) =

O
(
vol(P )(n−1)/(n+1)

)
.

Theorem 1 ([2, 22]) Let I be an ideal such that dimKR/I = m. Let �(I) be the
set of standard monomial sets for I over all monomial orders. Then the number of
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distinct reduced Gröbner bases of I is in bijection with the number of vertices of the

staircase polytope of I ; that is, #GBs = O
(
m2n n−1

n+1

)
.

Example 1 Let S = {(1, 1), (2, 3), (3, 5), (4, 6)} ⊂ R
2. So dimRR[x, y]/I (S) = 4.

Also �(I (S)) = {(1, x, x2, x3), (1, x, x2, y), (1, x, y, y2), (1, y, y2, y3)}.
So the number of reduced Gröbner bases for I (S) is four. Note that there

are five staircases in
(
N

2

4

)
, namely � = {{(0, 0), (1, 0), (2, 0), (3, 0)},

{(0, 0), (1, 0), (2, 0), (0, 1)}, {(0, 0), (1, 0), (0, 1), (1, 1)}, {(0, 0), (1, 0), (0, 1),
(0, 2)}, {(0, 0), (0, 1), (0, 2), (0, 3)}}. The staircase polytope of � is the convex hull
of the vector sums {(6,0), (3,1), (2,2), (1,3), (0,6)}, which has vertices (6,0), (3,1),
(1,3), and (0,6), corresponding to the four standard monomial sets of I (S).

Now we summarize the bijective correspondences for the number of reduced
Gröbner bases for an ideal of points.

Theorem 2 Let I be an ideal. There is a one-to-one correspondence among the
following:

1. distinct marked reduced Gröbner bases of I
2. leading term ideals of I
3. sets of standard monomials for I

4. vertices of the staircase polytope of I .

Proof Equivalence 1 ⇐⇒ 2 is a result in [7]; 2 ⇐⇒ 3 is by construction of
standard monomials; and 1 ⇐⇒ 4 was proved in [22] for ideals of points and in
[2] for other zero-dimensional ideals. ��

2.2 Ideals Over Finite Fields

In this section and following, we will work over a finite base field. Let F be a
finite field of characteristic p > 0. We will typically consider the finite field Zp =
{0, 1, . . . , p− 1}, that is the field of remainders of integers upon division by p with
modulo-p addition and multiplication. Let R = F [x1, . . . , xn] be a polynomial ring
over F . Finally let m denote the number of points in a subset of Fn.

A polynomial dynamical system (PDS) over F is a function f = (f1, . . . , fn) :
Fn → Fn where each component fi is a polynomial in R. Below is an algorithm,
first introduced in [17], to compute a PDS from a given set of data written using the
ideal of the input points. This algorithm motivates the leading question in this work.

The general strategy is given input-output data V = {(s1, t1), . . . , (sm, tm)} ⊂
Fn × Fn, find all PDSs that fit V and select a minimal PDS with respect to
polynomial division. This is done as follows. For each xj , compute one interpolating
function fj ∈ R such that fj (si) = tij ; note that si ∈ Fn while tij ∈ F . Then
compute the ideal I := I ({s1, . . . , sm}) of the inputs in V . The model space for V

is the set
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f + I := {(f1 + h1, . . . , fn + hn) : hi ∈ I }

of all PDSs which fit the data in V and where f = (f1, . . . , fn) is as computed
above. A PDS can be selected from f + I by choosing a monomial order ≺,
computing a Gröbner basis G for I , and then computing the remainder (normal

form) f
G

of each fi by dividing fi by the polynomials in G. We call

(f1
G
, f2

G
, . . . , fn

G
)

the minimal PDS with respect to ≺, where G is a Gröbner basis for I with respect
to ≺.

Changing the monomial order may change the resulting minimal PDS. While it
is possible for two reduced Gröbner bases to give rise to the same normal form (see
[17]), it is still the case that in general a set of data points may have many GBs
associated to it. In this way, the number of distinct reduced GBs of I gives an upper
bound for the number of different minimal PDSs. Therefore, we aim to find the
number of distinct reduced Gröbner bases for a given data set.

Example 2 Consider two inputs S = {(0, 0), (1, 1)} ⊂ (Z2)
2. The corresponding

ideal I of the points in S has 2 distinct reduced Gröbner bases, namely

G1 = {x1 − x2, x
2
2 − x2},G2 = {x2 − x1, x

2
1 − x1}

Here, ‘_’ marks the leading terms of the polynomials in a Gröbner basis. There
are two resulting minimal models: any minimal PDS with respect to G1 will be in
terms of x2 only as all x1’s are divided out, while any minimal PDS with respect to
G2 will be in terms of x1 only as all x2’s are divided out. Instead if the inputs are
{(0, 0), (0, 1)}, then I has a unique GB, {x2

2 −x2, x1}, resulting in a unique minimal
PDS.

It is the polynomial g = x1 − x2 that has different leading terms for different
monomial orders. In fact, for monomial orders with x1 , x2, the leading term of g

is x1, while for orders with x2 , x1 the opposite will be true. We say that g has
ambiguous leading terms. We will mark only ambiguous leading terms.

As the elements of the quotient ring R/I are equivalence classes of functions
defined over the inputs S = {s1, . . . sm} in V and since a set of standard monomials

is a basis for R/I , it follows that each reduced polynomial f
G

is written in terms of
standard monomials. When working over a finite field, extensions of classic results
in algebraic geometry state that when the number m of input points is finite, then
m coincides with the dimension of the vector space R/I (S) over F [14], which is
stated below for convenience.

Theorem 3 ([14]) Let S ⊆ F
n and I (S) be the ideal of the points in S. Then |S| =

dimF R/I (S).

Next we state a result about data sets and their complements.
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Theorem 4 ([10]) Let I be the ideal of input points S, and let I c be ideal of the
complement Fn \ S of S. Then we have SM≺(I ) = SM≺(I c) and LT≺(I ) =
LT≺(I c) for a given monomial order ≺. Hence, we have #GB(S) = #GB(Fn \ S).

We say that a polynomial f ∈ R is factor closed if every monomial m ∈ supp(f )

is divisible by all monomials in supp(f ) smaller than m with respect to an order
≺. The following result gives an algebraic description of ideals with unique reduced
Gröbner bases for any monomial order.

Theorem 5 ([10]) A reduced Gröbner basis G with factor-closed generators is
reduced for every monomial order; that is, G is the unique reduced Gröbner basis
for its corresponding ideal.

We end this section with a discussion on the number of distinct reduced Gröbner
bases for extreme cases. The set Zn

p contains pn points. For n = 1, all ideals have
a unique reduced GB since all polynomials are single-variate and as such are factor
closed. We consider cases for n > 1. For empty sets or singletons in Z

n
p, it is

straightforward to show that the ideal of points has a unique reduced GB for any
monomial order; that is, for a point s = (s1, . . . , sn), the ideal of s is I = 〈x1 −
s1, . . . , xn − sn〉 whose generators form a Gröbner basis and hence is unique (via
Theorem 5). According to Theorem 4, the same applies to pn − 1 points. In the rest
of this work, we consider the number of reduced Gröbner bases for an increasing
number of points.

Note that over a finite field, the relation xp − x always holds.

3 Data Sets with m = 2 Points

In this section we consider bounds for the number of Gröbner bases for ideals of
two points and relate the geometry of the points to these numbers.

Define NGB(p, n,m) to be the number of reduced Gröbner bases for ideals of m
points in Z

n
p. The following theorem provides a formula for sets with m = 2 points

in any number of coordinates and over any finite field Zp.

Theorem 6 Let P = (p1, . . . , pn),Q = (q1, . . . , qn) ∈ Z
n
p where P �= Q, and let

I ⊂ Zp[x1, . . . , xn] be the ideal of the points P,Q. The number of distinct reduced
Gröbner bases for I is given by

NGB(p, n, 2) =
∑
pi �=qi

i=1,...,n

1.

Proof Let S = {P,Q} ⊂ Z
n
p with P = (p1, . . . , pn),Q = (q1, . . . , qn). Let

I ⊂ Zp[x1, . . . , xn] be the ideal of the points in S. By Theorem 3, the number of
elements of any set of standard monomials for I is |S| = 2. Since sets of standard
monomials must be closed under division, the only option for such a set is {1, xi}
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for some i = 1, . . . , n. So the possible associated minimally generated leading term
ideals are of the form 〈x1, . . . , xi−1, x

2
i , xi+1, . . . , xn〉. We consider the number of

leading terms ideals in regards to the number of coordinate changes between the
points.

If P and Q have one different coordinate, say p1 �= q1, then the only possible
minimal generating set for the leading term ideal of I is {x2

1 , x2, . . . , xn}. If P , Q
have two different coordinates, say pi �= qi for i = 1, 2, then the possible minimal
generating sets for the leading term ideal of I are {x2

1 , x2, . . . , xn}when x1 ≺ x2 and
{x1, x

2
2 , x3, . . . , xn} when x2 ≺ x1. Increasing the number of coordinate changes

will add another leading term ideal. In general, if pi �= qi for i = 1, . . . , k where
k ≤ n, then the possible minimal generating sets for the leading term ideal of I are
as follows:

1. {x2
1 , x2, . . . , xn} when x1 is the smallest variable in the monomial order among

x1, . . . , xk
2. {x1, x

2
2 , x3, . . . , xn} when x2 is smallest among x1, . . . , xk

...

k. {x1, . . . , xk−1, x
2
k , xk+1, . . . , xn} when xk is smallest among x1, . . . , xk .

��
Corollary 1 The maximum number of distinct reduced Gröbner bases for an ideal
of two points in Z

n
p is NGB(p, n, 2) ≤ n.

With different choices of smallest coordinate, there are up to n different sets of
standard monomials, each corresponding to a distinct reduced Gröbner basis. So,
there are up to n reduced Gröbner bases, with the maximum achieved by two points
with no coordinates in common.

In applications, modeling is often driven by data. So geometric descriptions
of data sets can reveal essential features in the underlying network. We illustrate
the above results by considering different configurations of points. We begin with
Boolean data.

Example 3 Consider two points in Z
2
2. The left graph in Fig. 1 is the plot of all points

in Z
2
2. By decomposing the 2-square on which they lie, we find that pairs of points

that lie along horizontal lines have unique reduced Gröbner bases for any monomial
order; see Fig. 2. For example, {(0, 0), (0, 1)} has ideal of points 〈x1, x

2
2 − x2〉. By

Theorem 5 we see that the generators of I form a unique reduced GB. Similarly

Fig. 1 The lattice of points
in Z

2
2 (left), in Z

3
2 (center),

and in Z
2
3 (right)
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Fig. 2 Four configurations of pairs of points in Z
2
2. From left to right: {(1, 0), (0, 1)} and

{(0, 0), (1, 0)} each have 1 GB, while {(0, 0), (1, 1)} and {(1, 0), (0, 1)} have 2 distinct GBs

Fig. 3 Four configurations of pairs of points in Z
3
2. From left to right: {(1, 0, 1), (1, 1, 1)} and

{(0, 0, 0), (0, 0, 1)} have 1 GB; {(1, 1, 1), (0, 1, 0)} has 2 GBs; and {(1, 0, 1), (0, 1, 0)} has 3 GBs

{(1, 0), (1, 1)} has ideal of points 〈x1−1, x2
2 −x2〉, which also has a unique reduced

GB. Note that while they have different GBs, they have the same leading term ideal,
namely, 〈x1, x

2
2 〉. In the same way, pairs of points that lie along vertical lines have

unique reduced GBs: sets {(0, 0), (1, 0)} and {(0, 1), (1, 1)} have the unique leading
term ideal 〈x2

1 , x2〉. In each case, these sets have points with one coordinate change.
On the other hand, pairs of points that lie on diagonals have 2 distinct reduced

Gröbner bases as such points have two coordinate changes. For example, the set of
points {(0, 0), (1, 1)} has GBs {x1−x2, x

2
2 −x2} and {x2

1 −x1, x2−x1} with leading
term ideals 〈x1, x

2
2 〉 and 〈x2

1 , x2〉 respectively. Similarly the set {(0, 1), (1, 0)} has
{x1 − x2 − 1, x2

2 − x2} and {x2
1 − x1, x2 − x1 − 1} as Gröbner bases with leading

term ideals 〈x1, x
2
2 〉 and 〈x2

1 , x2〉 respectively.

Example 4 Now consider two points in Z
3
2. The center graph in Fig. 1 is the plot

of all points in Z
3
2. In Fig. 3, pairs of points that lie on edges of the 3-cube have 1

reduced Gröbner basis, as the points have one coordinate change: for example the
set {(1, 0, 1), (1, 1, 1)} (first from the left in Fig. 3) has the unique reduced GB {x1−
1, x2

2−x2, x3−1} and {(0, 0, 0), (0, 0, 1)} (second) has the unique GB {x1, x2, x
2
3−

x3}. Points that lie on faces of the 3-cube have 2 GBs as they have 2 coordinate
changes: the third set {(1, 1, 1), (0, 1, 0)} in Fig. 3 has GBs {x1−x3, x2−1, x2

3−x3}
and {x2

1 − x1, x2 − 1, x3 − x1}. Finally points that lie on lines through the interior
have 3 GBs as they have 3 coordinate changes: the fourth set {(1, 0, 1), (0, 1, 0)}
has GBs {x1 − x3, x2 − x3 − 1, x2

3 − x3}, {x1 − x2 − 1, x2
2 − x2, x3 − x2 − 1}, and

{x2
1 − x1, x2 − x1 − 1, x3 + x1}.
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Fig. 4 Three configurations of points in Z
2
3. From left to right: {(0, 0), (0, 2)} has 1 GB, while

{(1, 2), (2, 1)} and {(0, 2), (1, 0)} each have 2 distinct GBs

Next we consider data over the field Z3.

Example 5 Let p = 3 and n = 2. The right graph in Fig. 1 is the plot of all points
in Z

2
3. Similar to the Boolean case in Fig. 2, pairs of points that lie on horizontal

or vertical lines have one associated reduced Gröbner basis for any monomial
order, while pairs of points that lie on any skew line have two distinct GBs. For
example, the set {(0, 0), (0, 2)} in Fig. 4 has ideal of points 〈x1, x

2
2 + x2〉, which has

a unique reduced Gröbner basis via Theorem 5. On the other hand, the set of points
{(1, 2), (2, 1)} has two GBs, namely {x1 + x2, x

2
2 + 1} and {x2

1 − 1, x2 + x1} with
leading term ideals 〈x1, x

2
2 〉 and 〈x2

1 , x2〉 respectively.

In the case of m = 2 points, we see that data that lie on horizontal or vertical
edges have ideals of points with unique Gröbner bases, that is unique models, while
data whose coordinates change simultaneously have multiple models associated
with them. Though the number n of coordinates impacts the number of resulting
models, the field cardinality p does not.

4 Data Sets with m = 3 Points

Theorem 7 The number of distinct reduced Gröbner bases for ideals of three points
in Z

n
p is

NGB(p, n, 3) ≤
{

n(n−1)
2 for p = 2

n(n+1)
2 for p ≥ 3.

Proof We begin by considering the Boolean base field. By Theorem 3, the form
of a set of standard monomials for an ideal of three points is {1, xi, xj } for
xi �= xj . Considering the choice of xi and xj , there are up to n(n−1)

2 different
standard monomial sets, each corresponding to a distinct reduced Gröbner basis
by Theorem 2.

For a base field with p > 2, the two possible forms of standard monomial
sets are {1, xi, xj } for xi �= xj , and {1, xi, x2

i }. As we showed above, there are

up to n(n−1)
2 distinct reduced Gröbner bases corresponding to {1, xi, xj }. Further,
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the maximum number for the standard monomial form {1, xi, x2
i } is n. As the two

standard monomial forms can both be associated to the same data set, the upper
bound for a non-Boolean field is n(n−1)

2 + n = n(n+1)
2 . ��

Example 6 Let p = 2 and n = 2. Then NGB(2, 2, 3) ≤ 1; that is, all ideals of
three points in Z

2
2 have a unique reduced Gröbner basis, which is corroborated by

Theorem 4 and the fact that ideals of a single point have only one distinct Gröbner
basis for any monomial order.

Unlike the bound for two points, there are sets of three points for which the upper
bound is not sharp. For example when n = 4, the upper bound is NGB(2, 4, 3) ≤ 6;
however the maximum number is 5, which we tested exhaustively (data not shown).

Next we connect configurations of three points to the number of associated
Gröbner bases. We start with Boolean data.

Example 7 Let p = 2 and n = 3. In this case, NGB(2, 3, 3) ≤ 3. Consider the
configurations of points in Z

3
2 in Fig. 5. The data set corresponding to the green

triangle on the top “lid” of the leftmost 3-cube is S1 = {(0, 0, 1), (0, 1, 1), (1, 0, 1)}
and its ideal of points has a unique Gröbner basis, namely {x2

2+x2, x3+1, x1x2, x
2
1+

x1}. The data set corresponding to the pink triangle in the center 3-cube is S2 =
{(0, 0, 1), (0, 1, 1), (1, 1, 0)} and has two distinct associated GBs, with ambiguous
leading terms distinguished:

{x2
3+x3, x2x3+x2+x3+1, x2

2+x2, x1+x3+1}, {x1+x3+1, x2
2+x2, x1x2+x1, x

2
1+x1}.

Finally the data set corresponding to the red triangle in the rightmost 3-cube is
S3 = {(1, 0, 0), (0, 1, 0), (1, 1, 1)} and has three GBs:

{x2
3 + x3, x2x3 + x3, x

2
2 + x2, x1 + x2 + x3 + 1},

{x2
3 + x3, x1 + x2 + x3 + 1, x1x3 + x3, x

2
1 + x1},

{x1 + x2 + x3 + 1, x2
2 + x2, x1x2 + x1 + x2 + 1, x2

1 + x1}.

The example illustrates that points that lie on faces of the 3-cube have 1 Gröbner
basis; points forming a triangle which lies in the interior with 2 collinear vertices
have 2 distinct GBs, and points in other configurations have 3 GBs.

Now we consider data in Z3.

Example 8 Let p = 3 and n = 2. By Theorem 7, we have that NGB(3, 2, 3) ≤ 3.
Consider the point configurations in Fig. 6. The data set corresponding to the green
triangle (left) is S1 = {(0, 0), (0, 1), (1, 1)} and has a unique reduced Gröbner basis:
{x2

2−x2, x1x2−x1, x
2
1−x1}. The data set corresponding to the pink triangle (center)

is S2 = {(0, 1), (1, 2), (2, 0)} and has two distinct associated reduced GBs:

{x3
2 − x2, x1 − x2 + 1}, {−x1 + x2 − 1, x3

1 − x1}.
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Fig. 5 Configurations of sets of three points in Z
3
2 corresponding to different numbers of GBs.

Points that are in configurations similar to the green triangles (left) have a unique reduced Gröbner
basis for any monomial order; the pink triangle (center) has two distinct GBs; and the red triangle
(right) has three distinct GBs

Fig. 6 Configurations of sets of three points in Z
2
3 corresponding to unique and non-unique

Gröbner bases. Points that are in configurations similar to the green triangle (left) have a unique
reduced Gröbner basis for any monomial order; the pink triangles (center and right) have two
distinct GBs

The data set corresponding to the pink triangle (right) is S3 = {(0, 1), (1, 2), (2, 0)}
and also has two GBs:

{x3
2−x2, x1x

2
2−x1x2+x2

2−x2, x
2
1−x1x2+x1−x2}, {x3

2−x2,−x2
1+x1x2−x1+x2, x

3
1−x1}.

Using Fig. 6, we see that three points that are collinear or have two adjacent
collinear points have unique Gröbner bases, while other configurations result in 2
distinct ones. There are no data sets of three points in Z

2
3 that have 3 associated

Gröbner bases which we verified exhaustively (data not shown). Therefore the upper
bound in Theorem 7 is not sharp for p = 3, n = 2.

5 Geometric Observations for Larger Sets

In this section, we offer empirical observations for the number r of distinct reduced
Gröbner bases for data sets of m points, where 2 ≤ m ≤ 6. Furthermore, we state a
conjecture for decreasing r by adding points in so-called linked positions, using the
geometric insights from m = 2, 3 points.
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To generalize the observations from small data sets to larger data sets, we start
with configurations of two points, and then consider changes in r as points are
added.

Definition 4 Given a set S of points, we say that a point q is in a linked position
with respect to the points in S if q is adjacent to a point in S and has minimal sum
of distances to the points in S.

Figure 7 shows the changes in the number of Gröbner bases when points are
added at either linked or non-linked positions.

Example 9 Consider the set S = {(0, 1), (1, 2)}, which has r = 2 Gröbner bases
associated to it. We aim to add a point so that the augmented set has r = 1. There
are four points adjacent to the points in S, namely (0, 0), (0, 2), (1, 1) and (2, 2);
see the green points in the top panel of Fig. 7. The sum of the distances between
(0, 0) and the points in S is

√
5 + 1; similarly for (2, 2). On the other hand, (0, 2)

and (1, 1) both have a distance sum of 2. So (0, 2) and (1, 1) are in linked positions
with respect to S. Note that inclusion of either (0, 2) or (1, 1) to S reduces r to 1,
while inclusion of either of (0, 0) or (2, 2) keeps r = 2.

Example 10 Consider the set S = {(0, 1), (1, 1)}, which has a unique Gröbner
basis. There are five points adjacent to S, namely (0, 0), (0, 2), (1, 0), (1, 2), and
(2, 1); see the green points in the bottom panel of Fig. 7. The first four points have a
distance sum of

√
2+ 1, while the last point (2, 1) has a distance sum of 3. So these

four points are in linked positions with respect to S and inclusion of any one of them
keeps r = 1. On the other hand, (2, 1) is not in linked position; nevertheless adding
it to S results in a unique Gröbner basis due to it being collinear to the points in S.

Adding a red point in Fig. 7, which is not in a linked position with respect to the
starting data set, will not reduce the number of Gröbner bases as its inclusion does
not aid in removing ambiguous leading terms. In fact, the pink triangles in the last
column in Fig. 7 give instances in which r increases.

For p = 3 and n = 2, we computed the number of Gröbner bases for data sets up
to six points; see Fig. 8. The points at the vertices of the green polygons have r = 1.
The uniqueness can be maintained by adding points in linked positions; however the
points at the vertices of the pink polygons have non-unique Gröbner bases.

Based on the geometric observations from Figs. 7 and 8, we provide heuristic
rules to aid in decreasing the number of candidate models as enumerated by the
number of Gröbner bases:

1. For two points, fewer changing coordinates in the data points will lead to fewer
Gröbner bases. In the simplest case, if only one coordinate changes, a unique
model will be generated.

2. For three points, more points lying on horizontal or vertical edges will reduce the
number of Gröbner bases. A unique Gröbner basis arises when the data lie on a
horizontal line, a vertical line or form a right triangle.



The Number of Gröbner Bases in Finite Fields 151

Fig. 7 The green points are adjacent to the blue points. Green triangles are associated with a
unique GB, while pink triangles are associated with non-unique GBs

3. In the process of adding points, to decrease or maintain the number of minimal
models, add points in linked positions with respect to an existing data set: this
guarantees more points lying on horizontal or vertical edges.

By adding points in linked positions, data sets with multiple Gröbner bases can
be transformed to data sets with unique one, as the following example suggests.

Example 11 Consider data sets in Z
4
2. Let Smax be a data set whose ideal of points

has the maximum number of Gröbner bases. Define Sunique = Smax ∪ Sadd where
Sadd is a collection of points such that the augmented data set Sunique has an ideal
of points with a unique GB. The table summarizes for different sized sets how many
points must be added to guarantee a unique Gröbner basis from a data set associated
with the maximum number of Gröbner bases.

max(#GBs) 4 5 6 13 12 13 9 13 12 13 6 5 4

|Smax | 2 3 4 5 6 7 8 9 10 11 12 13 14

|Sunique| 5 5 8 11 11 11 11 12 15 15 15 15 15

|Sadd | 3 2 4 6 5 4 3 3 5 4 3 2 1
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Fig. 8 Point configurations based on the number of Gröbner bases for 2 ≤ m ≤ 6. The left two
columns contain points that form green polygons and correspond to a unique Gröbner basis. The
right column contains the pink polygons corresponding to non-unique GBs

We end this discussion with a conjecture about points in linked positions.

Conjecture 1 Let S be a set of points, q �∈ S, and T = S ∪ {q}. If q is in a linked
position and the convex hull of the points in T does not contain “holes” (i.e., lattice
points not in T ), then #GB(T ) ≤ #GB(S).

6 Upper Bound for the Number of Gröbner Bases

We now focus on the general setting of subsets of any size m in Z
n
p, for any p and

any n.
In Theorem 1, the stated upper bound for the number of Gröbner bases for an

ideal I of m points in Kn is m2n n−1
n+1 , where K is any field; furthermore the number

of Gröbner bases coincides with the number of vertices of the staircase polytope
of I . When the base field is finite, however, this bound becomes unnecessarily
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Fig. 9 The staircase λ ⊂ R
2

(left) has
∑

λ = (0, 6) while
the staircase λ ⊂ Z

2
3 (right)

has
∑

λ = (1, 3)

Fig. 10 The staircase λ ⊂ Z
2
3

with red point (left) has∑
λ = (3, 3) while the

staircase λ ⊂ Z
2
3 with green

point (right) has
∑

λ = (2, 4)

large for even small m. Unlike in characteristic-0 fields, all coordinates in positive-
characteristic fields are bounded above by p; for example see Fig. 9. We will use
the fact that staircases in a finite field are contained in a hypercube of volume pn to
modify the bound. The only part of the construction of the staircase polytope that is
affected by the field characteristic is the maximum value of any vertex. As a vertex
is a vector sum

∑
λ of points in a staircase λ, the modification comes from placing

staircase points aimed to maximize the sum.
Consider any staircase λ of 5 elements. In the following discussion, we will

consider the placement of points so that the vector sum is maximized. We proceed
in a “greedy” manner by maximizing a fixed coordinate. Suppose four (blue) points
have already been placed so as to maximize the value of the second coordinate of∑

λ; see Fig. 10. Placing the green point (1, 1) contributes 1 to the running sum, that
is,
∑m

j=1 λj2 = 4 while placing the red point (2, 0) keeps the sum of the coordinate
unchanged. In fact, to maximize the sum of second coordinate, choose any point
whose second coordinate is largest among the available positions, that is so that the
configuration continues to be a staircase.

Theorem 8 The number of distinct reduced Gröbner bases for an ideal of m points
in Z

n
p is

NGB(p, n,m) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

O

((
p2 �m/p� + (m (mod p))2

)n n−1
n+1

)
: 0 < m ≤ �pn/2�

O

((
p2 �(pn −m)/p� + (−m (mod p))2

)n n−1
n+1

)
: �pn/2� ≤ m < pn

1 : m = 0, pn.

Proof Let I be an ideal of m points in Z
n
p. Recall that the number of Gröbner bases

of I is bijective with the number of vertices of the staircase polytope P of I by
Theorem 2. The cases m = 0, pn are trivial. So we proceed with 0 < m ≤ �pn/2�.
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As P is the convex hull of the points
∑

λ where λ is a staircase corresponding
to the exponent vectors of the standard monomial sets of I , we will show that the
staircase polytope of I is contained in a larger convex body whose volume can be
computed easily.

Let λ = {λ1, . . . , λm}. Then
∑

λ =∑m
i=1 λi =∑m

i=1

(∑m
j=1 λji

)
ei where λji

denotes the i-th coordinate of the j -th point and ei is the standard basis vector. Note
that the maximum sum of the i-th coordinate is

M := max
m∑

j=1

λji = (1+ . . .+ p − 1)�m/p�︸ ︷︷ ︸
p�m/p� points

+ (1+ . . .+m (mod p)− 1)︸ ︷︷ ︸
remaining m (mod p) points

= p(p − 1)

2
�m/p� + (m (mod p))(m (mod p)− 1)

2
.

So the staircase polytope P ⊂ R
n is contained in the hypercube [0,M]n, which has

volume Mn. Therefore vol(P) ≤ Mn. By Lemma 1 and Theorem 1, we have that

NGB(p, n,m) = O
(
vol(P)(n−1)/(n+1)

)

= O

((
Mn
) n−1

n+1

)

= O

((
p2 �m/p� + (m (mod p))2

)n n−1
n+1
)
. (1)

For the final case when m ≥ �pn/2�, the number of Gröbner bases can be
computed by plugging pn − m into the second argument of the above bound,
according to Theorem 4. ��

It is straightforward to show that our bound grows much slower than the bound

O
(
m2n n−1

n+1

)
reported in [22], which we have also verified computationally. In the

Appendix Tables 1, 2, 3, and 4 contain numerical results of the new upper bound in
comparison to the values of the original upper bound in [22]. Figure 11 provides a
comparison for selected cases among p = 2, 3 and n = 2, 3, 4.

Not only are the values from Theorem 8 closer to the actual number of GBs,
including an application of Theorem 4 in our bound retains the symmetric nature of
the maximum number of Gröbner bases for ideals of points in Z

n
p. For example, for

p = 2, n = 4, and m = 5 in Fig. 11, the original bound is over 2000, while the
modified bound is in the same order of magnitude as the actual maximum number
of GBs.

The significance of this result is that Theorem 8 provides a more accurate
representation of the maximum number of models associated to a data set, which
may aid in experimental design.
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Fig. 11 Plots comparing the maximum number of Gröbner bases. The caption in each plot
indicates the values of p and n for Zn

p . In each case, all subsets of size m are computed, where
m ranges from 0 to pn and listed on the horizontal axis. The vertical axis is the maximum number
of GBs for a set of size m. The blue solid line with dots shows the actual maximum number of
GBs. The yellow dotted line with triangles is the original upper bound given by Theorem 1, where
the red dashed line with squares is the modified upper bound given by Theorem 8. The data for the
four plots is available in Tables 1, 2, 3, and 4 in the Appendix

7 Discussion

This work relates the geometric configuration of data points with the number of
associated Gröbner bases. In particular we provide some insights into which con-
figurations lead to uniqueness. We give an upper bound for the number of Gröbner
bases for any set over a finite field. We also provide a heuristic for decreasing the
number by adding points in so-called linked positions. An implication of this work
is a more computationally accurate way to predict the number of distinct minimal
models which may aid modelers in estimating the computational cost before running
physical experiments.

Increasing p, n or m inflates the difference between the estimated number of
Gröbner bases and the actual number. The performance of the bound in Theorem 8
works well for large p and m. Though the bound is tighter than the original bound
in [22], it still has large differences from the actual values for n > 4; see Table 5 in
the Appendix. Hence, improving this bound further or finding a closed form for the
number of Gröbner bases remains an important direction for future work.
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Appendix

We provide tables comparing of the maximum number of distinct reduced Gröbner
bases to the predictions made by the original bound (third column) in Theorem 1
and the modified bound (last column) in Theorem 8. In Tables 1, 2, 3, and 4, the
second column shows the actual maximum number as computed for all sets in Z

n
p

of size given in the first column. In Table 5, the maximum number of Gröbner bases
is compared to the predictions made by the two bounds with regards to an increasing
number of coordinates (first column). All values are rounded up to 2 decimal places.

Table 1 p = 2, n = 2

# of points Max # of GBs Original bound Modified bound

1 1 1 1

2 2 2.52 2.52

3 1 4.33 1

4 1 6.35 1

Table 2 p = 2, n = 3

# of points Max # of GBs Original bound Modified bound

1 1 1 1

2 3 8 8

3 3 27 11.18

4 3 64 22.63

5 3 125 11.18

6 3 216 8

7 1 343 1

8 1 512 1

Table 3 p = 2, n = 4

# of points Max # of GBs Original bound Modified bound

1 1 1 1

2 4 27.86 27.86

3 5 195.07 47.59

4 6 776.05 147.03

5 13 2264.94 195.07

6 12 5434.08 389.08

7 13 11,388.61 471.48

8 9 21,618.82 389.08

Half of the table is listed due to space constraints
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Table 4 p = 3, n = 2

# of points Max # of GBs Original bound Modified bound

1 1 1 1

2 2 2.52 2.52

3 2 4.33 4.33

4 2 6.35 4.64

5 2 8.55 4.64

6 2 10.90 4.33

7 2 13.39 2.52

8 1 16 1

9 1 18.72 1

Table 5 p = 2 and m = 4

# of coordinates Max # of GBs Original bound Modified bound

2 1 6.35 1

3 3 64 22.63

4 6 776.05 147.03

5 8 10,321.27 1024

Here we show how the number of Gröbner bases changes as the number of coordinates changes.
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1 Introduction

During the past two decades, many papers have appeared with various approaches to
computing lower bounds for the depth, or equivalently upper bounds for the projec-
tive dimension, of R/I for a squarefree monomial ideal I (cf. [7, 8, 22, 25, 26, 31]).
The general idea has been to associate to the ideal I a graph or hypergraph G and
use dominating or packing invariants of G to bound the depth of R/I .

In general, given an ideal I ⊆ R, it is not just the depth of R/I that
attracts significant attention; rather, it is the entire depth function depthR/I s , for
s ∈ N. A result by Burch, which was later improved by Brodmann, states that
lim
s→∞ depthR/I s ≤ dimR − �(I ), where �(I ) is the analytic spread of I [3, 5].

Moreover, Eisenbud and Huneke [9] showed that if, in addition, the associated
graded ring, grI (R), of I is Cohen-Macaulay, then the above inequality becomes
an equality. Therefore, one can say that the limiting behavior of the depthR/I s is
quite well understood. It is then natural to consider the initial behavior of the depth
function (cf. [1, 11, 16, 17, 19, 21, 23, 24, 27–30, 33]).

Examples have been exhibited to show that the initial behavior of depthR/I s

can be wild, see [1]. In fact, it was conjectured by Herzog and Hibi [19] that for
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any numerical function f : N → Z≥0 that is asymptotically constant, there exists
an ideal I in a polynomial ring R such that f (s) = depthR/I s for all s ≥ 1. This
conjecture has recently been resolved affirmatively in [15]. It was proven in [15]
that the depth function of a monomial ideal can be any numerical function that is
asymptotically constant. Yet, it is still not clear what depth functions are possible
for squarefree monomial ideals.

Unlike the case for depthR/I , few lower bounds for depthR/I s , s ∈ N, are
known (cf. [11, 29, 33]). One reason for this is that powers of squarefree monomial
ideals are not squarefree and so many of the known bounds for R/I do not apply to
R/I s . To address this situation, we adapt a proof technique from [2] to generalize
bounds for depthR/I that were given by Dao and Schweig [8] in terms of the
edgewise domination number, and by the authors [12] in terms of the length of
an initially regular sequence. We provide lower bounds for the depth function
depthR/I s , s ∈ N, when I is a squarefree monomial ideal corresponding to a
hyperforest or a forest, Theorems 1 and 2.

Our results, Theorems 1 and 2, predict correctly the general behavior, as
computation indicates for random hyperforests and forests, that the depth function
depthR/I (G)s decreases incrementally as s increases. For specific examples, our
bound in Theorem 1 could be far from the actual values of the depth function—and
this is because the starting bound for depthR/I in terms of the edgewise domination
number is not always optimal. For forests, Theorem 2 could provide a more accurate
starting bound for depthR/I using initially regular sequences and, thus, be closer
to the depth function.

The common underlying idea behind Theorems 1 and 2 is that if α(G) is an
invariant associated to a hyperforest G that gives depthR/I (G) ≥ α(G) and
satisfies a certain inequality when restricted to subhypergraphs then one should have

depthR/I (G)s ≥ max{α(G)− s + 1, 1}.

Our work in this paper, thus, could be interpreted as the starting point of a research
program in finding such combinatorial invariants α(G) to best describe the depth
function of squarefree monomial ideals, which we hope to continue to pursue in
future works.

2 Background

For unexplained terminology, we refer the reader to [4] and [18]. Throughout the
paper, R = k[x1, . . . , xn] is a polynomial ring over an arbitrary field k and all
hypergraphs will be assumed to be simple, that is, there are no containments among
the edges. For a hypergraph G = (VG,EG) over the vertex set VG = {x1, . . . , xn},
the edge ideal of G is defined to be
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I (G) =
〈∏
x∈e

x

∣∣∣ e ∈ EG

〉
⊆ R.

This construction gives a one-to-one correspondence between squarefree monomial
ideals in R = k[x1, . . . , xn] and (simple) hypergraphs on the vertex set V =
{x1, . . . , xn}.

For a vertex x in a graph or hypergraph G, we say y is a neighbor of x if there
exists an edge E ∈ EG such that x, y ∈ E. The neighborhood of x in G is NG(x) =
{y ∈ VG | y is a neighbor of x}. The closed neighborhood of x in G is NG[x] =
NG(x) ∪ {x}. Note that the G in the notation will be suppressed when it is clear
from the context.

Simplicial forests were defined by Faridi in [10], where it was shown that the
edge ideals of these hypergraphs are always sequentially Cohen-Macaulay. They
have also been used in the study of standard graded (symbolic) Rees algebras of
squarefree monomial ideals [20]. We first recall the definition of a simplicial forest
(or a hyperforest for short).

Definition 1 Let G = (V ,E) be a simple hypergraph.

1. An edge e ∈ E is called a leaf if either e is the only edge in G or there exists
e �= g ∈ E such that for any e �= h ∈ E, e ∩ h ⊆ e ∩ g.

2. A leaf e in G is called a good leaf if the set {e ∩ h | h ∈ E} is totally ordered
with respect to inclusion.

3. G is called a simplicial forest (or simply, a hyperforest) if every subhypergraph
of G contains a leaf. A simplicial tree (or simply, a hypertree) is a connected
hyperforest.

It follows from [20, Corollary 3.4] that every hyperforest contains good leaves.
It is also immediate that every graph that is a forest is also a hyperforest.

Example 1 For the hypergraphs depicted below, the first one is not a hypertree while
the second one is, see also [10, Examples 1.4, 3.6].

a
b

c

d
x

y

z

u

v

In this paper, we will focus on two invariants that are known to bound the
depth of R/I when I is the edge ideal of an arbitrary hypergraph. When G is a
simplicial forest, we will provide a linearly decreasing lower bound for the depths
of the powers of I using each of these invariants. The first of these bounds for the
depth function of a squarefree monomial ideal is the edgewise domination number
introduced in [8]. Recall that for a hypergraph G = (V ,E), a subset F ⊆ E is
called edgewise dominant if for every vertex v ∈ V either {v} ∈ E or v is adjacent
to a vertex contained in an edge of F .
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Definition 2 ([8]) The edgewise domination number of G is defined to be

ε(G) = min{|F | | F ⊆ E is edgewise dominant}.

The second invariant used in this paper will be a variation on the depth bound for
monomial ideals introduced in [12]. For an arbitrary vertex b0 in a hypergraph G,
define a star on b0 to be a linear sum b0+b1+· · ·+bt such that for each edge Ei of G,
if b0 ∈ Ei , then there exists a j > 0 such that bj ∈ Ei . It was shown in [12, Theorem
3.11] that a set of vertex-disjoint stars that can be embedded in a hypergraph G

forms an initially regular sequence and, thus, gives a lower bound for the depth of
R/I (G). While much of [12] focuses on strengthening this bound by weakening the
disjoint requirement and allowing for additional types of linear sums, in this article
we will apply the bound to graphs, where the situation is more restricted. Notice
that for a graph G, a star on b0 is the sum of all vertices in the closed neighborhood
of b0, while for a hypergraph, a subset of the closed neighborhood can suffice. A
star packing is a collection S of vertex-disjoint stars in G such that if x ∈ VG then
NG[x] ∩ Supp(S) �= ∅. In other words, S is maximal in the sense that no additional
disjoint stars exist. This leads to the following definition, whose notation reflects its
relationship to a 2-packing of closed neighborhoods in graph theory.

Definition 3 The star packing number α2 of a hypergraph G is given by

α2(G) = max{|S| | S is a star packing ofG}.

Remark 1 If x1, . . . , xk ∈ R are variables in R that do not appear in any edge of
G, then x1, . . . , xk is a regular sequence on R/I (G) and depthR/I (G) = k +
depthR/(x1, . . . , xk, I (G)).

Note that if S is any set of disjoint stars in a hypergraph G, then α2(G) ≥ |S|
since S can be extended to a full star packing. Note also that for the special case
when G is a graph, a star packing is equivalent to a closed neighborhood packing
and, by focusing on the centers of the stars, to a maximal set of vertices such that
the distance between any two is at least 3.

3 Depth of Powers of Squarefree Monomial Ideals

In this section, we use a technique introduced in [2] to give a general lower bound for
the depth function of a squarefree monomial ideal when the underlying hypergraph
is a hyperforest. In the case of a forest, we extend the result to show that an
additional, often stronger, bound holds. For simplicity of notation, we write VG and
EG to denote the vertex and edge sets of a hypergraph G.
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Theorem 1 Let G be a hyperforest with at least one edge of cardinality at least 2,
and let I = I (G). Then for all s ≥ 1,

depthR/I s ≥ max{ε(G)− s + 1, 1}.

Proof It follows from [20, Corollary 3.3] (see also [13]) that the symbolic Rees
algebra of I is standard graded. That is, I (s) = I s for all s ≥ 1. In particular, this
implies that I s has no embedded primes for all s ≥ 1. Thus, depthR/I s ≥ 1 for all
s ≥ 1.

It remains to show that depthR/I s ≥ ε(G)− s + 1. Indeed, this statement and,
hence, Theorem 1 follows from the following slightly more general result. ��
Proposition 1 Let G be a hyperforest. Let H and T be subhypergraphs of G such
that

EH ∪ ET = EG and EH ∩ ET = ∅.

Then we have

depthR/[I (H)+ I (T )s] ≥ max{ε(G)− s + 1, 0}.

Proof It suffices to show that depthR/[I (H)+I (T )s] ≥ ε(G)−s+1. We shall use
induction on |ET | and s. If |ET | = 0 then the statement follows from [7, Theorem
3.2]. If s = 1 then the statement also follows from [7, Theorem 3.2]. Suppose that
|ET | ≥ 1 and s ≥ 2.

Let e be a good leaf of T . Then by the proof of [6, Theorem 5.1], we have
I (T )s : e = I (T )s−1. This implies that

(I (H)+ I (T )s) : e = (I (H) : e)+ I (T )s−1.

Moreover,

I (H)+ I (T )s + (e) = I (H + e)+ I (T \ e)s .

Thus, we have the exact sequence

0→R/[(I (H) : e)+I (T )s−1] → R/[I (H)+I (T )s]→R/[I (H+e)+I (T \e)s]→0

which, in turns, gives

depthR/[I (H)+ I (T )s] ≥
min{depthR/[(I (H) : e)+ I (T )s−1], depthR/[I (H + e)+ I (T \ e)s]}. (1)

Observe that G = (H + e)+ (T \ e) and EH+e ∩ET \e = ∅. Thus, by induction
on |ET |, we have
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depthR/[I (H + e)+ I (T \ e)s] ≥ ε(G)− s + 1.

On the other hand, let Z = {z ∈ VH | ∃h ∈ EH such that {z} = h \ e}. Let H ′ be
the hypergraph obtained from I (H) : e by deleting the vertices in Z and any vertex
in H that does not belong to any edge. Let T ′ be the hypergraph whose edges are
obtained from edges of T after deleting all those that contain any vertex in VT ∩ Z.
Then

I (H) : e = I (H ′)+ (z | z ∈ Z).

Let G′ = H ′ +T ′, let R′ = k[VH ′ ∪VT ′ ], and let W = VG \ (VG′ ∪Z). It follows
by induction on s that

depthR/[(I (H) : e)+ I (T )s−1] = depthR/[I (H ′)+ I (T ′)s−1 + (z | z ∈ Z)]
= depthR′/[I (H ′)+ I (T ′)s−1] + |W |
≥ ε(G′)− (s − 1)+ 1+ |W |
= (ε(G′)+ 1+ |W |)− s + 1.

Now, let F ′ ⊆ EG′ be an edgewise dominant set in G′. By the construction of
H ′, for each f ′ ∈ F ′ ∩ EH ′ , there is an edge f ∈ EH such that f ′ = f \ e. Let F
be the set obtained from F ′ by replacing each f ′ ∈ F ′ ∩EH ′ by such an f . Observe
that for any vertex v ∈ VG, either v ∈ W , or v ∈ Z, or v ∈ VG′ . If v ∈ Z, then v is
dominated by e. If v ∈ VG′ , then v is dominated by some edge in F ′. Thus, F ∪ {e}
together with one edge for each vertex in W will form an edgewise dominant set in
G. This implies that

ε(G′)+ 1+ |W | ≥ ε(G).

Therefore,

depthR/[(I (H) : e)+ I (T )s−1] ≥ ε(G)− s + 1.

Hence, by (1), we have

depthR/[I (H)+ I (T )s] ≥ ε(G)− s + 1,

which concludes the proof. ��
A close examination of the proof of Proposition 1 shows that we can replace ε(G)

by any invariant α(G), for which depthR/I (G) ≥ α(G) and α(G′) + 1 + |W | ≥
α(G), where G′ and W are defined as in the proof of Proposition 1.

Corollary 1 If α(G) is any invariant of a hyperforest G for which depthR/I (G) ≥
α(G) and α(G′)+ 1+ |W | ≥ α(G), then
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depthR/I s ≥ max{α(G)− s + 1, 0}.

For a random hypertree G, computations indicate that the depth function
depthR/I (G)s decreases incrementally as s increases as predicted by Theorem 1.
However, for low powers of I , the ε-bound is often less than optimal, as can be
seen by comparing the results to the bounds on depthR/I (G) obtained from [12].
For hypertrees G for which depthR/I (G) = ε, the depth function depthR/I (G)s

usually does not initially decrease incrementally as s increases. These statements
are illustrated by the following pair of examples.

Example 2 Let I = (x1x2, x2x3, x3x4, x3x5, x3x6, x6x7, x6x8, x8x9, x8x10, x8x11,

x8x12) in R = Q[x1, . . . , x12] be the edge ideal of the graph G depicted below.

x1 x2 x3

x4

x5

x6

x7

x8

x9

x10 x11

x12

Computation in Macaulay 2 [14] shows that the depth function of I is
4, 3, 2, 1, 1, . . .. Thus, Theorem 1 predicts correctly how the depth function behaves.
However, in this example, ε(G) = 2 does not give the right value for depthR/I .

Example 3 Let I = (x1x2, x1x3, x1x4, x4x5, x5x6, x5x7, x4x8, x8x9, x8x10,

x8x11, x8x12) in R = Q[x1, . . . , x12] be the edge ideal of the graph G depicted
below.

x1

x2

x3

x4

x5

x6 x7

x8

x9

x10

x11

x12

Then ε(G) = 3. Computation in Macaulay 2 [14] shows that the depth function
of I is 3, 3, 3, 1, 1, . . .. The bound in Theorem 1 gives the depth function of I

to be at least 3, 2, 1, 1, 1, . . .. In this example, while ε(G) gives the right value
for depthR/I , Theorem 1 does not predict correctly how the depth function of I

behaves.

Examples 2 and 3 show that to get a sharp bound for the depth function of random
hypertrees, we may want to start with invariants other than ε(G) which give stronger
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bounds for depthR/I (G). In order to do so, one often needs to assume additional
structure on G. For example, if G is a forest, the invariant from Definition 3 can be
used.

Proposition 2 Let G be a forest with connected components G1, . . . ,Gt . Let H

and T be subforests of G such that EH ∪ ET = EG, EH ∩ ET = ∅, and T ∩Gi is
connected for each i. Then

depthR/[I (H)+ I (T )s] ≥ max{α2(G)− s + 1, 0}.

Proof The proof follows the outline of that of Proposition 1 with special care
toward the end. If |ET | = 0 or s = 1, then the statement follows from [12, Theorem
3.11], so we assume |ET | ≥ 1 and s ≥ 2.

Consider an edge {x, y} of H . Then, {x, y} ∈ Gi for some i. Since T ∩ Gi is
connected, if x, y ∈ VT , then there is a path in T from x to y. This path, together
with {x, y}, forms a cycle in G, which is a contradiction. Thus, no edge of H can
have both endpoints in VT .

