
Chapter 10
A Comparison of Bayesian Spatial
Models for Cancer Incidence at a Small
Area Level: Theory and Performance

Susanna Cramb, Earl Duncan, Peter Baade, and Kerrie L. Mengersen

Abstract The increase in Bayesian models available for disease mapping at a
small area level can pose challenges to the researcher: which one to use? Models
may assume a smooth spatial surface (termed global smoothing), or allow for
discontinuities between areas (termed local spatial smoothing). A range of global
and local Bayesian spatial models suitable for disease mapping over small areas
are examined, including the foundational and still most popular (global) Besag,
York and Mollié (BYM) model through to more recent proposals such as the
(local) Leroux scale mixture model. Models are applied to simulated data designed
to represent the diagnosed cases of (1) a rare and (2) a common cancer using
small-area geographical units in Australia. Key comparative criteria considered are
convergence, plausibility of estimates, model goodness-of-fit and computational
time. These simulations highlighted the dramatic impact of model choice on
posterior estimates. The BYM, Leroux and some local smoothing models performed
well in the sparse simulated dataset, while centroid-based smoothing models such
as geostatistical or P-spline models were less effective, suggesting they are unlikely
to succeed unless areas are of similar shape and size. Comparing results from
several different models is recommended, especially when analysing very sparse
data.
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10.1 Introduction

Bayesian spatial modelling continues to increase in popularity, offering a suite of
models with a range of strengths in various contexts. Modelling spatial effects
through a Bayesian hierarchical model has many advantages, such as being able
to include a range of functions to represent outcomes over space and time, as well
as the capacity to incorporate data characteristics such as rare outcomes, missing
information, misclassifications, measurement error and known biases [9, 47]. More-
over, direct probabilistic statements can be made, such as the probability that an area
has a higher disease risk than a comparison area [20].

A popular form for a Bayesian spatial model for disease mapping uses data
aggregated by area and specifies the likelihood as:

Yi ∼ Poisson
(
Eie

μi
)

for i = 1, . . . , N areas

where {Y1, . . . , YN } are count data for a relatively uncommon disease, making a
Poisson distribution appropriate. Other distributions are possible, including variants
of Poisson such as negative binomial. The expected counts (Ei) are commonly
defined using indirect standardisation to account for population size and age
structure. The modelled log standardised incidence ratio (SIR) μi , also called log-
relative risk, is often expressed as a regression equation and typically includes an
overall fixed effect (intercept, denoted α), covariate effects (β) where xi denotes a
vector of covariates relating to area i, and spatial random effect(s) Ri , as follows:

μi = α + xT
i β + Ri.

Much of this chapter shall discuss options for modelling the spatial random
effect(s), Ri . Prior distributions are then specified for each of the unknown
parameters:

α ∼ p (·|θα)

β ∼ p
(·|θβ

)

Ri ∼ p (·|θR) .

The spatial random effects are given a spatial prior, which may be assumed
to follow a conditional autoregressive (CAR) or alternative prior to enable spatial
correlation and smoothing [8, 10]. If the parameters θα , θβ , or θR are unknown,
then the hyperpriors represent an additional stage of the hierarchy.

Many different Bayesian spatial models have been proposed, most of which vary
the representation of the spatial prior. Understanding the theoretical assumptions
and appropriateness of different models is important. It is also necessary to consider
how models perform in different circumstances. Therefore, this chapter discusses
the theoretical underpinnings of key spatial models. Where possible and pertinent,
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these models were applied to typical cancer incidence mapping scenarios obtained
by simulating rare and common cancer incidence data across Australia. This
nation has more than 2100 small areas, with large differences in population size,
demographic structure, land area size and shape.

10.2 Bayesian Spatial Models

Fourteen Bayesian spatial models used in disease mapping are considered. These
can be divided into two broad types, namely ‘global’ spatial smoothing models
that have a common spatial correlation term across the region, and ‘local’ spatial
smoothing models that allow for differential spatial correlation depending on
neighbourhood characteristics.

10.2.1 Global Spatial Smoothing

Global spatial smoothing means that the same correlation parameters are applied
consistently across the entire region [26]. Although the global CAR-based models
are relatively easy to implement in a range of software, disadvantages of global
models include the potential to obscure genuine deviations in the underlying
spatial patterns (i.e. to over-smooth), as discontinuities between adjacent areas are
smoothed over.

10.2.1.1 Intrinsic CAR and BYM Models

The most commonly used prior for enabling spatial correlation within a Bayesian
model is the intrinsic CAR distribution. This approach allows for smoothing of
estimates over neighbouring areas, but it assumes a common variance for the
smoothing term (and therefore a smooth spatial trend) over the whole region.

The intrinsic CAR (ICAR) model specifies the following set of conditional
distributions for the spatial random effect parameter:

Ri = Si

Si |s\i ∼ N
(∑

j wij sj∑
j wij

,
σ 2

s∑
j wij

)

or in matrix notation

Si |s\i ∼ N
({

D−1Ws
}

i
, σ 2

s

{
D−1

}

ii

)
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where wij is the element of a spatial weights matrix W corresponding to row i and

column j [6, 10], and D is a diagonal matrix with elements diag
{∑

j wij

}
. The

term W determines the spatial proximity between the random effects, and it is most
commonly defined as a binary, first-order, adjacency matrix, whereby

wij =
{

1 if areas i and j are adjacent

0 otherwise.
(10.1)

This model implies that the conditional expectation of Si is equal to the mean of
the random effects at neighbouring locations.

