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Part I
Surveys



Chapter 1
Introduction

Kerrie L. Mengersen, Pierre Pudlo, and Christian P. Robert

Abstract This chapter is an introduction to this Lecture Note. We briefly describe
the contents of this book. Both parts are introduced, namely part A which deals
with Bayesian modeling and part B which presents real-world case studies. The
last part of the chapter details the organization of the various events related to the
Jean-Morlet Chair. It ends with the issues and research directions identified by the
participants of the Conference on Bayesian Statistics in the Big Data Era.

Keywords Bayesian inference · Big data · Computational statistics ·
Conferences · Workshop · Statistical models · Bayesian modeling · Bayesian
computation · Case studies

1.1 Overview

The field of Bayesian statistics has exploded over the past 30 years and is now an
established field of research in mathematical statistics and computer science, a key
component of data science, and an underpinning methodology in many domains of
science, business and social science. Moreover, while remaining naturally entwined,
the three arms of Bayesian statistics, namely modelling, computation and inference,
have grown into independent research fields. Examples of Bayesian models that
have matured during this timeframe include hierarchical models, latent variable
models, spatial and temporal models, network and systems models, and models

K. L. Mengersen (�)
Queensland University of Technology, Brisbane, QLD, Australia
e-mail: k.mengersen@qut.edu.au

P. Pudlo
I2M, CNRS, Centrale Marseille, Aix-Marseille University, Marseille, France

C. P. Robert
Université Paris-Dauphine, Paris, France

© The Editor(s) (if applicable) and The Author(s), under exclusive
licence to Springer Nature Switzerland AG 2020
K. L. Mengersen et al. (eds.), Case Studies in Applied Bayesian Data Science,
Lecture Notes in Mathematics 2259, https://doi.org/10.1007/978-3-030-42553-1_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-42553-1_1&domain=pdf
mailto:k.mengersen@qut.edu.au
https://doi.org/10.1007/978-3-030-42553-1_1


4 K. L. Mengersen et al.

for dimension reduction. Bayesian computational statistics is now an established
discipline in its own right, with a wealth of extensions to the original Markov chain
Monte Carlo algorithms, likelihood-free approaches such as Approximate Bayesian
computation, and optimization methods such as Variational Bayes and Hamiltonian
Monte Carlo. In the domain of Bayesian inference, progress continues to be made
on many fronts, including the role and influence of priors, model choice and model
robustness, hypothesis testing and so on.

While the research arms of Bayesian statistics continue to grow in many
directions, they are harnessed when attention turns to solving substantive applied
problems. Each such problem set has its own challenges and hence draws from the
suite of research a bespoke solution. It is often useful for both theoretical and applied
statisticians, as well as practitioners, to inspect these solutions in the context of the
problems, in order to draw further understanding, awareness and inspiration.

The aim of this book is to contribute to the field by presenting a range of such
problems and their Bayesian solutions. The book arises from a research program
at CIRM in France in the second semester of 2018, which supported Kerrie L.
Mengersen (Queensland University of Technology, Australia) as a visiting Jean-
Morlet Chair and Pierre Pudlo (Aux-Marseille University) as the local Research
Professor. Mengersen was also supported by the Australian Research Council
(ARC) through a Laureate Fellowship. Various events were held during the course
of this semester, including a Masterclass on Bayesian Statistics, a conference on
Bayesian Methods in the Big Data Era, a workshop on Bayes and Big Data for Social
Good, and a number of Research in Pairs activities. Summaries of the masterclass,
conference and workshop are presented later in this chapter.

1.2 Outline of Book

This book comprises two main parts. In Part A, the state of the art of modern
Bayesian statistics is reflected through a set of surveys on topics of current interest
in the field.

The first chapters of Part A focus on Bayesian modelling, including a general
literature survey and evaluation of Bayesian statistical models in the context of
big data by Jahan et al. and a more in-depth discussion by Goan of a popular
modelling approach, namely Bayesian neural networks. The survey by Jahan et al.
explores the various approaches to Bayesian modelling, in particular those that are
motivated by the advent of so-called ‘big data’. The authors conclude their survey
by considering the question of whether focusing only on improving computational
algorithms and infrastructure will be sufficient to face the challenges of this ‘big
data era’. The chapter of Goan complements this general overview. Unlike their
frequentist counterparts, Bayesian neural networks can naturally and formally
allow for uncertainty in their predictions, which can lead to richer inferences for
detection, classification and regression. Goan introduces these models, discusses
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the common algorithms used to implement them, compares various approximate
inference schemes and highlights opportunities for future research.

The third chapter of Part A focuses on Bayesian computation, with a survey
of Markov chain Monte Carlo (MCMC) algorithms for Bayesian computation by
Wu and Robert. The authors provide a brief, general overview of Monte Carlo
computational methods, followed by a more detailed description of common and
leading edge MCMC approaches. These include Metropolis-Hastings and Hamilton
Monte Carlo algorithms, as well as scalable versions of these, and continuous time
MCMC samplers based on piecewise deterministic Markov processes (PDMP), the
Zig-Zag process Sampler and the Bouncy Particle Sampler. Wu and Robert then
introduce a generalization of the latter algorithm in terms of its transition dynamics.
Their new Generalised Bouncy Particle Sampler is perceived as a bridge between
bouncy particle and zig-zag processes that avoids some of the tuning requirements.

The final survey chapters of Part A focus on two illustrative challenge in
Bayesian data science that merge the fields of modelling and computation, namely
variable selection and model choice in high dimensional regression, and pos-
terior inference for intractable likelihoods. Sutton addresses the first challenge
by describing three common priors that are used for sparse variable selection,
namely model space priors, spike and slab priors and shrinkage priors, with corre-
sponding computational approaches and software solutions. The second challenge
is surveyed by Moores et al., who defines an intractable likelihood as one for
which the likelihood function is unavailable in closed form or which is infeasible
to evaluate. The approaches covered by Moores et al. include pseudo-marginal
methods, approximate Bayesian computation (ABC), the exchange algorithm,
thermodynamic integration and composite likelihood, with particular attention paid
to advancements in scalability for large datasets.

Part B of the book consists of a set of real-world case studies that aim to
illustrate the wide variety of ways in which Bayesian modelling and analysis can
enhance understanding and inference in practice. Three fields have been chosen for
exposition, namely health, environmental health and ecology. The value of Bayesian
data science in modelling the brain is described in the first pair of chapters by
Cespedes et al., who focus on a joint model of cortical thickness and network
connections, and White et al., who aim to cluster action potential spikes. The second
pair of chapters address public health issues of vector-borne diseases (Aswi et al.),
cancer (Cramb et al.). The next chapter explores the link between environmental
exposures and the neurodegenerative Parkinson’s disease (Thomas et al.), followed
by two chapters that address challenges in workplace health (Harden et al., Tierney
et al.).

In the last four chapters on ecological applications, the authors showcase the
use of diverse data sources to address challenges in conservation and biosecurity.
Davis et al. use data elicited from experts and citizens to explore factors involved
in conservation of cheetahs in Southern Africa and jaguars in South America, while
Sequeira et al. and Vercelloni et al. employ observational data to gain insights into
marine conservation. In contrast, Ullah et al. employ satellite imagery to model the
risk of fire-ant incursion.
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Each of these case studies has a complication that motivates a rich range of
Bayesian solutions. The models considered by the authors include hierarchical mod-
els (Sequeira et al., Tierney et al., Vercelloni et al.), parametric and nonparametric
mixture models (White et al.), spatial models (Aswi et al., Cespedes et al., Cramb
et al., Ullah et al.) and Bayesian network approaches (Davis et al., Harden et al.,
Thomas et al.).

Cespedes et al. propose a new Bayesian generative model for analysis of MRI
data that allows for more complete insight into the morphological processes and
organization of the human brain. Unlike current models that typically perform
independent analyses, their proposed model uses a form of wombling to perform
joint statistical inference on biomarkers and connectivity covariance networks. The
new model provides posterior probabilities for the connectivity matrix, accounting
for the uncertainty of each connection, and enables estimation of the spatial
covariance among regions as well as global cortical thickness. These features are
critical in the assessment of the pathology of neuro-degenerative diseases such as
Alzheimers. White et al. also consider a case study in neuroscience research, this
time focusing on the analysis of action potentials or ‘spike sorting’, which aims
to characterize neural activities in subjects exposed to different stimuli or other
experimental conditions. This problem is cast as an unsupervised clustering problem
to which two types of mixture models are applied. The complications in these
models include the choice of the number of identified clusters and classification
uncertainty.

In a quite different spatial setup, Aswi et al. compare the performance of six
Bayesian spatio-temporal models in their investigation of dengue incidence in
Makassar, Indonesia, taking into account the challenges that are typically faced in
practice but not typically catered for by the models, namely a small number of areas
and limited number of time periods. These types of geographic spatial models for
small area estimation of disease are also considered by Cramb et al., with a focus
on the choice of model under different scenarios of rare and common cancers over
different types of spatial surfaces. The authors reveal the dramatic impact of model
choice on posterior estimates and recommend comparing several different models,
especially when analyzing very sparse data.

Returning to neurodegenerative diseases, but from a different perspective,
Thomas et al. focus on the challenge of understanding the association between
environmental exposure to organochloride pesticide (OCP) and age at onset
of Parkinson’s disease. The authors explore this complicated association via
an ensemble model comprised of a meta-analysis and a Bayesian network,
whereby odds ratios and other information extracted from the literature are merged
with clinical data to probabilistically quantify the network model. The authors
acknowledge the limitations of this approach but suggest its merit for future
investigation as a mechanism for integrating disparate, sparse data sources to
address environmental health questions.

The utility of Bayesian approaches in modelling different aspects of a problem is
highlighted in the two chapters by Harden et al. and Tierney et al., who both focus
on workplace health. Harden et al. use an approach similar to that of Thomas et al.,
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in that they employ published information to characterize, quantify and compare
features of workplace health and workplace wellness programs. In contrast, Tierney
et al. utilise records of routine medical examinations, which are characterized by
substantive missing data, to facilitate early detection of disease amongst workplace
employees. Whereas Harden et al. adopt a Bayesian network approach to combine
and quantify their workplace health and wellness systems, Tierney et al. use a
Bayesian hierarchical regression model to create a workplace health surveillance
program.

Turning to the case studies in ecology, one of the major constraints in conser-
vation research and practice is the sparsity of data and the complex interaction of
contributing factors. An example is given by Davis et al., who tackle the sensitive
issue of human-wildlife conflict and illustrate the utility of a Bayesian network
for these types of problems. Two iconic wildlife species are considered and the
implications for different conservation management strategies are discussed.

In a quite different ecological setup, Sequeira et al. employ a series of unin-
formed and informed priors to investigate the issue of space-time misalignment of
responses and predictors in hierarchical Bayesian regression models. The particular
models of interest are predictive biodiversity distribution models, which are used to
understand the structure and functioning of ecological communities and to facilitate
their management in the face of anthropogenic disturbances. The focal challenge
is to predict fish species richness on Australia’s Great Barrier Reef. Vercelloni et
al. also take the Great Barrier Reef as their study area, with the aim of estimating
long-term trajectories of habitat forming coral cover as a function of three different
spatial scales and environmental disturbances. A hierarchical Bayesian model was
also adopted by these authors, but in a semi-parametric framework.

The final chapter in this part, by Ullah et al., focuses on the problem of
classification of features of interest in large images. The approach proposed by
these authors is to fit a Bayesian non-parametric mixture model to multiple stratified
random samples of the image data, followed by the formation of consensus posterior
distribution which is used for inference. The method is applied to the challenge
of employing remote sensing for plant and animal biosecurity surveillance, with a
particular focus on using satellite data to identify high risk areas for fire ants in the
Brisbane region of Australia.

Together, these chapters provide a rich tapestry of activity in applied Bayesian
data science, motivated by a wide range of real-world problems. It is hoped that
these case studies will inspire and expand both research and practice in Bayesian
data science.

1.3 Jean-Morlet Research Semester Activities

As described above, the Jean-Morlet semester at CIRM in the second half of 2018
included the organization of a masterclass, conference and workshop at the CIRM
Research Centre in Marseille, France. A brief summary of each of these three
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activities is given in this section, with a focus on highlighting research directions
and illustrating applications of Bayesian statistical modelling and analysis.

1.3.1 Masterclass on Modern Bayesian Statistics

A clear indicator of the establishment of Bayesian statistics is the increased number
of graduate courses on the topic. Such courses are more common in statistical
science, computer science and data science, but they are also now appearing in
a wide range of other fields of science, social science and business. Intensive
short courses on Bayesian statistics are also popular mechanisms for training for
graduates as well as academics, other researchers and practitioners. These courses
are presented either in-person or online.

One such course was the Masterclass in Bayesian Statistics, presented at CIRM
on 22–26 October, 2018. Videos and slides of the presentations given in this Mas-
terclass are publicly available on the CIRM website: https://www.chairejeanmorlet.
com/2018-2-mengersen-pudlo-1854.html.

The topics presented in this Masterclass can be broadly categorised into Bayesian
modelling and Bayesian computation. As an example of the former, Chris Holmes
addressed the problem of Bayesian learning at scale. His argument was that
Bayesian learning from data is predicated on the likelihood being true, whereas
in reality all models are false. If the data are simple and small, and the models
are sufficiently rich, then the consequences of model misspecification may not
be severe. However, since data are increasingly being captured at scale, Bayesian
theory as well as computational methods are required that accommodate and
respect the approximate nature of scalable models. A proposed approach is to
include the uncertainty of the model in the analysis, via a principled nonparametric
representation. Other approaches to model assessment were discussed by Aki
Vehtari, who covered cross-validation and projection predictive approaches for
model assessment, inference after model selection, and Pseudo-BMA and Bayesian
stacking for model averaging. This discussion was complemented by R notebooks
using rstanarm, bayesplot, loo, and projpred packages.

Problem-specific Bayesian models were also presented. For example, the presen-
tation by Adeline Samson focused on various types of stochastic models in biology,
including point processes, discrete time processes, continuous time processes and
models with latent variables, and elaborated on some of the statistical challenges
associated with their application.

The many directions of current research in Bayesian computational statistics
were highlighted in the presentation by Christian P. Robert, who discussed more
efficient simulation via accelerating MCMC algorithms, to approximation of the
posterior or prior distributions via partly deterministic Markov processes (PDMP)
like the bouncy particle and zigzag samplers. The focus of this presentation was on
the evaluation of the normalising constants and ratios of normalising constants in
such methods.

https://www.chairejeanmorlet.com/2018-2-mengersen-pudlo-1854.html
https://www.chairejeanmorlet.com/2018-2-mengersen-pudlo-1854.html
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Two algorithms of strong current interest are Sequential Monte Carlo (SMC) and
Variational Inference (VI) or Variational Bayes (VB). VI algorithms were addressed
by Simon Barthelmé, who suggested methods for correcting variational approxima-
tions to improve accuracy, including importance sampling and perturbation series.
SMC was introduced by Nicolas Chopin, who motivated the approach by state-
space (hidden Markov) models and their sequential analysis, and touched on the
analysis of non-sequential problems. The presentation also included a description
of the formal underpinnings of SMC, building on concepts of Markov kernels and
Feynman-Kac distributions, and a discussion of Monte Carlo ingredients including
importance sampling and resampling. Standard bootstrap, guided and auxiliary
particle filters were then described, followed by estimation methods via PMCMC
and SMC2. SMC was also discussed by Marie-Pierre Etienne in the context of
partially observed stochastic differential equations applied to ecology, and by Adam
Johansen in the context of defining a genealogy of SMC algorithms. Similarly,
Sebastian Reich proposed a unifying mathematical framework and algorithmic
approaches for state and parameter estimation of particular types of partially
observed diffusion processes.

Scalable algorithms for Bayesian inference are also of great interest. This
was reflected in the presentation by Giacomo Zanella, who focused on scalable
importance tempering and Bayesian variable selection.

Another indication of the mainstream status of Bayesian statistics is the prolifer-
ation of dedicated R packages and analogies in Python and other software, as well as
an increase in the number of stand-alone statistical software packages. While many
of the Masterclass presentations referred to specific packages, some presentations
focused on the stand-alone software. For example, Harvard Rue presented a tutorial
on Bayesian computing with INLA, with a focus on estimation of the distribution of
unobserved nodes in large random graphs from the observation of very few edges
and a derivation of the first non-asymptotic risk bounds for maximum likelihood
estimators of the unknown distribution of the nodes for this sparse graphical model.
This tutorial was complemented by a presentation on the same topic by Sylvain le
Corff. A tutorial on JASP was presented by Eric-Jan Wagenmakers and the software
package STAN was used by Bruno Nicenboim to implement a cognitive model of
memory processes in sentence comprehension.

Finally, as in all areas of computational statistics, good practice in dealing with
data and coding Bayesian algorithms is essential. Julien Stoehr and Guillaume Kon
Kam King presented a tutorial on this topic, with reference to writing R code, R
packages and R Markdown and knitr documents.

1.3.2 Conference on Bayesian Statistics in the Big Data Era

This conference aimed to bring together an international and interdisciplinary
group of researchers and practitioners to share insights, research, challenges and
opportunities in developing and using Bayesian statistics in the Big Data era.
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As expected, a major focus of the conference was on scalable methods, i.e.
models and algorithms that cope with or adapt to increasing large datasets. As
illustration, scalable nonparametric clustering and classification were proposed by
Peter Muller. Two strategies were discussed: one based on a consensus Monte
Carlo approach that splits the data into shards and then combines subset poste-
riors to recover joint inference, and another that exploits predictive recursion to
build up posterior inference for the complete data. Ming-Ngoc Tran canvassed a
range of topics such as intractable likelihood and its connection with Big Data
problems, subsampling-based MCMC, HMC and SMC for models with tall data,
and Variational Bayes estimation methods for extremely high-dimensional models.
A quite different compositional approach to scalable Bayesian computation and
probabilistic programming was described by Darren Wilkinson.

Sub-sampling, approximations and related methods for dealing with large
datasets was discussed by a range of authors. Pierre Alquier proposed techniques
for sub-sampling MCMC and associated approximate Bayesian inference for large
datasets, while Tamara Broderick proposed a different approach to automated
scalable Bayesian inference via data summarisation. David Dunson also contributed
to this discussion, describing new classes of scalable MCMC algorithms based on
biased subsampling and multiscale representations that, instead of converging to
an exact posterior distribution, employ approximations to speed up computation
and achieve more robust inference in big data settings. Stéphane Robin also used
deterministic approximations to accelerate Sequential Monte Carlo (SMC) for
posterior sampling via a so-called shortened bridge sampler. Approximate Bayesian
Computation (ABC) was discussed by Pierre Pudlo in the context of model choice,
and Jean-Michel Marin described a method of improving ABC through the use of
random forests.

With respect to modelling, nonparametric approaches were a popular topic of
discussion. In addition to Muller’s presentation described above, Amy Herring
described centred partition processes for sparse data. Alternative approaches to
defining nonparametric priors were also proposed, for example by Antonio Lijoi
in the context of covariate-dependent data, and Igor Prünster through the use of
hierarchies of discrete random probabilities.

Other models of great international interest included high-dimensional spatial
and spatio-temporal models, discussed by Sudipto Banerjee and Noel Cressie,
optimal transport described by Marco Cuturi, and high dimensional inference for
graphical models presented by Reza Mohammadi. High dimensional regression
was addressed by Akihiko Nishimura, who described computational approaches
for “large n and large p” sparse Bayesian regression in the context of binary and
survival outcomes, and Benoit Liquet, who focused on Bayesian variable selection
and regression of multivariate responses for group data. Related design questions
were also a priority issue, since efficient sampling, survey and experimental designs
can dramatically reduce the number of observations and variables required for
inference and the associated computational cost of analysis. To this end, Jia Liu
proposed a Bayesian model-based spatiotemporal survey design for log-Guassian
Cox processes.
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Approaches for high dimensional time series data, motivated by applications in
economics, marketing and finance, were promoted by Sylvia Frühwirth-Schnatter,
Gregor Kastner and Gary Koop. Fruwirth-Schnatter focused on Markov chain
mixture models to describe time series with discrete states, and showed that these
models are able to capture both persistence in the individual time series as well
as cross-sectional unobserved heterogeneity. Koop described a different approach,
focusing on composite likelihood methods for Bayesian vector autoregressive
(VAR) models with stochastic volatility, presented by Gary Koop. Kastner also
considered VAR models with time-varying contemporaneous correlations that are
reportedly capable of handling vast dimensional information sets.

A wide range of applied problems were tackled in the conference, with attendant
novel methodology. For example, challenges in public health ranged from nonpara-
metric approaches to modelling sparse health data, by Amy Herring, to methods
for including residential history in mapping long-latency diseases such as mesothe-
lioma, by Christel Faes. Graphical models for brain connectivity were also discussed
by Reza Mohammadi, as mentioned above. In the genetics field, the problem of
high-throughput sequencing data in genomics was addressed using Bayesian multi-
scale Poisson models by Heejung Shim, while Zitong Li proposed non-parametric
regression using Gaussian Processes for analysing time course quantitative genetic
data, in particular quantitative trait loci (QTL) mapping of longitudinal traits.
Time-course data prediction for repeatedly measured gene expression was also
discussed by Atanu Bhattacharjee. Business-related applications included Bayesian
preference learning, described by Marta Crispino, Bayesian generalised games in
choice form as a new definition of a stochastic game in the spirit of the competitive
economy, by Monica Patriche, and econometric models by Fruwirth-Schnatter.
As mentioned above, an environmental problem, namely estimating the extent of
arctic sea-ice, was addressed by Noel Cressie using a hierarchical spatiotemporal
generalised linear model, where data dependencies are introduced through a latent,
dynamic spatiotemporal mixed-effects model using a fixed number of spatial basis
functions. The model was implemented via a combination of EM and MCMC.

Other issues that were addressed at the conference included data privacy and
security (presented by Louis Aslett) and causality in modern machine learning
(Logan Graham). In the latter presentation, Graham argued that while much current
attention has focused on using machine learning to improve causal inference, there is
opportunity for the inverse, namely to use tools from causal inference to improve the
learning, efficiency, and generalisation of machine learning approaches to machine
learning problems.

1.3.3 Workshop on Bayes, Big Data and Social Good

There is increasing international interest and engagement in the concept of ‘data
and statistics for social good’, with volunteers and organisations working on issues
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such as human rights, migration, social justice and so on. This interest is generating
a growing number of workshops on the topic.

One such workshop on “Young Bayesians and Big Data for Social Good” was
held at CIRM on 23–26 November 2018. The workshop showcased some of the
organisations that are dedicated to social good and are employing data science in
general, and Bayesian statistics for this purpose. It also provided opportunity for
Bayesian statisticians to discuss methods and applications that are aligned to social
good. As indicated by the title of the workshop, the participants were primarily, but
not exclusively, early career researchers.

Dedicated social good organisations that were represented at the workshop
included Peace at Work (peace-work.org, represented by David Corliss) and
Element AI (elementai.com, represented by Julien Cornebise). For example, David
Corliss, a spokesperson for Peace at Work, provided an overview of the state of
Data for Good, Bayesian methodology as an important area of new technological
development, and experiences and opportunities for students to get involved in
making a difference by applying their developing analytic skills in projects for the
greater good.

The workshop exposed a wide range of social good problems and associated
Bayesian statistical solutions. For example, Jacinta Holloway focused on the utility
of satellite imagery to inform the United Nations and World Bank Sustainable
Development Goals related to quality of human life and environment by 2030. In
a similar vein, Matthew Rushworth described the use of underwater imagery to
inform statistical models of the health of the Great Barrier Reef, a UNESCO World
Heritage site under threat in Australia. From a computational perspective, Tamara
Broderick related her research into the development of simple, general and fast local
robustness measures for variational Bayes in order to measure the sensitivity of
posterior estimates to variation in choices of choices of priors and likelihoods, to
the issue of analysing microcredit data which impacts on small business success in
developing countries.

An important issue of trust in data was raised by Ethan Goan in the context of
deep learning. Although these models are able to learn combinations of abstract
and low level patterns from increasingly larger datasets, the inherent nature of
these models remain unknown. Goan proposed that a Bayesian framework can be
employed to gain insight into deep learning systems, in particular their attendant
uncertainty, and how this information can be used to deliver systems that society
can trust.

A number of presentations focused on entity resolution (record linkage and de-
duplication of records in one or more datasets) in order in order to accurately
estimate population size, with application to estimating the number of victims
killed in recent conflicts. Different statistical approaches to address this problem
were presented by Andrea Tencredi and Brunero Liseo, Rebecca Steorts, Bihan
Zhuang and David Corliss. For example, Bayesian capture-recapture methods were
proposed by David Corliss to estimate numbers of human trafficking victims and
estimate the size of hate groups in the analysis of hate speech in social media.
Tencredi and Liseo took another approach, by framing the linkage problem as a

http://peace-work.org
http://elementai.com
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clustering task, where similar records are clustered to true latent individuals. The
statistical model incorporated both the linking process and the inferential process,
including the features of the record as well as the variables needed for inference.
Paramount to their approach is the key observation that the prior over the space
of linkages can be written as a random partition model. In particular, the Pitman-
Yor process was used as the prior distribution regarding the cluster assignment of
records. The method is able to account for the matching uncertainty in the inferential
procedures based on linked data, and can also generate a feedback mechanism of the
information provided by the working statistical model on the record linkage process,
thereby eliminating potential biases that can jeopardize the resulting post-linkage
inference.

The use of Bayesian statistics and big data for health was also a common theme
in the workshop. For example, Akihiko Nishimura proposed new sparse regression
methods for analyzing binary and survival data; Gajendra Vishwakarma described
the use of Bayesian state-space models for gene expression data analysis with
application to biomarker prediction; and Antonietta Mira detailed a Bayesian spatio-
temporal model to predict cardiac risk, creating a corresponding risk map for a city,
and using this to optimize the position of defibrillators.

A different problem tackled by Cody Ross was the resolution of apparent
paradoxes in analyses of racial disparities in police use-of-force against unarmed
individuals. For example, although anti-black racial disparities in U.S. police
shootings have been consistently documented at the population level, new work
has suggested that racial disparities in encounter-conditional use of lethal force by
police are reversed relative to expectations, with police being more likely to shoot
white relative to black individuals, and use non-lethal as opposed to lethal force
on black relative to white individuals. Ross used a generative stochastic model
of encounters and use-of-force conditional on encounter to demonstrate that if
even a small subset of police more frequently encounter and use non-lethal force
against black individuals than white individuals, then analyses of pooled encounter-
conditional data can fail to correctly detect racial disparities in the use of lethal
force.

Finally, as noted above, good practice in statistical computation can provide
substantial benefits for both researchers and practitioners. To this end, Charles Gray
described the use of github and the R package ‘tidyverse’ for improved collaborative
workflow, with reference to an application in maternal child health research.

1.4 The Future of Bayesian Statistics

Given that Bayesian statistics is now an established field of research, computation
and application, it is of interest to consider the future of the profession, particularly
in the era of ‘big data’. This was the question posed to the participants of the
Conference on Bayesian Statistics in the Big Data Era held at CIRM, Marseille,
France on 26–30th November 2018.
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The participants collectively identified major issues and directions for Bayesian
statistics. These were collated into four key themes: data, computation, modelling;
and training. An overall statement on each theme is presented below.

1.4.1 Data

1. Policies like GDPR will need mathematical and statistical formalizations and
implementation. This will become an increasingly important issue also beyond
the regions where GDPR formally applies.

2. Addressing grand challenges will increasingly require the use of multiple data
sources from diverse locations, and need approaches to deal with the resulting
heterogeneous.

3. Issues of quality assurance and persistence will increase, as official statistics tend
to be replaced by commercial services.

4. While traditional questions of experimental design are becoming less relevant,
other experimental design questions will arise, related to subsampling big data.

5. Recognition of the provenance of the data is becoming important, including in
particular social media data and derived data from climate models etc.

1.4.2 Computation

1. Despite the exponential growth in computational Bayesian statistics, new algo-
rithms are still required that are targeted to big data.

2. There will be continuing interest in approximations and subsampling strategies,
as well as methods for taking advantage of sparse data.

3. Bayesian software will become faster and more intuitive for users to use. This
will benefit from active online communities.

4. Current software, such as Tensorflow, R and C++, differ with respect to ease
and computational speed, and need to be able to talk to each other better.

5. However, software alone cannot help. Bayesian statisticians will also need to
understand more about hardware and decentralised data in order to fine tune
algorithms for specific problems.

1.4.3 Models

1. Bayesian models will continue to evolve in the ‘big data era’. Three major
directions of evolution are in priors, model setup and model choice.

2. With respect to priors, on the one hand, informative priors such as those that
induce shrinkage will play an increasingly important role, but on the other hand,
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priors on high dimensional data tend to become very influential so development
of objective priors for high dimensional data will continue to be of great interest.
Overall, we need better ways of choosing priors.

3. With respect to model setup, overall the future will see the development of better
Bayesian frameworks, which ignore unnecessary information from data before
modelling, determine relevant information for modelling, automatically deter-
mine the required complexity of the model, and include generalized methods
for Bayesian model selection and diagnostics. There is little doubt that models
need to evolve to cope with new kinds and quantities of data. On the other hand,
perhaps progress could come from being able to ignore certain aspects of the
data. After all, having to fully specify every aspect of a data generating process
for a complex dataset can be tedious at best, impossible or harmful at worst.

4. With respect to model choice, we need to learn to handle model misspecification
in better ways and develop robust Bayesian modelling approaches. There will
be co-existence of parametric and nonparametric models in the future, where the
application and utility will depend on specific domains of application. Model-
free methodologies will also become more important. On one hand, Bayesian
models will become more sophisticated, more flexible (taking advantage of
Bayesian nonparametrics), bigger and better, as enabled by data and computa-
tional advances.

1.4.4 Training

1. The future will see the development of Bayesian tools for non-expert modellers,
with plug and play type models for easy application. When compared to 10 years
ago, a huge amount of students now study statistics and machine learning. A few
of them are indeed really interested in mathematics, modelling and computer
science, but others are more in quest of user-friendly software to use easily
in their jobs. If we want to attract these non-specialist students, we need to
provide more user-friendly tools for Bayesian learning: Bayesian equivalents
of TensorFlow for neural networks. On the other hand, we should not sacrifice
the statistical part of the training: modelling, theory, understanding the methods,
interpretation of the results. Indeed, there is and should continue to be a role for
statisticians and data scientists.

2. We should also talk about artificial intelligence (AI), but also about the world in
which AI resides and alternatives to AI. AI will lead to personalized medicine,
but this cannot be done without a sound knowledge of biostatistics. Similarly,
environmental and economic problems cannot be solved without statistics. We
live in a complex world. We should warn people that it will become impossible
to understand these topics without a strong statistical background and show them
how the Bayesian approach is flexible enough to tackle these problems.
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A Survey of Bayesian Statistical
Approaches for Big Data
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Abstract The modern era is characterised as an era of information or Big Data.
This has motivated a huge literature on new methods for extracting information and
insights from these data. A natural question is how these approaches differ from
those that were available prior to the advent of Big Data. We present a survey
of published studies that present Bayesian statistical approaches specifically for
Big Data and discuss the reported and perceived benefits of these approaches.
We conclude by addressing the question of whether focusing only on improving
computational algorithms and infrastructure will be enough to face the challenges
of Big Data.
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2.1 Introduction

Although there are many variations on the definition of Big Data [51, 52, 91, 184],
it is clear that it encompasses large and often diverse quantitative data obtained
from increasing numerous sources at different individual, spatial and temporal
scales, and with different levels of quality. Examples of Big Data include data
generated from social media [22]; data collected in biomedical and healthcare
informatics research such as DNA sequences and electronic health records [114];
geospatial data generated by remote sensing, laser scanning, mobile mapping,
geo-located sensors, geo-tagged web contents, volunteered geographic informa-
tion (VGI), global navigation satellite system (GNSS) tracking and so on [103].
The volume and complexity of Big Data often exceeds the capability of the
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standard analytics tools (software, hardware, methods and algorithms) [70, 92].
The concomitant challenges of managing, modelling, analysing and interpreting
these data have motivated a large literature on potential solutions from a range of
domains including statistics, machine learning and computer science. This literature
can be grouped into four broad categories of articles. The first includes general
articles about the concept of Big Data, including the features and challenges, and
their application and importance in specific fields. The second includes literature
concentrating on infrastructure and management, including parallel computing and
specialised software. The third focuses on statistical and machine learning models
and algorithms for Big Data. The final category includes articles on the application
of these new techniques to complex real-world problems.

In this chapter, we classify the literature published on Big Data into finer classes
than the four broad categories mentioned earlier and briefly reviewed the contents
covered by those different categories. But the main focus of the chapter is around the
third category, in particular on statistical contributions to Big Data. We examine the
nature of these innovations and attempt to catalogue them as modelling, algorithmic
or other contributions. We then drill further into this set and examine the more
specific literature on Bayesian approaches. Although there is an increasing interest
in this paradigm from a wide range of perspectives including statistics, machine
learning, information science, computer science and the various application areas,
to our knowledge there has not yet been a survey of Bayesian statistical approaches
for Big Data. This is the primary contribution of this chapter.

This chapter provides a survey of the published studies that present Bayesian
statistical models specifically for Big Data and discusses the reported and perceived
benefits of these approaches. We conclude by addressing the question of whether
focusing only on improving computational algorithms and infrastructure will be
enough to face the challenges of Big Data.

The chapter proceeds as follows. In the next section, literature search and
inclusion criteria for this chapter is outlined. A classification of Big Data literature
along with brief survey of relevant literature in each class is presented in Sect. 2.3.
Section 2.4 consists of a brief survey of articles discussing Big Data problems from
statistical perspectives, followed by a survey of Bayesian approaches applied to Big
Data. The final section includes a discussion of this survey with a view to answering
the research question posed above.

2.2 Literature Search and Inclusion Criteria

The literature search for this survey paper was undertaken using different methods.
The search methods implemented to find the relevant literature and the criteria for
the inclusion of the literature in this chapter are briefly discussed in this section.
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2.2.1 Inclusion Criteria

Acknowledging the fact that there has been a wide range of literature on Big Data,
the specific focus in this chapter was on recent developments published in the last 5
years, 2013–2019.

For quality assurance reasons, of the literature only peer reviewed published
articles, book chapters and conference proceedings were included in the chapter.
Some articles were also included from arXiv and pre-print versions for those to be
soon published and from well known researchers working in that particular area of
interest.

2.2.2 Search Methods

Database Search The database “Scopus” was used to initiate the literature search.
To identify the availability of literature and broadly learn about the broad areas of
concentration, the following keywords were used: Big Data, Big Data Analysis, Big
Data Analytics, Statistics and Big Data.

The huge range of literature obtained by this initial search was complemented by
a search of “Google Scholar” using more specific key words as follows: Features and
Challenges of Big Data, Big Data Infrastructure, Big Data and Machine Learning,
Big Data and Cloud Computing, Statistical approaches/methods/models in Big
Data, Bayesian Approaches/Methods/Models in Big Data, Big Data analysis using
Bayesian Statistics, Bayesian Big Data, Bayesian Statistics and Big Data.

Expert Knowledge In addition to the literature found by the above Database
search, we used expert knowledge and opinions in the field and reviewed the works
of well known researchers in the field of Bayesian Statistics for their research works
related to Bayesian approaches to Big Data and included the relevant publications
for survey in this chapter.

Scanning References of Selected Literature Further studies and literature were
found by searching the references of selected literature.

Searching with Specific Keywords Since the focus of this chapter is to survey
the Bayesian approaches to Big Data, more literature was sourced by using specific
Bayesian methods or approaches found to be applied to Big Data: Approximate
Bayesian Computation and Big Data, Bayesian Networks in Big Data, Classification
and regression trees/Bayesian Additive regression trees in Big Data, Naive Bayes
Classifiers and Big Data, Sequential Monte Carlo and Big Data, Hamiltonian Monte
Carlo and Big Data, Variational Bayes and Big Data, Bayesian Empirical Likelihood
and Big Data, Bayesian Spatial modelling and Big Data, Non parametric Bayes and
Big Data.
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This last step was conducted in order to ensure that this chapter covers the
important and emerging areas of Bayesian Statistics and their application to Big
Data. These searches were conducted in “Google Scholar” and up to 30 pages of
results were considered in order to find relevant literature.

2.3 Classification of Big Data Literature

The published articles on Big Data can be divided into finer classes than the four
main categories described above. Of course, there are many ways to make these
delineations. Table 2.1 shows one such delineation, with representative references
from the last 5 years of published literature. The aim of this table is to indicate
the wide ranging literature on Big Data and provide relevant references in different
categories for interested readers.

The links between these classes of literature can be visualised as in Fig 2.1 and
a brief description of each of the classes and the contents covered by the relevant
references listed are provided in Table 2.2. The brief surveys presented in Table 2.2
can be helpful for interested readers to develop a broad idea about each of the classes
mentioned in Table 2.1. However, Table 2.2 does not include brief surveys of the last
two classes, namely, Statistical Methods and Bayesian Methods, since these classes
are discussed in detail in Sects. 2.4 and 2.5. We would like to acknowledge the fact
that Bayesian methods are essentially part of statistical methods, but in this chapter,
the distinct classes are made intentionally to be able to identify and discuss the
specific developments in Bayesian approaches.

Table 2.1 Classes of big data literature

Topic Representative references

Features and challenges [51, 52, 63, 65, 70, 140, 160, 168, 184, 200]

Infrastructure [10, 50, 96, 108, 117, 132, 137, 142, 165, 183, 193,
206, 207]

Cloud computing [11, 32, 38, 54, 113, 120, 130, 139, 148, 175, 201,
205]

Applications (3 examples) Social science: [5, 22, 37, 39, 121, 164]

Health/medicine/medical science: [8, 9, 16, 19, 21,
28, 34, 46, 82, 118, 153, 158, 159, 182, 202]

Business: [2, 31, 36, 60, 66, 122, 154, 172]

Machine learning methods [3, 4, 26, 27, 55, 64, 89, 97, 138, 173]

Statistical methods [44, 45, 58, 61, 67, 84, 86, 87, 111, 136, 143, 162,
174, 188, 191, 192, 194, 198, 204]

Bayesian methods [7, 80, 81, 100, 102, 105, 109, 110, 115, 128, 129,
151, 163, 170, 180, 199, 210, 211]
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Fig. 2.1 Classification of big data literature

2.4 Statistical Approaches to Big Data

The importance of modelling and theoretical considerations for analysing Big Data
are well stated in the literature [86, 198]. These authors pointed out that blind
trust in algorithms without proper theoretical considerations will not result in valid
outputs. The emerging challenges of Big Data are beyond the issues of processing,
storing and management. The choice of suitable statistical methods is crucial in
order to make the most of the Big Data [67, 87]. Dunson [61] highlighted the role of
statistical methods for interpretability, uncertainty quantification, reducing selection
bias in analysing Big Data.

In this section we present a brief survey of some of the published research on
statistical perspectives, methods, models and algorithms that are targeted to Big
Data. As above, the survey is confined to the last 5 years, commencing with the
most recent contributions. Bayesian approaches are reserved for the next section.

Among the brief surveys of the relevant literature in Table 2.3, we include
detailed surveys of three papers which are more generic in explaining the role of
statistics and statistical methods in Big Data along with recent developments in this
area.

Wang et al. [191] summarised the published literature on recent methodological
developments for Big Data in three broad groups: subsampling, which calculates a
statistic in many subsamples taken from the data and then combining the results
[144]; divide and conquer, the principle of which is to break a dataset into
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Table 2.2 Brief survey of relevant literature under identified classes

Features and challenges

• The general features of Big Data are volume, variety, velocity, veracity, value [52, 160]
and some salient features include massive sample sizes and high dimensionality [160].

• Many challenges of Big Data regarding storage, processing, analysis and privacy are
identified in the literature [52, 63, 65, 140, 160].

Infrastructure

• To manage and analyse Big Data, infrastructural support is needed such as sufficient
storage technologies and data management systems. These are being continuously
developed and improved. MangoDB, Terrastore and RethhinkDb are some examples
of the storage technologies; more on evolution technologies with their strengths,
weaknesses, opportunities and threats are available in [165].

• To analyse Big Data, parallel processing systems and scalable algorithms are needed.
MapReduce is one of the pioneering data processing systems [206]. Some other useful
and popular tools to handle Big Data are Apache, Hadoop, Spark [10].

Cloud computing

• Cloud computing, the practice of using a network of remote servers hosted on the
Internet rather than a local server or a personal computer, plays a key role in Big Data
analysis by providing required infrastructure needed to store, analyse, visualise and
model Big Data using scalable and adaptive systems [11].

• Opportunities and challenges of cloud computing technologies, future trends and
application areas are widely discussed in the literature [32, 175, 201] and new
developments on cloud computing are proposed to overcome known challenges,
such as collaborative anomaly detection [130], hybrid approach for scalable sub-tree
anonymisation using MapReduce on cloud [205] etc.

Applications (3 examples)

• Big Data has made it possible to analyse social behaviour and an individual’s
interactions with social systems based on social media usage [5, 37, 164]. Discussions
on challenges and future of social science research using Big Data have been made in
the literature [39, 164].

• Research involving Big Data in medicine, public health, biomedical and health infor-
matics has increased exponentially over the last decade [19, 28, 46, 114, 153, 158].
Some examples include infectious disease research [16, 82], developing personalised
medicine and health care [9, 182] and improving cardiovascular care [159].

• Analysis of Big Data is used to solve many real world problems in business, in
particular, using Big Data analytics for innovations in leading organisations [122],
predictive analytics in retail [31], analysis of business risks and benefits [154],
development of market strategies [60] and so on. The opportunities and challenges
of Big Data in e-commerce and Big Data integration in business processes can be
found in the survey articles by Akter and Wamba [2] and Wamba et al. [184].

(continued)
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Table 2.2 (continued)

Machine learning methods

• Machine learning is an interdisciplinary field of research primarily focusing on
theory, performance, properties of learning systems and algorithms [149]. Traditional
machine learning is evolving to tackle the additional challenges of Big Data [4, 149].

• Some examples of developments in machine learning theories and algorithms for
Big Data include high performance machine learning toolbox [3], scalable machine
learning online services for Big Data real time analysis [14].

• There is a large and increasing research on specific applications of machine learning
tools for Big Data in different disciplines. For example, [138] discussed the future
of Big Data and machine learning in clinical medicine; [13] discussed a classifier
specifically for medical Big Data and [26] reviewed the state of art and future
prospects of machine learning and Big Data in radiation oncology.

smaller subsets to analyse these in parallel and combine the results at the end
[169]; and online updating of streaming data [162], based on online recursive
analytical processing. He summarised the following methods in the first two
groups: subsampling based methods (bag of little bootstraps, leveraging, mean log
likelihood, subsample based MCMC), divide and conquer (aggregated estimating
equations, majority voting, screening with ultra high dimension, parallel MCMC).
The authors, after reviewing existing online updating methods and algorithms,
extended the online updating of stream data method by including criterion based
variable selection with online updating. The authors also discussed the available
software packages (open source R as well as commercial software) developed to
handle computational complexity involving Big Data. For breaking the memory
barrier using R, the authors cited and discussed several data management pack-
ages (sqldf, DBI, RSQLite, filehash, bigmemory, ff) and packages for numerical
calculation (speedglm, biglm, biganalytics, ffbase, bigtabulate, bigalgebra, bigpca,
bigrf, biglars, PopGenome). The R packages for breaking computing power were
cited and discussed in two groups: packages for speeding up (compiler, inline,
Rcpp, RcpEigen, RcppArmadilo, RInside, microbenchmark, proftools, aprof, line-
prof, GUIprofiler) and packages for scaling up (Rmpi, snow, snowFT, snowfall,
multicore, parallel, foreach, Rdsm, bigmemory, pdpMPI, pbdSLAP, pbdBASE, pbd-
MAT, pbdDEMO, Rhipe, segue, rhbase, rhdfs, rmr, plymr, ravroSparkR, pnmath,
pnmath0, rsprng, rlecuyer, doRNG, gputools, bigvis). The authors also discussed
the developments in Hadoop, Spark, OpenMP, API and using FORTRAN and C++
from R in order to create flexible programs for handling Big Data. The article also
presented a brief summary about the commercial statistical software, e.g., SAS,
SPSS, MATLAB. The study included a case study of fitting a logistic model to a
massive data set on airline on-time performance data from the 2009 ASA Data Expo
mentioning the use of some R packages discussed earlier to handle the problem with
memory and computational capacity. Overall, this study provided a comprehensive
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Table 2.3 Brief survey and classification of literature on statistical approaches to Big Data

Topic: Discussion article

Author: Dunson [61]

• Discussed the background of Big Data from the perspectives of the machine learning
and statistics communities.

• Listed the differences in the methods and inferences as replicability, uncertainty
quantification, sampling, selection bias and measurement error drawn from statistical
perspectives to those of machine learning.

• Identified the statistical challenges for high dimensional complex data (Big Data)
in quantifying uncertainty, scaling up sampling methods and selection of priors in
Bayesian methods.

