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Abstract The modern era is characterised as an era of information or Big Data.
This has motivated a huge literature on new methods for extracting information and
insights from these data. A natural question is how these approaches differ from
those that were available prior to the advent of Big Data. We present a survey
of published studies that present Bayesian statistical approaches specifically for
Big Data and discuss the reported and perceived benefits of these approaches.
We conclude by addressing the question of whether focusing only on improving
computational algorithms and infrastructure will be enough to face the challenges
of Big Data.

Keywords Bayesian statistics · Bayesian modelling · Bayesian computation ·
Scalable algorithms

2.1 Introduction

Although there are many variations on the definition of Big Data [51, 52, 91, 184],
it is clear that it encompasses large and often diverse quantitative data obtained
from increasing numerous sources at different individual, spatial and temporal
scales, and with different levels of quality. Examples of Big Data include data
generated from social media [22]; data collected in biomedical and healthcare
informatics research such as DNA sequences and electronic health records [114];
geospatial data generated by remote sensing, laser scanning, mobile mapping,
geo-located sensors, geo-tagged web contents, volunteered geographic informa-
tion (VGI), global navigation satellite system (GNSS) tracking and so on [103].
The volume and complexity of Big Data often exceeds the capability of the
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standard analytics tools (software, hardware, methods and algorithms) [70, 92].
The concomitant challenges of managing, modelling, analysing and interpreting
these data have motivated a large literature on potential solutions from a range of
domains including statistics, machine learning and computer science. This literature
can be grouped into four broad categories of articles. The first includes general
articles about the concept of Big Data, including the features and challenges, and
their application and importance in specific fields. The second includes literature
concentrating on infrastructure and management, including parallel computing and
specialised software. The third focuses on statistical and machine learning models
and algorithms for Big Data. The final category includes articles on the application
of these new techniques to complex real-world problems.

In this chapter, we classify the literature published on Big Data into finer classes
than the four broad categories mentioned earlier and briefly reviewed the contents
covered by those different categories. But the main focus of the chapter is around the
third category, in particular on statistical contributions to Big Data. We examine the
nature of these innovations and attempt to catalogue them as modelling, algorithmic
or other contributions. We then drill further into this set and examine the more
specific literature on Bayesian approaches. Although there is an increasing interest
in this paradigm from a wide range of perspectives including statistics, machine
learning, information science, computer science and the various application areas,
to our knowledge there has not yet been a survey of Bayesian statistical approaches
for Big Data. This is the primary contribution of this chapter.

This chapter provides a survey of the published studies that present Bayesian
statistical models specifically for Big Data and discusses the reported and perceived
benefits of these approaches. We conclude by addressing the question of whether
focusing only on improving computational algorithms and infrastructure will be
enough to face the challenges of Big Data.

The chapter proceeds as follows. In the next section, literature search and
inclusion criteria for this chapter is outlined. A classification of Big Data literature
along with brief survey of relevant literature in each class is presented in Sect. 2.3.
Section 2.4 consists of a brief survey of articles discussing Big Data problems from
statistical perspectives, followed by a survey of Bayesian approaches applied to Big
Data. The final section includes a discussion of this survey with a view to answering
the research question posed above.

2.2 Literature Search and Inclusion Criteria

The literature search for this survey paper was undertaken using different methods.
The search methods implemented to find the relevant literature and the criteria for
the inclusion of the literature in this chapter are briefly discussed in this section.
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2.2.1 Inclusion Criteria

Acknowledging the fact that there has been a wide range of literature on Big Data,
the specific focus in this chapter was on recent developments published in the last 5
years, 2013–2019.

For quality assurance reasons, of the literature only peer reviewed published
articles, book chapters and conference proceedings were included in the chapter.
Some articles were also included from arXiv and pre-print versions for those to be
soon published and from well known researchers working in that particular area of
interest.

2.2.2 Search Methods

Database Search The database “Scopus” was used to initiate the literature search.
To identify the availability of literature and broadly learn about the broad areas of
concentration, the following keywords were used: Big Data, Big Data Analysis, Big
Data Analytics, Statistics and Big Data.

The huge range of literature obtained by this initial search was complemented by
a search of “Google Scholar” using more specific key words as follows: Features and
Challenges of Big Data, Big Data Infrastructure, Big Data and Machine Learning,
Big Data and Cloud Computing, Statistical approaches/methods/models in Big
Data, Bayesian Approaches/Methods/Models in Big Data, Big Data analysis using
Bayesian Statistics, Bayesian Big Data, Bayesian Statistics and Big Data.

Expert Knowledge In addition to the literature found by the above Database
search, we used expert knowledge and opinions in the field and reviewed the works
of well known researchers in the field of Bayesian Statistics for their research works
related to Bayesian approaches to Big Data and included the relevant publications
for survey in this chapter.

Scanning References of Selected Literature Further studies and literature were
found by searching the references of selected literature.

Searching with Specific Keywords Since the focus of this chapter is to survey
the Bayesian approaches to Big Data, more literature was sourced by using specific
Bayesian methods or approaches found to be applied to Big Data: Approximate
Bayesian Computation and Big Data, Bayesian Networks in Big Data, Classification
and regression trees/Bayesian Additive regression trees in Big Data, Naive Bayes
Classifiers and Big Data, Sequential Monte Carlo and Big Data, Hamiltonian Monte
Carlo and Big Data, Variational Bayes and Big Data, Bayesian Empirical Likelihood
and Big Data, Bayesian Spatial modelling and Big Data, Non parametric Bayes and
Big Data.
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This last step was conducted in order to ensure that this chapter covers the
important and emerging areas of Bayesian Statistics and their application to Big
Data. These searches were conducted in “Google Scholar” and up to 30 pages of
results were considered in order to find relevant literature.

