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Abstract After an introduction to convenient calculus in infinite dimensions, the
foundational material for manifolds of mappings is presented. The central character
is the smooth convenient manifold C∞(M,N) of all smooth mappings from
a finite dimensional Whitney manifold germ M into a smooth manifold N . A
Whitney manifold germ is a smooth (in the interior) manifold with a very general
boundary, but still admitting a continuous Whitney extension operator. This notion
is developed here for the needs of geometric continuum mechanics.
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1 Introduction

At the birthplace of the notion of manifolds, in the Habilitationsschrift [93, end
of section I], Riemann mentioned infinite dimensional manifolds explicitly. The
translation into English in [94] reads as follows:

There are manifoldnesses in which the determination of position requires not a finite
number, but either an endless series or a continuous manifoldness of determinations of
quantity. Such manifoldnesses are, for example, the possible determinations of a function
for a given region, the possible shapes of a solid figure, etc.

Reading this with a lot of good will one can interpret it as follows: When
Riemann sketched the general notion of a manifold, he also had in mind the notion
of an infinite dimensional manifold of mappings between manifolds. He then went
on to describe the notion of Riemannian metric and to talk about curvature.

The dramatis personae of this foundational chapter are named in the following
diagram:

Diff(M)
right-acts

right-acts

Diff(M,μ)

Emb(M,N)

needs ḡ Diff(M)

DiffA(N)

right-acts

left-acts

left-acts

Met(M)

Diff(M)

B(M,N)

needs ḡ

Vol1+(M) Met(M)/Diff(M) MetA(N)

In this diagram:

• M is a finite dimensional compact smooth manifold.
• N is a finite dimensional smooth manifolds without boundary, and ḡ is one fixed

background Riemannian metric on N which we always assume to be of bounded
geometry; see Sect. 5.

• Met(N) = �(S2+T ∗N) is the space of all Riemannian metrics on N .
• Diff(M) is the regular Fréchet Lie group of all diffeomorphisms on the compact

manifold M with corners.
• DiffA(N), A ∈ {H∞,S, c} the regular Lie group of all smooth diffeomor-

phisms of decay A towards IdN .
• Emb(M,N) is the infinite dimensional smooth manifold of all embeddings M →

N , which is the total space of a smooth principal fiber bundle Emb(M,N) →
B(M,N) = Imm(M,N)/ Diff(M) with structure group Diff(M) and base
manifold B(M,N), the space of all smooth submanifolds of N of type M . It
is possible to extend Emb(M,N) to the manifold of Imm(M,N) and B(M,N)

to the infinite dimensional orbifold Bi(M,N).
• Vol1+(M) ⊂ �(vol(M)) is the space of all positive smooth probability densities

on the manifold M with corners.
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Since it will be of importance for geometric continuum mechanics, I will allow
the source manifold M to be quite general: M can be a manifold with corners; see
Sect. 3. This setting is worked out in detail in [69]. Or M can be a Whitney manifold
germ, a notion originating in this paper; see Sect. 4.

In this foundational chapter I will describe the theory of manifolds of mappings,
of groups of diffeomorphisms, of manifolds of submanifolds (with corners), and of
some striking results about weak Riemannian geometry on these spaces. See [10]
for an overview article which is much more comprehensive for the aspect of shape
spaces.

An explicit construction of manifolds of smooth mappings modeled on Fréchet
spaces was described by Eells [28]. Differential calculus beyond the realm of
Banach spaces has some inherent difficulties even in its definition; see Sect. 2.
Smoothness of composition and inversion was first treated on the group of all
smooth diffeomorphisms of a compact manifold in [63]; however, there was a gap
in the proof, which was first filled by Gutknecht [48]. Manifolds of Ck-mappings
and/or mappings of Sobolev classes were treated by Eliasson [31] and Eells [27],
Smale–Abraham [1], and [92]. Since these are modeled on Banach spaces, they
allow solution methods for equations and have found a lot of applications. See in
particular [26].

In preparation of this chapter I noticed that the canonical chart construction for
the manifold C∞(M,N) even works if we allow M to be a Whitney manifold germ.
These are modeled on open subsets of closed subsets of R

m which (1) admit a
continuous Whitney extension operator and (2) are the closure of their interior.
See Sect. 4 for a thorough discussion. Many results for them described below are
preliminary, e.g., Theorem 6.4, Sect. 7.2. I expect that they can be strengthened
considerably, but I had not enough time to pursue them during the preparation of
this chapter.

I thank Reuven Segev and Marcelo Epstein for asking me for a contribution
to this volume, and I thank them and Leonhard Frerick, Andreas Kriegl, Jochen
Wengenroth, and Armin Rainer for helpful discussions.

2 A Short Review of Convenient Calculus in Infinite
Dimensions

Traditional differential calculus works well for finite dimensional vector spaces and
for Banach spaces. Beyond Banach spaces, the main difficulty is that composition
of linear mappings stops to be jointly continuous at the level of Banach spaces, for
any compatible topology. Namely, if for a locally convex vector space E and its dual
E′ the evaluation mapping ev : E × E′ → R is jointly continuous, then there are
open neighborhoods of zero U ⊂ E and U ′ ⊂ E′ with ev(U × U ′) ⊂ [−1, 1]. But
then U ′ is contained in the polar of the open set U , and thus is bounded. So E′ is
normable, and a fortiori E is normable.

For locally convex spaces which are more general than Banach spaces, we sketch
here the convenient approach as explained in [44] and [55].
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The name convenient calculus mimics the paper [98] whose results (but not the
name “convenient”) was predated by Brown [17–19]. They discussed compactly
generated spaces as a cartesian closed category for algebraic topology. Historical
remarks on only those developments of calculus beyond Banach spaces that led to
convenient calculus are given in [55, end of chapter I, p. 73ff].

2.1 The c∞-Topology

Let E be a locally convex vector space. A curve c : R → E is called smooth
or C∞ if all derivatives exist and are continuous. Let C∞(R, E) be the space of
smooth curves. It can be shown that the set C∞(R, E) does not entirely depend
on the locally convex topology of E, only on its associated bornology (system of
bounded sets); see [55, 2.11]. The final topologies with respect to the following sets
of mappings into E (i.e., the finest topology on E such that each map is continuous)
coincide; see [55, 2.13]:

1. C∞(R, E).
2. The set of all Lipschitz curves (so that { c(t)−c(s)

t−s
: t �= s, |t |, |s| ≤ C} is bounded

in E, for each C).
3. The set of injections EB → E where B runs through all bounded absolutely

convex subsets in E, and where EB is the linear span of B equipped with the
Minkowski functional ‖x‖B := inf{λ > 0 : x ∈ λB}.

4. The set of all Mackey-convergent sequences xn → x (i.e., those for which there
exists a sequence 0 < λn ↗∞ with λn(xn − x) bounded).

The resulting unique topology is called the c∞-topology on E and we write c∞E

for the resulting topological space.
In general (on the space D of test functions, for example) it is finer than the given

locally convex topology, it is not a vector space topology, since addition is no longer
jointly continuous. Namely, even c∞(D ×D) �= c∞D × c∞D.

The finest among all locally convex topologies on E which are coarser than c∞E

is the bornologification of the given locally convex topology. If E is a Fréchet space,
then c∞E = E.

2.2 Convenient Vector Spaces

A locally convex vector space E is said to be a convenient vector space if one of the
following equivalent conditions holds (called c∞-completeness); see [55, 2.14]:

1. For any c ∈ C∞(R, E) the (Riemann-) integral
∫ 1

0 c(t)dt exists in E.
2. Any Lipschitz curve in E is locally Riemann integrable.
3. A curve c : R→ E is C∞ if and only if λ ◦ c is C∞ for all λ ∈ E∗, where E∗ is

the dual of all continuous linear functionals on E.
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• Equivalently, for all λ ∈ E′, the dual of all bounded linear functionals.
• Equivalently, for all λ ∈ V , where V is a subset of E′ which recognizes

bounded subsets in E; see [55, 5.22]

We call this scalarwise C∞.
4. Any Mackey-Cauchy sequence (i.e., tnm(xn − xm) → 0 for some tnm → ∞ in

R) converges in E. This is visibly a mild completeness requirement.
5. If B is bounded closed absolutely convex, then EB is a Banach space.
6. If f : R→ E is scalarwise Lipk , then f is Lipk , for k > 1.
7. If f : R→ E is scalarwise C∞, then f is differentiable at 0.

Here a mapping f : R → E is called Lipk if all derivatives up to order k exist
and are Lipschitz, locally on R. That f is scalarwise C∞ (resp., Lipk) means λ ◦ f

is C∞ (resp., Lipk) for all continuous (equiv., bounded) linear functionals on E.

2.3 Smooth Mappings

Let E and F be convenient vector spaces, and let U ⊂ E be c∞-open. A mapping
f : U → F is called smooth or C∞, if f ◦ c ∈ C∞(R, F ) for all c ∈ C∞(R, U).
See [55, 3.11].

If E is a Fréchet space, then this notion coincides with all other reasonable
notions of C∞-mappings; see below. Beyond Fréchet spaces, as a rule, there are
more smooth mappings in the convenient setting than in other settings, e.g., C∞c .
Moreover, any smooth mapping is continuous for the c∞-topologies, but in general
not for the locally convex topologies: As shown in the beginning of Sect. 2, the
evaluation mapping ev : E × E′ → R is continuous only if E is normable. On
Fréchet spaces each smooth mapping is continuous; see the end of Sect. 2.1.

2.4 Main Properties of Smooth Calculus

In the following all locally convex spaces are assumed to be convenient:

1. For maps on Fréchet spaces the notion of smooth mapping from Sect. 2.3
coincides with all other reasonable definitions. On R

2 this is a nontrivial
statement; see [16] or [55, 3.4].

2. Multilinear mappings are smooth if and only if they are bounded; see [55, 5.5].
3. If E ⊇ U −f→ F is smooth, then the derivative df : U × E → F is smooth,

and also df : U → L(E,F ) is smooth where L(E,F ) denotes the convenient
space of all bounded linear mappings with the topology of uniform convergence
on bounded subsets; see [55, 3.18].

4. The chain rule holds; see [55, 3.18].
5. The space C∞(U, F ) is again a convenient vector space where the structure is

given by the injection
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C∞(U, F )−C∞(c,λ)→
∏

c∈C∞(R,U),λ∈F ∗
C∞(R,R), f �→ (λ ◦ f ◦ c)c,λ,

and where C∞(R,R) carries the topology of compact convergence in each
derivative separately; see [55, 3.11 and 3.7].

6. The exponential law holds; see [55, 3.12].: For c∞-open V ⊂ F ,

C∞(U,C∞(V ,G)) ∼= C∞(U × V,G)

is a linear diffeomorphism of convenient vector spaces.
Note that this result (for U = R) is the main assumption of variational
calculus. Here it is a theorem.

7. A linear mapping f : E → C∞(V ,G) is smooth (by (2) equivalent to bounded)
if and only if E −f→ C∞(V ,G) −evv→ G is smooth for each v ∈ V . (Smooth
uniform boundedness theorem; see [55, theorem 5.26].)

8. A mapping f : U → L(F,G) is smooth if and only if

U −f→ L(F,G)−evv→ G

is smooth for each v ∈ F , because then it is scalarwise smooth by the classical
uniform boundedness theorem.

9. The following canonical mappings are smooth. This follows from the exponential
law by simple categorical reasoning; see [55, 3.13]:

ev : C∞(E, F )× E → F, ev(f, x) = f (x)

ins : E → C∞(F,E × F), ins(x)(y) = (x, y)

( )∧ : C∞(E,C∞(F,G))→ C∞(E × F,G)

( )∨ : C∞(E × F,G)→ C∞(E,C∞(F,G))

comp : C∞(F,G)× C∞(E, F )→ C∞(E,G)

C∞( , ) : C∞(F, F1)× C∞(E1, E)→
→ C∞(C∞(E, F ), C∞(E1, F1))

(f, g) �→ (h �→ f ◦h ◦ g)

∏
:
∏

C∞(Ei, Fi)→ C∞(
∏

Ei,
∏

Fi).

This ends our review of the standard results of convenient calculus. Just for the
curious reader and to give a flavor of the arguments, we enclose a lemma that is used
many times in the proofs of the results above.

Lemma (Special Curve Lemma, [55, 2.8]) Let E be a locally convex vector space.
Let xn be a sequence which converges fast to x in E; i.e., for each k ∈ N the
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sequence nk(xn − x) is bounded. Then the infinite polygon through the xn can be
parameterized as a smooth curve c : R→ E such that c( 1

n
) = xn and c(0) = x.

2.5 Remark Convenient calculus (i.e., having properties 6 and 7) exists also for:

• Real analytic mappings; see [54] or [55, Chapter II].
• Holomorphic mappings; see [62] or [55, Chapter II] (using the notion of [35, 36]).
• Many classes of Denjoy–Carleman ultradifferentiable functions, both of Beurling

type and of Roumieu type, see [57–59, 61].
• With some adaptations, Lipk; see [44]. One has to adapt the exponential

law Sect. 2.4(9) in the obvious way.
• With more adaptations, even Ck,α (the k-th derivative is Hölder-continuous with

index 0 < α ≤ 1); see [37, 38]. Namely, if f is Ck,α and g is Ck,β , then f ◦ g is
Ck,αβ .

Differentiability Cn cannot be described by a convenient approach (i.e., allowing
result like Sect. 2.4). Only such differentiability notions allow this, which can be
described by boundedness conditions only.

We shall treat Cn mapping spaces using the following result.

2.6 Recognizing Smooth Curves

The following result is very useful if one wants to apply convenient calculus to
spaces which are not tied to its categorical origin, like the Schwartz spaces S , D, or
Sobolev spaces; for its uses see [77] and [60]. In what follows σ(E,V) denotes the
initial (also called weak) topology on E with respect to a set V ⊂ E′.

Theorem ([44, Theorem 4.1.19]) Let c : R → E be a curve in a convenient
vector space E. Let V ⊂ E′ be a subset of bounded linear functionals such that
the bornology of E has a basis of σ(E,V)-closed sets. Then the following are
equivalent:

(1) c is smooth
(2) There exist locally bounded curves ck : R → E such that λ ◦ c is smooth

R→ R with (λ ◦ c)(k) = λ ◦ ck , for each λ ∈ V .

If E = F ′ is the dual of a convenient vector space F , then for any point separating
subset V ⊆ F the bornology of E has a basis of σ(E,V)-closed subsets, by [44,
4.1.22].

This theorem is surprisingly strong: note that V does not need to recognize
bounded sets. We shall use the theorem in situations where V is just the set of all
point evaluations on suitable Sobolev spaces.



10 P. W. Michor

2.7 Frölicher Spaces

Following [55, Section 23] we describe here the following simple concept: A
Frölicher space or a space with smooth structure is a triple (X, CX,FX) consisting
of a set X, a subset CX of the set of all mappings R → X, and a subset FX of the
set of all functions X → R, with the following two properties:

1. A function f : X → R belongs to FX if and only if f ◦ c ∈ C∞(R,R) for all
c ∈ CX.

2. A curve c : R → X belongs to CX if and only if f ◦ c ∈ C∞(R,R) for all
f ∈ FX.

Note that a set X together with any subset F of the set of functions X → R

generates a unique Frölicher space (X, CX,FX), where we put in turn:

CX := {c : R→ X : f ◦ c ∈ C∞(R,R) for all f ∈ F},
FX := {f : X → R : f ◦ c ∈ C∞(R,R) for all c ∈ CX},

so that F ⊆ FX. The set F will be called a generating set of functions for the
Frölicher space. Similarly a set X together with any subset C of the set of curves
R → X generates a Frölicher space; C is then called a generating set of curves
for this Frölicher structure. Note that a locally convex space E is convenient if and
only if it is a Frölicher space with the structure whose space CE of smooth curves is
the one described in Sect. 2.1, or whose space FE of smooth functions is described
in Sect. 2.3. This follows directly from Sect. 2.2.

On each Frölicher space we shall consider the final topology with respect to all
smooth curves c : R → X in CX; i.e., the coarsest topology such that each such
c is continuous. This is in general finer that the initial topology with respect to all
functions in FX.

A mapping ϕ : X → Y between two Frölicher spaces is called smooth if one of
the following three equivalent conditions hold

3. For each c ∈ CX the composite ϕ ◦ c is in CY . Note that here CX can be replaced
by a generating set C of curves in X.

4. For each f ∈ FY the composite f ◦ϕ is in FX. Note that FY can be replaced by
a generating set of functions.

5. For each c ∈ CX and for each f ∈ FY the composite f ◦ϕ ◦ c is in C∞(R,R).

The set of all smooth mappings from X to Y will be denoted by C∞(X, Y ). Then
we have C∞(R, X) = CX and C∞(X,R) = FX.

Frölicher spaces and smooth mappings form a category which is complete,
cocomplete, and cartesian closed, by Kriegl and Michor [55, 23.2].

Note that there is the finer notion of diffeological spaces X introduced by
Souriau: These come equipped with a set of mappings from open subsets of Rn’s
into X subject to some obvious properties concerning reparameterizations by C∞-
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mappings; see [51]. The obvious functor associating the generated Frölicher space
to a diffeological space is both left and right adjoint to the embedding of the category
of Frölicher spaces into the category of diffeological spaces. A characterization of
those diffeological spaces which are Frölicher spaces is in [106, Section 2.3].

3 Manifolds with Corners

In this section we collect some results which are essential for the extension of
the convenient setting for manifolds of mappings to a source manifold which has
corners and which need not be compact.

3.1 Manifolds with Corners

For more information we refer to [25, 66, 69]. Let Q = Qm = R
m
≥0 be the positive

orthant or quadrant. By Whitney’s extension theorem or Seeley’s theorem (see also
the discussion in Sects. 4.1–4.3), the restriction C∞(Rm)→ C∞(Q) is a surjective
continuous linear mapping which admits a continuous linear section (extension
mapping); so C∞(Q) is a direct summand in C∞(Rm). A point x ∈ Q is called
a corner of codimension (or index) q > 0 if x lies in the intersection of q distinct
coordinate hyperplanes. Let ∂qQ denote the set of all corners of codimension q.

A manifold with corners (recently also called a quadrantic manifold) M is a
smooth manifold modeled on open subsets of Qm. We assume that it is connected
and second countable; then it is paracompact and each open cover admits a
subordinated smooth partition of unity.

We do not assume that M is oriented, but for Moser’s theorem we will eventually
assume that M is compact. Let ∂qM denote the set of all corners of codimension q.
Then ∂qM is a submanifold without boundary of codimension q in M; it has finitely
many connected components if M is compact. We shall consider ∂M as stratified
into the connected components of all ∂qM for q > 0. Abusing notation we will call
∂qM the boundary stratum of codimension q; this will lead to no confusion. Note
that ∂M itself is not a manifold with corners. We shall denote by j∂qM : ∂qM → M

the embedding of the boundary stratum of codimension q into M , and by j∂M :
∂M → M the whole complex of embeddings of all strata.

Each diffeomorphism of M restricts to a diffeomorphism of ∂M and to a
diffeomorphism of each stratum ∂qM . The Lie algebra of Diff(M) consists of all
vector fields X on M such that X|∂qM is tangent to ∂qM . We shall denote this Lie
algebra by X(M, ∂M).

3.2 Lemma Any manifold with corners M is a submanifold with corners of an
open manifold M̃ of the same dimension, and each smooth function on M extends
to a smooth function on M̃ . Each smooth vector bundle over M extends to a smooth
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vector bundle over M̃ . Each immersion (embedding) of M into a smooth manifold
N without boundary is the restriction of an immersion (embedding) of a (possibly
smaller) M̃ ⊃ M into N .

Proof Choose a vector field X on M which is complete, and along ∂M is nowhere
0 and pointing into the interior. Then for ε > 0 we can replace M by the flow
image FlXε (M) which is contained in the interior M̃ = M \ ∂M . The extension
properties follow from the Whitney extension theorem. An immersion extends, since
its rank cannot fall locally. An embedding f extends since {(f (x), f (y)) : (x, y) ∈
M ×M \DiagM} has positive distance to the closed DiagN in N ×N , locally in M ,
and we can keep it that way; see [69, 5.3] for too many details. ��

3.3 Differential Forms on Manifolds with Corners

There are several differential complexes on a manifold with corners. If M is not
compact there are also the versions with compact support.

• Differential forms that vanish near ∂M . If M is compact, this is the same as the
differential complex 
c(M \ ∂M) of differential forms with compact support in
the open interior M \ ∂M .

• 
(M, ∂M) = {α ∈ 
(M) : j∗∂qMα = 0 for all q ≥ 1}, the complex of
differential forms that pull back to 0 on each boundary stratum.

• 
(M), the complex of all differential forms. Its cohomology equals singular
cohomology with real coefficients of M , since R → 
0 → 
1 → . . . is a
fine resolution of the constant sheaf on M; for that one needs existence of smooth
partitions of unity and the Poincaré lemma which hold on manifolds with corners.
The Poincaré lemma can be proved as in [73, 9.10] in each quadrant.

If M is an oriented manifold with corners of dimension m and if μ ∈ 
m(M) is
a nowhere vanishing form of top degree, then X(M) � X �→ iXμ ∈ 
m−1(M) is
a linear isomorphism. Moreover, X ∈ X(M, ∂M) (tangent to the boundary) if and
only if iXμ ∈ 
m−1(M, ∂M).