Topic: Survey

Author: Nongxa [136]

• Identified challenges of Big Data as: high dimensionality, heterogeneity and incom-
pleteness, scale, timeliness, security and privacy.

• Pointed out that mathematical and statistical challenges of Big Data require updating
the core knowledge areas (i.e., linear algebra, multivariable calculus, elementary
probability and statistics, coding or programming) to more advanced topics (i.e.,
randomised numerical linear algebra, topological data analysis, matrix and tensor
decompositions, random graphs; random matrices and complex networks ) in mathe-
matical and statistical education.

Author: Franke et al. [67]

• Reviewed different strategies of analysis as: data wrangling, visualisation, dimension
reduction, sparsity regularisation, optimisation, measuring distance, representation
learning, sequential learning and provided detailed examples of applications.

Author: Chen et al. [45]

• Emphasised the importance of statistical knowledge and skills in Big Data Analytics
using several examples.

• Discussed some statistical methods that are useful in the context of Big Data as:
confirmatory and exploratory data analysis tools, data mining methods including
supervised learning (classification, regression/prediction) and unsupervised learning
(cluster analysis, anomaly detection, association rule learning), visualisation tech-
niques etc.

• Elaborated on the computational skills needed for statisticians in data acquisition, data
processing, data management and data analysis.

Author: Hoerl et al. [87]

• Provided a background of Big Data reviewing relevant articles.
• Discussed the importance of statistical thinking in Big Data problems reviewing some

misleading results produced by sophisticated analysis of Big Data without involving
statistical principles.

• Elaborated on the roles of statistical thinking for data quality, domain knowledge,
analysis strategies in order to solve complex unstructured problems involving Big
Data.

(continued)
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Table 2.3 (continued)

Topic: Survey of methods & extension

Author: Wang et al. [191]

• Reviewed statistical methods and software packages in R and recently developed tools
to handle Big Data, focusing on three groups: sub-sampling, divide and conquer and
online processing.

• Extended the online updating approach by employing variable selection criteria.

Topic: Methods survey, new methods

Author: Genuer et al. [72]

• Reviewed proposals dealing with scaling random forests to Big Data problems.
• Discussed subsampling, parallel implementations, online processing of random

forests in detail.
• Proposed five variants of Random Forests for Big Data.

Author: Wang and Xu [185]

• Reviewed different clustering methods applicable to Big Data situations.
• Proposed a clustering procedure with adaptive density peak detection applying

multivariate kernel estimation and demonstrated the performance through simulation
studies and analysis of a few benchmark gene expression data sets.

• Developed a R-package “ADPclust” to implement the proposed methods.

Author: Wang et al. [192]

• Proposed a method and algorithm for online updating implementing bias corrections
with extensions for application in a generalised linear model (GLM) setting.

• Evaluated the proposed strategies in comparison with previous algorithms [162].

Topic: New methods and algorithms

Author: Liu et al. [111]

• Proposed a novel sparse GLM with L0 approximation for feature selection and
prediction in big omics data scenarios.

• Provided novel algorithm and software in MATLAB (L0ADRIDGE) for performing
L0 penalised GLM in ultra high dimensional Big Data.

• Comparison of performance with other methods (SCAD, MC+) using simulation and
real data analysis (mRNA, microRNA, methylation data from TGCA ovarian cancer).

Author: Schifano et al. [162]

• Developed new statistical methods and iterative algorithms for analysing streaming
data.

• Proposed methods to enable update of the estimations and models with the arrival of
new data.

(continued)
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Table 2.3 (continued)

Author: Allen et al. [6]

• Proposed generalisations to Principal Components Analysis (PCA) to take into account
structural relationships in Big Data settings.

• Developed fast computational algorithms using the proposed methods (GPCA, sparse GPCA
and functional GPCA) for massive data sets.

Topic: New algorithms

Author: Wang and Samworth [188]

• Proposed a new algorithm “inspect” (informative sparse projection for estimation of change
points) to estimate the number and location of change points in high dimensional time series.

• The algorithm, starting from a simple time series model, was extended to detect multiple
change points and was also extended to have spatial or temporal dependence, assessed using
simulation studies and real data application.

Author: Yu and Lin [203]

• Extended the alternating direction method of multipliers (ADMM) to solve penalised
quantile regression problems involving massive data sets having faster computation and no
loss of estimation accuracy.

Author: Zhang and Yang [204]

• Proposed new algorithms using ridge regression to make it efficient for handling Big Data.

Author: Doornik and Hendry [58]

• Discussed the statistical model selection algorithm “autometrics” for econometric data [57]
with its application to fat Big Data (having larger number of variables than the number of
observations).

• Extended algorithms for tackling computational issues of fat Big Data applying block
searches and re-selection by lasso for correlated regressors.

Author: Sysoev et al. [174]

• Presented efficient algorithms to estimate bootstrap or jackknife type confidence intervals for
fitted Big Data sets by Multivariate Monotonic Regression.

• Evaluated the performance of the proposed algorithms using a case study on death in
coronary heart disease for a large population.

Author: Pehlivanlı [143]

• Proposed a novel approach for feature selection from high dimensional data.
• Tested the efficiency of the proposed method using sensitivity, specificity, accuracy and ROC

curve.
• Demonstrated the approach on micro-array data.
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survey and discussion of state-of-the-art statistical methodologies and software
development for handling Big Data.

Chen et al. [45] presented their views on the challenges and importance of
Big Data and explained the role of statistics in Big Data Analytics based on a
survey of relevant literature. This study emphasised the importance of statistical
knowledge and skills in Big Data Analytics using several examples. As detailed in
Table 2.3, the authors broadly discussed a range of statistical methods which can
be really helpful in better analysis of Big Data, such as, the use of exploratory data
analysis principle in Statistics to investigate correlations among the variables in the
data or establish causal relationships between response and explanatory variables
in the Big Data. The authors specifically mentioned hypothesis testing, predictive
analysis using statistical models, statistical inference using uncertainty estimation
to be some key tools to use in Big Data analysis. The authors also explained that
the combination of statistical knowledge can be combined with the Data mining
methods such as unsupervised learning (cluster analysis, Association rule learning,
anomaly detection) and supervised learning (regression and classification) can be
beneficial for Big Data analysis. The challenges for the statisticians in coping
with Big Data were also described in this article, with particular emphasis on
computational skills in data acquisition (knowledge of programming languages,
knowledge of web and core communication protocols), data processing (skills
to transform voice or image data to numeric data using appropriate software or
programming), data management (knowledge about database management tools and
technologies, such as NoSQL) and scalable computation (knowledge about parallel
computing, which can be implemented using MapReduce, SQL etc.).

As indicated above, many of the papers provide a summary of the published
literature which is not replicated here. Some of these surveys are based on large
thematic programs that have been held on this topic. For example, the paper by
Franke et al. [67] is based on presentations and discussions held as part of the
program on Statistical Inference, Learning and Models for Big Data which was held
in Canada in 2015. The authors discussed the four V’s (volume, variety, veracity
and velocity) of Big Data and mentioned some more challenges in Big Data analysis
which are beyond the complexities associated with the four V’s. The additional “V”
mentioned in this article is veracity. Veracity refers to biases and noise in the data
which may be the result of the heterogeneous structure of the data sources, which
may make the sample non representative of the population. Veracity in Big Data is
often referred to as the biggest challenge compared with the other V’s. The paper
reviewed the common strategies for Big Data analysis starting from data wrangling
which consists of data manipulation techniques for making the data eligible for
analysis; visualisation which is often an important tool to understand the underlying
patterns in the data and is the first formal step in data analysis; reducing the
dimension of data using different algorithms such as Principal Component Analysis
(PCA) to make Big Data models tractable and interpretable; making models more
robust by enforcing sparsity in the model by the use of regularisation techniques
such as variable selection and model fitting criteria; using optimisation methods
based on different distance measures proposed for high dimensional data and by
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using different learning algorithms such as representation learning and sequential
learning. Different applications of Big Data were shown in public health, health
policy, law and order, education, mobile application security, image recognition and
labelling, digital humanities and materials science.

There are few other research articles focused on statistical methods tailored to
specific problems, which are not included in Table 2.3. For example, Castruccio
and Genton [40] proposed a statistics-based algorithm using a stochastic space-time
model with more than 1 billion data points to reproduce some features of a climate
model. Similarly, [123] used various statistical methods to obtain associations
between drug-outcome pairs in a very big longitudinal medical experimental
database (with information on millions of patients) with a detailed discussion on the
big results problem by providing a comparison of statistical and machine learning
approaches. Finally, Hensman et al. [84] proposed stochastic variational inference
for Gaussian processes which makes the application of Gaussian process to huge
data sets (having millions of data points).

From the survey of some relevant literature related to statistical perspectives for
analysing Big Data, it can be seen that along with scaling up existing algorithms,
new methodological developments are also in progress in order to face the chal-
lenges associated with Big Data.

2.5 Bayesian Approaches in Big Data

As described in the Introduction, the intention of this survey is to commence with a
broad scope of the literature on Big Data, then focus on statistical methods for Big
Data, and finally to focus in particular on Bayesian approaches for modelling and
analysis of Big Data. This section consists of a survey of published literature on the
last of these.

There are two defining features of Bayesian analysis: (1) the construction of
the model and associated parameters and expectations of interest, and (2) the
development of an algorithm to obtain posterior estimates of these quantities. In
the context of Big Data, the resultant models can become complex and suffer
from issues such as unavailability of a likelihood, hierarchical instability, parameter
explosion and identifiability. Similarly, the algorithms can suffer from too much
or too little data given the model structure, as well as problems of scalability and
cost. These issues have motivated the development of new model structures, new
methods that avoid the need for models, new Markov chain Monte Carlo (MCMC)
sampling methods, and alternative algorithms and approximations that avoid these
simulation-based approaches. We discuss some of the concomitant literature under
two broad headings, namely computation and models realising that there is often
overlap in cited papers.
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2.5.1 Bayesian Computation

In Bayesian framework a main-stream computational tool has been the Markov
chain Monte Carlo (MCMC). The traditional MCMC methods do not scale well
because they need to iterate through the full data set at each iteration to evaluate
the likelihood [199]. Recently several attempts have been made to scale MCMC
methods up to massive data. A widely used strategy to overcome the computational
cost is to distribute the computational burden across a number of machines. The
strategy is generally referred to as divide-and-conquer sampling. This approach
breaks a massive data set into a number of easier to handle subsets, obtains posterior
samples based on each subset in parallel using multiple machines and finally
combines the subset posterior inferences to obtain the full-posterior estimates [169].
The core challenge is the recombination of sub-posterior samples to obtain true
posterior samples. A number of attempts have been made to address this challenge.

Neiswanger et al. [134] and White et al. [195] approximated the sub-posteriors
using kernel density estimation and then aggregated the sub-posteriors by taking
their product. Both algorithms provided consistent estimates of the posterior.
Neiswanger et al. [134] provided faster MCMC processing since it allowed the
machine to process the parallel MCMC chains independently. However, one
limitation of the asymptotically embarrassing parallel MCMC algorithm [134] is
that it only works for real and unconstrained posterior values, so there is still scope
of works to make the algorithm work under more general settings.

Wang and Dunson [187] adopted a similar approach of parallel MCMC but used a
Weierstrass transform to approximate the sub-posterior densities instead of a kernel
density estimate. This provided better approximation accuracy, chain mixing rate
and potentially faster speed for large scale Bayesian analysis.

Scott et al. [163] partitioned the data at random and performed MCMC inde-
pendently on each subset to draw samples from posterior given the data subset.
To obtain consensus posteriors they proposed to average samples across subsets and
showed the exactness of the algorithm under a Gaussian assumption. This algorithm
is scalable to a very large number of machines and works in cluster, single multi
core or multiprocessor computers or any arbitrary collection of computers linked by
a high speed network. The key weakness of consensus MCMC is it does not apply
to non Gaussian posterior.

Minsker et al. [128] proposed dividing a large set of independent data into a
number of non-overlapping subsets, making inferences on the subsets in parallel and
then combining the inferences using the median of the subset posteriors. The median
posterior (M-posterior) is constructed from the subset posteriors using Weiszfeld’s
algorithm, which provides a scalable algorithm for robust estimation.

Guhaniyogi and Banerjee [77] extended this notion to spatially dependent data,
provided a scalable divide and conquer algorithm to analyse big spatial data sets
named spatial meta kriging. The multivariate extension of spatial meta kriging has
been addressed by Guhaniyogi and Banerjee [78]. These approaches of meta kriging
are practical developments for Bayesian spatial inference for Big Data, specifically
with “big-N” problems [98].
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Wu and Robert [199] proposed a new and flexible divide and conquer framework
by using re-scaled sub-posteriors to approximate the overall posterior. Unlike
other parallel approaches of MCMC, this method creates artificial data for each
subset, and applies the overall priors on the artificial data sets to get the subset
posteriors. The sub-posteriors are then re-centred to their common mean and then
averaged to approximate the overall posterior. The authors claimed this method to
have statistical justification as well as mathematical validity along with sharing
same computational cost with other classical parallel MCMC approaches such as
consensus Monte Carlo, Weierstrass sampler. Bouchard-Côté et al. [30] proposed a
non-reversible rejection-free MCMC method, which reportedly outperforms state-
of-the-art methods such as: HMC, Firefly by having faster mixing rate and lower
variances for the estimators for high dimensional models and large data sets.
However, the automation of this method is still a challenge.

Another strategy for scalable Bayesian inference is the sub-sampling based
approach. In this approach, a smaller subset of data is queried in the MCMC
algorithm to evaluate the likelihood at every iteration. Maclaurin and Adams [116]
proposed to use an auxiliary variable MCMC algorithm that evaluates the likelihood
based on a small subset of the data at each iteration yet simulates from the exact
posterior distribution. To improve the mixing speed, Korattikara et al. [95] used
an approximate Metropolis Hastings (MH) test based on a subset of data. A similar
approach is used in [17], where the accept/reject step of MH evaluates the likelihood
of a random subset of the data. Bardenet et al. [18] extended this approach by
replacing a number of likelihood evaluations by a Taylor expansion centred at
the maximum of the likelihood and concluded that their method outperforms the
previous algorithms [95].

The scalable MCMC approach was also improved by Quiroz et al. [150] using
a difference estimator to estimate the log of the likelihood accurately using only
a small fraction of the data. Quiroz et al. [151] introduced an unbiased estimator
of the log likelihood based on weighted sub-sample which is used in the MH
acceptance step in speeding up based on a weighted MCMC efficiently. Another
scalable adaptation of MH algorithm was proposed by Maire et al. [119] to speed
up Bayesian inference in Big Data namely informed subsampling MCMC which
involves drawing of subsets according to a similarity measure (i.e., squared L2
distance between full data and maximum likelihood estimators of subsample)
instead of using uniform distribution. The algorithm showed excellent performance
in the case of a limited computational budget by approximating the posterior for a
tall dataset.

Another variation of MCMC in Big Data has been made by Strathmann et al.
[170]. These authors approximated the posterior expectation by a novel Bayesian
inference framework for approximating the posterior expectation from a different
perspective suitable for Big Data problems, which involves paths of partial pos-
teriors. This is a parallelisable method which can easily be implemented using
existing MCMC techniques. It does not require the simulation from full posterior,
thus bypassing the complex convergence issues of kernel approximation. However,
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there is still scope for future work to look at computation-variance trade off and
finite time bias produced by MCMC.

Hamiltonian Monte Carlo (HMC) sampling methods provide powerful and
efficient algorithms for MCMC using high acceptance probabilities for distant
proposals [44]. A conceptual introduction to HMC is presented by Betancourt [25].
Chen et al. [44] proposed a stochastic gradient HMC using second-order Langevin
dynamics. Stochastic Gradient Langevin Dynamics (SGLD) have been proposed
as a useful method for applying MCMC to Big Data where the accept-reject step
is skipped and decreasing step size sequences are used [1]. For more detailed
and rigorous mathematical framework, algorithms and recommendations, interested
readers are referred to [178].

A popular method of scaling Bayesian inference, particularly in the case of
analytically intractable distributions, is Sequential Monte Carlo (SMC) or particle
filters [24, 48, 80]. SMC algorithms have recently become popular as a method
to approximate integrals. The reasons behind their popularity include their easy
implementation and parallelisation ability, much needed characteristics in Big Data
implementations [100]. SMC can approximate a sequence of probability distribu-
tions on a sequence of spaces with an increasing dimension by applying resampling,
propagation and weighting starting with the prior and eventually reaching to the
posterior of interest of the cloud of particles. Gunawan et al. [80] proposed a sub-
sampling SMC which is suitable for parallel computation in Big Data analysis,
comprising two steps. First, the speed of the SMC is increased by using an unbiased
and efficient estimator of the likelihood, followed by a Metropolis within Gibbs
kernel. The kernel is updated by a HMC method for model parameters and a block-
pseudo marginal proposal for the auxiliary variables [80]. Some novel approaches
of SMC include: divide-and-conquer SMC [105], multilevel SMC [24], online SMC
[75] and one pass SMC [104], among others.

Stochastic variational inference (VI, also called Variational Bayes, VB) is a faster
alternative to MCMC [88]. It approximates probability densities using a determinis-
tic optimisation method [109] and has seen widespread use to approximate posterior
densities for Bayesian models in large-scale problems. The interested reader is
referred to [29] for a detailed introduction to variational inference designed for
statisticians, with applications. VI has been implemented in scaling up algorithms
for Big Data. For example, a novel re-parameterisation of VI has been implemented
for scaling latent variable models and sparse GP regression to Big Data [69].

There have been studies which combined the VI and SMC in order to take advan-
tage from both strategies in finding the true posterior [56, 133, 152]. Naesseth et al.
[133] employed a SMC approach to get an improved variational approximation,
Rabinovich et al. [152] by splitting the data into block, applied SMC to compute
partial posterior for each block and used a variational argument to get a proxy
for the true posterior by the product of the partial posteriors. The combination
of these two techniques in a Big Data context was made by Donnet and Robin
[56]. Donnet and Robin [56] proposed a new sampling scheme called Shortened
Bridge Sampler, which combines the strength of deterministic approximations of
the posterior that is variational Bayes with those of SMC. This sampler resulted in
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reduced computational time for Big Data with huge numbers of parameters, such as
data from genomics or network.

Guhaniyogi et al. [79] proposed a novel algorithm for Bayesian inference in the
context of massive online streaming data, extending the Gibbs sampling mechanism
for drawing samples from conditional distributions conditioned on sequential point
estimates of other parameters. The authors compared the performance of this
conditional density filtering algorithm in approximating the true posterior with SMC
and VB, and reported good performance and strong convergence of the proposed
algorithm.

Approximate Bayesian computation (ABC) is gaining popularity for statistical
inference with high dimensional data and computationally intensive models where
the likelihood is intractable [125]. A detailed overview of ABC can be found in [167]
and asymptotic properties of ABC are explored in [68]. ABC is a likelihood free
method that approximates the posterior distribution utilising imperfect matching
of summary statistics [167]. Improvements on existing ABC methods for efficient
estimation of posterior density with Big Data (complex and high dimensional data
with costly simulations) have been proposed by Izbicki et al. [90]. The choice of
summary statistics from high dimensional data is a topic of active discussion; see,
for example, [90, 166]. Pudlo et al. [147] provided a reliable and robust method of
model selection in ABC employing random forests which was shown to have a gain
in computational efficiency.

There is another aspect of ABC recently in terms of approximating the likeli-
hood using Bayesian Synthetic likelihood or empirical likelihood [59]. Bayesian
synthetic likelihood arguably provides computationally efficient approximations
of the likelihood with high dimensional summary statistics [126, 196]. Empirical
likelihood, on the other hand is a non-parametric technique of approximating the
likelihood empirically from the data considering the moment constraints; this has
been suggested in the context of ABC [127], but has not been widely adopted. For
further reading on empirical likelihood, see [141].

Classification and regression trees are also very useful tools in data mining and
Big Data analysis [33]. There are Bayesian versions of regression trees such as
Bayesian Additive Regression Trees (BART) [7, 47, 93]. The BART algorithm has
also been applied to the Big Data context and sparse variable selection by Rocková
and van der Pas [157], van der Pas and Rockova [181], and Linero [106].

Some other recommendations to speed up computations are to use graphics
processing units (see, e.g., [101, 171]) and parallel programming approaches (see,
e.g., [42, 71, 76, 197]).

2.5.2 Bayesian Modelling

The extensive development of Bayesian computational solutions has opened the
door to further developments in Bayesian modelling. Many of these new methods
are set in the context of application areas. For example, there have been applications



2 A Survey of Bayesian Statistical Approaches for Big Data 33

of ABC for Big Data in many different fields [62, 102]. For example, Dutta et al.
[62] developed a high performance computing ABC approach for estimation of
parameters in platelets deposition, while Lee et al. [102] proposed ABC methods
for inference in high dimensional multivariate spatial data from a large number
of locations with a particular focus on model selection for application to spatial
extremes analysis. Bayesian mixtures are a popular modelling tool. VB and ABC
techniques have been used for fitting Bayesian mixture models to Big Data
[29, 88, 124, 129, 177].

Variable selection in Big Data (wide in particular, having massive number of vari-
ables) is a demanding problem. Liquet et al. [107] proposed multivariate extensions
of the Bayesian group lasso for variable selection in high dimensional data using
Bayesian hierarchical models utilising spike and slab priors with application to gene
expression data. The variable selection problem can also be solved employing ABC
type algorithms. Liu et al. [112] proposed a sampling technique, ABC Bayesian
forests, based on splitting the data, useful for high dimensional wide data, which
turns out to be a robust method in identifying variables with larger marginal
inclusion probability.

Bayesian non-parametrics [131] have unbounded capacity to adjust unseen data
through activating additional parameters that were inactive before the emergence
of new data. In other words, the new data are allowed to speak for themselves in
non-parametric models rather than imposing an arguably restricted model (that was
learned on an available data) to accommodate new data. The inherent flexibility
of these models to adjust with new data by adapting in complexity makes them
more suitable for Big Data as compared to their parametric counterparts. For a brief
introduction to Bayesian non-parametric models and a nontechnical overview of
some of the main tools in the area, the interested reader is referred to Ghahramani
[73].

The popular tools in Bayesian non-parametrics include Gaussian processes
(GP) [156], Dirichlet processes (DP) [155], Indian buffet process (IBP) [74] and
infinite hidden Markov models (iHMM) [20]. GP have been used for a variety
of applications [35, 41, 49] and attempts have been made to scale it to Big Data
[53, 84, 85, 179]. DP have seen successes in clustering and faster computational
algorithms are being adopted to scale them to Big Data [71, 104, 115, 186, 189]. IBP
are used for latent feature modeling, where the number of features are determined in
a data-driven fashion and have been scaled to Big Data through variational inference
algorithms [211]. Being an alternative to classical HMM, one of the distinctive
properties of iHMM is that it infers the number of hidden states in the system from
the available data and has been scaled to Big Data using particle filtering algorithms
[180].

Gaussian Processes are also employed in the analysis of high dimensional spa-
tially dependent data [15]. Banerjee [15] provided model-based solutions employing
low rank GP and nearest neighbour GP (NNGP) as scalable priors in a hierarchical
framework to render full Bayesian inference for big spatial or spatio temporal
data sets. Zhang et al. [208] extended the applicability of NNGP for inference of
latent spatially dependent processes by developing a conjugate latent NNGP model
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as a practical alternative to onerous Bayesian computations. Use of variational
optimisation with structured Bayesian GP latent variable model to analyse spatially
dependent data is made in in Atkinson and Zabaras [12]. For a survey of methods
of analysis of massive spatially dependent data including the Bayesian approaches,
see Heaton et al. [83].

Another Bayesian modelling approach that has been used for big and complex
data is Bayesian Networks (BN). This methodology has generated a substantial
literature examining theoretical, methodological and computational approaches, as
well as applications [176]. BN belong to the family of probabilistic graphical models
and based on direct acyclic graphs which are very useful representation of causal
relationship among variables [23]. BN are used as efficient learning tool in Big
Data analysis integrated with scalable algorithms [190, 209]. For a more detailed
understanding of BN learning from Big Data, please see Tang et al. [176].

Classification is also an important tool for extracting information from Big
Data and Bayesian classifiers, including Naive Bayes classifier (NBC) are used in
Big Data classification problems [94, 110]. Parallel implementation of NBC has
been proposed by Katkar and Kulkarni [94]. Moreover, Liu et al. [110] evaluated
the scalability of NBC in Big Data with application to sentiment classification of
millions of movie survey and found NBC to have improved accuracy in Big Data.
Ni et al. [135] proposed a scalable multi step clustering and classification algorithm
using Bayesian nonparametrics for Big Data with large n and small p which can also
run in parallel.

The past 15 years has also seen an increase in interest in Empirical Likelihood
(EL) for Bayesian modelling. The idea of replacing the likelihood with an empirical
analogue in a Bayesian framework was first explored in detail by Lazar [99].
The author demonstrated that this Bayesian Empirical Likelihood (BEL) approach
increases the flexibility of EL approach by examining the length and coverage
of BEL intervals. The paper tested the methods using simulated data sets. Later,
Schennach [161] provided probabilistic interpretations of BEL exploring moment
condition models with EL and provided a non parametric version of BEL, namely
Bayesian Exponentially Tilted Empirical Likelihood (BETEL). The BEL methods
have been applied in spatial data analysis in Chaudhuri and Ghosh [43] and Porter
et al. [145, 146] for small area estimation.

We acknowledge that there are many more studies on the application of Bayesian
approaches in different fields of interest which are not included in this survey. There
are also other survey papers on overlapping and closely related topics. For example,
Zhu et al. [210] describes Bayesian methods of machine learning and includes some
of the Bayesian inference techniques reviewed in the present study. However, the
scope and focus of this survey is different from that of Zhu et al. [210], which was
focused around the methods applicable to machine learning.
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2.6 Conclusions

We are living in the era of Big Data and continuous research is in progress to make
most use of the available information. The current chapter has attempted to survey
the recent developments made in Bayesian statistical approaches for handling Big
Data along with a general overview and classification of the Big Data literature with
brief survey in last 5 years. This survey chapter provides relevant references in Big
Data categorised in finer classes, a brief description of statistical contributions to
the field and a more detailed discussion of the Bayesian approaches developed and
applied in the context of Big Data.

On the basis of the surveys made above, it is clear that there has been a huge
amount of work on issues related to cloud computing, analytics infrastructure and
so on. However, the amount of research conducted from statistical perspectives is
also notable. In the last 5 years, there has been an exponential increase in published
studies focused on developing new statistical methods and algorithms, as well as
scaling existing methods. These have been summarised in Sect. 2.4, with particular
focus on Bayesian approaches in Sect. 2.5. In some instances citations are made
outside of the specific period (see Sect. 2.2) to refer the origin of the methods which
are currently being applied or extended in Big Data scenarios.

With the advent of computational infrastructure and advances in programming
and software, Bayesian approaches are no longer considered as being very compu-
tationally expensive and onerous to execute for large volumes of data, that is Big
Data. Traditional Bayesian methods are now becoming much more scalable due to
the advent of parallelisation of MCMC algorithms, divide and conquer and/or sub-
sampling methods in MCMC, and advances in approximations such as HMC, SMC,
ABC, VB and so on. With the increasing volume of data, non-parametric Bayesian
methods are also gaining in popularity.

This survey chapter aimed to survey a range of methodological and computa-
tional advancement made in Bayesian Statistics for handling the difficulties arose
by the advent of Big Data. By not focusing to any particular application, this
chapter provided the readers with a general overview of the developments of
Bayesian methodologies and computational algorithms for handling these issues.
The survey has revealed that most of the advancements in Bayesian Statistics for Big
Data have been around computational time and scalability of particular algorithms,
concentrating on estimating the posterior by adopting different techniques. However
the developments of Bayesian methods and models for Big Data in the recent
literature cannot be overlooked. There are still many open problems for further
research in the context of Big Data and Bayesian approaches, as highlighted in this
chapter.

Based on the above discussion and the accompanying survey presented in this
chapter, it is apparent that to address the challenges of Big Data along with the
strength of Bayesian statistics, research on both algorithms and models are essential.
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Chapter 3
Bayesian Neural Networks:
An Introduction and Survey

Ethan Goan and Clinton Fookes

Abstract Neural Networks (NNs) have provided state-of-the-art results for many
challenging machine learning tasks such as detection, regression and classification
across the domains of computer vision, speech recognition and natural language pro-
cessing. Despite their success, they are often implemented in a frequentist scheme,
meaning they are unable to reason about uncertainty in their predictions. This article
introduces Bayesian Neural Networks (BNNs) and the seminal research regarding
their implementation. Different approximate inference methods are compared, and
used to highlight where future research can improve on current methods.

3.1 Introduction

Biomimicry has long served as a basis for technological developments. Scientists
and engineers have repeatedly used knowledge of the physical world to emulate
nature’s elegant solutions to complex problems which have evolved over billions of
years. An important example of biomimicry in statistics and machine learning has
been the development of the perceptron [1], which proposes a mathematical model
based on the physiology of a neuron. The machine learning community has used this
concept1 to develop statistical models of highly interconnected arrays of neurons to
create Neural Networks (NNs).

Though the concept of NNs has been known for many decades, it is only recently
that applications of these network have seen such prominence. The lull in research
and development for NNs was largely due to three key factors: lack of sufficient
algorithms to train these networks, the large amount of data required to train

1While also relaxing many of the constraints imposed by a physical model of a natural neuron [2].
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complex networks and the large amount of computing resources required during
the training process. In 1986, Rumelhart et al. [3] introduced the backpropagation
algorithm to address the problem of efficient training for these networks. Though an
efficient means of training was available, considerable compute resources was still
required for the ever increasing size of new networks. This problem was addressed
in [4–6] where it was shown that general purpose GPUs could be used to efficiently
perform many of the operations required for training. As digital hardware continued
to advance, the number of sensors able to capture and store real world data increased.
With efficient training methods, improved computational resources and large data
sets, training of complex NNs became truly feasible.

In the vast majority of cases, NNs are used within a frequentist perspective; using
available data, a user defines a network architecture and cost function, which is then
optimised to allow us to gain point estimate predictions. Problems arise from this
interpretation of NNs. Increasing the number of parameters (often called weights in
machine learning literature), or the depth of the model increases the capacity of the
network, allowing it to represent functions with greater non-linearities. This increase
in capacity allows for more complex tasks to be addressed with NNs, though when
frequentist methodologies are applied, leaves them highly prone to overfitting to the
training data. The use of large data sets and regularisation methods such as finding a
MAP estimate can limit the complexity of functions learnt by the networks and aid
in avoiding overfitting.

Neural Networks have provided state-of-the-art results for numerous machine
learning and Artificial intelligence (AI) applications, such as image classification
[6–8], object detection [9–11] and speech recognition [12–15]. Other networks
such as the AlphaGo model developed by DeepMind [16] have emphasised the
potential of NNs for developing AI systems, garnering a wide audience interested
in the development of these networks. As the performance of NNs has continued
to increase, the interest in their development and adoption by certain industries
becomes more prominent. NNs are currently used in manufacturing [17], asset
management [18] and human interaction technologies [19, 20].

Since the deployment of NNs in industry, there have been a number of incidents
where failings in these systems has led to models acting unethically and unsafely.
This includes models demonstrating considerable gender and racial bias against
marginalised groups [21–23] or to more extreme cases resulting in loss of life [24,
25]. NNs are a statistical black-box models, meaning that the decision process is
not based on a well-defined and intuitive protocol. Instead decisions are made in
an uninterpretable manner, with hopes that the reasonable decisions will be made
based on previous evidence provided in training data.2 As such, the implementation
of these systems in social and safety critical environments raises considerable ethical
concerns. The European Union released a new regulation3 which effectively states

2Due to this black-box nature, the performance of these models is justified entirely through
empirical means.
3This regulation came into effect on the 25th of May, 2018 across the EU [26].
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(a) (b)

Fig. 3.1 Comparison of neural network to traditional probabilistic methods for a regression task,
with no training data in the purple region. (a) Regression output using a neural network with 2
hidden layers; (b) Regression using a Gaussian Process framework, with grey bar representing ±2
std. from expected value

that users have a “right to an explanation” regarding decisions made by AI systems
[26, 27]. Without clear understanding of their operation or principled methods for
their design, experts from other domains remain apprehensive about the adoption of
current technology [28–30]. These limitations have motivated research efforts into
the field of Explainable AI [31].

Adequate engineering of NNs requires a sound understanding of their capabilities
and limitations; to identify their shortcomings prior to deployment as apposed
to the current practice of investigating these limitations in the wake of these
tragedies. With NNs being a statistical black-box, interpretation and explanation
of the decision making process eludes current theory. This lack of interpretation
and over-confident estimates provided by the frequentist perspective of common
NNs makes them unsuitable for high risk domains such as medical diagnostics
and autonomous vehicles. Bayesian statistics offers natural way to reason about
uncertainty in predictions, and can provide insight into how these decisions are
made.

Figure 3.1 compares Bayesian methods for performing regression with that of
a simple neural network, and illustrates the importance of measuring uncertainty.
While both methods perform well within the bounds of the training data, where
extrapolation is required, the probabilistic method provides a full distribution
of the function output as opposed to the point estimates provided by the NN.
The distribution over outputs provided by probabilistic methods allows for the
development of trustworthy models, in that they can identify uncertainty in a
prediction. Given that NNs are the most promising model for generating AI systems,
it is important that we can similarly trust their predictions.

A Bayesian perspective allows us to address many of the challenges currently
faced within NNs. To do this, a distribution is placed over the network parameters,
and the resulting network is then termed a Bayesian Neural Network (BNN). The
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goal of a BNN is to have a model of high capacity that exhibits the important
theoretical benefits of Bayesian analysis. Recent research has investigated how
Bayesian approximations can be applied to NNs in practice. The challenge with
these methods is deploying models that provide accurate predictions within reason-
able computation constraints.4

This document aims to provide an accessible introduction to BNNs, accompanied
by a survey of seminal works in the field and experiments to motivate discussion into
the capabilities and limits of current methods. A survey of all research items across
the Bayesian and machine learning literature related to BNNs could fill multiple
text books. As a result, items included in this survey only intend to inform the
reader on the overarching narrative that has motivated their research. Similarly,
derivations of many of they key results have been omitted, with the final result
being listed accompanied by reference to the original source. Readers inspired by
this exciting research area are encouraged to consult prior surveys: [32] which
surveys the early developments in BNNs, [33] which discusses the specifics of a full
Bayesian treatment for NNs, and [34] which surveys applications of approximate
Bayesian inference to modern network architectures.

This document should be suitable for all in the statistics field, though the primary
audience of interest are those more familiar with machine learning concepts. Despite
seminal references for new machine learning scholars almost equivalently being
Bayesian texts [2, 35], in practice there has been a divergence between much of
the modern machine learning and Bayesian statistics research. It is hoped that this
survey will help highlight similarities between some modern research in BNNs and
statistics, to emphasis the importance of a probabilistic perspective within machine
learning and to encourage future collaboration/unison between the machine learning
and statistics fields.

3.2 Literature Survey

3.2.1 Neural Networks

Before discussing a Bayesian perspective of NNs, it is important to briefly survey
the fundamentals of neural computation and to define the notation to be used
throughout the chapter. This survey will focus on the primary network structure
of interest, the Multi-Layer Perceptron (MLP) network. The MLP serves as the
basis for NNs, with modern architectures such as convolutional networks having
an equivalent MLP representation. Figure 3.2 illustrates a simple MLP with a single
hidden layer suitable for regression or classification. For this network with an input

4The term “reasonable” largely depends on the context. Many neural networks are currently trained
using some of the largest computing facilities available, containing thousands of GPU devices.
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Fig. 3.2 Example of a NN
architecture with a single
hidden layer for either binary
classification or 1-D
regression. Each node
represents a neuron or a state
where the summation and
activation of input states is
performed. Arrows are the
parameters (weights)
indicating the strength of
connection between neurons
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x of dimension N1, the output of the f network can be modelled as,

φj =
N1∑

i=1

a(xiw
1
ij ), (3.1)

fk =
N2∑

j=1

g(φjw
2
jk). (3.2)

The parameters w represent the weighted connection between neurons from sub-
sequent layers, and the superscripts denoting the layer number. Equation (3.1)
represents the output of the hidden layer, which will be of dimension N2. The kth

output of the network is then a summation over the N2 outputs from the prior hidden
layer. This modelling scheme can be expanded to include many hidden layers, with
the input of each layer being the output of the layer immediately prior. A bias value
is often added during each layer, though is omitted throughout this chapter in favour
of simplicity.

Equation (3.1) refers to the state of each neuron (or node) in the hidden layer. This
is expressed as an affine transform followed by a non-linear element wise transform
φ(·), which is often called an activation. For the original perceptron, activation
function used was the sign(·) function, though the use of this function has ceased
due to it’s derivative being equal to zero.5 More favourable activation functions
such as the Sigmoid, Hyperbolic Tangent (TanH), Rectified Linear Unit (ReLU)
and Leaky-ReLU have since replaced this the sign function [36, 37]. Figure 3.3
illustrates these functions along with their corresponding derivatives. When using

5When the derivative is defined, as is a piece-wise non-differentiable function at the origin.
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(a) (b)

(c) (d)

Fig. 3.3 Examples of commonly used activation functions in NNs. The output for each activation
is shown in blue and the numerical derivative of each function is shown in red. These functions are
(a) Sigmoid; (b) TanH; (c) ReLU; (d) Leaky-ReLU. Note the change in scale for the y-axis

the Sigmoid function, expression (3.1) is equivalent to logistic regression, meaning
that the output of the network becomes the sum of multiple logistic regression
models.

For a regression model, the function applied to the output g(·) will be the identity
function,6 and for binary classification will be a Sigmoid.

Equations (3.1) and (3.2) can be efficiently implemented using matrix repre-
sentations, and is often represented as such in machine learning literature. This is
achieved by stacking the input vector in our data set as a column in X. Forward
propagation can then be performed as,

� = a(XT W1), (3.3)

F = g(�W2). (3.4)

6Meaning no activation is used on the output layer, g(x) = x.
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Whilst this matrix notation is more concise, the choice to use the summation
notation to describe the network here is deliberate. It is hoped that with the
summation notation, relations to kernel and statistical theory discussed later in this
chapter becomes clearer.

In the frequentist setting of NN learning, a MLE or MAP estimate is found
through the minimisation of a non-convex cost function J (x, y) w.r.t. network
weights. Minimisation of this cost-function is performed through backpropagation,
where the output of the model is computed for the current parameter settings, partial
derivatives w.r.t parameters are found and then used to update each parameter,

wt+i = wt − α
∂J (x, y)

∂wt

. (3.5)

Equation (3.5) illustrates how backpropagation updates model parameters, with α

representing the learning rate and the subscripts indicate the iteration in the training
procedure. Partial derivatives for individual parameters at different layers in the
network is found through application of the chain rule. This leads to the preference
of discontinuous non-linearities such as the ReLU for deep NNs, as the larger
gradient of the ReLU assists in preventing vanishing gradients of early layers during
training.

3.2.2 Bayesian Neural Networks

In the frequentist setting presented above, the model weights are not treated as
random variables; weights are assumed to have a true value that is just unknown
and the data we have seen is treated as a random variable. This may seem
counterintuitive for what we want to achieve. We would like to learn what our
unknown model weights are based of the information we have at hand. For statistical
modelling the information available to us comes in the form of our acquired data.
Since we do not know the value for our weights, it seems natural to treat them as a
random variable. The Bayesian view of statistics uses this approach; unknown (or
latent) parameters are treated as random variables and we want to learn a distribution
of these parameters conditional on the what we can observe in the training data.

During the “learning” process of BNNs, unknown model weights are inferred
based on what we do know or what we can observe. This is the problem of inverse
probability, and is solved through the use of Bayes Theorem. The weights in our
model ω are hidden or latent variables; we cannot immediately observe their true
distribution. Bayes Theorem allows us to represent a distribution over these weights
in terms of probabilities we can observe, resulting in the distribution of model
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parameters conditional on the data we have seen p(ω|D),7 which we call the
posterior distribution.

Before training, we can observe the joint distribution between our weights and
our data p(ω,D). This joint distribution is defined by our prior beliefs over our
latent variables p(ω) and our choice of model/likelihood p(D|ω),

p(ω,D) = p(ω)p(D|ω). (3.6)

Our choice of network architecture and loss function is used to define the likelihood
term in Eq. (3.6). For example, for a 1-D homoscedastic regression problem with a
mean squared error loss and a known noise variance, the likelihood is a Gaussian
distribution with the mean value specified by the output of the network,

p(D|ω) = N (fω(D), σ 2).

Under this modelling scheme, it is typically assumed that all samples from D are
i.i.d., meaning that the likelihood can then be written as a product of the contribution
from the N individual terms in the data set,

p(D|ω) =
N∏

i=1

N (fω(xi ), σ 2). (3.7)

Our prior distribution should be specified to incorporate our belief as to how the
weights should be distributed, prior to seeing any data. Due to the black-box
nature of NNs, specifying a meaningful prior is challenging. In many practical
NNs trained under the frequentist scheme, the weights of the trained network have
a low magnitude, and are roughly centred around zero. Following this empirical
observation, we may use a zero mean Gaussian with a small variance for our prior,
or a spike-slab prior centred at zero to encourage sparsity in our model.

With the prior and likelihood specified, Bayes theorem is then applied to yield
the posterior distribution over the model weights,

π(ω|D) = p(ω)p(D|ω)∫
p(ω)p(D|ω)dω

= p(ω)p(D|ω)
p(D)

. (3.8)

The denominator in the posterior distribution is called the marginal likelihood, or the
evidence. This quantity is a constant with respect to the unknown model weights,
and normalises the posterior to ensure it is a valid distribution.

7D is used here to denote the set of training data (x, y).
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From this posterior distribution, we can perform predictions of any quantity of
interest. Predictions are in the form of an expectation with respect to the posterior
distribution,

Eπ [f ] =
∫

f (ω)π(ω|D)dω. (3.9)

All predictive quantities of interest will be an expectation of this form. Whether it be
a predictive mean, variance or interval, the predictive quantity will be an expectation
over the posterior. The only change will be in the function f (ω) with which the
expectation is applied to. Prediction can then be viewed as an average of the function
f weighted by the posterior π(ω).

We see that the Bayesian inference process revolves around marginalisation
(integration) over our unknown model weights. By using this marginalisation
approach, we are able to learn about the generative process of a model, as opposed to
an optimisation scheme used in the frequentist setting. With access to this generative
model, our predictions are represented in the form of valid conditional probabilities.

In this description, it was assumed that many parameters such as the noise
variance σ or any prior parameters were known. This is rarely the case, and as
such we need to perform inference for these unknown variables. The Bayesian
framework allows us to perform inference over these variables similarly to how
we perform inference over our weights; we treat these additional variables as latent
variables, assign a prior distribution (or sometimes called a hyper-prior) and then
marginalise over them to find our posterior. For more of a description of how this
can be performed for BNNs, please refer to [33, 38].

For many models of interest, computation of the posterior (Eq. (3.8)) remains
intractable. This is largely due to the computation of the marginal likelihood. For
non-conjugate models or those that are non-linear in the latent variables (such as
NNs), this quantity can be analytically intractable. For high dimensional models, a
quadrature approximation of this integral can become computationally intractable.
As a result, approximations for the posterior must be made. The following sections
detail how approximate Bayesian inference can be achieved in BNNs.

3.2.3 Origin of Bayesian Neural Networks

From this survey and those conducted prior [70], the first instance of what could
be considered a BNN was developed in [39]. This paper emphasises key statistical
properties of NNs by developing a statistical interpretation of loss functions used.
It was shown that minimisation of a squared error term is equivalent to finding
the Maximum Likelihood Estimate (MLE) of a Gaussian. More importantly, it
was shown that by specifying a prior over the network weights, Bayes Theorem
can be used to obtain an appropriate posterior. Whilst this work provides key
insights into the Bayesian perspective of NNs, no means for finding the marginal
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likelihood (evidence) is supplied, meaning that no practical means for inference is
suggested. Denker and LeCun [40] extend on this work, offering a practical means
for performing approximate inference using the Laplace approximation, though
minimal experimental results are provided.

A NN is a generic function approximator. It is well known that as the limit of the
number of parameters approaches infinity in a single hidden layer network, any
arbitrary function can be represented [41–43]. This means that for the practical
case, our finite training data set can be well approximated by a single layer NN
as long as there are sufficient trainable parameters in the model. Similar to high-
degree polynomial regression, although we can represent any function and even
exactly match the training data in certain cases, as the number of parameters in a
NN increases or the degree of the polynomial used increases, the model complexity
increases leading to issues of overfitting. This leads to a fundamental challenge
found in NN design; how complex should I make my model?

Building on the work of Gull and Skilling [44], MacKay demonstrates how a
Bayesian framework naturally lends itself to handle the task of model design and
comparison of generic statistical models [45]. In this work, two levels of inference
are described: inference for fitting a model and inference for assessing the suitability
of a model. The first level of inference is the typical application of Bayes rule for
updating model parameters,

P(ω|D,Hi ) = P(D|ω,Hi )P (ω|Hi )

P (D|Hi )
, (3.10)

where ω is the set of parameters in the generic statistical model, D is our data and
Hi represents the i’th model used for this level of inference.8 This is then described
as,

Posterior = Likelihood × Prior

Evidence
.

