
Chapter 5
Bayesian Variable Selection

Matthew Sutton

Abstract In this chapter we survey Bayesian approaches for variable selection and
model choice in regression models. We explore the methodological developments
and computational approaches for these methods. In conclusion we note the
available software for their implementation.

5.1 Introduction

Bayesian variable selection methodology has been progressing rapidly in recent
years. While the seminal work of the Bayesian spike and slab prior [1] remains
the main approach, continuous shrinkage priors have received a large amount of
attention. There is growing interest in speeding up inference with these sparse
priors using modern Bayesian computational approaches. Moreover, the subject
of inference for these sparse models has become an increasingly important area
of discussion among statisticians. A common theme among Bayesian variable
selection methods is that they aim to select variables while also quantifying
uncertainty through selection probabilities and variability of the estimates. This
chapter gives a survey of relevant methodological and computational approaches
in this area, along with some descriptions of available software.

5.2 Preliminaries

5.2.1 The Variable Selection Problem

In the context of variable selection for a regression model we consider the following
canonical problem in Bayesian analysis. Suppose we want to model a sample of n
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observations of a response variable Y ∈ R
n and a set of p potential explanatory

variables X1, . . . , Xp, where Xj ∈ R
n. The variable selection problem is to find

the ‘best’ model between the response Y and a subset of X1, . . . , Xp where there
is uncertainty in which subset to use. Throughout this chapter, we index each of the
possible 2p subset choices by the vector

γ = (γ1, . . . , γp)T ,

where γj = 1 if variable Xj is included in the model, and γj = 0 otherwise. We
let sγ = ∑p

j=1 γj denote the number of selected variables for a model indexed
by γ . Given γ , suppose that Y has density p(Y | βγ , γ ) where βγ is a vector of
unknown parameters corresponding to the variables indexed by γ . The Bayesian
approach assigns a prior probability to the space of models p(γ ), and a prior to the
parameters of each model p(βγ | γ ).

The probability for the model with the selected variables γ conditional on having
observed Y , is the posterior model probability

p(γ | Y ) = p(Y | γ )p(γ )
∑

γ ′∈{0,1}pp(Y |γ ′)p(γ ′)
,

where

p(Y | γ ) =
∫

p(Y | γ, βγ )p(βγ | γ )d(βγ ),

is the marginal likelihood of Y . The priors p(βγ | γ ) and p(γ ) provide an initial
representation of model uncertainty and the posterior adjusts for the information
in Y , allowing us to quantify the uncertainty of the variable selection. The actual
variable selection in a Bayesian analysis can proceed in several ways. Two common
approaches are:

1. Select the variables with the highest estimated posterior probability p(γ | Y ),
also known as the highest posterior density model (HPD),

2. Select variables with estimated posterior probability of inclusion p(γj = 1 | Y )

greater than 0.5, also known as the median probability model (MPM).

The appropriateness of the HPD and MPM model have been studied in detail [2, 3].
It has been shown that for orthogonal linear regression, the optimal model from a
Bayesian predictive objective is the MPM rather than the HPD.

In a Bayesian framework, the accuracy of the variable selection method depends
on the specification of the priors for the model space and parameters. In this section,
we survey priors which fall into one of four possible categories, priors on the model
space, spike and slab priors, shrinkage priors and projection methods.
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5.2.2 Model Space Priors

We begin by considering priors on the model space p(γ ). A common prior on the
model space assumes that the γj are independent and Bernoulli distributed,

p(γ ) =
p∏

j=1

w
γj

j (1 − wj )
1−γj , (5.1)

is computationally inexpensive and has been found to give sensible results in
practice [4–7]. Under this prior, each variable Xj will enter the model with
probability p(γj = 1) = wj . A common variant of this method is to place a Beta
prior on w ∼ Beta(a, b) which yields

p(γ ) = B(a + sγ , b + p − sγ )

B(a, b)
,

where B(a, b) is the beta function with hyper-parametersa and b. The choice of a =
b = 1 corresponds to an uninformative prior on the model space. This type of prior
is also recommended in [8], where the choice of hyper-parameters is considered
asymptotically. More generally, one can put a prior h(sγ ) on the model dimension
and let

p(γ ) =
(

p

sγ

)−1

h(sγ ),

which allows for the belief that the optimal models are sparse [16]. Priors of this
form are considered generally by Scott in [9]. The priors described so far are useful
when there is no structural information about the predictors.