Let e be a leaf of T . Since T is a forest, e is a good leaf of T . Thus, as in the
proof of Proposition 1, we have

depthR/[I (H)+ I (T )s] ≥
min{depthR/[(I (H) : e)+ I (T )s−1], depthR/[I (H + e)+ I (T \ e)s]}. (2)

Observe further that G = (H + e)+ (T \ e), EH+e ∩ ET \e = ∅, and (T \ e) ∩Gi

is connected for each i. Thus, by induction on |ET |, we have

depthR/[I (H + e)+ I (T \ e)s] ≥ α2(G)− s + 1.

On the other hand, let Z = {z ∈ VH | ∃h ∈ EH such that {z} = h \ e}. Let H ′
be the graph obtained from I (H) : e by deleting the vertices in Z and any vertex of
H that does not belong to any edge. Note that VT ∩ Z = ∅, since otherwise there
would be an edge of H having both endpoints in VT (one in Z and the other in e).
Then

I (H) : e = I (H ′)+ (z | z ∈ Z).

Let G′ = H ′ + T , let R′ = k[VH ′ ∪VT ], and let W = VG \ (VG′ ∪Z). It follows
by induction on s that

depthR/[(I (H) : e)+ I (T )s−1] = depthR/[I (H ′)+ I (T )s−1 + (z | z ∈ Z)]
= depthR′/[I (H ′)+ I (T )s−1] + |W |
≥ α2(G

′)− (s − 1)+ 1+ |W |
= (α2(G

′)+ 1+ |W |)− s + 1.
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We will show that α2(G
′)+ 1+ |W | ≥ α2(G). Fix a set of disjoint stars of G of

cardinality α2(G) and let S = {x1, . . . , xα2(G)} denote the set of the centers of these
stars.

Let S′ = {xi | xi ∈ R′} and notice that the set of stars in G′ centered at xi
for each xi ∈ R′ is a set of disjoint stars and thus α2(G

′) ≥ |S′|. If xi �∈ R′, then
xi ∈ Z ∪W . Since the stars with centers in S are disjoint, there can be at most two
elements in Z ∩ S. If |Z ∩ S| ≤ 1, then |S′| ≥ |S| − 1− |W | = α2(G)− 1− |W |,
and so α2(G

′)+ 1+ |W | ≥ α2(G).
Suppose that |Z ∩ S| = 2. Write e = ab and notice that if either a or b is in

S, then Z ∩ S = ∅. Hence, we may assume that a, b �∈ S. We will construct a
new set of stars in G′ of cardinality at least α2(G) − 1 − |W | and, thus, also give
α2(G

′)+ 1+ |W | ≥ α2(G) in this case.
Indeed, let {z1, z2} = Z ∩ S. Then, z1, z2 ∈ NG(a) ∪ NG(b) and, without loss

of generality, we may assume that z1 ∈ NG(a) and z2 ∈ NG(b). Since e is a leaf
in T , we may also assume that b is a leaf vertex in T ; that is, NT (b) = a. Then,
NG(b) \ {a} ⊆ Z. Let Ŝ′ = S′ ∪ {b}. We claim that the stars in G′ centered on
the elements of Ŝ′ are disjoint. Any two stars centered at elements of S′ are already
disjoint. Consider then a star centered at an element xi ∈ S′ and the star centered
at b in G′. Since xi �= z1, and the stars in G centered at xi and z1 are disjoint, we
have a �∈ NG′(xi). Thus, NG′ [xi] ∩ NG′ [b] = ∅. Clearly, |Ŝ′| ≥ |S| − 1 − |W | =
α2(G)− 1− |W |.

Now, we have

depthR/[(I (H) : e)+ I (T )s−1] ≥ α2(G)− s + 1,

and the assertion now follows from (2). ��
Using this result, we obtain the following bound which, while generally stronger

than that of Theorem 1 when applicable, applies only to graphs that are trees or
forests.

Theorem 2 Let G be a forest with at least one nontrivial edge, and let I = I (G).
Then,

depthR/I s ≥ max{α2(G)− s + 1, 1}.

Proof It follows from [32, Theorem 5.9] that I (s) = I s for all s ≥ 1 and so
depthR/I s ≥ 1 for all s ≥ 1. By Proposition 2, depthR/I s ≥ α2(G) − s + 1
and the result follows. ��
Example 4 Let G be the graph in Example 2. Using x1, x5, x7, x9 as centers of
stars, we have α2(G) = 4. Thus, Theorem 2 gives the correct depth function
depthR/I (G)s , for all s ∈ N, for this graph.

On the other hand, let G be the graph as in Example 3. Then, α2(G) = 3 = ε(G),
and so Theorem 2 gives the same bound as that of Theorem 1 for this graph.
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It would be interesting to know whether the length of a more general initially
regular sequence with respect to I (G), or improved bounds for depthR/I (G)

obtained in [12, Section 4], could be used to get better bounds for the depth function
than those given in Theorem 1 when G is a hyperforest.
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A Note on the Uniqueness of Zero-Divisor
Graphs with Loops (Research)

Aihua Li, Ryan Miller, and Ralph P. Tucci

1 Introduction

Let R be a finite commutative ring with 1 �= 0. Let Z∗(R) denote the set of nonzero
zero-divisors of R and U(R) the set of units of R. The zero-divisor graph of R,
denoted !(R), is the undirected graph whose vertices are labeled by the elements of
Z∗(R). For two distinct vertices r and s in Z∗(R), there is an edge in !(R) between
r and s if and only if rs = 0. In this case, we say that r and s are adjacent. As usual,
the edge in between r and s is denoted as “r − s" which is a member of E(!(R)).
This graph has no loop because the edges are only defined on distinct vertices. We
generalize the definition to include loops. If r ∈ Z∗(R) with r2 = 0, then there is
an edge from r to itself in a modified graph. Such an edge is called a loop. The new
zero-divisor graph of R that allows loops, denoted !0(R), has the same vertex set
as that of !(R) and the edge set is given by

E (!0(R)) = E (!(R)) ∪ {all loops}.

For r ∈ Z∗(R), the set of vertices adjacent to r , referred to as the neighborhood
of r , is the set N(r) = {s ∈ R | s �= 0, rs = 0}. The cardinality of N(r) is called
the degree of r in !(R). By [7], we know that !(R) is connected for any ring R. For
a general background on graph theory, see [13]. In a zero-divisor graph including
loops, the neighborhood of a vertex may have the vertex itself.
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Zero-divisor graphs (not allowing loops) were first defined for commutative rings
by Beck ([10], 1988) when the coloring of graphs was studied. In the last 15 years,
there has been a large number of papers on this topic [1, 4–7, 11, 12, 16]. Readers
can refer to recent survey papers [2] (2011), [14] (2012), [8] (2017), and [9] (2017)
for extensive bibliographies.

Redmond ([19, 20], 2002) introduced the concept of the zero-divisor graph for
a noncommutative ring. It is a directed graph denoted as

−→
! (R). Let R be a finite

noncommutative ring with identity. The vertices of
−→
! (R) are the nonzero zero-

divisors of R. For two vertices r and s, if rs = 0, then we have a directed edge in
the graph from r to s, denoted r → s. We say that r is adjacent to s and s is adjacent
from r . The directed graphs we consider also allow loops. As in the undirected graph
case, we denote the zero-divisor graphs of R that may have loops by

−→
! 0(R).

Bŏzić and Petrović ([12], 2009) studied the zero-divisor graph of a ring of
matrices over a commutative ring. Akbari and Mohammadian ([1], 2007) studied the
problem of determining when the zero-divisor graphs of two rings are isomorphic,
given that the zero-divisor graphs of their matrix rings are isomorphic. B. Li ([18],
2011) and A. Li and Tucci ([17], 2013) investigated the zero-divisor graphs of upper
triangular matrix rings. Dolzan and Oblak ([15], 2012) have studied zero-divisor
graphs of semirings and some other rings. Birch, Thibodeaux, and Tucci discovered
some properties for the zero-divisor graphs of finite direct products of finite rings
([11], 2014).

It is well-known that non-isomorphic rings can have isomorphic zero-divisor
graphs. For example, the zero-divisor graphs of Z4 and Z2[x]/(x2) are isomorphic,
each consisting of a single vertex with a loop on it. However, we show that if two
rings R and S have isomorphic zero-divisor graphs, then R ∼= S if both R and S are
finite direct products of Zn’s and/or finite fields.

2 Direct Products of Rings of Integers Modulo Various n

Given two commutative rings R and S, we say that R and S are in the same zero-
divisor class if !0(R) ∼= !0(S). A natural question is, “in what situations does
!0(R) ∼= !0(S) imply R ∼= S?” The following theorem provides the first step in
answering this question. Note that !(R) always stands for the zero-divisor graph of
R not including loops and !0(R) for the zero-divisor graph of R by adding loops in
!(R).

Theorem 1 (Theorem 2.1, [3]) Let {Ri}i∈I and {Sj }j∈J be two families of integral
domains and let R = ∏i∈I Ri and S = ∏j∈J Sj . Then !(R) ∼= !(S) if and only if
there is a bijection φ : I −→ J such that |Ri | = |Sφ(i)| for each i ∈ I . In particular,
if !(R) ∼= !(S) and each Ri is a finite field, then each Sj is also a finite field and
Ri
∼= Sφ(i) for each i ∈ I and thus R ∼= S.
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Note that in a commutative (or noncommutative) ring R which has no nilpotent
element, the zero-divisor graph !0(R) (or

−→
! 0(R)) has no loop. In this case,

!(R) = !0(R) (or
−→
! (R) = −→

! 0(R)). In particular, !(R) = !0(R) for any integral
domain R.

Redmond [21] provided the following useful result:

Theorem 2 ([21], Theorem 2.1) Let G be a graph with four or more vertices that is
the zero-divisor graph of a finite commutative ring with 1. Then G can be associated
with a finite commutative ring R ∼= R1 × R2 × · · · × Rm, where each Ri is a local
ring, such that !(R) ∼= G. Furthermore, this association is unique up to elements
of the same zero-divisor class. More specifically, if S ∼= S1×S2×· · ·×St with each
Si local and !(S) ∼= G, then m = t and, after possible reordering, either Ri

∼= Si

or Ri and Si are in the same zero-divisor class for each i = 1, 2, . . . , m.

Let R = Z
α1
p1 × · · · × Z

αm
pm

, where m ≥ 1, and for each i, pi is prime and αi is
a positive integer. It is straightforward to check that if the zero-divisor graph !0(R)

(or !(R)) of R has 3 or fewer vertices, then R is isomorphic to one of the five
rings: Z2×Z2, Z4, Z6, Z8, or Z9. All of these five rings are in different zero-divisor
classes. We first give some basic graph theory properties for the zero-divisor graph
!0(Zpα ), where p is prime and α is an integer at least 2. Please see Section 4 of [11]
for related results.

Proposition 1 Let p be any prime number and α be any integer > 1. Then the
zero-divisor graph G = !0(Zpα ) has the following properties:

1. G has pα−1 − 1 vertices;
2. The maximum degree of G is �(G) = pα−1 (including loops) and there are p−1

such vertices. Each of these vertices is adjacent to all other vertices.
3. If α = 2, the minimum degree of G is δ(G) = p = �(G). If α > 2, then the

minimum degree of G is δ(G) = p − 1. In either case, there are pα−2(p − 1)
vertices bearing the minimum degree.

Proof

(1) Obviously, the nonzero zero-divisors of Zpα are the nonzero elements not
relatively prime with pα . There are pα−φ(pα)−1 = pα−1−1 such elements,
where φ(n) is the Euler number of n.

(2) The nonzero zero-divisors of Zpα are given by api ∈ Zpα with 1 ≤ i ≤ α − 1
and gcd(a, pi) = 1. Elements in the form of apα−1 with gcd(a, p) = 1 are
exactly the elements which annihilate all the nonzero zero-divisors, including
themselves. These are the p − 1 vertices having the maximum degree pα−1.

(3) The minimum degree of the graph is at least p − 1 because each vertex is
adjacent to the p − 1 vertices with the maximum degree. Each element in the
form of ap with gcd(a, pα−1) = 1 is adjacent only to bpα−1 where gcd(b, p) =
1. These are the vertices bearing the minimum degree and there are p − 1 of
them. When α = 2, there is a loop at ap because (ap)(ap) = 0. Thus, the
minimum degree δ(G) = p = �(G). When α > 2, such a loop does not exist,
thus δ(G) = p − 1.

��
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Proposition 2 Let R ∼= Zpα and S ∼= Zqβ , where p, q are prime numbers and α, β

are positive integers at least 2. If !0(R) ∼= !0(S) or !(R) ∼= !(S) then R ∼= S.

Proof Note that, for a ring R, !0(R) and !(R) have the same number of vertices,
which is the number of nonzero zero-divisors of R. By Proposition 1(1), !0(R) (or
!(R)) has pα−1 − 1 vertices and !0(S) (or !(S)) has qβ−1 − 1 vertices. Since
!0(R) ∼= !0(S), pα−1 − 1 = qβ−1 − 1 which implies that p = q and α = β.
Therefore R ∼= S. Similarly, !(R) ∼= !(S) �⇒ R ∼= S. ��
Definition 1 For any finite ring R, we define N(R) as the number of nilpotent
elements of index 2 in R.

In the paper by Birch, Thibideaux, and Tucci [11], the number of nilpotent
elements of index 2 in a finite product of certain finite rings is calculated. Let v

be a nonzero zero-divisor of a ring R. There is a loop from v to itself if and only if
v2 = 0, that is, v is a nilpotent element of index 2. Thus, the number of nilpotent
elements of index 2 is the same as the number of loops in the zero-divisor graph.
We claim the following proposition by applying the results from [11].

Proposition 3 If p is prime and β > 1, then the number of loops in !0(Zpβ )

is p�β/2� − 1. Let R ∼= R1 × · · · × Rm, where each Ri is a finite commutative
ring and R is not a field. Then the number of loops in !0(R) is N(R) = −1 +∏m

i=1 (N(Ri)+ 1) . In particular, assume for each i, Ri
∼= Z

p
αi
i

(pi is prime and

αi > 0), then the number of loops in !0(R) is given by

N(R) = −1+
m∏

i=1

p
�αi/2�
i .

Proof By Corollary 4.3 in [11], Zpβ has p�β/2� − 1 nilpotent elements of index
2. Thus, !0(Zpβ ) has p�β/2� − 1 loops. By Lemma 3.2 in [11], N(R) = −1 +∏m

i=1 N(Ri). Since !0(R) has exactly N(R) loops, the result follows. ��
Example 1 We apply Proposition 3 to confirm the numbers of loops in the zero-
divisor graphs !0(Z36) and !0(Z40) which have 5 loops and 1 loop respectively.
Precisely, the ring Z36 ∼= Z22 × Z32 has −1+ 2 · 3 = 5 nilpotent elements of index
2: (0, 3), (0, 6), (2, 0), (2, 3), (2, 6). These are the five vertices producing the loops
in !0(Z36). The ring Z40 ∼= Z5×Z23 has −1+ 1 · 2 = 1 nilpotent element of index
2: (0, 4). So, there is only one loop in !0(Z40): from (0, 4) to itself.

Our main result is given below.

Theorem 3 Let R ∼= R1 × R2 × · · · × Rm, where either Ri is a finite field or
Ri
∼= Z

p
αi
i

with pi prime and αi > 1, 1 ≤ i ≤ m. Likewise, let S ∼= S1×S2×· · ·×St ,

where either Sj is a finite field or Sj
∼= Z

q
βj
j

with qj prime and βj > 1, 1 ≤ j ≤ t .

Suppose that either R or S has at least 4 nonzero zero-divisors. If !0(R) ∼= !0(S)

then R ∼= S.
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Proof The graph !(R) (without loops) is the subgraph of !0(R) by removing the
loops from !0(R). It is the same situation for !(S) and !0(S). From !0(R) ∼=
!0(S), we have !(R) ∼= !(S) (isomorphism of the two zero-divisor graphs after
removing the loops respectively). By the hypothesis, each Ri or Sj is a finite local
ring. Then by Theorem 2, m = t and, after suitable rearrangement, either Ri

∼= Si

or !(Ri) ∼= !(Si) for i = 1, . . . , m.
Consider a fixed i such that !(Ri) ∼= !(Si). Then both !0(Ri) and !0(Si) have

the same number of loops. Also, both Ri and Si are not finite fields because a finite
field has no nonzero zero-divisors. Thus Ri

∼= Z
p
αi
i

and Si = Z
q
βi
i

with αi and βi at

least 2. Then !(Ri) ∼= !(Si) �⇒ Ri
∼= Si by Proposition 2. Therefore, R ∼= S. ��

Another approach to proving uniqueness is to count the number of edges
and vertices in the appropriate zero-divisor graphs with loops. Unfortunately, this
approach does not work. For example, !0(Z36) and !0(Z40) both have 23 vertices
and 50 edges but are not isomorphic. However, !0(Z36) has 5 loops, while !0(Z40)

has 1 loop. We therefore have the following conjecture.

Conjecture Consider two finite commutative rings R1 and R2. If !0(R1) and
!0(R2) have the same number of vertices, edges, and loops, then R1 ∼= R2.

2.1 Upper Triangular Matrix Rings Over Finite Fields

In this section, we focus on rings of upper triangular matrices over finite fields. The
zero-divisor graphs are directed graphs allowing loops. A natural question is: “Does
the isomorphism of the zero-divisor graphs of two upper triangular matrix rings
imply the isomorphism of the two matrix rings?” Let n be a positive integer. We
denote the n× n upper triangular matrix ring over a field F by Un(F ).

Lemma 1 Let n be a positive integer.

1. A matrix M = [mij ] ∈ Un(F ) is nilpotent iff mjj = 0 for all 1 ≤ j ≤ n.
2. Every nilpotent matrix M ∈ Un(F ) is the sum of nilpotent matrices of index 2.

Proof (1) is obvious. For (2), let Eij be the elementary matrix with 1 in the (i, j)

position and zeroes elsewhere. Then M = [mij ] = "1≤i≤j≤nmijEij . If M is
nilpotent, then by (1), the sum is taken over all pairs (i, j) with i < j . We can
easily check that

(
mijEij

)2 = m2
ijE

2
ij = 0 if i �= j . Thus for i < j , mijEij is

nilpotent of index 2. ��
Let X be the set of all nilpotent matrices in Un(F ). Let r(X) = {M ∈

Un(F ) | XM = 0} and let l(X) = {M ∈ Un(F ) |MX = 0}.
Lemma 2 Let F be a finite field and M = [mij ] ∈ Un(F ).

1. If M ∈ l(X), then the only nonzero entries of M occur in the nth column of M .
2. If M ∈ r(X), then the only nonzero entries of M occur in the first row of M .
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3. If M ∈ l(X)∩r(X), then M = cE1n with c ∈ F , meaning only the (1, n)-position
entry of M may be nonzero.

Proof Let M ∈ l(X). Then MEjk = 0 for every Ejk ∈ X (j < k). It forces mij =
0 for all i = 1, 2, . . . , n, that is, the j th column of M is 0. Since j < k ≤ n, every
column of M , except the nth column, consists of zeroes. Similarly, if M ∈ r(X),
then every row of M consists only zeros except for the first row. It follows that every
matrix in l(X) ∩ r(X) is a scalar multiple of E1n. ��

For a noncommutative ring R, let L(R) be the set of vertices that produce loops
in
−→
! 0(R). Let adj(L(R)) be the set of vertices in

−→
! 0(R) which are both adjacent

from and adjacent to each vertex in L(R). The previous lemmas imply the following
result:

Proposition 4 Consider the matrix ring Un(F ) over a field F . Then adj(L(R)) =
l(X) ∩ r(X).

Theorem 4 Let R = Un(F1) and S = Um(F2) be two upper triangular matrix

rings over finite fields F1 and F2 respectively. If
−→
! 0(R) ∼= −→

! 0(S), then R ∼= S.

Proof By Proposition 4 and Lemma 2,

adj(L(R)) = {aE1n | 0 �= a ∈ F1} and adj(L(S)) = {bE1m | 0 �= b ∈ F2}.

Because
−→
! 0(R) ∼= −→

! 0(S), |adj(L(R)| = |adj(L(S)| �⇒ |F1| − 1 = |F2| − 1 �⇒
|F1| = |F2|. Thus F1 ∼= F2. Now both R and S are upper triangular matrix rings
over the same field. Since

−→
! 0(R) ∼= −→

! 0(S), R and S have the same number of
zero-divisors. This implies that R and S consist of matrices of the same dimension.
Therefore m = n and so R ∼= S. ��
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Some Combinatorial Cases of the Three
Matrix Analog of Gerstenhaber’s
Theorem (Research)

Jenna Rajchgot, Matthew Satriano, and Wanchun Shen

1 Introduction

Let k be a field and let Md(k) be the space of d× d matrices with entries in k. In his
1961 paper [3], M. Gerstenhaber proved that the unital k-algebra generated by a pair
of commuting matrices X1, X2 ∈ Md(k) has dimension at most d. Gerstenhaber’s
proof was algebro-geometric, and relied on the irreducibility of the scheme of pairs
of d × d commuting matrices (a fact also proved in the earlier paper [7]). Linear
algebraic proofs (see [2, 5]) and commutative algebraic proofs (see [1, 10]) of
Gerstenhaber’s theorem were later discovered.

The analog of Gerstenhaber’s theorem for four or more pairwise commuting
matrices is false. For example, if Eij denotes the 4 × 4 matrix with a 1 in position
(i, j) and 0s elsewhere, then the unital k-algebra generated by E13, E14, E23, E24
has k-vector space basis I, E13, E14, E23, E24 and thus has dimension 5 > 4.

It is not known if the dimension of the unital k-algebra generated by three
pairwise commuting matrices X1, X2, X3 ∈ Md(k) can exceed d. Determining if
this three matrix analog of Gerstenhaber’s theorem is true is sometimes called the
Gerstenhaber problem. For further details and history on Gerstenhaber’s theorem
and the Gerstenhaber problem, see [4, 9].

The Gerstenhaber problem can be viewed from a commutative-algebraic per-
spective, as in Proposition 1 below (see Proposition 2.4 and Corollary 2.9 of
[8] for a proof). To state this result, we fix the following notation: given a set
X = {X1, . . . , Xn} ⊆ Md(k) of pairwise commuting matrices, let AX denote the
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unital k-algebra generated by the matrices in X. Let k[x1, . . . , xn] be a polynomial
ring in n variables over k and let (GPn) denote the following statement (which is
not always true):

(GPn) Every k[x1, . . . , xn]-module N which is finite dimensional over k and which
has support SuppN = (x1, . . . , xn) satisfies the inequality

dim k[x1, . . . , xn]/Ann(N) ≤ dimN.

Proposition 1 Fix a positive integer n. Statement (GPn) is true if and only if for
every positive integer d and every set of n pairwise commuting matrices X =
{X1, . . . , Xn} ⊆ Md(k), the inequality dimAX ≤ d holds.

Consequently, (GP1) and (GP2) are true, and (GPn), n ≥ 4, is false. Solving
the Gerstenhaber problem is equivalent to determining if (GP3) is true or false.

In this paper, we address (GP3) in special cases. That is, we prove that the
inequality

dim k[x1, x2, x3]/AnnN ≤ dimN (1)

holds for certain classes of modules. To motivate some of the classes that we
treat, consider first the following example of a k[x1, x2, x3, x4]-module N for
which dim k[x1, x2, x3, x4]/AnnN > dimN . (This is the module associated to
the standard counter-example, given above, to the four commuting matrix analog of
Gerstenhaber’s theorem. See [8, Example 1.7] for further explanation.)

Example 1 Let S = k[x1, x2, x3, x4], let m = (x1, x2, x3, x4), let I =
m2+(x1, x2), and let J=m2+(x3, x4). Let N=(S/I×S/J )/〈(x3,−x1), (x4,−x2)〉.
Note that N is 4-dimensional with basis (1, 0), (x3, 0), (x4, 0), (0, 1). We have
Ann(N) = m2 and so

5 = dim S/AnnN > dimN = 4.

We make the following observations:

(i) N is an extension of a cyclic module by S/m. That is, it fits into the short exact
sequence

0 → S/I
i−→ N

π−→ S/m→ 0

such that i(f ) = (f, 0) and π(f, g) = g.
(ii) N is combinatorial in the sense that I and J are monomial ideals, the module

N is obtained from S/I and S/J by identifying monomials in S/I with
monomials in S/J , and AnnN is a monomial ideal.

Equivalently, N can be described in terms of two 4-dimensional analogs
of Young diagrams together with “gluing” data. Indeed, with respect to
the usual correspondence between monomial ideals in k[x1, . . . , xn] and



Some Combinatorial Cases of the Three Matrix Analog of Gerstenhaber’s Theorem 183

n-dimensional analogs of Young diagrams (see Sect. 4.1), S/I corresponds to
the 4-dimensional Young diagram λ drawn below and S/J corresponds to the
4-dimensional Young diagram μ drawn below; both λ and μ are supported
in 2-dimensional coordinate spaces in this case. Boxes are labelled by their
corresponding monomials. Grey boxes in λ are identified with grey boxes in
μ, corresponding to the relations (x3, 0) = (0, x1) and (x4, 0) = (0, x2) in the
module N .

(2)

Then, dimN is the total number of boxes in λ plus the number of unshaded
boxes in μ, and AnnN is the monomial ideal associated to the diagram λ ∪ μ.

Motivated by Example 1 (i), the first two listed authors of the present paper
proved in [8, Theorem 1.5] that inequality (1) holds whenever N is an exten-
sion of a finite dimensional cyclic module k[x1, x2, x3]/I by a simple module
k[x1, x2, x3]/(x1, x2, x3), i.e. (GP3) holds for such N . In this paper, the cases we
consider are motivated by Example 1 (ii), and by our result in [8]. We briefly discuss
these cases now.

1.1 Towards Double Extensions of Cyclic Modules

In light of [8, Theorem 1.5], it is natural to ask if (GP3) holds for finite dimensional
modules which are double extensions by S/(x1, x2, x3) of a cyclic module. To be
precise, let S = k[x1, . . . , xn], let m = (x1, . . . , xn), and define a double extension
module to be an S-module N with the following properties:

• N is finite dimensional with support m
• there exists an ideal I and module N1 which fits into the following short exact

sequences

0 → S/I → N1 → S/m→ 0, 0 → N1 → N → S/m→ 0.

In Sect. 2, we begin our study of double extension modules by proving the
following:

Proposition 2 Let N be an S module with SuppN = m. If N is a double extension
module satisfying dim S/AnnN > dimN , then there exists an ideal I ′ and a
module map

β : (x2
1 , x2, . . . , xn)→ S/I ′

satisfying dim I ′/(I ′ ∩ kerβ) > 2.
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Then, in Sect. 3 we prove the following:

Theorem 1 Let n = 3 so that S = k[x1, x2, x3], and let I ⊆ S be a monomial ideal
with

√
I = m. If r is a positive integer and

β : (xr
1, x2, x3)→ S/I,

is a module map which maps monomials to monomials, then dim I/(I ∩ kerβ) ≤ r .

In the proof of Proposition 2, we see that certain double extension modules N

give rise to maps β : (x2
1 , x2, . . . , xn)→ S/I ′,

√
I ′ = m, and that

dim S/AnnN ≤ dimN ⇐⇒ dim I ′/(I ′ ∩ ker(β)) ≤ 2.

The following corollary is now immediate from Proposition 2 and the r = 2 case of
Theorem 1:

Corollary 1 Let N be a double extension k[x1, x2, x3]-module which gives rise to
a module map β : (x2

1 , x2, x3)→ S/I ′ where I ′ is a finite colength monomial ideal
and β maps monomials to monomials. Then N is not a counter-example to (GP3).

1.2 Other Combinatorial Classes

As pointed out in item (2) of Example 1, there are counter-examples to (GP4)

which can be described in terms of a pair of 4-dimensional Young diagrams λ and
μ, together with gluing data. Indeed, in Example 1, λ and μ were glued to one
another by identifying the two outer corners of λ with the two outer corners of μ.
In Sect. 4, we investigate such 2-generated combinatorial modules. Our main result,
which contrasts the four variable case, is the following (see Theorem 4 for a more
precise statement):

Theorem 2 (GP3) holds for all modules obtained by gluing a subset of outer
corners of one plane partition (a.k.a. 3-dimensional Young diagram) to another.

Finally, in Sect. 5 we show that there are no counter-examples to (GPn) of the
form N = J/I where I, J ⊆ S are monomial ideals with I ⊆ J .1

Throughout the paper, we let N denote the set of non-negative integers.

1While we do not know of a reference where this is proved, we would not be surprised if this result
is known, perhaps with a different proof.
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2 A Reformulation of the Gerstenhaber Problem for Double
Extensions of Cyclic Modules

By Proposition 1, the Gerstenhaber problem is true if and only if dim S/AnnN ≤
dimN for all finite dimensional k[x1, x2, x3]-modules with SuppN = (x1, x2, x3).
Clearly, if N is a finite dimensional cyclic module, so that N = S/I for an ideal
I ⊆ k[x1, x2, x3], then dim S/AnnN ≤ dimN . Furthermore, it was proved in
[8] that dim S/AnnN ≤ dimN for all k[x1, x2, x3]-modules N such that N has
support (x1, x2, x3), and N is an extension of a cyclic module by S/(x1, x2, x3). In
this section, and the next, we consider modules obtained from such N by further
extending by S/(x1, x2, x3). As discussed in Sect. 1, we call such modules double
extension modules. In this section, we prove Proposition 2. The ideas in the proof
are similar to those used in the proofs of [8, Propositions 1.10 and 2.2].

Proof of Proposition 2 Let S = k[x1, . . . , xn] and let m = (x1, . . . , xn). Let I be
a finite-colength ideal in S, let N ′ be an extension of S/I by S/m, and let N be an
extension of N ′ by S/m. Furthermore, assume SuppN = m.

The extension

0 → N ′ → N → S/m→ 0

corresponds to a class α ∈ Ext1(S/m, N ′), and it was shown in the proof of [8,
Proposition 2.2] that α lifts to a map α′ : m→ N ′. It was furthermore shown in the
same proof that dim S/AnnN ≤ dimN if and only if

dim S/AnnN ′ + dimα′(AnnN ′) ≤ dimN ′ + 1. (3)

We now consider two cases: α′ factors through the submodule S/I of N ′,
or it does not. In the first case, α′ defines a map from m to S/I , and so, by
Rajchgot and Satriano [8, Theorem 3.1], we have dimα′(I ) ≤ 1. Furthermore,
since N ′ is the extension of a cyclic module by S/m, [8, Theorem 1.5] implies
that dim S/AnnN ′ ≤ dimN ′. Adding these two inequalities together yields (3).

Consequently, if dim S/AnnN > dimN , then α′ does not factor through S/I .
Let π be as in the bottom row of the diagram below. Then, since α′ does not factor
through S/I ⊆ N ′, we see π ◦ α′ is surjective. We have a map of short exact
sequences

0 �� J ��

β ′
��

m ��

α′
��

S/m ��

0
��

0

0 �� S/I �� N ′ π
�� S/m �� 0
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where J = ker(π ◦ α′). The maps α′ and β ′ define extensions

0 → N ′ → N → S/m→ 0 and 0 → S/I → Ñ → S/J → 0,

respectively, and one checks that Ñ 0 N .
Now, J has colength 2, so for some xi , we have that {1, xi} is a basis of S/J .

Without loss of generality, we may assume that i = 1. Consider the Lexicographic
monomial order xn > xn−1 > · · · > x1. Noting that J ⊆ m, it is easy to check that
J has a Gröbner basis of the form

{x2
1 − a1x1, x2 − a2x1, . . . , xn − anx1}, aj ∈ k.

Furthermore, the ideal generated by these terms has support at two distinct points
unless a1 = 0. Thus, J = (x2

1 , x2 − a2x1, . . . , xn − anx1). Let x′i = xi − aix1,
2 ≤ i ≤ n, and let S′ = k[x1, x

′
2 . . . , x′n]. Let φ : S′ → S be the ring isomorphism

given by x1 �→ x1, and x′i �→ xi − aixi , 2 ≤ i ≤ n. Then the short exact sequence
of S-modules

0 → S/I → Ñ → S/J → 0

is also a short exact sequence of S′-modules via the ring map φ. Furthermore,
the ring isomorphism φ induces an isomorphism between S/AnnS(Ñ) and
S′/AnnS′(Ñ). Thus, dim S/AnnS(Ñ) ≤ dim Ñ if and only if dim S′/AnnS′(Ñ) ≤
dim Ñ . Re-writing each module in our new coordinates x1, x

′
2 . . . , x′n yields a short

exact sequence of S′-modules of the form

0 → S′/I ′ → M → S′/(x2
1 , x

′
2, . . . , x

′
n)→ 0 (4)

and we have dim S′/AnnS′ Ñ ≤ dim Ñ if and only if dim S′/AnnS′ M ≤ dimM .
Consequently, dim S/AnnS N ≤ dimN if and only if dim S′/AnnS′ M ≤ dimM .

Let β : (x2
1 , x

′
2, . . . , x

′
n) → S′/I ′ determine the extension in (4). Then, one can

check that AnnM = I ′ ∩ kerβ. So,

dim S′/AnnM = dim S′/(I ′ ∩ kerβ)

= dim S′/I ′ + dim I ′/(I ′ ∩ kerβ).

Finally, since dimM = dim S′/I ′+2, the inequality dim S′/AnnM ≤ dimM holds
if and only if dim I ′/(I ′ ∩ kerβ) ≤ 2. ��

We end this section with an example of the usefulness of the main idea of the
above proof (which was also a key idea in [8]), namely, the idea to translate the
statement dim S/AnnN ≤ dimN into a statement about module maps.

Example 2 ((GP )n is true for extensions of S/I by S/I ) Let S = k[x1, . . . , xn]
and consider extensions of the form

0 → S/I → N → S/I → 0.
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One may check (as in the proof of [8, Proposition 2.2]) that the corresponding class
α ∈ Ext1(S/I, S/I) is determined by a map β : I → S/I and that AnnN =
I ∩ kerβ. So,

dim S/AnnN = dim S/(I ∩ ker(β)) = dim S/I + dim I/(I ∩ ker(β))

= dim S/I + dimβ(I).

Also, dimN = 2 dim S/I . Thus the inequality dim S/AnnN ≤ dimN is true if and
only if the inequality dimβ(I) ≤ dim S/I is true. This latter inequality obviously
holds since the codomain of β is S/I .

3 Addressing the Gerstenhaber Problem for Double
Extensions of Cyclic Modules in a Combinatorial Case

The purpose of this section is to prove Theorem 1. Throughout, let S = k[x, y, z].
Each ideal I will be assumed to be a finite colength monomial ideal. We say a
module map β : (xr , y, z) → S/I is a monomial map if β sends monomials to
monomials. For each � ≥ 0, we let

(S/I)� := {x�yizj /∈ I | i, j ≥ 0}

and refer to this set of monomials as the x�-slice of S/I . We refer to any set of the
form (S/I)� as an x-slice of S/I .

Notice that each x�-slice may be identified in a natural way with k[y, z]/J� where
J� ⊆ k[y, z] is a monomial ideal. We say the x�-slice (S/I)� is Gorenstein if the
socle Soc(k[y, z]/J�) is 1-dimensional as a k-vector space; recall the socle of a
k[y, z]-module M is the subset of elements annihilated by (y, z).

3.1 The Case I ⊆ (xr, y, z)

Here we assume that I ⊆ (xr , y, z) so that β restricts to a map β|I : I → S/I .
Then ker(β|I ) = I ∩ ker(β), so

β(I) = I/(I ∩ ker(β)).

Consequently, dim I/(I ∩ ker(β)) ≤ r if and only if dimβ(I) ≤ r . We will show
that this latter inequality holds. We begin by recording some properties that a map
β : (xr , y, z) → S/I would have to satisfy if it were a counter-example, that is, if
dimβ(I) > r .

Our first goal is to identify those elements in I that could be mapped to nonzero
elements in S/I by β. For this purpose, define



188 J. Rajchgot et al.

Sx := {xi ∈ I | r ≤ i},
Sy := {xiyj ∈ I | 0 ≤ i < r, j ≥ 1},
Sz := {xizl ∈ I | 0 ≤ i < r, l ≥ 1}.

Define a border element of Sy (respectively Sz) to be an m ∈ Sy (respectively m ∈
Sz) such that m/y /∈ I (respectively m/z /∈ I ). Define a border element of Sx

to be an m ∈ Sx such that m/xr /∈ I . Let �x , �y and �z be the set of border
elements of Sx , Sy and Sz, respectively. Finally, define β(�x), β(�y), β(�z) to be
the submodule of S/I generated by the images, under β, of the monomials in �x ,
�y , �z respectively.

Lemma 1 If β : (xr , y, z)→ S/I is a monomial map then

1. β(I) ⊆ β(�x)+ β(�y)+ β(�z).
2. If xr | β(xr) (respectively y | β(y), z | β(z)) then β(�x) = 0 (respectively

β(�y) = 0, β(�z) = 0).
3. dimβ(�x) ≤ r , dimβ(�y) ≤ r , and dimβ(�z) ≤ r .

Proof Suppose that xiyj zl ∈ I . Then we must have i ≥ r or j > 0 or l > 0.
Observe:

• If i ≥ r then β(xiyj zl) = β(xr)xi−ryj zl , and so yj zl divides β(xiyj zl).
• If j > 0 then β(xiyj zl) = xiβ(y)yj−1zl , and so xizl divides β(xiyj zl).
• If l > 0 then β(xiyj zl) = xiyjβ(z)zl−1, and so xiyj divides β(xiyj zl).

Thus, if any two of the three conditions i ≥ r , j > 0, l > 0 holds, we see that
xiyj zl divides β(xiyj zl), and so β(xiyj zl) = 0. This proves that every monomial
in I which maps to a nonzero element is in one of Sx , Sy , or Sz, and so β(I) ⊆
β(Sx)+ β(Sy)+ β(Sz).

Next, observe that the only elements of Sy that can map to non-zero elements of
S/I are border elements in Sy : if m ∈ Sy is not a border element, then m = ym′ for
some m′ ∈ I and so β(m) = β(y)m′ = 0. Similarly, the only elements of Sz and Sx

which can map to non-zero elements of S/I are border elements. This proves (1).
Item (2) follows by noting that all elements of �x,�y,�z are in I .
For item (3), one can check that there are only r distinct monomials in each

of �x,�y,�z. For example, for each 0 ≤ i < r , there is a unique j such that
xiyj ∈ �y . ��
Lemma 2 If β : (xr , y, z)→ S/I is a monomial map which is a counter-example,
then xry, xrz, yz ∈ ker(β).

Proof We only prove β(xry) = 0, the other two statements being similar. Proceed
by contradiction and assume that β(xry) �= 0. We have the following equality of
nonzero monomials

xrβ(y) = β(xr)y,



Some Combinatorial Cases of the Three Matrix Analog of Gerstenhaber’s Theorem 189

which implies that y divides β(y) and xr divides β(xr). Thus, β(�x) = β(�y) = 0
by (2) of Lemma 1. It follows that β(I) ⊆ β(�z) and so dimβ(I) ≤ r by (1) and
(3) Lemma 1. This contradicts the fact that β is a counter-example. ��
Lemma 3 Suppose β : (xr , y, z) → S/I is a monomial map which is a counter-
example. Then every element of β(I) is contained in the socle of an x-slice.
Moreover, if � ≥ 0 and (S/I)� contains a non-zero element ω ∈ β(�y), then (S/I)�
is Gorenstein. Similarly for β(�z).

Proof Since β(xr) is killed by y and z by Lemma 2, it is clear that β(�x) is always
mapped to a socle of an x-slice.

Next, say ω ∈ �y maps to the x�-slice. We show β(ω) is in the socle of this slice.
It is clear, again by Lemma 2, that β(ω) is in the annihilator of z. To see that β(ω)

is also killed by y, notice that since ω ∈ �y we have j > 0. So,

yβ(ω) = ωβ(y) = 0

as ω ∈ I . Therefore, β(ω) is in the socle of the x�-slice.
By symmetry in y and z, every element of β(�z) also maps to the socle of an

x-slice. Therefore, every element of β(I) maps to the socle of an x-slice by (1) of
Lemma 1.

It remains to prove that if ω = xiyj ∈ �y and 0 �= β(ω) is in the x�-slice, then
the slice is Gorenstein. Since β(�y) �= 0, we have that y � β(y) by (2) of Lemma 1.
Thus, we may assume β(y) = xuzv for some u, v ∈ N. Then β(ω) = xi+uyj−1zv ,
so � = i + u.

Now, β(xiy) = x�zv is a nonzero element in the x�-slice that is killed by z,
so there are no monomials in the socle of the x�-slice which have strictly smaller
y-coordinate (and strictly larger z-coordinate) than β(ω). On the other hand, there
are also no monomials in the socle of the x�-slice with strictly larger y-coordinate
(and strictly smaller z-coordinate) than β(ω) because any monomial in the x�-slice
with y-coordinate strictly larger than β(ω) = xi+uyj−1zv would be a multiple of
ω = xiyj , which is in I . ��
Corollary 2 Let β : (xr , y, z) → S/I be a monomial map with I ⊆ (xr , y, z). If
β is a counter-example, then each x-slice contains at most one non-zero element of
β(I).

Proof Fix an x-slice and suppose that two different monomials in I map to nonzero
elements of this slice. Then, without loss of generality, our x-slice contains an
element of β(�y) as well as an element of β(�x) or β(�z). Since our x-slice
contains an element of β(�y), Lemma 3 tells us that our slice is Gorenstein and
the β(�y) element is in the socle. Since Lemma 3 also tells us that every element
of β(I) is in the socle of a slice, necessarily the other element of β(�x) or β(�z)

maps to the same (unique) element of the socle. ��
Lemma 4 Let β : (xr , y, z) → S/I be a monomial map with I ⊆ (xr , y, z) and
β(xr) = 0. Then β is not a counter-example.
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Proof We proceed by induction on r . The base case r = 1 is a corollary of the
main theorem of [8]; in fact the main theorem implies the r = 1 case without the
assumption that β(x) = 0.

Now suppose r ≥ 2. Let xd, ye, zf be among the minimal generators of I . Then,
r ≤ d as I ⊆ (xr , y, z).

We claim β(ye) and β(zf ) are linearly independent in S/I , otherwise we may
remove the x0-slice to get a smaller counter-example. To make this precise, first
notice that ye and zf are the only border elements in the x0-slice, so by Lemma 1
(1), β((S/I)0) ⊆ (β(ye), β(zf )) is at most 1-dimensional if β(ye) and β(zf ) are
linearly dependent. Define a map

γ : K = (xr−1, y, z)→ (x)/(I ∩ (x)) 0 S/(I : x)

by γ (f ) = β(xf ). Since x(I : x) = I ∩ (x),

dim γ ((I : x)) = dimβ(x(I : x)) = dimβ(I ∩ (x)).

Note γ (xr−1) = β(xr) = 0 and (I : x) ⊆ (xr−1, y, z). Thus by the induction
hypothesis, γ is not a counter-example, so that dimβ(I ∩ (x)) ≤ r − 1. It follows
that

dimβ(I) = dimβ((S/I)0)+ dimβ(I ∩ (x)) ≤ r

and so β is not a counter-example.
In particular, y � β(y), for otherwise β(ye) = ye−1β(y) would be divisible by

ye ∈ I , hence is zero in S/I , contradicting linear independence of β(ye) and β(zf ).
Similarly, z � β(z).

Therefore, we may assume

β(y) = xuzv, β(z) = xsyt , β(xr) = 0.

for some u, v, s, t ∈ N. Without loss of generality, we may assume u ≤ s.
Now we show v = f−1. Since β(zf ) = xsyt zf−1 �∈ I and β(yz) = xuzv+1 ∈ I

by Lemma 2, we must have f − 1 < v + 1. On the other hand, zf ∈ I and
β(ye) = xuye−1zv �∈ I , so v < f . Thus v = f − 1, β(ye) = xuye−1zf−1.

Let w be the smallest integer such that xu+wzf−1 = xwβ(y) ∈ I ; note that
w ≤ r by Lemma 2. Then all nonzero elements in β(�y) must be contained in
an xl-slice with u ≤ l < u + w. Indeed, for xiyei ∈ �y with i ≥ w, we have
β(xiyei ) = xi+uyei−1zf−1 = 0 as xu+wzf−1 ∈ I .

Next, we consider the possible contributions from �z. Let h = xizfi ∈ �z be a
border element, so i ≤ r and fi ≤ f .

For i ≤ u+ w − 1, we claim β(h) is either zero or contained in an xl-slice with
u ≤ l < u+ w. By minimality of w, we see xu+w−1zf−1 �∈ I . Since xizfi ∈ I , we
must have f − 1 < fi ; hence, f = fi and β(h) = xs+iyt zf−1. Recall xu+wzf−1 ∈
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I , so if s+ i ≥ u+w, then β(h) = 0; otherwise s+ i < u+w, i.e. β(h) is in some
xl-slice with u ≤ l < u+ w.

Hence, only xizfi ∈ �z with u + w − 1 < i < r can be mapped to nonzero
elements in xl-slices with l ≥ u + w. The number of such elements is at most
max{r − u− w, 0}.

In other words, nonzero monomials in β(I) ⊆ β(�y) + β(�z) are either
contained in an xl-slice with u ≤ l < u+ w, or of the form β(h) with h = xizfi ∈
�z and u+ w − 1 < i < r . It then follows from Corollary 2 that

dimβ(I) ≤ w +max{r − u− w, 0} ≤ max{r − u,w} ≤ r.

Thus, β is not a counter-example. ��
Lemma 5 Let β : (xr , y, z)→ S/I be a monomial map with I ⊆ (xr , y, z) and

β(�x) ⊆ β(�y)+ β(�z).

Then β is not a counter-example.

Proof Consider the map γ : (xr , y, z) → S/I with γ (xr) = 0, γ (y) = β(y),
γ (z) = β(z). Then γ (I) = β(I), so it suffices to prove the result when β(xr) = 0.
This follows directly from Lemma 5. ��
Theorem 3 If β : (xr , y, z) → S/I is a monomial map with I ⊆ (xr , y, z), then β

is not a counter-example.

Proof For contradiction suppose β is a counter-example. By Lemma 1 (2) and
Lemma 5, xr does not divide β(xr), so β(xr) = xaynzm for some nonnegative
integers a, n,m with a ≤ r . Let d be minimal such that xd ∈ I . Then β(�x) is
contained in the xi-slices with d − (r − a) ≤ i < d.

If β(I) intersects an xi-slice with a ≤ i < d − (r − a), then we claim that
β(�x) ⊆ β(�y) + β(�z), and so we are done by Lemma 5. To see this, we may
assume without loss of generality that β(�y) intersects the xi-slice. Then the slice is
Gorenstein and β(xr+i−a) is in this slice. Moreover, β(xr+i−a) is killed by y and z,
i.e. it is the unique monomial in the socle of the slice, hence is contained in β(�y).
Since β(�y) is closed under multiplication by x, it follows that β(�x) ⊆ β(�y).

So, we may assume β(I) does not intersect any xi-slice with a ≤ i < d−(r−a).
So, β(I) is contained within the xi slices for i ∈ [0, a)∪ [d − (r − a), d). There are
r such slices, so applying Corollary 2, we find dimβ(I) ≤ r . ��

3.2 The Case I � (xr, y, z), and Finishing the Proof of
Theorem 1

As above, let I be a finite colength monomial ideal and let β : (xr , y, z) → S/I ,
which sends monomials to monomials. Assume that I � (xr , y, z). Since I is a
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monomial ideal, there exists some minimal integer m < r such that xi ∈ I for all
i ≥ m. Furthermore, our choice of m ensures that I ⊆ (xm, y, z).

Lemma 6 In the above situation, we have β(xmy) = 0, and β(xmz) = 0.

Proof This is clear since xm ∈ I . ��
Define a map β ′ : 〈xm, y, z〉 → S/I by β ′(xm) = β(xr), β ′(y) = β(y), and

β ′(z) = β(z).

Lemma 7 β ′ is a module map.

Proof We first observe that yβ ′(xm)− xmβ ′(y) = 0. This is true since

yβ ′(xm)− xmβ ′(y) = yβ(xr)− xmβ(y) = 0− 0 = 0.

