
Chapter 6
Bayesian Computation with Intractable
Likelihoods

Matthew T. Moores, Anthony N. Pettitt, and Kerrie L. Mengersen

Abstract This chapter surveys computational methods for posterior inference with
intractable likelihoods, that is where the likelihood function is unavailable in closed
form, or where evaluation of the likelihood is infeasible. We survey recent devel-
opments in pseudo-marginal methods, approximate Bayesian computation (ABC),
the exchange algorithm, thermodynamic integration, and composite likelihood,
paying particular attention to advancements in scalability for large datasets. We
also mention R and MATLAB source code for implementations of these algorithms,
where they are available.

Keywords Composite likelihood · Likelihood-free inference · Markov random
fields · Pseudo-marginal methods

The likelihood function plays an important role in Bayesian inference, since it
connects the observed data with the statistical model. Both simulation-based (e.g.
MCMC) and optimisation-based (e.g. variational Bayes) algorithms require the
likelihood to be evaluated pointwise, up to an unknown normalising constant.
However, there are some situations where this evaluation is analytically and com-
putationally intractable. For example, when the complexity of the likelihood grows
at a combinatorial rate in terms of the number of observations, then likelihood-
based inference quickly becomes infeasible for the scale of data that is regularly
encountered in applications.
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Intractable likelihoods arise in a variety of contexts, including models for DNA
mutation in population genetics [43, 64], models for the spread of disease in
epidemiology [46, 60], models for the formation of galaxies in astronomy [12], and
estimation of the model evidence in Bayesian model choice [29]. This chapter will
mainly focus on Markov random field (MRF) models with discrete state spaces, such
as the Ising, Potts, and exponential random graph models (ERGM). These models
are used for image segmentation or analysis of social network data, two areas where
millions of observations are commonplace. There is therefore a need for scalable
inference algorithms that can handle these large volumes of data.

The Ising, Potts, or ERGM likelihood functions can be expressed in the form of
an exponential family:

p(y | θ) = exp
{
θT s(y)

}

C(θ)
, (6.1)

where the observed data y = y1, . . . , yn is in the form of an undirected graph, θ is
a vector of unknown parameters, s(y) is a corresponding vector of jointly-sufficient
statistics for these parameters, and C(θ) is an intractable normalising constant, also
known as a partition function:

C(θ) =
∑

y∈Y
exp

{
θT s(y)

}
, (6.2)

where the sum is over all possible configurations of states, y ∈ Y.
In the case of an Ising model, a single node can take one of two possible values,

yi ∈ {0, 1}. For example, in image analysis the value 1 might represent a foreground
pixel, while 0 represents the background. The q-state Potts model generalises this
construction to more than two states, so yi ∈ {1, . . . , q}. The cardinality of the
configuration space, #Y, is then qn. Even with only 2 states and n = 100 pixels,
computation of (6.2) requires more than 1030 floating point operations. It would take
a supercomputer with 100 PetaFLOPS over 400,000 years to find an answer.

Both the Ising and Potts models possess a single parameter, β, known as the
inverse temperature. The corresponding sufficient statistic is then:

s(y) =
∑

i∼�∈E
δ(yi, y�), (6.3)

where E is the set of all unique pairs of neighbours i ∼ � in the observed graph, and
δ(x, y) is the Kronecker delta function, which equals 1 when x = y and 0 otherwise.
We assume a first-order neighbourhood structure, so a given pixel yi would have up
to 4 neighbours in a regular 2D lattice, or 6 neighbours in 3D. Pixels on the boundary
of the image domain have less than 4 (or 6) neighbours, so #E = 2(n − √

n) for a
square 2D lattice, or 3(n − n2/3) for a cube.
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The observed data for an ERGM can be represented as a binary adjacency matrix
Y , encoding the presence or absence of a neighbourhood relationship between nodes
i and j : [Y ]i,j = 1 if i ∼ j ; [Y ]i,j = 0 otherwise. #Y for an ERGM is equal
to 2M , where M = n(n − 1)/2 is the maximum number of ties in an undirected
graph with n nodes. As with the Ising or Potts models, computing the normalising
constant (6.2) is therefore intractable for non-trivial graphs. Various kinds of ERGM
can be defined by the choice of sufficient statistics. The simplest example is the
Bernoulli random graph [23], which has a single statistic s1(Y ) = m, the number of
connected neighbours in the graph. In an undirected graph, this is half the number
of nonzero entries in the adjacency matrix. An important class of graph statistics are
the numbers of k-stars [26], which can be defined in terms of the degree distribution
[59]:

nk =
n∑

i=1

(
di

k

)
, (6.4)

where the degree di is the number of neighbours of node i:

di =
n∑

j=1

[Y ]ij . (6.5)