3.4 Towards the Long Exact Sequence of the Pair (M, ∂M)

Let us consider the short exact sequence of differential graded algebras

0 → 
(M, ∂M)→ 
(M)→ 
(M)/
(M, ∂M)→ 0 .

The complex 
(M)/
(M, ∂M) is a subcomplex of the product of 
(N) for all
connected components N of all ∂qM . The quotient consists of forms which extend
continuously over boundaries to ∂M with its induced topology in such a way that
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one can extend them to smooth forms on M; this is contained in the space of
“stratified forms” as used in [104]. There Stokes’ formula is proved for stratified
forms.

3.5 Proposition (Stokes’ Theorem) For a connected oriented manifold M with
corners of dimension dim(M) = m and for any ω ∈ 
m−1

c (M) we have

∫

M

dω =
∫

∂1M

j∗
∂1M

ω .

Note that ∂1M may have several components. Some of these might be non-
compact.

We shall deduce this result from Stokes’ formula for a manifold with boundary
by making precise the fact that ∂≥2M has codimension 2 in M and has codimension
1 with respect to ∂1M . The proof also works for manifolds with more general
boundary strata, like manifolds with cone-like singularities. A lengthy full proof
can be found in [24].

Proof We first choose a smooth decreasing function f on R≥0 such that f = 1
near 0 and f (r) = 0 for r ≥ ε. Then

∫∞
0 f (r)dr < ε and for Qm = R

m
≥0 with

m ≥ 2,

∣
∣
∣

∫

Qm

f ′(|x|) dx

∣
∣
∣ = Cm

∣
∣
∣

∫ ∞

0
f ′(r)rm−1 dr

∣
∣
∣ = Cm

∣
∣
∣

∫ ∞

0
f (r)(rm−1)′ dr

∣
∣
∣

= Cm

∫ ε

0
f (r)(rm−1)′ dr ≤ Cmεm−1 ,

where Cm denotes the surface area of Sm−1 ∩Qm. Given ω ∈ 
m−1
c (M) we use the

function f on quadrant charts on M to construct a function g on M that is 1 near
∂≥2M = ⋃

q≥2 ∂qM , has support close to ∂≥2M and satisfies
∣
∣
∫
M

dg ∧ ω
∣
∣ < ε.

Then (1 − g)ω is an (m − 1)-form with compact support in the manifold with
boundary M \ ∂≥2M , and Stokes’ formula (cf. [73, 10.11]) now says

∫

M\∂≥2M

d((1− g)ω) =
∫

∂1M

j∗
∂1M

((1− g)ω) .

But ∂≥2M is a null set in M and the quantities

∣
∣
∣

∫

M

d((1− g)ω)−
∫

M

dω

∣
∣
∣ and

∣
∣
∣

∫

∂1M

j∗
∂1M

((1− g)ω)−
∫

∂1M

j∗
∂1M

ω

∣
∣
∣

are small if ε is small enough. ��
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3.6 Riemannian Manifolds with Bounded Geometry

If M is not necessarily compact without boundary we equip M with a Riemannian
metric g of bounded geometry which exists by [47, Theorem 2’]. This means that

(I ) The injectivity radius of (M, g) is positive.
(B∞) Each iterated covariant derivative of the curvature is uniformly g-bounded:

‖∇iR‖g < Ci for i = 0, 1, 2, . . . .

The following is a compilation of special cases of results collected in [30, chapter 1].

Proposition ([29, 53]) If (M, g) satisfies (I ) and (B∞), then the following holds

(1) (M, g) is complete.
(2) There exists ε0 > 0 such that for each ε ∈ (0, ε0) there is a countable cover of

M by geodesic balls Bε(xα) such that the cover of M by the balls B2ε(xα) is
still uniformly locally finite.

(3) Moreover there exists a partition of unity 1 = ∑
α ρα on M such that ρα ≥ 0,

ρα ∈ C∞c (M), supp(ρα) ⊂ B2ε(xα), and |Dβ
u ρα| < Cβ where u are normal

(Riemannian exponential) coordinates in B2ε(xα).
(4) In each B2ε(xα), in normal coordinates, we have |Dβ

u gij | < C′β , |Dβ
u gij | < C′′β ,

and |Dβ
u �m

ij | < C′′′β , where all constants are independent of α.

3.7 Riemannian Manifolds with Bounded Geometry Allowing
Corners

If M has corners, we choose an open manifold M̃ of the same dimension which
contains M as a submanifold with corners; see 3.1. It is very desirable to prove that
then there exists a Riemannian metric g̃ on M̃ with bounded geometry such that
each boundary component of each ∂qM is totally geodesic.

For a compact manifold with boundary (no corners of codimension ≥ 2), exis-
tence of such a Riemannian metric was proven in [45, 2.2.3] in a more complicated
context. A simple proof goes as follows: Choose a tubular neighborhood U of ∂M

in M̃ and use the symmetry ϕ(u) = −u in the vector bundle structure on U . Given
a metric g̃ on M̃ , then ∂M is totally geodesic for the metric 1

2 (g̃+ ϕ∗g̃) on U , since
∂M (the zero section) is the fixed point set of the isometry ϕ. Now glue this metric to
the g̃ using a partition of unity for the cover U and M̃ \V for a closed neighborhood
V of ∂M in U .

Existence of a geodesic spray on a manifold with corners which is tangential
to each boundary component ∂qM was proved in [69, 2.8, see also 10.3]. A direct
proof of this fact can be distilled from the proof of lemma in Sect. 5.9 below. This is
sufficient for constructing charts on the diffeomorphism group Diff(M) in Sect. 6.1
below.
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4 Whitney Manifold Germs

More general than manifolds with corners, Whitney manifold germs allow for
quite singular boundaries but still controlled enough so that a continuous Whitney
extension operator to an open neighborhood manifold exists.

4.1 Compact Whitney Subsets

Let M̃ be an open smooth connected m-dimensional manifold. A closed connected
subset M ⊂ M̃ is called a Whitney subset, or M̃ ⊃ M is called a Whitney pair, if

(1) M is the closure of its open interior in M̃ , and
(2) There exists a continuous linear extension operator

E :W(M)→ C∞(M̃,R)

from the linear space W(M) of all Whitney jets of infinite order with its natural
Fréchet topology (see below) into the space C∞(M̃,R) of smooth functions on
M̃ with the Fréchet topology of uniform convergence on compact subsets in all
derivatives separately.

We speak of a compact Whitney subset or compact Whitney pair if M is compact.
In this case, in (2), we may equivalently require that E is linear continuous into
the Fréchet space C∞L (M̃,R) ⊂ C∞c (M̃,R) of smooth functions with support in
a compact subset L which contains M in its interior, by using a suitable bump
function.

The property of being a Whitney pair is obviously invariant under diffeomor-
phisms (of M̃) which act linearly and continuously both on W(M) and C∞(M̃,R)

in a natural way.
This property of being a Whiney pair is local in the following sense: If M̃i ⊃ Mi

covers M̃ ⊃ M , then M̃ ⊃ M is a Whitney pair if and only if each M̃i ⊃ Mi is a
Whitney pair, see Theorem 4.4 below.

More Details For Rm ⊃ M , by an extension operator E : W(M) → C∞(M̃,R)

we mean that ∂αE(F )|M = F (α) for each multi-index α ∈ N
m
≥0 and each Whitney

jet F ∈W(M). We recall the definition of a Whitney jet F . If M ⊂ R
m is compact,

then

F = (F (α))α∈Nm≥0
∈

∏

α

C0(M) such that for

T n
y (F )(x) =

∑

|α|≤n

F (α)(y)

α! (x − y)α the remainder seminorm
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qn,ε(F ) := sup
{ |F (α)(x)− ∂αT n

y (F )(x)|
|x − y|n−|α| : |α|≤n,x,y∈M

0<|x−y|≤ε

}
= o(ε);

so qn,ε(F ) goes to 0 for ε → 0, for each n separately. The n-th Whitney seminorm
is then

‖F‖n = sup{|F (α)(x)| : x ∈ M, |α| ≤ n} + sup{qn,ε(F ) : ε > 0} .

For closed but non-compact M one uses the projective limit over a countable
compact exhaustion of M . This describes the natural Fréchet topology on the space
of Whitney jets for closed subsets of Rm. The extension to manifolds is obvious.

Whitney proved in [107] that a linear extension operator always exists for a
closed subset M ⊂ R

m, but not always a continuous one, for example, for M a point.
For a finite differentiability class Cn there exists always a continuous extension
operator.

4.2 Proposition For a Whitney pair M̃ ⊃ M , the space of W(M) of Whitney jets
on M is linearly isomorphic to the space

C∞(M,R) := {f |M : f ∈ C∞(M̃,R)} .

Proof This follows from [40, 3.11], where the following is proved: If f ∈
C∞(Rm,R) vanishes on a Whitney subset M ⊂ R

m, then ∂αf |M = 0 for each
multi-index α. Thus any continuous extension operator is injective. ��

4.3 Examples and Counterexamples of Whitney Pairs

We collect here results about closed subsets of Rm which are or are not Whitney
subsets.

(a) If M is a manifold with corners, then M̃ ⊃ M is a Whitney pair. This follows
from Mityagin [79] or Seeley [97].

(b) If M is closed in R
m with dense interior and with Lipschitz boundary, then

R
m ⊃ M is a Whitney pair; by Stein [99, p 181]. In [15, Theorem I] Bierstone

proved that a closed subset M ⊂ R
n with dense interior is a Whitney pair, if

it has Hölder C0,α-boundary for 0 < α ≤ 1 which may be chosen on each
M ∩ {x : N ≤ |x| ≤ N + 2} separately. A fortiori, each subanalytic subset in
R

n gives a Whitney pair, [15, Theorem II].
(c) If f ∈ C∞(R≥0,R) which is flat at 0 (all derivatives vanish at 0), and if M

is a closed subset containing 0 of {(x, y) : x ≥ 0, |y| ≤ |f (x)|} ⊂ R
2, then

R
2 ⊃ M is not a Whitney pair; see [101, Beispiel 2].
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(d) For r ≥ 1, the set {x ∈ R
m : 0 ≤ x1 ≤ 1, x2

2 + · · · + x2
m ≤ x2r

1 } is called the
parabolic cone of order r . Then the following result [101, Satz 4.6] holds:
A closed subset M ⊂ R

m is a Whitney subset, if the following condition holds:
For each compact K ⊂ R

m there exists a parabolic cone S and a family ϕi :
S → φi(S) ⊂ M ⊂ R

m of diffeomorphisms such that K ∩M ⊆ ⋃
i ϕi(S) and

supi |ϕi |k <∞, supi |ϕ−1
i |k <∞ for each k separately.

(e) A characterization of closed subsets admitting continuous Whitney extension
operators has been found by Frerick [40, 4.11] in terms of local Markov
inequalities, which, however, is very difficult to check directly.
Let M ⊂ R

m be closed. Then the following are equivalent:

(e1) M admits a continuous linear Whitney extension operator

E :W(M)→ C∞(Rm,R) .

(e2) For each compact K ⊂ M and θ ∈ (0, 1) there is r ≥ 0 and ε0 > 0 such
that for all k ∈ N≥1 there is C ≥ 1 such that

|dp(x0)| ≤ C

εr
sup

|y−x0|≤ε
y∈Rm

|p(y)|θ sup
|x−x0|≤ε

x∈M

|p(x)|1−θ

for all p ∈ C[x1, . . . , xm] of degree ≤ k, for all x0 ∈ K , and for all
ε0 > ε > 0.

(e3) For each compact K ⊂ M there exists a compact L in R
m containing K

in its interior, such that for all θ ∈ (0, 1) there is r ≥ 1 and C ≥ 1 such
that

sup
x∈K

|dp(x)| ≤ C deg(p)r sup
y∈L

|p(y)|θ sup
z∈L∩M

|p(z)|1−θ

for all p ∈ C[x1, . . . , xm].
(f) Characterization (e) has been generalized to a characterization of compact

subsets of R
m which admit a continuous Whitney extension operator with

linear (or even affine) loss of derivatives, in [41]. In the paper [42] a similar
characterization is given for an extension operator without loss of derivative,
and a sufficient geometric condition is formulated [42, Corollary 2] which even
implies that there are closed sets with empty interior admitting continuous
Whitney extension operators, like the Sierpiński triangle or Cantor subsets.
Thus we cannot omit assumption (Sect. 4.1.1) that M is the closure of its open
interior in M̃ in our definition of Whitney pairs.

(g) The following result by Frerick [40, Theorem 3.15] gives an easily verifiable
sufficient condition:
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Let K ⊂ R
m be compact and assume that there exist ε0 > 0, ρ > 0, r ≥ 1

such that for all z ∈ ∂K and 0 < ε < ε0 there is x ∈ K with Bρεr (x) ⊂
K ∩ Bε(z). Then K admits a continuous linear Whitney extension operator
W(F )→ C∞(Rm,R).
This implies (a), (b), and (d).

4.4 Theorem Let M̃ be an open manifold and let M ⊂ M̃ be a compact subset
that is the closure of its open interior. M ⊂ M̃ is a Whitney pair if and only if for
every smooth atlas (M̃ ⊃ Uα, uα : Uα → uα(Uα) ⊂ R

m)α∈A of the open manifold
M̃ , each uα(M ∩ Uα) ⊂ uα(Uα) is a Whitney pair.

Consequently, for a Whitney pair M ⊂ M̃ and U ⊂ M̃ open, M ∩ U ⊂ M̃ ∩ U

is also a Whitney pair.

Proof

(1) We consider a locally finite countable smooth atlas (M̃ ⊃ Uα, uα : Uα →
uα(Uα) ⊂ R

m)α∈N of M̃ such that each uα(Uα) ⊃ uα(M ∩ Uα) is a Whitney
pair.

We use a smooth “partition of unity” fα ∈ C∞c (Uα,R≥0) on M̃ with∑
α f 2

α = 1. The following mappings induce linear embeddings onto closed
direct summands of the Fréchet spaces:

C∞(M,R)˜
f �→(fα.f)α

αC
∞(Uα,R)

αfα.gα←(gα)α

W(M) αW(Uα∩M)

If each uα(Uα) ⊃ uα(Uα ∩M) is a Whitney pair, then so is Uα ⊃ Uα ∩M , via
the isomorphisms induced by uα , and

W(M)
f �→(fα.f)α

αW(Uα∩M)

αEα

C∞(M,R)˜
αC

∞(Uα,R)αfα.gα←(gα)α

is a continuous Whitney extension operator, so that M̃ ⊃ M is a Whitney pair.
This proves the easy direction of the theorem.

The following argument for the converse direction is inspired by Frerick and
Wengenroth [43].

(2) (See [40, Def. 3.1], [65, Section 29–31]) A Fréchet space E is said to have
property (DN) if for one (equivalently, any) increasing system (‖ · ‖n)n∈N of
seminorms generating the topology the following holds:
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• There exists a continuous seminorm ‖ ‖ on E (called a dominating norm,
hence the name (DN)) such that for all (equivalently, one) 0 < θ < 1 and all
m ∈ N there exist k ∈ N and C > 0 with

‖ ‖m ≤ C‖ ‖θk · ‖ ‖1−θ .

The property (DN) is an isomorphism invariant and is inherited by closed linear
subspaces. The Fréchet space s of rapidly decreasing sequences has property
(DN).

(3) ([101, Satz 2.6], see also [40, Theorem 3.3]) A closed subset M in R
m admits a

continuous linear extension operator W(M) → C∞(Rm,R) if and only if for
each x ∈ ∂M there exists a compact neighborhood K of x in R

m such that

WK(M) := {
f ∈W(M) : supp(f (α)) ⊂ K for all α ∈ N

m
≥0

}

has property (DN).
We assume from now on that M̃ ⊃ M is a Whitney pair.

(4) Given a compact set K ⊂ M̃ , let L ⊂ M̃ be a compact smooth manifold with
smooth boundary which contains K in its interior. Let L̃ be the double of L,
i.e., L smoothly glued to another copy of L along the boundary; L̃ is a compact
smooth manifold containing L as a submanifold with boundary.

Then C∞(L̃,R) is isomorphic to the space s of rapidly decreasing
sequences: This is due to [105]. In fact, using a Riemannian metric g on
L̃, the expansion in an orthonormal basis of eigenvectors of 1 + �g of a
function h ∈ L2 has coefficients in s if and only if h ∈ C∞(L̃,R), because
1 + �g : Hk+2(L̃) → Hk(L̃) is an isomorphism for Sobolev spaces Hk with
k ≥ 0, and since the eigenvalues μn of �g satisfy μn ∼ C

L̃
· n2/ dim(L̃) for

n→∞, by Weyl’s asymptotic formula. Thus C∞(L̃,R) has property (DN).
Moreover, C∞L (M̃,R) = {f ∈ C∞(M̃,R) : supp(f ) ⊂ L} is a closed linear

subspace of C∞(L̃,R), by extending each function by 0. Thus also C∞L (M̃,R)

has property (DN).
We choose now a function g ∈ C∞L (M̃,R≥0) with g|K = 1 and consider

WK(M)
EK

C∞(M,R)L
˜

W(M)
EM

C∞(M,R)˜
f�→g.f

The resulting composition EK is a continuous linear embedding onto a closed
linear subspace of the space C∞L (M̃,R) which has (DN). Thus we proved:

(5) Claim If M̃ ⊃ M is a Whitney pair and K is compact in M̃ , the Fréchet space
WK(M) has property (DN).
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(6) We consider now a smooth chart M̃ ⊃ U
u−→ u(U) = R

m. For x ∈ ∂u(M)

let K be a compact neighborhood of x in R
m. The chart u induces a linear

isomorphism

WK(u(M ∩ U))
u∗−→Wu−1(K)(U ∩M) ∼=Wu−1(K)(M),

where the right-hand side mapping is given by extending each f (α) by 0. By
claim (5) the Fréchet space Wu−1(K)(M) has property (DN); consequently also
the isomorphic space WK(u(M ∩ U)) has property (DN). By (3) we conclude
that Rm = u(U) ⊃ u(M ∩ U) is a Whitney pair.

(7) If we are given a general chart M̃ ⊃ U
u−→ u(U) ⊂ R

m, we cover U by a
locally finite atlas (U ⊃ Uα, uα : Uα → uα(Uα) = R

m)α∈N. By (6) each
R

m = uα(Uα) ⊃ uα(M ∩ Uα) is a Whitney pair, and by the argument in (1)
the pair U ⊃ M ∩ U is a Whitney pair, and thus the diffeomorphic u(U) ⊃
u(U ∩M) is also a Whitney pair.

��

4.5 Our Use of Whitney Pairs

We consider an equivalence class of Whitney pairs M̃i ⊃ Mi for i = 0, 1 where
M̃0 ⊃ M0 is equivalent to M̃1 ⊃ M1 if there exist an open submanifolds M̃i ⊃
M̂i ⊃ Mi and a diffeomorphism ϕ : M̂0 → M̂1 with ϕ(M0) = M1. By a germ
of a Whitney manifold we mean an equivalence class of Whitney pairs as above.
Given a Whitney pair M̃ ⊃ M and its corresponding germ, we may keep M fixed
and equip it with all open connected neighborhoods of M in M̃; each neighborhood
is then a representative of this germ; called an open neighborhood manifold of M .
In the following we shall speak of a Whitney manifold germ M and understand that
it comes with open manifold neighborhoods M̃ . If we want to stress a particular
neighborhood we will write M̃ ⊃ M .

The boundary ∂M of a Whitney manifold germ is the topological boundary of
M in M̃ . It can be a quite general set as seen from the examples in Sect. 4.3 and the
discussion in Sect. 4.9. But infinitely flat cusps cannot appear.

4.6 Other Approaches

We remark that there are other settings, like the concept of a manifold with rough
boundary; see [95] and literature cited there. The main idea there is to start with
closed subsets C ⊂ R

m with dense interior, to use the space of functions which are
Cn in the interior of C such that all partial derivatives extend continuously to C.
Then one looks for sufficient conditions (in particular for n = ∞) on C such that
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there exists a continuous Whitney extension operator on the space of these functions,
and builds manifolds from that. The condition in [95] are in the spirit of Sect. 4.3(d).
By extending these functions and restricting their jets to C we see that the manifolds
with rough boundary are Whitney manifold germs.

Another possibility is to consider closed subsets C ⊂ R
m with dense interior

such there exists a continuous linear extension operator on the space C∞(C) =
{f |C : f ∈ C∞(Rm)} with the quotient locally convex topology. These are exactly
the Whitney manifold pairs R

m ⊃ M , by Proposition 4.2. In this setting, for Cn

with n < ∞ there exist continuous extension operators Cn
b (C) → Cn

b (Rm) (where
the subscript b means bounded for all derivatives separately) for arbitrary subsets
C ⊂ R

m; see [39].
We believe that our use of Whitney manifold germs is quite general, simple, and

avoids many technicalities. But it is aimed at the case C∞; for Ck or Wk,p other
approaches, like the one in [95], might be more appropriate.