Similarly, zβ ′(xm)− xmβ ′(z) = 0. Finally, yβ ′(z)− zβ ′(y) = 0 since β ′(z) = β(z)

and β ′(y) = β(y). ��
We are now ready to prove the main result of this section.

Proof of Theorem 1 If I ⊆ (xr , y, z), then we are done by Theorem 3. So, assume
that I � (xr , y, z) and choose m to be the minimal integer m < r such that xi ∈ I

for all i ≥ m. Let β ′ : (xm, y, z) → S/I be as above. Then I ⊆ (xm, y, z) and by
Theorem 3, we have that dimβ ′(I ) ≤ m. Thus, by construction of β ′, we have

m ≥ dimβ ′(I ) = dimβ(I ∩ (xr , y, z)) = dim
I ∩ (xr , y, z)

(I ∩ (xr , y, z)) ∩ ker(β)

= dim
I ∩ (xr , y, z)

I ∩ ker(β)
.

Now I is a monomial ideal, and the only monomials in I which are not in I ∩
(xr , y, z) are xm, xm+1, . . . , xr−1. Thus, dim I/(I ∩ (xr , y, z)) = r − m. This,
together with the above inequality shows

dim
I

I ∩ ker(β)
= dim

I

I ∩ (xr , y, z)
+ dim

I ∩ (xr , y, z)

I ∩ ker(β)
≤ (r −m)+m = r,

yielding the desired result. ��

4 Gluing Plane Partitions: Addressing the Gerstenhaber
Problem for Some Two-Generated Combinatorial Modules

4.1 Young Diagrams and Skew-Diagrams

Let S = k[x1, . . . , xn] and let I be a finite colength monomial ideal in S. Associate
to S/I the set of lattice points c := (c1, . . . , cn) ∈ N

n such that the monomial
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xc := x
c1
1 · · · xcn

n ∈ S \ I . This set of lattice points is naturally identified with an
n-dimensional Young diagram (a.k.a. standard set or staircase diagram). See [6,
Ch. 3] for details. If K is a finite colength monomial ideal with I ⊆ K , associate
to K/I the set of lattice points c ∈ N

n such that xc ∈ K \ I . This set of lattice
points is naturally identified with ν := λ \ λ′ where λ and λ′ are the n-dimensional
Young diagrams associated to S/I and S/K respectively. Observe that ν can be
decomposed uniquely into ν1 ∪ · · · ∪ νr such that the following hold:

1. For each vj and each pair of boxes b1,b2 ∈ νj , there exists a sequence of moves
of the form “move over one box in direction ±1ei” so that by starting at b1 and
applying these moves, we end at b2, and we never leave νj in the process. Note
that 1ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ N

n denotes the ith standard basis vector.
2. r ∈ N is minimal such that 1. holds.

We call each νj a skew-diagram, and the union ν = ν1 ∪ · · · ∪ νr the decomposition
of ν into skew-diagrams. Note that each n-dimensional Young diagram is a skew-
diagram.

Using the correspondence between monomials xc and their exponent vectors c ∈
N

n, we sometimes label a box in a skew-diagram by its coordinate c ∈ N
n, and

sometimes by its associated monomial xc. Along these lines, we say that c ∈ ν is a
socle of ν if xc ∈ Soc(K/I). We let Soc(ν) denote the set of socles of ν.

4.2 Background on Gluing

Now, let I , J , K , and L be finite colength monomial ideals in S such that I ⊆
K , J ⊆ L, and there is an S-module isomorphism φ : K/I → L/J mapping
monomials to monomials. In this section, we consider modules of the form

N = (S/I × S/J )/〈(k,−φ(k)) | k ∈ K/I 〉. (5)

Modules N from (5) have a combinatorial description, which extends the
correspondence between monomial ideals in S and n-dimensional analogs of Young
diagrams. Indeed, let λ and μ denote the n-dimensional Young diagrams associated
to S/I and S/J respectively. Let νλ and νμ denote the unions of skew-diagrams
associated to K/I and L/J respectively. The isomorphism φ : K/I → L/J is a
partial gluing of λ to μ by identifying the skew-diagrams in νλ with those in νμ.
Note that the shapes of the skew diagrams in νλ agree with the shapes of those in
νμ, otherwise φ would fail to be an isomorphism.

Example 3 The module N from Example 1 is of the form of (5). Here S =
k[x1, x2, x3, x4], I = m2+(x1, x2), J = m2+(x3, x4), K = L = m and
φ : K/I → K/J is defined by φ(x3) = x1 and φ(x4) = x2. With this presentation,
N corresponds to the gluing of λ and μ along the grey boxes, as depicted in (2).
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Example 4 Let S = k[x, y]. Consider the following Young diagrams:

Observe that I = (x5, x4y, x2y3, xy4, y5) is the monomial ideal corresponding to
λ and J = (x6, x4y2, x3y3, x2y4, y5) is the monomial ideal corresponding to μ.
Let νλ ⊆ λ consist of the two shaded skew-diagrams in λ (one with the boxes
labelled 1, 2, 3 and the other with the boxes labelled 4, 5, 6), so that νλ corresponds
to K/I = ((x3y, x2y2, y3) + I )/I . The union of two grey skew-diagrams νμ ⊆ μ

corresponds to L/J = ((x5, x4y, xy3) + J )/J . If φ : K/I → L/J is the map
which identifies box i in νλ with box i in νμ, then we obtain a module N = (S/I ×
S/J )/〈(k,−φ(k)) | k ∈ K/I 〉.

We next we translate the inequality dim S/AnnN ≤ dimN for the modules in
(5) into a purely combinatorial one in terms of n-dimensional Young diagrams. This
translation uses the following lemma.

Lemma 8 Let S = k[x1, . . . , xn] and let N = (S/I × S/J )/〈(k,−φ(k)) | k ∈ K〉
be as in (5). Then AnnN = I ∩ J .

Proof Clearly I ∩ J ⊆ AnnN . On the other hand, suppose that r ∈ AnnN . Then
r · (1, 0) = (r, 0) is 0 in N and so (r, 0) must be an element of the submodule
〈(k,−φ(k)) | k ∈ K/I 〉 ⊆ S/I × S/J . Since φ is an isomorphism, we have that
r = 0 in S/I and thus r ∈ I . A similar argument shows that r ∈ J . ��

If λ is the n-dimensional Young diagram associated to S/I and μ is the n-
dimensional Young diagram associated to S/J then, by Lemma 8, we see that
S/AnnN corresponds to the n-dimensional Young diagram λ ∪ μ. Consequently,
dim S/AnnN is the number of boxes in λ ∪ μ which we denote by |λ ∪ μ|.
Example 5 In Example 1, λ∪μ is the 4-dimensional Young diagram with five boxes
labeled by monomials 1, x1, x2, x3, x4.

Let N be a module determined by gluing λ to μ along νλ, νμ as explained above.
Let ν := νλ. Then, dimN = |λ| + |μ| − |ν| and dim S/AnnN = |λ ∪ μ|. So, we
have

dim S/AnnN ≤ dimN ⇐⇒ |λ∪μ| ≤ |λ|+|μ|−|ν| ⇐⇒ |ν| ≤ |λ∩μ|. (6)

Example 6 Continuing Example 1, we see that |λ ∩ μ| = 1, while |ν| = 2. Thus,
we have |ν| > |λ ∩ μ|.
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Fig. 1 Start with μ and νμ = ν1 ∪ ν2 as in the left diagram. The grey boxes in the middle diagram
are copies of ν1, ν2 after they have been shifted vertically down to the x-axis and then left to the
origin so that ν1 and ν2 are next to one another with no columns in between. The boxes with bullets
are the boxes in the smallest Young diagram containing all the grey boxes. The rightmost diagram
consists of the νi ordered from largest to smallest along the x-axis, and the boxes with the bullets
indicate those boxes in η

Continuing Example 4, we have |λ∩μ| = 16 while |ν| = 6, and so |ν| ≤ |λ∩μ|.
Example 7 (|ν| ≤ |λ ∩ μ| in 2-Dimensions) Gerstenhaber’s theorem implies that
for λ,μ, ν ⊆ N

2, the inequality |ν| ≤ |λ ∩ μ| holds. It is also not difficult to prove
this directly.

Let ν := νλ and let ν1 ∪ · · · ∪ νr be the decomposition of ν into skew-diagrams
(see Sect. 4.1). For each νi , let H0(νi) be the height of the smallest rectangle that
fits the shape νi . More generally, let Hj(νi) be the height of the smallest rectangle
which fits the skew shape obtained by deleting the leftmost j columns of νi . We
place a lexicographical order on the νi in ν: we say νi = νj if νi and νj have the
same shape. Otherwise, there exists some smallest m ≥ 0 where Hm(νi) �= Hm(νj ),
in which case we say that νi > νj if Hm(νi) > Hm(νj ). Arrange the νi in ν along
the x-axis from largest to smallest in our order so that the largest νi touches both the
x and y axes, and there are no columns between subsequent νj ’s, and there are no
columns that contain boxes from more than one νi . Let η denote the smallest Young
diagram which contains this configuration of νj ’s.

Now each column of λ contains boxes from at most one νi in νλ. So, we may
shift all the νi’s down to sit on the x-axis and then shift them left so that one νi
touches both the x and y axes, and there are no columns between subsequent νj ’s,
and no columns that contain boxes from more than one νi . Observe that λ contains
the smallest Young diagram which fits this arrangement of the νi , and this smallest
Young diagram contains η. Thus η ⊆ λ. Similarly η ⊆ μ. As η contains at least as
many boxes as |ν|, we have |ν| ≤ |λ ∩ μ|.

See Fig. 1 for an example of the shifting processes described above.

Question 1 Does the inequality

|ν| ≤ |λ ∩ μ|

hold for all possible 3-dimensional λ,μ, ν as above? In other words, does the
inequality dim S/AnnN ≤ dimN always hold when N is a k[x1, x2, x3]-module
as in (5)?
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Despite the simplicity of its 2-dimensional analog, Question 1 seems quite
difficult in general. In the next section, we address it in the special case where ν

is a union of corners of λ. Note that the standard four dimensional counter-example
above has this form.

We end this section with two easy cases where the answer to Question 1 is “yes”.

Example 8 (The Case νλ = ν1) Let λ and μ be n-dimensional Young diagrams
and suppose that νλ contains just one skew-diagram ν1. Then inequality (6) holds.
To see this, let ei denote the i-th standard basis vector and let ν′ ⊆ N

n denote the
unique skew-diagram isomorphic to νλ with the property that ν′ − ei �⊆ N

n for each
i. In other words, ν′ is obtained from νλ by translating as far as possible in all −ei
directions. Note that ν′ ⊆ λ. Similarly, ν′ ⊆ μ and hence ν′ ⊆ λ ∩ μ, proving that
|νλ| = |ν′| ≤ |λ ∩ μ|.
Example 9 (The Case Where λ,μ ⊆ N

3 and Each Is Supported in a Plane) In the
four variable counter-example discussed in Example 1, we saw λ,μ ⊆ N

4 were
each supported in a 2-dimensional plane and |λ ∩ μ| < |ν|. Here we see that this
does not happen if λ,μ ⊆ N

3. Indeed, if λ and μ are in the same plane, we are
reduced to the case of Example 7. So suppose that they are in different planes. Then
each νi is a single box and we are in the case where we glue corners, which is proven
more generally in the next section.

4.3 The Gerstenhaber Problem Where We Glue Corners

As explained in the introduction, (GPn) is false for n ≥ 4 due to Example 1. As
further noted, this example is obtained by gluing λ to μ along corners. In contrast,
we show in Theorem 4 that for n < 4, every 2-generated combinatorial module
obtained by gluing corners does satisfy (GPn).

We say that (λ, μ, νλ, νμ) is a counter-example if it violates inequality (6). We
say it is a minimal counter-example if it is a counter-example and (λ′, μ′, νλ′ , νμ′)
is not a counter-example whenever λ′ ⊆ λ, μ′ ⊆ μ, νλ′ ⊆ νλ, νμ′ ⊆ νμ, and
(λ′, μ′, νλ′ , νμ′) �= (λ, μ, νλ, νμ).

If additionally, each connected component of νλ is a singleton box, then we
say (λ, μ, νλ, νμ) is a counter-example for gluing corners, respectively a minimal
counter-example for gluing corners.

Lemma 9 If (λ, μ, νλ, νμ) is a minimal counter-example, then

1. Soc(νλ) ∩ (λ ∩ μ) = ∅ = Soc(νμ) ∩ (λ ∩ μ),
2. Soc(λ) = Soc(νλ) and Soc(μ) = Soc(νμ).

Proof To prove the first assertion, assume to the contrary that sλ ∈ Soc(νλ)∩(λ∩μ)

and let sμ ∈ Soc(νμ) be the element to which sλ is glued. Let λ′ = λ \ {sλ} and
μ′ = μ \ {sμ}. Then

λ′ ∩ μ′ = (λ ∩ μ) \ {sλ, sμ}.
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So, |λ′ ∩ μ′| is either equal to |λ ∩ μ| − 1 or |λ ∩ μ| − 2, depending on whether sμ
is in λ ∩ μ. In either case,

|λ′ ∩ μ′| ≤ |λ ∩ μ| − 1.

Now, by minimality, we know (λ′, μ′, νλ \ sλ, νμ \ sμ) satisfies inequality (6),
i.e. |νλ| − 1 ≤ |λ′ ∩μ′| ≤ |λ∩μ| − 1. So, |νλ| ≤ |λ∩μ|, contradicting the fact that
(λ, μ, νλ, νμ) violates inequality (6). We have therefore shown that any minimal
example must have the property that Soc(νλ) ∩ (λ ∩ μ) = ∅ = Soc(νμ) ∩ (λ ∩ μ).

For the second assertion, if s ∈ Soc(λ) \ νλ, then let λ′ = λ \ s. We have
λ′ ∩ μ ⊆ λ ∩ μ; in fact |λ′ ∩ μ| = |λ ∩ μ| − 1 if s ∈ μ, and |λ′ ∩ μ| = |λ ∩ μ|
if s /∈ μ. Since s /∈ νλ, we can glue λ′ to μ along νλ, and by minimality, we know
(λ′, μ, νλ, νμ) is not a counter-example. So, |ν| ≤ |λ′ ∩ μ| ≤ |λ ∩ μ|, and hence
(λ, μ, νλ, νμ) is also not a counter-example. ��

We now turn to the case of gluing corners. The following notion will play a
central role.

Definition 1 We say λ is jagged if |Soc(λ \ s)| < |Soc(λ)| for all s ∈ Soc(λ).

Remark 1 Let ei = (0, . . . , 0, 1, 0, . . . , 0) be the i-th standard basis vector. Notice
that λ is jagged if and only if for all 1 ≤ i ≤ n and each s ∈ Soc(λ), we have
s − ei /∈ Soc(λ \ s). Equivalently, λ is jagged if and only if for each such i and s,
there exists j �= i such that s − ei + ej ∈ λ.

Example 10 The standard set of (x1, . . . , xn)
m is jagged for every m and n.

Similarly, the standard set of (x1, x2)
6 + x3(x1, x2)

4 + x2
3(x1, x2)

3 + x3
3(x1, x2) is

jagged; notice that this is obtained by “stacking” copies of (x1, x2)
mi on top of one

another. However, not every jagged λ is obtained in this manner, e.g. the standard
set of (x2

1 , x
2
2)+ x3(x1, x2)

2 is also jagged.

Corollary 3 If (λ, μ, νλ, νμ) is a minimal counter-example for gluing corners,
then

1. Soc(λ) ∩ (λ ∩ μ) = ∅ = Soc(μ) ∩ (λ ∩ μ),
2. λ and μ are jagged.

Proof The first assertion follows immediately from Lemma 9 as νλ = Soc(νλ) and
νμ = Soc(νμ).

For the second assertion, suppose |Soc(λ \ s)| ≥ |Soc(λ)| for some s ∈ Soc(λ).
Let λ′ = λ \ s and choose some s′ ∈ Soc(λ′) \ Soc(λ). By Lemma 9 (2), we know
Soc(λ) = νλ, so let sμ ∈ νμ be the box to which s is glued. Let νλ′ = (νλ \ s)∪ {s′}
and note that we can glue λ′ to μ along νλ′ and νμ; we simply glue s′ to sμ instead
of gluing s to sμ. By minimality, (λ′, μ, νλ′ , νμ) is not a counter-example, so |νλ′ | ≤
|λ′ ∩ μ|. Since s /∈ λ ∩ μ, we have λ′ ∩ μ = λ ∩ μ, so

|νλ| = |νλ′ | ≤ |λ′ ∩ μ| = |λ ∩ μ|,
which contradicts the fact that (λ, μ, νλ, νμ) is a counter-example. ��
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We next prove a result characterizing jagged 2-dimensional Young diagrams, and
proving the key property of jaggedness that we need in 3 dimensions. We introduce
the following terminology.

Definition 2 Let λ be an n-dimensional Young diagram. For each 1 ≤ s ≤ n and
t ≥ 0, we let

λs,t := {(c1, . . . , cn) ∈ λ | cs = t}

and refer to it as the t-th slice of λ in the xs-direction; it is denoted simply as λt

when s is understood. If t is maximal such that λs,t �= ∅, we refer to λs,t as the top
slice of λ in the xs-direction.

Remark 2 Notice that if λ is an n-dimensional Young diagram, then each slice λs,t

can be viewed naturally as an (n− 1)-dimensional Young diagram.

Proposition 3 Let λ be an n-dimensional Young diagram.

1. If n = 2, then λ is jagged if and only if it is the standard set of (x1, x2)
k for some

k.
2. If n = 3 and λ is jagged, then the top slice λt in the x3-direction, when viewed

as a 2-dimensional Young diagram, is the standard set of (x1, x2)
k for some k.

Proof Observe that (2) follows immediately from (1) since jaggedness of λ implies
jaggedness of λt .

We now turn to (1). It is clear that the standard set of (x1, x2)
k is jagged.

Conversely, suppose λ is jagged and let s = xa
1x

b
2 ∈ Soc(λ). By Remark 1, we see:

(i) if a > 0 then xa−1
1 xb+1

2 ∈ λ, and (ii) if b > 0 then xa+1
1 xb−1

2 ∈ λ. Statement (i)
implies that λ contains a socle in every column, i.e. for each j with λ1,j �= ∅, there
exists k such that xj

1x
k
2 ∈ Soc(λ). Similarly, statement (ii) implies that λ contains

a socle in every row. Together these statements imply that λ is the standard set of
(x1, x2)

k for some k. ��
We can now answer Question 1 when we glue λ and μ along corners.

Theorem 4 (GP3) holds for 3-dimensional Young diagrams glued along corners,
i.e. if the connected components of νλ are singleton boxes then, inequality (6) holds.

Proof If there is a counter-example for gluing corners, then there is a minimal such
counter-example (λ, μ, νλ, νμ). By Corollary 3 (2), we know λ and μ are jagged.
Let λt be the top slice of λ in the x3-direction, and μt ′ the top slice of μ in the
x3-direction. Without loss of generality, t ≤ t ′.

By Proposition 3 (2), we know λt is of the form (x1, x2)
k when it is viewed as

2-dimensional Young diagram. Since Soc(λ) ∩ μ = ∅ by Corollary 3 (1), when
we view the x3-slice μt as a 2-dimensional Young diagram, we must have μt ⊆
(x1, x2)

k−1. In particular, μt
� λt .

Next, choose xa
1x

b
2 in the socle of the 2-dimensional Young diagram μt , and let

s = xa
1x

b
2x

t
3 ∈ μ. By definition, s+e1, s+e2 /∈ μ. Since μt

� λt and Soc(μ)∩λ =
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∅ by Corollary 3 (1), we must have s /∈ Soc(μ). As a result, s + e3 ∈ μ. Let m be
maximal such that s′ := s +me3 ∈ μ. Then s′ ∈ Soc(μ). However, this contradicts
jaggedness of μ, since s′ − e3 ∈ Soc(μ \ s′). ��

5 Addressing the Gerstenhaber Problem in the Monomial
Ideal Case

Let I and J be two finite colength ideals in S = k[x1, . . . , xn] with I ⊆ J . Let
M = J/I . Then, we have that AnnM = (I : J ), and so

dim S/AnnM ≤ dimM ⇐⇒ dim S/(I : J ) ≤ dim S/I − dim S/J. (7)

We do not know if the rightmost inequality in (7) is true in general. In this section,
we show it is true for monomial ideals I and J in any number of variables. We thank
Alexander Yong for the key observation that shifting overlapping n-dimensional
Young diagrams appropriately can only increase the number of boxes in their
intersection (see Lemma 10).

We begin with some notation. Let ν be an n-dimensional Young diagram (e.g.
associated to some S/I for a monomial ideal I ⊆ S, see Sect. 4.1). Given a =
(a1, . . . , an), let νa be the following shift of ν:

νa := {c ∈ N
n | c− a ∈ ν}.

We can partition νa into slices in the xs direction. As in Definition 2, if the plane
xs = t intersects νa non-trivially, we define the t-slice of νa to be the set of all
c ∈ νa such that cs = t . We refer to the t = as slice as the bottom slice of νa in the
xs direction. Let es be the sth standard basis vector, and note that if c ∈ νa is not in
the bottom slice in the xs direction, then c− es is still an element of νa.

Lemma 10 Let ν1, . . . , νr be n-dimensional Young diagrams, and let a(1), . . . , a(r) ∈
N

n. Fix some 1 ≤ s ≤ n and assume that

a(1)s = a(2)s = · · · = a(l)s > a(l + 1)s ≥ · · · ≥ a(r)s, (8)

for some 1 ≤ l ≤ r . Then,

∣∣∣∣∣
r⋃

i=1

νi
a(i)

∣∣∣∣∣ ≥
∣∣∣∣∣

l⋃
i=1

νi
a(i)−es ∪

r⋃
i=l+1

νi
a(i)

∣∣∣∣∣ .

Proof Let ν(1) = ⋃l
i=1 νi

a(i), ν
(2) = ⋃r

i=l+1 νi
a(i) and ν(1) − es = ⋃l

i=1 νi
a(i)−es

.

Then |ν(1)| = |ν(1)−es | since ν(1)−es is just a shift of ν(1) in the−es direction. So,
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to prove the lemma, it suffices to show that |ν(1) ∩ ν(2)| ≤ |(ν(1)− es)∩ ν(2)|. To do
this, we will show that for each b ∈ ν(1) ∩ ν(2), we have b− es ∈ (ν(1) − es)∩ ν(2).

If b ∈ ν(1) ∩ ν(2) then b is simultaneously in νi
a(i), for some 1 ≤ i ≤ l, and in

ν
j

a(j), for some l+1 ≤ j ≤ r . Then, it is clear by definition that b− es is in νi
a(i)−es

.

To see that b − es ∈ ν
j

a(j), recall that a(i)s > a(j)s by the assumption (8). Thus b

is not in the bottom slice of νj

a(j) in the xs direction. Hence, b− es is still in ν
j

a(j) as
noted above the statement of the present lemma. ��
Proposition 4 Let I and J be monomial ideals in k[x1, . . . , xn] with I ⊆ J . Then
(GPn) is true for J/I .

Proof We first prove the following general combinatorial statement: if ν1, . . . , νr

are n-dimensional Young diagrams and a(1), . . . , a(r) ∈ N
n, then

∣∣∣∣∣
r⋃

i=1

νi

∣∣∣∣∣ ≤
∣∣∣∣∣

r⋃
i=1

νi
a(i)

∣∣∣∣∣ . (9)

We proceed by induction on the maximum distance of a vector a(i) to a coordinate
hyperplane. More precisely, we induct on

max{t ∈ N | ∃s ∈ [n] and i ∈ [r] such that a(i)s = t}.

If t = 0, then νi
a(i) = νi for all i, and so (9) holds trivially. So, suppose t > 0,

and choose any s, i such that a(i)s = t . After possibly re-labelling we may assume
t = a(1)s ≥ a(2)s ≥ · · · ≥ a(r)s . If all of these inequalities are equalities, then
define a′(i) = a(i) − es for each 1 ≤ i ≤ r . Observe that (9) holds if and only if
it holds upon replacing each a(i) by a′(i), as

⋃r
i=1 νi

a′(i) is just a shift of
⋃r

i=1 νi
a(i)

backwards by one unit in the xs direction.
If not all inequalities are equality then there is a first occurrence of a strict

inequality a(l)s > a(l + 1)s at some point in the chain. In this case, define
a′(i) = a(i) − es , for 1 ≤ i ≤ l, and a′(i) = a(i), for l + 1 ≤ i ≤ r . Then,
Lemma 10 implies that (9) holds if it holds upon replacing each a(i) by a′(i).

In either of the above two cases, the maximum distance t ′ of an a′(i) to a
coordinate hyperplane is still at most t . If it happens that t ′ < t , then the induction
hypothesis yields the desired result. If t ′ = t , we can repeat the above process of
shifting the various νi

a′(i) until the maximum distance to a coordinate hyperplane
does drop. It eventually will drop since there are only finitely many coordinate
directions in which to shift. Hence (9) holds by induction.

The statement of the Proposition now follows: let J = (xa(1), . . . , xa(r)). Let
νJ := {c ∈ N

n | xc is nonzero in J/I } and observe that νJ =⋃r
i=1 νi

a(i), where

νi
a(i) = {c ∈ N

n | xc is nonzero in ((xa(i))+ I )/I },
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and νi is the shift of νi
a(i) to the origin, that is, νi = {c− a(i) | c ∈ νi

a(i)}. Let ν̃ :=⋃r
i=1 νi . Then, dim(J/I) = |νJ | and dim S/Ann(J/I) = dim S/(I : J ) = |̃ν|.

The above induction argument implies that |̃ν| ≤ |νJ | as desired. ��
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Hema Srinivasan

1 Notations

Throughout this article, N will denote the non negative integers which is a
commutative semigroup under addition. It is a subsemigroup of the group Z of
integers. Similarly, Nn denotes a subsemigroup under addition of the group Z

n under
addition.

Given a subsemigroup G of N, we define k[G] = k[ta|a ∈ G] to be the
semigroup ring associated to G. Thus, k[G] is the subring of the polynomial ring
k[t]. So, k[G] is a one dimensional integral domain, unless G = {0}, when it is
just k. Let G be minimally generated by a subset S of N. Suppose d is the greatest
common divisor of S. Then every element of G is a multiple of d. Hence G is
isomorphic to G/d = {a/d|a ∈ G} as a semigroup and k[G] is isomorphic to
k[G/d] as a ring. Hence we may assume that S is relatively prime. When G is
generated by a set of relatively prime positive integers then it is called a numerical
semigroup. Further, when S generates G, k[G] = k[S].

This can be generalized to subsemigroups of Nn as follows. For a vector a1 =
(a11, . . . , an1)

T ⊂ N
n, we write ta1 =∏n

i=1 t
ai1
i .

If G is a subsemigroup of Nn, then k[G], the semigroup ring associated to G is
defined as follows. The semigroup ring k[G] = k[ta|a ∈ G] which is a subring of
the polynomial ring k[t1, . . . , tn]. As such, k[G] is an integral domain. We say that
k[G] or G is nondegenerate if dimension of k[G] is n. As in the case of N, we may
also assume that G is generated by a subset S ⊂ N

n which has no common factor
other than 1.
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We say that the set S or the semigroup < S > generated by it is Cohen–Macaulay
or Complete Intersection or Gorenstein respectively when the semigroup ring k[S]
is Cohen–Macaulay or Complete Intersection or Gorenstein.

1.1 Semigroup Rings Presented as Quotients of Polynomial
Rings

Let G be a semigroup generated by a subset A = {a1, . . . , as}. Then φA :
k[x1, . . . , xs] → k[t1 . . . , tn] is a ring homomorphism given by φA(xj ) = taj, 1 ≤
j ≤ s. The image of φA is precisely the semigroup ring k[G] and the kernel of φA

is a prime ideal IA and thus k[G] ∼= k[x, . . . , xs]/IA. The embedding dimension
of k[G] is s if and only if S minimally generate G. We will always consider the
case when S is a minimal set of generators for G. When n = 1, in the numerical
semigroup case, IA has height s − 1 for the dimension of k[G] is 1. In the general
case of semigroups in N

n, the dimension of k[G] equals the rank of the n× s matrix
A = [aij ].

Most of this article, we will concentrate on the case n = 1 and will mention when
the theorems do generalize as they are stated to larger n. It is not hard to show that
the ideal IA is a binomial ideal, that is generated by binomials.

2 Resolutions of Semigroup Rings

In this section, A = {a1, . . . , ap} minimally generates the numerical semigroup
G =< A >. So, a1, . . . , ap are relatively prime. The embedding dimension of
the semigroup ring is p. Since k[A] = kG] = k[x1, . . . , xp]/IA is a module over
k[x1, . . . , xp] = RA, we are interested in the RA− resolution of k[A] as a method
of understanding the structure of the semigroup rings. We write R for RA where
there is no danger of confusion.

We can also give a grading to this ring by setting degree of xi to be ai . Thus,
IA becomes homogeneous and k[A] is a Cohen Macaulay graded ring of dimension
one and the RA—free resolution of k[A] can be graded.

Recall that the set A or the semigroup < A > generated by it is said to be Cohen–
Macaulay or Complete Intersection or Gorenstein respectively when the semigroup
ring k[A] is Cohen–Macaulay or Complete Intersection or Gorenstein.

When p = 1, the ring is k[A] = k[x].
When p = 2, A = {a, b}, then the ring k[A] = k[x, y]/xb − ya . The minimal

resolution of k[A] is simply

0 → R → R[̨A] → 0
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where the map is given by multiplication by yb − xa and hence is a complete
intersection.

Recall that the ideal IA is a binomial ideal. In fact,
∏p

i=1 x
αi

i − ∏p

i=1 x
βi

i ∈
IA, αi, βi ∈ N if and only if

∑
i αiai =∑i βi .

When p = 3, the problem of finding IA was completely solved by J. Herzog [6].

Theorem 1 ([6]) Let A = {a, b, c} minimally generate the numerical semigroup
N

n. k[A] = k[x, y, z]/IA. Then there are exactly two cases.

1. Two of the three numbers in A, have a gcd common factor d, say, (a, b) = d

and the third c is in the semigroup generated by a/d, b/d. In this case, k[A] is a
complete intersection and hence IA is generated by exactly two binomials.

2. Otherwise, IA is generated by exactly three binomials which are necessarily the
2× 2 minors of a 2× 3 matrix.

When p = 4, there is not even an upper bound for the minimal number of
generators for the ideal IA by the example of Brezinsky and Hoa.

Theorem 2 ([1]) Let a be an even number other than 2. Then the minimal number
of generators for the set of ideals {Ia|a = (a2 − a, a2 − 1, a2 + 2a − 1, a2 + a)} is
unbounded. In particular, the minimal number of generators for Ia is 2a [7].

When p = 4, the best structure theorem we know is for the Gorenstein, non
complete intersections given by Bresinsky [1]. There is a strengthening of this
in [4] by removing some of the assumptions. This theorem is stated for space
monomial curves. The semigroup rings associated to numerical semigroups are the
homogenous coordinate rings of the monomial curves. Space monomial curves, thus
correspond to semigroup rings with embedding dimension four. When p = 4, if
the semigroup ring RA is Gorenstein, then IA is a height 3 Gorenstein ideal and
hence by the structure theorem of Buchsbaum and Eisenbud, it must be given by
the pfaffians of a skew symmetric matrix. One direction of the following theorem is
that in the case of numerical semigroup rings, this results in IA being generated by
5 binomials unless it is a complete intersection in which case it is generated by 3
principal binomials.

Theorem 3 ([1, 4]) Let A be a 4× 4 matrix of the form

A =

⎡
⎢⎢⎣

−c1 0 d13 d14

d21 −c2 0 d24

d31 d32 −c3 0
0 d42 d43 −c4

⎤
⎥⎥⎦

with ci ≥ 2 and dij > 0 for all 1 ≤ i, j ≤ 4, and all the columns summing to
zero. Then the first column of the adjoint of A (after removing the signs) defines a
monomial curve provided these entries are relatively prime.

For p ≥ 4, we know the resolutions for some special cases of semigroup rings.
For instance, for any p ≥ 4, if the sequence A = {a1, . . . , ap} is an arithmetic
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sequence, then we have the explicit resolution for the semigroup rings and derive
formulae for all the invariants [3].

The resolution is obtained as an iterated mapping cone. Instead of writing the
entire resolution, we will now give the formula for the Betti numbers. For the explicit
resolution, with the maps, we refer to [3]

Theorem 4 ([3]) Let A = {a1, . . . , an+1} be an Arithmetic sequence of length n+
1. Let k[A] be the semigroup ring associated to A. Then the Betti numbers of k[A]
depend only on a1 modulo n. Suppose a1 = na + b, 1 ≤ b ≤ n. The Betti Numbers
are given by

β0 = 1 and

βj = j

(
n

j + 1

)
+

⎧⎪⎪⎨
⎪⎪⎩

(n− b + 2− j)

(
n

j − 1

)
if 1 ≤ j ≤ n− b + 1,

(j − n+ b − 1)

(
n

j

)
if n− b + 1 < j ≤ n,

(1)

.
Thus, the C-M type of k[A] is b − 1. In particular, the C-M type determines all

the Betti numbers!
Further, the regularity is given by

regk[A] =

⎧⎪⎪⎨
⎪⎪⎩

d

(
n

2

)
+ a1(a + d)+ n(a1 − 1) if b = 1,

d(

(
n

2

)
+ b − 1)+ a1(a + d + 1)+ n(a1 − 1) if b ≥ 2,

(2)

Remark 1 The above situation is special for arithmetic sequences and will in
general not be true. It is easy to check even in embedding dimension 4.

As can be seen in the above theorem, the Betti numbers of the semigroup ring
RA depends only on the Cohen–Macaulay type of k[A] which in turn is determined
by a1 modulo n. In fact, the entire resolution, with the maps also depend only on a1
modulo n, the height of IA.

In the next section, we construct the resolution of semigroup rings that are
obtained by gluing two semigroups. Some results on Betti numbers [8] and a survey
can be found in [8] and [12].

3 Glued Semigroups

A numerical semigroup < C > is obtained by gluing two semigroups < A > and
< B > if its minimal generating set C can be written as the disjoint union of two
subsets, C = k1A � k2B, where
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1. A and B are numerically independent, i.e, minimally generate the semigroups
< A > and < B > respectively and

2. k1, k2 are relatively prime positive integers such that k1 is in the semigroup <

B > but not in B and k2 ∈< A > \A.

When this occurs, we also say that C is decomposable, or that C is a gluing of A

and B.

This notion of decomposition of the minimal generating set of a numerical
semigroup already appears in the classical paper by Delorme [2] where it is used
to characterize complete intersection numerical semigroups. In,1980, Rosales intro-
duced the concept of gluing for finitely generated subsemigroups of Nn and showed
that, for numerical semigroups, his definition coincides with the decomposition of
Delorme [10].

Before we state the theorem constructing these resolutions, we will need more
notations.

Let C have a decomposition C = k1A � k2B .
Let A = {a1, . . . ap}, B = {b1, . . . , bq}
Let k[A] = k[x1, . . . , xp]/IA and
k[B] = k[y1, . . . , yq ]/IB .
Let RA = k[x1, . . . , xp], RB = k[y1, . . . , yq ].
Then k[C] = k[x1, . . . , xp, y1, . . . , yq ]/IC
Let us denote by R = RC = k[x1, . . . , xp, y1, . . . , yq ] = RA ⊗k RB .

Lemma 1 Let C = k1A � k2B as above. Then the following are easy to check.

Fact 1. If A and B are numerically independent, then C is numerically independent
unless k1 ∈ B or k2 ∈ A.

Fact 2: Since k1 ∈< B > and k2 ∈< A >, there exist non negative integers αi, βi

such that k1 =∑q

j=1 βjbj and k2 =∑p

i=1 αiai .
Fact 3. The ideal IC is minimally generated by the ideals IA, IB and exactly one

other element

ρ =
p∏

i=1

x
αi

i −
q∏

j=1

y
βj

j ∈ R.

Fact 4: ρ is homogeneous of degree k1k2 if one gives to each variable in R the
corresponding weight in C = {k1a1, . . . , k1ap, k2b1, . . . , k2bq}.

Remark 2 In fact, Rosales [11] defines gluing of semigroup rings in general by the
Fact 3. That is, let < A > be a subsemigroup of N

n minimally generated by a
subset A and suppose that A = B � C. Then A is a gluing of B and C precisely if
IA = IB + IC + (ρ) where ρ is a binomial of the form fX − gY , where fX ∈ RB

and gY ∈ RC .

Now, we are ready to state the resolution of the numerical semigroup ring RC .
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Theorem 5 ([5])) Suppose C = k1A � k2B.

1. FA ⊗ FB is a minimal graded free resolution of R/(IAR + IBR).
2. A minimal graded free resolution of the semigroup ring k[C] can be obtained as

the mapping cone of the map of complexes ρ : FA ⊗ FB → FA ⊗ FB , where ρ

is induced by multiplication by ρ. (In fact, all the maps in the map of complexes
are multiplication by ρ.) In particular, (IAR + IBR :R ρ) = IAR + IBR.

So, we now can give formulae for the invariants. We collect all the consequences
in one corollary. The consequence listed as 3 and 4, namely the type and the Hilbert
Series have also been obtained by other methods by H. Nari.

Corollary 1 ([5]) Let C = k1A�k2B be a gluing as above, where A = {a1, . . . ap}
and B = {b1, . . . , bq} minimally generate the corresponding semigroups.

Then,

1. The ith Betti number βi is given by the formula

∀i ≥ 0, βi(C) =
i∑

i′=0

βi′(A)[βi−i′(B)+ βi−i′−1(B)] .

2.

βi(C) =
i∑

i′=0

βi′(B)[βi−i′(A)+ βi−i′−1(A)] .

3. The Cohen Macaulay type, is given by Type(C) = Type(A)Type(B) This result
is also obtained in [9]

4. The Hilbert series HC of RC is given by the formula

HC(t) = (1− tk1k2)HA(t
k1)HB(t

k2)

5. The regularity is given by

reg(C) = k1(reg(A))+k2reg(B)+(p−1)(k1−1)+(q−1)(k2−1)+k1k2−1 .

This formula is obtained by other methods in [9]
6. k[C] is Gorenstein, respectively a complete intersection, if and only if k[A] and

k[B] are both Gorenstein, respectively complete intersections.
7. If neither k[A] nor k[B] is Gorenstein, then the Cohen–Macaulay type of k[C] is

not prime.
8. The graded Betti numbers are given by the formula

βi,j (C) =
i∑

i′=0

( ∑
r,s/k1r+k2s=j

βi′r (A)[βi−i′,s(B)+ βi−i′−1,s−k1(B)]
)
.
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9. The minimal graded resolution of RC does admit an DG-algebra structure
and hence is an associative, graded commutative differential graded algebra
provided the minimal resolution of RA and RB do. In fact, the multiplication
of RC can be written explicitly in terms of the multiplication in RA and RB .

There are examples in the published papers to illustrate the theorems.
Now, we will quickly summarize some of what we can do in higher dimension

in the next remark. Following Rosales, we say a matrix A = B �C is a gluing of B
and C if there exists a ρ ∈ RA, such that IA = IB + IC + (ρ). In the general case of
semigroups in N

n, we no longer have a nice situation like the Lemma 1. In fact, it is
an open question to determine a criterion for gluing similar to Delorme’s criterion
for n ≥ 2.

Remark 3 For semigroups contained in N
n, we prove a generalization of Theorem 5

for A = B � C provided at least one of the matrices B and C has rank one. This
result will be in a forthcoming paper of Gimenez and Srinivasan. In fact, it can be
shown that if B and C are both Cohen–Macaulay, we cannot glue them to get a
Cohen–Macaulay semigroup ring RA if n ≥ 2. Thus, there are severe restrictions on
what can be glued in higher dimension.
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Using Monte Carlo Particle Methods
to Estimate and Quantify Uncertainty
in Periodic Parameters (Research)

Andrea Arnold

1 Introduction

Estimating and quantifying uncertainty in system parameters remains a big chal-
lenge in applied and computational mathematics. A subset of these problems
includes estimating parameters that vary periodically with time but have unknown
or uncertain time evolution models. Examples of periodic, time-varying parameters
in dynamical systems arising from life sciences applications include the seasonal
transmission in modeling the spread of infectious diseases [1, 9, 17] and the external
voltage in modeling the spiking dynamics of neurons [34].

While most traditional algorithms aim at estimating constant parameters, the
challenge in estimating time-varying parameters lies in accurately accounting for
their time evolution without observations or known evolution models. In the case
of periodic parameters, the resulting time series estimates should also maintain
periodicity. Along with their time series, the period of these parameters may also
be unknown and therefore may need to be estimated. This is particularly true in real
data applications where a reasonable approximation of the period may not be clear
from the available information.

The aim of this paper is to address the periodic parameter estimation problem,
with particular focus on exploring the uncertainty associated with estimating
periodic, time-varying parameters. In particular, this work uses sequential Monte
Carlo particle methods (or nonlinear filtering methods) [13, 16, 26, 27, 29] to
estimate the time series of periodic parameters. Note that while the term “sequential
Monte Carlo” sometimes refers exclusively to particle filters, in this work the term
more generally refers to sequential-in-time, Monte Carlo-based particle methods,
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including both particle filters and ensemble Kalman-type filters. In the Bayesian
family of parameter estimation algorithms, Monte Carlo particle methods natu-
rally account for uncertainty in the resulting parameter estimates by treating the
unknowns as random variables with probability distributions describing their most
likely values.

Both parameter tracking [20, 30, 34] and piecewise function approximations [8]
of periodic parameters are considered, highlighting aspects of parameter uncertainty
in each approach when considering factors such as the frequency of available data
and the number of piecewise segments used in the approximation. Estimation of
the period of the periodic parameters and related uncertainty is also analyzed in
the piecewise formulation. As is demonstrated in the numerical results, while the
parameter tracking method is efficient in tracking the overall behavior of slowly-
varying parameters, it is unable to guarantee that periodicity is maintained in
resulting parameter estimates. Pros and cons of each approach are discussed as
applied to a numerical example estimating the external voltage parameter in the
FitzHugh–Nagumo system for modeling neuron spiking dynamics.

The paper is organized as follows. Section 2 gives a review of the parameter
estimation inverse problem and the Bayesian solution using sequential Monte Carlo
particle methods, specifically outlining the augmented ensemble Kalman filter.
Section 3 describes the parameter tracking and piecewise function approaches to
estimating periodic parameters and discusses aspects of uncertainty relating to each
approach. Section 4 gives numerical results on estimating the external voltage
parameter in the FitzHugh–Nagumo model, and Sect. 5 provides discussion and
future work.

2 Parameter Estimation and Monte Carlo Particle Methods

The parameter estimation inverse problem can be summarized as estimating
unknown or uncertain system parameters given some discrete, noisy observations of
(possibly a subset or some function of) the states of the system. More specifically,
assume that an ordinary differential equation (ODE) model of the form

dx

dt
= f (t, x, θ), x(0) = x0 (1)

describes the dynamics of a system, which involves states x = x(t) ∈ R
d and

unknown (or poorly known) parameters θ ∈ R
q . While the model function f :

R × R
d × R

q → R
d is assumed to be known, the initial value x0 ∈ R

d may also
be unknown—in this case, x0 may also be estimated along with the parameters θ .
Further, assume the discrete, noisy observations yk ∈ R

m, k = 1, 2, . . . , T , have
the form

yk = g(x(tk), θ)+ wk, 0 < t1 < t2 < . . . < tT (2)
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where g : R
d × R

q → R
m, m ≤ d, is a known observation function and wk

represents the observation error. The inverse problem is therefore to estimate the
parameters θ and states x(t) at some discrete times from the observations yk .

From the Bayesian perspective, the unknown parameters θ , states x, and
observations y are treated as random variables with probability distributions π(·),
and the solution to the inverse problem is the joint posterior density

π(x, θ | y) ∝ π(y | x, θ)π(x, θ) (3)

which follows from Bayes’ theorem. The likelihood π(y | x, θ) indicates how likely
it is that the data y are observed if the states x and parameters θ were known,
and the prior density π(x, θ) encodes any information known about the states and
parameters before accounting for the data.

There are various approaches to solving Bayesian inverse problems, includ-
ing both sequential and nonsequential methods. Nonsequential methods, such as
Markov chain Monte Carlo (MCMC)-type schemes [3, 18, 19], sample the posterior
density by taking into account the full time series of data at once. Sequential Monte
Carlo particle methods [16, 26, 27], on the other hand, make use of stochastic
evolution-observation models to sequentially update the posterior using a two-step,
predictor-corrector-type scheme, accounting for each data point as it arrives in time.
A variety of Monte Carlo particle methods are available in the literature, including
particle filters [6, 24, 29, 32] and ensemble Kalman-type filters [7, 11–13]. For a
recent review, see [14].

Given the set Dk = {y1, y2, . . . , yk} of observations up to time tk , sequential
Monte Carlo particle methods update the posterior distribution from time tk to time
tk+1 as follows:

π(xk, θ | Dk) −→ π(xk+1, θ | Dk) −→ π(xk+1, θ | Dk+1) (4)

The first step (i.e., the prediction step) in the scheme predicts the values of the states
at time tk+1 without knowledge of the data, while the second step (i.e., the analysis
step) updates the predictions by taking into account the data at time tk+1. Note that
if there is no data observed at tk+1, then Dk+1 = Dk and the prediction density
π(xk+1, θ | Dk) is equivalent to the posterior π(xk+1, θ | Dk+1). Starting with a
prior density π(x0, θ0 | D0), D0 = ∅, this updating scheme is repeated until the
final posterior density is obtained when k = T .

2.1 Augmented Ensemble Kalman Filter

The ensemble Kalman filter (EnKF) [11, 12] is a sequential particle approach that,
unlike other particle methods that require importance sampling, moves (or pushes)
particles forward in time based on the prediction and correction steps of the filter.
Assume that the current density π(xk, θ | Dk) is represented by a discrete ensemble
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Sk|k =
{(

xn
k|k, θ

n
k|k
)}N

n=1
(5)

comprising N joint samples of the states xn
k|k and parameters θn

k|k at time k. In the
prediction step of the filter, the state ensemble is updated using the equation

xn
k+1|k = F(xn

k|k, θ
n
k|k)+ vn

k+1, vn
k+1 ∼ N(0,Ck+1) (6)

for each n = 1, . . . , N , where F is the numerical solution to the ODE system (1)
from time k to k + 1. Note that the parameter samples θn

k|k are not updated in the
prediction step.

To prepare for the analysis step, in which both the states and parameter values
will be updated, the predicted state ensemble is combined with the current parameter
ensemble into the augmented vectors

znk+1|k =
[
xn
k+1|k
θn
k|k

]
∈ R

d+q, n = 1, . . . , N (7)

and ensemble statistics formulas are used to compute the augmented ensemble
mean z̄k+1|k and covariance !k+1|k . The covariance matrix !k+1|k contains cross-
correlation information between the states and parameters that is used to update the
parameter values in the next step.

In the analysis step, an observation ensemble

yn
k+1 = yk+1 + wn

k+1, wn
k+1 ∼ N(0,Dk+1), n = 1, . . . , N (8)

is generated around the observation yk+1 to prevent the resulting posterior ensemble
from having too low a variance [11]. The observation ensemble is then compared to
the observation model predictions

ŷn
k+1 = g(xn

k+1|k, θ
n
k|k), n = 1, . . . , N (9)

with g as in (2) in the updating equation

znk+1|k+1 = znk+1|k + Kk+1
(
yn
k+1 − ŷn

k+1

)
, n = 1, . . . , N. (10)

To accommodate nonlinear observations [31], the Kalman gain Kk+1 in (10) is
computed by

Kk+1 = Szŷ

k+1

(
Sŷŷ

k+1 + Dk+1
)−1 (11)

where Szŷ

k+1 gives the cross-correlation between the augmented predictions znk+1|k
in (7) and observation model predictions ŷn

k+1 in (9), Sŷŷ

k+1 is the forecast error
covariance, and Dk+1 is the observation noise covariance as in (8). The above



Using Particle Methods to Estimate and Quantify Uncertainty in Periodic Parameters 217

algorithm, known as the augmented EnKF for combined state and parameter
estimation [7, 13], is repeated until the joint posterior density is obtained at k = T .