Note that under this definition n1 = 2m, since each tie is counted twice. An
alternative definition, which avoids double-counting, is given by:

n1 = ∑
i<j [Y ]ij number of edges

n2 = ∑
i<j<k[Y ]ik[Y ]jk number of 2-stars

n3 = ∑
i<j<l<k[Y ]ik[Y ]jk[Y ]lk number of 3-stars.

The remainder of this chapter will describe various MCMC methods that target
the posterior distribution π(θ | y), or some approximation thereof. This will be in
the context of a random walk Metropolis (RWM) algorithm that proposes a new
value of θ ′ at iteration t using a (multivariate) Gaussian proposal distribution, q(· |
θ t−1) ∼ N(θ t−1,Σt ). Methods for tuning the proposal bandwidth Σt have been
described by Andrieu and Thoms [3] and Roberts and Rosenthal [67]. Normally,
the proposed parameter value would be accepted with probability min{1, ρt }, or
else rejected, where ρt is the Radon–Nikodým derivative:

ρt =
q

(
θ (t−1) | θ ′)p

(
y | θ ′)π0

(
θ ′)

q
(
θ ′ | θ (t−1)

)
p

(
y | θ (t−1)

)
π0

(
θ (t−1)

) , (6.6)

π0(θ) is the prior density for the parameter/s, and p (y | θ) is the likelihood (6.1). If
we use a symmetric proposal distribution q and a uniform prior π0, then these terms
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will cancel, leaving:

ρt = ψ
(
y | θ ′)

ψ(y | θ (t−1))

C(θ (t−1))

C (
θ ′) , (6.7)

which is the ratio of unnormalised likelihoods ψ = exp
{
θT s(y)

}
, multiplied by the

ratio of intractable normalising constants (6.2). It is clearly infeasible to evaluate
(6.7) directly, so alternative algorithms are required. One option is to estimate ρt

by simulation, which we categorise as auxiliary variable methods: pseudo-marginal
algorithms, the exchange algorithm, and approximate Bayesian computation (ABC).
Other methods include path sampling, also known as thermodynamic integration
(TI), pseudolikelihood, and composite likelihood.

6.1 Auxiliary Variable Methods

6.1.1 Pseudo-Marginal Algorithms

Pseudo-marginal algorithms [2, 6] are computational methods for fitting latent
variable models, that is where the observed data y can be considered as noisy
observations of some unobserved or hidden states, x. For example, hidden Markov
models (HMMs) are commonly used in time series analysis and signal processing.
Models of this form can also arise as the result of data augmentation approaches,
such as for mixture models [17, 73]. The marginal likelihood is of the following
form:

p(y | θ) =
∫

X p(y | x) p(x | θ) dx, (6.8)

which can be intractable if the state space is very high-dimensional and non-
Gaussian. In this case, we can substitute an unbiased, non-negative estimate of the
likelihood.

O’Neill et al. [60] introduced the Monte Carlo within Metropolis (MCWM)

algorithm, which replaces both p
(
y | θ ′) and p

(
y | θ (t−1)

)
in the Metropolis–

Hastings ratio ρt (6.6) with importance-sampling estimates:

p̃IS(y | θ) ≈ 1

M

M∑

m=1

p(y | Xm)
p(Xm | θ)

q(Xm | θ)
, (6.9)

where the samples X1, . . . , XM are drawn from a proposal distribution q(Xm |
θ) for θ ′ and θ (t−1). MCWM is generally considered as an approximate algo-
rithm, since it does not target the exact posterior distribution for θ . However,
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Medina-Aguayo et al. [47] have established some conditions under which MCWM
converges to the correct target distribution as M → ∞. See also [55] and [1] for
further theoretical analysis of approximate pseudo-marginal methods.