4.7 Tangent Vectors and Vector Fields on Whitney Manifold
Germs

In line with the more general convention for vector bundles in Sect. 4.8 below, we
define the tangent bundle T M of a Whitney manifold germ M as the restriction
T M = T M̃|M . For x ∈ ∂M , a tangent vector Xx ∈ TxM is said to be interior
pointing if there exist a curve c : [0, 1)→ M which is smooth into M̃ with c′(0) =
Xx . And Xx ∈ TxM is called tangent to the boundary if there exists a curve c :
(−1, 1)→ ∂M which is smooth into M̃ with c′(0) = Xx . The space of vector fields
on M is given as

X(M) = {X|M : X ∈ X(M̃)}.

Using a continuous linear extension operator, X(M) is isomorphic to a locally
convex direct summand in X(M̃). If M is a compact Whitney manifold germ, X(M)

is a direct summand even in XL(M̃) = {X ∈ X(M̃) : supp(X) ⊆ L} where L ⊂ M̃

is a compact set containing M in its interior. We define the space of vector fields on
M which are tangent to the boundary as

X∂ (M) = {
X|M : X ∈ X(M̃), x ∈ ∂M �⇒ FlXt (x) ∈ ∂M

for all t for which FlXt (x) exists in M̃
}
,

where FlXt denotes the flow mapping of the vector field X up to time t which is
locally defined on M̃ . Obviously, for X ∈ X∂ (M) and x ∈ ∂M the tangent vector
X(x) is tangent to the boundary in the sense defined above. I have no proof that the
converse is true:
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Question Suppose that X ∈ X(M̃) has the property that for each x ∈ ∂M the
tangent vector X(x) is tangent to the boundary. Is it true that then X|M ∈ X∂ (M)?

A related question for which I have no answer is:

Question For each x ∈ ∂M and tangent vector Xx ∈ TxM which is tangent to the
boundary, is there a smooth vector field X ∈ Xc,∂ (M) with X(x) = Xx?

Lemma For a Whitney manifold germ M , the space X∂ (M) of vector field tangent
to the boundary is a closed linear sub Lie algebra of X(M). The space Xc,∂ (M) of
vector fields with compact support tangent to the boundary is a closed linear sub
Lie algebra of Xc(M).

Proof By definition, for X ∈ X(M̃) the restriction X|M is in X∂ (M) if and only
if x ∈ ∂M implies that FlXt (x) ∈ ∂M for all t for which FlXt (x) exists in M̃ .
These conditions describe a set of continuous equations, since (X, t, x) �→ FlXt (x)

is smooth; see the proof of Sect. 6.1 for a simple argument. Thus X ∈ X(M̃) is
closed.

The formulas (see, e.g., [81, pp. 56,58])

lim
n→∞(F lXt/n ◦FlYt/n)

n(x) = FlX+Y
t (x)

lim
n→∞

(
FlY−(t/n)1/2 ◦FlX−(t/n)1/2 ◦FlY

(t/n)1/2 ◦FlX
(t/n)1/2

)n

(x) = Fl[X,Y ]
t (x)

shows that X∂ (M) is a Lie subalgebra. ��
The Smooth Partial Stratifications of the Boundary of a Whitney Manifold
Germ Given a Whitney manifold germ M̃ ⊃ M of dimension m, for each x ∈ ∂M

we denote by L∞(x) the family consisting of each maximal connected open smooth
submanifold L of M̃ which contains x and is contained in ∂M . Note that for
L ∈ L∞(x) and y ∈ L we have L ∈ L∞(y). {TxL : L ∈ L∞(x)} is a set of linear
subspaces of TxM̃ . The collective of these for all x ∈ ∂M is something like a “field
of quivers of vector spaces” over ∂M . It might be the key to eventually construct
charts for the regular Frölicher Lie group Diff(M) treated in Sect. 6.3 below, and for
constructing charts for the Frölicher space Emb(M,N) in Sect. 7.2 below.

4.8 Mappings, Bundles, and Sections

Let M be Whitney manifold germ and let N be a manifold without boundary. By
a smooth mapping f : M → N we mean f = f̃ |M for a smooth mapping f̃ :
M̃ → N for an open manifold neighborhood M̃ ⊃ M . Whitney jet on M naively
make sense only if they take values in a vector space or, more generally, in a vector
bundle. One could develop the notion of Whitney jets of infinite order with values
in a manifold as sections of J∞(M,N) → M with Whitney conditions of each
order. We do not know whether this has been written down formally. But we can
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circumvent this easily by considering a closed embedding i : N → R
p and a tubular

neighborhood p : U → i(N); i.e., U is an open neighborhood and is (diffeomorphic
to) the total space of a smooth vector bundle which projection p.

Then we can consider a Whitney jet on M with values in R
p (in other words, a

p-tuple of Whitney jets) such that the 0-order part lies in i(N). Using a continuous
Whitney extension operator, we can extend the Whitney jet to a smooth mapping
f̃ : M̃ → R

p. Then consider the open set f̃−1(U) ⊂ M̃ instead of M̃ , and replace f̃

by p ◦ f̃ . So we just extended the given Whitney jet to a smooth mapping M̃ → N ,
and also showed, that the space of Whitney jets is isomorphic to the space

C∞(M,N) = {f |M : f ∈ C∞(M̃,N), M̃ ⊃ M}.

Note that the neighborhood M̃ can be chosen independently of the mapping f ,
but dependent on N . This describes a nonlinear extension operator C∞(M,N) →
C∞(M̃,N); we shall see in Sect. 5 that this extension operator is continuous and
even smooth in the manifold structures.

For finite n we shall need the space C∞,n(R ×M,Rp) of restrictions to M of
mappings R× M̃ � (t, x) �→ f (t, x) ∈ R

p which are C∞ in t and Cn in x. If M̃ is
open in R

m we mean by this that any partial derivative ∂k
t ∂α

x f of any order k ∈ N≥0

in t and of order |α| ≤ n in x exists and is continuous on R×M̃ . This carries over to
an open manifold M̃ , and finally, using again a tubular neighborhood p : U → i(N)

as above, to the space C∞,n(R×M,N), for any open manifold N . For a treatment
of Cm,n-maps leading to an exponential law see [2]; since Cn is not accessible to a
convenient approach, a more traditional calculus has to be used there.

By a (vector or fiber) bundle E → M over a germ of a Whitney manifold M we
mean the restriction to M of a (vector or fiber) bundle Ẽ → M̃ , i.e., of a (vector or
fiber) bundle over an open manifold neighborhood. By a smooth section of E → M

we mean the restriction of a smooth section of Ẽ → M̃ for a neighborhood M̃ .
Using classifying smooth mappings into a suitable Grassmannian for vector bundles
over M and using the discussion above one could talk about Whitney jets of vector
bundles and extend them to a manifold neighborhood of M .

We shall use the following spaces of sections of a vector bundle E → M over
a Whitney manifold germ M . This is more general than [55, Section 30], since we
allow Whitney manifold germs as base.

• �(E) = �(M ← E), the space of smooth sections, i.e., restrictions of smooth
sections of Ẽ → M̃ for a fixed neighborhood M̃ , with the Fréchet space topology
of compact convergence on the isomorphic space of Whitney jets of sections.

• �c(E), the space of smooth sections with compact support, with the inductive
limit (LF)-topology.

• �Cn(E), the space of Cn-section, with the Fréchet space topology of compact
convergence on the space of Whitney n-jets. If M is compact and n finite, �Cn(E)

is a Banach space.
• �Hs (E), the space of Sobolev Hs-sections, for 0 ≤ s ∈ R. Here M should be

a compact Whitney manifold germ. The measure on M is the restriction of the
volume density with respect to a Riemannian metric on M̃ . One also needs a
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fiber metric on E. The space �Hk (E) is independent of all choices, but the inner
product depends on the choices. One way to define �Hk (E) is to use a finite atlas
which trivializes Ẽ|L over a compact manifold with smooth boundary L which
is a neighborhood of M in M̃ and a partition of unity, and then use the Fourier
transform description of the Sobolev space. For a careful description see [7]. For
0 ≤ k < s − dim(M)/2 we have �Hs (E) ⊂ �Ck (E) continuously.

• More generally, for 0 ≥ s ∈ R and 1 < p < ∞ we also consider �Ws,p (E), the
space of Ws,p-sections: For integral s, all (covariant) derivatives up to order s are
in Lp. For 0 ≤ k < s − dim(M)/p we have �Hs (E) ⊂ �Ck (E) continuously.

4.9 Is Stokes’ Theorem Valid for Whitney Manifold Germs?

This seems far from obvious. Here is an example, due to [43]:
By the first answer to the MathOverflow question [50] there is a set K in [0, 1] ⊂

R which is the closure of its open interior such that the boundary is a Cantor set with
positive Lebesgue measure. Moreover, R ⊃ K is a Whitney pair by Tidten [102], or
by the local Markov inequalities [40, Proposition 4.8], or by Frerick et al. [41]. To
make this connected, consider K2 := (K × [0, 2]) ∪ ([0, 1] × [1, 2]) in R

2. Then
R

2 ⊃ K2 is again a Whitney pair, but ∂K2 has positive 2-dimensional Lebesgue
measure.

As an aside we remark that Cantor-like closed sets in R might or might not
admit continuous extension operators; see [101, Beispiel 1], [102], and the final
result in [5], where a complete characterization is given in terms of the logarithmic
dimension of the Cantor-like set.

4.10 Theorem ([52, Theorem 4]) Let M be a connected compact oriented Whit-
ney manifold germ. Let ω0, ω ∈ 
m(M) be two volume forms (both > 0) with∫
M

ω0 =
∫
M

ω. Suppose that there is a diffeomorphism f : M → M such that
f ∗ω|U = ω0|U for an open neighborhood of ∂M in M .

Then there exists a diffeomorphism f̃ : M → M with f̃ ∗ω = ω0 such that f̃

equals f on an open neighborhood of ∂M .

This relative Moser theorem for Whitney manifold germs is modeled on the
standard proof of Moser’s theorem in [73, Theorem 31.13]. The proof of [52,
Theorem 4] is for manifolds with corners, but it works without change for Whitney
manifold germs.

5 Manifolds of Mappings

In this section we demonstrate how convenient calculus allows for very short and
transparent proofs of the core results in the theory of manifolds of smooth mappings.
We follow [55] but we allow the source manifold to be a Whitney manifold germ. In
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[69] M was allowed to have corners. We will treat manifolds of smooth mappings,
and of Cn-mappings, and we will also mention the case of Sobolev mappings.

5.1 Lemma (Smooth Curves into Spaces of Sections of Vector Bundles) Let
p : E → M be a vector bundle over a compact smooth manifold M , possibly with
corners.

(1) Then the space C∞(R, �(E)) of all smooth curves in �(E) consists of all c ∈
C∞(R×M,E) with p ◦ c = pr2 : R×M → M .

(2) Then the space C∞(R, �Cn(E)) of all smooth curves in �Cn(E) consists of all
c ∈ C∞,n(R×M,E) (see Sect. 4.8) with p ◦ c = pr2 : R×M → M .

(3) If M is a compact manifold or a compact Whitney manifold germ, then for each
1 < p < ∞ and s ∈ (dim(M)/p,∞) the space C∞(R, �Ws,p (E)) of smooth
curves in �Ws,p (E) consists of all continuous mappings c : R ×M → E with
p ◦ c = pr2 : R×M → M such that the following two conditions hold:

• For each x ∈ M the curve t �→ c(t, x) ∈ Ex is smooth;
let (∂k

t c)(t, x) = ∂k
t (c( , x))(t).

• For each k ∈ N≥0, the curve ∂k
t c has values in �Ws,p (E) so that ∂k

t c : R→
�Ws,p (E), and t �→ ‖∂k

t c(t, ·)‖�Ws,p (E) is bounded, locally in t .

(4) If M is an open manifold, then the space C∞(R, �c(E)) of all smooth curves
in the space �c(E) of smooth sections with compact support consists of all
c ∈ C∞(R×M,E) with p ◦ c = pr2 : R×M → M such that

• for each compact interval [a, b] ⊂ R there is a compact subset K ⊂ M such
that c(t, x) = 0 for (t, x) ∈ [a, b] × (M \K).

Likewise for the space C∞(R, �Cn,c(E)) of smooth curves in the space of Cn-
sections with compact support.

(5) Let p : E → M be a vector bundle over a compact Whitney manifold germ.
Then the space C∞(R, �(E)) of smooth curves in �(E) consists of all smooth
mappings c : R × M̃ → Ẽ with p ◦ c = pr2 : R × M̃ → M̃ for some open
neighborhood manifold M̃ and extended vector bundle Ẽ. We may even assume
that there is a compact submanifold with smooth boundary L ⊂ M̃ containing
M in its interior such that c(t, x) = 0 for (t, x) ∈ R× (M̃ \ L). Using the last
statement of Sect. 4.1, this is equivalent to the space of all smooth mappings
c : R×M → E ⊂ Ẽ with p ◦ c = pr2 : R×M → M .

(6) Let p : E → M be a vector bundle over a non-compact Whitney manifold germ
M ⊂ M̃ , then the space C∞(R, �c(E)) of all smooth curves in the space

�c(E) = {s|M : s ∈ �c(M̃ ← Ẽ)}

of smooth sections with compact support (see Sect. 4.8) consists of all smooth
mappings c : R× M̃ → Ẽ with p ◦ c = pr2 : R× M̃ → M̃ such that

• for each compact interval [a, b] ⊂ R there is a compact subset K ⊂ M̃ such
that c(t, x) = 0 for (t, x) ∈ [a, b] × (M \K).
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Proof

(1) This follows from the exponential law in Sect. 2.4.6 after trivializing the bundle.
(2) We trivialize the bundle, assume that M is open in R

m, and then prove this
directly. In [55, 3.1 and 3.2] one finds a very explicit proof of the case n = ∞,
which one can restrict to our case here.

(3) To see this we first choose a second vector bundle F → M such that E ⊕M F

is a trivial bundle, i.e., isomorphic to M × R
n for some n ∈ N. Then �Ws,p (E)

is a direct summand in Ws,p(M,Rn), so that we may assume without loss that
E is a trivial bundle, and then, that it is 1-dimensional. So we have to identify
C∞(R,Ws,p(M,R)). But in this situation we can just apply Theorem 2.6 for
the set V ⊂ Ws,p(M,R)′ consisting of all point evaluations evx : Hs(M,R)→
R and use that Ws,p(M,R) is a reflexive Banach space.

(4) This is like (1) or (2) where we have to assure that the curve c takes values in
the space of sections with compact support which translates to the condition.

(5) and (6) follow from (4) after extending to Ẽ → M̃ .
��

5.2 Lemma Let E1, E2 be vector bundles over smooth manifold or a Whitney
manifold germ M , let U ⊂ E1 be an open neighborhood of the image of a smooth
section, let F : U → E2 be a fiber preserving smooth mapping. Then the following
statements hold:

(1) If M is compact, the set �(U) := {h ∈ �(E1) : h(M) ⊂ U} is open in �(E1),
and the mapping F∗ : �(U)→ �(E2) given by h �→ F ◦h is smooth. Likewise
for spaces �c(Ei), if M is not compact.

(2) If M is compact, for n ∈ N≥0 the set

�Cn(U) := {h ∈ �Cn(E1) : h(M) ⊂ U}
is open in �Cn(E1), and the mapping F∗ : �Cn(U) → �Cn(E2) given by h �→
F ◦h is smooth.

(3) If M is compact and s > dim(M)/p, the set

�Ws,p (U) := {h ∈ �Ws,p (E1) : h(M) ⊂ U}
is open in �Ws,p (E1), and the mapping F∗ : �Ws,p (U) → �Ws,p (E2) given by
h �→ F ◦h is smooth.

If the restriction of F to each fiber of E1 is real analytic, then F∗ is real analytic;
but in this paper we concentrate on C∞ only. This lemma is a variant of the so-
called Omega-lemma; e.g., see [69]. Note how simple the proof is using convenient
calculus.

Proof Without loss suppose that U = E1.

(1) and (2) follow easily since F∗ maps smooth curves to smooth curves; see their
description in Lemma 5.1(1) and (2).
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(3) Let c : R � t �→ c(t, ) ∈ �Ws,p (E1) be a smooth curve. As s > dim(M)/2,
it holds for each x ∈ M that the mapping R � t �→ Fx(c(t, x)) ∈ (E2)x is
smooth. By the Faà di Bruno formula (see [34] for the 1-dimensional version,
preceded in [3] by 55 years), we have for each p ∈ N>0, t ∈ R, and x ∈ M that

∂
p
t Fx(c(t, x)) =

=
∑

j∈N>0

∑

α∈Nj
>0

α1+···+αj=p

1

j !d
j (Fx)(c(t, x))

(∂
(α1)
t c(t, x)

α1! , . . . ,
∂

(αj )

t c(t, x)

αj !
)

.

For each x ∈ M and αx ∈ (E2)
∗
x the mapping s �→ 〈s(x), αx〉 is a continuous linear

functional on the Hilbert space �Ws,p (E2). The set V2 of all of these functionals
separates points and therefore satisfies the condition of Theorem 2.6. We also have
for each p ∈ N>0, t ∈ R, and x ∈ M that

∂
p
t 〈Fx(c(t, x)), αx〉 = 〈∂p

t Fx(c(t, x)), αx〉 = 〈∂p
t Fx(c(t, x)), αx〉.

Using the explicit expressions for ∂
p
t Fx(c(t, x)) from above we may apply

Lemma (5.1.3) to conclude that t �→ F(c(t, )) is a smooth curve R → �Hs (E1).
Thus, F∗ is a smooth mapping. ��

5.3 The Manifold Structure on C∞(M,N) and Ck(M,N)

Let M be a compact or open finite dimensional smooth manifold or even a compact
Whitney manifold germ, and let N be a smooth manifold. We use an auxiliary
Riemannian metric ḡ on N and its exponential mapping expḡ; some of its properties
are summarized in the following diagram:

0Nzero section
N diagonal

TN VN
open

(πN,exp¯)g

∼= V N×N
open N × N

Without loss we may assume that V N×N is symmetric:

(y1, y2) ∈ V N×N ⇐⇒ (y2, y1) ∈ V N×N.

• If M is compact, then C∞(M,N), the space of smooth mappings M → N has
the following manifold structure. A chart, centered at f ∈ C∞(M,N), is
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C∞(M,N) ⊃ Uf = {g : (f, g)(M) ⊂ V N×N } −uf→ Ũf ⊂ �(M ← f ∗T N)

uf (g) = (πN, expḡ)−1 ◦(f, g), uf (g)(x) = (expḡ

f (x))
−1(g(x))

(uf )−1(s) = expḡ
f ◦ s, (uf )−1(s)(x) = expḡ

f (x)(s(x)).

Note that Ũf is open in �(M ← f ∗T N) if M is compact.
• If M is open, then the compact C∞-topology on �(f ∗T N) is not suitable since

Ũf is in general not open. We have to control the behavior of sections near
infinity on M . One solution is to use the space �c(f

∗T N) of sections with
compact support as modeling spaces and to adapt the topology on C∞(M,N)

accordingly. This has been worked out in [69] and [55].
• If M is compact Whitney manifold germ with neighborhood manifold M̃ ⊃ M

we use the Fréchet space �(M ← f ∗T N) = {s|M : s ∈ �L(M̃ ← f̃ ∗T N)}
where L ⊂ M̃ is a compact set containing M in its interior and f̃ : M̃ → N is
an extension of f to a suitable manifold neighborhood of M . Via an extension
operator the Fréchet space �(M ← f ∗T N) is a direct summand in the Fréchet
space �L(M̃ ← f̃ ∗T N) of smooth sections with support in L.

• Likewise, for a non-compact Whitney manifold germ we use the convenient
(LF)-space

�c(M ← f ∗T N) = {s|M : s ∈ �c(M̃ ← f̃ ∗T N)}

of sections with compact support.
• On the space Ck(M,N, ) for k ∈ N≥0 we use only charts as described above

with the center f ∈ C∞(M,N), namely

Ck(M,N) ⊃ Uf = {g : (f, g)(M) ⊂ V N×N } −uf→ Ũf ⊂ �Ck (M ← f ∗T N) .

We claim that these charts cover Ck(M,N): Since C∞(M,N) is dense in
Ck(M,N) in the Whitney Ck-topology, for any g ∈ Ck(M,N) there exists
f ∈ C∞(M,N, ) ∩ Ug . But then g ∈ Uf since V N×N is symmetric. This is
true for compact M . For a compact Whitney manifold germ we can apply this
argument in a compact neighborhood L of M in M̃ , replacing M̃ by the interior
of L after the fact.

• On the space Ws,p(M,N) for dim(M)/p < s ∈ R we use only charts as
described above with the center f ∈ C∞(M,N), namely

Ws,p(M,N) ⊃ Uf = {g : (f, g)(M) ⊂ V N×N } −uf→
−uf→ Ũf ⊂ �Ws,p (M ← f ∗T N) .

These charts cover Ws,p(M,N), by the following argument: Since C∞(M,N)

is dense in Ws,p(M,N) and since Ws,p(M,N) ⊂ Ck(M,N) via a continuous
injection for 0 ≤ k < s − dim(M)/p, a suitable C0 − sup-norm neighborhood
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of g ∈ Ws,p(M,N) contains a smooth f ∈ C∞(M,N), thus f ∈ Ug and by
symmetry of V N×N we have g ∈ Uf . This is true for compact M . For a compact
Whitney manifold germ we can apply this argument in a compact neighborhood
which is a manifold with smooth boundary L of M in M̃ and apply the argument
there.

