
Chapter 13
Bayesian Modelling to Assist Inference on
Health Outcomes in Occupational Health
Surveillance

Nicholas J. Tierney, Samuel Clifford, Christopher C. Drovandi,
and Kerrie L. Mengersen

Abstract Objectives: Occupational Health Surveillance (OHS) facilitates early
detection of disease and dangerous exposures in the workplace. Current OHS
analysis ignore important workplace structures and repeated measurements. There
is a need to provide systematic analyses of medical data that incorporate the data
structure. Although multilevel statistical models may account for features of OHS
data, current applications in occupational health medicine are often not appropriate
for OHS. Additionally, typical OHS data has not been analysed in a Bayesian
framework, which allows for calculation of probabilities of potential events and
outcomes. This paper’s objective is to illustrate the use of Bayesian modeling
of OHS. Three analytic aims are addressed: (1) Identify patterns and changes
in health outcomes; (2) Explore the effects of a particular risk factor, smoking
and industrial exposures over time for individuals and worker groups; (3) identify
risk of chronic conditions in individuals. Method: A Bayesian hierarchical model
was developed to provide individual and group level estimates and inferences for
health outcomes, FEV1%, BMI, and Diastolic and Systolic blood pressure. Results:
We identified individuals with the greatest degree of change over time for each
outcome, and demonstrated how to flag individuals with substantive negative health
outcome change. We also assigned probabilities of individuals moving into “at risk”
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health categories 1 year from their last visit. Conclusion: Bayesian models can
account for features typically encountered in OHS data, such as individual repeated
measurements and group structures. We describe one way to fit these data and obtain
informative estimates and predictions of employee health.

13.1 Introduction

Occupational Health Surveillance (OHS) is the systematic collection, analysis, and
dissemination of employee exposure and health data to facilitate early detection of
disease and dangerous exposures in the workplace [1]. Australian employers have a
responsibility to identify, assess, and control risks arising from workplace hazards
[2, 3]. There is a rigorous methodology for OHS data collection, but a surprising
lack of agreement about analysis of these data [4]. Indeed, industry OHS data col-
lection is often targeted for managing risk and implementing engineering controls.
Consequently, many of the analyses conducted in industry focus on the likelihood
of exposure rather than the impact of these risk factors on health. Moreover, current
practices may ignore important data structures such as repeated measurements and
workplace structures. This results in inferences not being applicable for individuals
over time, or for groups with similar exposures within the workplace.

There is a need to provide systematic analyses of medical data that incorporate
workplace structure, relevant to risk factors. An example of such a workplace
structure is segmentation of the workplace into similar exposure groups (e.g., as in
[5]). Moreover, such analyses need to incorporate typical features of OHS data, in
particular where individuals have multiple health measurements, or single repeated
measurements over time, or missing data. These analyses should provide both
individual and group health predictions, and should improve the understanding of
exposure effects on the workplace population as a whole, as well as similar exposure
groups and individuals. Such analyses could flag individuals and groups for further
health monitoring. The absence of such analyses in industry means that chronic
disease and dangerous work environments may go unidentified and that health
funding is not optimally or effectively targeted.

These features of OHS data described above can be accounted for with multilevel
statistical models. These are in wide use in epidemiology [6, 7], and have been used
in occupational health medicine to evaluate decline in lung function for ceramic fibre
workers [8], assess impacts of asbestos [9], measure decline from cystic fibrosis [10]
and model leptospirosis in abattoir employees [11].

However, applications of multilevel models in occupational health medicine do
not quite mimic the analyses conducted in standard industry environments, as they
might ignore individuals with only one measurement, population minority groups,
or workplace structures [8, 9]. This is likely due to the fact that the goal of these
papers is often to demonstrate the use of a new method [9, 10, 12], or discover new
health risk factors or exposures [13–17].
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In contrast, the goal of OHS analysis is to provide individual predictions for
health, understand the effect of exposures on groups, and monitor exposures and
health over time, so that individuals and groups at risk of some disease can be
flagged for further health monitoring. Thus, ignoring cases with only one medical
visit or analysing only subsets of the population for reasons such as sufficient sample
size, can increase bias and/or variance of estimates.

Bayesian models provide a pragmatic framework for this research problem, as
they provide simple and effective ways of analysing small effects, and provide a
rich set of results that can be interpreted with probabilistic statements. Bayesian
methodology also allows for direct comparison between groups and individuals,
and provides probabilities on potential events and outcomes.