The Si can be regarded as structured spatial random effects. If Ri = Si + Ui ,
so that unstructured spatial random effects Ui ∼ N (

0, σ 2
U

)
are also included, the

resulting model is referred to as the convolution model, or the BYM model in honour
of Besag et al. [8]. However, the two separate random effects components cannot be
individually identified—only their sum is identifiable [15]. Note that for all CAR-
based models, the strength of the partial autocorrelation depends on the number
of neighbouring areas rather than on any underlying relationship [27]. The BYM
remains the most popular approach to incorporating spatial smoothing, in part due
to its computational synergy with fairly standard MCMC approaches [47] and ease
of implementation.

10.2.1.2 Proper CAR Model

The full conditionals for the ICAR prior are proper, but the joint distribution is
improper since the precision matrix is singular [7]. The impropriety of the ICAR
prior can be overcome by redefining the precision matrix

T = 1

σ 2
s

(D − W)

to

T = 1

σ 2
s

(D − φW)

such that the conditional distributions for the spatial random effect are:

Si |s\i ∼ N
(

φ
∑

j wij sj∑
j wij

,
σ 2

s∑
j wij

)

with the constraint |φ| < 1, where φ represents the expected proportional ‘reaction’
of Si to

∑
j wij sj /

∑
j wij [5]. This ensures that the covariance matrix T−1 is

positive definite and S has a proper joint distribution [19]. The proper CAR prior
may have certain disadvantages, including potentially limiting the breadth of the
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posterior spatial pattern. Moreover, φ will likely need to be very close to 1 for there
to be a reasonable amount of spatial association [5].

10.2.1.3 Leroux CAR Model

Another variant of the BYM model was proposed by Leroux et al. [29],

Si |s\i ∼ N
(

ρ
∑

j wij sj

ρ
∑

j wij + 1 − ρ
,

σ 2
s

ρ
∑

j wij + 1 − ρ

)

which only requires a single set of random effects [24]. This avoids the
difficulties in identifiability, and also the selection of hyperpriors (given that in the
BYM model, the Si variance are conditional on neighbouring areas, while the Ui

have a marginal variance term) [41].
The precision matrix can be expressed as

T = 1

σ 2
s

[ρ (D − W) + (1 − ρ)] .

This mixture representation consists of correlated smoothing of the neighbouring
random effects (weighted by ρ) as well as uncorrelated smoothing to a global mean
of zero (weighted by (1 − ρ)) [26]. Thus Si has a conditional expectation based
on a weighted average of both the independent random effects and the spatially
structured random effects. The ICAR prior is therefore a limiting case of both the
proper CAR and Leroux CAR models when ρ is set to 1. The spatial autocorrelation
parameter ρ is typically given either a continuous [19, 25] or a discrete [24] uniform
prior

ρ ∼ Uniform (0, 1) ,

where the discrete case offers gains in computational efficiency [24], although other
priors have been suggested such as a diffuse Gaussian prior on the logit scale [27].

10.2.1.4 Geostatistical Model

Here, the residual spatial structure is modelled as a Gaussian process using a
geostatistical design [11]. Because this model incorporates distance, counts are
assumed to be located in the centroid of an area.

Ri ∼ N (
Si, σ

2
)

Si = exp
(−(λdij )

k
)
, λ > 0
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where λ controls the rate of decay, k is the “degree of spatial smoothing”, and dij

is the distance between points (e.g. centroids of areas) i and j [11]. This expression
is the exponential decay function with the addition of the power k. Rather than
fix decay parameter λ a priori, a hyperprior is specified as a fourth stage of the
hierarchy:

λ ∼ Uniform (0.1, 6) .

The justification for the bounds 0.1 and 6 were based on the minimum and
maximum separating distance in decimal degrees between area centroids to ensure
that the spatial correlation was able to be high at the minimum distance, and
likely to be low at the maximum distance. This choice is also able to give near
zero correlation for distances within the study region, which is vital to avoid non-
identifiability of the mean and correlation parameters [10].

Alternative functions are possible, including the disc model [40] (a linear
decrease with increasing distance, where two discs of common radius are centred
on centroids, and the correlation is proportional to the disc intersection area), or
combining two parametric functions to obtain different shapes of decrease, such
as the Matern class [10]. Note that often limited information is available to guide
the choice of functional form, or correlation parameters, especially as complexity
increases [10]. Because the covariance matrix is inverted at each iteration, these
models can be computationally intensive and slow to run in a naïve algorithm,
although this can be mitigated to some extent with the use of sparse matrix algebra.

10.2.1.5 Global Spline Models

The spline model also assumes that the cases are all located at the centroid of each
area [17].

There are two main methods: smoothing splines and P-splines [32]. Smoothing
splines are penalised splines which have knots on all data points. P-splines allow
for a smaller number of knots, and are commonly formulated as a penalised spline
regression under a ‘difference penalty’ based on the coefficients of adjacent B-spline
bases or other spline bases [32].