In each case, we equip C∞(M,N) or Ck(M,N) or Ws,p(M,N) with the initial
topology with respect to all chart mappings described above: The coarsest topology,
so that all chart mappings uf are continuous.

For non-compact M the direct limit �c(f
∗T N) = lim−→L

�L(f ∗T N) over a
compact exhaustion L of M in the category of locally convex vector spaces is strictly
coarser that the direct limit in the category of Hausdorff topological spaces. It is
more convenient to use the latter topology which is called c∞ topology; compare
with Sect. 2.1.

5.4 Lemma

(1) If M is a compact smooth manifold or is a compact Whitney manifold germ,

C∞(R, �(M ← f ∗T N)) = �(R×M ← pr2
∗ f ∗T N) .

For smooth f ∈ C∞(M,N),

C∞(R, �Cn(M ← f ∗T N)) = �C∞,n (R×M ← pr2
∗ f ∗T N) .

(2) If M is a non-compact smooth manifold of Whitney manifold germ, the
sections on the right-hand side have to satisfy the corresponding conditions
of Lemma 5.1(4).

For a compact Whitney manifold germ M the space �(R × M ← pr2
∗ f ∗T N)

is a direct summand in the space �R×L(R × M̃ ← pr2
∗ f ∗T N) of sections

with support in R × L for a fixed compact set L ⊂ M̃ containing M in its
interior. Likewise �C∞,n (R ×M ← pr2

∗ f ∗T N) is a direct summand in the space
�C∞,n,R×L(R× M̃ ← pr2

∗ f ∗T N) of C∞,n-sections. One could introduce similar
notation for C∞(R, �Ws,p (M ← f ∗T N)).

Proof This follows from Lemma 5.1. ��
5.5 Lemma Let M be a smooth manifold or Whitney manifold germ, compact or
not, and let N be a manifold. Then the chart changes for charts centered on smooth
mappings are smooth (C∞) on the space C∞(M,N), also on Ck(M,N) for k ∈
N≥0, and on Ws,p(M,N) for 1 < p <∞ and s > dim(M)/p:

Ũf1 � s �→ (uf2,f1)∗(s) := (expḡ
f2

)−1 ◦ expḡ
f1
◦ s ∈ Ũf2 .

Proof This follows from Lemma 5.2, since any chart change is just compositions
from the left by a smooth fiber respecting locally defined diffeomorphism. ��
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5.6 Lemma

(1) If M is a compact manifold or a compact Whitney manifold germ, then

C∞(R, C∞(M,N)) ∼= C∞(R×M,N) .

(2) If M is not compact, C∞(R, C∞(M,N)) consists of all smooth c : R×M → N

such that

• for each compact interval [a, b] ⊂ R there is a compact subset K ⊂ M such
that c(t, x) is constant in t ∈ [a, b] for each x ∈ M \K .

Proof By Lemma 5.4. ��
5.7 Lemma Composition (f, g) �→ g ◦ f is smooth as a mapping

C∞(P,M)× C∞(M,N)→ C∞(P,N)

Ck(P,M)× C∞(M,N)→ Ck(P,N)

Ws,p(P,M)× C∞(M,N)→ Ws,p(P,N)

for P a manifold or a Whitney manifold germ, compact or not, and for M and N

manifolds.

For more general M the description becomes more complicated. See the special
case of the diffeomorphism group of a Whitney manifold germ M in Sect. 6.3 below.

Proof Since it maps smooth curves to smooth curves. ��
5.8 Corollary For M a manifold or a Whitney manifold germ and a manifold N ,
the tangent bundle of the manifold C∞(M,N) of mappings is given by

T C∞(M,N) = C∞(M, T N)−C∞(M,πN )=(πN )∗→ C∞(M,N) ,

T Ck(M,N) = Ck(M, T N)−Ck(M,πN )=(πN )∗→ Ck(M,N) ,

T Ws,p(M,N) = Ws,p(M, T N)−Ws,p(M,πN )=(πN )∗→ Ws,p(M,N) .

Proof This follows from the chart structure and the fact that sections of f ∗T N →
M correspond to mappings s : M → T N with πN ◦ s = f . ��

5.9 Sprays Respecting Fibers of Submersions

Sprays are versions of Christoffel symbols and lead to exponential mappings. They
are easier to adapt to fibered manifolds than Riemannian metrics. Recall that a spray
S on a manifold N without boundary is a smooth mapping S : T N → T 2N with
the following properties:
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• πT N ◦ S = IdT N ; S is a vector field.
• T (πN) ◦ S = IdT N ; S is a “differential equation of second order.”
• Let mN

t : T N → T N and mT N
t : T 2N → T 2N be the scalar multiplications.

Then S ◦mN
t = T (mN

t ).mT N
t .S.

Locally, in charts of T N and T 2N induced by a chart of N , a spray looks like
S(x, v) = (x, v; v;�(x, v)) where � is quadratic in v. For a spray S ∈ X(T N) on a
manifold N , we let exp(X) := πN(FlS1 (X)), then the mapping exp : T N ⊃ V → N

is smooth, defined on an open neighborhood V of the zero section in T N , which
is called the exponential mapping of the spray S. Since T0x (exp |TxN ) = IdTxN

(via T0x (TxN) = TxN ), by the inverse function theorem expx := exp |TxN is a
diffeomorphism near 0x in T N onto an open neighborhood of x in N . Moreover
the mapping (πN, exp) : T N ⊃ Ṽ → N × N is a diffeomorphism from an
open neighborhood Ṽ of the zero section in T N onto an open neighborhood of
the diagonal in N ×N .

Lemma Let q : N → M be a smooth surjective submersion between connected
manifolds without boundary. Then there exists a spray S on N which is tangential
to the fibers of q, i.e., S(T (q−1(x))) ⊂ T 2(q−1(x)) for each x ∈ M .

This is a simplified version of [69, 10.9].

Proof In suitable charts on N and M the submersion q looks like a linear projection
(y1, y2) �→ y1. The local expression T (chart)→ T 2(chart) of a spray is

S
(
(y1, y2), (v1, v2)

) =
= (

(y1, y2), (v1, v2); (v1, v2), (�
1(y1, y2; v1, v2), �

2(y1, y2, v1, v2))
)
,

where �i(y1, y2, v1, v2) is quadratic in (v1, v2). The spray is tangential to the fibers
of q if and only if �1(y1, y2, 0, v2) = 0. This clearly exists locally (e.g., choose
�1 = 0). Now we use a partition of unity (ϕα) subordinated to a cover N =⋃

α Uα

with such charts and glue local sprays with the induced partition of unity (ϕα ◦πN)

subordinated to the cover T N = ⋃
α T Uα for the vector bundle πT N : T 2N →

T N . Locally this looks like (where y = (y1, y2), etc.)

( ∑

α

(ϕα ◦πN).Sα

)
(y, v) =

(
y, v;

∑

α

ϕα(y)v,
∑

α

ϕα(y)
(
�1

α(y, v), (�2
α(y, v)

))

=
(
y, v; v,

( ∑

α

ϕα(y)�1
α(y, v),

∑

α

ϕα(y)�2
α(y, v)

))

and is therefore a spray which is tangential to the fibers of q. ��
5.10 Proposition ([69, 10.10]) Let q : N → M be a smooth surjective submersion
between connected manifolds without boundary. The space Sq(M,N) of all smooth
sections of q is a splitting smooth submanifold of C∞(M,N). Similarly, the spaces
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S
q

CN (M,N) and S
q
Ws,p (M,N) of CN -sections and Ws,p-sections are smooth split-

ting submanifolds of CN(M,N) or Ws,p(M,N) (for s > dim(M)/p), respectively.

The proof given here is simpler than the one in [69, 10.10].

Proof Let us first assume that M is compact. Given a smooth section f ∈
Sq(M,N), consider the chart centered at f from Sect. 5.3

C∞(M,N) ⊃ Uf = {g : (f, g)(M) ⊂ V N×N } −uf→ Ũf ⊂ �(M ← f ∗T N)

uf (g) = (πN, expS)−1 ◦(f, g), uf (g)(x) = (expS
f (x))

−1(g(x))

(uf )−1(s) = expS
f ◦ s, (uf )−1(s)(x) = expS

f (x)(s(x)),

where we use the exponential mapping with respect to a spray S on N which is
tangential to the fibers of q. Using an unrelated auxiliary Riemannian metric ḡ on
N we can smoothly split the tangent bundle T N = V q(N) ⊕ Hq(N) into the
vertical bundle of all vectors tangent to the fibers of q, and into its orthogonal
complement with respect to ḡ. The orthonormal projections P ḡ : T N → V q(N)

and IdT N −P ḡ : T N → Hq(N) induce the direct sum decomposition

�(M ← f ∗T N) = �(M ← f ∗V q(N))⊕�(M ← f ∗T N) s �→ (P ḡ.s, s−P ḡ.s).

Now g ∈ Uf is in Sq(M,N) if and only if uf (g) ∈ �(f ∗V q(N)).
If M is not compact we may use the spaces of sections with compact support as

described in Sect. 5.3. Similarly for the cases of CN -sections or Ws,p-sections. ��
5.11 Corollary Let p : E → M be a fiber bundle over a compact Whitney
manifold germ M . Then the space �(E) of smooth sections is a splitting smooth
submanifold of C∞(M,E). Likewise for the spaces �CN (E) and �Ws,p (E) of CN -
sections and Ws,p-sections.

Proof Recall from Sect. 4.8 that E = Ẽ|M for a smooth fiber bundle Ẽ → M̃ .
There the result follows from 5.10. Using (fixed) extension operators

�(M ← f ∗T E)→ �L(M̃ ← f̃ ∗T Ẽ),

etc. we can extend this the case of Whitney manifold germs. ��

6 Regular Lie Groups

6.1 Regular Lie Groups

We consider a smooth Lie group G with Lie algebra g = TeG modeled on
convenient vector spaces. The notion of a regular Lie group is originally due to [86–
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91] for Fréchet Lie groups, was weakened and made more transparent by Milnor
[78], and then carried over to convenient Lie groups in [56], see also [55, 38.4]. We
shall write μ : G×G → G for the multiplication with x.y = μ(x, y) = μx(y) =
μy(x) for left and right translation.

A Lie group G is called regular if the following holds:

• For each smooth curve X ∈ C∞(R, g) there exists a curve g ∈ C∞(R,G) whose
right logarithmic derivative is X, i.e.,

{
g(0) = e

∂tg(t) = Te(μ
g(t))X(t) = X(t).g(t).

The curve g is uniquely determined by its initial value g(0), if it exists.
• Put evolrG(X) = g(1) where g is the unique solution required above. Then

evolrG : C∞(R, g) → G is required to be C∞ also. We have EvolXt := g(t) =
evolrG(tX).

Of course we could equivalently use the left logarithmic derivative and the
corresponding left evolution operator. Group inversion maps the two concepts into
each other. See [55, Section 38] for more information. Up to now, every Lie group
modeled on convenient vector spaces is regular.

There are other notions of regularity for infinite dimensional Lie groups: For
example, one may require that each curve X ∈ L1

loc(R, g) admits an absolutely
continuous curve EvolX : R→ G whose right logarithmic derivative is X. See [46]
or [49] and references therein. It might be that all these notions of regularity are
equivalent for Lie groups modeled on convenient vector spaces.

6.2 Theorem For each manifold M with or without corners, the diffeomorphism
group Diff(M) is a regular Lie group. Its Lie algebra is the space X(M) of all vector
fields with the negative of the usual bracket as Lie bracket, if M is compact without
boundary. It is the space Xc(M) of fields with compact support, if M is an open
manifold. It is the space X∂ (M) of Sect. 4.7 of vector fields tangent to the boundary,
if M is a compact manifold with corners. If M is not compact with corners, then the
Lie algebra is the space Xc,∂ (M) of boundary respecting vector fields with compact
support.

Proof If M is a manifold without boundary then Diff(M) −open→ C∞(M,M). If
M is open, then the group of diffeomorphisms differing from the identity only on a
compact set is open in Diff(M).

If M has corners we use an open manifold M̃ containing M as a submanifold
with corners as in Lemma 3.2. In the description of the chart structure in Sect. 5.3
for Diff(M̃) we have to use the exponential mapping for a geodesic spray on M̃ such
that each component of each ∂qM is totally geodesic. This spray exists; see Sect. 3.7
or Sect. 5.9. Restricting all sections to M then yields a smooth chart centered at the
identity for Diff(M). Then we use right translations of this chart. The explicit chart
structure on Diff(M) is described in [69, 10.16]. Extending all sections to M̃ via
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a fixed continuous linear Whitney extension operator respecting compact support
identifies Diff(M) as a splitting smooth closed submanifold of Diff(M̃), but not as
a subgroup.

Composition is smooth by restricting it from C∞(M,M) × C∞(M,M),
using Lemma 5.7 and its extension to the situation with corners.

Inversion is smooth: If t �→ f (t, ) is a smooth curve in Diff(M), then
f (t, )−1 satisfies the implicit equation f (t, f (t, )−1(x)) = x, so by the finite
dimensional implicit function theorem, (t, x) �→ f (t, )−1(x) is smooth. So
inversion maps smooth curves to smooth curves, and is smooth.

Let X(t, x) be a time-dependent vector field on M (in C∞(R,X(M))). Then
Fl∂t×X

s (t, x) = (t + s, EvolX(t, x)) satisfies the ordinary differential equation

∂t Evol(t, x) = X(t, Evol(t, x)).

If X(s, t, x) ∈ C∞(R2,X(M)) is a smooth curve of smooth curves in X(M), then
obviously the solution of the equation depends smoothly also on the further variable
s, thus evol maps smooth curves of time dependent vector fields to smooth curves
of diffeomorphism. ��

6.3 The Diffeomorphism Group of a Whitney Manifold Germ

For a Whitney manifold germ M̃ ⊃ M , we consider the diffeomorphism group

Diff(M) = {ϕ|M : ϕ ∈ C∞(M̃, M̃), ϕ(M) = M,

ϕ is a diffeomorphism on an open neighborhood of M} .

We also consider the following set C of smooth curves: Those c : R → Diff(M)

which are of the form c = c̃|R×M for a smooth

c̃ : R× M̃ → M̃ with c̃(t, )|M ∈ Diff(M) for each t ∈ R.

Note that for t in a compact interval c̃(t, ) is a diffeomorphism on a fixed open
neighborhood of M in M̃ .

6.4 Theorem For a Whitney manifold germ M the group Diff(M) is a Frölicher
space and a group with smooth composition and inversion. It has a convenient Lie
algebra Xc,∂ (M) with the negative of the usual bracket as Lie bracket, and it is
regular: There exists an evolution operator and it is smooth.

Proof The Frölicher space structure is the one induced by the set C of smooth
curves described above. I do not know whether this set of smooth curves is saturated,
i.e., C = CDiff(M) in the notation of Sect. 2.7; this might depend on the structure of
the boundary.
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The proof is now quite similar to the one of Sect. 6.1. We claim that composition
maps C × C to C ⊆ CDiff(M), and that inversion maps C to C ⊆ CDiff(M). Since by
definition each curve c ∈ C extend to a smooth mapping c̃ : R × M̃ → M̃ we can
actually use a slight adaption of the proof of Sect. 6.1 for open manifolds. ��

6.5 The Connected Component of Diff(M) for a Whitney
Manifold Germ M

We consider a Whitney manifold germ M ⊂ M̃ . As usual for Frölicher space,
we equip Diff(M) with the final topology with respect to all smooth curves in in
the generating set C as described in Sect. 6.3. Diff(M) is actually a topological
group, with the refined topology (i.e., the c∞-topology) on Diff(M) × Diff(M).
Let Diff0(M) be the connected component of the identity in Diff(M) with respect
to this topology.

Theorem For a Whitney manifold germ M ⊂ M̃ we actually have

Diff0(M) = {ϕ̃|M : ϕ̃ ∈ Diff0(M̃), ϕ̃(M) = M} .

Consequently, the subgroup

Diff (̃M) = {ϕ̃|M : ϕ̃ ∈ Diff(M̃), ϕ̃(M) = M}

is an open subgroup in Diff(M) and thus a normal subgroup, and the corresponding
generating set C of smooth curves in Diff (̃M) is saturated.

Proof Let ϕ ∈ Diff0(M). Then there exists a smooth curve ϕ : R → Diff(M)

with ϕ(0) = Id and ϕ(1) = ϕ of the form ϕ = c̃|R×M where c̃ : R × M̃ → M̃

is a smooth mapping with c̃(t, )|M ∈ Diff(M) for each t ∈ R. Then X(t, x) =
(∂tϕ(t))(ϕ(t)−1(x)) gives us a time-dependent vector field which is defined on
[0, 1] ×U for some open neighborhood U of M in M̃ , by the definition of Diff(M)

in Sect. 6.3. Using a continuous extension operator on X|[0,1]×M and a smooth
bump function gives us a smooth time-dependent vector field X̃ : [0, 1] × M̃ →
T M̃ with support in a fixed open neighborhood, say, such that X̃|[0,1]×M =
X|[0,1]×M . Solving the ODE ∂t ϕ̃(t.x) = X̃(t, ϕ̃(t, x)) on M̃ gives us for t = 1
a diffeomorphism ϕ̃ ∈ Diff(M̃) which extends ϕ.

Given any ϕ ∈ Diff (̃M), the coset ϕ. Diff0(M) ⊂ Diff(M) is the connected
component of ϕ in Diff(M). This shows that Diff (̃M) is open in Diff(M). ��

The construction in the proof above actually describes a smooth mapping

E : {c ∈ C∞(R, Diff0(M)) : c(0) = Id} → {ϕ̃ ∈ Diff0(M̃) : ϕ̃(M) = M}

such that E(c)|M = c(1), since another smooth real parameter s goes smoothly
through solving the ODE.
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6.6 Remark

In this paper I refrain from trying to give a general definition of a regular Frölicher
group, which would be an abstract concept that catches the essential properties of
Diff(M) for a Whitney manifold germ M ⊂ M̃ . Let me just remark, that it probably
would fit into the concept of manifolds based on smooth curves instead of charts as
developed in [72]; those among them whose tangent spaces are Banach spaces turn
out to be Banach manifolds. Some Lie theoretic tools are developed in the beginning
of Sect. 8.5 below.

6.7 Regular (Right) Half Lie Groups

A smooth manifold G modeled on convenient vector spaces is called a (right) half
Lie group, if it is a group such that multiplication μ : G × G → G and inversion
ν : G→ G are continuous (note that here we have to take the induced c∞-topology
on the product G×G if the model spaces are not Fréchet), but each right translation
μx : G→ G, μx(y) = y.x is smooth. The notion of a half Lie group was coined in
[60]. See [64] for a study of half Lie groups in general, concentrating on semidirect
products with representation spaces.

Not every tangent vector in TeG can be extended to a left invariant vector field on
the whole group, but they can be extended to right invariant vector fields, which are
only continuous and not differentiable in general. The same holds for right invariant
Riemannian metrics. The tangent space at the identity is not a Lie algebra in general;
thus we refrain from calling it g. Have a look at the examples in Theorem 6.8 to get
a feeling for this.

Let us discuss regularity on a (right) half Lie group G: For a smooth curve g :
R → G the velocity curve g′ : R → T G is still smooth, and for fixed t the right
logarithmic derivative X(t) := g′(t).g(t)−1 = T (μg(t)−1

).g′(t) lies in TeG, but
t �→ X(t) is only continuous R → TeG. A (right) half Lie group G is called C0-
regular if for every C0-curve X : R → TeG there exists a C1-curve EvolX = g :
R → G with g(0) = e and g′(t) = X(t).g(t) = T (μg(t)).X(t). We also require
that X �→ EvolX is smooth C0(R, TeG)→ C1(R,G).

6.8 Theorem (Diffeomorphism Groups of Finite Degrees of Differentiability)

(1) For a compact smooth manifold M , possibly with corners, and for any n ∈
N≥1 the group DiffCn(M) of Cn-diffeomorphism of M is a C0-regular half Lie
group.

(2) For a compact smooth manifold M , possibly with corners, and for any s ≥
dim M/p+ 1, the group DiffWs,p (M) of Sobolev Ws,p-diffeomorphism of M is
a C0-regular half Lie group.
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Note that the group of homeomorphisms of M is not open in C0
nice(M,M); see

the proof below for C∞nice. Also note that TId DiffCn(M) = X∂,Cn(M) is the space of
Cn-vector fields which are tangent to the boundary. This is not a Lie algebra, since
the Lie bracket of two Cn fields is a Cn−1 field in general.

Proof

(1) Following [69, 10.16], we construct the smooth manifold structure by using the
exponential mapping of a spray on M which is tangential to the boundary; for
existence see Sects. 3.7 and 5.9. Let Cn

nice(M,M, ) be the set of all Cn-mappings
f : M → M with f−1(∂qM) = ∂qM for each q. Then we use the (restriction
of the) chart structure described in Sect. 5.3, using this exponential mappings,
and using only charts centered at smooth mappings f ∈ C∞nice(M,M), as
follows:

Cn
nice(M,N) ⊃ Uf = {g : (f, g)(M) ⊂ V M×M } −uf→ Ũf ⊂
⊂ {s ∈Cn(M, T M) : πM ◦ s = f, s(∂qM) ⊂ T (∂qM)} ⊂ �Cn(f ∗T M̃) ,

uf (g) = (πN, expḡ)−1 ◦(f, g), uf (g)(x) = (expḡ

f (x))
−1(g(x)) ,

(uf )−1(s) = expḡ
f ◦ s, (uf )−1(s)(x) = expḡ

f (x)(s(x)) .