3 Estimating Periodic Parameters and the Role
of Uncertainty

In the traditional Monte Carlo particle methods described in Sect. 2, the parameters
θ are assumed to be constant (or static) parameters, i.e., dθ/dt = 0, and are
artificially evolved over time as the posterior is updated. Depending on the imple-
mentation of the method used, the parameter values may be updated during both the
prediction and analysis steps, or only in the analysis step via their correlation with
the state predictions. In particular, the augmented EnKF outlined in Sect. 2.1 updates
the parameter estimates only in the analysis step at each data arrival through the
use of cross-correlation information encoded in the Kalman gain (11). The periodic
parameters of interest in this work, however, are known to vary with time but do not
have known time evolution models. The main challenges in this problem therefore
lie in accurately accounting for the time evolution of these parameters while also
maintaining the periodic structure.

One approach is to consider parameter tracking algorithms [20, 30, 34], which
can trace the dynamics of slowly-changing parameters over time by allowing for a
drift in the parameter values during the prediction step of sequential Monte Carlo.
More specifically, the predicted change in the parameter θ(t) is modeled as a random
walk

θn
k+1|k = θn

k|k + ξn
k+1, ξn

k+1 ∼ N(0,Ek+1), n = 1, . . . , N (12)

where Ek+1 defines the covariance of the drift term ξn
k+1. Note that inclusion of

the drift term in (12) is crucial in allowing the algorithm to track the underlying
dynamics of the time-varying parameter. While parameter tracking algorithms are
straightforward to implement, the drift covariance Ek+1, which is typically modeled
as Ek+1 = σ 2

ξ I for some constant σξ , must be chosen carefully in order to avoid
filter divergence [2, 10, 21, 23, 37] and result in a useful parameter estimate.
The drift covariance also plays a direct role in the uncertainty of the resulting
parameter estimate, thereby affecting the corresponding model output predictions
[5]. Moreover, in the case of estimating periodic parameters, parameter tracking
algorithms do not guarantee that periodicity is maintained throughout the estimation
process.

An alternative approach that maintains periodicity in the parameter estimation is
to model the periodic parameter θ(t) as a piecewise function
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θ(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ1(t) , t ∈
[
0,

p

�

)

θ2(t) , t ∈
[p
�
,

2p

�

)

...
...

θ�(t) , t ∈
[ (�− 1)p

�
, p
)

(13)

where each θi(t), i = 1, . . . , �, is a function relying on some unknown constant
coefficients, repeated each period p, that can be estimated using traditional Monte
Carlo particle methods. A similar piecewise formulation using nonlinear filtering
was presented in [8] assuming that the period p was known and fixed during the
estimation process. However, in general the period of the parameter may not be
known a priori and may need to be estimated along with the other unknown system
parameters. Therefore, in this work, the period p is assumed to be unknown and is
estimated along with the unknown piecewise function coefficients.

The formulation in (13) can accommodate estimation using piecewise constant
functions or splines of various order. In this study and the numerical experiments
that follow in Sect. 4, we employ a continuous linear interpolating spline (of degree
1) where

θi(t) = ai + bi(t − ti−1) , t ∈ [ti−1, ti) =
[ (i − 1)p

�
,
ip

�

)
(14)

for i = 1, . . . , �, with constant coefficients ai and bi denoting the y-intercept and
slope of the line θi(t), respectively. Note that the spline knots tj , j = 0, . . . , �,
in (14) depend on both the period p and number of spline segments �. Continuity
dictates that θi(ti) = θi+1(ti) for i = 1, . . . , � − 1, and it follows from definition
of the linear spline in (14) that θi(ti−1) = ai for i = 1, . . . , �. Since the slope
coefficients bi can be computed directly from the y-intercepts ai , i = 1, . . . , �+ 1,
via the formula

bi = ai+1 − ai

ti − ti−1
= ai+1 − ai

p/�
= �

p

(
ai+1 − ai

)
(15)

it suffices to estimate only the values for ai , i = 1, . . . , � + 1, along with
the period p. Therefore the parameter estimation problem consists of estimating
L = �+ 1 spline coefficients and the period p, for a total of L+ 1 unknown static
parameters relating to the periodic parameter of interest.

Various factors must be considered in analyzing the uncertainty relating to the
piecewise formulation (13)–(14). In this study, we consider how the frequency of
the data in time and the number of linear spline segments � used in the estimation
affects the resulting periodic parameter estimates and corresponding uncertainty.
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4 Numerical Example: External Voltage
in FitzHugh–Nagumo

As a numerical example, we consider synthetic data generated from the FitzHugh–
Nagumo system [15] which acts as a simplified version of the Hodgkin–Huxley
system [22] for modeling the spiking dynamics of single neurons. The FitzHugh–
Nagumo equations are given by

dx1

dt
= c
(
x2 + x1 − x3

1

3
+ v(t)

)
(16)

dx2

dt
= −1

c

(
x1 − a + bx2

)
(17)

where the state variable x1(t) represents the measurable membrane potential of
the neuron, while x2(t) denotes an unobservable combined effect of various ionic
currents. The parameters a, b, and c are commonly fixed to some known values a
priori, but the external voltage v(t) is an unknown, time-varying parameter.

Figure 1 shows the synthetic data and underlying system states generated from
(16)–(17) using initial values x1(0) = 1 and x2(0) = 0.5 and fixed parameters
a = 0.7, b = 0.8, and c = 3, along with the time-varying external voltage parameter
modeled as a periodic, sinusoidal function v(t) = 0.5 sin(ωt + π/2) − 1 with
frequency ω = 0.1. Therefore, in this example, v(t) plays the role of the periodic
parameter θ(t) described in Sect. 3. This choice of v(t) varies more slowly than the
system dynamics, making it amenable to particle methods with parameter tracking.
A similar example was considered in [5], where the focus was to study the effects of
uncertainty in parameter tracking estimates and their corresponding model output
predictions. The data was generated by observing x1(t) at 1257 equidistant time
instances over the interval [0, 251.2], covering four periods of v(t), and corrupting
the observations with zero-mean Gaussian noise. The standard deviation of the noise
was taken to be 20% of the standard deviation of x1(t) over the full time interval.

For the first numerical experiment, we consider estimating the periodic parameter
v(t) using the piecewise formulation (13)–(14) with � = 10 spline segments (L =
11 knots) and estimating the L = 11 unknown linear spline coefficients a1, . . . , a11,
along with the unknown period p. While various particle methods could be applied,
we employ an augmented EnKF in the style of [7] with N = 150 ensemble members
to estimate the system states x1(t) and x2(t) along with the parameter vector θ =
(a1, . . . , a11, p) ∈ R

12 as described; see [7] for implementation details of the filter
beyond those given in Sect. 2.1.

Assuming that the initial values of the system are not fully known, the prior
ensemble of states is drawn uniformly from 0.5 to 1.5 times the value of the
first observed value of x1(t) and set to 0 for x2(t) (unobserved). The prior
ensemble of parameter values is drawn uniformly from U(−2, 1) for each of the
spline coefficients a1, . . . , a11 and fromU(55, 75) for the period p. Throughout the
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Fig. 1 Noisy observations of the membrane potential x1(t) (top, blue and purple markers) from
the FitzHugh–Nagumo system (16)–(17), along with the unobserved lumped ionic current x2(t)

(bottom, solid black) and external voltage parameter v(t) (bottom, dashed black). In the top panel,
the blue (dots) and purple (asterisks) markers together represent noisy observations taken every 0.2
time units, while the purple markers alone show noisy observations every 2 time units

estimation process, a positivity constraint is placed on the period such that pn
k|k > 0

for all n and k, and time integration is performed using the Adams-Moulton linear
multistep methods of orders 1 and 2 [25, 28].

Figure 2 shows the resulting linear spline estimates of v(t) computed using
the estimated parameter means and ±2 standard deviation values for the spline
coefficients a1, . . . , a11 and period p, repeated over four periods. The corresponding
estimates of p are listed in Table 1. For comparison with the piecewise approach,
Fig. 2 also shows the resulting mean and ±2 standard deviation curves estimating
v(t) using the augmented EnKF with parameter tracking, where the drift term has
prescribed standard deviation σξ = 0.01. Note that the uncertainty in the resulting
estimates of v(t) is much smaller in the piecewise formulation; however, some parts
of the true v(t) curve are not captured within the uncertainty bounds, specifically
near the beginning of the estimated period (≈63.7212) at each repetition. While
the uncertainty in the parameter drift estimate is able to almost fully capture the
underlying true v(t), the mean estimate does not fully maintain the periodicity
intrinsic to v(t).

The next numerical experiment explores how the uncertainty in the parameter
estimates using both the piecewise linear spline formulation and parameter tracking
is affected by the frequency of available data over time. To that end, the synthetic
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Fig. 2 Parameter estimates of the external voltage parameter v(t) in the FitzHugh–Nagumo
system (16)–(17) computed using piecewise linear splines with estimated spline coefficients when
� = 10 and period p repeated over four periods (top panel) and parameter tracking (bottom
panel). In the top panel, the linear spline using the augmented EnKF mean estimates of the spline
coefficients and period is shown in solid red, while the linear splines computing using the ±2
standard deviation parameter estimates are shown in dark grey, filled with light grey. In the bottom
panel, the mean parameter tracking estimating using the augmented EnKF is shown in solid red,
while the ±2 standard deviation curves are shown in dark grey, filled with light grey. In both
panels, the true v(t) used in generating the synthetic data is shown in dashed black. Estimates were
obtained using the full synthetic data shown in Fig. 1

Table 1 Augmented EnKF mean and±2 standard deviation parameter estimates of the period p

of the piecewise linear spline estimate of the external voltage parameter v(t) for different numbers
of spline segments �

# of spline segments Estimated p (mean ± 2 std) Relative error (mean)

� = 2 62.7699± 0.0523 0.0009

� = 5 63.1169± 0.0620 0.0045

� = 10 63.7212± 0.0881 0.0142

� = 15 65.9231± 0.0540 0.0492

� = 20 73.8291± 0.0189 0.1750

The relative error between the mean estimate and true value of p in each case is computed using
the formula in (18). Values in the table are reported to four decimal places

data is subsampled, taking every 10 data points for a total of 126 noisy observations
of x1(t) at equidistant time instances over the interval [0, 251.2]. Figure 1 displays
the subsampled data in purple markers (asterisks) on the top panel. Figure 3 shows
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Fig. 3 Parameter estimates of the external voltage parameter v(t) in the FitzHugh–Nagumo
system (16)–(17) computed using piecewise linear splines with estimated spline coefficients when
� = 10 and period p repeated over four periods (top panel) and parameter tracking (bottom
panel). In the top panel, the linear spline using the augmented EnKF mean estimates of the spline
coefficients and period is shown in solid red, while the linear splines computing using the ±2
standard deviation parameter estimates are shown in dark grey, filled with light grey. In the bottom
panel, the mean parameter tracking estimating using the augmented EnKF is shown in solid red,
while the ±2 standard deviation curves are shown in dark grey, filled with light grey. In both
panels, the true v(t) used in generating the synthetic data is shown in dashed black. Estimates were
obtained using the subsampled synthetic data shown in Fig. 1

the resulting parameter estimates, using both piecewise linear splines and parameter
tracking, initialized as in the previous numerical experiment. Note that less frequent
observations result in significantly more uncertainty in both the piecewise linear
spline and parameter tracking estimates of v(t). While the linear spline estimate is
able to fairly well approximate and fully capture the true v(t) within the uncertainty
bounds, the parameter tracking algorithm has more difficulty tracking v(t) in this
case—the mean estimate does not maintain periodicity and is also noticeably out of
phase with the true v(t).

The last numerical experiment considered in this paper studies the effect of the
number of linear spline segments � (corresponding to L = � + 1 spline knots)
on the piecewise estimation of v(t) and corresponding estimate for the period p.
To this end, the piecewise linear spline estimation is performed using five different
choices of � (namely, � = 2, 5, 10, 15, 20) and the full synthetic data in Fig. 1.
Figure 4 shows the resulting linear spline estimates for each � over one estimated
period. Table 1 gives the corresponding estimates of the period p in each case, along
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Fig. 4 Parameter estimates of the external voltage parameter v(t) in the FitzHugh–Nagumo
system (16)–(17) computed using piecewise linear splines with estimated spline coefficients when
� = 2, 5, 10, 15 and 20, respectively, and period p, shown over one period. In each panel, the linear
spline using the augmented EnKF mean estimates of the spline coefficients and period is shown in
solid red, while the linear splines computing using the ±2 standard deviation parameter estimates
are shown in dark grey, filled with light grey. The true v(t) used in generating the synthetic data
is shown in dashed black. Estimates were obtained using the full synthetic data shown in Fig. 1.
Corresponding period estimates are given in Table 1

with the relative error comparing the EnKF mean estimate of the period with the
true period used in generating the synthetic data. The relative error in each case is
computed via the formula

relative error =
∣∣∣∣
ptrue − pest

ptrue

∣∣∣∣ (18)

where pest is the augmented EnKF mean estimate of the period and ptrue ≈ 62.8319
is the true period (up to four decimal places).

The amount of uncertainty in each spline estimate is low, similar to the results
seen in Fig. 2 using the full time series of data. It is interesting to note that as the
number of spline segments � increases, the EnKF estimate of the period p tends to
increase. While the fit of the spline improves from � = 2 to � = 10, adding more
spline segments eventually starts to degrade the fit along with overestimating the
period, as is the case when � = 15 and � = 20.

5 Discussion

This paper addresses the problem of estimating and quantifying uncertainty in
periodic, time-varying parameters using sequential Monte Carlo parameter estima-
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tion techniques. Estimation approaches using both particle methods with parameter
tracking and piecewise linear spline (with spline coefficients and periods estimated
using particle methods) are considered, and the role of uncertainty is highlighted in
each. In particular, uncertainty relating to the frequency of available time series
data and the number of spline segments used in the linear spline estimates is
tested via numerical experiment on an electrophysiology example estimating the
external voltage parameter in the FitzHugh–Nagumo system for modeling the
spiking dynamics of single neurons.

As demonstrated in the numerical results in Sect. 4, there are pros and cons
to using each of the presented approaches for estimating periodic parameters.
One clear computational advantage of the parameter tracking algorithm is its
straightforward implementation in the sequential Monte Carlo framework and
flexibility in approximating the shape of the parameter of interest. Nothing is
assumed about periodicity a priori, and there is only one parameter to track over
time. However, since nothing is assumed about periodicity in the parameter tracking,
the periodicity of the parameter is therefore neglected in the estimation process and
periodicity is not maintained. The choice of the drift variance also has a significant
impact on the resulting parameter tracking estimate, in terms of both accuracy and
uncertainty. Moreover, the numerical experiments show that the parameter tracking
algorithm has more difficulty tracking the periodic parameter as less frequent time
series data is available.

The piecewise linear spline formulation maintains periodicity by prescribing a
periodic form to the parameter a priori, then estimating the coefficients and period
that best fit the available data via a particle approach. The numerical experiments
show that the frequency of available time series data has a direct impact on the
uncertainty relating to the linear spline estimates, with more frequent data resulting
in tighter uncertainty bounds. The number of spline segments � also has a significant
effect on both the fit of the resulting spline and the corresponding period estimation.
An interesting problem would be to consider estimating � along with the period
p; however, this is not straightforward, as � and p depend on one another in the
piecewise formulation in (13). Instead, one could interpret the problem of choosing �

as a model selection problem and could apply available methods for model selection;
see, e.g., [4, 33, 35, 36]. This remains as future work.

Note that while the linear splines shown in Figs. 2 and 3 are formulated to be
continuous within a given period, the piecewise formulation in (13)–(14) does not
necessarily guarantee continuity of the spline between periods. In order to maintain
continuity between periods, an additional constraint that a1 = a� is required (but
not considered in this work). Regarding the period estimation, note that special care
must be taken in the implementation to avoid, e.g., negative or inappropriate values
being assigned for the period of the periodic parameter. A simple approach used
in the numerical results in this paper is to apply a positivity constraint within the
Monte Carlo particle algorithm to retain pn

k|k > 0 for all n and k. Further, since
periodic parameters are subset of all possible parameters in (1), additional constant
parameters, such as the initial states of the dynamical system, may be estimated
simultaneously in both the parameter tracking and piecewise formulations.
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While it is possible to use a variety of parameter estimation techniques, the use
of Monte Carlo particle methods in this work provides a natural framework for
analyzing the time series data typically available in applications where time-varying
parameters are relevant. Moreover, Monte Carlo methods provide a natural measure
of uncertainty in the parameter estimation, which can be used for model prediction
and uncertainty quantification. Future work includes the design and analysis of
parameter tracking-type Monte Carlo particle algorithms that incorporate structural
characteristics like periodicity into the sequential estimation without relying on a
piecewise functional form for the time-varying parameters.

Acknowledgement This work is supported by the National Science Foundation under grant
number NSF/DMS-1819203.
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A Note on Singularity Formation for a
Nonlocal Transport Equation (Research)

Vu Hoang and Maria Radosz

1 Introduction

One of the most fundamental equations in modeling the motion of fluids and gases
is the transport equation

ωt + u · ∇ω = 0, (1)

here written using the vorticity ω. The velocity u may depend on ω, in which case
(1) is called an active scalar equation.

When the relationship u[ω] is specified, (1) gives rise to many important models
in fluid dynamics. u[ω] is often called a Biot-Savart law. Here are some examples
of particular transport equations, which are also active scalar equations. Take for
example,

u = ∇⊥(−4)−1ω, (2)

where ∇⊥ = (−∂y, ∂x) is the perpendicular gradient. Equations (1) and (2) are the
vorticity form of 2D Euler equations. As another example, one can take

u = ∇⊥(−�)−
1
2 ω.

Then (1) becomes the surface quasi-geostrophic (SQG) equation. The SQG equation
has important applications in geophysics and atmospheric sciences [13]. Moreover
it serves as a toy model for the 3D-Euler equations (see [4] for more details).
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A question of great importance is whether solutions for these equations form
singularities in finite time.

A game-changing observation in dealing with some two- and three dimensional
models for fluid motion is that imposing certain symmetries on the solution of (1) on
simple domains like a half-disc or a quadrant creates a special kind of flow called
a hyperbolic flow. We will not go into details here but refer to [8–11] for more
information. In this hyperbolic flow scenario, it seems that the behavior of the fluid
on and near the domain boundary plays the most important part in creating either
blowup or strong gradient growth. One-dimensional models capturing this behavior
are therefore an essential tool for investigating possible blowup mechanisms without
the additional complications of more-dimensional equations. We refer to [1] for
discussion of the aspects relating to the hyperbolic flow scenario. For 1d models of
fluid equations, see also [1–3, 5].

In this paper, we will study a 1D model of (1) on R with the following Biot-Savart
law:

u = (−�)−
α
2 ω = −cα

ˆ
R

|y − x|−(1−α)ω(t, y) dy.

This model is called α-patch model and has also been treated in [6] with an
additional viscosity term causing dissipation. Local existence of the solution and
the existence of a blowup for the viscous α-patch model were given in [6]. The
existence of blowup was obtained by using energy methods. In contrast, this paper
deals with more geometric aspects of singularity formation for the inviscid model—
such as the final profile of the solution at the singular time.

Regularity-wise, the α-patch model is less regular than 1D Euler ux = Hω and
more regular than the Córdoba-Córdoba-Fontelos (CCF) model u = Hω (see [5]).
The latter is a 1D analogue of the SQG equation.

2 One Dimensional α-Patch Model and Main Results

We study the transport equation

ωt + u[ω]ωx = 0 (4)

in one space dimension for the unknown function ω(t, x) : [0, T ] × R → R with
sufficiently smooth initial data ω(·, 0) = ω0. The velocity field is given by the
nonlocal Biot-Savart law

u(x, t) = (−�)−α/2ω(x, t) = −cα

ˆ
R

|y − x|−(1−α)ω(t, y) dy, α ∈ (0, 1).
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The α-patch model becomes the 1d model for the 2d Euler equation in the limit
α → 1 with velocity field given by

u(x, t) = (−�)−1/2ω(x, t).

For convenience, we will assume the constant cα associated with the fractional
Laplacian is 1, and we write γ = 1− α.

We consider classical solutions where ω(·, x) is odd in x and such that

‖ω(t, ·)‖q + ‖ωx(t, ·)‖q−1 <∞

for all t ∈ [0, T ]. Here, the norm ‖ · ‖s is defined by

‖ω‖s := sup
x≥0

|ω(x)|(1+ x)−s .

Our main concern will be the question if more information can be deduced about
the nature of the singularity formation of (4). In particular, we are interested in the
formation of an odd cusp (see Fig. 1), i.e. the possibility that a smooth solution
becomes singular at the time t = Ts > 0 in a way such that

ω ∼ sign(x)|x|p (t → Ts)

with some power p ∈ (0, 1). The sense in which this holds will be made clear below.
Another result on cusp formation can be found in [7].

We shall take odd C2-smooth initial data:

ω(0,−x) = −ω(0, x) = ω0(x) (x ∈ R)

This implies that ω(t, ·) is odd for all t (as long as a smooth solution exists) and also
that u[ω](t, ·) is odd as well. Moreover, ω0 is such that

‖ω0‖q + ‖∂xω0‖q−1 + ‖∂2
xω0‖q−2 <∞ (5)

Fig. 1 Left: odd cusp, Right: (even) cusp
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for some 0 < q < γ . Note that due to the symmetry, the velocity field is well-
defined for ω satisfying (5). This is because

u[ω](t, x) = −
ˆ ∞

0
K(x, y)ω(t, y) dy (6)

where

K(x, y) =
(

1

|y − x|γ −
1

|x + y|γ
)
≥ 0

and hence |K(x, y)| ≤ C(x)|y|−1−γ for y ≥ 2x. This implies that (6) converges for
all x > 0. Note in particular that u[ω](x) ≤ 0 for x ≥ 0, if ω(x) ≥ 0 for x ≥ 0.

Theorem 1 (Local Existence and Uniqueness) Given C2-initial data ω0 satisfy-
ing (5), there exists a T > 0 and a unique solution ω of (4) defined on [0, T ] × R

so that

• ω(0, ·) = ω0(·)
• ω(t, ·) is odd for all t ∈ [0, T ).
• ω ∈ C1([0, T ] × R)

Define now

φ(t, x) = ap(t)f

(
x

a(t)

)
(7)

with f (z) = (z + 1)p − 1. The function φ serves a barrier for solutions of (4),
as shown by our main result below. The function a(t) controls the evolution of
the barrier’s shape in time and will also be specified in Theorem 2. Suppose that
a(t)→ 0, as t → T ∗. Then as t → T ∗

φ(t, x)→ xp

pointwise for x > 0 and also uniformly on x ≥ c for any c > 0. Note moreover that

φ(t, x) ≤ (x + a0)
p (t ≥ 0, x ≥ 0) (8)

provided 0 < a(t) ≤ a0.

Theorem 2 (Singularity Formation) Let p = 1
2γ . There exists a c0 > 0 such that

the following implication is true: If a : [0, T (a0)] → R solves

ȧ = −c0a
1−p, a(0) = a0 > 0
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with a0 < 1 and T (a0) > 0 being the unique time such that

a(T (a0)) = 0, a(t) > 0 for t < T (a0).

and if ω is a smooth solution of (4) such that

‖ω(0, ·)‖p + ‖ωx(0, ·)‖p−1 <∞,

ω(0, x) > (1+ ε)φ(0, x) (x > 0)

for ε > 0 satisfying

ε > (1− a
p

0 )
−1 − 1. (9)

Then T̄ ≤ T (a0) and

ω(t, x) > φ(t, x) (x > 0)

for 0 ≤ t < T̄ , where T̄ > 0 denotes the maximal lifetime of the smooth solution.
Provided ω does not break down earlier, ω forms at least a cusp at time t = T (a0)

(or a potentially stronger singularity, see Fig. 2).

Note that a function a(t) with the properties in the Theorem exists for any given
a(0) > 0. Our theorem does not exclude the possibility of a singularity forming
before T (a0). However, we offer the following conjecture.

Conjecture 1 If ωxx(0, x) < 0 for x > 0, then singularity formation can only
happen at x = 0, i.e. if sup0≤t<T̂

|ωx(t, 0)| < ∞ for some T̂ > 0, then the smooth

solution can be continued past t = T̂ . In this case we have that the profile of ω(t, ·)
converges to an odd cusp at the singularity.

Fig. 2 Possible singularity
formations. Grey: Odd cusp,
Black: Shock
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3 Proofs of Main Results

Proposition 1 For all 0 < q < γ , we have the estimates

‖u[ω]‖1−γ+q ≤ C‖ω‖q
‖∂xu[ω]‖−γ+q ≤ C‖ωx‖q−1

‖∂xxu[ω]‖−γ+q−1 ≤ C‖ωxx‖q−2.

(10)

with a universal constant C > 0.

Proof We estimate

|u[ω]| ≤ ‖ω‖q
ˆ ∞

0
K(x, y)(1+ y)qdy

= ‖ω‖q
ˆ ∞

0
x−γK

(
1,

y

x

)
xq
(
x−1 + y

x

)q
dy

= ‖ω‖qx1−γ+q

ˆ ∞

0
K (1, z) (x−1 + z)qdz

after making the substitution y = xz. Now note that for x ≥ 1, (x−1+z)q ≤ (1+zq),
hence with

C :=
ˆ ∞

0
K (1, z) (1+ z)qdz

the estimate supx≥1 |u[ω]|x−(1−γ+q) ≤ C‖ω‖q holds. Note that C <∞ on account
of 0 < q < γ . Straightforward computations show that |u[ω](x)| ≤ C‖ω‖q for
0 ≤ x ≤ 1, hence the first line of (10) holds. To continue with the second line of
(10), we first note

u[ω]x = −
ˆ
R

ωx(y)

|x − y|γ dy = −
ˆ ∞

0
ωx(y)

(|x − y|−γ + |x + y|−γ
)
dy

where ωx is an even function and the integral is absolutely convergent. Similar
estimations now show the second line and third line of (10).

3.1 Proof of Theorem 1 (Local Existence and Uniqueness)

The proof consists of two parts. We first construct global solutions of of an
approximate problem. The following a-priori bounds are crucial:
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Proposition 2 Suppose 0 < p < γ , ω0 ∈ C2(R) is odd and

‖ω0‖p + ‖∂xω0‖p−1 + ‖∂xxω0‖p−2 <∞.

Let ω : [0,∞)× R→ R solve the equation ωt + vωx = 0 where the velocity field
satisfies

‖v(t, ·)‖1−γ+p ≤ K‖ω(t, ·)‖p,
‖∂xv(t, ·)‖−γ+p ≤ K‖ωx(t, ·)‖p−1

‖∂xxv(t, ·)‖−γ+p−1 ≤ K‖ωxx(t, ·)‖p−2

for all t ≥ 0 and some K > 0. Then there exists a time T ∗ > 0 and a C > 0
depending only on ω0 and K such that

sup
0≤t≤T ∗

{‖ω(t, ·)‖p + ‖∂xω(t, ·)‖p−1 + ‖∂xxω(t, ·)‖p−2} ≤ C <∞ (11)

holds.

Proof Along any particle trajectory X(t) we compute

d

dt

(
(1+X(t))−pω(t,X(t))

)

= −p(1+X(t))−p−1v(t, X(t))ω(t, X(t))

+ (1+X(t))−p d

dt
ω(t,X(t))

= −p(1+X(t))−p−1v(t, X(t))ω(t, X(t))

≤ (1+X(t))−p−1K‖ω(t, ·)‖p(1+X(t))1−γ+p|ω(t,X(t))|
= K‖ω(t, ·)‖p(1+X(t))−γ+p(1+X(t))−p|ω(t,X(t))|
≤ K‖ω(t, ·)‖2

p sup
x≥0

(1+ x)−γ+p

≤ K‖ω(t, ·)‖2
p

where we have used γ > p. A similar computation shows that

− d

dt

(
(1+X(t))−pω(t,X(t))

) ≥ −K‖ω(t, ·)‖2
p

and hence there exists a T ∗ > 0 depending only on ‖ω0‖p,K such that ‖ω(t, ·)‖p
is bounded by a constant on [0, T ∗]. To prove a similar bound for ∂xω(t, ·), we
observe that
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d

dt

(
(1+X(t))−p+1ωx(t,X(t))

)

= (−p + 1)(1+X(t))−pv(t, X(t))ωx(t, X(t))

− (1+X(t))−p+1(∂xv)(t, X(t))ωx(t, X(t))

≤ K‖ωx(t, ·)‖p−1(1+X(t))−1(1+X(t))1−γ+p‖ω(t, ·)‖p
+K(1+X(t))−p+1(1+X(t))−γ+p‖ωx(t, ·)‖p−1|ωx(t,X(t))|

≤ K‖ω(t, ·)‖p‖ωx(t, ·)‖p−1

+K(1+X(t))−p+1(1+X(t))−γ+p‖ωx(t, ·)‖p−1(1+X(t))p−1‖ωx(t,X(t))‖p−1

≤ CK
(
‖ω(t, ·)‖p‖ωx(t, ·)‖p−1 + ‖ωx(t, ·)‖2

p−1

)

with some universal C > 0. A similar lower bound for − d
dt
(1 + X(t))−p+1ωx

exists. We hence get an a-priori bound for ‖∂xω(t, ·)‖p−1. A similar argument for
∂xxω completes (11).

We now define a family of regularized problems. Set

kε(z) = η−γ
ε (|z|)

where ηε(z) = εη(z/ε) with η being a smooth, nonincreasing function with the
properties

η(z) = 3

4
(z ∈ [0, 3

4
])

η(z) = z (z ≥ 1).

Now define for odd ω

vε[ω] = −
ˆ
R

kε(x − y)ω(y, t) dt

which can also be written as

vε[ω](t, x) = −
ˆ ∞

0
(kε(x − y)− kε(x + y)) ω(t, y) dy. (12)

We note the following estimates:

‖vε[ω]‖1−γ+p ≤ K‖ω‖p
‖∂xvε[ω]‖−γ+p ≤ K‖ωx‖p−1

‖∂xxvε[ω]‖−γ+p−1 ≤ K‖ωxx‖p−2.
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with some universal K > 0. This is shown similarly as in Proposition 1, noting that
the regularized kernel kε is bounded by the original kernel |z|−γ . On the other hand,
we have estimates of the form

‖∂xvε[ω]‖−γ+p ≤ C(ε)‖ω‖p
‖∂xxvε[ω]‖−γ+p−1 ≤ C(ε)‖ω‖p.

(13)

with C(ε)→∞ as ε → 0.

Proposition 3 For all ε > 0, the regularized problems

ωt + vε[ω]ωx = 0, ω(0, x) = ω0 (14)

have solutions ω ∈ C2([0,∞)× R).

Proof The first step is to show the local-in-time existence of solutions using the
particle trajectory method (see [12]). The flow map � = �(t, z) satisfies the
following equation:

d�

dt
(t, z) = vε[ω�](�(t, z), t), �(z, 0) = z.

or equivalently

�(t, z) = z+
ˆ t

0
vε[ω�(·, s)](�(s, z), s) ds. (15)

Here, for a given a flow map �, we define

ω�(t, y) := ω0(�
−1(t, y)). (16)

This means, (15) is an equation for � with velocity field given by (12) and ω�

given by (16). Moreover, a solution of (15) translates into a solution of (14) via
relation (16).

We define the operator G formally by

Gε[�](x, t) := x +
ˆ t

0
vε[ω�](�(s, x), s) ds

with vε defined by the expression (12) where ω� is given by (16). Then solving (14)
is equivalent to solving the fixed point equation

Gε[�] = �.

Next we need to introduce a suitable metric space on which G is well defined and a
contraction. To ease notation, we now fix ε > 0 and henceforth drop the subscript ε.
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Definition 1 Let B be the set of all � ∈ C([0, T ], C2([0,∞))) with the following
properties:

�(t, 0) = 0

�(t,R+) ⊆ R
+. (17)

Moreover, � is of the form

� = Id+�̂, ‖�̂‖ ≤ ζ

where Id means the mapping Id(t, z) = z and

‖�̂‖ := sup
t∈[0,T ]

(‖�̂(t, ·)‖1−γ+p + ‖�̂z(t, ·)‖−γ+p + ‖�̂zz(t, ·)‖−1−γ+p

)
.

B is a complete metric space with metric

d(Id+�̂, Id+�̂) = ‖�̂− �̂‖.

Note that for sufficiently small ζ > 0 and for any � ∈ B and t ∈ [0, T ]

�(t, ·) : R+ → R
+

is a diffeomorphism of (0,∞) onto (0,∞). To show that, we first note that
�(t, (0,∞)) ⊂ (0,∞) by (17). The derivative ∂x�(t, x) is given by 1− ∂x�̂(t, x)

and is also uniformly bounded away from zero for small ζ > 0. We also see now
that G[�] is well-defined.

The rest of the proof is standard. First one shows that for sufficiently small ζ, T
that G maps B into B and is a contraction. Note that the ε-dependent estimates
(13) are crucial for the self-mapping and contraction properties. By the contraction
mapping theorem there exists a unique solution � of (15) on some small time-
interval [0, T ].

The local-in-time solution of the regularized problem (for any fixed ε > 0) is
easily extended to t ∈ [0,∞) by standard arguments, noting that the a-priori bound

‖vx‖−γ+p ≤ C(ε)‖ω‖p
holds independent of the length of the time interval [0, T ].

In view of the bounds in Proposition 2, we can now complete the proof of
Theorem 1 by using the Arzelá–Ascoli theorem on the sequence of solutions of the
regularized problem as ε → 0. This gives a solution to (4), which is C1([0, T ]×R).
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3.2 Proof of Theorem 2 (Singularity Formation)

3.2.1 Preliminaries

We need a few preliminary propositions first.

Proposition 4 Let a : [0, T ) �→ R be a smooth function with a0 := a(0) > 0 and
define

φ(t, x) = ap(t)f

(
x

a(t)

)

with f (z) = (z+ 1)p − 1. Then

−u[φ(t, ·)] = a(t)1−γ+pU

(
x

a(t)

)
(18)

where

U(z) =
ˆ ∞

0

(
1

|y − z|γ −
1

|y + z|γ
)
f (y) dy.

Moreover,

• U ′(0) > 0
• U(x) > 0, (x > 0)
• U(x) ∼ Cx1−γ+p as x →∞ with some C > 0.

Proof We have

−u[φ(t, ·)](x) = ap

ˆ ∞

0

(
1

|y − x|γ −
1

|x + y|γ
)
f
(y
a

)
dy

= a1−γ+p

ˆ ∞

0

(
1

|w − x
a
|γ −

1

|w + x
a
|γ
)
f (w) dw

= a1−γ+pU
(x
a

)
.

after substituting y = aw in the integral. Hence the representation (18) holds. From
the form of U , we directly see that U(x) > 0, since the integrand is > 0. To see that
U(x) ∼ Cx1−γ+p we compute

U(x) = x1−γ+p

{ˆ ∞

0

(
1

|z− 1|γ −
1

|z+ 1|γ
)((

z+ 1

x

)p

− 1

xp

)
dz

}

and note that the integral in curly brackets converges to a positive constant as x →
∞, as can be seen using the dominated convergence theorem. To see U ′(0) > 0, we
write



238 V. Hoang and M. Radosz

U ′(0) = 2
ˆ ∞

0
|y|−γ f ′(y) dy

and note f ′(y) > 0.

Lemma 1 Let ω satisfy all the assumptions of Theorem 2. Let T̄ be the maximal
life-time of the smooth solution ω. Then for all t ∈ [0,min{T̄ , T (a0)}) and all
x ≥ 1,

ω(t, x) > φ(t, x).

Moreover, there exists a δ > 0 so that ω(t, x) > φ(t, x) for 0 ≤ t ≤ δ, 0 < x <∞.

Proof To prove the statement referring to x ≥ 1, we first note that for any t <

T̄ , x ≥ 1, there exists a particle trajectory t �→ X(t)

Ẋ(t) = u[ω(t, ·)](X(t), t), X(0) = X0

such that X(t) = x. The assumptions of Theorem 2 imply in particular that ω(t, x)

is always non-negative, so that u[ω] is non-positive for x > 0. Hence the particle
trajectory originates from a point X0 ≥ x ≥ 1 and we have, by (8),

ω(t, x) = ω(0, X0) ≥ (1+ ε)φ(0, X0) > (X0 + a0)
p ≥ (x + a0)

p ≥ φ(t, x)

since our choice of ε (see (9)) guarantees the inequality

ε

1+ ε
>

a
p

0

(1+ a0)p

implying (1+ ε)φ(0, X0) > (X0 + a0)
p for all X0 ≥ 1.

To argue that the second statement of the Lemma holds, we show first the
existence of an 0 < δ1 and an 0 < b < 1 such that ω > φ on 0 ≤ t ≤ δ, 0 ≤
x ≤ b. The assumption ω(0, x) > (1 + ε)φ(0, x) implies ∂xω(0, x) > ∂xφ(0, x)
for x ∈ [0, b] for some small b > 0. Smoothness of ω in time implies that
∂xω(t, x) > ∂xφ(t, x) for (t, x) ∈ [0, δ1] × [0, b] and some δ1 > 0. Because
of ω(t, 0) = φ(t, 0) = 0, we then conclude by integrating with respect to x that
ω(t, x) > φ(t, x) on [0, δ1] × [0, b]. To complete the proof of the second part of
the proposition, we choose a δ2 > 0 such that ω > φ on [0, δ2] × [b, 1] and set
δ := min{δ1, δ2}.
Lemma 2 Let all the assumptions of Theorem 2 hold. Define a time T ∗ by

T ∗= sup{0 ≤ t<min{T̄ , T (a0)} : ω(τ, x)>φ(τ, x) for all (τ, x) ∈ [0, t]×(0,∞)}.

Suppose also for this proposition that

φt + u[φ]φx < 0 (x > 0). (19)
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Then if T ∗ < T̄

∂xω(T ∗, 0) > ∂xφ(T ∗, 0). (20)

As a consequence, there exists a b > 0 such that ω(T ∗, x) > φ(T ∗, x) for all
0 < x < b.

Proof The supremum defining T ∗ is > 0 because of Lemma 1. The Eq. (4) and
u[ω](t, 0) = 0 imply for short times

d

dt
ln ∂xω(t, 0) = −(∂xu[ω])(t, 0). (21)

because ∂xω(t, 0) > 0 for small t > 0. Observe that ω(t, ·) > φ(t, ·) for all t < T ∗.
Using this, we get for t < T ∗

−(∂xu[ω])(t, 0) = − lim
x→0+

u[ω](t, x)
x

≥ lim
x→0+

1

x

ˆ ∞

0
K(x, y)φ(t, y) dy

≥ − lim
x→0+

u[φ](t, x)
x

= −(∂xu[φ])(t, 0). (22)

Moreover the assumption (25) implies, on account of φt (t, 0) = 0 and (19),

1

x

ˆ x

0
∂xφt (t, y) dy = 1

x
φt (t, x) < −u[φ](t, x)φx(t, x)

x

from which by taking the limit x → 0 and using u[φ](t, 0) = 0 we get

∂tφx(t, 0) ≤ −(∂xu[φ])(t, 0)φx(t, 0). (23)

Combining (21), (22) and (23), we get for small t > 0

d

dt
lnωx(t, 0) ≥ d

dt
lnφx(t, 0) > 0. (24)

The inequality (24) remains valid as long as ωx(t, 0) > 0. By direct calculation, one
finds that d

dt
lnφx(t, 0) > 0 for all t < T (a0) and hence the inequality holds up to

T ∗. By taking into account that ωx(t, 0) > φx(t, 0) for small positive t > 0 and
integrating (24) up to T ∗ we arrive at (20).

Proposition 5 Let a0, φ be as in Proposition 4. Suppose ω is a smooth, odd solution
of (4) and that all the assumptions of Theorem 2 hold. Suppose moreover for now
that

φt + u[φ]φx < 0 (x > 0). (25)

Then ω(t, x) > φ(t, x) for all x > 0 and for times t < min{T̄ , T (a0)}.
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Proof Define T ∗ as in Lemma 2 and assume that the conclusion of the Proposition is
false, i.e. T ∗ < min{T̄ , T (a0)}. Then there exists a sequence (τn, xn) with τn → T ∗,
ω(τn, xn) ≤ φ(τn, xn) and by Lemmas 1 and 2, 0 < b ≤ xn ≤ 1. By passing to a
subsequence, we have xn → x∗ ∈ (b, 1]. As a consequence, we have ω(T ∗, x∗) =
φ(T ∗, x∗) for some x∗ > 0.

Let X(t) denote any particle trajectory defined by

Ẋ(t) = u(X(t), t), X(0) = X0

where X0 > 0 and such that X(T ∗) = x∗. Observe that

d

dt
ω(t,X(t))

∣∣∣∣
t=T ∗

≤ d

dt
φ(t, X(t))

∣∣∣∣
t=T ∗

since otherwise by backtracking the trajectory we see that at all times T ∗ − η with
small η > 0 and positions X(T ∗−η), ω(T ∗−η,X(T ∗−η)) < φ(T ∗−η,X(T ∗−η))

holds, in contradiction to the definition of T ∗. Then,

0 = d

dt
ω(t,X(t))

∣∣∣∣
t=T ∗

≤ d

dt
φ(t, X(t))

∣∣∣∣
t=T ∗

= (φt + u[ω]φx)|t=T ∗

≤ (φt + u[φ]φx)(T
∗, x∗) < 0

where we have used ω(T ∗, x) ≥ φ(T ∗, x) for all x ≥ 0 to conclude

u[ω] ≤ u[φ].

Hence in summary we get at (T ∗, x∗) the relationship

0 = (φt + u[φ]φx)(T
∗, x∗) < 0,

a contradiction.

Proposition 6 Let p = 1
2γ . There exists a positive constant c > 0 such that

0 < c ≤ U(z)f ′(z)
−pf (z)+ zf ′(z)

(z > 0)

Proof We calculate −pf (z) + zf ′(z) = −p((z + 1)p − 1) + zp(z + 1)p−1 and
note that −pf (z) + zf ′(z) > 0 for all z > 0. Now observe that by Proposition 4,
U(z) ∼ c1z for small z > 0 with some c1 > 0 and furthermore that −pf (z) +
zf ′(z) ∼ p(1− p)z for small z. Hence there exists a z1 > 0 such that

c2 ≤ U(z)f ′(z)
−pf (z)+ zf ′(z)

(0 < z ≤ z1)
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for some c2 > 0. As z → ∞, U(z) ∼ Cz1−γ+p, f ′(z) ∼ zp−1 and −pf (z) +
zf ′(z)→ p. Using again p = 1

2γ , we conclude the existence of an z2 > z1 so that

c3 ≤ U(z)f ′(z)
−pf (z)+ zf ′(z)

(z2 ≤ z).

for some c3 > 0. The statement of the Proposition now follows since U(z)f ′(z)
−pf (z)+zf ′(z)

is continuous in z and never zero in [z1, z2].

3.2.2 Proof of Theorem 2

We now turn to Theorem 2. We need to check the following: φ(t, x) satisfies

φt + u[φ]φx < 0 (x > 0). (26)

To prove this, we first compute the left hand side using (7) and Proposition 4:

φt + u[φ]φx =
[
ȧap−1(pf (z)− zf ′(z))− a2p−γ U(z)f ′(z)

]
z= x

a

and so φt + u[φ]φx < 0 is equivalent to

(−ȧ) < a1−γ+p U(z)f ′(z)
−pf (z)+ zf ′(z)

(27)

for all z > 0. By Proposition 6, (27) is implied by

(−ȧ) < ca1−γ+p

so ȧ = − 1
2ca

1−p is sufficient for (26) to hold, since p = 1
2γ . By applying

Proposition 5, we see that ω > φ as long as t < min{T̄ , T (a0)}. Note that now
necessarily T̄ ≤ T (a0), since in the case T (a0) < T̄ the inequality ω(T (a0), x) ≥
φ(T (a0), x) = xp and ω(t, 0) = φ(t, 0) would imply that ω has an infinite slope at
t = T (a0), x = 0. This completes the proof of Theorem 2.
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Prescribing Initial Values for the Sticky
Particle System (Survey)

Ryan Hynd

1 Introduction

The sticky particle system (SPS) is a system of partial differential equations which
describes the motion of a collection of particles in R

d which move freely and interact
only through perfectly inelastic collisions. Denoting ρ as the density of particles and
v as an associated velocity field, the SPS consists of the conservation of mass

∂tρ +∇ · (ρv) = 0 (1)

along with the conservation of momentum

∂t (ρv)+∇ · (ρv ⊗ v) = 0. (2)

These equations hold in R
d×(0,∞) and were first derived by the astronomer Yakov

Zel’dovich in his work on the expansion of matter without pressure [17].
In this note, we will be concerned with determining whether or not solution pairs

ρ and v exist for given initial conditions. In particular, we would like to prescribe
an initial mass distribution ρ0 and an initial velocity field v0

ρ|t=0 = ρ0 and v|t=0 = v0 (3)

and use the SPS to describe the evolution of the mass distribution ρ and associated
velocity field v at later times. To this end, we will define a generalized solution and
phrase our initial value problem using this notion.
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Since the total mass of any physical system we consider will be conserved, we
will assume throughout that it is always equal to 1. As a result, it will be natural
for us to employ the space P(Rd) of Borel probability measures on R

d . We recall
that this space has a natural topology: (μk)k∈N ⊂ P(Rd) converges narrowly to
μ ∈ P(Rd) provided

lim
k→∞

ˆ
Rd

gdμk =
ˆ
Rd

gdμ

for each continuous and bounded g : Rd → R. The notion of solution that we will
use throughout this paper is as follows.

Definition 1 Suppose ρ0 ∈ P(Rd) and v0 : Rd → R
d is continuous and bounded.

A narrowly continuous ρ : [0,∞) → P(Rd); t �→ ρt and Borel measurable v :
R

d × [0,∞) → R
d is a weak solution pair of the SPS with initial conditions (3)

provided the following hold.

• For each T > 0,

ˆ T

0

ˆ
Rd

|v|2dρtdt <∞.

• For each ψ ∈ C∞c (Rd × [0,∞)),

ˆ ∞

0

ˆ
Rd

(∂tψ +∇ψ · v)dρtdt +
ˆ
Rd

ψ(·, 0)dρ0 = 0. (4)

• For each ϕ ∈ C∞c (Rd × [0,∞);Rd),

ˆ ∞

0

ˆ
Rd

(∂tϕ · v + ∇ϕ v · v)dρtdt +
ˆ
Rd

ϕ(·, 0) · v0dρ0 = 0. (5)

It is not hard to check that this definition extends the usual notion of a smooth
solution pair. Indeed, if ρ : Rd × [0,∞) → [0,∞) and v : Rd × [0,∞) → R

d

are continuously differentiable and satisfy the SPS, we can multiply (1) by ψ ∈
C∞c (Rd × [0,∞)) and (2) by ϕ ∈ C∞c (Rd × [0,∞);Rd) and integrate by parts
in order to derive (4) and (5), respectively. It is also useful to have a more flexible
notion of solution as classical solutions may not exist for a given pair of smooth
initial conditions.

The problem that motivated this work is as follows.

Problem 1 Suppose ρ0 ∈ P(Rd) and v0 : Rd → R
d is continuous and bounded.

Determine whether or not there is a weak solution pair ρ and v of the SPS with these
initial conditions, respectively.

This initial value problem was resolved in one spatial dimension (d = 1) in the
pioneering works by E, Rykov and Sinai [8] and by Brenier and Grenier [3]. Much
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less progress has been made when d > 1. In this article, we will survey a few known
results and explain some challenges with the SPS.

2 The Method of Characteristics

Suppose that ρ0 ∈ P(Rd) and v0 : Rd → R
d are given. The simplest setting in

which we can solve the SPS is when

idRd + tv0 is invertible for each t > 0.

This occurs, for example, if v0 is continuously differentiable and monotone. Also
note that this assumption implies that the rays [0,∞) 5 t �→ x + tv0(x) and
[0,∞) 5 t �→ y + tv0(y) do not intersect for x �= y. Let us show how this
assumption leads to a solution pair.

