
Chapter 7
A Bayesian Hierarchical Approach
to Jointly Model Cortical Thickness
and Covariance Networks

Marcela I. Cespedes, James M. McGree, Christopher C. Drovandi, Kerrie L.
Mengersen, Lee B. Reid, James D. Doecke, and Jurgen Fripp

Abstract Estimation of structural biomarkers and covariance networks from MRI
have provided valuable insight into the morphological processes and organisa-
tion of the human brain. State-of-the-art analyses such as linear mixed effects
(LME) models and pairwise descriptive correlation networks are usually performed
independently, providing an incomplete picture of the relationships between the
biomarkers and network organisation. Furthermore, descriptive network analyses
do not generalise to the population level. In this work, we develop a Bayesian
generative model based on wombling that allows joint statistical inference on
biomarkers and connectivity covariance structure. The parameters of the wombling
model were estimated via Markov chain Monte Carlo methods, which allow for
simultaneous inference of the brain connectivity matrix and the association of
participants’ biomarker covariates. To demonstrate the utility of wombling on
real data, the method was used to characterise intrahemispheric cortical thickness
and networks in a study cohort of subjects with Alzheimer’s disease (AD), mild-
cognitive impairment and healthy ageing. The method was also compared with
state-of-the-art alternatives. Our Bayesian modelling approach provided posterior
probabilities for the connectivity matrix of the wombling model, accounting for the
uncertainty for each connection. This provided superior inference in comparison
with descriptive networks. On the study cohort, there was a loss of connectivity
across diagnosis levels from healthy to Alzheimer’s disease for all network connec-
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tions (posterior probability ≥ 0.7). In addition, we found that wombling and LME
model approaches estimated that cortical thickness progressively decreased along
the dementia pathway. The major advantage of the wombling approach was that
spatial covariance among the regions and global cortical thickness estimates could
be estimated. Joint modelling of biomarkers and covariance networks using our
novel wombling approach allowed accurate identification of probabilistic networks
and estimated biomarker changes that took into account spatial covariance. The
wombling model provides a novel tool to address multiple brain features, such
as morphological and connectivity changes facilitating a better understanding of
disease pathology.

Keywords Conditional autoregressive model · Markov chain Monte Carlo ·
Spatial statistics · Wombling · Cortical thickness · Alzheimer’s disease ·
Structural MRI

7.1 Introduction

Alzheimer’s disease (AD) is the most common form of dementia [13, 67]. While
clinical diagnosis of AD is often derived from psychological assessments, neu-
roimaging studies have found that the structural and functional changes in the brain
that align with AD pathology can be identified prior to the detection of cognitive
symptoms [2, 65].

Structural neuroimaging studies typically use two approaches: region of interest
(ROI) analyses to estimate morphological biomarkers for each region, such as
thickness, volume and the rate of tissue loss; and cortical networks to investigate
associations between multiple ROIs. This two pronged approach is important as
biomarkers in one region are likely to influence the morphological properties of
connected regions. For example, highly correlated ROIs (often quantified through
cortical networks) are often a part of a system that is known to be associated with
particular behavioural or cognitive functions [3, 47]. Nonetheless these approaches
are often performed independently, providing valuable insight into the differences
in brain organisation and degeneration patterns for multiple regions between healthy
and pathological groups [9, 15, 34, 55, 58, 62, 72]. For example, Bernal-Rusiel
et al. [9] found that their models for ROIs were able to characterise changes in
individuals’ measurements at multiple time points while handling up to 45.5%
patient drop out. Furthermore, analyses on cortical thickness networks have demon-
strated a reduction in connectivity efficiency between healthy groups and groups
with neurological disorders such as schizophrenia and AD [8, 15, 37, 46, 59, 71].

An advantage of analyses conducted on a single region is the direct biological
interpretation on the estimation of tissue features, such as thickness and estimated
annual rate of tissue loss [9]. However, it is difficult to ascertain a brain-wide picture
of all ROIs under such analyses, as this requires multiple comparison corrections in
order to account for the high number of hypothesis tests [21, 34, 60, 72]. Alter-
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natively, cortical networks provide a summary measure on the topological brain
network organisation which conveniently encompasses the complex information
across all ROIs [15, 37, 46, 58]. However, direct biological interpretations of such
networks are difficult as the relationship between the ROI node and corresponding
links represent a covariance measure among ROIs, and not physical connections [3].
Furthermore, generalising to a population cortical network is difficult to achieve
from descriptive analyses as such methods are not generative models and do not
take into account the variability of each connection [46, 59–61, 71].

In practice both approaches complement each other with participants who
are healthy, in general, tend to have thicker cortical tissue and highly organised
networks compared to pathological groups such as AD [9, 17, 18, 37, 55, 71]. The
aforementioned shortcomings of these methods could be resolved by combining
both approaches into a unified framework. Such a framework could avoid multiple
comparisons and provide a cortical network whose links reflect the uncertainty of
the data.

In this work, we propose a Bayesian hierarchical (generative) model that jointly
performs network-based inference in conjunction with neuroimaging biomarker
estimates. This approach enforces consistency between any spatial interactions and
biomarker estimates (for network and cortical thickness) at the population and
participant level, while handling correlated measures from within and between
individuals in conjunction with covariates in a statistically principled manner.

7.1.1 Technical Survey of Previous Work of Bayesian
Hierarchical Models

Bayesian hierarchical models have been extensively applied to unify indepen-
dent analyses, for example, combining the joint estimation of voxel and ROI
analyses [12, 19, 69], and combining diffusion and functional MRI into a single
model [70]. Accommodating both within and between participant variation from
longitudinal observations, as well as high patient drop out (unbalanced design)
has been previously achieved through a related method called the mass univariate
Bayesian hierarchical analysis [72]. Previously, Bayesian linear mixed effect (LME)
models, which are a type of hierarchical model, have been applied independently to
key ROIs associated with AD progression [17]. An advantage of Bayesian inference
is that it can detect significant differences among groups of interest through
the direct comparison of the marginal posterior distributions, without the need
for hypothesis tests or multiple comparisons corrections. However, LME models
(Bayesian and non-Bayesian) applied to neuroimaging data usually analyse each
ROI independently and do not account for the covarying measurements between
several brain regions.

Recent probabilistic brain networks in the Bayesian framework have shown
great potential to estimate a population network for clinical groups. Bayesian brain
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networks are probabilistic rather than binary, and so are easy to interpret [38,
41, 61]. However, these probabilistic networks are not easily extended to include
additional neuroimaging biomarker estimation, such as cortical thickness, volumes,
or fluorodeoxyglucose uptake as measured by positron emission topography. To
account for the correlation between measurements on ROIs, several neuroimaging
studies [33, 36, 48, 53] have used spatial dependence modelling via a Gaussian
Markov random field (GMRF, Gössl et al. [32] and Woolrich et al. [68]). However,
an underlying and potentially invalid assumption is that the adjacency structure of
the correlations are known and fixed, and most are constrained to nearest neighbour
configurations. This was highlighted in the Bayesian hierarchical spatial models
by Bowman [11] and Bowman et al. [12] suggesting that the underlying physical
and biological processes may not always be contiguous, and relationships among
ROIs are not restricted to regions which are immediate anatomical neighbours.

7.1.1.1 Previous Work on Wombling

Wombling refers to the estimation of a neighbourhood matrix through the covari-
ance structure of a GMRF that is estimated under a Bayesian framework [42, 49, 50].
This neighbourhood structure can be incorporated as an additional parameter in
the Bayesian hierarchical model, and can be estimated in addition to participant
specific covariates such as gender and other biomarkers associated with AD
factors [22, 24, 31].

7.1.2 Overview of Our Work

In this work, we propose Bayesian hierarchical wombling models that jointly
performs network based inference in conjunction with regional biomarker esti-
mates. This approach estimates the complex covariance associations among several
regions without assuming contiguous relationships via estimation of a connectivity
structure. Furthermore, biomarker estimates at the population and participant level
handle correlated measures from within and between individuals in conjunction
with covariates. This enables full statistical inference of biomarker estimates and
produces a probabilistic network.

To this end, this chapter is organised as follows: Sect. 7.2.2 outlines the proposed
Bayesian hierarchical wombling model. The wombling model is validated via a
simulation study described in Sect. 7.2.3 and results are reported in Sect. 7.3.1.
Sections 7.2.1 and 7.3.2 present the application of brain wombling on the Australian
Imaging, Biomarkers and Lifestyle (AIBL) study of ageing data on healthy controls
(HC), mild cognitive impaired (MCI) and AD diagnosed groups as well as in age
ranges discretised into three groups. A comparison of the results from the wombling
approach with comparable independent analyses are presented in Sects. 7.3.2.2
and 7.3.2.4. A discussion of our work appears in Sect. 7.4.
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7.2 Materials and Methods

The overarching objective of this work is to develop and validate a joint analysis of
biomarker and covariance networks facilitated by the proposed wombling approach.
The flowchart in Fig. 7.1 provides an overview of the experiments presented in this
work, showing the inputs and outputs for each analysis. Case study data will be
based on cortical thickness estimates into a study of into a study of healthy ageing,
MCI and AD participants. The wombling method will be compared to Pearson
pairwise correlation networks and Bayesian LME models. In addition, as this work
was the first to investigate the wombling approach for joint analysis of cortical
networks and biomarker estimates, a simulation study was used to evaluate the
performance of the wombling algorithm to recover the true connectivity structure
and simulated biomarker values.

7.2.1 AIBL Study of Ageing

In this work, we applied our proposed method to data from the Australian
Imaging, Biomarkers and Lifestyle (AIBL) longitudinal study of ageing. AIBL

Fig. 7.1 Overview of the analysis workflow. Arrows show the relationships between the rectangle
methods sections. The results from both methods are denoted by the circular plots on the far
right and are compared to each other to assess the performance of joint analyses facilitated by
the wombling approach (Sect. 7.2.2) in comparison with the state-of-the-art independent analyses
(Sect. 7.2.4)
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is an ongoing study which aims to discover which biomarkers such as cognitive
assessment, neuroimaging, lifestyle and demographic factors potentially influence
the development of AD. The AIBL study was approved by the institutional ethics
committees of Austin Health, St Vincent’s Health, Hollywood Private Hospital and
Edith Cowan University. All study volunteers gave written informed consent prior
to participating in the study. MRI data were collected at baseline and at several
∼18 month follow-up intervals (replicates) from a subset of 167 participants. This
resulted in a total of 597 sets of ROI observations. Only those observations from
participants with two or more replicates were retained; these included 120 HC, 21
and 26 clinically diagnosed MCI individuals and AD participants respectively. Of
the 167 participants, 77 were male (46%) and 90 were female (54%). Mean baseline
ages was numerically higher in those diagnosed with MCI (HC: 73.1 ± 6.7, MCI:
77.0 ± 6.4 and AD: 73.8 ± 7.5, p = 0.055).

The structural T1W MRI images were first segmented into grey/white matter and
cerebral spinal fluid using an in-house implementation of the expectation maximi-
sation algorithm applied to a Gaussian mixture model [64]. Cortical thickness was
computed along the grey matter based on a combined Lagrangian-Eulerian partial
differential equation approach [1]. The grey matter was parcellated following the
Automated Anatomical Labelling (AAL) atlas [63] using a multi-atlas registration
approach [10]. For this work, we used 35 ROI cortical thickness regions from the
left hemisphere of the brain, as listed in Table 7.1.