Bayesian techniques have been recently applied in occupational health, with
[5] demonstrating the use of hierarchical models to combine monitoring data and
professional judgement from occupational hygienists to facilitate decision making.
Bayesian hierarchical models have also been applied to quantify chemical exposure
variation in human populations [18], and to combine two data sources from animal
studies and human industrial studies to create informative priors to estimate human
lung function changes [19].

Industry data used in the literature typically consist of longitudinal data collected
from employees in a particular industry, or set of industries. These data are used
to evaluate the effect of the working conditions, such as long hours with no sleep
[20, 21], metal smelting, and other exposures [8–12, 17]. Other OHS studies focus
on small populations, using experiments to evaluate effects of increasing some
exposure on health [22, 23], or larger cross-sectional studies using registry data,
cohort studies, or surveys to evaluate the effect of an environmental exposure on
diseases such as rhinitis or cystic fibrosis [10, 16].

Notwithstanding these studies, there are no examples of Bayesian hierarchical
modelling and analysis of typical OHS data with applications in an industry context.
This paper analyses OHS data from selected industrial sites around Australia
to identify risk factors for health outcomes. The multilevel model adopted is a
Bayesian hierarchical model providing individual and group level estimates and
inferences.

The aims of the analysis are threefold, and are focused on the following health
outcomes: lung function (as a percentage of predicted Forced Expiratory Volume
in 1 s (FEV1, FEV1%), Body Mass Index (BMI), and systolic and diastolic blood
pressure. These health outcomes were selected as they are clinically substantive in
the case study population and are well known in OHS. The first analytic aim is
to identify patterns and changes in health outcomes. The second aim is to explore
the effects of a particular risk factor: smoking and industrial exposures over time
for individuals and worker groups. The third aim is to identify risk of chronic
conditions (such as obesity, hypertension, and obstructive/restrictive lung disease)
in individuals.
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13.2 Method

13.2.1 Case Study Data

The case study considered in this paper is typical of many large companies that
are involved in a range of activities, such as construction, mining, manufacturing
and agriculture. For reasons of confidentiality, the particular industry and associated
sites are not named here. The data are comprised of over 3000 employee medical
records from nearly 2000 individuals located at a number of sites. Each observation
is a medical visit, and while most employees have one or two visits, some have
over ten visits over a 10 year period. Employees are typically grouped by their
workplace exposure; for example, Administration employees are less likely to be
exposed to environmental factors such as dust or noise, compared to maintenance
exposure groups. In this way, Administration provides a useful control group to
compare to the other exposure groups. Employees may change positions within the
company over their career and thus may also change their exposure group. The
pattern of measurements over time for individuals are illustrated in Fig. 13.1, which
displays individual measurements of lung function (FEV1%) over visits for selected
exposure groups.

The frequency of medical visits changes for each exposure group, as certain
exposure groups require more frequent medical examinations to ensure that they

Fig. 13.1 Individual employee lung function (FEV1%) over their medical visit number (1, up
to 10), for each exposure group. A sample of 50% of employees is used to reduce overplotting.
Individuals are linked by a line between observations. A point on the 2nd or later visit which is not
joined to previous points by a line indicates individuals who have changed exposure group. Broken
lines and individual floating points without lines indicate where individuals have changed exposure
group. Note that the number of days between visits varies by individual and exposure group
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are fit for work. The times between visits for each worker were not equally spaced,
with median number of days since first visit being 1028 (IQR = 193–3363), or 2.8
years (IQR = 0.5–9.2 years). Gender (male or female) and smoking status (ever
smoker or never smoker) were also recorded. Dust data were not recorded for some
dates and were interpolated using a loess model [24] fitted for each exposure group,
so that the values corresponded to medical examination dates. Interpolated values
should be treated with care, and explored with visual and numerical summaries.

13.2.2 Ethics

The Queensland University of Technology Human Research Ethics Committee
assessed that this research met the conditions for exemption from HREC review and
approval in accordance with section 5.1.22 of the Australian National Statement on
Ethical Conduct in Human Research.

13.2.3 Patient and Public Involvement

The development of the research questions and outcomes were informed by
discussion with health practitioners who helped collect the data. The patients were
not involved in the results, design, or recruitment. The paper will be shared with
the medical practitioners for their use in future designs. We thank the health
practitioners and patients involved in the data collection.

