
Chapter 15
Bayesian Learning of Biodiversity Models
Using Repeated Observations

Ana M. M. Sequeira, M. Julian Caley, Camille Mellin,
and Kerrie L. Mengersen

Abstract Predictive biodiversity distribution models (BDM) are useful for under-
standing the structure and functioning of ecological communities and managing
them in the face of anthropogenic disturbances. In cases where their predictive
performance is good, such models can help fill knowledge gaps that could only
otherwise be addressed using direct observation, an often logistically and finan-
cially onerous prospect. The cornerstones of such models are environmental and
spatial predictors. Typically, however, these predictors vary on different spatial and
temporal scales than the biodiversity they are used to predict and are interpolated
over space and time. We explore the consequences of these scale mismatches
between predictors and predictions by comparing the results of BDMs built to
predict fish species richness on Australia’s Great Barrier Reef. Specifically, we
compared a series of annual models with uninformed priors with models built using
the same predictors and observations, but which accumulated information through
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time via the inclusion of informed priors calculated from previous observation years.
Advantages of using informed priors in these models included (1) down-weighting
the importance of a large disturbance, (2) more certain species richness predictions,
(3) more consistent predictions of species richness and (4) increased certainty in
parameter coefficients. Despite such advantages, further research will be required to
find additional ways to improve model performance.

15.1 Introduction

Estimating biodiversity metrics is a central pursuit in ecological research and
management. These metrics inform our understanding of the states and trends of
ecosystems [13, 19], their responses to biotic and abiotic factors [11, 22, 29], and
the best options for their management, conservation, and the on-going provision of
ecosystem services [4, 13, 16, 18, 31].

Estimating biodiversity metrics, however, is often challenging because of the
high costs of surveying and monitoring coupled with limited available resources,
and because ecological systems are often highly diverse and respond in complex
ways to myriad biotic and abiotic interacting factors [13]. Consequently, the
data available to estimate biodiversity metrics are often insufficient to address
current needs [7]. In some cases though, long-running monitoring programs provide
extensive repeated measures of biological communities and can contribute to robust
estimates of these metrics. Such data, however, are typically most useful for
estimating the status and trends of observed biological communities, whereas esti-
mates and their associated uncertainties are often required for entire communities
across a hierarchy of spatial scales [30]. For example, the Australian Institute of
Marine Science’s (AIMS) Long Term Monitoring Program (LTMP) of the Great
Barrier Reef (GBR) has monitored individual reefs annually for more than three
decades using a spatial design that samples representative cross-shelf habitats,
latitudinal sectors, and management regimes [28]. Although it is one of the most
spatially extensive long-term monitoring programs on Earth, it only monitors a small
fraction of all the reefs present (<2% of all GBR reefs). Consequently, biodiversity
estimation beyond this relatively small set of reefs must rely on predictions for
unmonitored reefs (e.g. [15]) and requires good predictability into unsampled space
(a component of spatial statistical modeling: [25]).

Where it is desirable to predict biodiversity into a larger domain than a series of
observed communities, biodiversity distribution models (BDM), a general case of
species distribution models (SDM) where the response variable may be a composite
metric such as species richness or total abundance across species, can be constructed
using combinations of environmental and spatial variables. These models can then
be useful to predict biodiversity metrics across domains where values are not
observed [15, 24, 26, 32, 33]. While such models have proven effective to varying
degrees, there is commonly a mismatch between the states and dynamics of the eco-
logical communities being predicted and the environmental and spatial observations
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used to predict them. For example, ecological communities are typically sampled at
regular intervals (e.g., yearly). Spatial predictors, such as a community’s location
relative to geological features, vary over geological time and can be assumed to be
invariant with respect to ecological prediction, whereas environmental predictors
vary on a variety of temporal and spatial scales. For the purposes of predictive
modelling, these environmental predictors are often available only as long-term
annual averages and spatially interpolated to common scales (e.g. marinehub.org).
Consequently, repeated measures of ecological metrics often rely on a set of
predictors that are inherently less variable than the metric they are being used to
predict, either because of the characteristics of the predictor (e.g. spatial predictors)
or the way it was collected and processed (e.g. environmental predictors). These
characteristics of predictors may in turn compromise the performance of predictive
models given that a diversity metric might vary through time and space at rates
unrelated to the variables used to predict it.