2.3 Classification of Big Data Literature

The published articles on Big Data can be divided into finer classes than the four
main categories described above. Of course, there are many ways to make these
delineations. Table 2.1 shows one such delineation, with representative references
from the last 5 years of published literature. The aim of this table is to indicate
the wide ranging literature on Big Data and provide relevant references in different
categories for interested readers.

The links between these classes of literature can be visualised as in Fig 2.1 and
a brief description of each of the classes and the contents covered by the relevant
references listed are provided in Table 2.2. The brief surveys presented in Table 2.2
can be helpful for interested readers to develop a broad idea about each of the classes
mentioned in Table 2.1. However, Table 2.2 does not include brief surveys of the last
two classes, namely, Statistical Methods and Bayesian Methods, since these classes
are discussed in detail in Sects. 2.4 and 2.5. We would like to acknowledge the fact
that Bayesian methods are essentially part of statistical methods, but in this chapter,
the distinct classes are made intentionally to be able to identify and discuss the
specific developments in Bayesian approaches.

Table 2.1 Classes of big data literature

Topic Representative references

Features and challenges [51, 52, 63, 65, 70, 140, 160, 168, 184, 200]

Infrastructure [10, 50, 96, 108, 117, 132, 137, 142, 165, 183, 193,
206, 207]

Cloud computing [11, 32, 38, 54, 113, 120, 130, 139, 148, 175, 201,
205]

Applications (3 examples) Social science: [5, 22, 37, 39, 121, 164]

Health/medicine/medical science: [8, 9, 16, 19, 21,
28, 34, 46, 82, 118, 153, 158, 159, 182, 202]

Business: [2, 31, 36, 60, 66, 122, 154, 172]

Machine learning methods [3, 4, 26, 27, 55, 64, 89, 97, 138, 173]

Statistical methods [44, 45, 58, 61, 67, 84, 86, 87, 111, 136, 143, 162,
174, 188, 191, 192, 194, 198, 204]

Bayesian methods [7, 80, 81, 100, 102, 105, 109, 110, 115, 128, 129,
151, 163, 170, 180, 199, 210, 211]
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Fig. 2.1 Classification of big data literature

2.4 Statistical Approaches to Big Data

The importance of modelling and theoretical considerations for analysing Big Data
are well stated in the literature [86, 198]. These authors pointed out that blind
trust in algorithms without proper theoretical considerations will not result in valid
outputs. The emerging challenges of Big Data are beyond the issues of processing,
storing and management. The choice of suitable statistical methods is crucial in
order to make the most of the Big Data [67, 87]. Dunson [61] highlighted the role of
statistical methods for interpretability, uncertainty quantification, reducing selection
bias in analysing Big Data.

In this section we present a brief survey of some of the published research on
statistical perspectives, methods, models and algorithms that are targeted to Big
Data. As above, the survey is confined to the last 5 years, commencing with the
most recent contributions. Bayesian approaches are reserved for the next section.

Among the brief surveys of the relevant literature in Table 2.3, we include
detailed surveys of three papers which are more generic in explaining the role of
statistics and statistical methods in Big Data along with recent developments in this
area.

Wang et al. [191] summarised the published literature on recent methodological
developments for Big Data in three broad groups: subsampling, which calculates a
statistic in many subsamples taken from the data and then combining the results
[144]; divide and conquer, the principle of which is to break a dataset into
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Table 2.2 Brief survey of relevant literature under identified classes

Features and challenges

• The general features of Big Data are volume, variety, velocity, veracity, value [52, 160]
and some salient features include massive sample sizes and high dimensionality [160].

• Many challenges of Big Data regarding storage, processing, analysis and privacy are
identified in the literature [52, 63, 65, 140, 160].

Infrastructure

• To manage and analyse Big Data, infrastructural support is needed such as sufficient
storage technologies and data management systems. These are being continuously
developed and improved. MangoDB, Terrastore and RethhinkDb are some examples
of the storage technologies; more on evolution technologies with their strengths,
weaknesses, opportunities and threats are available in [165].

• To analyse Big Data, parallel processing systems and scalable algorithms are needed.
MapReduce is one of the pioneering data processing systems [206]. Some other useful
and popular tools to handle Big Data are Apache, Hadoop, Spark [10].

Cloud computing

• Cloud computing, the practice of using a network of remote servers hosted on the
Internet rather than a local server or a personal computer, plays a key role in Big Data
analysis by providing required infrastructure needed to store, analyse, visualise and
model Big Data using scalable and adaptive systems [11].

• Opportunities and challenges of cloud computing technologies, future trends and
application areas are widely discussed in the literature [32, 175, 201] and new
developments on cloud computing are proposed to overcome known challenges,
such as collaborative anomaly detection [130], hybrid approach for scalable sub-tree
anonymisation using MapReduce on cloud [205] etc.

Applications (3 examples)

• Big Data has made it possible to analyse social behaviour and an individual’s
interactions with social systems based on social media usage [5, 37, 164]. Discussions
on challenges and future of social science research using Big Data have been made in
the literature [39, 164].

• Research involving Big Data in medicine, public health, biomedical and health infor-
matics has increased exponentially over the last decade [19, 28, 46, 114, 153, 158].
Some examples include infectious disease research [16, 82], developing personalised
medicine and health care [9, 182] and improving cardiovascular care [159].

