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Geometric Continuum Mechanics

This volume contains a compilation of extended articles on the applications of
various topics in modern differential geometry to the foundations of continuum
mechanics.

The application of differential geometry to the mechanics of systems having a
finite number of degrees of freedom, as appeared initially in the works of Abraham,
Marsden, Souriau, Arnold, Smale, and others, and led to the vast literature that
followed, needs no introduction. Quoting from A.D. Lewis,1 one learns that:

What has resulted from the merging of mechanics and differential geometry has been
a deep understanding of the structures that contribute to the mathematical foundations
of mechanics. . . . ... Moreover, mechanics has given life and breadth to some areas of
differential geometry, just as one might hope with the interplay of mathematics and its
applications.

Continuum mechanics, as a field theory, poses an even greater challenge. To
quote C. Truesdell:2

. . . the mechanics of deformable bodies, . . . is inherently not only subtler, more beautiful,
and grander but also far closer to nature than is the rather arid special case called “analytical
mechanics” . . . .

Similarly, W. Noll writes:3

It is true that the mechanics of systems of a finite number of mass points has been on a
sufficiently rigorous basis since Newton. Many textbooks on theoretical mechanics dismiss

1Andrew D. Lewis, The bountiful intersection of differential geometry, mechanics, and control
theory, Annual Review of Control, Robotics, and Autonomous Systems, 1, 1.135–1.158, 2018,
https://doi.org/10.1146/annurev-control-060117-105033.
2Clifford Truesdell, A First Course in Rational Continuum Mechanics, Vol. 1, Academic Press,
1991.
3Walter Noll, The foundations of classical mechanics in the light of recent advances in continuum
mechanics, in The Axiomatic Method, with Special Reference to Geometry and Physics, Henkin,
L.; Suppes, P. & Tarski, A. (Eds.), North-Holland, 1959, 266–281.
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vi Geometric Continuum Mechanics

continuous bodies with the remark that they can be regarded as the limiting case of a particle
system with an increasing number of particles. They cannot.

Thus, taking into account this inherent subtlety of continuum mechanics, it is not
surprising that the applications of modern differential geometry to the foundations of
continuum mechanics did not progress on par with that of the mechanics of systems
having a finite number of degrees of freedom.

It is hoped that the collection of articles compiled in this volume will serve as
an introduction to the current work on the interaction of differential geometry and
continuum mechanics. The continuum mechanical aspects of the articles are mainly:
(1) kinematics of continuous bodies, and force and stress theories, (2) the geometry
of dislocations as described from various points of view including Noll’s uniformity
and homogeneity theory. With the assumption that the reader is familiar with the
basics of modern differential geometry, the articles contain applications of global
analysis, algebraic geometry, geometric measure theory, and the theory of groupoids
and algebroids. A chapter containing a comprehensive introduction to manifolds of
mappings, which also includes some new results, is also contained in the volume
for the benefit of readers interested in the global geometric approach to continuum
mechanics.

Special attempts have been made by the authors to make their presentations self-
contained and accessible to a wide readership.

The subjects discussed in the book are situated in the intersection between
mathematical analysis and geometry, physics, and engineering. We believe that
readers from these disciplines should find the book to be of relevance and interest.
Hopefully, this volume will stimulate young scientists and make current literature
on the subject accessible to them.

It is a common belief among the authors of the various articles that the geometric
formulation of continuum mechanics is an elegant and fascinating subject, which
leads to better understanding of both disciplines.

The original version of this book was revised: Volume number has been changed from 42 to 43.
The correction to this book is available at https://doi.org/10.1007/978-3-030-42683-5_10

https://doi.org/10.1007/978-3-030-42683-5_10


Contents

Part I Kinematics, Forces and Stress Theory

Manifolds of Mappings for Continuum Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Peter W. Michor

Notes on Global Stress and Hyper-Stress Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Reuven Segev

Applications of Algebraic Topology in Elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Arash Yavari

De Donder Construction for Higher Jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
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Abstract After an introduction to convenient calculus in infinite dimensions, the
foundational material for manifolds of mappings is presented. The central character
is the smooth convenient manifold C∞(M,N) of all smooth mappings from
a finite dimensional Whitney manifold germ M into a smooth manifold N . A
Whitney manifold germ is a smooth (in the interior) manifold with a very general
boundary, but still admitting a continuous Whitney extension operator. This notion
is developed here for the needs of geometric continuum mechanics.
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4 P. W. Michor

1 Introduction

At the birthplace of the notion of manifolds, in the Habilitationsschrift [93, end
of section I], Riemann mentioned infinite dimensional manifolds explicitly. The
translation into English in [94] reads as follows:

There are manifoldnesses in which the determination of position requires not a finite
number, but either an endless series or a continuous manifoldness of determinations of
quantity. Such manifoldnesses are, for example, the possible determinations of a function
for a given region, the possible shapes of a solid figure, etc.

Reading this with a lot of good will one can interpret it as follows: When
Riemann sketched the general notion of a manifold, he also had in mind the notion
of an infinite dimensional manifold of mappings between manifolds. He then went
on to describe the notion of Riemannian metric and to talk about curvature.

The dramatis personae of this foundational chapter are named in the following
diagram:

Diff(M)
right-acts

right-acts

Diff(M,μ)

Emb(M,N)

needs ḡ Diff(M)

DiffA(N)

right-acts

left-acts

left-acts

Met(M)

Diff(M)

B(M,N)

needs ḡ

Vol1+(M) Met(M)/Diff(M) MetA(N)

In this diagram:

• M is a finite dimensional compact smooth manifold.
• N is a finite dimensional smooth manifolds without boundary, and ḡ is one fixed

background Riemannian metric on N which we always assume to be of bounded
geometry; see Sect. 5.

• Met(N) = �(S2+T ∗N) is the space of all Riemannian metrics on N .
• Diff(M) is the regular Fréchet Lie group of all diffeomorphisms on the compact

manifold M with corners.
• DiffA(N), A ∈ {H∞,S, c} the regular Lie group of all smooth diffeomor-

phisms of decay A towards IdN .
• Emb(M,N) is the infinite dimensional smooth manifold of all embeddingsM →
N , which is the total space of a smooth principal fiber bundle Emb(M,N) →
B(M,N) = Imm(M,N)/Diff(M) with structure group Diff(M) and base
manifold B(M,N), the space of all smooth submanifolds of N of type M . It
is possible to extend Emb(M,N) to the manifold of Imm(M,N) and B(M,N)
to the infinite dimensional orbifold Bi(M,N).

• Vol1+(M) ⊂ �(vol(M)) is the space of all positive smooth probability densities
on the manifold M with corners.
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Since it will be of importance for geometric continuum mechanics, I will allow
the source manifold M to be quite general: M can be a manifold with corners; see
Sect. 3. This setting is worked out in detail in [69]. OrM can be a Whitney manifold
germ, a notion originating in this paper; see Sect. 4.

In this foundational chapter I will describe the theory of manifolds of mappings,
of groups of diffeomorphisms, of manifolds of submanifolds (with corners), and of
some striking results about weak Riemannian geometry on these spaces. See [10]
for an overview article which is much more comprehensive for the aspect of shape
spaces.

An explicit construction of manifolds of smooth mappings modeled on Fréchet
spaces was described by Eells [28]. Differential calculus beyond the realm of
Banach spaces has some inherent difficulties even in its definition; see Sect. 2.
Smoothness of composition and inversion was first treated on the group of all
smooth diffeomorphisms of a compact manifold in [63]; however, there was a gap
in the proof, which was first filled by Gutknecht [48]. Manifolds of Ck-mappings
and/or mappings of Sobolev classes were treated by Eliasson [31] and Eells [27],
Smale–Abraham [1], and [92]. Since these are modeled on Banach spaces, they
allow solution methods for equations and have found a lot of applications. See in
particular [26].

In preparation of this chapter I noticed that the canonical chart construction for
the manifold C∞(M,N) even works if we allowM to be a Whitney manifold germ.
These are modeled on open subsets of closed subsets of R

m which (1) admit a
continuous Whitney extension operator and (2) are the closure of their interior.
See Sect. 4 for a thorough discussion. Many results for them described below are
preliminary, e.g., Theorem 6.4, Sect. 7.2. I expect that they can be strengthened
considerably, but I had not enough time to pursue them during the preparation of
this chapter.

I thank Reuven Segev and Marcelo Epstein for asking me for a contribution
to this volume, and I thank them and Leonhard Frerick, Andreas Kriegl, Jochen
Wengenroth, and Armin Rainer for helpful discussions.

2 A Short Review of Convenient Calculus in Infinite
Dimensions

Traditional differential calculus works well for finite dimensional vector spaces and
for Banach spaces. Beyond Banach spaces, the main difficulty is that composition
of linear mappings stops to be jointly continuous at the level of Banach spaces, for
any compatible topology. Namely, if for a locally convex vector spaceE and its dual
E′ the evaluation mapping ev : E × E′ → R is jointly continuous, then there are
open neighborhoods of zero U ⊂ E and U ′ ⊂ E′ with ev(U × U ′) ⊂ [−1, 1]. But
then U ′ is contained in the polar of the open set U , and thus is bounded. So E′ is
normable, and a fortiori E is normable.

For locally convex spaces which are more general than Banach spaces, we sketch
here the convenient approach as explained in [44] and [55].
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The name convenient calculus mimics the paper [98] whose results (but not the
name “convenient”) was predated by Brown [17–19]. They discussed compactly
generated spaces as a cartesian closed category for algebraic topology. Historical
remarks on only those developments of calculus beyond Banach spaces that led to
convenient calculus are given in [55, end of chapter I, p. 73ff].

2.1 The c∞-Topology

Let E be a locally convex vector space. A curve c : R → E is called smooth
or C∞ if all derivatives exist and are continuous. Let C∞(R, E) be the space of
smooth curves. It can be shown that the set C∞(R, E) does not entirely depend
on the locally convex topology of E, only on its associated bornology (system of
bounded sets); see [55, 2.11]. The final topologies with respect to the following sets
of mappings into E (i.e., the finest topology on E such that each map is continuous)
coincide; see [55, 2.13]:

1. C∞(R, E).
2. The set of all Lipschitz curves (so that { c(t)−c(s)

t−s : t �= s, |t |, |s| ≤ C} is bounded
in E, for each C).

3. The set of injections EB → E where B runs through all bounded absolutely
convex subsets in E, and where EB is the linear span of B equipped with the
Minkowski functional ‖x‖B := inf{λ > 0 : x ∈ λB}.

4. The set of all Mackey-convergent sequences xn → x (i.e., those for which there
exists a sequence 0 < λn ↗∞ with λn(xn − x) bounded).

The resulting unique topology is called the c∞-topology on E and we write c∞E
for the resulting topological space.

In general (on the space D of test functions, for example) it is finer than the given
locally convex topology, it is not a vector space topology, since addition is no longer
jointly continuous. Namely, even c∞(D ×D) �= c∞D × c∞D.

The finest among all locally convex topologies on E which are coarser than c∞E
is the bornologification of the given locally convex topology. IfE is a Fréchet space,
then c∞E = E.

2.2 Convenient Vector Spaces

A locally convex vector space E is said to be a convenient vector space if one of the
following equivalent conditions holds (called c∞-completeness); see [55, 2.14]:

1. For any c ∈ C∞(R, E) the (Riemann-) integral
∫ 1

0 c(t)dt exists in E.
2. Any Lipschitz curve in E is locally Riemann integrable.
3. A curve c : R→ E is C∞ if and only if λ ◦ c is C∞ for all λ ∈ E∗, where E∗ is

the dual of all continuous linear functionals on E.
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• Equivalently, for all λ ∈ E′, the dual of all bounded linear functionals.
• Equivalently, for all λ ∈ V , where V is a subset of E′ which recognizes

bounded subsets in E; see [55, 5.22]

We call this scalarwise C∞.
4. Any Mackey-Cauchy sequence (i.e., tnm(xn − xm) → 0 for some tnm → ∞ in

R) converges in E. This is visibly a mild completeness requirement.
5. If B is bounded closed absolutely convex, then EB is a Banach space.
6. If f : R→ E is scalarwise Lipk , then f is Lipk , for k > 1.
7. If f : R→ E is scalarwise C∞, then f is differentiable at 0.

Here a mapping f : R → E is called Lipk if all derivatives up to order k exist
and are Lipschitz, locally on R. That f is scalarwise C∞ (resp., Lipk) means λ ◦ f
is C∞ (resp., Lipk) for all continuous (equiv., bounded) linear functionals on E.

2.3 Smooth Mappings

Let E and F be convenient vector spaces, and let U ⊂ E be c∞-open. A mapping
f : U → F is called smooth or C∞, if f ◦ c ∈ C∞(R, F ) for all c ∈ C∞(R, U).
See [55, 3.11].

If E is a Fréchet space, then this notion coincides with all other reasonable
notions of C∞-mappings; see below. Beyond Fréchet spaces, as a rule, there are
more smooth mappings in the convenient setting than in other settings, e.g., C∞c .
Moreover, any smooth mapping is continuous for the c∞-topologies, but in general
not for the locally convex topologies: As shown in the beginning of Sect. 2, the
evaluation mapping ev : E × E′ → R is continuous only if E is normable. On
Fréchet spaces each smooth mapping is continuous; see the end of Sect. 2.1.

2.4 Main Properties of Smooth Calculus

In the following all locally convex spaces are assumed to be convenient:

1. For maps on Fréchet spaces the notion of smooth mapping from Sect. 2.3
coincides with all other reasonable definitions. On R

2 this is a nontrivial
statement; see [16] or [55, 3.4].

2. Multilinear mappings are smooth if and only if they are bounded; see [55, 5.5].
3. If E ⊇ U −f→ F is smooth, then the derivative df : U × E → F is smooth,

and also df : U → L(E,F ) is smooth where L(E,F ) denotes the convenient
space of all bounded linear mappings with the topology of uniform convergence
on bounded subsets; see [55, 3.18].

4. The chain rule holds; see [55, 3.18].
5. The space C∞(U, F ) is again a convenient vector space where the structure is

given by the injection
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C∞(U, F )−C∞(c,λ)→
∏

c∈C∞(R,U),λ∈F ∗
C∞(R,R), f �→ (λ ◦ f ◦ c)c,λ,

and where C∞(R,R) carries the topology of compact convergence in each
derivative separately; see [55, 3.11 and 3.7].

6. The exponential law holds; see [55, 3.12].: For c∞-open V ⊂ F ,

C∞(U,C∞(V ,G)) ∼= C∞(U × V,G)
is a linear diffeomorphism of convenient vector spaces.
Note that this result (for U = R) is the main assumption of variational
calculus. Here it is a theorem.

7. A linear mapping f : E→ C∞(V ,G) is smooth (by (2) equivalent to bounded)
if and only if E −f→ C∞(V ,G) −evv→ G is smooth for each v ∈ V . (Smooth
uniform boundedness theorem; see [55, theorem 5.26].)

8. A mapping f : U → L(F,G) is smooth if and only if

U −f→ L(F,G)−evv→ G

is smooth for each v ∈ F , because then it is scalarwise smooth by the classical
uniform boundedness theorem.

9. The following canonical mappings are smooth. This follows from the exponential
law by simple categorical reasoning; see [55, 3.13]:

ev : C∞(E, F )× E→ F, ev(f, x) = f (x)
ins : E→ C∞(F,E × F), ins(x)(y) = (x, y)
( )∧ : C∞(E,C∞(F,G))→ C∞(E × F,G)
( )∨ : C∞(E × F,G)→ C∞(E,C∞(F,G))

comp : C∞(F,G)× C∞(E, F )→ C∞(E,G)

C∞( , ) : C∞(F, F1)× C∞(E1, E)→
→ C∞(C∞(E, F ), C∞(E1, F1))

(f, g) �→ (h �→ f ◦h ◦ g)
∏
:
∏

C∞(Ei, Fi)→ C∞(
∏

Ei,
∏

Fi).

This ends our review of the standard results of convenient calculus. Just for the
curious reader and to give a flavor of the arguments, we enclose a lemma that is used
many times in the proofs of the results above.

Lemma (Special Curve Lemma, [55, 2.8]) LetE be a locally convex vector space.
Let xn be a sequence which converges fast to x in E; i.e., for each k ∈ N the
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sequence nk(xn − x) is bounded. Then the infinite polygon through the xn can be
parameterized as a smooth curve c : R→ E such that c( 1

n
) = xn and c(0) = x.

2.5 Remark Convenient calculus (i.e., having properties 6 and 7) exists also for:

• Real analytic mappings; see [54] or [55, Chapter II].
• Holomorphic mappings; see [62] or [55, Chapter II] (using the notion of [35, 36]).
• Many classes of Denjoy–Carleman ultradifferentiable functions, both of Beurling

type and of Roumieu type, see [57–59, 61].
• With some adaptations, Lipk; see [44]. One has to adapt the exponential

law Sect. 2.4(9) in the obvious way.
• With more adaptations, even Ck,α (the k-th derivative is Hölder-continuous with

index 0 < α ≤ 1); see [37, 38]. Namely, if f is Ck,α and g is Ck,β , then f ◦ g is
Ck,αβ .

Differentiability Cn cannot be described by a convenient approach (i.e., allowing
result like Sect. 2.4). Only such differentiability notions allow this, which can be
described by boundedness conditions only.

We shall treat Cn mapping spaces using the following result.

2.6 Recognizing Smooth Curves

The following result is very useful if one wants to apply convenient calculus to
spaces which are not tied to its categorical origin, like the Schwartz spaces S , D, or
Sobolev spaces; for its uses see [77] and [60]. In what follows σ(E,V) denotes the
initial (also called weak) topology on E with respect to a set V ⊂ E′.
Theorem ([44, Theorem 4.1.19]) Let c : R → E be a curve in a convenient
vector space E. Let V ⊂ E′ be a subset of bounded linear functionals such that
the bornology of E has a basis of σ(E,V)-closed sets. Then the following are
equivalent:

(1) c is smooth
(2) There exist locally bounded curves ck : R → E such that λ ◦ c is smooth

R→ R with (λ ◦ c)(k) = λ ◦ ck , for each λ ∈ V .

If E = F ′ is the dual of a convenient vector space F , then for any point separating
subset V ⊆ F the bornology of E has a basis of σ(E,V)-closed subsets, by [44,
4.1.22].

This theorem is surprisingly strong: note that V does not need to recognize
bounded sets. We shall use the theorem in situations where V is just the set of all
point evaluations on suitable Sobolev spaces.
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2.7 Frölicher Spaces

Following [55, Section 23] we describe here the following simple concept: A
Frölicher space or a space with smooth structure is a triple (X, CX,FX) consisting
of a set X, a subset CX of the set of all mappings R → X, and a subset FX of the
set of all functions X→ R, with the following two properties:

1. A function f : X → R belongs to FX if and only if f ◦ c ∈ C∞(R,R) for all
c ∈ CX.

2. A curve c : R → X belongs to CX if and only if f ◦ c ∈ C∞(R,R) for all
f ∈ FX.

Note that a set X together with any subset F of the set of functions X → R

generates a unique Frölicher space (X, CX,FX), where we put in turn:

CX := {c : R→ X : f ◦ c ∈ C∞(R,R) for all f ∈ F},
FX := {f : X→ R : f ◦ c ∈ C∞(R,R) for all c ∈ CX},

so that F ⊆ FX. The set F will be called a generating set of functions for the
Frölicher space. Similarly a set X together with any subset C of the set of curves
R → X generates a Frölicher space; C is then called a generating set of curves
for this Frölicher structure. Note that a locally convex space E is convenient if and
only if it is a Frölicher space with the structure whose space CE of smooth curves is
the one described in Sect. 2.1, or whose space FE of smooth functions is described
in Sect. 2.3. This follows directly from Sect. 2.2.

On each Frölicher space we shall consider the final topology with respect to all
smooth curves c : R → X in CX; i.e., the coarsest topology such that each such
c is continuous. This is in general finer that the initial topology with respect to all
functions in FX.

A mapping ϕ : X → Y between two Frölicher spaces is called smooth if one of
the following three equivalent conditions hold

3. For each c ∈ CX the composite ϕ ◦ c is in CY . Note that here CX can be replaced
by a generating set C of curves in X.

4. For each f ∈ FY the composite f ◦ϕ is in FX. Note that FY can be replaced by
a generating set of functions.

5. For each c ∈ CX and for each f ∈ FY the composite f ◦ϕ ◦ c is in C∞(R,R).

The set of all smooth mappings fromX to Y will be denoted by C∞(X, Y ). Then
we have C∞(R, X) = CX and C∞(X,R) = FX.

Frölicher spaces and smooth mappings form a category which is complete,
cocomplete, and cartesian closed, by Kriegl and Michor [55, 23.2].

Note that there is the finer notion of diffeological spaces X introduced by
Souriau: These come equipped with a set of mappings from open subsets of Rn’s
into X subject to some obvious properties concerning reparameterizations by C∞-
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mappings; see [51]. The obvious functor associating the generated Frölicher space
to a diffeological space is both left and right adjoint to the embedding of the category
of Frölicher spaces into the category of diffeological spaces. A characterization of
those diffeological spaces which are Frölicher spaces is in [106, Section 2.3].

3 Manifolds with Corners

In this section we collect some results which are essential for the extension of
the convenient setting for manifolds of mappings to a source manifold which has
corners and which need not be compact.

3.1 Manifolds with Corners

For more information we refer to [25, 66, 69]. Let Q = Qm = R
m
≥0 be the positive

orthant or quadrant. By Whitney’s extension theorem or Seeley’s theorem (see also
the discussion in Sects. 4.1–4.3), the restriction C∞(Rm)→ C∞(Q) is a surjective
continuous linear mapping which admits a continuous linear section (extension
mapping); so C∞(Q) is a direct summand in C∞(Rm). A point x ∈ Q is called
a corner of codimension (or index) q > 0 if x lies in the intersection of q distinct
coordinate hyperplanes. Let ∂qQ denote the set of all corners of codimension q.

A manifold with corners (recently also called a quadrantic manifold) M is a
smooth manifold modeled on open subsets of Qm. We assume that it is connected
and second countable; then it is paracompact and each open cover admits a
subordinated smooth partition of unity.

We do not assume thatM is oriented, but for Moser’s theorem we will eventually
assume that M is compact. Let ∂qM denote the set of all corners of codimension q.
Then ∂qM is a submanifold without boundary of codimension q inM; it has finitely
many connected components if M is compact. We shall consider ∂M as stratified
into the connected components of all ∂qM for q > 0. Abusing notation we will call
∂qM the boundary stratum of codimension q; this will lead to no confusion. Note
that ∂M itself is not a manifold with corners. We shall denote by j∂qM : ∂qM → M

the embedding of the boundary stratum of codimension q into M , and by j∂M :
∂M → M the whole complex of embeddings of all strata.

Each diffeomorphism of M restricts to a diffeomorphism of ∂M and to a
diffeomorphism of each stratum ∂qM . The Lie algebra of Diff(M) consists of all
vector fields X on M such that X|∂qM is tangent to ∂qM . We shall denote this Lie
algebra by X(M, ∂M).

3.2 Lemma Any manifold with corners M is a submanifold with corners of an
open manifold M̃ of the same dimension, and each smooth function on M extends
to a smooth function on M̃ . Each smooth vector bundle over M extends to a smooth
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vector bundle over M̃ . Each immersion (embedding) of M into a smooth manifold
N without boundary is the restriction of an immersion (embedding) of a (possibly
smaller) M̃ ⊃ M into N .

Proof Choose a vector field X on M which is complete, and along ∂M is nowhere
0 and pointing into the interior. Then for ε > 0 we can replace M by the flow
image FlXε (M) which is contained in the interior M̃ = M \ ∂M . The extension
properties follow from the Whitney extension theorem. An immersion extends, since
its rank cannot fall locally. An embedding f extends since {(f (x), f (y)) : (x, y) ∈
M ×M \DiagM} has positive distance to the closed DiagN in N ×N , locally inM ,
and we can keep it that way; see [69, 5.3] for too many details. ��

3.3 Differential Forms on Manifolds with Corners

There are several differential complexes on a manifold with corners. If M is not
compact there are also the versions with compact support.

• Differential forms that vanish near ∂M . If M is compact, this is the same as the
differential complex 
c(M \ ∂M) of differential forms with compact support in
the open interior M \ ∂M .

• 
(M, ∂M) = {α ∈ 
(M) : j∗∂qMα = 0 for all q ≥ 1}, the complex of
differential forms that pull back to 0 on each boundary stratum.

• 
(M), the complex of all differential forms. Its cohomology equals singular
cohomology with real coefficients of M , since R → 
0 → 
1 → . . . is a
fine resolution of the constant sheaf onM; for that one needs existence of smooth
partitions of unity and the Poincaré lemma which hold on manifolds with corners.
The Poincaré lemma can be proved as in [73, 9.10] in each quadrant.

If M is an oriented manifold with corners of dimension m and if μ ∈ 
m(M) is
a nowhere vanishing form of top degree, then X(M) � X �→ iXμ ∈ 
m−1(M) is
a linear isomorphism. Moreover, X ∈ X(M, ∂M) (tangent to the boundary) if and
only if iXμ ∈ 
m−1(M, ∂M).

3.4 Towards the Long Exact Sequence of the Pair (M, ∂M)

Let us consider the short exact sequence of differential graded algebras

0 → 
(M, ∂M)→ 
(M)→ 
(M)/
(M, ∂M)→ 0 .

The complex 
(M)/
(M, ∂M) is a subcomplex of the product of 
(N) for all
connected components N of all ∂qM . The quotient consists of forms which extend
continuously over boundaries to ∂M with its induced topology in such a way that
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one can extend them to smooth forms on M; this is contained in the space of
“stratified forms” as used in [104]. There Stokes’ formula is proved for stratified
forms.

3.5 Proposition (Stokes’ Theorem) For a connected oriented manifold M with
corners of dimension dim(M) = m and for any ω ∈ 
m−1

c (M) we have

∫

M

dω =
∫

∂1M

j∗
∂1M

ω .

Note that ∂1M may have several components. Some of these might be non-
compact.

We shall deduce this result from Stokes’ formula for a manifold with boundary
by making precise the fact that ∂≥2M has codimension 2 inM and has codimension
1 with respect to ∂1M . The proof also works for manifolds with more general
boundary strata, like manifolds with cone-like singularities. A lengthy full proof
can be found in [24].

Proof We first choose a smooth decreasing function f on R≥0 such that f = 1
near 0 and f (r) = 0 for r ≥ ε. Then

∫∞
0 f (r)dr < ε and for Qm = R

m
≥0 with

m ≥ 2,

∣
∣
∣

∫

Qm
f ′(|x|) dx

∣
∣
∣ = Cm

∣
∣
∣

∫ ∞

0
f ′(r)rm−1 dr

∣
∣
∣ = Cm

∣
∣
∣

∫ ∞

0
f (r)(rm−1)′ dr

∣
∣
∣

= Cm
∫ ε

0
f (r)(rm−1)′ dr ≤ Cmεm−1 ,

where Cm denotes the surface area of Sm−1 ∩Qm. Given ω ∈ 
m−1
c (M) we use the

function f on quadrant charts on M to construct a function g on M that is 1 near
∂≥2M = ⋃q≥2 ∂

qM , has support close to ∂≥2M and satisfies
∣
∣
∫
M
dg ∧ ω∣∣ < ε.

Then (1 − g)ω is an (m − 1)-form with compact support in the manifold with
boundary M \ ∂≥2M , and Stokes’ formula (cf. [73, 10.11]) now says

∫

M\∂≥2M

d((1− g)ω) =
∫

∂1M

j∗
∂1M

((1− g)ω) .

But ∂≥2M is a null set in M and the quantities

∣
∣
∣

∫

M

d((1− g)ω)−
∫

M

dω

∣
∣
∣ and

∣
∣
∣

∫

∂1M

j∗
∂1M

((1− g)ω)−
∫

∂1M

j∗
∂1M

ω

∣
∣
∣

are small if ε is small enough. ��
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3.6 Riemannian Manifolds with Bounded Geometry

If M is not necessarily compact without boundary we equip M with a Riemannian
metric g of bounded geometry which exists by [47, Theorem 2’]. This means that

(I ) The injectivity radius of (M, g) is positive.
(B∞) Each iterated covariant derivative of the curvature is uniformly g-bounded:

‖∇iR‖g < Ci for i = 0, 1, 2, . . . .

The following is a compilation of special cases of results collected in [30, chapter 1].

Proposition ([29, 53]) If (M, g) satisfies (I ) and (B∞), then the following holds

(1) (M, g) is complete.
(2) There exists ε0 > 0 such that for each ε ∈ (0, ε0) there is a countable cover of

M by geodesic balls Bε(xα) such that the cover of M by the balls B2ε(xα) is
still uniformly locally finite.

(3) Moreover there exists a partition of unity 1 = ∑α ρα on M such that ρα ≥ 0,

ρα ∈ C∞c (M), supp(ρα) ⊂ B2ε(xα), and |Dβuρα| < Cβ where u are normal
(Riemannian exponential) coordinates in B2ε(xα).

(4) In each B2ε(xα), in normal coordinates, we have |Dβugij | < C′β , |Dβugij | < C′′β ,

and |Dβu�mij | < C′′′β , where all constants are independent of α.

3.7 Riemannian Manifolds with Bounded Geometry Allowing
Corners

If M has corners, we choose an open manifold M̃ of the same dimension which
contains M as a submanifold with corners; see 3.1. It is very desirable to prove that
then there exists a Riemannian metric g̃ on M̃ with bounded geometry such that
each boundary component of each ∂qM is totally geodesic.

For a compact manifold with boundary (no corners of codimension ≥ 2), exis-
tence of such a Riemannian metric was proven in [45, 2.2.3] in a more complicated
context. A simple proof goes as follows: Choose a tubular neighborhood U of ∂M
in M̃ and use the symmetry ϕ(u) = −u in the vector bundle structure on U . Given
a metric g̃ on M̃ , then ∂M is totally geodesic for the metric 1

2 (g̃+ ϕ∗g̃) on U , since
∂M (the zero section) is the fixed point set of the isometry ϕ. Now glue this metric to
the g̃ using a partition of unity for the cover U and M̃ \V for a closed neighborhood
V of ∂M in U .

Existence of a geodesic spray on a manifold with corners which is tangential
to each boundary component ∂qM was proved in [69, 2.8, see also 10.3]. A direct
proof of this fact can be distilled from the proof of lemma in Sect. 5.9 below. This is
sufficient for constructing charts on the diffeomorphism group Diff(M) in Sect. 6.1
below.
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4 Whitney Manifold Germs

More general than manifolds with corners, Whitney manifold germs allow for
quite singular boundaries but still controlled enough so that a continuous Whitney
extension operator to an open neighborhood manifold exists.

4.1 Compact Whitney Subsets

Let M̃ be an open smooth connected m-dimensional manifold. A closed connected
subset M ⊂ M̃ is called a Whitney subset, or M̃ ⊃ M is called a Whitney pair, if

(1) M is the closure of its open interior in M̃ , and
(2) There exists a continuous linear extension operator

E :W(M)→ C∞(M̃,R)

from the linear space W(M) of all Whitney jets of infinite order with its natural
Fréchet topology (see below) into the space C∞(M̃,R) of smooth functions on
M̃ with the Fréchet topology of uniform convergence on compact subsets in all
derivatives separately.

We speak of a compact Whitney subset or compact Whitney pair if M is compact.
In this case, in (2), we may equivalently require that E is linear continuous into
the Fréchet space C∞L (M̃,R) ⊂ C∞c (M̃,R) of smooth functions with support in
a compact subset L which contains M in its interior, by using a suitable bump
function.

The property of being a Whitney pair is obviously invariant under diffeomor-
phisms (of M̃) which act linearly and continuously both on W(M) and C∞(M̃,R)
in a natural way.

This property of being a Whiney pair is local in the following sense: If M̃i ⊃ Mi

covers M̃ ⊃ M , then M̃ ⊃ M is a Whitney pair if and only if each M̃i ⊃ Mi is a
Whitney pair, see Theorem 4.4 below.

More Details For Rm ⊃ M , by an extension operator E : W(M) → C∞(M̃,R)
we mean that ∂αE(F )|M = F (α) for each multi-index α ∈ N

m
≥0 and each Whitney

jet F ∈W(M). We recall the definition of a Whitney jet F . IfM ⊂ R
m is compact,

then

F = (F (α))α∈Nm≥0
∈
∏

α

C0(M) such that for

T ny (F )(x) =
∑

|α|≤n

F (α)(y)

α! (x − y)α the remainder seminorm
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qn,ε(F ) := sup
{ |F (α)(x)− ∂αT ny (F )(x)|

|x − y|n−|α| : |α|≤n,x,y∈M0<|x−y|≤ε
}
= o(ε);

so qn,ε(F ) goes to 0 for ε → 0, for each n separately. The n-th Whitney seminorm
is then

‖F‖n = sup{|F (α)(x)| : x ∈ M, |α| ≤ n} + sup{qn,ε(F ) : ε > 0} .

For closed but non-compact M one uses the projective limit over a countable
compact exhaustion of M . This describes the natural Fréchet topology on the space
of Whitney jets for closed subsets of Rm. The extension to manifolds is obvious.

Whitney proved in [107] that a linear extension operator always exists for a
closed subsetM ⊂ R

m, but not always a continuous one, for example, forM a point.
For a finite differentiability class Cn there exists always a continuous extension
operator.

4.2 Proposition For a Whitney pair M̃ ⊃ M , the space of W(M) of Whitney jets
on M is linearly isomorphic to the space

C∞(M,R) := {f |M : f ∈ C∞(M̃,R)} .

Proof This follows from [40, 3.11], where the following is proved: If f ∈
C∞(Rm,R) vanishes on a Whitney subset M ⊂ R

m, then ∂αf |M = 0 for each
multi-index α. Thus any continuous extension operator is injective. ��

4.3 Examples and Counterexamples of Whitney Pairs

We collect here results about closed subsets of Rm which are or are not Whitney
subsets.

(a) If M is a manifold with corners, then M̃ ⊃ M is a Whitney pair. This follows
from Mityagin [79] or Seeley [97].

(b) If M is closed in R
m with dense interior and with Lipschitz boundary, then

R
m ⊃ M is a Whitney pair; by Stein [99, p 181]. In [15, Theorem I] Bierstone

proved that a closed subset M ⊂ R
n with dense interior is a Whitney pair, if

it has Hölder C0,α-boundary for 0 < α ≤ 1 which may be chosen on each
M ∩ {x : N ≤ |x| ≤ N + 2} separately. A fortiori, each subanalytic subset in
R
n gives a Whitney pair, [15, Theorem II].

(c) If f ∈ C∞(R≥0,R) which is flat at 0 (all derivatives vanish at 0), and if M
is a closed subset containing 0 of {(x, y) : x ≥ 0, |y| ≤ |f (x)|} ⊂ R

2, then
R

2 ⊃ M is not a Whitney pair; see [101, Beispiel 2].
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(d) For r ≥ 1, the set {x ∈ R
m : 0 ≤ x1 ≤ 1, x2

2 + · · · + x2
m ≤ x2r

1 } is called the
parabolic cone of order r . Then the following result [101, Satz 4.6] holds:
A closed subset M ⊂ R

m is a Whitney subset, if the following condition holds:
For each compact K ⊂ R

m there exists a parabolic cone S and a family ϕi :
S → φi(S) ⊂ M ⊂ R

m of diffeomorphisms such that K ∩M ⊆ ⋃i ϕi(S) and
supi |ϕi |k <∞, supi |ϕ−1

i |k <∞ for each k separately.
(e) A characterization of closed subsets admitting continuous Whitney extension

operators has been found by Frerick [40, 4.11] in terms of local Markov
inequalities, which, however, is very difficult to check directly.
Let M ⊂ R

m be closed. Then the following are equivalent:

(e1) M admits a continuous linear Whitney extension operator

E :W(M)→ C∞(Rm,R) .

(e2) For each compact K ⊂ M and θ ∈ (0, 1) there is r ≥ 0 and ε0 > 0 such
that for all k ∈ N≥1 there is C ≥ 1 such that

|dp(x0)| ≤ C

εr
sup

|y−x0|≤ε
y∈Rm

|p(y)|θ sup
|x−x0|≤ε
x∈M

|p(x)|1−θ

for all p ∈ C[x1, . . . , xm] of degree ≤ k, for all x0 ∈ K , and for all
ε0 > ε > 0.

(e3) For each compact K ⊂ M there exists a compact L in R
m containing K

in its interior, such that for all θ ∈ (0, 1) there is r ≥ 1 and C ≥ 1 such
that

sup
x∈K

|dp(x)| ≤ C deg(p)r sup
y∈L
|p(y)|θ sup

z∈L∩M
|p(z)|1−θ

for all p ∈ C[x1, . . . , xm].
(f) Characterization (e) has been generalized to a characterization of compact

subsets of R
m which admit a continuous Whitney extension operator with

linear (or even affine) loss of derivatives, in [41]. In the paper [42] a similar
characterization is given for an extension operator without loss of derivative,
and a sufficient geometric condition is formulated [42, Corollary 2] which even
implies that there are closed sets with empty interior admitting continuous
Whitney extension operators, like the Sierpiński triangle or Cantor subsets.
Thus we cannot omit assumption (Sect. 4.1.1) that M is the closure of its open
interior in M̃ in our definition of Whitney pairs.

(g) The following result by Frerick [40, Theorem 3.15] gives an easily verifiable
sufficient condition:



18 P. W. Michor

Let K ⊂ R
m be compact and assume that there exist ε0 > 0, ρ > 0, r ≥ 1

such that for all z ∈ ∂K and 0 < ε < ε0 there is x ∈ K with Bρεr (x) ⊂
K ∩ Bε(z). Then K admits a continuous linear Whitney extension operator
W(F )→ C∞(Rm,R).
This implies (a), (b), and (d).

4.4 Theorem Let M̃ be an open manifold and let M ⊂ M̃ be a compact subset
that is the closure of its open interior. M ⊂ M̃ is a Whitney pair if and only if for
every smooth atlas (M̃ ⊃ Uα, uα : Uα → uα(Uα) ⊂ R

m)α∈A of the open manifold
M̃ , each uα(M ∩ Uα) ⊂ uα(Uα) is a Whitney pair.

Consequently, for a Whitney pair M ⊂ M̃ and U ⊂ M̃ open, M ∩ U ⊂ M̃ ∩ U
is also a Whitney pair.

Proof

(1) We consider a locally finite countable smooth atlas (M̃ ⊃ Uα, uα : Uα →
uα(Uα) ⊂ R

m)α∈N of M̃ such that each uα(Uα) ⊃ uα(M ∩ Uα) is a Whitney
pair.

We use a smooth “partition of unity” fα ∈ C∞c (Uα,R≥0) on M̃ with∑
α f

2
α = 1. The following mappings induce linear embeddings onto closed

direct summands of the Fréchet spaces:

C∞(M,R)˜
f �→(fα.f)α

αC
∞(Uα,R)

αfα.gα←(gα)α

W(M) αW(Uα∩M)

If each uα(Uα) ⊃ uα(Uα ∩M) is a Whitney pair, then so is Uα ⊃ Uα ∩M , via
the isomorphisms induced by uα , and

W(M)
f �→(fα.f)α

αW(Uα∩M)

αEα

C∞(M,R)˜
αC

∞(Uα,R)
αfα.gα←(gα)α

is a continuous Whitney extension operator, so that M̃ ⊃ M is a Whitney pair.
This proves the easy direction of the theorem.

The following argument for the converse direction is inspired by Frerick and
Wengenroth [43].

(2) (See [40, Def. 3.1], [65, Section 29–31]) A Fréchet space E is said to have
property (DN) if for one (equivalently, any) increasing system (‖ · ‖n)n∈N of
seminorms generating the topology the following holds:
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• There exists a continuous seminorm ‖ ‖ on E (called a dominating norm,
hence the name (DN)) such that for all (equivalently, one) 0 < θ < 1 and all
m ∈ N there exist k ∈ N and C > 0 with

‖ ‖m ≤ C‖ ‖θk · ‖ ‖1−θ .

The property (DN) is an isomorphism invariant and is inherited by closed linear
subspaces. The Fréchet space s of rapidly decreasing sequences has property
(DN).

(3) ([101, Satz 2.6], see also [40, Theorem 3.3]) A closed subset M in R
m admits a

continuous linear extension operator W(M) → C∞(Rm,R) if and only if for
each x ∈ ∂M there exists a compact neighborhood K of x in R

m such that

WK(M) :=
{
f ∈W(M) : supp(f (α)) ⊂ K for all α ∈ N

m
≥0

}

has property (DN).
We assume from now on that M̃ ⊃ M is a Whitney pair.

(4) Given a compact set K ⊂ M̃ , let L ⊂ M̃ be a compact smooth manifold with
smooth boundary which contains K in its interior. Let L̃ be the double of L,
i.e., L smoothly glued to another copy of L along the boundary; L̃ is a compact
smooth manifold containing L as a submanifold with boundary.

Then C∞(L̃,R) is isomorphic to the space s of rapidly decreasing
sequences: This is due to [105]. In fact, using a Riemannian metric g on
L̃, the expansion in an orthonormal basis of eigenvectors of 1 + �g of a
function h ∈ L2 has coefficients in s if and only if h ∈ C∞(L̃,R), because
1 + �g : Hk+2(L̃) → Hk(L̃) is an isomorphism for Sobolev spaces Hk with
k ≥ 0, and since the eigenvalues μn of �g satisfy μn ∼ C

L̃
· n2/ dim(L̃) for

n→∞, by Weyl’s asymptotic formula. Thus C∞(L̃,R) has property (DN).
Moreover, C∞L (M̃,R) = {f ∈ C∞(M̃,R) : supp(f ) ⊂ L} is a closed linear

subspace of C∞(L̃,R), by extending each function by 0. Thus also C∞L (M̃,R)
has property (DN).

We choose now a function g ∈ C∞L (M̃,R≥0) with g|K = 1 and consider

WK(M)
EK

C∞(M,R)L
˜

W(M)
EM

C∞(M,R)˜

f�→g.f

The resulting composition EK is a continuous linear embedding onto a closed
linear subspace of the space C∞L (M̃,R) which has (DN). Thus we proved:

(5) Claim If M̃ ⊃ M is a Whitney pair and K is compact in M̃ , the Fréchet space
WK(M) has property (DN).
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(6) We consider now a smooth chart M̃ ⊃ U
u−→ u(U) = R

m. For x ∈ ∂u(M)
let K be a compact neighborhood of x in R

m. The chart u induces a linear
isomorphism

WK(u(M ∩ U)) u∗−→Wu−1(K)(U ∩M) ∼=Wu−1(K)(M),

where the right-hand side mapping is given by extending each f (α) by 0. By
claim (5) the Fréchet space Wu−1(K)(M) has property (DN); consequently also
the isomorphic space WK(u(M ∩ U)) has property (DN). By (3) we conclude
that Rm = u(U) ⊃ u(M ∩ U) is a Whitney pair.

(7) If we are given a general chart M̃ ⊃ U
u−→ u(U) ⊂ R

m, we cover U by a
locally finite atlas (U ⊃ Uα, uα : Uα → uα(Uα) = R

m)α∈N. By (6) each
R
m = uα(Uα) ⊃ uα(M ∩ Uα) is a Whitney pair, and by the argument in (1)

the pair U ⊃ M ∩ U is a Whitney pair, and thus the diffeomorphic u(U) ⊃
u(U ∩M) is also a Whitney pair.

��

4.5 Our Use of Whitney Pairs

We consider an equivalence class of Whitney pairs M̃i ⊃ Mi for i = 0, 1 where
M̃0 ⊃ M0 is equivalent to M̃1 ⊃ M1 if there exist an open submanifolds M̃i ⊃
M̂i ⊃ Mi and a diffeomorphism ϕ : M̂0 → M̂1 with ϕ(M0) = M1. By a germ
of a Whitney manifold we mean an equivalence class of Whitney pairs as above.
Given a Whitney pair M̃ ⊃ M and its corresponding germ, we may keep M fixed
and equip it with all open connected neighborhoods of M in M̃; each neighborhood
is then a representative of this germ; called an open neighborhood manifold of M .
In the following we shall speak of a Whitney manifold germ M and understand that
it comes with open manifold neighborhoods M̃ . If we want to stress a particular
neighborhood we will write M̃ ⊃ M .

The boundary ∂M of a Whitney manifold germ is the topological boundary of
M in M̃ . It can be a quite general set as seen from the examples in Sect. 4.3 and the
discussion in Sect. 4.9. But infinitely flat cusps cannot appear.

4.6 Other Approaches

We remark that there are other settings, like the concept of a manifold with rough
boundary; see [95] and literature cited there. The main idea there is to start with
closed subsets C ⊂ R

m with dense interior, to use the space of functions which are
Cn in the interior of C such that all partial derivatives extend continuously to C.
Then one looks for sufficient conditions (in particular for n = ∞) on C such that
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there exists a continuous Whitney extension operator on the space of these functions,
and builds manifolds from that. The condition in [95] are in the spirit of Sect. 4.3(d).
By extending these functions and restricting their jets to C we see that the manifolds
with rough boundary are Whitney manifold germs.

Another possibility is to consider closed subsets C ⊂ R
m with dense interior

such there exists a continuous linear extension operator on the space C∞(C) =
{f |C : f ∈ C∞(Rm)} with the quotient locally convex topology. These are exactly
the Whitney manifold pairs R

m ⊃ M , by Proposition 4.2. In this setting, for Cn

with n < ∞ there exist continuous extension operators Cnb (C)→ Cnb (R
m) (where

the subscript b means bounded for all derivatives separately) for arbitrary subsets
C ⊂ R

m; see [39].
We believe that our use of Whitney manifold germs is quite general, simple, and

avoids many technicalities. But it is aimed at the case C∞; for Ck or Wk,p other
approaches, like the one in [95], might be more appropriate.

4.7 Tangent Vectors and Vector Fields on Whitney Manifold
Germs

In line with the more general convention for vector bundles in Sect. 4.8 below, we
define the tangent bundle TM of a Whitney manifold germ M as the restriction
TM = T M̃|M . For x ∈ ∂M , a tangent vector Xx ∈ TxM is said to be interior
pointing if there exist a curve c : [0, 1)→ M which is smooth into M̃ with c′(0) =
Xx . And Xx ∈ TxM is called tangent to the boundary if there exists a curve c :
(−1, 1)→ ∂M which is smooth into M̃ with c′(0) = Xx . The space of vector fields
on M is given as

X(M) = {X|M : X ∈ X(M̃)}.

Using a continuous linear extension operator, X(M) is isomorphic to a locally
convex direct summand in X(M̃). IfM is a compact Whitney manifold germ, X(M)
is a direct summand even in XL(M̃) = {X ∈ X(M̃) : supp(X) ⊆ L} where L ⊂ M̃
is a compact set containing M in its interior. We define the space of vector fields on
M which are tangent to the boundary as

X∂ (M) =
{
X|M : X ∈ X(M̃), x ∈ ∂M �⇒ FlXt (x) ∈ ∂M

for all t for which FlXt (x) exists in M̃
}
,

where FlXt denotes the flow mapping of the vector field X up to time t which is
locally defined on M̃ . Obviously, for X ∈ X∂ (M) and x ∈ ∂M the tangent vector
X(x) is tangent to the boundary in the sense defined above. I have no proof that the
converse is true:
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Question Suppose that X ∈ X(M̃) has the property that for each x ∈ ∂M the
tangent vector X(x) is tangent to the boundary. Is it true that then X|M ∈ X∂ (M)?

A related question for which I have no answer is:

Question For each x ∈ ∂M and tangent vector Xx ∈ TxM which is tangent to the
boundary, is there a smooth vector field X ∈ Xc,∂ (M) with X(x) = Xx?

Lemma For a Whitney manifold germ M , the space X∂ (M) of vector field tangent
to the boundary is a closed linear sub Lie algebra of X(M). The space Xc,∂ (M) of
vector fields with compact support tangent to the boundary is a closed linear sub
Lie algebra of Xc(M).

Proof By definition, for X ∈ X(M̃) the restriction X|M is in X∂ (M) if and only
if x ∈ ∂M implies that FlXt (x) ∈ ∂M for all t for which FlXt (x) exists in M̃ .
These conditions describe a set of continuous equations, since (X, t, x) �→ FlXt (x)
is smooth; see the proof of Sect. 6.1 for a simple argument. Thus X ∈ X(M̃) is
closed.

The formulas (see, e.g., [81, pp. 56,58])

lim
n→∞(F l

X
t/n ◦FlYt/n)

n(x) = FlX+Yt (x)

lim
n→∞

(
FlY−(t/n)1/2 ◦FlX−(t/n)1/2 ◦FlY

(t/n)1/2
◦FlX

(t/n)1/2

)n
(x) = Fl[X,Y ]t (x)

shows that X∂ (M) is a Lie subalgebra. ��
The Smooth Partial Stratifications of the Boundary of a Whitney Manifold
Germ Given a Whitney manifold germ M̃ ⊃ M of dimension m, for each x ∈ ∂M
we denote by L∞(x) the family consisting of each maximal connected open smooth
submanifold L of M̃ which contains x and is contained in ∂M . Note that for
L ∈ L∞(x) and y ∈ L we have L ∈ L∞(y). {TxL : L ∈ L∞(x)} is a set of linear
subspaces of TxM̃ . The collective of these for all x ∈ ∂M is something like a “field
of quivers of vector spaces” over ∂M . It might be the key to eventually construct
charts for the regular Frölicher Lie group Diff(M) treated in Sect. 6.3 below, and for
constructing charts for the Frölicher space Emb(M,N) in Sect. 7.2 below.

4.8 Mappings, Bundles, and Sections

Let M be Whitney manifold germ and let N be a manifold without boundary. By
a smooth mapping f : M → N we mean f = f̃ |M for a smooth mapping f̃ :
M̃ → N for an open manifold neighborhood M̃ ⊃ M . Whitney jet on M naively
make sense only if they take values in a vector space or, more generally, in a vector
bundle. One could develop the notion of Whitney jets of infinite order with values
in a manifold as sections of J∞(M,N) → M with Whitney conditions of each
order. We do not know whether this has been written down formally. But we can
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circumvent this easily by considering a closed embedding i : N → R
p and a tubular

neighborhood p : U → i(N); i.e.,U is an open neighborhood and is (diffeomorphic
to) the total space of a smooth vector bundle which projection p.

Then we can consider a Whitney jet on M with values in R
p (in other words, a

p-tuple of Whitney jets) such that the 0-order part lies in i(N). Using a continuous
Whitney extension operator, we can extend the Whitney jet to a smooth mapping
f̃ : M̃ → R

p. Then consider the open set f̃−1(U) ⊂ M̃ instead of M̃ , and replace f̃
by p ◦ f̃ . So we just extended the given Whitney jet to a smooth mapping M̃ → N ,
and also showed, that the space of Whitney jets is isomorphic to the space

C∞(M,N) = {f |M : f ∈ C∞(M̃,N), M̃ ⊃ M}.

Note that the neighborhood M̃ can be chosen independently of the mapping f ,
but dependent on N . This describes a nonlinear extension operator C∞(M,N) →
C∞(M̃,N); we shall see in Sect. 5 that this extension operator is continuous and
even smooth in the manifold structures.

For finite n we shall need the space C∞,n(R ×M,Rp) of restrictions to M of
mappings R× M̃ � (t, x) �→ f (t, x) ∈ R

p which are C∞ in t and Cn in x. If M̃ is
open in R

m we mean by this that any partial derivative ∂kt ∂
α
x f of any order k ∈ N≥0

in t and of order |α| ≤ n in x exists and is continuous on R×M̃ . This carries over to
an open manifold M̃ , and finally, using again a tubular neighborhood p : U → i(N)

as above, to the space C∞,n(R×M,N), for any open manifold N . For a treatment
of Cm,n-maps leading to an exponential law see [2]; since Cn is not accessible to a
convenient approach, a more traditional calculus has to be used there.

By a (vector or fiber) bundle E → M over a germ of a Whitney manifold M we
mean the restriction to M of a (vector or fiber) bundle Ẽ → M̃ , i.e., of a (vector or
fiber) bundle over an open manifold neighborhood. By a smooth section of E→ M

we mean the restriction of a smooth section of Ẽ → M̃ for a neighborhood M̃ .
Using classifying smooth mappings into a suitable Grassmannian for vector bundles
over M and using the discussion above one could talk about Whitney jets of vector
bundles and extend them to a manifold neighborhood of M .

We shall use the following spaces of sections of a vector bundle E → M over
a Whitney manifold germ M . This is more general than [55, Section 30], since we
allow Whitney manifold germs as base.

• �(E) = �(M ← E), the space of smooth sections, i.e., restrictions of smooth
sections of Ẽ→ M̃ for a fixed neighborhood M̃ , with the Fréchet space topology
of compact convergence on the isomorphic space of Whitney jets of sections.

• �c(E), the space of smooth sections with compact support, with the inductive
limit (LF)-topology.

• �Cn(E), the space of Cn-section, with the Fréchet space topology of compact
convergence on the space of Whitney n-jets. IfM is compact and n finite, �Cn(E)
is a Banach space.

• �Hs (E), the space of Sobolev Hs-sections, for 0 ≤ s ∈ R. Here M should be
a compact Whitney manifold germ. The measure on M is the restriction of the
volume density with respect to a Riemannian metric on M̃ . One also needs a
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fiber metric on E. The space �Hk (E) is independent of all choices, but the inner
product depends on the choices. One way to define �Hk (E) is to use a finite atlas
which trivializes Ẽ|L over a compact manifold with smooth boundary L which
is a neighborhood of M in M̃ and a partition of unity, and then use the Fourier
transform description of the Sobolev space. For a careful description see [7]. For
0 ≤ k < s − dim(M)/2 we have �Hs (E) ⊂ �Ck (E) continuously.

• More generally, for 0 ≥ s ∈ R and 1 < p < ∞ we also consider �Ws,p (E), the
space ofWs,p-sections: For integral s, all (covariant) derivatives up to order s are
in Lp. For 0 ≤ k < s − dim(M)/p we have �Hs (E) ⊂ �Ck (E) continuously.

4.9 Is Stokes’ Theorem Valid for Whitney Manifold Germs?

This seems far from obvious. Here is an example, due to [43]:
By the first answer to the MathOverflow question [50] there is a setK in [0, 1] ⊂

R which is the closure of its open interior such that the boundary is a Cantor set with
positive Lebesgue measure. Moreover, R ⊃ K is a Whitney pair by Tidten [102], or
by the local Markov inequalities [40, Proposition 4.8], or by Frerick et al. [41]. To
make this connected, consider K2 := (K × [0, 2]) ∪ ([0, 1] × [1, 2]) in R

2. Then
R

2 ⊃ K2 is again a Whitney pair, but ∂K2 has positive 2-dimensional Lebesgue
measure.

As an aside we remark that Cantor-like closed sets in R might or might not
admit continuous extension operators; see [101, Beispiel 1], [102], and the final
result in [5], where a complete characterization is given in terms of the logarithmic
dimension of the Cantor-like set.

4.10 Theorem ([52, Theorem 4]) Let M be a connected compact oriented Whit-
ney manifold germ. Let ω0, ω ∈ 
m(M) be two volume forms (both > 0) with∫
M
ω0 =

∫
M
ω. Suppose that there is a diffeomorphism f : M → M such that

f ∗ω|U = ω0|U for an open neighborhood of ∂M in M .
Then there exists a diffeomorphism f̃ : M → M with f̃ ∗ω = ω0 such that f̃

equals f on an open neighborhood of ∂M .

This relative Moser theorem for Whitney manifold germs is modeled on the
standard proof of Moser’s theorem in [73, Theorem 31.13]. The proof of [52,
Theorem 4] is for manifolds with corners, but it works without change for Whitney
manifold germs.

5 Manifolds of Mappings

In this section we demonstrate how convenient calculus allows for very short and
transparent proofs of the core results in the theory of manifolds of smooth mappings.
We follow [55] but we allow the source manifold to be a Whitney manifold germ. In
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[69] M was allowed to have corners. We will treat manifolds of smooth mappings,
and of Cn-mappings, and we will also mention the case of Sobolev mappings.

5.1 Lemma (Smooth Curves into Spaces of Sections of Vector Bundles) Let
p : E → M be a vector bundle over a compact smooth manifold M , possibly with
corners.

(1) Then the space C∞(R, �(E)) of all smooth curves in �(E) consists of all c ∈
C∞(R×M,E) with p ◦ c = pr2 : R×M → M .

(2) Then the space C∞(R, �Cn(E)) of all smooth curves in �Cn(E) consists of all
c ∈ C∞,n(R×M,E) (see Sect. 4.8) with p ◦ c = pr2 : R×M → M .

(3) IfM is a compact manifold or a compact Whitney manifold germ, then for each
1 < p < ∞ and s ∈ (dim(M)/p,∞) the space C∞(R, �Ws,p (E)) of smooth
curves in �Ws,p (E) consists of all continuous mappings c : R ×M → E with
p ◦ c = pr2 : R×M → M such that the following two conditions hold:

• For each x ∈ M the curve t �→ c(t, x) ∈ Ex is smooth;
let (∂kt c)(t, x) = ∂kt (c( , x))(t).

• For each k ∈ N≥0, the curve ∂kt c has values in �Ws,p (E) so that ∂kt c : R→
�Ws,p (E), and t �→ ‖∂kt c(t, ·)‖�Ws,p (E) is bounded, locally in t .

(4) If M is an open manifold, then the space C∞(R, �c(E)) of all smooth curves
in the space �c(E) of smooth sections with compact support consists of all
c ∈ C∞(R×M,E) with p ◦ c = pr2 : R×M → M such that

• for each compact interval [a, b] ⊂ R there is a compact subsetK ⊂ M such
that c(t, x) = 0 for (t, x) ∈ [a, b] × (M \K).

Likewise for the space C∞(R, �Cn,c(E)) of smooth curves in the space of Cn-
sections with compact support.

(5) Let p : E → M be a vector bundle over a compact Whitney manifold germ.
Then the space C∞(R, �(E)) of smooth curves in �(E) consists of all smooth
mappings c : R × M̃ → Ẽ with p ◦ c = pr2 : R × M̃ → M̃ for some open
neighborhood manifold M̃ and extended vector bundle Ẽ. We may even assume
that there is a compact submanifold with smooth boundary L ⊂ M̃ containing
M in its interior such that c(t, x) = 0 for (t, x) ∈ R× (M̃ \ L). Using the last
statement of Sect. 4.1, this is equivalent to the space of all smooth mappings
c : R×M → E ⊂ Ẽ with p ◦ c = pr2 : R×M → M .

(6) Let p : E→ M be a vector bundle over a non-compact Whitney manifold germ
M ⊂ M̃ , then the space C∞(R, �c(E)) of all smooth curves in the space

�c(E) = {s|M : s ∈ �c(M̃ ← Ẽ)}

of smooth sections with compact support (see Sect. 4.8) consists of all smooth
mappings c : R× M̃ → Ẽ with p ◦ c = pr2 : R× M̃ → M̃ such that

• for each compact interval [a, b] ⊂ R there is a compact subsetK ⊂ M̃ such
that c(t, x) = 0 for (t, x) ∈ [a, b] × (M \K).
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Proof

(1) This follows from the exponential law in Sect. 2.4.6 after trivializing the bundle.
(2) We trivialize the bundle, assume that M is open in R

m, and then prove this
directly. In [55, 3.1 and 3.2] one finds a very explicit proof of the case n = ∞,
which one can restrict to our case here.

(3) To see this we first choose a second vector bundle F → M such that E ⊕M F

is a trivial bundle, i.e., isomorphic to M × R
n for some n ∈ N. Then �Ws,p (E)

is a direct summand in Ws,p(M,Rn), so that we may assume without loss that
E is a trivial bundle, and then, that it is 1-dimensional. So we have to identify
C∞(R,Ws,p(M,R)). But in this situation we can just apply Theorem 2.6 for
the set V ⊂ Ws,p(M,R)′ consisting of all point evaluations evx : Hs(M,R)→
R and use that Ws,p(M,R) is a reflexive Banach space.

(4) This is like (1) or (2) where we have to assure that the curve c takes values in
the space of sections with compact support which translates to the condition.

(5) and (6) follow from (4) after extending to Ẽ→ M̃ .
��

5.2 Lemma Let E1, E2 be vector bundles over smooth manifold or a Whitney
manifold germ M , let U ⊂ E1 be an open neighborhood of the image of a smooth
section, let F : U → E2 be a fiber preserving smooth mapping. Then the following
statements hold:

(1) If M is compact, the set �(U) := {h ∈ �(E1) : h(M) ⊂ U} is open in �(E1),
and the mapping F∗ : �(U)→ �(E2) given by h �→ F ◦h is smooth. Likewise
for spaces �c(Ei), if M is not compact.

(2) If M is compact, for n ∈ N≥0 the set

�Cn(U) := {h ∈ �Cn(E1) : h(M) ⊂ U}
is open in �Cn(E1), and the mapping F∗ : �Cn(U)→ �Cn(E2) given by h �→
F ◦h is smooth.

(3) If M is compact and s > dim(M)/p, the set

�Ws,p (U) := {h ∈ �Ws,p (E1) : h(M) ⊂ U}
is open in �Ws,p (E1), and the mapping F∗ : �Ws,p (U)→ �Ws,p (E2) given by
h �→ F ◦h is smooth.

If the restriction of F to each fiber of E1 is real analytic, then F∗ is real analytic;
but in this paper we concentrate on C∞ only. This lemma is a variant of the so-
called Omega-lemma; e.g., see [69]. Note how simple the proof is using convenient
calculus.

Proof Without loss suppose that U = E1.

(1) and (2) follow easily since F∗ maps smooth curves to smooth curves; see their
description in Lemma 5.1(1) and (2).
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(3) Let c : R � t �→ c(t, ) ∈ �Ws,p (E1) be a smooth curve. As s > dim(M)/2,
it holds for each x ∈ M that the mapping R � t �→ Fx(c(t, x)) ∈ (E2)x is
smooth. By the Faà di Bruno formula (see [34] for the 1-dimensional version,
preceded in [3] by 55 years), we have for each p ∈ N>0, t ∈ R, and x ∈ M that

∂
p
t Fx(c(t, x)) =

=
∑

j∈N>0

∑

α∈Nj>0
α1+···+αj=p

1

j !d
j (Fx)(c(t, x))

(∂(α1)
t c(t, x)

α1! , . . . ,
∂
(αj )

t c(t, x)

αj !
)
.

For each x ∈ M and αx ∈ (E2)
∗
x the mapping s �→ 〈s(x), αx〉 is a continuous linear

functional on the Hilbert space �Ws,p (E2). The set V2 of all of these functionals
separates points and therefore satisfies the condition of Theorem 2.6. We also have
for each p ∈ N>0, t ∈ R, and x ∈ M that

∂
p
t 〈Fx(c(t, x)), αx〉 = 〈∂pt Fx(c(t, x)), αx〉 = 〈∂pt Fx(c(t, x)), αx〉.

Using the explicit expressions for ∂pt Fx(c(t, x)) from above we may apply
Lemma (5.1.3) to conclude that t �→ F(c(t, )) is a smooth curve R → �Hs (E1).
Thus, F∗ is a smooth mapping. ��

5.3 The Manifold Structure on C∞(M,N) and Ck(M,N)

Let M be a compact or open finite dimensional smooth manifold or even a compact
Whitney manifold germ, and let N be a smooth manifold. We use an auxiliary
Riemannian metric ḡ onN and its exponential mapping expḡ; some of its properties
are summarized in the following diagram:

0Nzero section
N diagonal

TN VN
open

(πN,exp¯)g

∼= V N×N
open N × N

Without loss we may assume that V N×N is symmetric:

(y1, y2) ∈ V N×N ⇐⇒ (y2, y1) ∈ V N×N.

• If M is compact, then C∞(M,N), the space of smooth mappings M → N has
the following manifold structure. A chart, centered at f ∈ C∞(M,N), is
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C∞(M,N) ⊃ Uf = {g : (f, g)(M) ⊂ V N×N } −uf→ Ũf ⊂ �(M ← f ∗TN)

uf (g) = (πN, expḡ)−1 ◦(f, g), uf (g)(x) = (expḡf (x))
−1(g(x))

(uf )
−1(s) = expḡf ◦ s, (uf )

−1(s)(x) = expḡf (x)(s(x)).

Note that Ũf is open in �(M ← f ∗TN) if M is compact.
• If M is open, then the compact C∞-topology on �(f ∗TN) is not suitable since
Ũf is in general not open. We have to control the behavior of sections near
infinity on M . One solution is to use the space �c(f ∗TN) of sections with
compact support as modeling spaces and to adapt the topology on C∞(M,N)
accordingly. This has been worked out in [69] and [55].

• If M is compact Whitney manifold germ with neighborhood manifold M̃ ⊃ M

we use the Fréchet space �(M ← f ∗TN) = {s|M : s ∈ �L(M̃ ← f̃ ∗TN)}
where L ⊂ M̃ is a compact set containing M in its interior and f̃ : M̃ → N is
an extension of f to a suitable manifold neighborhood of M . Via an extension
operator the Fréchet space �(M ← f ∗TN) is a direct summand in the Fréchet
space �L(M̃ ← f̃ ∗TN) of smooth sections with support in L.

• Likewise, for a non-compact Whitney manifold germ we use the convenient
(LF)-space

�c(M ← f ∗TN) = {s|M : s ∈ �c(M̃ ← f̃ ∗TN)}

of sections with compact support.
• On the space Ck(M,N, ) for k ∈ N≥0 we use only charts as described above

with the center f ∈ C∞(M,N), namely

Ck(M,N) ⊃ Uf = {g : (f, g)(M) ⊂ V N×N } −uf→ Ũf ⊂ �Ck (M ← f ∗TN) .

We claim that these charts cover Ck(M,N): Since C∞(M,N) is dense in
Ck(M,N) in the Whitney Ck-topology, for any g ∈ Ck(M,N) there exists
f ∈ C∞(M,N, ) ∩ Ug . But then g ∈ Uf since V N×N is symmetric. This is
true for compact M . For a compact Whitney manifold germ we can apply this
argument in a compact neighborhood L of M in M̃ , replacing M̃ by the interior
of L after the fact.

• On the space Ws,p(M,N) for dim(M)/p < s ∈ R we use only charts as
described above with the center f ∈ C∞(M,N), namely

Ws,p(M,N) ⊃ Uf = {g : (f, g)(M) ⊂ V N×N } −uf→
−uf→ Ũf ⊂ �Ws,p (M ← f ∗TN) .

These charts cover Ws,p(M,N), by the following argument: Since C∞(M,N)
is dense in Ws,p(M,N) and since Ws,p(M,N) ⊂ Ck(M,N) via a continuous
injection for 0 ≤ k < s − dim(M)/p, a suitable C0 − sup-norm neighborhood
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of g ∈ Ws,p(M,N) contains a smooth f ∈ C∞(M,N), thus f ∈ Ug and by
symmetry of V N×N we have g ∈ Uf . This is true for compactM . For a compact
Whitney manifold germ we can apply this argument in a compact neighborhood
which is a manifold with smooth boundary L ofM in M̃ and apply the argument
there.

In each case, we equip C∞(M,N) or Ck(M,N) or Ws,p(M,N) with the initial
topology with respect to all chart mappings described above: The coarsest topology,
so that all chart mappings uf are continuous.

For non-compact M the direct limit �c(f ∗TN) = lim−→L
�L(f

∗TN) over a
compact exhaustionL of M in the category of locally convex vector spaces is strictly
coarser that the direct limit in the category of Hausdorff topological spaces. It is
more convenient to use the latter topology which is called c∞ topology; compare
with Sect. 2.1.

5.4 Lemma

(1) If M is a compact smooth manifold or is a compact Whitney manifold germ,

C∞(R, �(M ← f ∗TN)) = �(R×M ← pr2
∗ f ∗TN) .

For smooth f ∈ C∞(M,N),

C∞(R, �Cn(M ← f ∗TN)) = �C∞,n (R×M ← pr2
∗ f ∗TN) .

(2) If M is a non-compact smooth manifold of Whitney manifold germ, the
sections on the right-hand side have to satisfy the corresponding conditions
of Lemma 5.1(4).

For a compact Whitney manifold germ M the space �(R × M ← pr2
∗ f ∗TN)

is a direct summand in the space �R×L(R × M̃ ← pr2
∗ f ∗TN) of sections

with support in R × L for a fixed compact set L ⊂ M̃ containing M in its
interior. Likewise �C∞,n (R ×M ← pr2

∗ f ∗TN) is a direct summand in the space
�C∞,n,R×L(R× M̃ ← pr2

∗ f ∗TN) of C∞,n-sections. One could introduce similar
notation for C∞(R, �Ws,p (M ← f ∗TN)).

Proof This follows from Lemma 5.1. ��
5.5 Lemma Let M be a smooth manifold or Whitney manifold germ, compact or
not, and let N be a manifold. Then the chart changes for charts centered on smooth
mappings are smooth (C∞) on the space C∞(M,N), also on Ck(M,N) for k ∈
N≥0, and on Ws,p(M,N) for 1 < p <∞ and s > dim(M)/p:

Ũf1 � s �→ (uf2,f1)∗(s) := (expḡf2
)−1 ◦ expḡf1

◦ s ∈ Ũf2 .

Proof This follows from Lemma 5.2, since any chart change is just compositions
from the left by a smooth fiber respecting locally defined diffeomorphism. ��
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5.6 Lemma

(1) If M is a compact manifold or a compact Whitney manifold germ, then

C∞(R, C∞(M,N)) ∼= C∞(R×M,N) .

(2) IfM is not compact,C∞(R, C∞(M,N)) consists of all smooth c : R×M → N

such that

• for each compact interval [a, b] ⊂ R there is a compact subsetK ⊂ M such
that c(t, x) is constant in t ∈ [a, b] for each x ∈ M \K .

Proof By Lemma 5.4. ��
5.7 Lemma Composition (f, g) �→ g ◦ f is smooth as a mapping

C∞(P,M)× C∞(M,N)→ C∞(P,N)

Ck(P,M)× C∞(M,N)→ Ck(P,N)

Ws,p(P,M)× C∞(M,N)→ Ws,p(P,N)

for P a manifold or a Whitney manifold germ, compact or not, and for M and N
manifolds.

For more general M the description becomes more complicated. See the special
case of the diffeomorphism group of a Whitney manifold germM in Sect. 6.3 below.

Proof Since it maps smooth curves to smooth curves. ��
5.8 Corollary For M a manifold or a Whitney manifold germ and a manifold N ,
the tangent bundle of the manifold C∞(M,N) of mappings is given by

T C∞(M,N) = C∞(M, T N)−C∞(M,πN )=(πN )∗→ C∞(M,N) ,

T Ck(M,N) = Ck(M, TN)−Ck(M,πN )=(πN )∗→ Ck(M,N) ,

TWs,p(M,N) = Ws,p(M, TN)−Ws,p(M,πN )=(πN )∗→ Ws,p(M,N) .

Proof This follows from the chart structure and the fact that sections of f ∗TN →
M correspond to mappings s : M → TN with πN ◦ s = f . ��

5.9 Sprays Respecting Fibers of Submersions

Sprays are versions of Christoffel symbols and lead to exponential mappings. They
are easier to adapt to fibered manifolds than Riemannian metrics. Recall that a spray
S on a manifold N without boundary is a smooth mapping S : TN → T 2N with
the following properties:
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• πTN ◦ S = IdTN ; S is a vector field.
• T (πN) ◦ S = IdTN ; S is a “differential equation of second order.”
• Let mNt : TN → TN and mTNt : T 2N → T 2N be the scalar multiplications.

Then S ◦mNt = T (mNt ).mTNt .S.

Locally, in charts of TN and T 2N induced by a chart of N , a spray looks like
S(x, v) = (x, v; v;�(x, v)) where � is quadratic in v. For a spray S ∈ X(T N) on a
manifoldN , we let exp(X) := πN(FlS1 (X)), then the mapping exp : TN ⊃ V → N

is smooth, defined on an open neighborhood V of the zero section in TN , which
is called the exponential mapping of the spray S. Since T0x (exp |TxN ) = IdTxN
(via T0x (TxN) = TxN ), by the inverse function theorem expx := exp |TxN is a
diffeomorphism near 0x in TN onto an open neighborhood of x in N . Moreover
the mapping (πN, exp) : TN ⊃ Ṽ → N × N is a diffeomorphism from an
open neighborhood Ṽ of the zero section in TN onto an open neighborhood of
the diagonal in N ×N .

Lemma Let q : N → M be a smooth surjective submersion between connected
manifolds without boundary. Then there exists a spray S on N which is tangential
to the fibers of q, i.e., S(T (q−1(x))) ⊂ T 2(q−1(x)) for each x ∈ M .

This is a simplified version of [69, 10.9].

Proof In suitable charts onN andM the submersion q looks like a linear projection
(y1, y2) �→ y1. The local expression T (chart)→ T 2(chart) of a spray is

S
(
(y1, y2), (v1, v2)

) =
= ((y1, y2), (v1, v2); (v1, v2), (�

1(y1, y2; v1, v2), �
2(y1, y2, v1, v2))

)
,

where �i(y1, y2, v1, v2) is quadratic in (v1, v2). The spray is tangential to the fibers
of q if and only if �1(y1, y2, 0, v2) = 0. This clearly exists locally (e.g., choose
�1 = 0). Now we use a partition of unity (ϕα) subordinated to a cover N =⋃α Uα
with such charts and glue local sprays with the induced partition of unity (ϕα ◦πN)
subordinated to the cover TN = ⋃α T Uα for the vector bundle πTN : T 2N →
TN . Locally this looks like (where y = (y1, y2), etc.)

(∑

α

(ϕα ◦πN).Sα
)
(y, v) =

(
y, v;

∑

α

ϕα(y)v,
∑

α

ϕα(y)
(
�1
α(y, v), (�

2
α(y, v)

))

=
(
y, v; v, (

∑

α

ϕα(y)�
1
α(y, v),

∑

α

ϕα(y)�
2
α(y, v)

))

and is therefore a spray which is tangential to the fibers of q. ��
5.10 Proposition ([69, 10.10]) Let q : N → M be a smooth surjective submersion
between connected manifolds without boundary. The space Sq(M,N) of all smooth
sections of q is a splitting smooth submanifold of C∞(M,N). Similarly, the spaces
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S
q

CN
(M,N) and SqWs,p (M,N) of CN -sections and Ws,p-sections are smooth split-

ting submanifolds of CN(M,N) orWs,p(M,N) (for s > dim(M)/p), respectively.

The proof given here is simpler than the one in [69, 10.10].

Proof Let us first assume that M is compact. Given a smooth section f ∈
Sq(M,N), consider the chart centered at f from Sect. 5.3

C∞(M,N) ⊃ Uf = {g : (f, g)(M) ⊂ V N×N } −uf→ Ũf ⊂ �(M ← f ∗TN)

uf (g) = (πN, expS)−1 ◦(f, g), uf (g)(x) = (expSf (x))
−1(g(x))

(uf )
−1(s) = expSf ◦ s, (uf )

−1(s)(x) = expSf (x)(s(x)),

where we use the exponential mapping with respect to a spray S on N which is
tangential to the fibers of q. Using an unrelated auxiliary Riemannian metric ḡ on
N we can smoothly split the tangent bundle TN = V q(N) ⊕ Hq(N) into the
vertical bundle of all vectors tangent to the fibers of q, and into its orthogonal
complement with respect to ḡ. The orthonormal projections P ḡ : TN → V q(N)

and IdTN −P ḡ : TN → Hq(N) induce the direct sum decomposition

�(M ← f ∗TN) = �(M ← f ∗V q(N))⊕�(M ← f ∗TN) s �→ (P ḡ.s, s−P ḡ.s).

Now g ∈ Uf is in Sq(M,N) if and only if uf (g) ∈ �(f ∗V q(N)).
If M is not compact we may use the spaces of sections with compact support as

described in Sect. 5.3. Similarly for the cases of CN -sections or Ws,p-sections. ��
5.11 Corollary Let p : E → M be a fiber bundle over a compact Whitney
manifold germ M . Then the space �(E) of smooth sections is a splitting smooth
submanifold of C∞(M,E). Likewise for the spaces �CN (E) and �Ws,p (E) of CN -
sections and Ws,p-sections.

Proof Recall from Sect. 4.8 that E = Ẽ|M for a smooth fiber bundle Ẽ → M̃ .
There the result follows from 5.10. Using (fixed) extension operators

�(M ← f ∗T E)→ �L(M̃ ← f̃ ∗T Ẽ),

etc. we can extend this the case of Whitney manifold germs. ��

6 Regular Lie Groups

6.1 Regular Lie Groups

We consider a smooth Lie group G with Lie algebra g = TeG modeled on
convenient vector spaces. The notion of a regular Lie group is originally due to [86–
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91] for Fréchet Lie groups, was weakened and made more transparent by Milnor
[78], and then carried over to convenient Lie groups in [56], see also [55, 38.4]. We
shall write μ : G×G→ G for the multiplication with x.y = μ(x, y) = μx(y) =
μy(x) for left and right translation.

A Lie group G is called regular if the following holds:

• For each smooth curveX ∈ C∞(R, g) there exists a curve g ∈ C∞(R,G) whose
right logarithmic derivative is X, i.e.,

{
g(0) = e
∂tg(t) = Te(μg(t))X(t) = X(t).g(t).

The curve g is uniquely determined by its initial value g(0), if it exists.
• Put evolrG(X) = g(1) where g is the unique solution required above. Then

evolrG : C∞(R, g) → G is required to be C∞ also. We have EvolXt := g(t) =
evolrG(tX).

Of course we could equivalently use the left logarithmic derivative and the
corresponding left evolution operator. Group inversion maps the two concepts into
each other. See [55, Section 38] for more information. Up to now, every Lie group
modeled on convenient vector spaces is regular.

There are other notions of regularity for infinite dimensional Lie groups: For
example, one may require that each curve X ∈ L1

loc(R, g) admits an absolutely
continuous curve EvolX : R→ G whose right logarithmic derivative is X. See [46]
or [49] and references therein. It might be that all these notions of regularity are
equivalent for Lie groups modeled on convenient vector spaces.

6.2 Theorem For each manifold M with or without corners, the diffeomorphism
group Diff(M) is a regular Lie group. Its Lie algebra is the space X(M) of all vector
fields with the negative of the usual bracket as Lie bracket, if M is compact without
boundary. It is the space Xc(M) of fields with compact support, if M is an open
manifold. It is the space X∂ (M) of Sect. 4.7 of vector fields tangent to the boundary,
ifM is a compact manifold with corners. IfM is not compact with corners, then the
Lie algebra is the space Xc,∂ (M) of boundary respecting vector fields with compact
support.

Proof If M is a manifold without boundary then Diff(M) −open→ C∞(M,M). If
M is open, then the group of diffeomorphisms differing from the identity only on a
compact set is open in Diff(M).

If M has corners we use an open manifold M̃ containing M as a submanifold
with corners as in Lemma 3.2. In the description of the chart structure in Sect. 5.3
for Diff(M̃)we have to use the exponential mapping for a geodesic spray on M̃ such
that each component of each ∂qM is totally geodesic. This spray exists; see Sect. 3.7
or Sect. 5.9. Restricting all sections to M then yields a smooth chart centered at the
identity for Diff(M). Then we use right translations of this chart. The explicit chart
structure on Diff(M) is described in [69, 10.16]. Extending all sections to M̃ via
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a fixed continuous linear Whitney extension operator respecting compact support
identifies Diff(M) as a splitting smooth closed submanifold of Diff(M̃), but not as
a subgroup.

Composition is smooth by restricting it from C∞(M,M) × C∞(M,M),
using Lemma 5.7 and its extension to the situation with corners.

Inversion is smooth: If t �→ f (t, ) is a smooth curve in Diff(M), then
f (t, )−1 satisfies the implicit equation f (t, f (t, )−1(x)) = x, so by the finite
dimensional implicit function theorem, (t, x) �→ f (t, )−1(x) is smooth. So
inversion maps smooth curves to smooth curves, and is smooth.

Let X(t, x) be a time-dependent vector field on M (in C∞(R,X(M))). Then
Fl∂t×Xs (t, x) = (t + s,EvolX(t, x)) satisfies the ordinary differential equation

∂t Evol(t, x) = X(t,Evol(t, x)).

If X(s, t, x) ∈ C∞(R2,X(M)) is a smooth curve of smooth curves in X(M), then
obviously the solution of the equation depends smoothly also on the further variable
s, thus evol maps smooth curves of time dependent vector fields to smooth curves
of diffeomorphism. ��

6.3 The Diffeomorphism Group of a Whitney Manifold Germ

For a Whitney manifold germ M̃ ⊃ M , we consider the diffeomorphism group

Diff(M) = {ϕ|M : ϕ ∈ C∞(M̃, M̃), ϕ(M) = M,
ϕ is a diffeomorphism on an open neighborhood of M} .

We also consider the following set C of smooth curves: Those c : R → Diff(M)
which are of the form c = c̃|R×M for a smooth

c̃ : R× M̃ → M̃ with c̃(t, )|M ∈ Diff(M) for each t ∈ R.

Note that for t in a compact interval c̃(t, ) is a diffeomorphism on a fixed open
neighborhood of M in M̃ .

6.4 Theorem For a Whitney manifold germ M the group Diff(M) is a Frölicher
space and a group with smooth composition and inversion. It has a convenient Lie
algebra Xc,∂ (M) with the negative of the usual bracket as Lie bracket, and it is
regular: There exists an evolution operator and it is smooth.

Proof The Frölicher space structure is the one induced by the set C of smooth
curves described above. I do not know whether this set of smooth curves is saturated,
i.e., C = CDiff(M) in the notation of Sect. 2.7; this might depend on the structure of
the boundary.
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The proof is now quite similar to the one of Sect. 6.1. We claim that composition
maps C × C to C ⊆ CDiff(M), and that inversion maps C to C ⊆ CDiff(M). Since by
definition each curve c ∈ C extend to a smooth mapping c̃ : R × M̃ → M̃ we can
actually use a slight adaption of the proof of Sect. 6.1 for open manifolds. ��

6.5 The Connected Component of Diff(M) for a Whitney
Manifold Germ M

We consider a Whitney manifold germ M ⊂ M̃ . As usual for Frölicher space,
we equip Diff(M) with the final topology with respect to all smooth curves in in
the generating set C as described in Sect. 6.3. Diff(M) is actually a topological
group, with the refined topology (i.e., the c∞-topology) on Diff(M) × Diff(M).
Let Diff0(M) be the connected component of the identity in Diff(M) with respect
to this topology.

Theorem For a Whitney manifold germ M ⊂ M̃ we actually have

Diff0(M) = {ϕ̃|M : ϕ̃ ∈ Diff0(M̃), ϕ̃(M) = M} .

Consequently, the subgroup

Diff (̃M) = {ϕ̃|M : ϕ̃ ∈ Diff(M̃), ϕ̃(M) = M}

is an open subgroup in Diff(M) and thus a normal subgroup, and the corresponding
generating set C of smooth curves in Diff (̃M) is saturated.

Proof Let ϕ ∈ Diff0(M). Then there exists a smooth curve ϕ : R → Diff(M)
with ϕ(0) = Id and ϕ(1) = ϕ of the form ϕ = c̃|R×M where c̃ : R × M̃ → M̃

is a smooth mapping with c̃(t, )|M ∈ Diff(M) for each t ∈ R. Then X(t, x) =
(∂tϕ(t))(ϕ(t)

−1(x)) gives us a time-dependent vector field which is defined on
[0, 1] ×U for some open neighborhood U of M in M̃ , by the definition of Diff(M)
in Sect. 6.3. Using a continuous extension operator on X|[0,1]×M and a smooth
bump function gives us a smooth time-dependent vector field X̃ : [0, 1] × M̃ →
T M̃ with support in a fixed open neighborhood, say, such that X̃|[0,1]×M =
X|[0,1]×M . Solving the ODE ∂t ϕ̃(t.x) = X̃(t, ϕ̃(t, x)) on M̃ gives us for t = 1
a diffeomorphism ϕ̃ ∈ Diff(M̃) which extends ϕ.

Given any ϕ ∈ Diff (̃M), the coset ϕ.Diff0(M) ⊂ Diff(M) is the connected
component of ϕ in Diff(M). This shows that Diff (̃M) is open in Diff(M). ��

The construction in the proof above actually describes a smooth mapping

E : {c ∈ C∞(R,Diff0(M)) : c(0) = Id} → {ϕ̃ ∈ Diff0(M̃) : ϕ̃(M) = M}

such that E(c)|M = c(1), since another smooth real parameter s goes smoothly
through solving the ODE.
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6.6 Remark

In this paper I refrain from trying to give a general definition of a regular Frölicher
group, which would be an abstract concept that catches the essential properties of
Diff(M) for a Whitney manifold germM ⊂ M̃ . Let me just remark, that it probably
would fit into the concept of manifolds based on smooth curves instead of charts as
developed in [72]; those among them whose tangent spaces are Banach spaces turn
out to be Banach manifolds. Some Lie theoretic tools are developed in the beginning
of Sect. 8.5 below.

6.7 Regular (Right) Half Lie Groups

A smooth manifold G modeled on convenient vector spaces is called a (right) half
Lie group, if it is a group such that multiplication μ : G × G → G and inversion
ν : G→ G are continuous (note that here we have to take the induced c∞-topology
on the productG×G if the model spaces are not Fréchet), but each right translation
μx : G→ G, μx(y) = y.x is smooth. The notion of a half Lie group was coined in
[60]. See [64] for a study of half Lie groups in general, concentrating on semidirect
products with representation spaces.

Not every tangent vector in TeG can be extended to a left invariant vector field on
the whole group, but they can be extended to right invariant vector fields, which are
only continuous and not differentiable in general. The same holds for right invariant
Riemannian metrics. The tangent space at the identity is not a Lie algebra in general;
thus we refrain from calling it g. Have a look at the examples in Theorem 6.8 to get
a feeling for this.

Let us discuss regularity on a (right) half Lie group G: For a smooth curve g :
R → G the velocity curve g′ : R → TG is still smooth, and for fixed t the right
logarithmic derivative X(t) := g′(t).g(t)−1 = T (μg(t)

−1
).g′(t) lies in TeG, but

t �→ X(t) is only continuous R → TeG. A (right) half Lie group G is called C0-
regular if for every C0-curve X : R → TeG there exists a C1-curve EvolX = g :
R → G with g(0) = e and g′(t) = X(t).g(t) = T (μg(t)).X(t). We also require
that X �→ EvolX is smooth C0(R, TeG)→ C1(R,G).

6.8 Theorem (Diffeomorphism Groups of Finite Degrees of Differentiability)

(1) For a compact smooth manifold M , possibly with corners, and for any n ∈
N≥1 the group DiffCn(M) of Cn-diffeomorphism of M is a C0-regular half Lie
group.

(2) For a compact smooth manifold M , possibly with corners, and for any s ≥
dimM/p+ 1, the group DiffWs,p (M) of Sobolev Ws,p-diffeomorphism of M is
a C0-regular half Lie group.
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Note that the group of homeomorphisms of M is not open in C0
nice(M,M); see

the proof below for C∞nice. Also note that TId DiffCn(M) = X∂,Cn(M) is the space of
Cn-vector fields which are tangent to the boundary. This is not a Lie algebra, since
the Lie bracket of two Cn fields is a Cn−1 field in general.

Proof

(1) Following [69, 10.16], we construct the smooth manifold structure by using the
exponential mapping of a spray on M which is tangential to the boundary; for
existence see Sects. 3.7 and 5.9. LetCnnice(M,M, ) be the set of allCn-mappings
f : M → M with f−1(∂qM) = ∂qM for each q. Then we use the (restriction
of the) chart structure described in Sect. 5.3, using this exponential mappings,
and using only charts centered at smooth mappings f ∈ C∞nice(M,M), as
follows:

Cnnice(M,N) ⊃ Uf = {g : (f, g)(M) ⊂ VM×M } −uf→ Ũf ⊂
⊂ {s ∈Cn(M, TM) : πM ◦ s = f, s(∂qM) ⊂ T (∂qM)} ⊂ �Cn(f ∗T M̃) ,
uf (g) = (πN, expḡ)−1 ◦(f, g), uf (g)(x) = (expḡf (x))

−1(g(x)) ,

(uf )
−1(s) = expḡf ◦ s, (uf )

−1(s)(x) = expḡf (x)(s(x)) .

By the symmetry of VM×M (see Sect. 5.3) these charts cover Cnnice(M,M),
and the chart changes are smooth since they map smooth curves (as described
in Lemma 5.1(2)) to smooth curves; compare to Lemma 5.7. The group
DiffCn(M) is open in Cnnice(M,M), by the implicit function theorem and some
easy arguments.

Continuity of composition and inversion are easy to check. Right translations
are smooth since they map smooth curves.
C1-regularity follows easily: Given X ∈ C0(R, TId DiffCn(M)), view it as

a time-dependent Cn-vector field on M which is tangential to the boundary, a
continuous curve in X∂ (M) and solve the corresponding ODE. The evolution
operator Evol is smooth, since it maps smooth curves to smooth curves by
standard ODE-arguments.

(2) This follows easily by adapting the proof of (1) above, using that DiffWs,p M ⊂
DiffC1(M) by the Sobolev embedding lemma.

��

6.9 Groups of Smooth Diffeomorphisms on R
n

If we consider the group of all orientation preserving diffeomorphisms Diff(Rn) of
R
n, it is not an open subset of C∞(Rn,Rn) with the compact C∞-topology. So it is

not a smooth manifold in the usual sense, but we may consider it as a Lie group in the
cartesian closed category of Frölicher spaces, see [55, Section 23], with the structure
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induced by the injection f �→ (f, f−1) ∈ C∞(Rn,Rn)×C∞(Rn,Rn). Or one can
use the setting of “manifolds” based on smooth curves instead of charts, with lots of
extra structure (tangent bundle, parallel transport, geodesic structure), described in
[72]; this gives a category of smooth “manifolds” where those which have Banach
spaces as tangent fibers are exactly the usual smooth manifolds modeled on Banach
spaces, which is cartesian closed: C∞(M,N) and Diff(M) are always “manifolds”
for “manifolds” M and N , and the exponential law holds.

We shall now describe regular Lie groups in Diff(Rn) which are given by
diffeomorphisms of the form f = IdR+g where g is in some specific convenient
vector space of bounded functions in C∞(Rn,Rn). Now we discuss these spaces
on R

n, we describe the smooth curves in them, and we describe the corresponding
groups. These results are from [77] and from [60, 61] for the more exotic groups.

The Group DiffB(Rn) The space B(Rn) (called DL∞(Rn) by Schwartz [96])
consists of all smooth functions which have all derivatives (separately) bounded. It
is a Fréchet space. By Vogt [105], the space B(Rn) is linearly isomorphic to �∞⊗̂ s
for any completed tensor-product between the projective one and the injective one,
where s is the nuclear Fréchet space of rapidly decreasing real sequences. Thus
B(Rn) is not reflexive, not nuclear, not smoothly paracompact.
The space C∞(R,B(Rn)) of smooth curves in B(Rn) consists of all functions
c ∈ C∞(Rn+1,R) satisfying the following property:

• For all k ∈ N≥0, α ∈ N
n
≥0 and each t ∈ R the expression ∂kt ∂

α
x c(t, x) is uniformly

bounded in x ∈ R
n, locally in t .

To see this use Theorem 2.6 for the set {evx : x ∈ R} of point evaluations in

B(Rn). Here ∂αx = ∂ |α|
∂xα

and ck(t) = ∂kt f (t, ).
Diff+B(R

n) = {f = Id+g : g ∈ B(Rn)n, det(In + dg) ≥ ε > 0
}

denotes the
corresponding group, see below.

The Group DiffW∞,p (Rn) For 1 ≤ p <∞, the space

W∞,p(Rn) =
⋂

k≥1

L
p
k (R

n)

is the intersection of all Lp-Sobolev spaces, the space of all smooth functions such
that each partial derivative is in Lp. It is a reflexive Fréchet space. It is called
DLp(Rn) in [96]. By Vogt [105], the space W∞,p(Rn) is linearly isomorphic to
�p⊗̂ s. Thus it is not nuclear, not Schwartz, not Montel, and smoothly paracompact
only if p is an even integer.
The spaceC∞(R,H∞(Rn)) of smooth curves inW∞,p(Rn) consists of all functions
c ∈ C∞(Rn+1,R) satisfying the following property:

• For all k ∈ N≥0, α ∈ N
n
≥0 the expression ‖∂kt ∂αx f (t, )‖Lp(Rn) is locally

bounded near each t ∈ R.
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The proof is literally the same as for B(Rn), noting that the point evaluations are
continuous on each Sobolev space Lpk with k > n

p
.

Diff+W∞,p (Rn) = {f = Id+g : g ∈ W∞,p(Rn)n, det(In + dg) > 0
}

denotes the
corresponding group.

The Group DiffS(Rn) The algebra S(Rn) of rapidly decreasing functions is a
reflexive nuclear Fréchet space.
The space C∞(R,S(Rn)) of smooth curves in S(Rn) consists of all functions
c ∈ C∞(Rn+1,R) satisfying the following property:

• For all k,m ∈ N≥0 and α ∈ N
n
≥0, the expression (1 + |x|2)m∂kt ∂αx c(t, x) is

uniformly bounded in x ∈ R
n, locally uniformly bounded in t ∈ R.

Diff+S (R
n) = {f = Id+g : g ∈ S(Rn)n, det(In + dg) > 0

}
is the corresponding

group.

The Group Diffc(Rn) The algebra C∞c (Rn) of all smooth functions with compact
support is a nuclear (LF)-space.
The space C∞(R, C∞c (Rn)) of smooth curves in C∞c (Rn) consists of all functions
f ∈ C∞(Rn+1,R) satisfying the following property:

• For each compact interval [a, b] in R there exists a compact subsetK ⊂ R
n such

that f (t, x) = 0 for (t, x) ∈ [a, b] × (Rn \K).
Diffc(Rn) =

{
f = Id+g : g ∈ C∞c (Rn)n, det(In + dg) > 0

}
is the corresponding

group. The case Diffc(Rn) is well-known since 1980.

Ideal Properties of Function Spaces The function spaces discussed are boundedly
mapped into each other as follows:

C∞
c (Rn) S(Rn) W∞,p(Rn)

p≤q
W∞,q(Rn) B(Rn)

and each space is a bounded locally convex algebra and a bounded B(Rn)-module.
Thus each space is an ideal in each larger space.

6.10 Theorem ([77] and [60]) The sets of diffeomorphisms

Diffc(R
n), DiffS(R

n), DiffH∞(R
n), and DiffB(R

n)

are all smooth regular Lie groups. We have the following smooth injective group
homomorphisms:

Diffc(R
n) DiffS(Rn) DiffW ∞,p(Rn) DiffB(Rn).

Each group is a normal subgroup in any other in which it is contained, in
particular in DiffB(Rn).
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The proof of this theorem relies on repeated use of the Faà di Bruno formula for
higher derivatives of composed functions. This offers difficulties on non-compact
manifolds, where one would need a non-commutative Faà di Bruno formula for
iterated covariant derivatives. In the paper [60] many more similar groups are
discussed, modeled on spaces of Denjoy–Carleman ultradifferentiable functions. It
is also shown that for p > 1 the group DiffW∞,p∩L1(Rn) is only a topological group
with smooth right translations—a property which is similar to the one of finite order
Sobolev groups DiffWk,p (Rn). Some of these groups were used extensively in [80].

6.11 Corollary DiffB(Rn) acts on �c, �S and �H∞ of any tensor bundle over Rn

by pullback. The infinitesimal action of the Lie algebra XB(Rn) on these spaces by
the Lie derivative maps each of these spaces into itself. A fortiori, DiffH∞(Rn) acts
on �S of any tensor bundle by pullback.

6.12 Trouvé Groups

For the following see [85, 103, 108]. Trouvé groups are useful for introducing
topological metrics on certain groups of diffeomorphism on R

d starting from a
suitable reproducing kernel Hilbert space of vector fields without using any Lie
algebra structure; see Sect. 8.12 below.

Consider a time-dependent vector field X : [0, 1] × R
d → R of sufficient

regularity (e.g., continuous in t ∈ [0, 1] and Lipschitz continuous in x ∈ R
d with

t-integrable global Lipschitz constant) so that

x(t) = x0 +
∫ t

0
X(s, x(s)) ds

is uniquely solvable for all t ∈ [0, 1] and x0 ∈ R
d . Then we consider the

evolution evolX(x0) = x(1). For X ∈ L1([0, 1], C1
b(R

d ,R)d) (where f ∈ Ckb
if all iterated partial derivatives of order between 0 and k are continuous and
globally bounded) we have evolX ∈ Id+C1

b(R
d ,Rd) and is a diffeomorphism

with (evol)−1 ∈ Id+C1
b(R

d ,Rd). Given a convenient locally convex vector space
A(Rd ,Rd) of mappings R

d → R
d which continuously embeds into C1

b(R
d ,Rd)

and a suitable family of mappings [0, 1] → A(Rd ,Rd), the associated Trouvé group
is given by

GA := {evolX : X ∈ FA},
where FA = F([0, 1],A(Rd ,Rd)) is a suitable vector space of time-dependent
vector fields. It seems that for a wide class of spaces A the Trouvé group GA
is independent of the choice of FA if the latter contains the piecewise smooth
curves and is contained in the curves which are integrable by seminorms; a precise
statement is still lacking, but see [82, 84, 85], and citations therein. The space A is
called FA-ODE-closed if evolX ∈ Id+A(Rd ,Rd) for each X ∈ FA. For ODE-
closed A the Trouvé group GA is contained in Id+A(Rd ,Rd).
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For some spaces A it has been proved that FA is equal to the connected
component of the identity of

{Id+f : f ∈ A(Rd ,Rd), inf
x∈Rd

det df (x) > −1},

namely

• For Sobolev spaces Wk,2 with k > d/2 by Bruveris and Vialard [22]; GA is a
half Lie group.

• For Hölder spaces by Nenning and Rainer [84].
• For Besov spaces by Nenning [83].
• For B,W∞,p, Schwartz functions S ,C∞c , and many classes of Denjoy–Carleman

functions, where GA is always a regular Lie group; see [85].

7 Spaces of Embeddings or Immersions, and Shape Spaces

This is the main section in this chapter.

7.1 The Principal Bundle of Embeddings

For finite dimensional manifolds M , N with M compact, Emb(M,N), the space
of embeddings of M into N , is open in C∞(M,N), so it is a smooth manifold.
Diff(M) acts freely and smoothly from the right on Emb(M,N).

Theorem Emb(M,N) → Emb(M,N)/Diff(M) = B(M,N) is a smooth princi-
pal fiber bundle with structure group Diff(M). Its base is a smooth manifold.

This result was proved in [70] forM an open manifold without boundary; see also
[69]. Note that B(M,N) is the smooth manifold of all submanifolds ofN which are
of diffeomorphism type M . Therefore it is also called the nonlinear Grassmannian
in [45], where this theorem is extended to the case when M has boundary. From
another point of view, B(M,N) is called the differentiable Chow variety in [68]. It
is an example of a shape space.

Proof We use an auxiliary Riemannian metric ḡ on N . Given an embedding f ∈
Emb(M,N), we view f (M) as a submanifold of N and we split the tangent bundle
of N along f (M) as TN |f (M) = Nor(f (M))⊕ Tf (M). The exponential mapping
describes a tubular neighborhood of f (M) via

Nor(f (M))−expḡ∼=→ Wf(M) −pf (M)→ f (M).

If g : M → N is C1-near to f , then ϕ(g) := f−1 ◦pf (M) ◦ g ∈ Diff(M) and we
may consider g ◦ϕ(g)−1 ∈ �(f ∗Wf(M)) ⊂ �(f ∗ Nor(f (M))). This is the required
local splitting. ��



42 P. W. Michor

7.2 The Space of Immersions and the Space of Embeddings of
a Compact Whitney Manifold Germ

Let M̃ ⊃ M be a compact Whitney manifold germ, and let N be a smooth manifold
with dim(M) ≤ dim(N). We define the space of immersions as

Imm(M,N) = {f = f̃ |M, f ∈ C∞(M̃,N), Txf̃ is injective for x ∈ M}

which is open in the smooth manifold C∞(M,N) and is thus itself a smooth
manifold. Note that any extension of an immersion f ∈ Imm(M,N) to f̃ ∈
C∞(M̃,N) is still an immersion on an open neighborhood of M in M̃ .

Likewise we let

Emb(M,N) = {f |M, f ∈ C∞(M̃,N), Txf is injective for x ∈ M,
f : M → N is a topological embedding}.

Since M is compact, any extension of an embedding f ∈ Emb(M,N) to f̃ ∈
C∞(M̃,N) is an embedding on some open neighborhood of M in M̃; see [69, 5.3]
for a proof a related result.

Theorem For a compact Whitney germ M and a smooth manifold N with
dim(M) < dim(N) the projection

π : Emb(M,N)→ Emb(M,N)/Diff(M) = B(M,N)

is a smooth principal fiber bundle of Frölicher spaces with structure group the
Frölicher group Diff(M) from Theorem 6.4. Its base is the quotient Frölicher space.

Proof Since I do not know that Diff(M) is a smooth manifold, we treat all spaces
here as Frölicher spaces. By definition, the right action of Diff(M) on Emb(M,N)
is free, and smooth between the Frölicher spaces. The quotient B(M,N) carries
the quotient Frölicher structure with generating set of curves {π ◦ c : c ∈
C∞(R,Emb(M,N))}, i.e., those which lift to a smooth curve. ��

7.3 The Orbifold Bundle of Immersions

LetM be a (not necessarily compact) manifold without boundary. Let N be an open
manifold with dim(M) ≤ dim(N). Then Imm(M,N), the space of immersions
M → N , is open in C∞(M,N), and is thus a smooth manifold. The regular Lie
group (or Frölicher group ifM is a Whitney manifold germ) Diff(M) acts smoothly
from the right, but no longer freely.
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An immersion i : M → N is called free if Diff(M) acts freely on it: i ◦ f = i

for f ∈ Diff(M) implies f = IdM .
The space Bi(M,N) = Imm(M,N)/Diff(M) is an example of a shape space.

It appeared in the form of Bi(S1,R2), the shape space of plane immersed curves,
in [75] and [76]. The following theorem is essentially due to [23]; since this paper
contains some annoying misprints and is difficult to understand, we give here an
extended version with a more detailed proof. The reader may skip this proof and
jump directly to Sect. 7.2 below.

Theorem ([23]) Let M be a finite dimensional smooth manifold. Let N be smooth
finite dimensional manifolds with dim(M) ≤ dim(N). Then the following holds:

(1) The diffeomorphism group Diff(M) acts smoothly from the right on the
manifold Immprop(M,N) of all smooth proper immersions M → N , which
is an open subset of C∞(M,N).

(2) The space of orbits Immprop(M,N)/Diff(M) is Hausdorff in the quotient
topology.

(3) The set Immfree,prop(M,N) of all proper free immersions is open in C∞(M,N)
and is the total space of a smooth principal fiber bundle Immfree,prop(M,N)→
Immfree,prop(M,N)/Diff(M).

(4) Let i ∈ Imm(M,N) be an immersion which is not free. So we have a nontrivial
isotropy subgroup Diff(M)i ⊂ Diff(M) consisting of all f ∈ Diff(M) with
i ◦ f = i. Then the isotropy group Diff(M)i acts properly discontinuously on
M . Thus the projection q1 : M → M1 := M/Diff(M)i is a covering mapping
onto a smooth manifold M1. There exists an immersion i1 : M1 → N with
i = i1 ◦ q1. In particular, Diff(M)i is countable, and is finite if M is compact.
There exists a further covering q2 : M → M1 → M2 and a free immersion
i2 : M2 → N with i = i2 ◦ q2.

(5) Let M have the property that for any covering M → M1 of smooth manifolds,
any diffeomorphism M1 → M1 admits a lift M → M; e.g., M simply
connected, or M = S1. Let i ∈ Imm(M,N) be an immersion which is
not free, i.e., has nontrivial isotropy group Diff(M)i , and let q1 : M →
M1 := M/Diff(M)i be the corresponding covering map. Then in the following
commutative diagram the bottom mapping

Immfree(M1,N )
(q1)∗

π

Imm(M,N )

π

Immfree(M1,N )/Diff(M1) Imm(M,N )/Diff(M)

is the inclusion of a (possibly non-Hausdorff) manifold, the stratum of π(i) in
the stratification of the orbit space. This stratum consists of the orbits of all
immersions which have Diff(M)i as isotropy group. See (23) and (24) below
for a more complete description of the orbit structure near i.
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(6) [100] We have a right action of Diff(M) on Imm(M,N)×M which is given by
(i, x).f = (i ◦ f, f−1(x)). This action is free.