Table 7.1 Cortical regions from the left hemisphere of the brain, as parcellated via the AAL

Region name Abbrev. Region name Abbrev.

Precentral gyrus PreCent Superior occipital gyrus SupOcc

Superior frontal gyrus dorsolateral SupFrDorso Middle occipital gyrus MidOcc

Superior frontal gyrus orbital SupFrOrb Inferior occipital gyrus InfOcc

Middle frontal gyrus MidFr Fusiform gyrus Fusifrm

Middle frontal gyrus-orbital MidFrOpen Postcentral gyrus Post

Inferior frontal gyrus-opercular InfFrOpec Superior parietal gyrus SupPar

Inferior frontal gyrus-triangular InFrTri Inferior parietal gyrus InfPar

Inferior frontal gyrus-orbital InFrOrb Supramarginal gyrus SupMar

Supplementary motor area SuppMtr Angular gyrus Angular

Olfactory cortex Olfac Precuneus Precun

Superior frontal gyrus-medial SupFrMed Paracentral Lobule ParacenLob

Superior frontal gyrus-medial orbital SupFrMedOrb Heschl gyrus Heschl

Gyrus rectus GrRcts Superior temporal gyrus SupTemp

Anterior cingulate and AntCingPara Temporal pole:superior TempPolSup
paracingulate gyri temporal gyrus

Posterior cingulate gyrus PostCing Middle temporal gyrus MidTemp

Calcarine fissure and CalFiss Temporal pole:middle TempPolMid

surrounding cortex temporal gyrus

Cuneus Cuneus Inferior temporal gyrus InfTemp

Lingual gyrus Ling
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7.2.2 Wombling Model Formulation and Parameter Estimation

In this section, we present the wombling generative model used to jointly estimate
cortical brain connectivity and thickness in a Bayesian hierarchical framework.
Wombling is a type of a LME model that accounts for correlations between
regions, after accounting for fixed effects. In this work, wombling does not provide
age related estimates as it is not a longitudinal model, such an extension is
beyond the scope of this work and motivates future work. The wombling model
comprises of two parts; a mixed effect model and connectivity estimation with
their respective set of assumptions. LME model assumptions include: a linear
relationship exists between the response and the exploratory variables; the response
is normally distributed about a mean, although for non-normal responses we may
extend this assumption to the exponential family and apply generalised linear
mixed models [51]; the variances across fixed and random effects are unknown but
constant, and observations for a region can be correlated with its neighbours, but
observations between non-neighbouring regions are assumed to be conditionally
independent. Connectivity matrix assumptions are twofold. Firstly, the underlying
connectivity structure quantified by matrix W is the same across all individuals in
a specified group. Secondly, relationships between regions are equally weighted,
as our framework estimates the probability of each pairwise connection and not
the connection strength. This implies that if region j is a neighbour of region k,
then region k is also neighbour of region j , and regions are not neighbours with
themselves, wii = 0 ∀i.

The hierarchical structure of the model separates the variation of the data into
two levels; fixed effects (A) and random effects (B) shown in Fig. 7.2. At level A,
the linear predictor for person i, at repeated measure r on region k comprises of
participant i ′s covariate vector xi (covariate matrix for all participants is denoted
by X), parameter vector β, spatial random effects bi and residual variance σ 2.
Level B consists of the spatial random effects bi which follow a multivariate normal
distribution with a mean of 0 and a covariance matrix σ 2

s Q. The product, σ 2
s Q,

comprises of the spatial scale variance term, σ 2
s , which controls the variation of the

random effects and a function of the connectivity structure matrix Q.
The cortical thickness of region k = 1, 2, . . . ,K within participant i =

1, 2, . . . , I who has r = 1, . . . , Ri replicates is yirk measured in millimetres. The
brain wombling model is of the following form:

yirk|bik,β, σ 2 ∼ N(xiβ + bik, σ
2)

bi |σ 2
s ,W ∼ MV N(0, σ 2

s Q)

Q−1 = ρ(Dw − W) + (1 − ρ)I. (7.1)

Details of the formulation for the connectivity structure are as follows: matrix Dw

is a diagonal matrix with elements given by the row sums (or number of neighbours)∑K
j=1 wjk for k = 1, 2, . . . ,K . The matrix W is a zero-diagonal, binary symmetric
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Fig. 7.2 Visualisation of brain wombling model (7.1) via a directed acyclic graph. Nodes in circles
and rectangle denote parameters and observed variables respectively. Direction of arrows indicates
direction of influence or dependence. Rectangle B denotes the second layer of model, which
accounts for spatial dependence among ROI conditional and nested in rectangle A, which is the
upper-most layer with fixed effects β parameter. The spatial random effects vector for participant
i, bi , is modelled as a multivariate normal, whose covariance structure is a function of the binary
symmetric adjacency matrix W , of dimension K × K and wjk = 1 or wjk = 0 implies that region
j and k are connected or disconnected respectively

matrix, with elements wjk = 1 if regions j and k are neighbours or zero otherwise,
and identity matrix I has dimension K × K . The value of ρ determines the global
level of the spatial correlation [43] where values of ρ close to zero correspond to
(near) independence in the spatial random effect, and ρ close to one denotes high
spatial correlation. While ρ can be an additional parameter in our wombling model,
in this application we fix ρ = 0.9, to enforce high spatial correlation and avoid the
difficult and computationally intensive task of estimating ρ, as described in Lu et al.
[50] and Lee [42]. For completeness we investigated the effect of ρ at various values
to assess the recovery of W ; refer to Sect. 7.2.3 for further details.

The parametrisation of Q−1 defined in (7.1) was chosen due to its superior
ability to handle a range of spatial strengths [42, 45]. This parametrisation has
also been favoured in other wombling and spatial clustering applications [4, 43].
Visualisation of model parameters conditional on the observed regional biomarker
response, such as cortical thickness, and participant specific covariates are shown in
Fig. 7.2.

In a Bayesian framework the likelihood corresponding to the model in (7.1) is
p(y|b, σ 2,β,X), which is conditional on the spatial random effects and the model
parameters. Note the data is conditionally independent of the network structure W

and spatial scale variance, σ 2
s . The resultant joint posterior distribution for the model
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parameters and the random effects given the data is

p(W, σ 2, σ 2
s ,β|y,X) ∝

⎡

⎣
I∏

i=1

Ri∏

r=1

K∏

k=1

p(yirk|bik, σ
2,β, xi )

⎤

⎦

[
I∏

i=1

p(bi |σ 2
s ,W)

]

p(β)p(σ 2)p(σ 2
s )p(W). (7.2)

In the Bayesian paradigm the population parameters are random variables,
and priors p(β), p(σ 2), p(σ 2

s ) and p(W) are assigned to each parameter. Details
on prior specification are described in Sects. 7.2.2.1 and 7.2.2.3. Markov chain
Monte Carlo (MCMC) methods were used to sample from the joint posterior
probability distribution of the parameters [57], which samples from the marginal
posterior distributions as a by-product [29]. At each MCMC step, samples are
iteratively drawn from the full conditionals of the parameters with a Metropolis-
Hastings (M-H, Chib and Greenberg [20], Metropolis et al. [52]) update for W .
Following a burn-in period, samples will eventually be drawn from the joint
posterior distribution of the parameters [12].

Full conditional distributions in closed form were derived for parameters β, σ 2
s

and σ 2 which were sampled via a Gibbs sampler as described in Sect. 7.2.2.1. As
the matrix W is symmetric, the off-diagonal, upper triangular elements were updated
one at a time via a M-H sampler as described in Sect. 7.2.2.3.

7.2.2.1 Prior and Conditional Distributions for σ2
s , σ2 and β

A semi-conjugate prior in the form of an inverse gamma distribution, IG(c, d),
was chosen for the spatial scale variance σ 2

s , with shape and rate values c and
d , respectively. Likewise, the prior for the residual variance σ 2 was an IG(e, f )

distribution. Hyperparameters were chosen to provide support over a wide range of
possible values for σ 2

s and σ 2. The full conditional distributions for σ 2
s and σ 2 are

as follows

p(σ 2
s |W, bi ) ∼ IG

(
IK + 2c

2
,

1

2

I∑

i=1

biQ
−1bi + d

)

, (7.3)

and

p(σ 2|b, y,β,X) ∼ IG

⎛

⎝N + 2e

2
,

1

2

⎛

⎝
I∑

i=1

Ri∑

r=1

K∑

k=1

(yirk − xiβ − bik)
2

⎞

⎠ + f

⎞

⎠ ,

(7.4)

where N is the total number of observations.
The prior for the fixed effect parameter β is a multivariate normal distribution

MV N(μ0,Σ0), and in keeping with wombling literature [50], μ0 and Σ0 were
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chosen so that the prior on β is vague. It can be shown that the full conditional
distribution for β is

p(β|b, y,X, σ 2) ∼ MV N

⎛

⎝

[
1

σ 2

L

XT
L

X + Σ−1
0

]−1 [
1

σ 2

L

XT (y − L

b) + Σ−1
0 μ0

]

,

[
1

σ 2

L

XT
L

X + Σ−1
0

]−1
⎞

⎠ . (7.5)

The response in long vector form is y = [y111, y112, . . . , y11K, y121, . . . , yIRIK ]
and the covariate matrix X with superscript L is

L

X = [x1, x1, . . . , x2, x2, . . . , xI ],
hence the individual specific covariate vector xi is repeated Ri times, where

L

X is an
N by p matrix; where p is the total number of covariates for the model, including

the intercept. Similarly, the long vector form for the spatial random effects is
L

b =
[b111, b121, . . . , b1KR1, b211, . . . , bIRI K ].

7.2.2.2 Full Conditional Distribution for Spatial Random Effects bi

From Model (7.1) we can derive meaningful participant specific estimates of cortical
thickness for each of the ROIs analysed, and investigate how this deviates from the
population average (β0). The individual-specific estimates of cortical thickness for
each ROI in our analysis are derived from the full conditional distribution of bi

given by

p(bi |β, y, σ 2, σ 2
s ,W) ∼ MV N

⎛

⎝
[

Ri

σ 2
I + 1

σ 2
s

Q−1
]−1

⎡

⎣
Ri∑

r=1

yir

σ 2
− Ri

σ 2
(xiβ)e

⎤

⎦ ,

[
Ri

σ 2 I + 1

σ 2
s

Q−1
]−1

)

, (7.6)

where the unit vector e = [1, 1, . . . , 1] is of length K .

7.2.2.3 Prior and Posterior Sampling for Brain Connectivity Matrix W

According to the posterior distribution in (7.2), the full conditional for matrix W is
of the form

p(W |σ 2
s , b) ∝

[
I∏

i=1

p(bi |σ 2
s ,W)

]

p(W).



7 Brain Wombling 165

Elements of the matrix W are updated one at a time. As W is symmetric, we only
require estimation of the off-diagonal, upper triangular elements. To facilitate a data
driven method to estimate the brain connectivity matrix, our prior knowledge of the
probability of a link between any pair of ROIs is 0.5, that is, p(wij = 1) = p(wij =
0) = 0.5 for all values of i and j .