Structured priors have also been considered, for example [10] propose a model
space prior which incorporates known correlation in the predictors. They assume
that the covariates have an underlying graphical structure and use an Ising prior to
incorporate the structural information (see [11] for a survey on the Ising model).
This structural information is used to capture underlying biological processes in the
modelling.

5.2.3 Spike and Slab Priors

We now consider the specification of the prior for the parameters p(βγ | γ ).
Arguably, one of the simplest and most natural classes of prior distributions is given
by the spike and slab type priors. In the original formulation [1, 12] the spike and
slab distribution was defined as a mixture of a Dirac measure concentrated at zero
and a uniform diffuse component. Similar to [13], we use a more general version
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of the prior. In this chapter we refer to a spike and slab as any mixture of two
distributions where one component is peaked at zero and the other is diffuse. More
specifically, we define a spike and slab to have the form,

βj | γj ∼ (1 − γj )G0(βj ) + γjG1(βj ),

for j = 1, . . . , p where G0 and G1 are probability measures on R and γ ∼ p(γ ),
where p(γ ) is a prior on the model space. This framework naturally extends the
model space prior discussed in the previous section. The original spike and slab
(Mitchell et al. [1]) corresponds to a Dirac mass at zero δ0 for G0 and a uniform
slab distribution for G1.

For this section, we will assume an independent Bernoulli prior for γj , where
γj ∼ Bernoulli(wj), and wj ∈ [0, 1] for j = 1, . . . , p. Using this prior on the
model space the spike and slab can be written as the mixture

βj | wj ∼ (1 − wj )G0(βj ) + wjG1(βj ),

where we have marginalised over the binary term γj . There are a number of prior
specifications which use this hierarchical setup but differ in the distributions chosen
for G0 and G1 [14]:

Kuo and Mallick The Bernoulli–Gaussian or Binary Mask model is due to [15].
This prior takes a Dirac for the spike G0 = δ0 and a Gaussian for the slab G1,

βj | γj ∼ (1 − γj )δ0 + γjN(0, σ 2
β ),

where N(μβ, σ 2
β ) denotes a Normal distribution with mean μβ and standard

deviation σβ . The slab distribution is chosen with sufficiently large variance to
allow the non-zero coefficients to spread over large values. As noted by O’Hara and
Sillanpää [14] this method can suffer poor mixing in an MCMC implementation due
to the sharp shrinkage properties of the Dirac measure.

Stochastic Search Variable Selection (SSVS) A related method for variable
selection is the stochastic search variable selection (SSVS) or Normal-Normal
formulation proposed by George and McCulloch [6]. This prior has the aim of
excluding variable βj from the model whenever |βj | < εj given εj > 0 and where
| · | denotes the absolute value. The idea is that εj is a practical threshold that can
aid the identification of variables with effect size larger than some specified value.
The prior has the form,

βj | γj ∼ (1 − γj )N(0, τ 2
j ) + γjN(0, cj τ

2
j ),

where the separation between the two components is controlled through the tuning
parameters τj and cj > 0 which control the variance of the spike τ 2

j and the variance

of the slab τ 2
j c. To help guide the choice of these tuning parameters, [6] and [16]
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note that the two Gaussians intersect at the points ±εj where

εj = τj

√
2 log(cj )c

2
j /(cj − 1).