13.2.4 Modelling

We construct four multilevel Bayesian hierarchical models. Each model predicts one
of the four outcomes: lung function (FEV1%), Body Mass Index (BMI), systolic
blood pressure, and diastolic blood pressure.

Let Yij be the ith individual’s j th health observation, at a time dayij after
their first visit. We assume that Yij follows a normal distribution with mean μij

and variance σ 2
y . Let β0i and βdi be respectively the individual intercept and

individual health trend coefficient associated with the j th day for the ith person;
these individual parameters are centered around an overall intercept β0c and an
overall slope βdc, the effect of the number of days since arriving at the workplace.
Thus βdi is the linear trend over time for the health characteristics of interest for
the ith individual, over and above the overall population effect. Let βg be the effect
of being female (compared to being male); let βs be the effect of being a smoker

(compared to a never smoker), and let
∑nexposure−1

k=1 βkI (exposureij = k) be the effect
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of a workplace exposure, where I (.) indicates whether an individual i at a visit j is
in exposure group k, with the baseline exposure group set to Administration. Thus
the model for a particular health outcome is represented as:

Yij ∼ N (μij , σ
2
y )

with

μij = β0i+βdidayij +βggenderij +βssmokeij +βpdustij +
nexposure−1∑

k=1

βkI (exposureij = k)

β0i ∼ N(β0c, σ
2
0 )

βdi ∼ N(βdc, σ
2
d )

for i = 1 . . . nI , j = 1 . . . n0i , k = 1 . . . , nE , where nI is the total number of
individuals, n0i is the number of observations for each individual, and nE is the
number of exposure groups.

In the absence of other information, all of the regression coefficients were
allocated independent normal priors with a mean of 0 and a variance of D1 = 103.

β0c, βdc, βdi, βg, βs, βp, βk ∼ N(0,D1)

Priors on σ0, σy , σd were set to a uniform distribution with bounds of zero and
D2, where D2 = 100 for BMI and FEV1%, and D2 = 50 for Systolic and Diastolic
blood pressure. D2 is intended to better reflect the variation in BMI and FEV1%
compared to blood pressure. Note also that we do not recommend automatically
choosing set values for the uniform, but to instead choose sensible bounds based on
the problem at hand.

σy, σ0, σd ,∼ Uniform(0,D2)

Note also that the priors used for the β terms are proper priors, which produce
a proper posterior. In some cases improper priors such as an infinite uniform prior
might be used, but these are sometimes not valid choices (See [25] and [26] for
more details). It is worthwhile to consider the choice of prior for the variance
terms. Although we have used inverse gamma and uniform priors, other weakly
informative priors could be considered, such as a half-t-prior (represented as a half-
Cauchy) [27]. It is important to not automatically choose uniform or half-t-priors,
but to explore options during model building.

Data processing and manipulation were implemented using the R statistical pro-
gramming language [28] and various R packages [29–34]. To ensure reproducibility,
the paper was written using rmarkdown and knitr [35, 36]. Potential outliers in
the data were checked administratively and confirmed for biological plausibility
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in the context of the workforce under consideration. Given this, we elected to
include them in the analyses. Moreover, the modelling goal is to identify those who
are risk, so removing outliers seems counter to that goal. The model was run for
20,000 iterations (10,000 burnin) using JAGS [37, 38]. Thinning was applied to
the analysis, removing every 20th value to assist in reducing autocorrelation and
for computational storage. We note that thinning is not absolutely necessary in an
analysis, and should be assessed case by case [39]. We note that other software
such as STAN, WinBUGS or OpenBUGS, Nimble, and greta could also have
been used [40–43]. The diagnostics for MCMC convergence were predominantly
graphical and statistical [44, 45]. Graphical evaluation included expert examination
of posterior density plots, traceplots and autocorrelation plots of parameters.
Statistical evaluation included calculation of the Geweke diagnostic and effective
sample size.

Missing values were imputed from their respective posterior conditional distri-
butions as part of the Bayesian analysis. Posterior estimates of each parameter,
including mean, 95 and 80% credible intervals, and probability of being negative
were calculated after burnin. An effect was nominated as substantive if the
corresponding credible interval did not contain zero. The probability of individual
health outcomes reaching the threshold value of being a chronic condition was
also calculated. Individuals were identified as being “at risk” if the corresponding
estimates of the parameter for change over time, βdi , contained 0 in the 95%
credible intervals, and βdi was far away from zero. For the purposes of exposition,
individuals with 3 or more visits were selected as examples to explore further.