We use the M-H algorithm within a Gibbs sampler to draw posterior simulations
for W . We update W element-wise by drawing independent proposals, w∗

kj , from
the prior of W and accepting a proposal with probability

α = min

⎧
⎨

⎩
1,

∏I
i=1 p(bi |σ 2

s ,Q−1
w∗

kj
)

∏I
i=1 p(bi |σ 2

s ,Q−1
wkj

)

⎫
⎬

⎭
, (7.7)

where the covariance precision evaluated at the proposed value is Q−1
w∗

kj
.

7.2.3 Simulation Studies

The proposed Bayesian brain wombling approach accommodates for both network
based inference and biomarker estimates. For this reason the aims of the simulation
study are twofold. Firstly, we aim to evaluate the performance of this model at
‘recovering’ two underlying connectivity matrices W (structured and contiguous
configurations). In the context of this manuscript, by recovery we refer to whether
the credible intervals of the estimator contain the true solution. The assumed true
matrices for W are shown in Fig. 7.3A and F respectively. Our second aim is to
illustrate that our model recovers the simulated biomarker estimates via fixed effect
vector β in addition to simulated participant specific estimates through their spatial
random effects (bi ).

In order to relate the simulation study to the real data application, the values
used to generate the simulated study data were chosen to reflect features of the
AIBL study, such as the number of simulated ROIs, number of repeated measures
(replicates) in the unbalanced design, the number of participants and range of
biomarker values.

7.2.3.1 Wombling Simulated Analyses

For both configurations of W , the vector β = [β0, β1] = [3, 0.5] was assumed as
the intercept and gender effect, and xsim was specified as a binary vector with male
participant as baseline (i.e. xi,sim = 1 to simulate a female participant and xi,sim = 0
a male participant). The average global human cortical thickness can range from
approximately 1 to 4.5 mm [27], hence the prior for β was chosen to remain
physiologically feasible around this value. For this reason the hyperparameters for
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the precision matrix Σ0 had zero off-diagonals and diagonal elements of value
1/10, and the hyperparameter for μ0 was chosen to be 0. We note that these
are the same priors used for the real data application described in Sect. 7.2.4.
Variance terms for both W configurations were set to σ 2

s = 1 and σ 2 = 0.5,
with relatively uninformative inverse gamma priors specified as IG(1, 1) and
IG(1, 0.5) respectively. Priors for both configurations of W matrices are described
in Sect. 7.2.2.3.

Our simulation studies were undertaken by generating 50 independent data sets
from Model (7.1). We fitted our model to each data set to obtain (50) posterior
distributions for our parameters. Here, we considered a balanced design whereby
each simulated participant had the same number of repeated measures, and the more
realistic unbalanced alternative, where the number of replicates for each participant
varied.

Data for I = 100 participants were simulated from Model (7.1), where each
participant had K = 35 simulated ROI as listed on Table 7.1, and each participant
had Ri = 7 replicates as a balanced design. The unbalanced simulation design
comprised of participants with 4–7 replicates (mean 5.8). Parameter values and
prior information as described above were set for balanced and unbalanced designs,
whereby each design was explored as structured and contiguous W configurations,
for a total of four scenarios.

Each scenario resulted in a mean of posterior means for W , representing the
probabilistic network. These scenarios were binarised for ease of comparison to
assess the recovery of W . Values wjk = 1 if the average posterior probability of
a connection between regions j and k was equal to or greater than τ = 0.6, and
wjk = 0 otherwise. We note that binary W is dependent on the choice of τ , and that
τ = 0.6 is sufficiently far away from the prior (p(wij = 1) = p(wij = 0) = 0.5).

Further details of the simulation analyses including percentage of recovery
of the assumed true values and MCMC convergence checks are provided in
section “Simulation Study” of Appendix.

7.2.4 Application to Study Cohort

We hypothesised that each population group has an underlying cortical brain
network, denoted as matrix W , while expecting differences in W between groups,
as each group represented progressive levels of neurodegeneration in both cortical
thickness estimates and structural brain networks.

The Bayesian brain wombling Model (7.1) was applied independently to data
from three diagnosis groups (HC, MCI and AD) as well as three age groups (A: 59–
69y; B: 69–79y; C: 79–93y). In order to compare the wombling model with current
state-of-the-art methods that provide cortical networks, population and participant
specific estimates, we derived Pearson pairwise correlation networks and Bayesian
LME models to the aforementioned case study groups. The subsections below
describe how the marginal posterior draws were processed after the wombling
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model was applied to the AIBL case study, as well as details of the independent
analyses methods applied to produce comparable biomarker estimates as described
in literature [9, 16, 17, 34, 39].

7.2.4.1 Probabilistic Connectivity Matrices via Wombling

Inference on the brain wombling models were estimated by the MCMC scheme
described in Sect. 7.2.2, which was applied to each group and was run using four
chains. Each chain ran for M = 500,000 iterations. The first 50,000 runs (burn-in)
were discarded and every 50th iteration retained (thinning).

The resultant elements of the posterior mean of W matrices are w̄kj , and represent
the probability that region k is connected to region j in a cortical structural network.
These networks represent the underlying average network of a group estimated from
our sample. Binary matrices were derived for a given probability threshold (0 < τ <

1) for each element of W . This threshold determines the level of confidence in our
brain network, and allows for straightforward comparisons across groups. However
as noted in He et al. [37] and Yao et al. [71], a high threshold on brain networks
may lead to disconnected networks and this may make topological network metrics
difficult to analyse. In this work, we set τ = 0.7 as this value is substantially higher
than the prior value of 0.5, and is greater than our 0.6 value from our simulated study
in Sect. 7.2.3, thus providing a more stringent level on the certainty of the resultant
networks, resulting in a high level of confidence regarding the potential connections
between nodes.

7.2.4.2 Descriptive Pearson Cortical Networks

Following the methods of Bassett et al. [8], we applied Pearson pairwise correlation
networks at both baseline (which consisted of all observations being independent
and identically distributed (IID)) as well as on the whole data with repeated
measures treated as IID.

7.2.4.3 Wombled Population and Participant ROI Biomarker Estimates

In the Bayesian paradigm, the posterior distributions of parameters can be compared
directly to make probabilistic statements about each other, or in regards to other
biologically relevant quantities. The probability that parameter β0,A from group A

is within the lower 2.5% and upper 97.5% quantiles of the posteriori β0,B from
group B (denoted by YL and YH ), is estimated by

P(YL < X < YH ) = 1

M

M∑

m=1

1(YL < βm
0,A < YH ), (7.8)
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Table 7.2 Comparisons of
estimated total cortical
thickness among groups

Group comparison Probability

P (ADL < HC < ADH ) 0.02

P (MCIL < HC < MCIH ) 0.49

P (ADL < MCI < ADH ) 0.90

P (BL < A < BH) 0.79

P (CL < B < CH) 0.97

P (CL < A < CH ) 0.86

Probabilities of parameter X with respect
to the posterior distribution is within the
lower (L) 2.5% and upper (H ) 97.5% quan-
tiles of the posteriori of Y is expressed by
P (YL < X < YH ). A high probability denote
posterior distributions overlap among groups
and low probability suggest substantial dif-
ferences in posterior estimates; quantiles of
distributions are the box plot whiskers in
Fig. 7.6

where the indicator function 1 is equal to one if YL < βm
0,A < YH and zero

otherwise. The length of the MCMC chain for β0,A is M . Comparison of all
groups are computed in a similar manner, whose results are listed in Table 7.2 of
Sect. 7.3.2.3.

While our algorithm provides cortical thickness estimates on all participants in
the analysis for each ROI, we focused on the nine key regions often used to describe
the cortical signature of AD [21, 23]: the inferior, medial and superior temporal
lobes; supramarginal, angular, posterior cingulate and the precuneus gyrus. Results
for all 35 ROI can be found in Figs. 7.17 and 7.18.

Low cortical thickness estimates are often indicative of neurodegeneration. For
this reason, at the participant level analyses in Sect. 7.3.2.3, we expected an
increasing atrophy pattern to be associated with diagnosis, from AD to MCI to HC,
as well as among age groups, from old to young. Participants which differ from this
pattern may be showing early signs of AD pathology, thus this analysis could be
also be used to flag sub-groups of participants to follow up.

7.2.4.4 Bayesian LME ROI Analyses

Bayesian LME models were applied independently on each ROI in a similar manner
as Bernal-Rusiel et al. [9], Guillaume et al. [34], Caselli et al. [16], Holland
et al. [39] and Cespedes et al. [17] who applied LME models at the ROI level.
Similarly, others who applied these models at the voxel scale in AD and in
other neurological applications [35, 72]. Refer to section “Bayesian Linear Mixed
Effect Models on Each ROI” in Appendix for model specifications. The wombling
and combined Bayesian LME models were compared by the Watanabe-Akaike
information criterion (WAIC, Watanabe [66]). The survey by Gelman et al. [30]
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describes how the WAIC has been shown to be the preferred approach for model
comparison in the Bayesian community. For this reason, it is applied to the models
this work.

7.2.5 Statistical Analysis

All analyses were undertaken using the open-source software R [56]. Source
code and data used in the simulation study are available at https://github.com/
MarcelaCespedes/Brain_wombling. Simulation experiments were performed using
a high performance computer cluster. We note that a single MCMC instance of the
Bayesian brain wombling model ran on a single central processing unit (CPU) and
took approximately 24 h to run on a standard computer (four core 3.40 GHz Intel
i7-4770 processor).

7.3 Results

7.3.1 Simulation Studies

7.3.1.1 Wombling Simulated Analyses

Figure 7.3A and F show the comparison between the W we should recover, and
the average estimated W for the structured configuration (Fig. 7.3B and D), and
contiguous configuration (Fig. 7.3G and I). Section 7.2.3 describes how the mean of
the posterior mean matrices in Fig. 7.3B, D, G and I were binarised. The resultant
binarised matrices for the structured balanced and unbalanced designs recovered
83% and 82% of the networks’ solution (Fig. 7.3C, E). The binarised matrices for
the contiguous balanced and unbalanced designs recovered 70% and 65% of the
contiguous configuration (Fig. 7.3H and J). The parameter dimension in the 35 ROI
simulation study consisted of the off-diagonals of W , (K(K − 1)/2 = 595) in
addition to β, σ 2 and σ 2

s , which was a total of 599 parameters. As can be seen
by Fig. 7.3, the wombling model showed the desired recovery of the connectivity
matrices in both configurations and in the balanced and unbalanced designs, despite
the high parameter dimension.

To assess whether the random effects were recovered appropriately, we evaluated
their 95% credible intervals. These results showed that the true values of the random
effects were recovered on average 95% of the time indicating that the variation of
the posterior distribution is appropriate. See Table 7.3 and Fig. 7.9 for details of
these results. Likewise, the recovery of the solution vector β was within the 95% of
the credible intervals approximately 95% of the time in all simulation configurations
and scenarios, demonstrating that in addition to recovery of connectivity networks,

https://github.com/MarcelaCespedes/Brain_wombling
https://github.com/MarcelaCespedes/Brain_wombling
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Fig. 7.3 Data generated from
binary W matrices for
structured (a) and contiguous
(f) configurations. A single
wombling simulation run
results in a posterior
distribution for W , whose
mean represents an average
connectivity matrix. The
mean of the posterior means
over all 50 simulations in
each scenario are the
connectivity matrices shown
in b, d, g and i, which show
the average posterior
probability of region j being
a neighbour of region k. Top
row: Mean of posterior means
for structured balanced (b)
and unbalanced (d)
simulation designs, with
corresponding binary
matrices (c and e
respectively) whose elements
are equated to one if their
value is greater than threshold
τ = 0.6 and zero otherwise.
Bottom row: Similarly for the
contiguous simulation study,
mean of posterior means for
balanced (g) and unbalanced
(i) matrices with
corresponding binarised
matrices (h and i) at
probability threshold of 0.6
and above



7 Brain Wombling 171

the wombling model was able to recover the biomarker and participant level
estimates.