Thus posterior coefficients within the interval [−εj , εj ] can be considered “practi-
cally zero”. They suggest using this to aid in the selection of the hyper-parameters
τj and cj . A variant of this prior is called the Gibbs variable selection (GVS)
method suggested by Dellaportas et al. [17] and Carlin and Chib [18]. This method
was motivated to improve convergence in MCMC implementations by reducing
the sharp shrinkage of the Dirac. Their method suggests that the distribution G1
corresponding to γj = 0 should be chosen so that it has no effect on the posterior.
When the likelihood is Normal this method follows a similar form as the SSVS
method where G1 is a normal distribution with mean and variance chosen to
minimise the effect on the posterior. This method can have good mixing properties
but is difficult to tune in practice [14].

A recent extension of the SSVS type of prior was proposed by Narisetty and
He [19] who propose a spike and slab priors that are Normal, but where the prior
parameters depend explicitly on the sample size to achieve appropriate shrinkage.
They establish model selection consistency in a high-dimensional setting, where p

can grow nearly exponentially with n.

Normal Mixture of Inverse Gamma (NMIG) For linear regression, [20] proposed
to move the spike and slab to the variance term rather than placing a prior on the
parameter itself. The form of their prior parameterised the variance as a product of
random variables with inverse gamma distribution (IG) and a Dirac. We state the
equivalent parameterisation of this spike and slab model [21]

βj | τ 2
j ∼ N(0, τ 2

j ) (5.2)

τ 2
j | γj ∼ (1 − γj )IG(a,

d0

b
) + γj IG(a,

d1

b
) (5.3)

where d0 and d1 now have the role of τ 2
j and cj from the SSVS prior. Integrating

over the variance terms the prior on βj can be seen as a mixture of two scaled
t-distributions. A similar argument based on the desired “practical effect” can be
made for this prior to assist in the choice of hyper-parameters (see [20] and [21]).

Spike and Slab Lasso More recently priors with thicker tails have been considered
for the distributions of the spike and slab. In particular, [22] propose a version of the
spike and slab distribution,

βj | γj ∼ (1 − γj )Lap(λ0) + γjLap(λ1),

where Lap(λ) = λ
2 e−λ|β| denotes a Laplace (double exponential) distribution.

Taking λ1 small and λ0 large enables the distribution to mimic the original [1]
prior with Dirac spike and diffuse slab. Taking instead λ0 = λ1 = λ, the prior
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is equivalent to a single Laplace with parameter λ. This method provides a bridge
between the weak shrinkage of the Laplace distribution and the harsh shrinkage of
the original spike and slab. Additional computational advantages for mode detection
are also possible due to the choice of Laplace shrinkage.

Heavy Tailed Spike and Slab Recent work of [13], have considered using
distributions with heavier tails than the Laplace distribution. They advocate the use
of priors of the form

βj | γj ∼ (1 − γj )δ0 + γjCauchy(1),

where Cauchy(1) denotes a standard Cauchy distribution. In particular they find
that for the prior γj ∼ Bernoulli(w) for all j = 1, . . . , p, if the hyper parameter
w is calibrated via marginal maximum likelihood empirical Bayes, the Laplace slab
is shown to lead to a suboptimal rate for the empirical Bayes posterior [13]. Heavier
tailed distributions are required in order to make the empirical posterior contract at
the optimal rate.

Nonlocal Priors Each of the priors considered so far places local prior densities
on regression coefficients in the model. That is, the slab G1 distributions all have
positive prior density at the origin 0, which can make it more difficult to distinguish
between models with small coefficients. Johnson and Rossell [23] proposed two new
classes of priors which are zero at and around the origin. These priors are motivated
from a Bayesian model averaging perspective and assign a lower weight to more
complex models [24, 25].