For each t ≥ 0, define ρt ∈ P(Rd) via the formula

ˆ
Rd

g(y)dρt (y) :=
ˆ
Rd

g(x + tv0(x))dρ0(x) (6)

for all continuous and bounded g : Rd → R. The measure ρt is simply the mass
distribution ρ0 transported along the family of nonintersecting rays [0,∞) 5 t �→
x + tv0(x) for x ∈ R

d . Let us also specify v : Rd × [0,∞)→ R
d implicitly by the

equation

v(x + tv0(x), t) = v0(x).

This tells us that the velocity is constant along the straight line trajectories. It is
straightforward to check that ρ and v is a weak solution pair with initial conditions
ρ0 and v0.

Suppose in addition that ρ0 has a smooth density, which we will identify with
ρ0 itself, and that v0 is continuously differentiable. Using the change of variables
theorem in (6), we find that the SPS admits the classical solution pair

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρ(·, t) :=
[

ρ0

det∇(idRd + tv0)

]
◦ (idRd + tv0)

−1

v(·, t) := v0 ◦ (idRd + tv0)
−1.

Unfortunately, once idRd + tv0 fails to be injective, these formulae are no longer
valid.
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3 Sticky Particle Trajectories

Suppose there are N particles in R
d with masses m1, . . . , mN that sum to 1. In

addition, suppose that these point masses move freely in space until they collide;
when particles collide, they undergo perfectly inelastic collisions. For example, if
the particles with masses m1, . . . , mk have respective velocities v1, . . . , vk ∈ R

d

just before they collide, they will join to form a single particle of mass m1+· · ·+mk

which has velocity

m1v1 + · · · +mkvk

m1 + · · · +mk

right after the collision.
We will denote the sticky particle trajectories γ1, . . . , γN : [0,∞) → R

d as
the piecewise linear paths that track the position of the respective point masses
discussed above. Specifically, γi(t) is the location of the particle with mass mi at
time t . Note that this particle could be by itself or part of a larger mass if it collided
with another particle before time t . It is not hard to show that these paths are well
defined and satisfy the sticky particle condition

γi(s) = γj (s) �⇒ γi(t) = γj (t) (7)

for t ≥ s and i, j = 1, . . . , N (Proposition 2.1 and Corollary 2.4 of [10]).
One of the most important properties of sticky particle trajectories is as follows.

Proposition 1 (Proposition 2.5 of [10]) Assume g : Rd → R
d . Then

N∑
i=1

mig(γi(t)) · γ̇i (t+) =
N∑
i=1

mig(γi(t)) · γ̇i (s+)

for 0 ≤ s ≤ t .

This averaging property embodies the conservation of momentum that particles
experience in between and during collisions. To see this, we define

ρt :=
N∑
i=1

miδγi(t) ∈ P(Rd) (8)

for each t ≥ 0. Note that since γ1, . . . , γN are continuous paths, ρ : [0,∞) →
P(Rd); t �→ ρt is narrowly continuous. Using (7), we may also set

v(x, t) =
{
γ̇i (t+), x = γi(t)

0, otherwise.
(9)
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It is a simple exercise to check that v : Rd × [0,∞) → R
d is Borel measurable.

Moreover, the following assertion holds.

Proposition 2 (Corollary 2.6 and Section 2.3 of [10]) Suppose

ρ0 :=
N∑
i=1

miδγi(0) (10)

and v0 : Rd → R
d is continuous with

v0(γi(0)) = γ̇i (0+)

for i = 1, . . . , N . Then ρ and v defined in (8) and (9), respectively, is a weak
solution pair of the SPS with initial conditions (3). Moreover,

ˆ
Rd

1

2
|v(x, t)|2dρt (x) ≤

ˆ
Rd

1

2
|v(x, s)|2dρs(x)

for each 0 ≤ s ≤ t .

When d = 1, we have the additional property. We call it the quantitative sticky
particle property as it quantifies (7).

Proposition 3 (Corollary 2.8 of [10]) Suppose d = 1. For 0 < s ≤ t < ∞ and
i, j = 1, . . . , N ,

1

t
|γi(t)− γj (t)| ≤ 1

s
|γi(s)− γj (s)|.

By this quantitative sticky particle property,

d

dt

1

t2 |γi(t)− γj (t)|2

= 2

t2

[
(v(γi(t), t)− v(γj (t), t))(γi(t)− γj (t))− 1

t
|γi(t)− γj (t)|2

]
≤ 0

for almost every t > 0 and each i, j = 1, . . . N . As a result,

(v(x, t)− v(y, t))(x − y) ≤ 1

t
(x − y)2 (11)

for almost every t > 0 and each x, y ∈ supp(ρt ). We emphasize this entropy
inequality only holds for d = 1.
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4 Large Particle Limit

Suppose ρ0 ∈ P(Rd) is a given initial mass distribution. We may select a sequence
(ρk

0 )k∈N ⊂ P(Rd) for which

{
each ρk

0 is of the form (10), and

ρk
0 → ρ0 narrowly as k →∞

(Remark 5.1.2 in [1]). Let us additionally suppose v0 : Rd → R
d is continuous and

bounded. Using sticky particle trajectories, we can produce a weak solution pair ρk

and vk of the SPS with initial conditions ρk
0 and v0 for each k ∈ N.

It is now natural to ask if there are subsequences (ρk)k∈N and (vk)k∈N which
converge in some sense to a weak solution pair ρ and v of the SPS with initial
conditions ρ0 and v0. For this to work, we would need to send k → ∞ along a
subsequence in

ˆ ∞

0

ˆ
Rd

(∂tψ + ∇ψ · vk)dρk
t dt +

ˆ
Rd

ψ(·, 0)dρk
0 = 0

for each ψ ∈ C∞c (Rd × [0,∞)) and in

ˆ ∞

0

ˆ
Rd

(∂tϕ · vk +∇ϕ vk · vk)dρk
t dt +

ˆ
Rd

ϕ(·, 0) · v0dρ
k
0 = 0

for each ϕ ∈ C∞c (Rd × [0,∞);Rd). The only estimate we have at our disposal is

ˆ
Rd

1

2
|vk(x, t)|2dρk

t (x) ≤
ˆ
Rd

1

2
|v0(x)|2dρk

0 (x)

for t ≥ 0 and k ∈ N.
It turns out that this strategy only works in dimension 1, where we have the

additional entropy estimate (11)

(vk(x, t)− vk(y, t))(x − y) ≤ 1

t
(x − y)2

for each x, y ∈ supp(ρk
t ) and t > 0. We may interpret this estimate informally as

the one sided derivative bound

∂xv
k(x, t) ≤ 1

t

for ρk
t almost every x ∈ R. This estimate is just enough to ensure that (ρk)k∈N and

(vk)k∈N have subsequences which converge in ways which allow us to conclude that
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their limits ρ and v indeed comprise a weak solution pair of the SPS with the desired
initial data [10, 15].

The following existence theorem was first deduced by E, Rykov and Sinai [8] and
by Brenier and Grenier [3]. We also note that there have been many other significant
contributions to the initial value problem for the SPS in one spatial dimension
including [2, 5, 6, 9–14].

Theorem 1 Suppose d = 1, ρ0 ∈ P(R) and v0 : R→ R continuous and bounded.
There is a weak solution pair ρ and v of the SPS with initial conditions ρ|t=0 = ρ0
and v|t=0 = v0. Moreover, for almost every t > 0 and each x, y ∈ supp(ρt ),

(v(x, t)− v(y, t))(x − y) ≤ 1

t
(x − y)2;

and for almost every 0 ≤ s ≤ t <∞,

ˆ
R

1

2
v(x, t)2dρt (x) ≤

ˆ
R

1

2
v(x, s)2dρs(x).

We remark that the uniqueness of a weak solution pair which satisfies the entropy
inequality was first proved by Huang and Wang [9]. We also note that Nguyen
and Tudorascu proved that there is a unique entropy solution pair provided the pth
moment of ρ0 is finite and v0 ∈ Lp(ρ0) for p ≥ 2 [15].

5 Instability

It seems the main issue with solving the initial value problem in several spatial
dimensions is that the solutions to the SPS are unstable. For example, suppose the
rays [0,∞) 5 t �→ x1 + tv1 and [0,∞) 5 t �→ x2 + tv2 intersect at time s > 0. If
these rays initially describe the paths of two colliding particles with masses m1 and
m2, respectively, the corresponding sticky particle trajectories are

γi(t) =
{
xi + tvi, t ∈ [0, s]
z+ (t − s)(m1v1 +m2v2), t ∈ [s,∞)

(12)

for i = 1, 2. Here z = x1 + sv1 = x2 + sv2 is the point where the particles collide.
When d ≥ 2, we can replace x2 with x̃2 �= x2 and obtain two rays [0,∞) 5

t �→ x1 + tv1 and [0,∞) 5 t �→ x̃2 + tv2 which do not intersect. Furthermore, we
can do so in a way that x̃2 is as close to x2 as desired. Therefore, a small change in
initial conditions results in solutions which do not appear to be close to each other.
This example also shows that the limit of a sequence of solution pairs of the SPS
may not be a solution. Indeed if we send x̃2 → x2, we obtain two intersecting rays
[0,∞) 5 t �→ x1 + tv1 and [0,∞) 5 t �→ x2 + tv2 and not the sticky particle
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trajectories γ1 and γ2 in (12). We believe this simple observation is at the core of the
what is preventing us from naively designing an approximation scheme as discussed
in the previous section.

6 Lagrangian Variables

Not long after the initial value problem for the SPS was solved in one spatial
dimension, Sever developed an interesting approach for the initial value problem
in any spatial dimension [16] (see also [7]). This approach is based on the auxiliary
initial value problem

⎧⎨
⎩

d

dt
X(t) = Eρ0[v0|X(t)], a.e. t ≥ 0

X0 = idRd .

(13)

Here the unknown is an absolutely continuous path X : [0,∞) → L2(ρ0;Rd).
We also recall that for each t ≥ 0, the conditional expectation Eρ0[v0|X(t)] is an
L2(ρ0;Rd) map g(X(t)), where g : Rd → R

d is Borel and

ˆ
Rd

g(X(t)) · h(X(t))dρ0 =
ˆ
Rd

v0 · h(X(t))dρ0

for every bounded, continuous h : Rd → R.
The key to linking this flow equation to the SPS is as follows. First define ρ :

[0,∞)→ P(Rd); t �→ ρt via the formula

ˆ
Rd

hdρt :=
ˆ
Rd

h ◦X(t)dρ0.

Next choose a Borel v : Rd × [0,∞)→ R
d such that

v(X(t), t) = Eρ0 [v0|X(t)] a.e. t ≥ 0.

Then ρ and v is a weak solution pair of the SPS with initial conditions (3).
Sever also argued that (13) has a solution which satisfies a natural sticky particle

property (Theorem 4.2 of [16]). However, Bressan and Nguyen discovered that this
result may fail to hold [4]. Specifically, they showed that there are initial conditions
for which (13) does not have a solution as described by Sever’s theorem. As a result,
there is some controversy and much room for clarification with this method.
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7 Kinetic Theory

We conclude this note by recalling an initial value problem in kinetic theory related
to the SPS. The problem is to find f : [0,∞) → P(Rd × R

d); t �→ ft which
satisfies

{
∂tf + ξ · ∇xf = 0, in R

d × R
d × (0,∞)

f |t=0 = (idRd × v0)#ρ0

in the weak sense. That is,

ˆ ∞

0

ˆ
Rd×Rd

(∂tψ + ξ · ∇xψ) dft (x, ξ)dt +
ˆ
Rd

ψ(x, v0(x), 0)dρ0(x) = 0

for each ψ ∈ C1
c (R

d × R
d × [0,∞)). The physical interpretation is that ft is the

distribution of particles in position and velocity space R
d × R

d at time t ≥ 0.
It turns out that this initial value problem can easily be solved for any ρ0 and v0.

If there is a solution f with

ˆ
Rd×Rd

g(x, ξ)dft (x, ξ) =
ˆ
Rd

g(x, v(x, t))dρt (x)

for almost every t ≥ 0, then ρ and v is a weak solution pair of the SPS which
satisfies the initial conditions (3). If no such solution exists, we wonder if it is
possible to select a solution f which can somehow be associated to the SPS in a
most natural way.
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Brittany Terese Fasy, Catherine Ray, Nicole Sanderson,
and Elizabeth Vidaurre

1 Introduction

Spaces that are equipped with a direction have only recently been given more
attention from a topological point of view. The spaces of directed paths are the
defining feature for distinguishing different directed spaces. One reason for studying
directed spaces is their application to the modeling of concurrent programs, where
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standard algebraic topology does not provide the tools needed [4]. Concurrent
programming is used when multiple processes need to access shared resources.
Directed spaces are models for concurrent program, where paths respecting the
time directions represent executions of programs. In such models, executions are
equivalent if their execution paths are homotopic through a family of directed paths.
This observation has already led to new insights and algorithms. For instance,
verification of concurrent programs is simplified by verifying one execution from
each connected component of the space of directed paths; see [4, 5].

While equivalence of executions is clearly stated in concurrent programming,
equivalence of the directed topological spaces themselves is not well understood.
Directed versions of homotopy groups and homology groups are not agreed upon.
Directed homeomorphism is too strong; whereas, directed homotopy equivalence is
often too weak, to preserve the properties of the concurrent programs. In classical
(undirected) topology, the concept of simplifying a space by a sequence of collapses
goes back to J.H.C. Whitehead [11], and has been studied in [1, 6], among others.
However, a definition for a directed collapse of a Euclidean cubical complex that
preserves spaces of directed paths is notably missing from the literature.

In this article, we consider spaces of directed paths in Euclidean cubical
complexes. Our objects of study are spaces of directed paths relative to a fixed
pair of endpoints. We show how local information of the past links of vertices in a
Euclidean cubical complex can provide global information on the spaces of directed
paths. As an example, our results are applied to study the spaces of directed paths
in the well-known dining philosophers problem. Furthermore, we define directed
collapse so that a directed collapse of a Euclidean cubical complex preserves the
relevant spaces of directed paths in the original complex. Our theoretical work has
applications to simplifying verification of concurrent programs without loops, and
better understanding partial executions in those concurrent programs.

We begin, in Sect. 2, with two motivating examples of how the execution of
concurrent programs can be modeled by Euclidean cubical complexes and directed
path spaces. In Sect. 3, we introduce the notions of spaces of directed paths and
Euclidean cubical complexes. Given the directed structure of these Euclidean
cubical complexes, we do not consider the link of a vertex but the past link of
it. In Sect. 4, we give results on the topology of the spaces of directed paths from
an initial vertex to other vertices in terms of past links. Theorem 1 gives sufficient
conditions on the past links of every vertex of a complex so that spaces of directed
paths are contractible. Theorem 2 gives conditions that are sufficient for the spaces
of directed paths to be connected. In Theorem 3, we give sufficient conditions on the
past link of a vertex so that the space of directed paths from the initial vertex to that
vertex is disconnected. In Sect. 5, we describe a method of collapsing one complex
into a simpler complex, while preserving the directed path spaces.
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2 Concurrent Programs and Directed Path Spaces

We illustrate how to organize possible executions of concurrent programs using
Euclidean cubical complexes and directed spaces. An execution is a scheduling of
the events that occur in a program in order to compute a specific task. In Example 1,
we describe the dining philosophers problem. In Example 2, we illustrate how to
model executions of concurrent programs in the context of the dining philosophers
problem in the case of two philosophers.

Example 1 (Dining Philosophers) The dining philosophers problem originally for-
mulated by E. Dijkstra [2] and reformulated by T. Hoare [7] illustrates issues that
arise in concurrent programs. Consider n philosophers sitting at a round table ready
to eat a meal. Between each pair of neighboring philosophers is a chopstick for
a total of n chopsticks. Each philosopher must eat with the two chopsticks lying
directly to the left and right of her. Once the philosopher is finished eating, she must
put down both chopsticks. Since there are only n chopsticks, the philosophers must
share the chopsticks in order for all of them to eat. The dining philosopher problem
is to design a concurrent program where all n philosophers are able to eat once for
some finite amount of time.

A design of a program is a choice of actions for each philosopher. One example
of a design of a program is where each of the n philosophers does the following:

1. Wait until the right chopstick is available, then pick it up.
2. Wait until the left chopstick is available, then pick it up.
3. Eat for some finite amount of time.
4. Put down the left chopstick.
5. Put down the right chopstick.

While correct executions of this program are possible (e.g., where the philoso-
phers take turns eating alone), this design has states in which every philosopher has
picked up the chopstick to her right and is waiting for the other chopstick. Such a
situation exemplifies a deadlock in concurrent programming, an execution that gets
“stuck” and never finishes.

The design described above also has states that cannot occur. For example,
consider the dining philosophers problem when n = 2. The state in which both
philosophers are finished eating and one is still holding onto chopstick a while the
other is holding chopstick b would imply that a philosopher was able to eat with only
one chopstick—an example of an unreachable state in concurrent programming.

The dining philosophers problem illustrates the difficulties in designing con-
current programs. Difficulties arise since each philosopher must use chopsticks
that must be shared with the neighboring philosophers. Analogously, in concurrent
programming, multiple processes must access shared resources that have a finite
capacity.

The next example illustrates how to model executions of the dining philosophers
problem with a Euclidean cubical complex. When the problem consists of two
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Fig. 1 The Swiss Flag. The pink region is the forbidden region. Any bi-monotone path outside
of F is a possible execution. The set of all executions of two processes, T1 and T2, is called the
state-space Two regions in the state space are of particular interest. The black region is the set of
all unreachable states, and the blue region is the set of all states that are doomed to never complete.
A state is doomed if any path starting at that state leads to a deadlock. The black curves in the
figure are two possible paths in this directed space

philosophers, the Euclidean cubical complex used to model the dining philosophers
problem is often referred to as the Swiss Flag.

Example 2 (Swiss Flag) In the language of concurrent programming, the two
philosophers represent two processes denoted by T1 and T2. The two chopsticks
represent shared resources denoted by a and b. One process is executing the program
PaPbVbVa and the other process is executing the program PbPaVaVb. Here, P

means that a process has a lock on that resource while V means that a process
releases a resource. To model this concurrent program with a Euclidean cubical
complex, we construct a 5×5 grid where the x-axis is labeled by PaPbVbVa , each a
unit apart, and the y-axis is labeled by PbPaVaVb, each also a unit apart (see Fig. 1).
The region [1, 4] × [2, 3] represents when both T1 and T2 have a lock on a. In the
dining philosophers problem, a single chopstick can only be held by one philosopher
at a given time. The mutual exclusion of the chopsticks translates to the shared
resources, a and b, each having capacity one, where the capacity of a resource
is the number of processes that can have access to the resource simultaneously.
We call the region [1, 4] × [2, 3] forbidden since T1 and T2 cannot have a lock
on a at the same time. The region [2, 3] × [1, 4] represents when both T1 and
T2 have a lock on b. This region is also forbidden. The set complement of the
interior of [1, 4] × [2, 3] ∪ [2, 3] × [1, 4] in [0, 5] × [0, 5] is called the Swiss flag
and is the Euclidean cubical complex modeling this program design for the dining
philosophers problem.

In general, the Euclidean cubical complex modeling a concurrent program is
the complement of the interior of the forbidden region. An execution is a directed
path from the initial point to the terminal point. Executions are equivalent if they
give the same output given the same input, which can be interpreted geometrically
as the corresponding paths are dihomotopic in the path space. The Swiss flag has
two distinct directed paths up to homotopy equivalence: one corresponding to T1
using the shared resources first, and the other corresponding to T2 using the shared
resources first. See Fig. 1.
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3 Past Links as Obstructions

In this section, we introduce the notions of spaces of directed paths and Euclidean
cubical complexes. The (relative) past link of a vertex of a Euclidean cubical
complex is defined as a simplicial complex. Studying the contractibility and
connectedness of past links gives us insight on the contractibility and connectedness
of certain spaces of directed paths.

Definition 1 (d-space) A d-space is a pair (X,
−→
P (X)), where X is a topological

space and
−→
P (X) ⊆ P(X) := X[0,1] is a family of paths on X (called dipaths) that

is closed under non-decreasing reparametrizations and concatenations, and contains
all constant paths.

For every x, y in X, let
−→
P

y
x(X) be the family of dipaths from x to y:

−→
P

y
x(X) := {α ∈ −→P (X) : α(0) = x and α(1) = y}.

In particular, consider the following directed space: the directed real line
−→
R is the

directed space constructed from the real line whose family of dipaths
−→
P (R) consists

of all non-decreasing paths. The Euclidean space
−→
R

n is the n-fold product
−→
R ×· · ·×−→

R with family of dipaths the n-fold product
−→
P (Rn) = −→

P (R)× · · · × −→P (R).
Furthermore, we can solely focus on the family of dipaths in a d-space and endow

it with the compact open topology.

Definition 2 (Space of Directed Paths) In a d-space (X,
−→
P (X)), the space of

directed paths from x to y is the family
−→
P

y
x(X) with the compact open topology.

By topologizing the space of directed paths, we may now use topological reasoning

and comparison. Since
−→
P

y
x(X) does not have directionality, contractibility and other

topological features are defined as in the classical case. Moreover, observe that the

set
−→
P

y
x(X) might have cardinality of the continuum, but is considered trivial if it is

homotopy equivalent to a point.
The d-spaces that we consider in this article are constructed from Euclidean

cubical complexes. Let p = (p1, . . . , pn),q = (q1, . . . , qn) ∈ R
n. We write

p 6 q if and only if pi ≤ qi for all i = 1, . . . , n. Furthermore, we denote by
q − p := (q1 − p1, . . . , qn − pn) the component-wise difference between q and
p, |p| := ∑n

i=1 pi is the element-wise sum, or one-norm, of p. Similarly to the
one-dimensional case, the interval [p,q] is defined as {x ∈ R

n : p 6 x 6 q}.
Definition 3 (Euclidean Cubical Complex) Let p,q ∈ R

n. If q,p ∈ Z
n and q −

p ∈ {0, 1}n, then the interval [p,q] is an elementary cube in R
n of dimension |q−p|.

A Euclidean cubical complex K ⊆ R
n is the union of elementary cubes.

Remark 1 A Euclidean cubical complex K is a subset of Rn and it has an associated
abstract cubical complex. By a slight abuse of notation, we do not distinguish these.
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Every cubical complex K inherits the directed structure from the Euclidean

space
−→
R

n, described after Definition 1. An elementary cube of dimension d is called
a d-cube. The m-skeleton of K , denoted by Km, is the union of all elementary cubes
contained in K that have dimension less than or equal to m. The elements of the
zero-skeleton are called the vertices of K . A vertex w ∈ K0 is said to be minimal
(resp., maximal) if w 6 v (resp., w 7 v) for every vertex v ∈ K0.

Following [12], we define the (relative) past link of a vertex of a Euclidean
cubical complex as a simplicial complex. Let �n−1 denote the complete simplicial
complex with vertices {1, . . . , n}. Simplices of �n−1 is be identified with elements
j ∈ {0, 1}n. That is, every subset S ⊆ {1, . . . , n} is mapped to the n-tuple with entry
1 in the k-th position if k belongs to S and 0 otherwise. The topological space asso-
ciated to the simplicial complex �n−1 is the one given by its geometric realization.

Definition 4 (Past Link) In a Euclidean cubical complex K in R
n, the past link,

lk−K,w(v), of a vertex v, with respect to another vertex w is the simplicial subcomplex

of �n−1 defined as follows: j ∈ lk−K,w(v) if and only if [v− j, v] ⊆ K ∩ [w, v].
Remark 2 While K is a cubical complex, the past link of a vertex in K is always a
simplicial complex.

Remark 3 Often the vertex w and the complex K are understood. In this case, we
denote the past link of v by lk−(v).

Remark 4 Other definitions of the (past) link are found in the literature. Unlike
Definition 4, (past) links are usually subcomplexes of K . However, the (past) links
found in other literature are homeomorphic to the (past) link of Definition 4.

In the following example, we show that a vertex v can have past links with
different homotopy type depending on what the initial vertex w is. We consider
as a Euclidean cubical complex the open top box (Fig. 2) and the past links of the
vertex v = (1, 1, 1), with respect to the vertices w = 0 and w′ = (0, 0, 1).

Example 3 (Open Top Box) Let L ⊂ R
3 be the Euclidean cubical complex

consisting of all of the edges and vertices in the elementary cube [0, v] and five
of the six two-cubes, omitting the elementary two-cube [(0, 0, 1), v], i.e., the top
of the box. Because the elementary one-cube [v − (0, 0, 1), v] ⊆ L ∩ [0, v] = L,
lk−

L,0(v) contains the vertex in �2 corresponding to j = (0, 0, 1). Similarly, because

the elementary two-cube [v − (0, 1, 1), v] ⊆ L, the past link lk−
L,0(v) contains the

edge in �2 corresponding to j = (0, 1, 1). However, because the elementary two-
cube [v − (1, 1, 0), v] is not contained in L, lk−

L,0(v) does not include the edge
corresponding to j = (1, 1, 0). Instead taking the initial vertex to be w = (0, 0, 1),
we get that lk−L,w(v) consists of the two vertices corresponding to j = (0, 1, 0) and
j′ = (1, 0, 0). See Fig. 2.
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Fig. 2 The Open Top Box. Left: the open top box and the geometric realization of the past link
of the red vertex v = (1, 1, 1), with respect to the black vertex 0. The geometric realization of
lk−

L,0(v) contains two edges of a triangle, since the two red faces are included in [0, v] and three
vertices, since the three red edges are included in [0, v]. Right: the open top box and the geometric
realization of the past link of the red vertex v = (1, 1, 1), with respect to the black vertex w =
(0, 0, 1). The geometric realization of lk−L,w(v) consists only of two vertices of a triangle, since the
two red edges are included in [w, v]

4 The Relationship Between Past Links and Path Spaces

In this section, we illustrate how to use past links to study spaces of directed paths
with an initial vertex of 0. In particular, the contractibility and connectedness of
all past links guarantees the contractibility and connectedness of spaces of directed
paths. We also provide a partial converse to the result concerning connectedness.

Theorem 1 (Contractibility) Let K ⊂ R
n be a Euclidean cubical complex with

minimal vertex 0. Suppose for all k ∈ K0, k �= 0, the past link lk−0 (k) is contractible.

Then, all spaces of directed paths
−→
P k

0(K) are contractible.

Proof By [12, Prop. 5.3], if
−→
P

k−j
0 (K) is contractible for all j ∈ {0, 1}n, j �= 0,

and j ∈ lk−(k), then
−→
P k

0(K) is homotopy equivalent to lk−(k). Hence, it suffices

to see that all the spaces
−→
P

k−j
0 (K) are contractible. This follows by structural

induction on the partial order on vertices in K .

The start is at
−→
P

0+ei
0 (K), where ei is the i-th unit vector, and 0+ ei ∈ K0. If the

edge [0, 0 + ei] is in K , then
−→
P

0+ei
0 (K) is contractible. Otherwise, lk−0 (0 + ei ) is

empty, which contradicts the hypothesis that all of the past links are contractible. By

structural induction, using also that
−→
P 0

0 is contractible, the theorem now holds. ��
Now, we give an analogous sufficient condition for when spaces of directed paths

are connected. We provide two different proofs of Theorem 2. The first proof shows
how we can use [9, Prop. 2.20] to get our desired result. The second proof uses
notions from category theory and is based on the fact that the colimit of connected
spaces over a connected category is connected.

Theorem 2 (Connectedness) With K as above, suppose all past links lk−0 (k) of
all vertices k �= 0 are connected. Then, for all k ∈ K0, all spaces of directed paths−→
P k

0(K) are connected.
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In this first proof we show that [9, Prop. 2.20] is an equivalent condition to all
past links being connected.

Proof In [9, Prop. 2.20], a local condition is given that ensures that all spaces of
directed paths to a certain final point are connected. Here, we explain how the local
condition is equivalent to all past links being connected. Their condition is in terms
of the local future; however, we reinterpret this in terms of local past instead of local
future. Since we consider all spaces of directed paths from a point (as opposed to to
a point), then reinterpreting the result in terms of local past is the right setting we
should look at. The local condition is the following: for each vertex, v, and all pairs
of edges [v − er , v], [v − es , v] in K , there is a sequence of two-cells {[v − eki −
eli , v]}mi=1, each of which is in K such that li = ki+1 for i = 1, . . . , m − 1, k1 = r

and lm = s. Now, we show that this local condition is equivalent to ours. In the past
link considered as a simplicial complex, such a sequence of two-cells corresponds
to a sequence of edges from the vertex r to the vertex s. For x, y ∈ lk−(v), they are
both connected to a vertex via a line. And those vertices are connected. Hence, the
past link is connected.

Vice versa: Suppose lk−(v) is connected. Let p, q be vertices in lk−(v) and
let γ : I → lk−(v) ∈ �n−1 be a path from p to q. The sequence of simplices
traversed by γ , S1, S2, . . . , Sk , satisfies Si ∩Si+1 �= ∅. Moreover, the intersection is
a simplex. Let pi ∈ Si ∩ Si+1. A sequence of pairwise connected edges connecting
p to q is constructed by such sequences from pi to pi+1 in Si+1 thus providing a
sequence of two-cells similar to the requirement in [9]. Hence, by [9], if all past

links of all vertices are connected, then all
−→
P k

0 are connected ��
This second proof of Theorem 2 has a more categorical flavor.

Proof We give a more categorical argument which is closer to the proof of

Theorem 1. In [10, Prop. 2.3 and Equation 2.2], the space of directed paths
−→
P k

0

is given as a colimit over
−→
P

k−j
0 . The indexing category is JK with objects {j ∈

{0, 1}n : [k − j] ⊆ K} and morphisms j → j′ for j ≥ j′ given by inclusion of
the simplex �j ⊂ �j′ . The geometric realization of the index category is the past
link which with our requirements is connected. The colimit of connected spaces
over a connected category is connected. Hence, by induction as above, beginning

with edges from 0, the directed paths
−→
P

k−j
0 are all connected and the conclusion

follows. ��
Remark 5 Our conjecture is that similar results for k-connected past links should
follow from the k-connected Nerve Lemma.

Remark 6 The statements of both Theorems 1 and 2 concern past links and path
spaces defined with respect to a fixed initial vertex. To see why past links depend on
their initial vertex, consider the open top box of Example 3. All past links in L with

respect to the initial vertex 0 are contractible, but
−→
P v

w′(L), where w′ = (0, 0, 1)
and v = (1, 1, 1), is not contractible. It is in fact two points. Note, this does not

contradict Theorem 1, which only asserts that
−→
P v

0(L) is contractible; see Fig. 2.
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We now show how Theorems 1 and 2 can be used to study the spaces of the
directed paths in slight modifications of the dining philosophers problem.

Example 4 (Three Concurrent Processes Executing the Same Program) We con-
sider a modification of Example 1 where we have three processes and two resources
each with capacity two. All processes are executing the program PaPbVbVa . The
Euclidean cubical complex modeling this situation has three dimensions, each
representing the program of a process. Since each resource has capacity two, it is not
possible to have a three way lock on any of the resources. The three processes have a
lock on a in the region [Pa, Va]×3, which is the cube [(1, 1, 1), (4, 4, 4)]. Similarly,
the three processes have a lock on b in the region [Pb, Vb]×3 which is the cube
[(2, 2, 2), (3, 3, 3)]. The forbidden region is the union of these two sets which is
[(1, 1, 1), (4, 4, 4)]. We can model this concurrent program as a three-dimensional
Euclidean cubical complex and the forbidden region is the inner 3× 3× 3 cube.

In order to analyze the connectedness and contractibility of the spaces of directed
paths with initial vertex 0, we study the past links of the vertices of K . First, we show
that not all past links are contractible. Let v = (4, 4, 4). Then, lk−

K,0(v) consists of

all j ∈ {0, 1}3 except (1, 1, 1). The past link does not contain (1, 1, 1) because the
cube [(3, 3, 3), (4, 4, 4)] is not contained in K , but [v − j, v] ⊂ K for all other
j. Therefore, lk−

K,0(v) is the boundary of the two simplex (see Fig. 3). Because the
boundary of the two simplex is not contractible, the hypothesis of Theorem 1 is not
satisfied. Hence, we cannot use Theorem 1 to study the contractibility of the spaces
of directed paths.

Next, we show that all past links are connected. If we directly compute the past
link lk−

K,0(k) for all k ∈ K0, we find that the past link consists of either a zero
simplex, one simplex, the boundary of the two simplex, or a two simplex. All these
past links are connected. Theorem 2 implies that for all k ∈ K0, the space of directed

paths,
−→
P k

0(K) is connected.

Fig. 3 Three processes, same program. Illustrating lk−K,0(v) where K is the cube [0, (5, 5, 5)]
minus the inner cube, [(1, 1, 1), (4, 4, 4)], and v = (4, 4, 4). The geometric realization of the
simplicial complex lk−

K,0(v) is the boundary of the two simplex since the three pink faces and
edges are included in [0, v]
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We can generalize this example to n processes and two resources with capac-
ity n − 1 where all processes are executing the program PaPbVbVa. For all
n, Theorem 2 shows that all spaces of directed paths are connected.

The converse of Theorem 2 is not true. To see this, and give the conditions under
which the converse does hold, we need to introduce the following definition:

Definition 5 (Reachable) The point x ∈ K is reachable from w ∈ K0 if there is
a path from w to x. A subcomplex of K is induced by the set of points that are
reachable from a vertex w.

Example 5 (Boundary of the 3 × 3 × 3 Cube with Top Right Cube) Let K be the
Euclidean cubical complex that is the boundary of the 3 × 3 × 3 cube along with
the cube [(2, 2, 2), (3, 3, 3)]. Observe that all spaces of directed paths with initial
vertex 0 are connected. However, K has a disconnected past link at v = (3, 2, 2). If
we consider the subcomplex K̂ that is reachable from 0, then K̂ is the boundary
of the 3 × 3 × 3 cube. The past links of all vertices in K̂ are connected. This
motivates the conditions given in Theorem 3 of removing the unreachable points
of a Euclidean cubical complex. The connected components of a disconnected past
link in the remaining complex can then be represented by directed paths from the
initial point and not only locally (Fig. 4).

Theorem 3 (Realizing Obstructions) Let K be a Euclidean cubical complex with
initial vertex 0. Let K̂ ⊂ K be the subcomplex reachable from 0. If for v ∈ K̂0, the

past link in K̂ is disconnected, then the path space
−→
P v

0(K) is disconnected.

Proof Let v be a vertex such that lk−
K,0(v) is disconnected and let j1, j2 be vertices

in lk−
K̂
(v) in different components. The edges [v − ji , v] are then in K̂ and, in

particular, v − ji ∈ K̂0. Hence, there are paths μi : −→I → K̂ such that μi(0) = 0
and μi(1) = v− ji .

Fig. 4 Motivating reachability condition. Let K be the boundary of the 3× 3× 3 cube union with
[(2, 2, 2), (3, 3, 3)]. Then, the geometric realization of the simplicial complex lk−K,0(v) is an edge
and a point since the three pink edges and one face are included in [(0, 0, 0), v]
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By [3], there are μ̂i which are dihomotopic to μi and such that μ̂i is combinato-
rial, i.e., a sequence of edges in K̂ . Let γi be the concatenation of μ̂i with the edge
[v− ji , v].

Suppose for contradiction that γ1 and γ2 are connected by a path in
−→
P v

0(K).

Let H : −→I × I → K be such a path with H(t, 0) = γ1(t) and H(t, 1) = γ2(t).
Since H(t, s) is reachable from 0, H maps to K̂ .

By [3], there is a combinatorial approximation Ĥ : −→I × I → K̂2 to the 2-
skeleton of K̂ ⊂ K . Let B be the open ball centered around v with radius 1/2. Since
Ĥ is continuous, the inverse image of B under Ĥ is a neighborhood of {1} × I ⊂−→
I × I . For 0 < ε < 1/2, this neighborhood contains a strip (1 − ε, 1] × I (by

compactness of I ). Then Ĥ (1 − ε/2 × I ) gives a path connecting the two edges
[v−ji , v]. This path traverses a sequence of 2-cubes (the carriers). These correspond
to a sequence of edges in the past link that connect j1 and j2, which contradicts the
assumption that they are in different components. Therefore, γ1 and γ2 correspond

to two points in
−→
P v

0(K) that are not connected by a path. ��
In general, the reachability condition in Theorem 3 eliminates the spurious

disconnected past links that could appear in the unreachable parts of a Euclidean
cubical complex.

Example 6 To see how Theorem 3 can be applied, consider Example 2, the Swiss
flag. The Swiss flag has two vertices with disconnected past links with respect to 0
namely (4, 3) and (3, 4). These disconnected past links imply that Theorem 2 is
inconclusive. If the unreachable section of the Swiss flag is removed, we obtain a
new Euclidean cubical complex in which the vertex v = (4, 4) has a disconnected

past link, consisting of two points. By Theorem 3, the path space
−→
P v

0(K) is also

disconnected. In fact,
−→
P v

0(K) has two points, representing the dihomotopy classes
of paths which pass above the forbidden region, and those paths which pass below.

The disconnected path space,
−→
P v

0(K), found in the previous example helps
illustrate the following: given two vertices w and v in a Euclidean cubical complex

K , if the path space
−→
P v

w(K) is disconnected, then there exists a vertex in [w, v] that
has a disconnected past link with respect to w (the vertices (4, 3) and (3, 4) in the
Swiss flag). If w = 0, then we get the contrapositive of Theorem 2. If K is reachable
from 0, Theorem 3 allows us to draw conclusions about the space of directed paths.

5 Directed Collapsibility

To simplify the underlying topological space of a d-space while preserving topolog-
ical properties of the associated space of directed paths, we introduce the process of
directed collapse. The criteria we require to perform directed collapse on Euclidean
cubical complexes involves the topology of the past links of the vertices of the
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complex. We defined the past links as simplicial complexes that are not themselves
directed, so our topological criteria are in the usual sense.

Definition 6 (Directed Collapse) Let K be a Euclidean cubical complex with
initial vertex 0. Consider σ, τ ∈ K such that τ � σ , σ is maximal, and no other
maximal cube contains τ . Let K ′ = K \ {γ ∈ K|τ ⊆ γ ⊆ σ }. K ′ is a directed
(cubical) collapse of K if, for all v ∈ K ′

0, lk−K(v) is homotopy equivalent to lk−
K ′(v).

The pair τ, σ is then called a collapsing pair.
K ′ is a directed 0-collapse of K if for all v ∈ K ′

0, lk−K(v) is connected if and only
if lk−

K ′(v) is connected.

Remark 7 As in the simplicial case, when we remove σ from the abstract cubical
complex, the effect on the geometric realization is to remove the interior of the cube
corresponding to σ .

Remark 8 Note for finding collapsing pairs, (τ, σ ), using Definition 6, with the
geometric realization of σ given by the elementary cube, [w − j,w], it is sufficient
to only check v ∈ K ′

0 such that v = w − j′ where j − j′ > 0. Otherwise the past
links, lk−K(v) and lk−

K ′(v), are equal.

Definition 7 (Past Link Obstruction) Let w ∈ K0. A past link obstruction (type-
∞) in K with respect to w is a vertex v ∈ K0 such that lk−K,w(v) is not contractible.
A past link obstruction (type-0) in K with respect to w is a vertex v ∈ K0 such that
lk−K,w(v) is not connected.

Directed collapses preserve some topological properties of the space of directed
paths. In particular:

Corollary 1 If there are no type-∞ past link obstructions, then all spaces of
directed paths from the initial point are contractible. If there are no type-0 past
link obstructions, all spaces of directed paths from the initial point are connected.

Proof Contractibility is a direct consequence of Theorem 1. Likewise, connected-
ness follows from Theorem 2. ��
Corollary 2 (Invariants of Directed Collapse) If we have a sequence of directed
collapses from K to K ′, then there are no obstructions in K iff there are no
obstructions in K ′.

Remark 9 (Past Link Obstructions are Inherently Local) The past link of a vertex is
constructed using local (rather than global) information from the cubical complex.
Therefore, a past link obstruction is also a local property, which is not dependent on
the global construction of the cubical complex.

Below, we provide a few motivating examples for our definition of directed
collapse. In general, we want our directed collapses to preserve all spaces of directed
paths between the initial vertex and any other vertex in our cubical complex.
Notice, τ from Definition 6 is a free face of K . Performing a directed collapse
with an arbitrary free face of a directed space K with minimal element 0 ∈ K0 and
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maximal element 1 ∈ K0 can modify the individual spaces of directed paths
−→
P v

0(K)

and
−→
P 1

v(K) for v ∈ K0.

When
−→
P 1

v(K) = ∅, we call v a deadlock. When
−→
P v

0(K) = ∅, we call
v unreachable. Deadlocks and unreachable vertices are in a sense each others
opposites. Notice if we take the same directed space K yet reverse the direction of
all dipaths, then deadlocks become unreachable vertices and vice versa. However,
as Examples 7 and 8 illustrate, the creation of an unreachable vertex in the process
of a directed collapse might result in a past link obstruction at a neighboring vertex
while the creation of a deadlock does not.

Example 7 (3×3 Grid, Deadlocks and Unreachability) Let K be the Euclidean
cubical complex in R

2 that is the 3 × 3 grid. Consider the Euclidean cubical
complexes K ′ and K ′′ obtained by removing (τ, σ ) with τ = [(1, 3), (2, 3)], σ =
[(1, 2), (2, 3)] and (τ ′, σ ′) with τ ′ = [(1, 0), (2, 0)], σ ′ = [(1, 0), (2, 1)], respec-
tively. While K ′ is a directed collapse of K , K ′′ is not a directed collapse of K

because K ′′ introduces a past link obstruction at (2, 1). So, (τ, σ ) is a collapsing
pair while (τ ′, σ ′) is not. Collapsing K to K ′ creates a deadlock at (1, 3) but this
does not change the space of directed paths from the designated start vertex 0 to
any of the vertices between 0 and the designated end vertex (3, 3) (see K ′ in Fig. 5).
However, collapsing K to K ′′ creates an unreachable vertex (2, 0) from the start
vertex 0 (see K ′′ in Fig. 5) which does change the space of directed paths from 0 to
(2, 0) to be empty. Hence not all spaces of directed paths starting at 0 are preserved.
This motivates our definition of directed collapse.

Our next example shows how directed collapses can be performed with collaps-
ing pairs (τ, σ ) when τ is of codimension one and greater.

Example 8 (3×3 grid, Edge and Vertex Collapses) Consider again the Euclidean
cubical complex K from Example 7. If we allow a collapsing pair (τ, σ ) with τ of
dimension greater than 0, we may introduce deadlocks or unreachable vertices. In
particular, collapsing the free edge τ = [(1, 3), (2, 3)] of the top blue square σ =

Fig. 5 Illustrating Example 7. On the left: the cubical complex K with initial vertex 0 and final
vertex (3, 3). In the center: The cubical complex K ′ which is a directed collapse of K . The deadlock
in blue does not change the space of directed paths from 0 to any of the vertices between 0
and (3, 3). On the right: the cubical complex K ′′ which is not a directed collapse of K . The space
of directed paths into the unreachable red vertex, (2, 0), becomes empty. The empty path space is
reflected in the topology of the past link of the red vertex (2, 1) (see Example 8)



268 R. Belton et al.

(a) Edge Collapse (b) Vertex Collapse

Fig. 6 Illustrating Example 8. On the left: the collapsing of the free edge in the blue squares is an
admitted directed collapse. The collapsing of the free edge in the red squares is not an admitted
directed collapse. On the right: the collapsing of the free vertex in the yellow squares is an admitted
directed collapse

[(1, 2), (2, 3)] in Fig. 6 changes the space of directed paths
−→
P

(3,3)
(1,3)(K) from being

trivial to empty in K\{γ |τ ⊆ γ ⊆ σ }. Yet we care about preserving the space of
directed paths from our designated start vertex 0 to any of the vertices (i, j) with 0 ≤
i, j ≤ 3 since we ultimately are interested in preserving the path space

−→
P

(3,3)
0 (K).

Because of this, such collapses should be allowed in our directed setting. Note that,
in these cases, the past link of all vertices remains contractible. However, collapsing
the free edge τ ′ = [(1, 0), (2, 0)] of the bottom red square σ ′ = [(1, 0), (2, 1)] in

Fig. 6 changes the path space
−→
P

(2,0)
0 (K) from being trivial to empty. This change

is reflected in the non-contractible past link of (2, 1) in K\{γ |τ ′ ⊆ γ ⊆ σ ′} that
consists of the two vertices j = (1, 0) and j′ = (0, 1) but not the edge j′′ = (1, 1)
connecting them. Restricting our collapsing pairs to only include τ of dimension
0 allows for only two potential collapses, the corner vertices (0, 3) and (3, 0) into
the yellow squares [(0, 2), (1, 3)] and [(2, 0), (3, 1)], respectively. Neither of these
collapses create deadlocks or unreachable vertices and the contractibility of the past
link at all vertices is preserved. Performing these corner vertex collapses exposes
new free vertices that can be a part of subsequent collapses.

Lastly, we explain how the Swiss flag can be collapsed using a sequence of
zero-collapses. The Swiss flag contains uncountably many paths between the initial
and final vertex. After performing the sequence of zero-collapses as described
in Example 9, the Swiss flag has only two paths up to reparametrization between
the initial and final vertex. These two paths represent the two dihomotopy classes of
paths that exists for the Swiss flag. Referring back to concurrent programming, we
interpret the two paths as two inequivalent executions: either the first process holds
a lock on the two resources then releases them so the other process can place a lock
on the resources or vice versa.

Example 9 (0-Collapsing the Swiss Flag) The Swiss flag considered as a Euclidean
cubical complex in the 5 × 5 grid has vertices with connected past links, except
at (4, 3) and (3, 4). The vertex (2, 2) and the cube [1, 2] × [1, 2] are a 0-collapsing
pair. The vertex (3, 3) and the cube [3, 4] × [3, 4] are not, since that collapse would
produce a disconnected past link at (4, 4). A sequence of 0-collapses preserving
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Fig. 7 Zero-collapsing the Swiss Flag. A sequence of zero-collapses is presented from the top left
to bottom right. At each stage, the faces and vertices shaded in blue represent the zero-collapsing
pairs. The result of the sequence is shown in the bottom right which is a one-dimensional Euclidean
cubical complex and one two-cube

the initial and final point will give a one-dimensional Euclidean cubical complex
and one 2-cube. Specifically, we get the edges [0, 1]× {0}, {1}× [0, 1], {1}× [1, 3],
[1, 3]×{1}, [1, 2]×{3}, {3}×[1, 2], {2}×[3, 4], [3, 4]×{2}, [2, 3]×{4}, {4}×[2, 3],
the square [3, 4] × [3, 4], and lastly the edges {4} × [4, 5] and [4, 5] × {5} (Fig. 7).

6 Discussion

Directed topological spaces have a rich underlying structure and many interest-
ing applications. The analysis of this structure requires tools that are not fully
developed, and a further investigation into these methods will lead to a better
understanding of directed spaces. In particular, the development of these notions,
such as directed collapse, may lead to a better understanding of equivalence of
directed spaces and their spaces of directed paths.

Interestingly, when comparing directed collapse with the notion of cubical
collapse in the undirected case, two main contrasts arise. First, the notion of
directed collapse is stronger than that of cubical collapse; any directed collapse is
a cubical collapse, but not all cubical collapses satisfy the past link requirement
of directed collapse. However, directed collapse is not related to existing notions
of dihomotopy equivalence which involve continuous maps between topological
spaces that preserve directed paths. Hence, directed collapse contrasts cubical
collapse in the undirected case since any two spaces related by cubical collapses
are homotopic. This contrast suggests the need for dihomotopy equivalence with
respect to an initial point.
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Directed collapse may not preserve dihomotopy equivalence, so we can collapse
more than, e.g., Kahl. By Theorem 2, if K ′ is a directed collapse of K with respect
to v and K ′ has trivial spaces of directed paths from v, then so does K . Similarly,
if all spaces of directed paths are connected in K ′, then all spaces of directed paths
are connected in K . Hence, our definition of directed collapsibility preserves spaces
of directed paths with an initial vertex of 0. Preserving spaces of directed paths
allows us to study more types of concurrent programs and preserve notions of
partial executions.