A sensitivity analysis with respect to the prior information on σ 2, σ 2
s , and β, was

conducted on the structured W configuration. This entailed re-running the analysis
using various specifications of the prior information. The subsequent posterior
summaries did not vary considerably based on different prior information. Hence
we postulate that estimation of σ 2, σ 2

s , and β are relatively robust to the priors
specified in this work.

The results described above relate to two fixed W configurations with the same
values on β, σ 2, and σ 2

s for each scenario. We investigated the effect of different
values for variance terms (σ 2

s and σ 2) on the recovery of W and fixed and random
effects. We found the results to be very similar to those reported here (model results
for different variance terms not shown). Furthermore, we investigated the effect of
the value of ρ on the recovery of W with ρ ∈ {0.85, 0.9, 0.95, 0.99} using the
balanced structured simulation scenario. There is some wombling literature which
suggests that the choice of ρ can affect the recovery of σ 2

s and W [42, 44, 50]; we
found a choice of ρ = 0.9 provided appropriate recovery of parameters of interest.
Refer to Table 7.4 for results on a range of ρ values.

In summary, our simulation study showed the recovery of W proved to be
appropriate, which implies that the estimation of Q−1 is reliable. However the
spatial scale variance (σ 2

s ) was typically overestimated, a finding that is not
uncommon in wombling literature [50]. Despite this, the simulation study also
showed adequate recovery on biomarker and participant estimates, as such our
estimates for β, σ 2 and bi are reliable.

7.3.2 Application to Real Data

In this section, we present the results of the joint analysis derived by the wombling
model, and compared them with the results from the independent analyses (overview
in Fig. 7.1).

The MCMC algorithm was utilised to draw posterior samples from the wombling
model applied on diagnosis and age groups of the AIBL case study. As described
in Sect. 7.2.5, informal diagnostic measures were assessed, such as trace, density
and autocorrelation plots, as well as formal measures to investigate between and
within chain variation with the Gelman-Rubin convergence measure [14]. All plots
suggested convergence to a stationarity distribution according to the Gelman-Rubin
convergence checks. Furthermore, posterior predictive checks on all models in these
analyses showed the models fit the data well; there were no systematic departures
from the model predictions and 95–99% of all response values were within the 95%
credible intervals of the posterior predictive distributions; refer to Table 7.5 and
Figs. 7.10, 7.11 for results.
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7.3.2.1 Probabilistic Connectivity Matrices via Wombling

The networks corresponding to the probabilistic matrices in Fig. 7.4 show the results
for diagnosis levels HC (top: A and B), MCI (middle: C and D) and AD (bottom: E
and F). The varying level of uncertainty between matrices is indicated by elements
with probability values close to 0.5, in contrast with connections which have high
or low probabilities. This is partly due to a sample size effect, as there were
120 participants who were diagnosed as HC compared to MCI (21) and AD (26)
participants.

The networks on the right of Fig. 7.4 show those connections with a probability
equal to or greater than 0.7. The network configurations reflect the underlying
estimated population networks. The total number of edges in these networks
show HC participants have a more complex cortical network structure with 156
connections, in comparison with the MCI network which had 124 connections.
Furthermore, the AD network has a lower degree (112 connections) in contrast with
the MCI and HC networks, suggesting a higher loss of network communication
among the ROIs. The middle temporal lobe is one of the earliest regions known to
be affected by the onset of AD [40]; with a probability greater than 0.7, our results
indicate the number of connections of the HC, MCI and AD networks for this region
are 7, 6 and 4 respectively, suggesting a loss of connections along the AD pathway.
A similar reduction in node degree, in general, can be observed on the entire cortical
mantle, across the frontal, temporal, parietal and occipital lobes.

Baseline age differences are observed in cortical networks in Fig. 7.5. The
networks on the right of Fig. 7.5 show a re-organisation of connections, rather than
a direct loss of total network degree with an increase of age. The older age Group C
(79–93y) consists of 62 participants of which 41 were diagnosed as HC at baseline
and 8 were diagnosed as AD. Hence the analysis in this group is dominated by
HC, and the resultant network better aligns to healthy ageing rather than onset
of AD. The diagnosis ratio of participants in the younger and middle age Groups
A and B (59–69y and 69–79y respectively) have higher ratio of AD and MCI
participants in contrast to HC. Hence the averaged networks across these groups
include participants with a broader spectrum across healthy ageing, and progression
to AD or other dementias, in contrast with age Group C.

7.3.2.2 Descriptive Pearson Cortical Networks

The Pearson pairwise network analyses on diagnosis and age groups were sensitive
to data with repeated measures, as connections varied across both groups between
networks derived from IID and data with replicates. This finding is interesting as
the studies by Li et al. [46] and Fan et al. [25] used repeated measures in their
pairwise correlation network analyses. However, in our analyses, only the IID
Pearson cortical networks were used for comparison with the wombling model.
Once the IID correlation networks were binarised by placing a link between ROIs
whose absolute correlation values greater than τ = 0.7, the diagnosis group did



7 Brain Wombling 173

Fig. 7.4 Left: Posterior mean of W for each diagnosis, top to bottom; HC (a and b), MCI (c and
d) and AD (e and f). Right: Cortical networks from binarised posterior matrix W with threshold
τ = 0.7 for the respective diagnosis groups. Node size reflects the number of edges on each vertice.
Total number of edges for each network (top to bottom) are 156, 124 and 112 for HC, MCI and
AD networks respectively

not support biologically meaningful networks: the Pearson pairwise correlations
were considerably higher in the MCI group, followed by AD and HC with fewer
connections. The age correlation matrices were binarised in the same manner, and
the resulting sparse networks had a loss of connections from young to older age
groups, of A (47) to B (38) to C (19). Refer to Figs. 7.26, 7.27, 7.28, 7.29, 7.30, and
7.31 for full Pearson pairwise correlation network results.
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Fig. 7.5 Left: Posterior means of W for age groups (top to bottom) A (59–69y), B (69–79y) and C
(79–93y) shown in plots A, C and E respectively. Right: Cortical network from binarised posterior
matrix W with threshold τ = 0.7 for the respective age groups for the respective age groups A, B
and C shown in plots B, D and F. Node size reflects the number of edges on each vertice

7.3.2.3 Wombled Population and Participant ROI Biomarker Estimates

In our application of brain wombling with Model (7.1), the vector β = [β0, β1]
contains fixed effect parameters, where the intercept β0 represents the mean
thickness of the left cortex hemisphere of the brain, for a particular group and β1
is the gender effect, with females as baseline and covariate xi = 1 for male. In all
groups analysed, the gender effect was not substantive (95% credible intervals for
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Fig. 7.6 Posterior marginal distributions of total cortical thickness (β0) across groups. Median
of each distribution shown in each box plot, whiskers indicate 95% credible interval for each
parameter. Diagnosis groups; healthy control (HC), mild cognitive impaired (MCI), Alzheimer’s
disease (AD) and age Groups A, B and C correspond to age ranges 59–69y, 69–79y and 79–93y
respectively

β1 included zero), thus we conclude there are no significant gender differences in
global cortical thickness between the groups analysed.

The median cortical thickness mantle in HC groups (β0,HC) is significantly
higher than AD clinical diagnosis, as the 95% credible interval of β0,HC lies outside
of the 95% credible interval of the AD distribution (β0,AD). While the posterior
median of the MCI group was not significantly different from the medians of the
HC or AD groups, from Fig. 7.6, the cascading order of degeneration on the cortex
can be seen in the disease progression from HC to MCI to AD.

As described in Sect. 7.2.4.3, we can make probabilistic comparisons among
the median cortical thickness between groups. The probability that, a posteriori
β0,HC is within the ADL and ADH quantiles of the posterior distribution of the
AD is 0.02, which implies there is a significant difference between the cortex of
HC and AD groups. The probability that β0,HC is within the MCIL and MCIH

quantiles of the MCI diagnosis (β0,MCI ) is 0.49. This high probability is reflected
in the third quartile of the MCI box plot overlapping the HC box plot in Fig. 7.6.
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The comparison of the MCI and AD box plots in Fig. 7.6 reflect the overlapping of
the upper and lower distribution tail ends, which is reflected in the distribution for
β0,MCI , whose posteriori probability of being within ADL and ADH is 0.9.

There were subtle differences in the posterior cortical thickness estimates among
age Groups A, B and C shown in Fig. 7.6. Unlike the large differences between
diagnosis groups shown in Fig. 7.6 and probability comparisons in Table 7.2, the
posteriori of a younger age group lies inside the credible interval of an older age
group with a probability ≥0.79. These results suggest there were no significant
differences between the median cortex of the age groups. However, as expected,
there is a cascading order of cortical degeneration from thicker to thinner estimates
from age Groups (A, B) to C, that is age ranges 59–79y and 79–93y respectively.

In addition to brain network and global cortical thickness estimates, the hierar-
chical structure of the wombling approach allowed for participant level estimates
for all ROIs. The caterpillar plots in Fig. 7.7 show distinct patterns of participant
clusters of AD, MCI and HC groups, particularly in the nine key regions, as they
are the most likely to be influenced in the early stages of AD. AD participants
had the lowest cortical thickness estimates as a result of higher cortical atrophy.
MCI are midway in the degeneration scope with slightly higher cortical thickness
estimates than AD, but lower than HC. Regions in which diagnosis groups differed
particularly included the temporal poles of the middle and superior temporal gyrus
and posterior cingulate gyrus. Regions which showed AD participants were not
clustered exclusively at the lowest range of the cortical thickness estimates include
the temporal poles (middle and superior) as well as the angular gyrus. Excluding
these regions, for the remainder of the diagnosis clusters among participants were
consistent in all other ROI plots (see Figs. 7.17 and 7.18). Note that these differences
in diagnosis levels are consistent with the loss of network connectivity in Fig. 7.4
and total average cortical thickness estimates in Fig. 7.6.

The results of ranked participants were analysed with respect to age groups and
selected regions are shown in Fig. 7.8; refer to Figs. 7.17 and 7.18 for the remaining
ROI plots. The regions in Fig. 7.8 showed pronounced age group specific clusters.
Key regions which age Group A had consistently higher cortical thickness estimates
in contrast with age Groups B and C were the calcarine fissure, fusiform, heschl,
middle temporal and precentral gyrus.

7.3.2.4 Bayesian LME ROI Analyses

Participant specific estimates via the Bayesian LME models were assessed and the
results align with those from the wombling model in both key ROI which support
strong distinctions among groups (particularly in the diagnosis groups) as well as
in instances which all ROI showed little difference among groups, such as as those
in the age groups; refer to Figs. 7.20, 7.21, 7.22, 7.23 for all Bayesian LME results.
For example, the superior middle and inferior temporal regions had distinct HC,
MCI and AD participant clusters, as well as the supramarginal and the posterior
cingulate. The WAIC values of the wombled model in all groups were found to
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be substantially lower than the WAIC values of the Bayesian LME models. These
results show that the wombling model is a more parsimonious approach to model
biomarker estimates compared to independent LME models on each ROI, and hence
a desirable model for this data. Refer to Table 7.6 for WAIC results.