Patterns and trends in health outcomes were examined by exploring individuals’
change over time and identifying substantive effects, addressing analytic aim 1. The
effects of smoking and industrial exposures over time for individuals and exposure
groups were examined by evaluating substantive effects of smoking and dust for
each outcome, and finding those exposure groups substantively different from the
Administration population, addressing aim 2. To identify future risk of chronic
conditions, 1 year forecasts for each individual and corresponding 95% credible
intervals were calculated from the respective posterior predictive distribution, and
the probability of having a chronic condition in 1 year was obtained, addressing aim
3. Model fit was evaluated by examining the proportion of observed values lying
within the 95% and 80% posterior predictive intervals [46, 47].

13.3 Results

13.3.1 Demographics

In the case study dataset, the population was predominantly male (86%), with
the mean overall age being 35.8 years. Males were older on average, but not
significantly so, compared with females. For all exposure groups there were more
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Table 13.1 Percent of the
population in selected
exposures

Exposure % of population

Technology 18–20

Administration 8–10

Interior maintenance 8–10

Technicians 6–7

Emergency 5–6

Exterior maintenance 4–5

Field experts 2–3

males than females, except in the Administration exposure group. The proportion of
individuals in selected exposure groups is shown below in Table 13.1.

13.3.2 Model Fit

Figure 13.2 shows the posterior predictions for each outcome plotted on the y axis
against the observed values on the x axis. The points represent the observed values
and the corresponding posterior means with vertical lines representing the respective
95% posterior predictive intervals. A line of perfect prediction runs from the bottom
left to the top right corner. The points and lines are shown in red to indicate when
the observed value lies outside of the 95% posterior predictive interval.

Model fit was assessed by visual inspection of Fig. 13.2, and by assessing
the percentage of observed values that lie within nominated posterior predictive
intervals (Table 13.2). The models for BMI and FEV1% had very high proportions
of observed values in the 95% intervals and 80% intervals, indicating reasonable
model fit.

Figure 13.3 shows four selected “at risk” individuals and their posterior mean
and credible intervals for the health characteristics systolic blood pressure, FEV1%,
diastolic blood pressure, and BMI. The proportion of individuals “at risk” for each
health outcome, and the mean and standard deviation for each health outcome for
those at risk and not at risk, are shown in Table 13.3. Individuals were identified
as “at risk” in this case according to whether their parameter estimates for change
over time βd were the furthermost away from zero (and did not contain zero in
the credible interval) for the health characteristics systolic blood pressure, FEV1%,
diastolic blood pressure, and BMI. As described in the method section, these
individuals had 3 or more visits.

Table 13.4 shows the posterior mean, 95% credible interval, and probability of
being negative for each of the risk factors considered, namely smoking, dust, and
days, since commencement.

The number of days since first visit had a substantive effect on all outcomes, and
was associated with a decrease in FEV1%, and a decrease in BMI, diastolic and
systolic blood pressure. Dust did not have a substantive impact on any outcomes,
but was associated with an 11% chance of decreased BMI, a 22% chance of
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Fig. 13.2 Observed values for each health outcome plotted against the posterior mean values
(point) with their respective 95% posterior predictive interval (lines). A line of perfect prediction is
shown. The points and lines are shown in red to indicate when the 95% posterior predictive interval
lies outside the line of perfect prediction

Table 13.2 Percent of
observed values inside the 95
and 80% posterior prediction
intervals and RSS for each
model outcome

Outcome Inside 95% PI Inside 80% PI

BMI 99.09 97.52

Diastolic BP 98.38 90.18

FEV1 (%) 98.96 95.91

Systolic BP 98.32 92.15

decreased FEV1%, a 31% chance of decreased systolic blood pressure, and a 73%
chance of decreased diastolic blood pressure. Being a smoker was associated with
substantively decreased FEV1%, a 100% chance of decreased FEV1 %, a 95%
chance of decreased BMI, a 13% chance of increased diastolic blood pressure, and
a 24% chance of increased systolic blood pressure.
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Fig. 13.3 Individuals whose parameter estimates for change over time, βd , were the furthest away
from zero (and did not contain zero in the credible interval) for the health characteristics systolic
blood pressure, FEV1%, diastolic blood pressure, and BMI

Table 13.3 The proportion of individuals with 3 or more visits who were ‘at risk’ (95% credible
interval for change over time did not include zero) and the health outcomes for the ‘at risk’ and
‘not at risk’ groups