By the symmetry of V M×M (see Sect. 5.3) these charts cover Cn
nice(M,M),

and the chart changes are smooth since they map smooth curves (as described
in Lemma 5.1(2)) to smooth curves; compare to Lemma 5.7. The group
DiffCn(M) is open in Cn

nice(M,M), by the implicit function theorem and some
easy arguments.

Continuity of composition and inversion are easy to check. Right translations
are smooth since they map smooth curves.

C1-regularity follows easily: Given X ∈ C0(R, TId DiffCn(M)), view it as
a time-dependent Cn-vector field on M which is tangential to the boundary, a
continuous curve in X∂ (M) and solve the corresponding ODE. The evolution
operator Evol is smooth, since it maps smooth curves to smooth curves by
standard ODE-arguments.

(2) This follows easily by adapting the proof of (1) above, using that DiffWs,p M ⊂
DiffC1(M) by the Sobolev embedding lemma.

��

6.9 Groups of Smooth Diffeomorphisms on R
n

If we consider the group of all orientation preserving diffeomorphisms Diff(Rn) of
R

n, it is not an open subset of C∞(Rn,Rn) with the compact C∞-topology. So it is
not a smooth manifold in the usual sense, but we may consider it as a Lie group in the
cartesian closed category of Frölicher spaces, see [55, Section 23], with the structure



38 P. W. Michor

induced by the injection f �→ (f, f−1) ∈ C∞(Rn,Rn)×C∞(Rn,Rn). Or one can
use the setting of “manifolds” based on smooth curves instead of charts, with lots of
extra structure (tangent bundle, parallel transport, geodesic structure), described in
[72]; this gives a category of smooth “manifolds” where those which have Banach
spaces as tangent fibers are exactly the usual smooth manifolds modeled on Banach
spaces, which is cartesian closed: C∞(M,N) and Diff(M) are always “manifolds”
for “manifolds” M and N , and the exponential law holds.

We shall now describe regular Lie groups in Diff(Rn) which are given by
diffeomorphisms of the form f = IdR+g where g is in some specific convenient
vector space of bounded functions in C∞(Rn,Rn). Now we discuss these spaces
on R

n, we describe the smooth curves in them, and we describe the corresponding
groups. These results are from [77] and from [60, 61] for the more exotic groups.

The Group DiffB(Rn) The space B(Rn) (called DL∞(Rn) by Schwartz [96])
consists of all smooth functions which have all derivatives (separately) bounded. It
is a Fréchet space. By Vogt [105], the space B(Rn) is linearly isomorphic to �∞⊗̂ s
for any completed tensor-product between the projective one and the injective one,
where s is the nuclear Fréchet space of rapidly decreasing real sequences. Thus
B(Rn) is not reflexive, not nuclear, not smoothly paracompact.
The space C∞(R,B(Rn)) of smooth curves in B(Rn) consists of all functions
c ∈ C∞(Rn+1,R) satisfying the following property:

• For all k ∈ N≥0, α ∈ N
n
≥0 and each t ∈ R the expression ∂k

t ∂α
x c(t, x) is uniformly

bounded in x ∈ R
n, locally in t .

To see this use Theorem 2.6 for the set {evx : x ∈ R} of point evaluations in

B(Rn). Here ∂α
x = ∂ |α|

∂xα and ck(t) = ∂k
t f (t, ).

Diff+B(Rn) = {
f = Id+g : g ∈ B(Rn)n, det(In + dg) ≥ ε > 0

}
denotes the

corresponding group, see below.

The Group DiffW∞,p (Rn) For 1 ≤ p <∞, the space

W∞,p(Rn) =
⋂

k≥1

L
p
k (Rn)

is the intersection of all Lp-Sobolev spaces, the space of all smooth functions such
that each partial derivative is in Lp. It is a reflexive Fréchet space. It is called
DLp(Rn) in [96]. By Vogt [105], the space W∞,p(Rn) is linearly isomorphic to
�p⊗̂ s. Thus it is not nuclear, not Schwartz, not Montel, and smoothly paracompact
only if p is an even integer.
The space C∞(R,H∞(Rn)) of smooth curves in W∞,p(Rn) consists of all functions
c ∈ C∞(Rn+1,R) satisfying the following property:

• For all k ∈ N≥0, α ∈ N
n
≥0 the expression ‖∂k

t ∂α
x f (t, )‖Lp(Rn) is locally

bounded near each t ∈ R.
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The proof is literally the same as for B(Rn), noting that the point evaluations are
continuous on each Sobolev space L

p
k with k > n

p
.

Diff+W∞,p (Rn) = {
f = Id+g : g ∈ W∞,p(Rn)n, det(In + dg) > 0

}
denotes the

corresponding group.

The Group DiffS(Rn) The algebra S(Rn) of rapidly decreasing functions is a
reflexive nuclear Fréchet space.
The space C∞(R,S(Rn)) of smooth curves in S(Rn) consists of all functions
c ∈ C∞(Rn+1,R) satisfying the following property:

• For all k,m ∈ N≥0 and α ∈ N
n
≥0, the expression (1 + |x|2)m∂k

t ∂α
x c(t, x) is

uniformly bounded in x ∈ R
n, locally uniformly bounded in t ∈ R.

Diff+S (Rn) = {
f = Id+g : g ∈ S(Rn)n, det(In + dg) > 0

}
is the corresponding

group.

The Group Diffc(Rn) The algebra C∞c (Rn) of all smooth functions with compact
support is a nuclear (LF)-space.
The space C∞(R, C∞c (Rn)) of smooth curves in C∞c (Rn) consists of all functions
f ∈ C∞(Rn+1,R) satisfying the following property:

• For each compact interval [a, b] in R there exists a compact subset K ⊂ R
n such

that f (t, x) = 0 for (t, x) ∈ [a, b] × (Rn \K).

Diffc(Rn) = {
f = Id+g : g ∈ C∞c (Rn)n, det(In + dg) > 0

}
is the corresponding

group. The case Diffc(Rn) is well-known since 1980.

Ideal Properties of Function Spaces The function spaces discussed are boundedly
mapped into each other as follows:

C∞
c (Rn) S(Rn) W∞,p(Rn)

p≤q
W∞,q(Rn) B(Rn)

and each space is a bounded locally convex algebra and a bounded B(Rn)-module.
Thus each space is an ideal in each larger space.

6.10 Theorem ([77] and [60]) The sets of diffeomorphisms

Diffc(R
n), DiffS(Rn), DiffH∞(Rn), and DiffB(Rn)

are all smooth regular Lie groups. We have the following smooth injective group
homomorphisms:

Diffc(Rn) DiffS(Rn) DiffW ∞,p(Rn) DiffB(Rn).

Each group is a normal subgroup in any other in which it is contained, in
particular in DiffB(Rn).
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The proof of this theorem relies on repeated use of the Faà di Bruno formula for
higher derivatives of composed functions. This offers difficulties on non-compact
manifolds, where one would need a non-commutative Faà di Bruno formula for
iterated covariant derivatives. In the paper [60] many more similar groups are
discussed, modeled on spaces of Denjoy–Carleman ultradifferentiable functions. It
is also shown that for p > 1 the group DiffW∞,p∩L1(Rn) is only a topological group
with smooth right translations—a property which is similar to the one of finite order
Sobolev groups DiffWk,p (Rn). Some of these groups were used extensively in [80].

6.11 Corollary DiffB(Rn) acts on �c, �S and �H∞ of any tensor bundle over Rn

by pullback. The infinitesimal action of the Lie algebra XB(Rn) on these spaces by
the Lie derivative maps each of these spaces into itself. A fortiori, DiffH∞(Rn) acts
on �S of any tensor bundle by pullback.

6.12 Trouvé Groups

For the following see [85, 103, 108]. Trouvé groups are useful for introducing
topological metrics on certain groups of diffeomorphism on R

d starting from a
suitable reproducing kernel Hilbert space of vector fields without using any Lie
algebra structure; see Sect. 8.12 below.

Consider a time-dependent vector field X : [0, 1] × R
d → R of sufficient

regularity (e.g., continuous in t ∈ [0, 1] and Lipschitz continuous in x ∈ R
d with

t-integrable global Lipschitz constant) so that

x(t) = x0 +
∫ t

0
X(s, x(s)) ds

is uniquely solvable for all t ∈ [0, 1] and x0 ∈ R
d . Then we consider the

evolution evolX(x0) = x(1). For X ∈ L1([0, 1], C1
b(Rd ,R)d) (where f ∈ Ck

b

if all iterated partial derivatives of order between 0 and k are continuous and
globally bounded) we have evolX ∈ Id+C1

b(Rd ,Rd) and is a diffeomorphism
with (evol)−1 ∈ Id+C1

b(Rd ,Rd). Given a convenient locally convex vector space
A(Rd ,Rd) of mappings R

d → R
d which continuously embeds into C1

b(Rd ,Rd)

and a suitable family of mappings [0, 1] → A(Rd ,Rd), the associated Trouvé group
is given by

GA := {evolX : X ∈ FA},
where FA = F([0, 1],A(Rd ,Rd)) is a suitable vector space of time-dependent
vector fields. It seems that for a wide class of spaces A the Trouvé group GA
is independent of the choice of FA if the latter contains the piecewise smooth
curves and is contained in the curves which are integrable by seminorms; a precise
statement is still lacking, but see [82, 84, 85], and citations therein. The space A is
called FA-ODE-closed if evolX ∈ Id+A(Rd ,Rd) for each X ∈ FA. For ODE-
closed A the Trouvé group GA is contained in Id+A(Rd ,Rd).
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For some spaces A it has been proved that FA is equal to the connected
component of the identity of

{Id+f : f ∈ A(Rd ,Rd), inf
x∈Rd

det df (x) > −1},

namely

• For Sobolev spaces Wk,2 with k > d/2 by Bruveris and Vialard [22]; GA is a
half Lie group.

• For Hölder spaces by Nenning and Rainer [84].
• For Besov spaces by Nenning [83].
• For B, W∞,p, Schwartz functions S , C∞c , and many classes of Denjoy–Carleman

functions, where GA is always a regular Lie group; see [85].

7 Spaces of Embeddings or Immersions, and Shape Spaces

This is the main section in this chapter.

7.1 The Principal Bundle of Embeddings

For finite dimensional manifolds M , N with M compact, Emb(M,N), the space
of embeddings of M into N , is open in C∞(M,N), so it is a smooth manifold.
Diff(M) acts freely and smoothly from the right on Emb(M,N).

Theorem Emb(M,N) → Emb(M,N)/ Diff(M) = B(M,N) is a smooth princi-
pal fiber bundle with structure group Diff(M). Its base is a smooth manifold.

This result was proved in [70] for M an open manifold without boundary; see also
[69]. Note that B(M,N) is the smooth manifold of all submanifolds of N which are
of diffeomorphism type M . Therefore it is also called the nonlinear Grassmannian
in [45], where this theorem is extended to the case when M has boundary. From
another point of view, B(M,N) is called the differentiable Chow variety in [68]. It
is an example of a shape space.

Proof We use an auxiliary Riemannian metric ḡ on N . Given an embedding f ∈
Emb(M,N), we view f (M) as a submanifold of N and we split the tangent bundle
of N along f (M) as T N |f (M) = Nor(f (M))⊕ Tf (M). The exponential mapping
describes a tubular neighborhood of f (M) via

Nor(f (M))−expḡ

∼=→ Wf (M) −pf (M)→ f (M).

If g : M → N is C1-near to f , then ϕ(g) := f−1 ◦pf (M) ◦ g ∈ Diff(M) and we
may consider g ◦ϕ(g)−1 ∈ �(f ∗Wf (M)) ⊂ �(f ∗ Nor(f (M))). This is the required
local splitting. ��
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7.2 The Space of Immersions and the Space of Embeddings of
a Compact Whitney Manifold Germ

Let M̃ ⊃ M be a compact Whitney manifold germ, and let N be a smooth manifold
with dim(M) ≤ dim(N). We define the space of immersions as

Imm(M,N) = {f = f̃ |M, f ∈ C∞(M̃,N), Txf̃ is injective for x ∈ M}

which is open in the smooth manifold C∞(M,N) and is thus itself a smooth
manifold. Note that any extension of an immersion f ∈ Imm(M,N) to f̃ ∈
C∞(M̃,N) is still an immersion on an open neighborhood of M in M̃ .

Likewise we let

Emb(M,N) = {f |M, f ∈ C∞(M̃,N), Txf is injective for x ∈ M,

f : M → N is a topological embedding}.

Since M is compact, any extension of an embedding f ∈ Emb(M,N) to f̃ ∈
C∞(M̃,N) is an embedding on some open neighborhood of M in M̃; see [69, 5.3]
for a proof a related result.

Theorem For a compact Whitney germ M and a smooth manifold N with
dim(M) < dim(N) the projection

π : Emb(M,N)→ Emb(M,N)/ Diff(M) = B(M,N)

is a smooth principal fiber bundle of Frölicher spaces with structure group the
Frölicher group Diff(M) from Theorem 6.4. Its base is the quotient Frölicher space.

Proof Since I do not know that Diff(M) is a smooth manifold, we treat all spaces
here as Frölicher spaces. By definition, the right action of Diff(M) on Emb(M,N)

is free, and smooth between the Frölicher spaces. The quotient B(M,N) carries
the quotient Frölicher structure with generating set of curves {π ◦ c : c ∈
C∞(R, Emb(M,N))}, i.e., those which lift to a smooth curve. ��

7.3 The Orbifold Bundle of Immersions

Let M be a (not necessarily compact) manifold without boundary. Let N be an open
manifold with dim(M) ≤ dim(N). Then Imm(M,N), the space of immersions
M → N , is open in C∞(M,N), and is thus a smooth manifold. The regular Lie
group (or Frölicher group if M is a Whitney manifold germ) Diff(M) acts smoothly
from the right, but no longer freely.
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An immersion i : M → N is called free if Diff(M) acts freely on it: i ◦ f = i

for f ∈ Diff(M) implies f = IdM .
The space Bi(M,N) = Imm(M,N)/ Diff(M) is an example of a shape space.

It appeared in the form of Bi(S
1,R2), the shape space of plane immersed curves,

in [75] and [76]. The following theorem is essentially due to [23]; since this paper
contains some annoying misprints and is difficult to understand, we give here an
extended version with a more detailed proof. The reader may skip this proof and
jump directly to Sect. 7.2 below.

Theorem ([23]) Let M be a finite dimensional smooth manifold. Let N be smooth
finite dimensional manifolds with dim(M) ≤ dim(N). Then the following holds:

(1) The diffeomorphism group Diff(M) acts smoothly from the right on the
manifold Immprop(M,N) of all smooth proper immersions M → N , which
is an open subset of C∞(M,N).

(2) The space of orbits Immprop(M,N)/ Diff(M) is Hausdorff in the quotient
topology.

(3) The set Immfree,prop(M,N) of all proper free immersions is open in C∞(M,N)

and is the total space of a smooth principal fiber bundle Immfree,prop(M,N)→
Immfree,prop(M,N)/ Diff(M).

(4) Let i ∈ Imm(M,N) be an immersion which is not free. So we have a nontrivial
isotropy subgroup Diff(M)i ⊂ Diff(M) consisting of all f ∈ Diff(M) with
i ◦ f = i. Then the isotropy group Diff(M)i acts properly discontinuously on
M . Thus the projection q1 : M → M1 := M/ Diff(M)i is a covering mapping
onto a smooth manifold M1. There exists an immersion i1 : M1 → N with
i = i1 ◦ q1. In particular, Diff(M)i is countable, and is finite if M is compact.
There exists a further covering q2 : M → M1 → M2 and a free immersion
i2 : M2 → N with i = i2 ◦ q2.

(5) Let M have the property that for any covering M → M1 of smooth manifolds,
any diffeomorphism M1 → M1 admits a lift M → M; e.g., M simply
connected, or M = S1. Let i ∈ Imm(M,N) be an immersion which is
not free, i.e., has nontrivial isotropy group Diff(M)i , and let q1 : M →
M1 := M/ Diff(M)i be the corresponding covering map. Then in the following
commutative diagram the bottom mapping

Immfree(M1,N )
(q1)∗

π

Imm(M,N )
π

Immfree(M1,N )/Diff(M1) Imm(M,N )/Diff(M)

is the inclusion of a (possibly non-Hausdorff) manifold, the stratum of π(i) in
the stratification of the orbit space. This stratum consists of the orbits of all
immersions which have Diff(M)i as isotropy group. See (23) and (24) below
for a more complete description of the orbit structure near i.



44 P. W. Michor

(6) [100] We have a right action of Diff(M) on Imm(M,N)×M which is given by
(i, x).f = (i ◦ f, f−1(x)). This action is free.

(Imm(M,N)×M,π, (Imm(M,N)×M)/ Diff(M), Diff(M))

is a smooth principal fiber bundle with structure group Diff(M) and a smooth
base manifold S(M,N) := (Imm(M,N)×M)/ Diff(M) which might possibly
be non-Hausdorff. If we restrict to the open subset Immprop(M,N) × M of
proper immersions times M then the base space is Hausdorff.

Proof Without loss, let M be connected. Fix an immersion i : M → N . We
will now describe some data for i which we will use throughout the proof. If we
need these data for several immersions, we will distinguish them by appropriate
superscripts.

(7) Setup There exist sets Wα ⊂ Wα ⊂ Uα ⊂ Uα ⊂ Vα ⊂ M such that (Wα) is
an open cover of M , Wα is compact, and Vα is an open locally finite cover of M ,
each Wα , Uα , and Vα is connected, and such that i|Vα : Vα → N is an embedding
for each α.

Let g be a fixed Riemannian metric on N and let expN be the induced geodesic
exponential mapping. Then let p : N (i) → M be the normal bundle of i, defined
in the following way: For x ∈ M let N (i)x := (Txi(TxM))⊥ ⊂ Ti(x)N be the
g-orthogonal complement in Ti(x)N . Then

N(i)
ī

p

TN

πN

M
i

N

is a vector bundle homomorphism over i, which is fiberwise injective.
Now let Ui = U be an open neighborhood of the zero section of N (i) which

is so small that (expN ◦ ī)|(U |Vα ) : U |Vα → N is a diffeomorphism onto its image
which describes a tubular neighborhood of the submanifold i(Vα) for each α. Let

τ = τ i := (expN ◦ ī )|U : N (i) ⊃ U → N.

It will serve us as a substitute for a tubular neighborhood of i(M).
For any f ∈ Diff(M)i = {f ∈ Diff(M) : i ◦ f = i} we have an induced vector

bundle homomorphism f̄ over f :

N(i) N(f)
p

ī

N(i)

p

ī
TN

πN

M
f

M N
i
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(8) Claim Let i ∈ Imm(M,N) and let f ∈ Diff(M) have a fixed point x0 ∈ M

and satisfy i ◦ f = i. Then f = IdM .

Namely, we consider the sets (Uα) for the immersion i of (7). Let us investigate
f (Uα) ∩ Uα . If there is an x ∈ Uα with y = f (x) ∈ Uα , we have (i|Uα )(x) =
((i ◦ f )|Uα)(x) = (i|Uα )(f (x)) = (i|Uα )(y). Since i|Uα is injective we have x = y,
and

f (Uα) ∩ Uα = {x ∈ Uα : f (x) = x}.

Thus f (Uα) ∩ Uα is closed in Uα . Since it is also open and since Uα is connected,
we have f (Uα) ∩ Uα = ∅ or = Uα .

Now we consider the set {x ∈ M : f (x) = x}. We have just shown that it is open
in M . Since it is also closed and contains the fixed point x0, it coincides with M .
Claim (7) follows.

(9) Claim If for an immersion i ∈ Imm(M,N) there is a point in i(M) with only
one preimage, then i is a free immersion.

Let x0 ∈ M be such that i(x0) has only one preimage. If i ◦ f = i for f ∈
Diff(M) then f (x0) = x0 and f = IdM by claim (8).

Note that there are free immersions without a point in i(M) with only one
preimage: Consider a figure eight which consists of two touching circles. Now we
may map the circle to the figure eight by going first n times around the upper circle,
then m around the lower one with n,m ≥ 2.

(10) Claim Let i be a free immersion M → N . Then there is an open neighborhood
W(i) in Imm(M,N) which is saturated for the Diff(M)-action and which splits
smoothly as

W(i) = Q(i)× Diff(M).

Here Q(i) is a smooth splitting submanifold of Imm(M,N), diffeomorphic to an
open neighborhood of the zero section in �c(M ← N (i)). In particular the space
Immfree(M,N) is open in C∞(M,N).

Let π : Imm(M,N) → Imm(M,N)/ Diff(M) = Bi(M,N) be the projection
onto the orbit space, which is equipped with the quotient topology. Then the mapping
π |Q(i) : Q(i) → π(Q(i)) is bijective onto an open subset of the quotient. If i

runs through Immfree,prop(M,N) of all free and proper immersions these mappings
define a smooth atlas for the quotient space, so that

(Immfree,prop(M,N), π, Immfree,prop(M,N)/ Diff(M), Diff(M))

is a smooth principal fiber bundle with structure group Diff(M).
The restriction to proper immersions is necessary because we are only able to

show that Immprop(M,N)/ Diff(M) is Hausdorff in (11) below.
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For the proof of claim (10), we consider the setup (7) for the free immersion i.
Let

Ũ(i) := {j ∈ Imm(M,N) : j (W
i

α) ⊆ τ i(Ui |Ui
α
) for all α, j ∼ i},

where j ∼ i means that j = i off some compact set in M . Then by Sect. 5.3
(for open M) the set Ũ(i) is an open neighborhood of i in Imm(M,N). For each
j ∈ Ũ(i) we define

ϕi(j) : M → Ui ⊆ N (i),

ϕi(j)(x) := (τ i |(Ui |
Ui

α
))
−1(j (x)) if x ∈ Wi

α.