The consequences of these scale mismatches between predictors and predictions
on the performance of such models are likely to vary from year to year, as the
response variable changes but the predictor variables do not. These changes have
the potential to affect the predictive performance of a model in a number of
ways including the ability to predict true values and their associated uncertainties,
the coefficients of the predictors estimated for the model, and the structure of
the best performing model. Despite the potential importance of such mismatches,
understanding of their influence on the construction and application of BDMs is
poor. To begin addressing this knowledge gap, we explore ways in which analytical
approaches to building and applying BDMs affect their predictive performance, the
estimation of the coefficients of model parameters, and the selection of the best
model structure in cases where recorded values of the response variables vary in
space or time but observations of predictor variables vary less over time.

When repeated observations from a monitoring program are available, common
approaches to their analysis include considering each repeated set of observa-
tions separately and then making post-hoc comparisons between them to infer
community states through time, or averaging all data across replicates and then
estimating the best model. A disadvantage of such approaches is that they fail to
use all the information available from repeated observations to help understand
how a predictive model might improve as monitoring continues through time.
Comparisons between models can also be difficult as the importance of predictors
change between years. Moreover, understanding how such information accumulates
through time can facilitate more efficient and effective allocation of limited and
valuable monitoring resources through the implementation of adaptive sampling
designs [12]. By adopting a Bayesian learning approach to this problem, it should
be possible to better understand how the performance of such models changes
with the addition of information through time. In such an approach, the results
obtained from a previous survey or surveys can be used as prior information in
the analysis of the data for the latest survey. Adopting this approach results in an
iterative updating of information as it becomes available which has theoretical and
computational advantages. Theoretically, compared with the independent analysis
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of surveys described above, the obtained estimates should move closer to true values
more quickly and smoothly, any trend in the replicate estimates should be smoother,
the estimates obtained in each replicate should be more precise (i.e., have narrower
credible intervals), and post-hoc analysis across the time series should no longer
be needed. Similarly, the estimates of the coefficients of the model and the model
structure should converge to the true values and be associated with progressively
decreasing uncertainties. Computationally, compared with analysing all available
data each time new observations become available, the Bayesian learning approach
does not require reanalysis of the entire dataset during updating but instead requires
a simpler and less computationally costly analysis of the current data and the prior
which encapsulates information from past surveys.

Bayesian modelling of data with repeated measures is now commonplace and
offers advantages over other approaches in terms of estimation, model flexibility,
and inference [3]. Bayesian learning, also known as recursive Bayesian estimation
or Bayesian filtering, is commonly employed for a wide variety of problems that
require iterative updating of information from quality monitoring and control [1]
to analyses of streaming data [23]. To explore the comparative benefits of using
a Bayesian learning approach for estimating biodiversity using typical monitoring
data, we analysed species richness patterns of fishes on Australia’s Great Barrier
Reef (GBR). We analyse the annual LTMP data using uninformed priors for each
year analogous to the frequentist analyses of individual repeated observations, and
compare these results to those obtained using informed priors derived from previous
observations. Based on the results of these analyses we make recommendations for
improved learning where a set of temporally less variable predictors are used to
make predictions from observations that vary to a greater extent through time.

15.2 Methods

15.2.1 Fish Species Counts and Environmental and Spatial
Predictors

We used counts of fish species on the GBR collected by the Australian Institute
of Marine Science’s (AIMS) Long-Term Monitoring Program (LTMP) [28] for the
years 2003–2013. For this period, annual survey data were available for each year
from 2003 to 2005 and every second year after 2005 due to a change of sampling
design. A total of 46 reefs were monitored across six latitudinal sectors (Cooktown-
Lizard Island, Cairns, Townsville, Whitsunday, Swain and Capricorn-Bunker)
spanning 150,000 km2 of the GBR. In each sector, with the exception of the Swain
and Capricorn-Bunker sectors, at least two reefs were sampled in each of three shelf
positions (i.e., inner, mid- and outer). At each reef, 5 transects in each of 3 sites were
sampled and we analysed observations from the same 133 locations in each of these
7 years. Observations were made using transect-based underwater visual survey.
Transects were randomly selected, permanently marked, and ran roughly parallel to
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the reef crest, each separated by at least 10 m along the 6–9 m depth contour. Counts
of 251 fish species from across 10 taxonomic families were recorded. This set of
species excluded cryptic and nocturnal species. Larger mobile species were counted
first along a 5 m wide transect, and smaller, less mobile species (e.g. damselfishes:
Pomacentridae) were counted in a 1-m wide strip along the same transect during
the return swim (for detailed methods and species counted, see [10]). To prevent
potential systematic bias in the fish counts associated with different observers,
calibration of all divers occurred annually [10]. To predict these fish species counts
(i.e. species richness), we used both environmental and spatial predictors. We used
a set of environmental predictors available for Australia at a national scale and
at a 0.01◦ resolution (marinehub.org) including sea surface temperature (SST),
chlorophyll-a (Chl a), salinity, nutrients (NO3, PO4, and SI), light (K490av), depth
(as a proxy for habitat), oxygen, and sediment characteristics including percentages
of carbonates, gravel, sand, and mud [14]. To account for geographical effects on
the distributional patterns of reef fishes, we also included two spatial predictors: the
shortest distances to coast (coast) and to the outer limit of the reefs (barrier), which
have been used to successfully predict fish species richness and abundances on the
GBR [15, 24]. We calculated these distances for each sampled site and node on the
0.01◦ national grid using the Near tool in ArcGIS10.1 (ESRI, Redlands, CA, USA)
and an equidistant cylindrical coordinate system. We then assigned each sampling
site to the closest node on the 0.01◦ national grid and used the environmental and
spatial predictors corresponding to these locations.