Summary BMI FEV1% Systolic Diastolic

Proportion at risk 0.1 0.02 0.01 0.98

Mean (SD) not at risk 27.68 (3.84) 100.19 (12.36) 126.46 (13.32) 73.89 (10.98)

Mean (SD) at risk 30.55 (5.22) 102.00 (23.76) 140.77 (19.01) 80.94 (10.04)

Table 13.4 Estimated posterior mean, 95% credible intervals and probability of the effect of Day,
Dust, and Smoking parameters being less than zero

Terms BMI FEV1% Systolic Diastolic

Days 6.09 × 10−4 −8.44 × 10−4 1.35 × 10−3 1.78 × 10−3

(4.72 ×
10−4, 7.52 ×
10−4)

(−1.41 ×
10−3,−2.51 ×
10−4)

(7.30 ×
10−4, 1.97×10−3)

(1.34 ×
10−3, 2.17×10−3)

0 9.98 × 10−1 0 0

Dust 0.11 0.33 0.24 −0.21

(−0.06, 0.3) (−0.52, 1.15) (−0.72, 1.16) (−0.92, 0.51)

0.11 0.22 0.31 0.73

Smoking −0.33 −1.87 0.47 0.52

(−0.72, 0.07) (−3.24, −0.55) (−0.8, 1.79) (−0.38, 1.44)

0.94 1 0.24 0.13

All exposure group effects were compared to the baseline Administration, and the
effects for each outcome over all exposure groups are shown in Fig. 13.4. BMI was
substantively lower in Maintenance, Emergency, and Field Experts. Diastolic blood
pressure was substantively lower in Technology and Field Expert exposure groups.
Technologists had substantively lower systolic blood pressure, and Technicians had
substantively higher FEV1%.

Figure 13.5 shows the same four selected individuals previously identified as
being “at risk”, from Fig. 13.3, and the observed and predicted values for health
outcomes. Observed outcomes are shown as blue points and model mean posterior
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Fig. 13.4 Posterior mean and 95% credible interval for exposure group parameters, for each
model. The baseline exposure group is Administration

values are shown as a blue line. The dark blue ribbon around the blue line represents
an 80% credible interval, and the light blue ribbon the 95% credible interval. A 1
year forecast is shown as a red line extending from the blue line, and similarly
the 80% and 95% credible intervals are displayed. A dotted line is shown for each
outcome, which represents a clinically relevant threshold of chronic disease for each
outcome. Individual probabilities of chronic condition in the 1 year forecast are
labelled directly on Fig. 13.5.

13.4 Discussion

This paper set out to develop a Bayesian approach to analysing OHS data and
to illustrate three analytic aims focussed on the health outcomes lung function
(FEV1%), Body Mass Index (BMI), and systolic and diastolic blood pressure. Aim
1 investigated patterns and trends in the health outcomes. Aim 2 explored the effects
of smoking and industrial exposures over time for individuals and worker groups.
Aim 3 identified future individual risk of chronic conditions.

Aim 1 was addressed by examining individual change over time and identifying
individuals with the greatest degree of change over time for each outcome. We
demonstrated how one could then assess the overall change over time for these
individuals, which could be used to identify trends in other health outcomes. We
also identified the proportion of individuals who fell into an “at risk” category.
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Fig. 13.5 Individuals from Fig. 13.3 and their observed (points), predicted (blue region and line),
and forecasted (red region and lines) values for the health outcomes shown with 80% (darker
region) and 95% credible intervals (lighter region). Labels show the probability of the individual
having a clinically defined chronic disease at the forecasted timepoint

Identifying those individuals with substantive negative change in BMI, lung func-
tion, systolic, and diastolic blood pressure means that medical professionals could
flag these individuals as at risk (compared to the overall worker population), and
provide more frequent medical attention to better monitor their health.

Aim 2 was addressed by examining the probability that the effects of smoking
and dust were different from zero for each outcome, finding those exposure groups
that were substantively different from the reference group (Administration), and
identifying individuals at risk based on substantive change over time in health
outcomes. Smoking was associated with negative health outcomes for lung function
and systolic and diastolic blood pressure. This information can be used to further
support health policies, such as implementation of tobacco bans in the workplace.