Beaumont [6] introduced the grouped independence Metropolis–Hastings
(GIMH) algorithm, which does target the exact posterior. The key difference is that

p̃IS

(
y | θ (t−1)

)
is reused from the previous iteration, rather than being recalculated

every time. The theoretical properties of this algorithm have been an active area of
research, with notable contributions by Andrieu and Roberts [2], Maire et al. [41],
Andrieu and Vihola [4], and Sherlock et al. [69]. Andrieu et al. [5] introduced the
particle MCMC algorithm, which is a pseudo-marginal method that uses sequential
Monte Carlo (SMC) in place of importance sampling. This is particularly useful
for HMMs, where SMC methods such as the bootstrap particle filter provide an
unbiased estimate of the marginal likelihood [62]. Although importance sampling
and SMC are both unbiased estimators, it is necessary to use a large enough value of
M so that the variance is kept at a reasonable level. Otherwise, the pseudo-marginal
algorithm can fail to be variance-bounding or geometrically ergodic [39]. Doucet et
al. [18] recommend choosing M so that the standard deviation of the log-likelihood
estimator is between 1 and 1.7.

Pseudo-marginal algorithms can be computationally intensive, particularly for
large values of M . One strategy to reduce this computational burden, known as the
Russian Roulette algorithm [40], is to replace p̃IS(y | θ) (6.9) with a truncated
infinite series:

p̃RR(y | θ) =
τ∑

j=0

V
(j)

θ , (6.10)

where τ is a random stopping time and V
(j)

θ
are random variables such that (6.10)

is almost surely finite and E[p̃RR(y | θ)] = p(y | θ). There is a difficulty with
this method, however, in that the likelihood estimates are not guaranteed to be non-
negative. Jacob and Thiery [37] have established that there is no general solution
to this sign problem, although successful strategies have been proposed for some
specific models.

Another important class of algorithms for accelerating pseudo-marginal methods
involve approximating the intractable likelihood function using a surrogate model.
For example, the delayed-acceptance (DA) algorithm of [14] first evaluates the
Metropolis–Hastings ratio (6.6) using a fast, approximate likelihood p̃DA(y | θ).
The proposal θ ′ is rejected at this screening stage with probability 1 − min{1, ρt }.
Otherwise, a second ratio ρ

(2)
DA is calculated using a full evaluation of the likelihood

function (6.9). The acceptance probability min{1, ρ
(2)
DA} is modified at the second

stage according to:

ρ
(2)
DA = p̃IS(y | θ ′) π0(θ

′)
p̃IS(y | θ (t−1)) π0(θ

(t−1))

p̃DA(y | θ (t−1)) π0(θ
(t−1))

p̃DA(y | θ ′) π0(θ
′)

, (6.11)
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which corrects for the conditional dependence on acceptance at the first stage and
therefore preserves the exact target distribution. DA has been used for PMCMC by
Golightly et al. [33], where the linear noise approximation [25] was used for p̃DA.
Sherlock et al. [70] instead used k-nearest-neighbours for p̃DA in a pseudo-marginal
algorithm.

Drovandi et al. [22] proposed an approximate pseudo-marginal algorithm, using
a Gaussian process (GP) as a surrogate log-likelihood. The GP is trained using a
pilot run of MCWM, then at each iteration log p̃(y | θ ′) is either approximated
using the GP or else using SMC or importance sampling, depending on the level
of uncertainty in the surrogate model for θ ′. MATLAB source code is available
from http://www.runmycode.org/companion/view/2663. Stuart and Teckentrup [71]
have shown that, under certain assumptions, a GP provides a consistent estimator
of the negative log-likelihood, and they provide error bounds on the approxima-
tion.