Note that ϕi(j) is defined piecewise on M , but the pieces coincide when they
overlap. Therefore a smooth curve through j is mapped to a smooth curve and so
ϕi : Ũ(i) → C∞(M,N (i)) is a smooth mapping which is bijective onto the open
set

Ṽ(i) := {h ∈ C∞(M,N (i)) : h(W
i

α) ⊆ Ui |Ui
α

for all α, h ∼ 0}

in C∞(M,N (i)). Its inverse is given by the smooth mapping τ i∗ : h �→ τ i ◦h. Now
we consider the open subsets

V(i) : = {h ∈ Ṽ(i) : p ◦h ∈ Diffc(M)} ⊂ Ṽ(i)

U(i) : = τ i∗(V(i)) ⊂ Ũ(i)

and the diffeomorphism ϕi : U(i) → V(i). For h ∈ V(i) we have τ i∗(h ◦ f ) =
τ i∗(h) ◦ f for those f ∈ Diff(M) which are near enough to the identity so that
h ◦ f ∈ V(i). And if τ i ◦h ◦ f = τ i ◦h then h ◦ f = h by the construction of N (i)

in (7), and then f = IdM since i is a free immersion; see the second diagram in (7).
We consider now the open set

{h ◦ f : h ∈ V(i), f ∈ Diff(M)} ⊆ C∞(M,Ui).

Consider the smooth mapping from it into �c(M ← Ui)× Diff(M) given by h �→
(h ◦(p ◦h)−1, p ◦h), where �c(M ← Ui) is the space of sections with compact
support of Ui → M . So if we let Q(i) := τ i∗(�c(M ← Ui)∩ V(i)) ⊂ Imm(M,N)

we have

W(i) := U(i) ◦Diffc(M) ∼= Q(i)×Diff(M) ∼= (�c(M ← Ui)∩V(i))×Diff(M),

since the action of Diff(M) on i is free and by the argument above. Consequently
Diff(M) acts freely on each immersion in W(i), so Immfree(M,N) is open in
C∞(M,N). Furthermore
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π |Q(i) : Q(i)→ Immfree(M,N)/ Diff(M)

is bijective onto an open set in the quotient.
We consider

ϕi ◦(π |Q(i))
−1 : π(Q(i))→ �c(M ← Ui) ⊂ C∞c (N,N (i))

as a chart for the quotient space.
In order to investigate the chart change let j ∈ Immfree(M,N) be such that

π(Q(i)) ∩ π(Q(j)) �= ∅. Then there is an immersion h ∈ W(i) ∩ Q(j), so there
exists a unique f0 ∈ Diff(M) (given by f0 = p ◦ϕi(h)) such that h ◦ f−1

0 ∈ Q(i).
If we consider j ◦ f−1

0 instead of j and call it again j , we have Q(i) ∩ Q(j) �= ∅
and consequently U(i) ∩ U(j) �= ∅. Then the chart change is given as follows:

ϕi ◦(π |Q(i))
−1 ◦π ◦(τ j )∗ : �c(M ← Uj )→ �c(M ← Ui)

s �→ τ j ◦ s �→ ϕi(τ
j ◦ s) ◦(pi ◦ϕi(τ

j ◦ s))−1.

This is of the form s �→ β ◦ s for a locally defined diffeomorphism β :
N (j) → N (i) which is not fiber respecting, followed by h �→ h ◦(pi ◦h)−1. Both
composants are smooth by the general properties of manifolds of mappings. So the
chart change is smooth.

We have to show that the quotient space Immprop,free(M,N)/ Diff(M) is Haus-
dorff.

(11) Claim The orbit space Immprop(M,N)/ Diff(M) of the space of all proper
immersions under the action of the diffeomorphism group is Hausdorff in the
quotient topology.

This follows from (18) below. I am convinced that the whole orbit space
Imm(M,N)/ Diff(M) is Hausdorff, but I was unable to prove this.

(12) Claim Let i and j ∈ Immprop(M,N) with i(M) �= j (M) in N . Then their
projections π(i) and π(j) are different and can be separated by open subsets in
Immprop(M,N)/ Diff(M).

We suppose that i(M) � j (M) = j (M) (since proper immersions have closed
images). Let y0 ∈ i(M) \ j (M), then we choose open neighborhoods V of y0 in N

and W of j (M) in N such that V ∩W = ∅. We consider the sets

V := {k ∈ Immprop(M,N) : k(M) ∩ V �= ∅} and

W := {k ∈ Immprop(M,N) : k(M) ⊆ W }.

Then V and W are Diff(M)-saturated disjoint open neighborhoods of i and j ,
respectively, so π(V) and π(W) separate π(i) and π(j) in the quotient space
Immprop(M,N)/ Diff(M).
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(13) Claim For a proper immersion i : M → N and x ∈ i(M) let δ(x) ∈ N be the
number of points in i−1(x). Then δ : i(M) → N is upper semicontinuous, i.e., the
set {x ∈ i(M) : δ(x) ≤ k} is open in i(M) for each k.

Let x ∈ i(M) with δ(x) = k and let i−1(x) = {y1, . . . , yk}. Then there are
pairwise disjoint open neighborhoods Wn of yn in M such that i|Wn is an embedding
for each n. The set M \ (

⋃
n Wn) is closed in M , and since i is proper the set

i(M \ (
⋃

n Wn)) is also closed in i(M) and does not contain x. So there is an open
neighborhood U of x in i(M) which does not meet i(M \ (

⋃
n Wn)). Obviously

δ(z) ≤ k for all z ∈ U .

(14) Claim Consider two proper immersions i1 and i2 ∈ Immprop(M,N) such that
i1(M) = i2(M) =: L ⊆ N . Then we have mappings δ1, δ2 : L → N as in (13). If
δ1 �= δ2 then the projections π(i1) and π(i2) are different and can be separated by
disjoint open neighborhoods in Immprop(M,N)/ Diff(M).

Let us suppose that m1 = δ1(y0) �= δ2(y0) = m2. There is a small connected
open neighborhood V of y0 in N such that i−1

1 (V ) has m1 connected components
and i−1

2 (V ) has m2 connected components. These assertions describe Whitney C0-
open neighborhoods in Immprop(M,N) of i1 and i2 which are closed under the
action of Diff(M), respectively. Obviously these two neighborhoods are disjoint.

(15) Assumption We assume that we are given two immersions i1 and i2 ∈
Immprop(M,N) with i1(M) = i2(M) =: L such that the functions from (14) are
equal: δ1 = δ2 =: δ.

Let (Lβ)β∈B be the partition of L consisting of all pathwise connected compo-
nents of level sets {x ∈ L : δ(x) = c}, c some constant.

Let B0 denote the set of all β ∈ B such that the interior of Lβ in L is not empty.
Since M is second countable, B0 is countable.

(16) Claim
⋃

β∈B0
Lβ is dense in L.

Let k1 be the smallest number in δ(L) and let B1 be the set of all β ∈ B such
that δ(Lβ) = k1. Then by claim (13) each Lβ for β ∈ B1 is open. Let L1 be the
closure of

⋃
β∈B1

Lβ . Let k2 be the smallest number in δ(L \ L1) and let B2 be the

set of all β ∈ B with β(Lβ) = k2 and Lβ ∩ (L \L1) �= ∅. Then by claim (13) again
Lβ ∩ (L \ L1) �= ∅ is open in L so Lβ has non-empty interior for each β ∈ B2.
Then let L2 denote the closure of

⋃
β∈B1∪B2

Lβ and continue the process. If δ(L)

is bounded, the process stops. If δ(L) is unbounded, by claim (13) we always find
new Lβ with non-empty interior, we finally exhaust L and claim (16) follows.

Let (M1
λ)λ∈C1 be a suitably chosen cover of M by subsets of the sets i−1

1 (Lβ)

such that:

(i) Each i1|int M1
λ

is an embedding for each λ.

(ii) The set C1
0 of all λ with M1

λ having non empty interior is at most countable.
Let (M2

μ)μ∈C2 be a cover chosen in a similar way for i2.
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(iii) For each pair (μ, λ) ∈ C2
0 ×C1

0 the two open sets i2(int(M2
μ)) and i1(int(M1

λ))

in L are either equal or disjoint.

Note that the union
⋃

λ∈C1
0

int M1
λ is dense in M and thus

⋃
λ∈C1

0
M1

λ = M; similarly

for the M2
μ.

(17) Procedure Given immersions i1 and i2 as in (15) we will try to construct
a diffeomorphism f : M → M with i2 ◦ f = i1. If we meet obstacles to the
construction this will give enough control on the situation to separate i1 from i2.

Choose λ0 ∈ C1
0 ; so int M1

λ0
�= ∅. Then i1 : int M1

λ0
→ Lβ1(λ0) is an embedding,

where β1 : C1 → B is the mapping satisfying i1(M
1
λ) ⊆ Lβ1(λ) for all λ ∈ C1.

We choose μ0 ∈ β−1
2 β1(λ0) ⊂ C2

0 such that f := (i2|int M2
μ0

)−1 ◦ i1|int M1
λ0

is a

diffeomorphism int M1
λ0
→ int M2

μ0
; this follows from (iii). Note that f is uniquely

determined by the choice of μ0, if it exists, by claim (8). So we will repeat the
following construction for every μ0 ∈ β−1

2 β1(λ0) ⊂ C2
0 .

Now we try to extend f . We choose λ1 ∈ C1
0 such that M

1
λ0
∩M

1
λ1
�= ∅.

Case a Only λ1 = λ0 is possible. So M1
λ0

is dense in M since M is connected and
we may extend f by continuity to a diffeomorphism f : M → M with i2 ◦ f = i1.

Case b We can find λ1 �= λ0. We choose x ∈ M
1
λ0
∩M

1
λ1

and a sequence (xn) in
M1

λ0
with xn → x. Then we have a sequence (f (xn)) in M .

Case ba y := lim f (xn) exists in M . Then there is μ1 ∈ C2
0 such that y ∈ M

2
μ0
∩

M
2
μ1

.
Let U1

α1
be an open neighborhood of x in M such that i1|U1

α1
is an embedding

and let similarly U2
α2

be an open neighborhood of y in M such that i2|U2
α2

is an

embedding. We consider now the set i−1
2 i1(U

1
α1

). There are two cases possible.

Case baa The set i−1
2 i1(U

1
α1

) is a neighborhood of y. Then we extend f to

i−1
1 (i1(U

1
α1

)∩i2(U
2
α2

)) by i−1
2 ◦ i1. Then f is defined on some open subset of int M1

λ1
and by the situation chosen in (15) and by (iii), the diffeomorphism f extends to the
whole of int M1

λ1
.

Case bab The set i−1
2 i1(U

1
α1

) is not a neighborhood of y. This is a definite
obstruction to the extension of f .

Case bb The sequence (xn) has no limit in M . This is a definite obstruction to the
extension of f .

If we meet an obstruction we stop and try another μ0. If for all admissible μ0 we
meet obstructions we stop and remember the data. If we do not meet an obstruction
we repeat the construction with some obvious changes.
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(18) Claim The construction of (17) in the setting of (15) either produces a
diffeomorphism f : M → M with i2 ◦ f = i1 or we may separate i1 and i2 by open
sets in Immprop(M,N) which are saturated with respect to the action of Diff(M)

If for some μ0 we do not meet any obstruction in the construction (17), the
resulting f is defined on the whole of M and it is a continuous mapping M → M

with i2 ◦ f = i1. Since i1 and i2 are locally embeddings, f is smooth and of
maximal rank. Since i1 and i2 are proper, f is proper. So the image of f is open
and closed and since M is connected, f is a surjective local diffeomorphism, thus
a covering mapping M → M . But since δ1 = δ2 the mapping f must be a 1-fold
covering, i.e., a diffeomorphism.

If for all μ0 ∈ β−1
2 β1(λ0) ⊂ C2

0 we meet obstructions we choose small mutually
distinct open neighborhoods V 1

λ of the sets i1(M
1
λ). We consider the Whitney C0-

open neighborhood V1 of i1 consisting of all immersions j1 with j1(M
1
λ) ⊂ V 1

λ for
all λ. Let V2 be a similar neighborhood of i2.

We claim that V1 ◦Diff(M) and V2 ◦Diff(M) are disjoint. For that it suffices
to show that for any j1 ∈ V1 and j2 ∈ V2 there does not exist a diffeomorphism
f ∈ Diff(M) with j2 ◦ f = j1. For that to be possible the immersions j1 and j2
must have the same image L and the same functions δ(j1), δ(j2) : L→ N. But now
the combinatorial relations of the slightly distinct new sets M1

λ , Lβ , and M2
μ are

contained in the old ones, so any try to construct such a diffeomorphism f starting
from the same λ0 meets the same obstructions.

Statements (2) and (3) of the theorem are now proved.

(19) Claim For a non-free immersion i ∈ Imm(M,N), the nontrivial isotropy
subgroup Diff(M)i = {f ∈ Diff(M) : i ◦ f = i} acts properly discontinuously
on M , so the projection q1 : M → M1 := M/ Diff(M)i is a covering map onto a
smooth manifold on M1. There is an immersion i1 : M1 → N with i = i1 ◦ q1. In
particular Diff(M)i is countable, and is finite if M is compact.

We have to show that for each x ∈ M there is an open neighborhood U such that
f (U)∩U = ∅ for f ∈ Diff(M)i \{Id}. We consider the setup (7) for i. By the proof
of (8) we have f (Ui

α)∩Ui
α = {x ∈ Ui

α : f (x) = x} for any f ∈ Diff(M)i . If f has
a fixed point then f = Id, by (8), so f (Ui

α) ∩ Ui
α = ∅ for all f ∈ Diff(M)i \ {Id}.

The rest is clear.
The factorized immersion i1 is in general not a free immersion. The following is

an example for that: Let M0 −α→ M1 −β→ M2 −γ→ M3 be a sequence of covering
maps with fundamental groups 1 → G1 → G2 → G3. Then the group of deck
transformations of γ is given by NG3(G2)/G2, the normalizer of G2 in G3, and
the group of deck transformations of γ ◦β is NG3(G1)/G1. We can easily arrange
that NG3(G2) � NG3(G1), then γ admits deck transformations which do not lift
to M1. Then we thicken all spaces to manifolds, so that γ ◦β plays the role of the
immersion i.

(20) Claim Let i ∈ Imm(M,N) be an immersion which is not free. Then there
is a submersive covering map q2 : M → M2 such that i factors to an immersion
i2 : M2 → N which is free.
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Let q0 : M0 → M be the universal covering of M and consider the immersion
i0 = i ◦ q0 : M0 → N and its isotropy group Diff(M0)i0 . By (19) it acts properly
discontinuously on M0 and we have a submersive covering q02 : M0 → M2 and an
immersion i2 : M2 → N with i2 ◦ q02 = i0 = i ◦ q0. By comparing the respective
groups of deck transformations it is easily seen that q02 : M0 → M2 factors over
q1 ◦ q0 : M0 → M → M1 to a covering q12 : M1 → M2. The mapping q2 :=
q12 ◦ q1 : M → M2 is the looked for covering: If f ∈ Diff(M2) fixes i2, it lifts to a
diffeomorphism f0 ∈ Diff(M0) which fixes i0, so f0 ∈ Diff(M0)i0 , so f = Id.

Statement (4) of the theorem follows from (19) and (20).

(21) Convention In order to avoid complications we assume now that M is such a
manifold that

• For any covering M → M1, any diffeomorphism M1 → M1 admits a lift
M → M .

If M is simply connected, this condition is satisfied. Also for M = S1 the condition
is easily seen to be valid. So what follows is applicable to loop spaces.

Condition (21) implies that in the proof of claim (20) we have M1 = M2.

(22) Description of a Neighborhood of a Singular Orbit Let M be a manifold
satisfying (21). In the situation of (19) we consider the normal bundles pi : N (i)→
M and pi1 : N (i1) → M1. Then the covering map q1 : M → M1 lifts uniquely to
a vector bundle homomorphism N (q1) : N (i) → N (i1) which is also a covering
map, such that τ i1 ◦N (q1) = τ i .

We have M1 = M/ Diff(M)i and the group Diff(M)i acts also as the group of
deck transformations of the covering N (q1) : N (i) → N (i1) by Diff(M)i � f �→
N (f ), where

N(i) N(f)
N(i)

M
f

M

is a vector bundle isomorphism for each f ∈ Diff(M)i ; see the end of (7). If
we equip N (i) and N (i1) with the fiber Riemann metrics induced from the fixed
Riemannian metric g on N , the mappings N (q1) and all N (f ) are fiberwise linear
isometries.

Let us now consider the right action of Diff(M)i on the space of sections
�c(M ← N (i)) given by f ∗s := N (f )−1 ◦ s ◦ f .

From the proof of claim (10) we recall now the sets

C∞(M,N(i)) V(i) U(i)
ϕi

Γc(M ← N(i)) Γc(M←U i) Q(i)
ϕi
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Both mappings ϕi are diffeomorphisms. But since the action of Diff(M) on i is not
free we cannot extend the splitting submanifold Q(i) to an orbit cylinder as we did
in the proof of claim (10). Q(i) is a smooth transversal for the orbit though i.

For any f ∈ Diff(M) and s ∈ �c(M ← Ui) ⊂ �c(M ← N (i)) we have

ϕ−1
i (f ∗s) = τ i∗(f ∗s) = τ i∗(s) ◦ f.

So the space q∗1 �c(M ← N (i1)) of all sections of N (i) → M which factor to
sections of N (i1) → M1, is exactly the space of all fixed points of the action of
Diff(M)i on �c(M ← N (i)); and they are mapped by τ i∗ = ϕ−1

i to such immersions
in Q(i) which have again Diff(M)i as isotropy group.

If s ∈ �c(M ← Ui) ⊂ �c(M ← N (i)) is an arbitrary section, the orbit through
τ i∗(s) ∈ Q(i) hits the transversal Q(i) again in the points τ i∗(f ∗s) for f ∈ Diff(M)i .

Statement (5) of the theorem is now proved.

(23) The Orbit Structure We have the following description of the orbit structure
near i in Imm(M,N): For fixed f ∈ Diff(M)i the set of fixed points Fix(f ) :=
{j ∈ Q(i) : j ◦ f = j} is called a generalized wall. The union of all generalized
walls is called the diagram D(i) of i. A connected component of the complement
Q(i) \D(i) is called a generalized Weyl chamber. The group Diff(M)i maps walls
to walls and chambers to chambers. The immersion i lies in every wall. We shall see
shortly that there is only one chamber and that the situation is rather distinct from
that of reflection groups.

If we view the diagram in the space �c(M ← Ui) ⊂ �c(M ← N (i)) which is
diffeomorphic to Q(i), then it consists of traces of closed linear subspaces, because
the action of Diff(M)i on �c(M ← N (i)) consists of linear isometries in the
following way. Let us tensor the vector bundle N (i) → M with the natural line
bundle of half densities on M , and let us remember one positive half density to
fix an isomorphism with the original bundle. Then Diff(M)i still acts on this new
bundle N1/2(i) → M and the pullback action on sections with compact support is
isometric for the inner product

〈s1, s2〉 :=
∫

M

g(s1, s2).

We now extend the walls and chambers from

Q(i) = �c(M ← Ui) ⊂ �c(M ← N (i))

to the whole space �c(M ← N (i)) = �c(M ← N1/2(i)); recall from (22) that
Diff(M)i acts on the whole space.

(24) Claim Each wall in �c(M ← N1/2(i)) is a closed linear subspace of
infinite codimension. Since there are at most countably many walls, there is only
one chamber.

From the proof of claim (19) we know that f (Ui
α)∩Ui

α = ∅ for all f ∈ Diff(M)i
and all sets Ui

α from the setup (7). Take a section s in the wall of fixed points of f .
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Choose a section sα with support in some Ui
α and let the section s be defined by

s|Ui
α
= sα|Ui

α
, s|f−1(Ui

α) = −f ∗sα , 0 elsewhere. Then obviously 〈s, s′〉 = 0 for
all s′ in the wall of f . But this construction furnishes an infinite dimensional space
contained in the orthogonal complement of the wall of f .

(25) The Action of Diff(M) on Imm(M,N)×M Proof of (6)
Here we will consider the right action (i, x).f = (i ◦ f, f−1(x)) of Diff(M) on

Imm(M,N) ×M . This action is free: If (i ◦ f, f−1(x)) = (i, x) then from claim
(8) we get f = IdM .

Claim Let (i, x) ∈ Imm(M,N)×M . Then there is an open neighborhood W(i, x)

in Imm(M,N) × M which is saturated for the Diff(M)-action and which splits
smoothly as

W(i, x) = Q(i, x)× Diff(M).

Here Q(i, x) is a smooth splitting submanifold of Imm(M,N)×M , diffeomorphic
to an open neighborhood of (0, x) in C∞(N (i)).

