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Chapter 7
Polyphenols as an Effective Therapeutic 
Intervention Against Cognitive Decline 
During Normal and Pathological Brain 
Aging

S. Asha Devi and Anudita Chamoli

1  Introduction

Globally, an alarming increase in the elderly population has had profound 
 implications, not only on the individuals’ health but also for society and the econ-
omy. A prediction based on statistics by the World Health Organisation has indi-
cated an enormous increase of the global population over 60 years of age to 22% by 
2050 [1]. However, as attempts to improve the longevity of the population are 
increasing, the burden of the increasing incidences of age-related neurodegenerative 
disorders, such as Alzheimer’s and Parkinson’s disease, is on the rise. Alongside this 
rise are the crucial and fundamental questions that need to be resolved, i.e. at what 
age do these brain diseases occur and what are the age-related factors that predis-
pose patients to neurodegenerative diseases?

In this review, we focus specifically on middle-age as an important risk factor for 
cognitive decline in normal aging subjects and how this decline is further impacted 
by neurons in specific regions of the brain leading to neurodegenerative diseases in 
subjects over 80 years of age. However, vigorous efforts towards any preventive 
measure against the onset of various brain disorders should also consider prioritis-
ing mechanisms related to normal aging such as inflammatory processes and 
impaired redox balance as essential tissue factors responsible for initiating the loss 
of neurons in sub-fields of the brain that are specific for cognitive functions. The 
literature on intervention studies has described in mechanistic terms polyphenols’ 
effects through interactions with cellular signal transduction pathways. In addition, 
polyphenol-rich foods, such as fruit and vegetables, have been shown to either pro-
tect or slow down the progression of cerebrovascular diseases, such as strokes, and 
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many neurological disorders, including dementia [2–5] and cognitive impairment in 
elderly populations. Polyphenol consumption in middle-age is also related to better 
cognitive function much later in life [6].

2  Polyphenols

Polyphenols are secondary metabolites in plants. The main components of polyphe-
nols are phenolic acids, anthocyanins, flavonoids and simple and complex flavo-
noids as well. Flavonoids are the largest group of polyphenols that can be further 
classified into four main classes: flavonoids, phenolic acids, stilbenes, and lignans. 
A detailed classification of polyphenols has been reviewed by Archivo and his co- 
scientists [7]. Of particular interest are the flavonoid anthocyanins, which impart red 
and blue colours to berries, grapes, and red wine. The beneficial effects of grape 
seeds on human health lie in the fact that they have highest concentrations of anti-
oxidant activities in comparison with many other polyphenolic extracts from plants 
[8] and this is largely related to its flavan-3-ols and condensed tannins [9]. The fla-
vonoids include gallic acid, the monomeric flavan-3-ols catechin, epicatechin, gal-
locatechin, epigallocatechin, and epicatechin 3-O-gallate. In addition, they contain 
procyanidin dimers, trimers, and more highly polymerised procyanidins. Of these, 
the simplest are dimeric proanthocyanidins, possessing ten to eight linked mono-
mers [10–12]. Using liquid chromatography-tandem mass spectrometry (LC-MS/
MS) technique, we have shown the bioavailability of tannins, (+)-catechin, and 
(−)-epicatechin in the hippocampus [13] and prefrontal cortex [14] of grape seed 
proanthocyanidin extract (GSPE)-supplemented young and middle-aged male 
Wistar rats.