The correlation between areas i and j can be modelled by a two-dimensional
smooth surface [17]. First, define the longitude and latitude pairs representing the
centroid of each area, denoted (c1i, c2i ). Then

Ri = f (c1i , c2i )

where the smooth function f (·) is expressed as

f (c1i, c2i ) = θ1B1(c1i, c2i ) + · · · + θkBk(c1i, c2i )
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which is estimated using P-splines with B-spline bases B1, . . . , Bk . The terms
θ1, . . . , θk are unknown coefficients which are penalised to control for “wiggliness”
through a penalty matrix, and k depends on the number of knots and the degree of
the B-spline bases.

Define c1 = (c11, . . . , c1N)T and c2 = (c21, . . . , c2N)T and univariate B-
spline bases B1 = {

B11(c1), . . . , B1k1(c1)
}

and B2 = {
B21(c2), . . . , B2k2(c2)

}
.

The bivariate B-spline basis is then constructed as the row-wise Kronecker product
(denoted by �) of the marginal B-spline bases:

B = B2 � B1

=
(

B2 ⊗ 1T
k1

)
�

(
1T
k1

⊗ B1

)
.

The basis B is of dimension N × k where k = k1k2, the symbols ⊗ and �
represent the Kronecker product and “element-wise” matrix product respectively,
and 1k1 and 1k2 are column vectors of ones of length k1 and k2 [17].

Overall this model provides a relatively smooth surface, as the covariance
structure is impacted by long distance effects that influence the smoothing. This
is in contrast to the covariance structure of the CAR model where an area’s estimate
depends on the mean of its neighbours [17].

The formulation of the P-spline model using the row-wise Kronecker product, or
tensor product, is better suited to data which lie on a regular grid, or at least have
similar distances between the centroids.

An alternative formulation [42] is to define the B-spline bases in terms of the
distances,

zik = exp

(
−dik

	

) (
1 + dik

	

)

where dik is the distance between the i th area and the kth knot, and 	 is a constant
used to normalise the distances so that the values of B are more evenly spread
between the lower and upper limits. This version of the P-spline uses a radial basis
function which achieves rotational invariance [42].

10.2.2 Local Spatial Smoothing

In contrast to the global smoothing models, local smoothing is focused on allowing
nearby areas to potentially have different amounts of spatial smoothing. Many of
these are based on modifying the CAR prior to allow for discontinuous surfaces.
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10.2.2.1 CAR Dissimilarity Models

Lee and Mitchell [26] based this model on the Leroux CAR prior, with ρ set to
be 0.99 to ensure strong global spatial smoothing which could then be altered
locally through estimating

{
wij |i ∼ j

}
. Here, the elements in W are modelled so

the partial autocorrelations can be reduced between certain adjacent random effects.
This approach can have binary or non-binary elements in W.

The similarity between areas is determined by including non-negative dissimilar-
ity metrics in the model, i.e. zij = (zij1, . . . , zijq ) where zijk = |zik − zjk|/σk and
σk is the standard deviation of |zik − zjk| over all pairs of contiguous areas.

The set of wij are determined using regression parameters α = (
α1, . . . , αq

)
.

These can be based on social or physical factors. Physical boundaries (e.g.
river/railway line, or the distance between centroids) can be used if the aim is to
explain the spatial pattern in the response and include covariates in the model.
Alternatively, covariate information can be used to construct the dissimilarity
metrics if the aim is to identify the locations of any boundaries [25].

Ri = Si

Si |s\i ∼ N
(

0.99
∑

j wij (α)sj+0.01μ0

0.99
∑

j wij (α)+0.01 ,
σ 2

s

0.99
∑

j wij (α)+0.01

)
.

The default binary formulation is:

wij (α) =
{

1 if exp
(− ∑q

k=1 zijkαk

) ≥ 0.5 and i ∼ j

0 otherwise

αk ∼ Uniform (0,Mk) for k = 1, . . . , q

where Mk is fixed so that a maximum of 50% of borders could be defined as
boundaries [26]. The non-binary formulation (which does not allow identification
of hard boundaries, but does allow for localised smoothing) is:

wij (α) = exp
(− ∑q

k=1 zijkαk

)

αk ∼ Uniform (0, 50) for k = 1, . . . , q.

10.2.2.2 Localised Autocorrelation

The spatially smooth random effects in this model are augmented with a piecewise
constant intercept (cluster model). This allows for large jumps in the risk surface
between adjacent areas if they are in different clusters. The approach by Lee and
Sarran [28] partitions the I areas into a maximum of G clusters, each with their
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own intercept term (λ1, . . . , λG). The model is thus given by:

Ri = Si + λzi

Si |s\i ∼ N
(∑

j wij sj∑
j wij

,
σ 2

s∑
j wij

)

λg ∼ Uniform
(
λg−1, λg+1

)
for g = 1, . . . ,G

f (Zi) = exp
(−δ(Zi−G∗)2)

∑G
r=1 exp(−δ(r−G∗)2)

δ ∼ Uniform(1,M)

where f (Zi) denotes a shrinkage prior on Zi which shrinks extreme values towards
the middle intercept value. Label switching is prevented by ordering the cluster
means (λ1, . . . , λG) so that λ1 < λ2 < · · · < λG. The penalty term δ(Zi − G∗)2

where G∗ = (G + 1)/2 means that if G is odd then each data point will be shrunk
towards a single intercept λG∗ , but if G is even, there may be two different intercept
terms used even if there is a spatially smooth residual structure. Lee and Sarran
[28] thus recommend setting G to be a small odd number, such as 3 or 5. Area i

is assigned to one of the G intercepts by Zi ∈ {1, . . . ,G}, and there is no spatial
smoothing imposed on the indicator vector Z. The clustering is purely non-spatial,
and it is the CAR prior on the Si term that accounts for spatial autocorrelation [28].