• Analysis of Big Data is used to solve many real world problems in business, in
particular, using Big Data analytics for innovations in leading organisations [122],
predictive analytics in retail [31], analysis of business risks and benefits [154],
development of market strategies [60] and so on. The opportunities and challenges
of Big Data in e-commerce and Big Data integration in business processes can be
found in the survey articles by Akter and Wamba [2] and Wamba et al. [184].

(continued)
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Table 2.2 (continued)

Machine learning methods

• Machine learning is an interdisciplinary field of research primarily focusing on
theory, performance, properties of learning systems and algorithms [149]. Traditional
machine learning is evolving to tackle the additional challenges of Big Data [4, 149].

• Some examples of developments in machine learning theories and algorithms for
Big Data include high performance machine learning toolbox [3], scalable machine
learning online services for Big Data real time analysis [14].

• There is a large and increasing research on specific applications of machine learning
tools for Big Data in different disciplines. For example, [138] discussed the future
of Big Data and machine learning in clinical medicine; [13] discussed a classifier
specifically for medical Big Data and [26] reviewed the state of art and future
prospects of machine learning and Big Data in radiation oncology.

smaller subsets to analyse these in parallel and combine the results at the end
[169]; and online updating of streaming data [162], based on online recursive
analytical processing. He summarised the following methods in the first two
groups: subsampling based methods (bag of little bootstraps, leveraging, mean log
likelihood, subsample based MCMC), divide and conquer (aggregated estimating
equations, majority voting, screening with ultra high dimension, parallel MCMC).
The authors, after reviewing existing online updating methods and algorithms,
extended the online updating of stream data method by including criterion based
variable selection with online updating. The authors also discussed the available
software packages (open source R as well as commercial software) developed to
handle computational complexity involving Big Data. For breaking the memory
barrier using R, the authors cited and discussed several data management pack-
ages (sqldf, DBI, RSQLite, filehash, bigmemory, ff) and packages for numerical
calculation (speedglm, biglm, biganalytics, ffbase, bigtabulate, bigalgebra, bigpca,
bigrf, biglars, PopGenome). The R packages for breaking computing power were
cited and discussed in two groups: packages for speeding up (compiler, inline,
Rcpp, RcpEigen, RcppArmadilo, RInside, microbenchmark, proftools, aprof, line-
prof, GUIprofiler) and packages for scaling up (Rmpi, snow, snowFT, snowfall,
multicore, parallel, foreach, Rdsm, bigmemory, pdpMPI, pbdSLAP, pbdBASE, pbd-
MAT, pbdDEMO, Rhipe, segue, rhbase, rhdfs, rmr, plymr, ravroSparkR, pnmath,
pnmath0, rsprng, rlecuyer, doRNG, gputools, bigvis). The authors also discussed
the developments in Hadoop, Spark, OpenMP, API and using FORTRAN and C++
from R in order to create flexible programs for handling Big Data. The article also
presented a brief summary about the commercial statistical software, e.g., SAS,
SPSS, MATLAB. The study included a case study of fitting a logistic model to a
massive data set on airline on-time performance data from the 2009 ASA Data Expo
mentioning the use of some R packages discussed earlier to handle the problem with
memory and computational capacity. Overall, this study provided a comprehensive
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Table 2.3 Brief survey and classification of literature on statistical approaches to Big Data

Topic: Discussion article

Author: Dunson [61]

• Discussed the background of Big Data from the perspectives of the machine learning
and statistics communities.

• Listed the differences in the methods and inferences as replicability, uncertainty
quantification, sampling, selection bias and measurement error drawn from statistical
perspectives to those of machine learning.

• Identified the statistical challenges for high dimensional complex data (Big Data)
in quantifying uncertainty, scaling up sampling methods and selection of priors in
Bayesian methods.

Topic: Survey

Author: Nongxa [136]

• Identified challenges of Big Data as: high dimensionality, heterogeneity and incom-
pleteness, scale, timeliness, security and privacy.

• Pointed out that mathematical and statistical challenges of Big Data require updating
the core knowledge areas (i.e., linear algebra, multivariable calculus, elementary
probability and statistics, coding or programming) to more advanced topics (i.e.,
randomised numerical linear algebra, topological data analysis, matrix and tensor
decompositions, random graphs; random matrices and complex networks ) in mathe-
matical and statistical education.

Author: Franke et al. [67]

• Reviewed different strategies of analysis as: data wrangling, visualisation, dimension
reduction, sparsity regularisation, optimisation, measuring distance, representation
learning, sequential learning and provided detailed examples of applications.

Author: Chen et al. [45]

• Emphasised the importance of statistical knowledge and skills in Big Data Analytics
using several examples.

• Discussed some statistical methods that are useful in the context of Big Data as:
confirmatory and exploratory data analysis tools, data mining methods including
supervised learning (classification, regression/prediction) and unsupervised learning
(cluster analysis, anomaly detection, association rule learning), visualisation tech-
niques etc.

• Elaborated on the computational skills needed for statisticians in data acquisition, data
processing, data management and data analysis.

Author: Hoerl et al. [87]

• Provided a background of Big Data reviewing relevant articles.
• Discussed the importance of statistical thinking in Big Data problems reviewing some

misleading results produced by sophisticated analysis of Big Data without involving
statistical principles.