15.2.2 Bayesian Models

Using reef as a random effect to account for the hierarchical nature of the dataset
with sites nested within reefs, we developed Bayesian generalized linear mixed-
effects models (GLMM) of fish species richness assuming a Poisson distributed
response Sij for the ith location in the jth reef, with a log-link and linear and
quadratic regression terms for the covariates Xij. Seven separate models were
developed using each yearly dataset of fish species richness observations from
the GBR as a response variable (Table 15.1). Allowing for extra-Poisson variation
through a residual εi~N(0, σ 2), the likelihood is thus given by

Sij ∼ Poisson
(
μij

)

log
(
μij

) = αj + Xβ + εi.

An uninformative Gaussian prior (i.e., zero mean and relatively large variance)
was specified for the random effect for reef, αj. Twelve combinations of covariates
were considered for each set of yearly models (Table 15.1). Univariate priors for
each of the regression coefficients in the vector β were specified. Two sets of such
priors were considered. First, we used independent uninformative Gaussian priors
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Table 15.1 Description of fitted models

No. Model description Covariates included in model

1 Comprehensive model Reef + Coast + Coast2 + Barrier + Barrier2 + Depth
+ Depth2 + Slope + O2 + SST + SST2 + Light

2 Distance to domain boundaries Reef + Coast + Coast2 + Barrier + Barrier2

3 Physical predictors Reef + Depth + Depth2 + Slope + Aspect
4 Particular sediment type Reef + Gravel
5 Particular sediment type Reef + Sand
6 Particular sediment type Reef + Mud
7 Nutrients Reef + NO3 + PO4 + Silica
8 Oxygen and salinity Reef + O2 + Salinity
9 Productivity Reef + Chl a

10 Temperature Reef + SST + SST2

11 Light availability Reef + Light
12 Intercept only Reef

All models included a random effect for reef. Coast: distance to coast; Barrier: distance to the reef’s
outer limit; Gravel, Sand and Mud represent percentage of gravel, sand, and mud, respectively;
average concentrations of NO3: nitrate, PO4: phosphate, SI: silicate, O2: dissolved oxygen, Chl a:
chlorophyll a; Sal: salinity; SST: average annual sea surface temperature; Light: coefficient of light
attenuation at 490 nm. All predictors were mean centred, and superscript 2 indicates predictors
included as quadratic terms. Sediment variables (gravel, mud and sand) were included in separate
models (4–6) due to collinearity

as above, assuming no prior knowledge of the relationships between the response
variable and the set of predictors being included in each model. This approach
provided a baseline against which we compared a second set of models using
informed priors and which therefore could exploit potential benefits of Bayesian
methods. In this second approach, we modelled the first year’s observations using
uninformative Gaussian priors as described above. Consequently, the results of both
approaches will be the same for the first year. In each subsequent year, we used
the posterior mean and variance from the previous year(s) to construct an informed
Gaussian prior, which was then used to model the responses of the current year of
observation (Table S2).