5.2.4 Shrinkage Priors

Due to high computational costs spike and slab methods are often not able to scale
to very high dimensional problems. This is due largely to the discrete γ variable and
the large model space. Consequently, this has motivated the development of a wealth
of priors that aim to provide continuous alternatives to the spike and slab. One of the
earliest methods that received attention for this purpose is the Bayesian Lasso (least
absolute shrinkage and selection) [26]. This method was motivated largely by the
Lasso penalisation approach which has been celebrated in the statistics community
for its computational efficiency and variable selection performance. For a detailed
survey of the lasso and related Penalised regression methods see [27]. The Bayesian
Lasso corresponds to the use of a Laplace prior on the regression coefficient. The
resulting posterior mode for the Bayesian lasso is equivalent to the solution for the
Lasso regression problem. While the Lasso estimate has been shown to have good
variable selection properties, the Bayesian Lasso does not. Castillo et al. [8] show
that the Bayesian Lasso does not make the posterior concentrate near the true value
in large samples.
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In recent years, continuous Bayesian priors with good shrinkage properties have
been introduced to the literature. One broad class of priors is referred to as global-
local shrinkage priors [28] which have the hierarchical form,

βj | ηj ,w ∼ N(0, wηj ), (5.4)

ηj ∼ π(ηj ), (5.5)

w ∼ π(w) (5.6)

where ηj s are known as the local shrinkage parameters and control the degree of
shrinkage for each individual coefficient βj , while the global parameter w causes
an overall shrinkage. If the prior π(ηj ) is appropriately heavy-tailed, then the
coefficients of nonzero variables will not incur a strong shrinkage effect. This
hierarchical formulation essentially places a scale mixture of Normal distributions
using (5.5) and (5.6) and is found frequently in the Bayesian literature. This includes
the normal-gamma [29], Horseshoe prior [30], generalised double Pareto [31],
Dirichlet-Laplace (DL) prior [32] and the Horseshoe+ prior [33]. These priors all
contain a significant amount of mass at zero so that coefficients are shrunk to zero.

Ghosh et al. [34] observed that for a large number of global-local shrinkage
priors, the parameter ηj has a distribution that can be written as,

π(ηj ) = Kη−a−1
j L(ηj ), (5.7)

where K > 0 and a > 0 are positive constants, and L is a positive measureable
function. Table 1 from [35] provides a list of the more well known global-local
shrinkage priors that fall into this form, their corresponding density for ηj , and
the component L(ηj ). Theoretical properties and uncertainty quantification has
also been considered for these types of shrinkage priors [36]. Importantly, point
estimates using only shrinkage priors on the regression coefficients are not able
to produce exact zeros. Quantification of the selected variables is often achieved
using the estimated credible intervals. Additional inference on the regression
coefficients may also be achieved using the decoupling shrinkage and selection
(DSS) framework developed by Hahn and Carvalho [37].

5.3 Computational Methods

In this section we survey some of the standard methods used in computational
Bayesian statistics to compute posterior inference in the Bayesian variable selection
methods. For each method we outline the general implementation details. For
illustrative purposes, we show how these methods may be used for a linear
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regression analysis with the following hierarchical framework:

Y | βγ , γ, σ ∼ Nn(Xγ βγ , σ 2I) (5.8)

βγ | σ, γ ∼ Nsγ (μβ, σ 2Σγ ), (5.9)

σ 2 ∼ IG(d/2, dλ/2), (5.10)

γj
iid∼ Bern(w) forj = 1, . . . , p, (5.11)

where Xγ and βγ denote subvectors of the covariates and regression parameters
corresponding to the selected indices in γ and Σγ ∈ R

sγ ×sγ is the sγ × sγ prior

covariance matrix for the selected regressors. Since γj
iid∼ Bern(w) with w fixed,

this prior on the model space favours models with wp selected variables. This prior
specification for β | γ corresponds to the Normal-Binomial or Kuo and Mallick
spike and slab.

5.3.1 Markov Chain Monte Carlo Methods

The most widely used tool for fitting Bayesian models are sampling techniques
based on Markov chain Monte Carlo (MCMC), in which a Markov chains is
designed with stationary distribution that matches the desired posterior. In Bayesian
variable selection, MCMC procedures are used to generate a sequence

γ (1), γ (2), . . . (5.12)

from a Markov chain with stationary distribution p(γ | Y ). In situations where there
is no closed form expression for p(γ | Y ) we can attain a sequence of the form

γ (1), β(1), σ (1), γ (2), β(2), σ (2) . . . (5.13)

from a Markov chain with distribution p(β, σ, γ | Y ). In the next two subsections
we described various MCMC algorithms which may be used for simulating from
(5.12) and (5.13). These algorithms are variants of the Metropolis–Hastings (MH)
and Gibbs sampler algorithms, respectively. For more information on these algo-
rithms and other MCMC methods for variable selection see the lecture notes [16].