(Imm(M,N)×M,π, (Imm(M,N)×M)/Diff(M),Diff(M))

is a smooth principal fiber bundle with structure group Diff(M) and a smooth
base manifold S(M,N) := (Imm(M,N)×M)/Diff(M) which might possibly
be non-Hausdorff. If we restrict to the open subset Immprop(M,N) × M of
proper immersions times M then the base space is Hausdorff.

Proof Without loss, let M be connected. Fix an immersion i : M → N . We
will now describe some data for i which we will use throughout the proof. If we
need these data for several immersions, we will distinguish them by appropriate
superscripts.

(7) Setup There exist sets Wα ⊂ Wα ⊂ Uα ⊂ Uα ⊂ Vα ⊂ M such that (Wα) is
an open cover of M , Wα is compact, and Vα is an open locally finite cover of M ,
each Wα , Uα , and Vα is connected, and such that i|Vα : Vα → N is an embedding
for each α.

Let g be a fixed Riemannian metric on N and let expN be the induced geodesic
exponential mapping. Then let p : N (i) → M be the normal bundle of i, defined
in the following way: For x ∈ M let N (i)x := (Txi(TxM))

⊥ ⊂ Ti(x)N be the
g-orthogonal complement in Ti(x)N . Then

N(i)
ī

p

TN

πN

M
i

N

is a vector bundle homomorphism over i, which is fiberwise injective.
Now let Ui = U be an open neighborhood of the zero section of N (i) which

is so small that (expN ◦ ī)|(U |Vα ) : U |Vα → N is a diffeomorphism onto its image
which describes a tubular neighborhood of the submanifold i(Vα) for each α. Let

τ = τ i := (expN ◦ ī )|U : N (i) ⊃ U → N.

It will serve us as a substitute for a tubular neighborhood of i(M).
For any f ∈ Diff(M)i = {f ∈ Diff(M) : i ◦ f = i} we have an induced vector

bundle homomorphism f̄ over f :

N(i) N(f)
p

ī

N(i)

p

ī
TN

πN

M
f

M N
i
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(8) Claim Let i ∈ Imm(M,N) and let f ∈ Diff(M) have a fixed point x0 ∈ M
and satisfy i ◦ f = i. Then f = IdM .

Namely, we consider the sets (Uα) for the immersion i of (7). Let us investigate
f (Uα) ∩ Uα . If there is an x ∈ Uα with y = f (x) ∈ Uα , we have (i|Uα )(x) =
((i ◦ f )|Uα)(x) = (i|Uα )(f (x)) = (i|Uα )(y). Since i|Uα is injective we have x = y,
and

f (Uα) ∩ Uα = {x ∈ Uα : f (x) = x}.

Thus f (Uα) ∩ Uα is closed in Uα . Since it is also open and since Uα is connected,
we have f (Uα) ∩ Uα = ∅ or = Uα .

Now we consider the set {x ∈ M : f (x) = x}. We have just shown that it is open
in M . Since it is also closed and contains the fixed point x0, it coincides with M .
Claim (7) follows.

(9) Claim If for an immersion i ∈ Imm(M,N) there is a point in i(M) with only
one preimage, then i is a free immersion.

Let x0 ∈ M be such that i(x0) has only one preimage. If i ◦ f = i for f ∈
Diff(M) then f (x0) = x0 and f = IdM by claim (8).

Note that there are free immersions without a point in i(M) with only one
preimage: Consider a figure eight which consists of two touching circles. Now we
may map the circle to the figure eight by going first n times around the upper circle,
then m around the lower one with n,m ≥ 2.

(10) Claim Let i be a free immersionM → N . Then there is an open neighborhood
W(i) in Imm(M,N) which is saturated for the Diff(M)-action and which splits
smoothly as

W(i) = Q(i)× Diff(M).

Here Q(i) is a smooth splitting submanifold of Imm(M,N), diffeomorphic to an
open neighborhood of the zero section in �c(M ← N (i)). In particular the space
Immfree(M,N) is open in C∞(M,N).

Let π : Imm(M,N) → Imm(M,N)/Diff(M) = Bi(M,N) be the projection
onto the orbit space, which is equipped with the quotient topology. Then the mapping
π |Q(i) : Q(i) → π(Q(i)) is bijective onto an open subset of the quotient. If i
runs through Immfree,prop(M,N) of all free and proper immersions these mappings
define a smooth atlas for the quotient space, so that

(Immfree,prop(M,N), π, Immfree,prop(M,N)/Diff(M),Diff(M))

is a smooth principal fiber bundle with structure group Diff(M).
The restriction to proper immersions is necessary because we are only able to

show that Immprop(M,N)/Diff(M) is Hausdorff in (11) below.
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For the proof of claim (10), we consider the setup (7) for the free immersion i.
Let

Ũ(i) := {j ∈ Imm(M,N) : j (Wi

α) ⊆ τ i(Ui |Uiα ) for all α, j ∼ i},

where j ∼ i means that j = i off some compact set in M . Then by Sect. 5.3
(for open M) the set Ũ(i) is an open neighborhood of i in Imm(M,N). For each
j ∈ Ũ(i) we define

ϕi(j) : M → Ui ⊆ N (i),

ϕi(j)(x) := (τ i |(Ui |
Uiα
))
−1(j (x)) if x ∈ Wi

α.

Note that ϕi(j) is defined piecewise on M , but the pieces coincide when they
overlap. Therefore a smooth curve through j is mapped to a smooth curve and so
ϕi : Ũ(i) → C∞(M,N (i)) is a smooth mapping which is bijective onto the open
set

Ṽ(i) := {h ∈ C∞(M,N (i)) : h(Wi

α) ⊆ Ui |Uiα for all α, h ∼ 0}

in C∞(M,N (i)). Its inverse is given by the smooth mapping τ i∗ : h �→ τ i ◦h. Now
we consider the open subsets

V(i) : = {h ∈ Ṽ(i) : p ◦h ∈ Diffc(M)} ⊂ Ṽ(i)

U(i) : = τ i∗(V(i)) ⊂ Ũ(i)

and the diffeomorphism ϕi : U(i) → V(i). For h ∈ V(i) we have τ i∗(h ◦ f ) =
τ i∗(h) ◦ f for those f ∈ Diff(M) which are near enough to the identity so that
h ◦ f ∈ V(i). And if τ i ◦h ◦ f = τ i ◦h then h ◦ f = h by the construction of N (i)
in (7), and then f = IdM since i is a free immersion; see the second diagram in (7).

We consider now the open set

{h ◦ f : h ∈ V(i), f ∈ Diff(M)} ⊆ C∞(M,Ui).

Consider the smooth mapping from it into �c(M ← Ui)× Diff(M) given by h �→
(h ◦(p ◦h)−1, p ◦h), where �c(M ← Ui) is the space of sections with compact
support of Ui → M . So if we let Q(i) := τ i∗(�c(M ← Ui)∩ V(i)) ⊂ Imm(M,N)
we have

W(i) := U(i) ◦Diffc(M) ∼= Q(i)×Diff(M) ∼= (�c(M ← Ui)∩V(i))×Diff(M),

since the action of Diff(M) on i is free and by the argument above. Consequently
Diff(M) acts freely on each immersion in W(i), so Immfree(M,N) is open in
C∞(M,N). Furthermore
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π |Q(i) : Q(i)→ Immfree(M,N)/Diff(M)

is bijective onto an open set in the quotient.
We consider

ϕi ◦(π |Q(i))−1 : π(Q(i))→ �c(M ← Ui) ⊂ C∞c (N,N (i))

as a chart for the quotient space.
In order to investigate the chart change let j ∈ Immfree(M,N) be such that

π(Q(i)) ∩ π(Q(j)) �= ∅. Then there is an immersion h ∈ W(i) ∩ Q(j), so there
exists a unique f0 ∈ Diff(M) (given by f0 = p ◦ϕi(h)) such that h ◦ f−1

0 ∈ Q(i).
If we consider j ◦ f−1

0 instead of j and call it again j , we have Q(i) ∩ Q(j) �= ∅
and consequently U(i) ∩ U(j) �= ∅. Then the chart change is given as follows:

ϕi ◦(π |Q(i))−1 ◦π ◦(τ j )∗ : �c(M ← Uj )→ �c(M ← Ui)

s �→ τ j ◦ s �→ ϕi(τ
j ◦ s) ◦(pi ◦ϕi(τ j ◦ s))−1.

This is of the form s �→ β ◦ s for a locally defined diffeomorphism β :
N (j)→ N (i) which is not fiber respecting, followed by h �→ h ◦(pi ◦h)−1. Both
composants are smooth by the general properties of manifolds of mappings. So the
chart change is smooth.

We have to show that the quotient space Immprop,free(M,N)/Diff(M) is Haus-
dorff.

(11) Claim The orbit space Immprop(M,N)/Diff(M) of the space of all proper
immersions under the action of the diffeomorphism group is Hausdorff in the
quotient topology.

This follows from (18) below. I am convinced that the whole orbit space
Imm(M,N)/Diff(M) is Hausdorff, but I was unable to prove this.

(12) Claim Let i and j ∈ Immprop(M,N) with i(M) �= j (M) in N . Then their
projections π(i) and π(j) are different and can be separated by open subsets in
Immprop(M,N)/Diff(M).

We suppose that i(M) � j (M) = j (M) (since proper immersions have closed
images). Let y0 ∈ i(M) \ j (M), then we choose open neighborhoods V of y0 in N
and W of j (M) in N such that V ∩W = ∅. We consider the sets

V := {k ∈ Immprop(M,N) : k(M) ∩ V �= ∅} and

W := {k ∈ Immprop(M,N) : k(M) ⊆ W }.

Then V and W are Diff(M)-saturated disjoint open neighborhoods of i and j ,
respectively, so π(V) and π(W) separate π(i) and π(j) in the quotient space
Immprop(M,N)/Diff(M).
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(13) Claim For a proper immersion i : M → N and x ∈ i(M) let δ(x) ∈ N be the
number of points in i−1(x). Then δ : i(M) → N is upper semicontinuous, i.e., the
set {x ∈ i(M) : δ(x) ≤ k} is open in i(M) for each k.

Let x ∈ i(M) with δ(x) = k and let i−1(x) = {y1, . . . , yk}. Then there are
pairwise disjoint open neighborhoodsWn of yn inM such that i|Wn is an embedding
for each n. The set M \ (⋃n Wn) is closed in M , and since i is proper the set
i(M \ (⋃n Wn)) is also closed in i(M) and does not contain x. So there is an open
neighborhood U of x in i(M) which does not meet i(M \ (⋃n Wn)). Obviously
δ(z) ≤ k for all z ∈ U .

(14) Claim Consider two proper immersions i1 and i2 ∈ Immprop(M,N) such that
i1(M) = i2(M) =: L ⊆ N . Then we have mappings δ1, δ2 : L → N as in (13). If
δ1 �= δ2 then the projections π(i1) and π(i2) are different and can be separated by
disjoint open neighborhoods in Immprop(M,N)/Diff(M).

Let us suppose that m1 = δ1(y0) �= δ2(y0) = m2. There is a small connected
open neighborhood V of y0 in N such that i−1

1 (V ) has m1 connected components
and i−1

2 (V ) has m2 connected components. These assertions describe Whitney C0-
open neighborhoods in Immprop(M,N) of i1 and i2 which are closed under the
action of Diff(M), respectively. Obviously these two neighborhoods are disjoint.

(15) Assumption We assume that we are given two immersions i1 and i2 ∈
Immprop(M,N) with i1(M) = i2(M) =: L such that the functions from (14) are
equal: δ1 = δ2 =: δ.

Let (Lβ)β∈B be the partition of L consisting of all pathwise connected compo-
nents of level sets {x ∈ L : δ(x) = c}, c some constant.

Let B0 denote the set of all β ∈ B such that the interior of Lβ in L is not empty.
Since M is second countable, B0 is countable.

(16) Claim
⋃
β∈B0

Lβ is dense in L.
Let k1 be the smallest number in δ(L) and let B1 be the set of all β ∈ B such

that δ(Lβ) = k1. Then by claim (13) each Lβ for β ∈ B1 is open. Let L1 be the
closure of

⋃
β∈B1

Lβ . Let k2 be the smallest number in δ(L \ L1) and let B2 be the

set of all β ∈ B with β(Lβ) = k2 and Lβ ∩ (L \L1) �= ∅. Then by claim (13) again
Lβ ∩ (L \ L1) �= ∅ is open in L so Lβ has non-empty interior for each β ∈ B2.
Then let L2 denote the closure of

⋃
β∈B1∪B2

Lβ and continue the process. If δ(L)
is bounded, the process stops. If δ(L) is unbounded, by claim (13) we always find
new Lβ with non-empty interior, we finally exhaust L and claim (16) follows.

Let (M1
λ)λ∈C1 be a suitably chosen cover of M by subsets of the sets i−1

1 (Lβ)

such that:

(i) Each i1|intM1
λ

is an embedding for each λ.

(ii) The set C1
0 of all λ with M1

λ having non empty interior is at most countable.
Let (M2

μ)μ∈C2 be a cover chosen in a similar way for i2.
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(iii) For each pair (μ, λ) ∈ C2
0 ×C1

0 the two open sets i2(int(M2
μ)) and i1(int(M1

λ))

in L are either equal or disjoint.

Note that the union
⋃
λ∈C1

0
intM1

λ is dense inM and thus
⋃
λ∈C1

0
M1
λ = M; similarly

for the M2
μ.

(17) Procedure Given immersions i1 and i2 as in (15) we will try to construct
a diffeomorphism f : M → M with i2 ◦ f = i1. If we meet obstacles to the
construction this will give enough control on the situation to separate i1 from i2.

Choose λ0 ∈ C1
0 ; so intM1

λ0
�= ∅. Then i1 : intM1

λ0
→ Lβ1(λ0) is an embedding,

where β1 : C1 → B is the mapping satisfying i1(M1
λ) ⊆ Lβ1(λ) for all λ ∈ C1.

We choose μ0 ∈ β−1
2 β1(λ0) ⊂ C2

0 such that f := (i2|intM2
μ0
)−1 ◦ i1|intM1

λ0
is a

diffeomorphism intM1
λ0
→ intM2

μ0
; this follows from (iii). Note that f is uniquely

determined by the choice of μ0, if it exists, by claim (8). So we will repeat the
following construction for every μ0 ∈ β−1

2 β1(λ0) ⊂ C2
0 .

Now we try to extend f . We choose λ1 ∈ C1
0 such that M

1
λ0
∩M1

λ1
�= ∅.

Case a Only λ1 = λ0 is possible. So M1
λ0

is dense in M since M is connected and
we may extend f by continuity to a diffeomorphism f : M → M with i2 ◦ f = i1.

Case b We can find λ1 �= λ0. We choose x ∈ M1
λ0
∩M1

λ1
and a sequence (xn) in

M1
λ0

with xn→ x. Then we have a sequence (f (xn)) in M .

Case ba y := lim f (xn) exists in M . Then there is μ1 ∈ C2
0 such that y ∈ M2

μ0
∩

M
2
μ1

.
Let U1

α1
be an open neighborhood of x in M such that i1|U1

α1
is an embedding

and let similarly U2
α2

be an open neighborhood of y in M such that i2|U2
α2

is an

embedding. We consider now the set i−1
2 i1(U

1
α1
). There are two cases possible.

Case baa The set i−1
2 i1(U

1
α1
) is a neighborhood of y. Then we extend f to

i−1
1 (i1(U

1
α1
)∩i2(U2

α2
)) by i−1

2 ◦ i1. Then f is defined on some open subset of intM1
λ1

and by the situation chosen in (15) and by (iii), the diffeomorphism f extends to the
whole of intM1

λ1
.

Case bab The set i−1
2 i1(U

1
α1
) is not a neighborhood of y. This is a definite

obstruction to the extension of f .

Case bb The sequence (xn) has no limit in M . This is a definite obstruction to the
extension of f .

If we meet an obstruction we stop and try another μ0. If for all admissible μ0 we
meet obstructions we stop and remember the data. If we do not meet an obstruction
we repeat the construction with some obvious changes.
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(18) Claim The construction of (17) in the setting of (15) either produces a
diffeomorphism f : M → M with i2 ◦ f = i1 or we may separate i1 and i2 by open
sets in Immprop(M,N) which are saturated with respect to the action of Diff(M)

If for some μ0 we do not meet any obstruction in the construction (17), the
resulting f is defined on the whole of M and it is a continuous mapping M → M

with i2 ◦ f = i1. Since i1 and i2 are locally embeddings, f is smooth and of
maximal rank. Since i1 and i2 are proper, f is proper. So the image of f is open
and closed and since M is connected, f is a surjective local diffeomorphism, thus
a covering mapping M → M . But since δ1 = δ2 the mapping f must be a 1-fold
covering, i.e., a diffeomorphism.

If for all μ0 ∈ β−1
2 β1(λ0) ⊂ C2

0 we meet obstructions we choose small mutually
distinct open neighborhoods V 1

λ of the sets i1(M1
λ). We consider the Whitney C0-

open neighborhood V1 of i1 consisting of all immersions j1 with j1(M
1
λ) ⊂ V 1

λ for
all λ. Let V2 be a similar neighborhood of i2.

We claim that V1 ◦Diff(M) and V2 ◦Diff(M) are disjoint. For that it suffices
to show that for any j1 ∈ V1 and j2 ∈ V2 there does not exist a diffeomorphism
f ∈ Diff(M) with j2 ◦ f = j1. For that to be possible the immersions j1 and j2
must have the same image L and the same functions δ(j1), δ(j2) : L→ N. But now
the combinatorial relations of the slightly distinct new sets M1

λ , Lβ , and M2
μ are

contained in the old ones, so any try to construct such a diffeomorphism f starting
from the same λ0 meets the same obstructions.

Statements (2) and (3) of the theorem are now proved.

(19) Claim For a non-free immersion i ∈ Imm(M,N), the nontrivial isotropy
subgroup Diff(M)i = {f ∈ Diff(M) : i ◦ f = i} acts properly discontinuously
on M , so the projection q1 : M → M1 := M/Diff(M)i is a covering map onto a
smooth manifold on M1. There is an immersion i1 : M1 → N with i = i1 ◦ q1. In
particular Diff(M)i is countable, and is finite if M is compact.

We have to show that for each x ∈ M there is an open neighborhood U such that
f (U)∩U = ∅ for f ∈ Diff(M)i \{Id}. We consider the setup (7) for i. By the proof
of (8) we have f (Uiα)∩Uiα = {x ∈ Uiα : f (x) = x} for any f ∈ Diff(M)i . If f has
a fixed point then f = Id, by (8), so f (Uiα) ∩ Uiα = ∅ for all f ∈ Diff(M)i \ {Id}.
The rest is clear.

The factorized immersion i1 is in general not a free immersion. The following is
an example for that: Let M0 −α→ M1 −β→ M2 −γ→ M3 be a sequence of covering
maps with fundamental groups 1 → G1 → G2 → G3. Then the group of deck
transformations of γ is given by NG3(G2)/G2, the normalizer of G2 in G3, and
the group of deck transformations of γ ◦β is NG3(G1)/G1. We can easily arrange
that NG3(G2) � NG3(G1), then γ admits deck transformations which do not lift
to M1. Then we thicken all spaces to manifolds, so that γ ◦β plays the role of the
immersion i.

(20) Claim Let i ∈ Imm(M,N) be an immersion which is not free. Then there
is a submersive covering map q2 : M → M2 such that i factors to an immersion
i2 : M2 → N which is free.
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Let q0 : M0 → M be the universal covering of M and consider the immersion
i0 = i ◦ q0 : M0 → N and its isotropy group Diff(M0)i0 . By (19) it acts properly
discontinuously on M0 and we have a submersive covering q02 : M0 → M2 and an
immersion i2 : M2 → N with i2 ◦ q02 = i0 = i ◦ q0. By comparing the respective
groups of deck transformations it is easily seen that q02 : M0 → M2 factors over
q1 ◦ q0 : M0 → M → M1 to a covering q12 : M1 → M2. The mapping q2 :=
q12 ◦ q1 : M → M2 is the looked for covering: If f ∈ Diff(M2) fixes i2, it lifts to a
diffeomorphism f0 ∈ Diff(M0) which fixes i0, so f0 ∈ Diff(M0)i0 , so f = Id.

Statement (4) of the theorem follows from (19) and (20).

(21) Convention In order to avoid complications we assume now that M is such a
manifold that

• For any covering M → M1, any diffeomorphism M1 → M1 admits a lift
M → M .

If M is simply connected, this condition is satisfied. Also for M = S1 the condition
is easily seen to be valid. So what follows is applicable to loop spaces.

Condition (21) implies that in the proof of claim (20) we have M1 = M2.

(22) Description of a Neighborhood of a Singular Orbit Let M be a manifold
satisfying (21). In the situation of (19) we consider the normal bundles pi : N (i)→
M and pi1 : N (i1)→ M1. Then the covering map q1 : M → M1 lifts uniquely to
a vector bundle homomorphism N (q1) : N (i) → N (i1) which is also a covering
map, such that τ i1 ◦N (q1) = τ i .

We have M1 = M/Diff(M)i and the group Diff(M)i acts also as the group of
deck transformations of the covering N (q1) : N (i)→ N (i1) by Diff(M)i � f �→
N (f ), where

N(i) N(f)
N(i)

M
f

M

is a vector bundle isomorphism for each f ∈ Diff(M)i ; see the end of (7). If
we equip N (i) and N (i1) with the fiber Riemann metrics induced from the fixed
Riemannian metric g on N , the mappings N (q1) and all N (f ) are fiberwise linear
isometries.

Let us now consider the right action of Diff(M)i on the space of sections
�c(M ← N (i)) given by f ∗s := N (f )−1 ◦ s ◦ f .

From the proof of claim (10) we recall now the sets

C∞(M,N(i)) V(i) U(i)
ϕi

Γc(M ← N(i)) Γc(M←U i) Q(i)
ϕi
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Both mappings ϕi are diffeomorphisms. But since the action of Diff(M) on i is not
free we cannot extend the splitting submanifold Q(i) to an orbit cylinder as we did
in the proof of claim (10). Q(i) is a smooth transversal for the orbit though i.

For any f ∈ Diff(M) and s ∈ �c(M ← Ui) ⊂ �c(M ← N (i)) we have

ϕ−1
i (f ∗s) = τ i∗(f ∗s) = τ i∗(s) ◦ f.

So the space q∗1�c(M ← N (i1)) of all sections of N (i) → M which factor to
sections of N (i1) → M1, is exactly the space of all fixed points of the action of
Diff(M)i on �c(M ← N (i)); and they are mapped by τ i∗ = ϕ−1

i to such immersions
in Q(i) which have again Diff(M)i as isotropy group.

If s ∈ �c(M ← Ui) ⊂ �c(M ← N (i)) is an arbitrary section, the orbit through
τ i∗(s) ∈ Q(i) hits the transversal Q(i) again in the points τ i∗(f ∗s) for f ∈ Diff(M)i .

Statement (5) of the theorem is now proved.

(23) The Orbit Structure We have the following description of the orbit structure
near i in Imm(M,N): For fixed f ∈ Diff(M)i the set of fixed points Fix(f ) :=
{j ∈ Q(i) : j ◦ f = j} is called a generalized wall. The union of all generalized
walls is called the diagram D(i) of i. A connected component of the complement
Q(i) \D(i) is called a generalized Weyl chamber. The group Diff(M)i maps walls
to walls and chambers to chambers. The immersion i lies in every wall. We shall see
shortly that there is only one chamber and that the situation is rather distinct from
that of reflection groups.

If we view the diagram in the space �c(M ← Ui) ⊂ �c(M ← N (i)) which is
diffeomorphic to Q(i), then it consists of traces of closed linear subspaces, because
the action of Diff(M)i on �c(M ← N (i)) consists of linear isometries in the
following way. Let us tensor the vector bundle N (i) → M with the natural line
bundle of half densities on M , and let us remember one positive half density to
fix an isomorphism with the original bundle. Then Diff(M)i still acts on this new
bundle N1/2(i) → M and the pullback action on sections with compact support is
isometric for the inner product

〈s1, s2〉 :=
∫

M

g(s1, s2).

We now extend the walls and chambers from

Q(i) = �c(M ← Ui) ⊂ �c(M ← N (i))

to the whole space �c(M ← N (i)) = �c(M ← N1/2(i)); recall from (22) that
Diff(M)i acts on the whole space.

(24) Claim Each wall in �c(M ← N1/2(i)) is a closed linear subspace of
infinite codimension. Since there are at most countably many walls, there is only
one chamber.

From the proof of claim (19) we know that f (Uiα)∩Uiα = ∅ for all f ∈ Diff(M)i
and all sets Uiα from the setup (7). Take a section s in the wall of fixed points of f .
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Choose a section sα with support in some Uiα and let the section s be defined by
s|Uiα = sα|Uiα , s|f−1(Uiα)

= −f ∗sα , 0 elsewhere. Then obviously 〈s, s′〉 = 0 for
all s′ in the wall of f . But this construction furnishes an infinite dimensional space
contained in the orthogonal complement of the wall of f .

(25) The Action of Diff(M) on Imm(M,N)×M Proof of (6)
Here we will consider the right action (i, x).f = (i ◦ f, f−1(x)) of Diff(M) on

Imm(M,N) ×M . This action is free: If (i ◦ f, f−1(x)) = (i, x) then from claim
(8) we get f = IdM .

Claim Let (i, x) ∈ Imm(M,N)×M . Then there is an open neighborhood W(i, x)

in Imm(M,N) × M which is saturated for the Diff(M)-action and which splits
smoothly as

W(i, x) = Q(i, x)× Diff(M).

Here Q(i, x) is a smooth splitting submanifold of Imm(M,N)×M , diffeomorphic
to an open neighborhood of (0, x) in C∞(N (i)).

Let π : Imm(M,N) ×M → (Imm(M,N) ×M)/Diff(M) = S(M,N) be the
projection onto the orbit space, which we equip with the quotient topology. Then
π |Q(i,x) : Q(i, x)→ π(Q(i, x)) is bijective onto an open subset of the quotient. If
(i, x) runs through Imm(M,N) ×M these mappings define a smooth atlas for the
quotient space, so that

(Imm(M,N)×M,π, (Imm(M,N)×M)/Diff(M),Diff(M))

is a smooth principal fiber bundle with structure group Diff(M).
If we restrict to the open subset Immprop(M,N)×M of proper immersions times

M then the base space is Hausdorff.
By claim (19), the isotropy subgroup Diff(M)i = {f ∈ Diff(M) : i ◦ f = i} acts

properly discontinuously on M , so q1 : M → M/Diff(M)i =: M1 is a covering.
We choose an open neighborhood Wx of x in M such that q1 : Wx → M1 is
injective.

Now we adapt the second half of the proof of claim (10) and use freely all the
notation from there. We consider the open set

{(h ◦ f, f−1(y)) : h ∈ V(i), y ∈ Wx, f ∈ Diff(M)} ⊂
⊂ C∞(M,Ui)×M ⊂ C∞(M,N (i))×M.

We have a smooth mapping from it into �c(M ← Ui) × Wx × Diff(M) which
is given by (h, y) �→ (h ◦(p ◦h)−1, (p ◦h)(y), p ◦h), where �c(M ← Ui) is the
space of sections with compact support of Ui → M . We now put

Q(i, x) := τ i∗(�c(M ← Ui) ∩ V(i))×Wx ⊂ Imm(M,N)×M.
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Then we have

W(i, x) : = {(h ◦ f, f (y)) : h ∈ U(i), y ∈ Wx, f ∈ Diff(M)}
∼= Q(i, x)× Diff(M) ∼= (�c(M ← Ui) ∩ V(i))×Wx × Diff(M),

since the action of Diff(M) is free. The quotient mapping π |Q(i) : Q(i) →
Immfree(M,N)/Diff(M) is bijective onto an open set in the quotient. We now use
(ϕi × IdWx ) ◦(π |Q(i,x))−1 : π(Q(i, x)) → �c(M ← Ui) ×Wx as a chart for the
quotient space. In order to investigate the chart change let (j, y) ∈ Imm(M,N)×M
be such that π(Q(i, x)) ∩ π(Q(j, y)) �= ∅. Then there exists (h, z) ∈ W(i, x) ∩
Q(j, y), so there exists a unique f ∈ Diff(M) (given by f = p ◦ϕi(h)) such that
(h ◦ f−1, f (z)) ∈ Q(i, x). If we consider (j ◦ f−1, f (y)) instead of (j, y) and call
it again (j, y), we have Q(i, x) ∩Q(j, y) �= ∅ and consequently U(i) ∩ U(j) �= ∅.
Now the first component of the chart change is smooth by the argument in the end
of the proof of claim (10), and the second component is just IdWx∩Wy .

The result about Hausdorff follows from claim (11). The fibers over
Imm(M,N)/Diff(M) can be read off the following diagram:

M
insi Imm(M,N)×M

pr1

π

Imm(M,N)

π

M

Diff(M)i

Imm(M,N)×M

Diff(M)

Imm(M,N)

Diff(M)

This finishes the proof of Theorem 7.3. ��

8 Weak Riemannian Manifolds

If an infinite dimensional manifold is not modeled on a Hilbert space, then a
Riemannian metric cannot describe the topology on each tangent space. We have
to deal with more complicated situations.

8.1 Manifolds, Vector Fields, Differential Forms

LetM be a smooth manifold modeled on convenient vector spaces. Tangent vectors
to M are kinematic ones.

The reason for this is that eventually we want flows of vector fields, and that
there are too many derivations in infinite dimensions, even on a Hilbert spaceH : Let
α ∈ L(H,H) be a continuous linear functional which vanishes on the subspace of
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compact operators, thus also onH ⊗H . Then the linear functional f �→ α(d2f (0))
is a derivation at 0 on C∞(H), since

α(d2(f.g)(0)) = α(d2f (0).g(0)+df (0)⊗dg(0)+dg(0)⊗df (0)+f (0).d2g(0)
)

and α vanishes on the two middle terms. There are even non-zero derivations which
differentiate 3 times, see [55, 28.4].

The (kinematic) tangent bundle TM is then a smooth vector bundle as usual.
Differential forms of degree k are then smooth sections of the bundle Lkskew(TM;R)
of skew symmetric k-linear functionals on the tangent bundle, since this is the
only version which admits exterior derivative, Lie derivatives along vector field,
and pullbacks along arbitrary smooth mappings; see [55, 33.21]. The de Rham
cohomology equals singular cohomology with real coefficients if the manifold is
smoothly paracompact; see [71] and [55, Section 34]. If a vector field admits a flow,
then each integral curve is uniquely given as a flow line; see [55, 32.14].

8.2 Weak Riemannian Manifolds

Let M be a smooth manifold modeled on convenient locally convex vector spaces.
A smooth Riemannian metric g on M is called weak if gx : TxM → T ∗x M is
only injective for each x ∈ M . The image g(TM) ⊂ T ∗M is called the smooth
cotangent bundle associated to g. Then g−1 is the metric on the smooth cotangent
bundle as well as the morphism g(TM)→ TM . We have a special class of 1-forms

1
g(M) := �(g(TM)) for which the musical mappings make sense: α� = g−1α ∈

X(M) and X� = gX. These 1-forms separate points on TM . The exterior derivative
is defined by d : 
1

g(M) → 
2(M) = �(L2
skew(TM;R)) since the embedding

g(TM) ⊂ T ∗M is a smooth fiber linear mapping.
Existence of the Levi-Civita covariant derivative is equivalent to: The metric itself

admits symmetric gradients with respect to itself. Locally this means: If M is c∞-
open in a convenient vector space VM . Then

Dx,Xgx(X, Y ) = gx(X, grad1 g(x)(X, Y )) = gx(grad2 g(x)(X,X), Y ),

where Dx,X denote the directional derivative at x in the direction X, and where the
mappings grad1 g and sym grad2 g : M × VM × VM → VM , given by (x,X) �→
grad1,2 g(x)(X,X), are smooth and quadratic in X ∈ VM . The geodesic equation
then is (again locally) given by

ctt = 1
2 grad1 g(c)(ct , ct )− grad2 g(c)(ct , ct ) .

This formula corresponds to the usual formula for the geodesic flow using Christof-
fel symbols, expanded out using the first derivatives of the metric tensor. For the
existence of the covariant derivative see [68, 2.4], and for the geodesic equation see
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[76, 2.1 and 2.4]; there this is done in a special case, but the method works in the
general case without changes. See also [12, 4.2, 4.3, and 4.4] for a derivation in
another special case.

8.3 Weak Riemannian Metrics on Spaces of Immersions

For a compact manifoldM and a finite dimensional Riemannian manifold (N, ḡ)we
can consider the following weak Riemannian metrics on the manifold Imm(M,N)
of smooth immersions M → N :

G0
f (h, k) =

∫

M

ḡ(h, k) vol(f ∗ḡ) the L2-metric,

Gsf (h, k) =
∫

M

ḡ((1+�f ∗ḡ)sh, k) vol(f ∗ḡ) a Sobolev metric of order s,

G�f (h, g) =
∫

M

�(f )ḡ(h, k) vol(f ∗ḡ) an almost local metric.

Here vol(f ∗ḡ) is the volume density on M of the pullback metric g = f ∗ḡ,
and �f

∗ḡ is the (Bochner) Laplacian with respect to g and ḡ acting on sections
of f ∗TN , and �(f ) is a positive function of the total volume Vol(f ∗g) =∫
M

vol(f ∗g), of the scalar curvature Scal(f ∗ḡ), and of the mean curvature Tr(Sf ),
Sf being the second fundamental form. See [12, 13] for more information. All these
metrics are invariant for the right action of the reparameterization group Diff(M),
so they descend to metrics on shape space Bi(M,N) (off the singularities) such that
the projection Imm(M,N) → Bi(M,N) is a Riemannian submersion of a benign
type: theG-orthogonal component to the tangent space to the Diff(M)-orbit consists
always of smooth vector fields. So there is no need to use the notion of robust weak
Riemannian metrics discussed below.

8.4 Theorem The Riemannian metrics on Imm(M,N) defined in Sect. 8.3 have
the following properties:

(1) Geodesic distance on Imm(M,N), defined as the infimum of path-lengths of
smooth isotopies between two immersions, vanishes for the L2-metric G0.

(2) Geodesic distance is positive on Bi(M,N) for the almost local metric G� if
�(f ) ≥ 1+ ATr(SF ), or if �(f ) ≥ AVol(f ∗ḡ), for some A > 0.

(3) Geodesic distance is positive on Bi(M,N) for the Sobolev metric Gs if s ≥ 1.
(4) The geodesic equation is locally well-posed on Imm(M,N) for the Sobolev

metric Gs if s ≥ 1, and globally well-posed (and thus geodesically complete)
on Imm(S1,Rn), if s ≥ 2.

(1) is due to [75] for Bi(S1,R2), to [74] for Bi(M,N) and for Diff(M), which
combines to the result for Imm(M,N) as noted in [6]. (2) is proved in [13]. For (3)
see [12]. (4) is due to [21] and [20].
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8.5 Analysis Tools on Regular Lie Groups and on Diff(M) for
a Whitney Manifold Germ

Let G be a regular convenient Lie group, with Lie algebra g. We also consider a
Frölicher group G = Diff(M) for a Whitney manifold germ M ⊂ M̃ with Lie
algebra g = Xc,∂ (M), with the negative of the usual Lie bracket, as described
in Sects. 6.3–6.6.

Let μ : G × G → G be the group multiplication, μx the left translation and
μy the right translation, μx(y) = μy(x) = xy = μ(x, y). The adjoint action
Ad : G→ GL(g) is given by Ad(g)X = T (μg−1

).T (μg)X. Let L,R : g→ X(G)
be the left and right invariant vector field mappings, given by LX(g) = Te(μg).X

and RX = Te(μg).X, respectively. They are related by LX(g) = RAd(g)X(g). Their
flows are given by

FlLXt (g) = g. exp(tX) = μexp(tX)(g),

FlRXt (g) = exp(tX).g = μexp(tX)(g).

The right Maurer–Cartan form κ = κr ∈ 
1(G, g) is given by κx(ξ) := Tx(μx−1
) ·

ξ . It satisfies the left Maurer–Cartan equation dκr − 1
2 [κr , κr ]∧g = 0, where

[ , ]∧ denotes the wedge product of g-valued forms on G induced by the Lie
bracket. Note that 1

2 [κr , κr ]∧(ξ, η) = [κr(ξ), κr(η)].
Namely, evaluate dκr on right invariant vector fields RX,RY for X, Y ∈ g.

(dκr)(RX,RY ) = RX(κr(RY ))− RY (κr(RX))− κr([RX,RY ])
= RX(Y )− RY (X)+ [X, Y ] = 0− 0+ [κr(RX), κr(RY )].

The left Maurer–Cartan form κl ∈ 
1(G, g) is given by κlx(ξ) := Tx(μx−1) · ξ .
The left Maurer–Cartan form κl satisfies the right Maurer–Cartan equation dκl +
1
2 [κl, κl]∧g = 0.

The (exterior) derivative of the function Ad : G→ GL(g) satisfies

d Ad = (ad ◦ κr).Ad = Ad .(ad ◦ κl)

since we have

d Ad(T μg.X) = ∂t |0 Ad(exp(tX).g) = ∂t |0 Ad(exp(tX)).Ad(g)

= ad(κr(T μg.X)).Ad(g) ,

d Ad(T μg.X) = ∂t |0 Ad(g. exp(tX)) = Ad(g). ad(κl(T μg.X)) .
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8.6 Right Invariant Weak Riemannian Metrics on Regular Lie
Groups and on Diff(M) for a Whitney Manifold Germ

We continue under the assumptions of Sect. 8.5, Let γ = g × g→ R be a positive
definite bounded (weak) inner product. Then

γx(ξ, η) = γ
(
T (μx

−1
) · ξ, T (μx−1

) · η) = γ (κ(ξ), κ(η))

is a right invariant (weak) Riemannian metric on G and any (weak) right invariant
bounded Riemannian metric is of this form, for suitable γ . Denote by γ̌ : g → g∗
the mapping induced by γ , from the Lie algebra into its dual (of bounded linear
functionals) and by 〈α,X〉g the duality evaluation between α ∈ g∗ and X ∈ g.

Let g : [a, b] → G be a smooth curve. The velocity field of g, viewed in the
right trivializations, coincides with the right logarithmic derivative

δr (g) := T (μg−1
) · ∂tg = κ(∂tg) = (g∗κ)(∂t ).

The energy of the curve g(t) is given by

E(g) = 1

2

∫ b

a

γg(g
′, g′)dt = 1

2

∫ b

a

γ
(
(g∗κ)(∂t ), (g∗κ)(∂t )

)
dt.

For a variation g(s, t) with fixed endpoints we then use that

d(g∗κ)(∂t , ∂s) = ∂t (g∗κ(∂s))− ∂s(g∗κ(∂t ))− 0,

partial integration, and the left Maurer–Cartan equation to obtain

∂sE(g) = 1

2

∫ b

a

2γ
(
∂s(g

∗κ)(∂t ), (g∗κ)(∂t )
)
dt

=
∫ b

a

γ
(
∂t (g

∗κ)(∂s)− d(g∗κ)(∂t , ∂s), (g∗κ)(∂t )
)
dt

= −
∫ b

a

γ
(
(g∗κ)(∂s), ∂t (g∗κ)(∂t )

)
dt

−
∫ b

a

γ
([(g∗κ)(∂t ), (g∗κ)(∂s)], (g∗κ)(∂t )

)
dt

= −
∫ b

a

〈
γ̌ (∂t (g

∗κ)(∂t )), (g∗κ)(∂s)
〉
g
dt
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−
∫ b

a

〈
γ̌ ((g∗κ)(∂t )), ad(g∗κ)(∂t )(g

∗κ)(∂s)
〉
g
dt

= −
∫ b

a

〈
γ̌ (∂t (g

∗κ)(∂t ))+ (ad(g∗κ)(∂t ))
∗γ̌ ((g∗κ)(∂t )), (g∗κ)(∂s)

〉
g
dt.

Thus the curve g(0, t) is critical for the energy if and only if

γ̌ (∂t (g
∗κ)(∂t ))+ (ad(g∗κ)(∂t ))

∗γ̌ ((g∗κ)(∂t )) = 0.

In terms of the right logarithmic derivative u : [a, b] → g of g : [a, b] → G, given
by u(t) := g∗κ(∂t ) = Tg(t)(μg(t)−1

)·g′(t), the geodesic equation has the expression

∂tu = − γ̌−1 ad(u)∗ γ̌ (u) .

Thus the geodesic equation exists in general if and only if ad(X)∗γ̌ (X) is in the
image of γ̌ : g→ g∗, i.e.,

ad(X)∗γ̌ (X) ∈ γ̌ (g)

for every X ∈ X; this leads to the existence of the Christoffel symbols. Arnold [4]
asked for the more restrictive condition ad(X)∗γ̌ (Y ) ∈ γ̌ (g) for all X, Y ∈ g. The
geodesic equation for the momentum p := γ (u) is

pt = − ad(γ̌−1(p))∗p.

There are situations, see Theorem 8.11 or [9], where only the more general condition
is satisfied, but where the usual transpose ad)(X) of ad(X),

ad)(X) := γ̌−1 ◦ ad∗X ◦ γ̌

does not exist for all X.
We describe now the covariant derivative and the curvature. The right trivializa-

tion (πG, κr) : TG → G × g induces the isomorphism R : C∞(G, g) → X(G),
given by R(X)(x) := RX(x) := Te(μx) ·X(x), forX ∈ C∞(G, g) and x ∈ G. Here
X(G) := �(TG) denotes the Lie algebra of all vector fields. For the Lie bracket and
the Riemannian metric we have

[RX,RY ] = R(−[X, Y ]g + dY · RX − dX · RY ),
R−1[RX,RY ] = −[X, Y ]g + RX(Y )− RY (X),

γx(RX(x), RY (x)) = γ (X(x), Y (x)) , x ∈ G.
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In what follows, we shall perform all computations in C∞(G, g) instead of X(G).
In particular, we shall use the convention

∇XY := R−1(∇RXRY ) for X, Y ∈ C∞(G, g)

to express the Levi-Civita covariant derivative.

8.7 Lemma ([9, 3.3]) Assume that for all ξ ∈ g the element ad(ξ)∗γ̌ (ξ) ∈ g∗ is
in the image of γ̌ : g → g∗ and that ξ �→ γ̌−1 ad(ξ)∗γ̌ (ξ) is bounded quadratic
(or, equivalently, smooth). Then the Levi-Civita covariant derivative of the metric γ
exists and is given for any X, Y ∈ C∞(G, g) in terms of the isomorphism R by

∇XY = dY.RX + ρ(X)Y − 1

2
ad(X)Y,

where

ρ(ξ)η = 1
4 γ̌
−1( ad∗ξ+η γ̌ (ξ + η)− ad∗ξ−η γ̌ (ξ − η)

) = 1
2 γ̌
−1( ad∗ξ γ̌ (η)+ ad∗η γ̌ (ξ)

)

is the polarized version. The mapping ρ : g → L(g, g) is bounded, and we have
ρ(ξ)η = ρ(η)ξ . We also have

γ
(
ρ(ξ)η, ζ

) = 1

2
γ (ξ, ad(η)ζ )+ 1

2
γ (η, ad(ξ)ζ ),

γ (ρ(ξ)η, ζ )+ γ (ρ(η)ζ, ξ)+ γ (ρ(ζ )ξ, ξ) = 0.

For X, Y ∈ C∞(G, g) we have

[RX, ad(Y )] = ad(RX(Y )) and [RX, ρ(Y )] = ρ(RX(Y )).

The Riemannian curvature is then computed as follows:

R(X, Y ) = [∇X,∇Y ] − ∇−[X,Y ]g+RX(Y )−RY (X)
= [RX + ρX − 1

2 adX,RY + ρY − 1
2 adY ]

− R(−[X, Y ]g + RX(Y )− RY (X))− ρ(−[X, Y ]g + RX(Y )− RY (X))

+ 1

2
ad(−[X, Y ]g + RX(Y )− RY (X))

= [ρX, ρY ] + ρ[X,Y ]g −
1

2
[ρX, adY ] + 1

2
[ρY , adX] − 1

4
ad[X,Y ]g

which is visibly a tensor field.
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For the numerator of the sectional curvature we obtain

γ
(
R(X, Y )X, Y

) = γ (ρXρYX, Y )− γ (ρY ρXX, Y )+ γ (ρ[X,Y ]X, Y )
− 1

2
γ (ρX[Y,X], Y )+ 1

2
γ ([Y, ρXX], Y )

+ 0− 1

2
γ ([X, ρYX], Y )− 1

4
γ ([[X, Y ], X], Y )

= γ (ρXX, ρY Y )− ‖ρXY‖2
γ +

3

4
‖[X, Y ]‖2

γ

− 1

2
γ (X, [Y, [X, Y ]])+ 1

2
γ (Y, [X, [X, Y ]])

= γ (ρXX, ρY Y )− ‖ρXY‖2
γ +

3

4
‖[X, Y ]‖2

γ

− γ (ρXY, [X, Y ]])+ γ (Y, [X, [X, Y ]]).

If the adjoint ad(X)) : g → g exists, this is easily seen to coincide with Arnold’s
original formula [4],

γ (R(X, Y )X, Y ) =− 1

4
‖ ad(X))Y + ad(Y ))X‖2

γ + γ (ad(X))X, ad(Y ))Y )

+ 1

2
γ (ad(X))Y − ad(Y ))X, ad(X)Y )+ 3

4
‖[X, Y ]‖2

γ .

8.8 Examples of Weak Right Invariant Riemannian Metrics
on Diffeomorphism Groups

Let M be a finite dimensional manifold. We consider the following regular Lie
groups: Diff(M), the group of all diffeomorphisms ofM ifM is compact. Diffc(M),
the group of diffeomorphisms with compact support, if M is not compact. If
M = R

n, we also may consider one of the following: DiffS(Rn), the group of
all diffeomorphisms which fall rapidly to the identity. DiffW∞,p (Rn), the group of
all diffeomorphisms which are modeled on the space W∞,p(Rn)n, the intersection
of all Wk,p-Sobolev spaces of vector fields. The last type of groups works also for
a Riemannian manifold of bounded geometry (M, ḡ); see [30] for Sobolev spaces
on them. In the following we write DiffA(M) for any of these groups. The Lie
algebras are the spaces XA(M) of vector fields, where A ∈ {C∞c ,S,W∞,p}, with
the negative of the usual bracket as Lie bracket.

Most of the following weak Riemannian metrics also make sense on Diff(M)
for a compact Whitney manifold germ M ⊂ M̃ , but their behavior has not been
investigated. In particular, I do not know how the Laplacian 1 + �g behaves on
X∂ (M) and its Sobolev completions.
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A right invariant weak inner product on DiffA(M) is given by a smooth positive
definite inner product γ on the Lie algebra XA(M)which is described by the inertia
operator L = γ̌ : XA(M) → XA(M)′ and we shall denote its inverse by K =
L−1 : L(XA(M)) → XA(M). Under suitable conditions on L (like an elliptic
coercive (pseudo) differential operator of high enough order) the operator K turns
out to be the reproducing kernel of a Hilbert space of vector fields which is contained
in the space of either C1

b (bounded C1 with respect to ḡ) or C2
b vector fields. See

[108, Chapter 12], [68], and [80] for uses of the reproducing Hilbert space approach.
The right invariant metric is then defined as in Sect. 8.5, where 〈 , 〉XA(M) is the
duality:

GLϕ (X ◦ϕ, Y ◦ϕ) = GLId(X, Y ) = γ (X, Y ) = 〈L(X), Y 〉XA(M).

For example, the Sobolev metric of order s corresponds to the inertia operator
L(X) = (1+�ḡ)s(X). vol(ḡ). Examples of metrics are

G0
Id(X, Y ) =

∫

M

ḡ(X, Y ) vol(ḡ) the L2 metric,

GsId(X, Y ) =
∫

M

ḡ((1+�ḡ)sX, Y ) vol(ḡ) a Sobolev metric of order s,

GḢ
1

Id (X, Y ) =
∫

R

X′.Y ′dx = −
∫

R

X′′Y dx where X, Y ∈ XA(R).

As explained in Sect. 8.8, the geodesic equation on DiffA(M) is given as follows:
Let ϕ : [a, b] → DiffA(M) be a smooth curve. In terms of its right logarithmic
derivative

u : [a, b] → XA(M), u(t) := ϕ∗κ(∂t ) = ϕ′(t) ◦ϕ(t)−1 ,

the geodesic equation is

L(ut ) = L(∂tu) = − ad(u)∗L(u).

The condition for the existence of the geodesic equation is as follows:

X �→ K(ad(X)∗L(X))

is bounded quadratic XA(M) → XA(M). Using Lie derivatives, the computation
of ad∗X is especially simple. Namely, for any section ω of T ∗M ⊗ vol and vector
fields ξ, η ∈ XA(M), we have

∫

M

(ω, [ξ, η]) =
∫

M

(ω,Lξ (η)) = −
∫

M

(Lξ (ω), η),
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hence ad∗ξ (ω) = +Lξ (ω). Thus the Hamiltonian version of the geodesic equation
on the smooth dual L(XA(M)) ⊂ �C2

b
(T ∗M ⊗ vol) becomes

∂tα = − ad∗K(α) α = −LK(α)α,

or, keeping track of everything,

∂tϕ = u ◦ϕ, ∂tα = −Luα u = K(α) = α�, α = L(u) = u�.

8.9 Theorem Geodesic distance vanishes on DiffA(M) for any Sobolev metric of
order s < 1

2 . If M = S1 × C with C compact, then geodesic distance vanishes also
for s = 1

2 . It also vanishes for the L2-metric on the Virasoro group R� DiffA(R).
Geodesic distance is positive on DiffA(M) for any Sobolev metric of order s ≥ 1.

If dim(M) = 1 then geodesic distance is also positive for s > 1
2 .

This is proved in [8, 14], and [6]. Note that low order Sobolev metrics have
geodesic equations corresponding to well-known nonlinear PDEs: On Diff(S1) or
DiffA(R) the L2-geodesic equation is Burgers’ equation, on the Virasoro group it
is the KdV equation, and the (standard) H 1-geodesic is (in both cases a variant of)
the Camassa–Holm equation; see [10, 7.2] for a more comprehensive overview. All
these are completely integrable infinite dimensional Hamiltonian systems.

8.10 Theorem Let (M, ḡ) be a compact Riemannian manifold. Then the geodesic
equation is locally well-posed on DiffA(M) and the geodesic exponential mapping
is a local diffeomorphism for a Sobolev metric of integer order s ≥ 1. For a Sobolev
metric of integer order s > dim(M)+3

2 the geodesic equation is even globally well-
posed, so that (DiffA(M),Gs) is geodesically complete. This is also true for non-
integer order s if M = R

n.
For M = S1, the geodesic equation is locally well-posed even for s ≥ 1

2 .

For these results see [11, 12, 32, 33].

8.11 Theorem ([9]) For A ∈ {C∞c ,S,W∞,1} let

A1(R) = {f ∈ C∞(R) : f ′ ∈ A(R) , f (−∞) = 0}
and let DiffA1(R) = {ϕ = Id+f : f ∈ A1(R) , f

′ > −1}. These are all regular
Lie groups. The right invariant weak Riemannian metric

GḢ
1

Id (X, Y ) =
∫

R

X′Y ′ dx

is positive definite both on DiffA(R) where it does not admit a geodesic equation
(a non-robust weak Riemannian manifold), and on DiffA1(R) where it admits
a geodesic equation but not in the stronger sense of Arnold. On DiffA1(R) the
geodesic equation is the Hunter-Saxton equation
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(ϕt ) ◦ ϕ−1 = u, ut = −uux + 1

2

∫ x

−∞
(ux(z))

2 dz ,

and the induced geodesic distance is positive. We define the R-map by

R : DiffA1(R)→ A
(
R,R>−2

) ⊂ A(R,R), R(ϕ) = 2
(
(ϕ′)1/2 − 1

)
.

The R-map is invertible with inverse

R−1 : A(R,R>−2
)→ DiffA1(R), R−1(γ )(x) = x + 1

4

∫ x

−∞
γ 2 + 4γ dx .

The pullback of the flat L2-metric via R is the Ḣ 1-metric on DiffA(R), i.e.,
R∗〈·, ·〉L2(dx) = GḢ

1
. Thus the space

(
DiffA1(R), Ḣ

1
)

is a flat space in the
sense of Riemannian geometry. There are explicit formulas for geodesics, geodesic
distance, and geodesic splines, even for more restrictive spaces A1 like Denjoy–
Carleman ultradifferentiable function classes. There are also soliton-like solu-
tions. (DiffA1(R),G

Ḣ 1
) is geodesically convex, but not geodesically complete; the

geodesic completion is the smooth semigroup

MonA1 = {ϕ = Id+f : f ∈ A1(R) , f
′ ≥ −1} .

Any geodesic can hit the subgroup DiffA(R) ⊂ DiffA1(R) at most twice.

8.12 Trouvé Groups for Reproducing Kernel Hilbert Spaces

This is the origin of the notion of a Trouvé group. It puts the approach of Sect. 8.1
to Theorem 8.11 upside down and gets rid of the use of the Lie algebra structure
on the space of vector fields. If the generating space A of vector fields on R

d

for the Trouvé group GA (see Sect. 6.12) is a reproducing kernel Hilbert space
(A(Rd ,Rd), 〈 , , 〉A) contained in C1

b , then

dist(Id, ϕ) := inf
{
∫ 1

0
‖X(t)‖A dt : X ∈ FA, evolX = ϕ}

defines a metric which makes the Trouvé group GA into a topological group; see
[103, 108]. This is widely used for the Large Deformation Diffeomorphic Metric
Matching (LDDMM) method in image analysis and computational anatomy. The
most popular reproducing kernel Hilbert space is the one where the kernel is a
Gaussian e−|x|2/σ . Here the space A is a certain space of entire real analytic
functions, and a direct description of the Trouvé group is severely lacking.
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9 Robust Weak Riemannian Manifolds and Riemannian
Submersions

9.1 Robust Weak Riemannian Manifolds

Some constructions may lead to vector fields whose values do not lie in TxM , but
in the Hilbert space completion TxM with respect to the weak inner product gx .
We need that

⋃
x∈M TxM forms a smooth vector bundle over M . In a coordinate

chart on open U ⊂ M , TM|U is a trivial bundle U × V and all the inner products
gx, x ∈ U define inner products on the same topological vector space V . They all
should be bounded with respect to each other, so that the completion V of V with
respect to gx does not depend on x and

⋃
x∈U TxM ∼= U × V . This means that

⋃
x∈M TxM forms a smooth vector bundle over M with trivializations the linear

extensions of the trivializations of the tangent bundle TM → M . Chart changes
should respect this. This is a compatibility property between the weak Riemannian
metric and some smooth atlas of M .

Definition A convenient weak Riemannian manifold (M, g) will be called a robust
Riemannian manifold if

• The Levi-Civita covariant derivative of the metric g exists: The symmetric
gradients should exist and be smooth.

• The completions TxM form a smooth vector bundle as above.

9.2 Theorem If a right invariant weak Riemannian metric on a regular Lie group
admits the Levi-Civita covariant derivative, then it is already robust.

Proof By right invariance, each right translation T μg extends to an isometric
isomorphisms TxG → TxgG. By the smooth uniform boundedness theorem these
isomorphisms depend smoothly on g ∈ G. ��

9.3 Covariant Curvature and O’Neill’s Formula

In [68, 2.2] one finds the following formula for the numerator of sectional curvature,
which is valid for closed smooth 1-forms α, β ∈ 
1

g(M) on a weak Riemannian

manifold (M, g). Recall that we view g : TM → T ∗M and so g−1 is the dual inner
product on g(TM) and α� = g−1(α).
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g
(
R(α�, β�)α�, β�

) =
− 1

2α
�α�(‖β‖2

g−1)− 1
2β

�β�(‖α‖2
g−1)+ 1

2 (α
�β� + β�α�)g−1(α, β)

(
last line = −α�β([α�, β�])+ β�α([α�, β�]]))

− 1
4‖d(g−1(α, β))‖2

g−1 + 1
4g
−1(d(‖α‖2

g−1), d(‖β‖2
g−1)
)

+ 3
4

∥
∥[α�, β�]∥∥2

g
.

This is called Mario’s formula since Mario Micheli derived the coordinate version
in his 2008 thesis. Each term depends only on g−1 with the exception of the last
term. The role of the last term (which we call the O’Neill term) will become clear in
the next result. Let p : (E, gE) → (B, gB) be a Riemannian submersion between
infinite dimensional robust Riemannian manifolds; i.e., for each b ∈ B and x ∈
Eb := p−1(b) the tangent mapping Txp : (TxE, gE) → (TbB, gB) is a surjective
metric quotient map so that

‖ξb‖gB := inf
{‖Xx‖gE : Xx ∈ TxE, Txp.Xx = ξb

}
.

The infinimum need not be attained in TxE but will be in the completion TxE. The
orthogonal subspace {Yx : gE(Yx, Tx(Eb)) = 0}will therefore be taken in Tx(Eb) in
TxE. If αb = gB(α

�
b, ) ∈ gB(TbB) ⊂ T ∗b B is an element in the gB -smooth dual,

then p∗αb := (Txp)
∗(αb) = gB(α

�
b, Txp ) : TxE → R is in T ∗x E but in general

it is not an element in the smooth dual gE(TxE). It is, however, an element of the
Hilbert space completion gE(TxE) of the gE-smooth dual gE(TxE) with respect
to the norm ‖ ‖

g−1
E

, and the element g−1
E (p∗αb) =: (p∗αb)� is in the ‖ ‖gE -

completion TxE of TxE. We can call g−1
E (p∗αb) =: (p∗αb)� the horizontal lift of

α
�
b = g−1

B (αb) ∈ TbB.

9.4 Theorem ([68, 2.6]) Let p : (E, gE)→ (B, gB) be a Riemannian submersion
between infinite dimensional robust Riemannian manifolds. Then for closed 1-forms
α, β ∈ 
1

gB
(B) O’Neill’s formula holds in the form:

gB
(
RB(α�, β�)β�, α�

) = gE
(
RE((p∗α)�, (p∗β)�)(p∗β)�, (p∗α)�

)

+ 3
4‖[(p∗α)�, (p∗β)�]ver‖2

gE
.

Proof The last (O’Neill) term is the difference between curvature on E and the
pullback of the curvature on B. ��
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9.5 Semilocal Version of Mario’s Formula, Force, and Stress

In all interesting examples of orbits of diffeomorphisms groups through a template
shape, Mario’s covariant curvature formula leads to complicated and impenetrable
formulas. Efforts to break this down to comprehensible pieces led to the concepts
of symmetrized force and (shape-) stress explained below. Since acceleration sits in
the second tangent bundle, one either needs a covariant derivative to map it down
to the tangent bundle, or at least rudiments of local charts. In [68] we managed the
local version. Interpretations in mechanics or elasticity theory are still lacking.

Let (M, g) be a robust Riemannian manifold, x ∈ M , α, β ∈ gx(TxM). Assume
we are given local smooth vector fields Xα and Xβ such that:

1. Xα(x) = α�(x), Xβ(x) = β�(x),
2. Then α�−Xα is zero at x. Therefore it has a well-defined derivativeDx(α�−Xα)

lying in Hom(TxM, TxM). For a vector field Y we have Dx(α� − Xα).Yx =
[Y, α� −Xα](x) = LY (α� −Xα)|x . The same holds for β.

3. LXα(α) = LXα(β) = LXβ (α) = LXβ (β) = 0,
4. [Xα,Xβ ] = 0.

Locally constant 1-forms and vector fields will do. We then define

F(α, β) : = 1
2d(g

−1(α, β)), a 1-form on M called the force,

D(α, β)(x) : = Dx(β� −Xβ).α�(x)
= d(β� −Xβ).α�(x), ∈ TxM called the stress.

�⇒ D(α, β)(x)−D(β, α)(x) = [α�, β�](x).
Then in terms of force and stress the numerator of sectional curvature looks as
follows:

g
(
R(α�, β�)β�, α�

)
(x) = R11 + R12 + R2 + R3 , where

R11 = 1
2

(
L2
Xα
(g−1)(β, β)− 2LXαLXβ (g−1)(α, β)+ L2

Xβ
(g−1)(α, α)

)
(x) ,

R12 = 〈F(α, α),D(β, β)〉 + 〈F(β, β),D(α, α)〉 − 〈F(α, β),D(α, β)+D(β, α)〉
R2 =

(‖F(α, β)‖2
g−1 −

〈
F(α, α)),F(β, β)

〉
g−1

)
(x) ,

R3 = − 3
4‖D(α, β)−D(β, α)‖2

gx
.

9.6 Landmark Space as Homogeneous Space of Solitons

This subsection is based on [67]; the method explained here has many applications
in computational anatomy and elsewhere, under the name LDDMM (large diffeo-
morphic deformation metric matching).
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A landmark q = (q1, . . . , qN) is an N -tuple of distinct points in R
n; landmark

space LandN(Rn) ⊂ (Rn)N is open. Let q0 = (q0
1 , . . . , q

0
N) be a fixed standard

template landmark. Then we have the surjective mapping

evq0 : DiffA(R
n)→ LandN(Rn),

ϕ �→ evq0(ϕ) = ϕ(q0) = (ϕ(q0
1 ), . . . , ϕ(q

0
N)).

Given a Sobolev metric of order s > n
2 + 2 on DiffA(Rn), we want to induce a Rie-

mannian metric on LandN(Rn) such that evq0 becomes a Riemannian submersion.
The fiber of evq0 over a landmark q = ϕ0(q

0) is

{ϕ ∈ DiffA(R
n) : ϕ(q0) = q} = ϕ0 ◦{ϕ ∈ DiffA(R

n) : ϕ(q0) = q0}
= {ϕ ∈ DiffA(R

n) : ϕ(q) = q} ◦ϕ0 .

The tangent space to the fiber is

{X ◦ϕ0 : X ∈ XS(R
n),X(qi) = 0 for all i}.

A tangent vector Y ◦ϕ0 ∈ Tϕ0 DiffS(Rn) is GLϕ0
-perpendicular to the fiber over q if

and only if
∫

Rn

〈LY,X〉 dx = 0 ∀X with X(q) = 0.

If we require Y to be smooth then Y = 0. So we assume that LY = ∑i Pi .δqi , a
distributional vector field with support in q. Here Pi ∈ TqiRn. But then

Y (x) = L−1
(∑

i

Pi .δqi

)
=
∫

Rn

K(x − y)
∑

i

Pi .δqi (y) dy =
∑

i

K(x − qi).Pi,

Tϕ0(evq0).(Y ◦ϕ0) = Y (qk)k =
∑

i

(K(qk − qi).Pi)k .

Now let us consider a tangent vector P = (Pk) ∈ Tq LandN(Rn). Its horizontal lift
with footpoint ϕ0 is P hor ◦ϕ0 where the vector field P hor on R

n is given as follows:
Let K−1(q)ki be the inverse of the (N ×N)-matrix K(q)ij = K(qi − qj ). Then

P hor(x) =
∑

i,j

K(x − qi)K−1(q)ijPj ,

L(P hor(x)) =
∑

i,j

δ(x − qi)K−1(q)ijPj .

Note that P hor is a vector field of class H 2l−1.
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The Riemannian metric on the finite dimensional manifold LandN induced by
the gL-metric on DiffS(Rn) is given by

gLq (P,Q) = GLϕ0
(P hor,Qhor) =

∫

Rn

〈L(P hor),Qhor〉 dx

=
∫

Rn

〈∑

i,j

δ(x − qi)K−1(q)ijPj ,
∑

k,l

K(x − qk)K−1(q)klQl

〉
dx

=
∑

i,j,k,l

K−1(q)ijK(qi − qk)K−1(q)kl〈Pj ,Ql〉

gLq (P,Q) =
∑

k,l

K−1(q)kl〈Pk,Ql〉.

The geodesic equation in vector form is

q̈n =− 1

2

∑

k,i,j,l

K−1(q)ki gradK(qi − qj )(K(q)in −K(q)jn)K−1(q)jl〈q̇k, q̇l〉

+
∑

k,i

K−1(q)ki

〈
gradK(qi − qn), q̇i − q̇n

〉
q̇k .

The cotangent bundle T ∗LandN(Rn) = LandN(Rn)× ((Rn)N)∗ � (q, α). We treat
R
n like scalars; 〈 , 〉 is always the standard inner product on R

n.
The inverse metric is then given by

(gL)−1
q (α, β) =

∑

i,j

K(q)ij 〈αi, βj 〉, K(q)ij = K(qi − qj ).

The energy function is

E(q, α) = 1
2 (g

L)−1
q (α, α) = 1

2

∑

i,j

K(q)ij 〈αi, αj 〉

and its Hamiltonian vector field (using R
n-valued derivatives to save notation) is

HE(q, α) =
N∑

i,k=1

(
K(qk − qi)αi ∂

∂qk
+ gradK(qi − qk)〈αi, αk〉 ∂

∂αk

)
.

So the Hamiltonian version of the geodesic equation is the flow of this vector field:

{
q̇k =∑i K(qi − qk)αi
α̇k = −∑i gradK(qi − qk)〈αi, αk〉.
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We shall use stress and force to express the geodesic equation and curvature:

α
�
k =
∑

i

K(qk − qi)αi, α� =
∑

i,k

K(qk − qi)〈αi, ∂
∂qk
〉

D(α, β) : =
∑

i,j

dK(qi − qj )(α�i − α�j )
〈
βj ,

∂

∂qi

〉
, the stress.

D(α, β)−D(β, α) = (Dα�β�)−Dβ�α� = [α�, β�], Lie bracket.

Fi (α, β) = 1

2

∑

k

gradK(qi − qk)(〈αi, βk〉 + 〈βi, αk〉)

F(α, β) : =
∑

i

〈Fi (α, β), dqi〉 = 1

2
d g−1(α, β) the force.

The geodesic equation on T ∗ LandN(Rn) then becomes

{
q̇ = α�
α̇ = −F(α, α) .

Next we shall compute curvature via the cotangent bundle. From the semilocal
version of Mario’s formula for the numerator of the sectional curvature for constant
1-forms α, β on landmark space, where α�k =

∑
i K(qk − qi)αi , we get directly:

gL
(
R(α�, β�)α�, β�

) =
= 〈D(α, β)+D(β, α),F(α, β)

〉

− 〈D(α, α),F(β, β)〉− 〈D(β, β),F(α, α)〉

− 1
2

∑

i,j

(
d2K(qi − qj )(β�i − β�j , β�i − β�j )〈αi, αj 〉

− 2d2K(qi − qj )(β�i − β�j , α�i − α�j )〈βi, αj 〉

+ d2K(qi − qj )(α�i − α�j , α�i − α�j )〈βi, βj 〉
)

− ‖F(α, β)‖2
g−1 + g−1(F(α, α),F(β, β)

)
.

+ 3
4‖[α�, β�]‖2

g
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9.7 Shape Spaces of Submanifolds as Homogeneous Spaces
for the Diffeomorphism Group

Let M be a compact manifold and (N, ḡ) a Riemannian manifold of bounded
geometry as in Sect. 3.6. The diffeomorphism group DiffA(N) acts also from
the left on the manifold of Emb(M,N) embeddings and also on the nonlinear
Grassmannian or differentiable Chow variety B(M,N) = Emb(M,N)/Diff(M).
For a Sobolev metric of order s >

dim(N)
2 + 2 one can then again induce a

Riemannian metric on each DiffA(N)-orbit, as we did above for landmark spaces.
This is done in [68], where the geodesic equation is computed and where curvature
is described in terms of stress and force.
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Abstract The fundamental ideas and tools of the global geometric formulation
of stress and hyper-stress theory of continuum mechanics are introduced. The
proposed framework is the infinite dimensional counterpart of the statics of a
system having a finite number of degrees of freedom, as viewed in the geometric
approach to analytical mechanics. For continuum mechanics, the configuration
space is the manifold of embeddings of a body manifold into the space manifold.
Generalized velocity fields are viewed as elements of the tangent bundle of the
configuration space and forces are continuous linear functionals defined on tangent
vectors, elements of the cotangent bundle. It is shown, in particular, that a natural
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choice of topology on the configuration space implies that force functionals may
be represented by objects that generalize the stresses of traditional continuum
mechanics.

1 Introduction

These notes provide an introduction to the fundamentals of global analytic con-
tinuum mechanics as developed in [6, 21, 32–34, 39]. The terminology “global
analytic” is used to imply that the formulation is based on the notion of a configu-
ration space of the mechanical system as in analytic classical mechanics. As such,
this review is complementary to that of [38], which describes continuum mechanics
on differentiable manifolds using a generalization of the Cauchy approach to flux
and stress theory.

The general setting for the basics of kinematics and statics of a mechanical
system is quite simple and provides an elegant geometric picture of mechanics.
Consider the configuration space Q containing all admissible configuration of the
system. Then, construct a differentiable manifold structure on the configuration
space, define generalized (or virtual) velocities as tangent vectors, elements of T Q,
and define generalized forces as linear functions defined on the space of generalized
velocities, elements of T ∗Q. The result of the action of a generalized force F on a
generalized velocity w is interpreted as mechanical power. Thus, such a structure
may be used to encompass both classical mechanics of mass particles and rigid
bodies as well as continuum mechanics. The difference is that the configuration
space for continuum mechanics and other field theories is infinite dimensional.

It is well known that the transition from the mechanics of mass particles
and rigid bodies to continuum mechanics is not straightforward and requires the
introduction of new notions and assumptions. The global analytic formulation
explains this observation as follows. Linear functions, and forces in particular, are
identically continuous when defined on a finite dimensional space. However, in
the infinite dimensional situation, one has to specify exactly the topology on the
infinite dimensional space of generalized velocities with respect to which forces
should be continuous. Then, the properties of force functionals are deduced from
the continuity requirement through a representation theorem. In other words, the
properties of forces follow directly from the kinematics of the theory.

For continuum mechanics of a body Xin space S, the basic kinematic assumption
is traditionally referred to as the axiom of material impenetrability. A configuration
of the body in space is specified by a mapping κ : X→ Swhich is assumed to
be injective and of full rank at each point—an embedding. Hence, the configuration
space for continuum mechanics should be the collection of embeddings of the body
manifold into the space manifold. It turns out that the C1-topology is the natural one
to use in order to endow the collection of embeddings with a differentiable structure
of a Banach manifold. The Cr -topologies for r > 1 are admissible also.
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It follows that forces are continuous linear functionals on the space of vector
fields over the body of class Cr , r ≥ 1, equipped with the Cr -topology with a
special role for the case r = 1. A standard procedure based on the Hahn–Banach
theorem leads to a representation theorem for a force functional in terms of vector
valued measures.

The measures representing a force generalize the stress and hyper-stress objects
of continuum mechanics. The proof of the representation theorem implies that a
stress measure is not determined uniquely by a force. This is in accordance with
the inherent static indeterminacy of continuum mechanics. While the case r = 1
leads to continuum mechanics of order one, the cases r > 1 are extensions of
higher-order continuum mechanics. Thus, an existence theorem for hyper-stresses
follows naturally. The relation between a force and a representing stress object is a
generalization of the principle of virtual work in continuum mechanics and so it is
analogous to the equilibrium equations.

The representation of forces by stress measures is significant for two reasons.
First, the existence of the stress object as well as the corresponding equilibrium
condition are obtained for stress distributions that may be as singular as Radon
measures. In addition, while force functionals cannot be restricted to subsets of a
body, measures may be restricted to subsets. This reflects a fundamental feature of
stress distributions—they induce force systems on bodies. It is emphasized that no
further assumptions of mathematical or physical nature are made.

The framework described above applies to continuum mechanics on general
differentiable manifolds without any additional structure such as a Riemannian
metric or a connection. The body manifold is assumed here to be a compact
manifold with corners. However, as described in [23], it is now possible to extend
the applicability of this framework to a wider class of geometric object—Whitney
manifold germs.

Starting with the introduction of notation used in the manuscript in Sect. 2, we
continue with the construction of the manifold structure on the space of embeddings.
Thus, Sect. 3 describes the Banachable vector spaces used to construct the infinite
dimensional manifold structure on the configuration space and Sect. 4 is concerned
with the Banach manifold structure on the set of Cr -sections of a fiber bundle ξ :
Y→ X. This includes, as a special case, the space Cr(X,S) of Cr -mappings of the
body into space and also provides a natural extension to continuum mechanics of
generalized media. After describing the topology in Cr(X,S) in Sect. 5, we show
in Sect. 6, that the set of embeddings is open in Cr(X,S), r ≥ 1. As such, it is
a Banach manifold also and the tangent bundle is inherited from that of Cr(X,S).
In Sect. 7 we outline the framework for the suggested force and stress theory as
described roughly above. Sections 8, 9 and 10 introduce relevant spaces of linear
functionals on manifolds, and present some of their properties. These include some
standard classes of functionals such as de Rham currents and Schwartz distributions
on manifolds. The representation theorem of forces by stress measures in considered
in Sect. 11. Section 12 discusses the natural situation of simple forces and stress, that
is, the case r = 1.

Concluding remarks and references to further studies are made in Sect. 13.
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2 Notation and Preliminaries

2.1 General Notation

A collection of indices i1 · · · ik , ir = 1, . . . , n will be represented as a multi-index
I and we will write |I | = k, the length of the multi-index. In general, multi-
indices will be denoted by upper-case roman letters and the associated indices will
be denoted by the corresponding lowercase letters. Thus, a generic element in a k-
multilinear mapping A ∈ ⊗kRn is given in terms of the array (AI ), |I | = k. In
what follows, we will use the summation convention for repeated indices as well as
repeated multi-indices. Whenever the syntax is violated, e.g., when a multi-index
appears more than twice in a term, it is understood that summation does not apply.

A multi-index I induces a sequence (I1, . . . , In) in which Ir is the number of
times the index r appears in the sequence i1 · · · ik . Thus, |I | =∑r Ir . Multi-indices
may be concatenated naturally such that |IJ | = |I | + |J |.

In case an arrayA is symmetric, the independent components of the array may be
listed as Ai1···ikwith il ≤ il+1. A non-decreasing multi-index, that is, a multi-index
that satisfies the condition il ≤ il+1, will be denoted by boldface, upper-case roman
characters so that a symmetric tensor A is represented by the components (AI ),
|I | = k. In particular, for a function u : Rn → R, a particular partial derivative of
order k is written in the form

u,I := ∂Iu := ∂ |I |u
(∂X1)I1 · · · (∂Xn)In , (1)

where I is a non-decreasing multi-index with |I | = k.
The notation ∂i = ∂/∂Xi , will be used for both the partial derivatives in Rn and

for the elements of a chart-induced basis of the tangent space TXXof a manifold X

at a point X. The corresponding dual basis for T ∗XXwill be denoted by {dXi}.
Greek letters, λ, μ, ν, will be used for strictly increasing multi-indices used in

the representation of alternating tensors and forms, e.g.,

ω = ωλdXλ := ωλ1···λ|λ|dXλ1 ∧ · · · ∧ dXλ|λ| . (2)

Given a strictly increasing multi-index λ with |λ| = p, we will denote the strictly
increasing (n−p)-multi-index that complements λ to 1, . . . , n by λ̂. In this context,
μ̂, ν̂, etc. will indicate generic increasing (n − p) multi-indices. The Levi-Civita

symbol will be denoted as εI or εI , |I | = n so that, for example, dXλ ∧ dXλ̂ =
ελλ̂dX, where we also set

∂X := ∂1 ∧ · · · ∧ ∂n, dX := dX1 ∧ · · · ∧ dXn. (3)
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Note that we view λ and λ̂ as two distinct indices so summation is not implied in a

term such as dXλ ∧ dXλ̂. In particular, in such an expression, the indices λ and λ̂
are not a superscript and a subscript.

The following identifications will be implied for tensor products of vector spaces
and vector bundles:

V ∗ ⊗ U ∼= L(V,U), (V⊗U)∗ ∼= V ∗ ⊗ U∗. (4)

For vector bundles V and U over a manifold X, let S be a section of V ∗ ⊗U and χ
a section of V . The notation S · χ is used for the section of U given by

(S · χ)(X) = S(X)(χ(X)). (5)

For two manifolds Xand Y, Cr(X,Y) will denote the collection of Cr -mappings
from X to Y. If ξ : Y→ X is a fiber bundle, Cr(ξ) := Cr(X,Y) is the space of
Cr -sections X→ Y.

2.2 Manifolds with Corners

Our basic object will be a fiber bundle ξ : Y −→ X where X is assumed to
be an oriented manifold with corners. We recall (e.g., [3, 18, 20, 22–24]) that an
n-dimensional manifold with corners is a manifold whose charts assume values in
the n-quadrant of Rn, that is, in

R
n

+ := {X ∈ Rn | Xi ≥ 0, i = 1, . . . , n}. (6)

In the construction of the manifold structure, it is understood that a function defined
on a quadrant is said to be differentiable if it is the restriction to the quadrant of
a differentiable function defined on Rn. If X is an n-dimensional manifold with
corners, a subset Z ⊂ X is defined to be a k-dimensional, k ≤ n, submanifold
with corners of X if for any Z ∈ Z there is a chart (U, ϕ), Z ∈ U , such that
ϕ(Z∩ U) ⊂ {X ∈ R

n

+ | Xl = 0, k < l � n}.
With an appropriate natural definition of the integral of an (n− 1)-form over the

boundary of a manifold with corners, Stokes’s theorem holds for manifolds with
corners. (See [18, pp. 363–370] and [23, Section 3.5].)

Relevant to the subject at hand is the following result. (See [3, 20, 22] and [23,
Section 3.2].) Every n-dimensional manifold with corners Xis a submanifold with
corners of a manifold X̃without boundary of the same dimension. In addition, if Xis
compact, it can be embedded as a submanifold with corners in a compact manifold
without boundary X̃ of the same dimension [20, pp. I.24–26]. Furthermore, Ck-
forms defined on X, may be extended continuously and linearly to forms defined on
X̃. Such a manifold X̃is referred to as an extension of X. Each smooth vector bundle
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over Xextends to a smooth vector bundle over X̃. Each immersion (embedding) of
X into a smooth manifold Ywithout boundary is the restriction of an immersion
(embedding) of X̃into Y.

It is emphasized that manifold with corners do not model some basic geometric
shapes such as a pyramid with a rectangular base or a cone. However, much of
material presented in this review is valid for a class of much more general objects,
Whitney manifold germs as presented in [23].

2.3 Bundles, Jets, and Iterated Jets

We will consider a fiber bundle ξ : Y → X, where X is n-dimensional and
the typical fiber is m-dimensional. The projection ξ is represented locally by
(Xi, yα) �→ (Xi), i = 1, . . . , n, α = 1, . . . , m. Let

T ξ : T Y−→ TX (7)

be the tangent mapping represented locally by

(Xi, yα, Ẋj , ẏβ) �−→ (Xi, Ẋj ). (8)

The vertical sub-bundle VYof T Yis the kernel of T ξ . An element v ∈ VYis
represented locally as (Xi, yα, 0, ẏβ). With some abuse of notation, we will write
both τ : T Y→ Yand τ : VY→ Y. For v ∈ VYwith τ(v) = y and ξ(y) = X,
we may view v as an element of Ty(YX) = Ty(ξ

−1(X)). In other words, elements
of the vertical sub-bundle are tangent vectors to Ythat are tangent to the fibers.

Let κ : X→ Ybe a section and let

κ∗τ : κ∗VY−→ X (9)

be the pullback of the vertical sub-bundle. Then, we may identify κ∗VYwith the
restriction of the vertical bundle to Image κ .

2.3.1 Jets

We will denote by ξ r : J r(X,Y) → X the corresponding r-jet bundle of ξ . (See
[17, 27] for general expositions of the theory of jets.) When no ambiguity may occur,
we will often use the simpler notation ξ r : J rY→ Xand refer to a section of ξ r

as a section of J rY. One has the additional natural projections ξ rl : J r(X,Y) →
J l(X,Y), l < r , and in particular ξ r0 : J r(X,Y) → Y= J 0Y. The jet extension
mapping associates with a Cr -section, κ , of ξ , a continuous section j rκ of the jet
bundle ξ r .
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Let κ : X→ Ybe a section of ξ which is represented locally by

X �−→ (X, y = κ(X)), or, Xi �−→ (Xi, κα(Xj )), (10)

i = 1, . . . , n, α = 1, . . . , m. Then, denoting the k-th derivative of κ by Dk , a local
representative of j rκ is of the form

X �−→ (X, κ(X), . . . , Drκ(X)), or, Xi �−→ (Xi, κα,I (X
j )), 0 ≤ |I | ≤ r.

(11)
Accordingly, an element A ∈ J r(X,Y) is represented locally by the coordinates

(Xi, AαI ), 0 ≤ |I | ≤ r. (12)

2.3.2 Iterated (Non-holonomic) Jets

Completely non-holonomic jets for the fiber bundle ξ : Y → X are defined
inductively as follows. Firstly, one defines the fiber bundles

Ĵ 0(X,Y) = Y, Ĵ 1(X,Y) := J 1(X,Y), (13)

and projections

ξ̂1 = ξ1 : Ĵ (X,Y) −→ X, ξ̂1
0 = ξ1

0 : Ĵ 1(X,Y) −→ Y. (14)

Then, we define the iterated r-jet bundle as

Ĵ r (X,Y) := J 1(X, Ĵ r−1(X,Y)), (15)

with projection

ξ̂ r = ξ̂ r−1 ◦ ξ1,r
r−1 : Ĵ r (X,Y) −→ X, (16)

where

ξ
1,r
r−1 : Ĵ r (X,Y) = J 1(X, Ĵ r−1(X,Y)) −→ Ĵ r−1(X,Y). (17)

By induction, ξ̂ r : Ĵ r (X,Y)→ Xis a well-defined fiber bundle.
When the projections ξ1,r

r−1 are used inductively l-times, we obtain a projection

ξ̂ rr−l : Ĵ r (X,Y) −→ Ĵ r−l (X,Y). (18)

Let κ : X→ Ybe a Cr -section of ξ . The iterated jet extension mapping

ĵ r : Cr(ξ) −→ C0(ξ̂ r ) (19)
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is naturally defined by

ĵ1 = j1 : Cl(ξ) −→ Cl−1(ξ̂1), and ĵ r = j1 ◦ ĵ r−1. (20)

Note that we use j1 here as a generic jet extension mapping, omitting the indication
of the domain.

There is a natural inclusion

ιr : J r(X,Y) −→ Ĵ r (X,Y), given by j rκ(X) �−→ ĵ rκ(X). (21)

Let π : W → Xbe a vector bundle, then π̂1 = π1 : Ĵ 1W = J 1W → Xis a vector
bundle. Continuing inductively,

π̂ r : Ĵ rW −→ X (22)

is a vector bundle. In this case, the inclusion ιr : J rπ → Ĵ rπ is linear. Naturally,
elements in the image of ιr are referred to as holonomic.

2.3.3 Local Representation of Iterated Jets1

The local representatives of iterated jets are also constructed inductively. Hence, at
each step, G, to which we refer as generation, the number of arrays is multiplied.
Hence, powers of two are naturally used below. We will use multi-indices of the
form Ip, where p, q, etc. are binary numbers that enumerate the various arrays
included in the representation. For example, a typical element of Ĵ 3(X,Y), in the
form

(Xj ; yα; y1β1
i1
; y2β2
i2
, y

3β3
i3i4
; y4β4
i5
, y

5β5
i6i7
, y

6β6
i8i9
, y

7β3
i10i11i12

) (23)

is written as

(Xj ; y0β0
0 ; y1β1

I1
; y10β10
I10

, y
11β11
I11

; y100β100
I100

, y
101β101
I101

, y
110β110
I110

, y
111β111
I111

), (24)

and for short

(Xj ; ypβpIp
), for all p with 0 ≤ Gp ≤ 3. (25)

Here, Gp is the generation where the p-th array appears and it is given by

Gp = -log2 p. + 1, (26)

1This section may be skipped without interrupting the reading of most of the following.
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where -log2 p. denotes the integer part of log2 p. In (23, 24) the generations are
separated by semicolons. As indicated in the example above, with each p we
associate a multi-index Ip = i1 · · · ip as follows. For each binary digit 1 in p there is
an index il , l = 1, . . . , p. Thus, the total number of digits 1 in p, which is denoted
by |p|, is the total number of indices, p, in Ip. In other words, the length, |Ip|, of the
induced multi-index Ip satisfies

|Ip| = p = |p| . (27)

Note also that the expression βp, is not a multi-index since we use upper-case
letters to denote multi-indices. Here, the subscript p serves for the enumeration
of the β indices. If no ambiguity may arise, we will often make the notation

somewhat shorter and write y
βp
Ip

for y
pβp
Ip

. Continuing by induction, let a section Â

of Ĵ r−1(X,Y) be represented locally by (Xj ; ypαpIp
(Xj )), Gp ≤ r − 1. Then, its

1-jet extension, a section of Ĵ r (X,Y), is of the form

(Xj ; ypαpIp
(XJ ); ypβpIp,kp

(Xj )), Gp ≤ r − 1, (28)

or equivalently,

(Xj ; ypαpIp
(Xj ); y1pα1p

Ip,kp
(Xj )), Gp ≤ r − 1, (29)

where 1p is the binary representation of 2r+p. It is noted that the array y1p contains
the derivatives of the array yp, and that G1p = r . Thus indeed, the number of digits
1 that appear in q, i.e., |q|, determine the length of the index Iq.

It follows that an element of Ĵ r (X,Y) may be represented in the form

(Xj ; ypαpIp
; ypα1p
Ipkp

), Gp ≤ r − 1 (30)

or

(Xj ; yqαqIq
), for all q with Gq ≤ r. (31)

That is, for each p with Gp ≤ r − 1, we have an index q = q(p) such that q =
q(p) = 1p if Gq = r and q = q(p) = p if Gq < r .

A similar line of reasoning leads to the expression for the local representatives
of the iterated jet extension mapping. For a section κ : X→ Y, the iterated jet
extension B = ĵ rκ , a section of ξ̂ r , the local representation (Xj ;Bqαq

Iq
), Gq ≤ r ,

|Iq| = |q|, satisfies

B
qαq
Iq

= καq,Iq, |Iq| = |q| , independently of the particular value of q. (32)
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Indeed, if (Xj , B
qαq
Iq
), Gq ≤ r − 1, with B

qαq
Iq

= καq,Iq represent ĵ r−1κ , then, ĵ rκ is
represented locally by

(Xi, B
qαq
Iq
;Bqα1q

Iq,jq
), Gq ≤ r − 1. (33)

Thus, by induction, any p = p(q) with Gp = r and Gq < r , may be written as
p = 2r−1 + q, Ip = Iqjq, so that B

pαp
Ip

= Bqα1q
Iq,jq

= καp,Ip .

Let an elementA ∈ Ĵ r (X,Y) be represented by (Xj ; ypαpIp
), Gp ≤ r , then ξ̂ rl (A)

is represented by (Xi; ypαpIp
), Gp ≤ l.

2.4 Contraction

The right and left contractions of a (p + r)-form and a p-vector are given
respectively by

(θ� η)(η′) = θ(η′ ∧ η), (η� θ)(η′) = θ(η ∧ η′), (34)

for every r-vector η′. We will use the notation

C� :∧p
TX⊗∧p+r

T ∗X∼= L(∧p
T ∗X,

∧p+r
T ∗X) −→∧r

T ∗X, (35)

and

C� :∧p
TX⊗∧p+r

T ∗X∼= L(∧p
T ∗X,

∧p+r
T ∗X) −→∧r

T ∗X, (36)

for the mappings satisfying

C�(ξ ⊗ θ) = θ� ξ, and C�(ξ ⊗ θ) = ξ� θ, (37)

respectively. The left and right contraction differ by a factor of (−1)rp.
For the case r + p = n, dim (

∧p
TX⊗ ∧p+r

T ∗X) = dim
∧r
T ∗X; as the

mappings C� and C� are injective, they are invertible. Specifically, consider the
mappings

e� :∧n−p
T ∗X−→∧p

TX⊗∧n
T ∗X∼= L(∧p

T ∗X,
∧n
T ∗X), (38)

and

e� :∧n−p
T ∗X−→∧p

TX⊗∧n
T ∗X∼= L(∧p

T ∗X,
∧n
T ∗X), (39)

given by

e�(ω)(ψ) = ψ ∧ ω, and e�(ω)(ψ) = ω ∧ ψ, (40)
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respectively. One can easily verify that these mappings are isomorphisms, and in
fact, they are the inverses of the contraction mappings defined above.

For example,

e�(C�(ξ ⊗ θ))(ψ) = C�(ξ ⊗ θ) ∧ ψ,
= (θ� ξ) ∧ ψ,
= ψ(ξ)θ,
= (ξ ⊗ θ)(ψ),

(41)

where we view ξ s an element of the double dual. Thus,

e� = C−1
� , and e� = C−1

� . (42)

3 Banachable Spaces of Sections of Vector Bundles over
Compact Manifolds

For a compact manifold X, the infinite dimensional Banach manifold of mappings
to a manifold Sand the manifold of sections of the fiber bundle ξ : Y→ X, are
modeled by Banachable spaces of sections of vector bundles over X, as will be
described in the next section. In this section we describe the Banachable structure
of such a space of differentiable vector bundle sections and make some related
observations. Thus, we consider in this section a vector bundle π : W → X, where
X is a smooth compact n-dimensional manifold with corners and the typical fiber
of W is an m-dimensional vector space. The space of Cr -sections w : X→ W ,
r ≥ 0, will be denoted by Cr(π) or by Cr(W) if no ambiguity may arise. A natural
real vector space structure is induced on Cr(π) by setting (w1 + w2)(X) =
w1(X)+ w2(X) and (cw)(X) = cw(X), c ∈ R.

3.1 Precompact Atlases

Let Ka , a = 1, . . . , A, be a finite collection of compact subsets whose interiors
cover Xsuch that for each a, Ka is a subset of a domain of a chart ϕa : Ua → Rn

on Xand

(ϕa,�a) : π−1(Ua) −→ Rn ×Rm, v �−→ (Xi, vα) (43)

is some given vector bundle chart on W . Such a covering may always be found by
the compactness of X(using coordinate balls as, for example, in [18, p. 16] or [26, p.
10]). We will refer to such a structure as a precompact atlas. The same terminology
will apply for the case of a fiber bundle.
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3.2 The Cr -Topology on Cr(π)

For a section w of π and each a = 1, . . . , A, let

wa : ϕa(Ka) −→ Rm, (44)

satisfying

wa(ϕa(X)) = �a(w(X)), for all X ∈ Ka, (45)

be a local representative of w.
Such a choice of a precompact vector bundle atlas and subsets Ka makes it

possible to define, for a section w,

‖w‖r = sup
a,α,|I |≤r

{

sup
X∈ϕa(Ka)

{∣∣(wαa ),I (X)
∣
∣}
}

. (46)

Palais [26, in particular, Chapter 4] shows that ‖ · ‖r is indeed a norm endowing
Cr(π)with a Banach space structure. The dependence of this norm on the particular
choice of atlas and sets Ka , makes the resulting space Banachable, rather than
a Banach space. Other choices will correspond to different norms. However,
norms induced by different choices will induce equivalent topological vector space
structures on Cr(π) [23, Section 5].

3.3 The Jet Extension Mapping

Next, one observes that the foregoing may be applied, in particular, to the vector
space C0(πr) = C0(J rW) of continuous sections of the r-jet bundle πr : J rW →
Xof π . As a continuous section B of πr is locally of the form

(Xi) �−→ (Xi, BαI (X
i)), |I | ≤ r, (47)

the analogous expression for the norm induced by a choice of a precompact vector
bundle atlas is

‖B‖0 = sup
a,α,|I |≤r

{

sup
X∈ϕa(Ka)

{∣
∣BαaI (X)

∣
∣
}
}

. (48)

Once, the topologies of Cr(π) and C0(πr) have been defined, one may consider
the jet extension mapping

j r : Cr(π) −→ C0(πr). (49)
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For a section w ∈ Cr(π), with local representatives wαa , j rw is represented by a
section B ∈ C0(πk), the local representatives of which satisfy,

BαaI = wαa,I . (50)

Clearly, the mapping j r is injective and linear. Furthermore, it follows that

‖j rw‖0 = sup
a,α,|I |≤r

{

sup
X∈ϕa(Ka)

{∣∣wαa,I (X)
∣
∣}
}

. (51)

(Note that since we take the supremum of all partial derivatives, we could replace the
non-decreasing multi-index I by a regular multi-index I .) Thus, in view of Eq. (46),

‖j rw‖0 = ‖w‖r (52)

and we conclude that j r is a linear embedding of Cr(π) into C0(πr). Evidently,
j r is not surjective as a section A of πk need not be compatible, i.e., it need not
satisfy (50), for some section w of π . As a result of the above observations, j r has
a continuous right inverse

(j r )−1 : Image j r ⊂ C0(πr) −→ Cr(π). (53)

3.4 The Iterated Jet Extension Mapping

In analogy, we now consider the iterated jet extension mapping

ĵ r : Cr(π) −→ C0(π̂ r ). (54)

Specializing Eq. (31) for the case of the non-holonomic r-jet bundle

π̂ r : Ĵ rW −→ X, (55)

a section B of π̂ r is represented locally in the form

Xi �−→ (Xi, B
qαq
aIq
(Xi)), for all q with Gq ≤ r. (56)

Thus, the induced norm on C0(π̂ r ) is given by

‖B‖0 = sup
{∣
∣B

qαq
aIq
(Xi)
∣
∣
}
, (57)

where the supremum is taken over all X ∈ ϕa(Ka), a = 1, . . . , A, αq = 1, . . . , m,
Iq with |I | = |q|, and q with Gq ≤ r .
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Specializing (32) for the case of a vector bundle, it follows that if the section B
of π̂ r , satisfies B = ĵ rw, its local representatives satisfy

B
qαq
aIq

= wαqa,Iq |Iq| = |q| , independently of the particular value of q. (58)

It follows that in

‖ĵ rw‖0 = sup
{∣
∣w

αq
a,Iq

(Xi)
∣
∣
}
, (59)

(where the supremum is taken over all Xi ∈ ϕa(Ka), a = 1, . . . , A, α = 1, . . . , m,
Iq with |I | = |q|, and q with Gq ≤ r), it is sufficient to take simply all derivatives
wαa,I (X

i), for |I | ≤ r . Hence,

‖ĵ rw‖0 = sup
{∣
∣w

αq
a,I (X

i)
∣
∣
}
, (60)

where the supremum is taken over all Xi ∈ ϕa(Ka), a = 1, . . . , A, α = 1, . . . , m,
and I with |I | ≤ r. It is therefore concluded that

‖ĵ rw‖0 = ‖j rw‖0 = ‖w‖r . (61)

In other words, one has a sequence of linear embeddings

C0(πr)ˆ

ˆ

Cr(π) C0(πr)
jr

jr

C0(ιr)
(62)

where ιr : J rW → Ĵ rW is the natural inclusion (21) and C0(ιr ) defined as
C0(ιr )(A) := ιr ◦ A, for every continuous section A of J rW , is the inclusion of
sections. These embeddings are not surjective. In particular, sections of Ĵ rW need
not have the symmetry properties that hold for sections of J rW .

4 The Construction of Charts for the Manifold of Sections

In this section, we outline the construction of charts for the Banach manifold
structure on the collection of sections Cr(ξ) as in [26]. (See a detailed presentation
of the subject in this volume [23, Section 5.9].)

Let κ be a Cr -section of ξ . Similarly to the construction of tubular neighbor-
hoods, the basic idea is to identify points in a neighborhood of Image κ with vectors
at Image κ which are tangent to the fibers. This is achieved by defining a second
order differential equation, so that a neighboring point y in the same fiber as κ(X)
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is represented through the solution c(t) of the differential equations with the initial
condition v ∈ Tκ(X)(YX) by y = c(t = 1). In other words, y is the image of v under
the exponential mapping.

To ensure that the image of the exponential mapping is located on the same fiber,
YX, the spray inducing the second order differential equation is a vector field

ω : VY−→ T (VY) (63)

which is again tangent to the fiber in the sense that for

T τY: T (VY) −→ T Y, one has, T τY◦ ω ∈ VY. (64)

This condition, together with the analog of the standard condition for a second order
differential equation, namely,

T τY◦ ω(v) = v, for all v ∈ VY, (65)

imply that ω is represented locally in the form

(Xi, yα, 0, ẏβ) �−→ (Xi, yα, 0, ẏβ , 0, ẏγ , 0, ω̃α(Xi, yα, ẏβ)). (66)

Finally, ω is a bundle spray so that

ω̃α(Xi, yα, a0ẏ
β) = a2

0ω̃
α(Xi, yα, ẏβ). (67)

Bundle sprays can always be defined on compact manifolds using partitions of unity
and the induced exponential mappings have the required properties.

The resulting structure makes it possible to identify an open neighborhood U—a
vector bundle neighborhood—of Image κ in Ywith

VY|Image κ ∼= κ∗VY. (68)

(We note that a rescaling is needed if U is to be identified with the whole of κ∗VY.
Otherwise, only an open neighborhood of the zero section of κ∗VYwill be used to
parametrize U .)

Once the identification of U with κ∗VYis available, the collection of sections
Cr(X, U) may be identified with Cr(κ∗VY), κ ∈ Cr(ξ). Thus, a chart into a
Banachable space is constructed where κ is identified with the zero section (Fig. 1).

The construction of charts on the manifold of sections, implies that curves in
Cr(ξ) in a neighborhood of κ are represented locally by curves in the Banachable
space Cr(κ∗VY). Thus, tangent vectors w ∈ TκC

r(ξ) may be identified with
elements of Cr(κ∗VY). We therefore make the identification

TκC
r(ξ) = Cr(κ∗VY). (69)
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Fig. 1 Constructing the manifold of sections, a rough illustration

5 The Cr -Topology on the Space of Sections of a Fiber
Bundle

The topology on the space of sections of fiber bundles is conveniently described in
terms of filters of neighborhoods (e.g., [44]).

5.1 Local Representatives of Sections

We consider a fiber bundle ξ : Y→ X, where X is assumed to be a compact
manifold with corners and the typical fiber is a manifold Swithout a boundary. Let
{(Ua, ϕa,�a)}, a = 1, . . . , A, and Ka ⊂ Ua , be a precompact (as in Sect. 3.1)
fiber bundle trivialization on Y. That is, the interiors of Ka cover X, and (ϕa,�a) :
ξ−1(Ua) → Rn × S. Let {(Vb, ψb)}, b = 1, . . . , B, be an atlas on Sso that {Vb}
cover S.

Consider a Ck-section κ : X→ Y. For any a = 1, . . . , A, we can set

κ̃a : Ua −→ S, by κ̃a := �a ◦ κ|Ua . (70)

Let

Uab := Ua ∩ κ̃−1
a (Vb), (71)
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so that κ(Uab) ⊂ Vb, and so, the local representatives of κ are

κab := ψb ◦ κ̃a ◦ ϕ−1
a |ϕa(Uab) : ϕa(Uab) −→ ψb(Vb) ⊂ Rm. (72)

Thus, re-enumerating the subsets {Uab} and {Vb} we may assume that we have a
precompact trivialization {(Ua, ϕa,�a)}, a = 1, . . . , A, Ka ⊂ Ua , on Y, and an
atlas {(Va, ψa)} on Ssuch that κ̃a(Ua) ⊂ Va . The local representatives of κ relative
to these atlases are

κa := ψa ◦ κ̃a ◦ ϕ−1
a |ϕa(Ua) : ϕa(Ua) −→ ψa(Va) ⊂ Rm. (73)

5.2 Neighborhoods for Cr(ξ) and the Cr -Topology

Let κ ∈ Cr(ξ) be given. Consider sets of sections of the form Uκ,ε induced by the
collection of local representatives as above and numbers ε > 0 in the form

Uκ,ε =
{
κ ′ ∈ Cr(ξ) | sup

{∣
∣((κ ′a)α − καa ),I (X)

∣
∣
}
< ε
}
, (74)

where the supremum is taken over all

X ∈ ϕa(Ka), α = 1, . . . , m, |I | ≤ r, a = 1, . . . , A.

The Cr -topology on Cr(ξ) uses all such sets as a basis of neighborhoods. Using the
transformation rules for the various variables, it may be shown that other choices
of precompact trivialization and atlas will lead to equivalent topologies. It is noted
that we use here the compactness of Xwhich implies that the weak and strong Cr -
topologies (see [13, p. 35]) become identical.

Remark 1 The collection of neighborhoods {Uκ,ε} for the various values of ε
generate a basis of neighborhoods for the topology of Cr(ξ). If one keeps the value
of a = 1, . . . , A, fixed, then the collection of sections

Uκ,εa,a =
{
κ ′ ∈ Cr(ξ) | sup

{∣∣((κ ′a)α − καa ),I (X)
∣
∣} < εa

}
,

where the supremum is taken over all

X ∈ ϕa(Ka), α = 1, . . . , m, |I | ≤ r,

is a neighborhood as it contains the open neighborhood Uκ,εa . In fact, since X is
assumed to be compact, the collection of sets of the form {Uκ,εa,a} is a sub-basis of
neighborhoods of κ for the topology on Cr(ξ).
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5.3 Open Neighborhoods for Cr(ξ) Using Vector Bundle
Neighborhoods

In order to specialize the preceding constructions for the case where a vector bundle
neighborhood is used, we first consider local representations of sections.

Let κ ∈ Cr(ξ) be a section and let

κ∗τY: κ∗VY−→ X (75)

be the vector bundle identified with an open sub-bundleU of Y. (We will use the two
aspects of the vector bundle neighborhood, interchangeably.) Since the typical fiber
of κ∗VYis Rm, one may choose a precompact vector bundle atlas {(Ua, ϕa,�a)},
Ka ⊂ Ua , a = 1, . . . , A, on κ∗VY, such that

(ϕa,�a) : (κ∗τY)−1(Ua) −→ Rn ×Rm. (76)

Thus, if we identify all open subsets Va in Sect. 5.1 above with the typical fiber Rm,
the representatives of a section are of the form

κa := �a ◦ κ|Ua ◦ ϕ−1
a |ϕa(Ua) : ϕa(Ua) −→ Rm. (77)

A basic neighborhood of κ is given by Eq. (74). However, from the point of view
of a vector bundle neighborhood, κ is represented by the zero section and each κ ′ is
viewed as a section of the vector bundle κ∗τY, which we may denote by w′. Thus

Uκ,ε ∼=
{
w′ ∈ Cr(κ∗τY) | sup

{∣∣
∣(w′a)α,I (Xi)

∣
∣
∣
}
< ε
}
. (78)

In other words, using the structure of a vector bundle neighborhood we have

Uκ,ε ∼=
{
w′ ∈ Cr(κ∗τY) | ‖w′‖r < ε

}
, (79)

so that Uκ,ε is identified with a ball of radius ε in Cr(κ∗τY) at the zero section.
It is concluded that the charts on Cr(ξ) induced by the vector bundle neighbor-

hood are compatible with the Cr -topology on Cr(ξ).

6 The Space of Embeddings

The kinematic aspect of the Lagrangian formulation of continuum mechanics is
founded on the notion of a configuration, an embedding of a body manifold Xinto
the space manifold S. The restriction of configurations to be embeddings, rather than
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generic Cr -mappings of the body into space follows from the traditional principle
of material impenetrability which requires that configurations be injective and that
infinitesimal volume elements are not mapped into elements of zero volume.

It is noted that any configuration κ : X→ Smay be viewed as a section of the
trivial fiber bundle ξ : X→ Y= X× S. Thus, the constructions described above
apply immediately to configurations in continuum mechanics. In this particular case,
we will write Cr(X,S) for the collection of all Cr -mappings. Our objective in this
section is to describe how the set of embeddings Embr (X,S) constitutes an open
subset of Cr(X,S) for r ≥ 1. In particular, it will follow that at each configuration
κ , TκEmbr (X,S) = TκC

r(X,S). Since the Cr -topologies, for r > 1, are finer than
the C1-topology, it is sufficient to prove that Emb1(X,S) is open in C1(X,S). This
brings to light the special role that the case r = 1 plays in continuum mechanics.