It is important to note that the normalising constant in Eq. (3.10) is referred to as the
evidence for the specific model of interest Hi . Evaluation of the posterior remains
intractable for most models of interest, so approximations must be made. In this
work, the Laplace approximation is used.

Though computation of the posterior over parameters is required, the key aim
of this work is to demonstrate methods of assessing the posterior over the model
hypothesis Hi . The posterior over model design is represented as,

P(Hi |D) ∝ P(D|Hi )P (Hi ), (3.11)

8H is used to refer to the model “hypothesis”.
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which translates to,

Model Posterior ∝ Evidence × Model Prior.

The data dependent term in Eq. (3.11) is the evidence for the model. Despite the
promising interpretation of the posterior normalisation constant, as described earlier,
evaluation of this distribution is intractable for most BNNs. Assuming a Gaussian
distribution, the Laplace approximation of the evidence can be found as,

P(D|Hi ) =
∫

P(D|ω,Hi )P (ω|Hi )dω (3.12)

≈ P(D|ωMAP,Hi )
[
P(ωMAP|Hi )Δω

]
(3.13)

= P(D|ωMAP,Hi )
[
P(ωMAP|Hi )(2π)

k
2 det−

1
2 A
]

(3.14)

= Best Likelihood Fit × Occam Factor.

This can be interpreted as a single Riemann approximation to the model evidence
with the best likelihood fit representing the peak of the evidence, and the Occam
factor is the width that is characterised by the curvature around the peak of the
Gaussian. The Occam factor can be interpreted as the ratio of the width of the
posterior Δω and the range of the prior Δω0 for the given model Hi ,

Occam Factor = Δω

Δω0
, (3.15)

meaning that the Occam factor is the ratio of change in plausible parameter space
from the prior to the posterior. Figure 3.4 demonstrates this concept graphically.

D

Evidence

P (D|H2)

P (D|H1)

Fig. 3.4 Graphical illustration of how the evidence plays a role in investigating different model
hypotheses. The simple model H1 is able to predict a small range of data with greater strength,
while the more complex model H2 is able to represent a larger range of data, though with lower
probability. Adapted from [45, 46]
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With this representation, a complex model able to represent a large range of data
will have a wider evidence, thus having a larger Occam factor. A simple model will
have a lower capacity to capture a complex generative process, but a smaller range of
data will be able to be modelled with greater certainty, resulting in a lower Occam
Factor. This results in a natural regularisation for the complexity of a model. An
unnecessarily complex model will typically result in a wide posterior, resulting in a
large Occam factor and low evidence for the given model. Similarly, a wide or less
informative prior will result in a reduced Occam factor, providing further intuition
into the Bayesian setting of regularisation.

Using this evidence framework requires computation of the marginal likelihood,
which is an expensive (and the key challenge) within Bayesian modelling. Given
the large investment required to approximate the marginal likelihood, it may
be infeasible to compare many different architectures. Despite this, the use of
the evidence framework can used to assess solutions for BNNs. For most NN
architectures of interest, the objective function is non-convex with many local
minima. Each local minima can be regarded as a possible solution for the inference
problem. MacKay uses this as motivation to compare the solutions from each
local minimum using the corresponding evidence function [47]. This allows for
assessment of model complexity at each solution without prohibitive computational
requirements.

3.2.3.1 Early Variational Inference for BNNs

The machine learning community has continuously excelled at optimisation based
problems. While many ML models, such as Support Vector Machines and Linear
Gaussian Models result in a convex objective function, NNs have a highly non-
convex objective function with many local minima. A difficult to locate global
minimum motivates the use of gradient based optimisation schemes such as
backpropagation [3]. This type of optimisation can be viewed in a Bayesian context
through the lens of Variational Inference (VI).

VI is an approximate inference method that frames marginalisation required
during Bayesian inference as an optimisation problem [48–50]. This is achieved
by assuming the form of the posterior distribution and performing optimisation to
find the assumed density that closest to the true posterior. This assumption simplifies
computation and provides some level of tractability.

The assumed posterior distribution qθ (ω) is a suitable density over the set of
parameters ω, that is restricted to a certain family of distributions parameterised by
θ . The parameters for this variational distribution are then adjusted to reduce the
dissimilarity between the variational distribution and the true posterior p(ω|D).9

9The model hypothesis Hi used previously will be omitted for further expressions, as little of the
remaining key research items deal with model comparison and simply assume a single architecture
and solution.
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The means to measure similarity for VI is often the forward KL-Divergence between
the variational and true distribution,

KL
(
qθ (ω)||p(ω|D)

)
=
∫

qθ(ω) log
qθ (ω)

p(ω|D)
dω. (3.16)

For VI, Eq. (3.16) serves as the objective function we wish to minimise w.r.t
variational parameters θ . This can be expanded out as,

KL
(
qθ (ω)||p(ω|D)

)
= Eq

[
log

qθ(ω)

p(ω)
− logp(D|ω)]+ logp(D) (3.17)

= KL
(
qθ (ω)||p(ω)

)
− Eq [logp(D|ω)] + logp(D)

(3.18)

= − F [qθ ] + logp(D), (3.19)

where F [qθ ] = −KL
(
qθ(ω)||p(ω)

)
+ Eq [logp(D|ω)]. The combination of terms

into F [q] is to separate the tractable terms from the intractable log marginal
likelihood. We can now optimise this function using backpropagation, and since the
log marginal likelihood does not depend on variational parameters θ , it’s derivative
evaluates to zero. This leaves only term of containing variational parameters, which
is F [qθ ].

This notation used in Eq. (3.19), particularly the choice to include the negative of
F [qθ ] is deliberate to highlight a different but equivalent derivation to the identical
result, and to remain consistent with existing literature. This result can be obtained
by instead of minimising the KL-Divergence between the true and approximate
distribution, but by approximating the intractable log marginal likelihood. Through
application of Jensen’s inequality, we can then find that F [qθ ] forms a lower bound
on the logarithm of the marginal likelihood [48, 51]. This can be seen by re-
arranging Eq. (3.19) and noting that the KL divergence is strictly ≥ 0 and only
equals zero when the two distributions are equal. The logarithm of the marginal
likelihood is equal to the sum of the KL divergence between the approximate
and true posterior and F [qθ ]. By minimising the KL divergence between the
approximate and true posterior, the closer F [qθ ] will be to the logarithm of the
marginal likelihood. For this reason, F [qθ ] is commonly referred to as the Evidence
Lower Bound (ELBO). Figure 3.5 illustrates this graphically.

The first application of VI to BNNs was by Hinton and Van Camp [53], where
they tried to address the problem of overfitting in NNs. They argued that by using a
probabilistic perspective of model weights, the amount of information they could
contain would be reduced and would simplify the network. Formulation of this
problem was through an information theoretic basis, particularly the Minimum
Descriptive Length (MDL) principle, though its application results in a framework
equivalent to VI. As is common in VI, the mean-field approach was used. Mean-
Field Variational Bayes (MFVB) assumes a posterior distribution that factorises
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KL
(

qθ(ω)||p(ω|D)
)

F [qθ]
log p(D)

Fig. 3.5 Graphical illustration of how the minimisation of the KL divergence between the
approximate and true posterior maximises the lower bound on the evidence. As the KL Divergence
between our approximate and true posterior is minimised, the ELBO F[qθ ] tightens to the log-
evidence. Therefore maximising the ELBO is equivalent to minimising the KL divergence between
the approximate and true posterior. Adapted from [52]

over parameters of interest. For the work in [53], the posterior distribution over
model weights was assumed to be a factorisation of independent Gaussians,

qθ(ω) =
P∏

i=1

N (wi |μi, σ
2
i ), (3.20)

where P is the number of weights in the network. For a regression network with a
single hidden layer, an analytic solution for this posterior is available. The ability to
achieve an analytic solution to the approximation is an desirable property, as analytic
solutions significantly reduce the time to perform inference.

There are a few issues with this work, though one of the most prominent
issues is the assumption of a posterior that factorises over individual network
weights. It is well known that strong correlation between parameters in a NN is
present. A factorised distribution simplifies computation by sacrificing the rich
correlation information between parameters. MacKay highlighted this limitation in
an early survey of BNNs [32] and offers insight into how a preprocessing stage of
inputs to hidden layers could allow for more comprehensive approximate posterior
distributions.

Barber and Bishop [52] again highlight this limitation, and offer a VI based
approach that extends on the work in [53] to allow for full correlation between
the parameters to be captured by using a full rank Gaussian for the approximating
posterior. For a single hidden layer regression network utilising a Sigmoid activa-
tion, analytic expressions for evaluating the ELBO is provided.10 This is achieved
by replacing the Sigmoid with the appropriately scaled error function.

10Numerical methods are required to evaluate certain terms in the analytic expression for the
ELBO.
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An issue with this modelling scheme is the increased number of parameters. For
a full covariance model, the number of parameters scales quadratically with the
number of weights in the network. To rectify this, Barber and Bishop propose a
restricted form for the covariance often used in factor analysis, such that,

C = diag(d2
1 , . . . , d

2
n) +

s∑

i=1

sisTi , (3.21)

where the diag operator creates a diagonal matrix from the vector d of size n, where
n is the number of weights in the model. This form then scales linearly with the
number of hidden units in the network.

These bodies of work provide important insight into how the prominent back-
propagation method can be applied to challenging Bayesian problems. This allows
for properties of the two areas of research to be merged and offer the benefits
nominally seen in isolation. Complex regression tasks for large bodies of data sets
could now be handled in a probabilistic sense using NNs.

Despite the insight offered by these methods, there are limitations to these
methods. Both the work of Hinton and Van Camp and Barber and Bishop focus
on development of a closed form representation of the networks.11 This analytic
tractability imposes many restrictions on the networks. As discussed previously,
[53] assume a factorised posterior over individual weights which is unable to capture
any correlation in parameters. Covariance structure is captured in [52], though the
authors limit their analysis to the use of a Sigmoid activation function (which is well
approximated by the error function), which is seldom used in modern networks due
to the low magnitude in the gradient.12 A key limitation common to both of these
approaches is the restriction of a single hidden layer network.

As stated previously, a NN can approximate any function arbitrarily well by
adding additional hidden units. For modern networks, empirical results have shown
that similarly complex functions can be represented with fewer hidden units by
increasing the number of hidden layers in the network. This has lead to the term
“deep learning”, where depth refers to the number of hidden layers. The reduction in
number of weight variables is especially important for when trying to approximate
the full covariance structure between layers. For example, correlation between
hidden units within a single layer may be captured, while assuming that parameters
between the different layers are independent. An assumption such as this can
significantly reduce the number of correlation parameters. With modern networks
having hundreds of millions of weights across many layers (with these networks
only being able to offer point estimates), the need to develop practical probabilistic
interpretations beyond a single layer is essential.

11Although there are a large number of benefits to such an approach, as illustrated earlier.
12Analytic results may be achievable using other activation functions, such as TanH, which suffer
less from such an issue.
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3.2.3.2 Hybrid Monte Carlo for BNNs

It is worthwhile at this point to reflect on the actual quantities of interest. So far
the emphasis has been placed on finding good approximations for the posterior,
though the accurate representation of the posterior is usually not the end design
requirement. The main quantities of interest are predictive moments and intervals.
We want to make good predictions accompanied by confidence information. The
reason we emphasise computation of the posterior is that predictive moments
and intervals are all computed as expectations of the posterior π(ω|D).13 This
expectation is listed in Eq. (3.9), and is repeated here for convenience,

Eπ [f ] =
∫

f (ω)π(ω|D)dω.

This is why computation of the posterior is emphasised; accurate predictions rely
on accurate approximations of the intractable posterior.

The previous methods employed optimisation based schemes such as VI or
Laplace approximations of the posterior. In doing so, strong assumptions and
restrictions on the form of posterior are enforced. The restrictions placed are
often credited with inaccuracies induced in predictions, though this is not the only
limitation.

As highlighted by Betancourt [54] and Betancourt et al. [55], the expectation
computed for predictive quantities not just a probability mass, it the product of the
probability mass and a volume. The probability mass is our posterior distribution
π(ω|D), and the volume dω over which we are integrating. It is likely that for
all models of interest, the contribution of the expectation from this product of the
density and volume will not be at the maximum for the mass. Therefore optimisation
based schemes which consider only the mass can deliver inaccurate predictive
quantities. To make accurate predictions with finite computational resources, we
need to evaluate this expectation not just when the mass is greatest, but when the
product of the mass and volume is largest. The most promising way to achieve this
is with Markov Chain Monte Carlo (MCMC).

MCMC algorithms remains at the forefront of Bayesian research and applied
statistics.14 MCMC is a general approach for sampling from arbitrary and
intractable distributions. The ability to sample from a distribution enables the
use of Monte Carlo integration for prediction,

Eπ [f ] =
∫

f (ω)π(ω|D)dω ≈ 1

N

N∑

i=1

f (ωi ), (3.22)

13Note that π is used to represent the true posterior distribution here, as appose to q used previously
to denote an approximation of the posterior.
14MCMC is regarded as one of the most influential algorithms of the twenty-first century [56].
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where ωi represents an independent sample from the posterior distribution. MCMC
enables sampling from our posterior distribution, with the samples converging to
when the product of the probability density and volume are greatest [54].

Assumptions previously made in VI methods, such as a factorised posterior
are not required in the MCMC context. MCMC provides convergence to the
true posterior as the number of samples approaches infinity. By avoiding such
restrictions, with enough time and computing resources we can yield a solution that
is closer to the true predictive quantities. This is an important challenge for BNNs,
as the posterior distributions is typically quite complex.

Traditional MCMC methods demonstrate a random-walk behaviour, in that new
proposals in the sequence are generated randomly. Due to the complexity and
high dimension of the posterior in BNNs, this random-walk behaviour makes these
methods unsuitable for performing inference in any reasonable time. To avoid the
random-walk behaviour, Hybrid/Hamiltonian Monte Carlo (HMC) can be employed
to incorporate gradient information into the iterative behaviour. While HMC was
initially proposed for statistical physics [57], Neal highlighted the potential for
HMC to address Bayesian inference and specifically researched the applications
to BNNs and the wider statistics community as a whole [38].

Given that HMC was initially proposed for physical dynamics, it is appropriate to
build intuition for applied statistics through a physical analogy. Treat our parameters
of interest ω as a position variable. An auxiliary variable is then introduced to model
the momentum v of our current position. This auxiliary variable is not of statistical
interest, and is only introduced to aid in development of the system dynamics. With
a position and momentum variable, we can represent the potential energy U(ω)

and the kinetic energy K(v) of our system. The total energy of a system is then
represented as,

H(ω, v) = U(ω) + K(v). (3.23)

We now consider the case of a lossless system, in that the total energy H(ω, v)
is constant.15 This is described as a Hamiltonian system, and is represented as the
following system of differential equations [58],

dwi

dt
= ∂H

∂vi
, (3.24)

dvi

dt
= − ∂H

∂wi

, (3.25)

where t represents time and the i denotes the individual elements in ω and v.
With the dynamics of the system defined, we wish to relate the physical

interpretation to a probabilistic interpretation. This can be achieved through the

15The values for ω and v will change, though the total energy of the system will remain constant.
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canonical distribution,16

P(ω, v) = 1

Z
exp

(− H(ω, v)
) = 1

Z
exp

(− U(ω)
)

exp
(− K(v)

)
, (3.26)

where Z is a normalising constant and H(ω, v) is our total energy as defined in
Eq. (3.23). From this joint distribution, we see that our position and momentum
variable are independent.

Our end goal is to find predictive moments and intervals. For a Bayesian this
makes the key quantity of interest the posterior distribution. Therefore, we can set
the potential energy which we wish to sample from to,

U(ω) = − log
(
p(ω)p(D|ω)

)
. (3.27)

Within HMC, the kinetic energy can be freely selected from a wide range of suitable
functions, though is typically chosen such that it’s marginal distribution of v is a
diagonal Gaussian centred at the origin.

K(v) = vTM−1v, (3.28)

whereM is a diagonal matrix referring to the “mass” of our variables in this physical
interpretation. Although this is the most common kinetic energy function used, it
may not be the most suitable. Betancourt [54] surveys the selection the design of
other Gaussian kinetic energies with an emphasis on the geometric interpretations.
It is also highlighted that selection of appropriate kinetic energy functions remains
an open research topic, particularly in the case of non-Gaussian functions.

Since Hamiltonian dynamics leaves the total energy invariant, when implemented
with infinite precision, the dynamics proposed are reversible. Reversibility is a
sufficient property to satisfy the condition of detailed balance, which is required
to ensure that the target distribution (the posterior we are trying to sample from)
remains invariant. For practical implementations, numerical errors arise due to
discretisation of variables. The discretisation method most commonly employed is
the leapfrog method. The leapfrog method specifies a step size ε and a number of
steps L to be used before possibly accepting the new update. The leapfrog method
first performs a half update of the momentum variable v, followed by a full update

16As is commonly done, we assume the temperature variable included in physical representations
of the canonical distribution is set to one. For more information, see [58, p. 11], [59, p. 123].



3 Bayesian Neural Networks: An Introduction and Survey 63

of the position w and then the remaining half update of the momentum [58],

vi(t + ε

2
) = vi(t) + ε

2

dvi

dt
(v(t)), (3.29)

wi(t + ε) = wi(t) + ε
dwi

dt
(w(t)), (3.30)

vi(t + ε) = vi(t + ε

2
) + ε

2

dvi

dt
(v(t + ε

2
)). (3.31)

If the value of ε is chosen such that this dynamical system remains stable, it can
be shown that this leapfrog method preserves the volume (total energy) of the
Hamiltonian.

For expectations to be approximated using (3.22), we require each sample ωi to
be independent from subsequent samples. We can achieve practical independence17

by using multiple leapfrog steps L. In this way, after L leapfrog steps of size ε, the
new position is proposed. This reduces correlation between samples and can allow
for faster exploration of the posterior space. A Metropolis step is then applied to
determine whether this new proposal is accepted as the newest state in the Markov
Chain [58].

For the BNN proposed by Neal [38], a hyper-prior p(γ ) is induced to model the
variance over prior parameter precision and likelihood precision. A Gaussian prior
is used for the prior over-parameters and the likelihood is set to be Gaussian. There-
fore, the prior over the γ was Gamma distributed, such that it was conditionally
conjugate. This allows for Gibbs sampling to be used for performing inference over
hyperparameters. HMC is then used to update the posterior parameters. Sampling
from the joint posterior P(ω, γ |D) then involves alternating between the Gibbs
sampling step for the hyperparameters and Hamiltonian dynamics for the model
parameters. Superior performance of HMC for simple BNN models was then
demonstrated and compared with random walk MCMC and Langevin methods [38].

3.2.4 Modern BNNs

Considerably less research was conducted into BNNs following early work of
Neal, MacKay and Bishop proposed in the 90s. This relative stagnation was
seen throughout the majority of NN research, and was largely due to the high
computational demand for training NNs. NNs are parametric models that are able
to capture any function with arbitrary accuracy, but to capture complex functions
accurately requires large networks with many parameters. Training of such large
networks became infeasible even for the traditional frequentist perspective, and the

17Where for all practical purposes each sample can be viewed as independent.



64 E. Goan and C. Fookes

computational demand significantly increases to investigate the more informative
Bayesian counterpart.

Once it was shown that general purpose GPUs could accelerate and allow training
of large models, interest and research into NNs saw a resurgence. GPUs enabled
large scale parallelism of the linear algebra performed during back propagation.
This accelerated computation has allowed for training of deeper networks, where
successive concatenation of hidden layers is used. With the proficiency of GPUs for
optimising complex networks and the great empirical success seen by such models,
interest into BNNs resumed.

Modern research into BNNs has largely focused on the VI approach, given that
these problems can be optimised using a similar backpropagation approach used for
point estimate networks. Given that the networks offering the most promising results
use multiple layers, the original VI approaches shown in [52, 53], which focus on
analytical approximations for regression networks utilising a single hidden layer
became unsuitable. Modern NNs now exhibit considerably different architectures
with varying dimensions, hidden layers, activations and applications. More general
approaches for viewing networks in a probabilistic sense was required.

Given the large scale of modern networks, large data sets are typically required
for robust inference.18 For these large data sets, evaluation of the complete log-
likelihood becomes infeasible for training purposes. To combat this, a Stochastic
Gradient Descent (SGD) approach is used, where mini-batches of the data are used
to approximate the likelihood term, such that our variational objective becomes,

L(ω, θ) = −N

M

N∑

i=1

Eq [log
(
p(Di |ω)

)] + KL
(
qθ (ω)||p(ω)

)
, (3.32)

whereDi ⊂ D, and each subset is of size M . This provides an efficient way to utilise
large data sets during training. After passing a single subset Di , backpropagation is
applied to update the model parameters. This sub-sampling of the likelihood induces
noise into our inference process, hence the name SGD. This noise that is induced is
expected to average out over evaluation of each individual subset [60]. SGD is the
most common method for training NNs and BNNs utilising a VI approach.

A key paper in the resurgence of BNN research was published by Graves [61].
This work proposes a MFVB treatment using a factorised Gaussian approximate
posterior. The key contribution of this work is the computation of the derivatives.
The VI objective (ELBO) can be viewed as a sum of two expectations,

F [qθ ] = Eq [log
(
p(D|ω))] − Eq [log qθ(ω) − logp(ω)] (3.33)

18Neal [38] argues that this not true for Bayesian modelling; claims that if suitable prior
information is available, complexity of a model should only be limited by computational resources.
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It is these two expectations that we need to optimise w.r.t model parameters,
meaning that we require the gradient of expectations. This work shows how using
the gradient properties of a Gaussian proposed in [62] can be used to perform
parameter updates,

∇μ Ep(ω)[f (ω)] = Ep(ω)[∇ωf (ω)], (3.34)

∇Σ Ep(ω)[f (ω)] = 1

2
Ep(ω)[∇ω∇ωf (ω)]. (3.35)

MC integration could be applied to Eqs. (3.34) and (3.35) to approximate the gra-
dient of the mean and variance parameters. This framework allows for optimisation
of the ELBO to generalise to any log-loss parametric model.

Whilst addressing the problem of applying VI to complex BNNs with more
hidden layers, practical implementations have shown inadequate performance which
is attributed to large variance in the MC approximations of the gradient compu-
tations [63]. Developing gradient estimates with reduced variance has become an
integral research topic in VI [64]. Two of the most common methods for deriving
gradient approximations rely on the use of score functions and path-wise derivative
estimators.

Score function estimators rely on the use of the log-derivative property, such that,

∂

∂θ
p(x|θ) = p(x|θ) ∂

∂θ
logp(x|θ). (3.36)

Using this property, we can form Monte Carlo estimates of the derivatives of an
expectation, which is often required in VI,

∇θEq [f (ω)] =
∫

f (ω)∇θqθ (ω)∂ω

=
∫

f (ω)qθ (ω)∇θ log
(
qθ (ω)

)
∂ω

≈ 1

L

L∑

i=1

f (ωi)∇θ log
(
qθ(ωi)

)
. (3.37)

A common problem with score function gradient estimators is that they exhibit
considerable variance [64]. One of the most common methods to reduce the variance
in Monte Carlo estimates is the introduction of control variates [65].

The second type of gradient estimator commonly used in the VI literature is the
pathwise derivative estimator. This work builds on the “reparameterisation trick”
[66–68], where a random variable is represented as a deterministic and differentiable
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expression. For example, for a Gaussian with θ = {μ, σ },

ω ∼ N (μ, σ 2)

ω = g(θ , ε) = μ + σ � ε (3.38)

where ε ∼ N (0, I) and � represents the Hadamard product. Using this method
allows for efficient sampling for Monte Carlo estimates of expectations. This is
shown in [67], that with ω = g(θ , ε), we know that q(ω|θ)dω = p(ε)dε. Therefore,
we can show that,

∫
qθ(ω)f (ω)dω =

∫
p(ε)f (ω)dε

=
∫

p(ε)f (g(θ , ε))dε

≈ 1

M

M∑

i=1

f (g(θ , εi )) = 1

M

M∑

i=1

f (μ + σ � εi ) (3.39)

Since Eq. (3.39) is differentiable w.r.t θ , gradient descent methods can be used to
optimise this expectation approximation. This is an important property in VI, since
the VI objective contains expectations of the log-likelihood that are often intractable.
The reparameterisation trick serves as the basis for pathwise-gradient estimators.
Pathwise estimators are favourable for their reduced variance over score function
estimators [64, 67].

A key benefit of having a Bayesian treatment of NNs is the ability to extract
uncertainty in our models and their predictions. This has been a recent research
topic of high interest in the context of NNs. Promising developments regarding
uncertainty estimation in NNs has been found by relating existing regularisation
techniques such as Dropout [69] to approximate inference. Dropout is a Stochastic
Regularisation Technique (SRT) that was proposed to address overfitting commonly
seen in point-estimate networks. During training, Dropout introduces an indepen-
dent random variable that is Bernoulli distributed, and multiplies each individual
weight element-wise by a sample from this distribution. For example, a simple MLP
implementing Dropout is of the form,

ρu ∼ Bernoulli(p),

φj = θ
( N1∑

i=1

(xiρu)wij

)
. (3.40)

Looking at Eq. (3.40), it can be seen that the application of Dropout introduces
stochasticity into the network parameters in a similar manner as to that of the
reparameterisation trick shown in Eq. (3.38). A key difference is that in the case of
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Dropout, stochasticity is introduced into the input space, as appose to the parameter
space required for Bayesian inference. Yarin Gal [70] identified this similarity,
and demonstrated how noise introduced through the application of Dropout can be
transferred to the networks weights efficiently as,

W1
ρ = diag(ρ)W1 (3.41)

�ρ = a
(
XT W1

ρ

)
. (3.42)

Where ρ is a vector sampled from the Bernoulli distribution, and the diag(·)
operator creates a square diagonal matrix from a vector. In doing this it can be
seen that a single dropout variable is shared amongst each row of the weight matrix,
allowing some correlation within rows to be maintained. By viewing the stochastic
component in terms of network weights, the formulation becomes suitable for
approximate inference using the VI framework. In this work, the approximate
posterior is of the form of a Bernoulli distribution multiplied by the network
weights.

The reparameterisation trick is then applied to allow for partial derivatives w.r.t.
network parameters to be found. The ELBO is then formed and backpropagation
is performed to maximise the lower bound. MC integration is used to approximate
the analytically intractable expected log-likelihood. The KL divergence between
the approximate posterior and the prior distribution in the ELBO is then found
by approximating the scaled Bernoulli approximate posterior as a mixture of two
Gaussians with very small variance.

In parallel to this work, Kingma et al. [71] identified this same similarity
between Dropout and it’s potential for use within a VI framework. As appose to the
typical Bernoulli distributed r.v. introduced in Dropout, Kingma et al. [71] focuses
attention to the case when the introduced r.v. is Gaussian [72]. It is also shown how
with selection of an appropriate prior that is independent of parameters, current
applications of NNs using dropout can be viewed as approximate inference.

Kingma et al. also aims to reduce the variance in the stochastic gradients using
a refined, local reparameterisation. This is done by instead of sampling from
the weight distribution before applying the affine transformation, the sampling is
performed afterwards. For example, consider a MFVB case where each weight
is assumed to be an independent Gaussian wij ∼ N (μij , σ

2
ij ). After the affine

transformation φj = ∑N1
i=1(xiρi)wij , the posterior distribution of φj conditional

on the inputs will also be a factorised Gaussian,

q(φj |x) = N (γj , δ
2
j ), (3.43)

γj =
N∑

i=1

xiμi,j , (3.44)

δ2
j =

N∑

i=1

x2
i σ

2
i,j . (3.45)
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It is advantageous to sample from this distribution for φ as appose to the distribution
of the weights w themselves, as this results in a gradient estimator whose variance
scales linearly with the number of mini-batches used during training.19

These few bodies of work are important in addressing the serious lack of
rigour seen in ML research. For example, the initial Dropout paper [69] lacks
any significant theoretical foundation. Instead, the method cites a theory for sexual
reproduction [73] as motivation for the method, and relies heavily on the empirical
results given. These empirical results have been further demonstrated throughout
many high impact20 research items which utilise this technique merely as a
regularisation method. The work in [70] and [71] show that there is theoretical
justification for such an approach. In attempts to reduce the effect of overfitting in a
network, the frequentist methodology relied on the application of a weakly justified
technique that shows empirical success, while Bayesian analysis provides a rich
body of theory that naturally leads to a meaningful understanding of this powerful
approximation.

Whilst addressing the problem of applying VI to complex BNNs with more
hidden layers, practical implementations have shown inadequate performance which
is attributed to large variance in the MC approximations of the gradient computa-
tions. Hernandez et al. [63] acknowledge this limitation and propose a new method
for practical inference of BNNs titled Probabilistic Back Propagation (PBP). PBP
deviates from the typical VI approach, and instead employs an Assumed Density
Filtering (ADF) method [74]. In this format, the posterior is updated in an iterative
fashion through application of Bayes rule,

p(ωt+1|Dt+1) = p(ωt |Dt )p(Dt+1|ωt )

p(Dt+1)
. (3.46)

As opposed to traditional network training where the predicted error is the objective
function, PBP uses a forward pass to compute the log-marginal probability of a
target and updates the posterior distribution of network parameters. The moment
matching method defined in [75] updates the posterior using a variant of backprop-
agation, whilst maintaining equivalent mean and variance between the approximate
and variational distribution,

μt+1 = μt + σt
∂ logp(Dt+1)

∂μ
(3.47)

σt+1 = σt + σ 2
t

[(∂p(Dt+1)

∂μt

)2 − 2
∂p(Dt+1)

∂σ

]
. (3.48)

19This method also has computational advantages, as the dimension of φ is typically much lower
than that of ω.
20At the time of writing, [69] has over ten thousand citations.
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Experimental results on multiple small data-sets illustrate reasonable perfor-
mance in terms of predicted accuracy and uncertainty estimation when compared
with HMC methods for simple regression problems [63]. A key limitation of this
method is the computational bottleneck introduced by the online training method.
This approach may be suitable for some applications, or for updating existing BNNs
with additional data as it becomes available, though for performing inference on
large data sets the method is computationally prohibitive.

A promising method for approximate inference in BNNs was proposed by
Blundell et al., titled “Bayes by Backprop” [76]. The method utilises the reparam-
eterisation trick to show how unbiased estimates of the derivative of an expectation
can be found. For a random variable ω ∼ qθ (ω) that can be reparameterised
as deterministic and differentiable function ω = g(ε, θ), the derivative of the
expectation of an arbitrary function f (ω, θ) can be expressed as,

∂

∂θ
Eq [f (ω, θ)] = ∂

∂θ

∫
qθ (ω)f (ω, θ)dω (3.49)

= ∂

∂θ

∫
p(ε)f (ω, θ)dε (3.50)

= Eq(ε)

[∂f (ω, θ)
∂ω

∂ω

∂θ
+ ∂f (ω, θ)

∂θ

]
. (3.51)

In the Bayes by Backprop algorithm, the function f (ω, θ) is set as,

f (ω, θ) = log
qθ (ω)

p(ω)
− logp(X|ω). (3.52)

This f (ω, θ) can be seen as the argument for the expectation performed in
Eq. (3.17), which is part of the lower bound.

Combining Eqs. (3.51) and (3.52),

L(ω, θ ) = Eq [f (ω, θ)] = eq

[
log

qθ (ω)

p(ω)
− logp(D|ω)

]
= −F [qθ ] (3.53)

which is shown to be the negative of the ELBO, meaning that Bayes by Backprop
aims to minimise the KL divergence between the approximate and true posterior.
Monte Carlo integration is used21 to approximate the cost in Eq. (3.53),

F [qθ ] ≈
N∑

i=1

log
qθ(ωi )

p(ωi )
− logp(X|ωi ) (3.54)

21Some terms may be tractable in this integrand, depending on the form of the prior and posterior
approximation. MC integration allows for arbitrary distributions to be approximated.
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where ωi is the ith sample from qθ (ω). With the approximation in Eq. (3.54), the
unbiased gradients can be found using the result shown in Eq. (3.51).

For the Bayes by Backprop algorithm, a fully factorised Gaussian posterior is
assumed such that θ = {μ,ρ}, where σ = softplus(ρ) is used to ensure the
standard deviation parameter is positive. With this, the distribution of weights
ω ∼ N (μ, softplus(ρ)2) in the network are reparameterised as,

ω = g(θ , ε) = μ + softplus(ρ) � ε. (3.55)

In this BNN, the trainable parameters are μ and ρ. Since a fully factorised
distribution is used, following from Eq. (3.20), the logarithm of the approximate
posterior can be represented as,

log qθ (ω) =
∑

l,j,k

log
(
N (wljk;μljk, σ

2
ljk)

)
. (3.56)

The complete Bayes by Backprop algorithm is described in Algorithm 1.

Algorithm 1 Bayes by Backprop (BbB) algorithm [76]
1: procedure BBB(θ,X, α)
2: repeat
3: F[qθ ] ← 0 
 Initialise cost
4: for i in [1, . . . , N] do 
 Number of samples for MC estimate
5: Sample εi ∼ N (0, 1)
6: ω ← μ + softplus(ρ) · εi
7: L ← log q(ω|θ) − logp(ω) − logp(X|ω)
8: F[qθ ]+ = sum(L)/N 
 Sum across all log of weights in set ω

9: end for
10: θ ← θ − α∇θF[qθ ] 
 Update parameters
11: until convergence
12: end procedure

3.2.5 Gaussian Process Properties of BNNs

Neal [38] also provided derivation and experimentation results to illustrate that for a
network with a single hidden layer, a Gaussian Process (GP) prior over the network
output arises when the number of hidden units approaches infinity, and a Gaussian
prior is placed over parameters.22 Figure 3.6 illustrates this result.

22For a regression model with no non-linear activation function placed on the output units.
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Fig. 3.6 Illustration of GP prior induced on output when placing a Gaussian prior over parameters
as the network size increases. Experimentation replicated from [38, p. 33]. Each dot corresponds
to the output of a network with parameters sampled from the prior, with the x-axis as f (0.2) and
the y-axis as f (−0.4). For each network, the number of hidden units are (a) 1, (b) 3, (c) 10, (d)
100

This important link between NNs and GPs can be seen from Eqs. (3.1) and (3.2).
From these expressions, it can be seen that a NN with a single hidden layer is a sum
of N parametric basis functions applied to the input data. If the parameters for each
basis function in Eq. (3.1) are r.v.’s, Eq. (3.2) becomes the sum of r.v.’s. Under the
central limit theorem, as the number of hidden layers N → ∞, the output becomes
Gaussian. Since the output is then described as an infinite sum of basis functions,
the output can be seen to become a GP. Following from a full derivation of this
result and the illustrations show in Fig. 3.6, Neal [38] shows how an approximate
Gaussian nature is achieved for finite computing resources and how the magnitude
of this sum can be maintained. Williams then demonstrated how the form of the
covariance function could be analysed for different activation functions [77]. The
relation between GPs and infinitely wide networks with a single hidden layer work
has recently been extended to the case of deep networks [78].
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Identification of this link has motivated many research works in BNNs. GPs
provide many of the properties we wish to obtain, such as reliable uncertainty
estimates, interpretability and robustness. GPs deliver these benefits at the cost of
predictive performance and exponentially large computational resources required
as the size of data sets increase. This link between GPs and BNNs has motivated
the merging of the two modelling schemes; maintaining the predictive performance
and flexibility seen in NNs while incorporating the robustness and probabilistic
properties enabled by GPs. This has led to the development of the Deep Gaussian
Process.

Deep GPs are a cascade of individual GPs, where much like a NN, the output
of the previous GP serves as the input to a new GP [79, 80]. This stacking of
GPs allows for learning of non-Gaussian densities from a combination of GPs.23

A key challenge with GPs is fitting to large data sets, as the dimensions of the
Gram matrix for a single GP is quadratic with the number of data points. This
issue is amplified with a Deep GP, as each individual GP in the cascade induces an
independent Gram matrix. Furthermore, the marginal likelihood for Deep GPs are
analytically intractable due to non-linearities in the functions produced. Building
on the work in [82], Damianou and Lawrence [79] use a VI approach to create
an approximation that is tractable and reduces computational complexity to that
typically seen in sparse GPs [83].

Deep GPs have shown how the GPs can benefit from methodology seen in NNs.
Gal and Ghahramani [84–86] built of this work to show how a Deep GP can
be approximated with a BNN.24 This is an expected result; given that Neal [38]
identified an infinitely wide network with a single hidden layer converges to a
Gaussian process, by concatenating multiple infinitely wide layers we converge to a
deep Gaussian process.

Alongside this analysis of deep Gaussian processes, [84–86] build on the work
in [77] to analyse the relationship between the modern non-linear activation used
within BNNs and the covariance function for a GP. This is promising work that
could allow for more principled selection of activation functions in NNs, similar to
that of GPs. Which activation functions will yield a stationary process? What is the
expected length scale for our process? These questions may be able to be addressed
using the rich theory existing for GPs.

The GP properties are not restricted to MLP BNNs. Recent research has identi-
fied certain relationships and conditions that induce GP properties in convolutional
BNNs [87, 88]. This result is expected since CNNs can be implemented as MLPs
with structure enforced in the weights. What this work identifies is how the GP is
constructed when this structure is enforced. Van der Wilk et al. [89] proposed the
Convolutional Gaussian Process, which implements a patch based operation similar
to that seen in CNNs to define the GP prior over functions. Practical implementation

23A complete introduction to Deep GPs, along with code and lectures has been offered by Neil
Lawrence [81].
24Approximation becomes a Deep GP as the number of hidden units in each layer approaches ∞.
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of this method requires the use of approximation methods, due to the prohibitive cost
of evaluating large data sets, and even evaluation at each patch. Inducing points are
formed with a VI framework to reduce the number of data points to evaluate and the
number of patches evaluated.

3.2.6 Limitations in Current BNNs

Whilst great effort has been put into developing Bayesian methods for performing
inference in NNs, there are significant limitations to these methods and many
gaps remaining in the literature. A key limitation is the heavy reliance on VI
methods. Within the VI framework, the most common approach is the Mean Field
approach. MFVB provides a convenient way to represent an approximate posterior
distribution by enforcing strong assumptions of independence between parameters.
This assumption allows for factorised distributions to be used to approximate the
posterior. This assumption of independence significantly reduces the computational
complexity of approximate inference at the cost of probabilistic accuracy.

A common finding with VI approaches is that resulting models are overconfident,
in that predictive means can be accurate while variance is considerably under
estimated [50, 90–93]. This phenomenon is described in Section 10.1.2 of [2] and
Section 21.2.2 of [35], both of which are accompanied by examples and intuitive
figures to illustrate this property. This property of under-estimated variance is
present within much of the current research in BNNs [70]. Recent work has aimed
to address these issues through the use of noise contrastive priors [94] and through
use of calibration data sets [95]. The authors in [96] employ the use of the concrete
distribution [97] to approximate the Bernoulli parameter in the MC Dropout method
[85], allowing for it to be optimised, resulting in posterior variances that are better
calibrated. Despite these efforts, the task of formulating reliable and calibrated
uncertainty estimates within a VI framework for BNNs remains unsolved.

It is reasonable to consider that perhaps the limitations of the current VI
approaches are influenced by the choice of approximate distribution used, partic-
ularly the usual MFVB approach of independent Gaussians. If more comprehensive
approximate distributions are used, will our predictions be more consistent with
the data we have and haven’t seen? Mixture based approximations have been
proposed for the general VI approach [48, 98], though introduction of N mixtures
increases the number of variational parameters by N . Matrix-Normal approximate
posteriors have been introduced to the case of BNNs [99], which reduces the
number of variational parameters in the model when compared with a full rank
Gaussian, though this work still factorises over individual weights, meaning no
covariance structure is modelled.25 MCDropout is able to maintain some correlation

25Though this work highlights that even with a fully factorised distribution over weights, the
outputs of each layer will be correlated.
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information within the rows of weight matrix, at the compromise of a low entropy
approximate posterior.

A recent approach for VI has been proposed to capture more complex posterior
distributions through the use of normalising flows [100, 101]. Within a normalising
flow, the initial distribution “flows” through a sequence of invertible functions to
produce a more complex distribution. This can be applied within the VI framework
using amortized inference [102]. Amortized inference introduces an inference
network which maps input data to the variational parameters of generative model.
These parameters are then used to sample from the posterior of the generative
process. The use of normalising flows has been extended to the case of BNNs [103].
Issues arise with this approach relating to the computational complexity, along
with limitations of amortized inference. Normalising flows requires the calculation
of the determinant of the Jacobian for applying the change of variables used
for each invertible function, which can be computationally expensive for certain
models. Computational complexity can be reduced by restricting the normalising
flow to contain invertible operations that are numerically stable [102, 104]. These
restrictions have been shown to severely limit the flexibility of the inference process,
and the complexity of the resulting posterior approximation [105].

As stated previously, in the VI framework, an approximate distribution is selected
and the ELBO is then maximised. This ELBO arises from the applying the KL
divergence between the true and approximate posterior, but this begs the question,
why use the KL? The KL divergence is a well known measure to assess the similarity
of between two distributions, and satisfies all the key properties of a divergence
(i.e. is positive and only zero when the two distributions are equal). A divergence
allows us to know whether our approximation is approaching the true distribution,
but not how close we are to it. Why not use of a well defined distance as appose to
a divergence?

The KL divergence is used as it allows us to separate the intractable quantity
(the marginal likelihood) out of our objective function (the ELBO) which we can
optimise. Our goal with our Bayesian inference is to identify the parameters that
best fit our model under prior knowledge and the distribution of the observed data.
The VI framework poses inference as an optimisation problem, where we optimise
our parameters to minimise the KL divergence between our approximate and true
distribution (which maximises our ELBO). Since we are optimising our parameters,
by separating the marginal likelihood from our objective function, we are able to
compute derivatives with respect to the tractable quantities. Since the marginal
likelihood is independent of the parameters, this component vanishes when the
derivative is taken. This is the key reason why the KL divergence is used, as it allows
us to separate the intractable quantity out of our objective function, which will then
be evaluated as zero when using gradient information to perform optimisation.
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The KL divergence has been shown to be part of a generic family of divergences
known as α-divergences [106, 107]. The α-divergence is represented as,

Dα[p(ω)||q(ω)] = 1

α(1 − α)

(
1 −

∫
p(ω)αq(ω)1−αdω

)
. (3.57)

The forward KL divergence used in VI is found from Eq. (3.57) in the limit that
α → −1, and the reverse KL divergence KL(p||q) occurs in the limit of α → 1,
which is used during expectation propagation. While the use of the forward KL
divergence used in VI typically results in an under-estimated variance, the use of the
reverse KL will often over-estimate variance [2]. Similarly, the Hellinger distance
arises from (3.57) when α = 0,

DH(p(ω)||q(ω))2 =
∫ (

p(ω)
1
2 − q(ω)

1
2

)2
dω. (3.58)

This is a valid distance, in that it satisfies the triangle inequality and is symmetric.
Minimisation of the Hellinger distance has shown to provide reasonable compro-
mise in variance estimate when compared with the two KL divergences [107].
Though these measures may provide desirable qualities, they are not suitable for
direct use within VI, as the intractable marginal likelihood cannot be separated
from the other terms of interest.26 While these measures cannot be immediately
used, it illustrates how a change in the objective measure can result in different
approximations. It is possible that more accurate posterior expectations can be found
by utilising a different measure for the objective function.

The vast majority of modern works have revolved around the notion of VI.
This is largely due to its amenability to SGD. Sophisticated tools now exist to
simplify and accelerate the implementation of automatic differentiation and back-
propagation [108–114]. Another benefit of VI is it’s acceptance of sub-sampling
in the likelihood. Sub-sampling reduces the computational expense for performing
inference required to train over large data sets currently available. It is this key
reason that more traditional MCMC based methods have received significantly less
attention in the BNN community.

MCMC serves as the gold standard for performing Bayesian inference due to
it’s rich theoretical development, asymptotic guarantees and practical convergence
diagnostics. Traditional MCMC based methods require sampling from the full
joint likelihood to perform updates, requiring all training data to be seen before
any new proposal can be made. Sub-sampling MCMC, or Stochastic Gradient
MCMC (SG-MCMC) approaches have been proposed in [60, 115, 116], which
have since been applied to BNNs [117]. It has since been shown that the naive
sub-sampling within MCMC will bias the trajectory of the stochastic updates away

26This may be easy to see for the Hellinger distance, but less so for the reverse KL divergence.
Enthusiastic readers are encouraged to not take my word for it, and to put pen and paper to prove
this for themselves!
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from the posterior [118]. This bias removes the theoretical advantages gained from a
traditional MCMC approach, making them less desirable than a VI approach which
is often less computationally expensive. For sampling methods to become feasible,
sub-sampling methods need to be developed that assure convergence to the posterior
distribution.