5.3.2 Metropolis–Hastings

Algorithm 1 gives a generic description of an iteration of a Hastings–Metropolis
algorithm that samples from p(γ | Y ). The MH algorithm works by sampling from
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an arbitrary probability transition kernel q(γ ∗ | γ ) (the distribution of the proposal
γ ∗) and imposing a random rejection step.

Input: γ

Output: γ ′
1. Sample γ ∗ ∼ q(γ ∗|γ )

2. With Probability

α = min

(

1,
q(γ | γ ∗)p(γ ∗ | Y)

q(γ ∗ | γ )p(γ | Y)

)

Set γ ′ ← γ ∗, otherwise γ ′ ← γ .
Algorithm 1: Metropolis–Hastings (MH) algorithm

The simplest transition kernel would be to take q(γ ∗ | γ ) = 1/p if a single
component of γ is changed. This yields a Metropolis algorithm which simulates
a new proposal by randomly changing one component of γ . This algorithm was
originally proposed for graphical model selection by Madigan et al. [38] and is
named MC3 (Markov chain Monte Carlo model composition). Alternative transition
kernels could be constructed to propose changes in d components of γ , or more
generally to change a random number of components in γ . We note that the
MH approach for variable selection has inspired a number of methods that are
able to effectively explore a large model space. The stochastic search methods
developed by Hans et al. [39] explores multiple candidate models in parallel at each
iteration and moves more aggressively toward regions of higher probability. Parallel
tempering together with genetic algorithms have also been adapted to help assist
the exploration of the large feature space in a method called Evolutionary MCMC
(EMC) [40]. This was later adapted to Bayesian variable selection by Bottolo and
Richardson [41]. For variable selection problems where p(γ | Y ) is not easily
attained, MH methods will need to sample both βγ and γ , so care must be taken
in choosing the appropriate transition kernel.

Example Details A valuable feature of the prior in (5.8) is that, due to conjugacy
of the priors [16], the parameters βγ and σ can be eliminated from p(Y, βγ , σ | γ )

to yield,

p(Y | γ ) ∝ |XT
γ Xγ + Σ−1

γ |−1/2|Σγ |−1/2(dλ + S2
γ )(−(n+d)/2)

where,

S2
γ = YT Y − YT Xγ (XT

γ Xγ + Σ−1
γ )−1XT

γ Y.

Thus, for the model prior p(γ ) = wsγ (1 − w)p−sγ the posterior is proportional to

p(γ | Y ) ∝ p(Y | γ )p(γ ) = g(γ ).
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Taking the previously defined transition kernel q(γ ∗ | γ ) and making use of the
fact that g(γ )/g(γ ′) = p(γ | Y )/p(γ ′ | Y ), the MH algorithm follows the steps in
Algorithm 1.

5.3.3 Gibbs Sampling

A well known MCMC approach to variable selection when the conditional distri-
butions of the parameters are known is to apply Gibbs sampling. Unfortunately
a drawback of Gibbs sampling is that it is not very generic and implementation
depends strongly on the prior and model. When the prior is analytically tractable
and a function g(γ ) ∝ p(γ | Y ) is available, the standard way to draw samples
from the posterior p(γ | Y ) is by sampling the p components (γ1, . . . , γp) as,

γj ∼ p(γj | Y, γ(−j)), j = 1, . . . , p,

where γ(−j) = (γ1, . . . , γj−1, γj+1, . . . , γp) and where components γj may be
drawn in fixed or random order. By computing the ratios

p(γj = 1, γ(−j) | Y )

p(γj = 0, γ(−j) | Y )
= g(γj = 1, γ(−j))

g(γj = 0, γ(−j))
,

we can make use of the following [16]

p(γj = 1 | Y, γ(−j)) = p(γj = 1, γ(−j) | Y )

p(γj = 0, γ(−j) | Y )

(

1 + p(γj = 1, γ(−j) | Y )

p(γj = 0, γ(−j))

)−1

.