6.1 The Case of a Trivial Fiber Bundle: Manifolds
of Mappings

It is observed that the definitions of Sects. 5.1 and 5.2 hold with natural simplifica-
tions for the case of the trivial bundle. Thus, we use a precompact atlas {(Ua, ϕa)},
a = 1, . . . , A, andKa ⊂ Ua , in X(the interiors,Ko

a , cover X). Given κ ∈ C1(X,S),
we can find an atlas {(Va, ψa)} on Ssuch that κ(Ua) ⊂ Va . The local representatives
of κ are of the form

κa = ψa ◦ κ|Ua ◦ ϕ−1
a : ϕa(Ua) −→ ψa(Va) ⊂ Rm. (80)

For the case r = 1, Eq. (74) reduces to

Uκ,ε=
{
κ ′ ∈ C1(X,S)

∣
∣ sup

{∣
∣(κ ′a)α(X)−καa (X)

∣
∣,
∣
∣(κ ′a)α,j (X)− καa,j (X)

∣
∣
}
< ε
}
,

(81)
where the supremum is taken over all

X ∈ ϕa(Ka), α = 1, . . . , m, a = 1, . . . , A.

Remark 2 It is noted that in analogy with Remark 1, for a fixed a = 1, . . . , A, a
subset of mappings of the form

Uκ,ε,a=
{
κ ′ ∈ C1(X,S)

∣
∣ sup

{∣
∣(κ ′a)α(X)−καa (X)

∣
∣,
∣
∣(κ ′a)α,j (X)−καa,j (X)

∣
∣
}
< ε
}
,

(82)
where the supremum is taken over all

X ∈ ϕa(Ka), j = 1, . . . , n, α = 1, . . . , m,
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is a neighborhood of κ as it contains a neighborhood as defined above. The collec-
tion of such sets for various values of a and ε form a sub-basis of neighborhoods for
the topology on C1(X,S).

6.2 The Space of Immersions

Let κ ∈ C1(X,S) be an immersion, so that TXκ : TXX→ Tκ(X)S is injective for
every X ∈ X. We show that there is a neighborhood Uκ ⊂ C1(X,S) of κ such that
all κ ′ ∈ Uκ are immersions.

Note first that since the evaluation of determinants of n × n matrices is a
continuous mapping, the collection of m × n matrices for which all n × n minors
vanish is a closed set. Hence, the collection LIn(R

n,Rm) of all injective m × n

matrices is open in L(Rn,Rm). Let κ be an immersion with representatives κa as
above. For each a, the derivative

Dκa : ϕa(Ua) −→ L(Rn,Rm), X �−→ Dκa(X) (83)

is continuous, hence, Dκa(Ka) is a compact set of injective linear mappings.
Choosing any norm in L(Rn,Rm), one can cover Dκa(Ka) by a finite number of
open balls all containing only injective mappings. In particular, setting

‖T ‖ = max
i,α

{∣∣T αi
∣
∣} , T ∈ L(Rn,Rm), (84)

let εa be the least radius of balls in this covering. Thus, we are guaranteed that any
linear mapping T , such that ‖T −Dκa(X)‖ < εa for some X ∈ ϕa(Ka), is injective.
Specifically, for any κ ′ ∈ C1(X,S), if

sup
X∈ϕa(Ka)

∣
∣(κ ′a)α,j (X)− καa,j (X)

∣
∣ � εa, (85)

Dκ ′a is injective everywhere in ϕa(Ka). Letting ε = mina εa , any configuration in
Uκ,ε as in (81) is an immersion.

6.3 Open Neighborhoods of Local Embeddings

Let κ ∈ C1(X,S) and X ∈ X. It is shown below that if TXκ is injective, then there
is a neighborhood of mappings Uκ,X of κ such that every κ ′ ∈ Uκ,X is injective in
some fixed neighborhood of X. Specifically, there is a neighborhood WX of X, and
a neighborhood Uκ,X of κ such that for each κ ′ ∈ Uκ,X, κ ′|WX is injective.

Let (U, ϕ) and (V ,ψ) be coordinate neighborhoods ofX and κ(X), respectively,
such that κ(U) ⊂ V . Let X and κ be the local representative of X and κ relative to
these charts. Thus, we are guaranteed that
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M := inf|v|=1
|Dκ(X)(v)| > 0. (86)

By a standard corollary of the inverse function theorem, due to the injectivity of
TXκ , we can choose U to be small enough so that the restrictions of κ and κ to U
and its image under ϕ, respectively, are injective. Next, let WX be a neighborhood
of X such that ϕ(WX) is convex and its closure, WX, is a compact subset of U .
Thus, define the neighborhood Uκ,X ⊂ C1(X,S) whose elements, κ ′, satisfy the
conditions

κ ′(WX) ⊂ V, and
∣
∣Dκ ′(X′)−Dκ(X)

∣
∣ <

M

2
, for all X′ ∈ ϕ(WX).

(87)

By the definition of neighborhoods in C1(X,S) in (81), Uκ,X contains a neighbor-
hood of κ , hence, it is also a neighborhood.

Next, it is shown that the fact that the values of the derivatives of elements ofUκ,X
are close to the injectiveDκ(X) everywhere inWX, implies that these mappings are
close to the linear approximation using Dκ(X), which in turn, implies injectivity in
WX of these elements. Specifically, for and X1,X2 ∈ WX, since

κ ′(X2)− κ ′(X1) = κ ′(X2)− κ ′(X1)−Dκ(X)(X2 −X1)+Dκ(X)(X2 −X1),

(88)
the triangle inequality implies that

∣
∣κ ′(X2)−κ ′(X1)

∣
∣ ≥ |Dκ(X)(X2−X1)| −

∣
∣κ ′(X2)−κ ′(X1)−Dκ(X)(X2 −X1)

∣
∣ ,

≥ M |X2 −X1| −
∣
∣κ ′(X2)− κ ′(X1)−Dκ(X)(X2 −X1)

∣
∣ .
(89)

Using the mean value theorem, there is a point X0 ∈ ϕ(WX) such that

κ ′(X2)− κ ′(X1) = Dκ ′(X0)(X2 −X1). (90)

Hence,

∣
∣κ ′(X2)− κ ′(X1)−Dκ(X)(X2 −X1)

∣
∣ = ∣∣(Dκ ′(X0)−Dκ(X))(X2 −X1)

∣
∣ ,

≤ ∣∣Dκ ′(X0)−Dκ(X)
∣
∣ |X2 −X1| ,

<
M

2
|X2 −X1| .

(91)

It follows that

∣
∣κ ′(X2)− κ ′(X1)

∣
∣ >

M

2
|X2 −X1| , (92)

which proves the injectivity.
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6.4 Open Neighborhoods of Embeddings

Finally, it is shown how every κ ∈ Emb1(X,S) ⊂ C1(X,S) has a neighborhood
consisting of embeddings only. It will follow that Emb1(X,S) is an open subset
of C1(X,S). This has far-reaching consequences in continuum mechanics and it
explains the special role played by the C1-topology in continuum mechanics.

Let κ be a given embedding. Using the foregoing result, for each X ∈ Xthere is
an open neighborhood WX of X and a neighborhood Uκ,X of κ , such that for each
κ ′ ∈ Uκ,X, κ ′|WX

is injective. The collection of neighborhoods {WX}, X ∈ X, is
an open cover of Xand by compactness, it has a finite sub-cover. Denote the finite
number of open sets of the form Wx as above by Wa , a = 1, . . . , A, so that Ka :=
Wa is a compact subset of Ua , κ(Ua) ⊂ Va . For each a, we have a neighborhood
Uκ,a of κ such that each κ ′ ∈ Uκ,a satisfies the condition that κ ′|Ka is injective.
Let N1 = ⋂A

a=1 Uκ,a so that for each κ ′ ∈ N1, κ ′|Ka is injective for all a. Let
N2 be a neighborhood of κ which contains only immersions as in Sect. 6.2. Thus,
N0 =N1 ∩N2 contains immersions which are locally injective.

Let κ be an embedding and N0 as above. If there is no neighborhood of κ that
contains only injective mappings, then, for each ν = 1, 2, . . . , there is a κν ∈ Uκ,εν ,
εν = 1/ν, and pointsXν,X′ν ∈ X,Xν �= X′ν , such that κν(Xν) = κν(X′ν). As N0 is a
neighborhood of κ , we may assume that κν ∈N0 for all ν. By the compactness of X
and X×X, we can extract a converging subsequence from the sequence ((Xν,X′ν))
in X×X. We keep the same notation for the converging subsequences and let

(Xν,X
′
ν) −→ (X,X′), as ν −→∞. (93)

We first exclude the possibility that X = X′. Assume X = X′ ∈ Ka0 , for some
a0 = 1, . . . , A. Then, for any neighborhood Uκ,εν of κ and any neighborhood of
X = X′, there is a configuration κν such that κν is not injective. This contradicts the
construction of local injectivity above.

Thus, one should consider the situation for whichX �= X′. AssumeX ∈ Ka0 and
X′ ∈ Ka1 for a0, a1 = 1, . . . , A. By the definition of Uκ,εν , the local representatives
of κν |Ka0

and κν |Ka1
converge uniformly to the local representatives of κ|Ka0

and
κ|Ka1

, respectively. This implies that

κν(Xν) −→ κ(X), κν(X
′
ν) −→ κ(X′), as ν −→∞. (94)

However, since for each ν, κν(Xν) = κν(X
′
ν), it follows that κ(X) = κ(X′), which

contradicts the assumption that κ is an embedding.
It is finally noted that the set of Lipschitz embeddings equipped with the

Lipschitz topology may be shown to be open in the manifold of all Lipschitz
mappings X→ S. See [8] and an application in continuum mechanics in [9].
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7 The General Framework for Global Analytic Stress
Theory

The preceding section implied that for the case where the kinematics of a material
body X is described by its embeddings in a physical space S, the collection of
configurations—the configuration space

Q := Embr (X,S) (95)

—is an open subset of the manifold of mappings Cr(X,S), for r ≥ 1. As a result,
the configuration space is a Banach manifold in its own right and

TκQ= TκCr(X,S) = TκCr(ξ), (96)

where ξ : X× S→ Xis the natural projection of the trivial fiber bundle.
In view (69), TκQ= Cr(κ∗VY), where now

VY= {v ∈ T Y= TX× TS| T ξ(v) = 0 ∈ TX}. (97)

Hence, one may make the identifications

VY= X× TS (98)

and

(κ∗VY)X = (VY)κ(X) = Tκ(X)S. (99)

A section w of κ∗τ : κ∗VY→ Xis of the form

X �−→ w(X) ∈ Tκ(X)S (100)

and may be viewed as a vector field along κ , i.e., a mapping

w : X−→ TS, such that, τ ◦ w = κ. (101)

Thus, a tangent vector to the configuration space at the configuration κ may be
viewed as a Cr -vector field along κ . This is a straightforward generalization of the
standard notion of a virtual velocity field and we summarize these observations by

TκQ= Cr(κ∗VY) = {w ∈ Cr(X, TS) | τ ◦ w = κ}. (102)

In the case of generalized continua, where ξ : Y → X need not be a
trivial vector bundle, this simplification does not apply of course. However, the
foregoing discussion motivates the definition of the configuration space for a general
continuum mechanical system specified by the fiber bundle ξ : Y→ Xas
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Q= Cr(ξ), r ≥ 1. (103)

We note that the condition that configurations are embeddings is meaningless in the
case of generalized continua.

The general framework for global analytic stress theory adopts the geometric
structure for the statics of systems having a finite number of degrees of freedom.
Once a configuration manifold Q is specified, generalized or virtual velocities are
defined to be elements of the tangent bundle, T Q, and generalized forces are defined
to be elements of the cotangent bundle T ∗Q. The action of a force F ∈ T ∗κ Q on a
virtual velocity w ∈ TκQ is interpreted as virtual power and as such, the notion of
power has a fundamental role in this formulation.

The foregoing discussion, implies that a force at a configuration κ ∈ Cr(ξ) is
an element of Cr(κ∗VY)∗—a continuous and linear functional on the Banachable
space ofCr -section of the vector bundle. Thus, in the following sections we consider
the properties of linear functionals on the space of Cr -sections of a vector bundle
W . Of particular interest is the fact that our base manifold, or body manifold, is
a manifold with corners rather than a manifold without boundary. The relation
between such functionals, on the one hand, and Schwartz distribution and de Rham
currents, on the other hand, is described. In Sect. 11 we show that the notions
of stresses and hyper-stresses emerge from a representation theorem for such
functionals and in Sect. 12 we study further the properties of stresses.

8 Duals to Spaces of Differentiable Sections of a Vector
Bundle: Localization of Sections and Functionals

As follows from the foregoing discussion, generalized forces are modeled math-
ematically as elements of the dual space Cr(π)∗ = Cr(W)∗ of the space of
Cr -sections of a vector bundle π : W → X. This section reviews the basic notions
corresponding to continuous linear functional in the dual space with particular
attention to localization properties. While we assume that our base manifold X

is compact with corners, we want to relate the nature of functionals defined on
sections over Xwith analogous settings where X is a manifold without boundary.
Thus, one can make a connection of the properties of generalized forces and objects
like distributions, de Rham currents and generalized sections on manifolds. (See,
in particular, Sect. 8.5.) As an additional motivation for considering sections over
manifolds without boundaries, it is observed that in both the Eulerian formulation
of continuum mechanics and in classical field theories, the base manifold, either
space or space-time, is usually taken as manifold without boundary. We start with
the case where Xis a manifold without a boundary and continue with the case where
bodies are modeled by compact manifolds with corners.



Global Stress Theory 101

8.1 Spaces of Differentiable Sections over a Manifold Without
Boundary and Linear Functionals

A comprehensive introduction to the subject considered here is available in the Ph.D
thesis [43] and the corresponding [10, Chapter 3]. See also [12, Chapter VI] and
[15].

Consider the space of Cr -sections of a vector bundle π : W → X, for
0 ≤ r ≤ ∞. For manifolds without boundary that are not necessarily compact, the
setting of Sect. 3.2 will not give a norm on the space of sections. Thus, one extends
the settings used for Schwartz distributions and de Rham currents to sections of a
vector bundle (see also [4, Chapter XVII]). Specifically, we turn our attention to
Crc (π), the space of test sections—Cr -sections of π having compact supports in X.

Let {(Ua, ϕa,�a)}a∈A, be a vector bundle atlas so that

(ϕa,�a) : π−1(Ua) −→ Rn ×Rm, v �−→ (Xi, vα). (104)

and let K be a compact subset of X. Consider the vector subspace Crc,K(π) ⊂
Crc (π) of sections, the supports of which are contained in K . Let al ∈ A, indicate
a finite collection of charts such that {Ual } cover K , and for each Ual let Kal,μ,
μ = 1, 2, . . . , be a fundamental sequence of compact sets, i.e., Kal,μ ⊂ Ko

al ,μ+1,
covering ϕal (Ual ) ⊂ Rn. Then, for a section w ∈ Crc,K(π), the collection of semi-
norms

‖w‖rK,μ = sup
al ,α,|I |≤r

{

sup
X∈Kal ,μ

{∣∣(wαal ),I (X)
∣
∣}
}

, (105)

induces a Fréchet space structure forC∞c,K(π). Since for each compact subsetK , one
has the inclusion mapping ιK : Crc,K(π) → Crc (π), one may define the topology
on Crc (π) as the inductive limit topology generated by these inclusions, i.e., the
strongest topology onCrc (π) for which all the inclusions are continuous. A sequence
of sections in Crc (π) converges to zero, if there is a compact subset K ⊂ X such
that the supports of all sections in the sequence are contained in K and the r-jets of
the sections converge uniformly to zero in K .

A linear functional T ∈ Crc (π)
∗ is continuous when it satisfies the following

condition. Let (χj ) be a sequence of sections of π all of which are supported in
a compact subset K ⊂ Ua for some a ∈ A. In addition, assume that the local
representatives of χj and their derivatives of all orders k ≤ r converge uniformly to
zero in K . Then,

lim
j→∞ T (χj ) = 0. (106)

Functionals in Crc (π)
∗ for a finite value of r are referred to as functionals of order r .
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For a linear functional T , the support, supp T is defined as follows. An open set
U ⊂ Xis termed a null set of T if T (χ) = 0 for any section of π with suppχ ⊂ U .
The union of all null sets,U0 is an open set which is a null set also. Thus, one defines

supp T := X\ U0. (107)

8.2 Localization of Sections and Linear Functionals
for Manifolds Without Boundaries

Let {(Ua, ϕa,�a)}a∈A be a locally finite vector bundle atlas on W and consider

EUa : Crc (π |Ua ) −→ Crc (π), (108)

the natural zero extension of sections supported in compact subsets of Ua to the
space of sections that are compactly supported in X. This is evidently a linear and
continuous injection of the subspace. On its image, the subspace of sections χ with
suppχ ⊂ Ua , we have a left inverse, the natural restriction

ρUa : ImageEUa −→ Crc (π |Ua ), (109)

a surjective mapping. However, it is well known (e.g., [28, 44, pp. 245–246]) that
the inverse ρUa is not continuous.

The dual,

E∗Ua : Crc (π)∗ −→ Crc (π |Ua )∗, (110)

is the restriction of functionals on Xto sections supported on Ua , and as ρUa is not
continuous, E∗Ua is not surjective (loc. cit.). We will write

T |Ua := T̃a := E∗UaT . (111)

We also note that the restrictions {T̃a} satisfy the condition

T̃a(χ |Ua ) = T̃b(χ |Ub) = T (χ) (112)

for any section χ supported in Ua ∩ Ub.
Consider the mapping

s :
⊕

a∈A
Crc (π |Ua ) −→ Crc (π) (113)

given by

s(χ1, . . . , χa, . . . ) :=
∑

a∈A
EUa (χa). (114)
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Due to the overlapping between domains of definition, the mapping s is not
injective. However, s is surjective because using a partition of unity, {ua}, which
subordinate to this atlas, for each section, χ , uaχ is a compactly supported in Ua
and χ =∑a uaχ . Hence, the dual mapping,

s∗ : Crc (π)∗ −→
⊕

a∈A
Crc (π |Ua )∗, (115)

given by,

(s∗T )a := E∗UaT = T |Ua , s∗T (χ1, . . . ) = T
(∑

a∈A
EUa (χa)

)
, (116)

is injective. In other words, a functional is determined uniquely by the collection of
its restrictions. Note that no compatibility condition is imposed above on the local
sections {χa}.

Since {T̃a} ∈ Image s∗ satisfy the compatibility condition (112), s∗ is not
surjective. However, it is easy to see that Image s∗ is exactly the subspace of⊕

a∈A Crc (π |Ua )∗ containing the compatible collections of local functionals. For
let {T̃a} be local functionals that satisfy (112) and {ua} a partition of unity. Consider
the functional T ∈ Crc (π)∗ given by

T (χ) =
∑

a∈A
T̃a(uaχ). (117)

If χ is supported in Ub for b ∈ A, then

T (χ) =
∑

a∈A
T̃a(uaχ), Ua ∩ Ub �= ∅,

=
∑

a∈A
T̃b(uaχ), by (112),

= T̃b
(∑

a∈A
uaχ
)
,

= T̃b(χ).

(118)

Thus, T is a well-defined functional on π and it is uniquely determined by the
collection {T̃a}—its restrictions, independently of the partition of unity chosen.

As mentioned above, a partition of unity induces an injective right inverse to s in
the form

p : Crc (π) −→
⊕

a∈A
Crc (π |Ua ), p(χ) = {(uaχ)|Ua }, (119)



104 R. Segev

that evidently satisfies s ◦ p = ı. It is noted that p is not a left inverse. In particular,
for a section χa supported in Ua , with χb = 0 for all b �= a,

(p ◦ s{χ1, . . . })a = uaχa (120)

which need not be equal to χa . Thus, p depends on the partition of unity.
For the surjective dual mapping

p∗ :
⊕

a∈A
Crc (π |Ua )∗ −→ Crc (π)

∗, (121)

p∗(T1, . . . ) =
∑

a∈A
ua(ρ

∗
Ua
Ta), p∗(T1, . . . )(χ) =

∑

a∈A
Ta((uaχ)|Ua ),

(122)

we note that p∗ ◦ s∗ = Id, while s∗ ◦ p∗ �= Id, in general. The surjectivity of p∗
implies that every functional T may be represented by a non-unique collection {Ta}
in the form

T (χ) =
∑

a∈A
Ta((uaχ)|Ua ), T =

∑

a∈A
uaTa. (123)

which depends on the partition of unity. Here, uaT denotes the functional defined
by uaT (χ) = T (uaχ).

Nevertheless, we may restrict p∗ to the subspace of compatible local functionals,
Image s∗, i.e., those satisfying (112). Thus, the restriction

p∗|Image s∗ : Image s∗ −→ Crc (π)
∗, (124)

is an isomorphism (which depends on the partition of unity). It follows that

s∗ ◦ p∗ = Id : Image s∗ −→ Image s∗. (125)

(For additional details, see [4, pp. 244–245], which is restricted to the case of de
Rham currents, and [10, pp. 234–235].)

8.3 Localization of Sections and Linear Functionals for
Manifolds with Corners

In analogy with Sect. 8.2, we consider the various aspects of localization relevant to
the case of compact manifolds with corners. Thus, the base manifold for the vector
bundle π : W −→ Xis assumed to be a manifold with corners and we are concerned
with elements ofCr(π)∗ acting on sections that need not necessarily vanish together
with their first r jets on the boundary of X.
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In [26, pp. 10–11], Palais proves what he refers to as the “Mayer–Vietoris
Theorem.” Adapting the notation and specializing the theorem to the Cr -topology,
the theorem may be stated as follows.

Theorem 1 Let Xbe a compact smooth manifold and let K1, . . . , KA be compact
n-dimensional submanifolds of Xwhose interiors cover X(such as in a precompact
atlas). Given the vector bundle π , set

C̃r (π) :=
{

(χ1, . . . , χA) ∈
A⊕

a=1

Cr(π |Ka )
∣
∣
∣χa|Kb = χb|Ka

}

, (126)

and define

ι : Cr(π) −→ C̃r (π), by ι(χ) = (χ |K1, . . . , χ |KA). (127)

Then, ι is an isomorphism of Banach spaces.

We will refer to the condition in (126) as the compatibility condition for local
representatives of sections. The most significant part of the proof is the construction
of ι−1. Thus, one has to construct a field w when a collection (w1, . . . , wA),
satisfying the compatibility condition, is given. This is done using a partition of
unity which is subordinate to the interiors of K1, . . . , KA.

It is noted that the situation may be viewed as “dual” to that described in
Sect. 8.2. For functionals on spaces of sections with compact supports defined on
a manifold without boundary, there is a natural restriction of functionals, E∗Ua , and

the images {T̃a} of a functional T under the restrictions satisfy the compatibility
condition (112). The collection of restrictions determine T uniquely. Here, it follows
from Theorem 1 that we have a natural restriction of sections, and the restricted
sections satisfy the compatibility condition (126). The restrictions {χ |Ka } also
determine the global section χ , uniquely.

In Sect. 8.2, we observed that sections with compact supports on X cannot be
“restricted” naturally to sections with compact supports on the various Ua . Such
restrictions depend on the chosen partition of unity. The analogous situation for
functionals on manifolds with corners is described below.

Corollary 1 Let T ∈ Cr(π)∗, then T may be represented (non-uniquely) by
(T1, . . . , TA), Ta ∈ Cr(π |Ka )∗, in the form

T (w) =
A∑

a=1

Ta(w|Ka ). (128)

Indeed, as ι in Theorem 1 is an embedding of Cr(π) into a subspace of⊕A
a=1 C

r(π |Ka ), one has a surjective

ι∗ :
A⊕

a=1

Cr(π |Ka )∗ −→ Cr(π)∗, (129)



106 R. Segev

given by

ι∗(T1, . . . , TA)(w) =
A∑

a=1

Ta(w|Ka ). (130)

8.4 Supported Sections, Static Indeterminacy and Body Forces

The foregoing observations are indicative of the fundamental problem of continuum
mechanics—that of static indeterminacy. Given a force F on a body as an element
of Cr(π)∗ for some vector bundle π : W → X, and a sub-body R ⊂ X, there is
no unique restriction of F to a force on R in Cr(π |R)∗. This problem is evident
for standard continuum mechanics in Euclidean spaces and continues all the way to
continuum mechanics of higher order on differentiable manifolds.

Adopting the notation of [20], denote by Ċr (π) the space of sections of π , the
r-jet extensions of which vanish on all the components of the boundary ∂X. Let X̃
be a manifold without boundary extending Xand let

π̃ : W̃ −→ X̃ (131)

be an extension of π . Then, we may use zero extension to obtain an isomorphism

Ċr (π) ∼= {χ ∈ Crc (π̃) | suppχ ⊂ X). (132)

If R is a sub-body of X, then, one has the inclusion

Ċr (π |R) ↪−→ Ċr (π). (133)

The dual Ċr (π)∗ to the space of sections supported in X is the space of
extendable functionals. From [20, Proposition 3.3.1] it follows that the restriction

ρ : Cr(π)∗ −→ Ċr (π)∗. (134)

is surjective and its kernel is the space of functionals on X̃supported in ∂X.
Thus, if we interpret T ∈ Cr(π)∗ as a force, ρ(T ) ∈ Ċr (π)∗ is interpreted as the

corresponding body force. For a sub-body R, using the dual of (133), one has

ρR : Ċr (π)∗ −→ Ċr (π |R)∗. (135)

We conclude that even in this very general settings, body forces of any order may
be restricted naturally to sub-bodies.
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8.5 Supported Functionals

Distributions on closed subsets of Rn have been considered by Glaeser [11],
Malgrange [19, Chapter 7] and Oksak [25]. The basic tool in the analysis of
distributions on closed sets is Whitney’s extension theorem [45] (see also [14, 31])
which guarantees that a differentiable function on a closed subset of Rn may
be extended to a compactly supported smooth function on Rn. For the case of
manifolds with corners, the extension mapping between the corresponding function
spaces is continuous. (See discussion and counterexamples in [23, Section 4.3].) The
extension theorem implies that restriction of functions is surjective and so, the dual
of the restriction mapping associates a unique distribution in an open subset of Rn

with a linear functional defined on the given closed set. Distributions and functionals
on manifold with corners have been considered by Melrose [20, Chapter 3], whom
we follow below.

Thus, let T ∈ Cr(π)∗ and let π̃ : W̃ → X̃be an extension of the vector bundle
π : W → X, where X̃ is a manifold without a boundary. The Whitney–Seeley
extension

E : Cr(π) −→ Crc (π̃) (136)

is a continuous injection. It follows that the natural restriction

ρX : Crc (π̃) −→ Cr(π), (137)

its left inverse satisfying ρX◦ E = Id, is surjective and the inclusion

ρ∗X : Cr(π)∗ −→ Crc (π̃)
∗ (138)

is injective. In other words, each functional T ∈ Cr(π)∗, determines uniquely a
functional T̃ = ρ∗

X
T satisfying

T̃ (χ̃) = T (χ̃ |X). (139)

The last equation implies also that T̃ (χ̃) = 0 for any section χ̃ supported in X̃\X.
Hence, T̃ is supported in X.

Conversely, every T̃ ∈ Crc (π̃)∗, with supp T̃ ⊂ X represents a functional T ∈
Cr(π)∗, i.e., T̃ = ρ∗

X
T . This may be deduced as follows. For any such T̃ , consider

T = E∗T̃ . One needs to show that T̃ = ρ∗
X
◦ E∗(T̃ ). Let χ̃ ∈ Crc (π̃), then,

(T̃ − ρ∗X◦ E∗(T̃ ))(χ̃) = T̃ (χ̃)− T̃ (E ◦ ρX(χ̃)),
= T̃ (χ̃ − E ◦ ρX(χ̃)).

(140)
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It is observed that χ̃−E◦ρX(χ̃) vanishes on Xso that supp(χ̃−E◦ρX(χ̃) ⊂ X̃\X.
Since supp T̃ ⊂ X, T̃ (χ ′) = 0 for any section χ ′ supported in X̃\ X. However,

approximating the section χ̃ − E ◦ ρX(χ̃), supported in the closure, X̃\X, by
sections supported in X̃\X, one concludes that T̃ (χ̃ − E ◦ ρX(χ̃)) = 0 also.

Due to this construction, Melrose [20, Chapter 3] refers to such functionals
(distributions) as supported. It is noted that such functionals of compact support
are of a finite order r .

8.6 Density Dual and Smooth Functionals

A simple example for functionals on spaces of sections of a vector bundle π : W →
Xis provided by smooth functionals. Consider, in analogy with the dual of a vector
bundle, the vector bundle of linear mappings into another one-dimensional vector
bundle, that of n-alternating tensors. Thus, for a given vector bundle, W , we use the
notation (see Atiyah and Bott [1])

W ′ = L(W,∧n
T ∗X

) ∼= W ∗ ⊗∧n
T ∗X. (141)

Let A : W1 → W2 be a vector bundle morphism over X. Then, in analogy with
the dual mapping, one may consider

A′ : W ′
2 −→ W ′

1, given by f �−→ f ◦ A. (142)

It is also noted that we have

(W ′)′ = (W ∗ ⊗∧n
T ∗X)′

= (W ∗ ⊗∧n
T ∗X)∗ ⊗∧n

T ∗X,

= W ⊗∧n
TX⊗∧n

T ∗X,

(143)

and as
∧n
TX⊗∧n

T ∗Xis isomorphic with R, one has a natural isomorphism

(W ′)′ ∼= W. (144)

For the vector bundles W , U ,

(W ⊗ U)′ ∼= W ∗ ⊗ U∗ ⊗∧n
T ∗X∼= W ∗ ⊗ U ′. (145)

We will refer toW ′ as the density-dual bundle and toA′ as the density-dual mapping.
As an example, for the case W = ∧p

T ∗X, we have an isomorphism (see
Sect. 2.4),

e� :∧n−p
T ∗X−→ (

∧p
T ∗X)′, (146)
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given by

e� (ω)(ψ) = ω ∧ ψ. (147)

Smooth functionals may be induced by smooth sections of W ′. For a section S
of W ′, and a section χ of W , let S · χ be the n-form

S · χ(X) = S(X)(χ(X)). (148)

The smooth functional TS induced by S is defined by

TS(χ) :=
∫

X
S · χ. (149)

8.7 Generalized Sections and Distributions

Let π0 : W0 → Xbe a vector bundle and consider the case where the vector bundle
π above is set to be

π : W ′
0 := L

(
W0,
∧n
T ∗X

) ∼= W ∗
0 ⊗
∧n
T ∗X−→ X. (150)

Thus, the corresponding functionals on sections of π are elements of

Cr(π)∗ = Cr (L(W0,
∧n
T ∗X

))∗ ∼= Cr (W ∗
0 ⊗
∧n
T ∗X

)∗
. (151)

In this case, smooth functionals are represented by smooth sections of

L
(
W,
∧n
T ∗X

) = L(W ∗
0 ⊗
∧n
T ∗X,

∧n
T ∗X

)
,

∼= (W ∗
0 ⊗
∧n
T ∗X

)∗ ⊗∧n
T ∗X,

∼= W0 ⊗∧n
TX⊗∧n

T ∗X,
∼= W0.

(152)

One concludes that smooth functionals in Cr(W ∗
0 ⊗

∧n
T ∗X)∗ are represented by

sections of W0. It is natural therefore to refer to elements of

C−r (W0) := Cr(W ′
0)
∗ (153)

as generalized sections of W0 (see [1, 10, 12], [15, p. 676]).
In the particular case where W0 = X× R is the natural line bundle, smooth

functionals are represented by real valued functions on X. Consequently, elements of

Cr
(
R⊗∧n

T ∗X
)∗ = Cr (∧n

T ∗X
)∗ (154)

are referred to as generalized functions.
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The apparent complication in the definition of generalized sections using the den-
sity dual is justified in the sense that each element inC−k(W0)may be approximated
by a sequence of smooth functionals induced by sections of W ′

0. (See [10, p. 241].)
In the literature, the term section distributions is used in different ways in this

context. For example, in [10] and [15, p. 676], W0-valued distributions are defined
as elements of Cr

(
W ′

0

)∗, i.e., what are referred to here as generalized sections of
W0. (In [1, 2] they are referred to as distributional sections.) On the other hand,
in [12], distributions are defined as generalized sections of

∧n
T ∗X—elements of

Cr(X)∗. See further comments on this issue and the corresponding terms section
distributional densities and generalized densities in [10, 12, 15].

9 de Rham Currents

For a manifold without boundary X, de Rham currents (see [5, 7, 29]) are functionals
corresponding to the case of the vector bundle

π :∧p
T ∗X−→ X (155)

so that test sections are smooth p-forms having compact supports. Thus, a p-current
of order r on Xis a continuous linear functional on Crc (

∧p
T ∗X).

A particular type of p-currents, smooth currents, are induced by differential
(n − p)-forms. Such an (n − p) form, ω, induces the currents ωT and Tω =
(−1)p(n−p)ωT by

ωT (ψ) =
∫

X
ω ∧ ψ, Tω(ψ) =

∫

X
ψ ∧ ω. (156)

Another simple p-current, TZ is induced by an oriented p-dimensional subman-
ifold Z⊂ X. It is naturally defined by

TZ(ψ) =
∫

Z
ψ. (157)

These two examples illustrate the two points of views on currents. On the one
hand, the example of the current ωT suggests that a current in Crc (

∧p
T ∗X)∗ is

viewed as a generalized (n− p)-form. With this point of view in mind, elements of
Crc (
∧p

T ∗X) are referred to as currents of degree n−p. Consequently, the space of
p-currents on Xis occasionally denoted by

C−r (
∧n−p

T ∗X) = Crc (
∧p

T ∗X)∗. (158)
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On the other hand, the example of the current TZ induced by a p-dimensional
manifolds Z, suggests that currents be viewed as a geometric object of dimension p.
Thus, an element of Crc (

∧p
T ∗X)∗ is referred to as a p-dimensional current.

9.1 Basic Operations with Currents

The contraction operations of a (p + q)-current T and a q-form ω, yields the p-
currents defined by

(T �ω)(ψ) = T (ψ ∧ ω) and (ω� T )(ψ) = T (ω ∧ ψ), (159)

so that

T �ω = (−1)pqω� T . (160)

Note that our notation is different from that of [5] and different in sign form that
of [7]. In particular, given a p-current T , any p-form ψ induces naturally a zero-
current

T · ψ = T �ψ, so that (T · ψ)(u) = T (uψ). (161)

The p-current ωT defined above can be expressed using contraction in the form

ωT = ω� TX. (162)

For a p-current T and a q-multi-vector field ξ , the (p + q)-currents ξ ∧ T and
T ∧ ξ are defined by

(ξ ∧ T )(ψ) := T (ξ�ψ), (T ∧ ξ)(ψ) := T (ψ� ξ), (163)

for a (p + q)-form ψ . Using, ξ�ψ = (−1)qpψ� ξ , one has

ξ ∧ T = (−1)pqT ∧ ξ, (164)

in analogy with the corresponding expression for multi-vectors. Thus, the wedge
product of a p-current and an r-multi-vector is an (r + p)-current. Note that a real
valued function u defined on Xmay be viewed both as a zero-form and as a zero-
multi-vector. Hence, we may write uT for any of the four operations defined above
so that (uT )(ψ) = T (uψ).

The boundary operator

∂ : C−r (∧n−p
T ∗X) −→ C−(r+1)(

∧n−(p−1)
T ∗X), (165)

defined by

∂T (ψ) = T (dψ), (166)
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is a linear and continuous operator. In other words, the boundary of a p-current is a
(p − 1)-current. In particular, for a smooth current, ωT represented by the (n− p)-
form ω, one has

∂ ωT (ψ) =
∫

X
ω ∧ dψ,

= (−1)n−p
∫

X
d(ω ∧ ψ)− (−1)n−p

∫

X
dω ∧ ψ,

= (−1)n−p+1Tdω(ψ).

(167)

Hence,

∂ ωT = (−1)n−p+1Tdω. (168)

Similarly,

∂Tω = (−1)p+1Tdω. (169)

In order to strengthen further the point of view that a p-current is a generalized
(n− p)-form, the exterior derivative of a p-current dT is defined by

dT = (−1)n−p+1∂T . (170)

Thus, in the smooth case,

d ωT = Tdω. (171)

In addition, Stokes’s theorem implies that for the p-current TZ induced by the
p-dimensional submanifold with boundary Z, the boundary, a (p − 1)-current, is
given by

∂TZ= T∂Z. (172)

It is quite evident, therefore, that the notion of a boundary generalizes and unites
both the exterior derivative of forms and the boundaries of manifolds.

9.2 Local Representation of Currents

We consider next the local representation of de Rham currents in coordinate
neighborhoods.
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9.2.1 Representation by 0-Currents

Let R = E∗UaT be the restriction of a p-current T to forms supported in a particular
coordinate neighborhood—a local representative of T . Writing

R(ψ) = R(ψλdXλ), |λ| = p,
= (dXλ�R)(ψλ)

(173)

(we could have used R� dXλ just the same as the ψλ are real valued functions), one
notes that locally

R(ψ) = Rλ(ψλ), where Rλ := dXλ�R. (174)

Using the exterior product of a multi-vector field ξ and a current in (163), we may
write

R(ψ) = Rλ(∂λ�ψ) = ∂λ ∧ Rλ(ψ), (175)

and so a current may be represented locally in the form

R = ∂λ ∧ Rλ. (176)

This representation suggests that T be interpreted as a generalized multi-vector
field (cf. [46]).

In the sequel, when we refer to local representative of a current T , we will often
keep the same notation, T , and it will be implied that we consider the restriction of
T to forms (or sections, in general) supported in a generic coordinate neighborhood.

9.2.2 Representation by n-Currents

Alternatively (cf. [5, p. 36]), for a p-current R defined in a coordinate neighborhood
and λ̂ with |λ̂| = n− p, consider the n-currents

R
λ̂
:= ∂

λ̂
∧ R, so that R

λ̂
(θ) = R(∂

λ̂
� θ). (177)

Then, for every p-form ω,

(dXλ̂�R
λ̂
)(ω) = R

λ̂
(dXλ̂ ∧ ω),

= R(∂
λ̂
� (dXλ̂ ∧ ω)),

= R
λ̂
(ελ̂μωμdX),

(178)
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where we used

dXλ̂ ∧ ω = ελ̂μωμdX. (179)

Also,

(∂
λ̂
� dX)(∂μ) = dX(∂

λ̂
∧ ∂μ),

= ε
λ̂μ
,

= ε
λ̂ν

dXν(∂μ),

(180)

implies

∂
λ̂
� dX = ε

λ̂ν
dXν, (181)

and so,

∂
λ̂
� (dXλ̂ ∧ ω) = ωλdXλ = ω, (182)

as expected. Hence,

(dXλ̂�R
λ̂
)(ω) = R(ω), (183)

and we conclude that R may be represented by the n-currents

R
λ̂
:= ∂

λ̂
∧ R, in the form R = dXλ̂�R

λ̂
, (184)

with

R(ω) = R
λ̂
(dXλ̂ ∧ ω) = ελ̂μR

λ̂
(ωμdX) = ελ̂λR

λ̂
(ωλdX). (185)

(It is recalled that in the last expression, summation is implied where λ and λ̂ are
considered as distinct indices.) This representation suggests again that a p-current
T be interpreted as a generalized (n − p)-form. In particular, an n-current is a
generalized function and is often referred to as a distribution on the manifold (e.g.,
[20, Chapter 3]).

Remark 3 It is noted that one may set

R′
λ̂
:= R ∧ ∂

λ̂
. (186)

Using (164) for the (n− p)-multi-vector ∂
λ̂

R′
λ̂
= (−1)p(n−p)R

λ̂
. (187)
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In addition, by (184) and (160), for the n-current R
λ̂

and the (n− p)-form dXλ̂,

R = R′
λ̂
� dXλ̂, (188)

and

R(ω) = R′
λ̂
(ω ∧ dXλ̂) =

∑

λ

ελλ̂R′
λ̂
(ωλdX). (189)

10 Vector Valued Currents

A natural extension of the notions of generalized sections and de Rham currents
yields vector valued currents that will be used to model stresses. Vector valued
currents and their local representations will be considered in this section.

10.1 Vector Valued Forms

Let π : W → Xbe a given vector bundle whose typical fiber is m-dimensional. We
will refer to sections of

L
(
W,
∧p

T ∗X
) ∼= W ∗ ⊗∧p

T ∗X. (190)

as vector valued p-forms, which is short for the more appropriate vector bundle
valued p-form (cf. [29, p. 340]). Thus in particular, sections of the density dual,
W ′ = W ∗ ⊗∧n

T ∗Xare vector valued forms. In the mechanical context, we will
also be concerned with co-vector valued forms, that is, sections of

L
(
W ∗,

∧p
T ∗X

) ∼= W ⊗∧p
T ∗X. (191)

The terminology follows from the observation that using the isomorphism
induced by transposition, i.e.,

∧p
TX⊗ W ∼= W ⊗ ∧p

TX, a co-vector valued
form may be viewed as a section of

∧p
T ∗X⊗W ∼=∧p

(TX,W) ∼= L(∧p
TX,W). (192)

Given a co-vector valued p-form, χ , and a vector valued (n − p)-form, f , one
can define the bilinear action f ∧̇χ by setting

(g ⊗ ω)∧̇(w ⊗ ψ) := g(w)ω ∧ ψ, (193)
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for sections g, w, ω, ψ of W ∗, W ,
∧n−p

T ∗X,
∧p

T ∗X, respectively. Thus, ∧̇
induces a bilinear mapping

∧̇� : (W ∗ ⊗∧n−p
T ∗X)× (W ⊗∧p

T ∗X) −→∧n
T ∗X, (194)

or a linear

∧̇� : W ∗ ⊗∧p
T ∗X⊗W ⊗∧p

T ∗X−→∧n
T ∗X. (195)

The mapping ∧̇� gives rise to an extension of the isomorphism e� considered above
to an isomorphism (we keep the same notation)

e� : W ∗ ⊗∧n−p
T ∗X−→ (

W ⊗∧p
T ∗X

)′
, e� (f )(χ) = f ∧̇χ. (196)

Let {(Ua, ϕa,�a)}a∈A be a vector bundle trivialization for the vector bundle π :
W → Xso that

�a : π−1(Ua) −→ Ua ×W , (197)

where W is the m-dimensional typical fiber. Given a basis in W , let {eα}mα=1 and
{eα}mα=1 be the local bases and dual bases induced by �−1

a on π−1(Ua). Then, a
co-vector valued form χ and a vector valued p-form f are represented locally in
the forms

χαλ eα ⊗ dXλ, and fαλe
α ⊗ dXλ, |λ| = p, (198)

respectively.

10.2 Vector Valued Currents

We now substitute the vector bundle W ∗ ⊗ ∧p
T ∗X for the vector bundle W0 in

definition (153) of generalized sections. Thus,

C−r (W ∗ ⊗∧p
T ∗X) = Cr((W ∗ ⊗∧p

T ∗X)′)∗. (199)

Using the isomorphism e� as defined above, it is concluded that we may make the
identifications

C−r (W ∗ ⊗∧p
T ∗X) = Cr(W ⊗∧n−p

T ∗X
)∗ (200)
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(see [29, p. 340]). Comparing the last equation to (190) we may refer to elements
of these spaces as generalized vector valued p-forms or as vector valued (n − p)-
currents.

A smooth vector valued (n−p)-current may be represented by aW ∗⊗∧n−p
TX

valued n-form—a smooth section S of W ∗ ⊗∧n−p
TX⊗∧n

T ∗Xby

χ �−→
∫

X
S · χ, (201)

where it is noted that S · χ is an n-form. Locally, for |μ| = n− p,

S = Sμα eα ⊗ ∂μ ⊗ dX, S · χ = Sμα χαμdX. (202)

Alternatively, a smooth element of C−r
(
W ∗,

∧p
T ∗X

)
is induced by a section Ŝ

of W ⊗∧p
T ∗Xin the form

χ �−→
∫

X
Ŝ∧̇χ, (203)

for every Cr -section χ of W ⊗∧n−p
T ∗X. Locally, for

∣
∣μ̂
∣
∣ = p, |λ| = n− p,

Ŝ = Ŝαμ̂eα ⊗ dXμ̂, Ŝ∧̇χ = Ŝαμ̂χαλ dXμ̂ ∧ dXλ = ελ̂λŜ
αλ̂
χαλ dX. (204)

Comparing the last two expressions for the resulting densities, one concludes that

Ŝ
αλ̂
= ε

λ̂λ
Sλα. (205)

Globally, it follows that

Ŝ = C�(S), (206)

where

C� : W ∗ ⊗∧n−p
TX⊗∧n

T ∗X−→ W ∗ ⊗∧p
T ∗X (207)

is induced by the right contraction θ� η1(η2) = θ(η2 ∧ η1). What determined the
direction of the contraction was the choice of action of Ŝ in (196) as in Remark 3.
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10.3 Local Representation of Vector Valued Currents

We now consider the local representation of the restriction of a vector valued p-
current to vector valued forms supported in some given vector bundle chart. We
introduce first some basic operations.

10.3.1 The Inner Product of a Vector Valued Current and a Vector Field

Given a vector valued current T in Cr(W ⊗∧p
T ∗X)∗ and a Cr -section w of W ,

we define the (scalar) p-current T · w by

T · w(ω) = T (w ⊗ ω). (208)

For local representation, one may consider the p-currents

Tα := T · eα. (209)

Thus, in analogy with (173) and (174) we have

T (w ⊗ ω) = T (wαeα ⊗ ω),
= (T · eα)(wαω),
= Tα(wαω).

(210)

10.3.2 The Tensor Product of a Current and a Co-vector Field

A (scalar) p-current, T , and a Cr -section of W ∗, g, induce a vector valued current
g ⊗ T ∈ Cr(W ⊗∧p

T ∗X
)∗ by setting

(g ⊗ T )(w ⊗ ω) := T ((g · w)ω). (211)

In particular, locally,

(eα ⊗ T )(w ⊗ ω) := T (wαω). (212)

Utilizing this definition, one may write for local representatives

eα ⊗ Tα(w ⊗ ω) = Tα(wαω),
= T (wαeα ⊗ ω),

(213)

and so, complementing (210), one has

T = eα ⊗ Tα. (214)
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10.3.3 Representation by 0-Currents

Proceeding as in Sect. 9.2, the p-current T may be represented by the 0-currents

T λα := dXλ� Tα = dXλ� (T · eα), in the form T (χ) = T λα (χαλ ). (215)

Using (163) and (176), we finally have

T = eα ⊗ (∂λ ∧ T λα ). (216)

In the case where the 0-currents T λα are represented locally by smooth n-forms
SλαdX, one has

T (χ) =
∫

U

Sλαχ
α
λ dX (217)

in accordance with (202).

10.3.4 The Exterior Product of a Vector Valued Current and a
Multi-Vector Field

Next, in analogy with Sect. 9.2, for a vector valued p-current T and a q-multi-vector
η, q ≤ n− p, consider the vector valued (p + q)-current η ∧ T defined by

(η ∧ T )(w ⊗ ω) := T (w ⊗ (η�ω)). (218)

In particular, for multi-indices λ̂, |λ̂| = n − p, we define locally the vector valued
n-currents

T
λ̂
:= ∂

λ̂
∧ T , T

λ̂
(w ⊗ θ) = T (w ⊗ (∂

λ̂
� θ)), (219)

so that

T
λ̂
(w ⊗ dX) = T (w ⊗ (∂

λ̂
� dX)). (220)

10.3.5 The Contraction of a Vector Valued Current and a Form

Also, for a vector valued p-current T and a q-form ψ , q ≤ p, define the vector
valued (p − q)-currents ψ� T and T �ψ as

(ψ� T )(w ⊗ ω) := T (w ⊗ (ψ ∧ ω)) (221)

and

(T �ψ)(w ⊗ ω) := T (w ⊗ (ω ∧ ψ)), (222)
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so that T �ψ = (−1)pqψ� T . In the case where q = p, we obtain an element
ω� T ∈ Cr(W)∗, a vector valued 0-current, satisfying

(ω� T )(w) = T (w ⊗ ω). (223)

Locally, one may consider the functionals—vector valued 0-currents,

T λ := dXλ� T , T λ(w) = T (w ⊗ dXλ), |λ| = p. (224)

Hence,

T (w ⊗ ω) = T λ(ωλw). (225)

is a local representation of the action of T using vector valued 0-currents. It is
implied by the identity T λ(ωλw) = ∂λ ∧ T λ(w ⊗ ω), that

T = ∂λ ∧ T λ. (226)

10.3.6 Representation by n-Currents

Next, for a local basis dXλ̂ of
∧n−p

T ∗X, using (219) and (223),

(dXλ̂� T
λ̂
)(w ⊗ ω) = T

λ̂
(w ⊗ (dXλ̂ ∧ ω)),

= T (w ⊗ (∂
λ̂
� (dXλ̂ ∧ ω))).

(227)

Following the same procedure as that leading to (184) and (185), one concludes
that the vector valued p-current T may be represented locally by the vector valued
n-currents T

λ̂
in the form

T = dXλ̂� T
λ̂
, (228)

and

T (w ⊗ ω) = T
λ̂
(w ⊗ (dXλ̂ ∧ ω)) = ελ̂λT

λ̂
(ωλw ⊗ dX). (229)

Using (208) and (214), we may define the (scalar) n-currents

T
αλ̂
:= T

λ̂
· eα, so that T

λ̂
= eα ⊗ T

αλ̂
, (230)

and

T
αλ̂
(θ) = T

λ̂
(eα ⊗ θ) = T (eα ⊗ (∂λ̂� θ)). (231)

Considering the p-currents Tα in (209), the local components (Tα)λ̂ are defined by
(Tα)λ̂ = ∂λ̂ ∧ (T · eα), hence,
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(Tα)λ̂(θ) = ∂λ̂ ∧ (T · eα)(θ),
= (T · eα)(∂λ̂� θ),
= T (eα ⊗ (∂λ̂� θ)),

(232)

and we conclude that

T
αλ̂
= (Tα)λ̂. (233)

Thus, Eqs. (228) and (229) may be rewritten as

T = dXλ̂� (eα ⊗ T
αλ̂
), (234)

and

T (w ⊗ ω) = T
αλ̂
(wα(dXλ̂ ∧ ω)),

= ελ̂λT
αλ̂
(ωλw

αdX),

= ελ̂λdX� T
αλ̂
(ωλw

α),

(235)

Comparing the last equation with (215) we arrive at

dX� T
αλ̂
= ε

λ̂λ
T λα , T

αλ̂
= ε

λ̂λ
∂X ∧ T λα . (236)

In the smooth case, the n-currents T
αλ̂

are represented by functions Ŝ
αλ̂

that make
up the vector valued (n− p)-form

Ŝ = Ŝαμ̂eα ⊗ dXμ̂ (237)

as in (203) and (204).

Remark 4 In summary, the representation by zero currents (e.g., (217)) corresponds
to viewing the vector valued current as an element of Cr(W ⊗ ∧p

T ∗X)∗ =:
C−r (W ∗ ⊗∧p

TX⊗∧n
T ∗X). On the other hand, the representation as in (217,

237) corresponds to the point of view that by the isomorphism of
∧p

TX⊗∧n
T ∗X

with
∧n−p

T ∗X,

Cr(W ⊗∧p
T ∗X)∗ ∼= C−r (W ∗ ⊗∧n−p

T ∗X) (238)

Remark 5 In the foregoing discussion we have made special choices and used, for
example, the definitions, T

λ̂
:= ∂

λ̂
∧ T and T λ := dXλ� T rather than T ′

λ̂
:= T ∧ ∂

λ̂

and T ′λ := T � dXλ, respectively. The correspondence between the two schemes is
a natural extension of Remark 3. In particular, ε

λ̂λ
will be replaced by ε

λλ̂
.
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11 The Representation of Forces by Hyper-Stresses
and Non-holonomic Stresses

11.1 Stresses and Non-holonomic Stresses

We recall that the tangent space TκCr(ξ) to the Banach manifold of Cr -sections
of the fiber bundle ξ : Y→ X at the section κ : X → Ymay be identified
with the Banachable space Cr(κ∗VY) of sections of the pullback vector bundle
κ∗τY : κ∗VY −→ X. Elements of the tangent space at κ to the configuration
manifold represent generalized velocities of the continuous mechanical system (cf.
[23, Section 5.8]). Consequently, a generalized force is modeled mathematically by
and element F ∈ Cr(κ∗VY)∗. The central message of this section is that although
such functionals cannot be restricted naturally to sub-bodies of X, as discussed in
Sect. 8.3, forces may be represented, non-uniquely, by stress objects that enable
restriction of forces to sub-bodies. In order to simplify the notation, we will consider
a general vector bundle π : W → X, as in Sect. 3, and the notation introduced there
will be used throughout. The construction is analogous to the representation theorem
for distributions of finite order (e.g., [29, p. 91] or [44, p. 259]).

Consider the jet extension linear mapping

j r : Cr(π) −→ C0(πr) (239)

as in Sect. 3.3. As noted, j r is an embedding and under the norm induced by an
atlas, it is even isometric. Evidently, due to the compatibility constraint, Image j r is
a proper subset of C0(πr) and its complement is open. Hence, the inverse

(j r )−1 : Image j r −→ Cr(π) (240)

is a well-defined linear homeomorphism. Given a force F ∈ Cr(π)∗, the linear
functional

F ◦ (j r )−1 : Image j r −→ R (241)

is a continuous and linear functional on Image j r . Hence, by the Hahn–Banach
theorem, it may be extended to a linear functional ς ∈ C0(πr)∗. In other words,
the linear mapping

j r∗ : C0(πr)∗ −→ Cr(π)∗ (242)

is surjective.
By the definition of the dual mapping, ς represents a force F , i.e.,

j r∗ς = F, (243)
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if and only if,

F(w) = ς(jrw) (244)

for all Cr -virtual velocity fields w. The object ς ∈ C0(πr)∗ is interpreted as a
generalization of the notion of hyper-stress in higher-order continuum mechanics
and will be so referred to. For r = 1, ς is a generalization of the standard
stress tensor. The condition (244), resulting from the representation theorem, is a
generalization of the principle of virtual work as it states that the power expended
by the force F for a virtual velocity field w is equal to the power expended by
the hyper-stress for j rw—containing the first r derivatives of the velocity field.
Accordingly, Eq. (243) is a generalization of the equilibrium equation of continuum
mechanics.

It is noted that ς is not unique. The non-uniqueness originates from the fact that
the image of the jet extension mapping, containing the compatible jet fields, is not
a dense subset of C0(πr). Thus, the static indeterminacy of continuum mechanics
follows naturally from the representation theorem.

In view of (61), the same procedure applies if we use the non-holonomic jet
extension ĵ : Cr(π) → C0(π̂ r ). A force F may then be represented by a non-
unique, non-holonomic stress ς̂ ∈ C0(π̂)∗ in the form

F = ĵ r∗ς̂ . (245)

The mapping C0(ιr ) of Sect. 3.4 is an embedding. Hence, a hyper-stress ς may be
represented by some non-unique, non-holonomic stress ς̂ in the form

ς = C0(ιr )∗(ς̂), (246)

and in the following commutative diagram all mappings are surjective.

C0(πr)*ˆCr(π)* C0(πr)*

( jr)*ˆ

jr* C0(ιr)*
(247)

11.2 Smooth Stresses

In view of the discussion in Sect. 8.7, hyper-stresses are elements of

C0(πr)∗ = C−0((πr)′) = C−0(πr∗ ⊗∧n
T ∗X), (248)

and so they may be approximated by smooth sections of πr∗⊗∧n
T ∗X, i.e., n-forms

valued in the dual of the r-jet bundle.



124 R. Segev

Similarly, non-holonomic stresses are elements of

C0(π̂ r )∗ = C−0(π̂ r∗ ⊗∧n
T ∗X), (249)

and smooth non-holonomic stresses are n-forms valued in the dual of the r-iterated
jet bundle.

11.3 Stress Measures

Analytically, stresses are vector valued zero currents that are representable by
integration. (See [7, Section 4.1], for the scalar case.)

As noted in Sect. 8.2, given a vector bundle atlas {(Ua, ϕa,�a)}a∈A, a linear
functional is uniquely determined by its restrictions to sections supported in the
various domains ϕα(Uα)—its local representatives. In particular, for the case of
an m-dimensional vector bundle π : W → X, and a functional T ∈ C0(π)∗,
a typical local representative is an element Ta ∈

(
C0
c (ϕa(Ua))

∗)m. Thus, each
component (Ta)α ∈ C0

c (ϕa(Ua))
∗ is a Radon measure or a distribution representable

by integration. We will use the same notation for the measure. Consequently, for a
section wa compactly supported in ϕa(Ua), we may write

Ta(wα) =
∫

ϕa(Ua)

wa · dTa :=
∫

ϕa(Ua)

wαa dTaα. (250)

Given a partition of unity {ua} subordinate to the atlas, one has

T (w) =
∫

X
w · dT :=

∑

a∈A

∫

ϕa(Ua)

�a(uaw) · dTa =
∑

a∈A

∫

ϕa(Ua)

uaw
α
a dTaα.

(251)

For the case of stresses, one has to replace W by J rW , T by ς , and Taα by ςIaα ,
|I | ≤ r . In addition, as X is a manifold with corners, representing measures may
be viewed as measures on the extension X̃which are supported in X. Thus, for a
section χ of J rW , represented locally by χαaI ,

ς(χ) =
∫

X
χ · dς :=

∑

a∈A

∫

ϕa(Ua)

�a(uaχ) · dςa =
∑

a∈A

∫

ϕa(Ua)

uaχ
α
aIdςIaα.

(252)
We note that the components ςIaα have the same symmetry under permutations of I
as sections of the jet bundle. If w is a section of a vector bundle W0, then,

ς(jrw) =
∫

X
j rw · dς =

∑

a∈A

∫

ϕa(Ua)

uaw
α
a,IdςIaα. (253)
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The same reasoning applies to the representation by non-holonomic stresses,
only here we consider sections χ̂ of the iterated jet bundle represented locally by

χ̂
pαp
aIp

, Gp ≤ r . The local non-holonomic stress measures have components ς̂
pIp
aαp

and

ς̂ (χ̂) =
∫

X
χ̂ · dς̂ :=

∑

a∈A

∫

ϕa(Ua)

�a(uaχ̂) · dς̂a =
∑

a∈A

∫

ϕa(Ua)

uaχ̂
pαp
aIp

dς̂
pIp
aαp ,

(254)

ς̂ (ĵ rw) =
∫

X
ĵ rw · dς̂ =

∑

a∈A

∫

ϕa(Ua)

uaw
pαp
a,Ip

dς
pIp
aαp , (255)

where summation is implied on all values of αp, Ip, for all values of p such that
Gp ≤ r .

It is concluded that for a given force F , there is some non-unique vector valued
hyper-stress measure ς and a non-holonomic stress measure ς̂ , such that

F(w) =
∫

X
j rw · dς =

∫

X
ĵ rw · dς̂ . (256)

11.4 Force System Induced by Stresses

It was noted in Sect. 8.3 that given a force on a body X, a manifold with corners,
there is no unique way to restrict it to an n-dimensional submanifold with corners,
a sub-body R ⊂ X. We view this as the fundamental problem of continuum
mechanics—static indeterminacy.

Stress, though not determined uniquely by a force, provide means for inducing
a force system, the assignment of a force FR to each sub-body R. Indeed, once a
stress measure is given, be it a hyper-stress or a non-holonomic stress, integration
theory makes it possible to consider the force system given by

FR(w) =
∫

R
j rw · dς =

∫

R
ĵ rw · dς̂ (257)

for any section w of π |R.
Further details on the relation between hyper-stresses and force systems are

available in [30]. It is our opinion that the foregoing line of reasoning captures the
essence of stress theory in continuum mechanics accurately and elegantly.
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12 Simple Forces and Stresses

We restrict ourselves now to the most natural setting for continuum mechanics,
the case r = 1—the first value for which the set of Cr -embeddings is open in
the manifold of mappings. (See [9] for consideration of configurations modeled as
Lipschitz mappings.) Evidently, hyper-stresses and non-holonomic stresses become
identical now, and therefore, it is natural in this case to use the terminology simple
forces and stresses.

12.1 Simple Stresses

A simple stress ς on a body Xis an element of

C0(J 1W)∗ =: C−0((J 1W)∗ ⊗∧n
T ∗X), (258)

which implies that smooth stress distributions are sections of

(J 1W)∗ ⊗∧n
T ∗X= L(J 1W,

∧n
T ∗X

)
. (259)

Following the discussion in Sect. 8.5, ς may be viewed as a generalized section of
(J 1W̃ )∗ ⊗ ∧n

T ∗X̃, which is supported in X, where we use the extension of the
vector bundle to a vector bundle π̃ : W̃ → X̃over a compact manifold without
boundary X̃.

A typical local representative of a section of the jet bundle is of the form

χ = χαeα + χαi dXi ⊗ eα (260)

so that locally,

ς(χ) = ς(χαeα + χαi dXi ⊗ eα),

= ςα(χα)+ ςiα(χαi ).
(261)

Here, ςα and ςiα are 0-currents defined by

ςα(u) := (ς · eα)(u) = ς(ueα), (262)

ςiα(u) := (ς · (dXi ⊗ eα))(u) = ς(udXi ⊗ eα). (263)

In the smooth case, ς is represented by a section S of (J 1W)∗ ⊗∧n
T ∗Xin the

form

ς(χ) =
∫

X
S · χ. (264)
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Locally, such a vector valued form is represented as

S = (Sαeα + Siα∂i ⊗ eα)⊗ dX (265)

so that, for the domain of a chart, U , and a section χ with suppχ ⊂ U ,

ς(χ) =
∫

U

(Sαχ
α + Siαχαi )dX. (266)

12.2 The Vertical Projection

The vertical sub-bundle

Vπ1 : V J 1W −→ X (267)

is kernel of the natural projection

π1
0 : J 1W −→ W. (268)

In other words, elements of the vertical sub-bundle at a point X ∈ X are jets of
sections that vanish at X. Thus, if a typical element of J 1W is represented locally
in the form (χα, χ

β
i ), an element of the vertical sub-bundle, V J 1W ⊂ J 1W has

the form (0, χβi ) in any adapted coordinate system. The vertical sub-bundle may be
identified with the vector bundle T ∗X⊗W . Denoting the natural inclusion by

ιV : V J 1W −→ J 1W, (269)

one has the induced inclusion

C0(ιV ) : C0(V π1) −→ C0(π1), χ �−→ ιV ◦ χ. (270)

Clearly, C0(ιV ) is injective and a homeomorphism onto its image. Hence, its dual

C0(ιV )
∗ : C0(π1)∗ −→ C0(V π1)∗ ∼= C0(T ∗X⊗W)∗ = C−0(TX⊗W ∗⊗∧n

T ∗X),
(271)

is a well-defined surjection. Simply put, C0(ιV )
∗(ς) is the restriction of the stress

ς to sections of the vertical sub-bundle. Accordingly, we will refer to an element of
C0(T ∗X⊗W)∗ as a vertical stress and to C0(ιV )

∗ as the vertical projection.
In case the stress ς is represented locally by the 0-currents (ςα, ςiβ) as in (261),

then C0(ιV )
∗(ς) is represented by (ςiβ).

Let ς+ ∈ C0(T ∗X⊗W)∗ be a vertical stress and let w ∈ C0(π). Then, ς+ · w
defined by
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(ς+ · w)(ϕ) := ς+(ϕ ⊗ w), ϕ ∈ C0(T ∗X) (272)

is a 1-current. This is an indication of the fact that ς+ may be viewed as a vector
valued 1-current.

We may use the local representation of currents as in Sect. 10.3 to represent ς+
by the scalar 1-currents ς+α = (ς+ · eα) given as

ς+α (ϕ) = (ς+ · eα)(ϕ) = ς+(ϕ ⊗ eα) (273)

so that

ς+(ϕ ⊗ w) = ς+(ϕiwαdXi ⊗ eα),

= ς+α (ϕiwαdXi),

= (wα� ς+α )(ϕ).
(274)

Similarly, the 1-current ς+ · w may be represented locally as in Sect. 9.2 by 0-
currents (ς+ · w)i given as

(ς+ · w)i(u) = (dXi� (ς+ · w))(u) = (ς+ · w)(udXi) (275)

in the form

(ς+ · w)(ϕ) = (ς+ · w)i(ϕi). (276)

Evidently,

(ς+ · w)i(u) = ς+(uwαdXi ⊗ eα),

= ς+iα (uwα),

= (wα� ς+iα )(u),

(277)

and so

(ς+ · w)i = wα� ς+iα . (278)

It is concluded that

ς+ = eα ⊗ (∂i ∧ ς+iα ), ς+iα = dXi� (ς+ · eα), (279)

ς+(ϕ ⊗ w) = ς+iα (ϕiw
α), (280)

where it is recalled that in case ς+ = C0(ιV )
∗(ς), then, ς+iα = ςiα .
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In the smooth case, the vertical projection of the stress is represented by a section
S+of TX⊗W ∗ ⊗∧n

T ∗Xso that

C0(ιV )
∗(ς)(χ) =

∫

X
S+ · χ, (281)

where

(S+ · χ)(v1, . . . , vn)(X) = S+(X)(χ(X)⊗ (v1(X) ∧ · · · ∧ vn(X))). (282)

If ς is represented by a section S of (J 1W)∗ ⊗ ∧n
T ∗X, then, C0(ιV )

∗(ς) is
represented locally by

S+ = Siα∂i ⊗ eα ⊗ dX. (283)

For a vertical stress ς+ which is represented by Siα as above and a field w, the
1-current ς+ · w is given locally by

ϕ �−→
∫

U

Siαw
αϕidX, (284)

for a 1-form ϕ supported inU . In other words, if the vertical stress ς+ is represented
by the section S+ of TX⊗W ⊗∧n

T ∗X, the 1-current ς+ ·w is represented by the
density S+ · w, a section of TX⊗∧n

T ∗Xgiven by

(S+ · w)(ϕ) = S+(ϕ ⊗ w). (285)

12.3 Traction Stresses

Using the transposition tr : W⊗T ∗X→ T ∗X⊗W , one has a mapping on the space
of vertical stresses

C0(tr)∗ : C0(T ∗X⊗W)∗ −→ C0(W ⊗ T ∗X)∗. (286)

We define traction stress distributions to be elements of

C0(W ⊗ T ∗X)∗ = C−0(W ∗ ⊗∧n−1
T ∗X). (287)

Thus, it is noted that a traction stress is not much different than a vertical stress
distribution but transposition enables its representation as a vector valued current.
Using local representation in accordance with Sect. 10.3.6, a traction stress σ is
represented locally by n-currents σαı̂ , |ı̂| = n− 1, in the form

σ = dXı̂� σı̂ = eα ⊗ σα = dXı̂� (eα ⊗ σαı̂), (288)
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where

σı̂ := ∂ı̂∧σ, σα := σ ·eα, σαı̂ := σı̂ ·eα = (σα)ı̂ = (∂ı̂∧σ)·eα. (289)

Hence,

σ(w ⊗ ϕ) = εı̂iσαı̂(ϕiwαdX),

=
∑

i

(−1)n−iσαı̂ (ϕiwαdX),

= σαı̂(wαϕ ∧ dXı̂),

= σαı̂� dXı̂(wαϕ).

(290)

Introducing the notation

pσ := C0(tr)∗ ◦ C0(ιV )
∗ : C0(π1)∗ −→ C0(W ⊗ T ∗X)∗, (291)

a simple stress distribution ς induces a traction stress distribution σ by

σ = pσ (ς). (292)

Let σ = pσ (ς), then, comparing the last equation with (280), it is concluded
that, in accordance with (236), locally,

(−1)n−iσαı̂ (udX) = ςiα(u) (293)

for any function u, and so

dX� σαı̂ = (−1)n−iς iα, σαı̂ = (−1)n−i∂X ∧ ςiα. (294)

Remark 6 Continuing Remark 5, it is observed that one may consider

σ ′
ı̂
:= σ ∧ ∂ı̂ , σ ′

αı̂
:= σ ′

ı̂
· eα = (σα)′ı̂ = (σ ∧ ∂ı̂) · eα, (295)

so that

σ = σ ′
ı̂
� dXı̂ = (eα ⊗ σ ′

αı̂
)� dXı̂. (296)

Thus,

σ(w ⊗ ϕ) = (eα ⊗ σ ′
αı̂
)� dXı̂(w ⊗ ϕ),

= σ ′
αı̂
(wαϕ ∧ dXı̂),

=
∑

i

(−1)i−1σ ′
αı̂
(ϕiw

αdX),

(297)
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and comparison with (280) implies that

σ ′
αı̂
� dX = (−1)i−1ςiα, σ ′

αı̂
= (−1)i−1ςiα ∧ ∂X = (−1)n−1σαı̂ , (298)

where it is observed that as ςiα are zero currents, the order of the contraction and
wedge product in the last equation is immaterial.

12.4 Smooth Traction Stresses

In the smooth case, we adapt (204) to the current context. The traction stress σ is
represented by a section s of W ∗ ⊗∧n−1

T ∗Xso that

σ(χ) =
∫

X
s∧̇χ. (299)

Locally,

s = sαı̂eα ⊗ dXı̂ = εı̂isαı̂eα ⊗ (dX� ∂i), s∧̇χ = εı̂isαı̂χαi dX (300)

so that the local components of s are the n-currents—functions—that represent σ
locally.

Let ς be a smooth stress represented by the vector valued form S, a section
of (J 1W)∗ ⊗∧n

T ∗Xas in (265) and (266) and let S+ be its vertical component
as in (283). In view of (206) and (205), pσ (S) is represented by the section s of
W ∗ ⊗∧n−1

T ∗Xwith

s = C� (S+ ◦ tr), sαı̂ = εı̂iSiα. (301)

Hence, using

dXı̂ = εiı̂∂i� dX = εı̂idX� ∂i, εiı̂ = (−1)i−1, εı̂i = (−1)n−i , (302)

we may write explicitly

s = sαı̂eα ⊗ dXı̂ = Siαeα ⊗ (dX� ∂i) = (−1)n−1Siαe
α ⊗ (∂i� dX). (303)

The terminology, traction stress, originates from the fact that a traction stress
σ represented by a smooth section s of W ∗ ⊗∧n−1

T ∗X, induces the analog of a
traction field on oriented hypersurfaces in the body as follows. (See [38] for further
details.) We consider, for any given section s of W ∗ ⊗∧n−1

T ∗Xand a field w, the
(n− 1)-form σ · w given by

(s · w)(η) = s(w ⊗ η) (304)
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for sections η of
∧n−1

TX. Consider an (n − 1)-dimensional oriented smooth
submanifold Z⊂ X. Let

ιZ : Z−→ X (305)

be the natural inclusion and

ι∗Z : C∞(
∧n−1

T ∗X) −→ C∞(
∧n−1

T ∗Z), (306)

the corresponding restriction of (n−1)-forms. Combining the above, one may define
a linear mapping

ρZ : C∞(W ∗ ⊗∧n−1
T ∗X) −→ C∞(W ∗ ⊗∧n−1

T ∗Z) (307)

whereby

ρZ(s) · w = ι∗Z(s · w) ∈
∧n−1

T ∗Z. (308)

A section t of W ∗ ⊗∧n−1
T ∗Z is interpreted as a surface traction distribution

on the hypersurface Z. Its action t · w is interpreted as the power density of
the corresponding surface force, and may be integrated over Z. In particular, the
condition

t = (−1)n−1ρZ(s) (309)

is a generalization of Cauchy’s formula for the relation between traction fields and
stresses.

Remark 7 The factor (−1)n−1 that appears in (309) above, and is absent in [38],
originates from our choice to use exterior multiplication on the left as in Remarks 3
and 5. Evidently, if we represented σ by the smooth vector valued form s′ such that

σ(χ) =
∫

X
χ∧̇s′ (310)

instead of (299), the factor (−1)n−1 would not appear in the analogous computation
and

t = ρZ(s′). (311)

In addition, the second of Eq. (301), may be rewritten as

s′
αı̂
= (−1)n−1Siα. (312)
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12.5 The Generalized Divergence of the Stress

Let ς be a stress distribution, σ = pσ (ς), and w ∈ C1(π). We compute,
using (290), a local expression for the boundary of the 1-current σ · w as

∂(σ · w)(u) = (σ · w)(du),
= σ(w ⊗ du),

= ςiα(u,iwα),
= ςiα((uwα),i)− ςiα(uwα,i),
= ςiα(∂i� d(uwα))− ςiα(uwα,i)− ςα(uwα)+ ςα(uwα),
= ∂i ∧ ςiα(d(uwα))− (ς · j1w)(u)+ (wα� ςα)(u),
= ∂(∂i ∧ ςiα)(uwα)− (ς · j1w)(u)+ (wα� ςα)(u),
= [(∂iς iα · wα)− (ς · j1w)+ (wα� ςα)](u).

(313)

Here, for a 0-current T = ςiα , ∂iT is the “partial boundary” operator or the dual to
the partial derivative, a 0-current defined by

∂iT (u) := ∂(∂i ∧ T )(u),
= (∂i ∧ T )(du),
= T (u,i).

(314)

Since σ ·w and σα are 1-currents, definition (170) implies that the exterior derivatives
satisfy

d(σ · w) = (−1)n∂(σ · w), dσα = (−1)n∂σα, (315)

and

d(σ · w)(u) = (dσα · wα)(u)+ (−1)n−1[ς · j1w − wα� ςα](u). (316)

The preceding framework may be formalized as follows. Let

p̃ : C1(W)×C1(X) −→ C1(W), be defined by p̃(w, u) = uw. (317)

The mapping p̃ is clearly bilinear, and as such, it induces a linear mapping

p : C1(W)⊗ C1(X) −→ C1(W), p(w ⊗ u) = p̃(w, u) = uw. (318)
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The mapping p has a natural right inverse

p−1 : C1(W) −→ C1(W)⊗ C1(X), w �−→ w ⊗ 1, (319)

where 1(X) = 1, for all X ∈ X. Evidently, p−1, and the mappings derived from it,
exist only because we do not limit ourselves to functions with compact support in
the interior Xo. It is further noted that the mapping p−1 is related to the integral of
distributional n-forms defined and studied in [10, pp. 249–250]. The dual mappings
satisfy

p∗ : C1(W)∗ −→ (C1(W)⊗C1(X))∗, p∗(F )(w⊗u) := F(p(w⊗u)) = F(uw),
(320)

and

p−1∗ : (C1(W)⊗C1(X))∗ −→ C1(W)∗, p−1∗(G)(w) = G(w⊗1). (321)

With the preceding observations, the computations above imply that there are
“dual” linear differential operators

∂̃ : C0(W ⊗ T ∗X)∗ −→ (C1(W)⊗ C1(X))∗, (322)

and

d̃ : C0(W ⊗ T ∗X)∗ −→ (C1(W)⊗ C1(X))∗, (323)

such that

∂̃σ (w ⊗ u) := σ(w ⊗ du) = ∂(σ · w)(u) = (∂̃σ · w)(u), d̃σ := (−1)n∂̃σ.
(324)

Consequently, we define the generalized divergence, a differential operator

div : C−0((J 1W)∗ ⊗∧n
T ∗X) −→ (C1(W)⊗ C1(X))∗, (325)

by

div ς = −∂̃(pσ ς)− j1∗ς. (326)

As mentioned above, we view the various terms as elements of (C1(W)⊗C1(X))∗,
so that each may be contracted with w to give an element of C−1(

∧n
T ∗X). Thus,

(div ς · w)(u) = −(∂̃(pσ ς) · w)(u)− (ς · j1w)(u),

= −pσς(w ⊗ du)− (ς · j1w)(u).
(327)
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The local expression for the generalized divergence in a coordinate neighborhood
U is obtained using (313). For a smooth function u having a compact support in U ,

(div ς · w)(u) = [−∂iςiα · wα − wα� ςα](u), (328)

so that

div ς · w = −∂iςiα · wα − wα� ςα. (329)

12.6 The Divergence for the Smooth Case

In the smooth case

∂iς
i
α · wα(u) = ∂iςiα(wαu),

= ςiα((wαu),i),

=
∫

U

Siα(w
αu),idX,

=
∫

U

(Siαw
αu),idX −

∫

U

Siα,iw
αudX,

= (−1)n−1
∫

∂U

sαı̂w
αudXı̂ −

∫

U

Siα,iw
αudX,

(330)

where we have used (303) to write

(−1)n−1
∫

∂U

sαı̂w
αudXı̂ =

∫

∂U

Siαw
αuεiı̂dX

ı̂,

=
∫

U

d(Siαw
αuεiı̂dX

ı̂),

=
∫

U

(Siαw
αu),j εiı̂dX

j ∧ dXı̂,

=
∫

U

(Siαw
αu),j εiı̂ε

j ı̂dX,

=
∫

U

(Siαw
αu),j δ

j
i dX,

=
∫

U

(Siαw
αu),idX.

(331)

Thus, noting that in the smooth case ςα ·wα are represented by the n-forms SαwαdX,
we conclude that locally
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(div ς · w)(u) =
∫

U

(Siα,i − Sα)wαudX − (−1)n−1
∫

∂U

sαı̂w
αudXı̂,

=
∫

U

(Siα,i − Sα)wαudX −
∫

∂U

Siαεiı̂w
αudXı̂.

(332)

In previous work, e.g., [37, 38], the divergence operator was defined specifically
for the smooth case where both the stress densities and their derivatives have well-
defined pointwise values. Thus, it is possible to define the divergence of the stress,
denoted now by ˜div in order to exhibit the distinction from (326) and (327), as a
section of L(W,

∧n
T ∗X), given pointwise by the condition

˜divS · w = (−1)n−1d(s · w)− S · j1w. (333)

Thus, locally

( ˜divS)αw
αdX = (−1)n−1d(εı̂iS

i
αw

αdXı̂)− SαwadX − Siαwα,idX,
= (−1)n−1(εı̂iS

i
αw

α),jdXj ∧ dXı̂ − SαwadX − Siαwα,idX,
= (−1)n−1(εı̂iS

i
αw

α),j ε
j ı̂dX − SαwadX − Siαwα,idX,

= (Siαwα),idX − SαwadX − Siαwα,idX,
= (Siα,i − Sα)wαdX.

(334)

It is noted now that the weak form of this relation includes only the first integral
of (332). Thus, the definition of the divergence in the general case does not
generalize directly the definitions of ˜div in ([37, 38]). However, by restricting (332)
to functions u that vanish on U ∩ ∂X, ˜div is determined uniquely. As a result, the
second integral of (332) is also well determined by div ς .

We conclude that the divergence operator div includes a boundary term in
addition to the bulk term (Siα,i − Sα)eα ⊗ dX.

12.7 The Invariance of the Divergence

Returning to the non-smooth case, consider the definition of the divergence in
Eq. (327). It is apparent that for a given force F , the term (ς · j1w)(u) = ς(uj1w)

depends on the particular stress representing F because the jet field uj1w is, in
general, non-holonomic, i.e., there is no vector field w′ such that uj1w = j1(w′).
In fact, if it were possible to compute this term independently of ς , we could restrict
the force to sub-bodies by an appropriate sequence of functions u. The other term
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pσς(w ⊗ du) also depends, apparently, on the stress representing F . Nevertheless,
we whom below that div ς is independent of the particular stress ς that represents F .

Consider first the jet j1(uw), for a differentiable function u and a differentiable
vector field w represented locally by w = wαeα . Then,

j1w = wαeα + wα,idXi ⊗ eα, (335)

and so

j1(uw) = uwαeα + (uwα),idXi ⊗ eα. (336)

Hence,

j1(uw) = uwαeα + u,iwαdXi ⊗ eα + uwα,idXi ⊗ eα,

= u(wαeα + wα,idXi ⊗ eα)

+ (0eα + (u,idXi)⊗ (wαeα)),
(337)

and we conclude that

j1(uw) = uj1w + ιV (du⊗ w). (338)

Let ς be some stress representing a given force F . We have

F(uw) = ς(j1(uw)),

= ς(uj1w + C0(ιV )(du⊗ w)),
= ς(uj1w)+ C0(ιV )

∗(ς)(du⊗ w),
(339)

and using (291),

F(uw) = ς(uj1w)+ pσ (ς)(w ⊗ du). (340)

The last equation may serve as an additional motivation for the introduction of the
traction stress σ = pσ (ς). In addition, comparing it to the definition (327), it is
immediately concluded that

(div ς · w)(u) = −F(uw). (341)

Hence, div ς depends only on the force F and is independent of the stress ς
representing it.

For a 0-current T , it is customary to use the notation

∫

X
T := T (1X), where 1X(X) = 1, (342)
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as in [10, p. 249]. Then, Eq. (341) implies that

F(w) = −
∫

X
div ς · w. (343)

However, this notation may be confusing as we also use integration relative to the
stress measures. Thus, we will denote below the integration mapping as

int : (C1(W)⊗ C1(X))∗ −→ C1(W)∗ (344)

whereby

int(G)(w) = G(w ⊗ 1). (345)

Thus, Eq. (343) is rewritten as

F(w) = −int(div ς)(w), or, F = −int ◦ div ς (346)

12.8 The Balance Equation

We define now the body force current b and the boundary force current t corre-
sponding to the stress ς , elements of (C1(W)⊗ C1(X))∗, by

b := − div ς, t := −∂̃(pσ ς) = (−1)n−1d̃(pσ ς). (347)

From the definition of the divergence in (327) we deduce

ς · j1w = b · w + t · w, (348)

The last equation is yet another generalization of the principle of virtual work in
continuum mechanics.

For the smooth case, σ is represented by the smooth vector valued form s as
in (299) and we can compute, for any differentiable function u defined on X,

∂(σ · w)(u) =
∫

X
s∧̇(w ⊗ du),

=
∫

X
(s · w) ∧ du,

= (−1)n−1
∫

X
d((s · w) ∧ u)− (−1)n−1

∫

X
d(s · w) ∧ u,

= (−1)n−1
∫

∂X
(s · w)u− (−1)n−1

∫

X
d(s · w)u,

=
∫

∂X
(t · w)u− (−1)n−1

∫

X
d(s · w)u,

(349)
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where Stokes’s theorem was utilized in the fourth line and (309) was used in the
fifth line. Thus, in the smooth case, ∂(σ · w) contains, upon appropriate choices of
u, information regarding the action of the surface force.

12.9 Application to Non-holonomic Stresses

In spite of numerous attempts (see [33, 40–42]), for the general geometry of
manifolds, we were not able to extend the foregoing analysis to hyper-stresses, even
for the case of stresses represented by smooth densities. Yet, the introduction of
non-holonomic stresses makes it possible to carry out one step of the reduction.

Let W0 be a vector bundle over X and consider forces in Cr(W0)
∗. Using the

representation by non-holonomic stresses as in (245) in Sect. 11.1, let

Wr−1 := Ĵ r−1W0. (350)

Then, a force F ∈ Cr(W0)
∗ is represented by an element

ς̂ ∈ C0(Ĵ rW0)
∗ = C0(J 1Wr−1)

∗ (351)

in the form

F(w) = ĵ r∗(ς̂)(w),
= ς̂ (ĵ rw),
= ς̂ (j1(ĵ r−1w)),

= j1∗ς̂ (ĵ r−1w).

(352)

Thus, one may apply the foregoing analysis of simple stresses to the study the action
ς̂ (j1χ) = j1∗ς̂ (χ) for elements

χ ∈ C1(π̂ r−1)∗ = C1(Wr−1)
∗. (353)

In other words, the analysis of simple stresses is used where we substitute Wr−1
and χ for W and w above respectively. In particular, the balance equations for this
reduction will yield

F(w) = ς̂ (ĵ rw) = b(ĵ r−1w)+ t (ĵ r−1w), (354)

where

t, b ∈ C−1(W ∗
r−1 ⊗

∧n
T ∗X) (355)

are interpreted as hyper surface traction and hyper body force distributions,
respectively.
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13 Concluding Remarks

The foregoing text is meant to serve as an introduction to global geometric stress
and hyper-stress theory. We used a simple geometric model of a mechanical
system in which forces are modeled as elements of the cotangent bundle of the
configuration space and outlined the necessary steps needed in order to use it in
the infinite dimensional case of continuum mechanics. The traditional choice of
configurations as embeddings of a body in space, led us to the natural C1-topology
which determined the properties of forces as linear functionals. In particular, the
stress object emerges from a representation theorem for force functionals.

The general stress object we obtain preserves the basic feature of the stress
tensor—it induces a force system on the body and its sub-bodies as described in
Sect. 11.4. Further details of the relation between hyper-stresses and force systems
are presented in [30] for the general case where stresses are as irregular as measures.

Generalizing continuum mechanics to differentiable manifolds implies that
derivatives can no longer be decomposed invariantly from the values of vector
fields and jets, combining the values of the field and its derivatives, are used. As a
result, simple stresses mix both components dual to the values of the velocity fields,
ςα , and components dual to the derivatives, ςiα . This distinction from the classical
stress tensor may be treated if additional mathematical structure is introduced. It is
noted that no conditions of equilibrium, which are equivalent to invariance of the
virtual power under the action of the Euclidean group, were imposed. In the general
case, one may assume the action of a Lie group on the space manifold and obtain
corresponding balance laws (see [36]).

Another subject that has been omitted here is that of constitutive relations.
Constitutive relations, in particular the notion of locality have been considered
from the global point of view in [35]. Roughly speaking, it is shown in [35] that
a local constitutive relation, viewed form the global point of view as a mapping that
assigns a stress distribution to a configuration, which is continuous relative to the
Cr -topology is a constitutive relation for a material of grade r . Thus, the notion of
locality is tied in with that of continuity.

A framework for the dynamics of a continuous body, for the geometry of
differentiable manifolds, was proposed in [16]. The dynamics of the system is
specified using a Riemannian metric on the infinite dimensional configuration space.
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Abstract In this chapter we discuss some applications of algebraic topology in
elasticity. This includes the necessary and sufficient compatibility equations of
nonlinear elasticity for non-simply-connected bodies when the ambient space is
Euclidean. Algebraic topology is the natural tool to understand the topological
obstructions to compatibility for both the deformation gradient F and the right
Cauchy–Green strain C. We investigate the relevance of homology, cohomology,
and homotopy groups in elasticity. We also use the relative homology groups in
order to derive the compatibility equations in the presence of boundary conditions.
The differential complex of nonlinear elasticity written in terms of the deformation
gradient and the first Piola–Kirchhoff stress is also discussed.

1 Introduction

Compatibility equations of elasticity are more than 150 years old and according
to Love [31] were first studied by Saint Venant in 1864. In nonlinear elasticity
a given distribution of strain on a body B may not correspond to a deformation
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mapping. Similarly, in linear elasticity a given distribution of linearized strains may
not correspond to a well-defined displacement field. Strain has to satisfy a set of
integrability equations in order to correspond to some deformation field. These
integrability equations are called compatibility equations in continuum mechanics.
We provided a detailed history of the compatibility equations in nonlinear and
linear elasticity in [58] and will not repeat it here. Compatibility equations for
simply connected bodies are well understood and are a set of PDEs that depend on
the measure of strain. For non-simply-connected bodies these “bulk” compatibility
equations are only necessary. In other words, when the bulk compatibility equations
are satisfied in a non-simply-connected body the strain field may still be incompat-
ible; there may be topological obstructions to compatibility. A classical example of
incompatible strain fields that satisfy the bulk compatibility equations are Volterra’s
“distortions” (dislocations and disclinations) [51]. For a strain field on a non-simply-
connected body to be compatible, in addition to the bulk compatibility equations,
some extra compatibility equations that explicitly depend on the topology of the
body are needed [13, 27, 36, 46, 51]. We call these extra compatibility equations
the complementary compatibility equations [49] or the auxiliary compatibility
equations.

The natural mathematical tool for understanding the topological obstruction to
compatibility is algebraic topology. Topological methods, and particularly algebraic
topology have been used in fluid mechanics [7], and electromagnetism [24] for
quite sometime. In the case of electromagnetism this goes back to the work of
Maxwell [35] before the formal developments of algebraic topology that started
in the work of Poincaré [40]. Algebraic topology has not been used systematically
in solid mechanics until recently [58]. To motivate the present study consider the
following problem. Having a solid sphere (a ball) with the different types of holes
shown in Fig. 1, what are the compatibility equations for F and C? The necessary
compatibility equations (“bulk” compatibility equations) are well understood and
our focus will be on the sufficient conditions. We will see that in case (a) of a
spherical hole no extra compatibility equations are needed. For (b), (c), and (d) one
needs to impose some extra constraints on the (red) loops (generators of the first
homology group) to ensure compatibility.

a b c d

Fig. 1 Balls with (a) spherical, (b) toroidal, and (c) cylindrical holes. (d) A ball with a hole
consisting of a solid torus attached to two solid cylinders. Betti numbers of these sets are zero,
one, one, and two, respectively
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This chapter is structured as follows. In Sect. 2 we tersely review differential
geometry. This follows by short discussions of presentation of groups, homology
and cohomology groups, relative homology groups, the idea of homotopy and
the fundamental group, classification of 2-manifolds with boundary, knot theory
and the fundamental group of their complements in R

3, and the topology of 3-
manifolds in Sect. 3. In Sect. 4 we discuss the kinematics of nonlinear elasticity. In
Sect. 5, F-compatibility equations for non-simply-connected bodies are discussed.
F-compatibility equations in the presence of essential (Dirichlet) boundary condi-
tions are also derived. C-compatibility equations for non-simply-connected bodies
are derived. Several examples are presented. Finally, the necessary and sufficient
compatibility equations of linearized elasticity are derived. In Sect. 6, the differential
complex of nonlinear elasticity written in terms of the deformation gradient and
the first Piola–Kirchhoff stress is discussed. Some applications are also briefly
mentioned.

2 Differential Geometry

In this section, we briefly review the differential geometry background needed in
the kinematic description of nonlinear elasticity.

Consider a map π : E → B, where E and B are sets. The fiber over X ∈ B is
defined to be the set EX := π−1(X) ⊂ E . If the map π is onto, fibers are non-empty
and E = �X∈BEX, where � denotes disjoint union of sets. Now assume that E and
B are manifolds and for any X ∈ B, there exists a neighborhood U ⊂ B of X, a
manifold F , and a diffeomorphism ψ : π−1(U) → U × F such that π = pr1 ◦ψ ,
where pr1 : U × F → U is projection onto the first factor. The triplet (E, π,B)
is called a fiber bundle and E , π , and B are called the total space, the projection,
and the base space, respectively. If π−1(X) is a vector space, for any X ∈ B, then
(E, π,B) is called a vector bundle. The set of all smooth maps σ : B→ E such that
σ(X) ∈ EX, ∀ X ∈ B, is called the set of sections of this bundle, and is denoted by
Γ (E). The tangent bundle of a manifold is an example of a vector bundle for which
E = TB.

A vector field on a manifold B is a section of the tangent bundle TB of B. The set
of all Cr vector fields on B is denoted by Xr (B) and the set of all C∞ vector fields
by X(B). A vector field on B is an assignment, to each X ∈ B, of a tangent vector
WX ∈ TXB. Note that for an N -dimensional manifold B, TXB is an N -dimensional

vector space with a local basis
{

∂
∂X1 , . . . ,

∂
∂XN

}
induced from a local chart {XA}.

Given a vector field W, for each point X ∈ B, W is locally described as

W(X) =
N∑

A=1

WA(X)
∂

∂XA
, (1)
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where WA are C∞ maps. One important role of tangent vectors is the directional
differentiation of functions. In other words, a vector field acts on functions by taking
their directional derivative, i.e.,

W[f ] :=
N∑

A=1

WA(X)
∂f (X)

∂XA
. (2)

This is the directional or Lie derivative of f along W and is denoted by LWf .
Thus, LWf (X) := W[f ](X) = df (X) · W(X). This is the reason Lf = df

belongs to the cotangent space of B, where the cotangent space T ∗B is defined as
T ∗B := {ϕ : TB→ R, ϕ is linear and bounded}.

A linear (affine) connection on a manifold B is an operation ∇ : X (B) ×
X (B) → X (B), where X (B) is the set of vector fields on B, such that
∀ X,Y,X1,X2,Y1,Y2 ∈ X (B),∀ f, f1, f2 ∈ C∞(B),∀ a1, a2 ∈ R:

1. ∇f1X1+f2X2 Y = f1∇X1 Y+ f2∇X2 Y,
2. ∇X(a1Y1 + a2Y2) = a1∇XY1 + a2∇XY2,
3. ∇X(fY) = f∇XY+ (Xf )Y.

∇XY is called the covariant derivative of Y along X. In a local chart {XA}, ∇∂A∂B =
Γ CAB∂C , where Γ CAB are the Christoffel symbols of the connection, and ∂A = ∂

∂xA

are the natural bases for the tangent space corresponding to a coordinate chart {xA}.
A linear connection is said to be compatible with a metric G of the manifold if

∇X⟪Y,Z⟫G = ⟪∇XY,Z⟫G + ⟪Y,∇XZ⟫G, (3)

where ⟪., .⟫G is the inner product induced by the metric G. A connection ∇ is
G-compatible if and only if ∇G = 0, or in components, GAB|C = GAB,C −
Γ DCAGDB − Γ DCBGAD = 0. We consider an N -dimensional manifold B with
the metric G and a G-compatible connection ∇. The torsion of a connection is a
map T : X (B)× X (B)→ X (B) defined by

T (X,Y) = ∇XY−∇YX− [X,Y], (4)

where [X,Y] = XY − YX is the commutator of the vector fields X and Y. For
an arbitrary scalar field f , [X,Y][f ] = X[f ]Y− Y[f ]X. In components in a local
chart {XA}, T ABC = Γ ABC−Γ ACB . The connection∇ is symmetric if it is torsion-
free, i.e., ∇XY−∇YX = [X,Y]. It can be shown that on any Riemannian manifold
(B,G) there is a unique linear connection (the Levi-Civita connection) ∇, which
is compatible with G and is torsion-free with the Christoffel symbols Γ CAB =
1
2G

CD(GBD,A +GAD,B −GAB,D). In a manifold with a connection, the curvature
is a map R : X (B)× X (B)× X (B)→ X (B) defined by

R(X,Y)Z = ∇X∇YZ−∇Y∇XZ−∇[X,Y]Z, (5)

or in components, RA
BCD = Γ ACD,B−Γ ABD,C+Γ ABMΓ MCD−Γ ACMΓ MBD .
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An N -dimensional Riemannian manifold is locally flat if it is isometric to
Euclidean space. This is equivalent to vanishing of the curvature tensor [9, 28]. Ricci
curvature is defined as RAB = RC

ACB . The trace of Ricci curvature is called scalar
curvature: R = RABGAB . In dimensions two and three Ricci curvature algebraically
determines the entire curvature tensor. In dimension three [25]:

RABCD=GACRBD−GADRBC−GBCRAD+GBDRAC−1

2
R (GACGBD−GADGBC) .

(6)
In dimension two RAB = RgAB , and hence, scalar curvature completely character-
izes the curvature tensor and is twice the Gauss curvature.1

2.1 Exterior Calculus

We introduce differential forms on an arbitrary manifold B following [1]. The
permutation group on N elements consists of all bijections τ : {1, . . . , N} →
{1, . . . , N} and is denoted by SN . For Banach spaces E and F, a k-multilinear
mapping t ∈ Lk(E;F), i.e., t : E× E× . . .× E→ F is called skew-symmetric if

t (e1, . . . , ek) = (sign τ)t (eτ(1), . . . , eτ(k)), ∀e1, . . . , ek ∈ E, τ ∈ Sk, (7)

where sign τ is +1 (−1) if τ is an even (odd) permutation. The subspace of skew-
symmetric elements of Lk(E;F) is denoted by Λk(E,F). Elements of Λk(E,F)
are called exterior k-forms. Wedge product of two exterior forms α ∈ Λk(E,F)

and β ∈ Λl(E,F) is a (k + l)-form α ∧ β ∈ Λk+l (E,F), which is defined in
components as

(α ∧ β)i1...ik+l =
∑

(k,l)∈SK+l
(sign τ)ατ(i1)...τ (ik)βτ(ik+1)...τ (ik+l ). (8)

For a manifold B, the vector bundle of exterior k-forms on TB is denoted byΛkB :
Λk(B) → B. In a local coordinate chart a differential k-form α has the following
representation

ω =
∑

I1<I2<...<Ik

ωI1I2...Ik dX
I1 ∧ . . . ∧ dXIk , I1, I2 . . . , Ik ∈ {1, 2, . . . , N},

(9)
where ωI1I2...Ik are C∞ maps. The space of k-forms on B is denoted Ωk(B). Let

1It is known that the necessary compatibility equations for the right Cauchy–Green strain C� in
2D and 3D are written as R(C�) = 0 and R(C�) = 0, respectively, i.e., in 2D there is only one
compatibility equation while in 3D there are six. Note also that the Bianchi identities do not reduce
the number of compatibility equations.
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Ω(B) =
⊕

k=0,1,...

Ωk(B), (10)

with its structure as a real vector space and multiplication ∧. Ω(B) is called the
algebra of exterior differential forms on B.

Let U be an open subset of an N -manifold B. Consider the unique family of
mappings dk(U) : Ωk(U) → Ωk+1(U) (k = 0, 1, . . . , N) merely denoted d with
the following properties:

1. d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ, ∀α ∈ Ωk(U), β ∈ Ωl(U),
2. If f ∈ Ω0(U), df is the (usual) differential of f ,
3. d2 = d ◦ d = 0 (i.e., dk+1(U) ◦ dk(U) = 0),
4. d is a local operator (natural with respect to restrictions), i.e., if U ⊂ V ⊂ B are

open and α ∈ Ωk(V ), then d(α|U) = (dα)|U .

In component form, for the differential form in (9) one writes

dω = ∂ ωI1I2...Ik

∂XJ
dXJ ∧ dXI1 ∧ . . . ∧ dXIk , (11)

where summation over repeated indices is implied.
For an N -manifold B, dim[Λk(B)] = (N

k

) = ( N
N−k
) = dim[ΛN−k(B)]. This

shows that Λk(B) and ΛN−k(B) should be isomorphic to each other. The natural
isomorphism is the Hodge star operator. Hodge star is the unique isomorphism ∗ :
Λk(B)→ ΛN−k(B) satisfying

α ∧ ∗β = ⟪α, β⟫Gμ, ∀ α, β ∈ Λk(B), (12)

where ⟪, ⟫G and μ are the standard Riemannian inner product and the standard
volume element on B, respectively. As an example, Λ1(R3) and Λ2(R3) are both
three dimensional and ∗ : Λ1(R3)→ Λ2(R3) is defined by

e1 �→ e2 ∧ e3, e2 �→ e3 ∧ e1, and e3 �→ e1 ∧ e2. (13)

The codifferential operator δ : Ωk+1(B)→ Ωk(B) is defined by

δ(Ω0(B)) = 0,

δα = (−1)Nk+1 ∗ d ∗ α, ∀ α ∈ Ωk+1(B), k = 0, 1, . . . , N − 1.
(14)

This is the adjoint of d with respect to ⟪, ⟫G. For an oriented smooth N -manifold B
with boundary ∂B and α ∈ ΩN−1(B), Stokes’ theorem states that

∫

∂B
α =

∫

B
dα, (15)

assuming that both integrals exist.
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3 Algebraic Topology

To make this chapter self-contained, we next tersely review some notation and facts
from algebraic topology and also refer the reader to the relevant literature for more
details.

3.1 Homology and Cohomology Groups

An r-form ω is closed if dω = 0 and it is exact if there exists an (r − 1)-form α

such that ω = dα. An exact differential form is closed, and from Poincaré’s lemma
a closed form is locally exact. However, globally a closed differential form may
not be exact. Cohomology aims in finding the topological obstructions to exactness.
This turns out to be directly related to the compatibility equations of elasticity. In
the following we mainly follow [18, 22, 24, 37, 50].

3.1.1 Group Theory

For two Abelian groups (G1, .) and (G2, .), a map f : G1 → G2 is a
homomorphism if

f (x.y) = f (x).f (y), ∀x, y ∈ G1. (16)

Our notation is flexible here; we use x.y and xy interchangeably. If in addition
f is a bijection, it is an isomorphism, G1 and G2 are said to be isomorphic, and
this is denoted by G1 ∼= G2. Let H ⊂ G be a subgroup. If xy−1 ∈ H , then
x, y ∈ G are called equivalent and we write x ∼ y. The equivalence class of x
is denoted by [x]. G/H is the quotient space—the set of equivalence classes—and
[x].[y] = [xy]. If ghg−1 ∈ H,∀g ∈ G,h ∈ H , H is called a normal subgroup.
For a normal subgroupH ,G/H is always a subgroup called the quotient group. For
a homomorphism f : G1 → G2, Ker f and Im f are subgroups of G1 and G2,
respectively, where

Ker f = {x ∈ G1|f (x) = 1}, Im f = {x ∈ G2|x ∈ f (G1) ⊂ G2}, (17)

and 1 is the identity element of G2. The isomorphism theorem of group theory tells
us that G1/Ker f ∼= Im f .

Let (G, .) be an Abelian group, i.e., x.y = y.x, ∀ x, y ∈ G. If there exist
g1, . . . , gn ∈ G such that

g = gλ1
1 . . . gλnn , ∀ g ∈ G,λi ∈ Z, (18)
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then G is called a finitely generated Abelian group with generators g1, . . . , gn. If in
addition

g = gλ1
1 . . . gλnn = 1 ⇒ λ1 = . . . = λn = 0, (19)

G is called a free finitely generated Abelian group, and g1, . . . , gn are called free
generators or a basis. It can be shown that (G, .) is a free finitely generated Abelian
group if and only if every g has a unique representation with respect to the basis
{g1, . . . , gn}.

Suppose S = {s1, . . . , sk} is a set of distinct elements. Let S̃ be the set of
expressions of the form s̃ =∏k

i=1 s
λi
i , where λi ∈ Z. Then

∏k
i=1 s

λi
i =

∏k
i=1 s

μi
i if

and only if λi = μi , i = 1, . . . , k. Multiplication is defined as

∏

i

s
λi
i

∏

i

s
μi
i =

∏

i

s
λi+μi
i . (20)

S̃ is a free finitely generated Abelian group with basis{s1
1s

0
2 . . . s

0
k , . . . , s

0
1 . . . s

0
k−1s

1
k }.

S̃ is called the free finitely generated Abelian group on S. If G is an Abelian group,
g ∈ G has finite order if gn = 1 for some n ∈ N. The set of all elements of
finite order in G is a subgroup called the torsion subgroup T of G. If T is trivial,
i.e., T = {1}, G is called torsion-free. Any free Abelian group is torsion-free. For
x, y ∈ G, and G a group, [x, y] = xyx−1y−1 ∈ G is called the commutator of x
and y. [G,G] is a normal subgroup of G generated by all commutators. Note that
G/[G,G] is an Abelian group.

The direct sum of two groups A and B is the set of pairs (a, b), a ∈ A, b ∈ B
and is denoted by A⊕ B. Group multiplication in A⊕ B is defined as

(a1, b1).(a2, b2) = (a1a2, b1b2), ∀a1, a2 ∈ A, ∀b1, b2 ∈ B. (21)

Generalization of this to any finite number of groups is straightforward.

3.1.2 Combinatorial Group Theory

In combinatorial group theory one studies groups that are described by generators
and some defining relations. Here we mainly follow [8] and [50]. If X ⊂ G, the
smallest subgroup of G containing X is denoted by 〈X〉 and is characterized as

〈X〉 = {g ∈ G| g = xε1
1 x

ε2
2 . . . x

εk
k , xi ∈ X, εi = ±1}. (22)

x
ε1
1 x

ε2
2 . . . x

εk
k is called an X-word or simply a word. A word is reduced if xi =

xi+1 implies that εi + εi+1 �= 0, i = 1, . . . , k − 1. For example, the word
x−1

1 x−1
1 x2x

−1
2 x1x1x1x2 is not reduced while x1x2 is reduced. If G = 〈X〉 and every

non-empty reduced X-word w �=G 1, X is called a free group. In this case, two
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reduced X-words have equal values inG if and only if they are identical. A group is
finitely generated if it can be generated by a finite set. If G is a freely generated
group by X, then for any group H and map ψ : X → H , there is a unique
homomorphism ϕ : G → H such that ϕ|X = ψ . For a group G, and X ⊂ G,
the normal closure of X in G (the smallest normal subgroup of G containing X) is
defined as

gpG(X) =
〈
{g−1xg| g ∈ G, x ∈ X}

〉
. (23)

If F is a free group on X ⊂ G and ψ : X → G, a map such that G = 〈ψ(X)〉,
then the extension of this map ϕ : F → G has kernel K = gpF (R), where R ⊂ F .
Then one writes G = 〈X;R〉 and this is called a presentation for G, which comes
with an implicit map ψ : X → G, the presentation map. Elements of R are called
defining relators. A group is finitely presented if it has a finite presentation, i.e., if
both X and R are finite.