Polyphenols supplied by the diet as functional foods are providing several bene-
fits, especially for the elderly populations across the globe. In fact, some studies have 
demonstrated an interest of the consumers in such foods enriched with antioxidants, 
and these are now referred to as ‘nutraceuticals’ [15–17]. There is active intestinal 
absorption of the polyphenols following ingestion of polyphenol-rich foods [18, 19]. 
Polyphenols possess distinctive physiologically-supportive properties that are 
described as anti-diabetic, anti-inflammatory, anti-thrombotic, anti- hypertensive, 
and more importantly, anti-oxidant [20, 21]. In fact, experimental evidence has 
described polyphenols as micronutrients with anti-aging properties. Polyphenols are 
often perceived as pleiotropic, exerting their antioxidant and anti- inflammatory 
potential against several disease-relevant biological pathways [16]. Studies have 
shown that polyphenols and their metabolites in mammals can pass across the blood 
brain barrier (BBB) into the brain and bolster neurological functions [22–26]. 
Furthermore, the bioavailable concentrations of certain polyphenols such as antho-
cyanins have been identified in the hippocampus and cortex of rats supplemented 
with blueberry for 8 weeks [27] and 4 weeks in pigs [28]. In addition, the study also 
showed that the extent of deposition of anthocyanin in the brain is not in proportion 
to that of the plasma levels when measured immediately after consumption of the 
berry, thus concluding that uptake of polyphenols in the brain can also happen by 
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mechanisms other than passive diffusion. However, it is uncertain whether polyphe-
nols and its metabolites primarily enter via simple or facilitated diffusion [29, 30]. 
Interestingly, uptake of the monomer constituents of GSPE, (+)-catechin and (−)-epi-
catechin, is through an isomer-selective transport in endothelial cells of the BBB 
[31]. In addition, Liang and co-workers [32] have demonstrated the accumulation of 
a product of catechin metabolism, 3-O-Me-catechin-5-O-glucuronide, in the rat 
brain. However, the limited bioavailability of polyphenols in the brain has been 
related to the selective permeability of the BBB, weak absorption, and rapid elimina-
tion from circulation [25].

3  Polyphenols and the Normal Aging Brain

Brain aging is associated with loss in volume and dendritic atrophy in the hippo-
campus (HC) and medial prefrontal cortex (mPFC) in rats [33] and humans [34–36]. 
Middle-aged rats experience reductions in neuronal number, volume, and density in 
the anterior cingulate cortex (ACC) and prelimbic cortex (Prl) of the dorsomedial 
prefrontal cortex (dmPFC) [14]. Studies have shown that young rats of 4–6 months 
of age have longer dendritic trees, elevated levels of synaptic markers, and better 
cognition compared to older rats 22–24 months-old, which have shorter dendrites 
and lower levels of synaptic markers [37, 38]. These age-related morphological 
changes represent an imbalance between generation and degeneration of dendrites 
in the old and their role in pathological neurodegeneration [39].

The brain is characterised by high levels of polyunsaturated fatty acids and oxi-
dative stress (OS) is highly prevalent in normal aging. Some areas related to cogni-
tion, such as the PFC and HC, become dysfunctional as a result of increased 
oxidative injury by macromolecules that are essential for neuronal functions. As a 
result, several cytotoxic free radicals (FRs) contribute to the formation of lipid per-
oxides within the neurons [40]. Thus, neurons of aging brains suffer from a loss of 
intracellular concentrations of micronutrients and ions which leads to weak synaptic 
plasticity. Oxidative stress is highly related to cognitive impairments in aging 
humans and is largely a result of an imbalance between reactive oxygen and nitro-
gen species (RONS) and the antioxidant defence system. The heightened OS occur-
ring in the aging brain is concomitantly accompanied by reductions in redox-active 
iron [41] with significant lipofuscin accumulation [14, 42].

Among the flavonoid polyphenols, proanthocyanidins are excellent scavengers 
of superoxide radicals and hydroxyl radicals [43]. Inhibition of oxidative DNA 
damage in the neural tissue has been reported in rats that were supplemented with 
GSE (100  mg/kg b.wt.) for 30  days [44] along with a decreased incidence of 
FR-induced lipid peroxidation (LPO) in the central nervous system of aged rats 
[45]. Better cognitive performance with reduced acetylcholine esterase (AChE) 
activity has been reported for adult mice following intra-peritoneal (i.p.) supple-
mentation for 7 days with the polyphenol-rich blueberry extract [46] and in adult 
and middle-aged rats orally supplemented for 8 weeks with proanthocyanidin-rich 
GSE at 400 mg/kg body weight [47].
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Normal aging of the brain is largely confined to the frontal and temporal lobes 
compared to the parietal and occipital lobes [48] with a progressive decline in cog-
nition due to disturbances in the hippocampal circuit, including the dentate gyrus 
(DG) and the PFC [49]. It is known that the functional changes in the pre-existing 
synaptic connections and the synthesis of new proteins and more importantly, their 
capacity for establishing new connections, are critical for short-term and long term 
memory storage. It is made possible due to their potential to interact with the molec-
ular components in the brain sites for memory. Alterations in cognition with age are 
manifested by a significant decline in spatial and working memory as evidenced by 
a delayed retrieval of a learned task. Polyphenols, when supplemented daily, can 
reverse age-related declines in memory because of their potential to interact with 
the molecules in cognitive sites and modify the pathways within neurons and syn-
apses, as well as facilitate de novo protein synthesis, and in turn, are effective in 
improving the process of memory [50].