We used a Markov Chain Monte Carlo (MCMC) algorithm with 100,000
iterations, a burn in of 10,000, a thinning rate of 2 (i.e., discarding every second
simulated value to reduce autocorrelation and Monte Carlo error), and ran three
chains to check convergence. To ensure the behaviour of the chains would not
differ for larger MCMC runs, we also compared results from 600,000 iterations
after burn in. Due to limits to computational power, we ran this larger MCMC
in steps of 20,000 iterations by updating the chains with the last value obtained
in each of the previous iterations. The modelling results shown here are derived
from the last 10,000 iterations in each MCMC, having ensured convergence had
been reached based on the Gelman-Brooks-Rubin diagnostic (i.e., rhat < 1.1). The
retained MCMC samples were used to obtain posterior means and 95% credible
intervals (CrI). CrIs were estimated for parameters of interest and a posterior
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predictive check of their individual contributions made using the sum of squared
Pearson residuals, the raw residual divided by the square root of the variance.

To understand the effects of the different modelling methods on our results,
we used wBIC and wAICc for comparison, as the use of DIC and wDIC can
be inconsistent for GLMM [17]. Moreover, the wAICc diagnostic provided a
more straightforward comparison with previous published results obtained using
a frequentistic approach (e.g. [15]). We also included a posterior predictive check
and report Bayesian p-values to assess the resulting predictions from our Bayesian
models. To predict species richness across the entire GBR, we used a model-
averaging procedure using wAICc to average the set of model formulations included
in each model run.

15.3 Results

Observed species richness of fishes varied among years with the greatest species
richness densities and variation among reefs recorded in 2011 (range: 10–80
species). The peak density of this year was also shifted left compared to the other
years of observations (Figs. 15.1 and 15.2a), which displayed less variability (range:
25–70 species) and lower peak densities (Figs. 15.1 and 15.2a). With independent
priors, the Bayesian models identified Chl a, SST, or light as influential in models 9,
10 and 11, respectively, for all yearly datasets, with emphasis differing between
linear and quadratic terms for SST in different years. PO4 (model 7) in years
2005, 2007 and 2013, and salinity (model 8) in all years also showed substantively
non-zero effects in that the 95% CrIs excluded zero. The analogous CrIs for the
coefficients of all other predictors overlapped zero (Table S1). Results for models
and datasets using informative priors were similar but with some additional effects
observed for predictors included in models 4–7 in early years only (Table S2).

Chl a and Light in models 9 and 11, respectively, were the only two predic-
tors for which the 95% CrIs for the coefficient estimates excluded zero for all

Fig. 15.1 Map of sampled species richness in the GBR across six latitudinal sections of the Great
Barrier Reef (GBR) and three shelf positions (outer, mid and inner). Legend indicates number of
species recorded per site after pooling counts made using 5 × 50-m long transects per site
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Fig. 15.2 Density plot of observed (a) and predicted species richness across datasets when using
independent (b) or informative priors (c)

datasets irrespective of the application of informative or non-informative priors.
The coefficient estimates for these two predictors averaged across models within
years tended to be more negative toward the end of this time series (Fig. 15.3).
Models with uninformative priors varied in goodness of fit according to wBIC, but
generally models 2 (reef and reef position relative to spatial domains), 10 (reef and
temperature), and 11 (reef and light) were among the best-fitting models (Table
15.2). As expected, when using informative priors, wBIC values were generally
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Fig. 15.3 Estimates of coefficient for Chl a and Light. Results are shown for each model run
across datasets and when using independent (open circle with grey standard deviation lines) and
informative priors (filled triangle with black standard deviation line)

lower. Goodness of fit according to wAICc showed similar patterns to those obtained
with wBIC (Table 15.2).

15.3.1 Model Predictions

Density plots of species richness predictions demonstrate that each model set
differed across datasets, but were more consistent when using informative priors
(cf. Fig. 15.2b, c). Posterior predictive checks resulted in Bayesian p-values close to
0.5, indicating good predictive performance only for years 2011 and 2009, ranging
respectively from 0.349–0.511 and 0.605–0.682 for uninformed priors and from
0.354–0.503 and 0.625–0.689 for informed priors. For all other datasets across all
model runs, the Bayesian p-value was always close to one (0.916–0.989 for un-
informative, and 0.916–0.989 for informative priors), indicating poor fits between
observed and predicted species richness distribution, and hence, poor predictive
performance. In no case, however, was the Bayes p-value >0.99, which would
indicate major failure of model fit [8]. Irrespective of the use of independent or
informative priors, higher fish species richness was predicted mostly in the northern-
central offshore reefs, with the difference between inner and outer reefs being more
marked in some years (e.g., 2003, 2005 and 2011 with independent priors) (Fig.
15.4).
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Fig. 15.4 Model predictions of species richness across the entire GBR for each model set run from
yearly datasets when using independent (a) and informed (b) priors. Figure shows model-averaged
results when using wAICc to average the contribution of each model in the model set