It is worth noting the recent work of Zanella and Roberts [42] which proposes an
importance sampling version of the Gibbs sampling method with application to
Bayesian variable selection. Additional computational advantages may be possible
by drawing the components of γ in groups rather than one at a time. In this case the
potential advantage of group updates would perform best if correlated variables are
jointly updated.

Example Details As before, we have the function g(γ )

p(Y | γ ) ∝ g(γ ) = |XT
γ Xγ + Σ−1

γ |−1/2|Σγ |−1/2(dλ + S2
γ )(−(n+d)/2)

where,

S2
γ = YT Y − YT Xγ (XT

γ Xγ + Σ−1
γ )−1XT

γ Y.
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The Bayesian update for γj | Y, γ(−j) is a Bernoulli draw with probability

p(γj = 1 | Y, γ(−j)) = g(γj = 1, γ(−j))

g(γj = 0, γ(−j))

(

1 + g(γj = 1, γ(−j))

g(γj = 0, γ(−j))

)−1

.

5.4 Software Implementations

There is a vast supply of software available to perform Bayesian variable selection.
For this survey we restrict the scope to packages built for the R programming
language [43]. These packages are free and available on the comprehensive R
archive network CRAN (cran.r-project.org).

We start by noting that computational implementation of the priors and models
described can be easily implemented in a number of generic Bayesian software.
Ntzoufras [44] provide interesting examples of variable selection for the programs
WinBUGS [45] and JAGS [46]. Code has also been made available for JAGS
implementations of variable selection priors in the tutorial [14]. General purpose
Bayesian software such as STAN [47] is not able to model discrete parameters so the
spike and slab priors cannot be implemented. However, a large range of shrinkage
priors such as the Horseshoe and Horseshoe+ are available. Practical examples for
the analysis of variable selection has been proposed using STAN [48] (Table 5.1).

In addition to the general probabilistic programming languages, there are a large
number of specific variable selection R packages. A survey of available R packages
for variable selection has compared and contrasted popular software available as
recent as February 17, 2017 [49]. In this chapter, we note some recent packages
which were found using the PKGSEARCH R package [50]. The key words searched
were Bayesian variable selection, Bayesian model averaging and Bayesian feature
selection. From this search we note the following packages: EMVS, basad, varbvs,
BAS, spikeSlabGAM, BVSNLP, BayesS5, mombf, BoomSpikeSlab, R2GUESS, BMA,
SSLASSO.

BoomSpikeslab [51] implements a fast Gibbs sampling procedure for Bayesian
modelling using a variant of the SSVS spike and slab prior. BMA implements a
Metropolis Hastings (MC3) algorithm for linear and some nonlinear sparse Bayesian
models. BAS is similar to BMA in that it provides Bayesian model averaging
methods. However, the sampler in BAS makes use of adaptive MCMC methods
to give more efficient estimates. The mombf package provides a Gibbs sampler
for the non-local and local priors (see Sect. 5.2.3). spikeSlabGAM implements a
Gibbs sampler using a variant of the SSVS prior for generalised additive mixed
models. Varbvs [52] implements a variational Bayesian variable selection method.
As an alternative to MCMC, this package returns approximate estimates of posterior
probabilities. These methods can scale much better with the dimension of the data
than MCMC methods but suffer an approximation bias. R2GUESS provides an
evolutionary stochastic search algorithm for both single and multiple response linear

cran.r-project.org


132 M. Sutton

Table 5.1 Recent packages for variable selection found using the R package PKGSEARCH

Package Last release Downloads Description

BoomSpikeSlab 2019 214, 663 MCMC for Spike and Slab regression

BMA 2018 159, 652 Bayesian model averaging

BAS 2018 80, 286 Bayesian variable selection and model
averaging using Bayesian adaptive sampling

mombf 2019 39, 764 Bayesian model selection and averaging for
non-local and local priors

spikeSlabGAM 2018 21, 332 Bayesian variable selection and model choice
for generalized additive mixed models