We plan to pursure many future avenues of research in the directed topological
setting. First, we hope to find necessary and sufficient conditions for a pair of cubical
cells (τ, σ ) to be a collapsing pair. The key will be to have a better understanding
of what removing a cubical cell does to the past link of a complex. Additionally, we
would like to find directed conterparts to the various types of simplicial collapses.
For example, is there a notion of strong directed collapse? As strong collapse also
considers the link of a vertex, a consideration of how strong collapse extends to a
directed setting seems natural.

Next, we would like to learn more about past link obstructions. We know
that performing a directed collapse will not alter the space of directed paths of
a Euclidean cubical complex; however, if we are unable to perform a directed
collapse due to a past link obstruction, what happens to the space of directed paths?
Theorem 3 is a start in understanding what happens to spaces of directed paths for 0
collapses. Another question may be, in what way are obstructions of type∞ realized
as non-contractible spaces of directed paths?

Another direction of research we hope to pursue is defining a way to compute
a directed homology that is collapsing invariant. Even the two-dimensional setting
(where the cubes are at most dimension two) has proved to be difficult, as adding
one two-cell can have various effects, depending on the past links of the vertices
involved. We would like to classify the spaces where such a dynamic programming
approach would work.

Lastly, many computational questions arise on how to implement the collapse of
a directed cubical complex. In [8], an example of collapsing a three-dimensional
cubical complex is implemented in C++. This algorithm could be used as a model
when handling the directed complex.

Many interesting theoretical and computational questions continue to emerge in
the field of directed topology. We hope that our research excites others in studying
cubical complexes in the directed setting.
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Contact Open Books and Symplectic
Lefschetz Fibrations (Survey)

Bahar Acu

1 Introduction

A contact manifold (M, ξ) is a smooth (2n+ 1)-dimensional manifold M equipped
with a maximally nonintegrable hyperplane distribution ξ ⊂ TM . That is, locally
ξ = ker λ whose defining 1-form λ on M satisfies

λ ∧ (dλ)n �= 0,

i.e. λ ∧ (dλ)n is a volume form on M . Then ξ is called a contact structure and the
1-form λ, which locally defines ξ , is called a contact form which locally defines ξ .
Observe that the condition λ ∧ (dλ)n �= 0 is a property of the contact structure ξ ,
hence independent of the choice of the defining 1-form λ. A symplectic manifold
(W,ω), on the other hand, is a 2n-dimensional manifold equipped with a 2-form ω

on W satisfying the non-degeneracy condition ωn �= 0. The 2-form ω is then called
a symplectic structure. Notice that if λ ∧ (dλ)n �= 0, then dλ is a nondegenerate 2-
form when restricted to ξ on a contact manifold M . That is to say, there is a strong
formal link between symplectic and contact manifolds. For this reason, and many
other fruitful relations, contact geometry is viewed as the odd-dimensional sibling
of symplectic geometry.

Contact and symplectic manifolds have been central objects of a very active
subject of study in which topology, geometry, and dynamics on manifolds mix
and interact in several interesting ways. Over the last two decades, the global
topology and geometry of symplectic and contact manifolds have undergone a
vast expansion following the groundbreaking results of Giroux [17] who outlined
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a program for characterizing contact manifolds in all dimensions in terms of open
book decompositions with certain symplectic pages, of Gromov [19] who introduced
pseudoholomorphic curve theory studying solutions to Cauchy-Riemann like PDEs
and also of Donaldson [8] introducing Lefschetz fibrations on symplectic manifolds.
The goal of this note is to survey these fundamental notions and introduce iterated
planarity as in [2] to present some generalizations of the results in planar contact
and symplectic topology. It also carries the, perhaps naive, optimism to provide
some insight while exposing the already published results exploring the topology
of contact and symplectic manifolds and their context to a broader audience in a
reasonable number of pages.

2 Open Books and Lefschetz Fibrations

2.1 Open Book Decompositions

In this section, we will overview open book decompositions and some fundamental
results concerning this topological machinery in contact geometry. For a more
comprehensive discussion, we refer the reader to the lecture notes on open book
decompositions by Etnyre [13].

An abstract open book decomposition is a pair (F,�), where

• F is a compact 2n-dimensional manifold with boundary, called the page and
• � : F → F is a diffeomorphism preserving ∂F , i.e. �|∂F = id. This

diffeomorphism is called the monodromy.

Given a compact oriented manifold M , an open book decomposition of M is a
pair (B, π), where

• B is a codimension 2 submanifold of M with trivial normal bundle so that a
tubular neighborhood of B looks like a product and

• the map π : M −B → S1 is a fiber bundle of the complement of B and the fiber
bundle π restricted to a neighborhood of B agrees with the angular coordinate θ

on the normal disk.

Define Fθ := π−1(θ) and observe that ∂Fθ = B for all θ ∈ S1. We call the
closure of the fiber F = Fθ , for any θ , a page and B the binding of the open
book. The monodromy of the fiber bundle π determines an isotopy class in the
orientation preserving diffeomorphism group of a page F fixing its boundary, i.e.,
in Diff+(F, ∂F ) which we call the monodromy of the open book (Fig. 1).

By using this description, one can construct a closed oriented (2n + 1)-
dimensional manifold M from an abstract open book with oriented pages in the
following way:

Consider the mapping torus
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Fig. 1 Local behavior of the
map π in a neighborhood of
the binding B

F� = [0, 1] × F/(0,�(z)) ∼ (1, z).

We set

M(F,�) = F� ∪∂F�

(
∂F × D

2
)
,

by gluing ∂(∂F × D
2) = ∂F × S1 to the boundary of the mapping torus F�. Here

the boundary of each disk {pt} × S1 in ∂F × D
2 gets glued to S1 × {pt} in the

mapping torus. Then (F,�) is an open book decomposition of a closed oriented
(2n + 1)-dimensional manifold M if M(F,�) is diffeomorphic to M . Note that the
mapping torus F� carries the structure of a smooth fibration F� → S1 whose fiber
is the page F of the open book decomposition.

In this note (and in the literature), we often use abstract open books and
(nonabstract) open book decompositions interchangeably. However, there is a basic
difference between these two notions: For instance, observe that when studying
regular open books, we discuss pages up to isotopy in M , whereas in abstract open
books, we only discuss pages up to diffeomorphism.

2.2 Open Books vs. Contact Manifolds

By the works of J. W. Alexander [7] in dimension 3 (1923) and T. Lawson [22] in
higher odd dimensions (1977), open book decompositions are known to exist in all
odd dimensional manifolds. Hence, studying open books on contact manifolds is
one good way to understand the topology of these manifolds by factoring them into
lower dimensional pieces. Moreover, many different properties of contact manifolds
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such as symplectic fillability1can be read off from their associated open book
decompositions.

A contact structure ξ on a manifold M is said to be supported by an open book
(B, π) of M if it is the kernel of a contact form λ satisfying the following:

• λ > 0 on the binding2and
• dλ is a positive symplectic form on the pages and the associated Liouville

vector field on the pages is pointing outward along the binding. Equivalently,
the orientation on the binding induced by the contact form λ agrees with the
orientation on the pages induced by the symplectic form dλ on the pages.

If these two conditions hold, then the open book (B, π) is called a supporting
open book for the contact manifold (M, ξ) and the contact form λ is said to be
supported by the open book (B, π).

Example 1 Consider the unit sphere (S3, ξstd) as the contact-type boundary of unit
4-ball in C

2. Here the standard contact structure ξstd is the set of complex tangents.
That is,

ξstd = T S3 ∩ i(T S3)

which can also be described as

ξstd = ker(r2
1dθ1 + r2

2dθ2)

where (z1, z2) = (r1e
iθ1 , r2e

iθ2) denote the complex coordinates on C
2. Let the

binding B = ∂D2 × {0} ⊂ S3 ⊂ C
2. Notice that the map

π : S3 − B → S1

(z1, z2) �→ z2

|z2|

defines an open book decomposition for S3 with pages diffeomorphic to the
2-disk. We take the monodromy to be identity since all compactly supported
diffeomorphisms of the open disk are isotopic in dimension two.

Alternatively,

Example 2 Consider the following open book for S3 supporting the standard
contact structure. Let B ⊂ S3 be the Hopf link, i.e.

1Simply put, a symplectic filling is a cobordism between the empty set and a contact manifold.
It comes in several flavors such as weak, strong, exact, and Stein with suitable compatibility
conditions.
2Recall that the binding and the pages are oriented.
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B = (∂D2 × {0}) ∪ ({0} × ∂D2).

Similarly, define

π : S3 − B → S1

(z1, z2) �→ z1z2

|z1z2| .

This fibration defines another open book decomposition for S3 with pages
diffeomorphic to annulus and, this time, monodromy isotopic to a right-handed
Dehn twist. We remark that the notion of monodromy is subtle to define and
compute. For the purposes of the present note, we will not focus on the computation
of monodromy.

As Examples 1 and 2 suggest, one can find two topologically different open book
decompositions that support the same contact structure. Furthermore, any open book
can be modified (by attaching a topological 1-handle to its page and modifying the
monodromy) to a new one without changing the supported contact structure. This
operation is called positive stabilization.

Thurston-Winkelnkemper [30] in dimension three and, 30 years later in 2002,
Giroux [17] generalizing the construction in Thurston-Winkelnkemper’s proof in
higher dimensions showed that every open book decomposition gives rise to a
supporting contact manifold. In a rather fancier language, to each triple (F 2n, λ,�),
where (F 2n, dλ) is an exact symplectic manifold with boundary and the monodromy
� ∈ Symp(F, dλ, ∂F )3, we can associate a contact manifold (M2n+1, ξ). In 2002,
Emmanuel Giroux [17] announced the following groundbreaking result in three
dimensional contact topology known as the Giroux correspondence:4

Theorem 1 (Giroux Correspondence, [17]) Let M be a closed oriented 3-
manifold. Then there exists a 1-1 correspondence between

{contact structures on M up to isotopy}
8

{abstract open book decompositions of M up to positive stabilization}.

The question of whether there is a unique open book decomposition, up to
positive stabilization, supporting a given contact structure is still open in higher
dimensions.

3Here, Symp(F, ω, ∂F ) ⊂ Diff+(F, ∂F ) is the symplectomorphism group of (F, ω) consisting of
all orientation-preserving diffeomorphisms � on F that keep the boundary ∂F fixed and preserve
the symplectic form ω.
4For an illuminating visual introduction to the Giroux correspondence, we refer the reader to [24].
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Giroux correspondence plays a pivotal role in understanding Floer-theoretic
invariants of contact structures, particularly those defined by Ozsváth and Szabó
[27], and symplectic cobordisms of contact structures. Note that a filling of a contact
manifold M is a special case of a cobordism (from empty set to M). A better
understanding of filling properties of contact structures naturally leads to various
important topological results in contact geometry such as results of Eliashberg [9],
Etnyre [11, 12], Etnyre-Honda [14], and that of Gay [16].

Open books whose pages have zero genus, as in Example 1, play a particularly
significant role in three dimensional contact topology. An open book decomposition
on a 3-manifold is called planar if its pages have zero genus. A contact manifold is
said to be planar if it is supported by a planar open book decomposition. Some other
examples of planar contact manifolds are S1 × S2 and the lens spaces L(k, k − 1),
see [34, Section 9.3].

While every contact structure is supported by some open book decomposition,
not all contact structures are supported by planar open books. In 2004, Etnyre [11]
proves that all overtwisted5 contact 3-manifolds are planar. However, we know that
there are examples of nonplanar contact manifolds: The simplest examples are the
tori (T 3, ξk), see [34, Section 9.2].

2.3 Lefschetz Fibrations

Another natural way to characterize the topology of a contact manifold M is to look
at Lefschetz fibration on its symplectic filling, if any.

A Lefschetz fibration on a 2n-dimensional manifold W with boundary and
corners is a surjective map f : W → D

2, where D
2 is a 2-disk, with finitely

many nondegenerate critical points all of which lie in the interior of W . Near each
critical point, one can choose complex coordinates (z1, . . . , zn) such that in these
coordinates

f (z1, . . . , zn) = z2
1 + · · · + z2

n.

Away from critical values, f is a trivial fibration. Note that this is a purely
topological notion. However, we can adapt it to the case where the total space W

is a symplectic manifold with boundary. Then we require that a generic fiber is a
(2n−2)-dimensional symplectic submanifold with boundary away from the critical
points, while at the critical points the coordinates in which f looks locally like
a complex Morse function can be chosen to be holomorphic for some compatible
almost complex structure (Fig. 2).

5In the world of contact geometry, there is a fundamental dichotomy between overtwisted and
tight contact structures, that is, those that do contain overtwisted disks (embedded 2-disk D whose
boundary is tangent to ξ and interior is transversal to ξ everywhere except at one point) and those
that do not, respectively.
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Fig. 2 A Lefschetz fibration
with two singular fibers over
the critical values c1 and c2

Lefschetz fibrations are known to exist on certain classes of exact symplectic
manifolds. A Weinstein domain is a quadruple (W,ω,Z, φ) where (W,ω) is an
exact symplectic manifold with nonempty boundary, Z is a Liouville vector field
(that is LZω = ω) on W pointing outward transversely along the boundary of W ,
φ is a Morse function for which Z is gradient-like, and ∂W is a regular level set of
φ. In 2016, Giroux and Pardon [18] showed that every Weinstein domain admits a
Lefschetz fibration with fibers that are Weinstein domains.

2.3.1 What do Lefschetz Fibrations Have to Do with Open Book
Decompositions?

Because all fibers and the base of the Lefschetz fibration f have boundary, ∂W

naturally decomposes into two pieces which meet at a codimension two corner:

∂W = ∂vW ∪ ∂hW

where

• ∂vW , vertical boundary, is the union of fibers over each point z ∈ ∂D2. That
is, ∂vW = f−1(∂D2). Notice that ∂vW smoothly fibers over ∂D2 = S1 since
there are no critical values in ∂D2. In other words, ∂vW is (diffeomorphic to) the
mapping torus for some monodromy map on a (2n− 2)-dimensional symplectic
manifold with boundary.

• ∂hW , horizontal boundary, is the union of boundaries of all, including singular,
fibers. Namely, ∂hW = ∪z∈D2∂Fz where Fz is the fiber over z ∈ D

2. Notice
that ∂hW is diffeomorphic to a disjoint union of D2 family of the boundaries of
fibers.6 Hence, ∂hW naturally7 fibers over D2.

6For instance, when dimRW = 4, ∂hW is diffeomorphic to a disjoint union of solid tori since each
fiber has boundary diffeomorphic to a disjoint union of S1, and there exists a D

2-family of these.
7Here we are imposing the condition that fibers meet the horizontal boundary transversely.
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Looking at the boundary data above closely, one can observe that restricting a
symplectic Lefschetz fibration to the smoothed8 boundary of its total space induces
an open book decomposition of the boundary. In that case, the fibers of the vertical
boundary ∂vW are the pages and the boundary of the central fiber (i.e., central circles
when dimRW = 4) of the horizontal boundary is called the binding of the open book
decomposition of ∂W . Note that the fibers of ∂vW are precisely the fibers of f over
each point z ∈ ∂D2. Observe also that the pages of the open book are slightly larger
than, but diffeomorphic to, the fibers of the vertical boundary.

One can also reverse this process and abstractly build a manifold that is
diffeomorphic to the boundary of a Lefschetz fibration f : W → D

2. Let Fz be
the fiber of f over z ∈ ∂D2 and � be the monodromy of the fibration f |f−1(∂D2).
Then one can construct such a manifold diffeomorphic to ∂W as follows:

• Take Fz × [0, 1] and glue Fz × {0} and Fz × {1} by the monodromy �.
• Collapse the intervals on the boundary ∂Fz.

The most important topological fact about the relationship between open book
decompositions and Lefschetz fibrations is that the monodromy of the open book
decomposition depends on the critical points of the associated Lefschetz fibration.
For instance, consider the case where Lefschetz fibration has no critical points, then
the fibration is a regular fibration over the disk and thus trivial. Then the monodromy
of the associated open book is also trivial. On the other hand, in the presence of
critical points, the monodromy of the open book is nontrivial. See [26, Chapter 10]
for a comprehensive discussion on this relationship.

A planar Lefschetz fibration is a Lefschetz fibration whose fibers are planar
surfaces. In dimension three, there are several results studying the fillings of planar
contact manifolds in the context of Lefschetz fibrations. One of the most remarkable
ones reads as follows:

Theorem 2 (Wendl [33]) Suppose that π : M − B → S1 is a planar open
book decomposition supporting the contact structure on a contact manifold M .
Then every strong9 symplectic filling W of a planar contact manifold M admits
a symplectic Lefschetz fibration f over the disk that induces the planar open book
decomposition π on its boundary f |∂W .

Equivalently, if M is a planar contact manifold and W is a strong filling of
M , then (after possibly adding a symplectic cobordism) W admits a Lefschetz
fibration over the disk inducing the given planar open book decomposition on M .
An important consequence of Theorem 2 is that strongly fillable planar contact

8The corners of the total space can be rounded off to obtain a smooth manifold. See Lemma 7.6 in
[28].
9A symplectic manifold (W,ω) is a strong filling of its contact boundary (M, ξ) if ξ = kerιZω
for some vector field Z defined near M which points transversely outward at the boundary and
satisfies LZω = ω.



Contact Open Books and Symplectic Lefschetz Fibrations (Survey) 281

manifolds are Stein fillable10. That is, when the contact manifold is planar, strongly
fillable and Stein fillable are equivalent notions.

Theorem 2 also implies the first classification result in the study of symplectic
fillings that reads as follows:

Theorem 3 (Gromov [19], Eliashberg [10]) (D4, ωstd ) is the unique (weak) sym-
plectic filling of (S3, ξstd ) up to symplectic deformation equivalence and blowup.

Let us see how Theorem 3 follows directly from Theorem 2:

Proof (Sketch) Let W be a symplectic filling of (S3, ξstd ) and π be the open
book decomposition of S3 induced by the Lefschetz fibration on (D4, ωstd ) whose
pages are annuli, binding is the Hopf link, and monodromy is a right-handed Dehn
twist. By Theorem 2, W admits a symplectic Lefschetz fibration f over the disk
inducing the open book on ∂W = S3. In particular, regular fibers of the symplectic
Lefschetz fibration f are annuli. It also has exactly one singular fiber. Notice that
this is the same symplectic Lefschetz fibration carried by (D4, ωstd ). On the other
hand, ∂W can be smoothed so that W becomes (up to symplectic deformation) a
symplectic filling of the contact structure supported by the induced open book at the
boundary [35, Theorem 5.5]. This implies that W is (D4, ωstd ) (up to deformation
equivalence). ��

3 Iterated Planar Open Books and Lefschetz Fibrations

Planar open book decompositions and planar Lefschetz fibrations have been
immensely studied to unlock several topological aspects of three dimensional
contact geometry. However, generalizations of some of these results to higher
dimensions are still mostly open due to absence of several consequences (such as
automatic transversality, positivity of intersection, and filling properties) of these
tools in higher dimensions. In what follows, we will define iterated planarity,
introduced in [2], and provide a survey of some generalizations of these results to
the case of iterated planar contact manifolds.

10A properly embedded complex submanifold of an affine space in C
n is called a Stein manifold.

Note that such manifolds are necessarily noncompact. By intersecting with a sufficiently large ball
in C

n, we obtain a compact manifold W with boundary called a Stein domain. The symplectic form
ω on W induces a contact structure ξ on the boundary ∂W . We then call (W,ω) a Stein filling of
the boundary contact manifold (∂W, ξ).
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3.1 Planarity in High Dimensions

There are natural generalizations of planarity in higher dimensions. For instance,
one can consider standard open books in high dimensions, keeping S1 as the base of
the symplectic fibration, but imposing the condition that the fibers carry a suitable
structure built inductively from a low-dimensional planar structure. In this vein, we
can define the following notion as in [2]:

Definition 1 Given a 2n-dimensional Weinstein domain (W 2n, ω), we say that W 2n

admits an iterated planar Lefschetz fibration fn if

• ∃ a sequence fi : W 2i → D
2, for i = 2, . . . , n, of symplectic Lefschetz fibrations

where the regular fiber of fi is the total space of fi−1, and
• f2 : W 4 → D

2 is a planar Lefschetz fibration.

Observe that when n = 2, an iterated planar Lefschetz fibration is a planar
Lefschetz fibration. Iterated planar Lefschetz fibrations are seemingly powerful
tools in studying high dimensional contact manifolds given by a symplectic
manifold with convex boundary.

Example 3 Consider the unit disk bundle W 2n = T ∗Sn which can be symplecti-
cally identified in C

n+1 with {z2
1 + · · · + z2

n+1 = 1} and take the Lefshetz fibration
on W to be the projection on the last coordinate zn+1. Now observe that the regular
fiber of the Lefschetz fibration on T ∗Sn is T ∗Sn−1 and the Lefschetz fibration on
T ∗S2 is planar with fibers T ∗S1 = [0, 1]×S1. Hence, W 2n admits an iterated planar
Lefschetz fibration.

Definition 2 An iterated planar contact manifold (M2n+1, ξ) is a contact manifold
supported by an open book whose pages admit an iterated planar Lefschetz fibration.

For instance, consider the overtwisted contact structure ξOT on S5. (S5, ξOT ) is
iterated planar since it is supported by the open book whose pages are T ∗S2 and
T ∗S2 admits a planar Lefschetz fibration (as in Example 3) whose pages are annuli
and monodromy is a left-handed Dehn twist.

3.2 Obstructions to Iterated Planarity

A contact 3-manifold (M3, ξ) is called weakly fillable if it is the smooth boundary
of a symplectic 4-manifold (W 4, ω), i.e. ∂W = M as oriented manifolds, such that
ω|ξ > 0. Namely, (W 4, ω) is a weak filling of (M3, ξ). One can generalize this idea
to higher dimensions, as in [25], by requiring that ω+ τdλ|ξ is symplectic for every
τ ≥ 0, for one choice of contact form λ. The contact structure ξ on M is then called
weakly dominated by ω and (W,ω) is called a weak filling of (M, ξ). In dimension
three, this definition of weak filling reduces to the standard one.
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We say that (M, ξ) is weakly co-fillable if there exists a connected weak filling
(W,ω) whose boundary is the disjoint union of (M, ξ) with an arbitrary nonempty
contact manifold. (M, ξ) is then said to admit a connected semi-filling with
disconnected boundary. Massot, Niederkrüger, and Wendl [25] construct several
examples of (exactly) co-fillable higher-dimensional contact manifolds. It is then
natural to wonder which contact manifolds can fit into a symplectic co-filling. In
dimension 3, we have the following result:

Theorem 4 (Etnyre [12]) If W is a weak filling of a planar contact manifold M ,
then M is connected.

That is, if M admits a semi-filling with disconnected boundary (i.e. M is weakly
co-fillable), then it cannot be a planar contact manifold. The following result is a
generalization of Etnyre’s three dimensional result above to iterated planar contact
manifolds which provides an obstruction to iterated planarity. The statement reads
as follows:

Theorem 5 (Acu-Moreno [4]) Iterated planar contact manifolds are not weakly
co-fillable.

Put another way, if a contact manifold is weakly co-fillable, then it cannot be
iterated planar. A further obstruction to iterated planarity, generalizing a result by
Albers-Bramham-Wendl [5], is the following:

Theorem 6 (Acu-Moreno [4]) Iterated planar contact manifolds do not embed as
nonseparating weak contact-type hypersurfaces in closed symplectic manifolds.

This can be equivalently stated as follows: If an iterated planar contact manifold
admits a weak contact-type embedding into a closed symplectic manifold, then it
separates the latter into two disjoint pieces.

3.3 The Weinstein Conjecture

The Weinstein conjecture has been one of the major driving forces in the devel-
opment of contact and symplectic geometry leading to many fruitful interactions
between analysis, geometry and topology, hence deserves a separate section.

Given a contact form λ for a contact manifold (M, ξ), there exists a unique
vector field called the Reeb vector field R, defined by ιRdλ = 0 and λ(R) = 1.
Note that R is a contact vector field. The flow of this vector field preserves not
only the contact structure ξ , but also the defining contact form, i.e. LRλ = 0.
The conjecture, formulated by Alan Weinstein in 1978, poses one of most famous
questions in the field of symplectic geometry in regard to the existence of closed
orbits of such vector fields:

Conjecture 1 (Weinstein Conjecture, [32]) On a compact contact manifold, any
Reeb vector field carries at least one periodic orbit.



284 B. Acu

For any given contact manifold, there exists a supporting open book decomposi-
tion whose binding is a closed Reeb orbit. That is, any contact form is isotopic to
a form that admits a closed Reeb orbit. However, this does not automatically prove
the Weinstein conjecture since the conjecture states that every contact form (not a
form that is only isotopic to the given form) admits a closed Reeb orbit.

The conjecture was proven for all closed 3-dimensional manifolds by Taubes
[29]. Despite an extensive literature due to Abbas, Albers, Etnyre, Floer, Hofer,
Viterbo in [1, 6, 12, 15, 20, 21], and [31], it is still open in higher dimensions.

When M is a planar contact manifold, the Weinstein conjecture is known to be
true by the work of Abbas, Cieliebak, and Hofer [1]. The generalization of this result
to the case of iterated planar contact manifolds reads as follows:

Theorem 7 (Acu-Moreno [3, 4]) Let (M, ξ) be a closed, oriented, (2n + 1)-
dimensional iterated planar contact manifold. Then (M, ξ) satisfies the Weinstein
conjecture.

Notice that when n = 1, M is a planar contact manifold. The technical input for
obtaining Theorems 5, 6, and 7 is a suitable symplectic handle attachment directly
inspired by the handle attachments in [9] and [23].
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A Robust Preconditioner for
High-Contrast Problems (Research)

Yuliya Gorb, Daria Kurzanova, and Yuri Kuznetsov

1 Introduction

In this paper, we consider an iterative solution of the linear system arising from the
discretization of the diffusion problem

−∇ · [σ(x)∇u] = f, x ∈ Ω (1)

with appropriate boundary conditions on Γ = ∂Ω . We assume that Ω is a bounded
domain Ω ⊂ R

d , d ∈ {2, 3}, that contains m ≥ 1 polygonal or polyhedral
subdomains Di , see Fig. 1. Also assume that the distance between the neighboring
Di and Dj is at least of order of the sizes of these subdomains, that is, bounded
below by a multiple of their diameters. The main focus of this work is on the case
when the coefficient function σ(x) ∈ L∞(Ω) varies largely within the domain

Ω , that is, κ = supx∈Ω σ(x)

infx∈Ω σ(x)
9 1. In this work, we assume that the domain Ω

contains disjoint polygonal or polyhedral subdomains Di , i ∈ {1, . . . , m}, where σ

takes “large” values, e.g. of order O(κ), but remains of O(1) in the domain outside
of D := ∪m

i=1Di .
The P1-FEM discretization of this problem results in a linear system

Ku = F, (2)

with a large and sparse matrix K. A major issue in numerical treatments of (1), with
the coefficient σ discussed above, is that the high contrast leads to an ill-conditioned
matrix K in (2). Indeed, if h is the discretization scale, then the condition number
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Fig. 1 The domain Ω with
highly conducting inclusions
Di , i ∈ {1, . . . , m}

of the resulting stiffness matrix K grows proportionally to h−2 with coefficient of
proportionality depending on κ . Because of that, the high contrast problems have
been a subject of an active research recently, see e.g. [1, 2].

There is one more feature of the system (2) that we investigate in this paper.
Recall that if K is symmetric and positive definite, then (2) is typically solved with
the Conjugate Gradient (CG) method, if K is nonsymmetric then the most common
solver for (2) is GMRES. In this paper, we introduce an additional variable that
allows us to replace (2) with an equivalent formulation in terms of a linear system

Ax = F (3)

with a saddle point matrix A written in the block form:

A =
[

A BT

B −�

]
, (4)

where A ∈ R
n×n is symmetric and positive definite, B ∈ R

k×n is rank deficient,
and � ∈ R

k×k is symmetric and positive semidefinite, so that the corresponding
linear system (3) is singular but consistent. Unfortunately, Krylov space iterative
methods tend to converge very slowly when applied to systems with saddle point
matrices and preconditioners are needed to achieve faster convergence. The CG
method that was mainly developed for the iterative solution of linear systems with
symmetric and definite matrices is not, in general, robust for systems with indefinite
matrices, [21]. The Lanczos algorithm of minimized iterations does not have such
a restriction and has been utilized in this paper. Below, we introduce a construction
of a robust preconditioner for solving (3) by the Lanczos iterative scheme [15], that
is, whose convergence rate is independent of the contrast parameter κ 9 1 and the
discretization size h > 0.
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Also, the special case of (3) with (4) considered in the Appendix of this paper is
when � ≡ 0. The problem of this type has received considerable attention over the
years. But the most studied case is when A is nonsingular, in which case B must be
of full rank, see e.g. [12, 16] and references therein. The main focus of this paper is
on singular A with the rank deficient block B. Below, we propose a block-diagonal
preconditioner for the Lanczos method employed to solve the problem (3), and this
preconditioner is also singular. We also rigorously justify its robustness with respect
to h and κ . Our numerical experiments on simple test cases support our theoretical
findings.

Finally, we point out that a robust numerical treatment of the described problem is
crucial in developing the mutiscale strategies for models of composite materials with
highly conducting particles. The latter find their application in particulate flows,
subsurface flows in natural porous formations, electrical conduction in composite
materials, and medical and geophysical imaging.

The rest of this paper is organized as follows. In Sect. 2 the mathematical problem
formulation is presented and the main results are stated. Section 3 discusses proofs
of the main results, and numerical results of the proposed procedure are given in
Sect. 4. Conclusions are presented in Sect. 5. The proof of an auxiliary fact is given
in Appendix.

2 Problem Formulation and Main Results

Consider an open, bounded domain Ω ⊂ R
d , d ∈ {2, 3} with piece-wise smooth

boundary Γ , that contains m ≥ 1 subdomains Di , which are located at distances
comparable to their sizes from one another, see Fig. 1. For simplicity, we assume
that Ω and Di are polygons if d = 2 or polyhedra if d = 3. The union of Di is
denoted by D. In the domain Ω we consider the following elliptic problem

{−∇ · [σ(x)∇u] = f, x ∈ Ω

u = 0, x ∈ Γ
(5)

with the coefficient σ that largely varies inside the domain Ω . For simplicity of the
presentation, we focus on the case when σ is a piecewise constant function given by

σ(x) =
⎧
⎨
⎩

1, x ∈ Ω \D
1+ 1

εi
, x ∈ Di , i ∈ {1, . . . , m} (6)

with ε := max
i

εi < 1. We also assume the source term in (5) is f ∈ L2(Ω).

When performing a P1-FEM discretization of (5) with (6), we choose a FEM
space Vh ⊂ H 1

0 (Ω) to be the space of linear finite-element functions defined on a
conforming quasi-uniform triangulation Ωh of Ω of the size h< 1. For simplicity,
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we assume that ∂Ωh = Γ . With that, the classical FEM discretization results in the
system of the type (2). We proceed differently and derive another discretized system
of the saddle point type as shown below.

2.1 Derivation of a Singular Saddle Point Problem

If Di
h = Ωh

∣∣
Di then we denote V i

h := Vh

∣∣
Di

h
and Dh := ∪m

i=1Di
h. With that, we

write the FEM formulation of (5)–(6) as

Find uh ∈ Vh and λh = (λ1
h, . . . , λ

m
h ) with λi

h ∈ V i
h such that

ˆ
Ωh

∇uh · ∇vh dx +
ˆ
Dh

∇λh · ∇vh dx =
ˆ
Ωh

f vh dx, ∀vh ∈ Vh, (7)

provided

uh = εiλ
i
h + ci in Di

h, i ∈ {1, . . . , m}, (8)

where ci is an arbitrary constant. First, we turn out attention to the FEM discretiza-
tion of (7) that yields a system of linear equations

Au+ BT λ = F, (9)

and then discuss implications of (8).
To provide the comprehensive description of all elements of the system (9), we

introduce the following notations for the number of degrees of freedom in different
parts of Ωh. Let N be the total number of nodes in Ωh, and n be the number of

nodes in Dh so that n =
m∑

i=1

ni, where ni denotes the number of degrees of freedom

in Di

h, and, finally, n0 is the number of nodes in Ωh \ Dh, so that we have N =
n0 + n = n0 +

m∑
i=1

ni. Then in (9), the vector u ∈ R
N has entries ui = uh(xi) with

xi ∈ Ωh. We count the entries of u in such a way that its first n elements correspond
to the nodes of Dh, and the remaining n0 entries correspond to the nodes of Ωh\Dh.
Similarly, the vector λ ∈ R

n has entries λi = λh(xi) where xi ∈ Dh.
The symmetric positive definite matrix A ∈ R

N×N of (9) is the stiffness matrix
that arises from the discretization of the Laplace operator with the homogeneous
Dirichlet boundary conditions on Γ . Entries of A are defined by

(Au, v) =
ˆ
Ωh

∇uh · ∇vh dx, where u, v ∈ R
N, uh, vh ∈ Vh, (10)
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where (·, ·) is the standard dot-product of vectors. This matrix can also be partitioned
into

A =
[

ADD AD0

A0D A00

]
, (11)

where the block ADD ∈ R
n×n is the stiffness matrix corresponding to the highly

conducting inclusions Di

h, i ∈ {1, . . . , m}, the block A00 ∈ R
n0×n0 corresponds to

the region outside of Dh, and the entries of AD0 ∈ R
n×n0 and A0D = AT

D0 are
assembled from contributions both from finite elements in Dh and Ωh \Dh.

The matrix B ∈ R
n×N of (9) is also written in the block form as

B = [BD 0
]

(12)

with zero-matrix 0 ∈ R
n×n0 and BD ∈ R

n×n that corresponds to the highly
conducting inclusions. In its turn, BD is written in the block form as BD =
diag (B1, . . . ,Bm), with matrices Bi ∈ R

ni×ni , whose entries are similarly
defined by

(Biu, v) =
ˆ
Di

h

∇uh · ∇vh dx, where u, v ∈ R
ni , uh, vh ∈ V i

h. (13)

The matrix Bi is the stiffness matrix in the discretization of the Laplace operator

in the domain Di

h with the Neumann boundary conditions on ∂Di
h. We remark that

each Bi is positive semidefinite with ker Bi = span

⎧⎪⎨
⎪⎩

⎡
⎢⎣

1
...

1

⎤
⎥⎦

⎫⎪⎬
⎪⎭

.

Finally, the vector F ∈ R
N of (9) is defined in a similar way by

(F, v) =
ˆ
Ωh

f vh dx, where v ∈ R
N, vh ∈ Vh.

To complete the derivation of the linear system corresponding to (7)–(8), we
rewrite (8) in the weak form that is as follows:

ˆ
Di

h

∇uh · ∇vi
h dx − εi

ˆ
Di

h

∇λi
h · ∇vi

h dx = 0, for all vi
h ∈ V i

h, (14)

for i ∈ {1, . . . , m}, and add the discrete analog of (14) to the system (9). For that,
denote �ε = diag (ε1B1, . . . , εmBm), then (14) implies

Bu−�ελ = 0. (15)
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This together with (9) yields

{
Au+ BT λ = F,

Bu−�ελ = 0,
u ∈ R

N, λ ∈ R
n, λ ∈ Im BD, (16)

or Aεxε = F, (17)

where Aε =
[

A BT

B −�ε

]
=
⎡
⎣

ADD AD0 BD
A0D A00 0T

BD 0 −�ε

⎤
⎦ , xε =

[
u

λ

]
, F =

[
F
0

]
.

(18)

This saddle point formulation (17)–(18) for the PDE (5)–(6) was first proposed in
[14]. Clearly, there exists a unique solution u ∈ R

N and λ ∈ R
n, λ ∈ Im BD of

(17)–(18).
It is important to point out that the main feature of the problem (16) is in rank

deficiency of the matrix B. This would lead to the introduction in the next Sect. 2.3
of a singular block-diagonal preconditioner for the Lanczos method employed to
solve the problem (18). Independence of the convergence of the employed Lanczos
method on the discretization size h > 0 follows from the spectral properties of the
constructed preconditioner that are independent of h due to the norm preserving
extension theorem of [20]. Independence on contrast parameters εi follows from
the closeness of spectral properties of the matrices of the original system (18) and
the limiting one (51), also demonstrated in Appendix. Our numerical experiments
below also show independence of the iterative procedure on the number of different
contrasts εi , i ∈ {1, . . . , m}, in the inclusions Di .

2.2 Preconditioned System and Its Implementation

Lanczos Method
In principal, we could have used the CG method that was mainly developed for the
iterative solution of linear systems with symmetric and definite matrices, and apply
it to the square of the matrix of the preconditioned system. However, the Lanczos
method of minimized iterations is not restricted to the definite matrices, and, since
it has the same arithmetic cost as CG, is employed in this paper. A symmetric and
positive semidefinite block-diagonal preconditioner of the form

P =
[
PA 0
0 PB

]
, (19)

for this method is also proposed in this section, where the role of the blocks PA
and PB will be explained below. But, first, for the completeness of presentation, we
describe the Lanczos algorithm.
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For a symmetric and positive semidefinite matrix H that later will be defined as
the Moore-Penrose pseudo inverse1 P†, introduce a new scalar product (x, y)H :=
(Hx, y), for all x, y ∈ R

N+n, x, y ⊥ kerH, and consider the preconditioned

Lanczos iterations, see [15], zk =
[
uk

λ
k

]
∈ R

N+n, k ≥ 1: zk = zk−1 − βkyk, where

βk = (Aεz
k−1 − F ,Aεyk)H

(Aεyk,Aεyk)H
, yk =

⎧
⎪⎪⎨
⎪⎪⎩

H(Aεz
0 − F), k = 1

HAεy1 − α2y1, k = 2

HAεyk−1 − αkyk−1 − γkyk−2, k > 2,

with αk = (AεHAεyk−1,Aεyk−1)H
(Aεyk−1,Aεyk−1)H

, and γk = (AεHAεyk−1,Aεyk−1)H
(Aεyk−2,Aεyk−2)H

.

Proposed Preconditioner
It was previously observed, see e.g. [13, 14], that the following matrix

P =
[

A 0
0 BA−1BT

]
, (20)

is the best choice for a block-diagonal preconditioner of Aε. This is because the
eigenvalues of the generalized eigenvalue problem

Aεx = μPx, u ∈ R
N, λ ∈ ImBD, (21)

belong to the union of [c1, c2] ∪ [c3, c4] with c1 ≤ c2 < 0 and 0 < c3 ≤ c4, with
numbers ci being independent of both h, and εi , see [11, 13, 14]. For the reader’s
convenience, the proof of this statement is also shown in the Appendix below (see
Lemma 6).

The preconditioner P of (20) is of limited practical use and is a subject of
primarily theoretical interest. To construct a preconditioner that one can actually use
in practice, we will find a matrix P such that there exist constants α, β independent
on the mesh size h and that

α(Px, x) ≤ (Px, x) ≤ β(Px, x) for all x ∈ R
N+n. (22)

1M† is the Moore-Penrose pseudo inverse of M if and only if it satisfies the following Moore-
Penrose equations, see e.g. [3]:

(i) M†MM† = M†, (ii) MM†M = M, (iii) MM† and M†M are symmetric.

.
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This property (22) is hereafter referred to as spectral equivalence of P to P of
(20). Obviously, the matrix P of the form (19) has to be such that the block PA is
spectrally equivalent to A, whereas PB is spectrally equivalent to BA−1BT , see also
[11, 13, 14].

For the block PA, one can use any existing symmetric and positive definite
preconditioner devised for the discrete Laplace operator on quasi-uniform and
regular meshes. Note that for a regular hierarchical mesh, the best preconditioner
for A would be the BPX preconditioner, see [4]. However, to extend our results to
the hierarchical meshes, one needs the corresponding norm preserving extension
theorem as in [20]. Hence, this paper is not investigating the effect of the choice
PA, and our primary aim is to propose a preconditioner PB that could be effectively
used in solving (16).

To that end, for our Lanczos method of minimized iterations, we use the
following block-diagonal preconditioner:

P =
[
PA 0
0 BD

]
, (23)

and in the numerical experiments below, we will simply take PA = A. Finally, we
define

H = P† =
[
P−1

A 0
0 [BD]†

]
, (24)

and remark that even though the matrix BD is singular, as evident from the Lanczos
algorithm above, one actually never needs to use its pseudo inverse at all. Indeed,
this is due to the block-diagonal structure (24) of H, and the block form (18) of the
original matrix Aε.

2.3 Main Result: Block-Diagonal Preconditioner

The main theoretical result of this paper establishes a robust preconditioner for
solving (16) or, equivalently (17), and is given in the following theorem.

Theorem 1 Let the triangulation Ωh for (5)–(6) be conforming and quasi-uniform.
Then the matrix BD is spectrally equivalent to the matrix BA−1BT , that is, there
exist constants μ',μ

' > 0 independent of h and such that

μ' ≤
(
BDψ,ψ

)
(
BA−1BT ψ,ψ

) ≤ μ', for all 0 �= ψ ∈ R
n, ψ ∈ ImBD. (25)
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This theorem asserts that the nonzero eigenvalues of the generalized eigenproblem

BA−1BT ψ = μBDψ, ψ ∈ R
n, ψ ∈ ImBD, (26)

are bounded. Hence, its proof is based on the construction of the upper and lower
bounds for μ in (26) and is comprised of the following facts many of which are
proven in the next section.

Lemma 1 The following equality of matrices holds

BA−1BT = BDS−1
00 BD, (27)

where S00 = ADD−AD0A−1
00 A0D, is the Schur complement to the block A00 of the

matrix A of (51).

This fact is straightforward and comes from the block structure of matrices A of
(11) and B of (12). Indeed, using this, the generalized eigenproblem (26) can be
rewritten as

BDS−1
00 BD ψ = μBDψ, ψ ∈ R

n, ψ ∈ ImBD. (28)

Introduce a matrix B
1/2

D via BD = B
1/2

D B
1/2

D and note that kerBD = ker B
1/2

D .

Lemma 2 The generalized eigenvalue problem (28) is equivalent to

B1/2

D S−1
00 B

1/2

D ϕ = μϕ, ϕ ∈ R
n, ϕ ∈ ImBD, (29)

in the sense that they both have the same eigenvalues μ’s, and the corresponding
eigenvectors are related via ϕ = B1/2

D ψ ∈ ImBD.

Lemma 3 The generalized eigenvalue problem (29) is equivalent to

BD uD = μS00 uD, uD ∈ R
n , uD ∈ Im (S−1

00 BD), (30)

in the sense that both problems have the same eigenvalues μ’s, and the correspond-
ing eigenvectors are related via uD = S−1

00 B
1/2

D ϕ ∈ Im (S−1
00 BD).

This result is also straightforward and can be obtained multiplying (29) by S−1
00 B

1/2

D .
To that end, establishing the upper and lower bounds for the eigenvalues of (30)

and due to equivalence of (30) with (29), and hence (28), we obtain that eigenvalues
of (26) are bounded. We are interested in nonzero eigenvalues of (30) for which the
following result holds.

Lemma 4 Let the triangulation Ωh for (5)–(6) be conforming and quasi-uniform.
Then there exists μ̂' > 0 independent of the mesh size h > 0 such that
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μ̂' ≤ (BD uD, uD)

(S00uD, uD)
≤ 1, for all 0 �= uD ∈ Im (S−1

00 BD). (31)

3 Proofs of Statements in Sect. 2.3

Harmonic Extensions
Hereafter, we will use the index D to indicate vectors or functions associated with
the domain D that is the union of all inclusions, and index 0 to indicate quantities
that are associated with the domain outside the inclusions Ω \D.

Now we recall some classical results from the theory of elliptic PDEs. Suppose a
function uD ∈ H 1(D), then consider its harmonic extension u0 ∈ H 1(Ω \ D) that
satisfies ⎧⎪⎨

⎪⎩

−4 u0 = 0, in Ω \D,

u0 = uD, on ∂D,

u0 = 0, on Γ.

(32)

For such functions the following holds true:

ˆ

Ω

|∇u|2 dx = min
v∈H 1

0 (Ω)

ˆ

Ω

|∇v|2 dx, (33)

where u =
{
uD, in D
u0, in Ω \D and v =

{
uD, in D
v0, in Ω \D with the function v0 ∈

H 1(Ω \D) such that v0|Γ = 0, and

‖u‖H 1
0 (Ω) ≤ C‖uD‖H 1(D) with the constant C independent of uD, (34)

where ‖ · ‖H 1(Ω) denotes the standard norm of H 1(Ω):

‖v‖2
H 1(Ω)

=
ˆ
Ω

|∇v|2dx +
ˆ
Ω

v2dx, (35)

and ‖v‖2
H 1

0 (Ω)
=
ˆ
Ω

|∇v|2dx.

In view of (33), the function u0 of (33) is the best extension of uD ∈ H 1(D)

among all H 1(Ω \ D) functions that vanish on Γ . The algebraic linear system that
corresponds to (33) satisfies a similar property. Namely, if the vector u0 ∈ R

n0 is
a FEM discretization of the function u0 ∈ H 1

0 (Ω \ D) of (32), then for a given
uD ∈ R

n, the best extension u0 ∈ R
n0 would satisfy

A0D uD + A00 u0 = 0, (36)
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and

(
A
[
uD
u0

]
,

[
uD
u0

])
= min

v0∈Rn0

(
A
[
uD
v0

]
,

[
uD
v0

])
. (37)

Proof of Lemma 2
Consider generalized eigenvalue problem (28) and replace BD with B1/2

DB1/2

D there,

then B1/2

DB1/2

D S−1
00 B

1/2

DB1/2

D ψ = μB1/2

DB1/2

D ψ. Now multiply both sides by the Moore-

Penrose pseudo inverse
[
B1/2

D

]†
:

[
B1/2

D

]†
B1/2

DB1/2

D S−1
00 B

1/2

DB1/2

D ψ = μ
[
B1/2

D

]†
B1/2

DB1/2

D ψ.

This pseudo inverse has the property that
[
B1/2

D

]†
B1/2

D = Pim, where Pim is an

orthogonal projector onto the image B1/2

D , hence, PimB
1/2

D = B1/2

D and therefore,

B1/2

D S−1
00 B

1/2

D ϕ = μϕ, where ϕ = B1/2

D ψ.

Conversely, consider the eigenvalue problem (29), and multiply its both sides
by B1/2

D . Then B1/2

DB1/2

D S−1
00 B

1/2

D ϕ = μB1/2

D ϕ, where we replace ϕ by B1/2

D ψ :

B1/2

DB1/2

D S−1
00 B

1/2

DB1/2

D ψ = μB1/2

DB1/2

D ψ to obtain (28). �
Proof of Lemma 4

I. Upper Bound for the Generalized Eigenvalues of (26)

Consider u =
[
uD
u0

]
∈ R

N with uD ∈ Im (S−1
00 BD), satisfying (36), then

(S00uD, uD) = (Au, u) . (38)

Using (10) and (13) we obtain from (38):

μ = (BDuD, uD)

(S00 uD, uD)
= (BDuD, uD)

(Au, u)
=

ˆ

Dh

|∇uDh |2 dx

ˆ

Ωh

|∇uh|2 dx
≤ 1, (39)

with uh =
{
uDh , in Dh

u0
h, in Ω \Dh

(40)

where u0
h is the harmonic extension of uDh into Ωh \Dh in the sense (32). �



300 Y. Gorb et al.

II. Lower Bound for the Generalized Eigenvalues of (26)
Before providing the proofs, we introduce one more construction to simplify
our consideration below. Because all inclusions are located at distances that are
comparable to their sizes, we construct new domains D̂i , i ∈ {1, . . . , m}, see Fig. 2,
centered at the centers of the original inclusions Di , i ∈ {1, . . . , m}, but of sizes
much larger of those of Di and such that D̂i∩D̂j = ∅, for i �= j. This yields that
the problem (5)–(6) might be partitioned into m independent subproblems. Hence,
without loss of generality, in this part of the construction, we assume that there is
only one inclusion, that is, m = 1.