6.1.2 Exchange Algorithm

Møller et al. [50] introduced a MCMC algorithm for the Ising model that tar-
gets the exact posterior distribution for β. An auxiliary variable x is defined
on the same state space as y, so that x, y ∈ Y. This is a data augmentation
approach, where we simulate from the joint posterior π(β, x | y), which admits
the posterior for β as its marginal. Given a proposed parameter value β ′, a
proposal x′ is simulated from the model to obtain an unbiased sample from (6.1).
This requires perfect simulation methods, such as coupling from the past [65],
perfect slice sampling [49], or bounding chains [8, 35]. Refer to [36] for further
explanation of perfect simulation. Instead of (6.7), the joint ratio for β ′ and x′
becomes:

ρt = ψ
(
y | β ′)

ψ
(
y | β(t−1)

)
ψ

(
x′ | β̃

)

ψ
(

x(t−1) | β̃
)

ψ(x(t−1) | β(t−1))

ψ (x′ | β ′)
, (6.12)

where the normalising constants C(β ′) and C(β(t−1)) cancel out with each other.
This is analogous to an importance-sampling estimate of the normalising constant
with M = 1 samples, since:

Ex

[
ψ (x | β)

q(x | β)

]
= C(β), (6.13)

where the proposal distribution q(x | β) is (6.1). This algorithm is therefore
closely-related with pseudo-marginal methods such as GIMH.

http://www.runmycode.org/companion/view/2663
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Murray et al. [54] found that (6.12) could be simplified even further, removing
the need for a fixed value of β̃. The exchange algorithm replaces (6.7) with the ratio:

ρt = ψ
(
y | β ′)

ψ
(
y | β(t−1)

)
ψ(x′ | β(t−1))

ψ (x′ | β ′)
. (6.14)

However, perfect sampling is still required to simulate x′ at each iteration, which
can be infeasible when the state space is very large. Cucala et al. [15] proposed an
approximate exchange algorithm (AEA) by replacing the perfect sampling step with
500 iterations of Gibbs sampling. Caimo and Friel [9] were the first to employ AEA
for fully-Bayesian inference on the parameters of an ERGM. AEA for the hidden
Potts model is implemented in the R package ‘bayesImageS’ [51] and AEA for
ERGM is implemented in ‘Bergm’ [10].

6.1.3 Approximate Bayesian Computation

Like the exchange algorithm, ABC uses an auxiliary variable x to decide whether to
accept or reject the proposed value of θ ′. In the terminology of ABC, x is referred to
as “pseudo-data.” Instead of a Metropolis–Hastings ratio such as (6.7), the summary
statistics of the pseudo-data and the observed data are directly compared. The
proposal is accepted if the distance between these summary statistics is within the
ABC tolerance, ε. This produces the following approximation:

p (θ | y) ≈ πε (θ | ‖s(x) − s(y)‖ < ε) , (6.15)

where ‖ · ‖ is a suitable norm, such as Euclidean distance. Since s(y) are jointly-
sufficient statistics for Ising, Potts, or ERGM, the ABC approximation (6.15)
approaches the true posterior as n → ∞ and ε → 0. In practice there is a tradeoff
between the number of parameter values that are accepted and the size of the ABC
tolerance.

Grelaud et al. [34] were the first to use ABC to obtain an approximate posterior
for β in the Ising/Potts model. Everitt [24] used ABC within sequential Monte
Carlo (ABC-SMC) for Ising and ERGM. ABC-SMC uses a sequence of target
distributions πεt (θ | ‖s(x) − s(y)‖ < εt ) such that ε1 > ε2 > · · · > εT , where
the number of SMC iterations T can be determined dynamically using a stopping
rule. The ABC-SMC algorithm of [19] uses multiple MCMC steps for each SMC
iteration, while the algorithm of [16] uses multiple replicates of the summary
statistics for each particle. Everitt [24] has provided a MATLAB implementation
of ABC-SMC with the online supplementary material accompanying his paper.