Varbvs 2019 14, 781 Large-scale Bayesian variable selection using
variational methods

R2GUESS 2018 14, 595 A graphics processing unit-based R package
for Bayesian variable selection regression of
multivariate responses

BayesS5 2018 11, 295 Bayesian variable selection using simplified
shotgun stochastic search with screening (S5)

BVSNLP 2019 10, 985 Bayesian variable selection in high
dimensional settings using nonlocal priors

basad 2017 6187 Bayesian variable selection with Shrinking
and diffusing priors

SSLASSO 2018 4407 The Spike and Slab LASSO

EMVS 2018 3816 The expectation-maximization approach to
Bayesian variable selection

Year of the last release of the package, number of package downloads (calculated using CRANLOGS

as of 28th July 2019)

models. BayesS5 is an efficient algorithm based on a variation of the stochastic
search method and screening steps to improve computation time in high dimensions.
The package BVSNLP implements considers local and nonlocal priors (similar
to mombf) for binary and survival data [53]. The package basad implements
variable selection with shrinking and diffusing spike and slab priors [19]. SSLASSO
provides an implementation of the spike and slab lasso [22] for fast variable
selection with Laplacian distributions for both the spike and slab. Finally, EMVS
provides an expectation maximisation approach for Bayesian variable selection. The
method provides a deterministic alternative to the stochastic search methods in order
to find posterior modes.
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22. V. Ročková, E.I. George, The spike-and-slab lasso. J. Am. Stat. Assoc. 113(521), 431–444
(2018)

23. V.E. Johnson, D. Rossell, Bayesian model selection in high-dimensional settings. J. Am. Stat.
Assoc. 107(498), 649–660 (2012)

24. D. Rossell, D. Telesca, Non-local priors for high-dimensional estimation. J. Am. Stat. Assoc.
112(517), 254–265 (2017)

https://doi.org/10.1214/lnms/1215540964


134 M. Sutton

25. A. Nikooienejad, W. Wang, V.E. Johnson, Bayesian variable selection for binary outcomes in
high-dimensional genomic studies using non-local priors. Bioinformatics 32(9), 1338–1345
(2016)

26. R. Tibshirani, Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B Stat.
Methodol. 58(1), 267–288 (1996)

27. J. Fan, J. Lv, A selective overview of variable selection in high dimensional feature space. Stat.
Sin. 20(1), 101–148 (2010)

28. N.G. Polson, J.G. Scott, Local shrinkage rules, lévy processes and regularized regression. J. R.
Stat. Soc. Ser. B Stat. Methodol. 74(2), 287–311 (2012)

29. J.E. Griffin, P.J. Brown, Inference with normal-gamma prior distributions in regression
problems. Bayesian Anal. 5(1), 171–188 (2010)

30. C.M. Carvalho, N.G. Polson, J.G. Scott, The horseshoe estimator for sparse signals. Biometrika
97(2), 465–480 (2010)

31. A. Armagan, D.B. Dunson, J. Lee, Generalized double pareto shrinkage. Stat. Sin. 23(1), 119–
143 (2013)

32. A. Bhattacharya, D. Pati, N.S. Pillai, D.B. Dunson, Dirichlet–laplace priors for optimal
shrinkage. J. Am. Stat. Assoc. 110(512), 1479–1490 (2015)

33. A. Bhadra, J. Datta, N.G. Polson, B. Willard, The horseshoe+ estimator of ultra-sparse signals.
Bayesian Anal. 12(4), 1105–1131 (2017)

34. P. Ghosh, X. Tang, M. Ghosh, A. Chakrabarti, Asymptotic properties of bayes risk of a general
class of shrinkage priors in multiple hypothesis testing under sparsity. Bayesian Anal. 11(3),
753–796 (2016)

35. R. Bai, M. Ghosh, High-dimensional multivariate posterior consistency under global–local
shrinkage priors. J. Multivar. Anal. 167, 157–170 (2018)