• Elaborated on the roles of statistical thinking for data quality, domain knowledge,
analysis strategies in order to solve complex unstructured problems involving Big
Data.

(continued)
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Table 2.3 (continued)

Topic: Survey of methods & extension

Author: Wang et al. [191]

• Reviewed statistical methods and software packages in R and recently developed tools
to handle Big Data, focusing on three groups: sub-sampling, divide and conquer and
online processing.

• Extended the online updating approach by employing variable selection criteria.

Topic: Methods survey, new methods

Author: Genuer et al. [72]

• Reviewed proposals dealing with scaling random forests to Big Data problems.
• Discussed subsampling, parallel implementations, online processing of random

forests in detail.
• Proposed five variants of Random Forests for Big Data.

Author: Wang and Xu [185]

• Reviewed different clustering methods applicable to Big Data situations.
• Proposed a clustering procedure with adaptive density peak detection applying

multivariate kernel estimation and demonstrated the performance through simulation
studies and analysis of a few benchmark gene expression data sets.

• Developed a R-package “ADPclust” to implement the proposed methods.

Author: Wang et al. [192]

• Proposed a method and algorithm for online updating implementing bias corrections
with extensions for application in a generalised linear model (GLM) setting.

• Evaluated the proposed strategies in comparison with previous algorithms [162].

Topic: New methods and algorithms

Author: Liu et al. [111]

• Proposed a novel sparse GLM with L0 approximation for feature selection and
prediction in big omics data scenarios.

• Provided novel algorithm and software in MATLAB (L0ADRIDGE) for performing
L0 penalised GLM in ultra high dimensional Big Data.

• Comparison of performance with other methods (SCAD, MC+) using simulation and
real data analysis (mRNA, microRNA, methylation data from TGCA ovarian cancer).

Author: Schifano et al. [162]

• Developed new statistical methods and iterative algorithms for analysing streaming
data.

• Proposed methods to enable update of the estimations and models with the arrival of
new data.

(continued)
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Table 2.3 (continued)

Author: Allen et al. [6]

• Proposed generalisations to Principal Components Analysis (PCA) to take into account
structural relationships in Big Data settings.

• Developed fast computational algorithms using the proposed methods (GPCA, sparse GPCA
and functional GPCA) for massive data sets.

Topic: New algorithms

Author: Wang and Samworth [188]

• Proposed a new algorithm “inspect” (informative sparse projection for estimation of change
points) to estimate the number and location of change points in high dimensional time series.

• The algorithm, starting from a simple time series model, was extended to detect multiple
change points and was also extended to have spatial or temporal dependence, assessed using
simulation studies and real data application.

Author: Yu and Lin [203]

• Extended the alternating direction method of multipliers (ADMM) to solve penalised
quantile regression problems involving massive data sets having faster computation and no
loss of estimation accuracy.

Author: Zhang and Yang [204]

• Proposed new algorithms using ridge regression to make it efficient for handling Big Data.

Author: Doornik and Hendry [58]

• Discussed the statistical model selection algorithm “autometrics” for econometric data [57]
with its application to fat Big Data (having larger number of variables than the number of
observations).

• Extended algorithms for tackling computational issues of fat Big Data applying block
searches and re-selection by lasso for correlated regressors.

Author: Sysoev et al. [174]

• Presented efficient algorithms to estimate bootstrap or jackknife type confidence intervals for
fitted Big Data sets by Multivariate Monotonic Regression.

• Evaluated the performance of the proposed algorithms using a case study on death in
coronary heart disease for a large population.

Author: Pehlivanlı [143]

• Proposed a novel approach for feature selection from high dimensional data.
• Tested the efficiency of the proposed method using sensitivity, specificity, accuracy and ROC

curve.
• Demonstrated the approach on micro-array data.
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survey and discussion of state-of-the-art statistical methodologies and software
development for handling Big Data.

Chen et al. [45] presented their views on the challenges and importance of
Big Data and explained the role of statistics in Big Data Analytics based on a
survey of relevant literature. This study emphasised the importance of statistical
knowledge and skills in Big Data Analytics using several examples. As detailed in
Table 2.3, the authors broadly discussed a range of statistical methods which can
be really helpful in better analysis of Big Data, such as, the use of exploratory data
analysis principle in Statistics to investigate correlations among the variables in the
data or establish causal relationships between response and explanatory variables
in the Big Data. The authors specifically mentioned hypothesis testing, predictive
analysis using statistical models, statistical inference using uncertainty estimation
to be some key tools to use in Big Data analysis. The authors also explained that
the combination of statistical knowledge can be combined with the Data mining
methods such as unsupervised learning (cluster analysis, Association rule learning,
anomaly detection) and supervised learning (regression and classification) can be
beneficial for Big Data analysis. The challenges for the statisticians in coping
with Big Data were also described in this article, with particular emphasis on
computational skills in data acquisition (knowledge of programming languages,
knowledge of web and core communication protocols), data processing (skills
to transform voice or image data to numeric data using appropriate software or
programming), data management (knowledge about database management tools and
technologies, such as NoSQL) and scalable computation (knowledge about parallel
computing, which can be implemented using MapReduce, SQL etc.).