7.4 Discussion

This work demonstrated and validated the Bayesian wombling approach using
intrahemispherical cortical thickness observations of the brain in both a simulation
study, and applied to an Alzheimer’s disease cohort study. Each analysis was
applied across HC, MCI and AD diagnosis categories as well as three age groups.
Wombling provides a novel way to combine both regression and network analyses
into a single unified model. This takes into account the uncertainty of all possible
links to estimate a network, but also allows group comparisons from independent
measurements (for example, participants’ cortical volumes for many ROIs) without
the need for multiple comparison correction.

7.4.1 Simulation Study

The ability of the wombling algorithm to successfully recover the underlying
connectivity solution while appropriately accounting for the variance was assessed
in Sect. 7.3.1. Figure 7.3 shows the overall average performance of the wombling
algorithm as probability and thresholded networks. The wombling algorithm con-
sistently and correctly detected the absence of connections in the structured
configuration, and recovered 82% and above of the true values of W . On the
more difficult contiguous scenario, Fig. 7.3H and I show that 65% and above the
contiguous solution was recovered, at a probability threshold greater than 0.6, which
as expected was less certain than the structured configuration.

Approximately 95% of the cortical thickness estimates were recovered at the
population and participant level. Recovery in the statistical sense refers to whether
the intervals of the estimator contain the true solution. Thus, an algorithm that
recovers the known solution 100% of the time, could potentially do so by simply
overestimating the variance. In our simulation studies, based on 95% credible
intervals the wombling parameters were recovered approximately 95% of the time
(see Table 7.3). This indicated that the wombled model appropriately estimated the
variability in the parameters.

While the simulation study was designed to mimic features typical of longitu-
dinal study data (in this case we matched some of the characteristics of the AIBL
study, such as the number of participants, replicates and connectivity configuration),
the practical performance of the wombling algorithm is better assessed when it is
applied to the real data and directly compared with the alternative state-of-the-art
methods.
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7.4.2 Application to Study Cohort

7.4.2.1 Cortical Networks

The results from the brain wombling model were compared with those of alternative
independent analyses on the AIBL data. Figure 7.4A, C and E shows a decrease in
connections from HC (156) to MCI (124) to AD (112), which reflect the biological
order of neurodegeneration [15, 18, 58]. As expected from previous work [6], the
loss of connections on the wombled networks reflect the strong differences in the
diagnosis groups which is also reflected in the wombled cortical thickness estimates
shown in Figs. 7.6, 7.7 and Table 7.2, as well as on the Bayesian LME analyses in
Figs. 7.20 and 7.22.

At the same threshold as the wombling networks (τ = 0.7), the Pearson pairwise
correlation networks on baseline observations did not show a biological decrease
of connections. Specifically, both MCI and AD had 34 connections, 12 more than
the HC network with 22 connections. These results suggest that in this work, the
wombled networks provided superior connectivity information in comparison to the
Pearson pairwise correlation method.

Pearson pairwise correlation networks showed a decrease in overall connectivity
across baseline age Groups A to B to C with 47, 38 and 19 total connections respec-
tively, suggesting age dependent loss of connections. However, further investigation
into these results is required as the Bayesian LME and wombling models did not
support participant age clusters; suggesting there were no age differences in the data
(see Figs. 7.22 and 7.23). Furthermore, age Group C comprises of predominately HC
and MCI participants, as 18 of the 26 AD participants are in age Groups A and B,
which suggests age Group C should not reflect high neurodegeneration estimates.

In addition to these improvements, unlike the descriptive networks from the
Pearson pairwise correlation approach, the wombling model provided full posterior
distributions which quantified the uncertainty in all possible links. As the Pearson
pairwise correlation networks do not take into account the uncertainty of each
connection, they cannot correctly estimate the group population networks.

One potential question about the modelling approach proposed in this work
is whether the inclusion of additional terms in the mean of the model would
significantly change the inference about W . Such terms could include fixed effects
to estimate ROI means. If we consider the covariance between data for two ROIs,
then, in principle, the correlation structure should be unaffected if, for example,
the data were standardised such that data for each ROI had a mean of zero
and a variance of one. However, such a simplistic scenario may not be directly
applicable to the complex model fitted in this work. Thus we investigated this by
extending the wombling model to allow for the estimation of ROI means through
the inclusion of fixed effect parameters in the mean of the model. The results
showed that the inference about W for the HC group was similar to that presented
in Sect. 7.3.2.1 (see section “Wombling Cortical Thickness Estimates at the ROI
Level” in Appendix). However, with the MCI and AD groups, this model provided
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large amounts of uncertainty in the posterior distribution for W , limiting our ability
to determine whether inference is impacted by the estimation of ROI means. We
believe this is due to the additional (35 fixed effect) parameters included into the
model, and this appears to have a major impact in the MCI and AD groups as they
have much smaller sample sizes (21 and 26, respectively) compared the HC group
(120). These smaller sample sizes appear to have led to a loss of information about
the network connection for these groups.

The choice of which wombling model to apply, whether it be the model presented
in this work or the extended version which includes ROI means depends on the
research questions which one wishes to address and the data which are available.
If there are only approximately 20 to 30 individuals in a group of interest and
intrahemispheric data are available, then the wombling model presented here can
provide meaningful inferences about W but not on ROI means. However if there are
over 120 individuals in the groups of interest, then the more complex model with
additional ROI parameters would provide joint estimates on the ROI means as well
as on the participant and covariance networks. We note that in our analyses it was
reassuring to find that the estimates for W were similar in both models.

Further, there is potential for the inference about W to change if important
covariates are included into the model. That is, perceived covariance may be due to
the influence of unobserved covariate information. Our model can easily incorporate
covariates, and indeed it also does this in demonstration through the inclusion of sex,
and other covariates could be similarly included (and tested for importance).

7.4.2.2 Biomarker Estimates

In all groups analysed, the WAIC values for the wombling model were substantially
lower compared to the independent Bayesian LME models combined across all
ROIs. In this work, this result shows that the wombling model was the preferred
parsimonious approach for modelling biomaker estimates compared to the indepen-
dent analyses. Refer to Table 7.6 for WAIC results. At the participant level estimates
of cortical thickness, both approaches demonstrated comparable differences in
diagnosed participant clusters as shown in Figs. 7.7 and 7.8 and the Bayesian
LME model estimates in Figs. 7.21 and 7.23. These results further demonstrate the
flexibility of the wombling approach to jointly analyse cortical networks in addition
to biomarker estimates. Above the third quartile of the MCI posterior distribution
had a large degree of overlap with the HC posterior distribution (Fig. 7.6). With
a probability of 0.49, the posterior distribution of the HC total cortical thickness
average is within the upper and lower 95% quantiles of the MCI distribution
(Table 7.2). Such a high probability suggests that this overlap could be due a subset
of MCI participants in the study who are not on the AD pathway [26, 54]. Hence
further investigation into MCI participants further divided into subgroups, such as
participants with documented memory complaints, amnestic and non-amnestic is
suggested to identify potential non-AD converters.
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7.4.3 Sensitivity Analyses

Two sensitivity analyses were conducted on the application of the Bayesian
wombling approach to real data. The first analyses were with respect to the chosen
value of ρ, as described in Sect. 7.3.1.1. A number of authors [42, 44, 50] have
discussed the limitations of including ρ as an additional parameter to be estimated.
Following these recommendations, we fixed ρ = 0.9 throughout all our simulations
and application studies, and conducted a sensitivity assessment to evaluate the
impact of this choice. Table 7.4 showed that at ρ = 0.9 and the parameters W,β, σ 2

and bi were recovered well. Our results support those of Lu et al. [50], Lee [42]
and Lee and Mitchell [44], and we recommend fixing ρ at 0.9 for future wombling
model extensions.

The second sensitivity analysis was with respect to the prior specification
described in Sect. 7.3.1.1. Since the resulting posterior summaries did not vary
considerably based on different prior information, we conclude that our results are
relatively robust to the priors specified in this work. The rationale for using vague
priors is to ensure that the information in the data primarily governs the results.
Alternatively, informative priors may be employed when relevant information is
available [12, 70]. In particular, investigating the best use of diffusion or functional
network priors (or patient specific networks) would be an interesting future research
avenue.

7.4.4 Limitations and Future Work

The intended application of the wombling model in this work is to demonstrate
its utility. Due to the limited sample sizes in this study cohort, the biological
interpretation and comparison of each group, in this work, is limited to the total
number of connections for each network. Additional cortical network metrics which
assess the organisational structure, such as small world topology and characteristic
path length [7, 15, 58], is beyond the scope of this work. Future work and clinical
application of the wombling model will greatly benefit from matched sampled
groups which have similar age ranges, number of replicates, gender and other
features known to be associated with the pathology of interest.

A primary drawback of wombling models is the computation time. As mentioned
by Bowman et al. [12], limitations of a Bayesian hierarchical framework in spatial
analysis include extensive and long computational times, often restricting attention
to small ROI analysis or localised voxel-wise analysis. For example, the study
by Bowman [11] considered only ROI in the cerebellum to limit the computational
extent. Although computationally intensive, our brain wombling approach is not
prohibitively so: a single MCMC run of the algorithm can also be computed in
approximately a day on a standard desktop computer (see Sect. 7.2.5).

As the dimension of W increases, the parameter space increases dramatically,
and this is considered a drawback of the wombling model. For example, our 35
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ROI model resulted in a 599-dimensional parameter space, which ran for 500, 000
MCMC iterations. This issue motivates future work to investigate inducing sparsity
on W based on prior information as suggested in Babacan et al. [5], as this could
potentially reduce the computational burden of the wombling model. Nevertheless,
in the present study, the added insight and corroboration between networks and
cortical thickness estimates were deemed to be worth the additional computational
time.

A second limitation of the present study is that our analysis was restricted to
participants with four or more repeated measures, as this affected the ability of
the wombling model to converge (results not shown). Such repeated measures can
be prohibitive in smaller neuroimaging studies, as patient drop out is a common
occurrence. For use of this method in neuroimaging studies with a limited number
(< 4) of time points, future work detailing the performance of the wombling model
is needed. Nonetheless, our algorithm performed remarkably well for small sample
sizes (NAD and NMCI < 21 < 35 ROI) on data where all participants had repeated
measures. We conjecture that the probabilistic networks from the wombling model
will better distinguish between a link and the absence of a link (i.e. network
probabilities will be closer to zero or one), and result in narrower credible intervals
on biomarker estimates as the sample size increases.

The final limitation of the present study was the relative simplicity of the two
layered linear random effects model, as shown in Fig. 7.2. This is not a fixed
limitation of the approach presented here; the hierarchical Bayesian framework
is capable of handling complex models, such as models with two or more nested
layers to account for complex data structures [28, 29]. Extensions of this nature will
allow the modelling of cerebral morphological features across multiple ROIs over
participants’ age, and expand our spatial approach into a spatio-temporal domain.