Let π : Imm(M,N) ×M → (Imm(M,N) ×M)/ Diff(M) = S(M,N) be the
projection onto the orbit space, which we equip with the quotient topology. Then
π |Q(i,x) : Q(i, x) → π(Q(i, x)) is bijective onto an open subset of the quotient. If
(i, x) runs through Imm(M,N) ×M these mappings define a smooth atlas for the
quotient space, so that

(Imm(M,N)×M,π, (Imm(M,N)×M)/ Diff(M), Diff(M))

is a smooth principal fiber bundle with structure group Diff(M).
If we restrict to the open subset Immprop(M,N)×M of proper immersions times

M then the base space is Hausdorff.
By claim (19), the isotropy subgroup Diff(M)i = {f ∈ Diff(M) : i ◦ f = i} acts

properly discontinuously on M , so q1 : M → M/ Diff(M)i =: M1 is a covering.
We choose an open neighborhood Wx of x in M such that q1 : Wx → M1 is
injective.

Now we adapt the second half of the proof of claim (10) and use freely all the
notation from there. We consider the open set

{(h ◦ f, f−1(y)) : h ∈ V(i), y ∈ Wx, f ∈ Diff(M)} ⊂
⊂ C∞(M,Ui)×M ⊂ C∞(M,N (i))×M.

We have a smooth mapping from it into �c(M ← Ui) × Wx × Diff(M) which
is given by (h, y) �→ (h ◦(p ◦h)−1, (p ◦h)(y), p ◦h), where �c(M ← Ui) is the
space of sections with compact support of Ui → M . We now put

Q(i, x) := τ i∗(�c(M ← Ui) ∩ V(i))×Wx ⊂ Imm(M,N)×M.
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Then we have

W(i, x) : = {(h ◦ f, f (y)) : h ∈ U(i), y ∈ Wx, f ∈ Diff(M)}
∼= Q(i, x)× Diff(M) ∼= (�c(M ← Ui) ∩ V(i))×Wx × Diff(M),

since the action of Diff(M) is free. The quotient mapping π |Q(i) : Q(i) →
Immfree(M,N)/ Diff(M) is bijective onto an open set in the quotient. We now use
(ϕi × IdWx ) ◦(π |Q(i,x))

−1 : π(Q(i, x)) → �c(M ← Ui) ×Wx as a chart for the
quotient space. In order to investigate the chart change let (j, y) ∈ Imm(M,N)×M

be such that π(Q(i, x)) ∩ π(Q(j, y)) �= ∅. Then there exists (h, z) ∈ W(i, x) ∩
Q(j, y), so there exists a unique f ∈ Diff(M) (given by f = p ◦ϕi(h)) such that
(h ◦ f−1, f (z)) ∈ Q(i, x). If we consider (j ◦ f−1, f (y)) instead of (j, y) and call
it again (j, y), we have Q(i, x) ∩Q(j, y) �= ∅ and consequently U(i) ∩ U(j) �= ∅.
Now the first component of the chart change is smooth by the argument in the end
of the proof of claim (10), and the second component is just IdWx∩Wy .

The result about Hausdorff follows from claim (11). The fibers over
Imm(M,N)/ Diff(M) can be read off the following diagram:

M
insi Imm(M,N)×M

pr1

π

Imm(M,N)

π

M

Diff(M)i

Imm(M,N)×M

Diff(M)
Imm(M,N)

Diff(M)

This finishes the proof of Theorem 7.3. ��

8 Weak Riemannian Manifolds

If an infinite dimensional manifold is not modeled on a Hilbert space, then a
Riemannian metric cannot describe the topology on each tangent space. We have
to deal with more complicated situations.

8.1 Manifolds, Vector Fields, Differential Forms

Let M be a smooth manifold modeled on convenient vector spaces. Tangent vectors
to M are kinematic ones.

The reason for this is that eventually we want flows of vector fields, and that
there are too many derivations in infinite dimensions, even on a Hilbert space H : Let
α ∈ L(H,H) be a continuous linear functional which vanishes on the subspace of
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compact operators, thus also on H ⊗H . Then the linear functional f �→ α(d2f (0))

is a derivation at 0 on C∞(H), since

α(d2(f.g)(0)) = α
(
d2f (0).g(0)+df (0)⊗dg(0)+dg(0)⊗df (0)+f (0).d2g(0)

)

and α vanishes on the two middle terms. There are even non-zero derivations which
differentiate 3 times, see [55, 28.4].

The (kinematic) tangent bundle T M is then a smooth vector bundle as usual.
Differential forms of degree k are then smooth sections of the bundle Lk

skew(T M;R)

of skew symmetric k-linear functionals on the tangent bundle, since this is the
only version which admits exterior derivative, Lie derivatives along vector field,
and pullbacks along arbitrary smooth mappings; see [55, 33.21]. The de Rham
cohomology equals singular cohomology with real coefficients if the manifold is
smoothly paracompact; see [71] and [55, Section 34]. If a vector field admits a flow,
then each integral curve is uniquely given as a flow line; see [55, 32.14].

8.2 Weak Riemannian Manifolds

Let M be a smooth manifold modeled on convenient locally convex vector spaces.
A smooth Riemannian metric g on M is called weak if gx : TxM → T ∗x M is
only injective for each x ∈ M . The image g(T M) ⊂ T ∗M is called the smooth
cotangent bundle associated to g. Then g−1 is the metric on the smooth cotangent
bundle as well as the morphism g(T M)→ T M . We have a special class of 1-forms

1

g(M) := �(g(T M)) for which the musical mappings make sense: α� = g−1α ∈
X(M) and X� = gX. These 1-forms separate points on T M . The exterior derivative
is defined by d : 
1

g(M) → 
2(M) = �(L2
skew(T M;R)) since the embedding

g(T M) ⊂ T ∗M is a smooth fiber linear mapping.
Existence of the Levi-Civita covariant derivative is equivalent to: The metric itself

admits symmetric gradients with respect to itself. Locally this means: If M is c∞-
open in a convenient vector space VM . Then

Dx,Xgx(X, Y ) = gx(X, grad1 g(x)(X, Y )) = gx(grad2 g(x)(X,X), Y ),

where Dx,X denote the directional derivative at x in the direction X, and where the
mappings grad1 g and sym grad2 g : M × VM × VM → VM , given by (x,X) �→
grad1,2 g(x)(X,X), are smooth and quadratic in X ∈ VM . The geodesic equation
then is (again locally) given by

ctt = 1
2 grad1 g(c)(ct , ct )− grad2 g(c)(ct , ct ) .

This formula corresponds to the usual formula for the geodesic flow using Christof-
fel symbols, expanded out using the first derivatives of the metric tensor. For the
existence of the covariant derivative see [68, 2.4], and for the geodesic equation see
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[76, 2.1 and 2.4]; there this is done in a special case, but the method works in the
general case without changes. See also [12, 4.2, 4.3, and 4.4] for a derivation in
another special case.

8.3 Weak Riemannian Metrics on Spaces of Immersions

For a compact manifold M and a finite dimensional Riemannian manifold (N, ḡ) we
can consider the following weak Riemannian metrics on the manifold Imm(M,N)

of smooth immersions M → N :

G0
f (h, k) =

∫

M

ḡ(h, k) vol(f ∗ḡ) the L2-metric,

Gs
f (h, k) =

∫

M

ḡ((1+�f ∗ḡ)sh, k) vol(f ∗ḡ) a Sobolev metric of order s,

G�
f (h, g) =

∫

M

�(f )ḡ(h, k) vol(f ∗ḡ) an almost local metric.

Here vol(f ∗ḡ) is the volume density on M of the pullback metric g = f ∗ḡ,
and �f ∗ḡ is the (Bochner) Laplacian with respect to g and ḡ acting on sections
of f ∗T N , and �(f ) is a positive function of the total volume Vol(f ∗g) =∫
M

vol(f ∗g), of the scalar curvature Scal(f ∗ḡ), and of the mean curvature Tr(Sf ),
Sf being the second fundamental form. See [12, 13] for more information. All these
metrics are invariant for the right action of the reparameterization group Diff(M),
so they descend to metrics on shape space Bi(M,N) (off the singularities) such that
the projection Imm(M,N) → Bi(M,N) is a Riemannian submersion of a benign
type: the G-orthogonal component to the tangent space to the Diff(M)-orbit consists
always of smooth vector fields. So there is no need to use the notion of robust weak
Riemannian metrics discussed below.

8.4 Theorem The Riemannian metrics on Imm(M,N) defined in Sect. 8.3 have
the following properties:

(1) Geodesic distance on Imm(M,N), defined as the infimum of path-lengths of
smooth isotopies between two immersions, vanishes for the L2-metric G0.

(2) Geodesic distance is positive on Bi(M,N) for the almost local metric G� if
�(f ) ≥ 1+ A Tr(SF ), or if �(f ) ≥ A Vol(f ∗ḡ), for some A > 0.

(3) Geodesic distance is positive on Bi(M,N) for the Sobolev metric Gs if s ≥ 1.
(4) The geodesic equation is locally well-posed on Imm(M,N) for the Sobolev

metric Gs if s ≥ 1, and globally well-posed (and thus geodesically complete)
on Imm(S1,Rn), if s ≥ 2.

(1) is due to [75] for Bi(S
1,R2), to [74] for Bi(M,N) and for Diff(M), which

combines to the result for Imm(M,N) as noted in [6]. (2) is proved in [13]. For (3)
see [12]. (4) is due to [21] and [20].
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8.5 Analysis Tools on Regular Lie Groups and on Diff(M) for
a Whitney Manifold Germ

Let G be a regular convenient Lie group, with Lie algebra g. We also consider a
Frölicher group G = Diff(M) for a Whitney manifold germ M ⊂ M̃ with Lie
algebra g = Xc,∂ (M), with the negative of the usual Lie bracket, as described
in Sects. 6.3–6.6.

Let μ : G × G → G be the group multiplication, μx the left translation and
μy the right translation, μx(y) = μy(x) = xy = μ(x, y). The adjoint action
Ad : G → GL(g) is given by Ad(g)X = T (μg−1

).T (μg)X. Let L,R : g→ X(G)

be the left and right invariant vector field mappings, given by LX(g) = Te(μg).X

and RX = Te(μ
g).X, respectively. They are related by LX(g) = RAd(g)X(g). Their

flows are given by

FlLX
t (g) = g. exp(tX) = μexp(tX)(g),

FlRX
t (g) = exp(tX).g = μexp(tX)(g).

The right Maurer–Cartan form κ = κr ∈ 
1(G, g) is given by κx(ξ) := Tx(μ
x−1

) ·
ξ . It satisfies the left Maurer–Cartan equation dκr − 1

2 [κr , κr ]∧g = 0, where
[ , ]∧ denotes the wedge product of g-valued forms on G induced by the Lie
bracket. Note that 1

2 [κr , κr ]∧(ξ, η) = [κr(ξ), κr(η)].
Namely, evaluate dκr on right invariant vector fields RX,RY for X, Y ∈ g.

(dκr)(RX,RY ) = RX(κr(RY ))− RY (κr(RX))− κr([RX,RY ])
= RX(Y )− RY (X)+ [X, Y ] = 0− 0+ [κr(RX), κr(RY )].

The left Maurer–Cartan form κl ∈ 
1(G, g) is given by κl
x(ξ) := Tx(μx−1) · ξ .

The left Maurer–Cartan form κl satisfies the right Maurer–Cartan equation dκl +
1
2 [κl, κl]∧g = 0.

The (exterior) derivative of the function Ad : G→ GL(g) satisfies

d Ad = (ad ◦ κr). Ad = Ad .(ad ◦ κl)

since we have

d Ad(T μg.X) = ∂t |0 Ad(exp(tX).g) = ∂t |0 Ad(exp(tX)). Ad(g)

= ad(κr(T μg.X)). Ad(g) ,

d Ad(T μg.X) = ∂t |0 Ad(g. exp(tX)) = Ad(g). ad(κl(T μg.X)) .
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8.6 Right Invariant Weak Riemannian Metrics on Regular Lie
Groups and on Diff(M) for a Whitney Manifold Germ

We continue under the assumptions of Sect. 8.5, Let γ = g × g→ R be a positive
definite bounded (weak) inner product. Then

γx(ξ, η) = γ
(
T (μx−1

) · ξ, T (μx−1
) · η) = γ

(
κ(ξ), κ(η)

)

is a right invariant (weak) Riemannian metric on G and any (weak) right invariant
bounded Riemannian metric is of this form, for suitable γ . Denote by γ̌ : g → g∗
the mapping induced by γ , from the Lie algebra into its dual (of bounded linear
functionals) and by 〈α,X〉g the duality evaluation between α ∈ g∗ and X ∈ g.

Let g : [a, b] → G be a smooth curve. The velocity field of g, viewed in the
right trivializations, coincides with the right logarithmic derivative

δr (g) := T (μg−1
) · ∂tg = κ(∂tg) = (g∗κ)(∂t ).

The energy of the curve g(t) is given by

E(g) = 1

2

∫ b

a

γg(g
′, g′)dt = 1

2

∫ b

a

γ
(
(g∗κ)(∂t ), (g

∗κ)(∂t )
)
dt.

For a variation g(s, t) with fixed endpoints we then use that

d(g∗κ)(∂t , ∂s) = ∂t (g
∗κ(∂s))− ∂s(g

∗κ(∂t ))− 0,

partial integration, and the left Maurer–Cartan equation to obtain

∂sE(g) = 1

2

∫ b

a

2γ
(
∂s(g

∗κ)(∂t ), (g∗κ)(∂t )
)
dt

=
∫ b

a

γ
(
∂t (g

∗κ)(∂s)− d(g∗κ)(∂t , ∂s), (g∗κ)(∂t )
)
dt

= −
∫ b

a

γ
(
(g∗κ)(∂s), ∂t (g

∗κ)(∂t )
)
dt

−
∫ b

a

γ
([(g∗κ)(∂t ), (g

∗κ)(∂s)], (g∗κ)(∂t )
)
dt

= −
∫ b

a

〈
γ̌ (∂t (g

∗κ)(∂t )), (g∗κ)(∂s)
〉
g

dt



Manifolds of Mappings for Continuum Mechanics 59

−
∫ b

a

〈
γ̌ ((g∗κ)(∂t )), ad(g∗κ)(∂t )(g

∗κ)(∂s)
〉
g

dt

= −
∫ b

a

〈
γ̌ (∂t (g

∗κ)(∂t ))+ (ad(g∗κ)(∂t ))
∗γ̌ ((g∗κ)(∂t )), (g∗κ)(∂s)

〉
g

dt.

Thus the curve g(0, t) is critical for the energy if and only if

γ̌ (∂t (g
∗κ)(∂t ))+ (ad(g∗κ)(∂t ))

∗γ̌ ((g∗κ)(∂t )) = 0.

In terms of the right logarithmic derivative u : [a, b] → g of g : [a, b] → G, given
by u(t) := g∗κ(∂t ) = Tg(t)(μ

g(t)−1
)·g′(t), the geodesic equation has the expression

∂tu = − γ̌−1 ad(u)∗ γ̌ (u) .

Thus the geodesic equation exists in general if and only if ad(X)∗γ̌ (X) is in the
image of γ̌ : g→ g∗, i.e.,

ad(X)∗γ̌ (X) ∈ γ̌ (g)

for every X ∈ X; this leads to the existence of the Christoffel symbols. Arnold [4]
asked for the more restrictive condition ad(X)∗γ̌ (Y ) ∈ γ̌ (g) for all X, Y ∈ g. The
geodesic equation for the momentum p := γ (u) is

pt = − ad(γ̌−1(p))∗p.

There are situations, see Theorem 8.11 or [9], where only the more general condition
is satisfied, but where the usual transpose ad)(X) of ad(X),

ad)(X) := γ̌−1 ◦ ad∗X ◦ γ̌

does not exist for all X.
We describe now the covariant derivative and the curvature. The right trivializa-

tion (πG, κr) : T G → G × g induces the isomorphism R : C∞(G, g) → X(G),
given by R(X)(x) := RX(x) := Te(μ

x) ·X(x), for X ∈ C∞(G, g) and x ∈ G. Here
X(G) := �(T G) denotes the Lie algebra of all vector fields. For the Lie bracket and
the Riemannian metric we have

[RX,RY ] = R(−[X, Y ]g + dY · RX − dX · RY ),

R−1[RX,RY ] = −[X, Y ]g + RX(Y )− RY (X),

γx(RX(x), RY (x)) = γ (X(x), Y (x)) , x ∈ G.
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In what follows, we shall perform all computations in C∞(G, g) instead of X(G).
In particular, we shall use the convention

∇XY := R−1(∇RX
RY ) for X, Y ∈ C∞(G, g)

to express the Levi-Civita covariant derivative.

8.7 Lemma ([9, 3.3]) Assume that for all ξ ∈ g the element ad(ξ)∗γ̌ (ξ) ∈ g∗ is
in the image of γ̌ : g → g∗ and that ξ �→ γ̌−1 ad(ξ)∗γ̌ (ξ) is bounded quadratic
(or, equivalently, smooth). Then the Levi-Civita covariant derivative of the metric γ

exists and is given for any X, Y ∈ C∞(G, g) in terms of the isomorphism R by

∇XY = dY.RX + ρ(X)Y − 1

2
ad(X)Y,

where

ρ(ξ)η = 1
4 γ̌−1( ad∗ξ+η γ̌ (ξ + η)− ad∗ξ−η γ̌ (ξ − η)

) = 1
2 γ̌−1( ad∗ξ γ̌ (η)+ ad∗η γ̌ (ξ)

)

is the polarized version. The mapping ρ : g → L(g, g) is bounded, and we have
ρ(ξ)η = ρ(η)ξ . We also have

γ
(
ρ(ξ)η, ζ

) = 1

2
γ (ξ, ad(η)ζ )+ 1

2
γ (η, ad(ξ)ζ ),

γ (ρ(ξ)η, ζ )+ γ (ρ(η)ζ, ξ)+ γ (ρ(ζ )ξ, ξ) = 0.

For X, Y ∈ C∞(G, g) we have

[RX, ad(Y )] = ad(RX(Y )) and [RX, ρ(Y )] = ρ(RX(Y )).

The Riemannian curvature is then computed as follows:

R(X, Y ) = [∇X,∇Y ] − ∇−[X,Y ]g+RX(Y )−RY (X)

= [RX + ρX − 1
2 adX,RY + ρY − 1

2 adY ]
− R(−[X, Y ]g + RX(Y )− RY (X))− ρ(−[X, Y ]g + RX(Y )− RY (X))

+ 1

2
ad(−[X, Y ]g + RX(Y )− RY (X))

= [ρX, ρY ] + ρ[X,Y ]g −
1

2
[ρX, adY ] + 1

2
[ρY , adX] − 1

4
ad[X,Y ]g

which is visibly a tensor field.
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For the numerator of the sectional curvature we obtain

γ
(R(X, Y )X, Y

) = γ (ρXρY X, Y )− γ (ρY ρXX, Y )+ γ (ρ[X,Y ]X, Y )

− 1

2
γ (ρX[Y,X], Y )+ 1

2
γ ([Y, ρXX], Y )

+ 0− 1

2
γ ([X, ρY X], Y )− 1

4
γ ([[X, Y ], X], Y )

= γ (ρXX, ρY Y )− ‖ρXY‖2
γ +

3

4
‖[X, Y ]‖2

γ

− 1

2
γ (X, [Y, [X, Y ]])+ 1

2
γ (Y, [X, [X, Y ]])

= γ (ρXX, ρY Y )− ‖ρXY‖2
γ +

3

4
‖[X, Y ]‖2

γ

− γ (ρXY, [X, Y ]])+ γ (Y, [X, [X, Y ]]).

If the adjoint ad(X)) : g → g exists, this is easily seen to coincide with Arnold’s
original formula [4],

γ (R(X, Y )X, Y ) =− 1

4
‖ ad(X))Y + ad(Y ))X‖2

γ + γ (ad(X))X, ad(Y ))Y )

+ 1

2
γ (ad(X))Y − ad(Y ))X, ad(X)Y )+ 3

4
‖[X, Y ]‖2

γ .

8.8 Examples of Weak Right Invariant Riemannian Metrics
on Diffeomorphism Groups

Let M be a finite dimensional manifold. We consider the following regular Lie
groups: Diff(M), the group of all diffeomorphisms of M if M is compact. Diffc(M),
the group of diffeomorphisms with compact support, if M is not compact. If
M = R

n, we also may consider one of the following: DiffS(Rn), the group of
all diffeomorphisms which fall rapidly to the identity. DiffW∞,p (Rn), the group of
all diffeomorphisms which are modeled on the space W∞,p(Rn)n, the intersection
of all Wk,p-Sobolev spaces of vector fields. The last type of groups works also for
a Riemannian manifold of bounded geometry (M, ḡ); see [30] for Sobolev spaces
on them. In the following we write DiffA(M) for any of these groups. The Lie
algebras are the spaces XA(M) of vector fields, where A ∈ {C∞c ,S,W∞,p}, with
the negative of the usual bracket as Lie bracket.