As indicated above, many of the papers provide a summary of the published
literature which is not replicated here. Some of these surveys are based on large
thematic programs that have been held on this topic. For example, the paper by
Franke et al. [67] is based on presentations and discussions held as part of the
program on Statistical Inference, Learning and Models for Big Data which was held
in Canada in 2015. The authors discussed the four V’s (volume, variety, veracity
and velocity) of Big Data and mentioned some more challenges in Big Data analysis
which are beyond the complexities associated with the four V’s. The additional “V”
mentioned in this article is veracity. Veracity refers to biases and noise in the data
which may be the result of the heterogeneous structure of the data sources, which
may make the sample non representative of the population. Veracity in Big Data is
often referred to as the biggest challenge compared with the other V’s. The paper
reviewed the common strategies for Big Data analysis starting from data wrangling
which consists of data manipulation techniques for making the data eligible for
analysis; visualisation which is often an important tool to understand the underlying
patterns in the data and is the first formal step in data analysis; reducing the
dimension of data using different algorithms such as Principal Component Analysis
(PCA) to make Big Data models tractable and interpretable; making models more
robust by enforcing sparsity in the model by the use of regularisation techniques
such as variable selection and model fitting criteria; using optimisation methods
based on different distance measures proposed for high dimensional data and by
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using different learning algorithms such as representation learning and sequential
learning. Different applications of Big Data were shown in public health, health
policy, law and order, education, mobile application security, image recognition and
labelling, digital humanities and materials science.

There are few other research articles focused on statistical methods tailored to
specific problems, which are not included in Table 2.3. For example, Castruccio
and Genton [40] proposed a statistics-based algorithm using a stochastic space-time
model with more than 1 billion data points to reproduce some features of a climate
model. Similarly, [123] used various statistical methods to obtain associations
between drug-outcome pairs in a very big longitudinal medical experimental
database (with information on millions of patients) with a detailed discussion on the
big results problem by providing a comparison of statistical and machine learning
approaches. Finally, Hensman et al. [84] proposed stochastic variational inference
for Gaussian processes which makes the application of Gaussian process to huge
data sets (having millions of data points).

From the survey of some relevant literature related to statistical perspectives for
analysing Big Data, it can be seen that along with scaling up existing algorithms,
new methodological developments are also in progress in order to face the chal-
lenges associated with Big Data.

2.5 Bayesian Approaches in Big Data

As described in the Introduction, the intention of this survey is to commence with a
broad scope of the literature on Big Data, then focus on statistical methods for Big
Data, and finally to focus in particular on Bayesian approaches for modelling and
analysis of Big Data. This section consists of a survey of published literature on the
last of these.

There are two defining features of Bayesian analysis: (1) the construction of
the model and associated parameters and expectations of interest, and (2) the
development of an algorithm to obtain posterior estimates of these quantities. In
the context of Big Data, the resultant models can become complex and suffer
from issues such as unavailability of a likelihood, hierarchical instability, parameter
explosion and identifiability. Similarly, the algorithms can suffer from too much
or too little data given the model structure, as well as problems of scalability and
cost. These issues have motivated the development of new model structures, new
methods that avoid the need for models, new Markov chain Monte Carlo (MCMC)
sampling methods, and alternative algorithms and approximations that avoid these
simulation-based approaches. We discuss some of the concomitant literature under
two broad headings, namely computation and models realising that there is often
overlap in cited papers.
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2.5.1 Bayesian Computation

In Bayesian framework a main-stream computational tool has been the Markov
chain Monte Carlo (MCMC). The traditional MCMC methods do not scale well
because they need to iterate through the full data set at each iteration to evaluate
the likelihood [199]. Recently several attempts have been made to scale MCMC
methods up to massive data. A widely used strategy to overcome the computational
cost is to distribute the computational burden across a number of machines. The
strategy is generally referred to as divide-and-conquer sampling. This approach
breaks a massive data set into a number of easier to handle subsets, obtains posterior
samples based on each subset in parallel using multiple machines and finally
combines the subset posterior inferences to obtain the full-posterior estimates [169].
The core challenge is the recombination of sub-posterior samples to obtain true
posterior samples. A number of attempts have been made to address this challenge.

Neiswanger et al. [134] and White et al. [195] approximated the sub-posteriors
using kernel density estimation and then aggregated the sub-posteriors by taking
their product. Both algorithms provided consistent estimates of the posterior.
Neiswanger et al. [134] provided faster MCMC processing since it allowed the
machine to process the parallel MCMC chains independently. However, one
limitation of the asymptotically embarrassing parallel MCMC algorithm [134] is
that it only works for real and unconstrained posterior values, so there is still scope
of works to make the algorithm work under more general settings.

Wang and Dunson [187] adopted a similar approach of parallel MCMC but used a
Weierstrass transform to approximate the sub-posterior densities instead of a kernel
density estimate. This provided better approximation accuracy, chain mixing rate
and potentially faster speed for large scale Bayesian analysis.

Scott et al. [163] partitioned the data at random and performed MCMC inde-
pendently on each subset to draw samples from posterior given the data subset.
To obtain consensus posteriors they proposed to average samples across subsets and
showed the exactness of the algorithm under a Gaussian assumption. This algorithm
is scalable to a very large number of machines and works in cluster, single multi
core or multiprocessor computers or any arbitrary collection of computers linked by
a high speed network. The key weakness of consensus MCMC is it does not apply
to non Gaussian posterior.

Minsker et al. [128] proposed dividing a large set of independent data into a
number of non-overlapping subsets, making inferences on the subsets in parallel and
then combining the inferences using the median of the subset posteriors. The median
posterior (M-posterior) is constructed from the subset posteriors using Weiszfeld’s
algorithm, which provides a scalable algorithm for robust estimation.