3.3 Comparison of Modern BNNs

From the literature survey presented within, two prominent methods for approx-
imate inference in BNNs was Bayes by Backprop and MC Dropout [85]. These
methods have found to be the most promising and highest impact methods for
approximate inference in BNNs. These are both VI methods that are flexible enough
to permit the use of SGD, making deployment to large and practical data sets
feasible. Given their prominence, it is worthwhile to compare the methods to see
how well they perform.

To compare these methods, a series of simple homoskedastic regression tasks
were conducted. For these regression models, the likelihood is represented as
Gaussian. With this we can write that the un-normalised posterior is,

p(ω|D) ∝ p(ω)N (f ω(D), σ 2I), (3.59)

where f ω(D) is the function represented by the BNNs. A mixture of Gaussians
was used to model a spike-slab prior for both models. The approximate posterior
qθ (ω) was then found for each model using the respective methods proposed. For
Bayes by Backprop, the approximate posterior is a fully factorised Gaussian, and
for MC Dropout is a scaled Bernoulli distribution. With the approximate posterior
for each model, predictive quantities can be found using MC Integration. The first
two moments can be approximated as [70],

Eq [y∗] ≈ 1

N

N∑

i=1

fωi (x∗) (3.60)

Eq [y∗T y∗] ≈ σ 2I + 1

N

N∑

i=1

fωi (x∗)T fωi (x∗) (3.61)

where the star superscript denotes the new input and output sample x∗, y∗ from the
test set.

The data sets used to evaluate these models were simple toy data sets from
high impact papers, where similar experimentation was provided as empirical
evidence [76, 119]. Both BNN methods were then compared with a GP model.
Figure 3.7 illustrates these results.
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Fig. 3.7 Comparison of BNNs with GP for a regression task over three toy data sets. The top row
is a BNN trained with Bayes By Backprop [76], the centre row is trained with MC dropout [70],
and the bottom a GP with a Mattern52 kernel fitted with the GPflow package [120]. The two BNNs
consisted of two hidden layers utilising ReLU activation. Training data is shown with the dark grey
scatter, the mean is shown in purple, the true test function is shown in blue, and the shaded regions
representing ± one and two std. from the mean. Best viewed on a computer screen

Analysis of the regression results shown in Fig. 3.7 shows contrasting perfor-
mance in terms of bias and variance in predictions. Models trained with Bayes
by Backprop and a factorised Gaussian approximate posterior show reasonable
predictive results within the distribution of training data, though variance outside the
region of training data is significantly under estimated when compared with the GP.
MC Dropout with a scaled Bernoulli approximate posterior typically exhibits greater
variance for out of distribution data, though maintains unnecessarily high variance
within the distribution of training data. Little tuning of hyperparameters was done
to these models. Better results may be achieved, particularly for MC Dropout,
with better selection of hyperparameters. Alternatively, a more complete Bayesian
approach can be used, where hyperparameters are treated as latent variables and
marginalisation is performed over these variables.

It is worthwhile noting the computational and practical difficulties encountered
with these methods. The MC Dropout method is incredibly versatile, in that it was
less sensitive to the choice of prior distribution. It also managed to fit to more
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complex distributions with fewer samples and training iterations. On top all this
is the significant savings in computational resources. Given that training a model
using MC Dropout is often identical to how many existing deep networks are
trained, inference is performed in the same time as traditional vanilla networks.
It also offers no increase in the number of parameters to a network, where Bayes
by Backprop requires twice as many. These factors should be taken into account for
practical scenarios. If the data being modelled is smooth, is in sufficient quantity and
additional time for inference is permitted, Bayes by Backprop may be preferable.
For large networks with complex functions, sparse data and more stringent time
requirements, MC Dropout may be more suitable.

3.3.1 Convolutional BNNs

Whilst the MLP serves as the basis for NNs, the most prominent NN architecture
is the Convolutional Neural Network (CNN) [121]. These networks have excelled
at challenging image classification tasks, with predictive performance far exceeding
prior kernel based or feature engineered methods. A CNN differs from a typical
MLP through it’s application a convolution-like operator as oppose to inner
products.27 The output of a single convolutional layer can be expressed as,

Φ = u(XT ∗ W) (3.62)

where u(·) is a non-linear activation and ∗ represents the convolution-like operation.
Here the input X and the weight matrix W are no longer restricted to either vectors or
matrices, and can instead be multi-dimensional arrays. It can be shown that CNNs
can be written to have an equivalent MLP model, allowing for optimised linear
algebra packages to be used for training with back-propagation [122].

Extending on the current research methods, a new type of Bayesian Convo-
lutional Neural Network (BCNN) can be developed. This is achieved here by
extending on the Bayes by Backprop method [76] to the case of models suitable
for image classification. Each weight in the convolutional layers is assumed to be
independent, allowing for factorisation over each individual parameter.

Experimentation was conducted to investigate the predictive performance of
BCNNs, and the quality of their uncertainty estimates. These networks were
configured for classification of the MNIST hand digit dataset [123].

27Emphasis is placed on “convolution like”, as it is not equivalent to the mathematical operation
of linear or circular convolution.
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Since this task is a classification task, the likelihood for the BCNN was set to a
Softmax function,

softmax(f ω
i ) = f ω

i (D)
∑

j exp
(

f ω
j (D)

) . (3.63)

The un-normalised posterior can then be represented as,

p(ω|D) ∝ p(ω) × softmax(f ω(D)). (3.64)

The approximate posterior is then found using Bayes by Backprop. Predictive mean
for test samples can be found using Eq. (3.60), and MC integration is used to
approximate credible intervals [35].

Comparison with a vanilla CNN was made to evaluate the predictive performance
of the BCNN. For both the vanilla and BCNN, the popular LeNet architecture [123]
was used. Classification was conducted using the mean output of the BCNN, with
credible intervals being used to assess the models uncertainty. Overall predictive
performance for both networks on the 10,000 test images in the MNIST dataset
showed comparative performance. The BCNN showed a test prediction accuracy of
98.99%, while the vanilla network showed a slight improvement with a prediction
accuracy of 99.92%. Whilst the competitive predictive performance is essential,
the main benefit of the BCNN is that we yield valuable information about the
uncertainty of our predictions. Examples of difficult to classify digits are shown
in the Appendix, accompanied by plots of the mean prediction and 95% credible
intervals for each class. From these examples, we can see the large amount of
predictive uncertainty for these challenging images, which could be used to make
more informed decisions in practical scenarios.

This uncertainty information is invaluable for many scenarios of interest. As
statistical models are increasingly employed for complex tasks containing human
interaction, it is crucial that many of these systems make responsible decisions based
on their perceived model of the world. For example, NNs are largely used within the
development of autonomous vehicles. Development of autonomous vehicles is an
incredibly challenging feat, due to the high degree of variability in scenarios and the
complexity relating to human interaction. Current technologies are insufficient for
safely enabling this task, and as discussed earlier, the use of these technologies have
been involved in multiple deaths [24, 25]. It is not possible to model all variables
within such a highly complex system. This accompanied by imperfect models and
reliance on approximate inference, it is important that our models can communicate
any uncertainty relating to decisions made. It is crucial that we acknowledge that
in essence, our models are wrong. This is why probabilistic models are favoured
for such scenarios; there is an underlying theory to help us deal with heterogeneity
in our data and to account for uncertainty induced by variables not included in the
model. It is vital that models used for such complex scenarios can communicate
their uncertainty when used in such complex and high risk scenarios.
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3.4 Conclusion

Throughout this report, the problems that arise with overconfident predictions from
typical NNs and ad hoc model design have been illustrated. Bayesian analysis has
been shown to provide a rich body of theory to address these challenges, though
exact computation remains analytically and computationally intractable for any
BNN of interest. In practice, approximate inference must be relied upon to yield
accurate approximations to the posterior.

Many of the approximate methods for inference within BNNs have revolved
around the MFVB approach. This provides a tractable lower bound to optimise w.r.t
variational parameters. These methods are attractive due to their relative ease of use,
accuracy of predictive mean values and acceptable number of induced parameters.
Despite this, it was shown through the literature survey and experimentation results
that the assumptions made within a fully factorised MFVB approach result in
over-confident predictions. It was shown that these MFVB approaches can be
extended upon to more complex models such as CNNs. Experimental results
indicate comparable predictive performance to point estimate CNNs for image
classification tasks. The Bayesian CNN was able to provide credible intervals on
the predictions, which were found to be highly informative and intuitive measure of
uncertainty for difficult to classify data points.

This survey and these experiments highlight the capabilities of Bayesian analysis
to address common challenges seen in the machine learning community. These
results also highlight how current approximate inference methods for BNNs are
insufficient and can provide inaccurate variance information. Additional research
is required to not only determine how these networks operate, but how accurate
inference can be achieved with modern large networks. Methods to scale exact
inference methods such as MCMC to large data sets would allow for a more
principled method of performing inference. MCMC offers diagnostic methods to
assess convergence and quality of inference. Similar diagnostics for VI would allow
researchers and practitioners to evaluate the quality of their assumed posterior, and
inform them with ways to improve on this assumption. Achieving these goals will
allow us to obtain accurate posterior approximations. From this we will be able to
sufficiently determine what our models know, but also what they don’t know.
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Appendix

See Fig. 3.8.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Fig. 3.8 Examples of difficult to classify images from each class in MNIST. True class for each
image is 0–9 (a–j) arranged in alphabetical order. The bottom plot illustrates the 95% credible
intervals for these predictions. Best viewed on a computer screen
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Chapter 4
Markov Chain Monte Carlo Algorithms
for Bayesian Computation, a Survey
and Some Generalisation

Wu Changye and Christian P. Robert

Abstract This chapter briefly recalls the major simulation based methods for
conducting Bayesian computation, before focusing on partly deterministic Markov
processes and a novel modification of the bouncy particle sampler that offers an
interesting alternative when dealing with large datasets.

Keywords Monte Carlo methods · MCMC algorithms · Bouncy particle
sampler · PDMP · Big Data

4.1 Bayesian Statistics

In statistical analysis, the statistician frames observations, (X1:n) ⊂ X , within a
model that belongs to a class of probability distributions P = {Pθ , θ ∈ �} over
the sample space (X ,A), where θ is called the model parameter and � is an
arbitrary set. In this book, we mostly focus on parametric cases—that is, � ⊂ R

d ,
and suppose the distributions to be dominated by some measure μ(dx). In both
frequentist statistics and Bayesian statistics, the likelihood plays a crucial role
in inference, which encompasses the plausibility of parameter values, given the
observed data.
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Definition 4.1.1 The likelihood function is defined as a function of the parameter θ
associated with the probability mass function or density function of the observations
(X1:n) conditioned on the parameter θ and is denoted by L(X1:n|θ).
While there exists a true, fixed parameter θ0 such that Pθ0 is the distribution that
spanned the observations, Bayesian statistics models the parameter θ as a random
variable, associated with a prior distribution that describes our beliefs about the
parameter and is independent of the data. As a result, the parameter space is
equipped with a probability structure (�,B, π0) and Bayesian analysis extracts
information about θ by combining these prior beliefs, π0, and the information
provided by the observed data. In the Bayesian paradigm [5, 42], once the prior and
the likelihood have been chosen, the information about the parameter is modelled
by the posterior distribution, which is defined as follows.

Definition 4.1.2 The posterior distribution is the probability distribution of the
parameter θ , given the observations (X1:n), over the parameter space (�,B).
According to Bayes’ Theorem, it has the following form,

π(dθ |X1:n) = L(X1:n|θ)π0(dθ)∫
�
L(X1:n|θ ′)π0(dθ ′)

The integral,
∫
� L(X1:n|θ ′)π0(dθ

′), in the denominator is called the evidence, or
the marginal likelihood and is denoted by mπ0(X1:n).

Compared with frequentist statistics, Bayesian methods explicitly use probability
tools as a way to quantify uncertainties about the unknown quantities. While
Bayesian inference is by nature uniquely defined and unique, in practice, problems
usually arise as the posterior has no closed or interpretable form. For instance, the
evidence may be not explicitly available. In the early days of Bayesian analysis,
it was confined to problems where the posteriors are explicitly available, such as
conjugate priors.

Definition 4.1.3 If the posterior distribution π(·|X1:n) is in the same family of
probability distributions as the prior π0, the prior and the likelihood are then said to
be conjugate distributions, and the associated family of prior distributions is called
a conjugate family for the likelihood function L(X1:n|θ).
Unfortunately, even though conjugacy is definitely useful in many applications, it is
far too restrictive a notion and thus does not offer a universal modelling solution.

Approaches to overcoming this restriction can be separated into two main groups:
approximation methods and Monte Carlo methods. Approximation methods, such as
Laplace’s, expectation propagation and variational Bayes, project the exact posterior
of interest into a tractable family of probability distributions and approximate it with
the closest element of this family. Unless the posterior belongs to the chosen family,
there is an intrinsic gap between the resulting approximation and the posterior
of interest. Monte Carlo methods, which are also the focus of this chapter, have
different behaviours and can produce solutions that approximate the distributions or
quantities of interest in any degree of precision when the computation effort grows
to infinity.
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4.2 Monte Carlo Methods

The concept of Monte Carlo approximations is based on the Law of Large Numbers
(LLN) to approximate the integrals of interest. Consider the instance when we are
interested in computing an integral of the form

Ih := EP (h(X))

assuming its existence. The LLN says that if X1,X2, · · · , is an infinite sequence
of independent and identically distributed (i.i.d.) random variables according to the
probability distribution P , then

1

N

N∑

i=1

h(Xi)
P−−−−→

N→∞ Ih

Based on an additional assumption that σ 2 := EP (h
2(X)) − I 2

h < ∞, the central
limit theorem (CLT) gives a stronger result,

√
N

(
N∑

i=1

h(Xi) − Ih

)
L−−−−→

N→∞ N (0, σ 2)

By the CLT, the Monte Carlo estimator converges to Ih at a rate O(N−1/2),
regardless of the dimensionality of Xi’s.

4.2.1 The Inverse Transform

When the distribution to sample from is one-dimensional with c.d.f F, we can sample
U ∼ U[0, 1] and compute X = F−1(U), where F−1 is the generalized inverse
function of F . It is easy to verify that X ∼ F .

Definition 4.2.1 For a non-decreasing function F on R, the generalized inverse of
F , F−1, is the function defined by

F−1(u) = inf{x|F(x) ≥ u}

This method is only applicable to one-dimensional distributions and requires
deep knowledge about the generalized inverse function F−1, which restricts its
applicability in practice. General transformation methods extend this inverse trans-
form by taking advantage of the links between the target distribution and some
tractable distributions. Unfortunately, only a few distributions can be expressed as
a transformation of other easier distributions. Even worse, posterior distributions in
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Bayesian statistics, which are the main target distributions of this chapter, usually
cannot be sampled by this method. See [18, 43] for more details about general
transformation methods and some examples.

4.2.2 Accept-Reject Sampling

Accept-Reject sampling only requires that the target p of interest is known up to a
multiplicative constant and is based on the Fundamental Theorem of Simulation,
which says that sampling uniformly over the subgraph of a probability density
function results in samples marginally distributed according to the distribution.

Theorem 4.2.1 (Fundamental Theorem of Simulation) Sampling from

X ∼ p

is equivalent to sample from

(X,U) ∼ U({(x, u)|0 < u < p(x)})

and marginalise with respect to U .

In light of the simple fact that

p(x) =
∫ p(x)

0
du,

it is easy to show that if we can sample (X,U) from F = {(x, u)|0 < u < f (x)}
uniformly, then the marginal X is distributed to our desired target p. In practice,
sampling (X,U) is not always feasible or too expensive, we can sample from an
bigger set and discard the pairs which are outside of F to bypass this difficulty.
Generally, such an auxiliary set is constructed by the subgraph of Mq , where q is
a probability density function, which it is easy to sample from, and M is a known
constant such that p ≤ Mq on the support of p. Of course the choice of the auxiliary
distribution q will impact the efficiency of the algorithm.

Algorithm 1 Accept-reject algorithm: sample from p

Sample X ∼ q and U ∼ U[0,Mq(X)]
if u ≤ f (X) then

Accept X
else

Reject X
end if
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4.2.3 Importance Sampling

As in accept-reject sampling, importance sampling (IS) introduces an auxiliary
distribution, Q, and is based on the identity

EP (h(X)) = EQ (h(X)w(X))

where Q dominates P and is called the importance distribution, and w(x) = dP
dQ

(x)

is called the weight function. By the LLN, the integral of interest, Ih, can be
approximated by

ÎNh = 1

N

N∑

i=1

h(Xi)w(Xi), Xi
iid∼Q

The remarkable advantage of importance sampling is that the weight function w can
be known up to a multiplicative constant, which is extremely valuable for sampling
from posterior in Bayesian inference. In fact, the multiplicative constant can be
estimated by 1

N

∑N
i=1 w(Xi) and one can show that the normalized (and biased)

estimator

∑N
i=1 h(Xi)w(Xi)∑N

i=1 w(Xi)

converges to the integral of interest.
As in accept-reject sampling, the importance distribution Q has a large influence

over the efficiency of IS. The optimal Q, which minimises the variance of the
estimator ÎNh , not only depends of the target distribution P , but also on the integrand
h. However, it always satisfies

VarQ[h(X)w(X)] ≤ VarP [h(X)],

where Q is optimal. For more details of the choice of optimal Q’s see [43].
So far, all of the above requires a sequence of i.i.d. proposals and the obtained

samples are thus independent to each other. In the next section, we describe a class
of sampling algorithms, based on Markov chains, which produce correlated samples
to approximate the target distribution or the integrals of interest.

4.3 Markov Chain Monte Carlo Methods

Markov chain Monte Carlo (MCMC) algorithms have been used for nearly 60 years,
becoming a reference method for analysing Bayesian complex models in the early
1990s [21]. The strength of this method is that it guarantees convergence to the
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quantity (or quantities) of interest with minimal requirements on the targeted distri-
bution (also called target) behind such quantities. In that sense, MCMC algorithms
are robust or universal, as opposed to the most standard Monte Carlo methods (see,
e.g., [43, 44]) that require direct simulations from the target distribution.

MCMC methods have a history (see, e.g. [12]) that starts at approximately the
same time as the Monte Carlo methods, in conjunction with the conception of the
first computers. They have been devised to handle the simulation of complex target
distributions, when complexity stems from the shape of the target density, the size
of the associated data, the dimension of the object to be simulated, or from time
requirements. For instance, the target density p(x) may happen to be expressed in
terms of multiple integrals that cannot be solved analytically,

p(x) =
∫

ω(x, ξ)dξ ,

which requires the simulation of the entire vector (x, ξ). In cases when ξ is
of the same dimension as the data, as for instance in latent variable models,
this significant increase in the dimension of the object to be simulated creates
computational difficulties for standard Monte Carlo methods, from managing the
new target ω(x, ξ), to devising a new and efficient simulation algorithm. A Markov
chain Monte Carlo (MCMC) algorithm allows for an alternative resolution of this
computational challenge by simulating a Markov chain that explores the space
of interest (and possibly supplementary spaces of auxiliary variables) without
requiring a deep preliminary knowledge on the density p, besides the ability to
compute p(x0) for a given parameter value x0 (if up to a normalising constant) and
possibly the gradient ∇ logp(x0).

The validation of the method (e.g., [43]) is that the Markov chain is ergodic (e.g.,
[34]), namely that it converges in distribution to the distribution with density π , no
matter where the Markov chain is started at time t = 0. As the basic Monte Carlo
method, MCMC enjoys corresponding LLN and CLT.

Theorem 4.3.1 (Ergodic Theorem, [43]) If (Xn)n≥0 is a positive Harris recurrent
Markov chain with invariant measure P , then for every h ∈ L1(P ), we have

1

N

N∑

i=1

h(Xi) −−−−→
N→∞

∫
h(x)P (dx)

Theorem 4.3.2 (Markov Central Limit Theorem, [43]) If (Xn)n≥0 is a positive
Harris recurrent and irreducible Markov chain, geometrically ergodic with invari-
ant measure P , and if the function h satisfies EP [h(X)] = 0 and EP [|h(X)|2+ε] <
∞ for some ε > 0, then

1

N

N∑

i=1

h(Xi)
L−−−−→

N→∞ N (0, σ 2
h )
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for some finite σ 2
h = EP [h(X0)

2] + 2
∑∞

k=1 EP [h(X0)h(Xk)] < ∞.

See [43] for a comprehensive survey of the Markov chain theory used with MCMC
algorithms.

4.3.1 Metropolis-Hastings Algorithms

The Metropolis–Hastings algorithm is a generic illustration of the principle of
MCMC and is named after Nicholas Metropolis, who first proposed the algorithm
by using symmetric proposal distribution in [33], and Keith Hastings, who extended
it to the more general case in [23]. The basic algorithm is constructed by choosing a
proposal, that is, a conditional density q(x ′|x) (also known as a Markov kernel),
the Markov chain {Xn}∞n=1 being then derived by successive simulations of the
transition

Xn+1 =
⎧
⎨

⎩
X′ ∼ q(X′|Xn) with probability

{
p(X′)
p(Xn)

× q(Xn|X′)
q(X′|Xn)

}
∧ 1,

Xn otherwise.

This acceptance-rejection feature of the algorithm makes it appropriate for targeting
p as its stationary distribution if the resulting Markov chain (Xn)n is irreducible,
i.e., has a positive probability of visiting any region of the support of p in a finite
number of iterations. (Stationarity can easily be shown, e.g., by using the so-called
detailed balance property that makes the chain time-reversible, see, e.g., [43].) The
most widely used Markov kernel in Metropolis-Hastings might be the random walk
proposals, in which q(x|y) = q(y|x) and the density of proposal cancels in the
acceptance ratio. Considering the initial goal of simulating samples from the target
distribution p, the performances of MCMC methods like the Metropolis–Hastings
algorithm above often vary quite a lot, depending primarily on the adequacy
between the proposal q and the target p. For instance, if q(·|Xn) = p(·), the
Metropolis–Hastings algorithm reduces to i.i.d. sampling from the target, which
is of course a formal option when i.i.d. sampling from p proves impossible.
Although there exist rare instances when the Markov chain (Xn) leads to negative
correlations between the successive terms of the chain, making it more efficient
than regular i.i.d. sampling [30], the most common occurrence is one of positive
correlation between the simulated values (sometimes uniformly, see [29]). This
feature implies a reduced efficiency of the algorithm and hence requires a larger
number of simulations to achieve the same precision as an approximation based
on i.i.d. simulations (without accounting for differences in computing time). More
generally, an MCMC algorithm may require a large number of iterations to escape
the attraction of its starting point X0 and to reach stationarity, to the extent that some
versions of such algorithms fail to converge in the time available (i.e., in practice if
not in theory).
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Algorithm 2 Metropolis-Hastings algorithm
Input: the starting point X0, the proposal distribution q and the number of iterations N .
for n = 1, 2, · · · , N do

Sample X′ ∼ q(·|Xn−1)

Compute the acceptance probability α(Xn−1, X
′), where

α(Xn−1, X
′) = min

{
1,

p(X′)q(Xn−1|X′)
p(Xn−1)q(X′|Xn−1)

}

Sample U ∼ U[0, 1];
if U < α(Xn−1, X

′) then
Xn → X′

else
Xn → Xn−1

end if
end for

4.3.2 Hamiltonian Monte Carlo

Hamiltonian (or hybrid) Monte Carlo (HMC) is an auxiliary variable technique that
takes advantage of a continuous time Markov process to sample from the target
p. This approach comes from physics [20] and was popularised in statistics by
Neal [36, 37] and MacKay [32]. Given a target p(x), where x ∈ R

d , an artificial
auxiliary variable v ∈ R

d is introduced along with a density ϕ(v|x) so that the
joint distribution of (x, v) enjoys p(x) as its marginal. While there is complete
freedom in this representation, the HMC literature often calls v the momentum of
a particle located at x by analogy with physics. Based on the representation of the
joint distribution

ρ(x, v) = p(x)ϕ(v|x) ∝ exp{−H(x, v)} ,

where H(·) is called the Hamiltonian, Hamiltonian Monte Carlo (HMC) is associ-
ated with the continuous time process (xt , vt ) generated by the so-called Hamilto-
nian equations

dxt
dt

= ∂H

∂v
(xt , vt )

dvt
dt

= −∂H

∂x
(xt , vt ) ,

which keep the Hamiltonian target stable over time, as

dH(xt, vt )

dt
= ∂H

∂v
(xt , vt )

dvt
dt

+ ∂H

∂x
(xt , vt )

dxt
dt

= 0 .
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Obviously, the above continuous time Markov process is deterministic and only
explores a given level set,

{(x, v) : H(x, v) = H(x0, v0)} ,

instead of the whole augmented state space R
2d , which induces an issue with

irreducibility. An acceptable solution to this problem is to refresh the momentum,
vt ∼ ϕ(v|xt−), at random times {τn}∞n=1, where xt− denotes the location of x

immediately prior to time t , and the random durations {τn − τn−1}∞n=2 follow
an exponential distribution. By construction, continuous-time Hamiltonian Markov
chain can be regarded as a specific piecewise deterministic Markov process (PDMP)
using Hamiltonian dynamics [10, 15, 16] and our target, π , is the marginal of its
associated invariant distribution.

Before moving to the practical implementation of the concept, let us point out
that the free cog in the machinery is the conditional density ϕ(v|x), which is
usually chosen as a Gaussian density with either a constant covariance matrix M

corresponding to the target covariance or as a local curvature depending on x in
Riemannian Hamiltonian Monte Carlo [22]. Betancourt [6] argues in favour of these
two cases against non-Gaussian alternatives and [31] analyses how different choices
of kinetic energy in Hamiltonian Monte Carlo impact algorithm performance. For a
fixed covariance matrix, the Hamilton equations become

dxt
dt

= M−1vt
dvt
dt

= ∇ logp(xt ) ,

which is the score function. The velocity (or momentum) of the process is thus
driven by this score function, gradient of the log-target.

The above description remains quite conceptual in that there is no generic
methodology for producing this continuous time process, since Hamilton equations
cannot be solved exactly in most cases. Furthermore, standard numerical solvers
like Euler’s method create an unstable approximation that induces a bias as the
process drifts away from its true trajectory. There exists however a discretisation
simulation technique that produces a Markov chain and which is well-suited to the
Hamiltonian equations in that it preserves the stationary distribution [6]. It is called
the symplectic integrator, and one version in the independent case with constant
covariance consists in the following (so-called leapfrog) steps

vt+ε/2 = vt + ε∇ logp(xt )/2,

xt+ε = xt + εM−1vt+ε/2,

vt+ε = vt+ε/2 + ε∇ logp(xt+ε)/2,

where ε is the time-discretisation step. Using a proposal on v0 drawn from the
Gaussian auxiliary target and deciding on the acceptance of the value of (xT ε, vT ε)
by a Metropolis–Hastings step can limit the danger of missing the target. Note that
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the first two leapfrog steps induce a Langevin move on xt :

xt+ε = xt + ε2M−1∇ logp(xt )/2 + εM−1vt ,

thus connecting with the MALA algorithm. In practice, it is important to note that
discretising Hamiltonian dynamics introduces two free parameters, the step size
ε and the trajectory length T , both to be calibrated. As an empirically successful
and popular variant of HMC, the “no-U-turn sampler” (NUTS) of [24] adapts the
value of ε based on primal-dual averaging. It also eliminates the need to choose the
trajectory length T via a recursive algorithm that builds a set of candidate proposals
for a number of forward and backward leapfrog steps and stops automatically when
the simulated path retraces.

Algorithm 3 Leapfrog(x0, v0, ε, L)
Input: the starting position x0, the starting momentum v0, the step-size ε, the steps L
for � = 0, 1, · · · , L − 1 do

v�+1/2 = v� + ε∇ logp(x�)
x�+1 = x� + εM−1v�+1/2
v�+1 = v�+1/2 + ε∇ logp(x�+1)

end for
Output: (xL, vL)

Algorithm 4 Hamiltonian Monte Carlo algorithm
Input: the step-size ε, the steps of leapfrog integrator L, starting position x0, the desired number
of iterations N .
for n = 1, · · · , N do

Sample vn−1 ∼ ϕ(v);
Compute (x∗, v∗) ← Leapfrog(xn−1, vn−1, ε, L);
Compute the acceptance ratio α, where

α = min

{
1,

exp(−H(x∗,−v∗))
exp(−H(xn−1, vn−1))

}
;

Sample u ∼ U[0, 1];
if u < α then

xn ← x∗
else

xn ← xn−1
end if

end for



4 Markov Chain Monte Carlo Algorithms for Bayesian Computation, a. . . 99

4.3.3 Scalable MCMC

The explosion in the collection and analysis of “big” datasets in recent years1

has brought new challenges to the MCMC algorithms that are used for Bayesian
inference. When examining whether or not a new proposed sample is accepted
at the accept-reject step, an MCMC algorithm such as the Metropolis-Hastings
version needs to sweep over the whole data set, at each and every iteration, for
the evaluation of the likelihood function. MCMC algorithms are then difficult to
scale up, which in turn strongly hinders their application in big data settings. In
some cases, the datasets may be too large to fit on a single machine. It may also
be that confidentiality measures impose different databases to stand on separate
networks, with the possible added burden of encrypted data [2]. Communication
between the separate machines may prove impossible on an MCMC scale that
involves thousands or hundreds of thousands iterations.

In the recent years, efforts have been made to design scalable algorithms,
namely, solutions that manage to handle large scale targets by breaking the problem
into manageable or scalable pieces. Roughly speaking, these methods can be
classified into two categories [4]: divide-and-conquer approaches and sub-sampling
approaches.

Divide-and-conquer approaches partition the whole data set, denoted D, into
batches, {D1, · · · ,Dk}, and run separate MCMC algorithms on each data batch,
independently, as if they were independent Bayesian inference problems.2 These
methods then combine the simulated parameter outcomes together to approximate
the original posterior distribution. Depending on the treatments of the batches
selected in the MCMC stages, these approaches can be further subdivided into
two finer groups: sub-posterior methods and boosted sub-posterior methods. Sub-
posterior methods are motivated by the independent product equation:

π(θ |D) ∝
k∏

i=1

⎛

⎝π0(θ)
1/k

∏

�∈Xi

p(x�|θ)
⎞

⎠ =
k∏

i=1

πi(θ) , (4.1)

and they target the densities πi(θ) (up to a constant) in their respective MCMC
steps. They thus bypass communication costs [45], by running MCMC samplers
independently on each batch, and they most often increase MCMC mixing rates (in
effective samples sizes produced by second), given that the sub-posterior distribu-
tions πi(θ) are based on smaller datasets. For instance, [45] combine the samples

1Some of the material in this section was also used in the paper “Accelerating MCMC Algorithms”,
written by Christian P. Robert, Víctor Elvira, Nick Tawn, and Wu Changye and published in
WIRES (2018).
2In order to keep the notations consistent, we still denote the target density by π , with the
prior density denoted as π0 and the sampling distribution of one observation x as p(x|θ). The
dependence on the sample D is not reported unless necessary.
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from the sub-posteriors, πi(θ), by a Gaussian reweighting. Neiswanger et al. [38]
estimate the sub-posteriors πi(θ) by non-parametric and semi-parametric methods,
and they run additional MCMC samplers on the product of these estimators towards
approximating the true posterior π(θ). Wang and Dunson [49] refine this product
estimator with an additional Weierstrass sampler, while [50] estimate the posterior
by partitioning the space of samples with step functions.

As an alternative to sampling from the sub-posteriors, boosted sub-posterior
methods target instead the components

π̃i(θ) ∝ π0(θ)

⎛

⎝
∏

�∈Xi

p(x�|θ)
⎞

⎠
k

(4.2)

in separate MCMC runs. Since they formally amount to repeating each batch k

times towards producing pseudo data sets with the same size as the true one, the
resulting boosted sub-posteriors, π̃1(θ), · · · , π̃k(θ), have the same scale in variance
of each component of the parameters, θ , as the true posterior, and can thus be treated
as a group of estimators of the true posterior. In the subsequent combining stage,
these sub-posteriors are merged together to construct a better approximation of the
target distribution. For instance, [35] approximate the posterior with the geometric
median of the boosted sub-posteriors, embedding them into associated reproducing
kernel Hilbert spaces (rkhs), while [46] achieve this goal using the barycentres
of π̃1, · · · , π̃k , these barycentres being computed with respect to a Wasserstein
distance.

In a perspective different from the above parallel scheme of divide-and-conquer
approaches, sub-sampling approaches aim at reducing the number of individual
datapoint likelihood evaluations operated at each iteration towards accelerating
MCMC algorithms. From a general perspective, these approaches can be further
classified into two finer classes: exact subsampling methods and approximate
subsampling methods, depending on their resulting outputs. Exact subsampling
approaches typically require subsets of data of random size at each iteration.
One solution to this effect is taking advantage of pseudo-marginal MCMC via
constructing unbiased estimators of the target density evaluated on subsets of
the data [1]. Quiroz et al. [40] follow this direction by combining the debiasing
technique of [41] and the correlated pseudo-marginal MCMC approach of [17].
Another direction is to use piecewise deterministic Markov processes (PDMP)
[15, 16], which enjoy the target distribution as the marginal of their invariant
distribution. This PDMP version requires unbiased estimators of the gradients of
the logarithm of the likelihood function, instead of the likelihood itself. By using a
tight enough bound on the event rate function of the associated Poisson processes
PDMP can produce super-efficient scalable MCMC algorithms. The bouncy particle
sampler [11] and the zig-zag sampler [8] are two competing PDMP algorithms,
while [9] unifies and extends these two methods. Besides, one should note that
PDMP produces a non-reversible Markov chain, which means that the algorithm
should be more efficient in terms of mixing rate and asymptotic variance, when
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compared with reversible MCMC algorithms, such as MH, HMC and MALA, as
observed in some theoretical and experimental works [7, 13, 25, 47].

Approximate subsampling approaches aim at constructing an approximation of
the target distribution. One direction is to approximate the acceptance probability
with high accuracy by using subsets of the data [3, 4]. Another solution is based
on a direct modification of exact methods. The seminal work [51] in this direction,
SGLD, is to exploit the Langevin diffusion

dθ t = 1

2
�∇ logπ(θ t )dt + �1/2dBt , θ0 ∈ R

d, t ∈ [0,∞) (4.3)

where � is a user-specified matrix, π is the target distribution and Bt is a d-
dimensional Brownian process. By virtue of the Euler-Maruyama discretisation and
using unbiased estimators of the gradient of the log-target density, SGLD and its
variants [14, 19] often produce fast and accurate results in practice when compared
with MCMC algorithms using MH steps.

4.4 Continuous-Time MCMC Samplers

All the above MCMC samplers are based on discrete-time, reversible Markov
chains, however, continuous-time, non-reversible MCMC samplers have been
drawing the attention of computational statisticians, which are based on piecewise
deterministic Markov processes (PDMP). Even though PDMP was proposed as
early as 1984 by Davis [15], its prevalence in statistics for sampling problems began
the remarkable applications by Peters et al. [39], Bouchard-Côté et al. [11], and
Bierkens et al. [8].

Suppose p be the continuous target distribution over R
d and for convenience

sake, we also use p(x) for the probability density function of p. Like HMC, an
auxiliary variable, v ∈ V is introduced in PDMP framework and PDMP-based
sampler explores the augmented space R

d × V , targeting a variable z = (x, v) with
distribution ρ(dx, dv) over Rd ×V as its invariant distribution. By construction, the
distribution ρ enjoys p as its marginal distribution in x. In practice, the distribution
of v is often chosen to be independent to x and we denote it ϕ(v). A piecewise
deterministic Markov process zt = (xt , vt ) consists of three distinct components:
its deterministic dynamic between events, an event occurrence rate and a transition
dynamic at event time. Specifically,

1. Deterministic dynamic: between two events, the Markov process evolves
deterministically, according to some ordinary differential equation:

dzt

dt
= �(zt ).

2. Event occurrence rate: an event occurs at time t with rate λ(zt ).
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3. Transition dynamic: At an event time, τ , the state prior to τ is denoted by zτ−,
with the new state being generated by zτ ∼ Q(·|zτ−).

Here, an “event” refers to an occurrence of a time-inhomogeneous Poisson process
with rate λ(·) [26]. The powerful tool to analyse PDMP is the extended generator,
which is defined as follows.

Algorithm 5 Simulation of PDMP
Initialize the starting point z0, τ0 ← 0.
for k = 1, 2, 3, · · · do

Sample inter-event time ηk from following distribution

P(ηk > t) = exp

{
−
∫ t

0
λ(zτk−1+s )ds

}
.

τk ← τk−1 + ηk , zτk−1+s ← �s(zτk−1), for s ∈ (0, ηk), where � is the ODE flow of �.
zτk− ← �ηk (zτk−1), zτk ∼ Q(·|zτk−).

end for

Definition 4.4.1 ([16]) Let D(L) denote the set of measurable functions f : Z →
R with the following property: there exists a measurable function h : Z → R such
that the function t → h(zt ) is integrable Pz-a.s. for each z ∈ Z and the process

C
f
t = f (zt ) − f (z0) −

∫ t

0
h(zs)ds

is a local martingale. Then we write h = Lf and call (L,D(L)) the extended
generator of the process {zt }t≥0.

Actually, we can compute the generator of above PDMP explicitly, by Davis [16,
Theorem 26.14].

Theorem 4.4.1 ([16]) The generator, L, of above PDMP is, for f ∈ D(L)

Lf (z) = ∇f (z) · �(z) + λ(z)

∫

z′

[
f (z′) − f (z)

]
Q(dz′|z).

Furthermore, ρ(dz) is an invariant distribution of above PDMP, if

∫
Lf (z)ρ(dz) = 0, for all f ∈ D(L).

By choosing appropriate deterministic dynamic, rate function and transition
dynamic, it is easy to make sure the specific PDMP admit the desired distribution,
ρ, as its invariant distribution. However, there are two main difficulties in
implementing such PDMP-based MCMC sampler. The first one is the computation
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of the ODE flow, � . Almost all existing PDMP-based samplers adopt the linear
dynamic, which means that

dxt

dt
= vt ,

dvt

dt
= 0.

Vanetti et al. [48] uses an approximation, p̂, of the target p and adopts the
Hamiltonian dynamic of p̂ × ϕ in HMC-BPS. The second difficulty comes from
the generation of inter-event time, which corresponds to the first occurrence time
of inhomogeneous Poisson process. The comment techniques to overcome such
difficulty are based on the following two theorems.

Theorem 4.4.2 (Superposition Theorem, [26]) Let �1,�2, · · · , be a countable
collection of independent Poisson processes on state space R+ and let �n have rate
λn(·) for each n. If

∑∞
n=1λn(t) < ∞ for all t , then the superposition

� =
∞⋃

n=1

�n

is a Poisson process with rate

λ(t) =
∞∑

n=1

λn(t)

Theorem 4.4.3 (Thinning Theorem, [28]) Let λ : R+ → R
+ and � : R+ → R

+
be continuous functions such that λ(t) ≤ �(t) for all t ≥ 0. Let τ1, τ2, · · · , be the
increasing finite or infinite sequence of a Poisson process with rate �(·). If, for all
i, the point τi is removed from the sequence with probability 1 − λ(t)/�(t), then
the remaining points τ̃1, τ̃2, · · · form a non-homogeneous Poisson process with rate
λ(·).
In order to estimate the integral of interest Ih = ∫

h(x)P (dx), there are two
approaches used to construct the estimator by PDMP-based samplers. Given a
simulated path (xt , vt )

T
t=0, the first estimator is

Ĩ Th = 1

T

∫ T

0
h(xt )dt.

By discretising the path uniformly with respect to t , we can construct another
estimator as

Î Th = 1

N

N∑

n=1

h(xnT/N ).
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4.4.1 Bouncy Particle Sampler

Bouncy particle sampler (BPS) is a specific piecewise deterministic Markov
process, which admits π(x)dx ⊗ dv over the state space R

d × Sd−1 as its
invariant distribution, by specifying the event rate λ(z) and the transition dynamic
Q(dz′; z).

1. The deterministic dynamic:

dx
(i)
t

dt
= v

(i)
t ,

dv
(i)
t

dt
= 0, i = 1, · · · , d

2. The event occurrence: λ(zt ) = max{0,−vt · ∇ logπ(xt )}.
3. The transition dynamic: Q(·|x, v) = δ(x,Pxv)(·), where

Pxv = v − 2
〈v,∇ logπ(x)〉

〈∇ logπ(x),∇ logπ(x)〉∇ logπ(x)

Bouchard-Côté et al. [11] has shown that BPS admits π(x)dx ⊗ dv as its invariant
distribution. However, the authors also find that pure BPS (specified above) meets
with a reducibility problem and add a reference Poisson process into BPS to
overcome it. The workflow of BPS with refreshment is shown in Algorithm 6.

Algorithm 6 Bouncy particle sampler
Initialize: x0, v0, T0 = 0.
for i = 1, 2, 3, · · · do

Generate τ ∼ PP (λ(xt , vt ))
Generate τ ref ∼ PP (λref)

if τ ≤ τ ref then
Ti ← Ti−1 + τ

xi ← xi−1 + τvi−1

vi ← vi−1 − 2 〈vi−1,∇ logπ(xi )〉
〈∇ logπ(xi ),∇ logπ(xi )〉∇ logπ(xi )

else
Ti ← Ti−1 + τ ref

xi ← xi−1 + τ refvi−1
vi ∼ U(Sd−1)

end if
end for

4.4.2 Generalized Bouncy Particle Sampler

In BPS, at event time, the velocity changes deterministically. However, we found
that the velocity can be changed into other directions, according to some distri-
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bution, at event time, which incorporates the randomness of the reference Poisson
process in BPS to overcome reducibility. In this section, we generalize the BPS as
follows: prior to event time, we decompose the velocity according to the gradient
of logπ(x), flip the parallel subvector and resample the orthogonal subvector with
respect to some distribution. The details in the same PDMP framework are as
follows:

1. The deterministic dynamic:

dx
(i)
t

dt
= v

(i)
t ,

dv
(i)
t

dt
= 0, i = 1, · · · , d

2. The event occurrence: λ(zt ) = max{0,−〈vt ,∇ logπ(xt )〉}.
3. The transition dynamic: Q(dx′, dv′|x, v) = δ{x}(dx′)δ{−v1}(dv′

1)Nv⊥
1
(dv′

2),
where

v1 = 〈v,∇ logπ(x)〉
〈∇ logπ(x),∇ logπ(x)〉∇ logπ(x), v2 = v − v1

v′
1 = 〈v′,∇ logπ(x)〉

〈∇ logπ(x),∇ logπ(x)〉∇ logπ(x), v′
2 = v′ − v′

1

v⊥
1 =

{
u ∈ R

d : 〈u, v1〉 = 0
}

where Nv⊥
1

denotes the (d − 1)-dimensional standard normal distribution over

the subspace v⊥
1 , that is, the hyperplane orthogonal to v1.

We summarize the GBPS in Algorithm 7.

Algorithm 7 Generalized bouncy particle sampler
Initialize: x0, v0, T0 = 0.
for i = 1, 2, 3, · · · do

Generate τ ∼ PP (λ(xt , vt ))
Ti ← Ti−1 + τ

xi ← xi−1 + τvi−1
vi ← Q(dv|xi , vi−1)

end for

Theorem 4.4.4 The above piecewise deterministic Markov chain admits π(x)dx ⊗
ψd(v)dv over R2d as its invariant distribution, where ψd(v) is the density function
of d-dimensional standard normal distribution.

Proof In order to prove π(x)dx⊗ψd(v)dv is the invariant distribution of generator
A of the above Markov chain, we just need to prove the following equation is
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satisfied by appropriate functions f :

∫

Rd

∫

Rd

Af (x, v)π(x)ψd(v)dxdv = 0

where by Theorem 26.14 [16]

Af (z) = ∇f (z) · �(z) + λ(x, v)
∫

v′∈Rd

f (x, v′)Q(dv′|x, v) − λ(x, v)f (x, v)

This is established in [52]. In order to establish the ergodicity theorem of GBPS, we
introduce a specific assumption on the target distribution π(x).

Assumption 4.4.1 For any two points x1, x2 ∈ R
d and any velocity v ∈

R
d, ‖v‖2 = 1, there exists t > 0, such that

x2 ∈ S⊥(x1 + tv, v)

Theorem 4.4.5 Under Assumption 4.4.1, the Markov chain z′
t = (xt ,

vt‖vt‖ ) induced
by GBPS admits π(x)× U(Sd−1) as its unique invariant distribution.

The proof of Theorem 4.4.5 and the definitions of notations in Assumption 4.4.1
can be found in [52]. Whether or not Theorem 4.4.5 remains correct without
Assumption 4.4.1 is an open question.

4.4.3 Construction of the Estimator and Implementation

While constructing an unbiased estimator of I = ∫
h(x)π(dx), we cannot use the

skeleton of the simulated GBPS path directly. In fact, such an estimator is biased.
Suppose {xi , vi , Ti}Mi=0 be the skeleton of an simulated trajectory, which means that
at event time Ti , the state is (xi , vi ). Then, the whole trajectory x[0,TM ] is filled up
with

xt = xi + (t − Ti)vi , Ti ≤ t < Ti+1

Let n be the number of data points selected from this trajectory, then an estimator
of I is constructed as

Î = 1

n

n∑

i=1

h(x iTM
n

)

The main difficulty in implementing BPS and GBPS is to simulate the event
times, which follows a Poisson process. The common techniques are based on the
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thinning and superposition theorems of Poisson process recalled above [27, 28]. In
GBPS, from a given state (x, v), the associated Poisson process �x,v has a rate
function λ(t) = λ(x + tv, v). With the help of the above two theorems, we can truly
simulate a sample from �x,v.

