
Chapter 8
Bayesian Spike Sorting: Parametric
and Nonparametric Multivariate
Gaussian Mixture Models

Nicole White, Zoé van Havre, Judith Rousseau, and Kerrie L. Mengersen

Abstract The analysis of action potentials is an important task in neuroscience
research, which aims to characterise neural activity under different subject condi-
tions. The classification of action potentials, or “spike sorting”, can be formulated
as an unsupervised clustering problem, and latent variable models such as mixture
models are often used. In this chapter, we compare the performance of two mixture-
based approaches when applied to spike sorting: the Overfitted Finite Mixture model
(OFM) and the Dirichlet Process Mixture model (DPM). Both of these models
can be used to cluster multivariate data when the number of clusters is unknown,
however differences in model specification and assumptions may affect resulting
statistical inference. Using real datasets obtained from extracellular recordings of
the brain, model outputs are compared with respect to the number of identified
clusters and classification uncertainty, with the intent of providing guidance on their
application in practice.
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8.1 Introduction

Extracellular recordings are a form of electrophysiological data that allows real time
monitoring of multiple neurons in vivo. Data collection focuses on the measurement
of action potentials or “spikes”, which characterise local neural activity at a
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given point in time. Analysis of these data aims to estimate both the number of
active source neurons present and their relative frequency. Comparing the results
of analysis across different subject conditions can therefore provide insight into
changes in neural activity, for example, in different regions of the brain or in
response to various stimuli.

The analysis of extracellular recordings consists of two main stages: (1) spike
detection, and (2) the assignment of detected spikes to source neurons. This chapter
focuses on the assignment stage, also known as spike sorting [1, 2]. A common
assumption underpinning spike sorting methods is that different neurons generate
action potentials with a characteristic, repeatable shape. Spike sorting can therefore
be viewed as an unsupervised clustering problem where spikes with similar features
are grouped together, for example, based on summary statistics [3, 4] or low-
dimensional transformations of the data, such as wavelet transforms or principal
components analysis [1, 5].

Mixture models offer a general solution for unsupervised clustering and are
a popular tool for spike sorting, including cases where the number of source
neurons (clusters) is unknown. Applications of mixture models to spike sorting
have included finite mixtures of Gaussian [2, 6] and t-distributions [7], mixtures of
factor analysers [8], Reversible Jump Markov chain Monte Carlo (RJMCMC) [9],
and time-dependent mixtures to account for non-stationarity in waveforms [10, 11].
Nonparametric mixture models based on the Dirichlet Process (DP) have also been
proposed [12, 13].

Different mixture-based approaches all aim to determine the optimal clustering
of a dataset. However, differences in model specification can impact subsequent
inferences, for example, the number of clusters identified and/or classification
uncertainty for individual observations. This chapter aims to provide insight into
this issue by comparing two mixture-based approaches to spike sorting. Both
are formulated within the Bayesian framework and represent parametric and
nonparametric approaches to mixture modelling. The first model is a finite mixture
of multivariate Gaussian distributions, applying methodology proposed by [14].
This model initially overfits the number of clusters expected in the data. The prior
distribution for the mixture model weights is then specified in a way that encourages
excess clusters in the posterior distribution to have negligible weight [15]. The
second model considers a nonparametric approach to mixture estimation which uses
the DP as a prior over unknown mixture components. Clustering behaviour induced
by properties of the DP is then used to estimate the most likely partition of the data.

Outcomes from each approach are compared with respect to the number of
clusters identified, the predicted classification of individuals spikes, and the features
of identified clusters.
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Fig. 8.1 Sampled spikes from three extracellular recordings. Each spike is represented by 89
samples, equivalent to 1 ms of recording. Datasets varied by sample size (L to R): n =
192, 211, 348

8.2 Data

Selected approaches were applied to data from three independent extracellular
recordings of the brain (Fig. 8.1). Each spike was represented by a waveform
consisting of 89 samples, corresponding to 1 millisecond of recording time. The
number of detected spikes for analysis was equal to 192, 211 and 348 for Datasets
1, 2 and 3, respectively.

Dimension reduction was performed on sampled waveforms for each dataset
in Fig. 8.1 using a robust version of Principal Components Analysis (PCA) [16].
This method was chosen to lessen the influence of outliers on the estimation of
principal components. The first four principal components were used as inputs into
each mixture model (Fig. 8.2), which explained 83% (Dataset 1), 91% (Dataset 2),
and 85% (Dataset 3) of total variation in sampled waveforms.

8.3 Methodology

In this section, key features of each mixture modelling approach are outlined.
Common to both approaches is the problem of classifying n spikes into K clusters,
where K is a priori unknown. Individual spikes in each model are represented by a
multivariate vector yi = {yi1, . . . , yir }, containing r measurements for spike i.