We also recall a few important results from classical PDE theory analogs of
which will be used below. Namely, for a given v ∈ H 1(D) there exists an extension
v0 of v to Ω \D so that

‖v0‖H 1(Ω\D) ≤ C‖v‖H 1(D), with C = C(d,D,Ω). (41)

One can also introduce a number of norms equivalent to (35), and, in particular,
below we will use

‖v‖2
D :=

ˆ
D
|∇v|2dx + 1

R2

ˆ
D

v2dx, (42)

Fig. 2 New domains D̂i for our construction of the lower bound of μ
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where R is the radius of the particle D = D1. The scaling factor 1/R2 is needed
for transforming the classical results from a reference (i.e. unit) disk to the disk of
radius R �= 1.

We note that the FEM analog of the extension result of (41) for a regular
grid was shown in [20], from which it also follows that the constant C of (41)
is independent of the mesh size h > 0. We utilize this observation in our
construction below. Consider uh ∈ Vh given by (40). Introduce a space V̂h ={
vh ∈ Vh : vh = 0 in Ωh \ D̂h

}
. Similarly to (40), define

V̂h 5 ûh =
{
uDh , in Dh

û0
h, in Ωh \Dh

, (43)

where û0
h is the harmonic extension of uDh into D̂h \Dh in the sense (32) and û0

h = 0

on ∂D̂h. Also, by (33) we have
ˆ

Ωh\Dh

|∇u0
h|2dx ≤

ˆ

Ωh\Dh

|∇û0
h|2dx. Define the

matrix Â :=
[

ADD ÂD0

Â0D Â00

]
by
(

Âv,w
)
=

ˆ

Ωh

∇vh · ∇whdx, where v,w ∈ R
N ,

vh,wh ∈ V̂h. As before, introduce the Schur complement to the block Â00 of Â:
Ŝ00 = ADD − ÂD0Â−1

00 Â0D, and consider a new generalized eigenvalue problem

BD uD = μ̂Ŝ00 uD with uD ∈ Im (S−1
00 BD). By (37) and (38) we have

(S00uD, uD) ≤
(

Ŝ00uD, uD
)

for all uD ∈ Im (S−1
00 BD). (44)

Now, we consider a new generalized eigenvalue problem similar to one in (29),
namely,

B1/2

D Ŝ−1
00 B

1/2

D ϕ = μ̂ ϕ, ϕ ∈ ImBD. (45)

We plan to replace B1/2

D in (45) with a new symmetric positive-definite matrix B̂
1/2

D ,
given below in (47), so that

B1/2

DB1/2

D ξ = B1/2

D B̂
1/2

D ξ = B̂
1/2

DB1/2

D ξ for all ξ ∈ ImBD, (46)

with what (45) has the same nonzero eigenvalues as the problem B̂
1/2

D Ŝ−1
00 B̂

1/2

D ϕ =
μ̂ ϕ, ϕ ∈ ImBD. For this purpose, we consider the decomposition: BD =
WΛWT , where W ∈ R

n×n is an orthogonal matrix composed of eigenvectors wi ,
i ∈ {1, . . . , n}, of BDw = νw, w ∈ R

n, and Λ = diag [ν1, ν2, . . . , νn] . Then
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w1 is an eigenvector of BD corresponding to ν1 = 0 and w1 = 1√
n

⎡
⎢⎣

1
...

1

⎤
⎥⎦ . To that

end, we choose

B̂D = BD + β w1 ⊗ w1 = BD + β w1w
T
1 , (47)

where β > 0 is some constant parameter chosen below. Note that the matrix B̂D is
symmetric and positive-definite, and satisfies (46). It is trivial to show that B̂D given
by (47) is spectrally equivalent to BD + βI for any β > 0. Also, for quasi-uniform
grids, the matrix h2I (in 3-dim case, h3I) is spectrally equivalent to the mass matrix

MD given by (MDu, v) =
ˆ
D1

h

uhvh dx, where u, v ∈ R
n1 , uh, vh ∈ V 1

h , see e.g.

[19]. This implies there exists a constant C > 0 independent of h, such that

(
B̂DuD, uD

)
≥ C

((
BD + 1

R2
MD

)
uD, uD

)
, with β = h2

R2
. (48)

The choice of the matrix BD + 1
R2 MD for the spectral equivalence was motivated

by the fact that the right hand side of (48) describes ‖ · ‖Dh
-norm (42) of the FEM

function uDh ∈ V 1
h that corresponds to the vector uD ∈ R

n.

Now consider u =
[
uD
u0

]
∈ R

N with uD ∈ R
n, uD ∈ Im (S−1

00 BD), and u0 ∈

R
n0 satisfying (36), and similarly choose û =

[
uD
û0

]
∈ R

N with û0 ∈ R
n0 satisfying

Â0D uD + Â00 û0 = 0, which implies

(
Ŝ00uD, uD

)
=
(

Âû, û
)
. (49)

Then
(

Âû, û
)
=
ˆ
Ωh

|∇ûh|2dx

=
ˆ
D̂h\Dh

|∇û0
h|2dx +

ˆ
Dh

|∇uDh |2dx ≤ (C∗ + 1)‖uDh ‖2
Dh

,
(50)

where ûh ∈ V̂h is the same extension of uDh from Dh to Ωh \Dh as defined in (43).
For the inequality of (50), we applied the FEM analog of the extension result of (41)
by [20], that yields that the constant C∗ in (50) is independent of h.
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With all the above, we have the following chain of inequalities:

(BDuD, uD)

(S00uD, uD)
=

(46),(47)

((BD + β w1 ⊗ w1) uD, uD)

(S00uD, uD)

≥
(44)

((BD + β w1 ⊗ w1) uD, uD)(
Ŝ00uD, uD

) ≥
(49),(48)

C

((
BD + 1

R2 MD
)
uD, uD

)
(

Âû, û
)

≥
(50)

C‖uDh ‖2
Dh

(C∗ + 1)‖uDh ‖2
Dh

= C

(C∗ + 1)
=: μ̂',

with β = h2

R2 . Clearly, μ' is independent of h > 0.

From the obtained above bounds, we have (31). �

4 Numerical Results

In this section, we use four examples to show the numerical advantages of the
Lanczos iterative scheme with the preconditioner P defined in (23) over the existing
preconditioned conjugate gradient method.

Our numerical experiments are performed by implementing the described above
Lanczos algorithm for the problem (5)–(6), where the domain Ω is chosen to be
a disk of radius 5 with m = 37 identical circular inclusions Di , i ∈ {1, . . . , m}.
Inclusions are equally spaced. The function f of the right hand side of (5) is chosen
to be a constant, f = 50.

In the first set of experiments the values of εi’s of (6) are going to be identical
in all inclusions and vary from 10−1 to 10−8. In the second set of experiments we
consider four groups of particles with the same values of ε in each group that vary
from 10−4 to 10−7. In the third set of experiments we consider the case when all
inclusions have different values of εi’s that vary from 10−1 to 10−9. Finally, in the
fourth set of experiments we decrease the distance between neighboring inclusions.

The initial guess z0 is a random vector that was fixed for all experiments. The
stopping criteria is the Euclidian norm of the relative residual (Aεz

k−F)/F being
less than a fixed tolerance constant.

We test our results agains standard pcg function of MATLAB® with PA = A.
The same matrix is also used in the implementation of the described above Lanczos
algorithm. In the following tables PCG stands for preconditioned conjugate gradient
method by MATLAB® and PL stands for preconditioned Lanczos method of this
paper.

Experiment 1 For the first set of experiments we consider particles Di of radius
R = 0.45 in the disk Ω . This choice makes distance d between neighboring
inclusions approximately equal to the radius R of inclusions. The triangular mesh
Ωh has N = 32, 567 nodes. Tolerance is chosen to be equal to 10−4. This
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experiment concerns the described problem with parameter ε being the same in
each inclusion. Table 1 shows the number of iterations corresponding to the different
values of ε. Based on these results, we first observe that our PL method requires less
iterations as ε goes less than 10−4. We also notice that number of iterations in the
Lanczos algorithm does not depend on ε.

Experiment 2 In this experiment we leave radii of the inclusions to be the same,
namely, R = 0.45. Tolerance is chosen to be 10−6. We now distinguish four
groups of particles of different ε’s. The first group consists of one inclusion—
in the center—with the coefficient ε = ε1, whereas the second, third and fourth
groups are comprised of the disks in the second, third and fourth circular layers
of inclusions with coefficients ε2, ε3 and ε4, respectively, see Fig. 3 (inclusions of
the same group are located on the same concentric circle of particles indicated by
the same shade of grey). We perform this type of experiments for three different
triangular meshes with the total number of nodes N = 5249, N = 12, 189 and
N = 32, 567. Tables 2, 3, and 4 below show the number of iterations corresponding
to three meshes respectively.

These results yield that PL requires much less iterations than the corresponding
PCG with the number of iterations still being independent of both the contrast ε and
the mesh size h for PL.

Table 1 Number of iterations in Experiment 1, N = 32, 567

ε 10−1 10−2 10−3 10−4 10−5 10−6 10−7 10−8

PCG 10 20 32 40 56 183 302 776

PL 33 37 37 37 37 37 37 37

Fig. 3 The domain Ω with
highly conducting inclusions
Di of fours groups

Table 2 Number of
iterations in Experiment 2,
N = 5249

ε1 ε2 ε3 ε4 PCG PL

10−5 10−5 10−4 10−4 217 39

10−5 10−5 10−4 10−3 208 39

10−6 10−5 10−4 10−3 716 39

10−7 10−6 10−5 10−4 571 39
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Table 3 Number of
iterations in Experiment 2,
N = 12, 189

ε1 ε2 ε3 ε4 PCG PL

10−5 10−5 10−4 10−4 116 39

10−5 10−5 10−4 10−3 208 39

10−6 10−5 10−4 10−3 457 39

10−7 10−6 10−5 10−4 454 39

Table 4 Number of
iterations in Experiment 2,
N = 32, 567

ε1 ε2 ε3 ε4 PCG PL

10−5 10−5 10−4 10−4 311 35

10−5 10−5 10−4 10−3 311 35

10−6 10−5 10−4 10−3 697 35

10−7 10−6 10−5 10−4 693 35

Table 5 Number of
iterations in Experiment 3,
N = 12, 189

Range of ε PL

10−1–10−8 53

10−1–10−3 53

10−7–10−9 39

Experiment 3 The next point of interest is to assign different value of ε for each
of 37 inclusions. The geometrical setup is the same as in Experiment 2. The value
of εi , i ∈ {1, . . . , 37}, is randomly assigned to each particle and is chosen from
the range of ε’s reported in Table 5 above. The tolerance is 10−6 as above. The
triangular mesh Ωh has 12, 189 nodes. We run ten tests for each range of contrasts
and obtain the same number of iterations in every case, and that number is being
reported in Table 5. We also observe that as the contrast between conductivities in
the background domain Ω \ D and the one inside particles Di , i ∈ {1, . . . , 37},
becomes larger our preconditioner demonstrates better convergence, as the third
row of Table 5 reports. This is expected since the preconditioner constructed above
was chosen for the case of absolutely conductive particles. These sets of tests are
not compared against the PCG due to the large number of considered contrasts that
prevent this test to converge in a reasonable amount of time.

Experiment 4 In the next set of experiments we intend to test how well our
algorithm performs if the distance between particles decreases. Recall that the
assumption made for our procedure to work is that the interparticle distance d is of
order of the particles’ radius R. With that, we take the same setup as in Experiment
2 and decrease the distance between particles by making radius of each disk larger.
We set R = 0.56 obtaining that the radius of each inclusion is now twice larger than
the distance d, and also consider R = 0.59 so that the radius of an inclusion is three
times larger than d. The triangular mesh Ωh has N = 6329 and N = 6497 nodes,
respectively. The tolerance is chosen to be 10−6. Tables 6 and 7 show the number of
iterations in each case. Here we observe that number of iterations increases for both
PCG and PL, while this number still remains independent of ε for PL.
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Table 6 Number of
iterations in Experiment 4,
R = 0.56, N = 6329

ε1 ε2 ε3 ε4 PCG PL

10−5 10−5 10−4 10−4 799 61

10−7 10−6 10−5 10−4 859 61

Table 7 Number of
iterations in Experiment 4,
R = 0.59, N = 6497

ε1 ε2 ε3 ε4 PCG PL

10−5 10−5 10−4 10−4 832 73

10−7 10−6 10−5 10−4 890 73

We then continue to decrease the distance d, and set R = 0.62 that is approx-
imately four times larger than the distance between two neighboring inclusions d.
Choose the same tolerance 10−6 as above, and the triangular mesh Ωh of N = 6699
nodes, and we observed that our PL method does not reach the desired tolerance
in 1128 iterations, that confirms our expectations. Further research is needed to
develop novel techniques for the case of closely spaced particles that the authors
intend to pursue in future.

5 Conclusions

This paper focuses on a construction of the robust preconditioner (23) for the
Lanczos iterative scheme that can be used in order to solve PDEs with high-
contrast coefficients of the type (5)–(6). A typical FEM discretization yields
an ill-conditioning matrix when the contrast in σ becomes high (i.e. ε < 1).
We propose an alternative saddle point formulation (18) of the given problem
with the symmetric and indefinite matrix and propose a preconditioner for the
employed Lanczos method for solving (18). The main feature of this novel approach
is that we precondition the given linear system with a symmetric and positive
semidefinite matrix. The key theoretical outcome is the that the condition number
of the constructed preconditioned system is of O(1), which makes the proposed
methodology more beneficial for high-contrast problems’ application than existing
iterative substructuring methods [7, 8, 17–19]. Finally, our numerical results based
on simple test scenarios confirm theoretical findings of this paper, and demonstrate
convergence of the constructed PL scheme to be independent of the contrast ε,
mesh size h, and also on the number of different contrasts εi , i ∈ {1, . . . , m} in
the inclusions. In the future, we plan to employ the proposed preconditioner to other
types of problems to fully exploit its feature of the independence on contrast and
mesh size.
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Appendix

Discussions About System (16)
Along with the problem (17)–(18) and its solution xε by (18), we consider an
auxiliary linear system

Aoxo =
[

A BT

B 0

] [
uo

λo

]
=
[

F
0

]
, (51)

or

{
Auo + BT λo = F,
Buo = 0.

(52)

where matrices A, B and the vector F are the same as above. The linear system
(51) or, equivalently (52), emerges in a FEM discretization of the diffusion problem
posed in the domain Ω whose inclusions are infinitely conducting, that is, when
ε = 0 in (6). The corresponding PDE formulation for problem (52) might be as
follows (see e.g. [5])

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

4u = f, x ∈ Ω \D
u = const, x ∈ ∂Di , i ∈ {1, . . . , m}ˆ

∂Di

∇u · ni ds = 0, i ∈ {1, . . . , m}
u = 0, x ∈ Γ

(53)

where ni is the outer unit normal to the surface ∂Di . If u ∈ H 1
0 (Ω \D) is an electric

potential then it attains constant values on the inclusions Di and these constants are
not known a priori so that they are unknowns of the problem (53) together with u.

Formulation (51) or (52) also arises in constrained quadratic optimization
problem and solving the Stokes equations for an incompressible fluid [6], and
solving elliptic problems using methods combining fictitious domain and distributed
Lagrange multiplier techniques to force boundary conditions [9].

Then the following relation between solutions of systems (16) and (52) holds
true.

Lemma 5 Let xε =
[
uε

λε

]
∈ R

N+n the solution of (16), and xo =
[
uo

λo

]
∈ R

N+n

be the solution of the linear system (52). Then u→ uo as ε := max
i∈{1,...,m} εi → 0.

This lemma asserts that the discrete approximation for the problem (5)–(6)
converges to the discrete approximation of the solution of (53) as ε → 0. We also
note that the continuum version of this fact was shown in [10].
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Proof Hereafter, we denote by C a positive constant independent of ε.
Subtract (52) from (16):

{
A(uε − uo)+ BT (λε − λo) = 0,
B(uε − uo)− �ε(λε − λo) = �ελo.

(54)

and multiply by uε − uo to obtain

(A(uε − uo, uε − uo))+
(

BT (λε − λo), uε − uo

)
= 0.

Denote ‖ · ‖D := (D·, ·) for any symmetric and positive-definite matrix D (and the
same notation for the semi-norm associated with a symmetric, positive semi-definite
D), hence,

‖uε − uo‖A ≤ ‖λε − λo‖BD , (55)

where we have used that ‖uε − uo‖BD ≤ ‖λε − λo‖BD . Now eliminate (uε − uo)

from (54) and denote ξ := λε − λo ∈ R
n to have

(BA−1BT ξ, ξ)+ (�εξ , ξ) = −(�ελo, ξ). (56)

It was shown in (39) that (BDξ, ξ) ≤ (BA−1BT ξ, ξ). It is also obvious that

(�εξ , ξ) ≥ ε(BDξ, ξ), where ε := min
i∈{1,...,m} εi

Thus, from (56), we have (1 + ε)‖ξ‖BD ≤ ε‖λo‖BD . From this inequality, norm
equivalence, and (55), we obtain ‖uε − uo‖ → 0 as ε → 0. ��

It was also previously observed, see e.g. [11, 14, 19], that the matrix (20) is
the best choice for a preconditioner of Ao. This is because there are exactly three
eigenvalues of Ao associated with the following generalized eigenvalue problem
(see, e.g. [11, 19])

Ao

[
u

λ

]
= μP

[
u

λ

]
, u ∈ R

N, λ ∈ ImBD, (57)

and they are: μ1 < 0, μ2 = 1 and μ3 > 1, and, hence, a Krylov subspace iteration
method applied for a preconditioned system for solving (57) with (20) converges to
the exact solution in three iterations.

Now, we turn back to the problem (16). Then the following statement about the
generalized eigenvalue problem (21) holds true.

Lemma 6 There exist constants c1 ≤ c2 < 0 < c3 ≤ c4 independent of the
discretization scale h > 0 or the contrast parameters εi , i ∈ {1, . . . , m}, such that
the eigenvalues of the generalized eigenvalue problem
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Aεx = νPx, u ∈ R
N, λ ∈ ImBD,

belong to [c1, c2] ∪ [c3, c4].
Remark that the endpoints ci of the eigenvalues’ intervals might depend on
eigenvalues of (57).

Proof Without loss of generality, here we also assume that all εi , i ∈ {1, . . . , m},
are the same and equal to ε, that is, �ε = εBD. Write the given eigenvalue problem

as:

[
A BT

B −εBD

] [
u

λ

]
= ν

[
A 0
0 BA−1BT

] [
u

λ

]
, u ∈ R

N , λ ∈ ImBD , which leads to

the equation for ν, which is as follows

ν − 1

ν − 1
= −ε

[ (
BDλ, λ

)
(
BA−1BT λ, λ

)
]
, λ ∈ ImBD. (58)

The fraction of the right-hand side of the above equation, that we denote by μ,
has been estimated in Theorem 1: μ' ≤ μ ≤ 1, where μ' is independent of the
discretization size h > 0 due to the norm-preserving extension theorem, [20]. From
(58), we obtain that the eigenvalues ν of (21) that differ from one, ν �= 1, are

ν± = 1− εμ±√5+ 2εμ+ ε2μ2

2
, and as ε → 0, we have 0 > ν− → 1−√5

2 and

0 < ν+ → 1+√5
2 .

Finally, using the bounds for μ by (25), we have from (58) that the endpoints of
the intervals [c1, c2] 5 ν− and [c3, c4] 5 ν+ are independent of both h and ε. In

particular, for 0 < ε < 1 and μ' ≤ μ ≤ 1, we have that ν− ∈
[
−√2, 1−√5

2

]
and

ν+ ∈
[√

5
2 , 2

]
.

If we one has variable εi then it yields a sum over i ∈ {1, . . . , m} in the right hand
side of (58). This can be estimated by taking maximal and minimal values of εi . ��
This lemma demonstrates that (20) is the best (theoretical) preconditioner for Aε as
well as for Ao.
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On the Dimension Reduction
in Prestrained Elasticity (Survey)

Silvia Jiménez Bolaños

1 Introduction

This review discusses the analytical and geometrical questions coming from the
study of elastic materials that exhibit residual stress at free equilibria. There is an
abundance of applications where such structures and their actuations are present,
for example: growing tissues, plastically strained sheets, specifically engineered
swelling or shrinking gels, atomically thin graphene layers; just to mention a few.
These and other phenomena can be studied through a variational model, pertaining
to the non-Euclidean version of nonlinear elasticity, which postulates the formation
of a target Riemannian metric, resulting in the morphogenesis of the film attaining
an orientation-preserving configuration closest to being the isometric immersion of
the metric. Shape formation driven by internal prestrain has also been studied by
means of formal methods, numerics, and analytical arguments [6, 9–12, 20].

In [8], Gero Friesecke, Richard D. James, and Stefan Müller used an asymptotic
framework to understand which theories of thin objects (plates, shells) are predicted
by the three dimensional nonlinear theory in the classical elasticity. They derived a
hierarchy of the limiting theories as Γ -limits (see Sect. 2.1) of the rescaled
versions of three dimensional energies; these theories are unlike each other by
the qualitatively different responses to external forces and boundary conditions
of the film. In the context of the prestrain-driven response, the parallel theories
are differentiated by the embeddability properties of the target metrics and, a-
posteriori, by the emergence of isometry constraints on deformations with low
regularity. In turn, results on thin limit models have consequences for the three
dimensional original model in terms of energy scaling laws, understanding of the
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role of curvature in determining the mechanical properties of the material, and in the
effects of the symmetry and the symmetry breaking in the solutions to the resulting
Euler-Lagrange equations.

This review paper is organized as follows. In Sect. 2, we give the background
on thin films and dimension reduction in prestrained (incompatible) elasticity and
briefly explain the Γ -convergence formalism. In Sect. 3, we account for some
relevant literature on the subject and current developments. In Sect. 4, we propose
a new result in the described direction, anticipating the work done by the author in
collaboration with Anna Zemlyanova in [3]. In Sect. 5, we discuss a more general
result developed in collaboration with Marta Lewicka and Anna Zemlyanova.
Finally, conclusions are presented in Sect. 6.

2 Background on Thin Films and Dimension Reduction
in Prestrained Elasticity

We model a thin film as the Cartesian product:

Ωh = ω × (−h/2, h/2),

with midplate ω and small thickness 0 < h< 1. The midplate ω is an open bounded
subset of R2. A typical point in Ωh is denoted by x = (x1, x2, x3) = (x′, x3), where
x′ ∈ ω and |x3| < h/2.

Let Gh : Ωh → R
3×3
sym,pos be a smooth Riemannian metric on Ωh. It is a well

known fact that the manifold (Ωh,Gh) can be isometrically immersed in R
3 if and

only if the Riemann curvature tensor of Gh vanishes in Ωh, i.e.: Riem(Gh) ≡ 0.
When this happens, there exists a smooth deformation uh of Ωh into R

3 which is an
isometric embedding of Gh:

∇uh(x)T∇uh(x) = Gh(x), for all x ∈ Ωh. (1)

If Riem(Gh) �≡ 0, one looks for an orientation-preserving deformation uh that
minimizes the difference between the tensor fields in the right and the left hand
sides of (1). It is then the goal to study a variational model called the prestrained
elasticity:

I (uh) =
ˆ
Ωh

dist2
(
∇uh(x)(Gh(x))−1/2, SO(3)

)
dx, (2)

describing its critical points, minimizers / almost minimizers, particularly in the sin-
gular limit where h → 0. Observe that I (uh) = 0 iff ∇uh(x) ∈ SO(3)(Gh(x))1/2

for a.e. x; which is, by the polar decomposition theorem, in turn equivalent to
(∇uh)T (∇uh) = Gh and det∇uh > 0. The energy functional in (2) is defined
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for all uh ∈ W 1,2(Ωh,R3), where SO(3) denotes the special orthogonal group of
proper rotations, and dist (B, SO(3)) stands for the minimal distance:

|B − R| =
(

Trace(B − R)T (B − R)
)1/2

of a given B ∈ R
3×3 from all R ∈ SO(3).

More precisely, we are interested in analyzing the scaling of the infimum energy
and the corresponding structure of minimizers to the energy functional:

Ih
W (uh) = 1

h

ˆ
Ωh

W(∇uh(Gh)−1/2)dx ∀uh ∈ W 1,2(Ωh,R3), (3)

in terms of powers of the vanishing thickness parameter h. The stored energy
density function W : R3×3 → R+ is assumed to satisfy the standard conditions
of normalization, frame indifference with respect to the special orthogonal group
SO(3) of proper rotations in R

3, and second order nondegeneracy, given by:

∃ c > 0 ∀F ∈ R
3×3 ∀R ∈ SO(3) W(R) = 0, W(RF) = W(F),

W(F) ≥ c dist2(F, SO(3)). (4)

Note that, as a consequence, both W and its first derivative DW vanish on the energy
well SO(3).

2.1 Γ -Convergence

The above mentioned properties of W contradict the possibility of imposing suitable
convexity assumptions and, thus, preclude applying the direct methods of Calculus
of Variations in studying (3). Instead, minimizing sequences of the family of
problems (3) are studied through asymptotic analysis, exploiting the small thickness
regime. The first step in this approach is to establish compactness for sequences of
approximate minimizers of Ih

W as h→ 0. These will naturally vary among different
ranges of the scaling exponent β in infIh

W ∼ hβ , that is in turn induced by the
prestrain encoded in the curvatures of Gh. The second step is to look for suitable
“dimensionally reduced” energies defined on effective domains Aβ consisting of
admissible limiting deformations uh, that carry the structure of Ih

W . The variational
method used in this context is the Γ -convergence.

The notion of Γ -convergence, introduced by Ennio De Giorgi in a series of
papers published between 1975 and 1983 [5], has become the standard notion
of convergence for variational problems [4]. There are by now many applications
of this tool to a variety of asymptotic problems, yielding results in the theory of
partial differential equations.
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In the present set-up for thin films, proving Γ -convergence of the scaled energies
1

hβ
Ih
W consists of deriving two inequalities, after fixing a metric topology on the

space of deformations uh:

(1) The first inequality establishes a lower bound:

Iβ(u) ≥ lim inf
h→0

1

hβ
Ih
W (uh),

for any sequence uh converging to u ∈ Aβ .
(2) The second inequality serves to prove that the previous bound is optimal in the

sense that, for any given admissible u ∈ Aβ there holds:

Iβ(u) = lim sup
h→0

1

hβ
Ih
W (uh)

for some “recovery sequence” uh converging to u.

We say that
1

hβ
Ih
W (uh) Γ -converges to the residual energy Iβ(u), provided that (1)

and (2) are satisfied.
The importance of Γ -convergence is that it implies, under quite mild com-

pactness assumptions, that the limits as h → 0 of any converging sequence
of approximate minimizers to Ih

W coincide with the minimizers of Iβ . Hence,
identifying the governing variational principle for the asymptotic behaviour of (3)

is accomplished by deriving the Γ -limit of
1

hβ
Ih
W (uh).

2.2 Notation

For a matrix F , its n × m principal minor is denoted by Fn×m. When m = n then
the symmetric part of a square matrix F is: symF = 1/2(F +FT ). The superscript
T refers to the transpose of a matrix or an operator. The operator curlT curl acts on
2× 2 square matrix fields F by taking first curl of each row and then taking the curl
of the resulting two dimensional vector, so that: curlT curlF = ∂2

11F22 − ∂2
12(F12 +

F21)+ ∂2
22F11. In particular, we see that: curlT curlF = curlT curl(symF).

By ∇tan we denote taking derivatives ∂1 and ∂2 in the in-plate directions e1 =
(1, 0, 0)T and e2 = (0, 1, 0)T . The derivative ∂3 is taken in the out-of-plate direction
e3 = (0, 0, 1)T .
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3 Relevant Literature and Current Developments

The study of dimensionally reduced models helps the understanding of the role of
the curvature tensor in the stress distribution within a three dimensional prestrained
body, and eventually leads to an adequate mathematical description of the morpho-
genesis phenomena.

In the case when the prestrain Gh = G is independent of the thickness variable
h, the recent developments in [13] completed the analysis in [1, 18, 19]. It contains
the derivation of all the Γ -limits of the rescaled non-Euclidean elastic energies in
the scaling regime hβ , β ≥ 2. These correspond to the even scaling powers β =
2k, which are the only scalings possible and the regimes of their validity can be
identified, in terms of the Riemann curvatures. In paper [14], a more general class
of incompatibilities is treated, where the transversal dependence of the lower order
terms is not necessarily linear, extending the previous results to arbitrary metrics
and higher order scalings.

On the other hand, for the prestrain metrics Gh that are a perturbation of the flat
I3 metric, we quote papers [16, 17, 21]. In particular, in [17] the authors derived a

new variational model consisting of minimizing a biharmonic energy
ˆ
ω

|∇2v|2 dx′

of the out-of plane displacement v ∈ W 2,2(ω,R), satisfying the Monge-Ampère
constraint:

det∇2v = f,

where f = −curlT curl S2×2 is the linearized Gauss curvature of the Riemannian
metrics in:

Gh(x′, x3) = I3 + 2hγ S(x′)+ 2hγ/2x3B(x′). (5)

This work was done in the parameter range 0 < γ < 2, whereas the case γ = 2 has
been treated in [15], leading to the derivation of the Föppl-von Kármán equations
accounting for presence of the prestrain. In [3], the authors carried out the analysis
for the parameter range γ > 2 and the results will be presented in Sect. 4. In [2], the
authors looked at a more general version of the Riemannian metric (5), given by:

Gh(x′, x3) = I3 + 2hαS(x′)+ 2hγ/2x3B(x′),

and identified the asymptotic behavior of the minimizers of Ih
W (see (3)) as h → 0,

through deriving the Γ -limit of the rescaled energies
1

hδ+2 I
h
W . Different models

occur depending on the relationship between the parameters α, γ, and δ. The
analysis recovers previous results by using the appropriate values of α, γ, and δ:
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• If α = γ = δ = 2, we recover the results from [15].
• If α = γ = δ ∈ (0, 2), we recover the results from [17].
• If α = γ = δ > 2, we recover the results from [3].

These results are presented in Sect. 5.

4 Relative Bending Energy for Weakly Prestrained Shells

In connection with (5), we write: (Gh)1/2 = Ah+h.o.t , where Ah = [Ah
ij ] : Ωh →

R
3×3, detAh > 0, are given by:

Ah(x′, x3) = I3 + hγ S(x′)+ hγ/2x3B(x′), γ > 2 (6)

via the smooth tensor fields S (“stretching”) and B (“bending”); where S,B : ω →
R

3×3. For a deformation uh : Ωh → R
3, the elastic energy Ih

W (uh), given in
(3), is then written in terms of the elastic tensor ∇uh(Ah)−1 accounting for the
reorganization of Ωh in response to Ah in:

Ih
W (uh) = 1

h

ˆ
Ωh

W((∇uh)(Ah)−1) dx.

At a technical level, we also assume that there exists a monotone non-negative
function ν : [0,+∞] → [0,+∞] which converges to zero at 0, and a quadratic
form Q3 on R

3×3, with:

∀F ∈ R
3×3

∣∣W(I3 + F)− 1

2
Q3(F )

∣∣ ≤ ν(|F |)|F |2. (7)

If W is C2 regular in a neighborhood of SO(3), then Q3 = D2W(I3). Note that
(7) implies that Q3 is nonnegative, is positive definite on symmetric matrices, and
Q3(F ) = Q3(sym F) for all F ∈ R

3×3.
As discussed in Sect. 2, Ih

W (uh) = 0 is equivalent to:

(∇uh)T∇uh = (Ah)T (Ah) = Gh and det∇uh > 0.

Therefore, the quantity:

eh = inf
{
Ih
W (uh); uh ∈ W 1,2(Ωh,R3)

}

measures the residual energy at free equilibria of the configuration Ωh.
Expanding the energy to the deformation:

uh(x′, x3) = (x′, 0)T + hγ/2V (x′)+ x3Nh(x
′),
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where Nh(x
′) is the unit normal to the midplate and V : ω → R

3, we obtain:

Ih
W (uh) = h2γ

8

ˆ
ω

Q3(−2symS + ∇V T∇V )dx′

+ hγ+2

24

ˆ
ω

Q3(−symB − ∇2V3 + h
γ
2 D)dx′ + h.o.t.,

where the matrix D is given by:

D =
(
V3,1V1,11 + V3,2V2,11 V3,1V1,12 + V3,2V2,12

V3,1V1,21 + V3,2V2,21 V3,1V1,22 + V3,2V2,22

)
.

Since γ > 2, we observe that Ih
W (uh) ≈ C hγ+2 and hence, we expect the Γ -limit

of
1

hγ+2 I
h
W (uh) to be only the first order change in the linear bending energy:

1

24

ˆ
ω

Q3(B +∇2V3) dx
′.

The goal of the analysis whose results we announce below, is to identify the
asymptotic behavior of the minimizers of Ih

W as h→ 0. We have:

Theorem 1 ([3]) Let Ah be given as in (6). Assume that a sequence of deformations
uh ∈ W 1,2(Ωh,R3) satisfies:

Ih
W (uh) ≤ Chγ+2,

where W fulfills (4) and (7). Then, there exist rotations R̄h ∈ SO(3) and translations
ch ∈ R

3 such that, for the normalized deformations:

yh ∈ W 1,2(Ω1,R3), yh(x′, x3) = (R̄h)T uh(x′, hx3)− ch,

the following hold (up to a subsequence that we do not relabel):

(1) yh(x′, x3)→ x′ in W 1,2(Ω1,R3).
(2) The scaled displacements:

V h(x′) = 1

hγ/2

 1/2

−1/2
yh(x′, t)− x′dt

converge to a vector field V of the form V = (0, 0, V3)
T . This convergence is

strong in W 1,2(ω,R3). The only non-zero out-of-plane scalar component V3 of
V belongs to W 2,2(ω,R).
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(3) Moreover:

lim inf
h→0

1

hγ+2 I
h
W (uh) ≥ Iγ (V3),

where Iγ : W 2,2(ω)→ R̄+ is given by:

Iγ (V3) = 1

24

ˆ
ω

Q2(∇2V3 +
(
symB(x′)

)
2×2) dx

′ (8)

and the quadratic non-degenerate form Q2 is:

Q2(F ) = min
{
Q3(F̃ ) : F̃ ∈ R

3×3, F̃2×2 = F
} ∀F ∈ R

2×2. (9)

Theorem 2 ([3]) Assume (6) and that W satisfies (4) and (7). If ω is simply
connected then, for every V3 ∈ W 2,2(ω,R), there exists a sequence of deformations
uh ∈ W 1,2(Ωh,R3) such that the following hold:

(1) The sequence yh(x′, x3) = uh(x′, hx3) converges in W 1,2(Ω1,R3) to x′.
(2) The displacements:

V h(x′) = 1

hγ/2

 h/2

−h/2

(
uh(x′, t)− x′

)
dt

converge in W 1,2(ω,R3) to (0, 0, V3)
T .

(3) Recalling (8) one has:

lim
h→0

1

hγ+2 I
h
W (uh) = Iγ (V3).

As a result of Theorems 1 and 2 we have:

Corollary 1 Assume (6), (4), and (7). Moreover, assume that ω is simply connected
and that γ > 2. Then there exist a uniform constant C ≥ 0 such that:

eh = infIh
W ≤ Chγ+2.

Under this condition, for any minimizing sequence uh ∈ W 1,2(Ωh,R3) for Ih
W , i.e.

when:

lim
h→0

1

hγ+2

(
Ih
W (uh)− infIh

W

)
= 0, (10)

the convergences (1), (2) of Theorem 1 hold up to a subsequence, and the limit V3 is
a minimizer of the functional Iγ defined as in (8).



On the Dimension Reduction in Prestrained Elasticity (Survey) 319

Moreover, for any (global) minimizer V3 of Iγ , there exists a minimizing sequence
uh, satisfying (10) together with (1), (2), and (3) of Theorem 2.

5 General Scaling Result

In the same fashion as in the previous section, we are interested in understanding the
asymptotic behavior of the minimizers of Ih

W (see (3)) as h → 0, through deriving

the Γ -limit of the rescaled energies
1

hδ+2
Ih
W (uh), where (Gh)1/2 = Ah+h.o.t , and

Ah are given by:

Ah(x′, x3) = I3 + hαS(x′)+ hγ/2x3B(x′). (11)

Here, we work with δ ≥ 2, δ = min {δ, 2α, γ }, and we obtain different results,
depending on the relation between the three parameters.

First, we quote the following approximation result, which can be directly
obtained from the geometric rigidity estimate found in Theorem 1.6 of [7], in view
of the following bounds:

V ar(Ah) =
∥∥∥∇tan(A

h
∣∣∣
x3=0

)

∥∥∥∥
L∞(ω)

+
∥∥∥∂3A

h
∥∥∥
L∞(Ωh)

≤ Chα∧ γ
2 ,

∥∥∥Ah
∥∥∥
L∞(Ωh)

+
∥∥∥(Ah)−1

∥∥∥
L∞(Ωh)

≤ C.

Theorem 3 ([15]) Assume Ih
W (uh) ≤ Ch2+δ . Then, there exist matrix fields Rh ∈

W 1,2(ω,R3×3), such that Rh(x′) ∈ SO(3) for a.e. x′ ∈ ω, and:

1

h

ˆ
Ωh

∣∣∣∇uh(x)− Rh(x′)Ah(x)

∣∣∣
2
dx ≤ Ch2+min{δ,2α,γ },

ˆ
ω

∣∣∣∇Rh
∣∣∣
2 ≤ Chmin{δ,2α,γ }.

Let us define the averaged rotations: R̃h = PSO(3)

 
ω

Rh dx′, which allow us to

define: R̂h = PSO(3)

 
Ωh

(R̃h)T∇uh dx, as well as: R̄h = R̃hR̂h.

Different cases occur depending on the relationship between the parameters α, γ,
and δ. The first thing to notice is that, in order to characterize the Γ -convergence of
the rescaled energies, we need to have:

1

h2+δ
W((Rh)T∇uh(Ah)−1) = 1

h2+δ
W(Id + h1+δ/2Ph) = 1

2
Q3(P

h)+ error,
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where the rescaled strains Ph ∈ L2(Ω1,R3×3) are given by:

Ph(x′, x3) = 1

hδ/2+1

((
Rh(x′)

)T ∇uh(x′, hx3)
(
Ah(x′, hx3)

)−1 − Id

)
,

and satisfy that Ph → P weakly in L2(Ω1,R3×3) as h → 0. From this, the first
constraint that appears is that δ = min {δ, 2α, γ }.

For the limiting strain P , we obtain that:

P(x′, x3)3×2 = P(x′, 0)3×2 − x3

{
0 when δ < γ

B(x′)3×2 when δ = γ,

− x3

(
∇2V3(x

′)
)

3×2
+ 2x3

{
0 if δ < 2α

(∇tanSe3)3×2 if δ = 2α
,

where V3 ∈ W 2,2(ω,R) is given in part (2) of Theorem 4 and satisfies:

(−D3,1,−D3,2)
T = (∂1V3, ∂2V3)

T −
{

0 when δ < 2α

(S3,1, S3,2)
T when δ = 2α

,

where D is the L2(ω,R3×3)-limit of
1

hδ/2

(
(R̄h)T Rh − Id

)
as h → 0, and where

P(x′, 0)3×2 ∈ L2(ω,R3×2) satisfies:

symP(x′, 0)2×2 =
⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sym∇w if δ > 2 and (S2×2 = 0 or α > 1+ δ/2)

sym∇w − S2×2 if δ > 2 and α = 1+ δ/2

sym∇w − 1
2 (D

2)2×2 if δ = 2 and (S2×2 = 0 or α > 1+ δ/2 = 2)

sym∇w − 1
2 (D

2)2×2 − S2×2 if δ = 2 and α = 1+ δ/2 = 2

,

with w given in part (3) of Theorem 4.
If δ ∈ (0, 2), the stretching term symP(x′, 0)2×2 is discarded, and we have

that:

• When δ < α or S2×2 = 0: then sym∇w = −1/2∇V3⊗∇V3, which is equivalent
to det∇2V3 = 0.

• When δ = α: then sym∇w = −1/2∇V3 ⊗ ∇V3 + S2×2, which is equivalent to
det∇2V3 = −curlT curl S2×2.

Theorem 4 ([2]) Let Ah be given as in (11). Assume that a sequence of deforma-
tions uh ∈ W 1,2(Ωh,R3) satisfies:

Ih
W (uh) ≤ Chδ+2,
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where W fulfills (4) and (7). Then, there exist rotations R̄h ∈ SO(3) and translations
ch ∈ R

3 such that, for the normalized deformations:

yh ∈ W 1,2(Ω1,R3), yh(x′, x3) = (R̄h)T uh(x′, hx3)− ch,

the following hold (up to a subsequence that we do not relabel):

(1) yh(x′, x3)→ x′ in W 1,2(Ω1,R3).
(2) The scaled displacements:

V h(x′) = 1

hδ/2

 1/2

−1/2
yh(x′, t)− x′dt

converge to a vector field V of the form V = (0, 0, V3)
T . This convergence is

strong in W 1,2(ω,R3). The only non-zero out-of-plane scalar component V3 of
V belongs to W 2,2(ω,R).

(3) The scaled in-plane displacements
1

h
V h
tan converge (up to a subsequence),

weakly in W 1,2(ω,R2) to an in-plane displacement field w ∈ W 1,2(ω,R2).
(4) Moreover:

lim inf
h→0

1

hδ+2 I
h
W (uh) ≥ I(w, V3),

where:

I(w, V3) = 1

2

ˆ
ω

Q2(symP(x′, 0)2×2) dx
′ + 1

24

ˆ
ω

Q2 (S) dx′, (12)

and S is given by:

S = ∇2V3 −

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 when δ < min {γ, 2α}
−B2×2 when δ = γ < 2α

2∇tan(S3,1, S3,2) if δ = 2α < γ

2∇tan(S3,1, S3,2)− B2×2 if δ = 2α = γ

and the quadratic non-degenerate form Q2 is given by (9).

Theorem 5 ([2]) Assume (11) and that W satisfies (4) and (7). If ω is simply
connected then, for every V3 ∈ W 2,2(ω,R) and w ∈ W 1,2(ω,R3), there exists
a sequence of deformations uh ∈ W 1,2(Ωh,R3) such that the following hold:
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(1) The sequence yh(x′, x3) = uh(x′, hx3) converges in W 1,2(Ω1,R3) to x′.

(2) The displacements V h(x′) = 1

hγ/2

 h/2

−h/2

(
uh(x′, t)− x′

)
dt converge in

W 1,2(ω,R3) to (0, 0, V3)
T .

(3)
1

h
V h
tan converge in W 1,2(ω,R2) to w.

(4) Recalling (12) one has:

lim
h→0

1

hδ+2 I
h
W (uh) = I(w, V3).

6 Conclusions

In this note, recent developments on the analysis and derivation of thin film models
for prestrained structures were showcased. We also announced the result of [3] in
which the dimensionally reduced model for the weak prestrain in (6) is derived,
completing thus the prior analysis of [17]; as well as the results of [2], in which the
more general prestrain (11) is considered.

As part of the work in [2], we were able to identify the Γ -limits as the sum
of norms of curlT curl S2×2 and/or curlB2×2, corresponding to the stretching and
bending terms. For example, in the case when δ > 2 and (δ = 2α−2 and S2×2 �= 0),
by Theorems 4 and 5, the Γ -convergence is done with respect to w and V3, and the
Γ -limit is given by:

1

2

ˆ
ω

Q2(sym∇w − S2×2) dx
′

+ 1

24

ˆ
ω

Q2

(
∇2V3 −

{
0 when δ < γ

−B2×2 when δ = γ

)
dx′.

However, we may also bring down the Γ -convergence to be with respect to V3
only; where the first term above (stretching term) is then replaced by the following
constant quantity:

1

2
dist2Q2

(
S2×2,

{
sym∇w; w ∈ W 1,2(ω,R2)

})
.

This quantity may, in fact, be viewed as the following norm:

∣∣∣∣curlT curl S2×2
∣∣∣∣2
H−2(ω)

.

Similarly, when δ = γ , the second (bending) term may be replaced by the norm:
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∣∣∣∣curlB2×2
∣∣∣∣2
H−1(ω)

.

We thus see that:

lim inf
h→0

1

hδ+2 I
h
W (uh) ∼ ∣∣∣∣curlT curl S2×2

∣∣∣∣2
H−2(ω)

+ ∣∣∣∣curlB2×2
∣∣∣∣2
H−1(ω)

,

where the symbol ∼ indicates equality up to a certain universal constant.
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Machine Learning in Crowd Flow
Exit Data (Survey)

F. Patricia Medina

1 Introduction

This paper is based on the work published by the author with her co-authors in [12]
where the results of exploratory analysis of black box simulation data modeling
crowds exiting different configurations of a one story building are described. Here
we focused in the machine learning approach given in section 8 in [12], where we
proposed a methodology to generate features inspired by a similar technique used
in computer vision.

The main problem is to predict the exit times of 100 agents in a given room
configuration using simulated data. Given the small size of the simulated data,
we present a technique for generating more features and data points (the “sliding
window” technique described in Sect. 2.1). We also explore the difference between
unsupervised linear dimension reduction using Principal Component Analysis and
unsupervised non-linear dimension reduction using auto-encoders.

Crowd dynamics, or pedestrian dynamics, is an area of research that covers a
wide range of approaches related to understanding and modeling crowd behavior.
The most practical motivation for understanding crowd dynamics is to improve
human safety in real-world crowd situations.

We mention three main applications motivating the study of crowd dynamics.
First, gaining a better understanding and modeling of crowd flow can improve
evacuation strategies from buildings, stadiums, airline terminals and other public
spaces. For example, in 2017 there were multiple crowd stampedes resulting in
injury and death (e.g. [3, 17]). Second, research in crowd flow in real world crowd
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flow data, can improve the tracking of people’s movements. A third application is
producing computer-generated crowds in video games.

Most of the time, crowd behaviors are based in agent-based modeling [6]. In an
agent-based model of crowd dynamics, individual people or groups of people are
represented by agents, which are given a set of rules and properties, possibly all the
same or differing by agent, for how the agent should interact with its environment
and the other agents. Methods for formulating the rules to steer pedestrians include:
ego-centric fields [16] and social force models [14].

The development of software to execute a given agent-based modeling system
is another problem in crowd dynamics. One example is the program Menge [8],
which was created for simulating pedestrian movement in a crowd. In our work,
we used data generated by the recently developed SteerSuite platform, designed to
be an open framework for developing, evaluating and sharing steering algorithms
[14–16, 25].

Another agent-based modeling approach is based on fluid dynamics by treating
the crowd as a continuous flow. For example, models based on optimal transport
[20], and mean field games [18], as well as in modeling crowd emotions [7, 28].

One of the problems in computer vision focus on the detection of abnormal
behavior and extraction of useful features from video streams [23, 26]. The most
frequently used features for crowd abnormal behavior include global flow-based
features and local spatiotemporal based features (see [23, 26, 27]). The simulated
data we used for our experiments includes the position of the agents and a list of
features for each agent. We focus in the inference of crowd flow exit-dynamics.

Each building configuration had three rooms on the north side, two rooms on
the east side, and two rooms on the south side. For a detail description of the room
configurations, see [12]. We show one of the building configurations (scenario 2)
in Fig. 1.

The data for each run consisted of 23-dimensional vectors for each agent at each
time step. The 23 features were: agent id, time, x and y coordinates for position
and velocity, goal and final target (the exit), the radius, acceleration, personal space
threshold, agent repulsion importance, query radius, body force, agent body force,
sliding friction force, maximum speed, two other features for nearby agents and two
wall parameters (see Table 1 for feature description as in SteerSuite).

2 Methods for Estimating Exit Times

We follow closely the exposition presented in [12]. The idea is to show a general
machine learning framework involving feature generation, dimension reduction and
feeding a neural network for supervised multi-output regression obtained from the
given unsupervised dimensionality reduction method. The final output of the latter
neural network are the predicted exit times.
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Fig. 1 Building
configuration 2. Figure
extracted from [12], p. 244

Accordingly, the outline of our main experiments is as follows (see Fig. 2):

1. Perform feature engineering to generate a new data set using a subset of the
original data.

2. Perform dimensionality reduction using either PCA (for a linear projection) or a
3-layer auto-encoder (for a non-linear projection).

(a) If using PCA, then use the projected features as the predictors for our
supervised learning.