7.4.5 Conclusion

In this work, we have demonstrated the advantages of the Bayesian brain wombling
approach applied in the neuroimaging field over state-of-the-art independent analy-
ses. The ability of the wombling model to recover the connectivity and biomarker
effect estimates give confidence on our results from the cohort study. Taking into
account of the uncertainty of each network, the population wombled networks
across diagnosis levels from healthy to Alzheimer’s disease showed a loss of
connectivity (posterior probability � 0.7). Compared to independent LME models,
we found that both approaches estimated cortical thickness progressively along the
dementia pathway. Although applied here to cortical thickness, this method can be
applied to other types of neuroimaging data, unifying existing previously indepen-
dent analyses that are aimed at exploring the same underlying biological system.
This powerful analysis tool provides the potential to extend our understanding of
the human brain functions and effects of brain disorders on both local and network
scale.
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Appendix: Methods and Applications

Additional material to supplement simulation study results, posterior diagnostic
checks, wombling ROI cortical thickness estimates at the population and participant
levels, independent Bayesian mixed effect model results, WAIC values and Pearson
correlation networks can be found in this Appendix. R code to implement the
wombling model can be found at the following GitHub repository https://github.
com/MarcelaCespedes/Brain_wombling.

Simulation Study

The simulation study described in Sect. 7.2.3 provided a thorough assessment of
the Bayesian brain wombling algorithm. The four scenarios in the simulation study
are; contiguous balanced (each person had an equal number of replicates) and
unbalanced (the number of replicates varied per person), and a structured balanced
and unbalanced designs. The results for fixed effect parameters β and residual
variance σ 2 are shown in Table 7.3. While the results for the structured configuration
show a slightly lower recovery of fixed effect parameters, they do not represent a
potential biological configuration. Hence performance of the wombling algorithm is
better assessed on the contiguous configuration, whose performance of the recovery
of the parameters is approximately 95%.

As discussed in Sect. 7.2.3.1, spatial scale variance σ 2
s is a biased estimate and

was not recovered in our simulation study.

Table 7.3 Percentage (%) of fixed effect and residual variance parameter recovery for four
scenarios, each with 50 simulations

Contiguous Unbalanced Contiguous Balanced Structured Unbalanced Structured Balanced

β0 100 98 92 92

β1 100 100 92 90

σ 2 94 98 94 96

www.aibl.csiro.au
https://github.com/MarcelaCespedes/Brain_wombling
https://github.com/MarcelaCespedes/Brain_wombling
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Table 7.4 Parameter values for ρ set to 0.85, 0.9, 0.95, 0.99 values

0.85 0.9 0.95 0.99

β0 3.1 (2.9, 3.2) 3 (2.8, 3.2) 3.0 (3.2, 3.5) 2.8 (2.2, 3.4)

β1 0.3 (0.1, 0.5) 0.3 (−0.01, 0.5) 0.1 (−0.3, 0.5) 0.4 (−0.3, .4)

σ 2 0.5 (0.5, 0.7) 0.5 (0.5, 0.5) 0.5 (0.5, 0.5) 0.6 (0.6, 0.7)

True value for β0 is 3, and β1, σ are 0.5

Contiguous unbalanced 50 sim study
% recovery of all random effects (3500 in total)

Structured balanced 50 sim study
% recovery of all random effects (35100 per run)

Structured unbalanced 50 sim study
% recovery of all random effects (3500 in total)

Contig balanced 50 sim study
% recovery of all random effects (3500 in total)
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Fig. 7.9 Each scenario (structured balanced and unbalanced, contiguous balanced and unbal-
anced) had 100 simulated participants and each participant had 35 ROI (3500 random effects in
total for each simulation). As each scenario comprised of 50 simulations, there are 50 × 3500
random effects to assess. Each histogram denoted the percentage of the number of random effects
recovered (that is random effects whose solution within the 95% credible interval)

Figure 7.9 shows the histograms on the percentage of the recovered random
effects for each scenario. The simulation study comprised of 50 independently
simulated data sets for each scenario, each data set consisted of I = 100 simulated



186 M. I. Cespedes et al.

participants, each with K = 35 ROI resulting in 3500 random effects per simulated
data set to estimate. Overall we can see that there is approximately 95% recovery of
the random effects for each scenario.

As ρ in Model (7.1) is a fixed value, we investigated the effect recovering the
parameters in the structured scenario for ρ values [0.85, 0.9, 0.95, 0.99]. Table 7.4
summarises the results.

Contact the author for additional simulation study results such as MCMC
convergence checks, estimation of credible intervals, and posterior predictive plots.

Posterior Diagnostic Checks for AIBL Data Set

Posterior predictive plots for each AIBL group analysed were used to assess
goodness-of-fit for each wombled model. The plots in Figs. 7.10, 7.11 and 7.12
show the expected mean of the data was recovered well, however there is a slight
overestimation of the variance, as the proportion of predicted values inside the 95%
credible intervals is slightly over 0.95. However these results show our models
adequately captured the uncertainty in the data.

Table 7.5 shows the Gelman-Rubin diagnostic, upper 95% credible interval for
convergence checks of the four chains for β0, β1, σ 2 and σ 2
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Posterior predictive plot for HC: % inside predictive CI 0.981 Posterior predictive plot for AD: % inside predictive CI 0.979
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3.5 4.0

Fig. 7.10 Posterior predictive plots for healthy control (HC, left) and Alzheimer’s disease (AD,
right) wombling models. The proportion of response values inside the predictive 95% credible
intervals (in red) is 0.981 and 0.979 for HC and AD models respectively
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Fig. 7.11 Posterior predictive plots for age groups; A (59–69), B (69–79) and C (79–93). The
proportion of response values inside the predictive 95% credible intervals (in red) are 0.986, 0.982
and 0.981 for age groups A, B and C

Wombling Cortical Thickness Estimates at the ROI Level

As discussed in Sect. 7.4.2.1, we investigated an adaptation to the wombling model
to account for ROI means via fixed effect parameters. The extended model is of the
form

yirk|bik,β, σ 2 ∼ N(β0 + β1R2 + β2R3 + . . . + β34R35 + bik, σ
2)

bi ∼ MV N(0, σ 2
s Q)

Q−1 = ρ(Dw − W) + (1 − ρ)I. (7.9)
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Posterior predictive plot for APOE -ve: % inside predictive CI 0.979 Posterior predictive plot for APOE +ve: % inside predictive CI 0.979

Fig. 7.12 Posterior predictive plots for APOE ε4 non-carriers (negative, left) and carriers
(positive, right). The proportion of response values inside the predictive 95% credible intervals
(in red) were 0.979 for both models

Table 7.5 Gelman-Rubin
diagnostic upper confidence
limit values for each group in
AIBL study

Gelman-Rubin diagnostic

β0 β1 σ 2 σ 2
s

HC 1.15 1.16 1 1

AD 1.09 1.16 1 1

Age A 1.14 1 1 1

Age B 1.04 1.06 1 1.01

Age C 1.07 1 1 1

APOE carrier 1.02 1.01 1 1

APOE non-carrier 1.03 1.02 1 1

As the combinations of four chains for each group
had values close to one, we are confident the
MCMC algorithm for each group has reached
convergence

Where the response (yirk), spatial random effects (bik), residual (σ 2) and spatial
scale variance (σ 2

s ) terms are the same as those presented in Sect. 7.2.2. The
precentral gyrus is the baseline ROI whose cortical thickness (in mm) is estimated
by β0. The fixed effect parameter βk−1 estimates the deviation of ROI k away
from β0 when the binary indicator variable Rk is equal to one. Estimation of
β is attained by the same conditional distribution described in Sect. 7.2.2, with
minor modifications to account for the design matrix R rather than X. Figures 7.17
and 7.18 show participant specific cortical thickness estimates as caterpillar plots
(βk + bik) colour coded for diagnosis and age groups respectively. Figure 7.13
shows the posterior means of W for HC (top), MCI (middle) and AD (bottom)
groups. While the posterior mean for the HC group is similar that in Fig. 7.4, with
the same 36 links present in both networks and 468 absent connections in common,



7 Brain Wombling 189

Fig. 7.13 Left column: Posterior means for W for HC (top), MCI (middle) and AD (bottom).
Right column: Binarised matrices at posterior probability cut-off values of 0.7 for HC and 0.6 for
MCI and AD
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the matrices for MCI and AD group show the probability of each link is close to
0.5. We believe that the reason for this is because the HC group has a substantially
larger sample size (120 individuals) compared to the MCI and AD groups (with
21 and 26 individuals respectively). Hence, the more complex model in Eq. (7.9)
requires data with larger sample sizes, compared to the original wombling model,
in order to derive meaningful W estimates.

Figure 7.14 shows the marginal posterior densities for the ROI means for
35 regions. These results resemble the independent Bayesian LME ROI esti-
mates in Fig. 7.20, particularly for ROIs associated with early onset of AD
such as the inferior, middle and superior temporal gyrus, posterior cingulate
gyrus.

Wombling Cortical Thickness Estimates at the Participant
Level

As described in Sect. 7.2.4.4 and discussed in Sect. 7.3.2.4, the wombling model
derived participant specific estimates on all ROIs. Figures 7.15 and 7.16 shows the
posterior means and 95% credible intervals (as error bars) for each participant.

APOE Wombling Results

Carriers of the Apolipoprotein (APOE) ε4 gene have known to be at higher
risk of developing AD compared to non-carriers, hence in neuroimaging studies,
it is a key biomarker to investigate. For exploration purposes, we applied the
wombling model on AIBL data divided into APOE ε4 carrier and non-carrier
groups. Figures 7.17, 7.18 and 7.19 show the cortical networks, global estimates
across all ROI and participant specific rankings for key AD regions as described in
Sect. 7.2.4.3.

There were no strong differences APOE ε4 carrier and non-carrier groups in
any of the ROI. We believe the reason for this is due to APOE ε carrier and non-
carrier groups comprising of participants across the entire spectrum (HC, MCI and
AD), large variety of ages and many other AD biomarkers, making it difficult to
assess the deterioration differences associated with the APOE ε gene. Unfortunately
due to our low sample size, we did not have sufficient data to investigate more
meaningful biomarker groups such as APOE ε4 carrier and non-carrier groups that
were clinically diagnosed as HC or AD.
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Fig. 7.17 Left: Posterior mean of W heat map for APOE ε4 carriers (top) and non-carriers
(bottom). Right: Cortical network from binarised heat map with threshold τ = 0.7 for the
respective APOE ε4 carrier groups. Node size reflects the number of edges on each vertice. Total
number of edges for each network (top and bottom) are 152 and 150 for APOE ε4 non-carriers and
carriers groups

Bayesian Linear Mixed Effect Models on Each ROI

As described in Sect. 7.2.4.4 and discussed in Sect. 7.3.2.4, Bayesian linear mixed
effect models were independently applied to each ROI on groups; diagnosis levels
HC, MCI and AD and age groups A, B and C. For exploration purposes we also
investigated APOE ε4 allele carriers and non-carriers. All models were of the form

yij |σ 2, β1, μ0i ∼N(μ0i + β1xi, σ
2)

μ0i |μ0, σ
2
0 ∼N(μ0, σ

2
0 ). (7.10)
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Fig. 7.18 Global posterior cortical thickness means for (red) APOE ε4 carriers and (green) APOE
ε4 non-carriers

In order to make the models comparable with the wombling approach, covariate
xi is gender as described in Sect. 7.2.3.1, with xi = 1 for male and 0 otherwise.
The residual variance prior for σ 2 and the random effects prior, σ 2

0 , is the same
as discussed in Sect. 7.2.3.1. Similarly, the prior for the intercept effect μ0 is also
relatively vague with a N(0, 10) distribution.