36. S. van der Pas, B. Szabó, A. van der Vaart, Uncertainty quantification for the horseshoe (with
discussion). Bayesian Anal. 12(4), 1221–1274 (2017)

37. P.R. Hahn, C.M. Carvalho, Decoupling shrinkage and selection in Bayesian linear models: a
posterior summary perspective. J. Am. Stat. Assoc. 110(509), 435–448 (2015)

38. D. Madigan, J. York, D. Allard, Bayesian graphical models for discrete data. Int. Stat. Rev./Rev.
Int. de Stat. 63(2), 215–232 (1995)

39. C. Hans, A. Dobra, M. West, Shotgun stochastic search for “large p” regression. J. Am. Stat.
Assoc. 102(478), 507–516 (2007)

40. F. Liang, W.H. Wong, Evolutionary monte carlo: applications to C p model sampling and
change point problem. Stat. Sin. 10(2), 317–342 (2000)

41. L. Bottolo, S. Richardson, Evolutionary stochastic search for Bayesian model exploration.
Bayesian Anal. 5(3), 583–618 (2010)

42. G. Zanella, G. Roberts, Scalable importance tempering and Bayesian variable selection. J. R.
Statist. Soc. B 81, 489–517 (2019)

43. R Core Team, R: A Language and Environment for Statistical Computing (R Foundation for
Statistical Computing, Vienna, 2013)

44. I. Ntzoufras, Gibbs variable selection usingbugs. J. Stat. Softw. 7(7), 1–19 (2002)
45. D.J. Lunn, A. Thomas, N. Best, D. Spiegelhalter, Winbugs-a Bayesian modelling framework:

concepts, structure, and extensibility. Stat. Comput. 10(4), 325–337 (2000)
46. M. Plummer, et al., JAGS: A program for analysis of Bayesian graphical models using

gibbs sampling, in Proceedings of the 3rd International Workshop on Distributed Statistical
Computing, vol. 124 (2003)

47. B. Carpenter, A. Gelman, M.D. Hoffman, D. Lee, B. Goodrich, M. Betancourt, M. Brubaker,
J. Guo, P. Li, A. Riddell, Stan: A probabilistic programming language. J. Stat. Softw. 76(1),
1–32 (2017)

48. J. Piironen, A. Vehtari, Projection predictive model selection for gaussian processes, in 2016
IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP)
(2016), pp. 1–6



5 Bayesian Variable Selection 135

49. A. Forte, G. Garcia-Donato, M. Steel, Methods and tools for Bayesian variable selection and
model averaging in normal linear regression. Int. Stat. Rev./Rev. Int. de Stat. 86(2), 237–258
(2018)

50. G. Csárdi, pkgsearch: Search CRAN R Packages. R package version 2.0.1. (2018). https://
CRAN.R-project.org/package=pkgsearch

51. H. Ishwaran, U.B. Kogalur, J.S. Rao, spikeslab: prediction and variable selection using spike
and slab regression. R J. 2, 68–73 (2010)

52. P. Carbonetto, M. Stephens, Scalable variational inference for Bayesian variable selection in
regression, and its accuracy in genetic association studies. Bayesian Anal. 7, 73–108 (2012)

53. D. Rossell, J.D. Cook, D. Telesca, P. Roebuck, mombf: moment and inverse moment bayes
factors. R Package Version 1. 0, vol. 3 (2008)

https://CRAN.R-project.org/package=pkgsearch
https://CRAN.R-project.org/package=pkgsearch

	5 Bayesian Variable Selection
	5.1 Introduction
	5.2 Preliminaries
	5.2.1 The Variable Selection Problem
	5.2.2 Model Space Priors
	5.2.3 Spike and Slab Priors
	5.2.4 Shrinkage Priors

	5.3 Computational Methods
	5.3.1 Markov Chain Monte Carlo Methods
	5.3.2 Metropolis–Hastings
	5.3.3 Gibbs Sampling

	5.4 Software Implementations
	References