Guhaniyogi and Banerjee [77] extended this notion to spatially dependent data,
provided a scalable divide and conquer algorithm to analyse big spatial data sets
named spatial meta kriging. The multivariate extension of spatial meta kriging has
been addressed by Guhaniyogi and Banerjee [78]. These approaches of meta kriging
are practical developments for Bayesian spatial inference for Big Data, specifically
with “big-N” problems [98].
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Wu and Robert [199] proposed a new and flexible divide and conquer framework
by using re-scaled sub-posteriors to approximate the overall posterior. Unlike
other parallel approaches of MCMC, this method creates artificial data for each
subset, and applies the overall priors on the artificial data sets to get the subset
posteriors. The sub-posteriors are then re-centred to their common mean and then
averaged to approximate the overall posterior. The authors claimed this method to
have statistical justification as well as mathematical validity along with sharing
same computational cost with other classical parallel MCMC approaches such as
consensus Monte Carlo, Weierstrass sampler. Bouchard-Côté et al. [30] proposed a
non-reversible rejection-free MCMC method, which reportedly outperforms state-
of-the-art methods such as: HMC, Firefly by having faster mixing rate and lower
variances for the estimators for high dimensional models and large data sets.
However, the automation of this method is still a challenge.

Another strategy for scalable Bayesian inference is the sub-sampling based
approach. In this approach, a smaller subset of data is queried in the MCMC
algorithm to evaluate the likelihood at every iteration. Maclaurin and Adams [116]
proposed to use an auxiliary variable MCMC algorithm that evaluates the likelihood
based on a small subset of the data at each iteration yet simulates from the exact
posterior distribution. To improve the mixing speed, Korattikara et al. [95] used
an approximate Metropolis Hastings (MH) test based on a subset of data. A similar
approach is used in [17], where the accept/reject step of MH evaluates the likelihood
of a random subset of the data. Bardenet et al. [18] extended this approach by
replacing a number of likelihood evaluations by a Taylor expansion centred at
the maximum of the likelihood and concluded that their method outperforms the
previous algorithms [95].

The scalable MCMC approach was also improved by Quiroz et al. [150] using
a difference estimator to estimate the log of the likelihood accurately using only
a small fraction of the data. Quiroz et al. [151] introduced an unbiased estimator
of the log likelihood based on weighted sub-sample which is used in the MH
acceptance step in speeding up based on a weighted MCMC efficiently. Another
scalable adaptation of MH algorithm was proposed by Maire et al. [119] to speed
up Bayesian inference in Big Data namely informed subsampling MCMC which
involves drawing of subsets according to a similarity measure (i.e., squared L2
distance between full data and maximum likelihood estimators of subsample)
instead of using uniform distribution. The algorithm showed excellent performance
in the case of a limited computational budget by approximating the posterior for a
tall dataset.

Another variation of MCMC in Big Data has been made by Strathmann et al.
[170]. These authors approximated the posterior expectation by a novel Bayesian
inference framework for approximating the posterior expectation from a different
perspective suitable for Big Data problems, which involves paths of partial pos-
teriors. This is a parallelisable method which can easily be implemented using
existing MCMC techniques. It does not require the simulation from full posterior,
thus bypassing the complex convergence issues of kernel approximation. However,
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there is still scope for future work to look at computation-variance trade off and
finite time bias produced by MCMC.

Hamiltonian Monte Carlo (HMC) sampling methods provide powerful and
efficient algorithms for MCMC using high acceptance probabilities for distant
proposals [44]. A conceptual introduction to HMC is presented by Betancourt [25].
Chen et al. [44] proposed a stochastic gradient HMC using second-order Langevin
dynamics. Stochastic Gradient Langevin Dynamics (SGLD) have been proposed
as a useful method for applying MCMC to Big Data where the accept-reject step
is skipped and decreasing step size sequences are used [1]. For more detailed
and rigorous mathematical framework, algorithms and recommendations, interested
readers are referred to [178].

A popular method of scaling Bayesian inference, particularly in the case of
analytically intractable distributions, is Sequential Monte Carlo (SMC) or particle
filters [24, 48, 80]. SMC algorithms have recently become popular as a method
to approximate integrals. The reasons behind their popularity include their easy
implementation and parallelisation ability, much needed characteristics in Big Data
implementations [100]. SMC can approximate a sequence of probability distribu-
tions on a sequence of spaces with an increasing dimension by applying resampling,
propagation and weighting starting with the prior and eventually reaching to the
posterior of interest of the cloud of particles. Gunawan et al. [80] proposed a sub-
sampling SMC which is suitable for parallel computation in Big Data analysis,
comprising two steps. First, the speed of the SMC is increased by using an unbiased
and efficient estimator of the likelihood, followed by a Metropolis within Gibbs
kernel. The kernel is updated by a HMC method for model parameters and a block-
pseudo marginal proposal for the auxiliary variables [80]. Some novel approaches
of SMC include: divide-and-conquer SMC [105], multilevel SMC [24], online SMC
[75] and one pass SMC [104], among others.

Stochastic variational inference (VI, also called Variational Bayes, VB) is a faster
alternative to MCMC [88]. It approximates probability densities using a determinis-
tic optimisation method [109] and has seen widespread use to approximate posterior
densities for Bayesian models in large-scale problems. The interested reader is
referred to [29] for a detailed introduction to variational inference designed for
statisticians, with applications. VI has been implemented in scaling up algorithms
for Big Data. For example, a novel re-parameterisation of VI has been implemented
for scaling latent variable models and sparse GP regression to Big Data [69].