Let η(t) = ∫ t

0 λ(s)ds, then the first event time, τ , of Poisson process �, whose
rate function is λ(t), satisfies

P(τ > u) = P(� ∩ [0, u] = ∅) = exp(−η(u))

By the inverse theorem, τ can be simulated with the help of a uniform variate V ∼
U(0, 1) via:

τ = η−1(− log(V ))

If we can compute η−1 analytically, it is easy to simulate the event times. Otherwise,
the simulations commonly depend on the superposition and thinning theorems.

4.4.4 GBPS with Sub-sampling in Big Data

In Bayesian analysis, we suppose the observations {y1, y2, · · · , yN } are i.i.d.
samples from some distribution in the family {Px, x ∈ R

d} and let Px admit the
density px with respect to the Lebesgue measure on R

d . Given a prior π0(x) over
the parameter x, the posterior is

π(x)def= π(x|y1, · · · , yN) ∝ π0(x)
N∏

n=1

px(yn)

Traditional MCMC algorithms (with MH step) are difficult to scale for large data
sets, since each MH step needs to sweep over the whole data set. However, as
indicated in [8], PDMP may be super-efficient by using sub-sampling to simulate
samples from the target distribution if we can give a tight upper bound of the
rate function. In GBPS, we only use the gradient of the logarithm of the target
distribution, which means we can simulate the posterior by knowing it up to a
constant. Besides, we can give an unbiased estimator of the gradient of the logarithm
of the posterior by using its sum structure to simulate the posterior exactly:

̂∇ logπ(x)=N∇ logπI (x)=∇ logπ0(x)+N∇x logpx(yI ), I ∼ U{1, 2, · · · , N}

In Algorithm 8, we show the workflow of the implementation of subsampling in
GBPS. Notice that λ(�, vi−1) equals to λ(x, vi−1) in which ∇ logπ(x) is replaced
by �. �(t) is an upper bound of λ(x, v).
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Algorithm 8 Subsampling version
Initialize: x0, v0, T0 = 0.
for i = 1, 2, 3, · · · do

Generate τ ∼ PP (�(t))

Ti ← Ti−1 + τ

xi ← xi−1 + τvi−1
I ∼ U({1, · · · , N})
� ← N∇ logπI (xi )
q ← λ(�, vi−1)/�(τ)

u ∼ U(0, 1)
if u ≤ q then

vi ← Q(dv|�, vi−1)

else
vi ← vi−1

end if
end for

4.4.5 Numerical Simulations

In this section, we apply GBPS algorithm on three numerical experiments. Exam-
ple 4.4.1 shows that reducibility problem appears in isotropic Gaussian distribution
for BPS without refreshment but is not encountered by GBPS. In Example 4.4.2,
we can find that GBPS works well on multimode distributions and with similar
performance with BPS. Finally, we present the GBPS with sub-sampling on
Bayesian logistic model.

Example 4.4.1 (Isotropic Gaussian Distribution) In this example, we show the
reducibility problem of BPS without refreshment. The target distribution is

π(x) = 1

2π
exp

{
−x2

1 + x2
2

2

}

First we apply the BPS without reference Poisson process and show its reducibility
in Fig. 4.1. Compared with BPS without refreshment, GBPS is irreducible, shown
in Fig. 4.2.

Second, we compare the performances of GBPS and of BPS with refreshment.
For BPS, we set λref = {0.01, 0.1, 0.2, 0.5, 1}. Each method is run 50 times and each
sampled path has length 104. For each path, we sample 104 points with length gap
1. Figure 4.3 shows the errors of the first and second moments of each component
and Fig. 4.4 presents the errors in terms of Wasserstein-2 distance with respect to
the target distribution and the effective sample size of each method.

For BPS, we need to tune the rate of reference Poisson process to balance the
efficiency and accuracy. Even though BPS is ergodic for every positive refreshment
rate λref in theory, the value of λref matters in implementation. The smaller the
refreshment rate, the larger the effective sample size (high efficiency), the more
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Fig. 4.1 Reducibility problem in isotropic Gaussian distributions: (left) the first 50 segments of
a BPS path without refreshment which starts from the center of the Gaussian distribution, the
trajectory is on a line; (right) the first 500 segments of another BPS path with λref = 0 starting
from an point except the center, the trajectory cannot explore the center area
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Fig. 4.2 GBPS is irreducible in isotropic Gaussian distribution: (left) the first 1000 segments of a
GBPS path which starts from the center of the Gaussian distribution; (right) the first 1000 segments
of another GBPS path starting from an point except the center

slowly the chain mixes. The larger the refreshment rate, the smaller the effective
sample size (low efficiency), the faster the chain mixes. However, when the
refreshment rate is extremely large or small, BPS will produce chains approximating
the target distribution poorly. On the other hand, there is no hyper-parameter to tune
in GBPS, which incorporates the randomness of BPS in refreshment into transition
dynamics. Compared with BPS with different refreshment rates, GBPS performs
better when considering the first and second moments of each component. In terms
of Wasserstein-2 distance, as well as ESS, GBPS outperforms BPS.
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Fig. 4.3 Comparison between BPS and GBPS in isotropic Gaussian distribution. For each
graph, the first five boxes represent the BPS method with different refreshment rates λref =
{0.01, 0.1, 0.2, 0.5, 1}

Example 4.4.2 (Mixture of Gaussian Model) In this example, we show how to
simulate the event time by using superposition and thinning theorems. The target
is a mixture of Gaussian distributions:

π(x1, x2) = p

2πσ1σ2
exp

{
− (x1 − 3)2

2σ 2
1

− x2
2

2σ 2
2

}
+ 1 − p

2πσ3σ4
exp

{
− x2

1

2σ 2
3

− (x2 − 3)2

2σ 2
4

}
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Fig. 4.4 Comparison between BPS and GBPS in isotropic Gaussian distribution in terms of
Wasserstein distance and effective sample size. For each graph, the first five boxes represent the
BPS method with different refreshment rates λref = {0.01, 0.1, 0.2, 0.5, 1}

In our experiment, we set p = 0.5, (σ1, σ2, σ3, σ4) = (1, 1.5, 2, 1). The gradient is

∂π(x1, x2)

∂x1
= p

2πσ1σ2
exp

{
− (x1 − 3)2

2σ 2
1

− x2
2

2σ 2
2

}(
− (x1 − 3)

σ 2
1

)

+ 1 − p

2πσ3σ4
exp

{
− x2

1

2σ 2
3

− (x2 − 3)2

2σ 2
4

}(
− x1

σ 2
3

)

∂π(x1, x2)

∂x2
= p

2πσ1σ2
exp

{
− (x1 − 3)2

2σ 2
1

− x2
2

2σ 2
2

}(
− x2

σ 2
2

)

+ 1 − p

2πσ3σ4
exp

{
− x2

1

2σ 2
3

− (x2 − 3)2

2σ 2
4

}(
− (x2 − 3)

σ 2
4

)

We can give an upper bound for the norm of the gradient of the logarithm of the
target density function:

‖∇ logπ(x1, x2)‖2 ≤ |x1 − 3|
σ 2

1

+ |x1|
σ 2

3

+ |x2|
σ 2

2

+ |x2 − 3|
σ 2

4

Then an upper bound for λ(x, v) is given as

λ(x, v) ≤
(

|x1 − 3|
σ 2

1

+ |x1|
σ 2

3

+ |x2|
σ 2

2

+ |x2 − 3|
σ 2

4

)
∗ ‖v‖2
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By superposition, we need only focus on Poisson process whose rate function has
such form: λ(x, v) = |x−μ|

σ 2 . Let λs(x, v) = λ(x + sv, v) = |x+sv−μ|
σ 2 . Define

η(t) =
∫ t

0
λs(x, v)ds

i): If x > μ, v > 0,

η(t) =
∫ t

0

(x − μ) + sv

σ 2 ds =
1
2vt

2 + (x − μ)t

σ 2 = v

2σ 2

(
t2 + 2(x − μ)

v
t

)

= v

2σ 2

[(
t + (x − μ)

v

)2

− (x − μ)2

v2

]

η−1(z) =
√

2σ 2z

v
+ (x − μ)2

v2
− (x − μ)

v

ii) : If x < μ, v < 0, then

η(t) =
∫ t

0

−(x − μ) − sv

σ 2
ds = − 1

2vt
2 − (x − μ)t

σ 2
= − v

2σ 2

(
t2 + 2(x − μ)

v
t

)

= − v

2σ 2

[(
t + (x − μ)

v

)2

− (x − μ)2

v2

]

η−1(z) =
√

−2σ 2z

v
+ (x − μ)2

v2 − (x − μ)

v

iii) : If x > μ, v ≤ 0:

η

(
−x − μ

v

)
=
∫ − x−μ

v

0

sv + (x − μ)

σ 2 ds = − (x − μ)2

2vσ 2

1. If z > − (x−μ)2

2vσ 2 : t0 = − x−μ
v

− (x − μ)2

2vσ 2
+
∫ t

0
− sv

σ 2
ds = z, t =

√

−2σ 2z

v
− (x − μ)2

v2

η−1(z) =
√

−2σ 2z

v
− (x − μ)2

v2 +
(

−x − μ

v

)
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2. If z ≤ − (x−μ)2

2vσ 2 :

∫ t

0

sv + (x − μ)

σ 2
ds = v

2σ 2

(
t2 + 2(x − μ)

v
t

)
= z

η−1(z) = −
√

2σ 2z

v
+ (x − μ)2

v2 +
(

−x − μ

v

)

iv) : If x ≤ μ, v > 0:

η

(
−x − μ

v

)
=
∫ − x−μ

v

0

−sv − (x − μ)

σ 2 ds = (x − μ)2

2vσ 2

1. If z > (x−μ)2

2vσ 2 : t0 = − x−μ
v

(x − μ)2

2vσ 2 +
∫ t

0

sv

σ 2 ds = z, t =
√

2σ 2z

v
− (x − μ)2

v2

η−1(z) =
√

2σ 2z

v
− (x − μ)2

v2
+
(

−x − μ

v

)

2. If z ≤ (x−μ)2

2vσ 2 :

∫ t

0

−sv − (x − μ)

σ 2 ds = − v

2σ 2

(
t2 + 2(x − μ)

v
t

)
= z

η−1(z) = −
√

−2σ 2z

v
+ (x − μ)2

v2
+
(

−x − μ

v

)

In Fig. 4.5, we show the trajectory of the simulated GBPS path and associated
samples. Figure 4.6 shows the marginal density functions of the target distribution.
In Fig. 4.7, we compare the performance of BPS and GBPS. For BPS, we set
λref = 0.01, 0.1, 1. We sample 50 paths with length 10,000 for each method and
take 10,000 points from each path with gap 1 to form samples. Empirically, BPS is
ergodic over this example. With the increase of λref, the refreshment occurs more
frequently, which reduces the performance of BPS. Even though GBPS has worse
performance, compared to BPS with some refreshment rates, it is quite reliable and
has no parameter to tune.

Example 4.4.3 (Bayesian Logistic Model) For the Bayesian logistic model, we
suppose x ∈ R

d be the parameters and (yi, zi ), for i = 1, 2, · · · , N be the
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Fig. 4.6 Marginal density functions: the black solid lines are true marginal density, the red dotted
lines are from a GBPS path

observations, where yi ∈ R
d, zi ∈ {0, 1}, then

P(zi = 1|yi, x) = 1

1 + exp{−∑d
�=1 y

�
i x�}

Choosing the improper prior, then the posterior is

π(x) ∝
N∏

j=1

exp{zj ∑d
�=1 y

�
jx�}

1 + exp{∑d
�=1 y

�
jx�}
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Fig. 4.7 Comparison between GBPS and BPS: for each graph, the last three boxes represent BPS
with λref = 0.01, 0.1, 1

for k = 1, · · · , d , the partial derivative is

∂

∂xk
logπ(x) =

N∑

j=1

[
zj − exp{zj ∑d

�=1 y
�
j x�}

1 + exp{∑d
�=1 y

�
j x�}

]
ykj

Then, they are bounded by

∣∣∣∣
∂ logπ(x)

∂xk

∣∣∣∣ ≤
N∑

j=1

∣∣∣ykj
∣∣∣



116 W. Changye and C. P. Robert

and the bounded rate for Poisson process is

λ+ = max
1≤k≤d

N∑

j=1

∣∣∣ykj
∣∣∣

In our experiment, we set d = 5, N = 100 and use 10 observations for
subsampling at each iteration. Figure 4.8 shows the marginal density functions for
each component of parameters.
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Fig. 4.8 Marginal density functions: the black solid lines are marginal density of MH algorithm,
which are used as benchmark. The red dotted lines are from a GBPS path
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4.5 Conclusion

In this chapter, we have generalized the bouncy particle sampler in terms of its
transition dynamics. Our method—the generalized bouncy particle sampler—can
be regarded as a bridge between bouncy particle and zig-zag process samplers.
Compared with bouncy particle samplers, GBPS changes the direction velocity
according to some distribution at event time. However, compared with zig-zag
process samplers, GBPS can be regarded as attaching a moving coordinate system
on the state space of (x, v), instead of using a fixed one as in a zig-zag process
sampler. One main advantage of GBPS, compared to BPS, is that it has no parameter
to tune.

Throughout this chapter, we have supposed that the parameter space has no
restrictions. In practice, it is often the case one encounters restricted parameter
space problems. In such cases, we may transfer the restricted region into the
whole Euclidean space by reparameterization techniques. Besides, [9] experiments
with some methods to simulate over restricted space. Another problem when
implementing these methods is to figure out how to simulate event time from the
associated Poisson process in a efficient manner. In general, simulations are based
on superposition and thinning theorems. The upper bound of the rate function is
however crucial. The tighter the upper bound is, the more efficient the simulation
is. In Bayesian analysis, for large data sets, if the upper bound is O(Nα), then the
effective sample size per likelihood computation is O(N−(1/2+α)). If α < 1/2, then
both BPS and GBPS will be more efficient than traditional MCMC methods.

Exploring several simulation settings, we find that reducibility problem just
appears in isotropic Gaussian distributions or in distributions who admit isotropic
Gaussian distributions as their component for BPS. However, it is still an open
question.
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Chapter 5
Bayesian Variable Selection

Matthew Sutton

Abstract In this chapter we survey Bayesian approaches for variable selection and
model choice in regression models. We explore the methodological developments
and computational approaches for these methods. In conclusion we note the
available software for their implementation.

5.1 Introduction

Bayesian variable selection methodology has been progressing rapidly in recent
years. While the seminal work of the Bayesian spike and slab prior [1] remains
the main approach, continuous shrinkage priors have received a large amount of
attention. There is growing interest in speeding up inference with these sparse
priors using modern Bayesian computational approaches. Moreover, the subject
of inference for these sparse models has become an increasingly important area
of discussion among statisticians. A common theme among Bayesian variable
selection methods is that they aim to select variables while also quantifying
uncertainty through selection probabilities and variability of the estimates. This
chapter gives a survey of relevant methodological and computational approaches
in this area, along with some descriptions of available software.

5.2 Preliminaries

5.2.1 The Variable Selection Problem

In the context of variable selection for a regression model we consider the following
canonical problem in Bayesian analysis. Suppose we want to model a sample of n
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observations of a response variable Y ∈ R
n and a set of p potential explanatory

variables X1, . . . , Xp, where Xj ∈ R
n. The variable selection problem is to find

the ‘best’ model between the response Y and a subset of X1, . . . , Xp where there
is uncertainty in which subset to use. Throughout this chapter, we index each of the
possible 2p subset choices by the vector

γ = (γ1, . . . , γp)
T ,

where γj = 1 if variable Xj is included in the model, and γj = 0 otherwise. We
let sγ = ∑p

j=1 γj denote the number of selected variables for a model indexed
by γ . Given γ , suppose that Y has density p(Y | βγ , γ ) where βγ is a vector of
unknown parameters corresponding to the variables indexed by γ . The Bayesian
approach assigns a prior probability to the space of models p(γ ), and a prior to the
parameters of each model p(βγ | γ ).

The probability for the model with the selected variables γ conditional on having
observed Y , is the posterior model probability

p(γ | Y ) = p(Y | γ )p(γ )∑
γ ′∈{0,1}pp(Y |γ ′)p(γ ′)

,

where

p(Y | γ ) =
∫

p(Y | γ, βγ )p(βγ | γ )d(βγ ),

is the marginal likelihood of Y . The priors p(βγ | γ ) and p(γ ) provide an initial
representation of model uncertainty and the posterior adjusts for the information
in Y , allowing us to quantify the uncertainty of the variable selection. The actual
variable selection in a Bayesian analysis can proceed in several ways. Two common
approaches are:

1. Select the variables with the highest estimated posterior probability p(γ | Y ),
also known as the highest posterior density model (HPD),

2. Select variables with estimated posterior probability of inclusion p(γj = 1 | Y )
greater than 0.5, also known as the median probability model (MPM).

The appropriateness of the HPD and MPM model have been studied in detail [2, 3].
It has been shown that for orthogonal linear regression, the optimal model from a
Bayesian predictive objective is the MPM rather than the HPD.

In a Bayesian framework, the accuracy of the variable selection method depends
on the specification of the priors for the model space and parameters. In this section,
we survey priors which fall into one of four possible categories, priors on the model
space, spike and slab priors, shrinkage priors and projection methods.
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5.2.2 Model Space Priors

We begin by considering priors on the model space p(γ ). A common prior on the
model space assumes that the γj are independent and Bernoulli distributed,

p(γ ) =
p∏

j=1

w
γj
j (1 − wj )

1−γj , (5.1)

is computationally inexpensive and has been found to give sensible results in
practice [4–7]. Under this prior, each variable Xj will enter the model with
probability p(γj = 1) = wj . A common variant of this method is to place a Beta
prior on w ∼ Beta(a, b) which yields

p(γ ) = B(a + sγ , b + p − sγ )

B(a, b)
,

whereB(a, b) is the beta function with hyper-parametersa and b. The choice of a =
b = 1 corresponds to an uninformative prior on the model space. This type of prior
is also recommended in [8], where the choice of hyper-parameters is considered
asymptotically. More generally, one can put a prior h(sγ ) on the model dimension
and let

p(γ ) =
(
p

sγ

)−1

h(sγ ),

which allows for the belief that the optimal models are sparse [16]. Priors of this
form are considered generally by Scott in [9]. The priors described so far are useful
when there is no structural information about the predictors.

Structured priors have also been considered, for example [10] propose a model
space prior which incorporates known correlation in the predictors. They assume
that the covariates have an underlying graphical structure and use an Ising prior to
incorporate the structural information (see [11] for a survey on the Ising model).
This structural information is used to capture underlying biological processes in the
modelling.

5.2.3 Spike and Slab Priors

We now consider the specification of the prior for the parameters p(βγ | γ ).
Arguably, one of the simplest and most natural classes of prior distributions is given
by the spike and slab type priors. In the original formulation [1, 12] the spike and
slab distribution was defined as a mixture of a Dirac measure concentrated at zero
and a uniform diffuse component. Similar to [13], we use a more general version
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of the prior. In this chapter we refer to a spike and slab as any mixture of two
distributions where one component is peaked at zero and the other is diffuse. More
specifically, we define a spike and slab to have the form,

βj | γj ∼ (1 − γj )G0(βj ) + γjG1(βj ),

for j = 1, . . . , p where G0 and G1 are probability measures on R and γ ∼ p(γ ),
where p(γ ) is a prior on the model space. This framework naturally extends the
model space prior discussed in the previous section. The original spike and slab
(Mitchell et al. [1]) corresponds to a Dirac mass at zero δ0 for G0 and a uniform
slab distribution for G1.

For this section, we will assume an independent Bernoulli prior for γj , where
γj ∼ Bernoulli(wj), and wj ∈ [0, 1] for j = 1, . . . , p. Using this prior on the
model space the spike and slab can be written as the mixture

βj | wj ∼ (1 − wj )G0(βj ) + wjG1(βj ),

where we have marginalised over the binary term γj . There are a number of prior
specifications which use this hierarchical setup but differ in the distributions chosen
for G0 and G1 [14]:

Kuo and Mallick The Bernoulli–Gaussian or Binary Mask model is due to [15].
This prior takes a Dirac for the spike G0 = δ0 and a Gaussian for the slab G1,

βj | γj ∼ (1 − γj )δ0 + γjN(0, σ 2
β ),

where N(μβ, σ
2
β ) denotes a Normal distribution with mean μβ and standard

deviation σβ . The slab distribution is chosen with sufficiently large variance to
allow the non-zero coefficients to spread over large values. As noted by O’Hara and
Sillanpää [14] this method can suffer poor mixing in an MCMC implementation due
to the sharp shrinkage properties of the Dirac measure.

Stochastic Search Variable Selection (SSVS) A related method for variable
selection is the stochastic search variable selection (SSVS) or Normal-Normal
formulation proposed by George and McCulloch [6]. This prior has the aim of
excluding variable βj from the model whenever |βj | < εj given εj > 0 and where
| · | denotes the absolute value. The idea is that εj is a practical threshold that can
aid the identification of variables with effect size larger than some specified value.
The prior has the form,

βj | γj ∼ (1 − γj )N(0, τ 2
j ) + γjN(0, cj τ

2
j ),

where the separation between the two components is controlled through the tuning
parameters τj and cj > 0 which control the variance of the spike τ 2

j and the variance

of the slab τ 2
j c. To help guide the choice of these tuning parameters, [6] and [16]
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note that the two Gaussians intersect at the points ±εj where

εj = τj

√
2 log(cj )c2

j /(cj − 1).

Thus posterior coefficients within the interval [−εj , εj ] can be considered “practi-
cally zero”. They suggest using this to aid in the selection of the hyper-parameters
τj and cj . A variant of this prior is called the Gibbs variable selection (GVS)
method suggested by Dellaportas et al. [17] and Carlin and Chib [18]. This method
was motivated to improve convergence in MCMC implementations by reducing
the sharp shrinkage of the Dirac. Their method suggests that the distribution G1
corresponding to γj = 0 should be chosen so that it has no effect on the posterior.
When the likelihood is Normal this method follows a similar form as the SSVS
method where G1 is a normal distribution with mean and variance chosen to
minimise the effect on the posterior. This method can have good mixing properties
but is difficult to tune in practice [14].

A recent extension of the SSVS type of prior was proposed by Narisetty and
He [19] who propose a spike and slab priors that are Normal, but where the prior
parameters depend explicitly on the sample size to achieve appropriate shrinkage.
They establish model selection consistency in a high-dimensional setting, where p

can grow nearly exponentially with n.

Normal Mixture of Inverse Gamma (NMIG) For linear regression, [20] proposed
to move the spike and slab to the variance term rather than placing a prior on the
parameter itself. The form of their prior parameterised the variance as a product of
random variables with inverse gamma distribution (IG) and a Dirac. We state the
equivalent parameterisation of this spike and slab model [21]

βj | τ 2
j ∼ N(0, τ 2

j ) (5.2)

τ 2
j | γj ∼ (1 − γj )IG(a,

d0

b
) + γj IG(a,

d1

b
) (5.3)

where d0 and d1 now have the role of τ 2
j and cj from the SSVS prior. Integrating

over the variance terms the prior on βj can be seen as a mixture of two scaled
t-distributions. A similar argument based on the desired “practical effect” can be
made for this prior to assist in the choice of hyper-parameters (see [20] and [21]).

Spike and Slab Lasso More recently priors with thicker tails have been considered
for the distributions of the spike and slab. In particular, [22] propose a version of the
spike and slab distribution,

βj | γj ∼ (1 − γj )Lap(λ0) + γjLap(λ1),

where Lap(λ) = λ
2 e

−λ|β| denotes a Laplace (double exponential) distribution.
Taking λ1 small and λ0 large enables the distribution to mimic the original [1]
prior with Dirac spike and diffuse slab. Taking instead λ0 = λ1 = λ, the prior
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is equivalent to a single Laplace with parameter λ. This method provides a bridge
between the weak shrinkage of the Laplace distribution and the harsh shrinkage of
the original spike and slab. Additional computational advantages for mode detection
are also possible due to the choice of Laplace shrinkage.

Heavy Tailed Spike and Slab Recent work of [13], have considered using
distributions with heavier tails than the Laplace distribution. They advocate the use
of priors of the form

βj | γj ∼ (1 − γj )δ0 + γjCauchy(1),

where Cauchy(1) denotes a standard Cauchy distribution. In particular they find
that for the prior γj ∼ Bernoulli(w) for all j = 1, . . . , p, if the hyper parameter
w is calibrated via marginal maximum likelihood empirical Bayes, the Laplace slab
is shown to lead to a suboptimal rate for the empirical Bayes posterior [13]. Heavier
tailed distributions are required in order to make the empirical posterior contract at
the optimal rate.

Nonlocal Priors Each of the priors considered so far places local prior densities
on regression coefficients in the model. That is, the slab G1 distributions all have
positive prior density at the origin 0, which can make it more difficult to distinguish
between models with small coefficients. Johnson and Rossell [23] proposed two new
classes of priors which are zero at and around the origin. These priors are motivated
from a Bayesian model averaging perspective and assign a lower weight to more
complex models [24, 25].

5.2.4 Shrinkage Priors

Due to high computational costs spike and slab methods are often not able to scale
to very high dimensional problems. This is due largely to the discrete γ variable and
the large model space. Consequently, this has motivated the development of a wealth
of priors that aim to provide continuous alternatives to the spike and slab. One of the
earliest methods that received attention for this purpose is the Bayesian Lasso (least
absolute shrinkage and selection) [26]. This method was motivated largely by the
Lasso penalisation approach which has been celebrated in the statistics community
for its computational efficiency and variable selection performance. For a detailed
survey of the lasso and related Penalised regression methods see [27]. The Bayesian
Lasso corresponds to the use of a Laplace prior on the regression coefficient. The
resulting posterior mode for the Bayesian lasso is equivalent to the solution for the
Lasso regression problem. While the Lasso estimate has been shown to have good
variable selection properties, the Bayesian Lasso does not. Castillo et al. [8] show
that the Bayesian Lasso does not make the posterior concentrate near the true value
in large samples.
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In recent years, continuous Bayesian priors with good shrinkage properties have
been introduced to the literature. One broad class of priors is referred to as global-
local shrinkage priors [28] which have the hierarchical form,

βj | ηj ,w ∼ N(0, wηj ), (5.4)

ηj ∼ π(ηj ), (5.5)

w ∼ π(w) (5.6)

where ηj s are known as the local shrinkage parameters and control the degree of
shrinkage for each individual coefficient βj , while the global parameter w causes
an overall shrinkage. If the prior π(ηj ) is appropriately heavy-tailed, then the
coefficients of nonzero variables will not incur a strong shrinkage effect. This
hierarchical formulation essentially places a scale mixture of Normal distributions
using (5.5) and (5.6) and is found frequently in the Bayesian literature. This includes
the normal-gamma [29], Horseshoe prior [30], generalised double Pareto [31],
Dirichlet-Laplace (DL) prior [32] and the Horseshoe+ prior [33]. These priors all
contain a significant amount of mass at zero so that coefficients are shrunk to zero.

Ghosh et al. [34] observed that for a large number of global-local shrinkage
priors, the parameter ηj has a distribution that can be written as,

π(ηj ) = Kη−a−1
j L(ηj ), (5.7)

where K > 0 and a > 0 are positive constants, and L is a positive measureable
function. Table 1 from [35] provides a list of the more well known global-local
shrinkage priors that fall into this form, their corresponding density for ηj , and
the component L(ηj ). Theoretical properties and uncertainty quantification has
also been considered for these types of shrinkage priors [36]. Importantly, point
estimates using only shrinkage priors on the regression coefficients are not able
to produce exact zeros. Quantification of the selected variables is often achieved
using the estimated credible intervals. Additional inference on the regression
coefficients may also be achieved using the decoupling shrinkage and selection
(DSS) framework developed by Hahn and Carvalho [37].

5.3 Computational Methods

In this section we survey some of the standard methods used in computational
Bayesian statistics to compute posterior inference in the Bayesian variable selection
methods. For each method we outline the general implementation details. For
illustrative purposes, we show how these methods may be used for a linear



128 M. Sutton

regression analysis with the following hierarchical framework:

Y | βγ , γ, σ ∼ Nn(Xγ βγ , σ
2I) (5.8)

βγ | σ, γ ∼ Nsγ (μβ, σ
2Σγ ), (5.9)

σ 2 ∼ IG(d/2, dλ/2), (5.10)

γj
iid∼ Bern(w) forj = 1, . . . , p, (5.11)

where Xγ and βγ denote subvectors of the covariates and regression parameters
corresponding to the selected indices in γ and Σγ ∈ R

sγ×sγ is the sγ × sγ prior

covariance matrix for the selected regressors. Since γj
iid∼ Bern(w) with w fixed,

this prior on the model space favours models with wp selected variables. This prior
specification for β | γ corresponds to the Normal-Binomial or Kuo and Mallick
spike and slab.

5.3.1 Markov Chain Monte Carlo Methods

The most widely used tool for fitting Bayesian models are sampling techniques
based on Markov chain Monte Carlo (MCMC), in which a Markov chains is
designed with stationary distribution that matches the desired posterior. In Bayesian
variable selection, MCMC procedures are used to generate a sequence

γ (1), γ (2), . . . (5.12)

from a Markov chain with stationary distribution p(γ | Y ). In situations where there
is no closed form expression for p(γ | Y ) we can attain a sequence of the form

γ (1), β(1), σ (1), γ (2), β(2), σ (2) . . . (5.13)

from a Markov chain with distribution p(β, σ, γ | Y ). In the next two subsections
we described various MCMC algorithms which may be used for simulating from
(5.12) and (5.13). These algorithms are variants of the Metropolis–Hastings (MH)
and Gibbs sampler algorithms, respectively. For more information on these algo-
rithms and other MCMC methods for variable selection see the lecture notes [16].

5.3.2 Metropolis–Hastings

Algorithm 1 gives a generic description of an iteration of a Hastings–Metropolis
algorithm that samples from p(γ | Y ). The MH algorithm works by sampling from
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an arbitrary probability transition kernel q(γ ∗ | γ ) (the distribution of the proposal
γ ∗) and imposing a random rejection step.

Input: γ
Output: γ ′
1. Sample γ ∗ ∼ q(γ ∗|γ )
2. With Probability

α = min

(
1,

q(γ | γ ∗)p(γ ∗ | Y)
q(γ ∗ | γ )p(γ | Y)

)

Set γ ′ ← γ ∗, otherwise γ ′ ← γ .
Algorithm 1: Metropolis–Hastings (MH) algorithm

The simplest transition kernel would be to take q(γ ∗ | γ ) = 1/p if a single
component of γ is changed. This yields a Metropolis algorithm which simulates
a new proposal by randomly changing one component of γ . This algorithm was
originally proposed for graphical model selection by Madigan et al. [38] and is
namedMC3 (Markov chain Monte Carlo model composition). Alternative transition
kernels could be constructed to propose changes in d components of γ , or more
generally to change a random number of components in γ . We note that the
MH approach for variable selection has inspired a number of methods that are
able to effectively explore a large model space. The stochastic search methods
developed by Hans et al. [39] explores multiple candidate models in parallel at each
iteration and moves more aggressively toward regions of higher probability. Parallel
tempering together with genetic algorithms have also been adapted to help assist
the exploration of the large feature space in a method called Evolutionary MCMC
(EMC) [40]. This was later adapted to Bayesian variable selection by Bottolo and
Richardson [41]. For variable selection problems where p(γ | Y ) is not easily
attained, MH methods will need to sample both βγ and γ , so care must be taken
in choosing the appropriate transition kernel.

Example Details A valuable feature of the prior in (5.8) is that, due to conjugacy
of the priors [16], the parameters βγ and σ can be eliminated from p(Y, βγ , σ | γ )
to yield,

p(Y | γ ) ∝ |XT
γ Xγ + Σ−1

γ |−1/2|Σγ |−1/2(dλ + S2
γ )

(−(n+d)/2)

where,

S2
γ = YT Y − YT Xγ (X

T
γ Xγ + Σ−1

γ )−1XT
γ Y.

Thus, for the model prior p(γ ) = wsγ (1 − w)p−sγ the posterior is proportional to

p(γ | Y ) ∝ p(Y | γ )p(γ ) = g(γ ).
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Taking the previously defined transition kernel q(γ ∗ | γ ) and making use of the
fact that g(γ )/g(γ ′) = p(γ | Y )/p(γ ′ | Y ), the MH algorithm follows the steps in
Algorithm 1.

5.3.3 Gibbs Sampling

A well known MCMC approach to variable selection when the conditional distri-
butions of the parameters are known is to apply Gibbs sampling. Unfortunately
a drawback of Gibbs sampling is that it is not very generic and implementation
depends strongly on the prior and model. When the prior is analytically tractable
and a function g(γ ) ∝ p(γ | Y ) is available, the standard way to draw samples
from the posterior p(γ | Y ) is by sampling the p components (γ1, . . . , γp) as,

γj ∼ p(γj | Y, γ(−j)), j = 1, . . . , p,

where γ(−j) = (γ1, . . . , γj−1, γj+1, . . . , γp) and where components γj may be
drawn in fixed or random order. By computing the ratios

p(γj = 1, γ(−j) | Y )
p(γj = 0, γ(−j) | Y ) = g(γj = 1, γ(−j))

g(γj = 0, γ(−j))
,

we can make use of the following [16]

p(γj = 1 | Y, γ(−j)) = p(γj = 1, γ(−j) | Y )
p(γj = 0, γ(−j) | Y )

(
1 + p(γj = 1, γ(−j) | Y )

p(γj = 0, γ(−j))

)−1

.

It is worth noting the recent work of Zanella and Roberts [42] which proposes an
importance sampling version of the Gibbs sampling method with application to
Bayesian variable selection. Additional computational advantages may be possible
by drawing the components of γ in groups rather than one at a time. In this case the
potential advantage of group updates would perform best if correlated variables are
jointly updated.

Example Details As before, we have the function g(γ )

p(Y | γ ) ∝ g(γ ) = |XT
γ Xγ + Σ−1

γ |−1/2|Σγ |−1/2(dλ + S2
γ )

(−(n+d)/2)

where,

S2
γ = YT Y − YT Xγ (X

T
γ Xγ + Σ−1

γ )−1XT
γ Y.
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The Bayesian update for γj | Y, γ(−j) is a Bernoulli draw with probability

p(γj = 1 | Y, γ(−j)) = g(γj = 1, γ(−j))

g(γj = 0, γ(−j))

(
1 + g(γj = 1, γ(−j))

g(γj = 0, γ(−j))

)−1

.

5.4 Software Implementations

There is a vast supply of software available to perform Bayesian variable selection.
For this survey we restrict the scope to packages built for the R programming
language [43]. These packages are free and available on the comprehensive R
archive network CRAN (cran.r-project.org).

We start by noting that computational implementation of the priors and models
described can be easily implemented in a number of generic Bayesian software.
Ntzoufras [44] provide interesting examples of variable selection for the programs
WinBUGS [45] and JAGS [46]. Code has also been made available for JAGS
implementations of variable selection priors in the tutorial [14]. General purpose
Bayesian software such as STAN [47] is not able to model discrete parameters so the
spike and slab priors cannot be implemented. However, a large range of shrinkage
priors such as the Horseshoe and Horseshoe+ are available. Practical examples for
the analysis of variable selection has been proposed using STAN [48] (Table 5.1).

In addition to the general probabilistic programming languages, there are a large
number of specific variable selection R packages. A survey of available R packages
for variable selection has compared and contrasted popular software available as
recent as February 17, 2017 [49]. In this chapter, we note some recent packages
which were found using the PKGSEARCH R package [50]. The key words searched
were Bayesian variable selection, Bayesian model averaging and Bayesian feature
selection. From this search we note the following packages: EMVS, basad, varbvs,
BAS, spikeSlabGAM, BVSNLP, BayesS5, mombf, BoomSpikeSlab, R2GUESS, BMA,
SSLASSO.

BoomSpikeslab [51] implements a fast Gibbs sampling procedure for Bayesian
modelling using a variant of the SSVS spike and slab prior. BMA implements a
Metropolis Hastings (MC3) algorithm for linear and some nonlinear sparse Bayesian
models. BAS is similar to BMA in that it provides Bayesian model averaging
methods. However, the sampler in BAS makes use of adaptive MCMC methods
to give more efficient estimates. The mombf package provides a Gibbs sampler
for the non-local and local priors (see Sect. 5.2.3). spikeSlabGAM implements a
Gibbs sampler using a variant of the SSVS prior for generalised additive mixed
models. Varbvs [52] implements a variational Bayesian variable selection method.
As an alternative to MCMC, this package returns approximate estimates of posterior
probabilities. These methods can scale much better with the dimension of the data
than MCMC methods but suffer an approximation bias. R2GUESS provides an
evolutionary stochastic search algorithm for both single and multiple response linear

cran.r-project.org
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Table 5.1 Recent packages for variable selection found using the R package PKGSEARCH

Package Last release Downloads Description

BoomSpikeSlab 2019 214, 663 MCMC for Spike and Slab regression

BMA 2018 159, 652 Bayesian model averaging

BAS 2018 80, 286 Bayesian variable selection and model
averaging using Bayesian adaptive sampling

mombf 2019 39, 764 Bayesian model selection and averaging for
non-local and local priors

spikeSlabGAM 2018 21, 332 Bayesian variable selection and model choice
for generalized additive mixed models

Varbvs 2019 14, 781 Large-scale Bayesian variable selection using
variational methods

R2GUESS 2018 14, 595 A graphics processing unit-based R package
for Bayesian variable selection regression of
multivariate responses

BayesS5 2018 11, 295 Bayesian variable selection using simplified
shotgun stochastic search with screening (S5)

BVSNLP 2019 10, 985 Bayesian variable selection in high
dimensional settings using nonlocal priors

basad 2017 6187 Bayesian variable selection with Shrinking
and diffusing priors

SSLASSO 2018 4407 The Spike and Slab LASSO

EMVS 2018 3816 The expectation-maximization approach to
Bayesian variable selection

Year of the last release of the package, number of package downloads (calculated using CRANLOGS

as of 28th July 2019)

models. BayesS5 is an efficient algorithm based on a variation of the stochastic
search method and screening steps to improve computation time in high dimensions.
The package BVSNLP implements considers local and nonlocal priors (similar
to mombf) for binary and survival data [53]. The package basad implements
variable selection with shrinking and diffusing spike and slab priors [19]. SSLASSO
provides an implementation of the spike and slab lasso [22] for fast variable
selection with Laplacian distributions for both the spike and slab. Finally, EMVS
provides an expectation maximisation approach for Bayesian variable selection. The
method provides a deterministic alternative to the stochastic search methods in order
to find posterior modes.

Acknowledgement The author would like to acknowledge the Australian Research Council
Centre of Excellence in Mathematical and Statistical Frontiers for funding.
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22. V. Ročková, E.I. George, The spike-and-slab lasso. J. Am. Stat. Assoc. 113(521), 431–444
(2018)

23. V.E. Johnson, D. Rossell, Bayesian model selection in high-dimensional settings. J. Am. Stat.
Assoc. 107(498), 649–660 (2012)

24. D. Rossell, D. Telesca, Non-local priors for high-dimensional estimation. J. Am. Stat. Assoc.
112(517), 254–265 (2017)

https://doi.org/10.1214/lnms/1215540964


134 M. Sutton

25. A. Nikooienejad, W. Wang, V.E. Johnson, Bayesian variable selection for binary outcomes in
high-dimensional genomic studies using non-local priors. Bioinformatics 32(9), 1338–1345
(2016)

26. R. Tibshirani, Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B Stat.
Methodol. 58(1), 267–288 (1996)

27. J. Fan, J. Lv, A selective overview of variable selection in high dimensional feature space. Stat.
Sin. 20(1), 101–148 (2010)

28. N.G. Polson, J.G. Scott, Local shrinkage rules, lévy processes and regularized regression. J. R.
Stat. Soc. Ser. B Stat. Methodol. 74(2), 287–311 (2012)

29. J.E. Griffin, P.J. Brown, Inference with normal-gamma prior distributions in regression
problems. Bayesian Anal. 5(1), 171–188 (2010)

30. C.M. Carvalho, N.G. Polson, J.G. Scott, The horseshoe estimator for sparse signals. Biometrika
97(2), 465–480 (2010)

31. A. Armagan, D.B. Dunson, J. Lee, Generalized double pareto shrinkage. Stat. Sin. 23(1), 119–
143 (2013)

32. A. Bhattacharya, D. Pati, N.S. Pillai, D.B. Dunson, Dirichlet–laplace priors for optimal
shrinkage. J. Am. Stat. Assoc. 110(512), 1479–1490 (2015)

33. A. Bhadra, J. Datta, N.G. Polson, B. Willard, The horseshoe+ estimator of ultra-sparse signals.
Bayesian Anal. 12(4), 1105–1131 (2017)

34. P. Ghosh, X. Tang, M. Ghosh, A. Chakrabarti, Asymptotic properties of bayes risk of a general
class of shrinkage priors in multiple hypothesis testing under sparsity. Bayesian Anal. 11(3),
753–796 (2016)

35. R. Bai, M. Ghosh, High-dimensional multivariate posterior consistency under global–local
shrinkage priors. J. Multivar. Anal. 167, 157–170 (2018)

36. S. van der Pas, B. Szabó, A. van der Vaart, Uncertainty quantification for the horseshoe (with
discussion). Bayesian Anal. 12(4), 1221–1274 (2017)

37. P.R. Hahn, C.M. Carvalho, Decoupling shrinkage and selection in Bayesian linear models: a
posterior summary perspective. J. Am. Stat. Assoc. 110(509), 435–448 (2015)

38. D. Madigan, J. York, D. Allard, Bayesian graphical models for discrete data. Int. Stat. Rev./Rev.
Int. de Stat. 63(2), 215–232 (1995)

39. C. Hans, A. Dobra, M. West, Shotgun stochastic search for “large p” regression. J. Am. Stat.
Assoc. 102(478), 507–516 (2007)

40. F. Liang, W.H. Wong, Evolutionary monte carlo: applications to C p model sampling and
change point problem. Stat. Sin. 10(2), 317–342 (2000)

41. L. Bottolo, S. Richardson, Evolutionary stochastic search for Bayesian model exploration.
Bayesian Anal. 5(3), 583–618 (2010)

42. G. Zanella, G. Roberts, Scalable importance tempering and Bayesian variable selection. J. R.
Statist. Soc. B 81, 489–517 (2019)

43. R Core Team, R: A Language and Environment for Statistical Computing (R Foundation for
Statistical Computing, Vienna, 2013)

44. I. Ntzoufras, Gibbs variable selection usingbugs. J. Stat. Softw. 7(7), 1–19 (2002)
45. D.J. Lunn, A. Thomas, N. Best, D. Spiegelhalter, Winbugs-a Bayesian modelling framework:

concepts, structure, and extensibility. Stat. Comput. 10(4), 325–337 (2000)
46. M. Plummer, et al., JAGS: A program for analysis of Bayesian graphical models using

gibbs sampling, in Proceedings of the 3rd International Workshop on Distributed Statistical
Computing, vol. 124 (2003)

47. B. Carpenter, A. Gelman, M.D. Hoffman, D. Lee, B. Goodrich, M. Betancourt, M. Brubaker,
J. Guo, P. Li, A. Riddell, Stan: A probabilistic programming language. J. Stat. Softw. 76(1),
1–32 (2017)

48. J. Piironen, A. Vehtari, Projection predictive model selection for gaussian processes, in 2016
IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP)
(2016), pp. 1–6



5 Bayesian Variable Selection 135

49. A. Forte, G. Garcia-Donato, M. Steel, Methods and tools for Bayesian variable selection and
model averaging in normal linear regression. Int. Stat. Rev./Rev. Int. de Stat. 86(2), 237–258
(2018)

50. G. Csárdi, pkgsearch: Search CRAN R Packages. R package version 2.0.1. (2018). https://
CRAN.R-project.org/package=pkgsearch

51. H. Ishwaran, U.B. Kogalur, J.S. Rao, spikeslab: prediction and variable selection using spike
and slab regression. R J. 2, 68–73 (2010)

52. P. Carbonetto, M. Stephens, Scalable variational inference for Bayesian variable selection in
regression, and its accuracy in genetic association studies. Bayesian Anal. 7, 73–108 (2012)

53. D. Rossell, J.D. Cook, D. Telesca, P. Roebuck, mombf: moment and inverse moment bayes
factors. R Package Version 1. 0, vol. 3 (2008)

https://CRAN.R-project.org/package=pkgsearch
https://CRAN.R-project.org/package=pkgsearch


Chapter 6
Bayesian Computation with Intractable
Likelihoods

Matthew T. Moores, Anthony N. Pettitt, and Kerrie L. Mengersen

Abstract This chapter surveys computational methods for posterior inference with
intractable likelihoods, that is where the likelihood function is unavailable in closed
form, or where evaluation of the likelihood is infeasible. We survey recent devel-
opments in pseudo-marginal methods, approximate Bayesian computation (ABC),
the exchange algorithm, thermodynamic integration, and composite likelihood,
paying particular attention to advancements in scalability for large datasets. We
also mention R and MATLAB source code for implementations of these algorithms,
where they are available.