Animal studies on cocoa and tea flavanol supplementation have also demon-
strated that dietary polyphenols are beneficial in reversing the course of neuronal 
and behavioural aging [51]. For instance, human studies have shown that cocoa 
flavanol consumption improved working memory and attention [52].

The anti-aging effects of GSE are attributable to the polyphenolics in reversing 
the neurobehavioral aging. Animal studies have shown that polyphenol extracts and 
individual polyphenols can benefit older and impaired rats that suffer cognitive defi-
cits as a result of age, brain insults, or induced pathologies [53, 54]. The possible 
mechanisms that can be attributed to polyphenolic protection involve neurogenesis 
in the DG [55–57].

Polyphenolic activity in scavenging FRs can protect the brain tissue from oxida-
tive injury. The evidence for this comes from behavioural studies in 19–21 month- 
old rats that consumed 10% grape juice wherein improvements were detected in the 
release of dopamine from striatal slices and improved cognitive performance in the 
Morris water maze [58], and from studies where 12 month-old rats were on a daily 
oral dose of GSPE at 75 mg/kg body weight for 30 days and had better cognition 
and memory as seen in a T-maze test [42]. Grape seed proanthocyanidin extract can 
neutralise FRs [59], protect against oxidative damage [60], and reduce the occur-
rence of diseases. Ample evidence through human and experimental studies on 
polyphenols and their beneficial effects for improving cognitive ability, more so, in 
normal aging and those with neurodegenerative disorders [47, 61–65] has led to the 
new term, neuro-nutraceutical.

4  Polyphenols and Neurodegenerative Diseases

As scientists are trying to achieve longevity in the lifespan, the incidence of several 
disorders, including neurodegenerative diseases, especially in ages above 70 years, 
is on the rise. Therefore, attempts in increasing the retention of cognitive functions 
have also been equally important. It is relevant to emphasise the significance of 
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sirtuin 1 (SIRT1) which is notably expressed in brain neurons with a role not only 
in neuronal plasticity but in protection against neuronal disorders [66, 67]. Numerous 
studies have proven a role of SIRTs in DNA repair, antioxidant defence, and anti- 
inflammatory mechanisms. Resveratrol has neuroprotective action through alleviat-
ing oxidative stress and inflammation, by enhancing vascular function and activating 
longevity genes and SIRTs [63].

Alzheimer’s disease has been seen often, the incidence being about 15–20% in 
the world population [68]. Among Alzheimer’s disease patients, 7% are of familial 
genetic patterns while environment and epigenetics have a role in the sporadic onset 
of the disease. Oxidative stress initiates the accumulation of amyloid plaques, a 
product of the membrane amyloid precursor protein (APP) being fragmented into 
β-amyloid (Aβ), with 39–43 amino acids being the pathological hallmark in the 
neocortex of AD patients [69]. As the disease advances, tau-laden tangles, referred 
to as neurofibrillary tangles (NFT), enlarge with a loss of neurons and synapses in 
the cerebral cortex and subcortical regions [70–72] followed by cognitive decline 
and memory loss [73]. The situation is further aggravated through the activation of 
microglia and astrocytes [74, 75]. The AChE inhibitory activities of grape skin 
anthocyanin (GSA) extract and the oligomerisation of Aβ by GSPE may be impor-
tant considerations for designing therapeutic drugs against Alzheimer’s disease 
[76], thus preventing the onset and progression of cognitive deterioration in 
Alzheimer’s disease.