Any normal subgroup of a group G consists of elements expressed by words of
the following form

n∏

i=1

gix
εi
ji
g−1
i , gi, xji ∈ G, εi = ±1. (24)

This normal subgroup is said to be generated by x1, x2, . . . ∈ G and is denoted
by gpG({x1, x2, . . .}) as in (23). Dyck’s theorem says that the group 〈X,R〉 is the
quotient of F = 〈X〉 by its normal subgroup gpG(R).

3.1.3 Chain Complexes and Homology Groups

Let {v0, . . . , vk} be a geometrically independent set in R
N , i.e., {v1−v0, . . . , vk−v0}

is a set of linearly independent vectors in R
N . A k-simplex σk is defined as

σk =
{

x ∈ R
N
∣
∣
∣x =

k∑

i=0

tivi , where 0 ≤ ti ≤ 1,
k∑

i=0

ti = 1

}

. (25)

The numbers ti are uniquely determined by x and are called barycentric coordinates
of the point x of σ with respect to vertices v0, . . . , vk . The number k is the dimension
of σk . A simplicial complexK in R

N is a collection of simplices in R
N such that (1)

every face of a simplex of K is in K , and (2) the intersection of any two simplices
is either empty or a face of each of them. The largest dimension of the simplices of
K is called the dimension of K . A subcomplex of K is a subcollection of K that
contains all faces of its elements.

Suppose K is an oriented simplicial complex of dimension n. Let αp be the
number of p-simplices of K , 0 ≤ p ≤ n. Let {σ 1

p, . . . , σ
αp
p } be the set of p-
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simplices of K . The pth chain group of K with integer coefficients is denoted by
Cp(K) and is a free Abelian group on the set {σ 1

p, . . . , σ
αp
p }, i.e.,2

σ ∈ Cp(K), σ =
αp∑

i=1

λiσ
i
p , λi ∈ Z . (26)

For p > n or p < 0, Cp(K) = 0. Let σ = (v0, . . . , vp) be an oriented p-simplex
of K . Then, the boundary of σ is defined as

∂σ = ∂pσ =
p∑

i=0

(−1)i(v0, . . . , v̂i , . . . , vp), (27)

where hat over vi indicates omission of vi . The boundary homomorphism ∂p :
Cp(K)→ Cp−1(K) is defined as

∂p

(∑
λiσ

i
p

)
=
∑

i

λi∂p(σ
i
p). (28)

Note that for any p, ∂ ◦ ∂ = ∂p−1 ◦ ∂p = 0. Note also that Im ∂p+1 ⊂ Ker ∂p.
Zp = Ker ∂p is the set of p-cycles and Bp = Im ∂p+1 is the set of p-boundaries.
Hp(K) = Zp(K)/Bp(K) is a finitely generated Abelian group and quantifies the
non-bounding p-cycles of K . This is called the pth homology group of K (with
integer coefficients). Note that Hn(K) = Zn(K) is free Abelian. Two p-cycles z
and z′ ∈ Zp(K) are homologous (z ∼ z′) if z − z′ ∈ Bp(K). It is a fact that
homology groups are topological invariants, i.e., two homeomorphic topological
spaces have isomorphic homology groups. For a simplicial complex, the set of
simplices as subsets of R

m (m ≤ n) is called the polyhedron |K| of K . For a
topological space X, if there exists a simplicial complex K and a homeomorphism
f : |K| → X, X is said to be triangulable and (K, f ) is called a triangulation of
X. For a triangulable topological space X, given an arbitrary triangulation (K, f ),
Hr(X) := Hr(K), r = 0, 1, . . . .3

Example 3.1 Circle S1 is not the boundary of any 2-chain, and hence, H1(S
1) is

generated by the circle itself (only one generator), i.e.,H1(S
1) = Z. S1 is connected,

and hence,H0(S
1) = Z. A similar example is the punctured plane R2\(0, 0), which

is connected and its first homology group is generated by any simple closed curve
circling the origin once.

2Here, we find it more convenient to use an additive notation. Also, to be more specific we should
denote the group by Cp(K;Z) to emphasis that it has integer coefficients.
3Note that the homology groups are independent of triangulations. Note also that not every
space can be triangulated. For such spaces one can still define homology, e.g., singular and Čech
homologies.
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γ1

γ2γ1 γ1

γ2

γ2

Fig. 2 A torus can be constructed from a square by the identifications shown above. γ1 and γ2 are
generators of the first homology and first homotopy groups

a a
z

z

a

Fig. 3 Möbius band and its deformation retract to a circle

Example 3.2 Torus T 2 is not a boundary of any 3-chain. Thus, H2(T
2) is freely

generated by one generator, the surface itself, i.e., H2(T
2) ∼= Z. T 2 is connected,

and hence, H0(T
2) ∼= Z. H1(T

2) is freely generated by the loops γ1 and γ2 (see
Fig. 2), and hence, H1(T

2) ∼= Z ⊕ Z. The group presentation can be written as
π1(T

2) = 〈γ1, γ2〉. For a torus of genus g (the number of closed cuts that leave the
torus path-connected)

H1(Σg) ∼= Z⊕ Z⊕ . . .⊕ Z︸ ︷︷ ︸
2g

. (29)

Example 3.3 Möbius band is constructed from a square by the identification shown
in Fig. 3. z is a generator of the first homology group H1(M,Z), i.e., H1(M,Z)

= Z.

Remark 3.4 Note that Zr(K) and Br(K) are both free Abelian groups as they are
both subgroups of a free Abelian group Cr(K). However, this does not imply that
Hr(K) is also free Abelian. From the fundamental theorem of finitely generated
Abelian groups one has

H1(K;Z) ∼= Z⊕ Z⊕ . . .⊕ Z︸ ︷︷ ︸
f

⊕Zk1 ⊕ . . .⊕ Zkp︸ ︷︷ ︸
torsion subgroup

, (30)

where k1, . . . , kp are integers, ki+1 divides ki (i = 1, . . . , p− 1), and Zki = Z/kiZ

is the set of integers modulo ki . f is called the rank of H1(K;Z) or the first Betti
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number and p is called the torsion number. The torsion subgroup contains all the
elements of the first homology group that have finite order.

Let M be an m-dimensional manifold and let σr be an r-simplex in R
m, and

f : σr → M a smooth map, not necessarily invertible. sr = f (σr) ⊂ M is called
a singular r-simplex in M (these simplices do not provide a triangulation of M).
Given the set of r-simplices {sri } in M , an r-chain in M is defined as

c =
∑

i

ais
r
i , ai ∈ R. (31)

The r-chains inM form the chain group Cr(M)with real coefficients. The boundary
of a singular r-simplex sr is defined as ∂sr := f (∂σr). The boundary and cycle
groups Br(M) and Zr(M) are defined similar to those of simplicial complexes.
The singular homology group is defined asHr(M) := Zr(M)/Br(M). The singular
homology group is isomorphic to the corresponding simplicial homology group with
R-coefficients.

3.1.4 Cohomology Groups

Integration of an r-form ω over an r-chain in M is defined as

∫

sr

ω =
∫

σr

f ∗ω, (32)

where f ∗ω is the pull-back of ω under f . For c =∑i ais
r
i ∈ Cr(M):

∫

c

ω =
∑

i

ai

∫

sri

ω. (33)

The set of closed r-forms (rth cocycle group) is denoted by Zr(M). The set of exact
r-forms (the rth coboundary group with real coefficients) is denoted by Br(M). The
rth de Rham cohomology group of M is defined as

Hr(M;R) := Zr(M)/Br(M). (34)

For ω ∈ Zr(M), [w] ∈ Hr(M) (the equivalence class of ω) is defined as

[ω] = {ω′ ∈ Zr(M)|ω′ = ω + dψ, ψ ∈ Ωr−1(M)}, (35)

where Ωr−1(M) is the set of (r − 1)-forms on M .

Example 3.5 The first cohomology group of the unit circle S1 = {eiθ |0 ≤ θ < 2π}
is calculated as follows. Let ω and ω′ be closed forms (dω = dω′ = 0) that are not
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exact. Note that ω′ − aω is exact when a = ∫ 2π
0 ω′/

∫ 2π
0 ω. Thus, given ω such that

dω = 0, any closed 1-form ω′ is cohomologous to aω for some a ∈ R. Hence, each
cohomology class is given by a real number a. Therefore, H 1(S1) = R.

The period of a closed r-form ω over a cycle c is defined as (c, ω) = ∫
c
ω. For

[c] ∈ Hr(M), [ω] ∈ Hr(M) define

Λ([c], [ω]) := (c, ω) =
∫

c

ω. (36)

We note that both Λ(., [ω]) : Hr(M)→ R, and Λ([c], .) : Hr(M)→ R are linear
maps. De Rham’s theorem [16, 23] says that if M is a compact manifold, Hr(M)
and Hr(M) are finite-dimensional and the map Λ : Hr(M) × Hr(M) → R is
bilinear and non-degenerate. Hence,Hr(M) is the dual vector space ofHr(M). As a
corollary of de Rham’s theorem, for a compact manifoldM , let br = dimHr(M;R)
be its rth Betti number. Let c1, . . . , cbr be generators of Zr(M). Then, a closed r-
form ψ is exact if and only if4

∫

ci

ψ = 0, i = 1, . . . , br . (37)

Note that Λ([ci], .) : Hr(M)→ R is non-degenerate, and hence, Λ([ci], [ω]) = 0
implies [ω] = 0, i.e., the cohomology class of exact forms. Duff [20] generalized
this theorem to manifolds with boundary.5

3.1.5 Relative Homology Groups

The relative homology groups were introduced by S. Lefschetz [29]. These are
important in problems with boundary conditions and also appear in duality theo-
rems. Let K be an oriented simplicial complex of dimension n and L ⊂ K . The
pth chain group of K modulo L (the pth relative chain group) is the subgroup of
Cp(K) in which the coefficient of every simplex of L is zero. This is denoted by
Cp(K,L) ⊂ Cp(K). Let us define a homomorphism j = jq : Cq(K)→ Cq(K,L),
which changes to zero the coefficient of every simplex in L. The relative boundary
homomorphism ∂̃ = ∂̃p : Cp(K,L)→ Cp−1(K,L) is defined as

∂̃c = jp−1(∂pc), ∀c ∈ Cp(K,L). (38)

4This was conjectured by Cartan in 1928 and was proved later on by de Rham [18]. This theorem
can be summarized as follows. If for a closed form ω, (c, ω) = 0 for all p-cycles, then ω is exact.
If for a p-cycle c, (c, ω) = 0 for all closed p-forms, then c is a boundary.
5Duff [20] showed that a closed form with zero relative periods in H1(M, ∂M) is a closed relative
form, i.e., a closed form with compact support in M .
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Fig. 4 A cylinder
Ω = S1 × [0, 1].
S = ∂Ω = γ1 ∪ γ2 has two
components. c1 and c2 are
relative boundaries, c3
generates H1(Ω), and c4 is a
relative cycle but not a
relative boundary; it
generates H1(Ω, ∂Ω).

c1

c2

c3

c4

γ1

γ2

Ω

Note that ∂̃p = jp−1 ◦ ∂p ◦ ip, where ip : Cp → Cp(K) is the inclusion map. Note
also that for any p, ∂̃ ◦ ∂̃ = ∂̃p−1 ◦ ∂̃p = 0.

Let Ω be a compact manifold and S ⊂ Ω a compact subset. C∗(Ω) =
{Cp(Ω), ∂p} is the chain complex corresponding to Ω and for S ⊂ Ω,C∗(S) =
{Cp(S), ∂ ′p}, where Cp(S) ⊂ Cp(Ω), ∀p, is the chain complex associated with S.
The relative chain group is defined as

Cp(Ω, S) := Cp(Ω)/Cp(S) = {c + Cp(S)}, c ∈ Cp(Ω). (39)

The induced boundary operator ∂ ′′p : Cp(Ω)/Cp(S) → Cp−1(Ω)/Cp−1(S) is
defined the obvious way. Zp(Ω, S) = Ker ∂ ′′p is the group of relative p-cycles
modulo S and Bp(Ω, S) = Im ∂ ′′p+1 is the group of relative p-boundaries of Ω
modulo S. Note that z is a relative p-cycle if its boundary lies in S and b is a
relative p-boundary if it is homologous to some p-chain in S. In Fig. 4, four paths
on a cylinder are shown. c1 and c2 are relative boundaries, i.e., are elements of
B1(Ω, ∂Ω), c3 ∈ H1(Ω), and c4 ∈ H1(Ω, ∂Ω).
Cp(Ω, S) is defined to be the set of linear combinations of p-forms whose

support lies in Ω\S. For z ∈ Zpc (Ω\S),
∫
z
ω is the relative period of ω on z, where

Z
p
c (Ω\S) is the set of closed p-forms with compact support in Ω\S. Suppose M

is a manifold with boundary ∂M . If a closed p-form has zero relative periods in M ,
then α is an exact relative p-form [20].

3.1.6 Duality Theorems in Algebraic Topology

The following duality theorems are useful in nonlinear elasticity applications.

• Poincaré duality: For an orientable n-manifold M without boundary, Hp
c (M) ∼=

Hn−p(M), where Hp
c (M) := Z

p
c (M)/B

p
c (M), and Zpc (M) and Bpc (M) are the
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closed and exact p-forms with compact supports inM , respectively. For compact
manifolds from de Rham’s theorem Hp(M) ∼= Hn−p(M).

• Lefschetz duality: For a compact n-manifold M , Hn−p
c (M) ∼= Hp(M, ∂M).

From de Rham’s theorem, Hn−p(M) ∼= H
p
c (M\∂M). Therefore, Hn−p(M) ∼=

Hp(M, ∂M).6 Thus, bn−p(M) = bp(M, ∂M).
• Poincaré–Lefschetz duality: For a compact, orientable n-manifold M with

boundary (for 0 ≤ k ≤ n), Hk(M;Z) ∼= Hn−k(M, ∂M;Z). This holds for
any Abelian coefficient group as well.

• Alexander duality: For a closed subset M of an n-manifold Q, Hp(M) ∼=
Hn−p(Q,Q\M). In elasticity applications, Q = R

3. It can be shown that for
p �= 2,Hp(M) ∼= H2−p(R3\M), and R⊗H 2(M) ∼= H0(R

3\M) [24]. Thus, for
p �= 2, bp(M) = b2−p(R3\M), and 1+ b2(M) = b0(R

3\M).
Let us now restrict ourselves to embedded 3-submanifolds of R3,7 which model

our three-dimensional deformable bodies in elasticity. H0(M) is generated by
equivalence classes of points in M; two points are in the same equivalence class if
they can be connected to each other by a continuous path inM .H1(M) is generated
by equivalent classes of oriented loops; two loops are in the same equivalence class
if their “difference” is the boundary of an oriented surface in M . H1(M, ∂M) is
generated by the equivalence class of oriented paths with end points on ∂M; two
paths are equivalent if their “difference” (augmented by paths on ∂M if necessary)
is the boundary of an oriented surface in M . From Poincaré duality we know that

H0(M) ∼= H3(M, ∂M), (40)

H1(M) ∼= H2(M, ∂M), (41)

H2(M) ∼= H1(M, ∂M), (42)

H3(M) ∼= H0(M, ∂M). (43)

Define Mc = R
3\M . From Alexander duality one has

H0(M) ∼= H2(M
c), H1(M) ∼= H1(M

c), H0(M
c) ∼= R⊗H2(M). (44)

Let Σ1, . . . , Σk be a family of surfaces in M with boundaries on ∂M such that they
generateH2(M, ∂M). As an example, consider the solid torus with two holes shown
in Fig. 5 for which k = 2. Let γ1, . . . , γk be loops in the interior of M that generate

6Love [31] in Article 156 writes: “Now suppose the multiply-connected region to be reduced to
a simply-connected one by means of a system of barriers.” A “barrier” Ω in a three-dimensional
body B is a generator of H2(B, ∂B) ∼= H1(B), and in a two-dimensional body it is a generator of
H2(B, ∂B) ∼= H1(B).
7Cantarella et al. [11] present an elementary exposition of homology theory with applications to
vector calculus. The reader may find their exposition useful.
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γ1

γ2

Γ1

Σ1

Γ2

Σ2

Fig. 5 A two-hole solid torus M . The closed curves γ1 and γ2 are generators of H1(M). Γ1 and
Γ2 are generators of H1(R

3\M)

H1(M) chosen such that intersection number of ci with Σj is δij .8 These loops can
be chosen to be disjoint. If one pushes the boundaries of Σ1, . . . , Σk slightly into
Mc, one obtains the loops Γ1, . . . , Γk that generate H1(M

c).

3.2 Homotopy and the Fundamental Group

Fundamental group was introduced by Poincaré in 1895 and plays an important
role in understanding compatibility equations. It is much easier to define compared
to homology groups but it is much harder to calculate, in general. A path in a
topological space X is a map c : [0, 1] → X. It is simple if it is one-to-one.
A closed path (loop) has the same end points, i.e., c(0) = c(1), which is called
the base point of the loop. A cycle is a continuous map γ : S1 → X. It is different
from a loop because in a cycle no end points are distinguished. Two paths c1 and
c2 having the same end points are homotopic if there is a continuous family of
paths whose end points are the same as those of c1 and c2. Roughly speaking, the
set of equivalent paths based at x0 constitute the fundamental group π1(X, x0). An
isotopy between c1 and c2 is a homotopy for which the curves remain simple during
the whole deformation process from c1 to c2. Note that two homotopic simple paths
are not necessarily isotopic. We make these notions more precise in the following.

Consider a topological space X and a base point x0 ∈ X. Two loops based at x0
are equivalent if one loop can be continuously deformed to the other loop. A loop
based at x0 is a continuous map f : I = [0, 1] → X such that f (0) = f (1) = x0.
Two loops f, g are called homotopic if there is a continuous function F : I×I → X

such that F(s, 0) = f (s), F (s, 1) = g(s), F(0, t) = F(1, t) = x0. F is a homotopy
between f and g and this is denoted by f ∼F g. It can be shown that homotopy
gives an equivalence relation on loops based at x0. The equivalence class of f is
denoted by [f ] and the equivalence classes are elements of the fundamental group
π1(X, x0). Group multiplication is defined as [f ][g] = [fg], where fg is defined

8This is possible as a consequence of Poincaré duality.
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Fig. 6 Having a loop f
based at x a loop αγα−1

based at x0 is constructed f

α

α-1

x0

x

by first going along the loop f and then along the loop g. Inverse of a loop f , f−1

is the same loop with the opposite orientation and [f ]−1 = [f−1]. Identity loop
at x0 is a loop f : [0, 1] → X such that f (s) = x0,∀ s ∈ [0, 1]. For a path-
connected topological space X fundamental groups at two distinct points x0 and
x are isomorphic. A path α connecting x0 to x (α(0) = x0, α(1) = x), induces
an isomorphism α∗ : π1(X, x) → π1(X, x0) defined as α∗([f ]) = [αf α−1] (see
Fig. 6).

A path-connected space X is simply connected if π1(X, x0) ∼= {1}. Rn is an
example of a simply connected space. Another example is the 2-sphere S2. In a
simply connected and path-connected space any closed path can be continuously
shrunk to any point in the space.

Example 3.6 The fundamental group of the unit circle S1 is π1(S
1) = Z. Homotopy

class of a loop is determined by the number of times it winds around. In other
words, any closed path in the circle can be tightened through homotopy into the
product of n standard circular paths. Torus T 2 = S1 × S1 has the fundamental
group π1(T

2) ∼= Z⊕ Z and is Abelian.

Consider two paths f, g : I → X, f (0) = a0, f (1) = a1, and g(0) = b0, g(1) =
b1. f and g are said to be freely homotopic if there exists a continuous map F :
I×I → X such that F(s, 0) = f (s), F (s, 1) = g(s). In addition to this if F(0, t) =
a0, F (1, t) = b0, f and g are called homotopic. Two loops f, g : I → X are freely
homotopic if there is a continuous map F : I × I → X such that F(s, 0) =
f (s), F (s, 1) = g(s) and F(0, t) = F(1, t) = α(t) is a path between f (0) =
f (1) = a and g(0) = g(1) = b.

Let Y be a topological space. X ⊂ Y is a retract of Y if there exists a continuous
map r : Y → X such that r(x) = x for all x ∈ X. X is a deformation retract of Y if
it is a retract of Y and there is a continuous map h : [0, 1] × Y → Y such that: (1)
h(0, y) = y, h(1, y) = r(y), ∀y ∈ Y , and (2) h(t, x) = x, ∀x ∈ X, ∀t ∈ [0, 1].
A deformation retract r : Y → X induces an isomorphism r∗ : π1(Y ) → π1(X).
One can visualize deformation retraction as a continuous collapse of Y onto X in
such a way that each point of X remains fixed during the deformation process.

Example 3.7 The Möbius band M is constructed from a square by the identification
shown in Fig. 3. This is an example of a non-orientable surface. The circle S1 is a
deformation retract of the Möbius band, and hence, π1(M) = Z.
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c1 c2

c3
c4

Fig. 7 A solid cylinder with four tubular holes and its deformation retract to a bouquet of four
circles. c1, c2, c3, c4 are the generators of the fundamental group

Example 3.8 Consider the solid cylinderΩ with four tubular holes shown in Fig. 7.
As is shown schematically Ω has a deformation retract to a bouquet of four circles,
and hence, π1(Ω) = Z⊗Z⊗Z⊗Z, i.e., the free group with four generators. If this
is a solid body, e.g., a hollow bar under torsion and bending, we will see in the next
section that because ci’s are free generators of the fundamental group, each would
require an additional (vectorial) compatibility equation.

H. F. F. Tietze (1908) showed that the fundamental group of any compact,
finite-dimensional, path-connected manifold is finitely presented. One forms the
Abelization of a group by taking the quotient over the subgroup generated by all
commutators g−1h−1gh. The Poincaré isomorphism theorem tells us that (Poincaré,
1895)9

π1(M)/[π1(M), π1(M)] ∼= H1(M,Z). (45)

Given a group G with the presentation

G = 〈a1, . . . , am; r1, . . . , rn〉, (46)

its Abelianization is obtained by adding the relations aiaj = ajai and it is
independent of the presentation of G.

3.3 Classification of Compact 2-Manifolds with Boundary

LetM1 andM2 be compact manifolds with boundary. Assume that their boundaries
have the same number of components. M1 and M2 are homeomorphic if and only if
the manifolds M∗

1 and M∗
2 obtained by gluing a disk to each boundary component

are homeomorphic. Any compact surface is either homeomorphic to a sphere, a
connected sum of tori, or a connected sum of projective planes. Any compact
orientable 2-manifold with boundary is homeomorphic to a sphere with n handles
and k holes, see Fig. 8.

9If γ n1
1 γ

n2
2 . . . γ

nk
k = 1, Poincaré observed that n1γ1+n2γ2+ . . .+nkγk is null-homologous [18].
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γ1

γ3

γ2

Fig. 8 A sphere with k holes and n handles. γ1, γ2, and γ3 are typical generators for the first
homology group. Note that a sphere with a single hole is simply connected, i.e., there are k − 1
generators corresponding to the k holes

Fig. 9 A null-homotopic
curve on an orientable surface
bounds a region

3.4 Curves on Oriented Surfaces

R. Baer in 1928 showed that simple closed curves on a 2-manifold are isotopic
if and only if they are homotopic [50]. Epstein [21] showed that any two simple,
homotopic, non-contractible loops on an orientable surface are isotopic. If c is a
simple, null-homotopic (contractible) loop on a surface, then it is the boundary of
a topological disk (a genus zero surface with one boundary curve) [30, 32], see
Fig. 9. A zero-genus surface with two boundary curves is called a cylinder. Any two
non-contractible, non-intersecting, and freely homotopic curves on a closed surface
bound a cylinder [30]. We will use these facts to derive the “bulk” compatibility
equations.10

10These topological results are implicitly assumed in the literature of compatibility equations.
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3.5 Theory of Knots

Topology of subsets of R3 with tubular holes can, at least partially, be understood
using the complementary spaces of knots. For the background in knot theory we
mainly follow [3, 15, 50]. A knot K is a simple closed curve in R

3. A knot K is
trivial if it is isotopic to the circle in R

3. The fundamental group of a trivial knot
R

3\K is infinite cyclic. Any knot K can be represented by a projection on a plane
with no multiple points higher than double, with an indication of the upper branch
of each crossing point (each of the double points). A projection of the trefoil knot
(the simplest non-trivial knot) is shown in Fig. 10. A link is a set of knots tangled up
together.

If the lower branch (under crossing) of each crossing is broken, one obtains a
finite number of arcs αi . It turns out that π1(R

3\K) is generated by loops ci that pass
around these arcs (this is rigorously proved using the Seifert–van Kampen theorem).
This means that the number of generators of π1(R

3\K) is equal to the number of
crossing points. Given the crossing point shown in Fig. 11a, the three generators of
the fundamental group corresponding to the arcs αi, αi+1, and αj are ci, ci+1, and
cj , respectively, and are oriented using the right-hand rule. It can be shown that
cic

−1
j c−1

i+1cj is null-homotopic, or equivalently, at this crossing point we have the
relation ci+1cj = cj ci [50]. All the four possibilities and their corresponding group
relations are shown in Fig. 11b.

Fig. 10 A trefoil knot and its
projection. γ is the generator
of the first homology group of
the “thickened” trefoil and Γ
is the generator of the first
homology group of R3\T

γ

Γ

αi

αi+1

αj

ci
cj

ci+1

or or
αi αiαi αi

αi+1 αi+1αi+1 αi+1

αj αj

αj αj

Type I crossing: cjci = ci+1cj

ba

Type II crossing: cicj = cjci+1

Fig. 11 (a) A crossing point. αj corresponds to the over crossing and αi and αi+1 correspond to
the under crossing. Their corresponding loops cj , ci , and ci+1 are oriented using the right-hand
rule. (b) Two types of crossing points and their corresponding group relations. Note that ci is the
fundamental group generator corresponding to the arc αi , etc.
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Fig. 12 The double link and
the trefoil knot and their
corresponding arcs αi

α1

α2

α1

α2

α3

Next, as examples, we find the fundamental groups of the complements of the
two-crossing link, and the trefoil knot (see Fig. 12). Using the diagrams of Fig. 11b,
it is straightforward to see that the fundamental groups of the complements of the
two-crossing link T1 and the trefoil knot T2 are, respectively:

π1

(
R

3\T1

)
= 〈c1, c2; c1c2 = c2c1〉,

π1

(
R

3\T2

)
= 〈c1, c2, c3; c3c1 = c2c3, c2c3 = c1c2, c1c3 = c2c1〉.

(47)

Note that if the two circles are unlinked then π1
(
R

3\T1
) = 〈c1, c2〉, i.e., a free

group with c1 and c2 as generators.

Remark 3.9 In the case of knots, Abelianization always gives an infinite cyclic
group [50]. A handlebody Hn is a solid body bounded by an orientable surface
of genus n embedded in R

3. π1
(
R

3\Hn

)
is the free group of rank n.

3.6 Topology of 3-Manifolds

Material manifold—the natural configuration of a body—may be non-Euclidean
in many applications [38, 48, 54–57]. However, for most applications the ambient
space is the Euclidean 3-space. We consider a body that has a non-trivial topology,
i.e., it has “holes.” We assume that the body is elastic and the material manifold is an
embedded 3-submanifold of R3. There is a complete classification of 3-manifolds
[26, 34], but it is not known what 3-manifolds can be embedded in R

3. However, a
large class of embedded 3-submanifolds can be constructed by thickened knots and
their complements in R

3. The important thing to note is the complexity of embedded
3-manifolds and the importance of algebraic topology in deriving their necessary
and sufficient compatibility equations for non-simply-connected bodies.

For an embedded 3-manifold with boundary in R
3, its boundary is an embedded

closed (orientable) 2-manifold, which has a complete classification. If the boundary
of the 3-manifold is the two-sphere, then its topology is uniquely determined by the
genus of the boundary, i.e., the manifold is simply the compact region bounded by
the boundary in R

3 (by the generalized Jordan–Brouwer separation theorem, any
closed embedded 2-manifold in R

3 divides R3 into a pair of regions, and precisely
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one of these regions has compact closure). If the boundary is not connected, then
things are more complicated. For instance even when the boundary consists of a
single torus, the compact region that it bounds in R

3 is not uniquely determined,
but it is known that it must be either a solid torus or a knot complement. Things get
more complicated when the boundary has genus larger than one. The only simple
case is when the boundary is a sphere, in which case the manifold must necessarily
be a ball by Jordan’s theorem. To summarize, while 3-manifolds with boundary have
been completely classified, it is not known which ones can be embedded in R

3. The
answer certainly depends on both the topology of the boundary and its isotopy (or
knotting) in R

3. As to what types of “holes” can occur in a 3-dimensional solid,
consider the following example: Put a knot in the solid body, then “thicken” it to
obtain a (knotted) solid torus, and then remove the interior of that torus. This way
one can construct as many different types of holes (or topological types for the solid)
as there are knots. Now consider doing the same construction with multiple tori or
higher genus surfaces, which may be linked with each other.

4 Kinematics of Nonlinear Elasticity

In this section we review the kinematics of nonlinear elasticity. A body B is
identified with a Riemannian manifold (B,G)11 and a configuration of B is a
mapping ϕ : B → S , where (S, g) is another Riemannian manifold. The set of
all configurations of B is denoted by C. A motion is a curve c : R → C; t �→ ϕt
in C. The material manifold is, by construction, the natural configuration of the
body. For a fixed t , ϕt (X) = ϕ(X, t) and for a fixed X, ϕX(t) = ϕ(X, t), where X
is the position of a material point in the undeformed configuration B. The material
velocity is given by Vt (X) = V(X, t) = ∂ϕ(X,t)

∂t
. Similarly, the material acceleration

is defined by At (X) = A(X, t) = ∂V(X,t)
∂t

. In components, Aa = ∂V a

∂t
+ γ abcV bV c,

where γ abc is the Christoffel symbol of the local coordinate chart {xa}. The spatial
velocity of a regular motion ϕt is defined as vt : ϕt (B)→ Tϕt (X)S, vt = Vt ◦ ϕ−1

t ,
and the spatial acceleration at is defined as a = v̇ = ∂v

∂t
+ ∇vv. In components,

aa = ∂va

∂t
+ ∂va

∂xb
vb + γ abcvbvc.

Let ϕ : B → S be a C1 configuration of B in S , where B and S are manifolds.
The deformation gradient is the tangent map of ϕ and is denoted by F = T ϕ.
Thus, at each point X ∈ B, it is a linear map F(X) : TXB → Tϕ(X)S . If {xa} and
{XA} are local coordinate charts on S and B, respectively, the components of F are
FaA(X) = ∂ϕa

∂XA
(X). F has the local representation F = FaA

∂
∂xa
⊗ dXA. F can be

thought of a vector-valued 1-form with the representation F = ∂
∂xa
⊗ ϑa , with the

coframes ϑa = FaAdXA. The adjoint of F is defined by

11In general, (B,G) is the underlying Riemannian manifold of the material manifold, i.e., its
natural state. See [54–57] for more details.
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FT : TxS → TXB, ⟪FW,w⟫g = ⟪W,FTw⟫G, ∀W ∈ TXB, w ∈ TXS. (48)

In components, (F T(X))Aa = gab(x)F
b
B(X)G

AB(X), where g and G are metric
tensors on S and B, respectively. The right Cauchy–Green deformation tensor is
defined as

C(X) : TXB→ TXB, C(X) = FT(X)F(X). (49)

In components, CAB = (F T)AaF
a
B . It is straightforward to show that, C� =

ϕ∗(g) = F+gF, i.e., CAB = FaA(gab ◦ ϕ)F bB , where the dual of the deformation
gradient is defined as F+ = FaAdXA⊗ ∂

∂xa
. The Finger tensor is defined as b = c−1,

where c = ϕt∗G. In components, bab = FaAgbcF cBGAB = FaA
(
F T
)A

b. Thus

b(x) : TxS → TxS, b(x) = F(X)FT(X). (50)

Polar decomposition theorem states that F = RU [45]. In components it reads
FaA = RaBU

B
A, where R(X) : TXB → Tϕt (X)S is a (G, g)-orthogonal

transformation, i.e., GAB = RaAR
b
Bgab, and U(X) : TXB → TXB is the material

stretch tensor. Note that G = R∗g and C = U∗G.

5 Compatibility Equations in Nonlinear Elasticity

In this section we summarize the results of [4, 58], and [5]. We assume a finite body,
and hence, the material manifold (B,G) is a compact Riemannian manifold. We also
assume that the first homology and homotopy groups H1(B) and π1(B) are given.
In the presence of boundary conditions we will use the relative homology groups,
which are also assumed to be given. In [58] we derived the compatibility equations
for the deformation gradient F using a generalization of de Rham’s theorem. The F-
compatibility equations can be derived using the fundamental group as well. It turns
out that understanding the role of homotopy in compatibility equations is crucial in
formulating the C-compatibility equations [58].

5.1 Compatibility Equations for the Deformation Gradient F

The following old questions in vector calculus are relevant to the compatibility
equations: (1) Given a vector field defined on some bounded domain in the
Euclidean 3-space, is it the gradient of some function defined on the same domain?
(2) Is it the curl of another vector field? It turns out that the topology of the
domain of definition of the vector field plays a crucial role. The F-compatibility
problem is stated as: Given a body B ⊂ R

3, find the condition(s) that guarantee
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existence of a map ϕ : B → R
3 such that F = T ϕ. Question (1) is related

to compatibility equations while question (2) is related to the existence of stress
functions in elasticity. The following proposition summarizes the F-compatibility
equations, which is a simple extension of de Rham’s theorem to R

3-valued forms.

Proposition 5.1 (Yavari [58]) The necessary and sufficient F-compatibility equa-
tions are12

dF = 0, and
∫

ci

FdX = 0, i = 1, . . . , b1(B), (51)

where ci, i = 1, . . . , b1(B) are the generators of H1(B;R).
Instead of using de Rham’s theorem, one may follow a different path using the

fundamental group. Let us assume that the position of a material point X0 ∈ B in
the deformed configuration x0 ∈ S is given. The position of an arbitrary material
point X ∈ B in the deformed configuration is given as

x = x0 +
∫

γ

FdX. (52)

Note that the ambient space is Euclidean, and hence, integrating vector fields makes
sense. F is compatible if and only if the above integral is path-independent, which
is equivalent to

∫

γ

FdX = 0, (53)

for any closed path γ based at X0.
Suppose π1(B) has the generators {γi}i=1,...,m. For a compact material manifold

B, i.e., a finite body, the fundamental group has a finite presentation [50]

π1(B) = 〈γ1, . . . , γm; r1, . . . , rn〉, (54)

where

ri = γ εi1i1 . . . γ
εji
ji
= 1, i = 1, . . . , n, εk = ±1, (55)

are the relators of the fundamental group. If γ is a contractible (null-homotopic)
curve that lies on a 2-submanifold P ⊂ B, then

∫

γ

FdX =
∫

∂U
FdX =

∫

U
d(FdX) = 0, (56)

12The exterior derivative of the deformation gradient dF can be identified with Curl F. Note that
dF = 0 is equivalent to ∇GF = 0, where ∇G is the Levi-Civita connection corresponding to the
material metric G [59]. In components, FaA,B = FaB,A, or equivalently, FaA|B = FaB|A.
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where γ = ∂U ⊂ P [21, 30]. Because P is arbitrary one concludes that dF = 0 in
B, which is a necessary compatibility condition. Note that from (53)

∫

γi

FdX = 0, i = 1, . . . , m. (57)

Therefore, dF = 0, and
∫
γi

FdX = 0, i = 1, . . . , m subjected to
∫
ri

FdX = 0, i =
1, . . . , n are necessary for compatibility of F. It turns out that they are sufficient as
well. Given a null-homotopic curve γ , γ = ∂Ω , and hence, from dF = 0, one can
write

∫

γ

FdX =
∫

∂U
FdX =

∫

U
d(FdX) =

∫

U
dF ∧ dX = 0. (58)

If γ is non-contractible, in terms of the group generators it has the representation

γ =
(
w1γ1w

−1
1

)ε1
. . .
(
wpγpw

−1
p

)εp
, where wi is a curve joining X0 to a point

on γi and {γ1, . . . , γp} is a subset of the group generators with possible relabelings.
Using the relations

∫
wiγiw

−1
i

FdX = ∫
γi

FdX, one has

∫

γ

FdX = ε1

∫

γ1

FdX+ . . .+ εp
∫

γp

FdX = 0. (59)

The relators of the group representation impose the following constraints

∫

ri

FdX = 0, i = 1, . . . , n. (60)

This implies that the conditions
∫
γi

FdX = 0, i = 1, . . . , m, may not all be
independent.

Proposition 5.2 (Yavari [58]) The necessary and sufficient F-compatibility condi-
tions are:

(i) dF = 0 in B,
(ii) If π1(B) = 〈γ1, . . . , γm; r1, . . . , rn〉, then

∫

γi

FdX = 0, i = 1, . . . , m, (61)

subjected to
∫

ri

FdX = 0, i = 1, . . . , n. (62)

For a path-connected set B the first homology group is the Abelianization of the
fundamental group [10]. One Abelianizes π1(B) by adding the relations γiγj =
γjγi , which do not lead to any new compatibility equations.
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One should note that the generators of the torsion subgroup do not contribute to
the F-compatibility equations because for γ an element of the torsion subgroup
γ n = 1 for some n ∈ N, and thus,

∫
γ

FdX = 0 is trivially satisfied. This

means that it is sufficient to have
∫
γ

FdX = 0 only on each generator of the first
homology group with real coefficients. Therefore, the number of the complementary
compatibility equations is Nb1(B), where N = dimS .

Example 5.3 Let us assume that dimB = 1 and S = R
2. The bulk compatibility

equations are trivially satisfied. It is known that when B is a graph its fundamental
group is freely generated. Assuming that γ1, . . . , γk are the free generators of π1(B),
there are 2k compatibility equations. As an example, let us assume that B = S1(R),
i.e., the circle with radius R and let X = Θ be the standard parametrization of S1.
Compatibility equations read

∫ 2π

0
FdΘ = 0. (63)

As examples, F = (κ1Θ, κ2)
T, where κ1 and κ2 are arbitrary constants, is not

compatible, while F = (κ1 sinΘ, κ2 cosΘ)T is compatible.

Remark 5.4 One should note that the F-compatibility equations derived here are
valid for anelastic bodies as well. In other words, we have not assumed a flat material
manifold (B,G); the compatibility equations have the same form even in problems
for which the material manifold is non-flat. As an example, see the discussion of
universal deformations and eigenstrains in compressible solids in [59].

5.2 Examples of Non-simply-connected Bodies and Their
F-Compatibility Equations

We next look at a few examples of 2D and 3D non-simply-connected bodies and
derive their compatibility equations.

5.2.1 2D Elasticity on a Torus and a Punctured Torus

The first homology groups of both torus and punctured torus (handle) are generated
by the loops γ1 and γ2 in Figs. 2 and 13. Hence, the F-compatibility equations read

dF = 0,
∫

γ1

FdX =
∫

γ2

FdX = 0. (64)
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Fig. 13 A punctured torus.
γ1, γ2, and γ3 are generators
of the fundamental group

γ1

γ2

γ3
γ1 aa

γ2

b

b

The fundamental group of torus (see Fig. 2) has the presentation

π1(T
2) = 〈γ1, γ2; γ1γ2 = γ2γ1〉. (65)

Therefore, the group relator is written as r1 = γ1γ2γ
−1
1 γ−1

2 = 1. Note that

∫

r1

FdX =
∫

γ1γ2γ
−1
1 γ−1

2

FdX =
∫

γ1

FdX+
∫

γ2

FdX−
∫

γ1

FdX−
∫

γ2

FdX = 0.

(66)
This means that (64) are the necessary and sufficient F-compatibility equations.

For a punctured torus (see Fig. 13) the fundamental group has three generators
and the following presentation [50]

π1(H) = 〈γ1, γ2, γ3; γ3 = γ1γ2γ
−1
1 γ−1

2 〉. (67)

Therefore, the group relator is written as r1 = γ3γ2γ1γ
−1
2 γ−1

1 = 1. Note that

0 =
∫

r1

FdX

=
∫

γ3γ2γ1γ
−1
2 γ−1

1

FdX

=
∫

γ3

FdX+
∫

γ2

FdX+
∫

γ1

FdX−
∫

γ2

FdX−
∫

γ1

FdX

=
∫

γ3

FdX.

(68)

Therefore, the necessary and sufficient F-compatibility equations read

dF = 0,
∫

γ1

FdX =
∫

γ2

FdX = 0. (69)

One observes that γ3 is a generator of the fundamental group but does not have a
corresponding complementary compatibility equation. The boundary of the hole in
a punctured torus is null-homologous path but not null-homotopic.
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5.2.2 2D Elasticity on Arbitrary Compact Orientable 2-Manifolds

When B is an arbitrary compact orientable 2-manifold, it is homeomorphic to
a sphere with n handles. Each handle corresponds to two generators of the
first homology group, and hence, there are 3 × 2n complementary compatibility
equations. If the body has boundaries they correspond to k holes, which introduce
another k − 1 generators of the first homology group (see Fig. 8). The total number
of complementary compatibility equations are 3(2n+ k − 1).

5.2.3 3D Elastic Bodies with Holes

A 3D solid with internal cavities has a trivial H1(B). As an example, a solid with a
spherical hole (see Fig. 1a) has a trivial first homology group, and hence, dF = 0
is both necessary and sufficient for compatibility of F. The first homology group of
a solid torus has only one generator. The body shown in Fig. 1c is homeomorphic
to a solid torus and the (red) closed curve generates its first homology group. The
body shown in Fig. 1d has Betti number two and the two (red) loops generate its
first homology group. The complement of a solid torus has Betti number one (see
Fig. 1b). The first homology group of a 2-holed solid torus has the two generators γ1
and γ2 shown in Fig. 5. Its complement has Betti number two and the generators Γ1
and Γ2 are shown in Fig. 5. A thick torus with two tubular holes has Betti number
three. The generators of the first homology group are shown in Fig. 14.

A solid trefoil knot has Betti number one and a generator of its first homology
group is γ shown in Fig. 10. Its complement in R

3 has Betti number one as well
and Γ in Fig. 10 is its generator. A cylinder and an annulus are homeomorphic.
The first homology group is generated by the loop c3 in Fig. 4. A solid with tubular
holes shown in Fig. 7 has a fundamental group freely generated by the four loops
ci, i = 1, 2, 3, 4. Each ci corresponds to three extra compatibility equations for F
(six extra compatibility equations for C�). A thick hollow cylinder is the special
case of this example when there is only one hole. The Betti number of both the
Möbius band M and the thick Möbius band M × [0, 1] is one. The knotted ball
shown in Fig. 15 (left) has Betti number one. Note that its fundamental group has

γ1

γ2
γ3

γ3

γ2

Fig. 14 A solid torus with two tubular holes



Applications of Algebraic Topology in Elasticity 171

γ

Fig. 15 Left: A knotted ball. γ is a generator of the first homology group. Right: A ball with a
toroidal hole of genus four. This body has Betti number four

four generators but only one requires complementary compatibility equations. The
ball shown in Fig. 15 (right) has a hole, which is a genus four handlebody. Its Betti
number is four.

5.3 F-Compatibility Equations in the Presence of Dirichlet
Boundary Conditions

In [5], the compatibility equations in the presence of Dirichlet boundary conditions
were derived using some Hodge-type orthogonal decompositions. Here, we follow
[20] and find the F-compatibility equations when deformation mapping (or displace-
ment field) is prescribed on part of the boundary ∂DB ⊂ ∂B.

Consider a k-form ω (k ≥ 1) on B. Using the inclusion map ı : ∂B ↪→ B, the
tangential component of ω is defined as tω = ı∗ω [41]. This can equivalently be
defined using the decomposition of vector fields on ∂B into tangential and normal
parts. Given X ∈ Γ (TB|∂B), X = X‖ +X⊥, and the tangential part of the k-form ω

is defined as

tω(X1, . . . ,Xk) = ω(X‖1, . . . ,X‖k), ∀X1, . . . ,Xk ∈ Γ (TB|∂B). (70)

The normal part is defined as nω = ω − tω. For k = 0, tω = ω. The
deformation mapping can be thought of as an R

3-valued 0-form. The Dirichlet
boundary conditions are given as ϕa|∂DB = ϕ̂a , where ϕa , a = 1, 2, 3, are 0-forms
defined on B, and ϕ̂a , a = 1, 2, 3, are 0-forms defined on ∂DB.

The following result is a simple corollary of [20, Theorem 6].

Proposition 5.5 Suppose F is an R
3-valued 1-form in B. Also assume that t F = dϕ̂

on ∂DB.13 The necessary and sufficient conditions for compatibility of F, i.e., the
existence of an R

3-valued 0-form ϕ such that F = dϕ, and ϕ|∂DB = ϕ̂ are:

13tF = dϕ̂ means that for any vector W ∈ TB|∂DB, FW‖ = 〈dϕ̂,W‖〉.
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Fig. 16 The boundary of B
is the union of the inner circle
Ci and the outer ellipse Co

Ci

Co

X2

X1

γ1

γ2

γ3

γ4

γ5

dF = 0, and
∫

ci

FdX =
∫

∂ci

ϕ̂ = ϕ̂(Xi
2)− ϕ̂(Xi

1), i = 1, . . . , b1(B, ∂DB),
(71)

where ci’s are the generators of the first relative singular homology group
H1(B, ∂DB;R). Note that each ∂ci = [Xi

1,X
i
2] is an oriented pair of points

(Xi
1,X

i
2) such that Xi

1 and Xi
2 lie on ∂DB.

Example 5.6 Let us consider the body shown in Fig. 16. We consider the following
four cases of boundary conditions.

• ∂DB = ∅: In this case the auxiliary compatibility equation reads

∫

γ2

FdX = 0, (72)

where γ2 is the generator of the first de Rham cohomology group (see Fig. 16).
• ∂DB = Ci : In this case there are no auxiliary compatibility equations. Note that
γ2 and γ3 are relative boundaries.

• ∂DB = Co: In this case there are no auxiliary compatibility equations. Note that
γ2 and γ4 are relative boundaries.

• ∂DB = ∂B: In this case a generator of H1(B, ∂DB;R) is γ5, and the auxiliary
compatibility equation reads

∫

γ5

FdX = ϕ̂(X2)− ϕ̂(X1). (73)

Note that γ2, γ3, and γ4 are relative boundaries.

Our calculations in this example are consistent with [5, Example 10] in which the
Dirichlet boundary was assumed fixed.
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5.4 Compatibility Equations for the Right Cauchy–Green
Strain C�

Consider a motion of a body ϕt : B→ S and assume that dimB = dimS . The right
Cauchy–Green deformation tensor is defined as C� = ϕ∗t g. For a Euclidean ambient
space R(g) = 0. Thus

0 = ϕ∗t R(g) =R(ϕ∗t g) =R(C�), (74)

i.e., a necessary condition for C� to be compatible is vanishing of its Riemann
curvature, or equivalently local flatness of the Riemannian manifold (B,C�). Note
that this is independent of the geometry of (B,G). In other words, even for a non-
flat material manifold R(C�) = 0 is a necessary compatibility equation for C�.
Marsden and Hughes [33] showed that this condition is locally sufficient as well. In
the case of simply connected elastic bodies this condition guarantees the existence
of a global deformation mapping [14].

Suppose {XA}, {xa} are coordinate charts for B, and S , respectively. The Levi-
Civita connection coefficients of g and C� = ϕ∗g are denoted by γ abc and Γ ABC ,
respectively. They are related as

Γ ABC = ∂XA

∂xa

∂xb

∂XB

∂xc

∂XC
γ abc + ∂2xm

∂XB∂XC

∂XA

∂xm
. (75)

Assuming that {xa} is a Cartesian coordinate chart for the Euclidean ambient space,
γ abc = 0, and hence

Γ ABC = ∂2xm

∂XB∂XC

∂XA

∂xm
. (76)

Therefore

∂2xa

∂XB∂XC
= ∂

∂XC
FaB = FaAΓ ABC. (77)

Using the polar decomposition in (77) one obtains14

RaA,B = RaCΩC
AB, (78)

where

ΩC
AB=

(
Γ MBNU

C
M−UCN,B

)
UA

N, Γ CAB=1

2
CCD(CBD,A+CAD,B−CAB,D),

(79)

14Note that Eq. (78) is identical to Shield [42]’s Eq. (8).
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and UAN are components of U−1. Note that the material manifold is assumed to be
embedded in the Euclidean ambient space. Choosing Cartesian coordinates for B,
GAB = δAB . For a path γ that connects X0, X ∈ B and is parametrized by s ∈ I ,
one obtains the following system of linear ODEs governing the rotation tensor

d

ds
R = RK, (80)

where

KC
A(s) = ΩC

AB(s)Ẋ
B(s). (81)

Note that KBA = −KAB . Therefore, (80) is a linear ODE for R ∈ SO(3), and
K ∈ so(3), the Lie algebra of the Lie group SO(3). For each a

dRaA

ds
−ΩC

ABR
a
CẊ

B(s) = 0. (82)

This is the equation of parallel transport of RaA along the curve γ when B is
equipped with the connection Ω . Let us assume that R(0) = R0. We see that
rotation tensor at s is the parallel transport of R0. It can be shown that in a simply
connected body the integrality conditions of (82) are equivalent to vanishing of
curvature tensor of C� [39]. For solving (80) in [58] we used product integration
and wrote the solution as

R(s) = R0

s∏

0

(γ ) eK(ξ)dξ , (83)

where R0 = R(s) is assumed to be given and
∏s

0(γ ) e
K(ξ)dξ is the product integral

of K along the path γ from 0 to s. For more details on product integration see [58],
and [19, 47].

For a compatible C�, the rotation tensor calculated from (83) must be indepen-
dent of the path γ . Therefore, for any closed path γ in B

∏

γ

eK(s)ds = I. (84)

It was shown in [58] that a necessary and sufficient condition is

∫ 1

0
K(s)ds = 0, (85)

where γ : [0, 1] → B is any closed path.
C�-compatibility is formulated as follows. Given C, U = √

C is determined
uniquely. The system of ODEs (78) govern the rotation R. The calculated rotation
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is path-independent if and only if the curvature tensor of C� vanishes, and (85) are
satisfied over each generator of the first homology group.

Proposition 5.7 (Yavari [58]) The necessary and sufficient C�-compatibility con-
ditions in a non-simply-connected body B are:

(i) R(C�) = 0 in B,
(ii)
∫
ci

K(s)ds = 0, i = 1, . . . , b1(B), where ci’s are generators of H1(B;R),
(iii) The above two conditions guarantee that deformation gradient F = R

√
C is

uniquely determined. For the deformation gradient to be compatible, one must
have,

∫
γi

FdX = 0, i = 1, . . . , b1(B).

5.5 Compatibility Equations in Linearized Elasticity

Suppose ϕε is a 1-parameter family of deformations around a reference motion ϕ̊,
and let ε = 0 correspond to the reference motion. The displacement field is defined
as [53, 60]:

U(X) = δϕ(X) = dϕε(X)

dε

∣
∣
∣
ε=0
. (86)

The linearization of the deformation gradient is written as [33, 60]: L (F) = ∇U.
In components, L (F)aA = Ua |A = ∂Ua

∂XA
+ γ abcF

b
AU

c, where γ abc are the
connection coefficients of the Riemannian manifold (S, g). The spatial and material
strain tensors are defined, respectively, as e = 1

2 (g − ϕt∗G), and E = 1
2 (ϕ

∗
t g − G)

[33]. In components, eab = 1
2

(
gab −GABFaAFbB

)
, and EAB = 1

2 (CAB − GAB).
It can be shown that L (C)AB = 2FaAFbB εab, where εab = 1

2 (ua |b + ub |a)
is the linearized strain, and u = U ◦ ϕ−1. Thus, L (C) = 2ϕ∗t ε, and hence,
ε = ϕt∗L (E). When the ambient space is Euclidean and one uses Cartesian
coordinates the covariant derivatives reduce to partial derivatives and the classical
definition of linear strain in terms of partial derivatives is recovered, i.e.,

εab = 1

2

(
∂ua

∂xb
+ ∂ub

∂xa

)

. (87)

The necessary and sufficient conditions for compatibility in terms of F are∫
γ

FdX = 0, for every loop γ in B. The linearization of this condition reads
∫
γ
∇UdX = 0. In components,

∫
γ
ua,BdX

B = 0, where {XA} and {xa} are
coordinate charts for B and S , respectively. Linearization is assumed about the
standard embedding of B in R

N , i.e., FaA = δaA. This implies that dXB =
∂XB

∂xb
dxb = δBb dxb, and thus
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∫

γ

ua,Bdx
B =

∫

γ

ua,bdx
b =
∫

γ

(eab + ωab) dxb = 0, (88)

where eab = u(a,b) = 1
2 (ua,b + ub,a), and ωab = u[a,b] = 1

2 (ua,b − ub,a), are the
linearized strain and rotation tensors, respectively. Note that

∫

γ

ωabdx
b =
∫

γ

[
(xcωac),b − xcωac,b

]
dxb = −

∫

γ

xcωac,bdx
b. (89)

The gradient of the rotation tensor is rewritten as

ωac,b = 1

2

(
ua,cb − uc,ab

)+ 1

2

(
ub,ac − ub,ac

)

= 1

2

(
ua,bc + ub,ac

)− 1

2

(
uc,abc + ub,ac

)

= eab,c − ebc,a.

(90)

For a given eab, ωab is calculated by integrating ωab,c = eac,b − ecb,a along an
arbitrary curve. To ensure that the rotation field is well-defined one must have∫
γ

(
eac,b − ecb,a

)
dxc = 0, for any closed path γ ∈ B. When γ is null-homotopic,

γ = ∂Ω , on a 2-submanifold of B, and hence

∫

γ

(
eac,b − ecb,a

)
dxc =

∫

Ω

d
(
eac,b − ecb,a

) ∧ dxc

=
∫

Ω

(
ead,bc + ebc,ad − eac,bd − ebd,ac

)
(dxc ∧ dxd) = 0,

(91)

where {(dxc ∧ dxd)} = {dxc ∧ dxd}c<d is a basis of 2-forms. Note that (91) is
equivalent to curl ◦ curl e = 0, which is the classical bulk compatibility equation of
linear elasticity [31]. From (90), one writes

∫

γ

ua,bdx
b =
∫

γ

Cabdxb = 0, (92)

where Cab = eab − xc(eab,c − ebc,a) is called the Cesàro tensor. The above
representation is called the Cesàro integral [13]. For a null-homotopic path γ that
lies on a surface P ⊂ B, γ = ∂Ω for some Ω ⊂ P . Hence, using Stokes’ theorem
one writes

∫

γ

Cabdxb =
∫

Ω

dCab ∧ dxb =
∫

Ω

Cab,cdxc ∧ dxb

=
∫

Ω

[
ebc,a − xd

(
eab,cd − ebd,ac

)]
dxc ∧ dxb.

(93)
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Due to symmetry of strain ebc,adxc ∧ dxb = 0, and hence

∫

γ

ua,bdx
b =
∫

Ω

xd
(
ebd,ac − eab,cd

)
dxc ∧ dxb

=
∫

Ω

xd
(
eab,cd + ecd,ab − eac,bd − ebd,ac

)
dxb ∧ dxc = 0.

(94)

One should note that (94) are equivalent to curl ◦ curl e = 0, i.e., the classical bulk
compatibility equations [31].

Proposition 5.8 (Yavari [58]) The necessary and sufficient conditions for compat-
ibility conditions for the linearized strain e = Lug in B are:

(i) curl ◦ curl e = 0 in B,
(ii) For each generator of H1(B;R)

∫

ci

CdX = 0, &
∫

ci

(
eac,b − ecb,a

)
dxc = 0, i = 1, . . . , b1(B). (95)

We call (95)1 and (95)2 the Cesàro and the rotation compatibility equations,
respectively. Note that in dimension n (n = 2 or 3) for each ci , there are
n Cesàro and n(n − 1)/2 rotation compatibility equations. Hence, each ci has
n(n + 1) complementary compatibility equations. In dimension three, there are
six bulk compatibility equations, and six auxiliary compatibility equations for each
generator of the first homology group. We should mention that this is consistent
with Weingarten’s theorem [52] that says that if a body is cut along a surface the
jump in the displacement field is a rigid-body motion, see Love [31] for a detailed
discussion (he calls homotopic paths, “reconcilable circuits” and a null-homotopic
path, a “evanescible circuit”). Zubov [61] and Casey [12] demonstrated the validity
of Weingarten’s theorem for finite strains (see also Acharya [2]). In [58] it was
pointed out that the discussion in [46] regarding sufficient compatibility equations
in linear elasticity is flawed as Skalak et al. missed the rotation compatibility
conditions (95)2. In [58, Example 29] the rotation compatibility conditions were
trivially satisfied. Next, we provide an example of an incompatible strain field
for which the Cesàro compatibility conditions are satisfied while the rotation
compatibility conditions are not satisfied.

Example 5.9 Consider a single wedge disclination [17, 56] along the z-axis in an
infinite linear elastic body. The linearized strain field of the disclination in the
Cartesian coordinates (x, y, z) reads [17]
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e11 = Ω

4π(1− ν)
[

(1− 2ν) ln
√
x2 + y2 + y2

x2 + y2

]

,

e22 = Ω

4π(1− ν)
[

(1− 2ν) ln
√
x2 + y2 + x2

x2 + y2

]

,

e12 = − Ω

4π(1− ν)
xy

x2 + y2
, e33 = e13 = e23 = 0,

(96)

where Ω is the Frank vector of the disclination. For this strain field the bulk
compatibility equation e11,yy + e22,xx − 2e12,xy = 0 is satisfied in R

3\ z-axis.
Eq. (95)1 gives the following two Cesàro compatibility equations

∫

γ

[
e11 − y(e11,y − e12,x)

]
dx + [e12 − y(e12,y − e22,x)

]
dy = 0,

∫

γ

[
e12 − x(e12,x − e11,y)

]
dx + [e22 − x(e22,x − e12,y)

]
dy = 0,

(97)

where γ is any closed curve lying in a plane normal to the z-axis and enclosing
the origin. Using a square path with corners (a,−a, 0), (a, a, 0), (−a, a, 0), and
(−a,−a, 0), where a > 0, it is straightforward to show that the two Cesàro
compatibility equations are trivially satisfied. For this strain field there is only one
rotation compatibly equation, which is not satisfied, namely

∫

γ

(e11,y − e12,x)dx + (e12,y − e22,x)dy = −Ω �= 0. (98)

6 Differential Complexes in Nonlinear Elasticity

For a flat 3-manifold B, let Ωk(B) be the space of smooth k-forms on B, i.e., α ∈
Ωk(B) is an anti-symmetric

(0
k

)
-tensor with smooth components αi1···ik . The exterior

derivatives dk : Ωk(B) → Ωk+1(B) are linear differential operators that satisfy
dk+1 ◦ dk = 0. In order to simplify the notation we drop the subscript k in dk . The
following sequence of spaces and operators

(99)

is denoted by (Ω(B), d) and is called the de Rham complex. Note that each operator
is linear and the composition of any two successive operators vanishes. Also the first
operator on the left sends 0 to the zero function and the last operator on the right
sends Ω3(B) to zero. The property d ◦ d = 0 implies that im dk ⊂ ker dk+1, where
im dk is the image of dk and ker dk+1 is the kernel of dk+1. If im dk = ker dk+1,
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the complex is exact. The de Rham cohomology groups are defined as HkdR(B) =
ker dk/im dk−1. A complex is exact if and only if all HkdR(B) are the trivial group {0}.
Cohomology groups quantify non-exactness of a complex.

For β ∈ Ωk(B), the necessary and sufficient condition for the existence of a
solution for the PDE dα = β is β ∈ im d. If (Ω(B), d) is exact, β ∈ im d if and
only if dβ = 0. Assuming that HkdR(B) is finite-dimensional, de Rham’s theorem
states that dim HkdR(B) = bk(B), where bk(B) is the k-th Betti number—a purely
topological property of B. Thus, β ∈ im d if and only if

dβ = 0, and
∫

ck

β = 0, k = 1, . . . , bk(B), (100)

where ck are the generators of the kth homology group of B.
Sometimes one may be able to establish a connection between a given complex

and the de Rham complex. A complex closely related to the de Rham complex is
the grad-curl-div complex of vector analysis. Let C∞(B) and X(B) be the spaces of
smooth real-valued functions and smooth vector fields on B, an open subset of R3.
Consider the three operators grad : C∞(B) → X(B), curl : X(B) → X(B), and
div : X(B)→ C∞(B). The classical identities curl ◦ grad = 0, and div ◦ curl = 0,
allow one to write the following complex

(101)

which is called the grad-curl-div complex or simply the gcd complex. One can
show that the gcd complex is equivalent to the de Rham complex, or more precisely
is isomorphic to the de Rham complex [4]. As an example of the application of this
isomorphism, one can show that a vector field w is the gradient of a function if and
only if

curl w = 0, and
∫

γ

w · tγ ds = 0, ∀γ ⊂ B, (102)

where γ is an arbitrary closed curve in B, tγ is the unit tangent vector field along γ ,
and w · tγ is the standard inner product of w and tγ in R

3.
It turns out that when using deformation gradient F and its corresponding stress,

i.e., the first Piola–Kirchhoff stress P, the differential complex of nonlinear elasticity
is isomorphic to the R

3-valued de Rham complex [4]. Let us assume that the
ambient space is Euclidean, i.e., S = R

3 with Cartesian coordinates {xi}. Suppose
ϕ : B→ S is a smooth map and define the following operators for two-point tensors
in Γ (T ϕ(B)) and Γ (T ϕ(B)⊗ TB)

Grad : Γ (T ϕ(B))→ Γ (T ϕ(B)⊗ TB), (Grad U)iI = Ui,I ,
Curl : Γ (T ϕ(B)⊗ TB)→ Γ (T ϕ(B)⊗ TB), (CurlF)iI = εIKLF iL,K,

Div : Γ (T ϕ(B)⊗ TB)→ Γ (T ϕ(B)), (Div F)i = F iI ,I .
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Note that Curl ◦ Grad = 0, and Div ◦ Curl = 0. Therefore, the GCD complex or
the nonlinear elasticity complex is written as:

Any R
3-valued k-form α ∈ Ωk(B;R3) can be written as α = (α1,α2,α3),

where αi ∈ Ωk(B), i = 1, 2, 3. The exterior derivative d : Ωk(B;R3) →
Ωk+1(B;R3) is defined as dα = (dα1, dα2, dα3). From d ◦ d = 0, one concludes
that d ◦ d = 0, which gives the R

3-valued de Rham complex
(
Ω(B;R3),d

)
.

Let us define the following isomorphisms

I 0 : Γ (T ϕ(B))→ Ω0(B;R3), [I 0(U)]i = Ui,
I 1 : Γ (T ϕ(B)⊗ TB)→ Ω1(B;R3), [I 1(F)]i J = F iJ ,
I 2 : Γ (T ϕ(B)⊗ TB)→ Ω2(B;R3), [I 2(F)]i JK = εJKLF iL,
I 3 : Γ (T ϕ(B))→ Ω3(B;R3), [I 3(U)]i123 = Ui,

where εJKL is the permutation symbol. The following diagram commutes [4]

0 Γ (T (B)) Grad

I0

Γ (Tj j jj(B) TB) Curl

I1

Γ (⊗ ⊗T (B) TB) Div

I2

Γ (T (B))

I3

0

0 Ω0(B;R3) d Ω1(B;R3) d Ω2(B;R3) d Ω3(B;R3) 0

The above isomorphisms induce a cohomology isomorphism HkGCD(B) ≈
⊕3
i=1HkdR(B), where HkGCD(B) is the k-th cohomology group of the GCD complex.

Let 〈F,W〉 := ∑3
i,I=1 F

iIWI ei , where {ei} is the standard basis of R
3. The

following result can be proved using the fact that the nonlinear elasticity and the
R

3-valued de Rham complexes are isomorphic.

Theorem 6.1 (Angoshtari and Yavari [4]) Given F ∈ Γ (T ϕ(B) ⊗ TB), there
exists U ∈ Γ (T ϕ(B)) such that F = Grad U, if and only if

Curl F = 0, and
∫

γ

〈F, tγ 〉dS = 0, ∀γ ⊂ B, (103)

where γ is any closed curve in B, and tγ is the unit tangent vector field along γ .
Moreover, there exists Ψ ∈ Γ (T ϕ(B)⊗ TB) such that F = Curl Ψ , if and only if

Div F = 0, and
∫

C
〈F,NC〉dA = 0, ∀C ⊂ B, (104)

where C is any closed surface in B and NC is the unit outward normal vector field
of C.
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Using the first Piola–Kirchhoff stress P, one defines a complex that describes
both the kinematics and the kinetics of motion. The displacement field U ∈
Γ (T ϕ(B)) is defined as U(X) = ϕ(X) − X ∈ Tϕ(X)S , ∀X ∈ B. Then, Grad U
is the displacement gradient, and Curl ◦ Grad U = 0 expresses the compatibility
of the displacement gradient. On the other hand, P = Curl Ψ , where Ψ is a stress
function. DivP = 0 are the equilibrium equations. Therefore, the GCD complex
or the nonlinear elasticity complex contains both the kinematics and the kinetics of
motion as schematically shown below.

displacements disp.gradients compatibility

0 Γ (T (B)) Grad Γ (T (B) TB) Curl Γ (T (B) TB) Div Γ (T (B)) 0

stress functions equilibrium

j j j j� �

Using the differential complex of nonlinear elasticity, a new family of mixed
finite elements—compatible-strain mixed finite element methods (CSFEMs)—has
been introduced for both compressible and incompressible nonlinear elasticity
[6, 43, 44]. CSFEMs are capable of capturing very large strains and accurately
approximating stresses. CSFEMs, by construction, satisfy both the Hadamard jump
conditions, and the continuity of traction at the discrete level. This makes them quite
efficient for modeling heterogeneous solids. Moreover, CSFEMs seem to be free
from numerical artifacts such as checkerboarding of pressure, hourglass instability,
and locking.
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Abstract We construct generalizations of boundary forms of Kupferman, Olami
and Segev and of the De Donder form to higher order Lagrangians. In principle,
the resulting forms may depend on the coordinate system used. Nevertheless, it
leads to many invariant conclusions. In some cases, like second order gravity, the
construction leads to a unique De Donder form on the jet bundle that is independent
of the choice of coordinates.

1 Introduction

In 1929, De Donder [5, 6], formulated an approach to study first order variational
problems for several independent variables in terms of a differential form obtained
from the Lagrangian by the Legendre transformation in all independent variables.
His construction was generalized by Lepage [12] yielding a family of forms, each
of which could be used in the same way as the De Donder form to reduce the
original variational problem to a system of equations in exterior differential forms.
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A geometric formulation of the De Donder construction in terms of jets was
given by Śniatycki in 1970 [16]. It showed that the De Donder form depended
only on the original Lagrangian and the canonical structure of the appropriate
jet bundle. De Donder form, also called Poincaré-Cartan form, facilitated an
invariant multisymplectic formulation of field theories [2, 7, 9, 10]. The De Donder
construction was generalized in 2017 by Kupferman et al. [11] in the context of
continuum mechanics of first order materials, to forms on the first jet bundle that
need not be exact.

In 1977 Aldaya and Azcárraga [1] investigated generalization of Lepagean forms
to higher order variational problems. For higher order Lagrangians, the natural
generalization of the De Donder construction in terms of Ostrogradski’s1 Legendre
transformation [14] in all independent variables leads to a form that depends on
the adapted coordinate system used for its construction. This has led to search for
additional geometric structures, which would ensure global existence of Poincaré-
Cartan forms, see [3] and references quoted there. In the context of continuum
mechanics, the analysis for higher order jets has been replaced by an analogous,
yet further underdetermined, analysis on iterated jet bundles [15].

In this paper, we generalize De Donder approach to construct boundary forms
that depend on the adapted coordinate system used in the construction. In continuum
mechanics, use of boundary forms leads to splitting of the total force acting
on the body into body force and surface traction. Moreover, this splitting is
independent of the choice of the boundary form used. In calculus of variations,
use of boundary forms leads to equations in exterior differential forms that are
equivalent to the Euler–Lagrange equations. Infinitesimal symmetries of the theory
lead to conservation laws valid for any choice of the boundary form. In an example,
we show that the boundary conditions lead to independence of constants of motion
of the choice of the boundary form.

2 Spaces of Smooth Sections

We are interested in geometric structure of calculus of variations with m > 1
independent variables and n dependent variables and its relation to continuum
mechanics. Both theories deal with differentiation of functions on spaces of maps.
There are several approaches to manifold structure of a space of maps. Here, we use
the traditional approach of the calculus of variations flavoured by the insight from
theory of differential spaces [17].

Consider a locally trivial fibration π : N → M with dimM = m and
dimN = m + n. Let K be an open relatively compact submanifold of M with
smooth boundary ∂K . The closure K̄ = K ∪ ∂K is a manifold with boundary.
A map σ : K̄ → N is a section of π if π ◦ σ is the identity on K̄ . In the spirit

1English transcription of the original Russian name is Ostrogradsky. However, Ostrogradski wrote
in French and used the French transcription of his name.
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of theory of differential spaces, we say that a section σ : K̄ → N is smooth if it
extends to a smooth section of π defined on an open subset of M that contains K̄.
We denote by S∞(K̄,N) the space of smooth sections σ : K̄ → N of π . In the
following, we assume that K̄ is contained in the domain of a chart on M .

The next stage is to identify smooth functions on S∞(K,N).We use terminology
of jet bundles reviewed in the Appendix. Let0 be anm-form on the space J k(M,N)

of k-jets of sections of π.We say that0 is semi-basic with respect to the source map
πk : J k(M,N)→ M if X 0 = 0 for every vector field X tangent to fibres of πk :
J k(M,N)→ M , where denotes the left interior product (contraction) of vectors
and forms. The form 0 gives rise to the corresponding action functional

A : S∞(K̄,N) �→ R : σ �→ A(σ) =
∫

K

jkσ ∗0. (1)

Calculus of variations is concerned with study of critical points of action functionals.
Let A denote the space of all action functionals on S∞(K̄,N). In other words, a
function F : S∞(K̄,N)→ R is in A if there exists an integer k ≥ 0, and anm-form
0 on J k(M,N), semi-basic with respect to the source map πk : J k(M,N)→ M ,
such that

F(σ) =
∫

K

jkσ ∗0, ∀ σ ∈ S∞(K̄,N). (2)

Here, for k = 0, we use identifications J 0(M,N) = N and π0 = π .
The tangent space TσS∞(K̄,N) is the space of smooth maps Yσ : K̄ → TN

such that, for each x ∈ K̄ , Yσ (x) ∈ Tσ(x)N is tangent to the fibre π−1(x). It should
be noted that every Yσ ∈ TσS

∞(K̄,N) can be extended to a vector field Y on
N tangent to fibres of π and such that Yσ (x) = Y (σ(x)) for every x ∈ K̄ . For
Yσ ∈ TσS∞(K̄,N) and F(σ) given by Eq. (2), the derivative of F in direction Yσ is

DYσ F =
∫

K

jkσ ∗(LY k0), (3)

where Y k is the prolongation of an extension of Yσ to a vertical vector field Y on
N . It should be noted that the integral in (3) does not depend on the choice of the
extension Y of Yσ .

The next step is to identify vector fields on S∞(K̄,N). On manifolds, vector
fields play two roles: they are global derivations of the differential structure,
and they generate local one-parameter groups of diffeomorphisms. On manifolds
with singularities, e.g. stratified spaces, global derivations need not generate local
diffeomorphisms [17]. In this paper, we consider only vector fields on S∞(K̄,N)
that are generated by global vertical vector fields Y on N as follows. A vertical
vector field Y on N gives rise to a section Y : K̄ → T S∞(K̄,N) such that,
Y (σ ) = Yσ for every σ ∈ S∞(K̄,N). In other words, for every F given by Eq. (2)
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(YF)(σ ) = DYσ F =
∫

K

jkσ ∗(LY k0) (4)

for every σ ∈ S∞(K̄,N). We denote by Y(S∞(K̄,N)) the space of vector fields
on S∞(K̄,N) defined above.

Now that we have vectors tangent to S∞(K̄,N), we can consider forms on
S∞(K̄,N). Suppose that � is an (m + 1)-form on J k(M,N) such that X � is
semi-basic with respect to the source map πk : J k(M,N) → M for every vector
field X on J k(M,N) tangent to fibres of πk : J k(M,N) → M . It gives rise to
a 1-form  on S∞(K̄,N) defined as follows. For every Y ∈ Y(S∞(K̄,N)) and
σ ∈ S∞(K̄,N),

〈 | Y 〉 (σ ) =
∫

K

jkσ ∗
(
Y k �

)
. (5)

If Yσ ∈ TσS∞(K̄,N) is the restriction of Y to σ , then the restriction to jkσ(K)

of the prolongation Y k of Y depends only on Yσ and not on its extension off σ(K̄).
This shows that the 1-form  restricts to a linear map σ : TσS∞(K̄,N) → R

such that

〈σ | Yσ 〉 = 〈 | Y 〉 (σ ). (6)

In applications to continuum mechanics, K̄ represents the body manifold, sec-
tions σ ∈ S∞(K̄,N) are configurations of the body, and vectors Yσ ∈ TσS∞(K̄,N)
are virtual displacement fields. The form  may be referred to as a force functional.

3 Boundary Forms

Let� be an (m+1)-form on J k(M,N) such thatX � is semi-basic with respect to
the source map πk : J k(M,N)→ M for every vector fieldX on J k(M,N) tangent
to fibres of πk : J k(M,N) → M . Let (xi, ya, zai , . . . , z

a
i1...ik

) be local coordinates

on J k(M,N). The corresponding local representation of � is

� =
n∑

a=1

⎛

⎝�adya +
m∑

i=1

�iadzai + . . .
∑

i1≤...≤il
�i1...ila dzai1...il

⎞

⎠ ∧ dmx (7)

+ . . .+
n∑

a=1

∑

i1≤...≤ik
�i1...ika dzai1...ik ∧ dmx.

Note that, for every l = 2, . . . , k, coordinates zai1...il are symmetric in indices

i1, . . . , il and so are �i1...ila . Therefore, the sum in Eq. (7) is taken only over the
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independent components. In the following, we modify the summation convention
by the requirement that the indices i1, . . . , il occurring in zai1,...,il are taken in a non-
decreasing order. This allows us to rewrite Eq. (7) as follows,

� =
(
�adya +�iadzai + . . . �i1...ila dzai1...il + . . .+�i1...ika dzai1...ik

)
∧ dmx. (8)

An alternative approach would be use of multi-indices.

Theorem 1 There exists locally a smooth m-form 1 on J 2k−1(M,N), which
satisfies the following conditions.

1. a. 1 is semi-basic with respect to the forgetful map π2k−1
k−1 : J 2k−1(M,N) →

J k−1(M,N). In other words, for any vector fieldX tangent to fibres of π2k−1
k−1 :

J 2k−1(M,N)→ J k−1(M,N),

X 1 = 0.

b. For every vector field X on J 2k−1(M,N) tangent to fibres of the source map
π2k−1 : J 2k−1(M,N) → M the left interior product X 1 is semi-basic
with respect to the source map. Thus, for every pair X1, X2 of vector fields on
J 2k−1(M,N) tangent to fibres of the source map π2k−1 : J 2k−1(M,N)→ M,

X2 (X1 1) = 0.

2. For every section σ of π : N → M ,

j2k−1σ ∗1 = 0,

where j2k−1σ ∗1 = 1 ◦ ∧nT (j2k−1σ) is the pull-back of 1 by j2k−1σ : M →
J 2k−1(M,N).

3. For every vector field X on J 2k−1(M,N) tangent to fibres of the target map
π2k−1

0 : J 2k−1(M,N)→ N, and every section σ of π : N → M,

j2k−1σ ∗
(
X
(
π2k−1∗

k �+ d1
))
= 0.

Proof The first and the second condition imply that 1 is a linear combination of
contact forms up to order k with coefficients given by forms that are semi-basic
with respect to the source map. In local coordinates,

1 = pia(dya − zajdxj ) ∧
(
∂

∂xi
dmx

)

+pi1i2a (dzai 2
− zai2jdxj ) ∧

(
∂

∂xi1
dmx

)

+ . . .+ pi1i2...ika (dzai2...ik − zai2i2...ikjdxj ) ∧
(
∂

∂xi1
dmx

)

, (9)
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where the coefficients pi1i2...ila are symmetric in indices i2, . . . , il , for l = 3, . . . , k
and the summation is taken over indices in non-decreasing order. Hence,

1 =
(
pi1a dya + pi1i2a dzai2 + . . .+ pi1i2...ika dzai2...ik

)
∧
(
∂

∂xi1
dmx

)

(10)

−
(
pi1a z

a
i1
+ pi1i2a zai1i2 + . . .+ pi1i2...ika zai1i2...ik

)
dmx.

Note that the symmetry of zai1i2...il in i1, . . . , il implies in Eq. (10) that only the fully

symmetric parts of pi1i2...ila contribute to the sum in the second term.
In order to use the third condition, we need the exterior differential of 1.

Equation (9) yields

d1 = dpia ∧ (dya − zajdxj ) ∧
(
∂

∂xi
dmx

)

+ (11)

dpi1i2a ∧ (dzai 2
− zai2jdxj ) ∧

(
∂

∂xi1
dmx

)

+ . . .+

+dpi1i2...ika ∧ (dzai2...ik − zai2...ikjdxj ) ∧
(
∂

∂xi1
dmx

)

+

−piadzaj ∧ dxj ∧
(
∂

∂xi
dmx

)

−

−pi1i2a dzai2j ∧ dxj ∧
(
∂

∂xi1
dmx

)

+ . . .+

−pi1i2...ika dzai2...ikj ∧ dxj ∧
(
∂

∂xi1
dmx

)

,

which can be simplified to

d1 = dpia ∧ (dya − zajdxj ) ∧
(
∂

∂xi
dmx

)

+ (12)

dpi1i2a ∧ (dzai 2
− zai2jdxj ) ∧

(
∂

∂xi
dmx

)

+ . . .+

+dpi1i2...ika ∧ (dzai2...ik − zai2...ikjdxj ) ∧
(
∂

∂xi
dmx

)

+

−
(
piadzai + pi1i2a dzai1i2 + . . .+ pi1i2...ika dzai1i2...ik

)
∧ dmx.

Let X be a vector field on J 2k−1(M,N) tangent to fibres of the target map
π2k−1

0 : J 2k−1(M,N)→ N . In local coordinates,
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X = Xai
∂

∂zai
+ . . .+Xai1...i2k−1

∂

∂zai1...i2k−1

. (13)

Note that, for l = 2, . . . , 2k− 1, Xai1...il is symmetric in the indices i1, . . . , il . Then,

X d1 = (Xpia)(dya − zajdxj ) ∧
(
∂

∂xi
dmx

)

+ . . .+ (14)

+(Xpi1i2...ika )(dzai2...ik − zai2...ikjdxj ) ∧
(
∂

∂xi
dmx

)

+

−Xai 2
dpi1i2a ∧

(
∂

∂xi
dmx

)

− . . .−

−Xai2...ikdpi1i2...ika ∧
(
∂

∂xi
dmx

)

+

−
(
piaX

a
i + pi1i2a Xai1i2 + . . .+ pi1i2...ika Xai1i2...ik

)
dmx,

where (Xpia) is the derivation of pia in direction X, etc.
The first two lines of Eq. (14) do not contribute to j2k−1σ ∗(X d1), because they

are linear combinations of contact forms. Hence, Eq. (14) implies that

j2k−1σ ∗ (X d1) = −Xai2P i1i2a,i1
dmx − . . .−Xai2...ikP i1i2...ika,i1

dmx (15)

−
(
P iaX

a
i + P i1i2a Xai1i2 + . . .+ P i1i2...ika Xai1i2...ik

)
dmx,

where

P i1a = j2k−1σ ∗pi1a , . . . , P i1i2...ika = j2k−1σ ∗pi1i2...ika , (16)

and the components of X are evaluated on the range of j2k−1σ . Following the
symmetry argument leading to Eq. (10), we can rewrite Eq. (15) in the form

j2k−1σ ∗ (X d1) = −Xai2P i1i2a,i1
dnx − . . .−Xai2...ikP i1i2...ika,i1

dmx (17)

−
(
P iaX

a
i + P (i1i2)a Xai1i2 + . . .+ P (i1i2...ik)a Xai1i2...ik

)
dmx,

where (i1, . . . , il) denotes symmetrization in indices i1, . . . , il . Therefore, the third
condition of the theorem yields

0 = �iaXai + . . .+�i1...ika Xai1...ik −Xai2P i1i2a,i1
− (18)

− . . .−Xai2...ikP i1i2...ika,i1
−
(
P iaX

a
i + P (i1i2)a Xai1i2 + . . .+ P (i1i2...ik)a Xai1i2...ik

)
,
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where�ia, . . . , �
i1...ik
a are evaluated on the range jkσ . Equation (18) is equivalent to

0 = (�i1...ika − P (i1i2...ik)a )Xai1i2...ik + (19)

(�i2...ika − P (i2...ik)a − P i1i2...ika,i1
)Xai2...ik + . . .+

+(�ia − P ia − P i1ia,i1)Xai .

Since the components Xai1i2..il of X are arbitrary functions symmetric in the
indices i1, . . . , ik , it follows that

�i1...ika − P (i1i2...ik)a = 0, (20)

�i2...ika − P (i2...ik)a − P i1i2...ika,i1
= 0,

�il ...ika − P (il ...ik)a − P il−1il ...ik
a,il−1

= 0, for l = 3, . . . , k − 2,

�ia − P ia − P i1ia,i1 = 0.

This shows that there is no unique local form 1 satisfying the conditions of our
theorem. In order to prove existence, we are free to impose an additional condition
on the coefficients pi1i2...ila .

An obvious generalization of the De Donder construction corresponds to an
additional condition that all pi1i2...ila are fully symmetric in all indices i1, . . . , il .
With this additional assumption, Eq. (20) yields

�i1...ika − P i1i2...ika = 0, (21)

�i2...ika − P i2...ika − P i1i2...ika,i1
= 0,

�il ...ika − P il ...ika − P il−1il ...ik
a,il−1

= 0, for l = 3, . . . , k − 2,

�ia − P ia − P i1ia,i1 = 0.

In Eq. (21) � depends on jkσ (x). In local coordinates, the section σ is given by
yb = σb(x) = σb(x1, . . . , xm), for b = 1, ..n, and jkσ (x) has coordinates

(xi, yb, zbj1
, . . . , zbj1...jk

) = (xi, σ b(x), σ b,j1
(x), . . . , σ b,j1...jk

(x)).

Hence,

P i1i2...ika (x) = �i1i2...ika (x, σ b(x), σ b,j1
(x), . . . , σ b,j1...jk

(x)). (22)
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Next,

P i2...ika (x) = �i2...ika (x, σ b(x), σ b,j1
(x), . . . , σ b,j1...jk

(x))− P i1i2...ika,i1
(x) (23)

= �i2...ika (x, σ b(x), σ b,j1
(x), . . . , σ b,j1...jk

(x))+
− ∂

∂xi1

[
�i1i2...ika (x, σ b(x), σ b,j1

(x), . . . , σ b,j1...jk
(x))
]

= �i2...ika (x, σ b(x), σ b,j1
(x), . . . , σ b,j1...jk

(x))+

−∂�
i1i2...ik
a

∂xi1
(jkσ (x))− ∂�

i1i2...ik
a

∂yb
(jkσ (x))

∂σ b

∂xi1
(x)+

−∂�
i1i2...ik
a

∂zbj1

(jkσ (x))
∂σ b,j1

∂xi1
(x)− . . .−∂�

i1i2...ik
a

∂zbj1...jk

(j kσ (x))
∂σ b,j1...jk

∂xi1
(x).

Since

∂σb,j1...jk

∂xi1
(x) = σb,j1...jki1

(x),

Eq. (23) implies that P i2...ika (x) depends on jk+1σ(x).

Continuing, we get a complete solution of Eq. (21) in the form

P il ...ika (x) = �il ...ika (x, σ b(x), σ b,j1
(x), . . . , σ b,j1...jk

(x))+ (24)

+
l−1∑

j=1

(−1)j
∂j

∂xil−j . . . ∂xil−1

[
�
il−j il−j+1...il−1il−...ik
a (x, σ b(x), σ b,j1

(x), . . . , σ b,j1...jk
(x))
]

for l = 1, . . . , k. It shows that P il ...ika (x) depends on jk+l−1σ(x). In particular,
P
ik
a (x) depends on j2k−1σ(x).

Recall that P il ...ika = j2k−1σ ∗pil ...ika , for l = 1, . . . , k − 1, where pil ...ika is a
function on J 2k−1(M,N), see Eq. (16). Equation (24) gives P il ...ika for all sections
σ of π . Hence, we can use it to get an explicit expression for pil ...ika as a function of
coordinates (xi, ya, zai1 , . . . z

a
i1...i2k−1

). To this end we define a differential operator

Di = ∂

∂xi
+ zai

∂

∂ya
+ zaij1

∂

∂zaj1

+ . . .+ zaij1...j2k−2

∂

∂zaj1...j2k−2

+ zaij1...j2k−1

∂

∂zaj1...j2k−1

(25)

acting on C∞(J 2k−1(M,N)).
It enables us to write

pil ...ika (xi, yb, zbj1
, . . . , zbj1...j2k−1

) = �il...ika (xi, yb, zbj1
, . . . , zbj1...jk

)+ (26)

+
l−1∑

j=1

(−1)jDil−j . . . Dil−1

[
�
il−j il−j+1...il−1il ...ik
a (xi, yb, zbj1

, . . . , zbj1...jk
)
]
.
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Hence, in terms of local coordinates (xi, yb, zbj1
, . . . , zbj1...j2k−1

) on J 2k−1(M,N),

an obvious generalization of the De Donder construction yields form 1 given by
Eq. (9), where the coefficients pi1a , . . . , p

i1i2...ik
a are given by Eq. (26).

Definition 1 Local forms

1 = pia(dya − zajdxj ) ∧
(
∂

∂xi
dmx

)

+ pi1i2a (dzai 2
− zai2jdxj ) ∧

(
∂

∂xi1
dmx

)

+

+ . . .+ pi1i2...ika (dzai2...ik − zai2i3...ikjdxj ) ∧
(
∂

∂xi1
dmx

)

,

are called boundary forms. If 1 satisfies Condition 3 of Theorem 1, we say that 1
is a boundary form of �.

In the following we discuss some properties of boundary forms. This means,
we do not make additional assumptions on the symmetry properties of coefficients
p
i1...il
a , and do not specify the form � explicitly.

Lemma 1 For each vector field Y on N , which projects to a vector field on M , and
every section σ of π : M → N ,

j2k−1σ ∗
(LY 2k−11

) = 0, (27)

where Y 2k−1 is the prolongation of Y to J 2k−1(M,N).

Proof By definition,

LY 2k−11 = d

dt
(etY

2k−1∗1)|t=0 = lim
t→0

[
1

t

(
etY

2k−1∗1−1
)]

.

Hence,

j2k−1σ ∗
(LY 2k−11

) = j2k−1σ ∗ lim
t→0

[
1

t

(
etY

2k−1∗1−1
)]

= lim
t→0

[
1

t

(
j2k−1σ ∗etY 2k−1∗1− j2k−1σ ∗1

)]

= lim
t→0

{
1

t

[
(etY

2k−1 ◦ j2k−1σ)∗1− j2k−1σ ∗1
]}

= lim
t→0

{
1

t

[
(j2k−1(etY∗σ))∗1− j2k−1σ ∗1

]}

.

= lim
t→0

[
1

t

(
j2k−1(etY∗σ)∗1− j2k−1σ ∗1

)]

= 0.

Condition 2 of Theorem 1 ensures that j2k−1σ ∗1 and (j2k−1(etY∗σ))∗1 = 0
for every t in a neighbourhood of 0. Therefore, j2k−1σ ∗

(LY 2k−11
) = 0, which

completes the proof.
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Proposition 1 For every Yσ ∈ TσS
∞(K̄,N), a boundary form 1 leads to a

decomposition

∫

K

jkσ ∗
(
Y k �

)
=
∫

K

[
jkσ ∗(�a)− P ia,i

]
Yaσ dmx +

∫

j2k−1σ(∂K)

(Y 2k−1
σ 1),

(28)
where P ia = j2k−1σ ∗pia , as in Eq. (16).

Proof Let Y be an extension of Yσ to a vertical vector field on N . Clearly,

∫

K

jkσ ∗
(
Y k �

)
=
∫

K

j2k−1σ ∗
(
π2k−1∗

k

(
Y k �

))

=
∫

K

j2k−1σ ∗
(
Y 2k−1 π2k−1∗

k �
)

=
∫

K

j2k−1σ ∗
(
Y 2k−1

(
π2k−1∗

k �+ d1− d1
))
.

Thus,

∫

K

jkσ ∗
(
Y k �

)
=
∫

K

j2k−1σ ∗
(
Y 2k−1

(
π2k−1∗

k �+ d1
))
+ (29)

−
∫

K

j2k−1σ ∗
(
Y 2k−1 d1

)
.

By Condition 3 in Theorem 1,

j2k−1σ ∗
(
X
(
π2k−1∗

k �+ d1
))
= 0,

for every vector fieldX tangent to fibres of the target map π2k−1
0 : J 2k−1(M,N)→

N . On the other hand, the prolongation Y 2k−1 of a vertical vector field Y = Ya ∂
∂yα

on N is π2k−1
0 -related to Y. Therefore, in local coordinates, treating Ya ∂

∂yα
as a

vector field on J 2k−1(M,N), the difference Y 2k−1 − Ya ∂
∂yα

is tangent to fibres of

the target map π2k−1
0 , so that

j2k−1σ ∗
(
Y 2k−1 d

(
π2k−1∗

k �+ d1
))

= j2k−1σ ∗
(

[Y 2k−1 − Ya ∂

∂yα
+ Ya ∂

∂yα
] d
(
π2k−1∗

k �+ d1
))

= j2k−1σ ∗
(

Ya
∂

∂yα
d
(
π2k−1∗

k �+ d1
))

.
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Taking into account equations (12) and (16), we get

j2k−1σ ∗
(
Y 2k−1

(
π2k−1∗

k �+ d1
))
= (jkσ ∗�a − P ia,i)Y aσ dmx. (30)

Lemma 1 ensures that LY 2k−11 = 0. Hence,

Y 2k−1 d1 = −d(Y 2k−1 1).

Therefore, the second line in Eq. (29) can be rewritten in the form

−
∫

K

j2k−1σ ∗
(
Y 2k−1 d1

)
= −

∫

K

j2k−1σ ∗
(
LY 2k−11− d(Y 2k−1 1)

)

= −
∫

K

j2k−1σ ∗LY 2k−11+
∫

K

j2k−1σ ∗d(Y 2k−1 1)

=
∫

K

d
(
j2k−1σ ∗(Y 2k−1 1)

)

=
∫

∂K

j2k−1σ ∗(Y 2k−1 1)

=
∫

j2k−1σ(∂K)

Y 2k−1
σ 1.

This completes the proof.

Next, we want to show that the decomposition (28) is independent of the choice
of boundary form1. LetX be a vector field on J 2k−1(M,N) tangent to fibres of the
source map π2k−1 : J 2k−1(M,N)→ M . For any boundary form 1 of �, Eqs. (12)
and (16) yield

j2k−1σ ∗ (X d1)

= j2k−1σ ∗
[(
−Xadpi1a −Xai2 dpi1i2a − . . .−Xai2...ikdpi1i2...ika

)
∧
(
∂

∂xi1
dmx

)]

−j2k−1σ ∗
(
pi1a X

a
i1
+ pi1i2a Xai1i2 + pi1i2...ika Xai1i2...ik

)
dmx

= −
(
XaP

i1
a,i1
+Xai2P i1i2a,i1

+ . . .+Xai2...ikP i1i2...ika,i1

)
dmx

−
(
P i1a X

a
i1
+ P i1i2a Xai1i2 + . . .+ P i1i2...ika Xai1i2...ik

)
dmx.

Hence

j2k−1σ ∗ (X d1) = −
[
XaP

i1
a,i1
+Xai2

(
P
i1i2
a,i1
+ P i2a

)
+ . . .

]
dmx (31)

−
[
Xai2...ik

(
P
i1i2...ik
a,i1

+ P i2...ika

)
+Xai1i2...ikP i1i2...ika

]
dmx.
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Let 1′ be another boundary form of � such that

j2k−1σ ∗
(
X d1′

) = −
[
XaP

′i1
a,i1
+Xai2

(
P
′i1i2
a,i1

+ P ′i2a
)
+ . . .

]
dmx (32)

−
[
Xai2...ik

(
P
′i1i2...ik
a,i1

+ P ′i2...ika

)
+Xai1i2...ikP ′i1i2...ika

]
dmx,

where the coefficients P ′i1i2a , . . . , P
′i1i2...ik
a are symmetric in the upper indices. For

the sake of simplicity, we introduce the notation

Qi1i2...il
a = P i1i2...ila − P ′i1i2...ila (33)

for l = 1, . . . , k. Then

j2k−1σ ∗
(
X d(1−1′)) = −

[
XaQ

i1
a,i1
+Xai2

(
Q
i1i2
a,i1
+Qi2

a

)
+ . . .

]
dmx (34)

−
[
Xai2...ik

(
Q
i1i2...ik
a,i1

+Qi2...ik
a

)
+Xai1i2...ikQi1i2...ik

a

]
dmx.

Since 1 and 1′ are boundary forms of the same form, and X is an arbitrary vector
field tangent to fibres of the source map, Condition 3 of Theorem 1 yields

Q(i1i2...ik)
a = 0, (35)

Q(i2...ik)
a +Qi1i2...ik

a,i1
= 0,

Q(i1...il )
a +Qi1i2...il

a,i1
= 0, for l = 2, . . . , k,

Qi
a +Qi1i2

a,i1
= 0.

Note that, by construction, Qi1i2...il
a is symmetric in the indices i2, . . . , il . Hence,

j2k−1σ ∗
(
X d(1−1′)) = −XaQi

a,idmx. (36)

Lemma 2 For boundary forms 1 and 1′, given by Eqs. (31) and (32), respectively,

Qi
a,i = (P ia − P ′ia ),i = 0. (37)

Proof We begin with the case when the difference Qi
a = (P ia − P ′ia ) is generated

at the highest differential level. In other words, we consider 0Q
i1i2...ik
a = P i1i2...ila −

P
′i1i2...il
a �= 0 such that

0Q
(i1i2...ik)
a = 0, (38)
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and, the remaining differences are symmetric and satisfy the equations

0Q
i2...il
a + 0Q

i1i2...il
a,i1

= 0, for l = 3, . . . , k − 1, (39)

0Q
i2
a + 0Q

i1i2
a,i1
= 0.

Therefore,

0Q
ik
a = (−1)k−1

0Q
i1i2...ik−1ik
a,i1i2...ik−1

, (40)

and

0Q
ik
a,ik

= (−1)k−1
0Q

i1i2...ik−1ik
a,i1i2...ik−1ik

= (−1)k−1
0Q

i1i2...ik−1ik
a,(i1i2...ik−1ik)

(41)

= (−1)k−1
0Q

(i1i2...ik−1ik)

a,(i1i2...ik−1ik)
= (−1)k−1

0Q
(i1i2...ik−1ik)

a,i1i2...ik−1ik
= 0

because partial derivatives commute.
In the next step, we consider the situation when 1 and 1′ agree on the highest

differential, that is we assume that 1Q
i1...ik
a = 0. Moreover, we assume that

1Q
i1...ik−1
a �= 0,

1Q
(i1...ik−1)
a = 0, (42)

1Q
i2...il
a + 1Q

i1i2...il
a,i1

= 0, for l = 3, . . . , k − 1,

1Q
i2
a + 1Q

i1i2
a,i1
= 0.

The same arguments as above lead to

1Q
ik
a = (−1)k−2

1Q
i1...ik−1ik
a,i1...ik−1

so that

1Q
ik
a,ik
= (−1)k−2

1Q
i2...ik−1ik
a,i2...ik−1ik

= 0 (43)

because 1Q
(i2...ik)
a = 0. Continuing this procedure, for every r = 2, , . . . , k − 1, we

consider rQ
il ...ik
a such that,

rQ
i1...ik−l
a = 0, for l < r, (44)

rQ
(i1...ik−r )
a = 0,

rQ
i2...il
a + rQ

i1i2...il
a,il−1

= 0, for l = 3, . . . , k − r,

rQ
ik
a + rQ

ik−1ik
a,ik−1

= 0.
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As before, for this choice of rQ
i1...il
a , we have

rQ
ik
a,ik
= (−1)k−r rQi2...ik−1ik

a,ir ...ik−1ik
= 0. (45)

The general Qi1...ik
a can be expressed as the sum of terms rQ

il ...ik
a , for r =

0, . . . , k − 1. That is,

Qil...ik
a = 0Q

il...ik
a + 1Q

il...ik
a + . . .+ k−1Q

il...ik
a . (46)

The defining equations (44) for the terms rQ
il ...ik
a ensure that the decomposition (46)

satisfies Eq. (37). Taking into account equations (41), (43) and (45) we get

Qi
a,i = ( 0Q

i
a + 1Q

i
a + . . .+ k−1Q

i
a),i = 0Q

i
a,i + 1Q

i
a,i + . . .+ k−1Q

i
a,i = 0.

(47)

We have shown that Qi
a,i = P ia,i − P ′ia,i = 0, under the assumption that 1′

is the obvious choice of boundary form with fully symmetric coefficients and no
additional assumptions on 1. Hence, Eq. (37) holds for any pair of boundary forms
of the same form �. We have shown that P ′ia,i = P ia,i for any other boundary form

1′. If 1′′ is still another boundary form of �, then P ′′ia,i = P ia,i .
This implies the following result.

Corollary 1

1. If 1 and 1′ are boundary forms of the same form �, then

j2k−1σ ∗
(
X d

(
1−1′)) = 0 (48)

for every vector field X tangent to fibres of the source map
π2k−1 : J 2k−1(M,N)→ M.

2. The decomposition (28) is independent of the choice of boundary form 1 for �
such that j2k−1σ(K̄) is in the domain of definition of 1.

Proof Equation (48) is the consequence of Eqs. (36) and (37).
Equations (28), (36) and (37) yield

∫

K

[
jkσ ∗(�a)− P ia,i

]
Yaσ dmx =

∫

K

[
jkσ ∗(�a)− P ′ia,i − (P ia,i − P ′ia,i )

]
Yaσ dmx

=
∫

K

[
jkσ ∗(�a)− P ′ia,i

]
Yaσ dmx.

because P ia,i − P ′ia,i = 0. Therefore, decompositions (28) for the boundary forms 1
and 1′ yield
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∫

j2k−1σ(∂K)

(Y 2k−1
σ 1) =

∫

K

jkσ ∗
(
Y k �

)
−
∫

K

[
jkσ ∗(�a)− P ia,i

]
Yaσ dmx

=
∫

K

jkσ ∗
(
Y k �

)
−
∫

K

[
jkσ ∗(�a)− P ′ia,i

]
Yaσ dmx

=
∫

j2k−1σ(∂K)

(Y 2k−1
σ 1′).

This shows that the decomposition (28) is independent of the choice of 1.

Since boundary forms are constructed in terms of adapted coordinate systems,
non-uniqueness of the De Donder construction implies only local existence of the
result. We see in Corollary 1 that decomposition (28) does not depend on the choice
of boundary form with the same domain of definition. If boundary forms are globally
defined, then decomposition (28) is unique and it holds for every section of π
and each relatively compact open submanifold K of M with piece-wise smooth
boundary ∂K . The existence of global boundary forms is a topological condition
on the fibration π : N → M . It is satisfied if the fibration is trivial and M and
the typical fibre of π are diffeomorphic to open subsets of Rm and R

n, respectively.
In particular, it is satisfied in many problems in continuum mechanics. In a recent
paper [18], the authors proved that the De Donder form is globally defined for every
diffeomorphism invariant second order Lagrangian form in general relativity.

4 Application to Variational Problems

4.1 Critical Points of Action Functionals

In this section, we consider the case when� = d0, where0 is a semi-basicm-form
on J k(M,N). Let K ⊆ M be an open relatively compact submanifold of M with
piece-wise smooth boundary ∂K . As in Sect. 2, we consider the space S∞(K̄,N)
of smooth section σ : K̄ → N. The form 0 defines an action functional A on
S∞(K̄,N), given by

A(σ) =
∫

K

jkσ ∗0 =
∫

jkσ(K)

0. (49)

Definition 2 A section σ ∈ S∞(K̄,N) is a critical point of A if DYσA = 0
for every Yσ ∈ TσS

∞(K,N), which vanishes on ∂K together with its partial
derivatives up to order k− 1.

Taking into account equation (3), we see that σ ∈ S∞(K̄,N) is a critical point
of A if

∫

jkσ(K)

LY k0 = 0 (50)
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for every Yσ ∈ TσS
∞(K̄,N), which vanishes on ∂K together with its partial

derivatives up to order k − 1. Here, Y k is the prolongation to J k(M,N) of an
extension of Yσ to a vertical vector field Y on N .

For every vector field Y on N ,

LY k0 = Y k d0+ d
(
Y k 0

)
. (51)

The identity (51) and Stokes’ theorem yield

∫

jkσ(K)

LY k0 =
∫

jkσ(K)

[
Y k d0+ d

(
Y k 0

)]

=
∫

jkσ(K)

Y k d0+
∫

∂jkσ(K)

(
Y k 0

)

=
∫

jkσ(K)

Y k d0

because 0 is semi-basic with respect to the source map πk : J k(M,N) → M .
Hence Eq. (50) is equivalent to

∫

K

jkσ ∗
(
Y k d0

)
= 0 (52)

for every vertical vector field Y on N . Therefore, σ is a critical section of A if
Eq. (52) holds for every vertical vector field Y on N such that Y k−1 vanishes on
∂jk−1σ(K) = jk−1σ(∂K).

4.2 Euler–Lagrange Equations

The Euler–Lagrange equations are obtained by using the coordinate description of
0,

0 = L(xi, ya, zai1 , . . . , zai1,...,ik )dmx. (53)

The usual rule that “variation of the derivative is the derivative of the variation”
corresponds to the choice of extension of Yσ to a vertical vector field Y = Ya(xi) ∂

∂ya

with components independent of ya . Its prolongation to J k(M,N) is

Y k(xi, zbj1
, . . . , zbj1...jk

) = Ya(xi) ∂
∂ya

+ Ya,i (xi)
∂

∂zai
+ . . .+ Ya,i1...ik (xi)

∂

∂zai1...ik

.