Figures 7.20, 7.21, 7.22, 7.23, 7.24 and 7.25 show the marginal posterior mean
population distributions and participants ranked according to posterior means with
95% credible interval.

WAIC Results

As described in Sect. 7.2.4.4, we applied the WAIC criterion on the wombled
and independent Bayesian LME models to assess model choice. Table 7.6 shows
the results of the WAIC for the wombling model applied to each group, and the
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Table 7.6 WAIC values for
diagnosis groups

Group WAIC wombled model WAIC LME models

HC −33,598.26 −12,424.94

MCI −4355.94 −1589.94

AD −3045.20 −689.97

Age A −6029.15 −2870.38

Age B −13,065.38 −6051.11

Age C −10,321.63 −4587.98

Smaller WAIC values denotes a more parsimonious model
compared to the alternative, here the wombled model is
preferred to the independent Bayesian LME models

combined WAIC criterion for the independent Bayesian LME analyses for each
region.

Pearson Correlation Networks for Each Group

Cortical networks derived by Pearson’s pairwise correlation networks for each group
are shown in Figs. 7.26, 7.27, 7.28, 7.29, 7.30, and 7.31. As Pearson’s pairwise
networks do not accommodate the repeated measure structure of the data, we
derived networks at both baseline (independent and identically distributed (IID)
observations) as well as on the whole data, with repeated measures treated as IID to
investigate any potential differences.
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Fig. 7.26 Pearson pairwise correlation plots for baseline (left top and bottom) and repeated
measures (right top and bottom) on HC diagnosis. Top: networks binarised according to threshold
of τ = 0.7 applied on the absolute value of each element on correlation matrices above
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Fig. 7.27 Pearson pairwise correlation plots for baseline (left top and bottom) and repeated
measures (right top and bottom) on MCI diagnosis. Top: networks binarised according to threshold
of τ = 0.7 applied on the absolute value of each element on correlation matrices above
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Fig. 7.28 Pearson pairwise correlation plots for baseline (left top and bottom) and repeated
measures (right top and bottom) on AD diagnosis. Top: networks binarised according to threshold
of τ = 0.7 applied on the absolute value of each element on correlation matrices above
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Fig. 7.29 Pearson pairwise correlation plots for baseline (left top and bottom) and repeated
measures (right top and bottom) on age group A. Top: networks binarised according to threshold
of τ = 0.7 applied on the absolute value of each element on correlation matrices above
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Fig. 7.30 Pearson pairwise correlation plots for baseline (left top and bottom) and repeated
measures (right top and bottom) on age group B. Top: networks binarised according to threshold
of τ = 0.7 applied on the absolute value of each element on correlation matrices above
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Fig. 7.31 Pearson pairwise correlation plots for baseline (left top and bottom) and repeated
measures (right top and bottom) on age group C. Top: networks binarised according to threshold
of τ = 0.7 applied on the absolute value of each element on correlation matrices above



210 M. I. Cespedes et al.

References

1. O. Acosta, P. Bourgeat, M.A. Zuluaga, J. Fripp, O. Salvado, S. Ourselin, A.D.N. Initiative,
et al., Automated voxel-based 3D cortical thickness measurement in a combined Lagrangian–
Eulerian PDE approach using partial volume maps. Med. Image Anal. 13(5), 730–743 (2009)

2. A. Adaszewski, J. Dukart, F. Kherif, R. Frackowiak, B. Draganski, How early can we predict
Alzheimer’s disease using computational anatomy. Neurobiol. Aging 34(12), 2815–2826
(2013)

3. A. Alexander-Bloch, J. N. Giedd, et al., Imaging structural co-variance between human brain
regions. Nat. Rev. Neurosci. 14(5), 322 (2013)

4. C. Anderson, D. Lee, N. Dean, Identifying clusters in Bayesian disease mapping. Biostatistics
15(3), 457–469 (2014)

5. S.D. Babacan, M. Luessi, R. Molina, A.K. Katsaggelos, Sparse Bayesian methods for low-rank
matrix estimation. IEEE Trans. Signal Process. 60(8), 3964–3977 (2012)

6. A. Bakkour, J.C. Morris, D.A. Wolk, B.C. Dickerson, The effects of aging and Alzheimer’s
disease on cerebral cortical anatomy: specificity and differential relationships with cognition.
NeuroImage 76, 332–344 (2013)

7. D.S. Bassett, E.T. Bullmore, Small-world brain networks revisited. Neuroscientist (2016).
https://doi.org/10.1177/1073858416667720

8. D.S. Bassett, E. Bullmore, B.A. Verchinski, V.S. Mattay, D.R. Weinberger, A. Meyer-
Lindenberg, Hierarchical organization of human cortical networks in health and schizophrenia.
J. Neurosci. 28(37), 9239–9248 (2008)

9. J. Bernal-Rusiel, D.N. Greve, M. Reuter, B. Fischl, M.R. Sabuncu, Statistical analysis of
longitudinal neuroimage data with Linear Mixed Effects models. NeuroImage 66, 249–60
(2013)

10. P. Bourgeat, G. Chetelat, V. Villemagne, J. Fripp, P. Raniga, K. Pike, O. Acosta, C. Szoeke,
S. Ourselin, D. Ames, et al., β-Amyloid burden in the temporal neocortex is related to
hippocampal atrophy in elderly subjects without dementia. Neurology 74(2), 121–127 (2010)

11. F.D. Bowman, Spatiotemporal models for region of interest analyses of functional neuroimag-
ing data. J. Am. Stat. Assoc. 102(478), 442–453 (2007)

12. F.D. Bowman, B. Caffo, S.S. Bassett, C. Kilts, A Bayesian hierarchical framework for spatial
modeling of fMRI data. NeuroImage 39(1), 146–156 (2008)

13. M.R. Brier, J.B. Thomas, A.M. Fagan, J. Hassenstab, D.M. Holtzman, T.L. Benzinger, J.C.
Morris, B.M. Ances, Functional connectivity and graph theory in preclinical Alzheimer’s
disease. Neurobiol. Aging 35(4), 757–768 (2014)

14. S.P. Brooks, A. Gelman, General methods for monitoring convergence of iterative simulations.
J. Comput. Graph. Stat. 7(4), 434–455 (1998)

15. E. Bullmore, O. Sporns, Complex brain networks: graph theoretical analysis of structural and
functional systems. Nat. Rev. Neurosci. 10(3), 186–198 (2009)

16. R.J. Caselli, A.C. Dueck, D. Osborne, M.N. Sabbagh, D.J. Connor, G.L. Ahern, L.C. Baxter,
S.Z. Rapcsak, J. Shi, B.K. Woodruff, et al., Longitudinal modeling of age-related memory
decline and the APOE ε4 effect. New Engl. J. Med. 361(3), 255–263 (2009)

17. M.I. Cespedes, J. Fripp, J.M. McGree, C.C. Drovandi, K. Mengersen, J.D. Doecke, Compar-
isons of neurodegeneration over time between healthy ageing and Alzheimer’s disease cohorts
via Bayesian inference. BMJ Open, 7(2), e012174 (2017)

18. Z.J. Chen, Y. He, P. Rosa-Neto, G. Gong, A.C. Evans, Age-related alterations in the modular
organization of structural cortical network by using cortical thickness from MRI. NeuroImage
56(1), 235–245 (2011)

19. S. Chen, F.D. Bowman, H.S. Mayberg, A Bayesian hierarchical framework for modeling
brain connectivity for neuroimaging data. Biometrics 72(2), 596–605 (2016). https://doi.org/
10.1111/biom.12433

20. S. Chib, E. Greenberg, Understanding the Metropolis-Hastings algorithm. Am. Stat. 49(4),
327–335 (1995)

https://doi.org/10.1177/1073858416667720
https://doi.org/10.1111/biom.12433
https://doi.org/10.1111/biom.12433


7 Brain Wombling 211

21. B.C. Dickerson, A. Bakkour, D.H. Salat, E. Feczko, J. Pacheco, D.N. Greve, F. Grodstein, C.I.
Wright, D. Blacker, H.D. Rosas, et al., The cortical signature of Alzheimer’s disease: regionally
specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is
detectable in asymptomatic amyloid-positive individuals. Cereb. Cortex 19(3), 497–510 (2009)

22. V. Doré, V.L. Villemagne, P. Bourgeat, J. Fripp, O. Acosta, G. Chetélat, L. Zhou, R. Martins,
K.A. Ellis, C.L. Masters, et al., Cross-sectional and longitudinal analysis of the relationship
between Aβ deposition, cortical thickness, and memory in cognitively unimpaired individuals
and in Alzheimer disease. JAMA Neurol. 70(7), 903–911 (2013)

23. A.-T. Du, N. Schuff, J.H. Kramer, H.J. Rosen, M.L. Gorno-Tempini, K. Rankin, B.L. Miller,
M.W. Weiner, Different regional patterns of cortical thinning in Alzheimer’s disease and
frontotemporal dementia. Brain 130(4), 1159–1166 (2007)

24. K.A. Ellis, A.I. Bush, D. Darby, D. De Fazio, J. Foster, P. Hudson, N.T. Lautenschlager, N.
Lenzo, R.N. Martins, P. Maruff, et al., The Australian Imaging, Biomarkers and Lifestyle
(AIBL) study of aging: methodology and baseline characteristics of 1112 individuals recruited
for a longitudinal study of Alzheimer’s disease. Int. Psychogeriatr. 21(04), 672–687 (2009)

25. Y. Fan, F. Shi, J.K. Smith, W. Lin, J.H. Gilmore, D. Shen, Brain anatomical networks in early
human brain development. NeuroImage 54(3), 1862–1871 (2011)

26. F.L. Ferreira, S. Cardoso, D. Silva, M. Guerreiro, A. de Mendonça, S.C. Madeira, Improving
prognostic prediction from mild cognitive impairment to Alzheimer’s disease using genetic
algorithms, in Alzheimer’s Disease: Advances in Etiology, Pathogenesis and Therapeutics,
chapter 14, ed. by K. Iqbal, S.S. Sisodia, B. Winbald (Springer, New York, 2017)

27. B. Fischl, A.M. Dale, Measuring the thickness of the human cerebral cortex from magnetic
resonance images. Proc. Natl. Acad. Sci. 97(20), 11050–11055 (2000)

28. A. Gelman, J. Hill, Data Analysis Using Regression and Multilevel/Hierarchical Models
(Cambridge University Press, Cambridge, 2006))

29. A. Gelman, J.B. Carlin, H.S. Stern, D.B. Dunson, A. Vehtari, D.B. Rubin, Bayesian Data
Analysis, 2nd edn. (CRC Press, Boca Raton, 2013)

30. A. Gelman, J. Hwang, A. Vehtari, Understanding predictive information criteria for Bayesian
models. Stat. Comput. 24(6), 997–1016 (2014)

31. A. Goldstone, S.D. Mayhew, I. Przezdzik, R.S. Wilson, J.R. Hale, A.P. Bagshaw, Gender
specific re-organization of resting-state networks in older age. Front. Aging Neurosci. 8, 285
(2016)