10.2.2.3 Locally Adaptive Model

The locally adaptive model takes a similar approach to the above dissimilarity
model, except that here the boundaries are not identified by the use of additional
information and the modelled wij are binary only. Lee and Mitchell [27] again based
this on the Leroux CAR model:

Si |s\i ∼ N
(

ρ
∑

j wij sj

ρ
∑

j wij + 1 − ρ
,

σ 2
s

ρ
∑

j wij + 1 − ρ

)

.

Here ρ can be estimated in the model, or fixed at a specified value. (Lee and
Mitchell [27] recommend 0.99.)

The spatial weights matrix starts out as the binary, first-order, adjacency matrix
given by Eq. (10.1) and is subsequently updated at each iteration which allows the
weights corresponding to neighbours to be estimated as either 1 or 0 (with wij

fixed at zero for non-neighbouring areas). Because only weights corresponding to
neighbouring areas are estimated, this approach should be more computationally
feasible than areal wombling [30] where all values in W are estimated.

The matrix W is estimated as follows. For adjacent areas i and j : if the marginal
95% credible intervals (CIs) of si and sj overlap, then set wij = 1; else set wij = 0.
It is therefore not a ‘fully’ Bayesian method of estimation for these terms, as they are
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not considered to be random variates. For further details, refer to Lee and Mitchell
[27], who implemented this using INLA.

10.2.2.4 Weighted Sum of Spatial Priors

The BYM model with its spatially structured component Si and its unstructured
spatial component Ui was extended by Lawson and Clark [23] to be able to
incorporate discontinuities:

Ri = piSi + (1 − pi)Zi + Ui. (10.2)

The Z component models abrupt discontinuities between areas. Although a range
of options is possible, Lawson and Clark [23] based the prior for this parameter on
the total absolute difference in risk between neighbouring areas, i.e.

π (Z1, . . . , ZN) ∝ 1√
λ

exp

⎛

⎝− 1

λ

∑

i∼j

|Zi − Zj |
⎞

⎠

where λ acts as a constraining term.
Note that if pi = 1 in Eq. (10.2), then the model reverts to the BYM model.

Conversely, if pi = 0, then the model is entirely discontinuous.

10.2.2.5 Leroux Scale Mixture Model

Using a scale mixture model within a Leroux prior also enables detection of
abrupt changes between areas, with the advantage over the above approaches of
incorporating non-normality (heavy tailed distributions). This was proposed by
Congdon [12] as follows:

Si |s\i ∼ N
⎛

⎝
ρ

∑
j wij sj

ρ
∑

j wij + 1 − ρ
,

σ 2
s

κi

[
ρ

∑
j wij + 1 − ρ

]

⎞

⎠ .

If ρ = 0, this reduces to an unstructured iid scale mixture Student-t density,
which is a heavy-tailed distribution. Small values of κj (<1) will indicate areas
differ from their neighbours and result in less smoothing between neighbouring
areas. The scale mixture is implemented by κi ∼ Gam(0.5ν, 0.5ν), where ν is a
hyperparameter.
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The precision matrix has the following diagonal terms [12]:

{T}ii = 1

σ 2
s

κi

⎡

⎣(1 − ρ) + ρ
∑

j 
=i

wij

⎤

⎦

and off-diagonal terms:

{T}ij = 1

σ 2
s

ρκiκj I(i ∼ j).

10.2.2.6 Skew-Elliptical Areal Spatial Model

Another approach that focused on incorporating skewness was introduced by
Nathoo and Ghosh [36]. Here

Ri = η−0.5
i (δ|Zi| + Si)

where δ|Zi | is the skewing component where Zi is a set of skewing variables
each independently drawn from a standard normal distribution, η provides the scale
mixing and Si is from the CAR model, i.e.

Si |s\i ∼ N
(

κ

∑
j wij sj

∑
j wij

,
σ 2

s∑
j wij

)

where κ is a spatial smoothing parameter (note that if κ is set to 0 then the
distribution corresponds to uncorrelated skew-t random effects) and other terms are
defined as before.

Two versions were proposed by Nathoo and Ghosh [36]. The first aims to ensure
each Ri has a skew-elliptical distribution, with the marginal distribution for each
spatial effect belonging to the skew-t family of distributions.

The second is a semiparametric version that uses an approximation to a Dirichlet
process to allow for data-driven departures from the parametric version. This
accommodates uncertainty in the mixing structure, and gives greater flexibility in
the tail behaviour of marginal distributions [36].

10.2.2.7 Hidden Potts Model

In contrast to the above approaches, this model is based on a hidden Markov field,
so spatial correlation occurs in an additional latent hierarchy of the model [47]. This
approach was proposed by Green and Richardson [18] and assigns each area to one
of several risk categories. The spatial random effect is modelled on the log scale,
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as a K-component mixture model, where each component represents a different
risk category, and the allocation of each area to a component follows a spatially
correlated process. The number of components K is considered unknown and is
estimated by the model.