(54)
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Finally, the coordinate description of jkσ is

jkσ : M → J k(M,N) : (xi) �→ (xi, ya(x), zai1(x), . . . , z
a
i1,...,ik

(x)), (55)

where

zai1...il (x) = ya(x),i1,...,il (56)

for every positive integer l. With this notation,

jkσ ∗
(
Y k d(Ldmx)

)
=
(
∂L

∂ya
Y a + ∂L

∂zai
Y a,i + . . .+

∂L

∂zai1...ik

Y a,i1...ik

)

dmx,

(57)

where all quantities on the right-hand side are expressed as functions of
(x1, . . . , xn). Integrating this result over K and using Stokes’ theorem yields

∫

K

jkσ ∗
(
Y k d0

)
=
∫

K

(
∂L

∂ya
Y a + ∂L

∂zai1

Ya,i1 + . . .+
∂L

∂zai1...ik

Y a,i1...ik

)

dmx

=
∫

K

[
∂L

∂ya
Y a + ∂

∂xi1

(
∂L

∂zai1

Ya

)

−
(

∂

∂xi1

∂L

∂zai1

)

Ya + . . .
]

dmx +

+
∫

K

[
∂

∂xi1

(
∂L

∂zai1...ik

Y a,i2...ik

)

−
(

∂

∂xi1

∂L

∂zai1...ik

)

Ya,i2...ik

]

dmx,

=
∫

K

[
∂L

∂ya
Y a −

(
∂

∂xi

∂L

∂zai

)

Ya − . . .−
(

∂

∂xik

∂L

∂zai1...ik

)

Ya,i1...ik−1

]

dmx

+
∫

∂K

[
∂L

∂zai1

Ya + . . .+ ∂L

∂zai1...ik

Y a,i2...ik

](
∂

∂xi1
dmx

)

=
∫

K

[
∂L

∂ya
Y a −

(
∂

∂xi

∂L

∂zai

)

Ya − . . .−
(

∂

∂xik

∂L

∂zai1...ik

)

Ya,i1...ik−1

]

dmx

because Y k−1 vanishes on jk−1σ(∂K). Continuing integration by parts, we get

∫

K

jkσ ∗
(
Y k d0

)
=
∫

K

(
∂L

∂ya
− ∂

∂xi1

∂L

∂zai1

+ . . .+(−1)k
∂k

∂xi1 . . . ∂xik

∂L

∂zai1...ik

)

Yadmx

=
∫

K

δL

δya
Y admx, (58)
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where

δL

δya
= ∂L

∂ya
− ∂

∂xi1

∂L

∂zai1

+ . . .+ (−1)k
∂k

∂xi1 . . . ∂xik

∂L

∂zai1...ik

(59)

is called the Lagrange derivative of L. Comparing Eq. (58) with Eq. (28) observe
that, if � = d(Ldmx), then jkσ ∗(�a)− P ia,i = δL

δya
.

Taking into account the Fundamental Theorem in the Calculus of Variations, we
conclude that σ is a critical section of AK if and only if, for every a = 1, . . . , n,

(
∂L

∂ya
− ∂

∂xi1

∂L

∂zai1

+ . . .+ (−1)k
∂k

∂xi1 . . . ∂xik

∂L

∂zai1...ik

)

|K
= 0. (60)

Equation (60) is the Euler–Lagrange equations for critical points of the action
functional corresponding to the Lagrangian L.

4.3 De Donder Equations

Let 1 be the boundary form of d0, and let

2 = π2k−1∗
k 0+1. (61)

Equation (61) generalizes the construction of De Donder [5] to k > 1. We refer to2
as a De Donder form of 0. It follows from Theorem 1 that 2 satisfies the following
conditions.

Corollary 2

1. 2 is semi-basic with respect basic to the forgetful map π2k−1
k−1 : J 2k−1(M,N)→

J k(M,N). In other words, for any vector field X tangent to fibres of π2k−1
k−1 :

J 2k−1(M,N)→ J k(M,N),

X 2 = 0. (62)

2. For every vector field X on J 2k−1(M,N) tangent to fibres of the source map
π2k−1 : J 2k−1(M,N) → M, the left interior product X 2 is semi-basic with
respect to the source map. In other words, for every pairX1, X2 of vector fields on
J 2k−1(M,N) tangent to fibres of the source map π2k−1 : J 2k−1(M,N)→ M,

X2 (X1 2) = 0. (63)

3. For every section σ of π : N → M ,

j2k−1σ ∗2 = jkσ ∗0. (64)
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4. For every vector field X on J 2k−1(M,N) tangent to fibres of the target map
π2k−1

0 : J 2k−1(M,N)→ N, and every section σ of π : N → M,

j2k−1σ ∗ (X d2) = 0. (65)

Theorem 2 For σ ∈ S∞(K̄,N), suppose that j2k−1σ(K̄) is in the domain of a De
Donder form 2. Then σ is a critical section of the functional A, given by Eq. (49),
if and only if

j2k−1σ ∗ (X d2) = 0 (66)

for every vector field X on J 2k−1(M,N) that is tangent to fibres of the source map
π2k−1 : J 2k−1(M,N)→ M.

Proof Equation (64) implies that replacing jkσ ∗0 by j2k−1σ ∗2 in Eq. (49) does
not change the action functional,

A(σ) =
∫

K

jkσ ∗0 =
∫

j2k−1σ(K)

2. (67)

Moreover, if Y is a vertical vector field on N , then

j2k−1σ ∗LY 2k−12 = jkσ ∗LY k0, (68)

where Y 2k−1 is the prolongation of Y to J 2k−1(M,N). Hence, σ is a critical section
of the functional A if

∫

K

j2k−1σ ∗LY 2k−12 = 0 (69)

for every vertical vector field Y on N such that Y k−1 vanishes on jk−1σ(∂K). The
argument leading from Eq. (50) to Eq. (52) ensures that σ is a critical section of A
if and only if

∫

K

j2k−1σ ∗
(
Y 2k−1 d2

)
= 0 (70)

for all vertical vector fields Y on N, such that Y k−1 vanishes on jk−1σ ∗(∂K).
Equation (65) ensures that in Eq. (70), we can replace Y 2k−1 by an arbitrary

vector field X on J 2k−1(M,N) that is tangent to fibres of the source map π2k−1 :
J 2k−1(M,N) → M and satisfies the condition T π2k−1

k−1 ◦ X ◦ jk−1σ(∂K) = 0.
In other words, we may omit the requirement that Y 2k−1 is the prolongation of a
vertical vector field Y on N . This proves that σ is a critical section of AK if and
only if
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∫

K

j2k−1σ ∗ (X d2) = 0 (71)

for every vector field X on J 2k−1(M,N) that is tangent to fibres of the source map
π2k−1 : J 2k−1(M,N)→ M and satisfies the condition T π2k−1

k−1 ◦X◦jk=1σ(∂K) =
0.

Suppose that σ is a critical section of A. Equation (71) and the Fundamental
Theorem in the Calculus of Variations ensure that

j2k−1σ ∗ (X d2) = 0 (72)

for every vector field X on J 2k−1(M,N) that is tangent to fibres of the source map
π2k−1 : J 2k−1(M,N)→ M .

Conversely, assume that Eq. (72) is satisfied for all vector fields on J 2k−1(M,N)

that are tangent to fibres of the source map π2k−1 : J 2k−1(M,N) → M . Then,
Eq. (71) is satisfied for every vector field X on J 2k−1(M,N) because the integrand
is identically zero. In particular, Eq. (70) is satisfied for prolongations Y 2k−1 of
vertical vector fields Y on N that vanish on ∂K together with all derivatives up
to order k. This ensures that σ is a critical point of A.

We refer to (66) and (72) as De Donder equations. They are a system of equations
in differential forms that is equivalent to Euler–Lagrange equations.

Note that Condition 4 in Corollary 2 on De Donder form 2, see Eq. (65), differs
from Eq. (72) only by restriction on the range of the vector field X. We can combine
these two conditions in the corollary below.

Corollary 3 A section σ ∈ S∞(K̄,N) is a critical section of the functional A,
given by Eq. (49), if there exists a boundary form 1 such that

j2k−1σ ∗
(
X d

(
π2k−1∗

k 0+1
))
= 0 (73)

for every vector field X on J 2k−1(M,N) that is tangent to fibres of the source map
π2k−1 : J 2k−1(M,N)→ M .

Equation (73) is a relation in the space of pairs (1, σ ). However, it is not in the
form of the symplectic relation occurring in Tulczyjew triples. For a discussion of
Tulczyjew triples in higher derivative field theory see reference [8].

Since boundary forms are defined only locally, the assumption in Theorem 2
appears to be quite restrictive. We show that this is not the case.

Proposition 2 A section σ ∈ S∞(K̄,N) is a critical section of the functional A if
there exists an open cover {Uα} of K̄ ⊂ M such that j2k−1σ(Uα) is in the domain
of a De Donder form 2α , and

j2k−1σ ∗ (X d2α)|K∩Uα = 0 (74)

for each α, and every vector field X on J 2k−1(M,N).
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Proof Corollary 1 ensures that, if 1 and 1′ are boundary forms of d0 with the
same domain and 2 and 2′ are the De Donder forms corresponding to 1 and 1′,
respectively, then

j2k−1σ ∗
(
X d2′

) = j2k−1σ ∗ (X d2)

for each section σ of π and every vector fieldX on J 2k−1(M,N). Hence, the choice
of a De Donder form does not matter.

For each α, Eq. (74) is equivalent to Euler–Lagrange equations for σ in K ∩ Uα .
Since Euler–Lagrange equations are local, the conditions of Proposition 2 imply that
σ satisfies Euler–Lagrange equations in K .

4.4 Symmetries and Conservation Laws

Definition 3 A vector field Y on N is an infinitesimal symmetry of the Lagrangian
system with Lagrangian 0 = Ldmx of differential order k if it projects to a vector
field on M and LY kd0 = 0.

Let Y be an infinitesimal symmetry of 0. For every boundary form 1 of d0,
Lemma 1 ensures that j2k−1σ ∗(LY 2k−11) = 0 for all sections σ of π : M → N .
Since2 = π2k−1∗

k 0+1 is the local De Donder form corresponding to1, it follows
that

j2k−1σ ∗(LY 2k−12) = 0. (75)

Hence,

j2k−1σ ∗(Y 2k−1 d2)+ j2k−1σ ∗[d(Y 2k−1 2)] = 0. (76)

If σ satisfies De Donder equations, we get the conservation law

d
[
j2k−1σ ∗

(
Y 2k−1 2

)]
= 0. (77)

If K is an open, relatively compact submanifold of M with boundary ∂K , which
is contained in domain σ, then

∫

∂K

j2k−1σ ∗
(
Y 2k−1 2

)
= 0. (78)

In other words, if ∂K = 31 ∪ 32, where 31 and 32 inherit outer orientation from
∂K, and 31 ∩32 is smooth of dimension n− 2, then

∫

31

j2k−1σ ∗
(
Y 2k−1 2

)
=
∫

32

j2k−1σ ∗
(
Y 2k−1 2

)
. (79)
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If the De Donder equations are hyperbolic, and31 and32 are Cauchy surfaces, then
the integrals in Eq. (79) are conserved quantities corresponding to the infinitesimal
symmetry Y .

A priori, the integrals on each side of Eq. (79) depend on the choice of the
boundary form 1. However, the difference between the left and the right-hand sides
of Eq. (79) vanishes for every 1. In an example below, we show how boundary
conditions lead to unique expressions for constants of motion.

5 Example

5.1 Cauchy Problem

Consider M = R
2 with coordinates x = (x1, x2) and N = TR2 with coordinates

(x, y) = (x1, x2, y1, y2).

L = gabgij gklzaij zbkl, (80)

where gab is the Minkowski metric.

∂L

∂zaij
= 2gabg

ij gklzbkl, (81)

∂L

∂zai
= 0 and

∂L

∂ya
= 0.

Euler–Lagrange equations

∂2

∂xi∂xj

∂L

∂ya,ij
= 0

read

2gabg
ij gklya,klij = 0.

Writing x1 = t , x2 = x, we get

(
∂2

∂t2
− ∂2

∂x2

)(
∂2

∂t2
− ∂2

∂x2

)

ya(t, x) = 0.

(
∂4

∂t4
− 2

∂2

∂t2

∂2

∂x2 +
∂4

∂x2

)

ya(t, x) = 0.
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Set y(t, x), ẏ(t, x), ÿ(t, x), and
...
y (t, x) as the Cauchy data at t. Then

∂

∂t
ya(t, x) = ẏa(t, x),

∂

∂t
ẏa(t, x) = ÿa(t, x),

∂

∂t
ÿa(t, x) = ...

y a(t, x),

∂

∂t

...
y a(t, x) = ∂4

∂t4
ya(t, x) = 2

∂2

∂x2 ÿ
a(t, x)− ∂4

∂x4 y
a(t, x).

Therefore,

∂

∂t

⎛

⎜
⎜
⎝

ya

ẏa

ÿa...
y a

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎜
⎝

ẏa

ÿa...
y a

2 ∂2

∂x2 ÿ
a − ∂4

∂x4 y
a

⎞

⎟
⎟
⎟
⎠
= A

⎛

⎜
⎜
⎝

ya

ẏa

ÿa...
y a

⎞

⎟
⎟
⎠ ,

where

A =

⎛

⎜
⎜
⎜
⎝

0 1 0 0
0 0 1 0
0 0 0 1

− ∂4

∂x4 0 2 ∂2

∂x2 0

⎞

⎟
⎟
⎟
⎠
.

Since

etA =
∞∑

k=0

tkAk

k!

is well defined,

⎛

⎜
⎜
⎝

ya(t, x)

ẏa(t, x)

ÿa(t, x)...
y a(t, x)

⎞

⎟
⎟
⎠ =

∞∑

k=0

tkAk

k!

⎛

⎜
⎜
⎝

ya(0, x)
ẏa(0, x)
ÿa(0, x)...
y a(0, x)

⎞

⎟
⎟
⎠

is a solution of the Cauchy problem at t = 0.
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5.2 De Donder Forms

De Donder forms are π3∗
2 0+1, where

1 = pia(dya − zajdxj ) ∧
(
∂

∂xi
d2x

)

+ pi1i2a (dzai 2
− zai2jdxj ) ∧

(
∂

∂xi1
d2x

)

(82)
is a local boundary form corresponding to d0. For a section σ of π ,

2|range j3σ=π3∗
2 0|range j3σ+1|range j3σ (83)

= Ld2x+P i1a (dya−zajdxj ) ∧
(
∂

∂xi1
d2x

)

+ P i1i2a (dzai 2
− zai2jdxj ) ∧

(
∂

∂xi1
d2x

)

= P i1a dya ∧
(
∂

∂xi1
d2x

)

+ P i1i2a dzai 2
∧
(
∂

∂xi1
d2x

)

−
(
P iay

a
,i + P ija y,ij − L

)
d2x,

where the functions P i1a and P i1i2a satisfy the equations

∂L

∂zaij
− P (i1i2)a = 0, (84)

∂L

∂zai
− P ia − P i1ia,i1 = 0,

that follow from Eq. (20).
Since

d0 = ∂L

∂zaij
dzaij ∧d2x+ ∂L

∂zai
dzai ∧d2x+ ∂L

∂ya
dya∧d2x = 2gabg

ij gklzbkl dzaij ∧d2x,

it follows that

∂L

∂zaij
= 2gabg

ij gklyb,kl,

∂L

∂zai
= 0.

Hence, the symmetric solution is

P i1i2a = �i1i2a = 2gabg
i1i2gklyb,kl,

P
i1i2
a,i1

= �i1i2a,i1
= 2gabg

i1i2gklyb,kli1 ,

P ia = �ia − P i1ia,i1 = −2gabg
i1igklyb,kli1 .
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In this case

1|range j3σ = P ia(dya − zajdxj ) ∧
(
∂

∂xi
d2x

)

+P i1i2a (dzai 2
− zai2jdxj ) ∧

(
∂

∂xi1
d2x

)

= −2gabg
i1i2gklyb,kli1(dy

a − zajdxj ) ∧
(
∂

∂xi2
d2x

)

+2gabg
i1i2gklyb,kl(dz

a
i 2
− zai2jdxj ) ∧

(
∂

∂xi1
d2x

)

,

and

2|range j3σ = π3∗
2 0|range j3σ +1|range j3σ (85)

= Ld2x + P i1i2a (dya − zajdxj ) ∧
(
∂

∂xi
d2x

)

+P i1i2a (dzai 2
− zai2jdxj ) ∧

(
∂

∂xi1
d2x

)

= gabgij gklzaij zbkld2x − 2gabg
i1i2gklyb,kli1(dy

a − zajdxj ) ∧
(
∂

∂xi2
d2x

)

+2gabg
i1i2gklyb,kl(dz

a
i 2
− zai2jdxj ) ∧

(
∂

∂xi1
d2x

)

.

A non-symmetric solution of Eq. (84) is

P ′i1i2a = P i1i2a +Qi1i2
a = 2gabg

i1i2gklyb,kl +Qi1i2
a , (86)

P
′i1i2
a,i1

= P
i1i2
a,i1
+Qi1i2

a,i1
= 2gabg

i1i2gklyb,kli1 +Qi1i2
a,i1
,

P ′i2a = �i2a − P ′i1i2a,i1
= −2gabg

i1i2gklyb,kli1 −Qi1i2
a,i1
,

where Qi1i2
a is skew symmetric in i1 and i2,

Q
i1i2
a,i1
= −Qi2i1

a,i1
. (87)

5.3 Symmetries

A vector field Y = Y i ∂
∂xi
+ Ya ∂

∂ya
is a symmetry if

LY 2 (Ld2x) = 0, (88)
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where Y 2 = Y i ∂
∂xi
+ Ya ∂

∂ya
+ Yai ∂

∂zai
+ Yaij ∂

∂zaij
of Y is the prolongation of Y to

J 2(M,N) and

Yai = Ya,bz
b
i − zai Y i,j + Ya,i , (89)

Yaij = zb(jY
a
i),b − zak(iY k,j) + Ya(i,j),

see Eqs. (105) and (106) in the Appendix. The Lorentz metric gijdxidxj = (dt)2 −
(dx)2 occurring in the Lagrangian has Killing vector YT = ∂

∂x1 , YS = ∂
∂x2

corresponding to the time and the space translations, and the infinitesimal Lorentz
transformation YL = x2 ∂

∂x1 + x1 ∂
∂x2 .

We discuss here conservation of energy corresponding to the time translations
YT . Equation (89) show that the jet components of Y 2

T and Y 3
T vanish, so that Y 2

T =
∂
∂t

and Y 3
T = ∂

∂t
. Hence,

LY 2
T
(Ld2x) = LY 2

T

(
gabg

ij gklzaij z
b
kld2x

)

= Y 2
T (2gabg

ij gklzbkl)dz
a
ij ∧ d2x+d

[(
gabg

ij gklzaij z
b
kl

)
Y
i1
T

∂

∂xii
d2x

]

= (2gabgij gklzbkl)Y aT ijd2x + (2gabgij gklzbkl)Y i1T dzaij ∧
(
∂

∂xii
d2x

)

+

+
[(
gabg

ij gklzaij z
b
kl

)]
dY i1T ∧

(
∂

∂xii
d2x

)

= 0.

Since
(
Y 3
T dxj

)
= δj1 ,

∂

∂xi1
d2x = ∂

∂xi1
dx1 ∧ dx2 = δ1

i1
dx2 − δ2

i1
dx1,

and
(

Y 3
T

(
∂

∂xi1
d2x

))

=
(
Y 2
T

(
δ1
i1

dx2 − δ2
i1

dx1
))
= −δ2

i1
,

equation (83) yields

j3σ ∗
(
Y 3
T 2

)
= j3σ ∗

[

−P i1a dya ∧
(

Y 2
T

(
∂

∂xi1
d2x

))]
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+j3σ ∗
[

P i1i2a dzai 2
∧
(

Y 2
T

(
∂

∂xi1
d2x

))]

−
(
P iay

a
,i + P ija ya,ij − L

) (
Y 2
T d2x

)

= P 2
a y

a
,j dx

j + P 2i2
a ya,i2j dx

j −
(
P iay

a
,i + P ija ya,ij − L

)
dx2.

For an open relatively compact manifold K with boundary ∂K = 3 −3′,
∫

3

j3σ ∗
(
Y 2
T 2

)
=
∫

3

[
P 2
a y

a
,jdxj+P 2i2

a ya,i2jdxj−
(
P iay

a
,i + P ija ya,ij − L

)
dx2
]
.

Let us decompose P ija into its symmetric and antisymmetric parts in the upper
indices

P
ij
a = P (ij)a + P [ij ]a . (90)

Then,

P ia =
∂L

∂zai
− P i1ia,i1 =

∂L

∂zai
− P (i1i)a,i1

− P [i1i]a,i1
, (91)

so that
∫

3

j3σ ∗
(
Y 2
T 2

)
= (92)

=
∫

3

[
P 2
a y

a
,jdxj + P 2i2

a ya,i2jdxj −
(
P iay

a
,i + P ija ya,ij − L

)
dx2
]

=
∫

3

[(
∂L

∂za2
− P (i12)

a,i1
− P [i12]

a,i1

)

ya,jdxj +
(
P (2i2)a + P [2i2]a

)
ya,i2jdxj

]

−
∫

3

((
∂L

∂zai
− P (i1i)a,i1

− P [i1i]a,i1

)

ya,i + P ija ya,ij − L
)

dx2

=
∫

3

[(
∂L

∂za2
− P (i12)

a,i1

)

ya,jdxj +
(
P (2i2)a

)
ya,i2jdxj−

]

+

−
∫

3

((
∂L

∂za2
− P (i12)

a,i1

)

ya,i + P ija ya,ij − L
)

dx2 +

+
∫

3

[
−P [i12]

a,i1
ya,jdxj + P [2i2]a ya,i2jdxj + P [i1i]a,i1

ya,idx
2
]
.

The last integral in Eq. (92) involves only the odd terms P [ij ]a . It can be rewritten as
follows
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∫

3

[
−P [i12]

a,i1
ya,jdxj + P [2i2]a ya,i2jdxj + P [i1i]a,i1

ya,idx
2
]
= (93)

=
∫

3

[(
−P [12]

a,1 − P [22]
a,2

)
ya,jdxj +

(
P [21]
a ya,1j + P [22]

a ya,2j

)
dxj
]

+
∫

3

(
P
[11]
a,1 y

a
,1 + P [12]

a,1 y
a
,2 + P [21]

a,2 y
a
1 + P [22]

a,2 y
a
,2

)
dx2

=
∫

3

[
−P [12]

a,1

(
ya,1dx1 + ya,2dx2

)
+ P [21]

a ya,1jdxj +
(
P
[12]
a,1 y

a
,2 + P [21]

a,2 y
a
1

)
dx2
]

=
∫

3

[
−P [12]

a,1 y
a
,1dx1 + P [21]

a ya,1jdxj + P [21]
a,2 y

a
1 dx2

]

=
∫

3

[
P [21]
a ya,1jdxj − P [12]

a,1 y
a
,1dx1 + P [21]

a,2 y
a
1 dx2

]

=
∫

3

[
d
(
P [21]
a ya,1

)
− P [21]

a,j y
a
,1dxj − P [12]

a,1 y
a
,1dx1 + P [21]

a,2 y
a
1 dx2

]

=
∫

3

[
d
(
P [21]
a ya,1

)
− P [21]

a,1 y
a
,1dx1 − P [21]

a,2 y
a
,1dx2 − P [12]

a,1 y
a
,1dx1 + P [21]

a,2 y
a
1 dx2

]

=
∫

3

[
d
(
P [21]
a ya,1

)
−
(
P
[21]
a,1 y

a
,1dx1 + P [12]

a,1 y
a
,1dx1

)
−P [21]

a,2 y
a
,1dx2 + P [21]

a,2 y
a
1 dx2

]

=
∫

3

d
(
P [21]
a ya,1

)
.

Since, we consider an evolution equation with non-compact Cauchy surfaces,
replace K by a slice

S = {(x1, x2) ∈ R
2 | 0 < x1 < t}

with boundary

∂S = 3t −30 = {(t, x2) ∈ R
2} − {(0, x2) ∈ R

2}.

We assume that the fields ya(x1, x2) vanish sufficiently fast as x2 → ±∞, so that
integrals overK, 3t , and30 converge and permit integration by parts. For3 = 3t ,
Eqs. (92) and (93) yield

∫

3t

j3σ ∗
(
Y 2
T 2

)
=
∫

3t

[(
∂L

∂za2
− P (i12)

a,i1

)

ya,jdxj +
(
P (2i2)a

)
ya,i2jdxj

]

−
∫

3t

((
∂L

∂za2
− P (i12)

a,i1

)

ya,i + P ija y,ij − L
)

dx2 +
∫

3t

d
(
P [21]
a ya,1

)
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=
∫

3t

[(
∂L

∂za2
− P (i12)

a,i1

)

ya,jdxj +
(
P (2i2)a

)
ya,i2jdxj

]

+

−
∫

3t

((
∂L

∂za2
− P (i12)

a,i1

)

ya,i + P ija y,ij − L
)

dx2 +

+ lim
x2→∞

(
P [21]
a ya,1

)
(t, x2)− lim

x2→−∞
(
P [21]
a ya,1

)
(t, x2)

=
∫

3t

[(
∂L

∂za2
− P (i12)

a,i1

)

ya,jdxj +
(
P (2i2)a

)
ya,i2jdxj

]

−
∫

3t

((
∂L

∂za2
− P (i12)

a,i1

)

ya,i + P ija y,ij − L
)

dx2

because our asymptotic conditions require that limx2→∞
(
P
[21]
a ya,1

)
(t, x2) = 0 and

limx2→−∞
(
P
[21]
a ya,1

)
(t, x2) = 0. Hence the potential non-uniqueness of constants

of motion is taken care of by the appropriate choice of boundary conditions.

Appendix

Jets

Let π : N → M be a locally trivial fibration. A local section σ of π is a smooth
map σ : M → N, defined on an open subset U of M, such that π ◦ σ(x) = x for
every x ∈ U . If U = M , we say that σ : M → N is a global section of π . In the
following, we say σ : M → N is a section of π if σ is either local or global section.

Suppose that m = dimM and m + n = dimN . We use local coordinates (xi)
on M , where i = 1, . . . , m, and (xi, ya) on N, where a = 1, . . . , n. The local
coordinate description of a section σ : M → N is given by ya = σa(x1, . . . , xm)

for a = 1, . . . n.
For each x ∈ M and k = 1, 2, . . . , sections σ and σ̌ of π are k-equivalent at x if

σ(x) = σ̌ (x) and, in local coordinates,

σa,i1...il (x) = σ̌ a,i1...il (x), (94)

where

σa,i1...il (x) =
∂lσ a

∂xi1 . . . ∂xil
(x1(x), . . . , xm(x)), (95)

for all l = 1, . . . , k.
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The k-equivalence class at x of a section σ is called the k-jet of σ at x and
denoted jkσ(x). The space of k-equivalence classes at x of all section σ is denoted
J k
x (M,N) and

J k(M,N) =
⋃

x∈M
J k
x (M,N)

is called the space of k-jets of sections of π . In terms of local coordinates, jkσ(x)

has coordinates (xi, ya, zai1 , . . . ., z
a
i1...ik

), where

zai1...il = σa,i1...il (x),

for l = 1, . . . , k, i1, . . . , il = 1, . . . , m, and a = 1, . . . , n. Since partial
derivatives of a smooth function commute, the variables zai1...il cannot be considered
as independent coordinates. In the case when it matters, we use an independent
collection

{zai1...il | a = 1, . . . , n, and 1 ≤ i1 ≤ i2 ≤ . . . ≤ il}; (96)

see Eq. (7). However, in general, we use symmetry of variables zai1...il in the indices
i1, . . . , il .

There are several maps defined on J k(M,N) :
the source map

πk : J k(M,N)→ M : jkσ(x) �→ x,

the target map

πk
0 : J k(M,N)→ N : jkσ(x) �→ σ(x),

the (k, l)-forgetful

πk
l : J k(M,N)→ J l(M,N) : jkσ(x) �→ j lσ(x) for k > l > 0.

Each of these maps defines a fibre bundle structure in J k(M,N). For this reason,
J k(M,N) is also called the k-jet bundle of sections of π .

Let σ : M → N be a section of π : N → M . We denote the k-jet extension of σ
by

jkσ : M → J k(M,N) : x �→ jkσ(x).

For every integer k > 0,

πk
0 ◦ jkσ = σ. (97)
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Similarly, for each k > l > 0,

πk
l ◦ jkσ = j lσ.

A section ρ : M → J k(M,N) of the source map πk : J k(M,N)→ M is called
holonomic if there exists a section σ of π such that

ρ = jkσ.

It follows from Eq. (97) that ρ is holonomic if and only if

ρ = jk(πk
0 ◦ ρ).

Each local chart M gives rise to local contact forms on J k(M,N) given by

ϑa = dya −
m∑

i=1

zai dxi, ϑai = dzai −
m∑

j=1

zaijdxj , . . . .. (98)

ϑai1...ik−1
= dzai1...ik−1

−
m∑

ik=1

zai1...ik−1ik
dxik .

A section ρ : M → J k(M,N) of the source map πk is holonomic if the tangent
space of its range is annihilated by the contact forms ϑai1...il for all l = 0, . . . , k − 1
and all indices i1, . . . , il = 1, . . . , m and any collection of coordinate charts
covering M .

Prolongations

Let Y be a vector field on N which projects to a vector field Y 0 on M . In other
words, Y is π -related to a vector field Y 0, that is

T π ◦ Y = Y 0 ◦ π. (99)

This implies that π : N → M intertwines the actions of local one-parameter local
groups etY and etY

0
generated by Y and Y 0, respectively.

etY

N → N

π ↓ ↓ π

M → M

etY
0

(100)
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Hence, for every section σ of π ,

etY∗σ = etY ◦ σ ◦ e−tY 0
(101)

is a local section of π . For every integer k, the map σ �→ etY∗σ induces a local
one-parameter local group

etY
k : J k(M,N)→ J k(M,N) : jkσ(x) �→ [jk(etY∗σ)](etY 0

x) (102)

of diffeomorphisms of J k(M,N) to itself, generated by a vector field Y k on
J k(M,N), called the prolongation of Y to J k(M,N). In other words,

etY
k ◦ jkσ = jk(etY∗σ). (103)

For every 0 < l < k, Y k is πk
l -related to Y l,

T πk
l ◦ Y k = Y l ◦ πk

l , (104)

where πk
l : J k(M,N)→ J l(M,N) is the forgetful map.

Following reference [13], we show how to find the prolongation Y k of a vector
field Y = Y i(x) ∂

∂xi
+ Ya(x, y) ∂

∂ya
on N that is π -related to Y 0 = Y i(x) ∂

∂xi
on

M using the condition that, for every local contact form ϑ on J k(M,N), the Lie
derivative LY kϑ of ϑ with respect to Y k is a linear combination of local contact
forms. Let

Y k = Y i ∂
∂xi

+ Ya ∂

∂ya
+ Yai

∂

∂zai
+ . . .+ Yai1i2...ik

∂

∂zai1i2...ik

be the prolongation of Y to J k(M,N). Then,

LY k[dya − zai dxi]
= Y k

(
d[dya − zai dxi]

)
+ d
(
Y k [dya − zai dxi]

)

= −Y k
(

dzai ∧ dxi
)
+ d
(
Ya − zai Y i

)

= −Yai dxi + Y idzai + Ya,bdyb + Ya,idxi − Y idzai − zai Y i,jdxj

= Ya,b(dy
b − zbi dxi)+ Ya,bzbi dxi − Yai dxi + Ya,idxi − zai Y i,jdxj

= Ya,b(dy
b − zbi dxi)+

[(
Ya,bz

b
i − zaj Y j,i + Ya,i

)
− Yai

]
dxi,
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which implies that

Yai = Ya,bzbi − zaj Y j,i + Ya,i . (105)

Similarly,

LY k [dzai − zaijdxj ]
= Y k

(
d[dzai − zaijdxj ]

)
+ d
(
Y k [dzai − zaijdxj ]

)

= −Y k
(

dzaij ∧ dxj
)
+ d
(
Yai − zaij Y i

)

= −Yaijdxj + Y jdzaij + Yai,bdyb + Yai,jdxj − Y idzaij − zaij Y i,kdxk

= Yai,b
(

dyb − zbjdxj
)
+ Yai,bzbjdxj − Yaijdxj ++Yai,jdxj − zaij Y i,kdxk

= Yai,b
(

dyb − zbjdxj
)
+
[(
Yai,bz

b
j − zakiY k,j + Yai,j

)
− Yaij

]
dxj ,

so that, for i ≤ j ,

Yaij = Yai,bzbj − zakiY k,i + Yai,j .

Symmetrizing, we get

Yaij = zb(jY ai),b − zak(iY k,j) + Ya(i,j). (106)

In general,

LY k[dzai1...il − zai1...il jdxj ] =
= Y k

(
d[dzai1...il − zai1...il jdxj ]

)
+ d
(
Y k
)

= −Y k
(

dzai1...il j ∧ dxj
)
+ d
(
Yai1...il − zai1...il j Y j

)

= −Yai1...il jdxj + Y jdzai1...il j + Yai1...il ,bdyb + Yai1...il ,jdxj

−Y jdzai1...il j − zai1...il j Y
j
,kdx

k

= −Yai1...il jdxj + Yai1...il ,bdyb + Yai1...il ,jdxj − zai1...il j Y
j
,kdx

k

= Yai1...il ,b
(

dyb − zbjdxj
)
+ Yai1...il ,bzbjdxj − Yai1...il jdxj

+Yai1...il ,jdxj − zai1...il j Y
j
,kdx

k

= Yai1...il ,b
(

dyb − zbjdxj
)
+
[(
Yai1...il ,bz

b
j − zai1...ilkY k,j + Yai1...il ,j

)
− Yai1...il ,j

]
dxj .
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Therefore

Yai1i2...il j = zb(jY ai1...il ),b − zak(i1i2...il Y k,j) + Ya(i1...il ,j ). (107)
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Regular and Singular Dislocations
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Abstract The theory of continuous distributions of dislocations and other material
defects, when formulated in terms of differential forms, is shown to comprise also
the discrete, or singular, counterpart, in which defects are concentrated on lower
dimensional regions, such as surfaces, lines, and points. The mathematical tool
involved in this natural transition is the theory of de Rham currents, which plays
in regard to differential forms the same role as the theory of Schwartz distributions
plays with respect to ordinary functions. After a review of the main mathematical
aspects, the theory is illustrated with a profusion of examples and applications.

1 Introduction

The theory of material defects has its origins not in the works of engineers but
rather in the prodigious curiosity of the great Italian mathematician Vito Volterra
(1860–1940), for whom the theory of elasticity was just one of the many possible
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applications of mathematical analysis, a field to which he made many pioneering
contributions. In the year 1907, Volterra published a celebrated article [23], whose
contents he amplified and further expanded in a series of lectures delivered in the
USA in 1909 and published in 1912 [24]. The topic of these articles revolved
around the equilibrium, in the absence of external forces, of multiply connected
elastic bodies, which, by a process of cutting and welding, sustain non-vanishing
stresses. In a now famous illustration, reproduced in texts of material science to our
very day, Volterra identifies 6 possible independent processes of this kind, which
he named distortions. Volterra’s original illustration1 is in fact a photograph of an
actual realization of each of these distortions.

In 1899, a few years before Volterra’s publications, the French mathematician
Élie Cartan (1869–1951), acknowledging his debt to Pfaff and to Grassmann,
launched a new era in the calculus of differential forms [2] and the theory of
differential systems. A separate mathematical development, which formalizes the
idea of ‘singularity functions’, informally used already at that time in many
engineering and physics applications, is the work of the French mathematician
Laurent Schwartz on the theory of distributions, published in a short article in
1945 [20]. The Swiss mathematician Georges de Rham (1903–1990), combined the
method of Schwartz with the calculus of differential forms to produce his original
theory of currents, elegantly summarized in a book he published in 1955 [4].

Although these are by no means the only mathematical tools relevant to our
discussion, the chain of transmission outlined above conveys a general picture of the
flow of some of the main ideas that may be necessary to invoke for the modelling of
material defects. The situation is quite different when it comes to summarizing the
rich engineering and applied mechanics tradition that ensued from Volterra’s work.
Whereas mathematics seems to have a way of incorporating old knowledge into new
in a matter of one or two generations, the accelerated progress made in various areas
of theoretical and experimental physics, liquid crystals and soft matter, materials
science, metallurgy, numerical and computational techniques, various branches of
engineering, industrial demand, and support from granting agencies, among other
factors, has made the communication between various schools of research, even
those interested in the same phenomena, not only very slow but, in some cases,
also next to impossible, as if between people speaking different languages trying to
converse in a noisy environment.

A short but comprehensive historical account of dislocation theory up to 1985 is
given in [11], ranging from the early studies on isolated defects to the differential
geometric theories of continuous distributions of dislocations. Historically, of
course, the continuum theories grew out of their discrete counterparts, starting in the
1950s, although a rigorous passage to the continuum limit was not claimed, but only
used in a heuristic way. A typical example of this kind of inspiration is the relation
between the Burgers vector (that is, the lack of closure of an atomic lattice circuit
enclosing a defect) and the torsion of the distant parallelism induced by a Cartan
frame field. Our objective in this chapter is to demonstrate that the two extremes

1Available at https://archive.org/details/lecturesdelivere00clarrich, page 43.

https://archive.org/details/lecturesdelivere00clarrich
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represented, on the one hand, by the discrete models and, on the other hand, by the
smooth theories, can be reconciled and encompassed under the embrace of a single
mathematical apparatus, namely, the theory of de Rham currents. The passage from
the smooth model to various singular versions is achieved naturally when, having
formulated the smooth theory in terms of differential forms, the quantities and the
governing equations are reinterpreted in the weak sense afforded by the theory of
currents.

Section 2 reviews the classical setting in terms of frame fields representing
an underlying geometric structure, and, having recast the theory in terms of dual
co-frames, prepares the stage for the use of exterior differential calculus. The presen-
tation is free of any metric connotations, such as available in a Cartesian space. In the
case when a single differential 1-form ω is specified on an n-dimensional manifold
M , the physical counterpart can be interpreted as the prescription of a field of stacks
of oriented hyperplanes, such as is the case in type-A smectics. The defectivity of
this structure is measured by the lack of closure of the exterior differential of ω.
Consequences of Stokes’ theorem of integral calculus are explored, in anticipation
of stronger results in the weak formulation, which is introduced in Sect. 3. This
section contains the main results of the chapter. A brief review of the concept
of current is presented, according to which the weak counterpart of a p-form is
recognized as an (n−p)-current. Similarly, the counterpart of the exterior derivative
operator of forms is the boundary operator on currents, and the lack of closure of
the former is reflected in the non-vanishing of the boundary of the latter. Classical
isolated edge and screw dislocations are shown to emerge naturally in this context.
Examples of coherent and non-coherent interfaces are presented and discussed.
When (n−1)-forms, or 1-currents, are used as the point of departure for the analysis,
we obtain a filamented structure, such as is encountered in nematic liquid crystals
and many biological tissues. Section 4 suggests how the continuous theory can in
principle be reconstructed from the discrete one by means of a passage to the limit
as the number of isolated dislocations in a fixed volume element grows without
bound. Finally, Sect. 5 provides a framework for the description of the movement
of defects in terms of time-dependent principal-bundle morphisms. Although the
presentation is by no means elementary or self-contained, an effort has been made
to deemphasize the formal aspects of the theory, a fact that is reflected in a lighter
than usual style that makes as few demands as possible from the reader.

2 Regular Lattices

2.1 Frame Fields

The most natural, though not the only, continuous extension of the picture of an
orderly crystalline array of atoms consists of defining a field of frames over an
open connected region R of R

3. Somewhat more technically, we may say that a
continuous crystalline array is a (smooth) section σ of the linear frame bundle FR.
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In other words, to each point X ∈ R, the map σ : R → FR assigns three linearly
independent vectors vα ∈ TXR (α = 1, 2, 3) in the tangent space TXR. Within this
restricted framework, the theory of continuous distributions of dislocations attempts
to define and quantify measures of densities of defects. It should also consider
whether other interpretations of the discrete picture are amenable to extension to
the continuous realm.

In the discrete picture, it is customary to define the Burgers vector as the lack
of closure of an approximately plane and quadrilateral atomic circuit with the same
number of atomic spaces on its opposite sides. The non-vanishing of the Burgers
vector is an indication of the presence of a lattice defect within the quadrilateral. In
the continuous picture, we have three independent vector fields eα , each of which
gives rise to a flow φα(s

α), where sα is the natural parameter, defined up to an
additive constant, on the integral curve of the field eα . The analogue of the lack
of closure of a Burgers circuit is the lack of commutativity of two of these flows.
Indeed, only if the flows φα and φβ commute, we arrive at the same final point Y
when, starting from point X, we first advance by an amount Δsα along the integral
line of eα and then by an amount Δsβ along the integral line of eβ , or repeat this
procedure in the opposite order.

The infinitesimal version of the procedure just described gives rise to the notion
of a new vector field [u, v], namely, the Lie bracket between the two vector fields,
u and v. In terms of components in a coordinate system XI (I = 1, 2, 3), the Lie
bracket is expressed as

[u, v]I = uJ ∂v
I

∂XJ
− vJ ∂u

I

∂XJ
, (1)

where the summation convention for diagonally repeated indices is implied.
The vector

cαβ = [eα, eβ ] = cIαβ
∂

∂XI

∣
∣
∣
∣
X

= cγαβ eγ (X) (2)

will be called the local Burgers vector at X associated with the families α and β. It
represents the defects gathered along the ‘infinitesimal circuit’ generated by eα and
eβ . If cαβ at a point X happens to be a linear combination of eα and eβ alone, we
say that at X we have a pure edge dislocation density associated with the families α
and β. This condition can be written as

c
γ
αβ = 0 for γ �= α and γ �= β. (3)

Otherwise, that is, if there is a non-vanishing component on the third base vector
(not α or β), we have a mixture of edge and screw dislocations.

Given any two vectors, u = uρeρ and v = vρeρ , we define the Burgers vector
associated with their corresponding infinitesimal circuit as

cu,v = cγαβuαvβ eγ . (4)

The components cγαβ = −cγβα are called the structure constants of the frame field
at X. When the structure constants vanish identically throughout R, the frame field
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is called holonomic. In that case, and only in that case, there exists a coordinate
system on R such that its natural basis coincides with the frame field at each point
X ∈ R. Otherwise, the frame field is said to be anholonomic. From the physical
point of view, holonomicity corresponds to a defect-free continuous crystalline
array.

Let χ : R → R ′ be a diffeomorphism from R to another region R ′. The
pushforward of the crystal frame eα atX is a frame e′α atX′ = χ(X). The collection
of structure constants vanishes at X′ if, and only if, it vanishes at X, as can be
verified by a direct calculation. From the physical standpoint, this remark means
that it is not possible to remove defects by a mere deformation. This fact also shows
that our initial choice of R as a region in R

3 might as well be replaced with any
sub-body of a body manifold. The metric properties of R

3 need not be invoked
to detect the presence of material defects. Given these considerations, we see no
reason to limit the theory either by the metric properties or by the dimensionality
of our ordinary space. We will, therefore, proceed with a formulation based on an
underlying n-dimensional manifold M .

2.2 Material Parallelism

A somewhat different way to look at the continuous version of a discrete lattice is to
regard it as a parallelism on M . Starting from a given frame field, as in the previous
section, two vectors, v at X, and w at Y , are said to be materially parallel if their
components in their respective local bases, eα(X) and eα(Y ), are correspondingly
the same for each α = 1, . . . , n. If, given a vector field, this condition is satisfied for
every pair of points, we say that the vector field is materially parallel or materially
constant. Clearly, the frame field of departure consists of three materially constant
vector fields. The notion of material parallelism is more general than that of a
continuous lattice in two senses, namely,

– The parallelism is preserved under any lattice transformation of the form

fα(X) = Aρα eρ(X), (5)

where Aρα are constants. Thus, we are not beholden to a particular frame field,
but rather to a more general geometric notion.

– The concept of material parallelism can be induced directly from a given con-
stitutive law via the notion of material isomorphism [15, 25]. The importance of
this remark can be appreciated both from a practical and from an epistemological
point of view. It means that a theory of dislocations can, at least in principle,
be built upon a continuum scaffolding alone, without any need to resort to a
lower, more fundamental, level of discourse.2 In particular, the incorporation

2On this point, it is pertinent to mention the works of the philosopher of science Mario Bunge [1].
Bunge, though, warns us about the dangers of ‘explicatio obscurum per obscurius’.
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of continuous symmetry groups becomes available as an additional degree of
freedom of the theory, which will not be considered herein.

A parallelism on a manifold can be construed in terms of a linear connection
with vanishing curvature. Starting from a materially parallel frame field eα (α =
1, . . . , n), expressed in terms of components in a coordinate system XI (I =
1, . . . , n) as

eα = eIα
∂

∂XI
, (6)

the Christoffel symbols of this connection, expressed in the coordinate system, are
obtained as

Γ IJK = −eIα,K eαJ . (7)

In this equation, we use commas to indicate partial derivatives with respect to the
coordinates. Moreover, we have denoted by eαJ the entries in the inverse of the matrix
with entries eJα , that is, eJα e

α
K = δJK .

We remark that the vanishing of the curvature is guaranteed automatically by the
independence of path implicit in the very definition. The torsion of this connection
can be expressed in terms of the torsion tensor T, whose components in the
coordinate system are

T IJK = Γ IJK − Γ IKJ . (8)

We can verify that

T = T IJK
∂

∂XI
⊗ dXJ ⊗ dXK = −cγαβ eγ ⊗ eα ⊗ eβ, (9)

where eα represents the point-wise algebraic dual basis of eα . In other words, the
field of structure constants of the anholonomic frame field eα is nothing but the
anholonomic component expression of the torsion tensor of the associated material
connection.

It is interesting to point out that the torsion tensor gives rise to a trace 1-form
ω = ωI dXI defined as

ωI = T KKI . (10)

Following [5], we can use this 1-form to canonically decompose the torsion
tensor into the sum of a diagonal part

T̃ IJK =
1

n− 1

(
δIJ ωK − δIK ωJ

)
, (11)
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and a traceless part

T̂ IJK = T IJK − T̃ IJK. (12)

It is not difficult to verify that, if we go back to the case n = 3, the vanishing of
the traceless part implies that, for every pair of vectors u, v, the Burgers vector cu,v
corresponds to a pure edge dislocation. Thus, the traceless part is an indication of
the presence of screw dislocations at a given point.

2.3 The Dual View

To each frame eα at a point X ∈ M , we can uniquely assign its dual co-frame eα ,
which is a basis of the cotangent space T ∗XM . As linear operators on TXM , the
action of the covectors of the co-frame on tangent vectors is completely defined by
the algebraic condition

〈eα, eβ〉 = δαβ . (13)

Since a frame field is, by definition, a (smooth) section of the frame bundle FM ,
each of the three base covectors eα is a (smooth) section of the cotangent bundle
T ∗M , namely, a differential 1-form. From the algebraic standpoint, it does not
appear that working with co-frames could provide further insight into the description
of distributed defects. Nevertheless, one can foresee at the very least three possible
features of the dual approach that might bear fruit and shed new light on our topic,
to wit

(i) Broadly speaking, it can be said that, if a frame represents lines joining atoms
with their lattice neighbours, a co-frame can be regarded as a collection of
atomic planes, a point of view not foreign to crystallographic science.

(ii) In contradistinction to vector fields, differential forms offer a fully fledged exte-
rior calculus that elegantly summarizes and generalizes to arbitrary manifolds
the machinery of classical vector calculus in Euclidean space.

(iii) The theory of integration on manifolds is intimately connected with the theory
of differential forms. Important facts pertaining to global properties of a
defective structure can, therefore, be obtained in a natural way with the dual
approach.

(iv) Finally, and most strikingly, the calculus of differential forms can be extended
to a weak formulation, known as the theory of currents, much in the way
that the theory of distributions generalizes that of ordinary functions. This
circumstance opens the door to a unified treatment of regular and singular
dislocations under the overarching safeguard of a common mathematical
apparatus.



230 M. Epstein and R. Segev

To address point (i) above, we may start by considering a covector W at a point
X ∈ TM . The collection of vectors that annihilate W, namely,

H0 = {v ∈ TXR | 〈W, v〉 = 0}, (14)

is clearly a hyperplane (an (n− 1)-dimensional subspace of TXM ). For each value
s ∈ R, we can also define the collection

Hs = {v ∈ TXM | 〈W, v〉 = s}. (15)

Any two vectors in Hs differ by an element in H0, whence it follows that Hs is
an affine hyperplane parallel to H0. Letting s vary, we obtain a stack of oriented
hyperplanes, the positive orientation pointing towards increasing s. The relative
‘density’ of this stack can be intuited by letting s attain only integer values. If we
multiply W by, say, 2, we obtain a stack made of the same kind of hyperplanes, but
with double the density. If we multiply by -1, we obtain the same stack, but with
reversed orientation. Visualizing a vector u ∈ TXR as an arrow, and a covector
W ∈ T ∗XR as a stack of hyperplanes endowed with a density, the evaluation 〈W,u〉
of W on u can be visualized as the ‘number of stack hyperplanes’ pierced by the
arrow. This intuitive idea is illustrated in Fig. 1.

As far as the co-frame field eα is concerned, we can regard it as the smooth
assignation at each point of M of n mutually intersecting infinitesimal stacks of
atomic hyperplanes. We may now focus attention on one of these families, say
eβ , and ask ourselves the question: do these stacks at different points of each
neighbourhood fit well together? The first notable feature of this question is that
it can be meaningfully asked. This is not the case if we were to isolate one of the
n vector fields, say eβ , since, according to the fundamental theorem of the theory
of ordinary differential equations, any vector field has local integral curves. The
vectors of one family always fit well together! When we were looking for defects in

Fig. 1 A covector W as a
stack of oriented hyperplanes.
The evaluation 〈W, v〉 if the
number of hyperplanes
pierced. This ‘number’ is
negative if the vector points in
the direction of decreasing s

◦

◦

W

v

s
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the crystal frame approach, therefore, we needed to look at least at 2 such families.
The second feature of the question just posed is that it can be answered in any
one of two respects. The first, and stricter, criterion consists of finding a family of
hypersurfaces such that they match the hyperplanes at each point both in tangency
and in density. The less severe way to look at the question of fitness is to look for a
family of hypersurfaces that at each point are tangent to the hyperplane H0, ignoring
the issue of stack density.

To answer the question according to the first criterion, we make use of point (ii)
above, and invoke Poincaré’s lemma. It asserts that a differential 1-form ω is
locally exact if, and only if, it is closed, namely, its exterior derivative dω vanishes
identically on a simply connected open neighbourhood. By exact, we mean that
there exists a scalar-valued function φ on this neighbourhood such that ω = dφ. In
other words, local exactness means that the surfaces φ = constant do precisely the
job of coinciding locally with the stacks defined by ω. For our context, we can call
ω a layering form. It induces a field of hyperplane stacks. This field is defect-free
if dω = 0, namely, if the layering form is closed. Otherwise, the 2-form D = dω,
called the dislocation form, is a local measure of the defect density.

Identifying the layering form with eα = eαI dXI , we conclude that the condition
for it being defect-free can be stated as

deα = eαI,J dXJ ∧ dXI = 0. (16)

Invoking Eqs. (13) and (2), this condition can be rewritten as

cαβγ eβ ∧ eγ = 0. (17)

Thus, we recover, with little effort, the same characterization of a defective crys-
talline structure in terms of the structure constants of the frame-field formulation.

Having found the conditions ensuring the fitness of the layering structure in
respect of both tangency and density, we turn to the less restrictive criterion,
according to which we only require the hyperplanes H0(X) to derive from local
hypersurfaces ((n − 1)-dimensional integral manifolds). This criterion can be
interpreted in terms of the involutivity, or lack thereof, of the distribution H0(X),
for which the theorem of Frobenius provides the answer.

Recall that a (geometric) distribution on an n-dimensional manifold consists of a
smooth assignation of an r-dimensional subspace of TxM at each point x ∈M . In
our case, the layering 1-form ω induces an (n − 1)-dimensional distribution on M
consisting of the hyperplanes H0(X). A distribution is involutive if the Lie bracket
of every pair of vector fields in the distribution is also in the distribution. Thus,
employing the terminology introduced in Sect. 2.1, the distribution associated with
two vector fields, u and v, is involutive if, and only if, it contains only pure edge
dislocations.

An r-dimensional distribution is completely integrable if around each point
x ∈ M we can find a coordinate chart xi (i = 1, . . . , n) such that the r-
dimensional submanifolds with equation xj = kj (j = r + 1, . . . , n), where
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each kj is a constant, are everywhere tangent to the distribution. The theorem of
Frobenius asserts that every involutive distribution is completely integrable. In terms
of the physical picture, we may say that if two vector fields give rise to no screw
dislocations, we can find (local) integral surfaces to which the vectors are tangent.

The theorem of Frobenius can alternatively be expressed in the language of
differential forms. For the particular case of the (n − 1)-dimensional distribution
generated by a 1-form ω, involutivity is equivalent to the condition

ω ∧ dω = 0. (18)

If we set ω = eα , we recover Eq. (3).

Example 1 (Actualization in the realm of liquid crystals) One of the attractive
features of the dual approach is its ability to deal with defects in phases other than
the crystalline solid. As stated by Chandrasekhar in his classical treatise [3], the
‘term liquid crystal signifies a state of aggregation that is intermediate between the
crystalline solid and the amorphous liquid’. Liquid crystals, therefore, offer a rich
variety of examples for the application of the dual approach. Quoting again from [3],

Smectic liquid crystals have stratified structures but a variety of molecular arrangements
are possible within each stratification. In smectic A the molecules are upright in each
layer . . . The interlayer attractions are weak as compared with the lateral forces between
molecules and in consequence the layers are able to slide over one another relatively easily.3

In addition to this obvious physical instance to which the above dislocation
modelling can be applied, we also mention a potential application to discotic liquid
crystals, made of disc-shaped molecules.4 In all these cases, the physical reality
imposes the consideration of local stacks of planes, rather than that of an ordered
molecular lattice. �
Remark 1 In [16], Nye uses a tetrahedron argument, similar to the one used to relate
the stress tensor to the traction vector on a surface element with unit normal n, to
prove that there exists a second-order tensor controlling the local Burgers vectors
associated with the lack of closure of infinitesimal circuits on all possible area
elements at a point. This reasoning is hardly necessary, since Equation (2) above can
be regarded as a tensor equation doing precisely what Nye’s ‘state of dislocation’
tensor accomplishes. The vector-valued 2-form with components cαβγ acts on a 2-

vector u ∧ v to produce the (Burgers) vector cαβγ u
βvγ . More traditionally, when

working in R
3 with all its metric structure, we can define the tensor C associated

with the structure constants cαβγ as

Cαρ = ερβγ cαβγ ,

3See [3], p. 6.
4Ibid., p. 8.
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where ε denotes the alternating symbol. Since, in the case of R3, the 2-vector 2 u∧v
corresponds to an element of area n dA = u × v, where × stands for the ordinary
cross product, Nye’s result follows suit. Indeed,

CαρnρdA = ερβγ cαβγ nρdA
= cαβγ ερβγ ερστ uσ vτ

= (δβσ δγτ − δβτ δγσ )cαβγ uσ vτ
= (cαστ−cατσ )uσ vτ
= 2cαστ u

σ vτ .

�

2.4 Integral Perspective

As anticipated in point (iii) of Sect. 2.3, there are still some natural consequences
that will emerge from the theory of integration of differential forms. A central result
of this theory is Stokes’ theorem. It establishes that

∫

∂M

ω =
∫

M

dω. (19)

In this equation, M is an oriented n-dimensional manifold-with-boundary, ∂ is
the boundary operator, and ω is a compactly supported (n − 1)-form in M . The
boundary ∂M is assumed to have been consistently oriented. More importantly,
the boundary ∂M , as an (n − 1)-dimensional manifold, is not necessarily the
same as the boundary of M as a topological space (typically, a subspace with the
subset topology). Bearing in mind this distinction, the boundary of a manifold-with-
boundary satisfies the identity

∂(∂M ) = 0. (20)

The duality of this identity with respect to the fundamental identity of the exterior
differential operator, namely, for any differential form ρ,

d(dρ) = 0, (21)

is striking. Their consistency is mediated by Stokes’ theorem, as can be gathered
choosing ω = dρ in (20).

At this point, going back for a moment to the case n = 3, for a given layering
1-form ω, we will be able to define a scalar dislocation measure associated with
any circuit γ in M . Its meaning is intended to convey the idea of the net amount of
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Fig. 2 A Burgers circuit γ
and two associated surfaces
C and C ′

dislocations embraced, as it were, by the circuit. Let C be an oriented 2-dimensional
submanifold with boundary (a surface) such that γ = ∂C . We may think of
γ as a Burgers’ circuit. The surface C encounters defects (smoothly distributed
mismatches in slope and/or density between neighbouring stacks). The net amount
of defects encountered is given by the integral of the defect densityD = dω over C .
This net amount may vanish even if there are defects on C which end up cancelling
out mutually. According to Stokes’ Theorem, we must have

∫

C

D =
∫

γ

ω. (22)

Consider a different surface C ′ with the same boundary curve γ , as shown in Fig. 2.
We conclude from Eq. (22) that the net amount of defects is the same as before. In
other words, the net amount of defects is the same on all surfaces sharing a common
boundary. Thus, a Burgers circuit γ can be said to embrace a fixed net amount of
defects. This generalization of the concept of Burgers circuit (and, in this case, the
associated Burgers scalar) is a direct elementary consequence of the geometrical
setting, rather than of a clever physical insight.

Consider, furthermore, the integration of the defect density D = dω over the
boundary ∂S of an n-dimensional submanifold with boundary S in M . Applying
Stokes’ theorem, we obtain

∫

∂S

D =
∫

∂∂S

ω = 0. (23)

This result can be interpreted physically as the fact that there can be no isolated
sources of defects. It was obtained by exploiting the vanishing of the boundary of
a boundary, that is, ∂2 = 0. It could also have been independently obtained from
d2 = 0. Indeed, recalling that, by its very definition, D is an exact form, we could
have claimed that

∫

∂S

D =
∫

S

dD =
∫

S

d(dω) = 0. (24)
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Assume, finally, that the defect density vanishes identically everywhere except
within a very thin, wire-like, domain traversing the body. Enclosing this domain
with a slightly thicker tubular neighbourhood, and focusing attention on the portion
comprised between two cross sections, we conclude that the net defect density
in any cross section of this tube is constant. We have thus essentially recovered
Frank’s rule [10] for line dislocations. A similar result can be obtained for branching
dislocation lines. We again emphasize that, in this approach, the physical results
emerge naturally from the geometric setting.5

Remark 2 Cartesian meditation: With the luxury of a 3-dimensional Euclidean
background, 1-forms can be construed as ordinary vectors. Starting with the frame
eα (α = 1, 2, 3), with Cartesian components forming the rows of a matrix [A]
with entries eαi , the vector version of the dual basis eα (α = 1, 2, 3) is given by
the columns of the inverse matrix [A]−1 with entries e−1

iα . We look now for the
meaning of the exterior differential of eα , with α fixed. We notice that deα is a 2-
form, whose components are entries of a skew-symmetric matrix, namely, fαij =
(e−1
iα,j − e−1

jα,i)/2. The metric structure, however, allows us to view this 2-form as
a vector with components fαk = εkij fαij , where εijk is the Cartesian alternating
symbol. We conclude that, in the Cartesian world, the vector field representing the
differential 2-form deα is precisely the curl of the vector with Cartesian components
e−1
iα . Stokes’ theorem, used to derive the elegant results above, is replaced now by

its Euclidean version, which states that the flux of the curl of a vector field over a
surface equals the circulation of this field over the bounding curve. In short, when
thinking in a Cartesian way, there is a loss of generality and of elegance, but not of
truth, as long as the context is appropriate. These Cartesian gymnastics, however,
can hardly survive the treatment of singular dislocations in terms of currents.

3 Singular Lattices

Although, for merely heuristic purposes, we have commented on the extension of the
concept of a discrete crystal lattice into the continuous realm, this vaguely described
extension has not played any role in our treatment of continuous distributions of
defects. We are now concerned with the opposite paradigm, formulated as the
question: Can one obtain the discrete picture out of the stand-alone continuous
one, and, if so, how? To answer this question, we will make use of the theory
of currents, as developed by Georges de Rham [4], whose general lineaments are
briefly reviewed below.

5We revisit these ideas in greater detail in Sects. 3.4 and 3.5.
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3.1 De Rham Currents

On an n-dimensional oriented manifold M , we consider the collection Λpc (M ) of
all C∞ differential p-forms with compact support in M . It is clear that Λpc (M ) is
an infinite-dimensional vector space.6

Definition 1 A p-current on M is a continuous linear functional on Λpc (M ).

As de Rham explains in [4], he interprets the notion of continuity following Laurent
Schwartz’s definition of a distribution, of which a current is a generalization.7 De
Rham, in fact, affirms that ‘a current can be considered as a differential form for
which the coefficients are distributions’.8

Since de Rham states9 that the concept of a current is ‘a notion so general that it
includes as special cases both differential forms and chains’, it seems appropriate at
this point to consider a few examples to confirm and expand this assertion.

Example 2 Let v ∈ TXM be a vector at X ∈ M . We define the 1-current Tv
associated with this vector as the operator

Tv[φ] = 〈φ(X), v〉 ∀φ ∈ Λ1
c(M ). (25)

Regarding v as the value of some vector field on M at a point X, we may say, with
an understandable abuse of language, that the 1-current Tv(X) is equal to the vector
v(X). In the same spirit, we can associate with a p-vector at X a corresponding p-
current. The case p = 0 delivers Dirac’s delta with an intensity determined by the
0-vector. �
Example 3 Let ω be a differential p-form, not necessarily with compact support, on
an n-dimensional manifold-with-boundary M . We define the associated (n − p)-
current Tω as

Tω[φ] =
∫

M

ω ∧ φ ∀φ ∈ Λn−pc (M ). (26)

6By virtue of the point-wise vector-space character of Λp(T ∗XM ), with X ∈M .
7In his momentous article [20], Schwartz describes the continuity of a distribution T (·) as follows:
‘Si une suite de fonctions φi , ont leurs noyaux contenus dans un compact fixe et si elles convergent
uniformément vers 0, ainsi que chacune de leurs dérivées, alors les T (φi) convergent vers 0’. In
other words, the requirement placed on the continuity of the functional T is stronger than the mere
uniform convergence of the functions, since it entails that each of the sequences of derivatives must
also converge uniformly to zero. When generalizing this idea to manifolds, Schwartz and de Rham
demand that the supports must all be contained in a single compact set within the domain of a
chart. The derivatives are taken with respect to the chart coordinates.
8See [4], p. 1.
9Ibid.
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To justify the heuristic identification of Tω with ω itself, we remark the obvious
fact that a p-covector based on an n-dimensional vector space is completely defined
if we know the value of its exterior product with every (n− p)-covector. From this
observation, we can reason like Schwartz does in [20] in respect of the identification
of a function with its associated distribution. It should be pointed out, however, that
this identification of a p-form with its corresponding (n − p)-current is not to be
taken at face value. While we can define the exterior product of two differential
forms, a definition of the tensor product of two currents is not trivially available. �
Example 4 Let S be an oriented immersed p-dimensional submanifold (with
boundary) of the n-dimensional manifold M . Let, moreover, S be such that the
restriction to S of every compactly supported p-form in M has compact support
in S . This is the case, for example, when S itself is compact. We define the
associated p-form TS as

TS [φ] =
∫

S

φ ∀φ ∈ Λpc (M ). (27)

On the right-hand side of this equation, we interpret φ as the restriction φ|S . �
The continuity condition, involving the uniform convergence of the sequences

of each component of the p-forms, and each of its partial derivatives in a chart, is
crucial for the calculus of currents. As compared with, say, the uniform convergence
of the sequences of components alone, we conclude that in the former case fewer
sequences converge. It is this feature that allows us to enlarge the family of
continuous functionals, that is, of currents. Expressed somewhat differently, we may
say that currents can be more irregular than measures, which are thus a particular
case.

Example 5 As in Example 2, consider a vector v at a point X ∈M . We can define
the 0-current Dv by

Dv[φ] = v(φ) ∀φ ∈ Λ0
c(M ). (28)

In other words, this current assigns to a smooth function with compact support in M
its directional derivative in the direction of the vector v atX. The subtle point in this
example is that we need to make sure this linear operator is also continuous. If our
criterion of continuity had been based on the uniform convergence of the functions
alone (without including its derivatives), we could have chosen (in, say R

2, with
coordinates x, y) the sequence of functions

φn(x) = B(x, y) 1

n
sin(nx) n = 1, 2, . . . , (29)
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where B(x, y) is a bump function around the origin, at which point its first
derivatives vanish. If v = ∂

∂x

∣
∣
0,0, although the sequence φn converges uniformly

to zero, the sequence of derivatives v(φn) does not. �
Example 6 The principal-value 0-current: A 0-current on R is a (Schwartz)
distribution. Our purpose in this example is to show yet another way in which
singularities or discontinuities can be subsumed under a distribution or, more
generally, under a current. Let f : R → R be a function, possibly with a pole
at x = 0. Recall that the Cauchy principal value of the integral of f over an interval
(−a, a) is defined as

pv

a∫

−a
f dx = lim

ε→0+

⎛

⎝
−ε∫

−a
f (x) dx +

a∫

ε

f (x) dx

⎞

⎠ . (30)

In particular, for the function f = x−1, the principal value vanishes. Following
Schwartz [20], we define the principal-value distribution associated with x−1 as
the functional P given by

P [φ] = pv

a∫

−a

φ

x
dx, (31)

for all C∞-functions φ with compact support in (−a, a). The function x−1 being
odd, only the odd part of φ survives the integration and, therefore,

P [φ] =
a∫

0

φ(x)− φ(−x)
x

dx. (32)

�
The collection of all p-currents, that is, of all continuous linear operators

on Λpc (M ), is, by definition, precisely the topological dual Λpc (M )′. A linear
combination of two p-currents, T1 and T2, is the p-current a1T1 + a2T2 defined as

(a1T1 + a2T2)[φ] = T1[a1φ] + T2[a2φ] ∀φ1, φ2 ∈ Λpc (M ), ∀a1, a2 ∈ R.

(33)
The boundary of a p-current T is the (p − 1)-current ∂T defined as

∂T [φ] = T [dφ] ∀φ ∈ Λp−1
c (M ). (34)

The operator symbol ∂ appears to have been abused. That this may not quite be the
case can be gathered from an attempt at iterating the operator, namely,

∂2T [φ] = ∂∂T [φ] = ∂T [dφ] = T [d2φ] = 0 ∀φ ∈ Λp−2
c (M ). (35)
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The kinship between the various uses of the operators d and ∂ is further emphasized
by working out the boundary of the current associated with a submanifold S , as
given in Example 4. We obtain

∂TS [φ] = TS [dφ] =
∫

S

dφ =
∫

∂S

φ = T∂S [φ]. (36)

Thus, Stokes’ theorem, as used above, mediates between the various uses of the
symbols and furnishes an elegant formulaic consistency, to wit,

∂TS = T∂S . (37)

In words, this equation states that the boundary of a current of a manifold is equal
to the current of its boundary.

The relation between the operators d and ∂ is further confirmed by calculating,
in a manifold M with vanishing boundary, the current associated with the exterior
derivative of a p-form ω, which yields, for each φ ∈ Λn−p−1

c (M ),

Tdω[φ] =
∫

M

dω ∧ φ =
∫

M

(
d(ω ∧ φ)− (−1)pω ∧ dφ)

=
∫

M

−(−1)pω ∧ dφ = (−1)p+1 ∂Tω[φ], (38)

where we have invoked Stokes’ theorem. Thus, except possibly for sign, the current
associated with the exterior derivative of a form is equal to the boundary of the
current associated with the form itself.

Example 7 The boundary of the 1-current of Example 2 is equal to the 0-current of
Example 5. Indeed, for each function (0-form) ω with compact support in M , we
have

∂Tv[ω] = Tv[dω] = 〈dω, v〉 = v(ω). (39)

�
A p-current T is equal to zero, written as T = 0, in an open set U ⊂ M

if T [φ] = 0 for all p-forms φ with compact support in U . Denoting by U the
maximal open set10 in which T = 0, the support of the current T is defined as

supp T =M \U . (40)

The support of a current is not necessarily compact.

10The existence of this maximal set is proved as a theorem in [4], p. 35.
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3.2 Singular Layerings

As introduced in [6–8], a singular layering is obtained by specifying an (n − 1)-
current T on M . As a particular case when T = Tω for some 1-form ω, we recover
a regular layering form as described in Sect. 2.3. In the physical picture, therefore,
the specification of a layering current T entails a possible loss of smoothness in the
assignation of the stacks of lattice planes, and/or an infinite density of the stacks
along some singular surface.

Example 8 Let a body manifold B be identified with the open unit cube (−1, 1)3 ⊂
R

3, and let S be the intersection of B with the (oriented) closed half-plane H =
{(x, y, z) ∈ R

3 | y = 0, z ≥ 0}, as depicted in Fig. 3. The 2-current TS can be
regarded as a 1-form with components given by Schwartz distributions. Specifically,
T = H(z) δ(y) dy, where H is the Heaviside step function, and δ is Dirac’s delta
distribution. Seen in this light, we have obtained a layering that leaves all points of
B without any layering, except that at each point of S we have a high (infinite, if
you will) concentration of layers parallel to the plane x, z. The 2-current Tdy − TS
will combine this singular layering with a regular one. This combination can be
recognized as the classical textbook edge dislocation, in which we ‘subtract a half-
plane of atoms’ from the lattice. �

In Sect. 2.3 we introduced the dislocation form associated with a given layering
1-form ω as the 2-form D = dω. Its identical vanishing ensures an everywhere
defect-free structure. By virtue of the result embodied in Eq. (38), we define the
dislocation current associated with a layering (n − 1)-current T as the (n − 2)-
current S = ∂T . The vanishing of S is expressed mathematically by saying that the
layering current T is closed. By analogy with the regular case, we will declare a
singular layering T to be defect-free if it is closed.11

Fig. 3 A singular layering as
an edge dislocation

y

z

x

11The justification for this statement can be found in a theorem [4] stating that every closed current
is homologous to a differential form.



Regular and Singular Dislocations 241

Example 9 The dislocation current of Example 8 is the current S = ∂TS = T∂S .
The support of this current is ∂S itself, which in our case is the open interval
(−1, 1) along the x-axis. Thus, just as asserted in material science textbooks, the
defect is concentrated along a dislocation line.

3.3 A Screw Dislocation

3.3.1 Two-Dimensional Prelude

The screw dislocation, as conceived by Volterra [23, 24], is an essentially three-
dimensional phenomenon. Volterra describes it by considering a doubly connected
domain (a thick cylinder) which, when cut with a plane containing the axis and
then rejoined after a relative axial displacement of both exposed faces, gives rise to
the screw. Although this procedure has no equivalent in a two-dimensional setting,
the mathematical difficulty of the screw dislocation resides in the passage from a
multiply connected domain to a simply connected one, a passage that can be best
illustrated in R

2.
Consider, therefore, the 1-form ω = dθ , which is well-defined and closed (but

not exact) in the punctured plane R = R
2 \ {O}, where θ is the standard angular

coordinate of the polar system (r, θ), and O is the origin of R2. We remark that R
is diffeomorphic to C = R

+ × S1, where S1 is the unit circle. This diffeomorphism
is precisely established by the polar coordinate system in the punctured plane and
the corresponding axial and circumferential coordinates in C .

The 1-current Tdθ on R is, as usual, defined by the prescription

Tdθ [φ] =
∫

R

dθ ∧ φ, (41)

for all 1-forms φ with compact support in R. We want to extend this definition by
considering all 1-forms φ with compact support in R

2. In other words, we want to
define a current on the whole of R2 while using an integration on R. To this end,
consider the effect of removing the open ball Bε with centre at O and radius ε. The
set R2 \ Bε is diffeomorphic to the product Cε = [ε,∞) × S1. On both Rε and
Cε the integral on the right-hand side of (41) is well-defined for any 1-form with
compact support thereat. To extend the domain of integration, however, the latter
alternative avoids the singularity of the polar coordinate system.

Indeed, let φ = φx dx + φy dy be a 1-form with compact support in R
2. Its

restriction to Rε and, therefore, to Cε , via the natural pullback provided by the
inverse of the natural diffeomorphism described above, is the 1-form φ = φx dx +
φy dy = φr dr + φθ dθ , where φr = φx cosθ + φy sinθ . On each line θ = constant
the limit lim

ε→0+
φr exists and is finite. Therefore, the integral
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∫

C0

dθ ∧ φ = −
2π∫

0

∞∫

0

φr dr dθ (42)

is well-defined and finite. We declare this to be the value of Tdθ over a 1-form φ

with compact support in R
2.

The boundary 0-current ∂Tdθ can be evaluated over any function f with compact
support in R

2 as

∂Tdθ [f ] = Tdθ [df ] = −
2π∫

0

∞∫

0

df

dr
dr dθ = 2π f (0). (43)

In other words, the dislocation current associated with the layering dθ is propor-
tional to the Dirac delta at the origin.

Remark 3 A possible physical interpretation of this situation can be gathered by
imagining that an edge dislocation (subtraction of one atomic row) has been
‘smeared’ along a circumference, as suggested in the Fig. 4. Equivalently, we may
say that we have the limit of a circumferential incoherent interface, of the type
described below in Sect. 3.6, as the extent of the interface shrinks to zero. �

3.3.2 The Screw

Let R = R
3 \ V , where V denotes the z-axis in the natural Cartesian coordinate

system (x, y, z) of R3. In R, with the standard cylindrical coordinates (r, θ, z), we
consider the 1-form ω = dθ . We remark that ω is closed but not exact, since θ is
not a globally defined function on R. With this proviso, we propose ω as a layering
1-form on R. As far as this layering is concerned, there are no dislocations in R.

a b

Fig. 4 Smearing (b) an edge dislocation (a) over a circle
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Fig. 5 A screw dislocation:
the passage from each page of
the open book (a) to the
helicoid (b) is achieved by
adding an exact 1-form to the
layering current. The
dislocation current is not
affected

a b

The corresponding integral manifolds look like the pages of an open book around
the (excluded) spine, as shown in Fig. 5a.

We can extend this layering current from R to R
3 by using, for each z, the

same scheme as we used for the two-dimensional description above. The dislocation
current is given by

Dω[ψ] = ∂Tω[ψ] = 2π
∫

V

ψz = 2π

∞∫

−∞
ψz(0, 0, z)dz, (44)

where ψ = ψx dx + ψy dy + ψz dz has compact support in R
3. In short, this

rather complicated layering 2-current has exactly the same boundary as an edge
dislocation. For the sake of illustration, let us add to our layering current (the ‘open
book’) the closed 1-form a dz, where a is a constant. The boundary of the limiting
current is not affected by this addition. The integral surfaces of the modified form
are no longer the pages of an open book but rather the surfaces with equation
θ + az = constant, one of which is shown in Fig. 5b, thus justifying the appellation
of ‘screw dislocation’.

Remark 4 The transformation of a book page into the helicoidal shape could also
be achieved by a diffeomorphism of R obtained by the coordinate transformation
θ �→ θ + a z.

3.4 A Conservation Law

Suppose that we want to build a p-current in M whose support is a subset of
a p-dimensional submanifold T (without boundary) such that the restriction of
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every compactly supported p-form φ in M has compact support in T .12 The ‘most
regular’ way to achieve this is to choose a smooth function u : T → R and to
define the corresponding p-current, denoted by TuT , as

TuT [φ] = TT [uφ] =
∫

T

uφ. (45)

We will call u(X) the intensity of TuT at the point X ∈ T .
Consider the particular case when TuT is closed, that is, ∂TuT = 0. Then

∂TuT [ψ] = TuT [dψ] =
∫

T

u dψ

=
∫

T

(d(uψ)− du ∧ ψ) = −
∫

T

du ∧ ψ = 0. (46)

Since this equation is satisfied identically for all (p − 1)-forms ψ with compact
support, we conclude that u = constant. This result, which is a particular case of
the constancy theorem of geometric measure theory,13 means, in our terminology,
that the intensity of a closed p-current (of the type considered), whose support is a
subset of a p-dimensional submanifold, is necessarily constant.

Example 10 To provide an intuitive motivation for the idea of intensity of a current
of the kind discussed above, consider the cylindrical domain U defined by y2+z2 ≤
ε2 2 1 comprised within the open cube B = (−1, 1)3 ⊂ R

3. The axis of this
cylinder is, trivially, an embedded 1-dimensional submanifold T of B. Let ω =
f (x, y, z) dy ∧ dz be a smooth 2-form with support in U . Its associated 1-current
is denoted by Tω. For any 1-form φ = a(x, y, z)dx + b(x, y, z)dy + c(x, y, z)dz
with compact support in B, we obtain

Tω[φ] =
∫

B

ω ∧ φ =
∫

B

f a dy ∧ dz∧ dx =
1∫

−1

ε∫

−ε

ε∫

−ε
f a dy dz dx =

1∫

−1

ũ(x) dx,

(47)
where we have set

ũ(x) =
ε∫

−ε

ε∫

−ε
f a dy dz. (48)

12A good example in a body B is a loop, or a curve whose ends are not in B.
13See [9], p. 357.
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The tilde is meant to remind us of the dependence on ε. By the mean-value theorem,
for each x we can find a point P within the circle of radius ε such that ũ(x) =
a(x, yP , zP )

ε∫

−ε

ε∫

−ε
f dy dz. Choosing ε sufficiently small while modifying the

function f so that for each x the integral
ε∫

−ε

ε∫

−ε
f dy dz is kept at a fixed value

u(x), we can approximate to any degree of accuracy the 1-current TuT . If the 2-
form ω is closed, u(x) is constant, as can be concluded by applying Stokes’ theorem
to arbitrary closed balls in B. �

Applying these ideas to a layering 2-current T in a 3-dimensional body, we
conclude that, if the support of its dislocation current S = ∂T is a 1-dimensional
manifold T , the strength of the dislocation is constant. This fact is known as
Frank’s first rule [10]. Any circuit enclosing T cannot be removed from it. It
embraces a constant amount of dislocations, just as a Burgers circuit.

Example 11 Dislocation shedding: Let T ⊂M be a p-dimensional submanifold
with boundary such that the restriction of every compactly supported p-form φ in
M has compact support in T .14 Rewriting Eq. (46) without the assumption that the
current TuT is closed, we obtain the general result

∂TuT [ψ] =
∫

∂T

uψ −
∫

T

du ∧ ψ. (49)

If ∂TuT is supported in ∂T , the first term on the right-hand side of Eq. (49) vanishes
for every (p − 1)-form whose (compact) support is disjoint with ∂T . It follows
that in this case u must be constant on T . Consequently, if u is not constant on
T , we must conclude that the support of ∂TuT contains points not belonging to
the boundary ∂T . A dramatic application of this result is provided by the data of
Example 8, when we assume that the measured dislocation intensity along ∂S is not
constant. We immediately deduce that there are additional dislocations continuously
distributed on S . We call this mechanism dislocation shedding. �

3.5 Branching

Another application of these mathematical ideas, whereby the physical meaning
emerges naturally from the geometrical context, is the content of Frank’s second
rule of branching dislocation lines. In Frank’s own words, ‘if the Burgers vectors
of all dislocation lines meeting at a node are defined by right-handed circuits, when

14For example, T could be a compact submanifold of M , or a submanifold such as S in
Example 8.
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looking outwards from the node, the sum of these Burgers vectors is zero. This
corresponds to a vectorial version of Kirchhoff’s law’.15

Consider, therefore, a node P ∈M at whichN non-intersecting dislocation lines
Si (i = 1, . . . , N) converge. For simplicity, we assume the manifold M to be of
dimension 3. As a 1-dimensional submanifold with boundary, each of these lines
is diffeomorphic to the real interval [0, 1), with 0 corresponding to P . We assume,
moreover, that each of these lines coincides with its closure within M ,16 which is a
manifold without boundary (such as a connected open subset of R3).

Each of the lines Si is assumed to be part of the support of a dislocation of
constant intensity ui . We associate with the union S = ⋃

i

Si the dislocation

current D = ∑
i

uiTSi
. If this is indeed a dislocation current, it must be closed,

and we obtain, therefore, for every 0-form f with compact support,

0 = ∂D[f ] =
∑

i

ui

∫

Si

df = f (P )
∑

i

ui . (50)

By the arbitrariness of f , we obtain Frank’s second rule (in a scalar context) as

∑

i

ui = 0. (51)

Example 12 An example that enhances the understanding of this conservation law
can be gathered if we start from a body M identified with an open cylinder
M , as shown in Fig. 6, with equation r < 1 in a cylindrical coordinate system
(r, θ, z).17 We identify the branching point P with the coordinate origin. Consider
the intersections Ti (i = 1, 2, 3) of this cylinder with each of the oriented quarter
planes with equations r ≥ 0, θ = 2πi/3, and z ≤ 0. For constant ui , the layering
current TuiTi has a boundary whose support is the bracket-like set made from the
union of the lower z-semiaxis and the segment Si given by 0 ≤ r < 1, θ = 2πi/3,
z = 0. If, as stated by Frank’s second rule, the 3 horizontal segments constitute the
support of the boundary of the resulting current T = ∑

i

ui TuiTi , we must require

the vanishing of the boundary current ∂T on the open lower z-semiaxis. This is
possible only if

∑

i

ui = 0. �

15See [10], p. 813. The allusion to Kirchhoff’s law of electrical circuits, where the algebraic sum
of electrical currents at a node is zero, is very pertinent.
16Intuitively speaking, each line comes out, as it were, from M . This condition guarantees that the
restriction to Si of each compactly supported form in M is also compactly supported in Si .
17Although the cylindrical coordinate system is not well-defined on the z-axis, this fact is not of
significance for this example.
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Fig. 6 Frank’s second rule
for branching dislocation
lines

y

1

1

z

x

P

total dislocation vanishes on this line

3.6 Interfaces

Since the pioneering work of Read and Shockley [18], it has been recognized
that dislocation models of grain boundaries between crystals can provide accurate
predictions of experimental measurements, such as the energy associated with such
interfaces. Our interest here is only to demonstrate how the description of various
geometric arrangements associated with grain boundaries can be encompassed
under the general framework of de Rham currents.

Within a framework suggestively reminiscent of the use of Hadamard’s lemma
for the establishment of geometric compatibility conditions on a wave front,18 we
work in a simply connected n-dimensional oriented manifold M which is divided
into two disjoint open consistently oriented submanifolds, M+ and M−, by an
embedded oriented (n − 1)-dimensional manifold (a hypersurface) T , as shown
in Fig. 7. Let ω+ and ω− denote two closed19 smooth layering 1-forms defined,
respectively, on M+ and M−. Unless ω+ and ω− happen to be the restrictions
of one and the same smooth 1-form ω on M , we are in the presence of a grain
boundary T .

The 1-forms ω+ and ω− can be extended to the closures M̄+ =M+ ∪ T and
M̄− =M−∪T , which are submanifolds with boundary of M . We denote by Tω+
and Tω− the (n − 1)-currents associated, respectively, with these extensions of ω+
and ω−. We define the total layering current

T = Tω+ + Tω− , (52)

18See, e.g., [22], p. 492.
19The assumption that these two 1-forms are closed is made explicitly to concentrate on the role
of the discontinuity hypersurface T , thus ignoring explicitly the possibility of existence of smooth
dislocations.
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Fig. 7 An interface

and notice that, if ω+ and ω− are restrictions of a single 1-form ω on M , that is, if
there is no grain boundary, the boundary ∂T of the total layering current vanishes.

The converse is not true. In other words, it is possible to have an absence
of dislocations consistent with a lack of smoothness of the layering across a
hypersurface of discontinuity. This should correspond precisely to the freedom
afforded by Hadamard’s lemma! To make matters explicit, let us set ∂T = 0.
Recalling that we have assumed the forms ω+ and ω− to be closed, any (n − 2)-
form φ with compact support Ω intersecting the hypersurface T gives rise to the
evaluation

0 = ∂T [φ] = ∂Tω+[φ] + ∂Tω−[φ] = −
∫

Ω∩M̄+

d(ω+ ∧ φ)−
∫

Ω∩M̄−

d(ω− ∧ φ)

= −
∫

Ω∩T̄
�ω� ∧ φ

∣
∣
∣
∣
T
, (53)

where, on T ,

�ω� = ω+ − ω−. (54)

We have purposely indicated in Eq. (53) that the arbitrary forms �ω� and φ involved
in the last term, via Stokes’ theorem, are to be restricted to T . Consequently, if the
discontinuity hypersurface T is represented locally as Ψ = constant, where Ψ is
some smooth function Ψ :M → R, we conclude that, when

�ω� ∝ dΨ, (55)

the dislocation vanishes altogether. If a Riemannian structure were to be introduced
on M , this result would be expressed by saying that an arbitrary jump in the
direction perpendicular to the discontinuity surface can be tolerated. This is
precisely the same as the geometric compatibility condition derived classically from
Hadamard’s lemma applied to a surface of discontinuity of a field. For this reason,
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Fig. 8 Hadamard (coherent)
interfaces

a b

we may call this tolerable lack of smoothness a Hadamard interface, known in
material science as a coherent interface. Such an interface involves no dislocations.
We remark that our definitions are strictly local.

A particular case of a Hadamard interface is obtained when ω+ ∝ dΨ at the
discontinuity hypersurface. Since we have assumed Eq. (55) to apply, we conclude
that also ω− ∝ dΨ . In other words, the local hyperplane stacks on both sides
of T are parallel to the tangent hyperplane, but undergo a jump in density, as
schematically shown in Fig. 8a. The more general case of a coherent interface
is shown in Fig. 8b. Intuitively, the stacks intersect T along the same family of
oriented lines (that is, hyperplanes of dimension n− 2).

Remark 5 Orientation and coherence: In physical presentations of examples of
coherent and non-coherent interfaces, it is often implicitly assumed that the lattice
planes do not carry a specific orientation. Thus, Fig. 8b, which clearly shows the
coincidence of the intersections of the lattice planes, is sufficient to explain the
notion of coherence of the interface. Our mathematical model, however, contains
an extra degree of freedom, namely, the signature of the layering form arising from
the assumed orientation of the stacks. Apart from the intrinsic mathematical interest
of the fact that a differential form is clearly different from its negative, it should be
clear that interfaces involving chiral molecules20 will require consideration of the
orientation of the lattice planes and, consequently, of the induced orientation of their
intersections with the interface. �

If Eq. (55) is not satisfied at a point P ∈ T , we say that at that point there is
a non-coherent interface. In a 3-dimensional context, a further classification can be
established on the basis of the exterior product σ = ω+ ∧ ω− ∧ dΨ . When σ = 0,
the dislocation consists of a mere mismatch in the density of the stacks restricted to
T , which are otherwise parallel, as shown in Fig. 9a. When σ �= 0 the stacks are
mismatched also in rotational terms, as shown in Fig. 9b.

Example 13 In R
3, let the surface of discontinuity T be the plane z = 0, and let

ω+ and ω− be closed 1-forms defined on the closures of the upper and lower half
spaces, respectively. The coherence condition (55) requires that, at z = 0,

ω+x = ω−x ω+y = ω−y , (56)

20A chiral molecule can exist in two isomeric varieties, known as enantiomers. They are mutual
mirror images.
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Fig. 9 Non-coherent
interfaces

a b

while the components ω+z and ω−z can be arbitrary. We remark that the representa-
tion shown in Fig. 8b would remain unaltered if we had supposed that, at z = 0,
ω+x = −ω−x and ω+y = ω−y . In that case, however, the boundary of the total current
would have been given by

∂T [φ] = −
∫∫

{z=0}
2(ωxφy − ωyφx) dx dy, (57)

for all 1-forms φ = φxdx + φydy + φzdz with compact support in R
3. In other

words, the interface would have been non-coherent. As indicated in Remark 5, this
could very well be the case with chiral crystals if the molecules at both sides of the
(apparently coherent) interface do not have the same handedness. �

3.7 A Volterra Disclination

Although not using the terms ‘dislocation’ and ‘disclination’, Volterra [23, 24]
described three displacement-induced, and three rotation-induced defects, which
were later so named. In the case of a wedge disclination, in Volterra’s description,
a wedge-like segment (such as when cutting a cake) is removed from a thick-
walled cylinder, which is then repaired by joining the two exposed faces. From
this perspective, it follows that this kind of defect can be described as an interface.
Indeed, the process of repair just described brings two surfaces into contact,
resulting in a potential coherent or non-coherent boundary. A different, certainly
cleverer but essentially equivalent, point of view21 consists of regarding the wedge
removal as a superposition of an infinite number of edge dislocations, whose
dislocation lines span a plane through the cylinder axis. We will briefly describe
and analyze these two constructions below. Similar ideas can be applied to the other
two types of Volterra disclinations.

21See, e.g. [19].
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x

ya b cy

x
α

y

x

Fig. 10 Volterra’s cylinder (a) is deprived of a wedge (b) and then repaired (c) by a diffeo-
morphism, thus generating an interface. The orientation of the integral surfaces is indicated with
hollow-headed arrows

3.7.1 Wedge Disclination as Interface

Although not strictly necessary, we will assume that a small open tube of radius
ε 2 1 has been removed from the open cylinder of radius 1 and axis z in R

3.
The typical x, y section of the remaining manifold with boundary R is shown in
Fig. 10a, in which some of the integral surfaces y = constant of the closed layering
1-form ω = dy have been shown. Following Volterra’s scheme, we now remove
a wedge with an semi-aperture angle α and we are left with a new domain R ′, as
shown in Fig. 10b, without affecting the integral lines. The repaired state is obtained
by means of a diffeomorphism between the interior of this now simply connected
manifold and the manifold obtained from the original cylinder R minus the positive
half-plane H with equations y = 0, x > 0. We can assume (if so desired) that the
angle α between the integral surfaces and the surface of the cut is preserved, and that
the cut surface remains rigid. Since diffeomorphisms preserve the closed character
of differential forms, the only source of dislocation arises from the discontinuity
surface whose trace is indicated by a thick line in Fig. 10c.

By the assumed conditions of the diffeomorphism used, we obtain the following
values for the restriction of the layering form on either side of the glued joint

ω+x = −ω−x = sinα ω+y = ω−y = cosα ω+z = ω−z = 0. (58)

The dislocation current evaluated on a 1-form φ = φxdx + φydy + φzdz with
compact support in the cylinder is given by

∂Tω[φ] = −
∫

H

�ω� ∧ φ = −2 sinα

∞∫

−∞

1∫

0

φz dx dz. (59)
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3.7.2 Wedge Disclination as Superposition of Edge Dislocations

The method just presented, while in keeping with the physical motivation, is not in
the spirit of the general geometric conception that we advocate. In particular, the
operation of cutting and welding needs to be described by means of a diffeomor-
phism which itself becomes a component of the problem. In fact, a different, no less
intuitive, way to look at the physical picture, as appealing as the one just described,
is available. Indeed, if we are content with the description of an edge dislocation
as the result of removing a half-plane from an otherwise regular lattice, and, as we
have demonstrated in Example 8, if this operation is represented mathematically by
a singular layering associated with the removed submanifold, then the removal of a
wedge is nothing but the cumulative effect of the removal of additional parallel half-
planes starting at progressively advancing locations. This operation is pictorially
represented in Fig. 11.

Let k denote the constant strength of each of the edge dislocations, where a
negative k describes a removal. We obtain a 1-parameter family Hξ of (oriented)
half-planes, where ξ is the x-coordinate of their respective edge. The coordinate
system is the same as in Fig. 10. The total 2-current evaluated on a 2-form ψ with
compact support in R

3 is

T [ψ] =
∞∫

0

THξ
[ψ] dξ = k

∞∫

0

⎛

⎜
⎝

∫

Hξ

ψ

⎞

⎟
⎠ dξ. (60)

Its boundary, evaluated on a 1-form φ with compact support in R
3, is

a b

Fig. 11 Regular lattice (a) with half-planes (perpendicular to drawing) slated for removal as edge
dislocations marked with lines. Lattice with half-planes removed (b), showing a disclination. In
the limit of vanishing lattice unit, all these half-planes lie on one and the same plane



Regular and Singular Dislocations 253

∂T [φ] = T [dφ] = k
∞∫

0

⎛

⎜
⎝

∫

Hξ

dφ

⎞

⎟
⎠ dξ = k

∞∫

0

⎛

⎜
⎝

∫

∂Hξ

φ

⎞

⎟
⎠ dξ

= k
∞∫

0

⎛

⎝
∞∫

−∞
φz(ξ, 0, z)dz

⎞

⎠ dξ. (61)

With k = −2 sinα, the same result (59) is obtained, except that here we worked on
R

3 rather than on a cylinder of radius 1.

3.8 Disengagements or Distriations

Of the immense geometric and analytic apparatus provided by differential forms
and de Rham currents, we have so far utilized a small part only. In fact, we have
concentrated on 1-forms or, correspondingly, (n − 1)-currents, mainly because, as
suggested in Sect. 2.3, a covector can be regarded as an oriented stack of planes with
a certain stack density. A differential 1-form ω, accordingly, can be regarded as the
geometrical representation of a field of such stacks as encountered, for example, in
smectic liquid crystals or in lattice planes of an atomic crystalline array.

In the smooth case, we identified a dislocation with the lack of closure of
the layering 1-form ω. Correspondingly, in the singular case, the presence of
dislocations is identified with the non-vanishing of the boundary of the layering
(n − 1)-current T . One can expect that in an n-dimensional manifold M , if
consideration is given to forms of arbitrary order 0 ≤ r ≤ n, these r-forms, and their
(n − r)-current counterparts, may be useful to represent other smooth or singular
internal structures and their defectiveness.

In this section, we will explore the case r = n− 1, a choice that can be justified
for various reasons. One of these is that every (n − 1)-form is decomposable,
namely, expressible as a monomial, that is, a wedge product of n − 1 1-forms, a
fact that facilitates the physical and geometrical interpretation. A second reason is
that in dimension n = 3, having already considered 1-forms, and observing that 0-
forms and n-forms are of scarce practical interest, we are only left with 2-forms.22

Finally, and most importantly, (n−1)-forms and 1-currents turn out to be associated
with imperfections known in various applied fields, such as Frank disclinations in
nematic liquid crystals.

22It is remarkable that n = 3 is the maximum dimension for which all forms are automatically
decomposable. This can be used as a somewhat banal argument for our space to be 3-dimensional,
but nor more banal than the acoustic argument according to which wave fronts propagate sharply
only in odd dimensional spaces. In a 2-dimensional world, we would not be able to communicate
by sharp signals.
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3.8.1 Affine Subspaces, and Decomposable Multivectors and
Multicovectors

In an n-dimensional vector space U , an r-vector V is simple or decomposable if it
can be expressed as

V = v1 ∧ v2 ∧ . . . ∧ vr , (62)

where each vi is a vector in U . The r-vector V vanishes if, and only if, these
vectors are linearly dependent. Therefore, each non-zero V spans an r-dimensional
subspace, SV ⊂ U . Vice versa, one can show that each r-dimensional subspace ofU
is determined uniquely, up to a non-zero multiplicative constant, by a decomposable
r-vector. Specifically, the subspace SV is given by

SV = {v ∈ U | V ∧ v = 0}. (63)

Similar considerations apply to the exterior algebra of the dual space U∗, thus
giving rise to the notion of decomposable multicovectors.23 As a vector space in its
own right, the collection of r-covectors is the dual vector space of the collection
of r-vectors, whether decomposable or not. Since r-vectors and r-covectors can be
understood, respectively, as completely skew-symmetric contravariant and covariant
tensors of order r , the linear action of r-covectors on r-vectors can be regarded as the
full contraction of the corresponding tensors (perhaps with a factorial multiplier).

For the particular case r = 1, we suggested24 in Sect. 2.3 that a covector ω can be
conceived as a stack of oriented hyperplanes (affine (r − 1)-dimensional subspaces
of U ) with a certain stack density. The action of ω ∈ U∗ on v ∈ U can be pictorially
described as the ‘number’ of hyperplanes cut by v. We would like to elicit a similar
intuitive picture for arbitrary r .

Given a non-zero decomposable r-covector Ω = ω1 ∧ ω2 ∧ . . . ∧ ωr we obtain
r stacks of hyperplanes, one for each covector ωi . For r = n − 1, the mutual
intersections of these hyperplanes constitute an (n− 1)-parameter family of equally
oriented parallel lines, endowed with a density. We will call such a family a fascicle,
a terminology borrowed from the anatomy of striated muscles. For any given
decomposable (n−1)-vector V, the linear action ofΩ on V can be interpreted as the
number of lines intersected by the oriented r-dimensional parallelepiped associated
with V. This parallelepiped lies on SV and can be also called its associated r-volume
element. These ideas are schematically illustrated in Fig. 12.

23For an illuminating presentation of these ideas, see [21].
24Following [14].
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a b c

Fig. 12 Two stacks (a) intersect to generate a fascicle (b), whose evaluation over a 2-vector is
obtained by counting the intersections of the fascicle with the corresponding parallelogram (c)

a b

Fig. 13 Layering 1-form (a), and filamenting (n− 1)-form (b)

3.8.2 The Smooth Case

An (n−1)-form on an n-dimensional manifold M will be called a filamenting form,
or threading form. It smoothly assigns to each point of M a fascicle. Figure 13
shows a schematic comparison with the case of a layering 1-form.

Although the dimension of the spaces of 1-covectors and (n − 1)-covectors are
the same (that is, n), when turning to analysis there is a fundamental asymmetry
in the treatment. It arises from the fact that the exterior derivative of an r-form
is an (r + 1)-form, which introduces an obvious bias in the determination of the
exactness of the differential form. Another fundamental difference, which pertains
to the treatment of material defects, is that, as discussed in Sect. 2.3, in the case of
a layering form, a less strict notion of defectiveness can be introduced by requiring
merely that the geometric 2-dimensional distribution be involutive. This condition
guarantees that the slopes of neighbouring stacks fit properly, in the sense that they
can be derived from the tangent spaces of an integral surface. The stronger condition
of the vanishing of the exterior derivative guarantees also that the stack densities are
in harmony with each other.

In the case of the filamenting (n − 1)-form, however, since the underlying
distribution is 1-dimensional, the theorem of existence and uniqueness of solutions
of systems of ordinary differential equations, ensures the involutivity of the
distribution. In other words, integral curves always exist, at least locally. The
defectiveness, therefore, can only manifest itself in the lack of fitting of the densities
of neighbouring fascicles, which is measured by the lack of closure of the exterior
derivative of the filamenting form. A smoothly defective filamented structure is
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Fig. 14 A smooth
disengagement progressively
tearing apart the striated
structure

said to represent a continuous distribution of disengagements or distriations.25 We
remark, finally, that in the case of a 2-dimensional manifold, there is no distinction
between layering and filamenting forms.

Example 14 Let M be an open rectangular prism, as shown in Fig. 14, and let the
filamenting 2-form be given by

Ω =
(

1+ e−z2
)
dx ∧ dy, (64)

where x, y, z are the standard coordinates of R
3. In Fig. 14 the z-axis is drawn

vertically and pointing upwards, while the origin is at the centroid of the prism. Any
vertical line is an integral curve of the 1-dimensional distribution associated with
Ω , but there is a vertical mismatch in the density of the fascicles. Specifically, this
mismatch is measured by the disengagement 3-form

D = dΩ = −2ze−z2
dx ∧ dy ∧ dz. (65)

�

3.8.3 The Singular Case

The singular counterpart of a smooth filamentous structure can be represented by
a filamenting 1-current T . Its boundary ∂T is the disengagement 0-current, whose
non-vanishing is a measure of defectiveness. In the smooth case, we remarked that,

25The neologism ‘distriation’ is meant to suggest the disruption of the striated structure implied by
the filaments in compatible fascicles.
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since the associated 1-dimensional distribution is always involutive, the only cause
of defectiveness is a smooth mismatch of the fascicle density. In the singular case,
quite apart from the obvious concentration of such mismatch along a submanifold of
M , we may also have a violation of the Lipschitz condition necessary to guarantee
the existence of local continuous integral curves.

Example 15 An edge distriation: Let S be a 1-dimensional submanifold with
boundary of M . We define its associated 1-current as

TS [φ] =
∫

S

φ, (66)

for all 1-forms φ with compact support in M . The corresponding distriation 0-
current is

D[f ] = ∂TS [f ] = TS [df ] =
∫

S

df =
∫

∂S

f, (67)

for all functions f with compact support in M . The boundary ∂S may be empty
(such as when S is a loop, or when its terminal points are not in M ), or it may
consist of 1 or 2 points within M . In the case of two terminal points p, q ∈M , we
obtain

D[f ] = f (q)− f (p), (68)

and the distriation can be interpreted as residing in two points with opposite polarity.
If only one point (p, say) lies within M , we have a case of a single point distriation,
or edge distriation. It may be regarded as a sudden tear of a strand, and it is the
distriation analogue of an edge dislocation. �
Example 16 A Volterra conical disclination: We have already pointed out that,
in the case of a 2-dimensional manifold M , there is no distinction between
dislocations and distriations. In particular, the construction of a Volterra disclination
in Sect. 3.7.2 can be interpreted as either a distribution of edge dislocations or
of edge disclinations of the type discussed in Example 15. If, however, M is 3-
dimensional, a continuous accumulation of edge distriations will give rise to new
kinds of defects, namely, those generated by a one- or two-parameter family of edge
distriations. The two-parameter case is easier to grasp, since it can be described as
a conical disclination of the Volterra type, schematically illustrated in Fig. 15.

Just as in the case with the wedge disclination, in this formulation, based on a
continuous superposition of 1-currents, all the filaments removed lie on the same
line (the cone axis, which is the positive x-semiaxis), and only their terminal points
vary. The total dislocation 0-current is given by
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a b

Fig. 15 A conical disclination generated by the removal of all filaments within the conical volume
shown in (a). The total dislocation current is obtained by adding up (integrating) the values of a
scalar function f over the terminal points indicated in (b)

D[f ] = 2πk

∞∫

0

f (x, 0, 0) dx, (69)

where k is the common strength of the distriations, and f is a scalar function with
compact support in M . The Volterra process for creating a conical disclination
would consist in actually indenting a material with a conical indenter and then
bringing the generators of the cone into coincidence with its axis. The question
as to whether or not this kind of process would require too much energy to be of
common occurrence is beyond the scope of our conceptual analysis. �

4 From Discrete to Continuous Dislocations

The question we want to address26 is the following: Can a continuous distribution
of defects be rigorously obtained as the limit of a sequence of singular dislocations?
As an example, consider a body B identified with an open rectangle, as shown in
Fig. 16, aligned with the natural coordinate axes of R

2. At a given stage of the
limiting process, we subdivide the rectangle into M × N small identical bricks of
area h× k. Each brick contains the terminal point of a manifold Sij consisting of a

26A more rigorous limiting process is presented in another chapter of this volume authored by
Kupferman and Olami [13].
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x,i

y, j

h

k

i j

Fig. 16 A multiple singular layering

vertical semi-open segment coming from above, as suggested in the figure. The end
point of Sij is located at the centroid of the box i, j , namely, it has the coordinates

(xi, yj ) = ((i − 1)h, (j − 1)k). (70)

LetKij denote the constant intensity of the edge dislocation associated with Sij .
At this stage of the approximation, the total layering current T is obtained as the
sum

T =
M∑

i=1

N∑

j=1

KijTSij
, (71)

and the total dislocation current ∂T acts on an arbitrary function (0-form) f with
compact support in B according to

∂T [f ] =
M∑

i=1

N∑

j=1

Kij ∂TSij
[f ] =

M∑

i=1

N∑

j=1

Kijf (xi, yj ). (72)

We remark that we would obtain exactly the same result if we assume the
submanifolds to be horizontal and coming from the right.

Let ω = ω1dx + ω2dy be the putative 1-form we are trying to approximate.
We want to adjust the values of Kij in such a way that the limit of this dislocation
current, as M,N → ∞ is, in some sense, the dislocation 2-form D = dω. To this
end, we choose the strengths Kij to be

Kij = (ω1,2 − ω2,1)hk, (73)
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where the derivatives are evaluated at the centre of the corresponding rectangle.
With this choice, indeed, we verify that

lim
M,N→∞

M∑

i=1

N∑

j=1

Kijf (xi, yj ) =
∫

B

dω ∧ f = Tdωf. (74)

Let φ = φ1dx + φ2dy be an arbitrary 1-form with compact support in B. Recall
that Tω acts on φ according to

Tω[φ] =
∫

B

ω ∧ φ =
∫∫

B

(ω1φ2 − ω2φ1) dx dy. (75)

On the other hand, the approximation (71) yields

T [φ]=
M∑

i=1

N∑

j=1

KijTSij
[φ]=

M∑

i=1

N∑

j=1

Kij

N−0.5k∫

yj

φ dy ≈
M∑

i=1

N∑

j=1

Kij

N∑

l=j
φ2(xi, yl)k.