There have been studies which combined the VI and SMC in order to take advan-
tage from both strategies in finding the true posterior [56, 133, 152]. Naesseth et al.
[133] employed a SMC approach to get an improved variational approximation,
Rabinovich et al. [152] by splitting the data into block, applied SMC to compute
partial posterior for each block and used a variational argument to get a proxy
for the true posterior by the product of the partial posteriors. The combination
of these two techniques in a Big Data context was made by Donnet and Robin
[56]. Donnet and Robin [56] proposed a new sampling scheme called Shortened
Bridge Sampler, which combines the strength of deterministic approximations of
the posterior that is variational Bayes with those of SMC. This sampler resulted in
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reduced computational time for Big Data with huge numbers of parameters, such as
data from genomics or network.

Guhaniyogi et al. [79] proposed a novel algorithm for Bayesian inference in the
context of massive online streaming data, extending the Gibbs sampling mechanism
for drawing samples from conditional distributions conditioned on sequential point
estimates of other parameters. The authors compared the performance of this
conditional density filtering algorithm in approximating the true posterior with SMC
and VB, and reported good performance and strong convergence of the proposed
algorithm.

Approximate Bayesian computation (ABC) is gaining popularity for statistical
inference with high dimensional data and computationally intensive models where
the likelihood is intractable [125]. A detailed overview of ABC can be found in [167]
and asymptotic properties of ABC are explored in [68]. ABC is a likelihood free
method that approximates the posterior distribution utilising imperfect matching
of summary statistics [167]. Improvements on existing ABC methods for efficient
estimation of posterior density with Big Data (complex and high dimensional data
with costly simulations) have been proposed by Izbicki et al. [90]. The choice of
summary statistics from high dimensional data is a topic of active discussion; see,
for example, [90, 166]. Pudlo et al. [147] provided a reliable and robust method of
model selection in ABC employing random forests which was shown to have a gain
in computational efficiency.

There is another aspect of ABC recently in terms of approximating the likeli-
hood using Bayesian Synthetic likelihood or empirical likelihood [59]. Bayesian
synthetic likelihood arguably provides computationally efficient approximations
of the likelihood with high dimensional summary statistics [126, 196]. Empirical
likelihood, on the other hand is a non-parametric technique of approximating the
likelihood empirically from the data considering the moment constraints; this has
been suggested in the context of ABC [127], but has not been widely adopted. For
further reading on empirical likelihood, see [141].

Classification and regression trees are also very useful tools in data mining and
Big Data analysis [33]. There are Bayesian versions of regression trees such as
Bayesian Additive Regression Trees (BART) [7, 47, 93]. The BART algorithm has
also been applied to the Big Data context and sparse variable selection by Rocková
and van der Pas [157], van der Pas and Rockova [181], and Linero [106].

Some other recommendations to speed up computations are to use graphics
processing units (see, e.g., [101, 171]) and parallel programming approaches (see,
e.g., [42, 71, 76, 197]).

2.5.2 Bayesian Modelling

The extensive development of Bayesian computational solutions has opened the
door to further developments in Bayesian modelling. Many of these new methods
are set in the context of application areas. For example, there have been applications
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of ABC for Big Data in many different fields [62, 102]. For example, Dutta et al.
[62] developed a high performance computing ABC approach for estimation of
parameters in platelets deposition, while Lee et al. [102] proposed ABC methods
for inference in high dimensional multivariate spatial data from a large number
of locations with a particular focus on model selection for application to spatial
extremes analysis. Bayesian mixtures are a popular modelling tool. VB and ABC
techniques have been used for fitting Bayesian mixture models to Big Data
[29, 88, 124, 129, 177].

Variable selection in Big Data (wide in particular, having massive number of vari-
ables) is a demanding problem. Liquet et al. [107] proposed multivariate extensions
of the Bayesian group lasso for variable selection in high dimensional data using
Bayesian hierarchical models utilising spike and slab priors with application to gene
expression data. The variable selection problem can also be solved employing ABC
type algorithms. Liu et al. [112] proposed a sampling technique, ABC Bayesian
forests, based on splitting the data, useful for high dimensional wide data, which
turns out to be a robust method in identifying variables with larger marginal
inclusion probability.

Bayesian non-parametrics [131] have unbounded capacity to adjust unseen data
through activating additional parameters that were inactive before the emergence
of new data. In other words, the new data are allowed to speak for themselves in
non-parametric models rather than imposing an arguably restricted model (that was
learned on an available data) to accommodate new data. The inherent flexibility
of these models to adjust with new data by adapting in complexity makes them
more suitable for Big Data as compared to their parametric counterparts. For a brief
introduction to Bayesian non-parametric models and a nontechnical overview of
some of the main tools in the area, the interested reader is referred to Ghahramani
[73].

The popular tools in Bayesian non-parametrics include Gaussian processes
(GP) [156], Dirichlet processes (DP) [155], Indian buffet process (IBP) [74] and
infinite hidden Markov models (iHMM) [20]. GP have been used for a variety
of applications [35, 41, 49] and attempts have been made to scale it to Big Data
[53, 84, 85, 179]. DP have seen successes in clustering and faster computational
algorithms are being adopted to scale them to Big Data [71, 104, 115, 186, 189]. IBP
are used for latent feature modeling, where the number of features are determined in
a data-driven fashion and have been scaled to Big Data through variational inference
algorithms [211]. Being an alternative to classical HMM, one of the distinctive
properties of iHMM is that it infers the number of hidden states in the system from
the available data and has been scaled to Big Data using particle filtering algorithms
[180].