Ri = log(Szi )

Sk ∼ Gamma(a, b) for k = 1, . . . ,K

K ∼ Uniform(1,Kmax).

The Potts model is proposed as the allocation model,

p(z|ψ,K) = exp(ψU(z) − δk(ψ))

where ψ > 0 is the interaction parameter to be estimated and U(z) = ∑
i∼j I(zi =

zj ) is the number of like labelled pairs of neighbouring areas. This model allows for
discontinuities between areas in different risk categories and also for the amount of
spatial correlation to vary by risk category. However, it does require careful MCMC
implementation due to having an unknown number of risk categories and unknown
area allocation to these categories. It is also more often implemented in high-
dimensional data rather than disease mapping, as its greater flexibility generally
has more advantages as data complexity increases [47].

10.2.2.8 Spatial Partition Model

Closely related to the above Hidden Potts model are the spatial partition models
[14, 21]. These also have K non-overlapping clusters of areas, each with a constant
relative risk, and K is unknown [10]. The key differences are in defining the
clusters and the hyperprior specifications [10]. Specifically, the spatial partition
model assigns up to K areas as cluster centres, which are allocated with a uniform
prior probability, and the number of clusters is chosen according to the distribution
p(K = k) ∝ (1 − c)k where c ∈ [0, 1) is fixed a priori. Smaller values of
c makes this prior less informative, with the limiting case c = 0 yielding a
uniform distribution. The remaining N − K areas are then assigned to their nearest
cluster, according to the minimal number of boundaries that have to be crossed.
Both this model and the above hidden Potts model have been criticised for forcing
discontinuities into a surface, and for assuming constant relative risk within a cluster
[23].

10.2.2.9 Local Spline Model

An extension to the global spline models described in Sect. 10.2.1 that results in
a less smooth surface is the incorporation of unstructured random effects as in the
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penalised random individual dispersion effects (PRIDE) model, originally proposed
by Perperoglou and Eilers [37]. Here

Ri = f (c1i , c2i ) + γi

where γi is an area-specific random effect, whose vector follows a multivariate
normal distribution [17]. This means that the covariance matrix captures the
unstructured heterogeneity by containing an identity matrix multiplied by a variance
component, in addition to the eigenvalues from the P-spline model component [17].

10.3 Case Study

10.3.1 Data

Since the dissemination of actual cancer data is restricted due to privacy and
confidentiality requirements of the data custodians, simulated data that reflected
the general distributions of actual data were generated to enable data sharing and
reproduction of the presented results (see contact the authors for data and model
code). Two datasets were generated that reflected the incidence of cancer types with
a strong socioeconomic gradient: one with low total counts per geographical area
over ten years (median of 2, range 0–19), considered a rare cancer, and one with
higher counts over 10 years (median 25 cases, range 0–163), considered a common
cancer. The focus on socioeconomic gradients meant we expected neighbouring
areas having different socioeconomic levels would have different incidence rates.

The areas used were statistical areas 2 (SA2s) based on the 2011 Australian
Statistical Geography Standard (ASGS) boundaries [4]. After excluding some areas
with no/nominal resident populations, the number of areas was 2153. The median
population of the included SA2s was 9055 (range: 3–50,251). Land area size varied
from 0.8 to 520,000 km2, with a median of 15.6 km2.

10.3.2 Model Selection

Of the fourteen models introduced in Sect. 10.2 and described in Table 10.1, five
were excluded from the application. Two of these were on theoretical grounds: the
localised P-spline and the proper CAR models. The localised P-spline model was
not investigated because implementing the P-spline had many challenges within
the Australian context of vastly differing area sizes. The disadvantages of the
proper CAR formulation such as the potentially limited breadth of estimates have
limited appeal for spatial modelling [5]. We attempted to run a Hidden Potts model,
spatial partition model and skew-elliptical areal spatial model, but were unable to
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successfully achieve this due to the computational complexity of the models, so
they are also excluded from this section. The skew-elliptical model was unable to
compile in WinBUGS [31], while the multidimensionality required for the spatial
partition model and Hidden Potts model became too unwieldy.

10.3.3 Model Variants

Of the nine models successfully implemented, multiple variants were considered
for the global P-spline model, CAR dissimilarity models, localised autocorrelation
models, and the locally adaptive models, and these are detailed below. Specifications
for the geostatistical model are also documented. These resulted in a total of 13
versions of models applied to the simulated data (Table 10.1).

Table 10.1 Software used for models applied to simulated data

Models investigated Authors Software used

Global spatial smoothing

BYM (Intrinsic CAR) Besag et al. [8] R (CARBayes)

Proper CAR Besag [6] –

Leroux Leroux et al. [29] R (CARBayes)

Geostatistical Clements et al. [11] JAGS

P-spline (tensor) Lang and Brezger [22] JAGS

P-spline (radial) Ruppert et al. [42] JAGS

Local spatial smoothing

CAR dissimilarity model
(binary)

Lee and Mitchell [26] R (CARBayes)

CAR dissimilarity model
(non-binary)

Lee and Mitchell [26] R (CARBayes)

Localised autocorrelation
(G = 3)

Lee and Sarran [28] R (CARBayes)

Localised autocorrelation
(G = 5)

Lee and Sarran [28] R (CARBayes)

Locally adaptive model (ρ
estimated)

Lee and Mitchell [27] R (INLA)