Most of the following weak Riemannian metrics also make sense on Diff(M)

for a compact Whitney manifold germ M ⊂ M̃ , but their behavior has not been
investigated. In particular, I do not know how the Laplacian 1 + �g behaves on
X∂ (M) and its Sobolev completions.
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A right invariant weak inner product on DiffA(M) is given by a smooth positive
definite inner product γ on the Lie algebra XA(M) which is described by the inertia
operator L = γ̌ : XA(M) → XA(M)′ and we shall denote its inverse by K =
L−1 : L(XA(M)) → XA(M). Under suitable conditions on L (like an elliptic
coercive (pseudo) differential operator of high enough order) the operator K turns
out to be the reproducing kernel of a Hilbert space of vector fields which is contained
in the space of either C1

b (bounded C1 with respect to ḡ) or C2
b vector fields. See

[108, Chapter 12], [68], and [80] for uses of the reproducing Hilbert space approach.
The right invariant metric is then defined as in Sect. 8.5, where 〈 , 〉XA(M) is the
duality:

GL
ϕ (X ◦ϕ, Y ◦ϕ) = GL

Id(X, Y ) = γ (X, Y ) = 〈L(X), Y 〉XA(M).

For example, the Sobolev metric of order s corresponds to the inertia operator
L(X) = (1+�ḡ)s(X). vol(ḡ). Examples of metrics are

G0
Id(X, Y ) =

∫

M

ḡ(X, Y ) vol(ḡ) the L2 metric,

Gs
Id(X, Y ) =

∫

M

ḡ((1+�ḡ)sX, Y ) vol(ḡ) a Sobolev metric of order s,

GḢ 1

Id (X, Y ) =
∫

R

X′.Y ′dx = −
∫

R

X′′Y dx where X, Y ∈ XA(R).

As explained in Sect. 8.8, the geodesic equation on DiffA(M) is given as follows:
Let ϕ : [a, b] → DiffA(M) be a smooth curve. In terms of its right logarithmic
derivative

u : [a, b] → XA(M), u(t) := ϕ∗κ(∂t ) = ϕ′(t) ◦ϕ(t)−1 ,

the geodesic equation is

L(ut ) = L(∂tu) = − ad(u)∗L(u).

The condition for the existence of the geodesic equation is as follows:

X �→ K(ad(X)∗L(X))

is bounded quadratic XA(M) → XA(M). Using Lie derivatives, the computation
of ad∗X is especially simple. Namely, for any section ω of T ∗M ⊗ vol and vector
fields ξ, η ∈ XA(M), we have

∫

M

(ω, [ξ, η]) =
∫

M

(ω,Lξ (η)) = −
∫

M

(Lξ (ω), η),
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hence ad∗ξ (ω) = +Lξ (ω). Thus the Hamiltonian version of the geodesic equation
on the smooth dual L(XA(M)) ⊂ �C2

b
(T ∗M ⊗ vol) becomes

∂tα = − ad∗K(α) α = −LK(α)α,

or, keeping track of everything,

∂tϕ = u ◦ϕ, ∂tα = −Luα u = K(α) = α�, α = L(u) = u�.

8.9 Theorem Geodesic distance vanishes on DiffA(M) for any Sobolev metric of
order s < 1

2 . If M = S1 × C with C compact, then geodesic distance vanishes also
for s = 1

2 . It also vanishes for the L2-metric on the Virasoro group R� DiffA(R).
Geodesic distance is positive on DiffA(M) for any Sobolev metric of order s ≥ 1.

If dim(M) = 1 then geodesic distance is also positive for s > 1
2 .

This is proved in [8, 14], and [6]. Note that low order Sobolev metrics have
geodesic equations corresponding to well-known nonlinear PDEs: On Diff(S1) or
DiffA(R) the L2-geodesic equation is Burgers’ equation, on the Virasoro group it
is the KdV equation, and the (standard) H 1-geodesic is (in both cases a variant of)
the Camassa–Holm equation; see [10, 7.2] for a more comprehensive overview. All
these are completely integrable infinite dimensional Hamiltonian systems.

8.10 Theorem Let (M, ḡ) be a compact Riemannian manifold. Then the geodesic
equation is locally well-posed on DiffA(M) and the geodesic exponential mapping
is a local diffeomorphism for a Sobolev metric of integer order s ≥ 1. For a Sobolev
metric of integer order s >

dim(M)+3
2 the geodesic equation is even globally well-

posed, so that (DiffA(M),Gs) is geodesically complete. This is also true for non-
integer order s if M = R

n.
For M = S1, the geodesic equation is locally well-posed even for s ≥ 1

2 .

For these results see [11, 12, 32, 33].

8.11 Theorem ([9]) For A ∈ {C∞c ,S,W∞,1} let

A1(R) = {f ∈ C∞(R) : f ′ ∈ A(R) , f (−∞) = 0}
and let DiffA1(R) = {ϕ = Id+f : f ∈ A1(R) , f ′ > −1}. These are all regular
Lie groups. The right invariant weak Riemannian metric

GḢ 1

Id (X, Y ) =
∫

R

X′Y ′ dx

is positive definite both on DiffA(R) where it does not admit a geodesic equation
(a non-robust weak Riemannian manifold), and on DiffA1(R) where it admits
a geodesic equation but not in the stronger sense of Arnold. On DiffA1(R) the
geodesic equation is the Hunter-Saxton equation
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(ϕt ) ◦ ϕ−1 = u, ut = −uux + 1

2

∫ x

−∞
(ux(z))

2 dz ,

and the induced geodesic distance is positive. We define the R-map by

R : DiffA1(R)→ A(
R,R>−2

) ⊂ A(R,R), R(ϕ) = 2
(
(ϕ′)1/2 − 1

)
.

The R-map is invertible with inverse

R−1 : A(
R,R>−2

)→ DiffA1(R), R−1(γ )(x) = x + 1

4

∫ x

−∞
γ 2 + 4γ dx .

The pullback of the flat L2-metric via R is the Ḣ 1-metric on DiffA(R), i.e.,
R∗〈·, ·〉L2(dx) = GḢ 1

. Thus the space
(

DiffA1(R), Ḣ 1
)

is a flat space in the
sense of Riemannian geometry. There are explicit formulas for geodesics, geodesic
distance, and geodesic splines, even for more restrictive spaces A1 like Denjoy–
Carleman ultradifferentiable function classes. There are also soliton-like solu-
tions. (DiffA1(R),GḢ 1

) is geodesically convex, but not geodesically complete; the
geodesic completion is the smooth semigroup

MonA1 = {ϕ = Id+f : f ∈ A1(R) , f ′ ≥ −1} .

Any geodesic can hit the subgroup DiffA(R) ⊂ DiffA1(R) at most twice.

8.12 Trouvé Groups for Reproducing Kernel Hilbert Spaces

This is the origin of the notion of a Trouvé group. It puts the approach of Sect. 8.1
to Theorem 8.11 upside down and gets rid of the use of the Lie algebra structure
on the space of vector fields. If the generating space A of vector fields on R

d

for the Trouvé group GA (see Sect. 6.12) is a reproducing kernel Hilbert space
(A(Rd ,Rd), 〈 , , 〉A) contained in C1

b , then

dist(Id, ϕ) := inf
{
∫ 1

0
‖X(t)‖A dt : X ∈ FA, evolX = ϕ

}

defines a metric which makes the Trouvé group GA into a topological group; see
[103, 108]. This is widely used for the Large Deformation Diffeomorphic Metric
Matching (LDDMM) method in image analysis and computational anatomy. The
most popular reproducing kernel Hilbert space is the one where the kernel is a
Gaussian e−|x|2/σ . Here the space A is a certain space of entire real analytic
functions, and a direct description of the Trouvé group is severely lacking.
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9 Robust Weak Riemannian Manifolds and Riemannian
Submersions

9.1 Robust Weak Riemannian Manifolds

Some constructions may lead to vector fields whose values do not lie in TxM , but
in the Hilbert space completion TxM with respect to the weak inner product gx .
We need that

⋃
x∈M TxM forms a smooth vector bundle over M . In a coordinate

chart on open U ⊂ M , T M|U is a trivial bundle U × V and all the inner products
gx, x ∈ U define inner products on the same topological vector space V . They all
should be bounded with respect to each other, so that the completion V of V with
respect to gx does not depend on x and

⋃
x∈U TxM ∼= U × V . This means that

⋃
x∈M TxM forms a smooth vector bundle over M with trivializations the linear

extensions of the trivializations of the tangent bundle T M → M . Chart changes
should respect this. This is a compatibility property between the weak Riemannian
metric and some smooth atlas of M .

Definition A convenient weak Riemannian manifold (M, g) will be called a robust
Riemannian manifold if

• The Levi-Civita covariant derivative of the metric g exists: The symmetric
gradients should exist and be smooth.

• The completions TxM form a smooth vector bundle as above.

9.2 Theorem If a right invariant weak Riemannian metric on a regular Lie group
admits the Levi-Civita covariant derivative, then it is already robust.

Proof By right invariance, each right translation T μg extends to an isometric
isomorphisms TxG → TxgG. By the smooth uniform boundedness theorem these
isomorphisms depend smoothly on g ∈ G. ��

9.3 Covariant Curvature and O’Neill’s Formula

In [68, 2.2] one finds the following formula for the numerator of sectional curvature,
which is valid for closed smooth 1-forms α, β ∈ 
1

g(M) on a weak Riemannian

manifold (M, g). Recall that we view g : T M → T ∗M and so g−1 is the dual inner
product on g(T M) and α� = g−1(α).
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g
(
R(α�, β�)α�, β�

) =
− 1

2α�α�(‖β‖2
g−1)− 1

2β�β�(‖α‖2
g−1)+ 1

2 (α�β� + β�α�)g−1(α, β)

(
last line = −α�β([α�, β�])+ β�α([α�, β�]]))

− 1
4‖d(g−1(α, β))‖2

g−1 + 1
4g−1(d(‖α‖2

g−1), d(‖β‖2
g−1)

)

+ 3
4

∥
∥[α�, β�]∥∥2

g
.

This is called Mario’s formula since Mario Micheli derived the coordinate version
in his 2008 thesis. Each term depends only on g−1 with the exception of the last
term. The role of the last term (which we call the O’Neill term) will become clear in
the next result. Let p : (E, gE) → (B, gB) be a Riemannian submersion between
infinite dimensional robust Riemannian manifolds; i.e., for each b ∈ B and x ∈
Eb := p−1(b) the tangent mapping Txp : (TxE, gE) → (TbB, gB) is a surjective
metric quotient map so that

‖ξb‖gB
:= inf

{‖Xx‖gE
: Xx ∈ TxE, Txp.Xx = ξb

}
.

The infinimum need not be attained in TxE but will be in the completion TxE. The
orthogonal subspace {Yx : gE(Yx, Tx(Eb)) = 0}will therefore be taken in Tx(Eb) in
TxE. If αb = gB(α

�
b, ) ∈ gB(TbB) ⊂ T ∗b B is an element in the gB -smooth dual,

then p∗αb := (Txp)∗(αb) = gB(α
�
b, Txp ) : TxE → R is in T ∗x E but in general

it is not an element in the smooth dual gE(TxE). It is, however, an element of the
Hilbert space completion gE(TxE) of the gE-smooth dual gE(TxE) with respect
to the norm ‖ ‖

g−1
E

, and the element g−1
E (p∗αb) =: (p∗αb)

� is in the ‖ ‖gE
-

completion TxE of TxE. We can call g−1
E (p∗αb) =: (p∗αb)

� the horizontal lift of

α
�
b = g−1

B (αb) ∈ TbB.

9.4 Theorem ([68, 2.6]) Let p : (E, gE)→ (B, gB) be a Riemannian submersion
between infinite dimensional robust Riemannian manifolds. Then for closed 1-forms
α, β ∈ 
1

gB
(B) O’Neill’s formula holds in the form:

gB

(
RB(α�, β�)β�, α�

) = gE

(
RE((p∗α)�, (p∗β)�)(p∗β)�, (p∗α)�

)

+ 3
4‖[(p∗α)�, (p∗β)�]ver‖2

gE
.

Proof The last (O’Neill) term is the difference between curvature on E and the
pullback of the curvature on B. ��
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9.5 Semilocal Version of Mario’s Formula, Force, and Stress

In all interesting examples of orbits of diffeomorphisms groups through a template
shape, Mario’s covariant curvature formula leads to complicated and impenetrable
formulas. Efforts to break this down to comprehensible pieces led to the concepts
of symmetrized force and (shape-) stress explained below. Since acceleration sits in
the second tangent bundle, one either needs a covariant derivative to map it down
to the tangent bundle, or at least rudiments of local charts. In [68] we managed the
local version. Interpretations in mechanics or elasticity theory are still lacking.

Let (M, g) be a robust Riemannian manifold, x ∈ M , α, β ∈ gx(TxM). Assume
we are given local smooth vector fields Xα and Xβ such that:

1. Xα(x) = α�(x), Xβ(x) = β�(x),
2. Then α�−Xα is zero at x. Therefore it has a well-defined derivative Dx(α

�−Xα)

lying in Hom(TxM, TxM). For a vector field Y we have Dx(α
� − Xα).Yx =

[Y, α� −Xα](x) = LY (α� −Xα)|x . The same holds for β.
3. LXα(α) = LXα(β) = LXβ (α) = LXβ (β) = 0,
4. [Xα,Xβ ] = 0.

Locally constant 1-forms and vector fields will do. We then define

F(α, β) : = 1
2d(g−1(α, β)), a 1-form on M called the force,

D(α, β)(x) : = Dx(β
� −Xβ).α�(x)

= d(β� −Xβ).α�(x), ∈ TxM called the stress.

�⇒ D(α, β)(x)−D(β, α)(x) = [α�, β�](x).

Then in terms of force and stress the numerator of sectional curvature looks as
follows:

g
(
R(α�, β�)β�, α�

)
(x) = R11 + R12 + R2 + R3 , where

R11 = 1
2

(L2
Xα

(g−1)(β, β)− 2LXαLXβ (g−1)(α, β)+ L2
Xβ

(g−1)(α, α)
)
(x) ,

R12 = 〈F(α, α),D(β, β)〉 + 〈F(β, β),D(α, α)〉 − 〈F(α, β),D(α, β)+D(β, α)〉
R2 =

(‖F(α, β)‖2
g−1 −

〈F(α, α)),F(β, β)
〉
g−1

)
(x) ,

R3 = − 3
4‖D(α, β)−D(β, α)‖2

gx
.

9.6 Landmark Space as Homogeneous Space of Solitons

This subsection is based on [67]; the method explained here has many applications
in computational anatomy and elsewhere, under the name LDDMM (large diffeo-
morphic deformation metric matching).
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A landmark q = (q1, . . . , qN) is an N -tuple of distinct points in R
n; landmark

space LandN(Rn) ⊂ (Rn)N is open. Let q0 = (q0
1 , . . . , q0

N) be a fixed standard
template landmark. Then we have the surjective mapping

evq0 : DiffA(Rn)→ LandN(Rn),

ϕ �→ evq0(ϕ) = ϕ(q0) = (ϕ(q0
1 ), . . . , ϕ(q0

N)).

Given a Sobolev metric of order s > n
2 + 2 on DiffA(Rn), we want to induce a Rie-

mannian metric on LandN(Rn) such that evq0 becomes a Riemannian submersion.
The fiber of evq0 over a landmark q = ϕ0(q

0) is

{ϕ ∈ DiffA(Rn) : ϕ(q0) = q} = ϕ0 ◦{ϕ ∈ DiffA(Rn) : ϕ(q0) = q0}
= {ϕ ∈ DiffA(Rn) : ϕ(q) = q} ◦ϕ0 .

The tangent space to the fiber is

{X ◦ϕ0 : X ∈ XS(Rn),X(qi) = 0 for all i}.
A tangent vector Y ◦ϕ0 ∈ Tϕ0 DiffS(Rn) is GL

ϕ0
-perpendicular to the fiber over q if

and only if
∫

Rn

〈LY,X〉 dx = 0 ∀X with X(q) = 0.

If we require Y to be smooth then Y = 0. So we assume that LY = ∑
i Pi .δqi

, a
distributional vector field with support in q. Here Pi ∈ Tqi

R
n. But then

Y (x) = L−1
(∑

i

Pi .δqi

)
=

∫

Rn

K(x − y)
∑

i

Pi .δqi
(y) dy =

∑

i

K(x − qi).Pi,

Tϕ0(evq0).(Y ◦ϕ0) = Y (qk)k =
∑

i

(K(qk − qi).Pi)k .

Now let us consider a tangent vector P = (Pk) ∈ Tq LandN(Rn). Its horizontal lift
with footpoint ϕ0 is P hor ◦ϕ0 where the vector field P hor on R

n is given as follows:
Let K−1(q)ki be the inverse of the (N ×N)-matrix K(q)ij = K(qi − qj ). Then

P hor(x) =
∑

i,j

K(x − qi)K
−1(q)ijPj ,

L(P hor(x)) =
∑

i,j

δ(x − qi)K
−1(q)ijPj .

Note that P hor is a vector field of class H 2l−1.
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The Riemannian metric on the finite dimensional manifold LandN induced by
the gL-metric on DiffS(Rn) is given by

gL
q (P,Q) = GL

ϕ0
(P hor,Qhor) =

∫

Rn

〈L(P hor),Qhor〉 dx

=
∫

Rn

〈 ∑

i,j

δ(x − qi)K
−1(q)ijPj ,

∑

k,l

K(x − qk)K
−1(q)klQl

〉
dx

=
∑

i,j,k,l

K−1(q)ijK(qi − qk)K
−1(q)kl〈Pj ,Ql〉

gL
q (P,Q) =

∑

k,l

K−1(q)kl〈Pk,Ql〉.

The geodesic equation in vector form is

q̈n =− 1

2

∑

k,i,j,l

K−1(q)ki grad K(qi − qj )(K(q)in −K(q)jn)K
−1(q)jl〈q̇k, q̇l〉

+
∑

k,i

K−1(q)ki

〈
grad K(qi − qn), q̇i − q̇n

〉
q̇k .

The cotangent bundle T ∗LandN(Rn) = LandN(Rn)× ((Rn)N)∗ � (q, α). We treat
R

n like scalars; 〈 , 〉 is always the standard inner product on R
n.

The inverse metric is then given by

(gL)−1
q (α, β) =

∑

i,j

K(q)ij 〈αi, βj 〉, K(q)ij = K(qi − qj ).

The energy function is

E(q, α) = 1
2 (gL)−1

q (α, α) = 1
2

∑

i,j

K(q)ij 〈αi, αj 〉

and its Hamiltonian vector field (using R
n-valued derivatives to save notation) is

HE(q, α) =
N∑

i,k=1

(
K(qk − qi)αi

∂

∂qk

+ grad K(qi − qk)〈αi, αk〉 ∂

∂αk

)
.

So the Hamiltonian version of the geodesic equation is the flow of this vector field:

{
q̇k =∑

i K(qi − qk)αi

α̇k = −∑
i grad K(qi − qk)〈αi, αk〉.
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We shall use stress and force to express the geodesic equation and curvature:

α
�
k =

∑

i

K(qk − qi)αi, α� =
∑

i,k

K(qk − qi)〈αi,
∂

∂qk 〉

D(α, β) : =
∑

i,j

dK(qi − qj )(α
�
i − α

�
j )

〈
βj ,

∂

∂qi

〉
, the stress.

D(α, β)−D(β, α) = (Dα�β�)−Dβ�α� = [α�, β�], Lie bracket.

Fi (α, β) = 1

2

∑

k

grad K(qi − qk)(〈αi, βk〉 + 〈βi, αk〉)

F(α, β) : =
∑

i

〈Fi (α, β), dqi〉 = 1

2
d g−1(α, β) the force.

The geodesic equation on T ∗ LandN(Rn) then becomes

{
q̇ = α�

α̇ = −F(α, α) .

Next we shall compute curvature via the cotangent bundle. From the semilocal
version of Mario’s formula for the numerator of the sectional curvature for constant
1-forms α, β on landmark space, where α

�
k =

∑
i K(qk − qi)αi , we get directly:

gL
(
R(α�, β�)α�, β�

) =
= 〈D(α, β)+D(β, α),F(α, β)

〉

− 〈D(α, α),F(β, β)
〉− 〈D(β, β),F(α, α)

〉

− 1
2

∑

i,j

(
d2K(qi − qj )(β

�
i − β

�
j , β

�
i − β

�
j )〈αi, αj 〉

− 2d2K(qi − qj )(β
�
i − β

�
j , α

�
i − α

�
j )〈βi, αj 〉

+ d2K(qi − qj )(α
�
i − α

�
j , α

�
i − α

�
j )〈βi, βj 〉

)

− ‖F(α, β)‖2
g−1 + g−1(F(α, α),F(β, β)

)
.

+ 3
4‖[α�, β�]‖2

g
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9.7 Shape Spaces of Submanifolds as Homogeneous Spaces
for the Diffeomorphism Group

Let M be a compact manifold and (N, ḡ) a Riemannian manifold of bounded
geometry as in Sect. 3.6. The diffeomorphism group DiffA(N) acts also from
the left on the manifold of Emb(M,N) embeddings and also on the nonlinear
Grassmannian or differentiable Chow variety B(M,N) = Emb(M,N)/ Diff(M).
For a Sobolev metric of order s >

dim(N)
2 + 2 one can then again induce a

Riemannian metric on each DiffA(N)-orbit, as we did above for landmark spaces.
This is done in [68], where the geodesic equation is computed and where curvature
is described in terms of stress and force.
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