32. C. Gössl, D.P. Auer, L. Fahrmeir, Bayesian spatiotemporal inference in functional magnetic
resonance imaging. Biometrics 57(2), 554–562 (2001)

33. A.R. Groves, M.A. Chappell, M.W. Woolrich, Combined spatial and non-spatial prior for
inference on MRI time-series. NeuroImage 45(3), 795–809 (2009)

34. B. Guillaume, X. Hua, P.M. Thompson, L. Waldorp, T.E. Nichols, Fast and accurate modelling
of longitudinal and repeated measures neuroimaging data. NeuroImage 94, 287–302 (2014)

35. Y. Guo, F. DuBois Bowman, C. Kilts, Predicting the brain response to treatment using a
Bayesian hierarchical model with application to a study of schizophrenia. Hum. Brain Mapp.
29(9), 1092–1109 (2008)

36. L.M. Harrison, G.G. Green, A Bayesian spatiotemporal model for very large data sets.
NeuroImage 50(3), 1126–1141 (2010)

37. Y. He, Z. Chen, A. Evans, Structural insights into aberrant topological patterns of large-scale
cortical networks in Alzheimer’s disease. J. Neurosci. 28(18), 4756–4766 (2008)

38. M. Hinne, T. Heskes, M.A.J. van Gerven, Bayesian inference of whole-brain networks. 1–10
(2012). arXiv:1202.1696

39. D. Holland, R.S. Desikan, A.M. Dale, L.K. McEvoy, A.D.N. Initiative, et al., Rates of decline
in Alzheimer disease decrease with age. PloS One 7(8), e42325 (2012)

40. C.R. Jack, H.J. Wiste, S.D. Weigand, D.S. Knopman, M.M. Mielke, P. Vemuri, V. Lowe,
M.L. Senjem, J.L. Gunter, D. Reyes, et al., Different definitions of neurodegeneration produce
similar amyloid/neurodegeneration biomarker group findings. Brain 138(12), 3747–3759
(2015)



212 M. I. Cespedes et al.

41. R.J. Janssen, M. Hinne, T. Heskes, M.A.J. van Gerven, Quantifying uncertainty in brain
network measures using Bayesian connectomics. Front. Comput. Neurosci. 8, 126 (2014)

42. D. Lee, A comparison of conditional autoregressive models used in Bayesian disease mapping.
Spatial Spatio-temporal Epidemiol. 2(2), 79–89 (2011)

43. D. Lee, R. Mitchell, Boundary detection in disease mapping studies. Biostatistics 13(3), 415–
426 (2012)

44. D. Lee, R. Mitchell, Locally adaptive spatial smoothing using conditional auto-regressive
models. J. R. Stat. Soc. Ser. C: Appl. Stat. 62(4), 593–608 (2013)

45. B.G. Leroux, X. Lei, N. Breslow, Estimation of disease rates in small areas: a new mixed
model for spatial dependence, in Statistical Models in Epidemiology, the Environment, and
Clinical Trials, ed. by H.M. Elizabeth, D. Berry (Springer, New York, 2000), pp. 179–191

46. Y. Li, Y. Wang, G. Wu, F. Shi, L. Zhou, W. Lin, D. Shen, A.D.N. Initiative, et al., Discriminant
analysis of longitudinal cortical thickness changes in Alzheimer’s disease using dynamic and
network features. Neurobiol. Aging 33(2), 427-e15 (2012)

47. X. Li, F. Pu, Y. Fan, H. Niu, S. Li, D. Li, Age-related changes in brain structural covariance
networks. Front. Hum. Neurosci. 7, 98 (2013)

48. K. Liu, Z.L. Yu, W. Wu, Z. Gu, Y. Li, S. Nagarajan, Bayesian electromagnetic spatio-temporal
imaging of extended sources with Markov Random Field and temporal basis expansion.
NeuroImage 139, 385–404 (2016)

49. H. Lu, B.P. Carlin, Bayesian areal wombling for geographical boundary analysis. Geograph.
Anal. 37(3), 265–285 (2005)

50. H. Lu, C.S. Reilly, S. Banerjee, B.P. Carlin, Bayesian areal wombling via adjacency modeling.
Environ. Ecol. Stat. 14(4), 433–452 (2007)

51. P. McCullagh, J.A. Nelder, Generalized Linear Models, vol. 37 (CRC Press, Boca Raton, 1989)
52. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, Equation of state

calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1092 (1953)
53. M.F. Miranda, H. Zhu, J.G. Ibrahim, Bayesian spatial transformation models with applications

in neuroimaging data. Biometrics 69(4), 1074–1083 (2013)
54. R.C. Petersen, Mild cognitive impairment as a diagnostic entity. J. Intern. Med. 256(3), 183–

194 (2004)
55. A. Pfefferbaum, T. Rohlfing, M.J. Rosenbloom, W. Chu, I.M. Colrain, E.V. Sullivan, Variation

in longitudinal trajectories of regional brain volumes of healthy men and women (ages 10 to
85 years) measured with atlas-based parcellation of MRI. NeuroImage 65, 176–193 (2013)

56. R Core Team, R: A Language and Environment for Statistical Computing (R Foundation for
Statistical Computing, Vienna, 2015)

57. C. Robert, G. Casella, Monte Carlo Statistical Methods. Springer Texts in Statistics (Springer,
New York, 2010)

58. M. Rubinov, O. Sporns, Complex network measures of brain connectivity: uses and
interpretations. NeuroImage 52(3), 1059–1069 (2010)

59. W.W. Seeley, R.K. Crawford, J. Zhou, B.L. Miller, M.D. Greicius, Neurodegenerative diseases
target large-scale human brain networks. Neuron 62(1), 42–52 (2009)

60. S.L. Simpson, F. Bowman, P.J. Laurienti, Analyzing complex functional brain networks: fusing
statistics and network science to understand the brain. Stat. Surv. 7, 1 (2013)

61. M.R. Sinke, R.M. Dijkhuizen, A. Caimo, C.J. Stam, W.M. Otte, Bayesian exponential random
graph modeling of whole-brain structural networks across lifespan. NeuroImage 135, 79–91
(2016)

62. A.B. Storsve, A.M. Fjell, C.K. Tammes, L.T. Westlye, K. Overbye, H.W. Aasland, K.B.
Walhovd, Differential longitudinal changes in cortical thickness, surface area and volume
across the adult life span: regions of accelerating and decelerating change. J. Neurosci. 34,
8488–8498 (2014)

63. N. Tzourio-Mazoyer, B. Landeau, D. Papathanassiou, F. Crivello, O. Etard, N. Delcroix, B.
Mazoyer, M. Joliot, Automated anatomical labeling of activations in SPM using a macroscopic
anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15(1), 273–289
(2002)



7 Brain Wombling 213

64. K. Van Leemput, F. Maes, D. Vandermeulen, P. Suetens, Automated model-based tissue
classification of MR images of the brain. IEEE Trans. Med. Imaging 18(10), 897–908 (1999)

65. V. Villemagne, S. Burnham, P. Bourgeat, B. Brown, K. Ellis, O. Salvado, C. Szoeke, S.
Macaulay, R. Martins, P. Maruff, D. Ames, C. Rowe, C. Masters, Amyloid β deposition,
neurodegeneration and cognitive decline in sporadic Alzheimer’s disease. Lancet Neurol. 12,
357–367 (2013)

66. S. Watanabe, A widely applicable Bayesian information criterion. J. Mach. Learn. Res. 14,
867–897 (2013)

67. M.W. Weiner, D.P. Veitch, P.S. Aisen, L.A. Beckett, N.J. Cairns, R.C. Green, D. Harvey, C.R.
Jack, W. Jagust, E. Liu, et al., The Alzheimer’s Disease Neuroimaging Initiative: a review of
papers published since its inception. Alzheimer’s Dementia 9(5), e111–e194 (2013)

68. M.W. Woolrich, T.E. Behrens, C.F. Beckmann, M. Jenkinson, S.M. Smith, Multilevel linear
modelling for FMRI group analysis using Bayesian inference. NeuroImage 21(4), 1732–1747
(2004)

69. L. Xu, T.D. Johnson, T.E. Nichols, D.E. Nee, Modeling inter-subject variability in fMRI
activation location: a Bayesian hierarchical spatial model. Biometrics 65(4), 1041–1051 (2009)

70. W. Xue, F.D. Bowman, A.V. Pileggi, A.R. Mayer, A multimodal approach for determining
brain networks by jointly modeling functional and structural connectivity. Front. Comput.
Neurosci. 9, 22 (2015)

71. Z. Yao, Y. Zhang, L. Lin, Y. Zhou, C. Xu, T. Jiang, A.D.N. Initiative, et al., Abnormal cortical
networks in mild cognitive impairment and Alzheimer’s disease. PLoS Comput. Biol. 6(11),
e1001006 (2010)

72. G. Ziegler, W.D. Penny, G.R. Ridgway, S. Ourselin, K.J. Friston, A.D.N. Initiative, et al.,
Estimating anatomical trajectories with Bayesian mixed-effects modeling. NeuroImage 121,
51–68 (2015)


	7 A Bayesian Hierarchical Approach to Jointly Model Cortical Thickness and Covariance Networks
	7.1 Introduction
	7.1.1 Technical Survey of Previous Work of Bayesian Hierarchical Models
	7.1.1.1 Previous Work on Wombling

	7.1.2 Overview of Our Work

	7.2 Materials and Methods
	7.2.1 AIBL Study of Ageing
	7.2.2 Wombling Model Formulation and Parameter Estimation
	7.2.2.1 Prior and Conditional Distributions for σ2s, σ2 and β
	7.2.2.2 Full Conditional Distribution for Spatial Random Effects bi
	7.2.2.3 Prior and Posterior Sampling for Brain Connectivity Matrix W

	7.2.3 Simulation Studies
	7.2.3.1 Wombling Simulated Analyses

	7.2.4 Application to Study Cohort
	7.2.4.1 Probabilistic Connectivity Matrices via Wombling
	7.2.4.2 Descriptive Pearson Cortical Networks
	7.2.4.3 Wombled Population and Participant ROI Biomarker Estimates
	7.2.4.4 Bayesian LME ROI Analyses

	7.2.5 Statistical Analysis

	7.3 Results
	7.3.1 Simulation Studies
	7.3.1.1 Wombling Simulated Analyses

	7.3.2 Application to Real Data
	7.3.2.1 Probabilistic Connectivity Matrices via Wombling
	7.3.2.2 Descriptive Pearson Cortical Networks
	7.3.2.3 Wombled Population and Participant ROI Biomarker Estimates
	7.3.2.4 Bayesian LME ROI Analyses


	7.4 Discussion
	7.4.1 Simulation Study
	7.4.2 Application to Study Cohort
	7.4.2.1 Cortical Networks
	7.4.2.2 Biomarker Estimates

	7.4.3 Sensitivity Analyses
	7.4.4 Limitations and Future Work
	7.4.5 Conclusion

	Appendix: Methods and Applications
	Simulation Study
	Posterior Diagnostic Checks for AIBL Data Set
	Wombling Cortical Thickness Estimates at the ROI Level
	Wombling Cortical Thickness Estimates at the Participant Level
	APOE Wombling Results
	Bayesian Linear Mixed Effect Models on Each ROI
	WAIC Results
	Pearson Correlation Networks for Each Group
	References