For the data described in Sect. 8.2, yi is assumed to follow a Multivariate
Gaussian distribution with mean μk = [μ1k, . . . , μrk] and variance-covariance
matrix �k , 1 ≤ k ≤ K . Conditional on assignment to cluster k, the likelihood
for yi is,

p (yi |zi = k, θk) = Nr

(
μk,�k

)
, (8.1)
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Fig. 8.2 Distribution of the first four principal components of each original dataset. Each row
represents a dataset (Dataset 1, 2, 3) and each column represented a principal component (PC1,
PC2, PC3, PC4)

with unknown parameters θk = (
μk,�k

)
. For each cluster, the joint prior

distribution for θk takes the form:

p (θk) = p
(
μk|�k

)
p (�k) (8.2)

with

p
(
μk|�k

) = Nr

(
b0,

�k

N0

)

p (�k) = IW (c0, C0) . (8.3)

The assignment each spike to available clusters is inferred using a discrete latent
variable zi , where zi = k if spike i is assigned to cluster k. The inclusion of zi is
a form of data augmentation [17], and is required for sampling from the posterior
distribution.

All models were estimated using Markov chain Monte Carlo (MCMC), with
details provided Sects. 8.3.1 and 8.3.2. For analyses presented in Sect. 8.4, the
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following values were chosen for the hyperparameters: b0 = y, N0 = 0.01, c0 = 5
and C0 = 0.75cov (y). These values were chosen to reflect a plausible range
of values for each parameter, whilst remaining relatively non-informative. Other
hyperparameter choices for multivariate Gaussian mixture models are discussed
in [18].

8.3.1 Overfitted Finite Mixture Model (OFM)

The first approach involves fitting a finite mixture model where the number of
clusters is set to be greater than the number of clusters expected in the data. We
refer to this approach as the Overfitted Finite Mixture model (OFM) [14]. Assuming
K∗ > K clusters are fitted to the data, the likelihood of y = {y1, . . . , yn} under the
OFM is,

p(y|θ ,π) =
n∏

i=1

K∗∑

k=1

πkNr

(
μk,�k

)
, (8.4)

where πk = Pr (zi = k), is the prior probability of a randomly selected observation
being assigned to cluster k. Collectively, π = {π1, . . . , πK∗} represent the mixture
model weights and are subject to the constraint

∑K∗
k=1 πk = 1.

Under the OFM, the prior distribution for zi given π is Multinomial,

zi |π ∼ MN (1; π1, . . . , πK∗) , (8.5)

which allows z = {z1, . . . , zn} to be sampled at each MCMC iteration via the
posterior probabilities of cluster membership:

p(zi = k|yi , θ) = πkNr(μk ,�k)∑K
l=1 πlNr(μl ,�l)

(8.6)

∝ πkNr

(
μk,�k

)
. (8.7)

The defining feature of the OFM is the choice of prior distribution for the mixture
model weights. As per the specification of a finite mixture model, weights are
assumed to follow a Dirichlet distribution,

(π1, . . . , πK∗) ∼ D(α1, . . . , αK∗), (8.8)

which is characterised by the hyperparameters α1, . . . , αK∗ . In the absence of prior
information, it is common to set these hyperparameters to a common value; i.e.
α1 = · · · = αK∗ = γ . Building on results by [15], the OFM chooses an appropriate
value for γ that results in weights for excess components {k = K + 1, . . . ,K∗}
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being shrunk towards zero. When fitted to the observed data, the number of unique
values of z is an estimate of the true number of clusters, K .

The proposed methodology was recently applied by [14] for the case of univariate
Gaussian distributions. A key feature of the methodology was the use of prior
tempering on the hyperparameter γ . Briefly, a ladder of T values {γ (1), . . . , γ (T )}
was created, where each element was chosen a priori to promote emptying
behaviour, based on the results of [15]. The MCMC algorithm was implemented
in parallel in combination with Gibbs sampling steps for the remaining model
parameters. Code used to implement the MCMC algorithm for the OFM model
presented in this chapter is available online (https://github.com/zoevanhavre/Zmix_
devVersion2).

8.3.2 Dirichlet Process Mixture Model (DPM)

The second approach considers a nonparametric alternative to mixture modelling
by using the Dirichlet Process (DP) as a prior over unknown mixture components.
The DP is a stochastic process which is defined as a distribution over probability
measures; i.e. a single draw from the DP is itself a distribution [19]. For a
measureable space �, the data generating process for yi under the DP is,

yi |θ i ∼ θ i

θ i |G ∼ G

G ∼ DP (mG0) . (8.9)

The random probability measure G follows a DP defined by a base distribution, G0,
and a concentration parameter m > 0. G0 is interpreted as the mean of the DP, and
is assigned as suitable distribution according to the form of θ i .