Keywords Composite likelihood · Likelihood-free inference · Markov random
fields · Pseudo-marginal methods

The likelihood function plays an important role in Bayesian inference, since it
connects the observed data with the statistical model. Both simulation-based (e.g.
MCMC) and optimisation-based (e.g. variational Bayes) algorithms require the
likelihood to be evaluated pointwise, up to an unknown normalising constant.
However, there are some situations where this evaluation is analytically and com-
putationally intractable. For example, when the complexity of the likelihood grows
at a combinatorial rate in terms of the number of observations, then likelihood-
based inference quickly becomes infeasible for the scale of data that is regularly
encountered in applications.
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Intractable likelihoods arise in a variety of contexts, including models for DNA
mutation in population genetics [43, 64], models for the spread of disease in
epidemiology [46, 60], models for the formation of galaxies in astronomy [12], and
estimation of the model evidence in Bayesian model choice [29]. This chapter will
mainly focus on Markov random field (MRF) models with discrete state spaces, such
as the Ising, Potts, and exponential random graph models (ERGM). These models
are used for image segmentation or analysis of social network data, two areas where
millions of observations are commonplace. There is therefore a need for scalable
inference algorithms that can handle these large volumes of data.

The Ising, Potts, or ERGM likelihood functions can be expressed in the form of
an exponential family:

p(y | θ) = exp
{
θT s(y)

}

C(θ) , (6.1)

where the observed data y = y1, . . . , yn is in the form of an undirected graph, θ is
a vector of unknown parameters, s(y) is a corresponding vector of jointly-sufficient
statistics for these parameters, and C(θ) is an intractable normalising constant, also
known as a partition function:

C(θ) =
∑

y∈Y
exp

{
θT s(y)

}
, (6.2)

where the sum is over all possible configurations of states, y ∈ Y.
In the case of an Ising model, a single node can take one of two possible values,

yi ∈ {0, 1}. For example, in image analysis the value 1 might represent a foreground
pixel, while 0 represents the background. The q-state Potts model generalises this
construction to more than two states, so yi ∈ {1, . . . , q}. The cardinality of the
configuration space, #Y, is then qn. Even with only 2 states and n = 100 pixels,
computation of (6.2) requires more than 1030 floating point operations. It would take
a supercomputer with 100 PetaFLOPS over 400,000 years to find an answer.

Both the Ising and Potts models possess a single parameter, β, known as the
inverse temperature. The corresponding sufficient statistic is then:

s(y) =
∑

i∼�∈E
δ(yi, y�), (6.3)

where E is the set of all unique pairs of neighbours i ∼ � in the observed graph, and
δ(x, y) is the Kronecker delta function, which equals 1 when x = y and 0 otherwise.
We assume a first-order neighbourhood structure, so a given pixel yi would have up
to 4 neighbours in a regular 2D lattice, or 6 neighbours in 3D. Pixels on the boundary
of the image domain have less than 4 (or 6) neighbours, so #E = 2(n − √

n) for a
square 2D lattice, or 3(n − n2/3) for a cube.
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The observed data for an ERGM can be represented as a binary adjacency matrix
Y , encoding the presence or absence of a neighbourhood relationship between nodes
i and j : [Y ]i,j = 1 if i ∼ j ; [Y ]i,j = 0 otherwise. #Y for an ERGM is equal
to 2M , where M = n(n − 1)/2 is the maximum number of ties in an undirected
graph with n nodes. As with the Ising or Potts models, computing the normalising
constant (6.2) is therefore intractable for non-trivial graphs. Various kinds of ERGM
can be defined by the choice of sufficient statistics. The simplest example is the
Bernoulli random graph [23], which has a single statistic s1(Y ) = m, the number of
connected neighbours in the graph. In an undirected graph, this is half the number
of nonzero entries in the adjacency matrix. An important class of graph statistics are
the numbers of k-stars [26], which can be defined in terms of the degree distribution
[59]:

nk =
n∑

i=1

(
di

k

)
, (6.4)

where the degree di is the number of neighbours of node i:

di =
n∑

j=1

[Y ]ij . (6.5)

Note that under this definition n1 = 2m, since each tie is counted twice. An
alternative definition, which avoids double-counting, is given by:

n1 = ∑
i<j [Y ]ij number of edges

n2 = ∑
i<j<k[Y ]ik[Y ]jk number of 2-stars

n3 = ∑
i<j<l<k[Y ]ik[Y ]jk[Y ]lk number of 3-stars.

The remainder of this chapter will describe various MCMC methods that target
the posterior distribution π(θ | y), or some approximation thereof. This will be in
the context of a random walk Metropolis (RWM) algorithm that proposes a new
value of θ ′ at iteration t using a (multivariate) Gaussian proposal distribution, q(· |
θ t−1) ∼ N(θ t−1,Σt ). Methods for tuning the proposal bandwidth Σt have been
described by Andrieu and Thoms [3] and Roberts and Rosenthal [67]. Normally,
the proposed parameter value would be accepted with probability min{1, ρt }, or
else rejected, where ρt is the Radon–Nikodým derivative:

ρt =
q
(
θ (t−1) | θ ′)p

(
y | θ ′)π0

(
θ ′)

q
(
θ ′ | θ (t−1)

)
p
(

y | θ (t−1)
)
π0

(
θ (t−1)

) , (6.6)

π0(θ) is the prior density for the parameter/s, and p (y | θ) is the likelihood (6.1). If
we use a symmetric proposal distribution q and a uniform prior π0, then these terms
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will cancel, leaving:

ρt = ψ
(
y | θ ′)

ψ(y | θ (t−1))

C(θ (t−1))

C (θ ′) , (6.7)

which is the ratio of unnormalised likelihoods ψ = exp
{
θT s(y)

}
, multiplied by the

ratio of intractable normalising constants (6.2). It is clearly infeasible to evaluate
(6.7) directly, so alternative algorithms are required. One option is to estimate ρt
by simulation, which we categorise as auxiliary variable methods: pseudo-marginal
algorithms, the exchange algorithm, and approximate Bayesian computation (ABC).
Other methods include path sampling, also known as thermodynamic integration
(TI), pseudolikelihood, and composite likelihood.

6.1 Auxiliary Variable Methods

6.1.1 Pseudo-Marginal Algorithms

Pseudo-marginal algorithms [2, 6] are computational methods for fitting latent
variable models, that is where the observed data y can be considered as noisy
observations of some unobserved or hidden states, x. For example, hidden Markov
models (HMMs) are commonly used in time series analysis and signal processing.
Models of this form can also arise as the result of data augmentation approaches,
such as for mixture models [17, 73]. The marginal likelihood is of the following
form:

p(y | θ) =
∫

X p(y | x) p(x | θ) dx, (6.8)

which can be intractable if the state space is very high-dimensional and non-
Gaussian. In this case, we can substitute an unbiased, non-negative estimate of the
likelihood.

O’Neill et al. [60] introduced the Monte Carlo within Metropolis (MCWM)

algorithm, which replaces both p
(
y | θ ′) and p

(
y | θ (t−1)

)
in the Metropolis–

Hastings ratio ρt (6.6) with importance-sampling estimates:

p̃IS(y | θ) ≈ 1

M

M∑

m=1

p(y | Xm)
p(Xm | θ)

q(Xm | θ)
, (6.9)

where the samples X1, . . . , XM are drawn from a proposal distribution q(Xm |
θ) for θ ′ and θ (t−1). MCWM is generally considered as an approximate algo-
rithm, since it does not target the exact posterior distribution for θ . However,
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Medina-Aguayo et al. [47] have established some conditions under which MCWM
converges to the correct target distribution as M → ∞. See also [55] and [1] for
further theoretical analysis of approximate pseudo-marginal methods.

Beaumont [6] introduced the grouped independence Metropolis–Hastings
(GIMH) algorithm, which does target the exact posterior. The key difference is that

p̃IS

(
y | θ (t−1)

)
is reused from the previous iteration, rather than being recalculated

every time. The theoretical properties of this algorithm have been an active area of
research, with notable contributions by Andrieu and Roberts [2], Maire et al. [41],
Andrieu and Vihola [4], and Sherlock et al. [69]. Andrieu et al. [5] introduced the
particle MCMC algorithm, which is a pseudo-marginal method that uses sequential
Monte Carlo (SMC) in place of importance sampling. This is particularly useful
for HMMs, where SMC methods such as the bootstrap particle filter provide an
unbiased estimate of the marginal likelihood [62]. Although importance sampling
and SMC are both unbiased estimators, it is necessary to use a large enough value of
M so that the variance is kept at a reasonable level. Otherwise, the pseudo-marginal
algorithm can fail to be variance-bounding or geometrically ergodic [39]. Doucet et
al. [18] recommend choosing M so that the standard deviation of the log-likelihood
estimator is between 1 and 1.7.

Pseudo-marginal algorithms can be computationally intensive, particularly for
large values of M . One strategy to reduce this computational burden, known as the
Russian Roulette algorithm [40], is to replace p̃IS(y | θ) (6.9) with a truncated
infinite series:

p̃RR(y | θ) =
τ∑

j=0

V
(j)

θ , (6.10)

where τ is a random stopping time and V
(j)

θ
are random variables such that (6.10)

is almost surely finite and E[p̃RR(y | θ)] = p(y | θ). There is a difficulty with
this method, however, in that the likelihood estimates are not guaranteed to be non-
negative. Jacob and Thiery [37] have established that there is no general solution
to this sign problem, although successful strategies have been proposed for some
specific models.

Another important class of algorithms for accelerating pseudo-marginal methods
involve approximating the intractable likelihood function using a surrogate model.
For example, the delayed-acceptance (DA) algorithm of [14] first evaluates the
Metropolis–Hastings ratio (6.6) using a fast, approximate likelihood p̃DA(y | θ).
The proposal θ ′ is rejected at this screening stage with probability 1 − min{1, ρt }.
Otherwise, a second ratio ρ

(2)
DA is calculated using a full evaluation of the likelihood

function (6.9). The acceptance probability min{1, ρ(2)
DA} is modified at the second

stage according to:

ρ
(2)
DA = p̃IS(y | θ ′) π0(θ

′)
p̃IS(y | θ (t−1)) π0(θ

(t−1))

p̃DA(y | θ (t−1)) π0(θ
(t−1))

p̃DA(y | θ ′) π0(θ
′)

, (6.11)
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which corrects for the conditional dependence on acceptance at the first stage and
therefore preserves the exact target distribution. DA has been used for PMCMC by
Golightly et al. [33], where the linear noise approximation [25] was used for p̃DA.
Sherlock et al. [70] instead used k-nearest-neighbours for p̃DA in a pseudo-marginal
algorithm.

Drovandi et al. [22] proposed an approximate pseudo-marginal algorithm, using
a Gaussian process (GP) as a surrogate log-likelihood. The GP is trained using a
pilot run of MCWM, then at each iteration log p̃(y | θ ′) is either approximated
using the GP or else using SMC or importance sampling, depending on the level
of uncertainty in the surrogate model for θ ′. MATLAB source code is available
from http://www.runmycode.org/companion/view/2663. Stuart and Teckentrup [71]
have shown that, under certain assumptions, a GP provides a consistent estimator
of the negative log-likelihood, and they provide error bounds on the approxima-
tion.

6.1.2 Exchange Algorithm

Møller et al. [50] introduced a MCMC algorithm for the Ising model that tar-
gets the exact posterior distribution for β. An auxiliary variable x is defined
on the same state space as y, so that x, y ∈ Y. This is a data augmentation
approach, where we simulate from the joint posterior π(β, x | y), which admits
the posterior for β as its marginal. Given a proposed parameter value β ′, a
proposal x′ is simulated from the model to obtain an unbiased sample from (6.1).
This requires perfect simulation methods, such as coupling from the past [65],
perfect slice sampling [49], or bounding chains [8, 35]. Refer to [36] for further
explanation of perfect simulation. Instead of (6.7), the joint ratio for β ′ and x′
becomes:

ρt = ψ
(
y | β ′)

ψ
(
y | β(t−1)

)
ψ
(

x′ | β̃
)

ψ
(

x(t−1) | β̃
) ψ(x(t−1) | β(t−1))

ψ (x′ | β ′)
, (6.12)

where the normalising constants C(β ′) and C(β(t−1)) cancel out with each other.
This is analogous to an importance-sampling estimate of the normalising constant
with M = 1 samples, since:

Ex

[
ψ (x | β)
q(x | β)

]
= C(β), (6.13)

where the proposal distribution q(x | β) is (6.1). This algorithm is therefore
closely-related with pseudo-marginal methods such as GIMH.

http://www.runmycode.org/companion/view/2663
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Murray et al. [54] found that (6.12) could be simplified even further, removing
the need for a fixed value of β̃. The exchange algorithm replaces (6.7) with the ratio:

ρt = ψ
(
y | β ′)

ψ
(
y | β(t−1)

) ψ(x′ | β(t−1))

ψ (x′ | β ′)
. (6.14)

However, perfect sampling is still required to simulate x′ at each iteration, which
can be infeasible when the state space is very large. Cucala et al. [15] proposed an
approximate exchange algorithm (AEA) by replacing the perfect sampling step with
500 iterations of Gibbs sampling. Caimo and Friel [9] were the first to employ AEA
for fully-Bayesian inference on the parameters of an ERGM. AEA for the hidden
Potts model is implemented in the R package ‘bayesImageS’ [51] and AEA for
ERGM is implemented in ‘Bergm’ [10].

6.1.3 Approximate Bayesian Computation

Like the exchange algorithm, ABC uses an auxiliary variable x to decide whether to
accept or reject the proposed value of θ ′. In the terminology of ABC, x is referred to
as “pseudo-data.” Instead of a Metropolis–Hastings ratio such as (6.7), the summary
statistics of the pseudo-data and the observed data are directly compared. The
proposal is accepted if the distance between these summary statistics is within the
ABC tolerance, ε. This produces the following approximation:

p (θ | y) ≈ πε (θ | ‖s(x) − s(y)‖ < ε) , (6.15)

where ‖ · ‖ is a suitable norm, such as Euclidean distance. Since s(y) are jointly-
sufficient statistics for Ising, Potts, or ERGM, the ABC approximation (6.15)
approaches the true posterior as n → ∞ and ε → 0. In practice there is a tradeoff
between the number of parameter values that are accepted and the size of the ABC
tolerance.

Grelaud et al. [34] were the first to use ABC to obtain an approximate posterior
for β in the Ising/Potts model. Everitt [24] used ABC within sequential Monte
Carlo (ABC-SMC) for Ising and ERGM. ABC-SMC uses a sequence of target
distributions πεt (θ | ‖s(x) − s(y)‖ < εt ) such that ε1 > ε2 > · · · > εT , where
the number of SMC iterations T can be determined dynamically using a stopping
rule. The ABC-SMC algorithm of [19] uses multiple MCMC steps for each SMC
iteration, while the algorithm of [16] uses multiple replicates of the summary
statistics for each particle. Everitt [24] has provided a MATLAB implementation
of ABC-SMC with the online supplementary material accompanying his paper.

The computational efficiency of ABC is dominated by the cost of drawing
updates to the auxiliary variable, as reported by Everitt [24]. Thus, we would
expect that the execution time for ABC would be similar to AEA or pseudo-
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marginal methods. Various approaches to improving this runtime have recently
been proposed. “Lazy ABC” [63] involves early termination of the simulation
step at a random stopping time, hence it bears some similarities with Russian
Roulette. Surrogate models have also been applied in ABC, using a method known
as Bayesian indirect likelihood [BIL; 20, 21]. Gaussian processes (GPs) have been
used as surrogate models by Wilkinson [75] and Meeds and Welling [48]. Järvenpää
et al. [38] used a heteroskedastic GP model and demonstrated how the output of
the precomputation step could be used for Bayesian model choice. Moores et al.
[52] introduced a piecewise linear approximation for ABC-SMC with Ising/Potts
models. Boland et al. [7] derived a theoretical upper bound on the bias introduced by
this and similar piecewise approximations. They also developed a piecewise linear
approximation for ERGM. Moores et al. [53] introduced a parametric functional
approximate Bayesian (PFAB) algorithm for the Potts model, which is a form of
BIL where p̃BIL(y | θ) is derived from an integral curve.

6.2 Other Methods

6.2.1 Thermodynamic Integration

Since the Ising, Potts, and ERGM are all exponential families of distributions, the
expectation of their sufficient statistic/s can be expressed in terms of the normalising
constant:

Ey|θ [s(y)] = d

dθ
log{C(θ)}. (6.16)

Gelman and Meng [31] derived an approximation to the log-ratio of normalising
constants for the Ising/Potts model, using the path sampling identity:

log

{C(βt−1)

C(β ′)

}
=
∫ βt−1

β ′
Ey|β [s(y)] dβ, (6.17)

which follows from (6.16). The value of the expectation can be estimated by
simulating from the Gibbs distribution (6.1) for fixed values of β. At each iteration,
log{ρt } (6.7) can then be approximated by numerical integration methods, such as
Gaussian quadrature or the trapezoidal rule. Figure 6.1 illustrates linear interpolation
ofEy|β [s(y)] on a 2D lattice for q = 6 labels and β ranging from 0 to 2 in increments
of 0.05. This approximation was precomputed using the algorithm of [72].

TI is explained in further detail by Chen et al. [13, chap. 5]. A reference
implementation in R is available from the website accompanying [42]. Friel and
Pettitt [29] introduced the method of power posteriors to estimate the marginal
likelihood or model evidence using TI. Calderhead and Girolami [11] provide
bounds on the discretisation error and derive an optimal temperature schedule by



6 Bayesian Computation with Intractable Likelihoods 145

0.0 0.5 1.0 1.5 2.0

50
00

00
10

00
00

0
15

00
00

0
20

00
00

0

β

E
S

(z
)

Fig. 6.1 Approximation of Ey|β [s(y)] by simulation for fixed values of β, with linear interpolation

minimising the variance of the Monte Carlo estimate. Oates et al. [56] introduced
control variates for further reducing the variance of TI.

The TI algorithm has an advantage over auxiliary variable methods because the
additional simulations are performed prior to fitting the model, rather than at each
iteration. This is particularly the case when analysing multiple images that all have
approximately the same dimensions. Since these simulations are independent, they
can make use of massively parallel hardware. However, the computational cost is
still slightly higher than pseudolikelihood, which does not require a pre-computation
step.

6.2.2 Composite Likelihood

Pseudolikelihood is the simplest of the methods that we have considered and also
the fastest. Rydén and Titterington [68] showed that the intractable distribution (6.1)
could be approximated using the product of the conditional densities:

p̃PL(y | θ) ≈
n∏

i=1

p(yi | y\i, θ). (6.18)

This enables the Metropolis–Hastings ratio ρt (6.6) to be evaluated using (6.18)

to approximate both p
(
y | θ ′) and p

(
y | θ (t−1)

)
at each iteration. The conditional
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density function for the Ising/Potts model is given by:

p(yi | y\i , β) =
exp

{
β
∑

�∈∂(i) δ(zi, z�)
}

∑q
j=1 exp

{
β
∑

�∈∂(i) δ(j, z�)
} , (6.19)

where � ∈ ∂(i) are the first-order (nearest) neighbours of pixel i. The conditional
density for an ERGM is given by the logistic function:

p([Y ]ij = 1 | [Y ]\ij , θ) = logit−1
{
θT s(Y )

}
. (6.20)

Pseudolikelihood is exact when θ = 0 and provides a reasonable approximation
for small values of the parameters. However, the approximation error increases
rapidly for the Potts/Ising model as β approaches the critical temperature, βcrit ,
as illustrated by Fig. 6.2. This is due to long-range dependence between the labels,
which is inadequately modelled by the local approximation. Similar issues can arise
for ERGM, which can also exhibit a phase transition.

Rydén and Titterington [68] referred to Eq. (6.18) as point pseudolikelihood,
since the conditional distributions are computed for each pixel individually. They
suggested that the accuracy could be improved using block pseudolikelihood. This
is where the likelihood is calculated exactly for small blocks of pixels, then (6.18)
is modified to be the product of the blocks:

p̃BL(y | θ) ≈
NB∏

i=1

p(yBi |y\Bi , θ) (6.21)
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Fig. 6.2 Approximation error of pseudolikelihood for n = 12, q = 3 in comparison to the exact
likelihood calculated using a brute force method: (a)

∑
y∈Y s(y)p(y|β) using either Eq. (6.1) or

(6.18); (b)
√∑

y∈Y
(
s(y) − Ey|β [s(y)])2

p(y|β). (a) Expectation. (b) Standard deviation
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where NB is the number of blocks, yBi are the labels of the pixels in block Bi ,
and y\Bi are all of the labels except for yBi . This is a form of composite likelihood,
where the likelihood function is approximated as a product of simplified factors [74].
Friel [27] compared point pseudolikelihood to composite likelihood with blocks
of 3 × 3, 4 × 4, 5 × 5, and 6 × 6 pixels. Friel showed that (6.21) outperformed
(6.18) for the Ising (q = 2) model with β < βcrit . Okabayashi et al. [58] discuss
composite likelihood for the Potts model with q > 2 and have provided an open
source implementation in the R package ‘potts’ [32].

Evaluating the conditional likelihood in (6.21) involves the normalising constant
for yBi , which is a sum over all of the possible configurationsYBi . This is a limiting
factor on the size of blocks that can be used. The brute force method that was used to
compute Fig. 6.2 is too computationally intensive for this purpose. Pettitt et al. [61]
showed that the normalising constant can be calculated exactly for a cylindrical
lattice by computing eigenvalues of a kr × kr matrix, where r is the smaller of the
number of rows or columns. The value of (6.2) for a free-boundary lattice can then
be approximated using path sampling. Friel and Pettitt [28] extended this method to
larger lattices using a composite likelihood approach.

The reduced dependence approximation (RDA) is another form of composite
likelihood. Reeves and Pettitt [66] introduced a recursive algorithm to calculate the
normalising constant using a lag-r representation. Friel et al. [30] divided the image
lattice into sub-lattices of size r1 < r , then approximated the normalising constant
of the full lattice using RDA:

C(β) ≈ Cr1×n(β)
r−r1+1

Cr1−1×n(β)r−r1
(6.22)

McGrory et al. [44] compared RDA to pseudolikelihood and the exact method of
[50], reporting similar computational cost to pseudolikelihood but with improved
accuracy in estimating β. Ogden [57] showed that if r is chosen proportional to n,
then RDA gives asymptotically valid inference when β < βcrit . However, the error
increases exponentially as β approaches the phase transition. This is similar to the
behaviour of pseudolikelihood in Fig. 6.2. Source code for RDA is available in the
online supplementary material for McGrory et al. [45].

6.3 Conclusion

This chapter has surveyed a variety of computational methods for Bayesian infer-
ence with intractable likelihoods. Auxiliary variable methods, such as the exchange
algorithm and pseudo-marginal algorithms, target the exact posterior distribution.
However, their computational cost can be prohibitive for large datasets. Algorithms
such as delayed acceptance, Russian Roulette, and “lazy ABC” can accelerate
inference by reducing the number of auxiliary variables that need to be simulated,
without modifying the target distribution. Bayesian indirect likelihood (BIL) algo-
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rithms approximate the intractable likelihood using a surrogate model, such as a
Gaussian process or piecewise function. As with thermodynamic integration, BIL
can take advantage of a precomputation step to train the surrogate model in parallel.
This enables these methods to be applied to much larger datasets by managing the
tradeoff between approximation error and computational cost.
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Chapter 7
A Bayesian Hierarchical Approach
to Jointly Model Cortical Thickness
and Covariance Networks

Marcela I. Cespedes, James M. McGree, Christopher C. Drovandi, Kerrie L.
Mengersen, Lee B. Reid, James D. Doecke, and Jurgen Fripp

Abstract Estimation of structural biomarkers and covariance networks from MRI
have provided valuable insight into the morphological processes and organisa-
tion of the human brain. State-of-the-art analyses such as linear mixed effects
(LME) models and pairwise descriptive correlation networks are usually performed
independently, providing an incomplete picture of the relationships between the
biomarkers and network organisation. Furthermore, descriptive network analyses
do not generalise to the population level. In this work, we develop a Bayesian
generative model based on wombling that allows joint statistical inference on
biomarkers and connectivity covariance structure. The parameters of the wombling
model were estimated via Markov chain Monte Carlo methods, which allow for
simultaneous inference of the brain connectivity matrix and the association of
participants’ biomarker covariates. To demonstrate the utility of wombling on
real data, the method was used to characterise intrahemispheric cortical thickness
and networks in a study cohort of subjects with Alzheimer’s disease (AD), mild-
cognitive impairment and healthy ageing. The method was also compared with
state-of-the-art alternatives. Our Bayesian modelling approach provided posterior
probabilities for the connectivity matrix of the wombling model, accounting for the
uncertainty for each connection. This provided superior inference in comparison
with descriptive networks. On the study cohort, there was a loss of connectivity
across diagnosis levels from healthy to Alzheimer’s disease for all network connec-
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tions (posterior probability ≥ 0.7). In addition, we found that wombling and LME
model approaches estimated that cortical thickness progressively decreased along
the dementia pathway. The major advantage of the wombling approach was that
spatial covariance among the regions and global cortical thickness estimates could
be estimated. Joint modelling of biomarkers and covariance networks using our
novel wombling approach allowed accurate identification of probabilistic networks
and estimated biomarker changes that took into account spatial covariance. The
wombling model provides a novel tool to address multiple brain features, such
as morphological and connectivity changes facilitating a better understanding of
disease pathology.

Keywords Conditional autoregressive model · Markov chain Monte Carlo ·
Spatial statistics · Wombling · Cortical thickness · Alzheimer’s disease ·
Structural MRI

7.1 Introduction

Alzheimer’s disease (AD) is the most common form of dementia [13, 67]. While
clinical diagnosis of AD is often derived from psychological assessments, neu-
roimaging studies have found that the structural and functional changes in the brain
that align with AD pathology can be identified prior to the detection of cognitive
symptoms [2, 65].

Structural neuroimaging studies typically use two approaches: region of interest
(ROI) analyses to estimate morphological biomarkers for each region, such as
thickness, volume and the rate of tissue loss; and cortical networks to investigate
associations between multiple ROIs. This two pronged approach is important as
biomarkers in one region are likely to influence the morphological properties of
connected regions. For example, highly correlated ROIs (often quantified through
cortical networks) are often a part of a system that is known to be associated with
particular behavioural or cognitive functions [3, 47]. Nonetheless these approaches
are often performed independently, providing valuable insight into the differences
in brain organisation and degeneration patterns for multiple regions between healthy
and pathological groups [9, 15, 34, 55, 58, 62, 72]. For example, Bernal-Rusiel
et al. [9] found that their models for ROIs were able to characterise changes in
individuals’ measurements at multiple time points while handling up to 45.5%
patient drop out. Furthermore, analyses on cortical thickness networks have demon-
strated a reduction in connectivity efficiency between healthy groups and groups
with neurological disorders such as schizophrenia and AD [8, 15, 37, 46, 59, 71].

An advantage of analyses conducted on a single region is the direct biological
interpretation on the estimation of tissue features, such as thickness and estimated
annual rate of tissue loss [9]. However, it is difficult to ascertain a brain-wide picture
of all ROIs under such analyses, as this requires multiple comparison corrections in
order to account for the high number of hypothesis tests [21, 34, 60, 72]. Alter-
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natively, cortical networks provide a summary measure on the topological brain
network organisation which conveniently encompasses the complex information
across all ROIs [15, 37, 46, 58]. However, direct biological interpretations of such
networks are difficult as the relationship between the ROI node and corresponding
links represent a covariance measure among ROIs, and not physical connections [3].
Furthermore, generalising to a population cortical network is difficult to achieve
from descriptive analyses as such methods are not generative models and do not
take into account the variability of each connection [46, 59–61, 71].

In practice both approaches complement each other with participants who
are healthy, in general, tend to have thicker cortical tissue and highly organised
networks compared to pathological groups such as AD [9, 17, 18, 37, 55, 71]. The
aforementioned shortcomings of these methods could be resolved by combining
both approaches into a unified framework. Such a framework could avoid multiple
comparisons and provide a cortical network whose links reflect the uncertainty of
the data.

In this work, we propose a Bayesian hierarchical (generative) model that jointly
performs network-based inference in conjunction with neuroimaging biomarker
estimates. This approach enforces consistency between any spatial interactions and
biomarker estimates (for network and cortical thickness) at the population and
participant level, while handling correlated measures from within and between
individuals in conjunction with covariates in a statistically principled manner.

7.1.1 Technical Survey of Previous Work of Bayesian
Hierarchical Models

Bayesian hierarchical models have been extensively applied to unify indepen-
dent analyses, for example, combining the joint estimation of voxel and ROI
analyses [12, 19, 69], and combining diffusion and functional MRI into a single
model [70]. Accommodating both within and between participant variation from
longitudinal observations, as well as high patient drop out (unbalanced design)
has been previously achieved through a related method called the mass univariate
Bayesian hierarchical analysis [72]. Previously, Bayesian linear mixed effect (LME)
models, which are a type of hierarchical model, have been applied independently to
key ROIs associated with AD progression [17]. An advantage of Bayesian inference
is that it can detect significant differences among groups of interest through
the direct comparison of the marginal posterior distributions, without the need
for hypothesis tests or multiple comparisons corrections. However, LME models
(Bayesian and non-Bayesian) applied to neuroimaging data usually analyse each
ROI independently and do not account for the covarying measurements between
several brain regions.

Recent probabilistic brain networks in the Bayesian framework have shown
great potential to estimate a population network for clinical groups. Bayesian brain
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networks are probabilistic rather than binary, and so are easy to interpret [38,
41, 61]. However, these probabilistic networks are not easily extended to include
additional neuroimaging biomarker estimation, such as cortical thickness, volumes,
or fluorodeoxyglucose uptake as measured by positron emission topography. To
account for the correlation between measurements on ROIs, several neuroimaging
studies [33, 36, 48, 53] have used spatial dependence modelling via a Gaussian
Markov random field (GMRF, Gössl et al. [32] and Woolrich et al. [68]). However,
an underlying and potentially invalid assumption is that the adjacency structure of
the correlations are known and fixed, and most are constrained to nearest neighbour
configurations. This was highlighted in the Bayesian hierarchical spatial models
by Bowman [11] and Bowman et al. [12] suggesting that the underlying physical
and biological processes may not always be contiguous, and relationships among
ROIs are not restricted to regions which are immediate anatomical neighbours.

7.1.1.1 Previous Work on Wombling

Wombling refers to the estimation of a neighbourhood matrix through the covari-
ance structure of a GMRF that is estimated under a Bayesian framework [42, 49, 50].
This neighbourhood structure can be incorporated as an additional parameter in
the Bayesian hierarchical model, and can be estimated in addition to participant
specific covariates such as gender and other biomarkers associated with AD
factors [22, 24, 31].

7.1.2 Overview of Our Work

In this work, we propose Bayesian hierarchical wombling models that jointly
performs network based inference in conjunction with regional biomarker esti-
mates. This approach estimates the complex covariance associations among several
regions without assuming contiguous relationships via estimation of a connectivity
structure. Furthermore, biomarker estimates at the population and participant level
handle correlated measures from within and between individuals in conjunction
with covariates. This enables full statistical inference of biomarker estimates and
produces a probabilistic network.

To this end, this chapter is organised as follows: Sect. 7.2.2 outlines the proposed
Bayesian hierarchical wombling model. The wombling model is validated via a
simulation study described in Sect. 7.2.3 and results are reported in Sect. 7.3.1.
Sections 7.2.1 and 7.3.2 present the application of brain wombling on the Australian
Imaging, Biomarkers and Lifestyle (AIBL) study of ageing data on healthy controls
(HC), mild cognitive impaired (MCI) and AD diagnosed groups as well as in age
ranges discretised into three groups. A comparison of the results from the wombling
approach with comparable independent analyses are presented in Sects. 7.3.2.2
and 7.3.2.4. A discussion of our work appears in Sect. 7.4.
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7.2 Materials and Methods

The overarching objective of this work is to develop and validate a joint analysis of
biomarker and covariance networks facilitated by the proposed wombling approach.
The flowchart in Fig. 7.1 provides an overview of the experiments presented in this
work, showing the inputs and outputs for each analysis. Case study data will be
based on cortical thickness estimates into a study of into a study of healthy ageing,
MCI and AD participants. The wombling method will be compared to Pearson
pairwise correlation networks and Bayesian LME models. In addition, as this work
was the first to investigate the wombling approach for joint analysis of cortical
networks and biomarker estimates, a simulation study was used to evaluate the
performance of the wombling algorithm to recover the true connectivity structure
and simulated biomarker values.

7.2.1 AIBL Study of Ageing

In this work, we applied our proposed method to data from the Australian
Imaging, Biomarkers and Lifestyle (AIBL) longitudinal study of ageing. AIBL

Fig. 7.1 Overview of the analysis workflow. Arrows show the relationships between the rectangle
methods sections. The results from both methods are denoted by the circular plots on the far
right and are compared to each other to assess the performance of joint analyses facilitated by
the wombling approach (Sect. 7.2.2) in comparison with the state-of-the-art independent analyses
(Sect. 7.2.4)
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is an ongoing study which aims to discover which biomarkers such as cognitive
assessment, neuroimaging, lifestyle and demographic factors potentially influence
the development of AD. The AIBL study was approved by the institutional ethics
committees of Austin Health, St Vincent’s Health, Hollywood Private Hospital and
Edith Cowan University. All study volunteers gave written informed consent prior
to participating in the study. MRI data were collected at baseline and at several
∼18 month follow-up intervals (replicates) from a subset of 167 participants. This
resulted in a total of 597 sets of ROI observations. Only those observations from
participants with two or more replicates were retained; these included 120 HC, 21
and 26 clinically diagnosed MCI individuals and AD participants respectively. Of
the 167 participants, 77 were male (46%) and 90 were female (54%). Mean baseline
ages was numerically higher in those diagnosed with MCI (HC: 73.1 ± 6.7, MCI:
77.0 ± 6.4 and AD: 73.8 ± 7.5, p = 0.055).

The structural T1W MRI images were first segmented into grey/white matter and
cerebral spinal fluid using an in-house implementation of the expectation maximi-
sation algorithm applied to a Gaussian mixture model [64]. Cortical thickness was
computed along the grey matter based on a combined Lagrangian-Eulerian partial
differential equation approach [1]. The grey matter was parcellated following the
Automated Anatomical Labelling (AAL) atlas [63] using a multi-atlas registration
approach [10]. For this work, we used 35 ROI cortical thickness regions from the
left hemisphere of the brain, as listed in Table 7.1.

Table 7.1 Cortical regions from the left hemisphere of the brain, as parcellated via the AAL

Region name Abbrev. Region name Abbrev.

Precentral gyrus PreCent Superior occipital gyrus SupOcc

Superior frontal gyrus dorsolateral SupFrDorso Middle occipital gyrus MidOcc

Superior frontal gyrus orbital SupFrOrb Inferior occipital gyrus InfOcc

Middle frontal gyrus MidFr Fusiform gyrus Fusifrm

Middle frontal gyrus-orbital MidFrOpen Postcentral gyrus Post

Inferior frontal gyrus-opercular InfFrOpec Superior parietal gyrus SupPar

Inferior frontal gyrus-triangular InFrTri Inferior parietal gyrus InfPar

Inferior frontal gyrus-orbital InFrOrb Supramarginal gyrus SupMar

Supplementary motor area SuppMtr Angular gyrus Angular

Olfactory cortex Olfac Precuneus Precun

Superior frontal gyrus-medial SupFrMed Paracentral Lobule ParacenLob

Superior frontal gyrus-medial orbital SupFrMedOrb Heschl gyrus Heschl

Gyrus rectus GrRcts Superior temporal gyrus SupTemp

Anterior cingulate and AntCingPara Temporal pole:superior TempPolSup
paracingulate gyri temporal gyrus

Posterior cingulate gyrus PostCing Middle temporal gyrus MidTemp

Calcarine fissure and CalFiss Temporal pole:middle TempPolMid

surrounding cortex temporal gyrus

Cuneus Cuneus Inferior temporal gyrus InfTemp

Lingual gyrus Ling
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7.2.2 Wombling Model Formulation and Parameter Estimation

In this section, we present the wombling generative model used to jointly estimate
cortical brain connectivity and thickness in a Bayesian hierarchical framework.
Wombling is a type of a LME model that accounts for correlations between
regions, after accounting for fixed effects. In this work, wombling does not provide
age related estimates as it is not a longitudinal model, such an extension is
beyond the scope of this work and motivates future work. The wombling model
comprises of two parts; a mixed effect model and connectivity estimation with
their respective set of assumptions. LME model assumptions include: a linear
relationship exists between the response and the exploratory variables; the response
is normally distributed about a mean, although for non-normal responses we may
extend this assumption to the exponential family and apply generalised linear
mixed models [51]; the variances across fixed and random effects are unknown but
constant, and observations for a region can be correlated with its neighbours, but
observations between non-neighbouring regions are assumed to be conditionally
independent. Connectivity matrix assumptions are twofold. Firstly, the underlying
connectivity structure quantified by matrix W is the same across all individuals in
a specified group. Secondly, relationships between regions are equally weighted,
as our framework estimates the probability of each pairwise connection and not
the connection strength. This implies that if region j is a neighbour of region k,
then region k is also neighbour of region j , and regions are not neighbours with
themselves, wii = 0 ∀i.

The hierarchical structure of the model separates the variation of the data into
two levels; fixed effects (A) and random effects (B) shown in Fig. 7.2. At level A,
the linear predictor for person i, at repeated measure r on region k comprises of
participant i ′s covariate vector xi (covariate matrix for all participants is denoted
by X), parameter vector β, spatial random effects bi and residual variance σ 2.
Level B consists of the spatial random effects bi which follow a multivariate normal
distribution with a mean of 0 and a covariance matrix σ 2

s Q. The product, σ 2
s Q,

comprises of the spatial scale variance term, σ 2
s , which controls the variation of the

random effects and a function of the connectivity structure matrix Q.
The cortical thickness of region k = 1, 2, . . . ,K within participant i =

1, 2, . . . , I who has r = 1, . . . , Ri replicates is yirk measured in millimetres. The
brain wombling model is of the following form:

yirk|bik,β, σ 2 ∼ N(xiβ + bik, σ
2)

bi |σ 2
s ,W ∼ MVN(0, σ 2

s Q)

Q−1 = ρ(Dw − W) + (1 − ρ)I. (7.1)

Details of the formulation for the connectivity structure are as follows: matrix Dw

is a diagonal matrix with elements given by the row sums (or number of neighbours)∑K
j=1 wjk for k = 1, 2, . . . ,K . The matrix W is a zero-diagonal, binary symmetric
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Fig. 7.2 Visualisation of brain wombling model (7.1) via a directed acyclic graph. Nodes in circles
and rectangle denote parameters and observed variables respectively. Direction of arrows indicates
direction of influence or dependence. Rectangle B denotes the second layer of model, which
accounts for spatial dependence among ROI conditional and nested in rectangle A, which is the
upper-most layer with fixed effects β parameter. The spatial random effects vector for participant
i, bi , is modelled as a multivariate normal, whose covariance structure is a function of the binary
symmetric adjacency matrix W , of dimension K ×K and wjk = 1 or wjk = 0 implies that region
j and k are connected or disconnected respectively

matrix, with elements wjk = 1 if regions j and k are neighbours or zero otherwise,
and identity matrix I has dimension K × K . The value of ρ determines the global
level of the spatial correlation [43] where values of ρ close to zero correspond to
(near) independence in the spatial random effect, and ρ close to one denotes high
spatial correlation. While ρ can be an additional parameter in our wombling model,
in this application we fix ρ = 0.9, to enforce high spatial correlation and avoid the
difficult and computationally intensive task of estimating ρ, as described in Lu et al.
[50] and Lee [42]. For completeness we investigated the effect of ρ at various values
to assess the recovery of W ; refer to Sect. 7.2.3 for further details.

The parametrisation of Q−1 defined in (7.1) was chosen due to its superior
ability to handle a range of spatial strengths [42, 45]. This parametrisation has
also been favoured in other wombling and spatial clustering applications [4, 43].
Visualisation of model parameters conditional on the observed regional biomarker
response, such as cortical thickness, and participant specific covariates are shown in
Fig. 7.2.

In a Bayesian framework the likelihood corresponding to the model in (7.1) is
p(y|b, σ 2,β,X), which is conditional on the spatial random effects and the model
parameters. Note the data is conditionally independent of the network structure W

and spatial scale variance, σ 2
s . The resultant joint posterior distribution for the model
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parameters and the random effects given the data is

p(W, σ 2, σ 2
s ,β|y,X) ∝

⎡

⎣
I∏

i=1

Ri∏

r=1

K∏

k=1

p(yirk|bik, σ 2,β, xi )

⎤

⎦
[

I∏

i=1

p(bi |σ 2
s ,W)

]

p(β)p(σ 2)p(σ 2
s )p(W). (7.2)

In the Bayesian paradigm the population parameters are random variables,
and priors p(β), p(σ 2), p(σ 2

s ) and p(W) are assigned to each parameter. Details
on prior specification are described in Sects. 7.2.2.1 and 7.2.2.3. Markov chain
Monte Carlo (MCMC) methods were used to sample from the joint posterior
probability distribution of the parameters [57], which samples from the marginal
posterior distributions as a by-product [29]. At each MCMC step, samples are
iteratively drawn from the full conditionals of the parameters with a Metropolis-
Hastings (M-H, Chib and Greenberg [20], Metropolis et al. [52]) update for W .
Following a burn-in period, samples will eventually be drawn from the joint
posterior distribution of the parameters [12].

Full conditional distributions in closed form were derived for parameters β, σ 2
s

and σ 2 which were sampled via a Gibbs sampler as described in Sect. 7.2.2.1. As
the matrix W is symmetric, the off-diagonal, upper triangular elements were updated
one at a time via a M-H sampler as described in Sect. 7.2.2.3.

7.2.2.1 Prior and Conditional Distributions for σ2
s , σ2 and β

A semi-conjugate prior in the form of an inverse gamma distribution, IG(c, d),
was chosen for the spatial scale variance σ 2

s , with shape and rate values c and
d , respectively. Likewise, the prior for the residual variance σ 2 was an IG(e, f )

distribution. Hyperparameters were chosen to provide support over a wide range of
possible values for σ 2

s and σ 2. The full conditional distributions for σ 2
s and σ 2 are

as follows

p(σ 2
s |W,bi ) ∼ IG

(
IK + 2c

2
,

1

2

I∑

i=1

biQ
−1bi + d

)
, (7.3)

and

p(σ 2|b, y,β,X) ∼ IG

⎛

⎝N + 2e

2
,

1

2

⎛

⎝
I∑

i=1

Ri∑

r=1

K∑

k=1

(yirk − xiβ − bik)
2

⎞

⎠+ f

⎞

⎠ ,

(7.4)

where N is the total number of observations.
The prior for the fixed effect parameter β is a multivariate normal distribution

MVN(μ0,Σ0), and in keeping with wombling literature [50], μ0 and Σ0 were
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chosen so that the prior on β is vague. It can be shown that the full conditional
distribution for β is

p(β|b, y,X, σ 2) ∼ MVN

⎛

⎝
[

1

σ 2

L

XT
L

X + Σ−1
0

]−1 [
1

σ 2

L

XT (y − L

b) + Σ−1
0 μ0

]
,

[
1

σ 2

L

XT
L

X + Σ−1
0

]−1
⎞

⎠ . (7.5)

The response in long vector form is y = [y111, y112, . . . , y11K, y121, . . . , yIRIK ]
and the covariate matrix X with superscript L is

L

X = [x1, x1, . . . , x2, x2, . . . , xI ],
hence the individual specific covariate vector xi is repeated Ri times, where

L

X is an
N by p matrix; where p is the total number of covariates for the model, including

the intercept. Similarly, the long vector form for the spatial random effects is
L

b =
[b111, b121, . . . , b1KR1, b211, . . . , bIRIK ].

7.2.2.2 Full Conditional Distribution for Spatial Random Effects bi

From Model (7.1) we can derive meaningful participant specific estimates of cortical
thickness for each of the ROIs analysed, and investigate how this deviates from the
population average (β0). The individual-specific estimates of cortical thickness for
each ROI in our analysis are derived from the full conditional distribution of bi

given by

p(bi |β, y, σ 2, σ 2
s ,W) ∼ MVN

⎛

⎝
[
Ri

σ 2
I + 1

σ 2
s

Q−1
]−1

⎡

⎣
Ri∑

r=1

yir
σ 2

− Ri

σ 2
(xiβ)e

⎤

⎦ ,

[
Ri

σ 2 I + 1

σ 2
s

Q−1
]−1

)
, (7.6)

where the unit vector e = [1, 1, . . . , 1] is of length K .