(76)
We collect, for each fixed i, the coefficients of each successive φ2(xi, yj ) and

rearrange the sums to obtain

T [φ] ≈
M∑

i=1

N∑

j=1

φ2(xi, yj )

j∑

l=1

Kilk. (77)

We can see that the only hope for this series to converge to a definite 1-form is to
assume that ω2 = 0. We may also assume that ω1 vanishes identically at y = 0.
Under these conditions, taking account of (73), we have in the limit

lim
k→0

j∑

l=1

Kilk = hk ω1(x, y). (78)

Finally, we obtain from Eq. (77) the Riemann integral

lim
h,k→0

T [φ] =
∫∫

B

(ω1φ2) dx dy = ω[φ]. (79)

In conclusion, when the boundary ∂T of the current T of a denumerably infinite
collection of manifolds Sij tends to a definite continuous dislocation 2-formD, the
current T tends to a definite layering 1-form ω whose exterior derivative is precisely
D. There is a physical feel to the fact that our particular choice of Sij as vertical
lines corresponds to a vanishing vertical component of ω.
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5 The Movement of Dislocations

5.1 Introduction

Dislocations move and, in so doing, they are responsible for important phenomena
such as metal plasticity and observable effects of glide and climb of faults in liquid
crystals.27 In this section, we provide a geometrical framework that may serve to
describe these phenomena against a differential geometric background.

Although not usually expressed in these terms, the gist of plasticity theory
lies in the time evolution of the frame bundle of the body manifold. A similar
mental picture applies to various other theories, such as biological growth and
remodelling, in which the material properties do not change in time, but the material
undergoes a process of re-accommodation and/or growth which results generally
in the development of residual stresses. This process can, therefore, be described
as a point-wise time-dependent change of reference frame for the tangent space.
In more mundane terms, the constitutive response at a point remains unchanged,
except that the strain argument is measured with respect to a variable reference
frame. From this description, we retain just the kinematic component, since we are
not addressing the cause-effect paradigm involved in constitutive laws, but only
distilling the underlying geometrical apparatus.

5.2 Frame Bundle Automorphisms

We consider the collection A (M ) of smooth bundle automorphisms of the frame
bundle FM of a fixed n-dimensional manifold M .28 We denote the bundle
projection by π , and we recall that a frame bundle automorphism can be represented
as the commutative diagram

F F
F

j

p p

(80)

In this diagram, whose commutativity implies fibre preservation, the diffeomor-
phism ϕ is naturally implied in Φ. Moreover, Φ commutes with the right action

27See, e.g., [12].
28For simplicity of the exposition, we will assume that FM is globally trivializable.
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of the structure group, which, in the case of the frame bundle, is the general linear
group GL(n,R).

Remark 6 There is a one-to-one correspondence between frame bundle automor-
phisms and automorphisms of any of its associated (tensor) bundles. Consider the
tangent bundle TM . An automorphism Φ of FM gives us, for each point X ∈M ,
a map ΦX : FXM → Fϕ(X)M satisfying ΦX(fg) = ΦX(f ) g, for every frame
f ∈ FXM and for every g ∈ GL(n,R), where the right action is indicated
by simple apposition. Let v ∈ TXM be a vector at X. We declare its image at
ϕ(X) to be the vector whose components in the frame ΦX(f ) are the same as the
corresponding components of v in the frame f . This correspondence is independent
of the frame f chosen, due to the indicated commutativity with the right action just
described. Vice versa, given an automorphism of the tangent bundle TM , it maps
every base vector of the frame f ∈ FXM to a base vector at the image point.
Again, it is easy to show that this assignment commutes with the right action of the
structure group. A similar argument can be used for the cotangent bundle, in which
case the assignment is obtained by the inverse of the transpose map used for the
tangent bundle. �

Given a diffeomorphism ϕ : M → M , we can construct its associated lifted
frame bundle automorphism, ϕ̂ : FM → FM , by using the tangent map ϕ∗ to
induce the fibre-wise maps Φ(X) for each X ∈ M . We will denote the collection
of all these induced bundle automorphisms by A∗(M ).

Of particular interest too is the subcollection A0(M ) based upon the identity
map ϕ = idM . Every element of A0(M ) can be regarded as a smooth section
of M × GL(n,R),29 so that A0(M ) is essentially identifiable with the space of
sections Λ(FRn), which has the natural structure of a Banach manifold [17]. An
automorphism Φ ∈ A0(M ) is holonomic if it coincides, as a section of M ×
GL(n,R), with the natural basis of a coordinate system in M .

Every frame bundle automorphism Φ can be trivially and uniquely expressed
as the composition of an element of A∗(M ) with an element of A0(M ), in either
order, namely,

Φ =
(
Φ ◦ ϕ̂−1

)
◦ ϕ̂ = ϕ̂ ◦

(
ϕ̂−1 ◦Φ

)
. (81)

Although trivial, this decomposition will turn out to demarcate an important
physical distinction between processes of material convection and processes of
material evolution.

29More precisely, in a given trivialization of the bundle, at each point X ∈M , Φ(X) amounts to a
left translation of the fibre π−1(X) = GL(n,R) by some element of GL(n,R).
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5.3 Material Convection and Material Evolution

A process of material convection in the time interval [0, T ] is defined as a
smooth curve ρ : [0, T ] → A∗(M ). We assume that ρ(0) is the identity
bundle automorphism. Recalling that the elements of A∗(M ) are lifts of material
diffeomorphisms, these processes serve to describe phenomena of migration of
quantities defined as sections of any of the bundles associated with the frame bundle,
namely, all tensor bundles. The convection, therefore, takes place as a result of an
imagined material flow. By construction, a defective structure, represented by a non-
vanishing dislocation current, will remain defective during the convection process.
Processes of material convection were carefully studied in [8].

A material evolution in the time interval [0, T ] is defined as a smooth curve
γ : [0, T ] → A0(M ). We assume that γ (0) is the identity bundle automorphism.
A material evolution is said to be holonomic if γ (t) is holonomic for every t ∈
[0, T ]. In processes of material evolution, quantities defined as sections of any of
the associated bundles change their local values smoothly as time goes on. There is
no convection, but rather a local rearrangement of the tangent spaces. If the process
is non-holonomic, these tangent spaces do not fit well together, as it were. We note
that, in our theory, the defects are not associated with this lack of compatibility,
but rather with the lack of integrability of certain forms or currents. Thus, a non-
holonomic evolution process may as well end up leading, at some time t , to the
integrability of an evolving structure that was initially non-integrable.

Let, for example,ω = ωi dxi be a 1-form on M , and let γ : [0, T ] → A0(M ) be
a material evolution. In a given trivialization,30 this evolution is expressed by means
of a point- and time-dependent group elementGij = Gij (X, t), withGij (X, 0) = δij .
The corresponding change of the components of ω will then be given by

ωi(X, t) =
(
G(X, t)−1

)j

i
ωj (X, 0). (82)

The support of ω remains unchanged. Consequently, at least in principle, as
continuous linear operators on the space of compactly supported forms ψ , currents
can be transformed according to

T (t)[ψ] = T (t)[ψ(·, 0)] = T (0)[ψ(., t)]. (83)

Remark 7 The transformation of currents just outlined turns out to also be consis-
tent with the boundary operator, so that both layering currents and their associated
dislocation currents are transformed consistently. The proof is an immediate
consequence of the fact that Eq. (83) can be applied to exact forms ψ = dα. �

30This is the coordinate expression of the map defined in Remark 6.
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5.4 Evolution Laws

It is common practice (in constitutive based theories, for instance) to postulate an
evolution law as a first order system of PDEs, in our case for the variablesGij (X, t).
Since we have no other constitutive context, the only natural driving force behind
the evolution must be the dislocation form or current itself. Thus, a typical evolution
law will read something like

G−1 dG

dt
= g(D), (84)

where (for the smooth case) D is the local and present value of the dislocation
form. This evolution law is akin to the so-called self-driven evolution laws. Spatial
derivatives of D may also be included to simulate evolution laws driven by some
measure of ‘torsion’ or of ‘curvature’ of the dislocation. Examples can be produced,
but at this stage the theory itself is on shaky ground, so we should wait.
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Abstract We consider the geometric homogenization of edge-dislocations as their
number tends to infinity. The material structure is represented by 1-forms and their
singular counterparts, de-Rham currents. Isolated dislocations are represented by
closed 1-forms with singularities concentrated on submanifolds of co-dimension
one (the defect locus), whereas a continuous distribution of dislocations is repre-
sented by smooth, non-closed 1-forms. We prove that every smooth distribution of
dislocations is a limit, in the sense of weak convergence of currents, of increasingly
dense and properly scaled isolated edge-dislocations. We also define a notion of
singular torsion current (associated with isolated dislocations), and prove that the
torsion currents converge, in the homogenization limit, to the smooth torsion field
which is the continuum measure of the dislocation density.

1 Introduction

Models of Dislocations The study of material defects, and notably dislocations, is
a central theme in material science. The modeling of solid bodies, with or without
defects, often follows a paradigm in which the elemental object is that of a body
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Fig. 1 Left: An edge-dislocation generated by a cut-and-weld protocol in a continuum setting.
Right: An edge-dislocation generated by removing a half-plane in a lattice

manifold: solid bodies are modeled as geometric objects—manifolds—and their
internal structure is represented by additional structures such as a frame field, a
metric or an affine connection. The mechanical properties of the body enter through
a constitutive relation, whose structure is correlated with the geometric structure
of the body.

There have been two distinct approaches to the modeling of body manifolds with
dislocations:

1. Isolated dislocations: One starts with a defect-free body, which is either
modeled as a subset of Euclidean space or as a perfect lattice.1 Defects are
introduced by Volterra cut-and-weld protocols [1] (see Fig. 1) resulting in a
locally flat manifold with singularities. The singularities are identified as the
defect loci and the presence of dislocations is detected by measuring a non-
trivial circulation, known as the Burgers vector, along closed paths encircling
the defect loci.

2. Distributed dislocations: The body is modeled as a smooth manifold endowed
with a flat (curvature-free) affine connection. The density of the dislocations is
identified with the torsion tensor of the affine connection [2–5]. If, in addition,
one adds a basis of the tangent space at one point, then the affine connection
induces a smooth frame field, which is the kinematic model, for example, in [6].
In later literature [7], the continuum model is that of a Weitzenböck manifold,
which is a smooth manifold endowed with a Riemannian metric and a metrically
consistent, curvature-free affine connection. Note that a frame field induces an
intrinsic metric and a material connection, so that all three descriptions are
essentially identical.

1A perfect lattice may be related to a smooth Euclidean structure by assigning lengths and angles
to inter-particle bonds and letting the lattice size tend to infinity with the inter-particle bonds scaled
appropriately.
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Homogenization A longstanding problem has been to rigorously justify, in the
spirit of homogenization theories, the continuum model of distributed dislocations
as a dense limit of properly scaled isolated dislocations. In particular, one would
like to understand how torsion, which is the continuum measure of the dislocation
density, emerges in the homogenization limit.

In order to obtain a body manifold endowed with a smooth geometric structure
as a limit of body manifolds endowed with localized defects, we must first cast
these two seemingly distinct models into the same framework. One possible
approach is to “remove” small neighborhoods of the isolated dislocations. Thus,
bodies with isolated and smoothly distributed dislocations are both modeled as
smooth Weitzenböck manifolds, where in the former case, the bodies are multiply
connected; see [8, 9] for a homogenization of defects using this approach.

Another possible approach is to account for the localized defects using singular
geometric fields, which is the approach used in this work. As described above, the
internal structure of a d-dimensional body M can be modeled by a frame field,
{ei}di=1, or equivalently, by its dual coframe, which is a set of d 1-forms, {ϑi}di=1.
Every smooth 1-form ω ∈ Ω1(M) induces a distribution for the tangent bundle

ker(ω) ⊂ TM, ker(ω)p = ker(ωp) ≤ TpM.
Under certain integrability conditions [10, Chap. 19], ker(ω) induces a foliation (or
layering) of M as a union of Bravais hypersurfaces, which are tangent to ker(ω)
at every point. These surfaces represent the infinitesimal atomic/molecular layers
composing the body. Henceforth, we call a 1-form inducing a foliation a layering
form.

Bodies with localized defects are modeled using singular layering forms, which
are represented by the distributional counterpart of differential forms—de-Rham
currents. As pointed out by Epstein and Segev [11], even a single layering form
may detect the presence of defects. Following [11], we define:

A body with dislocations is a d-dimensional manifold M endowed with a possibly singular
layering form ω on M, viewed as a de-Rham (d − 1)-current,

Tω : Ωd−1
c (M)→ R, Tω(η) =

∫

M

ω ∧ η, (1)

where Ωk
c (M) is the space of smooth, compactly supported k-forms on M.

The defect density associated with ω is represented by the boundary current
∂Tω, which is defined in the next section.

A layering form ω models a density of Bravais surfaces. Given a vector vp ∈
TpM, ω(vp) is interpreted as the signed number of Bravais planes intersecting vp.
For a closed curve C ⊂M, the Burgers scalar

∮

C

ω
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is interpreted as the signed number of Bravais hyperplanes intersecting C. In
particular if the Burgers scalar along C is non-vanishing, there is a discrepancy
in the layering structure, that is, a defect. By Stokes’ theorem, the defect density
may be identified with the exterior derivative dω.

Since a defect-free structure is represented by a closed layering form, isolated
dislocations are represented by layering forms ω that are closed everywhere except
in a set Γ ⊂ M, which we identify as the locus of the dislocations. Moreover, the
existence of non-trivial Burgers scalars around Γ implies that ω must be singular
at Γ .

To conclude, both isolated and smoothly distributed dislocations are represented
by de-Rham currents; in the smooth case, the currents are induced by smooth
layering forms and in the isolated case, by closed forms with singularities. We may
now state our main homogenization theorem (see Theorem 6.1 below) in terms of
convergence of currents:

Let M be a compact, orientable two-dimensional surface, possibly with boundary. Let ω ∈
Ω1(M) be a (generally non-closed) layering form on M. Then, there exist sequences ωn
and Γn such that

1. Γn is a finite disjoint union of segments in M and is bounded away from ∂M.
2. ωn are closed C1-bounded layering forms on M \ Γn.
3. ωn converge to ω in the sense of currents. That is, Tωn → Tω as n→∞.

We prove this homogenization theorem in three main steps:

Step I: A Single Dislocation Given a (generally non-closed) layering form β on
the unit square M = [0, 1]2, we construct in Sect. 3 a closed layering form ν on
M \ Γ , where Γ is a segment. The layering form ν has the same circulation around
∂M as β. The layering form ν induces a 1-current Tν on M; its boundary is a 0-
current supported on Γ . Thus, we may view the layering form ν as representing
a singular edge-dislocation, whose locus is Γ , and whose intensity is equal to the
integrated intensity of the layering form β.

Step II: Homogenization for the Square In Sect. 4, we prove that every (possibly
non-closed) layering form β ∈ Ω1(M) can be approximated by a sequence of closed
layering forms νn, representing an n-by-n array of edge-dislocations (M is still the
unit square). We construct νn by gluing together properly rescaled versions of the
form ν constructed in Sect. 3. We then prove that Tνn converges as n→∞ to the 1-
current Tβ .

Step III: The General Case In Sect. 6, we prove a homogenization theorem for
a general compact and orientable surface M. We show that for every layering
form β ∈ Ω1(M), there exists a sequence νn of closed layering forms supported
everywhere except for a lower-dimensional submanifold, such that Tνn converges
to Tβ . The proof relies on a classical classification theorem for two-dimensional
manifolds, along with gluing techniques for 1-forms (presented in the appendix).
The homogenization problem is thus reduced to two elemental building blocks:
the closed disk and a “pair of pants” for which homogenization follows from the
homogenization theorem for the square.
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Singular Torsion In Sect. 5, we generalize the analysis to the case where M is a
d dimensional manifold equipped with a full lattice structure, that is, a frame field
{ei}di=1 or equivalently, the dual coframe of d layering forms {ϑi}di=1. A frame–
coframe pair induces a path-independent parallel transport Πq

p : TpM → TqM

between every two points p, q ∈ M. The corresponding material connection ∇ is
flat but may be non-symmetric; the torsion tensor is given by

τ = ei ⊗ dϑi,

and it is non-zero if the layering forms ϑi are not closed. In the case of isolated
dislocations, the torsion is identically zero in the smooth set and not defined on the
singular set. Note that the above expression for τ cannot be interpreted as a de-Rham
current on M (it behaves like a product of a Heaviside function and a delta function).

Using the distant parallelism induced by the frame field (defined also for isolated
dislocations) we define a notion of singular torsion for a singular frame as a vector
valued de-Rham current. We show how the singular torsion generalizes the notion of
a smooth torsion field and proves a homogenization theorem for the torsion tensor;
if a sequence of coframes {ϑin} converges in the sense of currents to a smooth
coframe {ϑi}, then the corresponding singular torsions converge to the smooth
torsion associated with the limit.

There are several differences between the present work and the earlier work in [8,
9, 12, 13]: In the earlier work, the loci of the dislocations were “removed,”yielding
a geometric convergence of smooth multiply connected manifolds to a smooth
simply connected limit. Furthermore, the mode of convergence was a strong Lp-
convergence of frame fields, which is stronger than the weak convergence of
currents; a stronger convergence is particularly important for obtaining a conver-
gence of the associated mechanical models. On the other hand, the current approach
is more physical, as it accounts explicitly for the singular region; also, our notion
of singular dislocations chimes in with the classical case of cone singularities, i.e.,
disclinations. Finally, the emergence of torsion in the continuous case no longer
occurs “out of the blue,” but is shown to be a bona fide limit of singular torsion
fields.

Three points should be emphasized: (1) This work focuses on the geometry
of bodies with dislocations. There exists a wealth of literature addressing the
mechanics of dislocations, which we do not mention here. (2) A body manifold
is our elemental object of consideration, and it should not be confused with a
(deformed) configuration, which is an embedding of that manifold in the ambient
space. Since the body manifold and the deformed configuration are diffeomorphic,
the same defect structure would be observed in the deformed configuration. (3)
In our model, the locus of a dislocation is a submanifold of co-dimension one,
whereas it is often described in the literature as a submanifold of co-dimension
two, e.g., a point in 2d. Geometrically, a dislocation is a curvature dipole, or a pair
of disclinations of opposite signs (e.g., a 5–7 pair in a hexagonal lattice). Since
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the Frank vector of a positive disclination is bounded by 2π , one cannot obtain
a non-zero point dislocation as a limit of disclination dipoles, as in the case of
electrostatics.

This paper is organized as follows. In Sect. 2 we review the definition of de-Rham
currents on manifolds, which are the kinematic variables of our model. Section 3 is
devoted to the first step of our homogenization proof—the construction of a layering
form representing a single dislocation. The second step—the homogenization
construction for the square—is conducted in Sect. 4. We then consider in Sect. 5
the notion of singular torsion and its homogenization. Finally, we extend in Sect. 6
the homogenization proof to general compact orientable surfaces.

2 De-Rham Currents

We start by reviewing the definition of de-Rham currents on manifolds. For a full
introduction, see the classical monographs of Federer [14] or de-Rham [15]; see
[16, 17] for more recent reviews.

Let M be a smooth, compact, orientable d-dimensional manifold with boundary.
For every 1 ≤ k ≤ d, let Ωk(M) denote the space of smooth k-forms on M and let

Ωk
c (M) =

{
ω ∈ Ωk(M) : supp(ω) � M

}

denote the C∞(M)-module of smooth k-forms compactly supported in M. Choose
a Riemannian metric g on M, and define for every compact K � M a family of
seminorms φkK,j : Ωk

c (M)→ R+ by

φkK,j (ω) = sup
0≤i≤j

‖Diω‖K,

where Diω : M → Hom(⊗iTM,ΛkT ∗M) is the i-th differential of ω (not to be
confused with the exterior derivative), and

‖Diω‖K = sup
p∈K

‖(Diω)p‖,

where ‖ ·‖ is the norm on Hom(⊗iTM,ΛkT ∗M) induced by the metric g. Since M
is compact, a different choice of g gives equivalent seminorms. As a result, it makes
sense to say that a k-form is Cj -bounded without reference to any particular metric
(recall that in a topological vector space a set is bounded if every open neighborhood
of zero can be inflated to include that set).

The seminorms {φkK,j }∞j=1 turn

Ωk
K(M) = {ω ∈ Ωk

c (M) : supp(ω) ⊂ K}
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into a Fréchet space, that is, a locally convex topological vector space which is
complete with respect to a translationally invariant metric [18, p. 9]. EndowΩk

c (M)

with the finest topology for which the inclusion maps

Ωk
K(M) ↪→ Ωk

c (M)

are continuous for all compact K � M. A sequence ωn ∈ Ωk
c (M) converges in this

topology to 0 if and only if there exists a compact setK � M such that supp(ωn) ⊂
K for all n large enough, and ωn→ 0 in the Ωk

K(M) topology.

Definition 2.1 (de-Rham Current) A de-Rham k-current is a continuous linear
functional on Ωk

c (M). The vector space of de-Rham k-currents is denoted by
Dk(M).

A linear functional T : Ωk
c (M)→ R is a k-current if and only if there exists for

everyK � M an NK ∈ N and a constant CK > 0, such that for every ω ∈ Ωk
K(M),

|T (ω)| ≤ CK φkK,NK (ω).
(See, e.g., [18, Th. 6.8] in the context of distributions in Rd .) We endow Dk(M)
with the weak-star topology: a sequence of k-currents Tn converges to a k-current
T if

lim
n→∞ Tn(ω) = T (ω)

for every ω ∈ Ωk
c (M). The support of a k-current T ∈ Dk(M) is defined by

supp(T ) =M \A(T ), where A(T ) is the annihilation set of T , i.e., the union of all
open subsets U ⊂M for which T (α) = 0 whenever supp(α) ⊂ U .

Example 2.1 Every locally integrable k-form β on Ω defines a (d − k)-current
Tβ ∈ Dd−k(M) by

Tβ(α) =
∫

M

β ∧ α, α ∈ Ωd−k
c (M).

In other words, currents may be viewed as generalized differential forms.

Example 2.2 Let S ⊂M be a k-dimensional oriented submanifold. Then, S induces
a k-current [S] ∈ Dk(M) given by

[S](α) =
∫

S

α, α ∈ Ωk
c (M).

In other words, currents also generalize the concept of a submanifold.

Definition 2.2 (Boundary of Current) The boundary operator of a k-current is
a map ∂ : Dk(M)→ Dk−1(M), defined by

∂T (α) = T (dα), α ∈ Ωk−1
c (M).
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Since d2 = 0, it immediately follows by duality that ∂2 = 0. Moreover, it follows
from integration by parts and Stokes’ theorem that

∂Tβ = (−1)k−1Tdβ

for every smooth k-form β.

3 Layering Form for an Edge-Dislocation

Let V be a vector space. A covector ω ∈ V ∗ induces a family of hyperplanes
(Bravais planes),

Ht = {v ∈ V : ω(v) = t}, t ∈ R

foliating V (i.e., forming a disjoint cover of V ). The action of ω on a vector v ∈ V
can be interpreted as the “number of hyperplanes intersected by v.” In a smooth
manifold M, the role of the covector is played by a 1-form foliating M : given a
1-form ν and an oriented curve C ⊂M, the integral

∫

C

ν

can be interpreted as the (signed) “number” of ν-hyperplanes intersected by C.

Definition 3.1 (Layering Form) Let M be a smooth manifold. A 1-form ν ∈
Ω1(M) is called a layering form if it foliates M. That is, if M is the disjoint union of
smooth hypersurfaces—leaves—such that the tangent bundle of each leaf coincides
with the kernel of ν.

A sufficient and necessary condition for a 1-form ν to induce a smooth layering
structure is that locally

dν = α ∧ ν
for some (d − 1)-form α [10, Chap. 19]. In particular, for a simply connected
two-dimensional manifold, every non-vanishing 1-form induces a smooth layering
structure.

If ν is a closed layering form, dν = 0, it follows from Stokes’ theorem that
for every simple, oriented, closed curve C ⊂ M, the “number” of hyperplanes
intersected by C vanishes,

∫

C

ν =
∫

ΣC

dν = 0, (2)

where ΣC ⊂ M is any two-dimensional submanifold of M bounded by C. In other
words, there are no “extra” layers, and the layering structure is defect-free. In view
of (2), we may interpret dν as a defect density associated with the layering form ν.
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Definition 3.2 (Continuously Distributed Dislocations) Let M be a smooth sim-
ply connected manifold. A smooth layering form is said to represent a continuous
distribution of dislocations if there exists a closed curve C, such that

∫

C

ν �= 0.

The quantity on the left-hand side is called the Burgers scalar, or the circulation
of the layering form ν around the loop C. We consider Burgers scalars, rather than
Burgers vectors, since we account for only one layering form. When representing
the structure by a coframe, one obtains d Burgers scalars, which are the components
in the local frame of the Burgers vector.

Clearly, ν represents a continuous distribution of dislocations if and only if it is
non-closed.

Definition 3.3 (Singular Dislocation) Let M be a smooth manifold and let Γ ⊂M

be a hypersurface. A layering form ν on M \ Γ is said to represent a dislocation
concentrated on Γ , if ν is closed and there exists a closed curve C ∈ M \ Γ , such
that

∫

C

ν �= 0.

Suppose that ν ∈ Ω1(M \ Γ ) represents a dislocation concentrated on Γ . Since
ν is closed, its Burgers scalar vanishes for every contractible loop. Therefore, M\Γ
is necessarily not simply connected, i.e., the removal of the dislocation locus Γ
changes the topology of the manifold. Let C be a loop in M encircling Γ (Fig. 2),
such that

∫

C

ν �= 0.

Since ν is closed on M \ Γ , the circulation remains unchanged under homotopic
variations of C, and in particular, as C shrinks to Γ . Hence, ν is necessarily singular
at Γ .

Fig. 2 A body endowed with
a layering form ν with a
singular dislocation located
on a hypersurface Γ . The
circulation of ν is
homotopic-invariant for loops
encircling the locus of the
dislocation

Γ

C
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Fig. 3 The topological
rectangle M and the locus Γa
of the dislocation

Γa
left right

top

bottom

We next consider a two-dimensional manifold M endowed with a non-closed
smooth layering form β (representing a continuous distribution of dislocations). We
construct a layering form ν representing a singular dislocation concentrated on a
curve Γ ⊂ M, which approximates β is a sense made precise. In a sense, this
construction concentrates the “defectiveness” of β onto the submanifold Γ . This
construction will be used in the next section to prove the homogenization theorem.

Consider then a topological rectangle, i.e., a manifold that can be parametrized
as follows:

M = [0, 1]2 = {(x, y) : 0 ≤ x, y ≤ 1}.

We denote the left, right, top, and bottom edges of M by Mleft, Mright, Mtop,
and Mbottom, respectively. The locus of the singular dislocation will be the closed
parametric segment

Γa = [1/2− a/2, 1/2+ a/2] × {1/2} ⊂M, (3)

where 0 < a < 1 is a parameter (see Fig. 3).

Proposition 3.1 Let β ∈ Ω1(M) be a nowhere-vanishing (generally non-closed)
layering form. Then, there exists a continuously differentiable layering form νa on
M \ Γa satisfying the following properties:

(a) νa is C1-bounded (see definition in Sect. 2).
(b) νa is closed.
(c) νa coincides with β on Mleft and Mright.
(d) νa has the same circulation as β around ∂M,

∫

∂M

νa =
∫

∂M

β.
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Fig. 4 The first stage in the
construction of f : the 1-form
β is integrated along ∂M

Γa
q0

q

f0(q)=
∫

q
q0

β

(e) The horizontal components of νa and β coincide,

νa(∂x) = β(∂x),

whenever |x − 1/2| > a/2.

Proof We construct νa as the (continuous) differential of a discontinuous func-
tion f . First, define f0 : ∂M→ R by fixing q0 = (1, 1/2) and letting

f0(q) =
∫ q

q0

β,

where the integration from q0 to q is counter-clockwise along ∂M. If the circulation
of β around ∂M is non-zero, then f0 is discontinuous at q0. However, its differential
is well-defined and smooth at q0 as it coincides with the tangential component of β
(see Fig. 4).

Next, consider the vertical strip of width a,

Ma = {(x, y) ∈ [0, 1]2 : |x − 1/2| < a/2},

and define f̄ : M \Ma → R by integrating β horizontally, from the boundaries
inward,

f̄ (x, y) =
{
f0(0, y)+

∫
[(0,y),(x,y)] β, x < 1/2− a/2

f0(1, y)+
∫
[(1,y),(x,y)] β, x > 1/2+ a/2

(see Fig. 5).
It remains to define f on Ma/Γa . Denote by pL, pR :M→ R the second-order

Taylor expansions of f̄ about xL = 1/2 − a/2 and xR = 1/2 + a/2 along the
x-direction, i.e.,
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Fig. 5 The second stage in
the construction of f : f̄ is
defined on the set
|x − 1/2| > a/2 by
integrating the horizontal
component of β from the
nearest vertical boundary
point. The dashed segment
connecting Γa to q0 is the
discontinuity line of f

Γa q0

q p

f̄ (p)=f0(q)+
∫ p
q

β

Fig. 6 The third stage in the
construction of f : f is
extended from f̄ to the set
|x − 1/2| ≤ a/2 by
interpolation

Γa q0

f =(1−r)pL +1 pR

pL(x, y) = f̄ (xL, y)+ ∂f̄

∂x
(xL, y)(x − xL)+ 1

2

∂2f̄

∂x2 (xL, y)(x − xL)2

pR(x, y) = f̄ (xR, y)+ ∂f̄

∂x
(xR, y)(x − xR)+ 1

2

∂2f̄

∂x2
(xR, y)(x − xR)2.

Let r ∈ C∞(R) be a monotonically increasing function satisfying,

r(t) = 0 ∀t ≤ −1/2 and r(t) = 1 ∀t ≥ 1/2.

We extend f̄ to M \ Γa by interpolating between pL and pR , using the smooth
“connecting” function r (see Fig. 6),

f (x, y) =
{
f̄ (x, y) |x − 1/2| ≥ a/2
(1− r( x−1/2

a
))pL(x, y)+ r( x−1/2

a
)pR(x, y) |x − 1/2| < a/2.

(4)
We obtain νa = df by differentiating (4). For x > a/2 + 1/2, an explicit

calculation yields

df(x,y) = β1(x, y) dx +
(

β2(1, y)+
∫ x

1

∂β1

∂y
(x′, y)dx′

)

dy, (5)
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where β1 and β2 are the components of β,

β = β1 dx + β2 dy.

Similarly, for x < 1/2− a/2,

df(x,y) = β1(x, y) dx +
(

β2(0, y)+
∫ x

0

∂β1

∂y
(x′, y)dx′

)

dy. (6)

While f has a discontinuity along the segment [1/2 + a, 1] × {1/2}, its one-sided
derivatives along this segment are continuous, as they are expressed in terms of the
smooth layering form β. Moreover,

df |Mleft = β|Mleft and df |Mright = β|Mright ,

proving Property (c). Likewise, for |x − 1/2| ≥ a/2,

df (∂x) = β1 = β(∂x),
proving Property (e).

For (x, y) ∈Ma ,

df(x,y) = 1

a
r ′
(
x−1/2
a

)
(pR(x, y)− pL(x, y))dx

+
[(

1− r
(
x−1/2
a

)) ∂pL
∂x

(x, y)+ r
(
x−1/2
a

) ∂pR
∂x

(x, y)

]

dx

+
[(

1− r
(
x−1/2
a

)) ∂pL
∂y

(x, y)+ r
(
x−1/2
a

) ∂pR
∂y

(x, y)

]

dy.

(7)

The layering form df is continuous at x = 1/2± a/2. For example,

lim
x↗1/2+a/2 df(x,y) =

∂pR

∂x
(1/2+ a/2, y) dx + ∂pR

∂y
(1/2+ a/2, y) dy

= ∂f̄

∂x
(1/2+ a/2, y) dx + ∂f̄

∂y
(1/2+ a/2, y) dy

= df̄ (1/2+ a/2, y).
A second differentiation shows that νa is continuously differentiable at x = 1/2 ±
a/2. This together with (7) proves Property (a) and consequently also Property (b).
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It remains to prove Property (d). From our construction of f0 on ∂M,
∫

∂M

df = lim
ε→0

(f (1, 1/2− ε)− f (1, 1/2+ ε))

= lim
ε→0

(f0(1, 1/2− ε)− f0(1, 1/2+ ε))

=
∫

∂M

β,

which concludes the proof. ��
Regardless of the particular construction of νa , since νa is closed in M \ Γa , it

follows that
∮

C

νa = 0

along every contractible loop C in M \ Γa . Let g be a metric on M, and denote by
Γ εa , ε > 0, a family of ε-tubular neighborhoods of Γa . By Stokes’ law, for every
small enough ε > 0,

0 =
∫

M\Γ εa
dνa =

∫

∂M

νa −
∫

∂Γ εa

νa.

Since νa has the same circulation as β along ∂M,

∫

∂Γ εa

νa =
∫

∂M

β.

Letting ε→ 0, we obtain

∫

Γa

[νa] =
∫

∂M

β, (8)

where [νa] is the discontinuity jump of νa along Γa , whose sign is determined by
the orientation of M (hence of Γ εa ) and Γa . Note that the one-sided limits of νa at
Γa exist since νa is C1-bounded. Moreover, since M is compact, the limit leading
to Identity (8) does not depend on the choice of the metric g. We conclude that if
β (hence, νa) has non-vanishing circulation along ∂M, then [νa] �= 0, that is, νa is
discontinuous along Γa .

Remark 3.1 The singular set Γa of νa is uncountable. Generally, if M is a compact
two-dimensional manifold with or without boundary, Γ is a submanifold of M, and
ν is a C0-bounded closed 1-form on M \ Γ , such that there exists a closed curve C
for which

∮

C

ν �= 0,
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then Γ cannot be a finite set. Suppose, by contradiction that Γ = {p1, p2, . . . , pk} is
finite, and assume without loss of generality that all the points in Γ are enclosed by
the curve C. Assuming as above a metric g, setting Γ ε = ∪iBε(pi), and performing
the same calculation,

k∑

i=1

∮

∂Bε(pi)

ν = −
∮

C

ν.

If ν is bounded, then the left-hand side vanishes as ε→ 0, yielding a contradiction.
The physical interpretation of this observation is that in our setting there is no such
thing as an edge-dislocation supported at a point (or on a line in three dimensions).

The 1-form νa (which is only defined on M \ Γa) induces a 1-current on M,

Tνa (α) =
∫

M

νa ∧ α α ∈ Ω1
c (M).

Its boundary is the 0-current,

∂Tνa (f ) = Tνa (df ) =
∫

M

νa ∧ df f ∈ C∞c (M).

Integrating by parts on M \ Γ εa and taking ε → 0 (as above), we obtain

∂Tνa (f ) =
∫

Γa

f [νa],

where for |x − 1/2| < a/2,

(x) = lim
ε→0

(df (x, 1/2+ ε)− df (x, 1/2− ε))

= 1

a
r ′
(
x−1/2
a

)
lim
ε→0

(pR(x, 1/2+ ε)− pR(x, 1/2− ε))

= 1

a
r ′
(
x − 1/2

a

) ∫

∂M

β,

where we substituted (7), used the facts that pL is continuous at y = 1/2 and that
the discontinuity of pR at y = 1/2 equals the circulation of β.

To conclude, νa represents a layering form on M having an edge-dislocation
concentrated on the hypersurface Γa . The locus of the dislocation is revealed by the
boundary of the differential current induced by νa . Note that M \ Γa is defect-free
only to the extent detectable by νa . Generally, M \ Γa may contain defects detected
by other layering forms.
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4 Homogenization of Distributed Edge-Dislocations

In this section we show how a non-closed layering from (representing continuously
distributed dislocations) can be approximated, in the sense of currents, by an n-by-n
array of singular edge-dislocations, each of magnitude of order 1/n2. We construct
the approximation by “gluing” properly rescaled copies of the layering form νa
constructed in Proposition 3.1.

For (x0, y0) ∈ R2, denote by τ(x0,y0) : R2 → R2 the translation operator

τ(x0,y0)(x, y) = (x + x0, y + y0).

Likewise, for λ > 0, denote by Sλ : R2 → R2 the scaling operator

Sλ(x, y) = (λx, λy).

Let n ∈ N be given; for every 0 ≤ k, j < n, let

Mn;kj = S1/n ◦ τ(k,j)(M)

be translated and rescaled copies of M, forming an n-by-n tiling of M. By
construction,

ιn;kj = S1/n ◦ τ(k,j) :M→Mn;kj (9)

are diffeomorphisms (see Fig. 7). Similarly, let

Γn;kj = ιn;kj (Γa/n)

be segments of lengths a/n2 located at the centers of each square. Finally, denote by

Γn =
n−1⋃

k,j=0

Γn;kj

the union of those segments.
Let β ∈ Ω1(M) be a layering form. Let

βn;kj = (ιn;kj )+β|Mn;kj ∈ Ω1(M), (10)

be the pullback2 of β (restricted to Mn;kj ) to M and let μn;kj ∈ Ω1(M \ Γa/n) be
the singular layering form defined in Proposition 3.1, with βn;kj playing the role of

2For a smooth map f : M→ N between two manifolds and a k-form β ∈ Ωk(N), we denote by
f ∗β ∈ Ωk(M) its pullback,
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Fig. 7 The diffeomorphism ιn;kj for n = 4, k = 1, and j = 2

β and the parameter a is scaled by a factor of 1/n. We approximate β by a sequence
of singular layering forms,

νn ∈ Ω1(M \ Γn),

by pushing forward μn;kj into Mn;kj ,

νn|Mn;kj = (ιn;kj )+μn;kj . (11)

Proposition 4.1 Equation (11) for 0 ≤ k, j < n defines a layering form νn on
M \ Γn, satisfying

(a) νn is C1-bounded.
(b) νn is closed.
(c) νn has the same circulation as β in each sub-domain: for every 0 ≤ k, j ≤ n−1,

∫

∂Mn;kj
νn =

∫

∂Mn;kj
β.

(d) νn coincides with β on the vertical segments Lk = {k/n}×[0, 1] for 0 ≤ k ≤ n.

Proof We first show that νn is well-defined and satisfies Property (a). Since the
μn;kj are smooth and C1-bounded, νn is smooth and C1-bounded in the interior of
each Mn;kj \ Γn;kj . It remains to prove that it is continuously differentiable on the
“skeleton” ∪k,j ∂Mn;kj . Note that

∂Mn;kj = ιn;kj (Mleft) ∪ ιn;kj (Mright) ∪ ιn;kj (Mtop) ∪ ιn;kj (Mbottom).

(f ∗β)p(v1, . . . , vk) = βf (p)(dfp(v1), . . . , dfp(vk)).

If f is a diffeomorphism, then k-forms can also be pushed forward.
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By (10), since the diffeomorphism ιn;kj is a combination of a translation and a
scaling,

βn;kj (∂x) = 1

n
β(∂x) ◦ ιn;kj and βn;kj (∂y) = 1

n
β(∂y) ◦ ιn;kj ,

which are equalities between functions on M. In particular, since ιn;k j+1(x, 0) =
ιn;kj (x, 1) and ιn;k j−1(x, 1) = ιn;kj (x, 0), it follows that for every x, y ∈ [0, 1],
and v ∈ {∂x, ∂y}

βn;k j+1(v)(x, 0) = βn;kj (v)(x, 1)

βn;k+1 j (v)(0, y) = βn;kj (v)(1, y).

By the same argument, for w ∈ {∂x, ∂y}
Lwβn;k j+1(v)(x, 0) = Lwβn;kj (v)(x, 1)

Lwβn;k+1 j (v)(0, y) = Lwβn;kj (v)(1, y),

where Lw is the Lie derivative along w. By (5), (6), and (7), the construction of
μn;kj only depends on βn;kj (and the smooth function r). Moreover, μn;kj and its
derivative on every side of ∂M depend only on βn;kj and its derivatives on that side.
As a result, for every x, y ∈ [0, 1], and v,w = {∂x, ∂y},

μn;k j+1(v)(x, 0) = μn;kj (v)(x, 1)

μn;k+1 j (v)(0, y) = μn;kj (v)(1, y)
Lwμ

n
k j+1(v)(x, 0) = Lwμn;kj (v)(x, 1)

Lwμ
n
k+1 j (v)(0, y) = Lwμn;kj (v)(1, y).

Since the relation between μn;kj and νn is once again a pullback under a combina-
tion of scaling and translation, we obtain that νn is continuously differentiable along
the skeleton.

We proceed to prove Property (d): by Property (c) of Proposition 3.1:

νn|ιn;kj (Mleft) = (ιn;kj )+μn;kj |ιn;kj (Mleft)

= (ιn;kj )+βn;kj |ιn;kj (Mleft)

= (ιn;kj )+(ιn;kj )+β|ιn;kj (Mleft)

= β|ιn;kj (Mleft),

i.e., νn coincides with β on the vertical components of the skeleton.
Property (b) is immediate as μn;kj are closed and closedness is invariant under

pullback. Finally, Property (c) follows from Property (d) in Proposition 3.1: using
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the change of variables formula and the fact that μn;kj and βn;kj have the same
circulation along ∂M,

∫

∂Mn;kj
νn =

∫

ιn;kj (∂M)

((ιn;kj )−1)+μn;kj

=
∫

∂M

μn;kj =
∫

∂M

βn;kj =
∫

∂Mn;kj
β.

��
As in the case of a single dislocation, we define for each n the 1-current induced

by νn:

Tνn(α) =
∫

M

νn ∧ α, α ∈ Ω1
c (M).

Its boundary ∂Tνn is a 0-current given by

∂Tνn(f ) =
n−1∑

k,j=1

∫

Γn;kj
f [νn]Γn;kj , f ∈ C∞c (M),

where [νn]Γn;kj is the discontinuity jump of νn along Γn;kj , given by

[νn]Γn;kj (x, (j + 1/2)/n) = n

a
r ′
(
nx − k − 1/2

a

) ∫

∂Mn;kj
β.

We view νn as a layering form on M having n2 edge-dislocations concentrated on
Γn. The loci of the dislocations are revealed by the boundary of the differential
current induced by νn. Once again, M\Γn is defect-free only to the extent detectable
by νn.

Theorem 4.1 (Homogenization) The sequence νn of layering forms converges to
β in the sense of currents: for every α ∈ Ω1

c (M),

lim
n→∞

∫

M

νn ∧ α =
∫

M

β ∧ α,

or equivalently,

lim
n→∞ Tνn−β(α) = lim

n→∞

∫

M

(νn − β) ∧ α = 0. (12)

Proof Choose any metric on M; for concreteness we take the Euclidean metric
associated with the parametrization.

If β = β1 dx + β2 dy, then

‖β(x,y)‖2 = β2
1 (x, y)+ β2

2 (x, y).

For every α ∈ Ω1
c (M),
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Tνn−β(α) =
n−1∑

k,j=0

∫

Mn;kj
(νn − β) ∧ α

=
n−1∑

k,j=0

∫

ιn;kj (M)

((ιn;kj )−1)+(μn;kj − βn;kj ) ∧ α

=
n−1∑

k,j=0

∫

M

(μn;kj − βn;kj ) ∧ (ιn;kj )+α,

(13)

where the second equality follows from the definitions of νn and βn;kj , and the third
equality follows from the change of variables formula. Fix 0 ≤ k, j ≤ n− 1. Since
ιn;kj involves a contraction by a factor of n,

∥
∥
∥(ιn;kj )+α|Mn;kj

∥
∥
∥∞ ≤

1

n
‖α‖∞.

It follows that
∣
∣
∣
∣

∫

M

(μn;kj − βn;kj ) ∧ (ιn;kj )+ α
∣
∣
∣
∣ ≤

1

n
‖α‖∞ sup

‖ξ‖∞=1

∣
∣
∣
∣

∫

M

(μn;kj − βn;kj ) ∧ ξ
∣
∣
∣
∣

≤ 1

n
‖α‖∞

∫

M

|μn;kj − βn;kj | dx ∧ dy.

Combining with (13),

∣
∣Tνn−β(α)

∣
∣ ≤ n ‖α‖∞ sup

0≤k,j<n

∫

M

|μn;kj − βn;kj | dx ∧ dy.

Next, writing βn;kj explicitly,

(βn;kj )(x,y) = 1

n
β1

(
x + k
n

,
y + j
n

)

dx + 1

n
β2

(
x + k
n

,
y + j
n

)

dy.

By (6), for x < 1/2− a/2n,

(μn;kj )(x,y) = 1

n
β1

(
x + k
n

,
y + j
n

)

dx

+
(

1

n
β2

(
k

n
,
y + j
n

)

+
∫ x

0

1

n2

∂β1

∂y

(
x′ + k
n

,
y + j
n

)

dx′
)

dy,

so that
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n |μn;kj − βn;kj |(x, y) ≤
∣
∣
∣
∣β2

(
x + k
n

,
y + j
n

)

− β2

(
k

n
,
y + j
n

)∣
∣
∣
∣

+ 1

n

∫ x

0

∣
∣
∣
∣
∂β1

∂y

(
x′ + k
n

,
y + j
n

)∣∣
∣
∣ dx

′

≤ 1

n

(∥∥
∥
∥
∂β2

∂x

∥
∥
∥
∥∞
+
∥
∥
∥
∥
∂β1

∂y

∥
∥
∥
∥∞

)

.

The same bound is obtained for x > 1/2+ a/2n. Finally, for |x − 1/2| < a/2n,
using (7), and noting that pL and pR are O(1/n), we obtain that

n |μn;kj − βn;kj |(x, y) ≤ C

a
‖r ′(x)‖∞,

where C > 0 is some constant. Putting it all together,

|Tνn−β(α)| ≤ n ‖α‖∞ sup
0≤k,j<n

∫

M\Ma/n

|μn;kj − βn;kj | dx ∧ dy

+ n ‖α‖∞ sup
0≤k,j<n

∫

Ma/n

|μn;kj − βn;kj | dx ∧ dy

≤ ‖α‖∞
n

(∥∥
∥
∥
∂β2

∂x

∥
∥
∥
∥∞
+
∥
∥
∥
∥
∂β1

∂y

∥
∥
∥
∥∞
+ C̃ ‖r ′(x)‖∞

)

,

where in the estimation of the third term we used the fact that the volume of Ma/n

is O(1/n). Letting n→∞ we obtain the desired result. ��

5 Singular Torsion and Its Homogenization

Thus far, we analyzed a lattice structure through a single layering form, representing
a single family of Bravais surfaces. In d dimensions, a lattice structure is fully
determined by a set of d linearly independent layering forms, i.e., by a coframe
{ϑi}. Denote by {ei} the frame field dual to {ϑi}.

A frame–coframe structure induces a path-independent parallel transport,

Π
q
p : TpM→ TqM given by Π

q
p = ei |q ⊗ ϑi |p. (14)

The latter induces a connection ∇ having trivial holonomy, which locally implies
zero curvature. By construction, the frame field {ei} and its dual {ϑi} are ∇-parallel
sections,

∇ei = 0 and ∇ϑi = 0.
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The torsion tensor associated with ∇ is a TM-valued 2-form τ , given by

τ(ei, ej ) = ∇ei ej −∇ej ei − [ei, ej ] = [ej , ei].

Since for every 1 ≤ i, j, k ≤ d,

dϑi(ej , ek) = ej (ϑi(ek))− ek(ϑi(ej ))− ϑi([ej , ek])
= ϑi([ek, ej ])
= ϑi(τ (ej , ek)),

we conclude that dϑi = ϑi ◦ τ , or equivalently,

τ = ei ⊗ dϑi, (15)

where we adopt henceforth Einstein’s summation rule, whereby repeated upper and
lower indexes imply a summation. In particular, torsion vanishes if and only if
dϑi = 0 for all 1 ≤ i ≤ d, or equivalently, if [ei, ej ] = 0 for all 1 ≤ i, j ≤ d.

The question we are addressing henceforth is in what sense is the smooth torsion
τ given by (15) a limit of singular torsions associated with singular dislocations. For
example, let M, β, and νn be defined as in the previous section, and suppose that

ϑ1
n = νn and ϑ2

n = dx

is a sequence of coframe fields (namely, νn are dx are linearly independent
everywhere in M). By the analysis of the previous section (and trivially for ϑ2),

lim
n→∞ Tϑ1

n
= Tβ and lim

n→∞ Tϑ2
n
= Tdx,

i.e.,

lim
n→∞{ϑ

1
n, ϑ

2
n} = {β, dx}

in the sense of weak convergence of currents.
Since the coframe field {ϑ1

n, ϑ
2
n} consists of closed layering forms, the induced

torsion on M \ Γn vanishes identically for every n,

τn = eni ⊗ dϑin = 0,

which, if dβ �= 0, does not converge to the torsion

τ = 1

β2
∂y ⊗ dβ

associated with the limiting coframe field in any classical sense (we used here the
fact that the frame dual to {β, dx} is {∂y/β2, ∂x − β1/β2 ∂y}).
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The question is how to cast a weak convergence of torsion in the framework of
de-Rham currents. Torsion is a tangent bundle-valued 2-form. While it is possible
to define currents associated with tangent bundle-valued forms, see, e.g., [19], this
approach does not seem applicable here. A simple heuristic argument shows that
if we try to interpret torsion as a distribution for a discontinuous coframe field,
we obtain the product of a discontinuous section ei and the derivative dϑi of a
discontinuous section (loosely speaking, a product of a Heaviside function and a
delta function), which is not well-defined.

A hint toward a correct interpretation of singular torsion is obtained by consid-
ering Burgers circuits: Let C be a simple, oriented, regular closed curve in M. The
Burgers vector associated with the curve C is a parallel vector field B [20], whose
value at a reference point p is given by

Bp =
∮

C

Πp
γ (dγ ),

where Πp is the parallel-transport to p, which by (14) is given by

Πp = ei |p ⊗ ϑi,

and γ is a parametrization for C. Interpreting Πp as a TpM-valued 1-form, we
rewrite the Burgers vector Bp in a more succinct form,

Bp =
∮

C

Πp.

Applying Stokes’ theorem,

Bp =
∫

Σ

dΠp,

where ∂Σ = C. Hence,

Bp = ei |p
∫

Σ

dϑi.

Thus, having chosen a reference point p, the Burgers vector for a loop C is an
integral over the area enclosed by this loop of a Burgers vector density

ei |p ⊗ dϑi,

which is a TpM-valued 2-form; it is nothing but the torsion τ , whose output, once
acting on a bivector, is parallel-transported to the reference point p. We henceforth
denote by

τp = Πp ◦ τ = ei |p ⊗ dϑi
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the torsion transported to p. The notion of singular torsion may now be easily
defined as the distributional counterpart of τp by replacing dϑi with the boundary
current ∂Tϑi . However, we first need to define the notion of a singular frame. Rather
than choosing the most general possible framework, we adopt a possibly restrictive
but yet sufficiently rich and physically motivated approach:

Definition 5.1 Let M be a compact d-dimensional manifold. A collection {ϑi}di=1
of 1-forms is called a singular coframe for M if for every 1 ≤ i ≤ d, there exists a
compact (d − 1)-dimensional submanifold Γi ⊂M, such that

1. Each ϑi is a C1-bounded 1-form on M \ Γi .
2. {ϑip} is a basis for T ∗pM for every p ∈M \ Γ where Γ = ∪iΓi .
3. M \ Γ is path connected and ∂M ∩ Γ = ∅.

A closed singular coframe is a singular coframe {ϑi} satisfying dϑi = 0 on M\Γi
for every 1 ≤ i ≤ d.

Recall that if a layering form ω ∈ Ω1(M) is closed, its induced layering
structure (foliation) is defect-free. A closed singular coframe therefore corresponds
to isolated defects which are concentrated on a set of measure zero.

Definition 5.2 Let {ϑi} be a singular coframe field on M and let p ∈ M \ Γ be
an arbitrary reference point. The torsion current is a TpM-valued (d − 2)-current
given by

T = ei |p ∂Tϑi .

For a smooth coframe {ϑi}, the torsion current is given by

T(α) = ei |p ∂Tϑi (α) = ei |pTdϑi (α) = Tτp (α), α ∈ Ωd−2
c (M). (16)

In other words, in the smooth case, the torsion current T is the TpM-valued (d−2)-
current induced by the smooth TpM-valued 2-form τp.

In the case of a closed singular coframe (isolated defects), the singular torsion is
supported on the singular hypersurfaces {Γi} and is given explicitly by

T[p](η) =
d∑

i=1

(∫

Γi

[ϑi]Γi ∧ η
)

ei(p), (17)

where [ϑi]Γi is the discontinuity jump of ϑi along Γi and η ∈ Ωd−2
c (M). For a

general (non-closed) singular frame {ϑi}, the torsion current naturally decomposes
into a smooth component as in (16) and a singular component as in (17).

We have thus obtained the following corollary:

Corollary 5.1 (Homogenization of Torsion) Let {ϑin} be a sequence of (possibly)
singular coframes and p ∈M a reference point, satisfying:
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1. There exists a (possibly) singular frame {ϑi} such that {ϑin} converges to {ϑi} in
the sense of currents. That is

Tϑin
→ Tϑi as n→∞, ∀ 1 ≤ i ≤ d.

2. The point p is outside the singularity sets of {ϑin} and {ϑi} and (ϑin)p → ϑip
(pointwise) for every 1 ≤ i ≤ d.

Let

Tn = eni |p ∂Tϑin and T = ei |p ∂Tϑi

be the corresponding TpM-valued (d − 2)-torsion currents. Then, Tn → T in the
sense of currents.

In particular, if {ϑin} are singular closed frames for every n and the limiting frame
{ϑi} is smooth, then Tn and T are given by (17) and (16), respectively. The limiting
smooth torsion is thus obtained as a limit of singular torsion currents supported on
singular sets of measure zero.

For example, given a smooth coframe {ϑ1, ϑ2} for the unit square M =
[0, 1]2, we have by Theorem 4.1 a sequence of closed singular frames {ϑ1

n, ϑ
2
n}

corresponding to an array of dislocations which converge to the coframe {ϑ1, ϑ2}
in the sense of currents. The corresponding torsion currents Tn act on functions
by integration along the dislocation segments of the n × n dislocation array
corresponding to ϑ1

n , and converge to a smooth current T acting on functions by
integration over the whole of M.

6 Homogenization for General Surfaces

In this section, we extend the homogenization Theorem 4.1 to arbitrary compact,
orientable, smooth two-dimensional manifold with boundary. We restrict our atten-
tion to manifold without corners. The results in this section rely on the gluing
constructions for 1-forms developed in Appendix.

Theorem 6.1 Let M be a compact, orientable two-dimensional manifold, possibly
with boundary. Let ω ∈ Ω1(M) be a (generally non-closed) layering form on M.
Then there exists sequences ωn and Γn such that

1. Γn is a finite disjoint union of simple non-closed curves in M and is bounded
away from ∂M.

2. ωn are closed C1-bounded 1-forms on M \ Γn.
3. ωn converge to ω in the sense of currents. That is, Tωn → Tω as n→∞.
4. ωn|∂M = ω|∂M.
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We say that a manifold M satisfies the homogenization property if Theorem 6.1
holds for M and in addition LXωn|∂M = LXω|∂M for every vector field X ∈
Γ (M). The latter condition is technical and is required below for gluing together
manifolds with boundaries.

Remark 6.1 Note that in Theorem 6.1, the layering forms ωn coincide with ω along
the entire boundary of M, whereas in the case of a rectangle (Sect. 4), the layering
forms coincide only on part of the boundary. In general, if M has a corner, then
the tangent to the boundary at the corner spans the entire tangent space; thus, if
ωn coincides with ω in a neighborhood of the corner, then its derivatives are fully
determined by those of ω and it might not be closed as required by the construction.

A key observation is the following:

Lemma 6.1 Let M1 and M2 be compact diffeomorphic two-dimensional manifolds
with boundaries. Then, Theorem 6.1 holds for M1 if and only if it holds for M2.

Proof Suppose that Theorem 6.1 holds for M1. Let f : M2 → M1 be a
diffeomorphism and let ω2 ∈ Ω1(M2). Applying Theorem 6.1 for ω1 = f+ω2 ∈
Ω1(M1), we obtain a sequence ω1,n ∈ Ω1(M1 \ Γ n1 ) satisfying properties (1–3).
Define

ω2,n = f +ω1,n ∈ Ω(M2 \ Γ n2 ), (Γ n2 = f (Γ n1 )).

Since f is a diffeomorphism, Γ n2 is a finite disjoint union of segments bounded away
from ∂M2 (Property 1). Property 2 follows from the fact that pullback and exterior
differentiation commute,

dω2,n = d(f +ω1,n) = f +(dω1,n) = 0.

By the change of variable formula (for forms), for every η ∈ Ω1
c (M2),

Tω2,n (η) =
∫

M2

ω2,n ∧ η =
∫

M1

ω1,n ∧ f+η = Tω1,n (f+η).

Since Tω1,n (f+η)→ Tω1(f+η),

lim
n→∞ Tω2,n (η) = lim

n→∞ Tω1,n (f+η) = Tω1(f+η) = Tf+ω2(f+η) = Tω2(η),

proving Property 3. Finally, Property 4 follows from the fact that for every n,

ω2,n|∂M2 = f ∗(ω1,n|∂M1) = f ∗(ω1|∂M1) = ω2|∂M2 .

��
The well-known classification theorem for orientable compact surfaces states that

every closed, compact, orientable, connected surface is diffeomorphic to either the
sphere S2 or the n-fold torus Tn (a sphere with n handles). Likewise, any compact,
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orientable, connected surface M with boundary is diffeomorphic to either S2 or Tn,
with k holes, namely,

M = S2 \ 4ki=1Ui or M = Tn \ 4ki=1Ui,

where Ui are disjoint open sets diffeomorphic to a disc; see, e.g., [21] for a proof
using Morse theory. Moreover, each of those surfaces can be constructed by gluing
together a finite number of two building blocks: a closed disc and a “pair-of-pants.”

To prove a homogenization for compact, orientable surfaces with or without
boundary we adopt the following strategy: We first prove the homogenization
property for the two above-mentioned building blocks. Then, using a gluing lemma
(Lemma A.2), we deduce the homogenization property for S2 and Tn with k holes.
We finally obtain the general case by combining Lemma 6.1 and the classification
theorem of surfaces.

We start by constructing a layering form containing a single dislocation on the
unit disk

D =
{
(x, y) ∈ R2 : x2 + y2 ≤ 1

}
.

Lemma 6.2 Let ω ∈ Ω1(D) and let Γa = [−a, a]×{0}, where 0 < a < 1/2. Then
there exists a closed, C1-bounded 1-form ωa ∈ Ω1(D \ Γa) satisfying

(a)
∫
∂D
ω = ∫

∂D
ωa .

(b) ω|∂D = ωa|∂D .
(c)
(
L∂r ωa

) |∂D =
(
L∂r ω

) |∂D .

Proof (Sketch) The proof follows the same lines as the proof of Proposition 3.1.
We construct ωa as the differential of a discontinuous function f : D → R. First
fix q0 = (0, 1) ∈ ∂D and define f0 : ∂D→ R by

f0(q) =
∫ q

q0

ω,

where the integration is counter-clockwise along ∂D. As in the case of a square, f0 is
discontinuous at q0 but its differential is well-defined. Next, define f : D \Γa → R
as follows: for every q = (q1, q2) ∈ ∂D, let lq be the segment connecting q to
(aq1, 0) ∈ Γa (see Fig. 8). Then every p ∈ D lies on a unique segment lq , and we
may define

f (p) = f0(q)+
∫

[q,p]
ω, p ∈ lq .

A straightforward computation as in the proof of Proposition 3.1 shows that ωa =
df satisfies the desired properties. ��

We next prove the homogenization property for the closed disk.
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Fig. 8 Construction of a
layering form on a disk
containing a single
dislocation

q0

q

p

lq

Γa

D

f(p) = f0(q) + [q,p]ω

Fig. 9 The disk D is
decomposed into four sectors
(diffeomorphic to a square)
and a small disk. A layering
form containing an “array of
dislocations” is constructed in
each sector, and glued
together to obtain ωn

Dn

B1,nB2,n

B3,n B4,n

Lemma 6.3 The homogenization property holds for the disk

D =
{
(x, y) ∈ R2 : x2 + y2 ≤ 1

}
.

Proof Let ω ∈ Ω1(D). For every n ∈ N, let Dn = 1
n
D and let Bi,n, 1 ≤ i ≤ 4, be

the sectors given by

Bi,n = {(r cos θ, r sin θ) : 1/n ≤ r ≤ 1, iπ/4 ≤ θ ≤ (i + 1)π/4} .

Then Bi,n 5 [0, 1]2 andD 5 Dn∪4
i=1Bi,n (see Fig. 9). Let φ : B1,n→ [0, 1]2 be

a diffeomorphism which preserves the left/right and upper/lower edges/arcs. Then
its rotations φi = φ ◦ R(i−1)π/4 : Bi,n → [0, 1]2 (i = 2, 3, 4) are diffeomorphisms
as well. Using Proposition 4.1, we may construct singular closed layering forms ωi,n
on Bi,n which combine together into a singular layering form ω̃n on D \Dn, whose
singularity set of ω̃n is a union of segments and it coincides with ω on ∂D \ 1

n
D.

Finally, by Lemma 6.2, we may complete ω̃n into a singular layering form ωn onD.
That
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|||

| || ⋃�

Fig. 10 A pair-of-pants. It can be obtained by gluing hexagons along three pairs of edges. The
remaining pairs of (colored) edges are glued at their ends thus forming three boundary circles

Tωn → Tω

follows from Theorem 4.1 (applied separately for each sector). ��
We next prove the homogenization property for a pair-of-pants which is diffeo-

morphic to the three-holed sphere (see Fig. 10).

Lemma 6.4 The homogenization property holds for a pair-of-pants.

Proof First, note that the hexagon, denoted by O, also satisfies the homogenization
property as well as the gluing conditions as in Lemma 6.3. The proof is almost
identical to the proof for the disk (taking 6 rather than 4 sectors). Let M be a pair-
of-pants. It can be obtained by identifying three pairs of edges of two hexagons O1
and O2 (see Fig. 10). Hence, a layering form ω ∈ Ω1(M) induces layering forms
ω̃1 and ω̃2 on O1,2 satisfying (trivially) the gluing conditions of Lemma A.2. Since
the homogenization property holds for each hexagon, there exist approximating
sequences ω̃i,n for ω̃i (i = 1, 2) which satisfy the gluing conditions and therefore
form together an approximating sequence ωn for ω. ��

We next prove the following gluing argument.

Proposition 6.1 Suppose that the homogenization property holds for compact
orientable surfaces M1 and M2. Let Ai ⊂ ∂Mi be connected components of the
boundaries and h : A1 → A2 a diffeomorphism. Finally, let ιAi : [0, 1)×Ai →Mi

be collar neighborhoods for Ai . Then the glued manifold

M =M1 4h M2

satisfies the homogenization property (see the appendix for the definition of collar
neighborhoods and gluing constructions).

Proof (Sketch) Let ω ∈ Ω1(M). Then ω induces layering forms ωi ∈ Ω1(Mi )

satisfying the gluing conditions, so that the restriction of ω and its first derivatives
to Mi coincides with those of ωi . Apply the homogenization property to obtain
sequences of closed singular layering forms ωi,n, so that Tωi,n converges weakly to
Tωi . We may choose the ωi,n such that their values and their Lie derivatives coincide



296 R. Kupferman and E. Olami

with those of ωi at Ai . By the gluing Lemma A.2, ω1,n and ω2,n induce a closed and
singular C1-bounded layering form ωn on M =M14hM2. It follows directly from
the construction that the sequence ωn satisfies the required properties. ��
Remark 6.2 We are mostly interested in the case where M1 and M2 are subman-
ifolds of M with a common boundary (circle) component A = A1 = A2 5 S1.
In such a case, one can take a collar neighborhood induced by a vector field
X ∈ Γ (TM) which is transversal to A. Taking, h = IdA : A1 → A2 one obtains
M 5M14hM2. In other words, it is not necessary in this case to specify the collar
neighborhoods and the boundary identifications, and the conditions for the gluing
lemma to apply are satisfied automatically.

By applying Proposition 6.1 inductively we may finally prove Theorem 6.1:

Proof (Of Theorem 6.1) Let M be a compact, orientable surface (possibly with
boundary). By the classification of surfaces, we may decompose M into a finite
number of pairs of pants and disks (glued along circles). By Lemmas 6.3 and 6.4,
the homogenization property holds for the disk and for the pair-of-pants. Hence,
given ω ∈ Ω1(M), we may inductively apply Proposition 6.1 (on larger and larger
components of M) to obtain the desired sequence ωn. The convergence Tωn → Tω
follows immediately from the construction and the compactness of M. ��
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Appendix: Gluing Constructions

The homogenization procedure presented in Sects. 4 and 6 relies on gluing diffeo-
morphic copies of single isolated dislocations and their structure forms. To this end,
we review some basic definitions and facts, following [10, Chap. 9] and prove a
gluing lemma for 1-forms.

Let M be a smooth manifold with boundary. A neighborhood of ∂M is called a
collar neighborhood if it is the image of a smooth embedding ι : [0, 1)×∂M ↪→M

sending (identically) {0} × ∂M to ∂M. It follows from the theory of flows that
every smooth manifold with boundary admits a collar neighborhood; see [10,
Theorem 9.25].

Let M1 and M2 be smooth manifolds with boundary of the same dimension,
and let A ⊂ ∂M1, and B ⊂ ∂M2 be nonempty connected (possibly closed)
submanifolds. Suppose that h : B → A is a diffeomorphism. h defines an
equivalence relation on the disjoint union M1 4M2 whereby p ∼h q if and only if
p = h(q). Let

M1 4h M2 := {[p]h |p ∈M1 4M2} ,
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where [p]h is the ∼h-equivalence class of p. Then, M1 4h M2 is a topological
manifold (possibly with boundary and corners); it admits a smooth structure such
that the natural embeddings

M1 ↪→M1 4h M2, M2 ↪→M1 4h M2,

are smooth, [M1]h ∪ [M2]h =M1 4h M2 and [M1]h ∩ [M2]h = [A]h = [B]h. We
will denote by

π :M1 4M2 →M1 4h M2

the projection map sending every point p ∈ M1 4 M2 to its equivalence class
[p]h ∈M1 4h M2.

The construction of the smooth structure relies on gluing collar neighborhoods
of A and B along h. In particular the smooth structure depends on the chosen collar
neighborhoods; see [10, Theorem 9.29] for details.

Let ιA : [0, 1) × A → M1 and ιB : [0, 1) × B → M2 be collar neighborhoods
for A and B; define also the inclusions ηA : A ↪→ M1 and ηB : B ↪→ M1 by
ηA(p) = ιA(0, p) and ηB(p) = ιB(0, p); see diagram below.

2 1

[0,1) × B [0,1) × AAB

1 � 2

1 �h 2

h

ηB ηA

proj. proj.

ιB ιA

inc. inc.

π

For later use, we note that

π ◦ ηB = π ◦ ηA ◦ h,
hence, differentiating, for p ∈ B,

dπηB(p) ◦ (dηB)p = dπηA(h(p)) ◦ (dηA)h(p) ◦ dhp. (18)

The collar neighborhoods define a decomposition of TM1 and TM2 at A and B:
for example,

TM1|η(A) = TM‖
1 ⊕ TM⊥

1 ,
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where

TM
‖
1 = (ηA)+T A,

and

TM⊥
1 = span(nA),

where

nA = (ιA)+(∂t )|A×{0} (19)

is a vector field normal to TM‖
1 with respect to the collar neighborhood ιA. Similar

definitions apply for the tangent bundle of M2 at B.
We turn to characterize tangent vectors on the quotient space M14hM2. Suppose

first that p ∈ M1 4 M2 \ (A ∪ B). Then, π is a local diffeomorphism in a
neighborhood of p, hence dπp is a linear isomorphism. In other words, tangent
vectors at [p]h can be identified with tangent vectors at p.

In contrast, let p ∈ B, i.e.,

π−1(π(p)) = {h(p), p},

and let v ∈ Tπ(p)(M14hM2). Then, dπ−1(v) = {v1, v2}, where v1 ∈ Th(p)M1 and
v2 ∈ TpM2. Each of the two vectors can be written in the form

v1 = (ηA)+(v‖1)+ v⊥1 nA and v2 = (ηB)+(v‖2)+ v⊥2 nB,

where v‖1 ∈ TA, v‖2 ∈ T B and v⊥1 , v⊥2 ∈ R.
We state without a proof:

Lemma A.1 The following relations hold:

v
‖
1 = h+(v‖2), (20)

and

v⊥1 = −v⊥2 . (21)

Moreover,

π+(nA) = −π+(nB). (22)

Our next goal is to glue together 1-forms along A ⊂ ∂M1 and B ⊂ ∂M2:
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Lemma A.2 (Gluing of Forms) Let ω1 ∈ Ω1(M1) and ω2 ∈ Ω1(M2) satisfy the
following conditions:

(i) Equality of tangential component:

h+(η+Aω1) = η+Bω2 (23)

(this is an equality of 1-forms on B).
(ii) Matching of normal component:

ω1(nA) ◦ h = −ω2(nB) (24)

(this is an equality of functions on B).
(iii) Matching of normal derivative:

(LnAω1(nA)) ◦ h = −LnBω2(nB),

and

h+
(
η+A(LnAω1)

) = −η+B(LnBω2),

where L is the Lie derivative and nA and nB are extended to neighborhoods of
A ⊂M1 and B ⊂M2 via (19).

Then, there exists a 1-form ω on M1 4h M2 which is C1 with respect to the smooth
structure induced by ιA and ιB , such that the restrictions of ω to M1 and M2
coincide with ω1 and ω2.

Proof Let ω14ω2 ∈ Ω1(M14M2) be the induced form on the disjoint union. We
first show that Conditions (i) and (ii) imply that ω1 4ω2 projects to a well-defined
1-form ω on M1 4h M2.

Consider first p ∈ M1 4M2 \ (A ∪ B), and let v ∈ Tπ(p)(M1 4h M2). Since
π−1(π(p)) = {p} and dπp is an isomorphism, we may define

ωπ(p)(v) = (ω1 4 ω2)p(dπ
−1(v)).

Next, let p ∈ B and let v ∈ Tπ(p)(M1 4h M2). Now π−1(π(p)) = {h(p), p}
and dπ−1(v) = {v1, v2}, where v1 ∈ Th(p)M1 and v2 ∈ TpM2. In order to define
ωπ(p)(v) unambiguously, it suffices to show that ω1(v1) = ω2(v2).

Write as above

v1 = dηA(v‖1)+ v⊥1 (nA)h(p)
v2 = dηB(v‖2)+ v⊥2 (nB)p,
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where v‖1 ∈ Th(p)A and v‖2 ∈ TpB. Then,

ω1(dηA(v
‖
1)) = η+Aω1(v

‖
1)

(20)= η+Aω1(dh(v
‖
2)) = h+η+Aω1(v

‖
2)

(23)= η+Bω2(v
‖
2) = ω2(dηB(v

‖
2)),

and

ω1(v
⊥
1 (nA)h(p)) = v⊥1 ω1(nA)h(p)

(21)= −v⊥2 ω1(nA)h(p)

(24)= v⊥2 ω2(nB)p = ω2(v
⊥
2 nB)p.

We have thus proved that ω is well-defined. It remains to show that ω (or
equivalently Φ+ω) is continuously differentiable. For (t, p) ∈ (−1, 1) × A and
α∂t ⊕ v ∈ T ((−1, 1)× A) 5 Tt (−1, 1)⊕ TpA,

(Φ+ω) |(t,p)(α∂t ⊕ v) =
{
ω1|ιA(−t,p)(−αnA + v) t < 0

ω2|ιB (t,p)(αnB + dh(v)) t ≥ 0.

Condition (i) then implies that the tangential (to A) derivatives of Φ+ω are con-
tinuous and Condition (iii) shows (by a similar calculation) that it is continuously
differentiable in the “t” direction (one-sided limits coincide). This completes the
proof. ��
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M. Z. Elżanowski (�)
Fariborz Maseeh Department of Mathematics and Statistics, Portland State University, Portland,
OR, USA
e-mail: elzanowskim@pdx.edu

G. P. Parry
School of Mathematical Sciences, University of Nottingham, Nottingham, UK
e-mail: gareth.parry1@nottingham.ac.uk

© The Editor(s) (if applicable) and The Author(s), under exclusive license to
Springer Nature Switzerland AG 2020
R. Segev, M. Epstein (eds.), Geometric Continuum Mechanics, Advances in
Mechanics and Mathematics 43, https://doi.org/10.1007/978-3-030-42683-5_7

303

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-42683-5_7&domain=pdf
mailto:elzanowskim@pdx.edu
mailto:gareth.parry1@nottingham.ac.uk
https://doi.org/10.1007/978-3-030-42683-5_7
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1 Introduction

We review various mathematical constructions relevant to the kinematical model
of defective crystals that Davini [9] proposed in 1986. Partly, the motivation for
this is the need to place quantities that are useful in phenomenological theories of
inelastic behaviour (which are many and rather varied) in a general mathematical
framework. Partly, too, simple assumptions regarding defective crystal symmetries
are inadequate [7, 17], so a re-evaluation of those assumptions is necessary. Also, as
motivation, we take the current effort in continuum mechanics to rationalize the
connection between continuum and discrete models of materials, and so review
results which elucidate the rigorous connection between continuous and discrete
structures in the context of Davini’s model.

In [9] a crystal state Σ , in R
3, is given by the prescription of three smooth

linearly independent ‘lattice vector’ fields l1(·), l2(·), l3(·) defined at each point
of some region M ⊆ R

3. The lattice vector fields vary on a scale which is finer than
that commonly associated with continuum mechanics, but which is coarser than the
interatomic length scale. So one may imagine that the fields are obtained by some
averaging procedure from a given (discrete) atomic structure, and that by virtue of
the separation of scales the lattice vector fields are not necessarily embedded in the
macroscopic deformations of continuum mechanics. Thus the lattice vector fields
carry geometrical information regarding the inelastic behaviour of the material.

A further important point, regarding [9], is that the ‘current’ state of the
material, which is the prescribed crystal state Σ , is supposed to determine all
geometric constitutive variables, c.f., [5, 28]. So, for example, any strain energy
density is supposed to depend only on (point values of) the lattice vector fields
and their derivatives. A priori, then, no ‘reference configuration’, or ‘intermediate
configuration’, figures in this model—the details of the current geometry are all that
is required to determine the constitutive variables. However, particular distributions
of lattice vector fields may, of course, arise (for example) by elastic deformation
of some ‘simple’ reference crystal state—our formalism is powerful enough to
recognize particular cases when this is so. In fact it is a central question to determine
whether or not two prescribed crystal states are such that one may be obtained
from the other by elastic deformation—the answer to this question requires a
mathematical perspective which emphasizes the importance of quantities which
generalize the notions of Burgers vectors, dislocation density tensor, and so forth,
prominent in theories of continuous distributions of dislocations [4, 25], and in
engineering plasticity theories [26, 27]. It turns out to be necessary to consider
quantities that are of higher order in the derivatives of the lattice vector fields than
the Burgers vectors, dislocation density tensor, etc., in order to answer the question
posed.

It is a global question, whether or not two prescribed crystal states are related
by elastic deformation, since the two regions over which the respective lattice
vector fields are defined must map, one to the other, under the deformation. The
corresponding local question, whether or not the lattice vector fields in a neighbour-
hood of some point in a given crystal state are related by elastic deformation to
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the lattice vector fields in some neighbourhood of a prescribed point in the other
crystal state, is easier to address. One progresses, in addressing the local question,
by constructing objects (functions dependent on the lattice vector fields and their
derivatives of arbitrary finite order) which are unchanged by elastic deformation—
primary amongst these objects is the dislocation density tensor function (denoted
ddt for brevity), which is a (first order) measure of the non-commutativity of pairs
of lattice vector fields. In fact there is an infinite number of such objects, though
a certain finite number of them is sufficient for the purposes of this chapter. This
allows us to generate a certain finite number of conditions, necessary in order that
two crystal states be ‘locally elastically related’ (see (4) below), by requiring that
these objects are unchanged by elastic deformation. Naturally, one enquires also if
these necessary conditions are sufficient for the stated purpose, and we elaborate on
this in the sequel. Note that one might call these objects ‘plastic strain variables’,
by analogy with terminology in the continuum mechanics literature, for they
quantify some aspects of inelastic behaviour—if these objects are different, at two
points in two crystal states, the respective sets of lattice vectors in neighbourhoods
of the two points are not obtained, one from the other, by any elastic deformation.
However, we prefer to call these objects ‘scalar invariants’ (c.f., Sect. 2.2). Just
as the ddt measures the non-commutativity of pairs of lattice vector fields, the
higher order scalar invariants are higher order measures of non-commutativity (e.g.,
relating to the non-commutativity of a lattice vector field and the Lie bracket of a
pair of vector fields, see (41), (43), Sect. 4.4).

The non-commutativity of pairs of vector fields is characteristic of defective
crystals, in this context, so it is not surprising that there is a duality between
descriptions and classifications of defective crystals in terms of the ddt and its higher
order generalizations, and descriptions in terms of Lie brackets and their higher
order generalizations. The geometrical interpretation of higher order generalizations
of the ddt is not well developed (it hardly exists), by way of contrast with the vast
literature relating to Lie groups and algebras. In this chapter we develop the two
descriptions almost side by side, to begin with, emphasizing their inter-relatedness.
Then we exploit existing results available in the Lie group literature to address
geometrical questions of interest from the point of view of continuum mechanics,
for example, we identify a point of departure which leads to rigorous elastic-plastic
decompositions of certain changes of state (such decompositions of changes of
crystal states are derived results, based on the geometry of the vector fields, rather
than constitutive hypotheses), we show that certain discrete structures are naturally
associated with particular crystal states and consider how the symmetries of the
discrete structures relate to those of the crystal states, and we describe how certain
invariant measures of curvature and torsion may be calculated from given crystal
states.

In each section, we summarize, introduce concepts, and give definitions, to begin
with, then (for the most part) we choose to develop the material by focusing on what
seems to be simplest non-trivial instance of the defective crystal state, where results
are less intricate than in other, more general, cases—it is the case where a certain Lie
group is nilpotent. (The reader may refer to [1, 32, 33], for example, for discussion
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of more general cases). In later sections we move to descriptions of crystal states in
terms of modern differential geometry, and finally we indicate very briefly how the
work may be extended and improved.

Note that we do not give explicit derivations of results in many cases, as this is a
review, but refer the reader to the relevant sources.

2 Crystal States and Scalar Invariants

In this section we introduce the lattice vector fields that, together with the region
M ⊆ R

3, define the crystal state Σ . We define what is meant by an elastic
deformation and also what is meant by stating that two crystal states are locally
elastically related. The dual lattice vector fields are introduced, and this allows us
to define the dislocation density tensor (ddt). We define scalar (elastic) invariants
and note that each component of the ddt is one such. Also we make the observation
that there is an infinite number of scalar elastic invariants, in general, for example
each directional derivative of the ddt is such an invariant, c.f., [35]. We argue that,
in the case M ⊆ R

3, there can be at most three independent scalar invariants and
that however many such invariants there are, they occur amongst the directional
derivatives of the ddt of order less than or equal to two. Finally we introduce the
classifying manifold [35] associated with a crystal state and quote a result which
gives a set of conditions sufficient that two crystal states be locally elastically related
to one another.

2.1 Crystal States

Let l denote a set of three linearly independent smooth vector fields l1(·), l2(·), l3(·),
defined on a manifold M of dimension 3 in R

3, so that li : M → TM , i = 1, 2, 3,
where TM denotes the tangent space of M . We shall call these the lattice vector
fields. The corresponding crystal state Σ is defined by

Σ ≡ {l;M} . (1)

An elastic deformation of Σ is a smooth invertible mapping u : M → u(M) ⊆
R

3, with smooth inverse, such that the set of fields l = {li (·); i = 1, 2, 3} is
transformed to l̃ = {l̃i (·); i = 1, 2, 3} defined on u(M), where

l̃i (u(x)) ≡ ∇u(x)li (x), i = 1, 2, 3, x ∈ M. (2)

The crystal state

Σ̃ ≡ {l̃; M̃}. (3)

is said to be elastically related to Σ when (2) holds and M̃ = u(M), and vice versa
via u−1(·).
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Also, it is convenient to introduce the notion of local elastic relatedness: states
Σ, Σ̃ are locally elastically related to one another if for each x0 ∈ M there exists a
diffeomorphism ux0 defined on a neighbourhood Nx0 of x0 inM , with ux0(Nx0) ⊆
M̃ such that

l̃i (ux0(x)) = ∇ux0(x)li (x), i = 1, 2, 3, x ∈ Nx0 , x0 ∈ M, (4)

and vice versa. Clearly, if two crystal states are elastically related to each other, then
they are locally elastically related to each other—however the converse proposition
is false.

2.2 Scalar Invariants

The archetypical scalar invariant is the dislocation density tensor field S (ddt). It
is defined in dimension 3 in terms of the duals of the lattice vector fields: subject
to the choice of a local chart and using the Euclidean structure of R3, the lattice
l(x), x ∈ M , induces a dual frame (dual lattice) d = {d i (·); i = 1, 2, 3} such that
di(x) · lj (x) = δij , i, j = 1, . . . , n, x ∈ M , where δij denotes the usual Kronecker
delta. The components of the ddt S are denoted Sij and defined by the equations

n(x)Sij (x) = ∇ ∧ di(x) · dj (x), i, j = 1, 2, 3, x ∈ M, (5)

where n(x) is the lattice volume element (n(x) is the determinant of the dual lattice
at x).

One notes that the ddt depends on the values of the dual lattice vector fields and
their first derivatives at any point of M . Via an analogue of (5) one can calculate
the value of the ddt corresponding to the lattice vector fields defined in (2) above,
denoted S̃ij , and it turns out that

S̃ij (u(x)) = Sij (x), i, j = 1, . . . , x ∈ M. (6)

Objects which are unchanged by elastic deformation in the sense of (analogues
of) (6) are called scalar (elastic) invariants—to be precise, let Δ(r) consist of
the fields of gradients of lattice vector fields li (·) of order r , and let Δ̃(r) derive,
similarly, from lattice vector fields l̃i (·). Then f : Δ(r) → R is a scalar (elastic)
invariant if whenever (2) holds, f (Δ∗(r)(u(x)) = f (Δ(r)(x)), x ∈ M .

There is an infinite number of such objects, depending on gradients of the lattice
vector fields of arbitrary order (see Davini and Parry [10, 11], Olver [35], Parry and
Silhavy [41], for more information). For example, one can show that li · ∇Sjk is
also a scalar elastic invariant, for each i, j, k = 1, 2, . . ., (li · ∇Sjk is called a first
order directional derivative of Sjk) and that successive directional derivatives of
the dislocation density tensor are also unchanged under a diffeomorphism ofM . We
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shall call the set of first order directional derivatives li ·∇Sjk , the scalar invariants of
‘first order’, with the analogous nomenclature for the sets of higher order directional
derivatives.

Note that in dimension 3 at most three of these scalar invariants can be
independent non-constant functions, since three independent functions parameterize
a local chart. Now one can view (6) as a necessary condition on crystal states Σ ,
Σ̃ that those two states be elastically related—the condition is that there must exist
a diffeomorphism u : M → M̃ such that (6) holds, and there is a corresponding
necessary condition for each independent scalar invariant. However, conditions such
as (6) are not particularly useful as they stand, because one cannot immediately
verify, given states Σ, Σ̃ , whether or not there exists a smooth invertible mapping
u such that (6) holds—a useful reformulation is given in the next subsection.

Consider the case where there are precisely three independent scalar invariants
(in dimension 3)—they must occur amongst the directional derivatives of the ddt of
order≤ 2: for if the first such invariant is some component of the ddt, and if no other
component of the ddt is independent of the first then a second independent invariant
must be found amongst the first order directional derivatives of the ddt, and so on.

In the general case (still in dimension 3) suppose that three independent scalar
invariants occur amongst the first k directional derivatives of the ddt, where k ≤ 2.
These invariants parameterize a local chart, and so the scalar invariants of order
k+1 may be expressed as functions of the three independent invariants. Given those
functions, it is straightforward to find, inductively, the form of the function which
expresses any invariant of arbitrary finite order in terms of the three independent
invariants, see [40]. The case where there are fewer than three independent scalar
invariants may be discussed analogously.

2.3 Classifying Manifold

Let us introduce F, the set of (fields of) directional derivatives of S of order ≤ 3:

F = {(S(·), (la ·∇S)(·), (lb ·∇(la ·∇S))(·), (lc ·∇(lb ·∇(la ·∇S)))(·));
a, b, c = 1, 2, 3} . (7)

Then F is a functional basis of all scalar elastic invariants deriving from the
lattice vector fields in the sense that all scalar elastic invariants (of all orders) can
be calculated if F is known in M . For by the discussion in the previous section, the
independent scalar invariants (≤ 3 in number) must occur as directional derivatives
of order ≤ 2. The third order directional derivatives can be expressed as functions
of the independent invariants, and these functions determine all the higher order
invariants. (Let f denote any one of the third order scalar directional derivatives
in (7), and let I denote the set of independent invariants, then f is defined on
{I (x), x ∈ M}, via (7). The higher order directional derivatives are determined
in terms of the derivatives of f , assuming sufficient regularity.)
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Now let

CMΣ = {g(x); x ∈ M,g ∈ F} (8)

be the classifying manifold associated with Σ (Olver [35]), and define CMΣ̃ via
(2) similarly.

The following result addresses the question—if two crystal states are given, that
is, if two distributions of vector fields (defined over different regions of R

3) are
given, then how does one decide if there is a macroscopic (elastic) deformation,
mapping one region to the other, which also maps one set of fields to the other?

Suppose that CMΣ = CMΣ̃ and that g(x0) = g̃(x̃0) where g and g̃ are
corresponding elements of F and F̃, for some x0 ∈ M, x̃0 ∈ M̃ in particular.
Then Σ and Σ̃ are locally elastically related to each other, and (4) holds with
ux0(x0) = x̃0.

The result gives a sufficient condition that two crystal states be locally elastically
related, by doing so it identifies a particular set of scalar invariant functions, F, and
shows that it is the range of those functions, {F(x); x ∈ M}, which provides the
relevant condition. So F gives a quite general set of ‘plastic strain variables’, in
continuum mechanics terminology, in this context.

3 Burgers Vectors, Invariant Integrals, and Neutrally
Related States

Here we define the Burgers vectors and Burgers integrals. The Burgers integrals are
particular ‘invariant integrals’ (they are objects invariant under elastic deformation
more general than the scalar invariants of the previous section)—we define these
integrals and note that there is a basis of invariant integrals, in a certain sense. The
basis of invariant integrals strictly includes the Burgers integrals. We continue to
address the question of how to decide, if two crystal states are given, whether or not
there is a macroscopic (elastic) deformation, mapping one region to the other, which
also maps one set of lattice vector fields to the other. The integral invariants must
match, in the two states, if such an (global) elastic deformation exists—and this
gives us a set of corresponding necessary conditions. These necessary conditions
can be reformulated in terms of the existence, or not, of a non-trivial solution of a
set of partial differential equations: when two such states are not elastically related,
the partial differential equations have a non-trivial solution, and in that case we say
that the states are neutrally related. It is a fact that neutrally related exist, so these
necessary conditions are not sufficient conditions.
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One can interpret neutrally related states in terms of the ‘slip’, or rearrangement,
of the lattice vector fields, and decompose the changes of state (rigorously) in
terms of elastic deformation and slip, but we do not do so in this chapter, see
[10, 11]. Slip has an ad hoc status in many phenomenological theories of inelastic
behaviour, as a kinematical or constitutive assumption (likewise for elastic-plastic
decomposition)—but here these concepts arise naturally from analysis subordinate
to the construction of invariants relating to the crystal states. Finally, in this
section, we show that neutrally related states are locally elastically related, and for
completeness we give constraints on the ddt, and the set of first order directional
derivatives of the ddt, which guarantee that those quantities derive from a set of
lattice vector fields in the prescribed manner.

3.1 Burgers Vectors and Invariant Integrals

The Burgers integral, defined by
∫
C d i · dx, where C is a circuit in M , is

a prototypical invariant integral. Proof of this fact requires discussion of the
transformation properties, induced by (2), of the various derivatives of the lattice
vector fields. Thus the Burgers vector is unchanged if the dual lattice vector fields are
transformed in a manner compatible with (2), and the circuit C is mapped to u(C ).

More generally, one searches for circuit, closed surface, or volume integrals with
integrands depending on the lattice vector fields and their derivatives of any order
(succinctly, ‘differential functions’) which are functionals independent of elastic
deformation, see Davini, Parry and S̆ilhavý [10, 11, 41].

Thus if FΩ ({li (·)}) is any such functional, and fields {l̃i (·)} are defined by (2),
then F

M̃
({l̃i (·)}) = FM({li (·)}), with M̃ = u(M). For example, since det({l̃a}) =

det(∇u) det({la}) (where det(·) denotes the determinant) then, with the definition
n = d1 · d2 ∧ d3 one obtains that

∫
V
ndV = ∫

Ṽ≡u(V ) ñdṼ is an invariant integral,
V ⊆ M . In fact, it is straightforward to show that

∫

C
da · dx,

∫

V

n dV,

∫

V

Sn dV, are invariant integrals, (9)

where C is a circuit, by recalling the definition of the dual fields {(da(·))} and
the dislocation density S, and by calculating relevant transformation properties.
Note that integrals over closed surfaces can be expressed, alternatively, as volume
integrals.

Now it is important to note that if ν is any scalar (i.e., real-valued differential
function) invariant, then

{(li · ∇ν) (·)} is a set of scalar invariant fields. (10)

Recall that if S has at least one non-constant component, then there is in general
an infinite number of scalar invariants, obtained from that particular component of
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S by successive directional differentiation. So there is an infinite number of integral
invariants too, because (for example)

∫

C
νd i · dx is an integral invariant if ν is any scalar invariant. (11)

It turns out that there is a basis of integral invariants in the sense that if densities
corresponding to the basis integral invariants are given, as fields in M , then the
densities of all integral invariants can be determined. The basis integral invariants
are

∫

C
νda · dx,

∫

V

νn dV : ν ∈ {1, S, {(la · ∇S)}} . (12)

3.2 Neutral Related States

The basis integral invariants match, in the obvious sense, in elastically related crystal
states, so they provide necessary conditions that two crystal states, Σ and Σ̃ , be
elastically related. Now suppose thatΣ and Σ̃ are not necessarily elastically related,
but that the basis integral invariants nevertheless match in the two states. Then
the Burgers integrals match, for example, in the sense that there exists a smooth
invertible mapping u : M → u(M) = M̃ such that

∫
C d i · dx = ∫u(C ) d̃ i · dx.

We can simplify this condition a little: we map Σ̃ elastically, via the inverse of that
mapping u, to a state Σ ′ = {{l′i (·)

} ;M}. The integral invariants match in states Σ
and Σ̃ if and only if they match in states Σ and Σ ′. So

∫
C d i · dx = ∫C d ′i · dx,

for example (the point being that the circuits are identical on the left and right
sides of this relation), and by noting that the circuit C is arbitrary one deduces
that ∇ ∧ d i = ∇ ∧ d ′i , via Stokes’ theorem. It is usual to call the quantities
∇ ∧ d i , i = 1, 2, 3, the Burgers Vectors, in this context.

Applying the simplification of the last paragraph to the basis of integral
invariants one obtains the relations

∇ ∧ d i = ∇ ∧ d ′i , n = n′, ν = ν′, ∇ν ∧ d i = ∇ν ∧ d ′i , ν ∈ {S, {(li · ∇S)}} ,
(13)

which may be regarded as partial differential equations to determine the fields{
l′i (·)
}
, given {li (·)}. Of course if Σ and Σ̃ are elastically related, then Σ

and Σ ′ are identical, hence if (13) has a non-trivial solution for
{
l′i (·)
}
, given

{li (·)} (i.e.,
{
l′i (·)
} �= {li (·)}), then Σ and Σ̃ are not elastically related. If

(13) has a non-trivial solution for
{
l′i (·)
}
, given {li (·)}, we say that Σ and

Σ ′ are neutrally related states, and we also say that Σ allows neutral
deformations.
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A simple example of the non-uniqueness of solutions of (13) is given in [11].
The non-uniqueness of solutions of (13) shows that the necessary conditions derived
from the invariant integrals are not sufficient to determine whether or not two crystal
states are elastically related (indeed (13) provides just local conditions)—there
are crystal states which are not elastically related to one another such that all the
invariant integrals match in the two states, for some choice of the mapping u. One
can, however, interpret neutrally related states in terms of ‘slip’, or rearrangement,
of vector fields, but we do not do so here, see [10, 11] for details.

One implication of (13) is very important for subsequent discussion. Suppose
that (13) has a solution

{
l′i (·)
} �= {li (·)} and that ν is a non-constant component of

S. Then by differentiating (13)3 ((13) holds for all points in M), ∇ν = ∇ν′, and so
from (13)4, ∇ν ∧ (d i − d ′i ) = 0, a = 1, 2, 3. If ϑ is any of li · ∇S, i = 1, 2, 3,
we have from (13)3 that ∇ϑ ∧ (d i − d ′i ) = 0, i = 1, 2, 3. Since d i (·) �= d ′i (·)
for some i = 1, 2, 3, it follows that ϑ = ϑ(ν) (in loose notation), when (13) has
non-unique solutions and S has a non-constant component. Furthermore, since li ·
∇ϑ = (li · ∇ν)dϑdν , it follows that all second order directional derivatives of S
are functions of ν, and by induction all directional derivatives of S have the same
property. Also, let ϑ ′ be any of l′i · ∇S′, i = 1, 2, 3, then one shows quite readily
that ϑ ′(ν′) = ϑ ′(ν) = ϑ(ν), and that all higher order directional derivatives have
the analogous property.

Therefore the classifying manifolds of statesΣ andΣ ′ are identical, CMΣ =
CMΣ ′ , so that neutrally related states are locally elastically related, by the
result highlighted in Sect. 2.3.

Note that if we consider only crystal states Σ where (13) has non-unique
solutions for Σ ′, then

either S = constant, or all elastic invariants are functions of one non-constant

component of S (denoted ν). (14)

Also note that there are constraints on the functions S and its first order
directional derivatives, see [40]:

(a) From (5), n Sablb = ∇ ∧ da and so one has ∇ · (nSablb) = 0, a = 1, 2, 3. This
gives

Sai(εijkSjk)+ lk · ∇Sak = 0, a = 1, 2, 3. (15)

In the case that S is constant, (15) reduces to

Sai(εijkSjk) = 0, a = 1, 2, 3, (16)

which is a representation of the Jacobi identity (from the theory of Lie algebras);
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(b) From ∇ν = (la · ∇ν)da one has ∇ ∧ ((la · ∇ν)da) = 0, and this gives

SabFa = εbacF ′aFc, b = 1, 2, 3, (17)

where we introduce the notation Fa ≡ la · ∇ν, a = 1, 2, 3, and F ′a ≡ dFa
dν
, a =

1, 2, 3.
In the case that S is constant, (17) is trivially satisfied.

(c) In the case that Σ allows neutral deformations, a short calculation based on the
first three equations in (13) gives, in addition, that

SabFb = 0, a = 1, 2, 3. (18)

When (15), (17), and (18) hold, it can be shown that there exists a crystal state,
with the corresponding functions S and its first order directional derivatives the
same as those in Σ , such that the lattice vector fields themselves depend only
on the chosen non-constant component of S, denoted ν.

Finally in this section, according to [8, 16], (15) and (17) together are sufficient
for the local integrability of

nSablb = ∇ ∧ da, ∇ν = Fada, a = 1, 2, 3, (19)

for the fields {la(·)}, given S, Fa as functions of ν. Therefore (15) and (17) are the
only constraints on the functions S, Fa , in general.

4 Lie Groups

The theory of Lie groups is intimately related to the classification of distributions
of vector fields modulo diffeomorphism, and so also related to the ‘elastic-
plastic’ decompositions of continuum mechanics (because if a change of state
has a non-trivial plastic part, corresponding vector fields are inequivalent modulo
diffeomorphism). Here we review aspects of the theory of Lie groups and algebras
which are necessary in order to understand this relationship, and explore the duality
between descriptions/classifications of crystal states in terms of the dislocation
density functions, and in terms of Lie groups/Lie algebras.

For example, in the case where the ddt is constant in a given crystal state, it turns
out that one can regard the elements of the domain M , which are the ‘material
points’ of continuum mechanics, as elements of a Lie group. Note also that, if
the ddt is constant in M , the corresponding lattice vector fields satisfy a self-
similarity condition, and that the function which encapsulates the self-similarity
can be regarded as a Lie group composition (multiplication) function [45]. Vector
fields which have this type of self-similarity are called right invariant fields, in the
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Lie group literature—the self-similarity of the fields is a statement that the lattice
vector fields ‘fit together’ in a certain way, in a defective crystal with constant ddt.

In the first two subsections below, we expand on the items of the previous
paragraph, then we recall the construction of the Lie algebra corresponding to
a given Lie group, and introduce the structure constants of the algebra and the
exponential mapping from the algebra to the group. Also we recall the notions of
isomorphic Lie groups and algebras.

4.1 Constant Dislocation Density Tensor

Let us consider crystal states where the lattice vector fields {li (·)} are defined in
M ≡ R

3, and are such that the dislocation density tensor S is constant in R
3. The

condition that S is constant is an integrability condition [45], which guarantees that
for given lattice vector fields, the partial differential system

li (ψ(x, y)) = ∇1ψ(x, y)li (x), i = 1, 2, 3, (20)

where ∇1ψ(·, ·) denotes the gradient of ψ with respect to its first argument, has
a solution for the function ψ . Note that (20) expresses a self-similarity of the
lattice vector fields {li (·)} inM . Moreover, the function ψ : R3×R

3 → R
3 can be

taken to satisfy the properties required for it to be a Lie group composition function,
i.e.,

ψ(0, x) = ψ(x, 0) = x, ψ(x, x−1) = ψ(x−1, x) = 0,
ψ(ψ(x, y), z) = ψ(x,ψ(y, z)),

where 0 is regarded as the group identity element and x−1 is the unique inverse of
the element x [37, 45]. So the points ofM can be represented as Lie group elements.
Given an appropriate value of the dislocation density tensor S one can specify a
corresponding Lie group G by constructing fields li (·), i = 1, 2, 3 such that the
dual fields satisfy (5) in Sect. 2.2 and then solving (20) for the group composition
function ψ . Note that when (20) holds, the vector field {li (·)} is said to be right
invariant with respect to the composition function ψ . So when the lattice vector
fields {li (·)} are such that S is constant in M ≡ R

3, they represent right invariant
fields on a certain Lie group.

It is standard that each Lie group G = (R3,ψ) has a corresponding Lie algebra
g consisting of the vector space R

3, in this case, with Lie bracket operation [·, ·] :
R

3 × R
3 → R

3 defined by

[x, y] = Cijkxj ykei , x, y ∈ R
3, (21)
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where {e1, e2, e3} is a basis of R3, x = xjej , y = yjej , and where the structure
constants Cijk , with respect to this choice of basis, are given by

Cijk = ∂2ψi

∂xj ∂yk
(0, 0)− ∂2ψi

∂xk∂yj
(0, 0), (22)

where ψ(x, y) = ψi(x, y)ei . The structure constants with respect to the basis
{e1, e2, e3} are directly related to the components of the dislocation density tensor,
see Elzanowski and Parry [12].

Let li (·), i = 1, 2, 3, satisfy (20) and let ν1, ν2, ν3 be given real numbers. Define
the integral curve through x0 of the field νili (·) to be the solution {x(t) : t ∈ R}
of the ordinary differential equation ẋ(t) = νili (x(t)), x(0) = x0. Note that ν :=
νili (0) determines the field νili (·) by (20). (By virtue of this remark one can think
of the Lie algebra of G either as the vector space R

3, with Lie bracket given by
(21), or as the vector space of right invariant vector fields onG, with the Lie bracket
of vector fields defined by (41), Sect. 4.4 below. Note that the Lie bracket of right
invariant fields is right invariant.)

One defines the mapping exp (ν) : G→ G, and the group element e(ν), by

exp(ν)(x0) = x(1), e(ν) = exp(ν)(0). (23)

It is a fact that

exp(ν)(x) = ψ(e(ν), x), (24)

which states that the flow along the integral curves of the lattice vector fields
corresponds to group multiplication by the group element e(ν).

4.2 Isomorphic Lie Groups and Algebras

Recall the following facts and definitions from the theory of Lie groups and
algebras, see for example [2, 3, 18, 19, 21, 23, 24, 45, 46].

Let g and h be Lie algebras with Lie brackets [·, ·]g, [·, ·]h, respectively. (In the
context of this chapter, both brackets [·, ·]g, [·, ·]h map R

3 × R
3 → R

3). A linear
transformation L : g→ h which satisfies

[Lx, Ly]h = L [x, y]g , x, y ∈ g, (25)

is called a Lie algebra homomorphism. If Cg
ijk, C

h
ijk are the structure constants for

g,h, respectively, then (8) implies

C
h
ijkLjpLkq = LirCg

rpq, (26)

where Lei = Ljiej , i, j = 1, 2, 3.
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Let G and H be Lie groups with group multiplication functions ψG,ψH ,
respectively. A smooth mapping φ : G→ H which satisfies

ψH (φ(x),φ(y)) = φ
(
ψG(x, y)

)
, x, y ∈ G (27)

is called a Lie group homomorphism.
If g is the Lie algebra of G, and h is the Lie algebra of H , and φ : G → H

is a Lie group homomorphism, then ∇φ(0) ≡ L is a Lie algebra homomorphism.
Conversely if L satisfies (25), then there exists a Lie group homomorphism φ such
that ∇φ(0) = L. Also,

φ
(
eν
) = e(∇φ(0)ν), ν ∈ g ≡ R

3, (28)

where φ satisfies (27), where the exponential on the left hand side of (28) is the
exponential which maps g to G, and that on the right hand side maps h to H .
Relation (28) allows one to calculate the Lie group homomorphisms explicitly if the
Lie algebra homomorphisms are found by solving (26). φ(·) (resp. L) is called a Lie
group (resp. algebra) isomorphism if it (resp. L) is invertible. An isomorphism
φ : G→ G (resp. L : g→ g) is called an automorphism (φ(·) and φ−1(·) have to
be smooth).

The above facts are useful when it comes to constructing vector fields with given
scalar invariants—since such vector fields are determined only modulo diffeomor-
phism (i.e., modulo elastic deformation), one can choose the diffeomorphisms to
simplify calculations in many cases.

4.3 Campbell–Baker–Hausdorff Formula, Canonical Group J

Here we introduce the particular Lie group which we have selected to illustrate ideas
and methods—it is a three dimensional nilpotent1 Lie group which we refer to as
the canonical group. The group elements are represented by elements of R3, and
the group composition is given explicitly, similarly the Lie algebra is defined on

1Let G be a three dimensional Lie group, with commutator (x, y) ≡ x−1y−1xy. Let G ≡ G0 and
define G1 ≡ (G,G0), the group generated by elements of the form (x, y), x ∈ G, y ∈ G0. Define
Gk ≡ (G,Gk−1) inductively, k ≥ 1. G is called nilpotent if and only if Gk is the trivial group {0}
for sufficiently large k. For three dimensional nilpotent groups,G ≡ G0 ⊇ G1 ⊇ G2 = {e}, where
e is a temporary notation for the group identity 0.

Let g be the Lie algebra corresponding to a Lie group G, with Lie bracket [x, y], x, y ∈ g.
Let g ≡ g0 and define g1 ≡ [g,g0], the subspace generated by elements of the form [x, y], x ∈
g, y ∈ g0. Define gk ≡ [g,gk−1] inductively, k ≥ 1. g is called nilpotent if and only if gk is the
trivial subspace {0} for sufficiently large k. For three dimensional nilpotent algebras, g ≡ g0 ⊇
g1 ⊇ g2 = {0}.

A Lie group is nilpotent if and only if the corresponding Lie algebra is nilpotent (Gorbatsevich,
Onishchik, Vinberg [19]).
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R
3, with corresponding Lie bracket—it is a special feature of this group that one

may identify Lie group and algebra elements, that is, the exponential map from
the group to the algebra is the identity mapping. This special feature simplifies
many calculations, e.g., it is a fact that the commutator (see footnote) of two
group elements may be identified with the Lie bracket of the corresponding algebra
element. We show that the automorphisms (symmetries) of the canonical group are
linear mappings (homogeneous deformations, in continuum mechanics terms), by
virtue of this special feature.