Under the DP, draws for multiple θ i have a non-zero probability of taking the
same value. This discreteness property induces clustering of the observed data,
which can be seen in different formulations of the DP. Under the stick-breaking
construction [20], G is replaced with an infinite weighted sum of point masses:

G = ∑∞
k=1 πkδθk

πk = vk

∏
l<k (1 − vl)

vk ∼ Beta (1,m)

θk|G0 ∼ G0 (8.10)

where G0 = p (θk) and δθk
denotes a Dirac mass at θk . The term ‘stick-breaking’

refers to the analogy that the weights π1, π2, . . . represent portions of a stick with
total length equal to 1. Conditional on preceding clusters, each πk is a randomly

https://github.com/zoevanhavre/Zmix{_}devVersion2
https://github.com/zoevanhavre/Zmix{_}devVersion2
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drawn proportion of stick length remaining so that
∑∞

k=1 πk = 1. For this reason,
the DPM is often referred to as an infinite mixture model [19].

An alternative construction of the DP is the Polya Urn scheme [21] or Chinese
restaurant process. Under this construction, G in integrated out, resulting in the
following prior predictive distribution distribution for θ i ,

θ i |θ i−1, . . . , θ1,m,G0 ∼ mG0
m+i−1 + ∑K−1

k=1
Nkδθk

m+i−1 (8.11)

or, in terms of zi ,

p(zi = k|z1, . . . , zi−1,m) =
{

Nk

i−1+m
1 ≤ k ≤ K

m
i−1+m

k = K + 1.
(8.12)

where Nk is the number of observations already assigned to cluster k. The DPM
therefore assumes that each observation has a probability of being assigned to an
existing cluster (1, . . . ,K), or representing a new cluster (K + 1).

The DPM includes a additional concentration parameter, m, which influences the
level of clustering in the data. For example, under the stick-breaking construction in
Eq. (8.10), m influences draws for the stick-breaking weights, v1, v2, . . . which, in
turn, are used to compute the mixture weights. This parameter can be treated as an
unknown parameter in the DPM; in this chapter, we assume m ∼ Γ (1, 1).

For results presented in Sect. 8.4, DPM models were estimated using slice
sampling [22]. This algorithm is based on the stick-breaking construction (8.10)
and involves a modified version of Eq. (8.6) to account for an unspecified number
of clusters. Uniform auxiliary variables, ui ∼ U(0, πzi ), based on current values
for the mixture weights are introduced to sample each zi . Additional clusters are
proposed until the condition

K∗∑

k=1

πi > 1 − min{u1, . . . , un} (8.13)

is met, with K∗ being the number of clusters sampled for the current MCMC
iteration. R code to implement the DPM slice sampler is available online (https://
github.com/nicolemwhite/spike_sorting_DPM).

8.3.3 Comparing Spike Sorting Solutions

For each dataset in Fig. 8.2, OFM and DPM model outputs were compared to
determine the effects of model specification on the estimated number of clusters
and classification outcomes.

https://github.com/nicolemwhite/spike{_}sorting{_}DPM
https://github.com/nicolemwhite/spike{_}sorting{_}DPM
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Number of Clusters The number of non-empty clusters was recorded at the end of
each MCMC iteration, as an estimate of the true number of clusters. The resulting
distribution of K over all MCMC iteration provided an indication of the most likely
number of clusters and associated uncertainty.

Optimal Classification Using MCMC samples for z, pairwise posterior probabil-
ities were calculated to infer the optimal partition of each dataset. For each pair
of observations i and i

′
, the posterior pairwise probability Pr (zi = zi′ |y) was

calculated as the proportion of MCMC iterations where i and i ′ were assigned to
the same cluster, irrespective of the value of k. A benefit of using these probabilities
is that it avoids the need to correct for label switching [23]. The resulting n × n

matrix of probabilities was then used to determine the maximum a posteriori
(MAP) estimate of z [24]. In this chapter, optimal partitions under each DPM were
estimated using the Posterior Expected Rand (PEAR) index proposed by [25].

Modelling results were based on 20,000 MCMC iterations, following an initial
burn-in phase of 20,000 iterations. OFM estimation assumed an initial estimate of
10 clusters and the proposed tempering algorithm was implemented using γ =
2{−32,−16,−8,−4,−2,0,2,4}. MCMC sampling was further initialised by applying the
k-means clustering algorithm to each dataset with k = 10.

8.4 Results

Differences in the estimated number of clusters were observed between models,
with DPM model outcomes subject to greater posterior uncertainty (Fig. 8.3).
Across all datasets, fitted OFM models converged to 4 clusters and showed little to
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Fig. 8.3 Posterior distributions of the estimated number of clusters in Datasets 1, 2 and 3.
Distributions were based on the MCMC output for the DPM (white) and OFM (black)
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no support for other values of K . Uncertainty in the number of clusters among DPM
models was greatest for Dataset 1, which inferred between 4 and 7 clusters with
similar support across MCMC iterations. Discrepancies in the most likely number
of clusters were largest for Dataset 3, with 63% of MCMC iterations proposing 8
clusters under the DPM model.