15.4 Discussion

Despite the difficulty and expense of observing complex natural ecosystems [13],
the need to estimate ecosystem states and trajectories through time as they are
influenced by increasingly frequent and severe disturbances is becoming more
urgent. It is important, therefore, to understand how best to use information currently
available to estimate these states and trajectories, understand their causes, and
how to optimize the design of survey and monitoring programs to improve our
understanding of these dynamics. In light of these information needs, we have
compared here a series of independent annual analyses using uninformative priors
with a recursive approach using informative priors based on previous data. The
models were evaluated in the context of constructing and testing BDMs with specific
reference to the prediction of fish species richness on Australia’s Great Barrier
Reef. The performances of the models, constructed using either of these approaches,
indicate further room for improvement in how such models are constructed and
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some advantages to the use of informed priors. We detail below knowledge gained
that would not have been possible using uninformed priors alone.

It is widely appreciated that natural ecosystems are affected by a variety of
disturbances that can have large effects on the states and subsequent trajectories
of the biological communities they host. Many direct observations of such impacts
and recovery are now recorded in the literature (e.g., [5, 6, 9, 16, 20, 21, 27]). Such
disturbances, however, can also affect model selection of BDMs by affecting the
inclusions of particular predictors that are upweighted in specific situations where
extreme values are reached because of either the immediate or longer-term effects
of disturbances. Consequently, over the longer term, it may be desirable to down-
weight or average these effects to achieve a more general view of the role of these
predictors. For example, in early 2011 cyclone Yasi, one of the largest Australian
cyclones over the past 20 years, caused extensive damage to the coral communities
of the GBR [2]. Yasi also seems to have affected the species richness of the fish
communities both in terms of the densities of species observed and their variability
(Fig. 15.2a). Our study suggests that the impacts from such rare events on predicted
species richness was much less for the models with informed priors that showed
much greater consistency in both density and variation across all modeled years.

Bayesian approaches also provide opportunities to assess estimates and uncer-
tainties in parameter values and model structure. In our study, Chl a and Light,
were the only two predictors for which coefficient estimates were substantively
different from zero for all datasets, irrespective of the application of informative
or non-informative priors. These two parameters, therefore, provide an opportunity
to examine the effect of these two modelling approaches on estimating their values
and uncertainties across years as the Bayesian priors contained progressively more
information. In all cases, estimates based on informed priors were more certain,
however, modal values were not consistently greater or smaller, nor were the
credible intervals progressively smaller as information accumulated in the informed
priors and these intervals overlapped extensively. The two modelling frameworks
also nominated different model structures as best. The recursive analysis, using
informed priors based on previous survey data, indicated statistical contributions
from more predictors than did the independent analysis of each time period.
Accordingly, more information was harnessed by using informed priors indicating
that greater investment in observations of these predictors may have additional
utility.

While much was learned here by comparing Bayesian models with informed
and uniformed priors, neither model performed very well with respect to predic-
tion, indicating much is still to be learned regarding how best to increase their
performance. The options for improvement here are many and will depend on the
interests and opportunities of individual researchers and their groups. In contrast
to this study, previous studies of predictive models based on these and similar
data were better able to predict species richness and abundance by averaging these
responses across the time-series of observations [15, 24]. Therefore, the challenge
of better predictive performance identified here appears to be in generating finer-
scale temporal predictions. Where predictions at this scale are desirable, our results
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suggest Bayesian models with informed priors can be useful for better selection of
model structures, estimation of their parameters, and the down weighting of rare but
significant events. Nonetheless, even though the time series used here to build these
predictive models was spatially extensive and long compared to many ecological
data series, the complexity of the processes, and potentially their non-stationarity,
that can configure a metric such as species richness are likely to remain challenging.
This challenge is likely to be exacerbated when predicting other biodiversity metrics
such as abundances of individual species or abundances summed across species.

It is also clear that much longer time series may be required before prior proba-
bilities can become sufficiently informed to facilitate more substantial reductions in
parameter uncertainty. In the meantime, however, even a modest number of repeated
observations appears to inform priors sufficiently to obtain quite consistent 95%
CrIs and modal predicted values.
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