Parkinson’s disease is now recognised as the second most prevalent neurodegen-
erative disease in elderly subjects with a similar economic and social impact as that 
of Alzheimer’s disease. Individuals over the age of 85 years have at least a 5% risk 
of developing Parkinson’s disease [77–79]. The symptoms of Parkinson’s disease 
appear as a result of cell loss in the substantia nigra (SN) that is necessary for motor 
function, the dopaminergic neurons of the pars compacta are lost. It is also notable 
hat normal aging is accompanied by pathological changes in other regions of the 
brain which is exacerbated further in Parkinson’s disease [80, 81]. Advanced age 
promotes a loss of neurons and a loss key mitochondrial proteins and mitochondrial 
potential, and fragmentation of mitochondrial network. All of these effects lead to 
loss of neurons with aging. Importantly, in these neurons is a summation effect of 
reactive oxygen species (ROS) within the mitochondria and OS due to the metabo-
lism of dopamine within them [82]. Reeve and his co-scientists [83] have reviewed 
extensively on dopaminergic neurons of the pars compacta and advanced age as an 
important risk factor for the aetiology and pathophysiology of Parkinson’s disease 
in humans.

Despite the fact that Alzheimer’s and Parkinson’s disease have different clinical 
symptoms, they have similar pathological mechanisms. In Alzheimer’s disease, pro-
tein aggregation and accumulation of plaques of Aβ peptide and intracellular NFT of 
tau protein occurs and Parkinson’s disease is marked by appearance of Lewy bodies 
and Lewy neuritis of intracellular α-synuclein (αS) inclusions. In contrast to these 
diseases that have minor genetic factors but larger environmental stressors during 
one’s lifetime, amyotrophic lateral sclerosis (ALS) and Huntington’s disease (HD) 
are neurodegenerative disorders which have stronger genetic predispositions [84].
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Table 7.1 lists a few representative studies on flavonoid and non-flavonoid poly-
phenols as enhancers of cognitive ability in animal and human studies.

5  Polyphenols and Exercise for Aging Brain

Pure (−)-epicatechin (500 μg/g of food) has been observed to enhance the retention 
of spatial memory, especially when combined with exercise, in 8–10-week old 
C57BL/6 mice due to angiogenesis and increased spine density in the DG of the HC 
[85]. Further, our studies on male Wistar rats have demonstrated that GSPE inter-
vention singly at a dose of 400 mg/kg body weight/day over a period of 16 weeks, 
in combination with swimming training, was beneficial in protecting the dmPFC 
[14] and HC [13] by alleviating mitochondrial FRs, and lipid and protein oxida-
tions, as well as ameliorating the cytosolic antioxidant defences. The combined 
interventions imply a possible synergism between the two especially in middle- 
aged rats that are vulnerable to OS-induced mitochondrial functions (Fig. 7.1).

6  Conclusions

The normal age-related decline in the cognitive abilities in terms of learning and 
memory is largely traceable to a sizeable number of changes in the biochemical and 
molecular pathways at specific sites in the brain (HC, PFC, and amygdala). Such 
modifications are confirmed by several animal and human studies, wherein rigorous 
approaches have been attempted to delay the further progression towards pathologi-
cal aging. Some are through dietary interventions related to natural products. Among 
these, the polyphenolic compounds have been found to have positive effects on 
brain health and cognitive function. Studies from our laboratory have revealed 
improved acquisition and retrieval of a learned task with aging by alterations at the 
biochemical, molecular, and anatomical levels through flavonoid-containing grape 
seed extract. The emerging evidence is that polyphenols have potential as a natural 
therapeutic product for treating neurodegenerative diseases. A flavonoid such as 
GSPE could be an appropriate ingredient for the manufacture of functional and 
neuro-nutraceutical food products for the elderly. However, these findings underline 
the physiological complexity that must be examined in designing therapeutic inter-
ventions to evoke similar responses in clinical situations.
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