The nominated industrial exposure, dust was not substantively associated with
health outcomes in the workplaces in this case study. The relevant parameter
estimates had quite wide credible intervals, possibly due to interpolation of the
data, which was used to align dust measurement points with health measurements.
This demonstrates that frequent measurements of industrial exposures of concern
can provide more certainty in the measurement of effects. Interestingly, results
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identified that employees in Administration should be more closely monitored and
perhaps should be the focus of health interventions and healthy worker programs
in workplaces. Providing descriptive statistics of the outcomes for at risk and not at
risk populations (Table 13.3) provides medical professionals with a measure of how
meaningfully different these populations are, and facilitates more targeted health
and wellness programs.

Aim 3 was addressed by calculating posterior predictions and corresponding
intervals and 1 year forecasts for all individuals. This allows medical professionals
to assign a probability that an individual might move into an “at risk” category 1
year from their last visit. This means that individuals may be flagged as “at risk”
and further action can be taken, perhaps in the form of more frequent medical visits
to more closely monitor their health measures. his demonstrates how forecasting
could identify “at risk” individuals, by placing a threshold on the probability of
health outcomes being medically classified as chronic or acute conditions. Some
individuals might cross the threshold over the observed times, whilst others might
be predicted to enter the threshold with a given probability over the next year.

The Bayesian hierarchical model accounts for important features of data such
as multiple measurements for individuals, and the exposure group structure in the
workplace. The definition of a Bayesian credible interval as a range of probable
values for a parameter makes it easier to communicate model inferences. The
model also provides probabilities of interest directly, conditional on the data. This
is a useful complement to credible intervals. Forecasting of future observations in
a Bayesian framework also allows for probabilistic statements based directly on
the posterior predictive distribution. The Bayesian framework naturally includes
additional uncertainty due to imputation of missing values. These features compare
favourably to their frequentist modelling counterparts.

Extensions to the Bayesian models developed here are also straightforward.
For example, an obvious next step in analysis might be to add interactions into
the model, such as smoking and dust, or BMI and blood pressure. One relatively
straightforward way to explore the impact of interactions is to evaluate the Bayes
factors for each variable, approximated using the Savage-Dickey density ratio,
which only requires samples from the posterior [48, 49]. This can add time to
the model building process, in terms of deciding upon the most useful model,
but is worth the effort if the practitioner is genuinely interested in one or two
interaction terms. As with any working population, there may be some healthy
cohort effect [50, 51], where, being employable, employees are healthier than the
general population. The methods provided in this study identify employees and
groups that are different from the population. Combining this information with
reference chronic conditions provides a more comprehensive approach which might
otherwise have missed healthy employees.

It is also possible that there may perhaps be less measurement error for long
term employees; here a model that predicts the number of visits for each individual
may be useful, where the number of visits n0i for each individual is the outcome.
Additionally, there may be some correlation between the slope and the intercept,
which could be accounted for by modelling them as coming from some bivariate
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normal distribution [46]. It is acknowledged that the model fit is not ideal,
particularly with respect to underestimation and overestimation of very high and
low values, respectively. While this regression to the mean is to be expected given
the random effects terms, the fit could be improved for the other outcomes, perhaps
by including interactions as previously discussed.

As far as we are aware, this is the first time Bayesian methods have been applied
to this kind of OHS data. It is our hope that this paper can serve as one way to fit
and interpret these data, and serve as encouragement for researchers in the field of
OHS, to include Bayesian approaches in their analytic toolkit. The ultimate ambition
is to provide more informative evidence-based OHS assessments for a healthier
workforce and more profitable workplaces.

13.5 Summary

13.5.1 Strengths and Limitations of the Study

• Strength: This is the first application of Bayesian methods to typical data found
in occupational health surveillance.

• Strength: The methods used account for important features of data such as
multiple measurements for individuals, and the group structure of exposure
groups in the workplace.

• Strength: The model allows for groups and individuals to be flagged as “at risk”,
enabling proactive action on individual health.

• Strength: The definition of a Bayesian credible interval as a range of probable
values for a parameter makes it easier to communicate model inferences.

• Strength: The model provides probabilities of interest directly, conditional on the
data, which is a useful complement to credible intervals that makes effects and
uncertainty simpler and easier to communicate to health practitioners.

• Limitation: No account was taken of the healthy worker effect, so whilst the focus
of the paper is on employees rather than the general population, the analysis may
be biased if healthier employees remain longer in the industry.

• Limitation: The model used vague priors, and so future work could explore the
use of more informative priors, based on, for example, previous data collected in
similar fields.
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