Locally adaptive model
(ρ = 0.99)

Lee and Mitchell [27] R (INLA)

Weighted sum of spatial
priors

Lawson and Clark [23] WinBUGS

Leroux scale mixture Congdon [12] WinBUGS

Skew-elliptical areal spatial Nathoo and Ghosh [36] –

Hidden Potts Green and Richardson [18] –

Spatial partition Denison and Holmes [14], Knorr-Held and
Raßer [21]

–

Local spline Goicoa et al. [17], Perperoglou and Eilers [37] –
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10.3.3.1 Global P-spline Model

Two formulations of the global P-spline model were implemented: the first uses a
tensor product (refer to Sect. 10.2.1.5 for a definition) to define the basis, and the
second uses a radial basis based on distances. No further modifications were made
to the tensor product version.

The radial P-spline model had the knots evenly spaced at intervals of 5 degrees
of latitude and longitude, as shown in Fig. 10.1. Knots which were too distant from
the centroids of SA2 areas were subsequently dropped. A total of 47 knots were
retained for modelling. Based on these knots, 	 was set to 500.

Fig. 10.1 Location of knots (crosses) in relation to SA2 centroids (dots) for the P-spline radial
model
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10.3.3.2 CAR Dissimilarity Model

The CAR dissimilarity model can also be applied in a variety of forms. As
discussed in Sect. 10.2.2.1, the weighting matrix can be binary or non-binary,
and the dissimilarity measure can be based on distance, geographical features
(such as railways or mountains), or covariate information. Here we examine
both binary and non-binary forms of this model based on the Socioeconomic
Indexes for Areas (SEIFA) dissimilarity. This gives a continuous score for each
area which is designated based on a range of socioeconomic measures, including
house ownership, car ownership, employment and internet access. Several indices
are available, and we used the Index of Relative Socioeconomic Disadvantage.
Further details on SEIFA are available in Australian Bureau of Statistics [ABS]
[3].

10.3.3.3 Localised Autocorrelation Models

Two variants of this model were assessed based on the value of G, the maximum
number of clusters, being set to 3 or 5. See Sect. 10.2.2.2 for discussion of these
choices.

10.3.3.4 Locally Adaptive Models

Two variants of this model were assessed based on the value of ρ, the spatial
autocorrelation parameter, one being set to 0.99 (as recommended by Lee and
Mitchell [27]) and the other allowed to vary between 0 and 1. The aim of fixing
the value of ρ close to one is to ensure there is spatial smoothing occurring when
wij > 0. Note that if ρ = 0 then wij vanishes from the model and cannot be used to
determine if discontinuities are present. Setting ρ to 1 is not ideal, as the precision
matrix would become singular.

10.3.3.5 Geostatistical Model

The geostatistical model had two adjustments made to provide a better fit. First,
the priors for λ and k were changed according to the possible values of spatial
correlation observed given different combinations of λ, k, and distances dij . This
exploratory analysis suggested using

λ ∼ Uniform(0.01, 1)

k ∼ Uniform(0.1, 20).
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To allow for further flexibility, λ and k were replaced by one of {λ1, . . . , λ5}
and {k1, . . . , k5} respectively according to the remoteness of the area (major
city, inner regional, outer regional, remote, and very remote) to allow the degree
of smoothing to vary between the five levels of remoteness. Second, to make
this model computationally feasible, the distance matrix {d}ij was modified by
imposing a remoteness-specific radius of influence {r1, . . . , r5} on each area,
such that areas beyond this threshold are not considered neighbours. These radii
were {50, 100, 200, 400, 800}km respectively. This induces a Markov random field
(MRF) structure which should have only a negligible effect on parameter estimation
while greatly increasing computational efficiency. Some remote and very remote
areas are relatively close to major city and inner regional areas, which can lead to
some areas having more than 1000 neighbouring SA2s, thereby drastically reducing
any computational gains. Therefore, the imposed MRF was further modified to
exclude major city areas as neighbours of remote areas, and to exclude both major
city and inner regional areas as neighbours of very remote areas. This is also sensible
given the differences in cancer incidence and underlying influences between these
areas [13]. This was achieved by setting the distances to these excluded areas to
infinity. The result of these adjustments lead to

{S}ij =
⎧
⎨

⎩
exp

(
−(λzi dij )

kzi

)
if dij ≤ rzi

0 if dij > rzi

Si = f (S) = 1
Ni

∑Nr

j=1 {S}ij
where Ni is the number of areas within a radius of rzi units from the centroid of area
i (including area i), Nr = max

i
{Ni}, and zi represents the degree of remoteness for

area i, where zi = 1 corresponds to an area in a major city.

10.3.4 Statistical Software

Code for implementing the models in freely available software (Table 10.1) is
available on request, as are the data sets.

The main software used to implement the statistical models were WinBUGS [31]
and JAGS [38], which were run via R [39] using the packagesR2WinBUGS [44] and
R2jags [45] respectively, and also the R package CARBayes [25]. R-INLA [33]
was also used for one model.
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10.3.5 Model Comparison

Models were compared using several criteria, which are described below. The
posterior SIR was calculated as exp(μi) = exp(α + Ri), as no covariates were
included in these models. The median, lower and upper bounds of the 80% CIs
were calculated as the 50th, 10th and 90th percentiles of the posterior, respectively.