(b) If using an auto-encoder, then use the hidden layer as the predictors for our
supervised learning.

3. Provide a training sample of our projected data to a 2-layer feed-forward neural
network (from Sect. 3.1) to make predictions of the agents’ exit times.

In Sect. 2.1, we describe the feature engineering step consisting on a “sliding
window” approach. In Sect. 2.2, we give the general idea of how to used auto-
encoders to perform dimensionality reduction of the data.

We emphasize that option 2a (PCA) tries to find a linear map that maximizes
certain cost function (the solution space for the associated optimization problem
is convex), while option 2b (deep auto-encoders) tries to find a nonlinear map and
belongs to the class of non-convex techniques [19].
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Table 1 Features and their description for agents and their trajectories. Table extracted from
[12], p. 243

Trajectory features Description of features

ID Agent’s ID

Time Timestamp (seconds)

Position x x coordinate of current position

Position y y coordinate of current position

Velocity x x coordinate of current velocity

Velocity y y coordinate of current position

Target x x coordinate of final target

Target y y coordinate of final target

Agent features Description of features

Radius Radius of the agent

Acceleration The inertia related to mass

Personal space
threshold

The distance between a wall and an agent within which a repulsive
force begins to act

Agent repulsion
importance

The factor which decides how much the penetration depth affects
both the repulsive force and frictional force between two agents

Query radius Defines the area, in which all objects act force on the subject agent.

Body force Factor of repulsive force between an agent and a wall

Agent body force Factor of repulsive force between two agents

Sliding friction force Factor of frictional force

agent_b The proximity force between two agents is

agent_a * EXP(−d∗ agent_b),

where d is the closest distance between two agents’ outlines

agent_a agent_b * EXP(−d∗ agent_a )

wall_b The proximity force between an agent and a wall defined by

wall_a * EXP(−d∗ wall_b),

where d is the closest distance between two agent’s outline and a wall

wall_a wall_b * EXP(−d∗ wall_a)

Maximum speed The maximum speed of an agent

2.1 Feature Engineering: Sliding Window Approach

Typical use of feed-forward networks which employ a sliding window approach are
market predictions, meteorological and network traffic forecasting [5, 9–11]. In the
context of computer vision, a “sliding window” is rectangular region of fixed width
and height that “slides” across an image, [4]. In our context, the sliding window
would be moving across time slices.

Our “sliding window” approach is used to generate a new data set using the
original data set. In order to simplify the explanation of a feature generation
technique, we divide our explanation in three main steps. First, we create a
“window” of a given size for a fixed agent by combining original agent features at
different slices at times t0, t1, t2, . . . , as shown in Fig. 3. Second, we further create
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Fig. 2 Diagram describing the three stage process to estimate the agents exit times

Features
︷ ︸︸ ︷

t0→ F0
t1→ F1
t2→ F2
t3→ F3
t4→ F4

−→
Concatenated features

︷ ︸︸ ︷

F0 F1

t0→ F0
t1→ F1
t2→ F2
t3→ F3
t4→ F4

−→ F1 F2

t0→ F0
t1→ F1
t2→ F2
t3→ F3
t4→ F4

−→ F2 F3

t0→ F0
t1→ F1
t2→ F2
t3→ F3
t4→ F4

−→ F3 F4

Fig. 3 First stage of the “sliding window technique” (agent and run are fixed). The figure is an
illustration of the “sliding window” technique for a fixed agent and run. The number of generated
new data points is proportional to the number of windows, and the dimension is proportional to
the size of the window. In this case, we have 4 windows of size 2 each. Figure extracted from [12],
p. 264
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Features of agent i
︷ ︸︸ ︷

t0→ F(i)
0

t1→ F(i)
1

t2→ F(i)
2

t3→ F(i)
3

t4→ F(i)
4

−→

Concatenated features
︷ ︸︸ ︷

F(i)
0 F(i)

1

F(i)
1 F(i)

2

F(i)
2 F(i)

3

F(i)
3 F(i)

4

→

Rj =

Concatenated features for all agents on run j
︷ ︸︸ ︷

F(1)
0 F(1)

1 F(2)
0 F(2)

1 · · · F(100)
0 F(100)

1

F(1)
1 F(1)

2 F(2)
1 F(2)

2 · · · F(100)
1 F(100)

2

F(1)
2 F(1)

3 F(2)
2 F(2)

3 · · · F(100)
2 F(100)

3

F(1)
3 F(1)

4 F(2)
3 F(2)

4 · · · F(100)
3 F(100)

4

New array including all blocks Rj ( j = 1, . . . ,21)−−−−−−−−−−−−−−−−−−−−−−−−−−−→

R1

R2

...

R21

Fig. 4 First and second stages of the “sliding window” technique used to generate a new data
set. Considering the features for agent i, we obtain a new array (as described in Fig. 3). Then
concatenate the features for all 100 agents to obtain a new array for run j, Rj . Note that in this
case, we have 4 windows of size 2, so the dimension of the new data is p = d × sw × N =
21 × 2 × 100 = 4200. The number of points is nw× number of runs = 4 × 21 = 84. Figure
extracted from [12], p. 265

another data frame by putting all 100 agents data frames together. Finally, we use
the available runs to create instances for the new data frame. See Fig. 4 to visualize
the complete technique.

For example, for a fixed agent, consider the set of features F0 at time t0, and the
set of feature F1 at time t1. Note that F0 and F1 are rows of the same original data
frame. Since we started by just considering two rows of the original data frame, we
are working with a “window” of size two. We now repeat the previous process but
now with the set of features {F1, F2}. At this point, the “window” just slid. We stop
at time t4. See Fig. 3 for an illustration of this first stage of the technique.

Note that, so far, we have generated a new data frame for fixed agent i. Now, for
a fixed run j , generate new data frames by repeating the same process just described
for all 100 agents, and create a new data frame Rj as shown in Fig. 4. Finally, we
create a new data set by putting all arrays Rj together (j = 1, . . . , 21).

Observe that our new data set has dimension p = d × sw × N , where d is the
dimension of the original data, sw is the size of the window, and N is the number
of agents. Moreover, the number of instances is now nw × Total number of runs,
where nw is the number of windows.



Machine Learning in Crowd Flow Exit Data (Survey) 331

2.2 Auto-encoders for Dimensionality Reduction

Auto-encoders are feed-forward neural networks with an odd number of hidden
layers and shared weights between the left and right layers. The input data X (input
layer) and the output data X̂ (output layer) have d(0) nodes. For a more detailed
description on neural networks, see [2, 13] and [22]. More precisely, auto-encoders
learn a non-linear map from the input to itself through a pair of encoding and
decoding phases [29, 30]

X̂ = D(E(X)), (1)

where E maps the input layer X to the “most” hidden layer (encodes the input data)
in a non-linear fashion, D is a non-linear map from the “most” hidden layer to the
output layer (decodes the “most” hidden layer), and X̂ is the recovered version of
the input data. An auto-encoder therefore solves the optimization problem:

argmin
E,D

‖X −D(E(X))‖2
2, (2)

We are motivated to include multi-layer auto-encoders in our exploratory analysis
in crowd flow data, since they have demonstrated to be effective for discovering non-
linear features across problem domains.

We use an auto-encoder with three inner layers to perform dimension reduction
in our experiments. We aim to find functions E and D which are solutions to the
corresponding optimization problem (2), with first hidden layer (leftmost hidden
layer) Sl ∈ R

d(1)
, “deepest hidden layer” Z ∈ R

d(3)
and “rightmost inner layer”

Sr ∈ R
d(3)

.
In the next section, we perform dimensionality reduction by applying the encoder

E to the input layer X. We then feed the neural network with Z = E(X).

3 Estimation of Exit Times

We focus on the class of feed forward neural networks, which means that there
are no backward pointing arrows and no jumps to other layers. In this paper, we
consider a multi-output regression in the final stage of the process of estimating
stopping times T1, . . . , T100.

Recall that the input data is the new data frame produced by our “sliding window”
technique approach for feature generation described on Sect. 2.1. Next, we reduce
the dimension of the data by using PCA (linear and unsupervised) or an auto-
encoder (nonlinear and unsupervised). We feed the multi-output neural network with
new predictors obtained from the dimensionality reduction stage.
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X1

X2

X3

Xd(0)−2

Xd(0)−1

Xd(0)

...

(Sl)1

(Sl)2

(Sl)3

(Sl)d(1)−1

(Sl)d(1)

...

Z1

Z2

Zd(2)−1

Zd(2)

...

(Sr)1

(Sr)2

(Sr)3

(Sr)d(3)−1

(Sr)d(3)

...

X̂1

X̂2

X̂3

X̂d(0)−2

X̂d(0)−1

X̂d(0)

...

Input
layer

First
Hidden
layer

Second
Hidden
layer

Third
Hidden
layer

Output
layer

Fig. 5 3-Layer auto-encoder diagram. The input layer has dimension d(0), the three inner layers
Sl, Z, Sr have dimensions d(1), d(2) and d(3), respectively. The dimension of the outer layer X̂

has dimension d(0) since this is an auto-encoder. Figure extracted from [12], p. 269

More precisely, the input for the neural network has dimension d(0) = 20 as the
explained variance for PCA is more than 95% when using 20 components, and the
output has dimension d(L) = 100 which are exit times for each agent. We have
chosen the dimension of the inner layer of the auto-encoder based on the number of
components of the PCA for the sake of comparison (Fig. 5).

Since this is a multi-output regression, we computed the R2-scores or coefficient
of determination:

R2 = 1− ‖h(X)− T ‖2
2

‖T − T̄ ‖2
2

(3)

where T = (T1, T2, . . . , TN), T̄ is the N dimensional vector with all entries

1

N

N∑
i=1

Ti and h is the function learned by the machine learning algorithm. In our

case, N = 100.
An R2 score near 1, means that the model is predicting the data (stopping time)

very well, a score close to zero means that the model is predicting the mean of the
stopping times, and the score can be arbitrarily negative indicating bad predictions
by the model.
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In all experiments we split the initial input data. We train the learning algorithm
with 80% of the data and test it with the remaining 20% of the data (we do
appropriate normalization of the data, z-scores). Also, we have considered a multi-
linear regression for the learning algorithm to produce stopping times for N = 100
agents at once.

3.1 Experiments: PCA vs Auto-encoder with Neural Networks

The main goal of this section is to study the differences between linear dimensional-
ity reduction using Principal Component Analysis (PCA) and using an auto-encoder
to do non-linear dimensionality reduction. In both cases, after the new lower-
dimensional features are produced, a feed-forward neural network is used to make
predictions of the agent exit times. Our proposed methodology promises a number
of advantages. First, since the dimensionality reduction is performed without access
to the measured exit times of the agents, at least that part of our procedure is safe
from over-fitting. Second, as the problem of interest is quite complex, there is likely
a non-linear relationship between our measured features (e.g., the initial position of
the agents) and their final exit time.

We present two main sets of experiments. The first set involves feature engineer-
ing using PCA to produce new features to feed a forward neural network. For the
second set, we train a 3-layer auto-encoder instead of using PCA.

In all experiments, the neural network architecture consists of an input layer
made of 20 inputs (Z1, . . . , Z20) obtained after dimensionality reduction, two
hidden layers (first hidden layer has 50 units, second hidden layer has 70 units).
The output layer consists of 100 units representing exit time for each of the 100
agents.

We had little data for training, so we use a “sliding window” technique (see Fig. 3
for illustration) in order to produce more data points and improve the performance
of the neural network. Overlapping windows and non-overlapping windows are
considered. Note that the input data that gives the least number of data points
corresponds to window size 1, which includes the original data together with all
runs for a fixed scenario at one single time step.

We have used TensorFlow (an open source software library for numerical
computation using data flow graphs, see [1]) to build the auto-encoder. The rest
of the scripts are in Python using Sci-kit Learn [24] and Pandas [21] libraries.

Recall that our main steps for the proposed algorithm are as follows:

1. Generate new data X from the original data by using the sliding window
approach (as described in Sect. 2.1).
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Table 2 R2 scores using
PCA for dimensionality
reduction with overlapping
windows for scenario 19.
Table extracted from [12], p.
273

Window size # windows R2-score

2 1 −8.45903

2 −0.34136

3 −0.19203

4 0.99402

3 1 −7.702292

2 −2.15774

3 −0.54476

4 0.99563

Table 3 R2 scores for
encoder (from 3-layer
auto-encoder) with
overlapping windows for
scenario 19. Table extracted
from [12], p. 274

Window size # windows R2-score

2 1 −0.54033

2 −0.03344

3 −0.19686

4 0.04300

3 1 −0.86243

2 0.05440

3 0.23429

4 0.20910

2. Reduce the dimension of the new generated data by either using PCA or using
an auto-encoder:

(a) Perform PCA on the new input data X to obtain a new input layer Z.

(b) Construct a auto-encoder with three inner layers and extract the encoder E.
Apply the encoder E to the initial data X to reduce the dimension to 20.

3. Finally, estimate exit times {Ti} with a neural network:

(a) Feed the original 2-layer neural network with Z = XM ∈ R
20, where M is

the matrix of the principal components associated to the covariance matrix
of the input data. See R2 score in Table 2.

(b) Feed the original 2-layer neural network with Z = E(X) ∈ R
20. See R2

score in Table 3.

We reduce the dimension of the space performing PCA. The cumulative variance
is computed to get an estimate for the number of components. We end up choosing
20 components as the cumulative variance is more than 95%.

After augmenting the dimension of the input layer, we perform PCA to reduce the
dimension to 20, then we train a neural network with two hidden layers (L = 4). The
input layer has dimension d(0) = 20 and the output, d(3) = 100, so the output layer
contains T the stopping times for each agent. The hidden layers have dimensions
d(1) = 50 and d(2) = 70. The time step used in all experiments is 0.05 s.

A big improvements is observed whenever we use the sliding window technique
as seen in Tables 2, 3 when the window size is equal or greater than 2. In the sample
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tables, we can see that the 3-layer auto-encoder performs better than PCA whenever
a single window, two windows and three widows of size three are used. We have
positive scores for windows of size 3 when the number of windows is 2 or greater
if using an auto-encoder (Table 3), and when using PCA with overlapping windows
in Table 2 scores are all negative except for the last one (0.99563).

We emphasize to the reader that there are two large jumps in accuracy seen in
experiments involving PCA. We attribute this large jumps to the fact that studying
the agent for longer time provides substantially more information that leads to
more accurate predictions. The non-linear properties of auto-encoders allow for
more accurate predictions from a small number of features. However, we don’t
have enough instances to train the auto-encoder and obtain a better performance.

Notice that in the “sliding window” technique a consecutive combinations of
time steps is used to generate the new data set (input for the dimension reduction
method). Instead of having information of the time step at a single time, we are
combining either two or more time steps at once. Also, observe that the sliding
window technique combines all 100 agents and runs in a single data set.

4 Summary and Future Research Directions

A “sliding window” approach was used for feature generation and two types of
dimensionality reduction were used: PCA and encoder-decoder. The results were
evaluated using the R2 score. Exit times were successfully predicted for certain
combinations of the methods. The “sliding window” technique resulted in a big
improvement in exit time prediction and use of the encoder resulted in a small
improvement over PCA dimensionality reduction.

Future work includes analyzing real-world tracking data from crowds at public
events. Also, performing “sliding window” technique by including early time steps
and compare the exit time prediction with a set of windows using later time steps,
or by considering a fixed agent and included the features of the neighbor agents. In
other words, a comparison study of predictions using different “windows”.

Also, we can perform similar studies in real exit data and configurations such as
the data set from the Asiana flight crash in San Francisco. We would like to give
credit to Andrea Bertozzi for suggesting experimentation on the Asiana flight data
as part of our future work in this topic.
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The Matter of Shape: A computational
Approach to Making in Architectural
Heritage (Survey)

Mine Özkar

1 Introduction

One aspect of the support that computational methods offer to heritage-related
disciplines is developing means to understand the role of making in how shapes
come about and to represent this knowledge and the material properties in design
models. This involves incorporating shapes as things [1] and deciphering design
knowledge from heritage beyond just the visual properties.

The issue of how shapes are represented in design computation is multifaceted.
Our research looks at computational shape representations in art and architecture
history in the particular case of geometric patterns. It links to computer vision
studies in unbiased pattern detection [2] and seeking new representations of shapes
for use in design software [3]. It also links to devising computational methods to
better understand and articulate from a pedagogical point of view the setting up of
relations between shapes and their parts in design [4]. The term shape is used here
in reference to shape grammars [5] which is a formalism for representing visual
thinking in design. A visual design grammar can be a full or partial set of visual
rules, depending on the purpose. The significance of visual rules is that they allow
ambiguities which conventional symbolic computing discards. At another level, the
theory offers a philosophical worldview. In this philosophy, practical, temporary,
and contextual definitions trump those that are set once and for all.

That a whole is more than the sum of its parts recently resonated in the post-
disaster insufficiency of a digital exact replica of the Cathedral of Notre Dame,
however elaborate the gathered data. The late Andrew Tallon had produced an
impressively large data point cloud for the cathedral to be used in recreating a
precise 3D image of it [6]. Contrary to the make believe view of the world that
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is now ubiquitous with AI, this data alone is never enough to recreate the building
physically. The multiplicitous relations between parts and the processes that bring
these parts about need to be there as well. How an object of cultural heritage is
realized is an important part of the data required for its representation.

Our research focuses on ornaments from thirteenth century Anatolian architec-
ture (see Fig. 1). These patterns, even though they display distinct features based on
period and location, are generally known as Islamic and span a time period between
the ninth and eighteenth centuries, and a geography stretching from the western
parts of Central Asia to the Iberian peninsula. There has been much mathematical
interest in these patterns and they have been explored through many pattern books.
The more recent generative models and programs continue this exploration of the
geometry. There is a fascination with the variety that comes as a result of an
underlying structure constructed from a system of interlocking circles and polygons.
This variety is seemingly suitable for parametric modeling. However pattern variety
depends on the visual and material redefining of parts and wholes rather than
the changing values of a given set of parameters. Construction of the design is
a moment for creating variation. At a first glance, patterns may look similar, but
their underlying design systems may be very different altogether (see Fig. 2). With
the premise of not only replicating or restoring these, but also understanding and
passing down the design knowledge involved, our earlier work is on the geometric
construction using visual rules [7].

2 Materiality of Geometric Patterns

Construction in architecture is used in multiple meanings: one is the construction
of the geometry of the design, and another is the physical construction of the
design with materials. Specifically in the case of the patterns, the first is achieved
by interlocking circles and polygons merely using a compass and a ruler. Yet this
underlying system is not just the instrument of design but also of its application to
the material.

The geometric construction is for the most part very well documented and
articulated in literature. Manuscripts from as early as the tenth century [8, 9]
are known to have offered instructional drawings to the specialized audience of
“scholar-practitioners, artisan-designers, builder-architects” [10]. The very same
construction bridges geometry to the means of production. It primarily offers a
convenient way to recreate the underlying system, merely using a compass and a
ruler, onto a blank canvas such as a stone wall. However, literature and evidence,
past and present, does not provide much information further this point. It is
stipulated that the underlying structural geometry was inscribed on the stone using a
sharp tool [11, 12]. In contemporary applications of traditional crafts, we see master
craftsmen working with cardboard templates to chisel forms onto the stone, showing
that the required skill was merely to copy the geometric construction. Studies on
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Fig. 1 Geometric patterns from thirteenth century Anatolian architecture, in stone, and in tile-
mosaic
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Fig. 2 Three very similar
looking patterns from Kayseri
Huand Hatun Complex
employ very different
underlying geometric systems

the traditional stone relief carving and tile mosaics of thirteenth century Anatolia
neglect how the tools and techniques applied on the material surface factor into and
determine the final shape. Representing the material properties and the construction
knowledge behind these designs is a crucial issue waiting to be addressed in the
field of architectural heritage preservation as it more and more involves digital
processes and interfaces. Understanding what the specification of material aspects
of shapes are for any given corpus is one of the first steps in deciphering past design
knowledge from this perspective.

2.1 Specifications of Carved Material Applications

Capturing which properties should be incorporated to visual rules for these patterns
has been the focal point of our research. One of the attributes to be included in
the specifications is concerning the surface on which the design is applied. In a
previous study [13], we mapped designs on different surfaces by means of drawing
following two methods: one with a sheet template to transfer the lines, and the
second with the compass (Fig. 3). Paper templates that wrap around developable
curved surfaces, such as the outside of a cylinder, are useful when applying the
patterns. The issue of scale, i.e. the ratio of sizes between elements of the pattern
and the surface, is not trivial. When applying the design on the spherical surface,
it was not possible to use the template, only the compass method worked. The size
of the circles guiding the design were well within the perceived boundaries of the
surface from the central viewpoint and it was possible to apply the pattern using a
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Fig. 3 Applying two-dimensional designs on curved surfaces [13]

rope compass. The exception in the third concave case, i.e. the curved squinch, was
a real distortion due to varying geodesic distances. In the future, it will be important
to apply these methods with variables of radius-surface size ratio and symmetry
group of the pattern and to extend them to other materials such as brick, ceramic
tiling, and wood.
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Fig. 4 Left: A design drawn
by the author based on an
illustration from the
Anonymous
Compendium [10]. Right:
Illustration drawn by the
author based on a photograph
of a brick pattern from
Iran [15]

An alternative to using the compass and ruler is the tessellation of cut tiles [14].
Cutting uniform tiles and organizing them flat, similar to putting together the pieces
of a puzzle, works for applications other than carving. Even for designs that seem
to rely on these tessellations however, it is not very clear how designs that are
often outlined in single line drawings are transformed into more complex relief
designs of new parts. See Fig. 4 where the image on the left is representative of
a common template presented to the artisans in historic documents that illustrate
how to construct polygons using simple tools of geometry. The image on the
right embodies this motif. The small square design elements are at the centers
of tessellated pinwheels. Nevertheless, anyone, who attempts at constructing these
patterns on paper using just a compass and ruler, will find out that giving a thickness,
anticipating the off-axis distance that yields the right kind of pattern and fitting all
pieces tightly together needs to be a calculated act.

For the patterns, we prepared a database that includes information on materials
and techniques. In the documentation we have done, we determined shape rules for
about 80 designs. Because there were many rules for each, we took the computation
in intervals and reduced the number of steps. This still allowed us to comparatively
analyze the two dimensional designs. For the three-dimensional features of the basic
design element, we used cross-sections to introduce other rules and labels. We were
able to see in comparison that exact geometric designs are differently made [16].
See Fig. 5 for a comparison of different making rules for the same design. The rule
set on the left indicates a deeper and sculptural cut whereas the rule set on the right
shows a shallower cut that results in a slightly etched surface.

Documenting patterns with information on the making and its parameters is
unique. Additional to shape rules, we have identified rules to visualize the process
of making, i.e. how these are physically produced. These rules distinguish the
cross-section that the tools and craftsman’s hands manipulate in parallel to the
general visual design. Specifying carving tools parameters and material parameters,
we reproduced on a CNC router old and new designs with the aim to study the
parameters. In stone carving, the cross-section, the angle and size of the tool tip, the
number of applications of the tool tip for one single line, the tool path sequencing,
the speed of the chiseling were all relevant to shape emergence.



The Matter of Shape: A computational Approach to Making in Architectural. . . 345

Fig. 5 The same geometric
design is applied on stone in
two different instances. Select
rules show the detail of the
difference in carving

2.2 Specifications of Assembled Material Applications

In addition to the technique of stone carving, we focused on another historical
technique of pattern making by assembling pieces. In thirteenth century Anatolia,
a new material, namely the tile mosaics, brought about new approaches to pattern
making. Often, we see two instances of the same design, in two different materials,
in one building. In tiles, the process requires pre-cutting the parts and assembling
them. We studied the specifications of the process in terms of the predetermined
shapes and assembly patterns, as well as sub-parts for hierarchic ordering of
assembly.

Here the methods in which specifications are added to shape rules extend to
the techniques of capturing and modeling the physical information from built
heritage. For this type of pattern application, we started work on the giant dome
of Konya Karatay Madrasah as part of a study on the material computation of
tile mosaics [17]. We used photogrammetry to digitally capture the features of the
surface with the further objective of putting the elaborate point cloud to use, to
understand and represent how the pattern on the inside of the dome is constructed.
The Karatay Madrasah dome interior consists of myriads of mosaic tiles assembled
into a continuous geometric pattern that spans a wide band around the semi-sphere.
In order to corroborate a renown historian’s thesis on how it is assembled [18],
our ongoing research aims to identify in the point cloud the larger parts and the
smaller bits in the hierarchical ordering of the assembly and to capture the geometric
structure that guides the construction.

We reverted to the similar but simpler case of mud-brick wall assemblies from
the same period and geography for which we were able to develop two dimensional
normal mapping based on the three dimensional photogrammetry data to make
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visible some of the alignments and figure outlines in the pixel-like mosaic assembly
while running feature recognition algorithms to successfully detect the majority of
the bricks [19].

3 Concluding Remarks

In order to overcome the problems in shape computation with not enough visual
or material specifications, we need to augment the shape rules. In our research, we
have so far identified specifications for the given corpus of stone ornaments and
partly the tile mosaic patterns from thirteenth century Anatolian architecture. For
the stone carving, material specifications are connected with the surface section, for
a reference in curvature and size ratio, as well as the tool tip cross-section, angle,
and size, the depth of subtraction, the number of applications of the tool tip for
one single line, the tool path sequencing, and the speed of the chiseling. We show
these in shape rules with labels to specify dimensions, parameters and their value
ranges. Reference lines of the underlying geometric system also augment the rules.
For the tile-mosaic and brick, the specifications extend to the hierarchy of parts
and sub-parts in assembly, and the local and global geometries that form them. We
continue seeking answers to how consequent representations of shapes in digital
models may incorporate these material attributes, with the motivation to increase
our understanding of past architectural and building traditions, and offering usable
specifications and visual computation for the benefit of possible reconstructions.
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the database created as part of TÜBİTAK project 114K283 under the direction of the author in
2014–16.

References

1. Knight, T.: Shapes and other things. Nexus Netw. J. 17, 963–980 (2015)
2. Adanova, V., Tari, S.: Beyond symmetry groups: A grouping study on Escher’s Euclidean

ornaments. Graphical Models. 83, 15–27 (2016)
3. Keles, H.Y., Özkar, M., Tari, S.: Weighted Shapes for Embedding Perceived Wholes. Environ-

ment and Planning B: Planning and Design. 39, 360–375 (2012)
4. Özkar, M.: Visual schemas: pragmatics of design learning in foundations studios. Nexus Netw.

J. 13, 113–130 (2011)
5. Stiny, G.: Shape: Talking about Seeing and Doing. The MIT Press, Cambridge, MA (2006)
6. Hertz, L.: Restoration of Notre Dame May Be Part of Professor Andrew Tallon’s Legacy.

Stories (2019) Available via Vassar University Website.
https://stories.vassar.edu/2019/190417-notre-dame-andrew-tallon.html. Cited 1 July 2019

https://stories.vassar.edu/2019/190417-notre-dame-andrew-tallon.html


The Matter of Shape: A computational Approach to Making in Architectural. . . 347

7. Özkar, M.: Repeating Circles, Changing Stars: Learning from the medieval art of visual
computation. In Lee, N. (ed.) Digital Da Vinci: Computers in the Arts and Sciences, pp. 49–64.
Springer (2014)

8. Özdural, A. Mathematicians, and “Conversazioni” with artisans. J. of the Soc. of Architectural
Historians. 54, 54–71 (1995)

9. Hogendijk, J. Mathematics and Geometric Ornament in the Medieval Islamic World. Newslet-
ter of the European Mathematical Society. 86, 37–43 (2012)

10. Necipoglu, G.: 1 — Ornamental Geometries: An Anonymous Persian Compendium at the
Intersection of the Visual Arts and Mathematical Sciences. In: Necipoglu, G. (ed.) The Arts
of Ornamental Geometry, pp. 11–78. Brill, Leiden, The Netherlands (2017)

11. Bakirer, Ö.: . The Story of Three Graffiti. Muqarnas. 16, 42–69 (1999)
12. McClary, R.P.: Craftsmen in Medieval Anatolia: Methods and Mobility. In: Blessing, P.,

Gashgorian, R. (eds.) Architecture and Landscape in Medieval Anatolia, 1100–1500, pp. 27–
58. Edinburgh University Press, Edinburgh (2017)
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Part VIII
Math Education



Being Research-Based and
Research-Minded in Helping K-12
Mathematics Education (Survey)

Adem Ekmekci and Anne Papakonstantinou

1 Why Conduct Education Research?

Is it only the responsibility of colleges of education to do mathematics education
research? Why is there such a disconnection between K-12 mathematics and higher
education mathematics? What can mathematics faculty, hard-core mathematics
research faculty do to build a bridge between the two? Are outreach activities that
departments of mathematics undertake such as math circles, camps, or summer
programs for students and teachers enough to establish a substantial bridge between
K-12 and higher education mathematics? These questions are essential to seek the
true meaning of mathematics and how it resonates and is understood and used in the
community.

There is no doubt about why both federal and non-profit research organizations
call for interdisciplinary work including the collaboration among departments of
education and mathematics [6, 32]. Improving teacher education is between many
facets of this collaboration and “teacher education must become a central focus
of the entire institution, not just of schools or departments of education” [32].
Mathematics faculty can engage in mathematics education research with several
goals in mind including: (a) to inform practice (critical especially in the context of
very diverse and high-poverty urban schools and school districts); (b) to generate
knowledge (for the sake of doing science); and (c) to develop proof of concept
for future grant proposals benefiting both higher education and K-12 education.
Besides, research products will help faculty advancement in several ways including
contribution to their tenure requirements.
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There are many efforts to bridge the gap between research conducted by higher
education institutions and the practice that takes place in public schools [5, 37].
However, mathematics faculty in higher education still have limited connection
with elementary and secondary education practice. Through strong connections and
collaborations between the research world and K-12 world, many issues facing K-
12 education can be acted on and resolved [5, 32]. Mathematics faculty at the higher
education can help identify issues and improve public education through studying
these.

2 Where to Start? Important Theories That can Guide New
Research Projects

The main areas of research that RUSMP conducts with robust theoretical frame-
works to inform and improve pre-college mathematics education are as follows:
professional development of teachers, teacher quality, teachers’ motivational beliefs
and technological pedagogical content knowledge, and student cognition and
motivation. We provide a brief overview of some of these sound theories for higher
education mathematics faculty so that they can build their research ideas and efforts
on these theories as well or get inspired by them to embark on new research projects.

2.1 Professional Development

Core features of effective professional development are: (a) rigorous content focus,
(b) active learning, (c) collaboration, (d) models of effective teaching practices, (e)
coaching and expert support, (f) frequent feedback and reflection, and (g) long-term
duration [14, 15]. RUSMP offers teacher professional development (PD) based on
these core features and research indicates that these PD programs help teachers
improve their content knowledge, pedagogical content knowledge, technological
pedagogical content knowledge, self-efficacy beliefs, epistemic beliefs, beliefs
about reform-based teaching practices, and beliefs about equity and diversity issues
(e.g., [9, 11, 16, 18]).

2.2 Pedagogical Content Knowledge

Among the theories utilized in RUSMP research and professional development
of teachers are the two major theories of mathematical knowledge for teaching
(MKT; [21]) and technological pedagogical content knowledge (TPACK; [30]).
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Both theories and related research have been primary built on Shulman’s [36] work
about pedagogical content knowledge (PCK).

The MKT framework is one of the most promising theories addressing the
enduring question of what kind of knowledge is needed to teach mathematics
effectively, and has also promoted studies of the effects of MKT on student learning
and achievement [22]. Notably, recent studies at the elementary school level have
found a significant positive association between MKT and student performance and
between MKT and mathematical quality of instruction [21].

It should be noted that MKT is different than the pure mathematical knowledge
(subject matter-knowledge) mathematicians or other professionals such as engineers
use to perform their jobs. MKT transcends the pure content knowledge and includes
knowledge about students’ ideas, knowledge, and conceptual understanding of
material. The MKT model is comprised of subject-matter knowledge and pedagog-
ical content knowledge (PCK) in mathematics as depicted in Fig. 1.

More specifically, the MKT model describes six components. The first three are
subdomains of “pure” content, or subject-matter knowledge [3]. The first, common
content knowledge (CCK), is defined as general knowledge of mathematics that
most educated people including teachers acquire. The second one is specialized
content knowledge (SCK), which is mathematical knowledge that is unique to, and
essential for, teaching mathematics. The third one, horizon content knowledge, is the
knowledge about the next level of mathematics. Being familiar about what comes in
the analysis topics after the multivariate calculus is an example of this. The last three

Fig. 1 Domains of mathematical content knowledge (Source: Hill et al.[21, p. 377])
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components are subdomains of pedagogical content knowledge (PCK)—knowledge
that combines content knowledge with student knowledge (KCS), knowledge that
allows for the combination of content knowledge with teaching knowledge (KCT),
and knowledge of content and curriculum and standards.

Since the arrival of accessible technology, many scholars have realized the
necessity to include technology as part of the existing PCK that evolved into
TPACK [2, 30, 33]. Being technology savvy does not directly translate into effective
use of technology for teaching and learning [30]. Today, researchers and teacher
educators unanimously agree upon on the importance of integrating technology into
teacher preparation and professional development programs with several expected
outcomes. Examples include effective utilization of technology for teaching par-
ticular topics; knowledge of students’ understanding, thinking, and learning with
technology in a particular subject; and knowledge of curriculum materials that
integrate technology with learning in the subject area (see [33]). As a distinct form
of knowledge, TPACK has been considered as complex, multi-faceted, integrative,
and/or transformative [2, 7, 30]. Cox and Graham [12] define TPACK as “a teacher’s
knowledge of how to coordinate the use of subject-specific activities or topic-
specific activities with topic-specific representations using emerging technologies
to facilitate student learning” (p. 64) (Fig. 2).

Fig. 2 TPACK, [24] image by http://tpack.org

http://tpack.org
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2.3 Teacher Quality

Another important area that RUSMP’s research and professional development focus
on is the teacher quality concept. The framework for teacher quality [19] provides
the most comprehensive framework to date based on a review and synthesis of
the recent research regarding the impact teachers have on student achievement-
related outcomes. The framework is comprised of three strands that are distinct
but interrelated: inputs, processes, and outcomes. Inputs focus on two different
but related ways of looking at teacher quality: teacher qualifications and teacher
characteristics. Used as proxies for teacher quality, teacher qualifications include
teachers’ degrees, coursework, and grades in higher education as well as teacher
preparation routes, certification types, years of experience, and continuing education
such as internships, induction, coaching support, and professional development
[13, 19, 23, 31]. The framework also conceptualizes teacher quality as encompassing
soft attributes (teacher characteristics) such as subjective judgements, organization
skills, critical thinking skills, and attitudes and beliefs (e.g., self-efficacy, epistemic
beliefs, and beliefs about teaching and learning [31, 34]). The processes strand of
the teacher quality framework focuses on factors related to teacher practices—i.e.,
what teachers actually enact in the classroom including instructional and classroom
management practices. Processes also include instructional practices such as the
emphasis placed on particular topics, questioning strategies, teacher interactions
with students and with other colleagues outside of the classroom, school contextual
interactions, and planning [19] (Fig. 3).

Fig. 3 Graphic representation of a framework for teacher quality. Adapted from Goe [19]



356 A. Ekmekci and A. Papakonstantinou

2.4 Social Cognitive Career Theory

RUSMP research also includes students’ contemplation about their future (both
college and career related outcomes). As an extension and application of social
cognitive theory [4] to career choice, Lent et al. [28] social cognitive career
theory (SCCT) provides the theoretical grounds for this study. SCCT posits that
one’s career choice is influenced by the beliefs that the individual develops and
refines through the complex interaction between the individual, environment, and
behavior [28, 39]. According to SCCT, the most important factors influencing
career decisions relate to student motivation (e.g., task value, self-efficacy, interest,
outcome expectations; see [38]). These psychological variables are considered as the
mediators that connect other personal and contextual factors to future career choice
and decisions [27, 39]. Empirical research has shown that students with higher
mathematics and/or science self-efficacy and outcome expectations for engaging in
mathematics and science are more likely to persist and be successful in these areas
(e.g., [1, 25]).

In addition to personal motivation, the SCCT framework recognizes several
contextual influences (e.g., supports and barriers at school and at home) that mold
individuals’ career aspirations and choices [26, 29, 39]. Specifically, several groups,
including parents, peers, and teachers have socializing influences on students’
academic and career-related outcomes.

RUSMP’s recent research efforts include integrating teacher quality as a con-
textual factor (the most important contextual factor for student outcomes [20]) into
social cognitive career theory to have a more comprehensive look into the factors
affecting student outcomes (see Fig. 4).

3 A Brief Overview of Selected RUSMP Research Findings

In a study of predictive value of teachers’ school-work environments on their self-
efficacy and intrinsic value for teaching, Corkin et al. [10] found that principals’
autonomy support positively predicted teachers’ self-efficacy and intrinsic value for
teaching beyond years of teaching experience, mathematics background, and grade
level taught. Moreover, the negative effects of school-work environments dominated
by high-stakes testing on teachers’ motivation for teaching were moderated by the
level of autonomy support provided by the school principal.

Ekmekci et al. [18] investigated the predictive value of teachers’ beliefs (e.g.,
self-efficacy) and MKT on their level of TPACK and discovered that standards-
based mathematics teaching beliefs positively predict mathematics teachers’ level of
TPACK for all teachers. Moreover, having a college/graduate mathematics degree
is more predictive of TPACK for K-5 and middle school teachers while MKT is
more predictive of TPACK for high school teachers. In addition, elementary teach-
ers’ mathematics self-concept and pedagogical preparedness and middle school
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Fig. 4 The melding of teacher quality and social cognitive career theories to predict student
outcomes [19, 28]

teachers’ mathematics teaching interest are significantly related to their level of
TPACK. In an earlier study, Ekmekci et al. [16] also found that teachers significantly
improved their educational beliefs about mathematics after RUSMP’s signature
summer campus professional development program. Moreover, Papakonstantinou et
al. [35] found that RUSMP summer PD institute positively impacted lead teachers’
understanding of math concepts, equitable instructional strategies, and collaborative
leadership skills.

In another study, Corkin et al. [9] found that the mathematics-teaching experience
was positively associated with teachers’ self-efficacy for teaching mathematics,
and the number of mathematics college courses teachers had taken moderated
their change in self-efficacy beliefs through professional development. Findings
also indicated that epistemic beliefs about mathematics, which became more
availing through professional development, were the strongest predictor of their
mathematical knowledge for teaching.

In studies of teachers’ impact on student outcomes, Ekmekci et al. [17] found that
teachers’ MKT and teaching experience had a significant effect on students’ math-
ematics achievement. In addition, Corkin and Ekmekci [8] found that the degree to
which teachers emphasized the development of deeper conceptual understanding
of mathematics was a predictor of students’ mathematics achievement, identity,
and self-efficacy whereas the degree to which teachers emphasized the utility of
mathematics predicted students’ beliefs about the utility of mathematics.
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4 Closing Remarks

RUSMP’s research in K-12 education has several implications for education and
community stakeholders. Findings provide school and district administrators with
guidance on the ways mathematics teachers can be supported and developed
professionally. Moreover, teachers can also benefit from the implications of these
findings for their personal professional development and for setting work-related
goals at a personal level. Lastly, the findings also have implications for teacher
educators including faculty from both colleges of education and sciences or from
both departments of teacher education and mathematics about how to design
effective teacher education and professional development programs.

In closing, important theories that this paper summarized offer themselves as
great resources to lay ground work for K-12 mathematics education research. In
addition, it is our hope that RUSMP’s featured research presented herein will
set examples for mathematics faculty and inspire them to embark on productive
research endeavors in mathematics education that will benefit K-12 education
community and that will have a reciprocal impact on their institutions of higher
education as well.
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The Rice University School Mathematics
Project: Supporting Excellence in K-16
Mathematics Since 1987 (Survey)

Anne Papakonstantinou and Adem Ekmekci

1 Introduction

This chapter describes the wide-ranging contributions of the Rice University School
Mathematics Project (RUSMP) from its inception to the present. The efforts of
RUSMP can serve as a model for outreach efforts at other institutions that wish
to create bridges between pre-college and university mathematics communities.

Since 1987, over 10,000 teachers and teacher leaders from over 100 districts
and private and charter schools and over 12,000 K-12 students have benefited from
RUSMP programs. RUSMP has evolved into an important regional STEM center
and continues to grow and impact the K-16 educational community. Through its
wide-ranging work, RUSMP is valued as a vital partner in meeting the educational
needs of the greater Houston community and beyond.

2 Mission and Goals

RUSMP’s mission is to create a better understanding of the nature, beauty, and
importance of mathematics and to promote effective teaching of mathematics. The
mission has expanded to include supporting science, technology, engineering, and
the arts as they relate to mathematics.

RUSMP’s major goal is to increase the content and pedagogical knowledge of
K-12 STEM teachers and support them in implementing more effective programs.
In order to achieve this goal, RUSMP
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• increases the STEM knowledge of Houston-area teachers,
• promotes and models effective teaching and assessment of mathematics as it

relates to the other STEM disciplines and the arts with active student involvement
in the learning process,

• encourages the appropriate use of instructional tools in the teaching of STEM
disciplines,

• provides strategies to actively engage struggling students, English language
learners, and underrepresented minorities in learning the STEM disciplines so
that all students have the best possible instruction in these fields,

• provides a forum for communication and collaboration between and among
teachers, university faculty, and the community,

• develops teachers’ leadership capacity,
• supports instructional leaders in designing effective programs in STEM disci-

plines and better supporting their teachers,
• creates innovative curricular materials for STEM disciplines,
• assists developers of STEM programs and curricula,
• conducts research on important aspects of STEM education, and
• promotes research-based teaching and learning of STEM disciplines.

3 Programs for Educators

RUSMP has developed an extensive array of programs, courses, and interventions
available to teachers, teacher leaders, and administrators. These include long-
term, intensive summer programs; after-school academic-year courses; personalized
professional development for schools which may include workshops along with
classroom support; seminars for teachers and leaders; and opportunities for network-
ing across schools and districts. RUSMP continues to create and share resources
that support mathematics instruction which can be accessed from RUSMP’s award-
winning web site (http://rusmp.rice.edu). RUSMP programs focus on teachers’
competence in content-knowledge and pedagogical skills, while integrating and
promoting the need for teachers to care about all their students, especially stu-
dents from populations traditionally underrepresented in STEM. RUSMP programs
provide a model for teaching STEM from a problem-solving approach. Improving
teachers’ understanding of the concepts developed in RUSMP programs increases
student understanding of the concepts. Students with a sound understanding of these
concepts are more likely to pursue the study of more advanced STEM courses.

RUSMP hosts annual Fall and Spring Networking Conferences for the RUSMP
network of teachers, administrators, and others from the educational community.
Distinguished educators and scientists share their current research and interests,
and RUSMP alumni and members of the RUSMP instructional team demonstrate
exemplary mathematics lessons, new resources, and successful teaching strategies.

RUSMP expanded its efforts to include computer science. As a Code.org
Regional Partner, RUSMP is the local hub for computer science (CS) professional

http://rusmp.rice.edu
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learning for K-12 teachers to expand pre-college students’ access to CS. RUSMP is
dedicated to expanding access to CS and, in particular, to increasing the participation
of women and underrepresented ethnic minority students in CS.

In addition, to further develop educational leaders, RUSMP is leading an NSF
Robert Noyce Teaching Fellowship grant which is developing 15 exceptional
secondary mathematics teachers in the Houston Independent School District into
National Science Foundation Robert Noyce Master Teaching Fellows. The program
is creating school-based leaders in mathematics deeply grounded in sound math-
ematical content and research-based pedagogical, leadership, adult education, and
mathematics advocacy skills. Their leadership roles include work with preservice
teachers from Rice University, teaching and mentoring inservice teachers in the
greater Houston area through RUSMP professional development programs, and
teaching in and managing student math camps and programs during the school
year and summer through RUSMP. This work is supported by the National Science
Foundation under Grant No. 1556006.

4 Opportunities for Students and Support for Parents

RUSMP offers a wide variety of camps and programs for students during both the
academic year and the summer. These activity-filled camps for students engage
students in fun, hands-on mathematics investigations and games with connections
to science, technology, engineering, and the visual arts typically not found in
classrooms. Students leave the camps more energized and enthusiastic about
mathematics and the other STEAM (Science, Technology, Engineering, Arts, and
Mathematics) disciplines.

RUSMP also offers summer programs for students who want to enrich their
mathematics backgrounds, prepare for their next math courses, and explore mathe-
matics topics that are not typically emphasized during the school year.

RUSMP is embarking on new STEM programs. Its newest program focusing on
the oil and gas industry provided students with valuable insight into the oil and gas
industry to motivate them to pursue further STEM courses in school and to consider
careers in the oil and gas industry.

In addition, RUSMP supports parents by providing information about school and
district mathematics programs, opportunities to engage with the school community
through mathematics, and resources for supporting mathematics instruction at home
including resources on the award-winning RUSMP web site (http://rusmp.rice.edu).

5 Support to Schools, School Districts, and the Community

RUSMP’s excellent reputation as a change agent and a trusted partner has resulted
in RUSMP receiving numerous requests from schools and school districts for

http://rusmp.rice.edu
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support. RUSMP evaluates the effectiveness of mathematics programs, makes rec-
ommendations for improvement, and provides targeted professional development,
school-based support, coaching, and mentoring to improve student achievement.
RUSMP also conducts mathematics curriculum audits for school districts and
private schools and collaborates to revise their curricula so that their curricula
are vertically aligned and support current state and national standards. In addition,
school-based programs for teachers and students can be developed and supported by
RUSMP. These programs provide imbedded professional development for teachers
while providing students engaging, activity-based instruction.

6 Support for Rice University and Other Universities

RUSMP provides support to departments and faculty across Rice University as well
as support to other universities. RUSMP’s multi-faceted university-level support
includes:

• assisting with preparation of grant proposals, in particular NSF CAREER grants,
• collaborating with faculty in joint grant submissions,
• collaborating in research initiatives,
• serving as external evaluators for faculty programs and projects,
• conceptualizing, planning, recruiting for, promoting, and assisting with faculty

and department programs, in particular for K-12 broader impact activities,
• providing pedagogical feedback to graduate students and post-docs,
• providing teaching resources for university courses,
• assisting graduate students and post-docs in writing teaching statements and job

searches,
• assisting university students in the development of resumes and cover letters and

in job searches,
• providing outreach opportunities for university students,
• providing practicum experiences and guidance in education for university stu-

dents,
• writing letters of recommendation and letters of support for university students

and faculty,
• serving on thesis and dissertation committees,
• participating in tenure and promotion reviews, and
• conducting mathematics tours of the Rice campus.

From its inception, RUSMP has naturally had a close working relationship with the
Rice Mathematics Department. RUSMP currently collaborates with the Mathemat-
ics Department to offer the Rice University Math Circle which meets on the Rice
University campus during the school year. Each session includes a lecture on an
easy-to-understand math topic followed by activities related to the lecture. The goal
is to share why mathematicians find math so interesting and how it is a part of the
everyday lives of people.
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7 Research and Evaluation Efforts

RUSMP research and evaluation efforts provide evidence-based insights and strate-
gies to improve mathematics instruction, student learning, student achievement,
and the professional development of K-12 mathematics teachers, teacher leaders,
and administrators. RUSMP contributes to the growing body of research on teach-
ing and learning and professional development in K-12 mathematics education.
RUSMP’s research team evaluates the impact of RUSMP on teachers, teacher
leaders, students, administrators, and schools. RUSMP’s research and evaluation
clarify the role RUSMP plays in educational reform at classroom, campus, district,
state, and national levels. RUSMP also conducts research and program evaluation
for other organizations.

8 Conclusion

RUSMP can serve as an exemplar for faculty who wish to deepen ties with the
pre-college mathematics community while providing meaningful educational and
pedagogical support to their colleagues at the university level. RUSMP Directors
are more than willing to serve as mentors and guides for those who wish to take the
first steps toward creating similar meaningful outreach endeavors.

Looking to the future, in addition to its work with its current collaborators,
RUSMP will continue develop educational programs and conduct research and will
seek to build new relationships to positively impact K-16 education.
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