The computational efficiency of ABC is dominated by the cost of drawing
updates to the auxiliary variable, as reported by Everitt [24]. Thus, we would
expect that the execution time for ABC would be similar to AEA or pseudo-
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marginal methods. Various approaches to improving this runtime have recently
been proposed. “Lazy ABC” [63] involves early termination of the simulation
step at a random stopping time, hence it bears some similarities with Russian
Roulette. Surrogate models have also been applied in ABC, using a method known
as Bayesian indirect likelihood [BIL; 20, 21]. Gaussian processes (GPs) have been
used as surrogate models by Wilkinson [75] and Meeds and Welling [48]. Järvenpää
et al. [38] used a heteroskedastic GP model and demonstrated how the output of
the precomputation step could be used for Bayesian model choice. Moores et al.
[52] introduced a piecewise linear approximation for ABC-SMC with Ising/Potts
models. Boland et al. [7] derived a theoretical upper bound on the bias introduced by
this and similar piecewise approximations. They also developed a piecewise linear
approximation for ERGM. Moores et al. [53] introduced a parametric functional
approximate Bayesian (PFAB) algorithm for the Potts model, which is a form of
BIL where p̃BIL(y | θ) is derived from an integral curve.

6.2 Other Methods

6.2.1 Thermodynamic Integration

Since the Ising, Potts, and ERGM are all exponential families of distributions, the
expectation of their sufficient statistic/s can be expressed in terms of the normalising
constant:

Ey|θ [s(y)] = d

dθ
log{C(θ)}. (6.16)

Gelman and Meng [31] derived an approximation to the log-ratio of normalising
constants for the Ising/Potts model, using the path sampling identity:

log

{C(βt−1)

C(β ′)

}
=

∫ βt−1

β ′
Ey|β [s(y)] dβ, (6.17)

which follows from (6.16). The value of the expectation can be estimated by
simulating from the Gibbs distribution (6.1) for fixed values of β. At each iteration,
log{ρt } (6.7) can then be approximated by numerical integration methods, such as
Gaussian quadrature or the trapezoidal rule. Figure 6.1 illustrates linear interpolation
ofEy|β [s(y)] on a 2D lattice for q = 6 labels and β ranging from 0 to 2 in increments
of 0.05. This approximation was precomputed using the algorithm of [72].

TI is explained in further detail by Chen et al. [13, chap. 5]. A reference
implementation in R is available from the website accompanying [42]. Friel and
Pettitt [29] introduced the method of power posteriors to estimate the marginal
likelihood or model evidence using TI. Calderhead and Girolami [11] provide
bounds on the discretisation error and derive an optimal temperature schedule by
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Fig. 6.1 Approximation of Ey|β [s(y)] by simulation for fixed values of β, with linear interpolation

minimising the variance of the Monte Carlo estimate. Oates et al. [56] introduced
control variates for further reducing the variance of TI.

The TI algorithm has an advantage over auxiliary variable methods because the
additional simulations are performed prior to fitting the model, rather than at each
iteration. This is particularly the case when analysing multiple images that all have
approximately the same dimensions. Since these simulations are independent, they
can make use of massively parallel hardware. However, the computational cost is
still slightly higher than pseudolikelihood, which does not require a pre-computation
step.

6.2.2 Composite Likelihood

Pseudolikelihood is the simplest of the methods that we have considered and also
the fastest. Rydén and Titterington [68] showed that the intractable distribution (6.1)
could be approximated using the product of the conditional densities:

p̃PL(y | θ) ≈
n∏

i=1

p(yi | y\i, θ). (6.18)

This enables the Metropolis–Hastings ratio ρt (6.6) to be evaluated using (6.18)

to approximate both p
(
y | θ ′) and p

(
y | θ (t−1)

)
at each iteration. The conditional
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density function for the Ising/Potts model is given by:

p(yi | y\i , β) =
exp

{
β

∑
�∈∂(i) δ(zi, z�)

}

∑q
j=1 exp

{
β

∑
�∈∂(i) δ(j, z�)

} , (6.19)

where � ∈ ∂(i) are the first-order (nearest) neighbours of pixel i. The conditional
density for an ERGM is given by the logistic function:

p([Y ]ij = 1 | [Y ]\ij , θ) = logit−1
{
θT s(Y )

}
. (6.20)

Pseudolikelihood is exact when θ = 0 and provides a reasonable approximation
for small values of the parameters. However, the approximation error increases
rapidly for the Potts/Ising model as β approaches the critical temperature, βcrit ,
as illustrated by Fig. 6.2. This is due to long-range dependence between the labels,
which is inadequately modelled by the local approximation. Similar issues can arise
for ERGM, which can also exhibit a phase transition.