7.2.2.3 Prior and Posterior Sampling for Brain Connectivity Matrix W

According to the posterior distribution in (7.2), the full conditional for matrix W is
of the form

p(W |σ 2
s ,b) ∝

[
I∏

i=1

p(bi |σ 2
s ,W)

]
p(W).
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Elements of the matrix W are updated one at a time. As W is symmetric, we only
require estimation of the off-diagonal, upper triangular elements. To facilitate a data
driven method to estimate the brain connectivity matrix, our prior knowledge of the
probability of a link between any pair of ROIs is 0.5, that is, p(wij = 1) = p(wij =
0) = 0.5 for all values of i and j .

We use the M-H algorithm within a Gibbs sampler to draw posterior simulations
for W . We update W element-wise by drawing independent proposals, w∗

kj , from
the prior of W and accepting a proposal with probability

α = min

⎧
⎨

⎩1,

∏I
i=1 p(bi |σ 2

s ,Q
−1
w∗
kj
)

∏I
i=1 p(bi |σ 2

s ,Q
−1
wkj

)

⎫
⎬

⎭ , (7.7)

where the covariance precision evaluated at the proposed value is Q−1
w∗
kj

.

7.2.3 Simulation Studies

The proposed Bayesian brain wombling approach accommodates for both network
based inference and biomarker estimates. For this reason the aims of the simulation
study are twofold. Firstly, we aim to evaluate the performance of this model at
‘recovering’ two underlying connectivity matrices W (structured and contiguous
configurations). In the context of this manuscript, by recovery we refer to whether
the credible intervals of the estimator contain the true solution. The assumed true
matrices for W are shown in Fig. 7.3A and F respectively. Our second aim is to
illustrate that our model recovers the simulated biomarker estimates via fixed effect
vector β in addition to simulated participant specific estimates through their spatial
random effects (bi ).

In order to relate the simulation study to the real data application, the values
used to generate the simulated study data were chosen to reflect features of the
AIBL study, such as the number of simulated ROIs, number of repeated measures
(replicates) in the unbalanced design, the number of participants and range of
biomarker values.

7.2.3.1 Wombling Simulated Analyses

For both configurations of W , the vector β = [β0, β1] = [3, 0.5] was assumed as
the intercept and gender effect, and xsim was specified as a binary vector with male
participant as baseline (i.e. xi,sim = 1 to simulate a female participant and xi,sim = 0
a male participant). The average global human cortical thickness can range from
approximately 1 to 4.5 mm [27], hence the prior for β was chosen to remain
physiologically feasible around this value. For this reason the hyperparameters for
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the precision matrix Σ0 had zero off-diagonals and diagonal elements of value
1/10, and the hyperparameter for μ0 was chosen to be 0. We note that these
are the same priors used for the real data application described in Sect. 7.2.4.
Variance terms for both W configurations were set to σ 2

s = 1 and σ 2 = 0.5,
with relatively uninformative inverse gamma priors specified as IG(1, 1) and
IG(1, 0.5) respectively. Priors for both configurations of W matrices are described
in Sect. 7.2.2.3.

Our simulation studies were undertaken by generating 50 independent data sets
from Model (7.1). We fitted our model to each data set to obtain (50) posterior
distributions for our parameters. Here, we considered a balanced design whereby
each simulated participant had the same number of repeated measures, and the more
realistic unbalanced alternative, where the number of replicates for each participant
varied.

Data for I = 100 participants were simulated from Model (7.1), where each
participant had K = 35 simulated ROI as listed on Table 7.1, and each participant
had Ri = 7 replicates as a balanced design. The unbalanced simulation design
comprised of participants with 4–7 replicates (mean 5.8). Parameter values and
prior information as described above were set for balanced and unbalanced designs,
whereby each design was explored as structured and contiguous W configurations,
for a total of four scenarios.

Each scenario resulted in a mean of posterior means for W , representing the
probabilistic network. These scenarios were binarised for ease of comparison to
assess the recovery of W . Values wjk = 1 if the average posterior probability of
a connection between regions j and k was equal to or greater than τ = 0.6, and
wjk = 0 otherwise. We note that binary W is dependent on the choice of τ , and that
τ = 0.6 is sufficiently far away from the prior (p(wij = 1) = p(wij = 0) = 0.5).

Further details of the simulation analyses including percentage of recovery
of the assumed true values and MCMC convergence checks are provided in
section “Simulation Study” of Appendix.

7.2.4 Application to Study Cohort

We hypothesised that each population group has an underlying cortical brain
network, denoted as matrix W , while expecting differences in W between groups,
as each group represented progressive levels of neurodegeneration in both cortical
thickness estimates and structural brain networks.

The Bayesian brain wombling Model (7.1) was applied independently to data
from three diagnosis groups (HC, MCI and AD) as well as three age groups (A: 59–
69y; B: 69–79y; C: 79–93y). In order to compare the wombling model with current
state-of-the-art methods that provide cortical networks, population and participant
specific estimates, we derived Pearson pairwise correlation networks and Bayesian
LME models to the aforementioned case study groups. The subsections below
describe how the marginal posterior draws were processed after the wombling



7 Brain Wombling 167

model was applied to the AIBL case study, as well as details of the independent
analyses methods applied to produce comparable biomarker estimates as described
in literature [9, 16, 17, 34, 39].

7.2.4.1 Probabilistic Connectivity Matrices via Wombling

Inference on the brain wombling models were estimated by the MCMC scheme
described in Sect. 7.2.2, which was applied to each group and was run using four
chains. Each chain ran for M = 500,000 iterations. The first 50,000 runs (burn-in)
were discarded and every 50th iteration retained (thinning).

The resultant elements of the posterior mean ofW matrices are w̄kj , and represent
the probability that region k is connected to region j in a cortical structural network.
These networks represent the underlying average network of a group estimated from
our sample. Binary matrices were derived for a given probability threshold (0 < τ <

1) for each element of W . This threshold determines the level of confidence in our
brain network, and allows for straightforward comparisons across groups. However
as noted in He et al. [37] and Yao et al. [71], a high threshold on brain networks
may lead to disconnected networks and this may make topological network metrics
difficult to analyse. In this work, we set τ = 0.7 as this value is substantially higher
than the prior value of 0.5, and is greater than our 0.6 value from our simulated study
in Sect. 7.2.3, thus providing a more stringent level on the certainty of the resultant
networks, resulting in a high level of confidence regarding the potential connections
between nodes.

7.2.4.2 Descriptive Pearson Cortical Networks

Following the methods of Bassett et al. [8], we applied Pearson pairwise correlation
networks at both baseline (which consisted of all observations being independent
and identically distributed (IID)) as well as on the whole data with repeated
measures treated as IID.

7.2.4.3 Wombled Population and Participant ROI Biomarker Estimates

In the Bayesian paradigm, the posterior distributions of parameters can be compared
directly to make probabilistic statements about each other, or in regards to other
biologically relevant quantities. The probability that parameter β0,A from group A

is within the lower 2.5% and upper 97.5% quantiles of the posteriori β0,B from
group B (denoted by YL and YH ), is estimated by

P(YL < X < YH ) = 1

M

M∑

m=1

1(YL < βm
0,A < YH ), (7.8)
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Table 7.2 Comparisons of
estimated total cortical
thickness among groups

Group comparison Probability

P (ADL < HC < ADH ) 0.02

P (MCIL < HC < MCIH ) 0.49

P (ADL < MCI < ADH ) 0.90

P (BL < A < BH) 0.79

P (CL < B < CH) 0.97

P (CL < A < CH ) 0.86

Probabilities of parameter X with respect
to the posterior distribution is within the
lower (L) 2.5% and upper (H ) 97.5% quan-
tiles of the posteriori of Y is expressed by
P (YL < X < YH ). A high probability denote
posterior distributions overlap among groups
and low probability suggest substantial dif-
ferences in posterior estimates; quantiles of
distributions are the box plot whiskers in
Fig. 7.6

where the indicator function 1 is equal to one if YL < βm
0,A < YH and zero

otherwise. The length of the MCMC chain for β0,A is M . Comparison of all
groups are computed in a similar manner, whose results are listed in Table 7.2 of
Sect. 7.3.2.3.

While our algorithm provides cortical thickness estimates on all participants in
the analysis for each ROI, we focused on the nine key regions often used to describe
the cortical signature of AD [21, 23]: the inferior, medial and superior temporal
lobes; supramarginal, angular, posterior cingulate and the precuneus gyrus. Results
for all 35 ROI can be found in Figs. 7.17 and 7.18.

Low cortical thickness estimates are often indicative of neurodegeneration. For
this reason, at the participant level analyses in Sect. 7.3.2.3, we expected an
increasing atrophy pattern to be associated with diagnosis, from AD to MCI to HC,
as well as among age groups, from old to young. Participants which differ from this
pattern may be showing early signs of AD pathology, thus this analysis could be
also be used to flag sub-groups of participants to follow up.

7.2.4.4 Bayesian LME ROI Analyses

Bayesian LME models were applied independently on each ROI in a similar manner
as Bernal-Rusiel et al. [9], Guillaume et al. [34], Caselli et al. [16], Holland
et al. [39] and Cespedes et al. [17] who applied LME models at the ROI level.
Similarly, others who applied these models at the voxel scale in AD and in
other neurological applications [35, 72]. Refer to section “Bayesian Linear Mixed
Effect Models on Each ROI” in Appendix for model specifications. The wombling
and combined Bayesian LME models were compared by the Watanabe-Akaike
information criterion (WAIC, Watanabe [66]). The survey by Gelman et al. [30]
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describes how the WAIC has been shown to be the preferred approach for model
comparison in the Bayesian community. For this reason, it is applied to the models
this work.

7.2.5 Statistical Analysis

All analyses were undertaken using the open-source software R [56]. Source
code and data used in the simulation study are available at https://github.com/
MarcelaCespedes/Brain_wombling. Simulation experiments were performed using
a high performance computer cluster. We note that a single MCMC instance of the
Bayesian brain wombling model ran on a single central processing unit (CPU) and
took approximately 24 h to run on a standard computer (four core 3.40 GHz Intel
i7-4770 processor).

7.3 Results

7.3.1 Simulation Studies

7.3.1.1 Wombling Simulated Analyses

Figure 7.3A and F show the comparison between the W we should recover, and
the average estimated W for the structured configuration (Fig. 7.3B and D), and
contiguous configuration (Fig. 7.3G and I). Section 7.2.3 describes how the mean of
the posterior mean matrices in Fig. 7.3B, D, G and I were binarised. The resultant
binarised matrices for the structured balanced and unbalanced designs recovered
83% and 82% of the networks’ solution (Fig. 7.3C, E). The binarised matrices for
the contiguous balanced and unbalanced designs recovered 70% and 65% of the
contiguous configuration (Fig. 7.3H and J). The parameter dimension in the 35 ROI
simulation study consisted of the off-diagonals of W , (K(K − 1)/2 = 595) in
addition to β, σ 2 and σ 2

s , which was a total of 599 parameters. As can be seen
by Fig. 7.3, the wombling model showed the desired recovery of the connectivity
matrices in both configurations and in the balanced and unbalanced designs, despite
the high parameter dimension.

To assess whether the random effects were recovered appropriately, we evaluated
their 95% credible intervals. These results showed that the true values of the random
effects were recovered on average 95% of the time indicating that the variation of
the posterior distribution is appropriate. See Table 7.3 and Fig. 7.9 for details of
these results. Likewise, the recovery of the solution vector β was within the 95% of
the credible intervals approximately 95% of the time in all simulation configurations
and scenarios, demonstrating that in addition to recovery of connectivity networks,

https://github.com/MarcelaCespedes/Brain_wombling
https://github.com/MarcelaCespedes/Brain_wombling
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Fig. 7.3 Data generated from
binary W matrices for
structured (a) and contiguous
(f) configurations. A single
wombling simulation run
results in a posterior
distribution for W , whose
mean represents an average
connectivity matrix. The
mean of the posterior means
over all 50 simulations in
each scenario are the
connectivity matrices shown
in b, d, g and i, which show
the average posterior
probability of region j being
a neighbour of region k. Top
row: Mean of posterior means
for structured balanced (b)
and unbalanced (d)
simulation designs, with
corresponding binary
matrices (c and e
respectively) whose elements
are equated to one if their
value is greater than threshold
τ = 0.6 and zero otherwise.
Bottom row: Similarly for the
contiguous simulation study,
mean of posterior means for
balanced (g) and unbalanced
(i) matrices with
corresponding binarised
matrices (h and i) at
probability threshold of 0.6
and above
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the wombling model was able to recover the biomarker and participant level
estimates.

A sensitivity analysis with respect to the prior information on σ 2, σ 2
s , and β, was

conducted on the structured W configuration. This entailed re-running the analysis
using various specifications of the prior information. The subsequent posterior
summaries did not vary considerably based on different prior information. Hence
we postulate that estimation of σ 2, σ 2

s , and β are relatively robust to the priors
specified in this work.

The results described above relate to two fixed W configurations with the same
values on β, σ 2, and σ 2

s for each scenario. We investigated the effect of different
values for variance terms (σ 2

s and σ 2) on the recovery of W and fixed and random
effects. We found the results to be very similar to those reported here (model results
for different variance terms not shown). Furthermore, we investigated the effect of
the value of ρ on the recovery of W with ρ ∈ {0.85, 0.9, 0.95, 0.99} using the
balanced structured simulation scenario. There is some wombling literature which
suggests that the choice of ρ can affect the recovery of σ 2

s and W [42, 44, 50]; we
found a choice of ρ = 0.9 provided appropriate recovery of parameters of interest.
Refer to Table 7.4 for results on a range of ρ values.

In summary, our simulation study showed the recovery of W proved to be
appropriate, which implies that the estimation of Q−1 is reliable. However the
spatial scale variance (σ 2

s ) was typically overestimated, a finding that is not
uncommon in wombling literature [50]. Despite this, the simulation study also
showed adequate recovery on biomarker and participant estimates, as such our
estimates for β, σ 2 and bi are reliable.

7.3.2 Application to Real Data

In this section, we present the results of the joint analysis derived by the wombling
model, and compared them with the results from the independent analyses (overview
in Fig. 7.1).

The MCMC algorithm was utilised to draw posterior samples from the wombling
model applied on diagnosis and age groups of the AIBL case study. As described
in Sect. 7.2.5, informal diagnostic measures were assessed, such as trace, density
and autocorrelation plots, as well as formal measures to investigate between and
within chain variation with the Gelman-Rubin convergence measure [14]. All plots
suggested convergence to a stationarity distribution according to the Gelman-Rubin
convergence checks. Furthermore, posterior predictive checks on all models in these
analyses showed the models fit the data well; there were no systematic departures
from the model predictions and 95–99% of all response values were within the 95%
credible intervals of the posterior predictive distributions; refer to Table 7.5 and
Figs. 7.10, 7.11 for results.
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7.3.2.1 Probabilistic Connectivity Matrices via Wombling

The networks corresponding to the probabilistic matrices in Fig. 7.4 show the results
for diagnosis levels HC (top: A and B), MCI (middle: C and D) and AD (bottom: E
and F). The varying level of uncertainty between matrices is indicated by elements
with probability values close to 0.5, in contrast with connections which have high
or low probabilities. This is partly due to a sample size effect, as there were
120 participants who were diagnosed as HC compared to MCI (21) and AD (26)
participants.

The networks on the right of Fig. 7.4 show those connections with a probability
equal to or greater than 0.7. The network configurations reflect the underlying
estimated population networks. The total number of edges in these networks
show HC participants have a more complex cortical network structure with 156
connections, in comparison with the MCI network which had 124 connections.
Furthermore, the AD network has a lower degree (112 connections) in contrast with
the MCI and HC networks, suggesting a higher loss of network communication
among the ROIs. The middle temporal lobe is one of the earliest regions known to
be affected by the onset of AD [40]; with a probability greater than 0.7, our results
indicate the number of connections of the HC, MCI and AD networks for this region
are 7, 6 and 4 respectively, suggesting a loss of connections along the AD pathway.
A similar reduction in node degree, in general, can be observed on the entire cortical
mantle, across the frontal, temporal, parietal and occipital lobes.

Baseline age differences are observed in cortical networks in Fig. 7.5. The
networks on the right of Fig. 7.5 show a re-organisation of connections, rather than
a direct loss of total network degree with an increase of age. The older age Group C
(79–93y) consists of 62 participants of which 41 were diagnosed as HC at baseline
and 8 were diagnosed as AD. Hence the analysis in this group is dominated by
HC, and the resultant network better aligns to healthy ageing rather than onset
of AD. The diagnosis ratio of participants in the younger and middle age Groups
A and B (59–69y and 69–79y respectively) have higher ratio of AD and MCI
participants in contrast to HC. Hence the averaged networks across these groups
include participants with a broader spectrum across healthy ageing, and progression
to AD or other dementias, in contrast with age Group C.

7.3.2.2 Descriptive Pearson Cortical Networks

The Pearson pairwise network analyses on diagnosis and age groups were sensitive
to data with repeated measures, as connections varied across both groups between
networks derived from IID and data with replicates. This finding is interesting as
the studies by Li et al. [46] and Fan et al. [25] used repeated measures in their
pairwise correlation network analyses. However, in our analyses, only the IID
Pearson cortical networks were used for comparison with the wombling model.
Once the IID correlation networks were binarised by placing a link between ROIs
whose absolute correlation values greater than τ = 0.7, the diagnosis group did
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Fig. 7.4 Left: Posterior mean of W for each diagnosis, top to bottom; HC (a and b), MCI (c and
d) and AD (e and f). Right: Cortical networks from binarised posterior matrix W with threshold
τ = 0.7 for the respective diagnosis groups. Node size reflects the number of edges on each vertice.
Total number of edges for each network (top to bottom) are 156, 124 and 112 for HC, MCI and
AD networks respectively

not support biologically meaningful networks: the Pearson pairwise correlations
were considerably higher in the MCI group, followed by AD and HC with fewer
connections. The age correlation matrices were binarised in the same manner, and
the resulting sparse networks had a loss of connections from young to older age
groups, of A (47) to B (38) to C (19). Refer to Figs. 7.26, 7.27, 7.28, 7.29, 7.30, and
7.31 for full Pearson pairwise correlation network results.
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Fig. 7.5 Left: Posterior means of W for age groups (top to bottom) A (59–69y), B (69–79y) and C
(79–93y) shown in plots A, C and E respectively. Right: Cortical network from binarised posterior
matrix W with threshold τ = 0.7 for the respective age groups for the respective age groups A, B
and C shown in plots B, D and F. Node size reflects the number of edges on each vertice

7.3.2.3 Wombled Population and Participant ROI Biomarker Estimates

In our application of brain wombling with Model (7.1), the vector β = [β0, β1]
contains fixed effect parameters, where the intercept β0 represents the mean
thickness of the left cortex hemisphere of the brain, for a particular group and β1
is the gender effect, with females as baseline and covariate xi = 1 for male. In all
groups analysed, the gender effect was not substantive (95% credible intervals for
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Fig. 7.6 Posterior marginal distributions of total cortical thickness (β0) across groups. Median
of each distribution shown in each box plot, whiskers indicate 95% credible interval for each
parameter. Diagnosis groups; healthy control (HC), mild cognitive impaired (MCI), Alzheimer’s
disease (AD) and age Groups A, B and C correspond to age ranges 59–69y, 69–79y and 79–93y
respectively

β1 included zero), thus we conclude there are no significant gender differences in
global cortical thickness between the groups analysed.

The median cortical thickness mantle in HC groups (β0,HC) is significantly
higher than AD clinical diagnosis, as the 95% credible interval of β0,HC lies outside
of the 95% credible interval of the AD distribution (β0,AD). While the posterior
median of the MCI group was not significantly different from the medians of the
HC or AD groups, from Fig. 7.6, the cascading order of degeneration on the cortex
can be seen in the disease progression from HC to MCI to AD.

As described in Sect. 7.2.4.3, we can make probabilistic comparisons among
the median cortical thickness between groups. The probability that, a posteriori
β0,HC is within the ADL and ADH quantiles of the posterior distribution of the
AD is 0.02, which implies there is a significant difference between the cortex of
HC and AD groups. The probability that β0,HC is within the MCIL and MCIH
quantiles of the MCI diagnosis (β0,MCI ) is 0.49. This high probability is reflected
in the third quartile of the MCI box plot overlapping the HC box plot in Fig. 7.6.
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The comparison of the MCI and AD box plots in Fig. 7.6 reflect the overlapping of
the upper and lower distribution tail ends, which is reflected in the distribution for
β0,MCI , whose posteriori probability of being within ADL and ADH is 0.9.

There were subtle differences in the posterior cortical thickness estimates among
age Groups A, B and C shown in Fig. 7.6. Unlike the large differences between
diagnosis groups shown in Fig. 7.6 and probability comparisons in Table 7.2, the
posteriori of a younger age group lies inside the credible interval of an older age
group with a probability ≥0.79. These results suggest there were no significant
differences between the median cortex of the age groups. However, as expected,
there is a cascading order of cortical degeneration from thicker to thinner estimates
from age Groups (A, B) to C, that is age ranges 59–79y and 79–93y respectively.

In addition to brain network and global cortical thickness estimates, the hierar-
chical structure of the wombling approach allowed for participant level estimates
for all ROIs. The caterpillar plots in Fig. 7.7 show distinct patterns of participant
clusters of AD, MCI and HC groups, particularly in the nine key regions, as they
are the most likely to be influenced in the early stages of AD. AD participants
had the lowest cortical thickness estimates as a result of higher cortical atrophy.
MCI are midway in the degeneration scope with slightly higher cortical thickness
estimates than AD, but lower than HC. Regions in which diagnosis groups differed
particularly included the temporal poles of the middle and superior temporal gyrus
and posterior cingulate gyrus. Regions which showed AD participants were not
clustered exclusively at the lowest range of the cortical thickness estimates include
the temporal poles (middle and superior) as well as the angular gyrus. Excluding
these regions, for the remainder of the diagnosis clusters among participants were
consistent in all other ROI plots (see Figs. 7.17 and 7.18). Note that these differences
in diagnosis levels are consistent with the loss of network connectivity in Fig. 7.4
and total average cortical thickness estimates in Fig. 7.6.

The results of ranked participants were analysed with respect to age groups and
selected regions are shown in Fig. 7.8; refer to Figs. 7.17 and 7.18 for the remaining
ROI plots. The regions in Fig. 7.8 showed pronounced age group specific clusters.
Key regions which age Group A had consistently higher cortical thickness estimates
in contrast with age Groups B and C were the calcarine fissure, fusiform, heschl,
middle temporal and precentral gyrus.

7.3.2.4 Bayesian LME ROI Analyses

Participant specific estimates via the Bayesian LME models were assessed and the
results align with those from the wombling model in both key ROI which support
strong distinctions among groups (particularly in the diagnosis groups) as well as
in instances which all ROI showed little difference among groups, such as as those
in the age groups; refer to Figs. 7.20, 7.21, 7.22, 7.23 for all Bayesian LME results.
For example, the superior middle and inferior temporal regions had distinct HC,
MCI and AD participant clusters, as well as the supramarginal and the posterior
cingulate. The WAIC values of the wombled model in all groups were found to
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be substantially lower than the WAIC values of the Bayesian LME models. These
results show that the wombling model is a more parsimonious approach to model
biomarker estimates compared to independent LME models on each ROI, and hence
a desirable model for this data. Refer to Table 7.6 for WAIC results.

7.4 Discussion

This work demonstrated and validated the Bayesian wombling approach using
intrahemispherical cortical thickness observations of the brain in both a simulation
study, and applied to an Alzheimer’s disease cohort study. Each analysis was
applied across HC, MCI and AD diagnosis categories as well as three age groups.
Wombling provides a novel way to combine both regression and network analyses
into a single unified model. This takes into account the uncertainty of all possible
links to estimate a network, but also allows group comparisons from independent
measurements (for example, participants’ cortical volumes for many ROIs) without
the need for multiple comparison correction.

7.4.1 Simulation Study

The ability of the wombling algorithm to successfully recover the underlying
connectivity solution while appropriately accounting for the variance was assessed
in Sect. 7.3.1. Figure 7.3 shows the overall average performance of the wombling
algorithm as probability and thresholded networks. The wombling algorithm con-
sistently and correctly detected the absence of connections in the structured
configuration, and recovered 82% and above of the true values of W . On the
more difficult contiguous scenario, Fig. 7.3H and I show that 65% and above the
contiguous solution was recovered, at a probability threshold greater than 0.6, which
as expected was less certain than the structured configuration.

Approximately 95% of the cortical thickness estimates were recovered at the
population and participant level. Recovery in the statistical sense refers to whether
the intervals of the estimator contain the true solution. Thus, an algorithm that
recovers the known solution 100% of the time, could potentially do so by simply
overestimating the variance. In our simulation studies, based on 95% credible
intervals the wombling parameters were recovered approximately 95% of the time
(see Table 7.3). This indicated that the wombled model appropriately estimated the
variability in the parameters.

While the simulation study was designed to mimic features typical of longitu-
dinal study data (in this case we matched some of the characteristics of the AIBL
study, such as the number of participants, replicates and connectivity configuration),
the practical performance of the wombling algorithm is better assessed when it is
applied to the real data and directly compared with the alternative state-of-the-art
methods.
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7.4.2 Application to Study Cohort

7.4.2.1 Cortical Networks

The results from the brain wombling model were compared with those of alternative
independent analyses on the AIBL data. Figure 7.4A, C and E shows a decrease in
connections from HC (156) to MCI (124) to AD (112), which reflect the biological
order of neurodegeneration [15, 18, 58]. As expected from previous work [6], the
loss of connections on the wombled networks reflect the strong differences in the
diagnosis groups which is also reflected in the wombled cortical thickness estimates
shown in Figs. 7.6, 7.7 and Table 7.2, as well as on the Bayesian LME analyses in
Figs. 7.20 and 7.22.

At the same threshold as the wombling networks (τ = 0.7), the Pearson pairwise
correlation networks on baseline observations did not show a biological decrease
of connections. Specifically, both MCI and AD had 34 connections, 12 more than
the HC network with 22 connections. These results suggest that in this work, the
wombled networks provided superior connectivity information in comparison to the
Pearson pairwise correlation method.

Pearson pairwise correlation networks showed a decrease in overall connectivity
across baseline age Groups A to B to C with 47, 38 and 19 total connections respec-
tively, suggesting age dependent loss of connections. However, further investigation
into these results is required as the Bayesian LME and wombling models did not
support participant age clusters; suggesting there were no age differences in the data
(see Figs. 7.22 and 7.23). Furthermore, age Group C comprises of predominately HC
and MCI participants, as 18 of the 26 AD participants are in age Groups A and B,
which suggests age Group C should not reflect high neurodegeneration estimates.

In addition to these improvements, unlike the descriptive networks from the
Pearson pairwise correlation approach, the wombling model provided full posterior
distributions which quantified the uncertainty in all possible links. As the Pearson
pairwise correlation networks do not take into account the uncertainty of each
connection, they cannot correctly estimate the group population networks.

One potential question about the modelling approach proposed in this work
is whether the inclusion of additional terms in the mean of the model would
significantly change the inference about W . Such terms could include fixed effects
to estimate ROI means. If we consider the covariance between data for two ROIs,
then, in principle, the correlation structure should be unaffected if, for example,
the data were standardised such that data for each ROI had a mean of zero
and a variance of one. However, such a simplistic scenario may not be directly
applicable to the complex model fitted in this work. Thus we investigated this by
extending the wombling model to allow for the estimation of ROI means through
the inclusion of fixed effect parameters in the mean of the model. The results
showed that the inference about W for the HC group was similar to that presented
in Sect. 7.3.2.1 (see section “Wombling Cortical Thickness Estimates at the ROI
Level” in Appendix). However, with the MCI and AD groups, this model provided
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large amounts of uncertainty in the posterior distribution for W , limiting our ability
to determine whether inference is impacted by the estimation of ROI means. We
believe this is due to the additional (35 fixed effect) parameters included into the
model, and this appears to have a major impact in the MCI and AD groups as they
have much smaller sample sizes (21 and 26, respectively) compared the HC group
(120). These smaller sample sizes appear to have led to a loss of information about
the network connection for these groups.

The choice of which wombling model to apply, whether it be the model presented
in this work or the extended version which includes ROI means depends on the
research questions which one wishes to address and the data which are available.
If there are only approximately 20 to 30 individuals in a group of interest and
intrahemispheric data are available, then the wombling model presented here can
provide meaningful inferences about W but not on ROI means. However if there are
over 120 individuals in the groups of interest, then the more complex model with
additional ROI parameters would provide joint estimates on the ROI means as well
as on the participant and covariance networks. We note that in our analyses it was
reassuring to find that the estimates for W were similar in both models.

Further, there is potential for the inference about W to change if important
covariates are included into the model. That is, perceived covariance may be due to
the influence of unobserved covariate information. Our model can easily incorporate
covariates, and indeed it also does this in demonstration through the inclusion of sex,
and other covariates could be similarly included (and tested for importance).

7.4.2.2 Biomarker Estimates

In all groups analysed, the WAIC values for the wombling model were substantially
lower compared to the independent Bayesian LME models combined across all
ROIs. In this work, this result shows that the wombling model was the preferred
parsimonious approach for modelling biomaker estimates compared to the indepen-
dent analyses. Refer to Table 7.6 for WAIC results. At the participant level estimates
of cortical thickness, both approaches demonstrated comparable differences in
diagnosed participant clusters as shown in Figs. 7.7 and 7.8 and the Bayesian
LME model estimates in Figs. 7.21 and 7.23. These results further demonstrate the
flexibility of the wombling approach to jointly analyse cortical networks in addition
to biomarker estimates. Above the third quartile of the MCI posterior distribution
had a large degree of overlap with the HC posterior distribution (Fig. 7.6). With
a probability of 0.49, the posterior distribution of the HC total cortical thickness
average is within the upper and lower 95% quantiles of the MCI distribution
(Table 7.2). Such a high probability suggests that this overlap could be due a subset
of MCI participants in the study who are not on the AD pathway [26, 54]. Hence
further investigation into MCI participants further divided into subgroups, such as
participants with documented memory complaints, amnestic and non-amnestic is
suggested to identify potential non-AD converters.
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7.4.3 Sensitivity Analyses

Two sensitivity analyses were conducted on the application of the Bayesian
wombling approach to real data. The first analyses were with respect to the chosen
value of ρ, as described in Sect. 7.3.1.1. A number of authors [42, 44, 50] have
discussed the limitations of including ρ as an additional parameter to be estimated.
Following these recommendations, we fixed ρ = 0.9 throughout all our simulations
and application studies, and conducted a sensitivity assessment to evaluate the
impact of this choice. Table 7.4 showed that at ρ = 0.9 and the parameters W,β, σ 2

and bi were recovered well. Our results support those of Lu et al. [50], Lee [42]
and Lee and Mitchell [44], and we recommend fixing ρ at 0.9 for future wombling
model extensions.

The second sensitivity analysis was with respect to the prior specification
described in Sect. 7.3.1.1. Since the resulting posterior summaries did not vary
considerably based on different prior information, we conclude that our results are
relatively robust to the priors specified in this work. The rationale for using vague
priors is to ensure that the information in the data primarily governs the results.
Alternatively, informative priors may be employed when relevant information is
available [12, 70]. In particular, investigating the best use of diffusion or functional
network priors (or patient specific networks) would be an interesting future research
avenue.

7.4.4 Limitations and Future Work

The intended application of the wombling model in this work is to demonstrate
its utility. Due to the limited sample sizes in this study cohort, the biological
interpretation and comparison of each group, in this work, is limited to the total
number of connections for each network. Additional cortical network metrics which
assess the organisational structure, such as small world topology and characteristic
path length [7, 15, 58], is beyond the scope of this work. Future work and clinical
application of the wombling model will greatly benefit from matched sampled
groups which have similar age ranges, number of replicates, gender and other
features known to be associated with the pathology of interest.

A primary drawback of wombling models is the computation time. As mentioned
by Bowman et al. [12], limitations of a Bayesian hierarchical framework in spatial
analysis include extensive and long computational times, often restricting attention
to small ROI analysis or localised voxel-wise analysis. For example, the study
by Bowman [11] considered only ROI in the cerebellum to limit the computational
extent. Although computationally intensive, our brain wombling approach is not
prohibitively so: a single MCMC run of the algorithm can also be computed in
approximately a day on a standard desktop computer (see Sect. 7.2.5).

As the dimension of W increases, the parameter space increases dramatically,
and this is considered a drawback of the wombling model. For example, our 35
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ROI model resulted in a 599-dimensional parameter space, which ran for 500, 000
MCMC iterations. This issue motivates future work to investigate inducing sparsity
on W based on prior information as suggested in Babacan et al. [5], as this could
potentially reduce the computational burden of the wombling model. Nevertheless,
in the present study, the added insight and corroboration between networks and
cortical thickness estimates were deemed to be worth the additional computational
time.

A second limitation of the present study is that our analysis was restricted to
participants with four or more repeated measures, as this affected the ability of
the wombling model to converge (results not shown). Such repeated measures can
be prohibitive in smaller neuroimaging studies, as patient drop out is a common
occurrence. For use of this method in neuroimaging studies with a limited number
(< 4) of time points, future work detailing the performance of the wombling model
is needed. Nonetheless, our algorithm performed remarkably well for small sample
sizes (NAD and NMCI < 21 < 35 ROI) on data where all participants had repeated
measures. We conjecture that the probabilistic networks from the wombling model
will better distinguish between a link and the absence of a link (i.e. network
probabilities will be closer to zero or one), and result in narrower credible intervals
on biomarker estimates as the sample size increases.

The final limitation of the present study was the relative simplicity of the two
layered linear random effects model, as shown in Fig. 7.2. This is not a fixed
limitation of the approach presented here; the hierarchical Bayesian framework
is capable of handling complex models, such as models with two or more nested
layers to account for complex data structures [28, 29]. Extensions of this nature will
allow the modelling of cerebral morphological features across multiple ROIs over
participants’ age, and expand our spatial approach into a spatio-temporal domain.

7.4.5 Conclusion

In this work, we have demonstrated the advantages of the Bayesian brain wombling
approach applied in the neuroimaging field over state-of-the-art independent analy-
ses. The ability of the wombling model to recover the connectivity and biomarker
effect estimates give confidence on our results from the cohort study. Taking into
account of the uncertainty of each network, the population wombled networks
across diagnosis levels from healthy to Alzheimer’s disease showed a loss of
connectivity (posterior probability � 0.7). Compared to independent LME models,
we found that both approaches estimated cortical thickness progressively along the
dementia pathway. Although applied here to cortical thickness, this method can be
applied to other types of neuroimaging data, unifying existing previously indepen-
dent analyses that are aimed at exploring the same underlying biological system.
This powerful analysis tool provides the potential to extend our understanding of
the human brain functions and effects of brain disorders on both local and network
scale.
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Appendix: Methods and Applications

Additional material to supplement simulation study results, posterior diagnostic
checks, wombling ROI cortical thickness estimates at the population and participant
levels, independent Bayesian mixed effect model results, WAIC values and Pearson
correlation networks can be found in this Appendix. R code to implement the
wombling model can be found at the following GitHub repository https://github.
com/MarcelaCespedes/Brain_wombling.

Simulation Study

The simulation study described in Sect. 7.2.3 provided a thorough assessment of
the Bayesian brain wombling algorithm. The four scenarios in the simulation study
are; contiguous balanced (each person had an equal number of replicates) and
unbalanced (the number of replicates varied per person), and a structured balanced
and unbalanced designs. The results for fixed effect parameters β and residual
variance σ 2 are shown in Table 7.3. While the results for the structured configuration
show a slightly lower recovery of fixed effect parameters, they do not represent a
potential biological configuration. Hence performance of the wombling algorithm is
better assessed on the contiguous configuration, whose performance of the recovery
of the parameters is approximately 95%.

As discussed in Sect. 7.2.3.1, spatial scale variance σ 2
s is a biased estimate and

was not recovered in our simulation study.

Table 7.3 Percentage (%) of fixed effect and residual variance parameter recovery for four
scenarios, each with 50 simulations

Contiguous Unbalanced Contiguous Balanced Structured Unbalanced Structured Balanced

β0 100 98 92 92

β1 100 100 92 90

σ 2 94 98 94 96

www.aibl.csiro.au
https://github.com/MarcelaCespedes/Brain_wombling
https://github.com/MarcelaCespedes/Brain_wombling


7 Brain Wombling 185

Table 7.4 Parameter values for ρ set to 0.85, 0.9, 0.95, 0.99 values

0.85 0.9 0.95 0.99

β0 3.1 (2.9, 3.2) 3 (2.8, 3.2) 3.0 (3.2, 3.5) 2.8 (2.2, 3.4)

β1 0.3 (0.1, 0.5) 0.3 (−0.01, 0.5) 0.1 (−0.3, 0.5) 0.4 (−0.3, .4)

σ 2 0.5 (0.5, 0.7) 0.5 (0.5, 0.5) 0.5 (0.5, 0.5) 0.6 (0.6, 0.7)

True value for β0 is 3, and β1, σ are 0.5

Contiguous unbalanced 50 sim study
% recovery of all random effects (3500 in total)

Structured balanced 50 sim study
% recovery of all random effects (35100 per run)

Structured unbalanced 50 sim study
% recovery of all random effects (3500 in total)

Contig balanced 50 sim study
% recovery of all random effects (3500 in total)
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Fig. 7.9 Each scenario (structured balanced and unbalanced, contiguous balanced and unbal-
anced) had 100 simulated participants and each participant had 35 ROI (3500 random effects in
total for each simulation). As each scenario comprised of 50 simulations, there are 50 × 3500
random effects to assess. Each histogram denoted the percentage of the number of random effects
recovered (that is random effects whose solution within the 95% credible interval)

Figure 7.9 shows the histograms on the percentage of the recovered random
effects for each scenario. The simulation study comprised of 50 independently
simulated data sets for each scenario, each data set consisted of I = 100 simulated
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participants, each with K = 35 ROI resulting in 3500 random effects per simulated
data set to estimate. Overall we can see that there is approximately 95% recovery of
the random effects for each scenario.

As ρ in Model (7.1) is a fixed value, we investigated the effect recovering the
parameters in the structured scenario for ρ values [0.85, 0.9, 0.95, 0.99]. Table 7.4
summarises the results.

Contact the author for additional simulation study results such as MCMC
convergence checks, estimation of credible intervals, and posterior predictive plots.

Posterior Diagnostic Checks for AIBL Data Set

Posterior predictive plots for each AIBL group analysed were used to assess
goodness-of-fit for each wombled model. The plots in Figs. 7.10, 7.11 and 7.12
show the expected mean of the data was recovered well, however there is a slight
overestimation of the variance, as the proportion of predicted values inside the 95%
credible intervals is slightly over 0.95. However these results show our models
adequately captured the uncertainty in the data.

Table 7.5 shows the Gelman-Rubin diagnostic, upper 95% credible interval for
convergence checks of the four chains for β0, β1, σ 2 and σ 2
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Posterior predictive plot for HC: % inside predictive CI 0.981 Posterior predictive plot for AD: % inside predictive CI 0.979
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Fig. 7.10 Posterior predictive plots for healthy control (HC, left) and Alzheimer’s disease (AD,
right) wombling models. The proportion of response values inside the predictive 95% credible
intervals (in red) is 0.981 and 0.979 for HC and AD models respectively
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Fig. 7.11 Posterior predictive plots for age groups; A (59–69), B (69–79) and C (79–93). The
proportion of response values inside the predictive 95% credible intervals (in red) are 0.986, 0.982
and 0.981 for age groups A, B and C

Wombling Cortical Thickness Estimates at the ROI Level

As discussed in Sect. 7.4.2.1, we investigated an adaptation to the wombling model
to account for ROI means via fixed effect parameters. The extended model is of the
form

yirk|bik,β, σ 2 ∼ N(β0 + β1R2 + β2R3 + . . . + β34R35 + bik, σ
2)

bi ∼ MVN(0, σ 2
s Q)

Q−1 = ρ(Dw − W) + (1 − ρ)I. (7.9)
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Posterior predictive plot for APOE -ve: % inside predictive CI 0.979 Posterior predictive plot for APOE +ve: % inside predictive CI 0.979

Fig. 7.12 Posterior predictive plots for APOE ε4 non-carriers (negative, left) and carriers
(positive, right). The proportion of response values inside the predictive 95% credible intervals
(in red) were 0.979 for both models

Table 7.5 Gelman-Rubin
diagnostic upper confidence
limit values for each group in
AIBL study

Gelman-Rubin diagnostic

β0 β1 σ 2 σ 2
s

HC 1.15 1.16 1 1

AD 1.09 1.16 1 1

Age A 1.14 1 1 1

Age B 1.04 1.06 1 1.01

Age C 1.07 1 1 1

APOE carrier 1.02 1.01 1 1

APOE non-carrier 1.03 1.02 1 1

As the combinations of four chains for each group
had values close to one, we are confident the
MCMC algorithm for each group has reached
convergence

Where the response (yirk), spatial random effects (bik), residual (σ 2) and spatial
scale variance (σ 2

s ) terms are the same as those presented in Sect. 7.2.2. The
precentral gyrus is the baseline ROI whose cortical thickness (in mm) is estimated
by β0. The fixed effect parameter βk−1 estimates the deviation of ROI k away
from β0 when the binary indicator variable Rk is equal to one. Estimation of
β is attained by the same conditional distribution described in Sect. 7.2.2, with
minor modifications to account for the design matrix R rather than X. Figures 7.17
and 7.18 show participant specific cortical thickness estimates as caterpillar plots
(βk + bik) colour coded for diagnosis and age groups respectively. Figure 7.13
shows the posterior means of W for HC (top), MCI (middle) and AD (bottom)
groups. While the posterior mean for the HC group is similar that in Fig. 7.4, with
the same 36 links present in both networks and 468 absent connections in common,
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Fig. 7.13 Left column: Posterior means for W for HC (top), MCI (middle) and AD (bottom).
Right column: Binarised matrices at posterior probability cut-off values of 0.7 for HC and 0.6 for
MCI and AD
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the matrices for MCI and AD group show the probability of each link is close to
0.5. We believe that the reason for this is because the HC group has a substantially
larger sample size (120 individuals) compared to the MCI and AD groups (with
21 and 26 individuals respectively). Hence, the more complex model in Eq. (7.9)
requires data with larger sample sizes, compared to the original wombling model,
in order to derive meaningful W estimates.

Figure 7.14 shows the marginal posterior densities for the ROI means for
35 regions. These results resemble the independent Bayesian LME ROI esti-
mates in Fig. 7.20, particularly for ROIs associated with early onset of AD
such as the inferior, middle and superior temporal gyrus, posterior cingulate
gyrus.

Wombling Cortical Thickness Estimates at the Participant
Level

As described in Sect. 7.2.4.4 and discussed in Sect. 7.3.2.4, the wombling model
derived participant specific estimates on all ROIs. Figures 7.15 and 7.16 shows the
posterior means and 95% credible intervals (as error bars) for each participant.

APOE Wombling Results

Carriers of the Apolipoprotein (APOE) ε4 gene have known to be at higher
risk of developing AD compared to non-carriers, hence in neuroimaging studies,
it is a key biomarker to investigate. For exploration purposes, we applied the
wombling model on AIBL data divided into APOE ε4 carrier and non-carrier
groups. Figures 7.17, 7.18 and 7.19 show the cortical networks, global estimates
across all ROI and participant specific rankings for key AD regions as described in
Sect. 7.2.4.3.

There were no strong differences APOE ε4 carrier and non-carrier groups in
any of the ROI. We believe the reason for this is due to APOE ε carrier and non-
carrier groups comprising of participants across the entire spectrum (HC, MCI and
AD), large variety of ages and many other AD biomarkers, making it difficult to
assess the deterioration differences associated with the APOE ε gene. Unfortunately
due to our low sample size, we did not have sufficient data to investigate more
meaningful biomarker groups such as APOE ε4 carrier and non-carrier groups that
were clinically diagnosed as HC or AD.
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Fig. 7.17 Left: Posterior mean of W heat map for APOE ε4 carriers (top) and non-carriers
(bottom). Right: Cortical network from binarised heat map with threshold τ = 0.7 for the
respective APOE ε4 carrier groups. Node size reflects the number of edges on each vertice. Total
number of edges for each network (top and bottom) are 152 and 150 for APOE ε4 non-carriers and
carriers groups

Bayesian Linear Mixed Effect Models on Each ROI

As described in Sect. 7.2.4.4 and discussed in Sect. 7.3.2.4, Bayesian linear mixed
effect models were independently applied to each ROI on groups; diagnosis levels
HC, MCI and AD and age groups A, B and C. For exploration purposes we also
investigated APOE ε4 allele carriers and non-carriers. All models were of the form

yij |σ 2, β1, μ0i ∼N(μ0i + β1xi, σ
2)

μ0i |μ0, σ
2
0 ∼N(μ0, σ

2
0 ). (7.10)
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Fig. 7.18 Global posterior cortical thickness means for (red) APOE ε4 carriers and (green) APOE
ε4 non-carriers

In order to make the models comparable with the wombling approach, covariate
xi is gender as described in Sect. 7.2.3.1, with xi = 1 for male and 0 otherwise.
The residual variance prior for σ 2 and the random effects prior, σ 2

0 , is the same
as discussed in Sect. 7.2.3.1. Similarly, the prior for the intercept effect μ0 is also
relatively vague with a N(0, 10) distribution.