The visualisation of pairwise posterior probabilities suggested that the classifi-
cation of spikes in Datasets 1 and 2 was robust to the choice of mixture model,
despite evidence of differences in the true value of K (Fig. 8.4). Corresponding
MAP estimates for z showed that the optimal clustering based on DPM models
included an additional cluster, however in each case this cluster only contained
a single observation (Table 8.1). Differences in pairwise posterior probabilities
between models fitted to Dataset 3 were more pronounced, and were associated with
a sparser clustering of spikes under the DPM model. However, additional clusters
predicted by this model also had relatively low weights, representing between 0.3%
and 4.3% of identified spikes.

The projection of optimal classifications onto the original data in Fig. 8.1
provided further insight into additional clusters generated under each DPM model
(Fig. 8.5). For Datasets 1 and 2, the assignment of waveforms to Clusters 1, 2
and 3 was generally consistent under both approaches. Underlying spike shapes
across these clusters were clearly defined, and were distinguished from one another
based on minimum and maximum amplitudes. Defining features for Cluster 4 under
each OFM model were less clear, and appeared to represent outlying observations;
spike sorting solutions under corresponding DPM models instead attributed these
observations to multiple clusters.

The assignment of outliers to singleton clusters was also observed for Dataset
3, however further inconsistencies between models indicated greater sensitivity in
DPM parameter estimates. For example, spikes assigned to Cluster 3 of the OFM
model varied substantially with respect to maximum amplitude. Results from the
corresponding DPM model represented the same spikes by 2 smaller clusters with
different maximum amplitudes.

8.5 Discussion

Using the example of spike sorting, this chapter has compared two popular
approaches to mixture modelling, to assess the effect of model specification on
statistical inference. Both methods represented the observed data as a mixture of
multivatiate Gaussian distributions and assumed that true number of clusters was
unknown a priori.

Differences in model specification affected the estimation of K , with fitted
DPM models associated with greater numbers of clusters. This outcome can be
attributed to the properties of the DP when used as a prior distribution over mixture
components. Unlike the OFM which assumes an upper bound on K , the DP
prior assumes that observations can either be assigned to an existing cluster or be
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Fig. 8.4 Pairwise posterior similarity matrices for Datasets 1–3, Pairwise posterior similarity
matrices for Datasets 1–3, based on MCMC output from the OFM (left column) and DPM (right
column). Pairwise posterior probabilities range from 0 (light grey) to 1 (black)
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Table 8.1 Frequencies of cluster membership, as determined by the optimal partition under each
OFM and DPM model

Dataset 1 Dataset 2 Dataset 3

(n = 192) (n = 211) (n = 349)

Model Cluster Count % Cluster Count % Cluster Count %

OFM 1 110 57 1 125 59 1 176 50

2 48 25 2 44 21 2 80 23

3 25 13 3 40 19 3 72 21

4 9 5 4 2 1 4 20 6

DPM 1 108 56 1 127 60 1 200 57

2 50 26 2 42 20 2 51 15

3 25 13 3 39 18 3 38 11

4 5 3 4 2 1 4 31 9

5 4 2 5 1 1 5 15 4

6 – – 6 – – 6 10 3

7 – – 7 – – 7 2 <1

8 – – 8 – – 8 1 <1

Inferred clusters under both models are labelled in decreasing order by frequency

associated with the generation of a new cluster. For results presented in Sect. 8.4, this
behaviour led to the generation of additional clusters, however in most cases, these
represented a single observation. In contrast, OFM models promoted a parsimonious
approach to clustering, whereby outlying observations were allocated to the same
cluster. This outcome can be attributed to the prior distribution specified for the
unknown mixture weights, as it strongly discourages the posterior from assigning
weight to clusters with limited support from the observed data. When applied to
spike sorting, small clusters inferred under either approach should therefore be
interpreted with care, as these are likely to represent noise as opposed to distinct
source neurons.

Optimal spike sorting solutions proposed by OFM and DPM models were similar
among clusters with larger weights, and performed well in capturing different
waveform shapes. However, greater classification uncertainty under the DPM model
reflected potential sensitivity in parameter estimation of multivariate Gaussian dis-
tributions. Whilst not considered in this chapter, the use of alternative distributions
such as the multivariate-t distribution may help to address this sensitivity. Future
studies in this area should therefore consider the effects of model misspecification
on the performance of different mixture-based approaches.
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Fig. 8.5 Optimal classifications for Datasets 1, 2 and 3 based on MAP estimates produced by
OFM and DPM model. For each dataset, spikes are clustered according to the OFM model. Within
each OFM cluster, individual spikes are coloured based on their corresponding classifcation under
the DPM model
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