10.3.5.1 Convergence

Convergence was predominately based on calculating the Geweke convergence
diagnostic [16] for each area’s posterior SIR. A p-value for the test statistic below
0.01 was interpreted as suggestive evidence of non-convergence for that area.
The trace and density plots for a subsample of areas were also examined for
convergence.

10.3.5.2 Plausibility of Estimates

To determine how plausible the posterior SIR estimates were, the CI width was
visually inspected, with unreasonably large CIs (with many of the 80% CIs
spanning ± 5000% or more of the median estimate) providing evidence the estimate
was not well-defined; while very precise estimates (the majority within ± 4%)
were evidence that uncertainty was not appropriately included. The magnitude of
smoothing of the median posterior SIRs in comparison to the raw SIRs was also
visually examined. A smoothed SIR which was very similar to the raw SIR was
suggestive of under-smoothing, particularly in areas with small populations.

10.3.5.3 Model Goodness-of-Fit

Three model goodness-of-fit measures were considered: Deviance information
criterion (DIC) [43], Watanabe-Akaike information criterion (WAIC) [48] and
Moran’s I on the residuals [35].

DIC and WAIC are both useful for comparing the predictive accuracy between
models. Although DIC is a commonly used measure to compare Bayesian models,
WAIC has several advantages over DIC, including that it closely approximates
Bayesian cross-validation, it uses the entire posterior distribution and it is invariant
to parameterisation [46]. For both these measures, smaller values indicate a better
fitting model.

Moran’s I was applied to the model residuals to determine if spatial autocorrela-
tion was present after fitting the models. This measure can be quite sensitive to the
spatial weights matrix used to define the spatial dependencies between areas, and
while a range of spatial weights matrices (inverse-distance, third-order neighbours
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etc) were considered, we used a matrix based on first-order neighbours. As values
of Moran’s I close to 0 indicate very low or no residual spatial autocorrelation,
here we consider values above 0.2 to be suggestive of some positive spatial
autocorrelation. The closer Moran’s I is to zero, the better the model accounts for
spatial autocorrelation [2].

10.3.5.4 Computational Time

The microbenchmark R package [34] was used to monitor computational time
to run each model. The models were run on two different computers. However, the
specifications of these computers were similar and any differences should have a
negligible influence on computation time.

10.4 Results and Discussion

Substantive differences in the posterior estimates were observed between the 13
model variants applied, especially for the rare cancer (Table 10.2, Figs. 10.2, 10.3,
10.4, and 10.5). Depending on the model chosen, the modelled SIR estimates for the
same geographical area could range from well below to well above the Australian
average (Figs. 10.3 and 10.5).

While small numbers in geographical areas require smoothing, it remains
possible that the neighbouring areas may have genuinely different incidence rates.
These differences would be obscured during the smoothing process. Detecting these
differences is problematic, and even many of the models designed to allow for local
variation gave results similar to the BYM and Leroux models (Figs. 10.2, 10.3,
10.4, and 10.5), suggesting there was insufficient statistical power to adequately
detect local differences. Of the models that obtained greater variation in the
median SIR estimates between areas and less smoothing, there was often excessive
uncertainty around these estimates, such as the localised autocorrelation model
results (Figs. 10.2 and 10.4).

The number of area-specific SIR estimates that had evidence of non-convergence
(based on Geweke p-value < 0.01) did vary between models and with the extent
of data sparseness. In many cases, very wide CIs were symptomatic of non-
convergence. For instance, the localised autocorrelation (G = 3) model for the rare
cancer had 86% of area-specific SIRs with significant Geweke p-values, suggesting
lack of convergence, and this model had among the widest CIs (Table 10.2). In
contrast, models which had implausibly narrow CIs generally had very few/no areas
with small Geweke p-values. However, overly narrow CIs are equally problematic
as they over-exaggerate confidence in the plausibility of the estimates, which may
actually be over- or under-smoothed.

In general, especially as data sparsity increased, our application of these models
suggested that global models with more smoothing tended to have ‘well-behaved’,
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Fig. 10.2 Graphs of posterior SIR results by model, rare cancer. Note: Axes are consistent.
Column 1 shows the 80% CI (shaded as per the tones on the maps in Fig. 10.3), the black line
is the median SIR (in ascending order), the dots are the raw SIRs and the horizontal line at 1
represents the national average. For column 2, the 80% CIs are the BYM model, and the SA2s are
ordered according to the BYM median SIR. The black line is the median estimate for the model
named
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(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

(j) (k) (l) 

(m) (n)

Fig. 10.3 Rare cancer median posterior SIR mapped by model. (a) Raw (observed/expected),
(b) BYM, (c) Leroux, (d) Geostatistical, (e) P-spline (tensor), (f) P-spline (radial), (g) CAR
dissimilarity (binary), (h) CAR dissimilarity (non-binary), (i) Localised autocorrelation (G = 3),
(j) Localised autocorrelation (G = 5), (k) Locally adaptive (ρ estimated), (l) Locally adaptive
(ρ = 0.99), (m) Weighted sum of spatial priors, (n) Leroux scale mixture
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Fig. 10.4 Graphs of posterior SIR results by model, common cancer. Note: Axes are consistent.
Column 1 shows the 80% CI (shaded as per the tones on the maps in Fig. 10.5), the black line is the
median SIR (in ascending order), the dots are the raw SIRs and the horizontal line at 1 represents
the national average. For column 2, the 80% CIs are the BYM model, and the SA2s are ordered
according to the BYM median SIR. The black line is the median estimate for the model named
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n)