Rydén and Titterington [68] referred to Eq. (6.18) as point pseudolikelihood,
since the conditional distributions are computed for each pixel individually. They
suggested that the accuracy could be improved using block pseudolikelihood. This
is where the likelihood is calculated exactly for small blocks of pixels, then (6.18)
is modified to be the product of the blocks:

p̃BL(y | θ) ≈
NB∏

i=1

p(yBi |y\Bi , θ) (6.21)

0 1 2 3 4
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16
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pseudolikelihood
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Fig. 6.2 Approximation error of pseudolikelihood for n = 12, q = 3 in comparison to the exact
likelihood calculated using a brute force method: (a)

∑
y∈Y s(y)p(y|β) using either Eq. (6.1) or

(6.18); (b)
√∑

y∈Y
(
s(y) − Ey|β [s(y)])2

p(y|β). (a) Expectation. (b) Standard deviation
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where NB is the number of blocks, yBi are the labels of the pixels in block Bi ,
and y\Bi are all of the labels except for yBi . This is a form of composite likelihood,
where the likelihood function is approximated as a product of simplified factors [74].
Friel [27] compared point pseudolikelihood to composite likelihood with blocks
of 3 × 3, 4 × 4, 5 × 5, and 6 × 6 pixels. Friel showed that (6.21) outperformed
(6.18) for the Ising (q = 2) model with β < βcrit . Okabayashi et al. [58] discuss
composite likelihood for the Potts model with q > 2 and have provided an open
source implementation in the R package ‘potts’ [32].

Evaluating the conditional likelihood in (6.21) involves the normalising constant
for yBi , which is a sum over all of the possible configurationsYBi . This is a limiting
factor on the size of blocks that can be used. The brute force method that was used to
compute Fig. 6.2 is too computationally intensive for this purpose. Pettitt et al. [61]
showed that the normalising constant can be calculated exactly for a cylindrical
lattice by computing eigenvalues of a kr × kr matrix, where r is the smaller of the
number of rows or columns. The value of (6.2) for a free-boundary lattice can then
be approximated using path sampling. Friel and Pettitt [28] extended this method to
larger lattices using a composite likelihood approach.

The reduced dependence approximation (RDA) is another form of composite
likelihood. Reeves and Pettitt [66] introduced a recursive algorithm to calculate the
normalising constant using a lag-r representation. Friel et al. [30] divided the image
lattice into sub-lattices of size r1 < r , then approximated the normalising constant
of the full lattice using RDA:

C(β) ≈ Cr1×n(β)r−r1+1

Cr1−1×n(β)r−r1
(6.22)

McGrory et al. [44] compared RDA to pseudolikelihood and the exact method of
[50], reporting similar computational cost to pseudolikelihood but with improved
accuracy in estimating β. Ogden [57] showed that if r is chosen proportional to n,
then RDA gives asymptotically valid inference when β < βcrit . However, the error
increases exponentially as β approaches the phase transition. This is similar to the
behaviour of pseudolikelihood in Fig. 6.2. Source code for RDA is available in the
online supplementary material for McGrory et al. [45].

6.3 Conclusion

This chapter has surveyed a variety of computational methods for Bayesian infer-
ence with intractable likelihoods. Auxiliary variable methods, such as the exchange
algorithm and pseudo-marginal algorithms, target the exact posterior distribution.
However, their computational cost can be prohibitive for large datasets. Algorithms
such as delayed acceptance, Russian Roulette, and “lazy ABC” can accelerate
inference by reducing the number of auxiliary variables that need to be simulated,
without modifying the target distribution. Bayesian indirect likelihood (BIL) algo-
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rithms approximate the intractable likelihood using a surrogate model, such as a
Gaussian process or piecewise function. As with thermodynamic integration, BIL
can take advantage of a precomputation step to train the surrogate model in parallel.
This enables these methods to be applied to much larger datasets by managing the
tradeoff between approximation error and computational cost.
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