Let ψ be the composition function for a three dimensional Lie Group G, and let
e(·) : g ≡ R

3 → G be the exponential function. The Campbell–Baker–Hausdorff
(CBH) formula gives an explicit expression for the quantity c in the relation,

e(c) = e(a)e(b), a, b ∈ R
3. (29)

One finds the full formula in Varadarajan [50]. We give the formula as it applies to
three dimensional nilpotent Lie groups G, it is

c = a + b + 1

2
[a, b] . (30)

The simple form of (30) exposes the following fact—the expression on the right
hand side of (30) depends only on the Lie bracket [·, ·], i.e., it only depends on the
Lie algebra g; it does not depend on the choice of groupG in the isomorphism class
of groups which have the Lie algebra determined by the given bracket operation.

Now put

c = ψ ′(a, b) (31)

and note that ψ ′ has the properties required in order to regard it as a group
composition function on the vector space associated with the given Lie algebra (R3

in this case). We call this group the canonical group J associated with the given
structure constants, i.e., with the Lie algebra given implicitly in (30) via the choice
of Lie bracket.

Let us choose the structure constants with respect to a basis {e1, e2, e3} of R3 to
have the form

Cijk = λεrjkpipr , (32)

in terms of real parameters λ, pi, i = 1, 2, 3. (See [37] for discussion of this choice).
One may check that the corresponding Lie algebra is nilpotent. Let p denote the
vector in R

3 with components pi, i = 1, 2, 3 with respect to the chosen basis. Then,
the composition function in the group J (dropping the prime in ψ ′) is given by

ψ(x, y) = x + y + 1

2
λp(p · x ∧ y), (33)
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and one can show that the three vector fields �i (x) = ∇1ψ(0, x)ei = ei + 1
2λp(x ∧

p · ei ), (so ei = �i (0) in particular), i = 1, 2, 3, provide a basis of the set of right
invariant vector fields. Also from ẋ = νa�a(x) = ν + 1

2λp(x ∧ p · ν), one obtains

exp(νt)(x) = x + νt + 1

2
λp(x ∧ p · νt). (34)

Therefore, exp(νt)(0) = νt , (which implies that the one-parameter groups in J are
straight lines), and the corresponding exponential mapping is

e(x) = exp(x)(0) = x, x ∈ R
3. (35)

Remarkably, Lie group and Lie algebra elements may be identified, via (35), in
this particular case.

Also we have

(x, y) = [x, y], x, y ∈ R
3, (36)

so that the group commutator, (x, y) ≡ x−1y−1xy, (which represents the ‘finite’
Burgers vector obtained by successive flow along the right invariant fields defined by
y, x, y−1, x−1, given (24) above) may be calculated via the Lie bracket of algebra
elements;

Now by a slight extension of (28), if a linear transformation L is a Lie algebra
automorphism (i.e., an isomorphism from the algebra to itself), there is a Lie group
automorphism φ : J → J such that ∇φ(0) = L. Then φ(e(x)) = e(∇φ(0)x) gives,
noting that the exponentials on both sides of this relation satisfy (35), that

φ(x) = ∇φ(0)x, x ∈ g ≡ J. (37)

Relation (37) shows that the automorphisms of J are linear mappings (‘homoge-
neous deformations’ in continuum mechanical terms), and this fact helps a great
deal when one comes to calculate the symmetries of discrete subgroups of J later
on.

Let j denote the Lie algebra of J . For later use we calculate the Lie algebra
automorphisms of j in the case that λ = 1, p1 = p2 = 0, p3 = 1, so that p = e3,
referring to (32) above. One finds that

L13 = L23 = 0, L33 = L11L22 − L12L21 �= 0, (38)

where Lx = L(xiei) = xi(Lei ) ≡ xi(Ljiej ) = (Ljixi)ej . Also for later use, in
the same particular case of (32), we show immediately below that there are precisely
two inequivalent one-dimensional subgroups of J , modulo automorphisms of J : the
one-dimensional subgroups of J have the form

Hv = {tv : v ∈ j , t ∈ R}, (39)
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by the comment which precedes (35). Let φ : J → J be an automorphism of J ,
with L ≡ ∇φ(0). Then

φ(Hv) = HLv. (40)

We have that:

1. Hh is equivalent to He3 modulo automorphism provided that Le3 = h for some
L satisfying (38). So h = L33e3 and h must be parallel to e3.

2. Hh is equivalent to He1 provided Le1 = h. This requires that, and is satisfied if,
h is any vector not parallel to e3.

4.4 Higher Dimensional Lie Groups

A further connection between the ddt and Lie group ideas occurs at higher order than
that above, in cases where the ddt is not constant in M . We note to begin that when
the ddt is constant, the corresponding right invariant lattice vector fields provide a
basis of a Lie algebra of vector fields with Lie bracket defined by (41) below, so that
the dimension of the algebra equals the number of lattice vector fields. When the ddt
is not constant, it may be that the ‘lattice vector fields and certain of their (iterated)
Lie brackets’ provide a basis of a Lie algebra (with the same choice of Lie bracket),
and in that case the dimension of the algebra is strictly greater than the number of
lattice vector fields. According to [36], subject to some technical conditions, there
is then a corresponding Lie group with Lie algebra isomorphic to that consisting
of the lattice vector fields and certain of their (iterated) Lie brackets, which has a
dimension equal to the number of ‘lattice vector fields and certain of their (iterated)
Lie brackets’. So this group has a dimension strictly greater than that of M , and
according to [36] there is a group action which, for any choice of group element,
maps M to M . We expand on these remarks below, and focus on a particular case
which will be useful later in Theorem 1.

Let us use the following sign convention for the Lie bracket of pairs of vector
fields v(·),w(·), thus

[v,w](·) ≡ {(w · ∇)v − (v · ∇)w} (·). (41)

Denote the Lie bracket of lattice vector fields l1(·), l2(·) by L3(·), thus

L3(·) = [l1, l2](·), (42)

and introduce L1(·),L2(·), analogously. Then one may compute, as in [40, 41], that
in general

Lb = Sabla, [Lb, lc] = Sac[la, lb] + (lb · ∇Sac)la, (43)

and so, in particular, relate the Burgers vectors with the set of Lie brackets via the
first of (43).
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We shall refer to terms such as [l1, l2] as an ‘iterated’, or ‘nested’, Lie bracket
of second order, to terms such as [L3, lc] = [[l1, l2], lc] as Lie brackets of third
order, etc. (and to la as a Lie bracket of first order, for convenience). The second
of (43) gives the third order Lie brackets in terms of S and its first order directional
derivatives, using the first of (43), and there are analogous higher order versions of
these relations which we do not exhibit explicitly. Each such relation expresses
some ‘nested’ Lie bracket linearly in terms of lower order nested Lie brackets,
with coefficients that are directional derivatives of S.

We have noted in Sect. 4.1 that if S is constant in M ≡ R
3, then (20) may

be solved for the set of lattice vector fields, and that there is an associated three
dimensional Lie group structure in that case. Now one can rephrase the assumption
that S is constant, via the first of (43), as an assumption that the vector fields
Li (·), 1 = 1, 2, 3, can be expressed as constant linear combinations of the lattice
vector fields. Via the second of (43), and its analogues, one sees that all nested
Lie brackets of lattice vector fields are also then expressible as constant linear
combinations of the lattice vector fields. Thus the lattice vector field provide a basis
of a Lie algebra of vector fields, and this statement is equivalent to the fact that S is
constant.

As a generalization of the last remark we shall investigate the following
assumption: suppose that the lattice vector fields and certain of their nested Lie
brackets provide a (finite) basis of a Lie algebra, so that the dimension of the
algebra is strictly greater than that of M . Subject to a further technical assumption,
it follows from result of Palais [36], see also [14], that there is an associated ‘higher
dimensional’ Lie group that acts on M .

We shall study groups of this type in Sect. 7, but to keep the discussion as
compact and as simple as seems possible (to us) in this section we restrict matters
much further:

(a) We shall assume that M is a two-dimensional manifold, then there are two
smooth linearly independent vector fields, denoted l1(·) and l2(·). In a new
notation define the Lie bracket l3(·) of l1(·) and l2(·) by

l3(·) ≡ [l1, l2](·) ≡ {(l2 · ∇)l1 − (l1 · ∇)l2} (·). (44)

(b) We consider a particular example in the case where l1(·), l2(·) and l3(·) ≡
[l1, l2](·) provide a basis for all vector fields generated by taking successive
Lie brackets of l1(·), l2(·). In fact we assume that all Lie brackets of order ≥ 3
are zero. So the corresponding (nilpotent) Lie algebra has dimension 3, as does
the associated Lie group. Thus

[l1, l2] ≡ l3, [l2, l3] = 0, [l3, l1] = 0. (45)

The Lie group corresponding to (45) is called the Heisenberg group.
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The following result is a particular case of Theorem 1.57 in Olver [34], it
allows one to associate a three dimensional Lie group with lattice vector fields
l1(·), l2(·), l3(·) ≡ [l1, l2](·) defined on M satisfying (45).

Theorem 1 Suppose that lattice vector fields l1(·), l2(·), l3(·) ≡ [l1, l2](·)
defined on M are given, such that, c.f., (45),

[li , lj ] = Ckij lk, i, j, k = 1, 2, 3, (46)

where the structure constants Cijk are zero except that C312 = −C321 = 1.
Then there exists a Lie groupG, a corresponding Lie algebra g with the same
structure constants relative to some basis e1, e2, e3 of g, and a local group
action λ : G×M → M such that

∇1λ(e, x)ei = li (x), x ∈ M, (47)

where e is the identity element ofG,∇1λ(·, x) is the gradient of λ with respect
to its first argument, and

λ(e, x) = x,λ(g1,λ(g2, x)) = λ(ψ(g1,g2), x),g1,g2 ∈ G, x ∈ M,
(48)

where ψ : G×G→ G is the composition function in G.

In this general situation, the lattice vector fields no longer represent right
invariant fields on the Lie group, nor is it true that e1 equals l1(0), for example
(e1 lies in the Lie algebra, l1(0) is in the tangent space at 0 ∈ M)—one might
contrast this with the situation in Sect. 4.1. It is the group action λ that links the
three dimensional group structure to the flow defined by the two lattice vector
fields. This leads to the brief discussion of isotropy groups and homogeneous spaces
immediately below (we revisit these topics in Sect. 7).

4.5 Homogeneous Spaces

Here we introduce the notion of a homogeneous space and give some associated
definitions—this is done briefly in this subsection, in more detail in Sect. 7. One
thereby represents points of the manifold M in a manner which exploits the group
structure deriving from the assumption in the previous subsection. The group action
above fixes points of M , for some non-trivial set of group elements (in the case
that the dimension of the group is greater than that of M), and this leads to the
definition of the isotropy group corresponding to the group action. In fact, given a
transitive group action λ, any isotropy group is a closed subgroup of G, and given
any closed subgroup of G one can construct a corresponding group action. We also



322 M. Z. Elżanowski and G. P. Parry

define projection and section mappings, and express the group action in terms of
these functions, to facilitate later computations.

The isotropy group of the left action λ : G×M → M is defined by

Gm = {g ∈ G : λ(g,m) = m}, (49)

for any m ∈ M . We suppose that the action is transitive, so

λ(G,m) = M, (50)

for any m ∈ M . Then (G,M) is called a homogeneous space.
Let H be a subgroup of G and define the left coset space G/H by

G/H = {kH ; k ∈ G}. (51)

(Two juxtaposed group elements represent group composition, i.e., if a, b ∈ G,
ab ≡ ψ(a, b), so kH ≡ {ψ(k,h);h ∈ H }, in particular).

Komrakov [29], gives the following results:

• If H is a closed subgroup of G, then G/H can be given the structure of a
manifold, with λ : G×G/H → G/H defined by λ(g, kH) = ψ(g, k)H smooth
and transitive. Then (G,G/H) is a homogeneous space.

• If (G,M) is a homogeneous space, and m ∈ M , then Gm is a closed subgroup
of G.

Define the projection mapping π : G → G/H by π(g) = gH and choose a
section σ : G/H → G such that π(σ (gH)) = gH . (Note that it is not generally
true that there exists a well defined global section, but that the existence of such a
section may be verified in each case of interest below). Then λ can be expressed as:

λ(g, kH) = π(ψ(g, σ (kH))), (52)

and this shows how to construct the group action from any closed subgroup. It is a
fact that λ, defined by (52), is independent of the choice of section. One can also
show that

H = Gπ(0), (53)

if λ is so expressed, so any closed subgroup is an isotropy group.

5 Discrete Groups

One main purpose of this chapter is to discuss symmetries of discrete sets of points
associated with a defective crystal, as part of the rather general effort in continuum
mechanics to correlate discrete and continuous models of materials. To begin this
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discussion we first of all consider the case where the defective crystal has constant
ddt, so that there is a corresponding Lie group whose dimension equals that of M .
(The more general case, where these dimensions are unequal, will be considered in
the next section). The sets of points that are constructed turn out to represent discrete
subgroups of Lie groups. In the case where S is identically zero, for example, the
elements of the relevant discrete subgroup represent the points of a perfect lattice.

In this section we first outline the way that these subgroups were introduced
in Cermelli and Parry [6], Parry [37–39]. Next we paraphrase Mal’cev’s general
perspective [31], in the context of nilpotent Lie groups, and remark on the
connections between the two approaches in the context of this chapter. We also
outline some of Mal’cev’s results, those that relate to the topics at hand.

5.1 Construction of Discrete Group from Given Crystal State

Choose three smooth linearly independent right invariant fields l1(·), l2(·), l3(·) to
specify the texture of a crystal with constant ddt S, as in Davini’s prescription of a
crystal state. Let the corresponding Lie group be denoted G. From (20) and (22) in
Sect. 4 calculate the structure constants Cijk of a corresponding Lie algebra. There
is an isomorphism (elastic deformation) from G to the canonical group J that has
the same Lie algebra, denote it by θ , θ : G→ J , and let l′i (θ(x)) = ∇θ(x)li (x),
i = 1, 2, 3, by analogy with (2) in Sect. 2.1. We consider the crystal state where the
corresponding Lie group is J , below, and drop the prime on the lattice vector fields.

Suppose then that li (·), i = 1, 2, 3 are right invariant fields defined on J . Let
x̃ ∈ J and say that ỹ ∈ J is a neighbour of x̃ if and only if there exists an index
i ∈ {1, 2, 3} such that

either
dx

dt
(t)=li (x(t)) , x(0)=x̃, x(1)=ỹ, or

dx

dt
(t)=li (x(t)) , x(0)=ỹ, x(1)=x̃.

(54)
Thus x̃ and ỹ are neighbours of each other if and only if the ‘unit’ flow along some
lattice vector field maps x̃ to ỹ or vice versa. (This is a generalization of the ‘nearest
neighbour’ idea for a cubic lattice). Let D ⊂ J be a set such that 0 ∈ D and such
that if x ∈ D, then the neighbours of x are elements of D. Then since 0 ∈ D,
it follows that e(li ) ∈ D, e−(li ) ∈ D, where li ≡ li (0), i = 1, 2, 3 (noting that
(
e(li )
)−1 = e−(li )). Also if x ∈ D, then αx ∈ D, where α is any of the six elements

e(li ), e−(li ), i = 1, 2, 3. So D includes all elements of J which have the form

x = α1α2 . . .αn, (55)

where n is arbitrary, and each αi , i = 1, 2, . . . n is one of e(li ), e−(li ), i = 1, 2, 3.
Suppose that D has no other elements. Then D is a subgroup of J (with group
operation corresponding to juxtaposition of expressions such as that on the right
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hand side of (55), recognizing that e(li )e−(li ) is the group identity). D is said to be
generated by the three elements e(l1), e(l2), e(l3), when (55) holds for all x ∈ D.

Note that, generally, an element of D has many representations of the form (55).
So suppose

x = α1α2 . . .αn = β1β2 . . .βm, (56)

where each of αi , i = 1, 2 . . . n; βj , j = 1, 2 . . . m, is one of the generators or the
inverse of one of the generators. Thus

α1α2 . . .αnβ
−1
m β−1

m−1 . . .β
−1
1 = 0, (57)

and one sees that the non-uniqueness of the representation (55) corresponds pre-
cisely to the existence of non-trivial relations (such as (57)) between the generators
and their inverses.

The above construction, Cermelli and Parry [6], Parry [37, 39], is analogous to
the construction of a perfect lattice (in the case S = 0). Mal’cev [31], on the other
hand, considers discrete subgroups D of a general Lie group G, a priori, without
assuming that D has a finite number of generators. Nominally, then, his position is
more general than that adopted in [6, 37, 39]. However, he finds it useful to restrict
attention to uniform discrete subgroups ofG: a discrete subgroup ofG is uniform if
the left coset space G/D is compact—this is the generalization of the requirement,
in the case S = 0, that R3/L (which is the ‘unit cell’ of the lattice, with appropriate
identification of boundary points) is compact. It transpires that this criterion (that the
subgroup be uniform), and the restriction to three dimensional nilpotent Lie groups,
together imply that D is generated by three elements. He also shows: in order that
G contains a uniform discrete subgroup D, it is necessary and sufficient that the
corresponding Lie algebra g have rational structure constants with respect to an
appropriate basis. We shall see towards the end of the next subsection that the two
perspectives coincide, in the context of this chapter—so we paraphrase Mal’cev’s
results in Sect. 5.3 below, as they particularize to the three dimensional case.

5.2 Analogue of Crystallographic Restriction

In traditional crystallography, where the Euclidean motions of R3, say, are central, it
is the so-called crystallographic restriction that begins the analysis and leads to the
ideas of space groups and crystallographic groups, for example. This restriction is
the requirement that there is a minimum separation between pairs of points (atoms)
that make up the crystal, and the classification of perfect crystal structures (due to
Bieberbach, Frobenius, Shoenflies, see Senechal [47]) is based on this assumption.

This basic restriction applies just as well when we study sets of points which
model defective crystals, so we search for conditions on the (continuum) crystal
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state which guarantee that the subgroup D of the previous subsection be discrete—
the discreteness of the subgroup is the analogue of the crystallographic restriction,
in this context. One can make progress quite generally, but for the purposes of this
chapter we shall make a more stringent assumption, which is that the elements
of this subgroup have a minimum (non-zero) separation for arbitrarily small
generators , a, b

(
a, b ∈ {e(l1), e(l2), e(l3)

)
.

Recall that (a, b) ≡ a−1b−1ab denotes the commutator of group elements a, b.
If a and b are small (one parameterizes the three dimensional group by three real
numbers, close to the identity element, and takes the Euclidean measure of distance),
then the commutator is of second order in the size of those two elements, and one
can choose ε so that

|(a, b)| < 1
2 |a|, if |a|, |b| < ε. (58)

Iterating this inequality, following Thurston [48], one deduces that |kth nested
commutator of generators | < 2−kε. It follows, since the separation between any
pair of discrete group elements cannot be arbitrarily small, that there exists a k such
that the kth nested commutators of generators are zero (identity). One can show
that further k = 2 in the case of interest here (i.e., in R

3), Parry [37], and that the
discrete group is then such that any commutator of group elements commutes with
any group element. Continuous groups with this property, such as the canonical
group J introduced in Sect. 4.3, are nilpotent, according to the footnote in that
subsection. In this case, Cermelli and Parry [6], Parry [37, 39] showed that D is a
discrete subgroup of J if and only if the structure constants with respect to l1, l2, l3
as basis are rational, and this leads to (61) below.

We shall highlight properties of J and its discrete subgroups, or groups isomor-
phic to them, as running examples throughout.

5.3 Mal’cev’s Results

We present some fundamental results of Mal’cev [31], in the context of three
dimensional nilpotent Lie groups and their discrete subgroups. Those results are
algebraic in character, but they lead to a ‘rigidity’ theorem which states, in particular,
that the symmetries (automorphisms) of such discrete subgroups can be uniquely
extended to symmetries of a corresponding continuous (Lie) group. In continuum
mechanical terms, this implies that one can take the symmetries of those discrete
subgroups as material symmetries for continuum energy densities for defective
crystals of this type. Of course, in the perfect crystal case, the ‘crystallographic
point groups’ have been used as material symmetries for continuum energy densities
without question, for many years (see for example Green and Adkins [20])—the
relevant rigidity result is almost self-evident in that case, although one never sees it
emphasized. First we outline some necessary algebra relevant to the nilpotent Lie
group and its algebra. In the next subsection we consider the discrete subgroups,
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and give the rigidity result. The results depend on the construction of particularly
judicious sets of coordinates for the continuous group, its algebra, and the discrete
groups.

Let G be a connected and simply connected three dimensional nilpotent Lie
group, let g be the corresponding Lie algebra, and let J be the corresponding
canonical group. Recall that a subspace h⊆g is an ideal if and only if [h,g]⊆h.

If possible, select in g an ordered basis
{
g1,g2,g3

}
with the following two

properties:
{
a2g2 + a3g3; a2, a3 ∈ R

} ≡ g2 and
{
a3g3; a3 ∈ R

} ≡ g3 are ideals
in g. Then each element of g can be uniquely represented in the form

g = a1g1 + a2g2 + a3g3, (59)

and by definition

• the numbers a1, a2, a3 are the ‘coordinates of the first kind’ of g,
• the algebra elements g1,g2,g3 are the corresponding ‘system of coordinates of

the first kind’.

For example, referring to (33) of Sect. 4 above, if [x, y] = λp(p ·x∧y), λ ∈ R and
{l,m,p} is a basis of R3, the ordered basis {l,m,p} is a system of coordinates of the
first kind (because g3 ≡ Rp, [Rp, y] = 0, y ∈ g, and [g2, y] = Rp ⊆ g2, y ∈ g).

Next, suppose that the Lie group G has a system of one-parameter subgroups
x1(t), x2(t), x3(t) such that three conditions hold; first each element of G can be
written in the form x1(t1)x2(t2)x3(t3), t1, t2, t3 ∈ R; also {x2(t2)x3(t3); t2, t3 ∈
R} ≡ G2 and {x3(t3); t3 ∈ R} ≡ G3 are closed invariant (normal) subgroups
of G, finally G/G2,G2/G3,G3 are one-parameter vector groups (i.e., they are
isomorphic to R).

These conditions imply that each element of G can be written uniquely in the
form x1(t1)x2(t2)x3(t3), for some t1, t2, t3 ∈ R. Then by definition

• the numbers t1, t2, t3 are called the (Mal’cev) ‘coordinates of the second kind’ of
that element,

• the subgroups x1(t), x2(t), x3(t) are called a ‘system of coordinates of the
second kind’.

For example, if G = J and g1,g2,g3 is a system of coordinates of the first kind,
then xi (t) ≡ tgi , t ∈ R, i = 1, 2, 3 is a system of coordinates of the second kind,
and the converse is also true. For the next lemma, recall the discussion of uniform
discrete subgroups at the end of Sect. 5.1.

Lemma 1 (Mal’cev) If a Lie group G has a system of coordinates of the second
kind, denoted x1(t), x2(t), x3(t) and if a subgroup H contains the elements
x1(1), x2(1), x3(1), then H is uniform in G.

For example, the subgroup generated by x1(1), x2(1), x3(1) is uniform.
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5.4 Canonical Basis of Discrete Groups

Elements d1, d2 . . . dr of a nilpotent group D constitute a canonical basis of D if
each element of D can be represented in the form

d
n1
1 d

n2
2 . . . dnrr , for some ni ∈ Z, i = 1, 2 . . . r, (60)

and the following two conditions hold:
{
d
ni
i d

ni+1
i+1 , . . . d

nr
r ; ni, ni+1 . . . nr ∈ Z

} ≡
Di is an invariant subgroup of D, i = 1, 2 . . . r , and also the quotient groups
Di/Di+1 (where Dr+1 is the trivial group) are infinite cyclic. In particular a
nilpotent group D with a canonical basis has countably many elements.

These conditions imply that any element of D can be written uniquely in the
form (60). Again recall the discussion of uniform discrete subgroups at the end of
Sect. 5.1.

Lemma 2 (Mal’cev) Every uniform discrete subgroup D of a connected, simply-
connected nilpotent three dimensional Lie group G contains at least one canonical
basis d1, d2, d3. Let d1(t), d2(t), d3(t) be the one-parameter groups passing
through d1, d2, d3 such that

d i (1) = d i , i = 1, 2, 3.

Then these one-parameter groups provide a system of coordinates of the second
kind.

For example, if G = J , each uniform discrete subgroup of J has a canonical
basis, and corresponding systems of coordinates of the first and second kinds (via
Lemmas 1 and 2). Also, each system of coordinates of the first kind, g1,g2,g3,
induces a corresponding system of coordinates of the second kind xi (t) = gi t, i =
1, 2, 3, t ∈ R, and the subgroup generated by g1,g2,g3 is uniform (xi (1) = gi).

It seems to us that theorems of the following type should be central in discussions
of the relation between continuous and discrete models of defective crystals, since
the particular theorem below establishes a rigorous connection between geometric
symmetries (automorphisms) of such objects.

Theorem 2 (Mal’cev) Let D and D∗ be uniform discrete subgroups of
connected, simply-connected nilpotent Lie groups G and G∗, respectively.
Then every isomorphism between D and D∗ can be uniquely extended to an
isomorphism betweenG andG∗. In particular, every automorphism ofD can
be extended to an automorphism of G.

Note This theorem is proven by noting that a canonical basis d1, d2, d3 of D maps
to a canonical basis d∗1, d∗2, d∗3 of D∗ under the given isomorphism. Let the corre-
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sponding system of coordinates of the second kind (inD) be d1(t), d2(t), d3(t) and
(in D∗) be d∗1(t), d∗2(t), d∗3(t). Then the unique extension of the given mapping to
an isomorphism G → G∗ is shown to be the map which sends d1(t1)d2(t2)d3(t3)

to d∗1(t1)d∗2(t2)d∗3(t3).

5.5 Lattice Structure of Discrete Nilpotent Groups

It turns out that one may choose coordinates such that the discrete nilpotent Lie
groups above also have a lattice structure, in the usual crystallographic sense.

Let us choose the structure constants in the canonical group J to have the form

Cijk = λεrjkpipr , (61)

in terms of real parameters λ, pi, i = 1, 2, 3, as in Sect. 4.3. Then the composition
function in J has the form given in (33), Sect. 4.3, and one can show that, by virtue
of the analogue of the crystallographic restriction, as in Parry [37], that λ can be
taken to be rational, pi, i = 1, 2, 3 can be taken to be relatively prime integers.

Let D be the discrete subgroup of J which is generated by e(l1), e(l2), e(l3). The
translation group T of D is defined by

T = {t ∈ J : if d ∈ D, d + t ∈ D}. (62)

(One understands by d + t the group element in J which has components equal to
the sum of the components of d ∈ D, t ∈ J ). Also let λ = s/q ∈ Q where s and
q ∈ Z have no common factors, define ν = p1p2p3 and recall that p denotes the
vector in R

3 with components pi, i = 1, 2, 3. Now define the integer k by

k =
⎧
⎨

⎩

s if ν is even or if (ν is odd and s ∈ 4Z)
s
2 if ν is odd and s ∈ 2Z, s /∈ 4Z
2s if ν is odd and s is odd.

(63)

Cermelli and Parry [6] show that if k is even then T = D and T consists of
all integer linear combinations of l1, l2, l3, λp/k. Then the points of D form
a three-dimensional lattice, since an integral basis of T = D may be found
in terms of l1, l2, l3, λp/k. Also, if k is odd they show that T consists of
all integer linear combinations of 2l1, 2l2, 2l3, λp/k, and that D/T has four
elements which may be written as T ,αT ,βT ,αβT for some α,β ∈ D. Thus
the points of D form a 4-lattice in the sense of Pitteri and Zanzotto [43].
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5.6 Symmetries of Discrete Nilpotent Groups D

Let D be a uniform discrete subgroup of J . Mal’cev’s results give that, if c1, c2, c3
generates D, then it provides a canonical basis of D if c3 is a basis element of
D ∩ (J, J )—we focus on such a canonical basis. So

c3 = θp, (64)

for some real θ . Then since (c1, c2) ∈ Rp,

(c1, c2) = ck3, for some k ∈ Z. (65)

(From (65), there is an evident interpretation of the distribution of points in D in
terms of screw dislocations). Then from (64) above and (33) of Sect. 4

(c1, c3) = (c2, c3) = 0. (66)

It turns out that conditions (65) and (66) are sufficient in order that {c1, c2, c3} be a
canonical basis of D.

To calculate the symmetries of D, let us discuss general ideas regarding
changes of generators in a group from the point of view of Magnus, Karrass,
Solitar [30], Johnson [22]. So let X be a set (which will eventually play the
role of a set of generators of D), and let F(X) be the free group with X

as basis, which means that: F(X) consists of all ‘words’ in the elements of
X (so if, for example, X = {x1, x2, x3}, the words of F(X) have the form
ω = x

α1
1 x

β1
2 x

γ1
3 x

α2
1 x

β2
2 x

γ2
3 . . . x

αr
1 x

βr
2 x

γr
3 for some integer r , integers αi, βi, γi ,

i = 1, 2, . . . r). The group operation in F(X) is juxtaposition of words, with
terms of the form xix

−1
i , x−1

i xi ‘cancelled’ in any product of words. In fact,
confine attention to the case X = {x1, x2, x3}. Then a ‘free substitution’ of
F(X) is a replacement of the elements x1, x2, x3 by words ω1(x1, x2, x3),
ω2(x1, x2, x3), ω3(x1, x2, x3) ∈ F(X) such that these words are also a basis
of F(X). (For example, one may take ω1 = x1, ω2 = x2, ω3 = x1x3). This
implies, in particular, that each xi , i = 1, 2, 3, may be written as a word
in ω1, ω2, ω3 (thus, in the example, x1 = ω1, x2 = ω2, x3 = ω−1

1 ω3), and
this fact alone is sufficient that {ω1, ω2, ω3} is a basis of F(X). Also, a free
substitution gives rise to a mapping which sends any ω(x1, x2, x3) ∈ F(X) to
ω (ω1 (x1, x2, x3) , ω2 (x1, x2, x3) , ω3 (x1, x2, x3)) ∈ F(X), and it is a fact that this
mapping is an automorphism of F(X).

Thus the free substitutions represent changes in the set of generators of a free
group. It is important to note that such changes of generators, if applied to a given
group D with generators {x1, x2, x3}, do not generally provide automorphisms of
D. The condition that a free substitution may be associated with an automorphism
of D is provided by a lemma of Magnus, Karrass, Solitar [30], Johnson [22]:
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Lemma 4 Let ω(c1, c2, c3) ≡ c
α1
1 c

β1
2 c

γ1
3 c

α2
1 c

β2
2 c

γ2
3 . . . c

αr
1 c

βr
2 c

γr
3 , where αi, βi, γi,

i = 1, 2, . . . r are integers, be any word in the generators c1, c2, c3 of D such that

ω(c1, c2, c3) = 0, (67)

0 the group identity. Then a free substitution φ extends to an automorphism of D if
and only if

ω (φ(c1),φ(c2),φ(c3)) = 0, and ω
(
φ−1(c1),φ

−1(c2),φ
−1(c3)

)
= 0

(68)
for each such word, where φ−1 is the free substitution that maps φ(ci ) to ci .

This lemma allows the automorphisms of D to be calculated explicitly, for all
relations in D of the form ω(c1, c2, c3) = 0 follow from (65) and (66).

One can show that the automorphisms of D include the mappings:

• c1 → c−1
1 , c2 → c2, c3 → c−1

3 ,

• c1 → c1, c2 → c1c2, c3 → c3,

• c1 → c2, c2 → c−1
1 , c3 → c3,

• c1 → c1c3, c2 → c2, c3 → c3,

• c1 → c1, c2 → c2c3, c3 → c3.

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(69)

In fact these particular automorphisms generate the (group of) automorphisms of
D, and each mapping (69) provides a free substitution of F ({c1, c2, c3}). Note that
c3 may only be replaced by itself or its inverse, in any automorphism, so that the
basis element c3 is distinguished (as an element of the canonical basis) by the fact
that it is a basis element of D ∩ (J, J ). The automorphisms preserve D ∩ (J, J ).

Finally each of these automorphisms extends to an automorphism of J ,
according to Theorem 2. One might contrast the mappings (69) with those cor-
responding to the symmetries of a perfect crystal lattice, considered as a discrete
subgroup of the group R

3, with addition as group operation: that group is commu-
tative, so no basis element is distinguished from any other.

6 Discrete Structures

Now we adapt the above methods to encompass situations where the relevant group
action λ : G × M → M is that of a Lie group G which has a higher dimension
than that of M . We confine attention in this section to a three dimensional nilpotent
Lie group acting on M = R

2 to illustrate the methods, since we have set out much
information relating to this particular group in previous sections. The lattice vector
fields in this case are just two, rather than three, and it seems at first glance that
the map deriving from unit flow along the lattice vector fields does not correspond
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to multiplication by a group element, so that the situation is a little more intricate
than that described in Sect. 5.1—however, one only has to incorporate homogeneous
space ideas in order to progress.

Suppose then that the two lattice vector fields generate a three dimensional
nilpotent lattice algebras of vector fields in R

2. It is shown in Parry and Zyskin [42]
that all Lie brackets of order ≥ 3, in such lattice algebras, are zero, and further that
one can construct all vector fields, l1(·), l2(·), whose components are real analytic in
Ω , which solve (c.f., (45) in Sect. 4.4), modulo local elastic deformation and change
of basis. Thus we take

[l1, l2](·) ≡ l3(·), [l2, l3](·) = 0, [l3, l1](·) = 0 (70)

and may choose, as in [42],

l1(x, y) = (0, x), l2(x, y) = (1, 0), l3(x, y) = (0, 1). (71)

(This is case 22 of Olver [34], with η1(x), η2(x) a basis of solutions of η′′(x) = 0).

Also we choose the composition function corresponding to the canonical group
J : recalling Theorem 1, define ψ : R3 × R

3 → R
3, with ψ(r, s) = ψiei , r =

riei , s = siei , by

(ψi) =
(

r1 + s1, r2 + s2, r3 + s3 + 1

2
(r1s2 − r2s1)

)

. (72)

(This is (33) of Sect. 4.3 in the case that λ = 1, p1 = p2 = 0, p3 = 1,p = e3).
Next, to fix ideas regarding the material in Sect. 4.5, we derive (71) using a

homogeneous space construction. From Sect. 4.3, there are precisely two inequiv-
alent one-dimensional subgroups of J , modulo automorphisms of J : they are
He1 and He3 in the notation introduced there. We choose to calculate the group
action corresponding to the subgroup He1 . Recalling definitions from Sect. 4.5, the
projection mapping π : J → J/He1 is given by

π(g) = gHe1 =
{
ψ(g, tv1); t ∈ R

}

= {(g1 + t, g2, g3 + 1
2 (−g2t)) : t ∈ R

}
. (73)

There is precisely one element of this coset with first component zero (that element
with t = −g1), so we may parameterize gHe1 by (g2, g3 + 1

2g1g2). Let g2, g3 +
1
2g1g2 be the two components x1, x2 of a point x = xiγ i , i = 1, 2, of R2, where
γ 1, γ 2 is a basis of R2. This choice of basis allows us to identify J/He1 with R

2.
We may also choose as section mapping σ : J/He1 → J :

σ (gHe1) = σ
(
(g2, g3 + 1

2g1g2)
) = (0, g2, g3 + 1

2g1g2), (74)



332 M. Z. Elżanowski and G. P. Parry

so

σ
(
(x, y)

) = (0, x, y), (x, y) ∈ R
2. (75)

Now we can find the group action λ : J × R
2 → R

2 (regarding G/He1 as R
2)

corresponding to this projection from (52):

λ(p, (x, y)) = π(pσ (x, y)) = π(ψ(p, (0, x, y))

= π(p1, p2 + x, p3 + y + 1
2p, x)

= (p2 + x, p3 + y + p1x + 1
2p1p2). (76)

The lattice vector fields deriving from this projection are, from (47) in Sect. 4.4,

li (x) = ∇1λ(e, x)ei = ∂λr

∂pi
(e, x)γ r , i = 1, 2, x ∈ R

2. (77)

So from (77) the components of li (·) with respect to the basis γ 1, γ 2, are(
∂λr
∂pi
(e, x)

)
and this gives

l1(x) = (0, x), l2(x) = (1, 0), l3(x) = (0, 1). (78)

These are the canonical forms (71) of the lattice vector fields. So we have an explicit
construction of the objects whose existence is asserted in Theorem 1, namely we
have a Lie group J , Lie algebra j , basis e1, e2, e3 of j , and group action λ : J ×
R

2 → R
2 such that (48) in Sect. 4.4 holds, in this case.

6.1 Structures Obtained by Discrete Flow Along the Two
Lattice Vector Fields

Given a two-dimensional crystal state Σ , with vector fields l1(·), l2(·) generating a
three-dimensional Lie algebra, we generate a set of points SΣ inM by the following
iterative process: choose a point x0 ∈ M ⊆ R

2 as initial point, construct two points
x(1), x(−1) by solving

dx

dt
(t) = l1(x(t)), x(0) = x0, t ∈ R, (79)

for x(t). Obtain two further points by solving the analogue of (79) with l1(·)
replaced by l2(·). Iterate this process, using the four points so obtained as initial
points in turn. Continue, to obtain SΣ . This starting point is the analogue of that in
Sect. 5.1.
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We assume that the vector fields l1(·), l2(·) derive from the group action (76),
so that G = J , and we connect flow along right invariant fields in J with flow
along the lattice vector fields (‘infinitesimal generators’) in M , when (J,M) is
a homogeneous space. The following result is surely well known (see Parry and
Zyskin [42])—it shows that ‘unit flow along the right invariant fields commutes
with projection’. Let us define

∇1λ(e, x)v ≡ lv(x), x ∈ M, v ∈ g, (80)

the lattice vector field corresponding to the Lie algebra element v (if we set li (·) ≡
lvi (·)), also called an infinitesimal generator of the group action.

Theorem 3 Let x(ε), ε ∈ R, x(ε) ∈ M be defined by

x(ε) = λ(eεvg, x), x ∈ M, v ∈ g. (81)

Then x(ε) solves

{
d
dε

x(ε) = lv(x(ε)), ε ∈ R,

x(0) = λ(g, x).
(82)

Let us use this result to calculate SΣ . So put g = e in Theorem 3 to obtain that
x(t) = λ(ete1, x0) solves (79), x0 ∈ M . Let π , σ be the projection and section
mappings of Sect. 4.5, so λ(g, x) = π(gσ (x)). Then

x(t) = λ(ete1, x0) = π(ete1σ (x0)) = π(ete1g0), (83)

if we set

g0 = σ (x0). (84)

Hence x(1) = π(ee1g0), x(−1) = π(e−e1g0), and the two further points obtained
are π(ee2g0), π(e−e2g0). It follows that

SΣ = π(Dg0), (85)

whereD is the subgroup of J generated by just two group elements ee1 and ee2 . We
next show how to calculate SΣ explicitly.

Recall that group and algebra elements may be identified, in J , and that we have
ex = x, and (x, y) = [x, y]. Hence

(ex, ey) = (x, y) = [x, y] = e[x,y], x, y ∈ J. (86)
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Since e3 = [e1, e2], we have

(ee1 , ee2) = ee3 , so ee2ee1 = ee1ee2(ee2 , ee1) = ee1ee2e−e3 . (87)

It follows that any element of D can be written in the form

d ≡ en1e1en2e2en3e3 , n1, n2, n3 ∈ Z. (88)

Thus any element of D can be represented as the product of three group
elements, each of which has the form enei , i = 1, 2, 3. Then calculations of
Cermelli and Parry [6] gives that d = diei where

(di) = (n1, n2, n3 + 1
2n1n2), n1, n2, n3 ∈ Z. (89)

From (85), we need to calculate π(dg0),where g0 = σ (x0). So put x0 =
(x0

1 , x
0
2), σ (x0) = (0, x0

1 , x
0
2) to find after some manipulation that

π(dσ (x0)) = π(ψ((n1, n2, n3 + 1
2n1n2), (0, x

0
1 , x

0
2))

= (x0
1 , x

0
2)+ n1(0, x

0
1)+ (n2, n3 + n1n2), n1, n2, n3 ∈ Z. (90)

Let K ≡ {n1(0, x0
1); n1 ∈ Z} be the set of integer multiples of (0, x0

1), and note that
for fixed n1,

{(n2, n3 + n1n2); n2, n3 ∈ Z} = Z
2. (91)

Then

SΣ = π(Dσ(x0))

= x0 +K + Z
2. (92)

Now we adopt what seems to a reasonable extension of the crystallographic
restriction, in this case—we assume that SΣ is discrete. It transpires that this rules
out the case where x0

1 is irrational [42], but if x0
1 = p/q, with p, q ∈ Z relatively

prime, then there exist k, l ∈ Z such that kp + lq = 1, so 1
q
= k

(
p
q

)
+ l,

and
{
n1x

0
1 + k; n1, k ∈ Z

}
is the set of all integer multiples of 1

q
. Hence SΣ is

a simple lattice, in the sense of traditional crystallography, containing x0, with
basis (1, 0), (0, 1/q). So once again, in judiciously chosen coordinates, the elements
of the discrete structure coincide with those of a perfect lattice, even though the
underlying continuous structure involves non-commuting vector fields.
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7 Geometrical Setting

In this section we allow thatM has any finite dimension, say n, although in practice
and in our examples we only consider n ≤ 3. To begin with we recast some of the
earlier material in more modern geometrical language (see for example [18, 19, 23,
24, 50]), to fix ideas, then we use some of the associated concepts and results to
extend the earlier material. This allows us to discuss notions of connection, torsion,
and curvature in a manner which seems to fit naturally with some of the earlier
assumptions.

As postulated earlier, the kinematic state of the continuous solid crystal body
M is given by a continuous lattice defined by the frame field (a smooth section)
l : M → L(M) where L(M) denotes the bundle of linear frames of M . In general,
a differentiable manifold may not admit a global section of its frame bundle L(M).
However, our approach is local, so there is no loss of generality in assuming that the
continuous lattice l is globally defined. Alternatively, the reader may think about the
body manifold M as an open neighbourhood of Rn.

We assume that the linearly independent smooth vector fields li : M → TM ,
i = 1, · · · , n, defining the lattice l, where TM denotes the tangent space of M ,
form an m-dimensional Lie subalgebra l of the algebra χ(M) of all smooth vector
fields onM .2 A particular case of this assumption was made in Sect. 4.4. In general,
we shall call the algebra l the lattice algebra of the corresponding crystal state,
where n ≤ m <∞, and postulate that it is complete, i.e., it contains only complete
vector fields.3 Hence, there exists a Lie group, say G, acting smoothly on the body
manifoldM and such that its Lie algebra is isomorphic to the lattice algebra l. More
precisely, we have the following result.

Theorem 4 Consider a continuous lattice defined by n linearly independent
smooth vector fields li : M → TM , i = 1, · · · , n. Let l ⊂ χ(M) be the
subalgebra of vector fields defined by the fields li , i = 1, · · · , n. Assume that
l is finite dimensional and complete. Then, there exists a connected Lie group
G contained (as an abstract subgroup) in the group of all diffeomorphisms of
M , Diff(M), such that the natural left action Λ : G ×M → M of the group
G on the body manifold M is smooth and the lattice algebra l is isomorphic
to the Lie algebra, say g, of the group G.

That is, let φ : G→ Diff(M) be the homomorphism from the group G into the
group of all diffeomorphisms of M . Define the smooth action of G on M by

2For the motivation of this assumption see [13].
3A vector field on a manifold M is considered complete if the corresponding flow is globally
defined.
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Λ(g, x) = φ(g)(x), g ∈ G, x ∈ M. (93)

We assume that the action Λ, which is effective, is also transitive. This means
that given the orbit map Λx : G → M such that Λx(g) = Λ(g, x), g ∈ G,
x ∈ M , the orbit of every point x ∈ M is identical to the manifold M , that is,
Λx(G) = M . Moreover, for any x ∈ M , the mapping Λx is a morphism of the left
action of the group G on itself into the action Λ of G on M but it is not necessarily
an isomorphism unless the action Λ is free. Indeed, given a point x ∈ M , let Gx be
the isotropy group of the actionΛ at x. That is, (c.f., the corresponding definition in
Sect. 4.5) let

Gx = {g ∈ G : Λ(g, x) = x}, x ∈ M. (94)

Note that the mapping Λx is a bijection onto the body manifold M if and only if
the action Λ is transitive and the isotropy group Gx is trivial. Note also that due to
the transitivity of the actionΛ the isotropy groups at different points, say x, y ∈ M ,
x �= y, are conjugate subgroups ofG. Namely,Gy = hGxh−1 where h ∈ G is such
that Λ(h, x) = y.

Given the orbit map Λx : G→ M , consider its tangent map dΛx : TG→ TM

such that dgΛx : TgG → TΛx(g)M , g ∈ G, x ∈ M . It can be shown that it
establishes an isomorphism between the algebra of right-invariant vectors fields on
the group G (the right Lie algebra of G) and the lattice algebra l. In particular,
when evaluated at the identity e of the group G, the mapping deΛx : TeG →
TxM identifies the tangent space TeG with the lattice algebra l. This, in turn,
implies [29]:

Theorem 5 Given a continuous lattice l : M → L(M) defining a finite-
dimensional lattice algebra l, consider the induced smooth action Λ : G ×
M → M of the connected group G whose Lie algebra g is isomorphic to
the algebra l. Let Gx be the isotropy group of the action Λ at x ∈ M .
Then, assuming that the action Λ is transitive, the quotient space G/Gx is
a homogeneous manifold4 which can be diffeomorphically identified with the
underlying body manifold M .

Indeed, as the action Λ is transitive and the isotropy group Gx is a closed subgroup
(a submanifold) of the group G, the rank of the orbit map Λx is constant allowing
one to identify the body manifold M with the quotient space G/Gx . That is,
selecting x ∈ M and the corresponding isotropy group Gx , define the realization
mapping Λ̂(x) : G/Gx → M by

4Given a Lie group G and its closed subgroup Gx , the quotient space G/Gx is called a
homogeneous manifold if it admits a structure of smooth manifold.

4
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Λ̂(x)(hGx) = Λx(h) = Λ(h, x), h ∈ G, (95)

where hGx denotes the left coset of Gx generated by the element h ∈ G. It can be
shown that any realization Λ̂(x) is a diffeomorphism commuting with the natural
left action of the group G on the quotient G/Gx . In other words, the action Λ and
the choice of the isotropy groupGx induce a principal bundle structure on the group
G with the projection π : G → M such that π(g) = Λ(g, x), g ∈ G, and the
isotropy group Gx as its structure group. Indeed, the group Gx acts freely on the
right on the total space (the group) G and the isotropy group Gx is the kernel of the
projection π as π(gh) = Λ(gh, x) = Λ(g,Λ(h, x)) = Λ(g, x) = π(g) for any
g ∈ G and h ∈ Gx . In addition, the projection π is obviously differentiable. As the
tangent map deπ : TeG→ TxM , where deπ = deΛx , is surjective, it identifies the
tangent space to M at x with the quotient algebra g/g0 where g0 = ker deπ denotes
the Lie algebra of the isotropy group Gx and where we identified the tangent space
TeG with the Lie algebra of all left (right) invariant vector fields on the group G.

Example 1 To illustrate the basic elements of our model, we consider here a three-
dimensional continuous lattice on M = R

3 defined by the vector fields

l1 = (1, z, 0), l2 = (0, 0, 1), l3 = (z, 1

2
(z2 − x2),−x). (96)

The Lie algebra l generated by the given vector fields is spanned by l1 = (1, z, 0),
l2 = (0, 0, 1), l3 = (z, 1

2 (z
2 − x2),−x), and l4 = (0, 0, 1) as [l1, l2] = 0, [l1, l3] =

l4, [l2, l3] = 0 while [l2, l4] = 0 and [l3, l4] = l1. Viewing the vector fields li ,
1 = 1, 2, 3, 4, as the infinitesimal generators of one-parameter groups acting on R

3,
it can be shown that the lattice l (96) induces the action of the four-parameter group
G = H � SO(2) on R

3, being the semi-direct product of the three-dimensional
Heisenberg groupH [49], and the special orthogonal group SO(2).5 Identifying the
Heisenberg group with R

3, R3 with the Cartesian product C × R and the special
orthogonal group SO(2) with a unit circle in C, the action of the groupG on R

3 can
be represented by the mapping Λ : G× R

3 → R
3 such that

Λ(((w, t), eiθ ), (a, b)) = (w + aeiθ , t + b + 1

2
Im(wae−iθ )), (97)

where the point (a, b) ∈ C × R is given by (a, b) = (x + iz, y − 1
2xz) and where

(w, t) = (α+ iγ, β− 1
2αγ ) for any (x, y, z) ∈ R

3 and (α, β, γ ) ∈ H . As the group
operation in H � SO(2) is given by

5The process of composing the actions of one-parameter subgroups to obtain the whole group G
acting on the corresponding base space is only valid if the group G is connected [35].
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((w1, t1), e
iθ1)((w2, t2), e

iθ2)=((w1+w2e
−iθ1 , t1+t2+1

2
Im(w1w2e

−iθ1)), ei(θ1+θ2))

(98)
one can show that Λ defines indeed the left action of G on R

3 [49].
Given an arbitrary point (x, y, z) ∈ R

3, consider now the orbit map Λ(x,y,z) :
G → R

3 of the group action Λ. Its tangent map dgΛ(x,y,z) : TgG →
TΛ(g,(x,y,z))R

3, where g = (α, β, γ, θ), is represented in the standard coordinate
systems on G and R

3 by the matrix

⎛

⎝
1 0 0 −x sin θ + z cos θ

z cos θ − x sin θ 1 0 −α(z sin θ + x cos θ)− xz sin 2θ + 1
2 (z

2 − x2) cos 2θ
0 0 1 −x cos θ − z sin θ

⎞

⎠

(99)

inducing at the identity of the group, i.e., e = (0, 0, 0, 0), our lattice algebra l. On
the other hand, as the (left) Lie algebra g of the group H �SO(2) is spanned by the
vector fields

v1 = (cos θ,−α sin θ,− sin θ, 0), v2 = (0, 1, 0, 0), (100)

v3 = (sin θ, α cos θ, cos θ, 0), v4 = (0, 0, 0, 1). (101)

it is easy to show that the lattice algebra l and the Lie algebra g are isomorphic.
Finally, selecting a point in R

3, e.g., (x0, 0, 0), one can show that the isotropy group
of the action Λ at (x0, 0, 0) is

G0 = {((x0(1− e−iθ ), 1

2
x2

0 sin θ), eiθ ) : θ ∈ R} (102)

and that its one-dimensional Lie algebra g0 is spanned by (0, x, 1
2x

2, θ).

7.1 Canonical Lattice Connection

We shall now consider the group G corresponding to the lattice l as the total space
of a principal bundle on the body manifold M . Our main objective is to identify
some of its geometric characteristics such as curvature and torsion.

To this end, let us fix a specific point x0 ∈ M and consider the corresponding
isotropy group G0 = Gx0 . Let g denote the (left) Lie algebra of G. As g0 is a
subalgebra of the algebra g, there exists a (not necessarily unique) complementary
vector space of left-invariant vector fields on TG, say D, such that g = g0⊕D. Note
that although g and g0 are Lie algebras, the vector space D may not be an algebra in
general. We define the vector space D by lifting the continuous lattice (frame) l to
the tangent space TeG and use the left action of the group G on itself to generate a
family of left-invariant linearly independent vector fields on TG. Specifically, given
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the vector fields li : M → TM , li ∈ l, i = 1, · · · , n, we lift them to the tangent
space TeG by requiring that the lifted vectors li ∈ TeG, i = 1, · · · , n, are such that

deπ(li ) = deΛx(li ) = li (x0), i = 1, · · · , n, (103)

where, as before, we identified the Lie algebra g with the tangent space to the
group G at the identity e and where π : G → M is the bundle projection. As
the vector fields li , i = 1, · · · , n are linearly independent and as the projection π is
of maximum rank, the induced action of the group G on the lifted frame l spans the
left-invariant distribution D on the manifold (group) G.

The vector space (of left-invariant vector fields) D forms, by definition, a
horizontal distribution on the principal bundle π : G → M . Indeed, it depends
smoothly on g ∈ G and, as the subalgebra g0 is the kernel of the projection dπ the
restriction of dπ to the subspace D, i.e., dπ |D, is an isomorphism onto the tangent
space TM . However, although the distribution D is horizontal and left-invariant
under the induced action of G on its tangent space, it does not, in general, define a
principal bundle connection on G. The reason for that is that D is not necessarily
right-invariant under the action of the isotropy group G0; the structure group of the
bundle π : G→ M .

To circumvent this deficiency we shall restrict our analysis to continuous lattice
structures such that the corresponding homogeneous manifold G/G0 is reductive,
that is, there exists a vector space D of left-invariant vector fields on TG such that
the algebra g is the direct sum of the isotropy Lie algebra g0 and the vector space D
and that the space D is invariant under the infinitesimal action of the subalgebra g0,
i.e., [g0,D] ⊂ D.6 As the distribution D is left-invariant under the induced action
of the whole group G, and as the group G is connected, the reductivity requirement
of G/G0 implies that the distribution D is right-invariant under the subgroup G0.
Hence, such D is a horizontal distribution corresponding to a left-invariant principal
bundle connection on π : G→ M .

Our last step in identifying the torsion and the curvature associated with the given
lattice frame l is to ‘reconstruct’ the left-invariant principal bundle connection D on
the bundle of linear frames of the body manifoldM , thus associating a specific linear
connection with the defective solid continuum. To do this, let us first introduce the
concept of the linear isotropy representation of the subgroup G0. That is, given
g ∈ G, consider the mapping Λg : M → M such that Λg(x) = Λ(g, x), x ∈ M .

6The reductivity of a homogeneous space G/G0 is usually defined by requiring that there exists a
vector space D ⊂ g such that the algebra g = g0⊕D and such that it is invariant under the adjoint
action of the subgroup G0. The condition [g0,D] ⊂ D implies the invariance of the distribution
D under the adjoint action of the group G0, but not vice versa. However, when the group G is a
connected Lie group, both conditions are equivalent.

Note that not all homogeneous spaces are reductive [44]. Note also that it is not necessarily
easy to determine if a given homogeneous space is indeed reductive as it requires finding a vector
space complement to g0 in g (among all possible complements) which satisfies the said condition
of invariance.
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In particular, Λh(x0) = x0 if and only if h ∈ G0. Moreover, given h ∈ G0, the
tangent map dx0Λh : Tx0M → Tx0M is a linear isomorphism inducing aGL(n,R)-
representation of the isotropy groupG0, whereGL(n,R) denotes the general linear
group of Rn. Namely, let u0 : Rn → Tx0 be a linear isomorphism (a linear frame)
at x0 ∈ M assigning to an n-tuple (ξ1, · · · , ξn) ∈ R

n a vector in Tx0M having
ξ1, · · · , ξn coordinates in the specific basis. The linear isotropy representation of
G0 is the homomorphism λ : G0 → GL(n,R) such that

λ(h) = u−1
0 ◦ dx0Λh ◦ u0, h ∈ G0, (104)

where the image G̃0 = λ(G0) is called the linear isotropy group at x0 ∈ M .
Choosing the specific frame u0 and having the linear isotropy representation

available, we can now ‘replicate’ the bundle π : G → M as a subbundle of the
bundle of linear frames of M . Indeed, given the frame u0 and selecting a point
x ∈ M , the mapping dx0Λg ◦ u0 : Rn → TxM , such that Λ(g, x0) = x, represents
a linear frame at x; all due to the transitivity of the action Λ. In addition, acting
on such a frame on the right by the linear isotropy group one obtains a selection of
linear frames at x. Namely, given h ∈ G0

dx0Λg ◦ u0 ◦
(
u−1

0 ◦ dx0Λh ◦ u0

)
= dx0Λgh ◦ u0 (105)

is again a linear frame at x. Collecting all linear frames by varying g ∈ G and
h ∈ G0 one obtains a reduction of the bundle of linear frames L(M) to the linear
isotropy group, that is, a subbundle of L(M) with G̃0 ⊂ GL(n,R) as its structure
group. Let L(M, G̃0) denote the new subbundle of linear frames with the projection
π̃ : L(M, G̃0) → M assigning to a frame dx0Λg ◦ u0 the point Λ(g, x0). Hence,
the mapping g �→ dx0Λg ◦u0 fromG to L(M, G̃0) defines the bundle isomorphism
between π : G → M and π̃ : L(M, G̃0) → M over the identity map on M .
Moreover, as π : G → M is left-invariant under the action of the group G so
is L(M, G̃0). That is, given a frame u ∈ L(M, G̃0) the action of the group G is
defined by assigning to the pair g, u the frame gu = dxΛg ◦ u where g ∈ G and
π̃(u) = x.

The left-invariant horizontal distribution D on the groupG can now be replicated
on the bundle of frames L(M, G̃0) using the natural lift of X ∈ g construction7

thus inducing a left-invariant horizontal distribution D̃ on L(M, G̃0) corresponding
to a linear connection on M . To this end, let gl(n,R) denote the Lie algebra of the
general Lie group GL(n,R) and let Π be an equivariant linear mapping from the
Lie algebra g to gl(n,R) (a gl(n,R)-valued one-form on TeG) such that

Π(X) =
{
dλ(X), X ∈ g0,

0, X ∈ D,
(106)

7See for example [24].
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where dλ is the Lie algebra homomorphism from g0 into gl(n,R) induced by the
linear isotropy representation λ.8 The (lattice) canonical connection corresponding
to the decomposition g = g0 ⊕ D of the reductive homogeneous space G/G0 is a
left-invariant linear connection on the reduced frame bundle L(M, G̃0) defined by
the gl(n,R)-valued one-form (a connection form) ω such that

ω(X̃) = Π(X), X ∈ g, (107)

where X̃ is the natural lift of X to the bundle L(M, G̃0). Note that it can be shown
that the natural lift of any X ∈ g0 is vertical in L(M, G̃0) and that the distribution
D̃ containing the natural lifts of X ∈ D is a horizontal distribution in L(M, G̃0).
Then we have:

Theorem 6 Let l : M → L(M) be a continuous lattice defined on the body
manifold M . Select the point x0 ∈ M and the frame u0 : Rn → Tx0M .
Suppose that the homogeneous space G/G0 associated with the lattice l is
reductive relative to the decomposition g = g0 ⊕D of the Lie algebra of the
Lie groupG and letL(M, G̃0) be the corresponding reduction of the bundle of
linear frames ofM to the linear isotropy group G̃0. Finally, identify the vector
space D (viewed as a subspace of TeG) with R

n by means of the isomorphism
u−1

0 ◦ deΛx0 |D : D → R
n. Then, subject to the choice of the frame u0, the

torsion and curvature of the left-invariant lattice canonical connection ω are
given at x0 by

1. T (X, Y ) = −[X, Y ]D,
2. R(X, Y )Z = −[[X, Y ]g0 , Z]
for any X, Y,Z ∈ D where [·, ·]D and [·, ·]g0 denote the D and g0
components of the Lie algebra bracket in g, respectively. In addition, both
tensors are left-invariant on M , thus, covariantly constant.

As the torsion and the curvature of the lattice canonical connection are expressed
by the Lie bracket of the Lie algebra g it is evident that the properties of the
connection ω are, de facto, determined by the properties of the group G. Two
specific cases are particularly worth mentioning. First, suppose that the reductive
decomposition g = g0⊕D is such that the vector space D is also a Lie algebra. Then,
the canonical connection ω is curvature free (flat) as the Lie bracket [D,D] has no
g0 component. This is true, in particular, when the group G is a semi-direct product
of the isotropy group G0 and another Lie group, say D, the Lie algebra of which is
isomorphic to D. If, in addition, the groupD is abelian the canonical connection ω is

8The equivariance of the one-form Π is the direct consequence of the assumption that the
homogeneous manifold G/G0 is reductive as shown in [13].
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trivial as its torsion vanishes as well. Second, suppose that the continuous lattice l is
uniformly defective (i.e., the dislocation density tensor is constant). Consequently,
its body manifold M can be viewed as a Lie group acting on itself and the isotropy
group G0 is trivial. Thus, the curvature of the corresponding lattice canonical
connection ω vanishes. Moreover, its torsion is given by the Lie algebra constants
of the algebra g. In other words, when the continuous lattice is uniformly defective
the long-distance parallelism induced on M by the lattice frame l is identical to the
long-distance parallelism of the corresponding canonical connection ω. In general,
however, these two connections are somewhat independent, and complementing, as
illustrated by the examples in the next section.

We should also point out that when the lattice canonical connection ω is flat,
the left-invariant distribution D̃ is involutive, i.e., there exists a frame field l∗i , i =
1, · · · , n, on M given by the tangent of the orbit map Λx ;

l∗i (x) = deΛx(li), x ∈ M, (108)

defining the long-distance parallelism corresponding to ω.

Example 2 Here we continue to develop Example 1, where the continuous lattice
l is defined by the frame l1 = (1, z, 0), l2 = (0, 0, 1), l3 = (z, 1

2 (z
2 − x2),−x)

inducing the left action of the semi-direct product of the Heisenberg group and the
special orthogonal group G = H � SO(2) on R

3 and the isotropy group G0 at
(x0, 0, 0) ∈ R

3.
As the group G is a semi-direct product of two subgroups its Lie algebra g is

reductive via the decomposition g = g0 ⊕ h where h denotes the Lie algebra of
the Heisenberg group while g0 is the Lie algebra of the isotropy group isomorphic
to so(2). Indeed, define the vector space D = span{v1, v2, v3} to realize that it
forms a Lie subalgebra (the Lie algebra of H ) of g. Note also that D is left-
invariant under the action of the whole group G and that it is invariant under the
infinitesimal action of the algebra g0 as [D, g0] = [D, v4] ⊂ D. Moreover, as
the action Λ : G × R

3 → R
3 induces the mapping Λ(w,t,θ) : R3 → R

3 such
that Λ(w,t,θ)(a, b) = Λ((w, t, θ), (a, b)), where (w, t, θ) ∈ G = H � SO(2), its
tangent map d(a,b)Λ(w,t,θ) can be represented by

⎛

⎝
cos θ 0 sin θ

−α sin θ − z sin2 θ − 1
2x sin 2θ 1 α cos θ − x sin2 θ + 1

2 sin 2θ
− sin θ 0 cos θ

⎞

⎠ . (109)

Thus, the linear isotropy representation of the isotropy groupG0 ∼= so(2) is given as

d(x0,0,0)Λ(0,0,θ) =
⎛

⎝
cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

⎞

⎠ . (110)



A Kinematics of Defects in Solid Crystals 343

Finally, as the vector space D is a subalgebra of g, it is involutive and the
corresponding lattice canonical connection is flat (curvature free) but it has a
non-vanishing torsion as not all Lie brackets [vi, vj ], i, j = 1, 2, 3, vanish.
Consequently, the long-distance parallelism of ω is defined by the frame

l∗(x, y, z) = deΛ(x,y,z)(v1, v2, v3) =
⎛

⎝
1 0 0
z 1 0
0 0 1

⎞

⎠ . (111)

The corresponding Christoffel’s symbols Γ ijk are defined [15], by

Γ ij3 = −
⎛

⎝
1 0 0
z 1 0
0 0 1

⎞

⎠

−1

∂

∂z

⎛

⎝
1 0 0
z 1 0
0 0 1

⎞

⎠ , i, j = 1, 2, 3, (112)

where all Γ ij1, Γ ij2 vanish.

7.2 Examples

In this last section we present a summary9 of two other examples of continuous
lattice structures; one when the lattice canonical connection is not only flat, as in
our main example but, in fact, is trivial and the other when the lattice canonical
connection is non-flat but symmetric.

Let us consider first the two-dimensional lattice defined in the standard coor-
dinate system on R

2 by the frame l1 = (1, 0) and l2 = (0,−x). This lattice is
non-uniformly defective and generates the three-dimensional algebra (c.f., Sect. 6)

l = span{(1, 0), (0,−x), (0, 1)} (113)

inducing the left action Λ of the connected group G on R
2 such that

Λ((a, b, c), (x, y)) = (x + a, y − b(x + a)+ c) (114)

where (a, b, c) ∈ G, (x, y) ∈ R
2 and where the group multiplication is gg =

(a + a, b + b, c + c + ba), g, g ∈ G.
The (left) Lie algebra g of the group G is spanned by the vector fields

v1 = (1, 0, 0), v2 = (0, 1, a), v3 = (0, 0, 1) (115)

9More detailed presentation can be found in [13].
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and it is straightforward to show that it is isomorphic to l. Selecting a point
(x0, y0) ∈ R

2, the isotropy group of the action Λ at (x0, y0) is

G0 = {(0, b, bx0) : b ∈ R} (116)

and the corresponding Lie algebra is spanned by (0, 1, x0).
To determine if the homogeneous space G/G0 is reductive, let us define the

vector space of left-invariant vector fields on G by

D = span{v1, v3}. (117)

When supplemented by the vector field v0 = (0, 1, x0+a) it generates a Lie algebra
of left-invariant vector fields on G isomorphic to g and such that g = g0 ⊕ D. In
addition, as [v1, v0] = v3 and [v3, v0] = 0, the vector space D is invariant under
the infinitesimal action of the isotropy group G0 proving that G/G0 is reductive
under the decomposition g = g0 ⊕ D. Moreover, as the bracket [v1, v3] vanishes,
the vector space D is an abelian Lie algebra. Putting all these facts together, we
conclude that the lattice canonical connection ω induced by the distribution D is flat
and has a vanishing torsion (Theorem 6). In fact, the corresponding long-distance
parallelism is defined by the standard frame

l∗(x, y) = deΛ(x,y)(v1, v3) =
(

1 0
0 1

)

(118)

implying that the Christoffel’s symbols Γ ijk , i, j, k = 1, 2, of the connection ω
vanish identically.

In our second example, we consider the lattice frame l : R2 → L(R2) given by
the vector fields

l1 = (y,−x), l2 = (1

2
(1+ x2 − y2), xy). (119)

Calculating the corresponding Lie algebra l we have [l1, l2] = (xy, 1
2 (1 + y2 −

x2)) = l3 while [l2, l3] = l1 and [l1, l3] = −l2. Thus, the lattice algebra l is a
three-dimensional Lie algebra isomorphic to the Lie algebra so(3) of the special
orthogonal group SO(3).10 It turns out that the algebra so(3) is isomorphic to the
Lie algebra su(2) of the special unitary group SU(2). Moreover, as the group SU(2)

10To confirm this isomorphism select

⎛

⎝
0 0 0
0 0 −1
0 1 0

⎞

⎠ ,

⎛

⎝
0 −1 0
1 0 0
0 0 0

⎞

⎠ ,

⎛

⎝
0 0 −1
0 0 0
1 0 0

⎞

⎠

as a basis of so(3) [2].
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covers SO(3) via the isomorphism p : SU(2)/{I,−I } → SO(3), we replace the
action of SO(3) on R

2 by the analogous action of SU(2) on the complex plane C

viewed as R2. That is, we consider the action Λ : SU(2)× C→ C such that

Λ

((
a −b̄
b ā

)

, z

)

= b + āz
a − b̄z , (120)

where

(
a −b̄
b ā

)

∈ SU(2), a, b ∈ C, subject to the constraint aā + bb̄ = 1. Such

action Λ is transitive with the isotropy group at, say z0 = 1, given by

G0 =
{(

α βi

βi α

)

: α2 + β2 = 1;α, β ∈ R

}

. (121)

Selecting

E = 1

2

(
0 i
i 0

)

, F = 1

2

(
i 0
0 −i

)

, H = 1

2

(
0 1
−1 0

)

(122)

as the basis of the (left) Lie algebra of SU(2), we see that the Lie algebra
g0 of the isotropy group is spanned by the matrix E and that the vector space
D = span{H,F } is such that [g0,D] ⊂ D. Hence, the homogeneous space
G/G0 = SU(2)/G0 ∼= SU(2)/SO(2) is reductive. However, in the contrast
with our previous example, the vector space D is not a Lie subalgebra of su(2) as
[H,F ] = E ∈ g0. Consequently, the lattice canonical connection ω corresponding
to our reductive decomposition is symmetric but non-flat (Theorem 6). Indeed, as
[H,F ]D = 0 the components of the curvature tensor are given by the relations:

R(H,F )H =[[H,F ]g0 ,H ] = [E,H ] = F (123)

R(H,F )F =[[H,F ]g0 , F ] = [E,F ] = −H. (124)

8 Conclusion

We have explored the relation between discrete and continuous crystal structures
in the context of three dimensional nilpotent Lie groups, mostly, and developed
the mathematical apparatus required to discuss these ideas in a systematic way,
it seems to us. It is a very particular assumption that, given a crystal state Σ ,
there exists such a nilpotent group (even more particular is the assumption that
the relevant group is commutative, which leads to traditional crystallography . . . ).
More general is the notion that the crystal state is such that there is a corresponding
finite-dimensional lattice algebra, and so a higher dimensional Lie group acting on
the manifold M . This more general notion can be expressed in terms of relations
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between the directional derivatives of the ddt, and so in terms of constraints on
the classifying manifold. From this point of view, what we have done is explore
properties of vector fields relating to that part of the classifying manifold where
the corresponding constraints are satisfied, and focus on related discrete structures.
We have also asked whether or not the points that compose those discrete (group)
structures can be represented (in carefully chosen coordinates) in terms that are
familiar in crystallography, that is as lattices or collections of lattices, and in the
cases that we have discussed it is indeed so that there are such representations.
Some more general cases are discussed in [1, 32, 33], for example.

We do not know of general results relating to the classification of discrete group
structures relating to (for example) general submanifolds of CMΣ , or the existence
of corresponding representations as (collections of) lattices. (Since the precepts of
crystallography were shaken by the discovery of quasicrystals, i.e., discrete sets of
points with aperiodic structure [47], one must suppose that such representations do
not always exist). The major task that we envisage is, loosely, to provide an ‘atlas’
of CMΣ , showing the possible corresponding discrete crystal structures in some
parts, more general discrete structures (e.g., perhaps, quasicrystals) elsewhere. The
quantities that define CMΣ are the scalar invariants, or plastic strain variables—
with such an atlas one would have insight into how changes in the plastic strain
variables induce changes in crystal structure, and this should enable one to construct
a mechanics of defective crystals based entirely on a well defined kinematics.

Of course other tasks need to be addressed, to facilitate this programme in
a way that resonates with phenomenological theories of inelastic behaviour and
encourages more study of the geometry: for example, ‘slip’ should find modern
geometric expression, curvature of a higher dimensional Lie group lacks physical
interpretation in terms analogous to the Burgers vector construction. There are
technical issues too, but we refer the reader to source material for details.
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Abstract The 1950s foundational literature on rational mechanics exhibits two
somewhat distinct paradigms to the representation of continuous distributions of
defects in solids. In one paradigm, the fundamental objects are geometric structures
on the body manifold, e.g., an affine connection and a Riemannian metric, which
represent its internal microstructure. In the other paradigm, the fundamental object
is the constitutive relation; if the constitutive relations satisfy a property of material
uniformity, then it induces certain geometric structures on the manifold. In this
paper, we first review these paradigms, and show that they are equivalent if
the constitutive model has a discrete symmetry group (otherwise, they are still
consistent; however, the geometric paradigm contains more information). We then
consider bodies with continuously distributed edge dislocations, and show, in
both paradigms, how they can be obtained as homogenization limits of bodies
with finitely many dislocations as the number of dislocations tends to infinity.
Homogenization in the geometric paradigm amounts to a convergence of manifolds;
in the constitutive paradigm it amounts to a Γ -convergence of energy functionals.

M. Epstein
Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB,
Canada
e-mail: mepstein@ucalgary.ca

R. Kupferman · C. Maor (�)
The Hebrew University of Jerusalem, Jerusalem, Israel
e-mail: raz@math.huji.ac.il; cy.maor@mail.huji.ac.il

© The Editor(s) (if applicable) and The Author(s), under exclusive license to
Springer Nature Switzerland AG 2020
R. Segev, M. Epstein (eds.), Geometric Continuum Mechanics, Advances in
Mechanics and Mathematics 43, https://doi.org/10.1007/978-3-030-42683-5_8

349

mailto:mepstein@ucalgary.ca
mailto:raz@math.huji.ac.il
mailto:cy.maor@mail.huji.ac.il
https://doi.org/10.1007/978-3-030-42683-5_8


350 M. Epstein et al.

We show that these two homogenization theories are consistent, and even identical
in the case of constitutive relations having discrete symmetries.

1 Introduction

1.1 Geometric and Constitutive Paradigms

Geometric Paradigm: Body Manifolds The 1950s foundational literature on
rational mechanics exhibits two somewhat distinct paradigms to the representation
of continuous distributions of defects in solids. On the one hand, there is a paradigm
promoted by Kondo [24], Nye [31], Bilby [2], and later Kröner (e.g., [26]), in which
solid bodies are modeled as geometric objects—manifolds—and their internal
microstructure is represented by sections of fiber bundles, such as a metric and an
affine connection.

More specifically, in [2, 24, 31], the body manifold is assumed to be a smooth
manifold M, endowed with a notion of distant parallelism, which amounts to
defining a curvature-free affine connection ∇. The connection is generally non-
symmetric, and its torsion tensor is associated with the density of dislocations.
This geometric model is motivated by an analysis of Burgers circuits, which in the
presence of dislocations exhibit geodesic rectangles whose opposite sides are not of
equal lengths—a signature of torsion (see Sect. 3 for a discussion of Burgers circuits
and Burgers vectors in this setting).

Note that modulo the choice of a basis at a single point, the definition of a distant
parallelism is equivalent to a choice of a basis for the tangent bundle at each point
(i.e., a global smooth section of the frame bundle). Intuitively, the frame field at each
point corresponds to the crystalline axes one would observe under a microscope.
Torsion is a measure for how those local bases twist when moving from one point
to another.

The choice of local bases induces a Riemannian metric g, known as a reference or
an intrinsic metric. The intrinsic metric is the metric with respect to which the bases
are orthonormal; although no specific constitutive response is assumed ab initio, it
is interpreted as the metric that a small neighborhood would assume if it were cut
off from the rest of the body, and allowed to relax its elastic energy.

The reference metric g induces also a Riemannian (Levi-Civita) connection,
denoted ∇LC , which differs from ∇, unless the torsion vanishes. The Rieman-
nian connection, unlike ∇, is generally non-flat; its curvature, if non-zero, is an
obstruction for the existence of a strain-free global reference configuration. Finally,
a triple (M, g,∇), where ∇ is a flat connection, metrically consistent with g, is
known as a Weitzenböck space or a Weitzenböck manifold [37] (a notion originating
from relativity theory, see, e.g., [1, 17]; for its use in the context of distributed
dislocations, see, e.g., [19, 21, 32, 38]).

Constitutive Paradigm The second paradigm, due largely to Noll [30] and Wang
[36], takes for elemental object a constitutive relation. The underlying manifold M
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has for role to set the topology of the body, and be a domain for the constitutive
relation. In the case of a hyperelastic body, the constitutive relation takes the form
of an energy density W : T ∗M⊗Rd → R. A constitutive relation is called uniform
if the energy density at every point p ∈ M is determined by an “archetypical”
function W : Rd × Rd → R, along with a local frame field E : M × Rd → TM,
which specifies how W is “implanted” into M. Once a uniform constitutive relation
has been defined, its pointwise symmetries and its dependence on position may
define a so-called material connection ∇ along with an intrinsic Riemannian metric
g (described in detail in Sect. 2).

At this point, it is interesting to note Wang’s own reflections comparing the
geometric approach (in our language) to his [36]:

It is not possible to make any precise comparison, however, since the physical literature on
dislocation theory rarely if ever introduces definite constitutive equations, resting content
with heuristic discussions of the body manifolds and seldom taking up the response of
bodies to deformation and loading, which is the foundation stone of modern continuum
mechanics.

Indeed, in the geometric paradigm, the constitutive relation typically does not appear
explicitly. However, the geometric and the constitutive paradigms are consistent
with each other. On the one hand, as shown by Wang, a constitutive relation subject
to a uniformity property defines an intrinsic metric and a material connection (as
will be shown below, the material connection is unique only if W has a discrete
symmetry group). On the other hand, a body manifold endowed with a notion
of distant parallelism defines a uniform constitutive relation for every choice of
archetypal function W and implant map at a single point—once W has been
implanted at some p ∈M, the whole constitutive relation is determined by parallel
transporting this implant to any other point in M according to ∇; by construction,
∇ is a material connection of that constitutive relation.

This is the viewpoint that we take in this paper, and the one through which we
show how homogenization processes in both paradigms are also equivalent with
each other (see below). However, Wang’s comment above is not unfounded: first, in
the case of an archetype with a continuous symmetry group (say, isotropic), there is
more than one material connection associated with the constitutive relation, hence
from the constitutive point of view it does not make sense to talk about a single
parallelism (or Weitzenböck manifold) that represents the body. Second, in certain
cases in which the geometric viewpoint assumes a posteriori a constitutive response,
the parallelism, or the torsion tensor associated with it, are eventually considered as
variables in the constitutive relation [27], resulting in so-called coupled stresses
[25]. This approach, in which the underlying geometric structure can change, e.g.,
due to loading, is beyond the scope of the constitutive paradigm (or at least, its
time-independent version), and such models will not be considered in this work.

Finally, let us note that there are other approaches to dislocations not covered by
the above discussion, which are beyond the scope of this paper. In particular, we will
not consider the line of works emanating from Davini [10], and other more recent
approaches such as [6, 18], although some of the consequences of the discussions
here (e.g., continuous vs. discrete symmetries) may also apply to them.
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1.2 Description of the Main Results

The physical notion of dislocations is rooted in discrete structures, such as defective
crystal lattices. Thus, when considering distributed dislocations, it is natural to con-
sider a homogenization process, in which a continuous distribution of dislocations
(according to a chosen paradigm) is obtained as a limit of finitely many dislocations,
as those are getting denser in some appropriate sense. A priori, each of the two
paradigms could have its own homogenization theory:

1. Geometric paradigm: Consider body manifolds representing solids with finitely
many (singular) dislocations, and study their limit as the number of dislocations
tends to infinity.

2. Constitutive paradigm: Consider constitutive relations modeling solids with
finitely many (singular) dislocations, and study their limit as the number of
dislocations tends to infinity.

The first task belongs to the realm of geometric analysis, and has been addressed in
[19, 21], where it was shown that any two-dimensional Weitzenböck manifold can
be obtained as a limit of bodies with finitely many dislocations (see Sect. 3 for a
precise statement). The second task belongs, for hyperelastic bodies, to the realm
of the calculus of variations, and has been addressed in [20] for the special case of
isotropic materials.

In this paper, we review the main results of these papers and extend the analysis
of [20] to the non-isotropic case. More importantly, we show that the homoge-
nization theories resulting from the geometric and the constitutive paradigms are
consistent, and even identical in the case of constitutive relations having discrete
symmetries. In particular, both predict the emergence of (the same) torsion as a
limit of distributed dislocations.

Our main result in this chapter can be summarized as follows:

Theorem 1 (Equivalence of Homogenization Processes, Informal)

1. For a body manifold (M, g,∇) with finitely many dislocations, there is a natural
way to define a constitutive relation (M,W) based on a given archetype W, for
which ∇ is a material connection and g is an intrinsic metric (Proposition 4).

2. If the archetype W has a discrete symmetry group, then this relation is bijective;
i.e., a constitutive relation (M,W) defines a unique material connection ∇ and
a unique intrinsic metric g (Proposition 5).

3. If a sequence of body manifolds with n dislocations (Mn, gn,∇LCn ) converges
(in the sense of Theorem 2) to a Weitzenböck manifold (M, g,∇), then the
corresponding constitutive models (M,Wn) Γ -converge to a constitutive model
(M,W), for which ∇ is a material connection and g is an intrinsic metric
(Theorem 3).

A sketch of Theorem 1 is shown in Fig. 1.
In addition to Theorem 1, this paper reviews the fundamental notions of the

geometric and constitutive paradigms, and their abovementioned equivalence; we
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Fig. 1 A sketch of the main result (Theorem 1)

believe that the current presentation is original, and includes several results for
which it is difficult (if at all possible) to find in the existing literature precise
statements and proofs.

In the rest of this section, we elaborate on our main results. We start by
considering a defect-free body: in the geometric paradigm, such a body is modeled
as a d-dimensional Riemannian manifold (M0, g0), which can be embedded iso-
metrically in Euclidean space (Rd , e), where e is the standard Euclidean metric. Let
∇LC0 be the Levi-Civita connection of g0; since (M0, g0) is isometric to a Euclidean
domain, the connection ∇LC0 is flat, and parallel transport is path-independent.

To obtain a constitutive relation for that same body, one has to fix an archetype
W and a bijective linear map (E0)p : Rd → TpM0 at some reference point p ∈
M0. The two together determine the mechanical response to deformation at p: for
A ∈ T ∗pM0 ⊗ Rd , the elastic energy density (per unit volume, where the reference
volume is the volume form of (M0, g0)) at p is

(W0)p(A) =W(A ◦ (E0)p).

A constitutive relation is obtained by extending (E0)p into a ∇LC0 -parallel frame
field E0 : M0 × Rd → TM0 (here is where the path-independence of the parallel
transport is required). The elastic energy density is

W0(A) =W(A ◦ E0), (1)

and the elastic energy associated with a map f :M0 → Rd is

I0(f ) =
∫

M0

W0(df ) dVolg0 , (2)

where dVolg0 is the Riemannian volume form. As we show in Sect. 2.1, the
geometric and the constitutive paradigms are consistent: g0 is an intrinsic metric
for W0 and ∇LC0 is a material connection for W0; moreover, ∇LC0 is the unique
material connection for W0, provided that W has a discrete symmetry group.
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Fig. 2 Two equivalent
cut-and-weld constructions
generating a body manifold
with a single edge
dislocation. Top: the
segments pr and pr ′ are
identified (i.e., glued) as well
as the segments rq and r ′q ′.
p and r ∼ r ′ are the only
singular points in the
manifold (each with conical
singularity of the same
magnitude and opposite sign).
Bottom: a sector whose
vertex is denoted by p is
removed from the plane and
its outer boundaries are glued
together, thus forming a cone.
The same sector is then
inserted into a straight cut
along a ray whose endpoint is
denoted by r

Consider next a body with a single straight edge-dislocation. Note that straight
edge dislocations are in essence two-dimensional; we henceforth restrict ourselves
to two dimensions. From the point of view of the geometric paradigm, the body
manifold of a body with one edge-dislocation can be described by a Volterra cut-
and-weld protocol [35]. There are numerous ways of implementing a Volterra
protocol: two ways are depicted in Fig. 2.

The outcome of this cut-and-weld protocol is a topological manifold M1, which
is smooth everywhere except at two points (the points p and r ∼ r ′ in Fig. 2). It
is endowed with a metric g1, which is locally Euclidean, since locally, every non-
singular point has a neighborhood satisfying the abovementioned defining properties
of a defect-free body manifold. As there is no continuous distribution of dislocations
in this picture, the natural connection associated with this body is the Levi-Civita
connection ∇LC1 of (M1, g1). Moreover, the parallel transport induced by ∇LC1 is
path-independent for all simple closed paths that do not encircle only one of the two
singular points. This restriction on admissible paths can be replaced by removing
from the smooth part a segment connecting the two singular points. Note that the
topological manifold M1 is simply connected; however, its smooth component is
not. Despite being (almost everywhere) locally Euclidean, it cannot be embedded in
the Euclidean plane isometrically.
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The procedure for obtaining a constitutive relation within the constitutive
paradigm follows the exact same lines as for a defect-free body. One has to fix
an archetype W and a frame at a point (E1)p : R2 → TpM1; extending (E1)p

into a parallel frame field E1 : M1 ⊗ R2 → TM1, the elastic energy density
W1 : T ∗M1 ⊗ R2 → R is given by (1), after changing the subscript 0 to 1. Once
again, the two paradigms are consistent, as g1 and ∇LC1 are an intrinsic metric and
a material connection for the energy density W1. Note that none of the two pictures
makes any explicit mention of torsion.

The generalization of this procedure to a body carrying n singular edge dislo-
cations follows the same lines, performing n Volterra cut-and-weld protocols, thus
obtaining a simply connected topological manifold, which is smooth everywhere
but at n pairs of singular point. On the geometric side, one obtains a triple
(Mn, gn,∇LCn ), where the Levi-Civita connection ∇LCn has trivial holonomy,
namely, its parallel transport is path-independent for all simple closed paths that do
not encircle only one singular point within a pair. After the choice of an archetype
W and a frame at a point (En)p : R2 → T ∗pMn, one obtains an energy density Wn,
for which gn and ∇LCn are an intrinsic metric and a material connection.

Next consider the limit of n → ∞. As proved in [20], every two-dimensional
body manifold (M, g,∇) admitting a global ∇-parallel frame field is a limit of
manifolds (Mn, gn∇LCn ) with finitely many dislocations. A precise definition of
this convergence is stated in Theorem 2; loosely speaking, it means that Mn can
be mapped into M such that orthonormal ∇LCn -parallel frame fields En are mapped
into a frame field asymptotically close to an orthonormal ∇-parallel frame field.
Note the emergence of torsion, as ∇LCn is torsion-free for every n, whereas ∇ has
non-zero torsion.

We then switch to the constitutive paradigm: as described above, each of the
manifolds (Mn, gn∇LCn ) defines, upon the choice of an archetype W and a frame at
one point (En)p, an energy density Wn and an associated energy In. In Theorem 3,
we prove that as n → ∞, In converges in the sense of Γ -convergence to a
limiting functional I , which has an energy density W , where W is the energy
density obtained by the same construction using W and ∇. In particular, W has
intrinsic metric g and material connection ∇. This “closes the circle,” proving that
the construction of a uniform energy density from a given body manifold can be
extended from finitely many to continuously distributed dislocations.

1.3 Structure of This Paper

In the rest of the paper we formalize the above outline:

• In Sect. 2, we present the main ingredients of the constitutive paradigm,
following [36], under the assumption of hyperelasticity. We use a more modern
notation and some simplifying assumptions.
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Furthermore, we show in Sect. 2 how the constitutive paradigm and the
geometric paradigm for describing dislocations are consistent, and equivalent in
the case of discrete symmetry group (Propositions 4 and 5), thus establishing the
vertical arrows in Fig. 1.

• In Sect. 3, we present in more detail the modeling of dislocations via the
geometric paradigm, using the notion of Weitzenböck manifolds. In particular,
we explain how Burgers vectors arise in this context, and their relation to the
torsion tensor.

The main part of this section is an overview of recent results [19, 21] concern-
ing the homogenization of dislocations within this paradigm—a convergence of
Weitzenböck manifolds (Theorem 2). This establishes the lower horizontal arrow
in Fig. 1. For the sake of readability, we omit some of the technical details, and
focus on the main ideas of the construction.

• In Sect. 4, we prove the convergence of the elastic energies associated with the
converging Weitzenböck manifolds; we show that they Γ -converge to the elastic
energy associated with the limiting Weitzenböck manifold (Theorem 3, Corol-
lary 2), thus establishing the upper horizontal arrow in Fig. 1, and concluding the
proof of Theorem 1.

• Finally, in Sect. 5 we show explicitly how the torsion tensor appears in the
equilibrium equations of elastic bodies with continuously distributed dislocations
according to the constitutive paradigm.

2 The Constitutive Paradigm of Noll and Wang

In this section we present some of the basic notions of the Noll-Wang approach.
We generally follow [36], although our presentation and some of the proofs are
somewhat different. For simplicity, we will assume a hyperelastic model.

Definition 1 (Hyperelastic Body) A hyperelastic body consists of a d-dimensional
differentiable manifold, M—the body manifold—and an energy-density function (or
constitutive relation),

W : T ∗M⊗ Rd → R,

which is viewed as a (non-linear) bundle map over M.

For p ∈ M and A ∈ T ∗pM⊗ Rd , we denote the action of W on A by Wp(A). If

ξ is a section of T ∗M⊗ Rd , then W(ξ) is a function on M.

Remark 1 In the terminology of Noll, such a body is called a simple body since the
constitutive relation at a point depends only on the local deformation (i.e., the first
jet of the deformation) at that point.
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We will use the following notation: the groups GL(d), SO(d) are the standard
subgroups of Hom(Rd ,Rd); for two oriented inner-product spaces (V , g), (W, h)
we will denote by SO(V ,W) or SO(g, h) the set of orientation-preserving isometries
V → W , and by SO(V ) the orientation-preserving isometries V → V .

The next definition makes precise the notion of material uniformity, namely, a
constitutive relation that is “the same” at every point:

Definition 2 (Material Uniformity) A hyperelastic body is called uniform if for
every p ∈M there exists a frame, i.e., a linear isomorphism Ep : Rd → TpM such
that,

Wp(A) =W(A ◦ Ep) for every A ∈ T ∗pM⊗ Rd , (3)

for some

W : Rd ⊗ Rd → R

independent of p.

Remark 2 More precisely, a hyperelastic energy density W is a section of (T ∗M⊗
Rd)∗ ⊗ ∧dT ∗M, i.e., for A ∈ T ∗M ⊗ Rd , W(A) is a d-form. Correspondingly, a
body is uniform if there exists an archetype

W : Rd ⊗ Rd → ∧dRd

such thatWp = (Ep)∗W. Since, eventually, we will only consider solid bodies with
a given Riemannian volume form, it is more convenient to consider W as a scalar
density with respect to this volume form, and W is a scalar density with respect
to the canonical volume form in Rd . The given volume form then appears when
considering the energy functional and not merely the scalar energy density, as in (2)
or Definition 8.

Material uniformity is the weakest sense in which a constitutive relation is
independent of position; it is defined independently of any coordinate system. It
is a type of what is sometimes called “homogeneity” (though this term has another
significance in [36]). The function W is sometimes called an archetype, whereas the
frame Ep is sometimes called an implant map, because it shows how the archetype
W is implanted into the material. Note that for a given uniform constitutive relation,
neither the archetype W nor the implant map Ep is unique. If (W, Ep) is an
archetype-implant pair at p ∈ M, then so is (W′, Ep ◦ S), where S ∈ GL(d),
and for every B ∈ Hom(Rd ,Rd),

W′(B) =W(B ◦ S−1).

Moreover, the implant map may not be unique even for a fixed W, depending on the
symmetries of W (see below).
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Definition 3 (Smooth Body) A uniform hyperelastic body is called smooth if there
exists an archetype W, a cover of M with open sets Uα , and implants Eα =
{Eαp}p∈Uα , such that the sections Eα are smooth.

Example 1 Let g be a smooth Riemannian metric on M, and consider the energy
density

W(A) = dist2(A,SO(g, e)), (4)

where SO(g, e) at p ∈ M is the set of orientation-preserving isometries TpM →
Rd , and the distance in T ∗pM⊗Rd is induced by the inner product gp on TM and the

Euclidean inner product e on Rd . Then, any orthonormal frameEp ∈ SO(Rd , TpM)
is an implant map, with archetype

W(·) = dist2(·,SO(d)). (5)

This body is smooth, as we can choose locally smooth orthonormal frames. Note
that the implant map is non-unique, as it may be composed with any smooth section
of SO(d) over M. This example illustrates why we do not require the existence of
a global section {Ep}p∈M in the definition of smoothness; such sections may not
exist regardless of W , for example, because of topological obstructions on M (e.g.,
if M is a sphere).

Definition 4 (Symmetry Group) Let M be a uniform hyperelastic body. The
symmetry group of the body associated with an archetype W is a group G ≤ GL(d),
defined by

W(B ◦ g) =W(B) for every B ∈ Rd ⊗ Rd and g ∈ G.

The body is called a solid if there exists a W such that G ≤ SO(d) (or sometimes if
G ≤ O(d)). In this case, we shall only consider such W as admissible, and call W
undistorted.

It is easy to see that if W and W′ are archetypes for the same constitutive relation,
then their symmetry groups G and G′ are conjugate, i.e., there exists a g ∈ GL(d),
such that G′ = g−1Gg. Thus, a hyperelastic body is a solid if and only if it has an
archetype W, whose symmetry group is conjugate to a subgroup of SO(d).

The intrinsic right-symmetry of the constitutive relation is determined by W
rather than by W. The symmetry group of W at a point p ∈M is a subgroup

Gp ≤ GL(TpM).

If (W, Ep) is an archetype-implant pair at p, and G is the symmetry group of W,
then for every g ∈ G and A ∈ T ∗pM⊗ Rd ,
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Wp(A) =W(A ◦ Ep) =W(A ◦ Epg) = Wp(A ◦ EpgE−1
p ),

i.e.,

Gp = EpGE−1
p .

Consequently, the space of all implant maps that correspond to W at p is EpG.

Example 2 In Example 1, the symmetry group of W at p ∈M is SO(TpM) (where
TpM is endowed with the inner product gp). W is undistorted if and only if the
implant map Ep at every p ∈M satisfies

E−1
p SO(TpM)Ep = SO(d).

In particular, the archetype (5) is undistorted.

Thus far, we only considered point-symmetries of W in the form of symmetry
groups. We next consider symmetries of W associated with pairs of points in the
manifold:

Definition 5 (Material Connection) A material connection of (M,W) is an affine
connection ∇ on M whose parallel transport operator Π leaves W invariant. That
is, for every p, q ∈M, A ∈ T ∗qM⊗ Rd , and path γ from p to q,

Wp(A ◦Πγ ) = Wq(A),

where Πγ : TpM→ TqM is the parallel transport along γ .

In general, a material connection may fail to exist (there may be topological
obstructions), or may not be unique. The following proposition relates the unique-
ness of a material connection to the nature of the symmetry group (a less general
version of this result appears in [36]):

Proposition 1 Let (M,W) be a smooth uniform hyperelastic body with symmetry
group G. If G is discrete, then there exists a unique locally flat material connection.1

Proof Assume two material connections, whose parallel transport operators areΠ1

and Π2. Let γ be a curve starting at p ∈ M, and let A ∈ T ∗γ (t)M ⊗ Rd for some
t ≥ 0. Then,

Wp(A ◦Π1
γ |[0,t]) = Wγ(t)(A) = Wp(A ◦Π2

γ |[0,t]).

1Strictly speaking, the intrinsic condition is that Gp is discrete for some p ∈ M (and therefore for
every p ∈M). By locally flat, we mean that the curvature tensor vanishes; globally flat implies also
a trivial holonomy. Note that the term flat has a different interpretation in [36], where it describes
a curvature- and torsion-free connection.
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Setting A = B ◦ (Π1
γ |[0,t])

−1 for B ∈ T ∗pM× Rd , we obtain that

Wp(B) = Wp(B ◦ (Π1
γ |[0,t])

−1 ◦Π2
γ |[0,t]),

hence

(Π1
γ |[0,t])

−1Π2
γ |[0,t] ∈ Gp

for every t . Since the left-hand side is continuous in t and Gp is a discrete group,
(Π1

γ |[0,t])
−1Π2

γ |[0,t] is constant. Since at t = 0 it is the identity,

Π1
γ |[0,t] = Π2

γ |[0,t]

for every t . Finally, since γ is arbitrary, Π1 = Π2.
We next prove existence of a locally flat material connection. Let ∪αUα =M be

a cover of M, and let {Eαp}p∈Uα be implant maps. For a curve γ ⊂ Uα starting at p
and ending at q, define

Πγ = Eαq ◦ (Eαp)−1. (6)

For a general curve γ ⊂ M, partition it into curves γ = γn ∗ . . . ∗ γ1 (where
∗ is the concatenation operator), where each γi ⊂ Uαi for some αi , and use the
above definition. In order to show thatΠγ is well defined, we need to show that this
definition is independent of the concatenation. To this end, it is enough to show that
if γ ⊂ Uα ∩ Uβ , then the definition of Πγ with respect to either Uα or Uβ is the
same.

Indeed, consider the function of p,

(Eαp)
−1Eβp : Uα ∩ Uβ → GL(Rd).

Since for any A ∈ T ∗pM⊗ Rd ,

W(A ◦ Eαp) = W(A) =W(A ◦ Eβp),

it follows that (Eαp)
−1E

β
p ∈ G for any p ∈ Uα ∩ Uβ . Since G is discrete, it follows

that this is a constant function of p, that is (Eαp)
−1E

β
p = B ∈ GL(Rd) for every p.

We therefore have that for p, q ∈ Uα ∩ Uβ ,

Eαq (E
α
p)
−1 = Eαq BB−1(Eαp)

−1 = Eαq (Eαq )−1Eβq (E
β
p)
−1Eαp(E

α
p)
−1 = Eβq (Eβp)−1,

and therefore Πγ is well defined. Finally, for a closed curve γ , starting and ending
at p, and contained in one of the domains Uα , it follows from the definition that
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Πγ = IdTpM, hence the holonomy of Π is locally trivial, which implies that
the curvature tensor of the connection associated with Π is zero. Note, however,
that the holonomy of Π may be non-trivial in general (for non-simply-connected
manifolds). ��

Note that if there exists a global continuous implant section {Ep}p∈M (for an
archetype W), then the connection defined by (6) (without the α superscript) is well
defined regardless of the symmetry group, and moreover, it is not only locally flat,
but has a trivial holonomy (that is, a path-independent parallel transport). In fact,
the existence of a material connection with a trivial holonomy is equivalent to the
existence of a global implant section {Ep}p∈M. Indeed, let ∇ be such a connection,
and let Ep0 be an implant at p0 ∈M, then

Ep := ΠγEp0 (7)

is a global continuous implant section (here γ is an arbitrary curve connecting p0
and p).

In the case of a solid body, there is an additional intrinsic geometric construct
associated with the body.

Definition 6 (Intrinsic Metric) Let (M,W) be a smooth solid body with an
undistorted archetype W and implant maps {Ep}p∈M. The intrinsic Riemannian
metric of M associated with W is defined by

gp(X, Y ) = e(E−1
p (X),E−1

p (Y )), for every X, Y ∈ TpM, (8)

where e is the Euclidean inner product in Rd .

This definition depends on W (see Example 3 below), but not on the choice of
implants Ep. Indeed, if Ep and E′p are two implants at p, then, since M is a solid,

g = E−1
p E′p ∈ G ≤ SO(d), and therefore

e(E−1
p (X),E−1

p (Y )) = e
(
g ◦ E′p−1

(X), g ◦ E′p−1
(Y )
)
= e(E′p

−1
(X),E′p

−1
(Y )),

where we used in the last step the SO(d) invariance of the Euclidean metric. Note
also that the existence of a Riemannian metric on M that is invariant under the action
of Gp implies that M is solid [36, Proposition 11.2].

Proposition 2 If ∇ is a material connection and g is an intrinsic metric of a solid
M with an archetype W, then ∇ is metrically consistent with g (equivalently, the
induced parallel transport is an isometry).

Proof Let p, q ∈M, and let γ be a curve from p to q. LetΠγ the parallel transport
of ∇ along γ , X, Y ∈ TpM, and let Eq be an implant at q. Then

gq(ΠγX,Πγ Y ) = e(E−1
q ◦ΠγX,E−1

q ◦ΠγY) = gp(X, Y ),
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where in the right-most equality we used the fact that Π−1
γ ◦ Eq is an implant at p,

for the same archetype W. This equality shows that ∇ is metrically consistent with
g. ��
Corollary 1 ([36, Proposition 11.6]) A solid body (M,W) is equipped with at
most one torsion-free material connection, in which case it is the Levi-Civita
connection of all intrinsic metrics of (M,W).

Proposition 2 states that all material connections are metrically consistent with
every intrinsic metric. In isotropic solids, i.e., solids whose symmetry group is
SO(d), the converse is also true: every metrically consistent connection is a material
connection (note the strong contrast to the case of a discrete symmetry group,
Proposition 1).

Proposition 3 Let (M,W) be an isotropic solid and let ∇ be a connection
metrically consistent with some intrinsic metric g. Then ∇ is a material connection.
In particular, any isotropic solid admits a torsion-free connection—the Levi-Civita
connection of any intrinsic metric.2

Proof Let W be an undistorted archetype and let E = {Ep}p∈M be an implant
map (the proof below does not require any smoothness assumptions of E, and thus
we can assume the existence of a global implant map without loss of generality).
Suppose that g is an intrinsic metric for W , and let ∇ be an affine connection
metrically consistent with g. Since (M,W) is isotropic and W is undistorted, we
have (by definition) that its symmetry group is SO(d).

Let now Πγ : TpM → TqM be the parallel transport of ∇ along a curve γ
from p to q. Since ∇ is metrically consistent with respect to g, Πγ ∈ SO(gp, gq).
Using the fact that for any r ∈ M, Er ∈ SO(e, gr ) (by the very definition of an
intrinsic metric), we have that E−1

q ◦ Πγ ◦ Ep ∈ SO(d). Therefore, since W is

SO(d)-invariant, we have that for any A ∈ T ∗qM⊗ Rd ,

Wp(A◦Πγ ) =W(A◦Πγ ◦Ep) =W(A◦Eq ◦(E−1
q ◦Πγ ◦Ep)) =W(A◦Eq) = Wq(A).

��
The fact that an isotropic solid always has a torsion-free material connection (or

more generally, it has many material connections with different torsions) suggests
that the equilibrium equations of such a body are independent of the torsion tensor.
Indeed, it can be shown explicitly (see Sect. 5) that W only depends on the metric.

Example 3 Consider once again Example 1. Then g is an intrinsic metric, corre-
sponding to the archetype

W(B) = dist2(B,SO(d)),

2This proposition is a more general version of [36, Proposition 11.8].
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and implants Ep ∈ SO(e, g). However, c2g, c > 0, is also an intrinsic metric,
corresponding to the archetype

W(B) = dist2(cB,SO(d))

and implants Ep ∈ c−1 SO(e, g). It can be shown that there are no other intrinsic
metrics in this case. The phenomenon whereby the intrinsic metric is unique up to a
multiplicative constant holds for every isotropic solid.

Remark 3 In two dimensions, a solid archetype is either isotropic or it has a
discrete symmetry; in three dimensions, a body can also be transversely isotropic
(see [36, p. 60]). In this case, the material connection is not unique, but the Levi-
Civita connection of an intrinsic metric may not be a material connection. More
on transversely isotropic materials can be found in [36, Proposition 11.9] and [13,
Proposition 5].

2.1 Relation Between Geometric and Constitutive Paradigms

As presented in the introduction, a body with distributed dislocations is modeled
in the geometric paradigm as a Weitzenböck manifold (M, g,∇), where ∇ is
curvature-free and metrically consistent with g. For simplicity, assume that ∇ also
has trivial holonomy (an assumption that often appears implicitly in this paradigm),
hence the parallel transport operator of ∇ is path-independent (a property known as
distant parallelism or teleparallelism). We denote the parallel transport from p to q
by Πq

p .
To relate the geometric body manifold to the constitutive paradigm, assume a

given undistorted solid archetype W and an implant Ep0 , which is an orthonormal
basis (with respect to gp0 ) at some p0 ∈ M. The pair (W, Ep0) determines the
mechanical response of the body at the point p0. Parallel transporting Ep0 using
(7), we obtain a parallel frame field {Ep}p∈M, which is orthonormal, since ∇ is
metrically consistent with g.

An implant field E = {Ep}p∈M and an archetype W define a unique energy
density using (3). Note that this is the only energy density W with a material
connection ∇ for which W is an archetype with an implant Ep0 at p0 ∈M.

We have thus proved the following:

Proposition 4 Fix a solid (undistorted) archetype W ∈ C(Rd × Rd).

1. Given a Weitzenböck manifold (M, g,∇) with trivial holonomy and an orthonor-
mal basis Ep ∈ SO(e, gp) at some p ∈ M, there exists a unique energy density
W , such that M is uniform with archetype W, and implant map Ep at p, and
such that g is an intrinsic metric and ∇ is a material connection.
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2. Moreover, all energy densities W having an archetype W, an intrinsic metric g,
and a material connection ∇ can be constructed this way. In particular, W is
unique up to a global rotation—the choice of a basis at one point.

A somewhat more intrinsic version of this proposition would be that a Weitzn-
böck manifold (M, g,∇) and a response function Wp at a single point defines a
unique energy density consistent with g and ∇ (without the need to define Ep and
W). However, since the same archetype W can be implanted into different bodies
(thus making sense of different bodies having “the same” response function), and
since we are eventually interested in this paper in sequences of elastic bodies, it is
useful to take W as a basic building block, as done in Proposition 4.

In the case of a discrete symmetry group, the constitutive model (M,W) induces
a unique geometric model (M, g,∇); this follows readily from Proposition 1, and
the discussion following Definition 6:

Proposition 5 Let (M,W) be a uniform solid material with an undistorted
archetype W having a discrete symmetry group. Then, the material connection
∇ and the intrinsic metric g associated with W are unique (if the symmetry group
is not discrete, g is still uniquely determined however not ∇).