Gaussian Processes are also employed in the analysis of high dimensional spa-
tially dependent data [15]. Banerjee [15] provided model-based solutions employing
low rank GP and nearest neighbour GP (NNGP) as scalable priors in a hierarchical
framework to render full Bayesian inference for big spatial or spatio temporal
data sets. Zhang et al. [208] extended the applicability of NNGP for inference of
latent spatially dependent processes by developing a conjugate latent NNGP model
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as a practical alternative to onerous Bayesian computations. Use of variational
optimisation with structured Bayesian GP latent variable model to analyse spatially
dependent data is made in in Atkinson and Zabaras [12]. For a survey of methods
of analysis of massive spatially dependent data including the Bayesian approaches,
see Heaton et al. [83].

Another Bayesian modelling approach that has been used for big and complex
data is Bayesian Networks (BN). This methodology has generated a substantial
literature examining theoretical, methodological and computational approaches, as
well as applications [176]. BN belong to the family of probabilistic graphical models
and based on direct acyclic graphs which are very useful representation of causal
relationship among variables [23]. BN are used as efficient learning tool in Big
Data analysis integrated with scalable algorithms [190, 209]. For a more detailed
understanding of BN learning from Big Data, please see Tang et al. [176].

Classification is also an important tool for extracting information from Big
Data and Bayesian classifiers, including Naive Bayes classifier (NBC) are used in
Big Data classification problems [94, 110]. Parallel implementation of NBC has
been proposed by Katkar and Kulkarni [94]. Moreover, Liu et al. [110] evaluated
the scalability of NBC in Big Data with application to sentiment classification of
millions of movie survey and found NBC to have improved accuracy in Big Data.
Ni et al. [135] proposed a scalable multi step clustering and classification algorithm
using Bayesian nonparametrics for Big Data with large n and small p which can also
run in parallel.

The past 15 years has also seen an increase in interest in Empirical Likelihood
(EL) for Bayesian modelling. The idea of replacing the likelihood with an empirical
analogue in a Bayesian framework was first explored in detail by Lazar [99].
The author demonstrated that this Bayesian Empirical Likelihood (BEL) approach
increases the flexibility of EL approach by examining the length and coverage
of BEL intervals. The paper tested the methods using simulated data sets. Later,
Schennach [161] provided probabilistic interpretations of BEL exploring moment
condition models with EL and provided a non parametric version of BEL, namely
Bayesian Exponentially Tilted Empirical Likelihood (BETEL). The BEL methods
have been applied in spatial data analysis in Chaudhuri and Ghosh [43] and Porter
et al. [145, 146] for small area estimation.

We acknowledge that there are many more studies on the application of Bayesian
approaches in different fields of interest which are not included in this survey. There
are also other survey papers on overlapping and closely related topics. For example,
Zhu et al. [210] describes Bayesian methods of machine learning and includes some
of the Bayesian inference techniques reviewed in the present study. However, the
scope and focus of this survey is different from that of Zhu et al. [210], which was
focused around the methods applicable to machine learning.
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2.6 Conclusions

We are living in the era of Big Data and continuous research is in progress to make
most use of the available information. The current chapter has attempted to survey
the recent developments made in Bayesian statistical approaches for handling Big
Data along with a general overview and classification of the Big Data literature with
brief survey in last 5 years. This survey chapter provides relevant references in Big
Data categorised in finer classes, a brief description of statistical contributions to
the field and a more detailed discussion of the Bayesian approaches developed and
applied in the context of Big Data.

On the basis of the surveys made above, it is clear that there has been a huge
amount of work on issues related to cloud computing, analytics infrastructure and
so on. However, the amount of research conducted from statistical perspectives is
also notable. In the last 5 years, there has been an exponential increase in published
studies focused on developing new statistical methods and algorithms, as well as
scaling existing methods. These have been summarised in Sect. 2.4, with particular
focus on Bayesian approaches in Sect. 2.5. In some instances citations are made
outside of the specific period (see Sect. 2.2) to refer the origin of the methods which
are currently being applied or extended in Big Data scenarios.

With the advent of computational infrastructure and advances in programming
and software, Bayesian approaches are no longer considered as being very compu-
tationally expensive and onerous to execute for large volumes of data, that is Big
Data. Traditional Bayesian methods are now becoming much more scalable due to
the advent of parallelisation of MCMC algorithms, divide and conquer and/or sub-
sampling methods in MCMC, and advances in approximations such as HMC, SMC,
ABC, VB and so on. With the increasing volume of data, non-parametric Bayesian
methods are also gaining in popularity.

This survey chapter aimed to survey a range of methodological and computa-
tional advancement made in Bayesian Statistics for handling the difficulties arose
by the advent of Big Data. By not focusing to any particular application, this
chapter provided the readers with a general overview of the developments of
Bayesian methodologies and computational algorithms for handling these issues.
The survey has revealed that most of the advancements in Bayesian Statistics for Big
Data have been around computational time and scalability of particular algorithms,
concentrating on estimating the posterior by adopting different techniques. However
the developments of Bayesian methods and models for Big Data in the recent
literature cannot be overlooked. There are still many open problems for further
research in the context of Big Data and Bayesian approaches, as highlighted in this
chapter.

Based on the above discussion and the accompanying survey presented in this
chapter, it is apparent that to address the challenges of Big Data along with the
strength of Bayesian statistics, research on both algorithms and models are essential.
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