Fig. 10.5 Common cancer median posterior SIR mapped by model. (a) Raw (observed/expected),
(b) BYM, (c) Leroux, (d) Geostatistical, (e) P-spline (tensor), (f) P-spline (radial), (g) CAR
dissimilarity (binary), (h) CAR dissimilarity (non-binary), (i) Localised autocorrelation (G = 3),
(j) Localised autocorrelation (G = 5), (k) Locally adaptive (ρ estimated), (l) Locally adaptive
(ρ = 0.99), (m) Weighted sum of spatial priors, (n) Leroux scale mixture
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reliable estimates, while local models tended to struggle in producing plausible
estimates (Figs. 10.2 and 10.4). The estimates for the binary CAR dissimilarity
model (based on socioeconomic differences) in our study were often unreliable, and
this is likely due to its tendency to remove too many neighbours. This is expected to
also apply to other formulations, such as distance-based models.

The DIC and WAIC (Table 10.2) measures of goodness of model fit were gen-
erally in consensus for a given cancer type, apart from the localised autocorrelation
models which had among the lowest DIC, but highest WAIC. Some models fit
the data well for one type of simulated data, but not the other. For example, the
geostatistical and P-spline models fit the common cancer quite well, but resulted in
poor to average model fit for the rare cancer.

Moran’s I statistic (Table 10.2) generally indicated that the residual spatial
autocorrelation is quite small. The only models with noticeable remaining corre-
lation were the centroid based geostatistical and P-spline models, and this apparent
correlation may result from using a weights matrix based on first-order neighbours
when calculating Moran’s I.

Computational time varied substantially across the models, with times for the
rare cancer ranging from 5 minutes (Leroux model in CARBayes) to over 20 hours
(geostatistical model in JAGS). Models able to be run in CARBayeswere generally
very fast, while models run in JAGS or WinBUGS took longer (approximately
between 0.5 and 2.5 hours, excluding the geostatistical model). Of note though,
are the implications these varying computing times may have when many models
need to be run, such as considering multiple cancer types, or repeating models to test
different hyperprior specifications. While increasing computing specifications may
reduce these times, it is still an important consideration when choosing between two
(or more) otherwise well performing models.

It is a tenet of statistical research that the choice of model depends on the data
characteristics and the aims of the analysis. However, when data are sparse and there
is extreme variation in area size, such as are consistent with our simulated data, we
found that the geostatistical or P-spline models generally had poor performance. The
geostatistical model is prohibitively slow for these type of data, and when combined
with the unpredictable model fit, this model is not recommended.

A previous comparison by Adin et al. [1] of the global P-spline model against
the moving average and CAR models found the P-spline performed well for sparse
disease mapping, although Goicoa et al. [17] found it to be more prone to detecting
more false high-risk areas than either the CAR or a local P-spline model. This model
is also rather complex to implement, requiring a penalty matrix and the number of
knots to be specified, both of which are subjective and can have a large impact on
model fit. The main concern with the P-spline model, however, was the specification
of the basis matrix using the tensor product, which does not adequately address the
fact that the SA2s are irregular in shape and the distances between their centroids
can be vastly different. The radial basis version of the P-spline model was designed
to address this, but aside from being computationally faster, it provided similar
levels of smoothing and a worse model fit.
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The BYM and Leroux models may be prone to over-smoothing when neighbour-
ing areas have abrupt differences [23, 27], but they generally converged, provided a
reasonable model fit with plausible estimates and were computationally efficient to
implement. The Leroux model may be preferred over the BYM model to avoid the
inability of the BYM model to identify both the structured and unstructured spatial
random effects separately, but we found that in some cases it struggled to achieve
convergence for its mixing parameter.

The locally adaptive models provided results similar to that of the BYM model,
with slightly wider credible intervals. The main disadvantage was the difficulty in
obtaining samples from the posterior due to the script calling up INLA from within
another function.

A non-binary dissimilarity model may also provide an adequate fit, as this
smooths more than a P-spline but less than BYM or Leroux. The non-binary
dissimilarity formulation using the SEIFA covariate worked quite well for both
cancer types, with noticeably less constraining of modelled SIR estimates than
under BYM or Leroux. Whether these SIR estimates are appropriate or are under-
smoothed will depend on data characteristics and the aims of the analysis.

Note that the final specification of each model requires additional sensitivity
analyses to determine the influence of the priors and hyperpriors, the topic of which
was outside the scope of this chapter.

10.5 Conclusion

The number of Bayesian spatial models available continues to increase, along
with the capacity of the computing software and hardware. Determining the
optimal amount of smoothing in spatial analyses remains difficult, but our study
demonstrates the benefits of running a range of model types and provides insights
into the relative merits of the different models for the study dataset. Comparing
estimates from several different model types is important to assess consistency of
results when conducting a spatial analysis

In summary, in sparse data contexts, the BYM, Leroux, locally adaptive, non-
binary CAR dissimilarity models or some versions of localised autocorrelation
models may outperform the other models examined. We suggest considering using
centroid-based smoothing models only when areas are of similar size and shape.
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