Another way of describing the relation between the geometric and constitutive
paradigms is the following:

(a) The triple (M,W, E), where W : Rd ⊗ Rd → [0,∞) and E is a frame field,
determines a uniform body (M,W) uniquely by (3).

(b) On the other hand, by declaring E to be a parallel orthonormal field, we obtain
a Weitzenböck manifold (M, g,∇).

In fact, (M,W, E) contains slightly more information than both (M,W) and
(M, g,∇): given W, (M,W, E) can be derived from (M, g,∇) uniquely, up to a
global rotation (choice of Ep at one point), and in the case of a discrete symmetry
group, the same holds for deriving (M,W, E) from (M,W).

3 Homogenization of Dislocations: Geometric Paradigm

In this section we describe the results of [19, 21], showing how a smooth Weitzen-
böck manifold (M, g,∇), representing a body with continuously distributed disloca-
tions (the torsion tensor of ∇ representing their density), can be obtained as a limit
of bodies with finitely many dislocations. These results are for two-dimensional
bodies, hence we are only considering edge dislocations.

Bodies with Finitely Many Edge Dislocations To set the scene for the geometric
homogenization of elastic bodies, we start by defining a two-dimensional body with
finitely many (edge) dislocations. As illustrated in Fig. 2, we view each dislocation
as a pair of disclinations of opposite sign (a curvature dipole).
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Definition 7 A body with finitely many singular edge dislocations is a compact
two-dimensional manifold with boundary M, endowed with Riemannian metric
g, which is almost-everywhere smooth and locally flat. The singularities are
concentrated on a finite, even number of points, such that

1. The metric g, restricted to a small enough neighborhood around a singular point,
is a metric of a cone.

2. One can partition the singular points into pairs (curvature dipoles), such that the
geodesics connecting each pair (dislocation cores) do not intersect.

3. The Levi-Civita connection ∇LC , defined on the complement of those segments
is path-independent.

A body with finitely many dislocations is a Weitzenböck manifold (M, g,∇LC),
and whenever we refer to a smooth field over M (say a frame field), it is understood
as being smooth on complement of the dislocation cores.

The assumption on the Levi-Civita connection being path-independent implies
that the two cone defects in each pair (that is, the difference between 2π and the
total angle around the cone) are of the same magnitude but of different signs. That
is, they are curvature dipoles. In particular, the construction in Fig. 2 yields a body
with a single dislocation according to this definition.

Another approach for modeling bodies with finitely many dislocation was
presented in [14, 15]; instead of assuming a frame field describing lattice directions,
one assumes a co-frame, that is, a family of 1-forms (called layering forms). This
slightly different viewpoint enables the use of distributional 1-forms—de-Rham
currents—for describing the singular dislocations. This viewpoint is quite close to
the one presented here, although in some sense it requires less structure. Recently,
a homogenization result in this context has been proved [23], which is similar
conceptually to the one presented here. However, the notion of convergence used
in [23] is very weak compared to Theorem 2, and therefore much more difficult to
relate to the convergence of associated energy functionals, which is the main result
of this paper.

Burgers Circuits and Vectors We now present in more detail how Burgers vectors
appear in the context of Weitzenböck manifolds. Let M be a manifold, endowed
with a connection ∇. A Burgers circuit is a closed curve γ : [0, 1] → M, and its
associated Burgers vector is defined by

bγ =
∫ 1

0
Π
γ(0)
γ (t) γ̇ (t) dt ∈ Tγ (0)M,

where Πγ(0)
γ (t) : Tγ (t)M → Tγ (0)M is the parallel transport of ∇ along γ (see, e.g.,

[2, Sec. 4] or [36, Sec. 10]). Thus, as in the classical material science context, the
Burgers vector is the sum of the tangents to the curve; in order to make sense of this
on manifolds one has first to parallel transport all the tangent vectors to the same
tangent space.
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Fig. 3 The Burgers vector associated a loop γε in M, where γε is the image under the exponential
map of a parallelogram σε in TpM (whose edges are

√
εX and

√
εY ), tends asymptotically to

ε T (X, Y )

Burgers vectors are closely related to the torsion tensor,

T (X, Y ) = ∇XY −∇YX − [X, Y ].

The torsion T is an infinitesimal Burgers vector in the following sense: Let p ∈ M

and let expp : TpM → M be the exponential map of ∇ at p.3 Let σε : [0, 1] →
TpM be the parallelogram from the origin built from the vectors

√
εX,

√
εY , and

let γε = expp(σε) (see Fig. 3). Then

d

dε

∣
∣
∣
∣
ε=0

bγε = T (X, Y ).

This result is due to Cartan; see [33, Chapter III, Section 2] for a proof.
In the case of a body with finitely many dislocations (M, g,∇LC) (according

to Definition 7), the Burgers vector for any curve that does not encircle one of the
dislocation cores is zero. This follows from the fact that every simply connected
submanifold of M which does not contain dislocations is isometrically embeddable
into Euclidean plane, and that the Burgers vector of any closed curve in the plane
is zero. To quantify the Burgers vector associated with a curve encircling a single
dislocation, consider the manifold depicted in Fig. 2. One can then see that the
magnitude of the Burgers vector is

b = 2d sin(θ/2), (9)

where d is the length of the dislocation core (the distance between the two singular
points forming the curvature dipole), and θ is the magnitude of the cone defect
(see Fig. 4). For a general Burgers circuit, the Burgers vector is the sum of the

3Actually, any map φ : TpM → M with φ(0) = p whose differential at the origin is the identity
will do.



Limits of Distributed Dislocations in Geometric and Constitutive Paradigms 367

Fig. 4 A Burgers circuit
yielding a Burgers vector
whose magnitude is
2d sin(θ/2), where θ is the
disclination angle and d is the
distance between two
disclinations forming the
edge-dislocation. The vector
points downwards from a
chosen base point of the
circuit

contributions of the dislocation cores it encircles (after parallel transporting each
contribution to the base point).

It follows that by changing d and θ in Fig. 2, while keeping b = 2d sin(θ/2)
fixed, we can obtain “the same” dislocation in different ways, in the sense that a
Burgers circuit around the dislocation core will not be able to distinguish between
the two. Nevertheless, the choice of d and θ will be important from the viewpoint
of convergence of bodies with dislocations, as depicted in the sketch of the proof
below.

Main Result: Convergence in the Geometric Paradigm We now describe a
version of the main theorem of [21], stating that in the geometric paradigm, every
two-dimensional body with distributed dislocations is a limit of bodies with finitely
many dislocations.

Theorem 2 (Homogenization of Dislocations, Geometric Paradigm) For every
compact two-dimensional Weitzenböck manifold (M, g,∇) and parallel orthonor-
mal frame E, there exists a sequence of bodies with finitely many dislocations
(Mn, gn,∇LCn ) and parallel orthonormal frames En, such that there exist homeo-
morphisms Fn :Mn→M, whose restrictions to the smooth part of Mn are smooth
embeddings, satisfying

‖dFn ◦ En − E‖L∞ → 0. (10)

Note that an orthonormal parallel frame E contains all the geometric information
of the Weitzenböck manifold: since E : Rd → TM is orthonormal, it induces g by
pushing forward the Euclidean metric on Rd (as in (8)), and since it is parallel,
it induced the parallel transport of ∇ (see (6)). Therefore, the notion of conver-
gence in Theorem 2, which is defined through the convergence of orthonormal
parallel frames, induces the convergence of the entire structure (Mn, gn,∇LCn ) →
(M, g,∇) of the Weitzenböck manifolds.

We can also view Theorem 2 as a theorem about the convergence of manifolds
endowed with frame fields (Mn, En) → (M, E), where each of the manifolds
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(Mn, En) induces the structure of a body with edge dislocations as in Definition 7.
This viewpoint, while maybe somewhat less natural from a geometric perspective,
will be useful in the next section (convergence in the constitutive paradigm), when
we associate these manifolds with a fixed archetype and consider En and E as
implant maps.

3.1 Sketch of Proof of Theorem 2

Theorem 2 is an approximation result: given a manifold (M, g,∇), we approximate
it with a sequence of manifolds of a specific type (Definition 7).

Approximation by Disclinations Before we describe the main idea of this approx-
imation, it is illustrative to present a similar one, which is somewhat more
intuitive—the approximation of a Riemannian surface by locally flat surfaces with
disclinations. Given a surface (M, g), we approximate it as follows:

1. First, assume that M does not have a boundary. Take a geodesic triangulation
of the manifold—a set of points in M, connected by minimizing geodesics
that do not intersect, such that the resulting partition M consists of geodesic
triangles (such triangulations exist; see, for example, [3, Note 3.4.5.3]). If M has
a boundary, triangulate a subdomain M′ ⊂ M, such that the distance between
∂M′ and ∂M is small (of the order of the distance between the vertices).

2. Construct a manifold by replacing each triangle with a Euclidean triangle with
the same edge lengths. Since M is (generally) not flat, the angles of the original
geodesic triangles differ from the angles of their Euclidean counterparts (by the
Gauss–Bonnet theorem, the angles of each geodesic triangle generally do not
sum up to π ).

This way we obtain a topological manifold which is smooth and flat everywhere
but at the vertices, which are cone singularities (disclinations)—the angles around
each vertex do not generally sum up to 2π , since they differ from the angles of the
original geodesic triangulation. This approximation of the surface is similar to the
approximation of a sphere by a football (soccer ball), using triangles rather than
pentagons and hexagons.

By choosing finer and finer triangulations, say, triangulations in which the edge
lengths are of order 1/n for n 7 1, it is clear (intuitively) that one obtains better
and better approximations of the original manifold; they converge as metric spaces
to the original manifold (see [12] for an explicit estimate) while the distribution-
valued curvatures converge to the smooth curvature of g (see [7]).

The Approximating Sequence for Theorem 2 The idea behind the proof of The-
orem 2 is very similar: Construct a fine geodesic triangulation of the Weitzenböck
manifold (M, g,∇), and then replace each triangle with a locally flat one to obtain a
body with finitely many dislocations. The difference between the two constructions
is in the triangulation and in the type of locally flat replacements.
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1. Take a triangulation of (M, g,∇) in which the edges are ∇-geodesics; those
differ generally from the Levi-Civita geodesics and are not even locally length-
minimizing. At the nth stage, we choose the triangulation such that the length
of each edge is between (say) 1/n and 3/2n, and all the angles are bounded
between δ and π − δ for some δ > 0 independent of n (to ensure that all the
triangles are uniformly non-degenerate as n→∞). The existence of a geodesic
triangulation, based on a non-Levi-Civita connection, is not trivial; it is proved
in [21, Proposition 3.1]. Denote the skeleton of this triangulation (the union of
all the edges) by Xn.

2. Since the Gauss–Bonnet theorem holds for a metrically consistent connection
(see [21, Theorem B.1]), and since ∇ is metrically consistent and has zero
curvature, the angles of each geodesic triangle sum up to π . In other words, if a
geodesic triangle has edge lengths a, b, c and angles α, β, γ , then α+β+γ = π ;
the angles are however “wrong” in the sense that generally α �= α0, β �= β0, and
γ �= γ0, where α0, β0, γ0 are the angles of the Euclidean triangle having edge
lengths a, b, c. Since the geodesic triangles are uniformly regular, the angles do
not deviate much from the angle of the Euclidean triangle,

|α − α0|, |β − β0|, |γ − γ0| = O(1/n). (11)

See [21, Corollary 2.7].4

3. As stated above, the Euclidean triangle having side lengths a, b, c does not have
angles α, β, γ ; however, if Condition (11) holds and α + β + γ = π , then there
exists a manifold containing a single dislocation (according to Definition 7),
whose boundary is a triangle whose edge lengths and angles are a, b, c and
α, β, γ [21, Proposition 3.3] (see Fig. 5). The only additional parameter entering
in this construction is the Burgers vector associated with the perimeter of the
triangle, and whose magnitude is of order O(1/n2). The precise location of the
dislocation core inside the “triangle” is arbitrary (as long as it does not intersect
the boundary), as is the choice of the parameters θ and d (see (9)).

4. The approximation of (M, g,∇) is obtained by replacing each triangle in the
triangulation with a “dislocated” triangle having the same edge lengths and
angles. Denote the resulting manifold by (Mn, gn,∇LCn ), and the skeleton of the
triangulation on Mn by Yn. Since the angles in each triangle in Yn are the same as
in the corresponding triangle in Xn, it follows that the angles around each vertex
in Yn sum up to 2π . In other words, there are no cone defects (disclinations) at
the vertices of the triangulation; the only singularities in Mn are the dislocation
cores within each triangle. Hence, (Mn, gn,∇LCn ) is a body with finitely many
dislocations according to Definition 7 (see Fig. 6)

4The estimate (11) does not appear in this corollary explicitly; it follows from its fourth part,
using the fact a small triangle on M with edges that are Levi-Civita geodesics is, to leading order,
Euclidean (this follows from standard triangle comparison results).
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Fig. 5 A triangle containing
a single edge dislocation.
Given angles α, β, γ adding
up to π and edge lengths
a, b, c, we construct a
defective triangle by
identifying the edges DF and
D′F ′, FE and F ′E′, and EG
and E′G′, such that
CG+G′B = a, AC = b,
and AD +D′B = c

b

B
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Fig. 6 Approximating the smooth Weitzenböck manifold (M, g,∇) by manifolds (Mn, gn,∇LCn )

with singularities. Each ∇-geodesic triangle in (M, g,∇) is replaced by locally Euclidean triangle,
having the same angles and side lengths, and containing a single dislocation (the core of each
dislocation is sketched here as a segment inside the triangle)

Convergence of the Approximating Sequence The next step is to show that
(Mn, gn,∇LCn ) converges to (M, g,∇) in the sense of Theorem 2. That is, show that
given a∇-parallel orthonormal frameE on M, there exist∇LCn -parallel orthonormal
frames En on Mn and maps Fn :Mn→M such that (10) holds.

Given E, the construction of En is very natural: let {e1, e2} be the standard basis
of R2. Let pn ∈ M be a vertex in Xn, the nth triangulation of M, and let qn be
its corresponding vertex in Yn. Each of the vectors Epn(e1), Epn(e2) is a g-unit
vector in TpnM, which is uniquely defined by its angles with the ∇-geodesics in
Xn emanating from pn. Define (En)qn(ei) to be the gn-unit vector in TqnMn which
forms the same angles with the corresponding geodesics emanating from qn. This
defines En everywhere by ∇LCn -parallel transport. Note that this relation between
Epn(ei) and Eqn(ei) actually holds for any vertex pn ∈ Xn ⊂M and corresponding
vertex qn ∈ Yn ⊂ Mn. This follows from the construction, since Xn consists of
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∇-geodesics and Yn consists of ∇n-geodesics, and the angles in the corresponding
triangles match.

The construction of Fn is more subtle. Since Xn and Yn have the same graph
structure, and the lengths of its corresponding edges are the same, there is a natural
map between these skeletons (the isometry of their graph metric); it is natural
to define the restriction of Fn to Yn to be this map. Next, note that at every
corresponding pair of vertices pn ∈ M, qn ∈ Mn, the frame fields induce an
isometry A := Epn ◦ ((En)qn)−1 : TqnMn → TpnM. Define Fn in a neighborhood
of qn by

Fn(q) := exp∇pn
(
A ◦ (exp∇nqn )

−1(q)
)
.

By construction, this map respects the mapping of Yn to Xn, and moreover, dqnFn
maps (En)qn toEpn , and hence |dFn◦En−E| is small near pn. In [21, Section 4], it
is proved that Fn can be extended in this way to a map that satisfies |dFn◦En−E| =
O(1/n) uniformly everywhere outside a small neighborhood, of diameter o(1/n), of
the dislocation core. Note that [21] aims at a slightly different notion of convergence
(compared to Theorem 2), hence this statement is not explicit in [21]; however, the
proof of Proposition 4.3 in [21] yields this result.

It remains to analyze the vicinity of a dislocation core. Recall that in the
construction of Mn, only the Burgers vector inside each triangle was taken into
account. For understanding the behavior of Fn near the dislocation core, and only
there, the exact construction of the dislocation plays a role: in [21], a dislocation of
magnitude O(1/n2) is built using an arbitrary, but fixed, dislocation angle θ ≈ 1,
whereas the size of the dislocation core is d = O(1/n2). In this case, extensions
of Fn to the dislocation core only satisfy that |dFn ◦ En − E| is bounded near the
core (an explicit construction can be seen in [19, Section 3.2]). This only yields Lp

convergence in (10), for any p <∞, but not L∞, which is enough for the version of
Theorem 2 that appear in [21], but not to Theorem 2 as stated here (which is needed
for the next section). If however one takes θ = o(1) and d = o(1/n) (such that the
dislocation magnitude (9) is as prescribed), Fn can be extended to the dislocation
core such that (10) holds.5

5In [19, Section 3.2], choosing θ = o(1), d = o(1/n) implies, in the notation of [19], n−1 2 D 2
1, which then implies L∞ convergence (see the proof of [19, Proposition 2]). The general case is
very similar, since we are only considering minuscule pieces of the manifolds, in which the only
geometry that plays a role is the structure of the singular points (everything else is uniformly close
to the trivial Euclidean plane). See also [20, Section 2.3.2, Example 2].
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4 Homogenization of Dislocations: Constitutive Paradigm

Our aim in this section is to prove a homogenization theorem for dislocations within
the constitutive paradigm, thus proving the third and final part of Theorem 1. To this
end, some assumptions about the archetype W : Rd×Rd → [0,∞) are required:

1. Growth conditions:

α(−1+ |A|p) ≤W(A) ≤ β(1+ |A|p), (12)

for some p ∈ (1,∞) and α, β > 0.
2. Quasiconvexity6:

W(A) ≤
∫

(0,1)d
W(A+ dϕ(x)) dx for every ϕ ∈ C∞c ((0, 1)d ,Rd).

3. Solid symmetry group: G(W) ≤ SO(d).

Remark 4 It is usual to assume that W is frame-indifferent and that W(A) = 0
iff A ∈ SO(d), but both assumptions are not required for the theorem. Moreover,
quasiconvexity and (12) imply that W satisfies the p-Lipschitz property [8, Propo-
sition 2.32]:

|W(A)−W(B)| ≤ C(1+ |A|p−1 + |B|p−1)|A− B|, (13)

for some C > 0 (and in particular W is continuous).

Example 4 We describe now two simple examples of archetypes W satisfying the
above hypotheses—one isotropic and one having a discrete symmetry group:

1. The isotropic archetype Wiso(A) = distp(A,SO(d)) (as in Example 1) satisfies
all the hypotheses but for quasiconvexity. This can be rectified by replacing Wiso
with its quasiconvex envelope QWiso, which is an isotropic archetype satisfying
all of the hypotheses. In two dimensions, we can writeQWiso explicitly for every
p ≥ 2 [11, 34]:

QWiso(A) =
{

distp(A,SO(d)) μ1 + μ2 ≥ 1

(1− 2 detA)p/2 μ1 + μ2 ≤ 1,

where μ1 ≥ |μ2| ≥ 0 are the signed singular values of A (i.e., if σ1 ≥ σ2 ≥ 0
are the singular values, μ1 = σ1 and μ2 = (sgn detA)σ2). In higher dimensions,
QWiso is not known explicitly; however, it is known that

6The quasiconvexity assumption is natural from a variational point of view, as it guarantees the
existence of an energy minimizer of the functional; see also Remark 6.
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cWiso ≤ QWiso ≤Wiso

for some constant c > 0 (see [22, Proposition 10]).
2. An example of an archetype having a discrete symmetry group is

Wcubic(A) =
d∑

i=1

βi (|Aei | − 1)2 ,

where βi > 0 are parameters and {ei} is the standard basis of Rd . This energy
density penalizes stretching along each of the lattice directions ei . Once again,
this function is not quasiconvex, and its quasiconvex envelope is given by [29,
Lemma 4.1]

QWcubic(A) =
d∑

i=1

βi (|Aei | − 1)2+ ,

where for f ∈ R, f+ denotes the maximum between f and zero. WhileQWcubic
satisfies all the assumptions, it is somewhat non-physical. For example, it does
not penalize for compression (this is due to the fact that Wcubic is invariant under
orientation reversal). By adding to W penalization for volume change (as in [22])
or simply by considering QWcubic +QWiso one obtains an archetype satisfying
all the hypotheses and having a discrete symmetry group.

Remark 5 The assumption W < ∞ excludes physically relevant archetypes in
which W(A) diverges as A becomes singular (see, e.g., [5, Theorem 4.10-2]). The
requirement W < ∞ is due to purely technical reasons that commonly appear in
Γ -convergence results in elasticity when the elastic energy is O(1).

In the rest of this section, it is easier to consider that M is endowed with an
orthonormal parallel frame field E rather than a flat connection ∇; as stated above,
this is completely equivalent modulo a global rotation of E.

Definition 8 Let W be an archetype satisfying the above conditions. Let (M, g, E)
be a Riemannian manifold with an orthonormal frame field E. The elastic energy
associated with (M, g, E) and W is

I (f ) =
∫

M

W(df ◦ E) dVolg f ∈ W 1,p(M;Rd).

Note that g is an intrinsic metric for this energy, and that the connection ∇, defined
by declaring E parallel, is a material connection.

As standard in these type of problems, we extend I to Lp(M;Rd) by

Ĩ (f ) =
{∫

MW(df ◦ E) dVolg f ∈ W 1,p(M;Rd)
+∞ f ∈ Lp(M;Rd) \W 1,p(M;Rd).
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In order to define convergence of the energy functionals, each defined on a
different manifold Mn, we need a notion of convergence of maps fn :Mn→ Rd :

Definition 9 (M, g) be a Riemannian manifold, and let Mn be topological mani-
folds. Let Fn : Mn → M be homeomorphisms. We say that a sequence of maps
fn :Mn→ Rd converges to a map f :M→ Rd in Lp if

‖fn ◦ F−1
n − f ‖

Lp(M;Rd )
→ 0.

Theorem 3 (Γ -Convergence of Elastic Energies) Let W be an archetype satisfy-
ing the above assumptions. Let (M, g, E), (Mn, gn, En) be Riemannian manifolds
with orthonormal frames. Let Ĩ , Ĩn be their associated elastic energies according to
Definition 8. If there exists Lipschitz homeomorphisms Fn :Mn→M such that

‖dFn ◦ En − E‖L∞ → 0, (14)

then Ĩn → Ĩ in the sense of Γ -convergence, relative to the convergence
induced by Fn, as defined in Definition 9 (note that for Lipschitz maps,
dFn ∈ L∞(TMn, F

∗
n TM), hence the convergence is well defined).

Remark 6 If W is not quasiconvex (but (13) holds), then it follows from slight
changes in the proof below that Ĩn converges to the functional associated with
(M, g, E) and the archetype QW, which is the quasiconvex envelope of W. Note
that it is still true that g is an intrinsic metric and that ∇ is a material connection,
hence Fig. 1 still holds.

Combining Theorems 2 and 3, we conclude the proof of Theorem 1:

Corollary 2 Every two-dimensional body with a continuous distribution of dislo-
cations (M, g, E) is a limit of bodies with finitely many dislocations (Mn, gn, En)
in the sense of Theorem 2 (equivalently (14)). Given an archetype W, the elastic
energies associated with (Mn, gn, En) according to Definition 8 Γ -converge to the
elastic energy associated with (M, g, E).

Remark 7 Note that we do not rescale the elastic energies of the bodies with
dislocations, that is, we are considering energies that are of order 1. This fits the
typical heuristics for energies of dislocations: that a dislocation with a Burgers
vector of magnitude ε will have a self-energy (or core energy) of order ε2 log |ε|,
and that the interaction energy between two such dislocations will be of order ε2

(see, e.g., [4, 16], which treats this in a linear case where ε2 is factored out). Indeed,
in our case (Mn, gn, En) contains an order of n2 dislocations of order ε ≈ n−2,
so the self-energy is of order n2 · ε2 log |ε| → 0, while the interaction energy is of
order n4 · ε2 ≈ 1. To the best of our knowledge, this is the first rigorous framework
in which an order 1 energy limit of bodies of dislocations is obtained in non-linear
settings.



Limits of Distributed Dislocations in Geometric and Constitutive Paradigms 375

Note also that for coercive archetypes, that is, archetypes that satisfy Wiso(A) ≥
c distp(A,SO(d)) for some c > 0, the limiting energy associated with (M, g, E)
is bounded away from zero if g is non-flat, that is, there are no stress-free
configurations.

4.1 Proof of Theorem 3

Let Ĩ∞ be the Γ -limit of a (not-relabeled) subsequence of Ĩn. Such a subsequence
always exists by the general compactness theorem of Γ -convergence (see Theo-
rem 8.5 in [9] for the classical result, or Theorem 4.7 in [28] for the case where
each functional is defined on a different space). It is enough to prove that Ĩ∞ = Ĩ .
Indeed, since by the compactness theorem, every sequence has a Γ -converging
subsequence, the Urysohn property of Γ -convergence (see Proposition 8.3 in [9])
implies that if all converging subsequences converge to the same limit, then the
entire sequence converges to that limit.

From (14) it follows that

1. dFn and dF−1
n are uniformly bounded.

2. (Fn)+gn→ g in L∞, and in particular, (Fn)+dVolgn → dVolg in L∞.

Lemma 1 (Infinity Case) Let f ∈ Lp(M;Rd) \W 1,p(M;Rd). Then,

Ĩ∞(f ) = ∞ = Ĩ (f ).

Proof Suppose, by contradiction, that Ĩ∞(f ) < ∞. Let fn → f be a recovery
sequence, namely,

lim
n→∞ Ĩn(fn) = I∞(f ) <∞.

Without loss of generality we may assume that Ĩn(fn) < ∞ for all n, and in
particular, fn ∈ W 1,p(Mn,R

d). The coercivity of Wn implies that

sup
n

∫

Mn

|dfn|pgn,e dVolgn <∞.

Thus, fn is uniformly bounded in W 1,p, and since dF−1
n are uniformly bounded,

fn ◦ F−1
n is also uniformly bounded in W 1,p(M;Rd), hence weakly converges

(modulo a subsequence). By the uniqueness of the limit, this limit is f , hence
f ∈ W 1,p(M;Rd), which is a contradiction. ��
Lemma 2 (Upper Bound) For every f ∈ W 1,p(M;Rd),

Ĩ∞(f ) ≤ Ĩ (f ).
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Proof Let f ∈ W 1,p(M;Rd). Define fn = f ◦ Fn ∈ W 1,p(Mn;Rd). Trivially,
fn→ f in Lp according to Definition 9 and by the definition of the Γ -limit,

Ĩ∞(f ) ≤ lim inf
n

Ĩn(fn).

It follows from the uniform convergence dFn◦En→ E and (Fn)+dVolgn → dVolg,
using the p-Lipschitz property (13), that

lim
n
Ĩn(fn) = Ĩ (f ),

that is

lim
n

∫

Mn

W(df ◦ dFn ◦ En) dVolgn =
∫

M

W(df ◦ E) dVolg. (15)

��
Lemma 3 (Lower Bound) For every f ∈ W 1,p(M;Rd),

Ĩ∞(f ) ≥ Ĩ (f ).

Proof Let f ∈ W 1,p(M;Rd), and let fn ∈ Lp(M;Rd) be a recovery sequence for
f , that is fn ◦ F−1

n → f in Lp and Ĩn(fn)→ Ĩ∞(f ). In particular, it follows that
we can assume without loss of generality that fn ∈ W 1,p, and that fn are uniformly
bounded inW 1,p. Therefore, fn ◦F−1

n ⇀ f inW 1,p(M;Rd). We need to show that

lim
n
Ĩn(fn) ≥ Ĩ (f ). (16)

Note that since f ∈ W 1,p(M;Rd) and fn ∈ W 1,p(Mn;Rd), Ĩ (f ) = I (f ) and
Ĩn(fn) = In(fn). Since dFn ◦ En → E and (Fn)+dVolgn → dVolg uniformly, and
dfn ◦dF−1

n are uniformly bounded in Lp, the p-Lipschitz property (13) implies that

lim
n
In(fn) = lim

n

∫

Mn

W(dfn ◦ En) dVolgn

= lim
n

∫

Mn

W(dfn ◦ dF−1
n ◦ E) dVolg = lim

n
I (fn ◦ F−1

n ).

(17)

Since W is quasiconvex and satisfies (12), I (·) is lower semicontinuous with respect
to the weak topology ofW 1,p(M;Rd) [8, Theorem 8.11]. Since fn ◦F−1

n converges
weakly to f in W 1,p(M;Rd),

lim
n
I (fn ◦ F−1

n ) ≥ I (f ),

which together with (17) implies (16). ��
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5 The Role of Torsion in the Equilibrium Equations

In this section we analyze explicitly the equilibrium equations for a hyperelastic
solid body having a continuous distribution of dislocations, and in particular, we
address the role of torsion. We will explain why torsion does not enter explicitly
in the equilibrium of an isotropic body. Similar equations are derived in [36,
Section 12] (without the hyperelasticity assumption). Throughout this section we
use the Einstein summation convention.

Let W ∈ C2(Rd × Rd) be a solid undistorted archetype, and let (M,W) be a
uniform solid material having W as an archetype with respect to an implant map
E = {Ep}p∈M. We denote the (matrix) argument of W by B = (B1 | . . . |Bd), and
by ∂W/∂Bi : Rd × Rd → Rd the derivative of W with respect to the column Bi
(this is a vector).

The implant map E is a parallel frame of a flat material connection ∇ (defined
by (6)) and it defines a metric g via (8). E is a d-tuple of vector fields which we
denote by E1, . . . , Ed . Its co-frame E1, . . . , Ed is the d-tuple of one-forms defined
by Ei(Ej ) = δij . The torsion tensor of ∇ is given by

T (Ei, Ej ) = −[Ei,Ej ] =: T kijEk,

as follows from the definition of the torsion tensor T (X, Y ) = ∇XY−∇YX−[X, Y ],
since Ei are parallel, which means ∇Ei = 0.

The elastic energy functional corresponding to this elastic body is

I (f ) =
∫

M

W(df ) dVolg =
∫

M

W(df ◦ E)E1 ∧ . . . ∧ Ed,

defined on functions f : M → Rd . The Euler–Lagrange equations corresponding
to this functional are, in a weak formulation,

∫

M

∂W

∂Bi
(df ◦ E) · Ei(h) dVolg = 0 ∀h ∈ C∞c (M;Rd),

where Ei(h) = dh(Ei) : M → Rd , and · is the standard inner product in Rd . The
strong formulation of the Euler–Lagrange equations is

Ei

(
∂W

∂Bi
(df ◦ E)

)

+ ∂W

∂Bi
(df ◦ E) divEi = 0,

or more explicitly,

∂2W

∂Bi∂Bj
(df ◦ E)EiEj (f )+ ∂W

∂Bi
(df ◦ E) divEi = 0,
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where divEi is defined by the relation

d(ιEidVolg) = divEi dVolg,

where ι is the contraction operator. Using the fact that dVolg = E1 ∧ . . . ∧ Ed ,

ιEidVolg = (−1)i+1E1 ∧ . . . ∧ Ei−1 ∧ Ei+1 ∧ . . . ∧ Ed,

hence

d(ιEidVolg) = (−1)i+1
(
dE1 ∧ . . . ∧ Ei−1 ∧ Ei+1 ∧ . . . ∧ Ed + . . .

. . .+ (−1)d−1E1 ∧ . . . ∧ Ei−1 ∧ Ei+1 ∧ . . . ∧ dEd
)
.

By the definition of the exterior derivative, and the fact that Ek(Ei) = δki ,

dEk(Ei, Ej ) = Ei(Ek(Ej ))− Ej(Ek(Ei))− Ek([Ei,Ej ]) = T lijEk(El) = T kij

and therefore dEk = T kijEi ∧ Ej , so d(ιEidVolg) simplifies to

d(ιEidVolg) = −T jji dVolg,

hence divEi = −T jji . It follows that the Euler–Lagrange equations are

∂2W

∂Bi∂Bj
(df ◦ E)EiEj (f )− T jji

∂W

∂Ai
(df ◦ E) = 0.

The trace of the torsion appears explicitly in the equations; however, the torsion also
appears, more implicitly, as the antisymmetric part EiEj − EjEi = T kijEk of the
first addend.

If the solid is isotropic, then the equilibrium equations are independent of the
torsion. Isotropy means that

WB ◦ R =WB for any R ∈ SO(d).

Using polar decomposition, this implies that there exists a function W̃ :
Sym+(d)→ R, where Sym+(d) is the set of positive-semidefinite d×d symmetric
matrices, such that

W(B) = W̃(BBT )

[5, Theorem 3.4-1] (if one allows B to be orientation reversing, then W̃ also depends
on the orientation of B, but this does not affect the argument below and therefore
we ignore this subtlety). It follows that
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I (f ) =
∫

M

W(df ) dVolg =
∫

M

W(df ◦E) dVolg =
∫

M

W̃((df ◦E)(df ◦E)T ) dVolg.

Choosing coordinates on M, we can think of df and E as matrices. In this case,
since E is an orthonormal frame for g, EET = g∗, the g-metric on T ∗M (whose
coordinates are gij ). Therefore, in coordinates,

I (f ) =
∫

M

W̃(dfx ◦ g∗x ◦ df Tx )
√|g|(x) dx.

In a more abstract language,

I (f ) =
∫

M

W̃(f+g
∗) dVolg,

where f+g∗ is the push-forward by f of the metric g∗ from T ∗M to Rd . Either
way, it is clearly seen that the energy (and therefore the equilibrium equations) only
depend on g and not on the frame E, and therefore not on the connection ∇ and its
torsion which are derived from E.
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Abstract To any simple body with a given smooth constitutive equation, a
groupoid, known as the material groupoid, can be associated naturally. When the
body is non-uniform, however, the material groupoid is generally not differentiable.
In such cases, the analysis can be based on a new differential geometric con-
struct called the material distribution, to which we can associate other physically
meaningful objects, such as a material foliation, with the help of which we have
the possibility to study and rigorously classify non-uniform bodies. Thus, the
material distribution and its associated singular foliation result in a rigorous and
unique subdivision of the material body into strictly smoothly uniform sub-bodies,
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laminates, filaments and isolated points. Furthermore, the material distribution
permits us to define a measure of uniformity of a simple body as well as more
general definitions of homogeneity for non-uniform bodies.

1 Introduction

The multifaceted relation between continuum mechanics and differential geometry
has a rich history, particularly apparent since the turn of the last century. Various
theories of elastic beams and shells had already required the use of the classical
results of differential geometry of curves and surfaces embedded in a Euclidean
space. The astonishing work of the Cosserat brothers anticipated certain aspects of
modern differential geometry in the style of Cartan. But the more intimate kinship
between the two disciplines can be said to have started in earnest after the Second
World War, when continuum mechanics found its own mathematical bearings and,
thanks to the work of various groups of like-minded scholars, it established its
foundations on a rigorous basis.

The most obvious link is provided by the very use of the word ‘continuum’,
which, just as in general relativity, is a physicist’s way to allude to a differentiable
manifold. In general expository texts, a material body B (the material continuum)
is identified with a connected 3-dimensional manifold (without boundary) that
can be covered with a single coordinate chart. Moreover, the setting (the space-
time continuum) is implicitly identified with an affine bundle over the real line,
with R

3 as its typical fibre and the orthogonal group as its structure group. A
configuration is regarded as an embedding of B in R

3. One of the achievements
of the modern formulation [16] consists in showing that most of these limitations
can be removed without substantially affecting the physical content of the theory. In
[16], moreover, a consistent theory of stress is shown to emerge from a setting that,
in some aspects, mimics the differential geometric approach to Classical Mechanics,
the configuration space being identified with the infinite-dimensional manifold of
configurations.

In this chapter, however, we would like to highlight a different facet of the
relation between differential geometry and continuum mechanics. While as early as
1907 Volterra, working on multiple connected elastic bodies, had already provided a
characterization of certain defects, which we now call dislocations and disclinations,
two generations passed before theories of continuous distributions of such defects
were attempted. Some of the pioneers in this field were Kondo, Kroener, Frank,
Bilby, Nye and Eshelby, to name but a few. All of these people were well acquainted
with differential geometry and also had a keen awareness of the experimental results
pertaining to the identification of dislocations and of their motion. The macroscopic
phenomenon of metal plasticity was, in fact, correctly attributed to these causes.
Various differential geometric constructs were proposed to represent different types
of defects with great success.

A different approach, based on the epistemological stance that in a genuinely
continuum mechanical theory all the information about the material response should
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be encoded in the constitutive laws and nothing else, was proposed by Noll [15]
and extended by Wang [20] and Bloom [1]. Although many of the results obtained
by this school of thought were the same as those of its predecessors, there were
significant differences. One of these is the role played in Noll’s theory by the
material symmetry group, which may be a continuous group. Indeed, if all the
information about the material constitution is gathered from macroscopic response
functionals, the discrete symmetry groups of the underlying crystal lattices may be
enough to guarantee larger groups for the macroscopic material response, such as
full isotropy or transverse isotropy.

The main idea behind Noll’s approach is contained in the definition of material
isomorphism. If W denotes a constitutive variable (such as the Cauchy stress, or
the elastic energy per unit mass) and if the material is simple (in the sense that
only the first gradient F of the deformation is the relevant independent variable
for the material response), the constitutive equation at a point X ∈ B is of the
form W = W(F,X). The particular form of this function depends on the reference
configuration chosen to express the deformation and its gradient. This freedom of
choice manifests itself in the fact that a change of reference configuration results,
at most, in the right action of the general linear group Gl(3,R) on the independent
variable F . We may, therefore, say that a material response can be identified with
a whole orbit (in some space of functions) generated by this right action. Given
a reference configuration and two points, X and Y , in B, we say that they are
materially isomorphic if their constitutive functions belong to one and the same
orbit. In other words, X and Y are materially isomorphic if there exists a linear map
PXY : TXB→ TYB such that

W(F, Y ) = W(FPXY ,X), (1)

for all deformation gradients F . A body is materially uniform if all its points are
mutually materially isomorphic.

The material isomorphism PXY is, in general, not unique. Indeed, if GX is a
material symmetry at X, and if PXY is a material isomorphism, so is PXY GX.
Moreover, the material symmetry groups at X and Y are mutually conjugate, the
conjugation being obtained precisely by any material isomorphism PXY . On the
basis of these facts, assuming the body to be smoothly uniform, Noll introduced
the notion of material parallelisms and their associated curvature-free material
connections, a concept further generalized by Wang in [20]. The presence of defects,
in the case of a discrete symmetry group, is measured by the non-vanishing of the
torsion of the unique material connection, a result identical to that obtained by
earlier formulations. In Noll’s terminology, the absence of defects coincides with
the notion of local homogeneity of the body. The case of continuous symmetry
groups requires the identification of other obstacles to integrability. The work of
Elżanowski et al. [4] presents a formulation of these ideas in the terminology of
G-structures.

In later developments, for general (not necessarily uniform) bodies, groupoids
and smooth distributions [9, 11, 13] were shown to be useful tools to express
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in geometrical terms the structure implied by the constitutive law. The material
groupoidΩ (B) over B of a simple material consists of all material isomorphisms P
for all pairs of body points X, Y . It follows from this definition that B is (smoothly)
uniform if, and only if,Ω (B) is a transitive (Lie) subgroupoid ofΠ1 (B,B), where
Π1 (B,B), called the 1-jets groupoid on B, is the Lie groupoid over B of all linear
isomorphisms between the tangent spaces TXB and TYB, for X, Y ∈ B.

The main results of this chapter can be summarized as follows: In the general case
of non-uniformity, Ω (B) is not a Lie subgroupoid of Π1 (B,B), and, in particular,
an associated Lie algebroid is not available. Instead, we have introduced the material
distribution AΩT (B) (see [11] or [13]). AΩT (B) is generated by the (local) left-
invariant vector fields onΠ1 (B,B) which are in the kernel of the tangent map TW
of W . Due to the groupoid structure, we can still associate two new objects with
AΩT (B), denoted by AΩ (B) and AΩ� (B), as defined by the following diagram:

Here P (E) defines the power set of E, ε (X) is the identity map of TXB and α :
Π1 (B,B)→ B denotes the source map of the groupoid.

By construction, the distributions AΩT (B) and AΩ� (B) are integrable (in the
sense of Stefan [17] and Sussmann [18]), and they provide two foliations, F on
Π1 (B,B) and F on B, such that Ω (B) is union of leaves of F. As a consequence,
we have that B can be covered by a foliation of some kind of smoothly uniform
‘sub-bodies’, called material submanifolds.1 The material distribution is also a tool
apt to provide a general classification of smoothly non-uniform bodies and Ms the
possibility to distinguish various degrees of uniformity. In addition, homogeneity
may be generalized in such a way that any simple body can be tested to be
homogeneous. A first step in this direction was taken in [10] where the authors
give a homogeneity condition for bundles and laminated bodies.

Next, we consider a more general situation. We study the problem from a
purely mathematical framework, since we are convinced that this analysis should
be relevant not only for its applications to continuum mechanics, but also for the
general theory of groupoids.

So, let Γ ⊆ Γ be a subgroupoid of a Lie groupoid Γ ⇒ M; notice that we
are not assuming, in principle, any differentiable structure on Γ . Even in that case,

we can construct a generalized distribution AΓ
T

over Γ generated by the (local)

1These submanifolds are not sub-bodies in the usual sense of continuum mechanics [21], because
their dimensions are not necessarily equal to the dimension of B.
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left-invariant vector fields on Γ whose flow at the identities is totally contained in

Γ . This distribution AΓ
T

will be called the characteristic distribution of Γ . Again,

due to the groupoid structure, we can still associate two new objects with AΓ
T

,

denoted by AΓ and AΓ
�

analogously to the above diagram.
The paper is structured as follows: Sects. 2 and 3 are devoted to a brief

introduction to groupoids and algebroids, respectively. In particular we show, as
an example, the groupoid of 1-jets of local automorphisms on a manifold M .
In the next section we study the characteristic distribution, a general smooth
distribution associated with any subgroupoid of a Lie groupoid. Here we present
new interesting results which could be applied to different fields. There are also
new results describing deeper the characteristic distribution. Thus, in Sect. 5 we
apply this construction to the theory of simple bodies, generating in this way the so-
called material groupoid and material distribution. By using these two mathematical
objects we introduce the concept of graded uniformity of a simple body. Section 6
proposes a new definition of homogeneity for non-uniform bodies which generalizes
the known definition for smoothly uniform bodies. Some characterizations are given
related to the integrability of the material groupoid and the material distribution.
Finally, we study an example of non-uniform body in which the homogeneity is
checked.

2 Groupoids

In this section, we shall give a brief introduction to Lie groupoids. The standard
reference on groupoids is [14].2

Definition 1 Let M be a set. A groupoid over M is given by a set Γ provided
with the following maps: α, β : Γ → M (source and target maps, respectively),
ε : M → Γ (identities map), i : Γ → Γ (inversion map) and · : Γ(2) → Γ

(composition law) where for each k ∈ N,

Γ(k) := {(g1, . . . , gk) ∈ Γ k : α (gi) = β (gi+1) , i = 1, . . . , k − 1},
satisfying the following properties:

(1) α and β are surjective and, for each (g, h) ∈ Γ(2), we have

α (g · h) = α (h) , β (g · h) = β (g) .
(2) Associativity of the composition law, i.e.,

g · (h · k) = (g · h) · k, ∀ (g, h, k) ∈ Γ(3).

2For a short introduction, see [19] (written in Spanish). Other recommended references are [6] and
[22].
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(3) For all g ∈ Γ ,

g · ε (α (g)) = g = ε (β (g)) · g.

In particular,

α ◦ ε ◦ α = α, β ◦ ε ◦ β = β.
Since α and β are surjective we get

α ◦ ε = IdΓ , β ◦ ε = IdΓ .

(4) For each g ∈ Γ ,

i (g) · g = ε (α (g)) , g · i (g) = ε (β (g)) .
Then,

α ◦ i = β, β ◦ i = α.

These maps α, β, i, ε will be called structure maps. In what follows, we will denote
this groupoid by Γ ⇒ M .

If Γ is a groupoid over M , then M is also denoted by Γ(0) and it is often identified
with the set ε (M) of identity elements of Γ . Γ is also denoted by Γ(1). The map
(α, β) : Γ → M ×M is called the anchor of the groupoid.

Remark 1 For pictorial purposes, it is always useful to think of a groupoid as a
set Γ of arrows. Each arrow g ∈ Γ has a source (or tail) and a target (or tip),
both of which belong to a set M of objects. Two projection maps, designated by
α and β, assign to each arrow g its source α(g) ∈ M and its target β(g) ∈ M ,
respectively. The composition operation (also called product) can be applied only to
those pairs whose arrows are joined in a tip-to-tail fashion. That is, if g, h ∈ Γ , and
if β(h) = α(g), and only in this case, there is a well-defined composition g · h, as
shown in Fig. 1. For each object X ∈ M , there is a (unique) identity of unit arrow at
X, denoted by ε(X), satisfying α(ε(X)) = β(ε(X)). Pictorially, every unit is a loop-
shaped arrow. Whenever these unit elements can be composed with other elements,
on the left or on the right, they do not affect the result. Finally, for each arrow g,
there exists an inverse arrow g−1 such that α(g) = β(g−1) and β(g) = α(g−1), and
such that g · g−1 = ε(β(g)) and g−1 · g = ε(α(g)).

Now, we define the morphisms in the category of groupoids.

Definition 2 If Γ1 ⇒ M1 and Γ2 ⇒ M2 are two groupoids, then a morphism from
Γ1 ⇒ M1 to Γ2 ⇒ M2 consists of two maps Φ : Γ1 → Γ2 and φ : M1 → M2 such
that for any g1 ∈ Γ1

α2 (Φ (g1)) = φ (α1 (g1)) , β2 (Φ (g1)) = φ (β1 (g1)) , (2)
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h
g

a

G

a(h) = a(g · h)

b

b(g) = b(g · h)

b(h) = a(g)

g · h

M

Fig. 1 Schematic representation of a groupoid

where αi and βi are the source and the target map of Γi ⇒ Mi , respectively, for
i = 1, 2, and such that Φ preserves the composition, i.e.,

Φ (g1 · h1) = Φ (g1) ·Φ (h1) , ∀ (g1, h1) ∈ (Γ1)(2) .

We will denote this morphism by (Φ, φ) or by Φ (because, using Eq. (2), φ is
completely determined by Φ).

Observe that, as a consequence, Φ preserves the identities, i.e., denoting by εi the
section of identities of Γi ⇒ Mi for i = 1, 2, we have

Φ ◦ ε1 = ε2 ◦ φ.

Using this definition we define a subgroupoid of a groupoid Γ ⇒ M as a
groupoid Γ ′ ⇒ M ′ such that M ′ ⊆ M , Γ ′ ⊆ Γ and the corresponding inclusion
map is a morphism of groupoids.

Remark 2 There is a more abstract way of defining a groupoid. A groupoid is a
“small” category (the class of objects and the class of morphisms are sets) in which
each morphism is invertible.
If Γ ⇒ M is the groupoid, then M is the set of objects and Γ is the set of
morphisms. In this sense, we can think about a groupoid as a set M of objects and
a set Γ of invertible maps between objects of M . Then, for each map g ∈ Γ , α (g)
is the domain of g, β (g) is the codomain g and i (g) is the inverse of g. For all
X ∈ M , ε (X) is the identity map at X and, finally, the operation · can be thought as
the composition of maps.
A groupoid morphism is a functor between these categories, which is a more natural
definition.

Now, we present the most basic examples of groupoids.
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Example 1 A group is a groupoid over a point. In fact, let G be a group and e the
identity element of G. Then, G ⇒ {e} is a groupoid, where the operation of the
groupoid, ·, is just the operation in G.

Example 2 For any setM , we can consider the product spaceM×M . ThenM×M
has a groupoid structure over M such that

(X, Y ) · (Z,X) = (Z, Y ) ,
for all X, Y,Z ∈ M . The groupoid M ×M ⇒ M is said to be the pair groupoid
of M .
Note that, if Γ ⇒ M is an arbitrary groupoid overM , then the anchor (α, β) : Γ →
M ×M is a morphism from Γ ⇒ M to the pair groupoid of M .

Next, we introduce the notion of orbits and isotropy group.

Definition 3 Let Γ ⇒ M be a groupoid with α and β the source map and target
map, respectively. For each X ∈ M , we denote

Γ XX = β−1 (X) ∩ α−1 (X) ,

which is called the isotropy group of Γ at X. The set

O (X) = β
(
α−1 (X)

)
= α
(
β−1 (X)

)
,

is called the orbit of X, or the orbit of Γ through X.
If O (X) = M for all X ∈ M , or equivalently if (α, β) : Γ → M × M is a

surjective map, then the groupoid Γ ⇒ M is called transitive.
Furthermore, the preimages of the source map α of a groupoid are called α-

fibres. Those of the target map β are called β-fibres. We will usually denote the
α-fibre (resp. β-fibre) at a point X by ΓX (resp. Γ X).

Definition 4 Let Γ ⇒ M be a groupoid with α and β the source and target map,
respectively. We may define the left translation by g ∈ Γ as the map Lg : Γ α(g)→
Γ β(g), given by

h �→ g · h.
Similarly, we may define the right translation on g, Rg : Γβ(g)→ Γα(g).

Note that,

IdΓ X = Lε(X). (3)

So, for all g ∈ Γ , the left (resp. right) translation on g, Lg (resp. Rg), is a bijective
map with inverse Li(g) (resp. Ri(g)), where i : Γ → Γ is the inverse map.

Different structures (topological and geometrical) can be imposed on groupoids,
depending on the context we are dealing with. We are interested in a particular case,
the so-called Lie groupoids.
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Definition 5 A Lie groupoid is a groupoid Γ ⇒ M such that Γ and M are smooth
manifolds, and all the structure maps are smooth. Furthermore, the source and the
target maps are submersions.
A Lie groupoid morphism is a groupoid morphism which is differentiable.

Definition 6 Let Γ ⇒ M be a Lie groupoid. A Lie subgroupoid of Γ ⇒ M is a Lie
groupoid Γ ′ ⇒ M ′ such that Γ ′ andM ′ are submanifolds of Γ andM , respectively;
and the pair given by the inclusion maps jΓ ′ : Γ ′ ↪→ Γ jM ′ : M ′ ↪→ M becomes a
morphism of Lie groupoids.

Observe that, taking into account that α ◦ ε = IdM = β ◦ ε, we conclude that ε is
an injective immersion.

On the other hand, in the case of a Lie groupoid, Lg (resp. Rg) is clearly a
diffeomorphism for every g ∈ Γ .

Example 3 A Lie group is a Lie groupoid over a point.

Example 4 LetM be a manifold. The pair groupoidM×M ⇒ M is a Lie groupoid.

Next, we will introduce an example which will be fundamental for our treatment.

Example 5 Let M be a manifold, and denote by Π1 (M,M) the set of all vector
space isomorphisms LX,Y : TXM → TYM for X, Y ∈ M or, equivalently, the
space of the 1-jets of local diffeomorphisms on M . An element of Π1 (M,M) will
by denoted by j1

X,Yψ , where ψ is a local diffeomorphism from M into M such that
ψ (X) = Y .
Π1 (M,M) can be seen as a transitive groupoid overM where, for all X, Y ∈ M

and j1
X,Yψ, j

1
Y,Zϕ ∈ Π1 (M,M), we have

(i) α
(
j1
X,Yψ

)
= X

(ii) β
(
j1
X,Yψ

)
= Y

(iii) j1
Y,Zϕ · j1

X,Yψ = j1
X,Z (ϕ ◦ ψ)

This groupoid is called the 1-jets groupoid on M . In fact, let
(
xi
)

and
(
yj
)

be local
coordinate systems on M sets U,V ⊆ M . Then, we can consider a local coordinate
system on Π1 (M,M) given by

Π1 (U, V ) :
(
xi, yj , y

j
i

)
, (4)

where, for each j1
X,Yψ ∈ Π1 (U, V )

• xi
(
j1
X,Yψ

)
= xi (X).

• yj
(
j1
X,Yψ

)
= yj (Y ).

• y
j
i

(
j1
X,Yψ

)
= ∂

(
yj ◦ ψ)
∂xi

∣
∣
∣
∣
∣
X

.

Using these coordinates one can easily check that Π1 (M,M) is a transitive Lie
groupoid.
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3 Lie Algebroids

3.1 Introduction

As an algebraic structure, a groupoid can be colourfully described as a group ‘on
steroids’. Indeed, a group can be regarded as the particular case of a groupoid
whose set of objects M is a singleton. All the elements of a group can be mutually
composed (multiplied) and there is a single, uniquely defined, unit element e. In
a general groupoid Γ ⇒ M , however, M is an arbitrary set, but, except for the
totally intransitive case, Γ is not just the union of its individual vertex groups. The
elements of Γ are ‘arrows’ that may have different sources and targets. Arrows can
be composed only if they satisfy the extra condition of being in tandem, tip-to-tail
fashion. Moreover, rather than a single unit element, each element X of the set of
objects M carries its own (unique) unit ε (X), an arrow in the form of a loop, so to
speak.

Recall that a Lie algebra is a vector space endowed with an antisymmetric binary
operation called a Lie bracket. Lie algebras are defined independently from groups,
but the fundamental work of Sophus Lie (1842–1899) demonstrated the intimate
connection that exists between Lie algebras and Lie groups, that is, groups that are
also manifolds in which the operations of multiplication and inversion are smooth.

The Lie algebra of a Lie group represents an infinitesimal version of the latter in
a precise sense. Its underlying vector space can be identified with the tangent space
of the Lie group at the unit element. The vehicle to this identification is provided by
the notion of left- (or right-) invariant vector fields on the Lie group. Similarly,
the concept of a Lie algebroid can be introduced independently and eventually
related to the notion of Lie groupoid. As an infinitesimal version of the latter,
however, it involves certain tangent spaces to the groupoid Γ at each of its unit
elements. Again, these notions are intermediated via left- (or right-) invariant vector
fields on the groupoid. As everything else pertaining to groupoids, these notions
acquire a further degree of sophistication as compared with their group counterparts.
Although certainly premature for this introduction, we take the liberty of depicting,
in Fig. 2, a schematic drawing that may serve as an intuitive basis for a mental
representation of the concepts that will be advanced below in a more precise fashion.

Fig. 2 A preliminary mental
picture of the Lie algebroid z
of a Lie groupoid Γ (right) as
compared with the Lie
algebra g of a Lie group G

(left). The β-fibre at X ∈ M
is the collection of all the
arrows arriving at X

e

M

e (M)

b-fibres of G
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3.2 Definition

Let π : A → M denote a vector bundle over a base manifold M , and let Γ (A)
denote the space of its smooth global sections σ : M → A. A Lie algebroid
structure on this vector bundle is obtained by specifying a bilinear bracket operation
[·, ·] : Γ (A)×Γ (A)→ Γ (A) and a vector-bundle morphism � : A→ TM , called
the anchor map. These maps must satisfy the following properties:

1. Skew-symmetry:

[ρ, σ ] = − [σ, ρ] ∀ρ, σ ∈ Γ (A) . (5)

2. Jacobi identity:

[ρ, [σ, τ ]]+ [τ, [ρ, σ ]]+ [σ, [τ, ρ]] = 0 ∀ρ, σ, τ ∈ Γ (A) . (6)

3. Consistency:

[ρ, σ ]� = [ρ�, σ �] ∀ρ, σ ∈ Γ (A) . (7)

4. Leibniz rule:

[ρ, f σ ] = f [ρ, σ ]+ ρ� (f ) σ ∀ρ, σ ∈ Γ (A) , f ∈ C∞ (M) . (8)

Remark 3 The first two properties are self-explanatory. The third property can be
shown to be a consequence of the other ones. For compactness of notation, we have
indicated by ρ� the image � (ρ) ∈ Γ (TM) of the section ρ ∈ Γ (A). Moreover, the
bracket appearing on the right-hand side of (7) is the ordinary Lie bracket of vector
fields in TM . The fourth property requires some further clarification, as it displays
the reason behind the need for an anchor map. In an arbitrary vector bundle, there is
in principle no canonical action of the vectors in the bundle on a smooth real-valued
function f ∈ C∞ (M) defined on the base manifold M . It is only in the tangent
bundle TM that such an action exists, providing us with the directional derivative
v (f ) of f in the direction of v ∈ TM .

A Lie algebroid is transitive if the anchor map � is surjective. It is totally
intransitive if the anchor is the zero map (assigning to each vector in A the zero
tangent vector at the corresponding point of the base manifold). The reason for this
terminology will become apparent later.
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3.3 The Lie Algebroid of a Lie Groupoid

3.3.1 The β-Bundle

Consider the disjoint union Γ M of all the β-fibres of a Lie groupoid Γ , that is,

Γ M =
⋃

X∈M
Γ X. (9)

This set, which we call the β-bundle, can be regarded as a fibre bundle over the base
manifold M with projection β. In terms of arrows, Γ M looks like a spider colony,
each fibre Γ X being a spider with legs arriving at X and issuing from some point
Y ∈ M , as shown schematically in Fig. 3 [10]. Notice that the total set of this fibre
bundle is the same as the total set of the original transitive groupoid Γ . They both
consist of the set of all arrows.

3.3.2 Left-Invariant Vector Fields on a Lie Groupoid

Remember that, in any groupoid Γ ⇒ M we can define the concept of left
translation. In fact, for each g, h ∈ Γ such that β (h) = α (g), the left translation of
h by g is given by

Lg (h) = gh. (10)

A vector field Θ : Γ → T Γ on Γ is left-invariant if

T Lg (Θ (h)) = Θ
(
Lg (h)

) ∀g, h ∈ Γ. (11)

Of necessity, a left-invariant vector field must be β-vertical, that is, it must dwell on
the tangent spaces of the β-fibres of Γ ⇒ M .

M

Fig. 3 The β-bundle Γ M as a spider colony
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A left-invariant vector field on a Lie groupoid is completely determined by its
values at the unit elements ε (X), for all X ∈ M . Indeed, Eq. (11), we obtain

T Lg (Θ (ε ◦ α (g))) = Θ
(
Lg (ε ◦ α (g))

) = Θ (g (ε ◦ α (g))) = Θ (g) . (12)

Recall that, given any smooth vector field Θ on a manifold M , the fundamental
theorem of the theory of ODEs guarantees the existence and uniqueness of maximal
smooth integral curves defined at each point of M . If γx = γx (t) is the integral
curve containing the point x ∈ M , the curve parameter can be adjusted by a mere
translation such that γx (0) = x. By definition of integral curve, we have

Θ (x) = dγx (t)

dt

∣
∣
∣
∣
t=0

. (13)

Moreover, every smooth vector field acts as the infinitesimal generator of a local
flow ϕΘt . For each t in a certain interval of R containing the origin, ϕΘt is a
diffeomorphism of M defined by the prescription

ϕΘt (x) = γx (t) . (14)

Clearly, ϕΘ0 = IdM and ϕΘ−t =
(
ϕΘt
)−1

. Applying these concepts to Eq. (11) we
obtain the result of the following lemma:

Lemma 1 A (β-vertical) vector field Θ on a Lie groupoid is left-invariant if, and
only if, its local flow commutes with left translations, that is,

Lg ◦ ϕΘ (h) = ϕΘt ◦ Lg (h) , (15)

for all g, h such that α (g) = β (h).

3.3.3 The Associated Lie Algebroid

After the foregoing properties of left-invariant vector fields on a Lie groupoid
Γ ⇒ M have been established, we introduce the vector bundle π : AΓ → M

whose fibre at each X ∈ M is the tangent space to the β-fibre of Γ at the identity
ε (X). It is clear that a section of this vector bundle corresponds exactly to a left-
invariant vector field on Γ . Since each map Lg is a diffeomorphism between two
β-fibres, and since the left-invariant vector fields are tangent to these fibres, it
follows from Lemma 1 that the ordinary Lie bracket between two left-invariant
vector fields is again left-invariant. Therefore, given two sections of AΓ , we can
define a Lie algebroid bracket operation by considering the Lie bracket of the
corresponding vector fields in Γ and then considering its value at the unit section.

To complete the determination of the Lie algebroid associated with the Lie
groupoid Γ , we declare the anchor map to be given by the restriction Aα of
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M

X X + dX

Fig. 4 Intuitive view of the Lie algebroid of a Lie groupoid. The identity ε (X) is drawn as a solid
arrow, while elements in its vicinity are drawn as dashed arrows. The anchor map assigns to each
dashed arrow the Ming between its tail and X

T α : T Γ → TM to AΓ . An intuitive idea of the anchor map (and of the meaning
of the Lie algebroid) can be gathered from Fig. 4. Starting from the identity loop-
like arrow at a point X ∈ M , we explore its vicinity in Γ by keeping the tip of the
arrow fixed at X, so as to stay always in the same β-fibre Γ X. If we keep the tail
of the arrow also at X (that is, if we explore just the loop-like neighbours), we are
clearly moving within the vertex group at X. As a result, we recover the Lie algebra
of this vertex group. In the case of the material groupoid Ω (B) introduced above,
we obtain the Lie algebra of the material symmetry group at X.

Let us further explore the vicinity of the unit ε (X) by considering an arrow h

with its tip atX, but with its tail elsewhere, at sayX+dX. The differential projection
α (h)−α (ε (X)) is precisely dX. Thus, intuitively enough, we see how the map Aα
acts as the anchor of the algebroid. We see, moreover, that the Lie algebra of the
vertex group at X is precisely the kernel of the anchor at X. Finally, if Aα is a
surjective map, there are arrows between X and every point in an M neighbourhood
of X in M . This picture perfectly justifies the terminology introduced above for
transitive and totally intransitive algebroids. In the case of the material groupoid
Ω (B) we conclude that a smoothly uniform body has a transitive material Lie
algebroid.

Example 6 A Lie algebra is a Lie algebroid.

Example 7 Let M be a manifold. The tangent TM ⇒ M is a Lie algebroid.
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4 Characteristic Distribution

This section is devoted to construct the so-called characteristic distribution. This
object arises from the need of working with a groupoid which does not have a
structure of Lie groupoid. In fact, this object endows the groupoid with a kind of
‘differentiable’ structure. For a detailed study of the characteristic distribution, see
[13].
Let Γ ⇒ M be a Lie groupoid and Γ be a subgroupoid of Γ (not necessarily a Lie
subgroupoid of Γ ) over the same manifold M . We will denote by α, β, ε and i the
restrictions of the structure maps of Γ to Γ (see the diagram below),

where j is the inclusion map. Now, we can construct a distribution AΓ
T

over the
manifold Γ in the following way:

g ∈ Γ �→ AΓ
T

g ≤ TgΓ,

such that AΓ
T

g is generated by the (local) left-invariant vector fields Θ ∈ Xloc (Γ )

whose flow at the identities is totally contained in Γ , i.e.,

(i) Θ is tangent to the β-fibres,

Θ (g) ∈ TgΓ β(g),

for all g in the domain of Θ .
(ii) Θ is invariant by left translations,

Θ (g) = Tε(α(g))Lg (Θ (ε (α (g)))) ,

for all g in the domain of Θ .
(iii) The (local) flow ϕΘt of Θ satisfies

ϕΘt (ε (X)) ∈ Γ ,

for all X ∈ M .

Notice that, the set of local vector fields on Γ satisfying (i), (ii) and (iii) is not empty.
In fact, the zero vector field fulfils these conditions. It is remarkable that condition
(iii) is equivalent to the following:
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(iii)′ The (local) flow ϕΘt of Θ at g is totally contained in Γ , for all g ∈ Γ .

Then, roughly speaking, AΓ
T

is generated by the left-invariant vector fields whose

flows cannot cross Γ . The distribution AΓ
T

is called the characteristic distribution
of Γ .

For the sake of simplicity, we will denote the family of the vector fields which
satisfy conditions (i), (ii) and (iii) by C. The elements of C will be called admissible
vector fields.

By using the structure of groupoid of Γ and Γ , we can construct a smooth

distribution AΓ
�

on M and a generalized vector bundle AΓ such that for each
X ∈ M , the fibres are defined by

AΓ X = AΓ
T

ε(X)

AΓ
�

X = Tε(X)α
(
AΓ X

)
.

Therefore, the following diagram is commutative:

where P (E) defines the power set of E.

The distribution AΓ
�

is called base-characteristic distribution of Γ . It is
remarkable that both distributions are characterized by AΓ in the following way:

AΓ
T

g = Tε(α(g))Lg
(
AΓ α(g)

)
, ∀g ∈ Γ.

Summarizing, associated with Γ , we have three mathematical objects AΓ , AΓ
T

and AΓ
�
. Next, let us describe the importance of these objects.

Consider a left-invariant vector field Θ on Γ whose (local) flow ϕΘt at the

identities is contained in Γ . Then, the characteristic distribution AΓ
T

is invariant
by the flow ϕΘt , i.e., for all g ∈ Γ and t in the domain of ϕΘg we have

Tgϕ
Θ
t

(
AΓ

T

g

)
= AΓ TϕΘt (g). (16)

Consider an arbitrary vg = Υ (g) ∈ AΓ Tg with Υ ∈ C. Then,
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Tgϕ
Θ
t

(
vg
) = TgϕΘt (Υ (g)) =

∂

∂s|0
(
ϕΘt ◦ ϕΥs (g)

)
,

where ϕΥs is the flow of Υ .
Let us consider the (local) vector field on Γ given by

Ξ (h) = {(ϕΘt
)∗
Υ } (h) = TϕΘ−t (h)ϕ

Θ
t

(
Υ
(
ϕΘ−t (h)

))
.

Obviously, Ξ ∈ C (the flow of Ξ is given by ϕΘt ◦ ϕΥs ◦ ϕΘ−t ). Furthermore,

Tgϕ
Θ
t

(
vg
) = Ξ (ϕΘ−t (g)

)
.

So, TgϕΘt
(
AΓ

T

g

)
⊆ AΓ TϕΘt (g). The other content is proved in an analogous way.

Thus, AΓ
T

is invariant by the generating family of vector fields C. Now,
let us recall a classical theorem, due to Stefan [17] and Sussmann [18], which
characterizes the integrability of singular distributions.

Theorem 1 (Stefan–Sussmann) Let D be a smooth singular distribution on a
smooth manifold M . Then the following three conditions are equivalent:

(a) D is integrable.
(b) D is generated by a family C of smooth vector fields, and is invariant with

respect to C.
(c) D is the tangent distribution DF of a smooth singular foliation F.

Hence, there exists a foliation F on Γ which integrates AΓ
T

, i.e., at each point
g ∈ Γ the leaf F (g) at g satisfies that

TgF (g) = AΓ Tg .

The set of the leaves of F at points in Γ is called the characteristic foliation of Γ .
Note that the characteristic foliation of Γ does not define a foliation on Γ because
Γ is not necessarily a manifold.
We already have the following result:

Theorem 2 Let Γ ⇒ M be a Lie groupoid and Γ be a subgroupoid of Γ (not
necessarily a Lie groupoid) over M . Then, there exists a foliation F of Γ such that
Γ is a union of leaves of F.

In this way, Γ , which is not a manifold, has some kind of ‘differentiable’ structure
via the foliation F.
Let us highlight the following assertions:

(i) For each g ∈ Γ , then

F (g) ⊆ Γ β(g).
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(ii) For each g, h ∈ Γ such that α (g) = β (h), we have

F (g · h) = g · F (h) .
(iii) Let Θ ∈ Xloc (Γ ) be a left-invariant vector field on Γ . Then, Θ ∈ C if, and

only if,

Θ|F(g) ∈ X
(
F (g)

)
, (17)

for all g in the domain of Θ

The construction of the characteristic distribution imposes some condition of
maximality.

Corollary 1 Let G be a left-invariant foliation of Γ such that Γ is a union of leaves
of G. Then, the characteristic foliation F is coarser than G, i.e.,

G (g) ⊆ F (g) , ∀g ∈ Γ.

Proof Let D be the family of (local) vector fields tangent to the foliation G. Then,
restricting to the identities and generating by left invariance we obtain a new family
of (local) vector fields generating the tangent distribution to the foliation G. In fact,
this family is obviously a subset of C (the family of admissible vector fields).

Particularly, Γ
X

is a submanifold of Γ for all X ∈ M if, and only if, Γ
X =

F (ε (X)) for all X ∈ M .

Analogously, the base-characteristic distribution AΓ
�

is integrable. Its associated
foliation F of M will be called the base-characteristic foliation of Γ .
Let us apply these results to a particular example. Let M be a manifold and M ×M
the pair groupoid (Example 2). Then, any transitive subgroupoid of M is the pair
groupoid N ×N of a subset N ⊆ M . Then, using Theorem 2 we have the following
result:

Theorem 3 Let M be a manifold and N be a subset of M . Then, there exists a
maximal foliation F of M such that N is union of leaves.

Proof Let N × N ⇒ N be the transitive pair groupoid of N . We may consider
a (generally intransitive) subgroupoid [(M −N)× (M −N)] � [N ×N ] ⇒ M of
M×M ⇒ M , whereM−N is the subset ofM consisting of the points atM outside
N . So, we may consider F and F its characteristic foliation and base-characteristic
foliation, respectively.
Then, for each X ∈ N we have that

F (X,X) ⊆ N × {X}.
In fact, it satisfies that

F (X,X) = F (X)× {X}. (18)
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Hence, N is the union of the leaves of the base-characteristic foliation at points of
N and we already have our foliation. Let us now study the condition of maximality
of the foliation.
Let G be another foliation of M such that N is union of leaves. Then, for each
(X, Y ) ∈ M ×M we may define

G (X, Y ) = G (X)× {Y }.

Then, the family G = {G (X, Y )}(X,Y )∈M×M defines a left-invariant foliation of
M ×M such that [(M −N)× (M −N)] is union of leaves. Thus, the maximality
condition of the characteristic foliation (Corollary 1) ends the proof.

Notice that the maximal foliation given in Theorem 3 permits us to endow N with
differential structure which generalizes the structure of manifold. Indeed, N is a
submanifold of M if, and only if, N consists of just one leaf of the foliation.
Let Θ be an admissible vector field of the subgroupoid [(M −N)× (M −N)] �
[N ×N ] ⇒ M . Then, the projection

θ = T α ◦Θ ◦ ε
on M is a vector field on M such that its flow at point of N is confined in N .
Conversely, any vector fields θ whose flows at point of N is inside N may be lifted
to an admissible vector field Θ by imposing that

Θ (X, Y ) = (θ (X) , 0) ∈ TXM × TYM, ∀X, Y ∈ M. (19)

Thus, the foliation given in the Theorem 3 can be described by the vector fields on
M whose flow at points of N is contained in N .

Example 8 Let∼ be an equivalence relation on a manifoldM , i.e., a binary relation
that is reflexive, symmetric and transitive. Then, define the subset O ofM×M given
by

O := {(X, Y ) : X ∼ Y }. (20)

Then, O is a subgroupoid of M ×M over M . In fact, this fact is equivalent to the
properties of being reflexive, symmetric and transitive. For each X ∈ M , we denote
by OX to the orbit around X,

OX := {Y : X ∼ Y }.

Notice that the orbits divide M into a disjoint union of subsets. However, these are
not (necessarily) submanifolds.
On the other hand, the base-characteristic foliation gives us a foliation F of M such
that

F (X) ⊆ OX, ∀X ∈ M.
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This foliation is maximal in the sense that there is no any other coarser foliation of
M whose leaves are contained in the orbits (see Theorem 4 and Corollary 4).

Another example give rise to the so-called material distributions. This example will
be presented in the next section.
Next, the groupoid structure is used to endow the leaves of F (X) with a Lie
groupoid structure. First, by using the foliated atlas associated with F and F, we
can prove the following result:

Proposition 1 Let Γ ⇒ M be a Lie groupoid and Γ be a subgroupoid of Γ
with F and F the characteristic foliation and the base-characteristic foliation of
Γ , respectively. Then, for all X ∈ M , the mapping

α|F(ε(X)) : F (ε (X))→ F (X) ,

is a surjective submersion.

As an interesting consequence we have the next corollary.

Corollary 2 Let Γ ⇒ M be a Lie groupoid and Γ be a subgroupoid of Γ . Then,
the manifolds F (ε (X)) ∩ ΓX are Lie subgroups of Γ XX for all X ∈ M .

Another interesting consequence is that we can improve Corollary 1

Corollary 3 Let G be a foliation of Γ such that Γ is a union of leaves of G and

G (g) ⊆ Γ β(g), ∀g ∈ Γ.

Then, the characteristic foliation F is coarser than G, i.e.,

G (g) ⊆ F (g) , ∀g ∈ Γ.

Proof Let us consider D as the family of (local) vector fields tangent to the foliation
G. Fix g ∈ Γ and vg ∈ TgG (g). We may assume that there exists Θ ∈ D such that

Θ (g) = vg. (21)

By using Proposition 1, we may have a local section σg of α|g·F(ε(α(g))) : g ·
F (ε (α (g))) → F (α (g)) with σg (α (g)) = g. So, we will define the following
(local) left-invariant vector field Υ σg on g · F (ε (α (g))) characterized by

Υ σg (ε (Y )) = Tσg(Y )Lσg(Y )−1

(
Θ
(
σg (Y )

))
. (22)

Thus, the flow of Υ σg is given by

ϕΥ
σg

t (h) = h ·
(
σg (α (h))

−1
)
· ϕΘt

(
σg (α (h))

)
.
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Hence, Υ σg generates an admissible vector field. Furthermore,

Υ σg (g) = Θ (g) = vg,

i.e., vg ∈ AΓ Tg .

Notice that, taking into account this result, we may “relax” conditions of the family
of admissible vector fields. In fact, the characteristic distribution is generated by the
(local) vector fields Θ ∈ Xloc (Γ ) such that

(i) Θ is tangent to the β-fibres,

Θ (g) ∈ TgΓ β(g),

for all g in the domain of Θ .
(ii) The (local) flow ϕΘt of Θ satisfies

ϕΘt (g) ∈ Γ ,

for all g ∈ Γ .

Let us now construct an algebraic structure of a groupoid over the leaves of F.
We will consider the groupoid Γ (F (X)) generated by F (ε (X)) by imposing that
for all g, h ∈ F (ε (X)),

g, g−1, h
−1 · g ∈ Γ (F (X)) .

Notice that,

F (ε (X)) = F
(
h
) = h · F (ε (α (h))) .

Therefore,

F
(
h
−1
)
= h−1 · F (ε (X)) = F

(
ε
(
α
(
h
)))
.

On the other hand, let be t ∈ F
(
ε
(
α
(
h
)))

. Then,

F
(
h · t) = h · F (t) = h · F (ε (α (h))) = F (ε (X)) .

i.e., h · t ∈ F (ε (X)) and, hence, t can be written as h
−1 · g with g ∈ F (ε (X)) .

Thus, we have proved that

F
(
ε
(
α
(
h
))) ⊂ Γ (F (X)) ,
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for all h ∈ F (ε (X)). In fact, by following the same argument we have that

Γ (F (X)) = �g∈F(ε(X))F (ε (α (g))) , (23)

i.e., Γ (F (X)) can be depicted as a disjoint union of fibres at the identities.
Let us now show that Γ (F (X)) is, in fact, a subgroupoid of Γ . Consider two
arbitrary elements g, h ∈ Γ (F (X)) with α

(
h
) = β (g). Then, we may assume

that we are in one of the following options:

(i) g, h ∈ F (ε (X)). Then,

F
(
h · g) = h · F (g) = h · F (ε (X)) = F

(
h
) = F (ε (X)) .

i.e., h · g ∈ F (ε (X)) ⊂ Γ (F (X)).
(ii) g−1, h ∈ F (ε (X)). Then,

F
(
h · g) = h · F (g) = h · F (ε (β (g))) = F

(
h
) = F (ε (X)) .

So, h · g ∈ F (ε (X)) ⊂ Γ (F (X)).
(iii) g, h

−1 ∈ F (ε (X)),

F
(
h · g) = h · F (g) = h · F (ε (X)) = F

(
h
) = F

(
ε
(
β
(
h
)))
.

Hence, h · g ∈ F
(
ε
(
β
(
h
))) ⊂ Γ (F (X)) (see Eq. (23)).

It is important to note that Γ (F (X))may be equivalently defined as the smallest
transitive subgroupoid of Γ which contains F (ε (X)). Observe that the β-fibre of
this groupoid at a point Y ∈ F (X) is given by F (ε (Y )). Hence, the α-fibre at Y is

F
−1
(ε (Y )) = i ◦ F (ε (Y )) .

Furthermore, the Lie groups F (ε (Y )) ∩ ΓY are exactly the isotropy groups of
Γ (F (X)). All these results imply the following one ([13]):

Theorem 4 For each X ∈ M there exists a transitive Lie subgroupoid Γ (F (X))
of Γ with base F (X).

Proof Let be g ∈ Γ (F (X)). Then, by Proposition 1, the restriction

β|F−1
(g)
: F−1

(
g−1
)
→ F (X) , (24)

is a surjective submersion, where F
−1 (

g−1) = i ◦ F (g−1). Using this fact, we will
endow with a differentiable structure to Γ (F (X)). Let be g ∈ Γ (F (X)). Consider

σg : U → F
−1 (

g−1) a (local) section of β|F−1(
g−1) such that σg (β (g)) = g.



On the Homogeneity of Non-uniform Material Bodies 403

On the other hand, let {Θi}ri=1 be a finite collection of vector fields in C such that

{Θi (ε (α (g)))}ri=1 is a basis of AΓ
T

ε(α(g)). Then, a local chart over g can be given
by

ϕΘ : W × U → Γ ⊆ Γ
(t1, . . . , tr , Z) �→ σg (Z) · [ϕΘrtr ◦ · · · ◦ ϕΘ

1

t1
(ε (α (g)))] ,

where ϕΘ
i

t is the flow of Θi . These local charts are enough to prove that the
restrictions of the source and target maps are submersions.

So, we have divided the manifold M into leaves F (X) which have a maximal
structure of transitive Lie subgroupoids of Γ .

Corollary 4 Let G be a foliation of M such that for each X ∈ M there exists a
transitive Lie subgroupoid Γ (X) of Γ over the leaf G (X) contained in Γ . Then,
the base-characteristic foliation F is coarser than G, i.e.,

F (X) ⊆ G (X) , ∀X ∈ M.

Furthermore it satisfies that

Γ (X) ⊆ Γ (F (X)) .

Proof Let G be a foliation ofM in the condition of the corollary. Then, we consider
the family of manifolds given by the β-fibres Γ (X)X. Then, by left translations we
generate a foliation of Γ into submanifolds. By using Corollary 3 we have finished.

As a particular consequence we have that: Γ is a transitive Lie subgroupoid of Γ
if, and only if, M = F (X) and Γ = Γ (F (X)) for some X ∈ M .

Remark 4 This construction of the characteristic distribution associated with a
subgroupoid Γ of a Lie groupoid Γ generalizes the known correspondence between
Lie groupoids and Lie algebroids. Indeed, AΓ is the associated Lie algebroid with
Γ if Γ is a Lie subgroupoid of Γ .

5 Material Groupoid and Material Distribution

In this section we will apply the results of Sect. 4 to the case of continuum
mechanics. First, let us fix the fundamental notions.
A body B is a 3-dimensional differentiable manifold which can be covered with just
one chart. An embedding φ : B → R

3 is called a configuration of B and its 1-jet
j1
X,φ(X)φ at X ∈ B is called an infinitesimal configuration at X. We usually identify

the body with any one of its configurations, say φ0, called reference configuration.
Given any arbitrary configuration φ, the change of configurations κ = φ ◦ φ−1

0 is
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called a deformation, and its 1-jet j1
φ0(X),φ(X)

κ is called an infinitesimal deformation
at φ0 (X).
In the case of simple bodies, the mechanical response of the material is characterized
by one function W which depends, at each point X ∈ B, on the gradient of the
deformations evaluated at the point. Thus, W is defined as a differentiable map

W : Π1 (B,B)→ V,

which does not depend on the final point with respect to the reference configuration,
i.e., for all X, Y,Z ∈ B

W
(
j1
X,Y φ

)
= W

(
j1
X,Z

(
φ−1

0 ◦ τZ−Y ◦ φ0 ◦ φ
))
, ∀j1

X,Y φ ∈ Π1 (B,B) , (25)

where V is a real vector space and τv is the translation map on R
3 by the vector

v. This map is called mechanical response. There are other equivalent definitions
([4, 5, 9] or [12]) of this function . We will use this definition for convenience.

Now, consider a situation in which an M neighbourhood of a point Y ∈ B

is diffeomorphic to an M neighbourhood of another point X ∈ B such that the
diffeomorphism cannot be detected by a mechanical experiment. Then, roughly
speaking, we will say that Y and X are made of the same material. In the case when
this property is satisfied for any point in B we will say that the body is uniform.

Definition 7 A body B is said to be uniform if for each two points X, Y ∈ B there
exists a local diffeomorphism ψ from an M neighbourhood U ⊆ B of X to an M
neighbourhood V ⊆ B of Y such that ψ (X) = Y and

W
(
j1
Y,κ(Y )κ · j1

X,Yψ
)
= W

(
j1
Y,κ(Y )κ

)
, (26)

for all infinitesimal deformation j1
Y,κ(Y )κ . The 1-jet j1

X,Yψ is called a material
isomorphism.

Let us now consider the family of all material isomorphisms denoted byΩ (B). It
is a straightforward exercise to prove thatΩ (B) has a natural groupoid structure by
using the composition of 1-jets as the composition law of the groupoid. A material
isomorphism from X to X is said to be a material symmetry. We will denote the
structure maps of the material groupoid Ω (B) by α, β, ε and i, which are, indeed,
the restrictions of the corresponding ones on Π1 (B,B).
Ω (B) is a subgroupoid of the Lie groupoid of the 1-jets Π1 (B,B). However,
Ω (B) is not necessarily a Lie subgroupoid of Π1 (B,B) (see the examples below)
and, hence, we are in the conditions of Sect. 4.

Taking into account the continuity of the mechanical response W , we have that
for any X ∈ B the group of material symmetries Ω (B)XX is a closed subgroup of
Π1 (B,B)XX. So, it follows that:
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Proposition 2 Let B be a simple body. Then, for all X ∈ B the set of all material
symmetries Ω (B)XX is a Lie subgroup of Π1 (B,B)XX.

Notice that this result does not imply thatΩ (B) is a Lie subgroupoid ofΠ1 (B,B).
This is a consequence of the fact that β-fibres of Ω (B) could have different
dimensions.

Now, let us express the uniformity as a known property of Lie groupoids.

Proposition 3 Let B be a body. B is uniform if, and only if, Ω (B) is a transitive
subgroupoid of Π1 (B,B).

Next, we will consider another (slightly more restrictive) notion of uniformity.

Definition 8 A body B is said to be smoothly uniform if for each pointX ∈ B there
is a neighbourhood U around X such that for all Y ∈ U and j1

Y,Xφ ∈ Ω (B) there

exists a smooth field of material isomorphisms P at X from ε (X) to j1
Y,Xφ.

Observe that a smooth field of material isomorphisms P at X is just a (local)
differentiable section of the restriction of α to ΩX (B)

αX : ΩX (B)→ B.

The existence of these smooth fields of material isomorphism can be equivalently
expressed by saying that αX is a surjective submersion. Immediately, we can prove
that smooth uniformity implies uniformity.
It is obvious that B is smoothly uniform if, and only if, for each two pointsX, Y ∈ B

there are two M neighbourhoods U,V ⊆ B of X and Y , respectively, and P :
U × V → Ω (B) ⊆ Π1 (B,B), a smooth section of the anchor map

(
α, β
)
. When

X = Y we can assume that U = V and P is a morphism of groupoids over the
identity map, i.e.,

P (Z, T ) = P (R, T ) P (Z,R) , ∀ T ,R,Z ∈ U.

So, we have the following corollary of Proposition 2:

Corollary 5 Let B be a body. B is smoothly uniform if, and only if, Ω (B) is a
transitive Lie subgroupoid of Π1 (B,B).

Remark 5 Let Θ be an admissible left-invariant vector field on Π1 (B,B) (see
Sect. 4), i.e., ϕΘt (ε (X)) ∈ Ω (B) for all X ∈ B. Then, for all g ∈ Π1 (B,B),
we have that

TW (Θ (g)) = ∂

∂t

(
W
(
ϕΘt (g)

))
∣
∣
∣
∣
0

= ∂

∂t

(
W
(
g · ϕΘt (ε (α (g)))

))
∣
∣
∣
∣
0

= ∂

∂t
(W (g))

∣
∣
∣
∣
0
= 0.
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Therefore,

TW (Θ) = 0. (27)

The converse is proved in the same way.
So, the characteristic distribution AΩ (B)T of the material groupoid is generated
by the left-invariant vector fields on Π1 (B,B) which are in the kernel of TW .
This characteristic distribution will be called material distribution. The base-
characteristic distribution AΩ (B)� will be called body-material distribution. Let
us recall that the left-invariant vector fields onΠ1 (B,B) which satisfy Eq. (27) are
called admissible vector fields and the family of these vector fields is denoted by C.

Denote by F (ε (X)) and F (X) the foliations associated with the material distri-
bution and the body-material distribution, respectively. For each X ∈ B, we will
denote the Lie groupoid Ω (B) (F (X)) by Ω (F (X)).

Notice that, strictly speaking, in continuum mechanics a sub-body of a body
B is an M submanifold of B but, here, the foliation F gives us submanifolds of
different dimensions. So, we will consider a more general definition so that, a
material submanifold (or generalized sub-body) of B is just a submanifold of B.
A generalized sub-body P inherits certain material structure from B. In fact, we
will measure the material response of a material submanifold P by restricting W to
the 1-jets of local diffeomorphisms φ on B from P to P. However, it easy to observe
that a material submanifold of a body is not exactly a body. See [11] for a discussion
on this subject.

Then, as a corollary of Theorem 4 and Corollary 1, we have the following result:

Theorem 5 For allX ∈ B,Ω (F (X)) is a transitive Lie subgroupoid ofΠ1 (B,B).
Thus, any body B can be covered by a maximal foliation of smoothly uniform
material submanifolds.

Notice that, in this case “maximal” means that any other foliation G by smoothly
uniform material submanifolds is thinner than F, i.e.,

G (X) ⊆ F (X) , ∀X ∈ B.

Remark 6 Imagine that there is, at least, a 1-jet g ∈ ΩX (B) for some X ∈ B such
that

g /∈ F (ε (X)) .

Then, we are not including g inside any of the transitive Lie subgroupoids
Ω (F (X)). Thus, these material isomorphisms are being discarded.
Nevertheless

F (g) = g · F (ε (α (g))) , (28)
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and, indeed, F (ε (α (g))) is contained in Ω (F (α (g))), i.e., using Eq. (28), we can
reconstruct F (g).

Finally, using the body-material distribution, we will be able to define a more
general notion of smooth uniformity. This notion was introduced in [10]. We will
end up using the foliation by uniform sub-bodies to interpret it over the material
groupoid.

Definition 9 Let be a body B and a body point X ∈ B. Then, B is said to be
uniform of grade p at X if AΩ (B)

�
X has dimension p. B is uniform of grade p if it

is uniform of grade p at all the points.

Note that, smooth uniformity is a particular case of graded uniformity. In fact,
B is smoothly uniform if, and only if, B is uniform of grade n. Equivalently, B is
uniform of grade 3 if, and only if, AΩ (B)

�
X has dimension 3 for all X ∈ B, i.e.,

there exists just one leaf of the material foliation equal to B. Hence, the material
groupoid Ω (B) is a Lie subgroupoid of Π1 (B,B) whose β-fibres integrate the
material distribution.

Corollary 6 Let be a body B and let X ∈ B be a body point. B is uniform of grade
p at X if, and only if, the uniform leaf F (X) at X has dimension p.

Corollary 7 Let B be a body. B is uniform of grade p if, and only if, the body-
material foliation is regular of rank p.

It is important to highlight that the body-material foliation has certain condition
of maximality. In fact, suppose that there exists another foliation G of B by smoothly
uniform material submanifolds. Then, for all X ∈ B we have that

G (X) ⊆ F (X) , ∀X ∈ B.

So, we have the following results:

Corollary 8 Let be a body B and let X ∈ B. B is uniform of grade greater or
equal to p at X if, and only if, there exists a foliation G of B by smoothly uniform
submanifolds such that the leaf G (X) at X has dimension greater or equal to p.

Corollary 9 Let B be a body. B is uniform of grade p if, and only if, the body can
be foliated by smoothly uniform material submanifolds of dimension p.

6 Homogeneity

This section is devoted to deal with the definition of homogeneity. As we already
know, a body is uniform if the function W satisfies Equation (26). In addition, a
body is said to be homogeneous if we can choose a global section of the material
groupoid which is constant on the body. More precisely:
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Definition 10 A body B is said to be homogeneous if it admits a global configura-
tion ψ which induces a global section of (α, β) inΩ (B), P , i.e., for eachX, Y ∈ B

P (X, Y ) = j1
X,Y

(
ψ−1 ◦ τψ(Y )−ψ(X) ◦ ψ

)
,

where τψ(Y )−ψ(X) : R
3 → R

3 denotes the translation on R
3 by the vector

ψ (Y )− ψ (X). B is said to be locally homogeneous if there exists a covering of B
by homogeneous M sets. B is said to be (locally) inhomogeneous if it is not (locally)
homogeneous.

Notice that local homogeneity is clearly more restrictive than smooth uniformity.
In fact, in this case, the smooth fields of material isomorphisms (see Definition 8) are
induced by particular (local) configurations. However, in a purely intuitive picture,
homogeneity can be interpreted as the absence of defects. So, it makes sense to
develop a concept of some kind of homogeneity for non-uniform materials which
measures the absence of defects and generalizes the known one. In the literature we
can already find some partial answer of this question ([2, 8] for FGM’s and [7, 10]
for laminated and bundle materials).

Recall that the material distributions are characterized by the commutativity of
the following diagram:

As we have proved in the previous section, the body-material foliation F divides
the body into smoothly uniform components.
Let us now provide the intuition behind the definition of homogeneity of a non-
uniform body. A non-uniform body will be (locally) homogeneous when each
smoothly uniform material submanifold F (X) is (locally) homogeneous and all the
uniform material submanifolds can be straightened at the same time.
Thus, we need to clarify what we understand by homogeneity of submanifolds of
B.

Definition 11 Let B be a simple body and N be a submanifold of B. N is said to be
homogeneous if, and only if, for all point X ∈ N there exists a local configuration
ψ of B on an M subset U ⊆ B, with N ⊆ U , which satisfies that

j1
Y,Z

(
ψ−1 ◦ τψ(Z)−ψ(Y ) ◦ ψ

)
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is a material isomorphism for all Y,Z ∈ U ∩ N. We will say that N is locally
homogeneous if there exists a covering of N by M subsets Ua of B such that Ua ∩N
are homogeneous submanifolds of B. N is said to be (locally) inhomogeneous if it
is not (locally) homogeneous.

Notice that, the definitions of homogeneity and local homogeneity for smoothly
uniform materials (Definition 10) are generalized by this one whether N = B or N
is just an M subset of B.

Now, taking into account that F = {F (X)}X∈B is a foliation, there is a kind
of compatible atlas which is called a foliated atlas. In fact, {((XIa

)
, Ua
)}a is a

foliated atlas of B associated with F whenever for each X ∈ Ua ⊆ B we have
that Ua := {−ε < X1

a < ε, . . . ,−ε < X3
a < ε} for some ε > 0, such that the

k-dimensional disk {Xk+1
a = . . . = X3

a = 0} coincides with the path-connected
component of the intersection of F (X) with Ua which contains X, and each k-
dimensional disk {Xk+1

a = ck+1, . . . , X
3
a = c3}, where ck+1, . . . , c3 are constants,

is wholly contained in some leaf of F. Intuitively, this atlas straightens (locally) the
partition F of B.
The existence of these kinds of atlases and the maximality condition over the
smoothly uniform material submanifolds F (X) induces us to give the following
definition:

Definition 12 Let B be a simple body. B is said to be locally homogeneous if, and
only if, for all point X ∈ B there exists a local configuration ψ of B, with X ∈ U ,
which is a foliated chart and it satisfies that

j1
Y,Z

(
ψ−1 ◦ τψ(Z)−ψ(Y ) ◦ ψ

)

is a material isomorphism for all Z ∈ U∩F (Y ). We will say that B is homogeneous
if U = B. The body B is said to be (locally) inhomogeneous if it is not (locally)
homogeneous.

It is remarkable that, as we have said above, all the uniform leaves F (X) of a
homogeneous body are homogeneous. Therefore, the definition of homogeneity
for a smoothly uniform body coincides with Definition 10. Notice also that, the
condition that all the leaves F (X) are homogeneous is not enough in order to have
the homogeneity of the body B because there is also a condition of compatibility
with the foliation structure of F.

Let us recall a result given in [4] (see also [5] or [20]) which characterizes the
homogeneity by using G-structures.
Denote by FB the frame bundle of B. An element of FB is called a linear frame
at a point X ∈ B; it is a 1-jet of a local diffeomorphism f : R3 → B at 0 with
f (0) = X. Then, the structure group of FB is the group of 3× 3-regular matrices
in R, Gl (3,R).
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A G-structure over B, denoted by ωG (B), is a reduced subbundle of FB with
structure group G, which is a Lie subgroup of Gl (3,R) (a good reference about
frame bundles is [3]).
So, fix g0 be a frame at Z ∈ B. Then, assuming that B is smoothly uniform, the set

Ω (B)Z · g0 := {g · g0 : g ∈ Ω (B)Z},

where · defines the composition of 1-jets, is a Ω (B)ZZ-structure over B.

Proposition 4 Let be a frame g0 ∈ FB. If B is homogeneous, then theG-structure
given by Ω (B) · g0 is integrable. Conversely, Ω (B) · g0 is integrable implies that
B is locally homogeneous.

Thus, the next step will be to give a similar result for this generalized homo-
geneity. Because of the lack of uniformity we have to use groupoids instead of
G-structures.

Let S := {S (x) : x ∈ R
n} be a canonical foliation of Rn, i.e., for all x =(

x1, . . . , xn
) ∈ R

n the leaf S (x) at x

S (x) := {
(
y1, . . . , yp, xp+1, . . . , xn

)
: yi ∈ R, i = 1, . . . , p},

for some 1 ≤ p ≤ n.
Notice that for any foliation G on a manifold Q there exists a map

pG : Q→ {0, . . . , dim (Q)},

such that for all x ∈ Q

pG (x) = dim (G (x)) .

pG will be called grade of G. G is a regular foliation if, and only if, the grade of G
is constant.
It is important to remark that in the case of S the grade pS characterizes the foliation
S. Thus, with abuse of notation, we could say that the map pS is the foliation.

Let S be a canonical foliation of Rn with grade p = pS. Thus, as a generalization
of the frame bundle of Rn, we define the p-graded frame groupoid as the following
subgroupoid of Π1 (Rn,Rn),

Π1
p

(
R
n,Rn

) = {j1
x,yψ ∈ Π1 (

R
n,Rn

) : y ∈ S (x)}.

Notice that the restriction of Π1
p (R

n,Rn) to any leaf S (x) is a transitive Lie

subgroupoid of Π1 (Rn,Rn) with all the isotropy groups isomorphic to Gl (n,R).
However, the groupoid Π1

p (R
n,Rn) is not necessarily a Lie subgroupoid of

Π1 (Rn,Rn). In fact,Π1
p (R

n,Rn) is a Lie subgroupoid ofΠ1 (Rn,Rn) if, and only
if, S is regular foliation.
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A standard flat G-reduction of grade p is a subgroupoid Π1
G,p (R

n,Rn) of

Π1
p (R

n,Rn) such that the restrictions Π1
G,p (S (x) ,S (x)) to the leaves S (x) are

transitive Lie subgroupoids of Π1 (Rn,Rn) on the leaf S (x). It is remarkable that
in this case all the isotropy groups of Π1

G,p (S (x) ,S (x)) are conjugated.
Clearly, all the structures introduced in this section can be restricted to any M subset
of Rn.
Let ψ : U → U be a (local) configuration on U ⊆ B. Then, ψ induces a Lie
groupoid isomorphism,

Πψ : Π1 (U,U)→ Π1
(
U,U

)

j1
X,Y φ �→ j1

ψ(X),ψ(Y )

(
ψ ◦ φ ◦ ψ−1

)
.

Proposition 5 Let B be a simple body. If B is homogeneous the material groupoid
is isomorphic (via a global configuration) to a standard flat G-reduction. Con-
versely, if the material groupoid is isomorphic (via a local configuration) to a
standard flat G-reduction, then B is locally homogeneous.

Notice that, in the context of principal bundles, aG-structure is integrable if, and
only if, there exists a local configuration which induces an isomorphism from the
G-structure to a standard flat G-structure.

Finally, we will use the material distribution to give another characterization of
homogeneity.
Let B be a homogeneous body with ψ = (

XI
)

as a (local) homogeneous
configuration. Then, by using the fact that ψ is a foliated chart, we have that the
partial derivatives are tangent to AΩ (B)�, i.e., for each X ∈ U

∂

∂XL|X
∈ AΩ (B)

�
X ,

for all 1 ≤ L ≤ dim (F (X)) = K . Thus, there are local functions ΛJI,L such that

for each L ≤ K the (local) left-invariant vector field on Π1 (B,B) given by

∂

∂XL
+ΛJI,L

∂

∂Y JI

is tangent to AΩ (B)T , where
(
XI , Y J , Y JI

)
are the induced coordinates of

(
XI
)

in
Π1 (B,B). Equivalently, the local functions ΛJI,L satisfy that

∂W

∂XL
+ΛJI,L

∂W

∂YJI

= 0,

for all 1 ≤ L ≤ K . Next, since for each two points X, Y ∈ U the 1-jet given by
j1
X,Y

(
ψ−1 ◦ τψ(Y )−ψ(X) ◦ ψ

)
is a material isomorphism, we can choose ΛJI,L = 0.
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Proposition 6 Let B be a simple body. B is homogeneous if, and only if, for each
X ∈ B there exists a local chart

(
XI
)

on B at X such that,

∂W

∂XL
= 0, (29)

for all L ≤ dim (F (X)).
Notice that Eq. (29) implies that the partial derivatives of the coordinates

(
XI
)

up to
dim (F (X)) are tangent to the material distribution and, therefore, the coordinates
are foliated. So, Eq. (29) gives us an apparently more straightforward way to express
this general homogeneity.

7 Example

We will devote this section to study the notion of homogeneity given in Definition 12
for non-uniform bodies. In particular, we will present an example of a homogeneous
non-uniform material body.

Let B be a simple material body for which there exists a reference configuration
ψ0 from B to the 3-dimensional M cube B0 = (−1, 1)3 in R

3 that, in terms of the
Cauchy stress t, induces the following mechanical response:

t : Π1 (B0,B0)→ gl (3,R)
j1
X,Y φ �→ f

(
X1
) (
F · FT − I) ,

such that

f
(
X1
)
=

⎧
⎪⎨

⎪⎩

1 if X1 ≤ 0

1+ e− 1
X1 if X1 > 0

where gl (3,R) is the algebra of matrices, F is the Jacobian matrix of φ at X
with respect to the canonical basis of R

3 and I is the identity matrix. Here, the
(global) canonical coordinates of R3 are denoted by

(
XI
)

and X = (X1, X2, X3
)

with respect to these coordinates. In these coordinates, we allow the summation
convention to be in force regardless of the placement of the indices. We also
identify the coordinate system in the spatial configuration with that of the reference
configuration.

Notice that f is constant up to 0 and strictly increasing thereafter. For this reason,
one can immediately conclude that B0 is not uniform. In fact, there are no material
isomorphisms joining any two points

(
X1, X2, X3

)
and
(
Y 1, Y 2, Y 3

)
such that

f
(
X1
)
�= f

(
Y 1
)
.
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So, let us study the derivatives of t in order to find the grades of uniformity of the
points of the body B0.3 We obtain

∂t ij

∂F kM

= f
(
X1
) [
δik F

j
M + δjk F iM

]

∂t ij

∂X1
= ∂f

∂X1

(
F iKF

j
K − δij

)

∂t ij

∂XI
= 0, for I ≥ 2.

We are looking for left-invariant (local) vector fields Θ on Π1 (B0,B0) satisfying

Θ
(
t ij
)
= 0. (30)

Let
(
XI , Y I , F iJ

)
be the induced coordinates of

(
XI
)

on Π1 (B0,B0). A left-
invariant vector field Θ can be expressed as follows:

Θ
(
XI , Y J , F

j
I

)
=
((
XI , Y J , F

j
I

)
, δXI , 0, F jLδP

L
I

)
.

Hence, Θ satisfies Eq. (30) if, and only if,

Θ
(
t ij
)
= f

(
X1
) (
F iLF

j
M + FjLF iM

)
δPLM + δX1 ∂f

∂X1

(
F iKF

j
K − δij

)
= 0.

(31)
Let us focus first on the open set given by the restriction X1 < 0. Then, Eq. (31),

turns into the following:

(
F iLF

j
M + FjLF iM

)
δPLM = 0 ∀i, j = 1, 2, 3 (32)

for every Jacobian matrix F =
(
F
j
L

)
of a local diffeomorphism φ on B0. Since

the bracketed expression is symmetric in L and M for every i and j , it follows
that δP is a skew-symmetric matrix. We remark that this condition does not impose
any restriction on the components δXI of the admissible vector fields on the base
vectors ∂/∂XI . In other words, any family of local functions {δXI , δPLM } on the
open restriction {X1 < 0} of the body B0, such that δP = (δPLM

)
is a skew-

symmetric matrix, generates a vector field

Θ
(
XI , Y J , F

j
I

)
=
((
XI , Y J , F

j
I

)
, δXI , 0, F jLδP

L
I

)
,

3The grades of uniformity for this example were first studied in [11], where the components of the
Cauchy stress were identified, less precisely, with those of the second Piola–Kirchhoff stress.
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which satisfies Eq. (30). It follows that the body characteristic distribution of the
sub-body (−1, 1)3 ∩ {X1 < 0} is a regular distribution of dimension 3. Therefore,
this sub-body is uniform, as one would expect from the constancy of the function
f thereat. Note also that the part lost when projecting the characteristic distribution
onto the body, namely the skew-symmetric matrices δP , consists precisely of the
Lie algebra of the orthogonal group. This is nothing but the manifestation of the
fact that our sub-body is isotropic.

Next we will study the open subset of B0 such that X1 > 0. For this case, Eq.
(30) is satisfied if, and only if,

f
(
X1
) (
F iLF

j
M + FjLF iM

)
δPLM + δX1 ∂f

∂X1

(
F iKF

j
K

)
= δX1 ∂f

∂X1
δij . (33)

The function on the left-hand side of this equation is homogeneous of degree 2 with
respect to the matrix coordinate F , but the function on the right-hand side does not
depend on F . Consequently, Eq. (33) can be identically satisfied if, and only if,

δX1 ∂f

∂X1 = 0. (34)

Notice that, the map f is strictly monotonic (and, hence, a submersion) at the open
subset given by the condition X1 > 0. Then, for any point X in this open subset we
have that

TXf
−1
(
f
(
X1
))
= Ker (TXf ) ,

i.e., the tangent space of the level set f−1
(
f
(
X1
))

, which is the plane Y 1 = X1,
consists of vectors V = (V 1, V 2, V 3

)
such that

V 1 ∂f

∂X1

∣
∣
∣
∣
X

= 0.

In this way, a vector field Θ satisfies Eq. (30) if, and only if, δP is skew-symmetric
and the projection T α ◦ Θ ◦ ε is tangent to the vertical planes Y 1 = C. Therefore,
for each point X = (X1, X2, X3

)
with X1 > 0, the uniform leaf is given by the

plane Y 1 = X1. As a consequence, the uniform leaf at the points satisfying X1 = 0
is, again, the plane Y 1 = 0.
We conclude that the body is uniform of grade 3 for all points X = (X1, X2, X3

) ∈
B0 such that X1 < 0, and it is uniform of grade 2 otherwise. It should be remarked
that the plane X1 = 0 is uniform of grade 2, even though its points are materially
isomorphic to those in the subset with X1 < 0.

Finally, the material body B0 is homogeneous. In fact, let us consider the
canonical (global) coordinates

(
Xi
)

of R3 restricted to B0. Then,
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∂t ij

∂X2 =
∂t ij

∂X3 = 0,

i.e., by using Proposition 6, B0 is homogeneous and the coordinates
(
Xi
)

are
homogeneous coordinates.
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