Figures 7.20, 7.21, 7.22, 7.23, 7.24 and 7.25 show the marginal posterior mean
population distributions and participants ranked according to posterior means with
95% credible interval.

WAIC Results

As described in Sect. 7.2.4.4, we applied the WAIC criterion on the wombled
and independent Bayesian LME models to assess model choice. Table 7.6 shows
the results of the WAIC for the wombling model applied to each group, and the
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Table 7.6 WAIC values for
diagnosis groups

Group WAIC wombled model WAIC LME models

HC −33,598.26 −12,424.94

MCI −4355.94 −1589.94

AD −3045.20 −689.97

Age A −6029.15 −2870.38

Age B −13,065.38 −6051.11

Age C −10,321.63 −4587.98

Smaller WAIC values denotes a more parsimonious model
compared to the alternative, here the wombled model is
preferred to the independent Bayesian LME models

combined WAIC criterion for the independent Bayesian LME analyses for each
region.

Pearson Correlation Networks for Each Group

Cortical networks derived by Pearson’s pairwise correlation networks for each group
are shown in Figs. 7.26, 7.27, 7.28, 7.29, 7.30, and 7.31. As Pearson’s pairwise
networks do not accommodate the repeated measure structure of the data, we
derived networks at both baseline (independent and identically distributed (IID)
observations) as well as on the whole data, with repeated measures treated as IID to
investigate any potential differences.
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Fig. 7.26 Pearson pairwise correlation plots for baseline (left top and bottom) and repeated
measures (right top and bottom) on HC diagnosis. Top: networks binarised according to threshold
of τ = 0.7 applied on the absolute value of each element on correlation matrices above
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Fig. 7.27 Pearson pairwise correlation plots for baseline (left top and bottom) and repeated
measures (right top and bottom) on MCI diagnosis. Top: networks binarised according to threshold
of τ = 0.7 applied on the absolute value of each element on correlation matrices above
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Fig. 7.28 Pearson pairwise correlation plots for baseline (left top and bottom) and repeated
measures (right top and bottom) on AD diagnosis. Top: networks binarised according to threshold
of τ = 0.7 applied on the absolute value of each element on correlation matrices above
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Fig. 7.29 Pearson pairwise correlation plots for baseline (left top and bottom) and repeated
measures (right top and bottom) on age group A. Top: networks binarised according to threshold
of τ = 0.7 applied on the absolute value of each element on correlation matrices above
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Fig. 7.30 Pearson pairwise correlation plots for baseline (left top and bottom) and repeated
measures (right top and bottom) on age group B. Top: networks binarised according to threshold
of τ = 0.7 applied on the absolute value of each element on correlation matrices above
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Fig. 7.31 Pearson pairwise correlation plots for baseline (left top and bottom) and repeated
measures (right top and bottom) on age group C. Top: networks binarised according to threshold
of τ = 0.7 applied on the absolute value of each element on correlation matrices above
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Chapter 8
Bayesian Spike Sorting: Parametric
and Nonparametric Multivariate
Gaussian Mixture Models

Nicole White, Zoé van Havre, Judith Rousseau, and Kerrie L. Mengersen

Abstract The analysis of action potentials is an important task in neuroscience
research, which aims to characterise neural activity under different subject condi-
tions. The classification of action potentials, or “spike sorting”, can be formulated
as an unsupervised clustering problem, and latent variable models such as mixture
models are often used. In this chapter, we compare the performance of two mixture-
based approaches when applied to spike sorting: the Overfitted Finite Mixture model
(OFM) and the Dirichlet Process Mixture model (DPM). Both of these models
can be used to cluster multivariate data when the number of clusters is unknown,
however differences in model specification and assumptions may affect resulting
statistical inference. Using real datasets obtained from extracellular recordings of
the brain, model outputs are compared with respect to the number of identified
clusters and classification uncertainty, with the intent of providing guidance on their
application in practice.

Keywords Mixture model · Dirichlet process · Classification · Spike sorting

8.1 Introduction

Extracellular recordings are a form of electrophysiological data that allows real time
monitoring of multiple neurons in vivo. Data collection focuses on the measurement
of action potentials or “spikes”, which characterise local neural activity at a
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given point in time. Analysis of these data aims to estimate both the number of
active source neurons present and their relative frequency. Comparing the results
of analysis across different subject conditions can therefore provide insight into
changes in neural activity, for example, in different regions of the brain or in
response to various stimuli.

The analysis of extracellular recordings consists of two main stages: (1) spike
detection, and (2) the assignment of detected spikes to source neurons. This chapter
focuses on the assignment stage, also known as spike sorting [1, 2]. A common
assumption underpinning spike sorting methods is that different neurons generate
action potentials with a characteristic, repeatable shape. Spike sorting can therefore
be viewed as an unsupervised clustering problem where spikes with similar features
are grouped together, for example, based on summary statistics [3, 4] or low-
dimensional transformations of the data, such as wavelet transforms or principal
components analysis [1, 5].

Mixture models offer a general solution for unsupervised clustering and are
a popular tool for spike sorting, including cases where the number of source
neurons (clusters) is unknown. Applications of mixture models to spike sorting
have included finite mixtures of Gaussian [2, 6] and t-distributions [7], mixtures of
factor analysers [8], Reversible Jump Markov chain Monte Carlo (RJMCMC) [9],
and time-dependent mixtures to account for non-stationarity in waveforms [10, 11].
Nonparametric mixture models based on the Dirichlet Process (DP) have also been
proposed [12, 13].

Different mixture-based approaches all aim to determine the optimal clustering
of a dataset. However, differences in model specification can impact subsequent
inferences, for example, the number of clusters identified and/or classification
uncertainty for individual observations. This chapter aims to provide insight into
this issue by comparing two mixture-based approaches to spike sorting. Both
are formulated within the Bayesian framework and represent parametric and
nonparametric approaches to mixture modelling. The first model is a finite mixture
of multivariate Gaussian distributions, applying methodology proposed by [14].
This model initially overfits the number of clusters expected in the data. The prior
distribution for the mixture model weights is then specified in a way that encourages
excess clusters in the posterior distribution to have negligible weight [15]. The
second model considers a nonparametric approach to mixture estimation which uses
the DP as a prior over unknown mixture components. Clustering behaviour induced
by properties of the DP is then used to estimate the most likely partition of the data.

Outcomes from each approach are compared with respect to the number of
clusters identified, the predicted classification of individuals spikes, and the features
of identified clusters.
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Fig. 8.1 Sampled spikes from three extracellular recordings. Each spike is represented by 89
samples, equivalent to 1 ms of recording. Datasets varied by sample size (L to R): n =
192, 211, 348

8.2 Data

Selected approaches were applied to data from three independent extracellular
recordings of the brain (Fig. 8.1). Each spike was represented by a waveform
consisting of 89 samples, corresponding to 1 millisecond of recording time. The
number of detected spikes for analysis was equal to 192, 211 and 348 for Datasets
1, 2 and 3, respectively.

Dimension reduction was performed on sampled waveforms for each dataset
in Fig. 8.1 using a robust version of Principal Components Analysis (PCA) [16].
This method was chosen to lessen the influence of outliers on the estimation of
principal components. The first four principal components were used as inputs into
each mixture model (Fig. 8.2), which explained 83% (Dataset 1), 91% (Dataset 2),
and 85% (Dataset 3) of total variation in sampled waveforms.

8.3 Methodology

In this section, key features of each mixture modelling approach are outlined.
Common to both approaches is the problem of classifying n spikes into K clusters,
where K is a priori unknown. Individual spikes in each model are represented by a
multivariate vector yi = {yi1, . . . , yir }, containing r measurements for spike i.

For the data described in Sect. 8.2, yi is assumed to follow a Multivariate
Gaussian distribution with mean μk = [μ1k, . . . , μrk] and variance-covariance
matrix �k , 1 ≤ k ≤ K . Conditional on assignment to cluster k, the likelihood
for yi is,

p (yi |zi = k, θk) = Nr

(
μk,�k

)
, (8.1)
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Fig. 8.2 Distribution of the first four principal components of each original dataset. Each row
represents a dataset (Dataset 1, 2, 3) and each column represented a principal component (PC1,
PC2, PC3, PC4)

with unknown parameters θk = (
μk,�k

)
. For each cluster, the joint prior

distribution for θk takes the form:

p (θk) = p
(
μk|�k

)
p (�k) (8.2)

with

p
(
μk|�k

) = Nr

(
b0,

�k

N0

)

p (�k) = IW (c0,C0) . (8.3)

The assignment each spike to available clusters is inferred using a discrete latent
variable zi , where zi = k if spike i is assigned to cluster k. The inclusion of zi is
a form of data augmentation [17], and is required for sampling from the posterior
distribution.

All models were estimated using Markov chain Monte Carlo (MCMC), with
details provided Sects. 8.3.1 and 8.3.2. For analyses presented in Sect. 8.4, the



8 Bayesian Spike Sorting: Parametric and Nonparametric Multivariate. . . 219

following values were chosen for the hyperparameters: b0 = y, N0 = 0.01, c0 = 5
and C0 = 0.75cov (y). These values were chosen to reflect a plausible range
of values for each parameter, whilst remaining relatively non-informative. Other
hyperparameter choices for multivariate Gaussian mixture models are discussed
in [18].

8.3.1 Overfitted Finite Mixture Model (OFM)

The first approach involves fitting a finite mixture model where the number of
clusters is set to be greater than the number of clusters expected in the data. We
refer to this approach as the Overfitted Finite Mixture model (OFM) [14]. Assuming
K∗ > K clusters are fitted to the data, the likelihood of y = {y1, . . . , yn} under the
OFM is,

p(y|θ ,π) =
n∏

i=1

K∗∑

k=1

πkNr

(
μk,�k

)
, (8.4)

where πk = Pr (zi = k), is the prior probability of a randomly selected observation
being assigned to cluster k. Collectively, π = {π1, . . . , πK∗} represent the mixture
model weights and are subject to the constraint

∑K∗
k=1 πk = 1.

Under the OFM, the prior distribution for zi given π is Multinomial,

zi |π ∼ MN (1;π1, . . . , πK∗) , (8.5)

which allows z = {z1, . . . , zn} to be sampled at each MCMC iteration via the
posterior probabilities of cluster membership:

p(zi = k|yi , θ) = πkNr(μk ,�k)∑K
l=1 πlNr(μl ,�l)

(8.6)

∝ πkNr

(
μk,�k

)
. (8.7)

The defining feature of the OFM is the choice of prior distribution for the mixture
model weights. As per the specification of a finite mixture model, weights are
assumed to follow a Dirichlet distribution,

(π1, . . . , πK∗) ∼ D(α1, . . . , αK∗), (8.8)

which is characterised by the hyperparameters α1, . . . , αK∗ . In the absence of prior
information, it is common to set these hyperparameters to a common value; i.e.
α1 = · · · = αK∗ = γ . Building on results by [15], the OFM chooses an appropriate
value for γ that results in weights for excess components {k = K + 1, . . . ,K∗}
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being shrunk towards zero. When fitted to the observed data, the number of unique
values of z is an estimate of the true number of clusters, K .

The proposed methodology was recently applied by [14] for the case of univariate
Gaussian distributions. A key feature of the methodology was the use of prior
tempering on the hyperparameter γ . Briefly, a ladder of T values {γ (1), . . . , γ (T )}
was created, where each element was chosen a priori to promote emptying
behaviour, based on the results of [15]. The MCMC algorithm was implemented
in parallel in combination with Gibbs sampling steps for the remaining model
parameters. Code used to implement the MCMC algorithm for the OFM model
presented in this chapter is available online (https://github.com/zoevanhavre/Zmix_
devVersion2).

8.3.2 Dirichlet Process Mixture Model (DPM)

The second approach considers a nonparametric alternative to mixture modelling
by using the Dirichlet Process (DP) as a prior over unknown mixture components.
The DP is a stochastic process which is defined as a distribution over probability
measures; i.e. a single draw from the DP is itself a distribution [19]. For a
measureable space �, the data generating process for yi under the DP is,

yi |θ i ∼ θ i

θ i |G ∼ G

G ∼ DP (mG0) . (8.9)

The random probability measure G follows a DP defined by a base distribution, G0,
and a concentration parameter m > 0. G0 is interpreted as the mean of the DP, and
is assigned as suitable distribution according to the form of θ i .

Under the DP, draws for multiple θ i have a non-zero probability of taking the
same value. This discreteness property induces clustering of the observed data,
which can be seen in different formulations of the DP. Under the stick-breaking
construction [20], G is replaced with an infinite weighted sum of point masses:

G = ∑∞
k=1 πkδθk

πk = vk
∏

l<k (1 − vl)

vk ∼ Beta (1,m)

θk|G0 ∼ G0 (8.10)

where G0 = p (θk) and δθk denotes a Dirac mass at θk . The term ‘stick-breaking’
refers to the analogy that the weights π1, π2, . . . represent portions of a stick with
total length equal to 1. Conditional on preceding clusters, each πk is a randomly

https://github.com/zoevanhavre/Zmix{_}devVersion2
https://github.com/zoevanhavre/Zmix{_}devVersion2
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drawn proportion of stick length remaining so that
∑∞

k=1 πk = 1. For this reason,
the DPM is often referred to as an infinite mixture model [19].

An alternative construction of the DP is the Polya Urn scheme [21] or Chinese
restaurant process. Under this construction, G in integrated out, resulting in the
following prior predictive distribution distribution for θ i ,

θ i |θ i−1, . . . , θ1,m,G0 ∼ mG0
m+i−1 +∑K−1

k=1
Nkδθk
m+i−1 (8.11)

or, in terms of zi ,

p(zi = k|z1, . . . , zi−1,m) =
{

Nk

i−1+m
1 ≤ k ≤ K

m
i−1+m

k = K + 1.
(8.12)

where Nk is the number of observations already assigned to cluster k. The DPM
therefore assumes that each observation has a probability of being assigned to an
existing cluster (1, . . . ,K), or representing a new cluster (K + 1).

The DPM includes a additional concentration parameter, m, which influences the
level of clustering in the data. For example, under the stick-breaking construction in
Eq. (8.10), m influences draws for the stick-breaking weights, v1, v2, . . . which, in
turn, are used to compute the mixture weights. This parameter can be treated as an
unknown parameter in the DPM; in this chapter, we assume m ∼ Γ (1, 1).

For results presented in Sect. 8.4, DPM models were estimated using slice
sampling [22]. This algorithm is based on the stick-breaking construction (8.10)
and involves a modified version of Eq. (8.6) to account for an unspecified number
of clusters. Uniform auxiliary variables, ui ∼ U(0, πzi ), based on current values
for the mixture weights are introduced to sample each zi . Additional clusters are
proposed until the condition

K∗∑

k=1

πi > 1 − min{u1, . . . , un} (8.13)

is met, with K∗ being the number of clusters sampled for the current MCMC
iteration. R code to implement the DPM slice sampler is available online (https://
github.com/nicolemwhite/spike_sorting_DPM).

8.3.3 Comparing Spike Sorting Solutions

For each dataset in Fig. 8.2, OFM and DPM model outputs were compared to
determine the effects of model specification on the estimated number of clusters
and classification outcomes.

https://github.com/nicolemwhite/spike{_}sorting{_}DPM
https://github.com/nicolemwhite/spike{_}sorting{_}DPM
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Number of Clusters The number of non-empty clusters was recorded at the end of
each MCMC iteration, as an estimate of the true number of clusters. The resulting
distribution of K over all MCMC iteration provided an indication of the most likely
number of clusters and associated uncertainty.

Optimal Classification Using MCMC samples for z, pairwise posterior probabil-
ities were calculated to infer the optimal partition of each dataset. For each pair
of observations i and i

′
, the posterior pairwise probability Pr (zi = zi′ |y) was

calculated as the proportion of MCMC iterations where i and i ′ were assigned to
the same cluster, irrespective of the value of k. A benefit of using these probabilities
is that it avoids the need to correct for label switching [23]. The resulting n × n

matrix of probabilities was then used to determine the maximum a posteriori
(MAP) estimate of z [24]. In this chapter, optimal partitions under each DPM were
estimated using the Posterior Expected Rand (PEAR) index proposed by [25].

Modelling results were based on 20,000 MCMC iterations, following an initial
burn-in phase of 20,000 iterations. OFM estimation assumed an initial estimate of
10 clusters and the proposed tempering algorithm was implemented using γ =
2{−32,−16,−8,−4,−2,0,2,4}. MCMC sampling was further initialised by applying the
k-means clustering algorithm to each dataset with k = 10.

8.4 Results

Differences in the estimated number of clusters were observed between models,
with DPM model outcomes subject to greater posterior uncertainty (Fig. 8.3).
Across all datasets, fitted OFM models converged to 4 clusters and showed little to
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Fig. 8.3 Posterior distributions of the estimated number of clusters in Datasets 1, 2 and 3.
Distributions were based on the MCMC output for the DPM (white) and OFM (black)
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no support for other values of K . Uncertainty in the number of clusters among DPM
models was greatest for Dataset 1, which inferred between 4 and 7 clusters with
similar support across MCMC iterations. Discrepancies in the most likely number
of clusters were largest for Dataset 3, with 63% of MCMC iterations proposing 8
clusters under the DPM model.

The visualisation of pairwise posterior probabilities suggested that the classifi-
cation of spikes in Datasets 1 and 2 was robust to the choice of mixture model,
despite evidence of differences in the true value of K (Fig. 8.4). Corresponding
MAP estimates for z showed that the optimal clustering based on DPM models
included an additional cluster, however in each case this cluster only contained
a single observation (Table 8.1). Differences in pairwise posterior probabilities
between models fitted to Dataset 3 were more pronounced, and were associated with
a sparser clustering of spikes under the DPM model. However, additional clusters
predicted by this model also had relatively low weights, representing between 0.3%
and 4.3% of identified spikes.

The projection of optimal classifications onto the original data in Fig. 8.1
provided further insight into additional clusters generated under each DPM model
(Fig. 8.5). For Datasets 1 and 2, the assignment of waveforms to Clusters 1, 2
and 3 was generally consistent under both approaches. Underlying spike shapes
across these clusters were clearly defined, and were distinguished from one another
based on minimum and maximum amplitudes. Defining features for Cluster 4 under
each OFM model were less clear, and appeared to represent outlying observations;
spike sorting solutions under corresponding DPM models instead attributed these
observations to multiple clusters.

The assignment of outliers to singleton clusters was also observed for Dataset
3, however further inconsistencies between models indicated greater sensitivity in
DPM parameter estimates. For example, spikes assigned to Cluster 3 of the OFM
model varied substantially with respect to maximum amplitude. Results from the
corresponding DPM model represented the same spikes by 2 smaller clusters with
different maximum amplitudes.

8.5 Discussion

Using the example of spike sorting, this chapter has compared two popular
approaches to mixture modelling, to assess the effect of model specification on
statistical inference. Both methods represented the observed data as a mixture of
multivatiate Gaussian distributions and assumed that true number of clusters was
unknown a priori.

Differences in model specification affected the estimation of K , with fitted
DPM models associated with greater numbers of clusters. This outcome can be
attributed to the properties of the DP when used as a prior distribution over mixture
components. Unlike the OFM which assumes an upper bound on K , the DP
prior assumes that observations can either be assigned to an existing cluster or be
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Fig. 8.4 Pairwise posterior similarity matrices for Datasets 1–3, Pairwise posterior similarity
matrices for Datasets 1–3, based on MCMC output from the OFM (left column) and DPM (right
column). Pairwise posterior probabilities range from 0 (light grey) to 1 (black)
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Table 8.1 Frequencies of cluster membership, as determined by the optimal partition under each
OFM and DPM model

Dataset 1 Dataset 2 Dataset 3

(n = 192) (n = 211) (n = 349)

Model Cluster Count % Cluster Count % Cluster Count %

OFM 1 110 57 1 125 59 1 176 50

2 48 25 2 44 21 2 80 23

3 25 13 3 40 19 3 72 21

4 9 5 4 2 1 4 20 6

DPM 1 108 56 1 127 60 1 200 57

2 50 26 2 42 20 2 51 15

3 25 13 3 39 18 3 38 11

4 5 3 4 2 1 4 31 9

5 4 2 5 1 1 5 15 4

6 – – 6 – – 6 10 3

7 – – 7 – – 7 2 <1

8 – – 8 – – 8 1 <1

Inferred clusters under both models are labelled in decreasing order by frequency

associated with the generation of a new cluster. For results presented in Sect. 8.4, this
behaviour led to the generation of additional clusters, however in most cases, these
represented a single observation. In contrast, OFM models promoted a parsimonious
approach to clustering, whereby outlying observations were allocated to the same
cluster. This outcome can be attributed to the prior distribution specified for the
unknown mixture weights, as it strongly discourages the posterior from assigning
weight to clusters with limited support from the observed data. When applied to
spike sorting, small clusters inferred under either approach should therefore be
interpreted with care, as these are likely to represent noise as opposed to distinct
source neurons.

Optimal spike sorting solutions proposed by OFM and DPM models were similar
among clusters with larger weights, and performed well in capturing different
waveform shapes. However, greater classification uncertainty under the DPM model
reflected potential sensitivity in parameter estimation of multivariate Gaussian dis-
tributions. Whilst not considered in this chapter, the use of alternative distributions
such as the multivariate-t distribution may help to address this sensitivity. Future
studies in this area should therefore consider the effects of model misspecification
on the performance of different mixture-based approaches.
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Fig. 8.5 Optimal classifications for Datasets 1, 2 and 3 based on MAP estimates produced by
OFM and DPM model. For each dataset, spikes are clustered according to the OFM model. Within
each OFM cluster, individual spikes are coloured based on their corresponding classifcation under
the DPM model
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Chapter 9
Spatio-Temporal Analysis of Dengue
Fever in Makassar Indonesia: A
Comparison of Models Based
on CARBayes

Aswi Aswi, Susanna Cramb, Wenbiao Hu, Gentry White,
and Kerrie L. Mengersen

Abstract Background: Dengue fever is one of the world’s most important vector-
borne diseases and it is still a major public health problem in the Asia-Pacific region
including Indonesia. Makassar is one of the major cities in Indonesia where the
incidence of dengue fever is still quite high. Since dengue cases vary between
areas and over time, these spatial and temporal components should be taken into
consideration. However, unlike many other spatio-temporal contexts, Makassar is
comprised of only a small number of areas and data are available over a relatively
short timeframe. The aim of this paper is to better understand the spatial and
temporal patterns of dengue incidence in Makassar, Indonesia by comparing the
performance of six existing spatio-temporal models, taking into account these
specific data characteristics (small number of areas and limited small number of
time periods) and to select the best model for Makassar dengue dataset.

Methods: Six different Bayesian spatio-temporal conditional autoregressive (ST
CAR) models were compared in the context of a substantive case study, namely
annual dengue fever incidence in 14 geographic areas of Makassar, Indonesia,
during 2002–2015. The candidate models included linear, ANOVA, separate spa-
tial, autoregressive (AR), adaptive and localised approaches. The models were
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implemented using CARBayesST and the goodness of fit was compared using the
Deviance Information Criterion (DIC) and Watanabe-Akaike Information Criterion
(WAIC).

Results: The six models performed differently in the context of this case study.
Among the six models, the spatio-temporal conditional autoregressive localised
model had a much better fit than other options in terms of DIC, while the conditional
autoregressive model with separate spatial and temporal components performed
worst. However, the spatio-temporal CAR AR had a much better fit than other
models in terms of WAIC. The different performance of the models may have been
influenced by the small number of areas.

Conclusion: Different spatio-temporal models appeared to have a large impact
on results. Careful selection of a range of spatio-temporal models is important for
assessing the spatial and temporal patterns of dengue fever, especially in a context
characterised by relatively few spatial areas and limited time periods.

Keywords Bayesian · Conditional autoregressive priors · CARBayesST ·
Spatio-temporal models

9.1 Introduction

Despite concerted efforts worldwide, dengue fever remains a serious health problem
in the Asia-Pacific region including Indonesia. Makassar, the gateway to eastern
Indonesia, is one of the major cities in Indonesia where the incidence of dengue
fever is still quite high. However, there is substantial variation in incidence between
districts and over time. Although there is strong interest in developing statistical
models to estimate and predict dengue incidence, such models need to take these
spatial and temporal components into account. Consideration of only the spatial
component of disease can identify regions with low or high risk, but not capture
anything about temporal variation of risk which is equally crucial. Similarly,
focusing only on temporal variation and ignoring important spatial patterns is
inadequate for effective understanding or management of the disease.

Some modelling approaches for dengue fever have been conducted in Makassar.
However, these models focus on analysing the genomes of dengue viruses using
phylogenetic analysis [1], predicting dengue cases using multiple regression [2]
and predicting Dengue Haemorrhagic Fever (DHF) epidemics using two different
models, a HR2008 model and a persistence model [3]. Spatio-temporal modelling
approaches, and in particular Bayesian models, have not been explored yet for
Makassar.

A variety of Bayesian spatial and spatio-temporal approaches have used in
modelling dengue fever in other locations. A literature search revealed 31 journal
articles about Bayesian spatial and spatio-temporal approaches to modelling dengue
fever published from January 2000 to November 2017. Most studies adopted a
Bayesian model with a spatially structured random effect using an intrinsic CAR
prior structure to investigate the relationship between the risk of dengue and selected
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covariates [4]. Among the selected studies, only two studies used a generalised
linear mixed model (GLMM) with spatial, temporal and spatio-temporal effects [5,
6]. An interesting feature of these studies is the wide disparity in the number of areas
used to partition the region of interest; this ranged from 10 to 1490, with less than
a quarter (eight studies) focusing on a small number of areas (<30). The number
of periods also varied between studies, ranging from 3 months to 32 years, with 18
studies focusing on small time periods of less than 7 years.

There are specific limitations and challenges in the Makassar data, which are
common to many datasets. The first challenge is that the spatial data are only
available at the district level, and there are only 14 such areas in Makassar. The
second challenge is that this dataset has a small number of time periods. This
motivates an investigation of available spatio-temporal models that perform well
in a context characterised by a small number of areas and small number of time
periods. This paper provides a comparison of six existing spatio-temporal models,
with the overall aim of better understanding spatial and temporal patterns of dengue
incidence in Makassar, Indonesia. It is anticipated that the results of this evaluation
will also inform other studies that are similarly characterised by a small number of
areas and time periods.

Another consideration in choosing a statistical model for use in this case study is
that the model should be easily implemented with publicly available software. This
will enhance the potential for the approach to be adopted by public health agencies
in Indonesia. As above, such a requirement is not unique to this case study and will
have resonance with analysts and agencies in other developing countries.

9.2 Methods

9.2.1 Study Site

Makassar covers an area of 175.77 km2 divided into 14 districts. A total of 6882
new cases of dengue were registered from 2002 to 2015, with substantial variation
between districts and over time; for example, the number of cases rose sharply by
100 percent from 2012 (86 cases) to 2013 (265 cases) in a population of 1.49 million
(2012) and 1.51 million (2013) [7].

9.2.2 Models

Six Bayesian spatio-temporal models with different formulations of conditional
autoregressive (CAR) priors, namely linear [8, 9], ANOVA [10], separate spatial
[11], AR [12], adaptive [13], and localised [14] models, were compared. These
models were chosen because they fulfil the modelling requirements described above,
in that they include both spatial and temporal components and they are publicly
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available in the CARBayesST package [9] in the statistical software package R [15].
All six models are formulated as follows,

yij ∼ Poisson
(
eij θij

)

log
(
θij
) = ψij

where yij is the observed number of dengue cases in the ith district and jth time
period, i = 1, . . . , I; j = 1, . . . , J; eij and θ ij are, respectively, the expected number
of dengue cases in area i time j and the relative risk of dengue (the underlying disease
rate); and ψ ij is a latent component for area i and time j involving one or more sets
of spatio-temporally autocorrelated random effects. Details of each model are given
below and also summarised in Table 9.1.

Models were compared using two goodness-of-fit measures, namely Deviance
Information Criterion (DIC) [16] and Watanabe-Akaike Information Criterion
(WAIC) [17], as well as by comparing the obtained estimates and their precision
for each area.

9.2.2.1 Spatio Temporal CAR Linear Model

This model is suitable for estimating which areas have increasing or decreasing
linear trends in the response over time. Here,

ψij = α1 + ui + (β + δi)
j − j

J

where u and δ denote normally distributed random effects that respectively describe
spatial variation and the interaction between spatial and temporal effects. Thus each
area i is allowed to have its own linear temporal trend, with a spatially varying
intercept and slope α1 + ui and (β + δi) respectively. The random effects are
assigned Leroux priors as follows:

(ui |u−i ,W ) ∼ N

(
ρint

∑I
k=1 ωikuk

ρint
∑I

k=1 ωik + 1 − ρint
,

τ 2
int

ρint
∑I

k=1 ωik + 1 − ρint

)
,

(δi |δ−i ,W ) ∼ N

(
ρslo

∑I
k=1 ωikδk

ρslo
∑I

k=1 ωik + 1 − ρslo
,

τ 2
slo

ρslo
∑I

k=1 ωik + 1 − ρslo

)
.

Here, the elements of the adjacency matrix W = (ωik) represent the closeness
between areas i and k, such that

ωik = 1 if i, k are adjacent, ωik = 0 otherwise;
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α1 is the mean log incidence over all areas; β is the mean linear temporal
trend over all areas; τ 2

int and τ 2
slo are precision terms associated respectively with

the intercept and slope of the regression; and ρint, ρslo are parameters of spatial
dependence with values in the interval [0,1]. The Bayesian model is completed
by specifying priors for the hyperparameters; in this study, the default priors in
the CARBayes package were evaluated and deemed to be suitable, i.e., τ 2

int, τ
2
slo ∼

Inverse-Gamma (1, 0.01); ρint, ρslo~ Uniform (0, 1); β~N(0, 1000).

9.2.2.2 Spatio Temporal CAR ANOVA Model

This model is suitable for estimating overall temporal trends and spatial patterns.
Here,

ψij = ui + δj + γij

where u denotes the spatial random effects over all time periods; δ denotes the
temporal random effect over all spatial units and γ denotes the space-time random
interaction. The priors for the first two of these terms are as follows:

(ui |u−i ,W ) ∼ N

(
ρS
∑I

k=1 ωikuk

ρS
∑I

k=1 ωik + 1 − ρS
,

τ 2
S

ρS
∑I

k=1 ωik + 1 − ρS

)
,

(
δj |δ−j ,D

) ∼ N

(
ρT
∑J

k=1 djkδk

ρT
∑J

k=1 djk + 1 − ρT
,

τ 2
T

ρT
∑J

k=1 djk + 1 − ρT

)
,

where the adjacency matrix D = (djk) represents the closeness between times j and
k, where k is the time immediately before or after j so that djk = 1 if |k-j| = 1 and
djk = 0 otherwise. An independent normal prior is assigned to the last term,

γij ∼ N
(

0, τ 2
γ

)
.

As above, default priors were used for the remaining parameters, so that

τ 2
S , τ

2
T , τ

2
γ ∼ Inverse-Gamma (1, 0.01) ,

ρS, ρT ∼ Uniform (0, 1) .
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9.2.2.3 Spatio Temporal CAR Separate Spatial Model

This model is suitable for estimating overall temporal trends and to what extent the
spatial variation has changed over time. Here,

ψij = uij + δj ,

(
uij |u−ij ,W

) ∼ N

(
ρS
∑I

k=1 ωikukj

ρS
∑I

k=1 ωik + 1 − ρS
,

τ 2
j

ρS
∑I

k=1 ωik + 1 − ρS

)
,

(
δj |δ−j ,D

) ∼ N

(
ρT
∑J

k=1 djkδk

ρT
∑J

k=1 djk + 1 − ρT
,

τ 2
T

ρT
∑J

k=1 djk + 1 − ρT

)
,

uj = (u1j, u2j, . . . uIj) are separate spatial effects at each time period j.
δ = ( δ1, δ2, . . . , δJ) are temporal random effects over all the spatial areas i.

τ 2
1 , . . . , τ

2
J , τ

2
T ∼ Inverse-Gamma (1, 0.01)

ρS, ρT ∼ Uniform (0, 1) .

9.2.2.4 Spatio Temporal CAR AR Model

This model is suitable for estimating the evolution of the spatial response surface
over time without forcing it to be the same for each time. It has a single level of
spatial dependence controlled by ρS, so that

ψij = uij ,

(
uj |uj−1,

) ∼ N
(
ρT uj−1, τ

2Q(W, ρS)
−1
)

j = 2, . . . .J,

u1 ∼ N
(

0, τ 2Q(W, ρS)
−1
)

τ 2 ∼ Inverse-Gamma (1, 0.01)

ρS, ρT ∼ Uniform (0, 1) .

9.2.2.5 Spatio Temporal CAR Adaptive Model

This model is an extension of spatio temporal CAR AR to allow for spatially
adaptive smoothing (localised spatial autocorrelation), noting that ST CAR AR
has only a single level of spatial dependence. This model is suitable when the
residual spatial autocorrelation in the response is consistent over time but has
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a localised structure. The model structure is the same as CAR AR but nonzero
(spatial) elements of neighbourhood matrix (W) can vary locally.

9.2.2.6 Spatio Temporal CAR Localised Model

This model is suitable for identifying clusters of areas that exhibit elevated values
of the response compared with their geographical and temporal neighbours. This
model structure is the same as CAR AR, but there is an additional cluster component
λ and random effects u are modelled with ρS = 1 (ICAR). This model is similar to
ST adaptive, in that both avoid the restrictive assumption that two areas that are
close together must have similar estimates. The differences between the ST CAR
localised and ST CAR adaptive models is that ST CAR localised captures any step-
changes in the response via the mean function, but ST CAR adaptive captures any
step changes via the correlation structure (via W). Here,

ψij = uij + λZij ,

(
uj |uj−1,

) ∼ N
(
ρT uj−1, τ 2Q(W)−1

)
j = 2, . . . .J,

u1 ∼ N
(

0, τ 2Q(W)−1
)

τ 2 ∼ Inverse-Gamma (1, 0.01)

ρT ∼ Uniform (0, 1) .

λZij is a piecewise constant clustering or intercept component,
λk ~ Uniform (λk-1, λk+1) for k = 1, 2, . . . , G

f
(
Zij |Zi,j−1

) =
exp

(
−δ

[(
Zij − Zi,j−1

)2 + (
Zij − G∗)2

])

∑G
r=1 exp

(
−δ

[(
r − Zi,j−1

)2 + (r − G∗)2
])

for j = 2, . . . ,J

f (Zi1) =
exp

(
−δ(Zi1 − G∗)2

)

∑G
r=1 exp

(−δ(r − G∗)2)

δ ~ Uniform (1, 10) where δ is the penalty parameter.
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9.2.3 Case Study

Annual dengue fever incidence data for Makassar, Indonesia (14 geographic areas)
during 2002–2015 were obtained from the Health Office of Makassar, South
Sulawesi Province. An ethics exemption to use these datasets was obtained from
QUT (exemption number: 1700000479) as it involves the use of existing collections
of data that contain only non-identifiable data about human beings.

9.3 Results

9.3.1 Dengue Data

The descriptive analysis and the plot of the number of Makassar dengue cases from
2002 to 2015 can be seen in Table 9.2 and Fig. 9.1 respectively.

All models were fit using the CARBayesST package version 2.5.1 [9] in R
version 3.3.3 or [15]. Posterior estimates and inferences were based on 100,000
MCMC samples collected after a burn in of 20,000 samples.

Crude risk estimates of dengue based on a raw SIR (Standardized incidence ratio)
model were calculated for each area and represent the risk of being diagnosed with

Table 9.2 Descriptive analysis of dengue cases from 2002 to 2015

Year Min 1st Qu Median Mean 3rd Qu Max Var

2002 14.00 44.00 86.00 104.80 98.00 419.00 10622.80
2003 11.00 40.75 61.00 82.43 73.75 251.00 5233.19
2004 10.00 20.50 33.50 45.50 56.25 178.00 1929.96
2005 11.00 26.00 49.50 63.71 71.00 236.00 3747.60
2006 19.00 27.75 55.50 60.86 65.75 209.00 2278.90
2007 4.00 15.25 27.50 32.64 47.25 80.00 550.09
2008 2.00 11.50 14.00 18.93 19.75 59.00 250.53
2009 3.00 9.00 15.00 18.29 20.00 68.00 286.06
2010 1.00 6.25 8.50 13.21 16.75 45.00 147.26
2011 1.00 2.00 3.00 6.07 9.25 16.00 29.46
2012 0.00 2.00 6.00 6.14 8.75 17.00 24.44
2013 4.00 9.00 13.50 18.93 27.75 52.00 210.22
2014 0.00 3.25 6.50 9.93 13.75 41.00 112.38
2015 2.00 4.75 8.00 10.14 14.00 26.00 50.59
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Fig. 9.1 The number of dengue cases in Makassar from 2002 to 2015

dengue fever and are depicted in Fig. 9.2. SIR is the ratio of the observed number
of disease cases (yij) to the expected number of cases (eij) [19].

SIRij = yij

eij

It is apparent that there is substantial variation in dengue incidence between
districts and over time.

The spatio-temporal CAR localised model with G = 2 had substantially better
model fit as demonstrated by the smallest DIC (Table 9.3) followed by the ST CAR
AR and ST CAR adaptive models. In contrast, the spatio-temporal CAR separate
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Fig. 9.2 Crude risk estimates (raw SIR model)

Table 9.3 DIC and WAIC for six models using dengue fever data for Makassar

Model DIC WAIC Time (seconds)

ST CAR linear 2012.91 2230.25 44.40
ST CAR ANOVA 9374.02 45374.63 54.70
ST CAR separate spatial 9499.17 Inf 71.80
ST CAR AR 1632.36 1884.21 33.00
ST CAR Adaptive 1923.21 2111.74 162.90
ST CAR localised, G = 2 1367.07 1927.39 117.10
ST CAR localised, G = 3 1438.99 1892.07 128.80

The smallest DIC, WAIC of models and time to run the models are shown in bold

spatial model had the largest DIC. These two models (ST CAR localised, and
ST CAR separate spatial) had very different estimates in certain regions and time
periods (Fig. 9.3).

Under the preferred spatio temporal localised model with G = 2 (meaning a
maximum of two clusters are allowed), most years had two clusters, but a few
years had only one cluster (Fig. 9.4 and Table 9.4). Figure 9.5 shows that the
overall Standardised Incidence ratios (SIR) have been decreasing over time for all
areas but, as discussed above, there was a lot of variation/fluctuation from year
to year.
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Fig. 9.3 SIR plot under the ST CAR localised model (corresponding to the smallest DIC), ST
separate spatial model (corresponding to the largest DIC) for every area, with associated 95%
credible intervals, and raw SIR

9.4 Discussion

Six different Bayesian spatio-temporal conditional autoregressive (ST CAR) models
were compared by applying them to dengue incidence data from Makassar, Indone-
sia. The different structures, similarities and dissimilarities of the models have been
summarized. The ST CAR localised model with G = 2 proposed by Lee and Lawson
[14] performed the best based on the DIC goodness of fit measure, followed by the
ST CAR AR and ST adaptive models. However, the ST CAR AR model proposed
by Rushworth et al. [12] performed best in terms of WAIC and the computing time
required. This is reasonable as the spatio-temporal random effect structure of the ST
CAR localised model is the same as the ST CAR AR model except for an additional
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Fig. 9.4 Localised maps obtained under the spatio-temporal localised model with G = 2 local
areas
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Table 9.4 Districts included in each group under the spatio-temporal localised model

Year Group 1 Group 2

2002 Ujung Tanah All districts, except Ujung Tanah
2003 Ujung Tanah All districts, except Ujung Tanah
2004 Ujung Tanah All districts, except Ujung Tanah
2005 Ujung Tanah All districts, except Ujung Tanah
2006 Manggala, Ujung Tanah All districts, except Manggala, Ujung

Tanah
2007 Manggala, Wajo, Ujung Tanah All districts, except Manggala, Ujung

Tanah
2008 Manggala, Ujung Tanah All districts, except Manggala, Ujung

Tanah
2009 Manggala, Ujung Tanah, Wajo,

Biringkanaya
All districts, except Manggala, Ujung
Tanah, Wajo and Biringkanaya

2010 All districts except Mamajang Mamajang
2011 All districts –
2012 All districts –
2013 All districts, except Manggala Manggala
2014 All districts –
2015 All districts –

Fig. 9.5 Relative Risk maps obtained under the spatio-temporal localised model with G = 2
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cluster component. In contrast, the ST CAR separate spatial model proposed by
Napier et al. [11] performed the worst in terms of both DIC and WAIC. This may
have been influenced by the small number of areas and time periods.

9.5 Conclusion

Bayesian CAR models can allow for different representations of spatial, temporal
and spatio-temporal patterns. Results from the case study showed that the choice of
model can have a large impact on goodness of fit, and that a spatio-temporal CAR
localised model with G = 2 spatial groups provided the best fit in terms of DIC.
Careful exploration of a range of models is important, especially when there are few
areas and few time periods. The study motivates future research to provide more
general insight into the behaviour of Bayesian spatio-temporal CAR models when
the disease rate and degrees of spatio-temporal autocorrelation varies over different
numbers of areas and time periods.
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Chapter 10
A Comparison of Bayesian Spatial
Models for Cancer Incidence at a Small
Area Level: Theory and Performance

Susanna Cramb, Earl Duncan, Peter Baade, and Kerrie L. Mengersen

Abstract The increase in Bayesian models available for disease mapping at a
small area level can pose challenges to the researcher: which one to use? Models
may assume a smooth spatial surface (termed global smoothing), or allow for
discontinuities between areas (termed local spatial smoothing). A range of global
and local Bayesian spatial models suitable for disease mapping over small areas
are examined, including the foundational and still most popular (global) Besag,
York and Mollié (BYM) model through to more recent proposals such as the
(local) Leroux scale mixture model. Models are applied to simulated data designed
to represent the diagnosed cases of (1) a rare and (2) a common cancer using
small-area geographical units in Australia. Key comparative criteria considered are
convergence, plausibility of estimates, model goodness-of-fit and computational
time. These simulations highlighted the dramatic impact of model choice on
posterior estimates. The BYM, Leroux and some local smoothing models performed
well in the sparse simulated dataset, while centroid-based smoothing models such
as geostatistical or P-spline models were less effective, suggesting they are unlikely
to succeed unless areas are of similar shape and size. Comparing results from
several different models is recommended, especially when analysing very sparse
data.
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10.1 Introduction

Bayesian spatial modelling continues to increase in popularity, offering a suite of
models with a range of strengths in various contexts. Modelling spatial effects
through a Bayesian hierarchical model has many advantages, such as being able
to include a range of functions to represent outcomes over space and time, as well
as the capacity to incorporate data characteristics such as rare outcomes, missing
information, misclassifications, measurement error and known biases [9, 47]. More-
over, direct probabilistic statements can be made, such as the probability that an area
has a higher disease risk than a comparison area [20].

A popular form for a Bayesian spatial model for disease mapping uses data
aggregated by area and specifies the likelihood as:

Yi ∼ Poisson
(
Eie

μi
)

for i = 1, . . . , N areas

where {Y1, . . . , YN } are count data for a relatively uncommon disease, making a
Poisson distribution appropriate. Other distributions are possible, including variants
of Poisson such as negative binomial. The expected counts (Ei) are commonly
defined using indirect standardisation to account for population size and age
structure. The modelled log standardised incidence ratio (SIR) μi , also called log-
relative risk, is often expressed as a regression equation and typically includes an
overall fixed effect (intercept, denoted α), covariate effects (β) where xi denotes a
vector of covariates relating to area i, and spatial random effect(s) Ri , as follows:

μi = α + xT
i β + Ri.

Much of this chapter shall discuss options for modelling the spatial random
effect(s), Ri . Prior distributions are then specified for each of the unknown
parameters:

α ∼ p (·|θα)
β ∼ p

(·|θβ
)

Ri ∼ p (·|θR) .

The spatial random effects are given a spatial prior, which may be assumed
to follow a conditional autoregressive (CAR) or alternative prior to enable spatial
correlation and smoothing [8, 10]. If the parameters θα , θβ , or θR are unknown,
then the hyperpriors represent an additional stage of the hierarchy.

Many different Bayesian spatial models have been proposed, most of which vary
the representation of the spatial prior. Understanding the theoretical assumptions
and appropriateness of different models is important. It is also necessary to consider
how models perform in different circumstances. Therefore, this chapter discusses
the theoretical underpinnings of key spatial models. Where possible and pertinent,
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these models were applied to typical cancer incidence mapping scenarios obtained
by simulating rare and common cancer incidence data across Australia. This
nation has more than 2100 small areas, with large differences in population size,
demographic structure, land area size and shape.

10.2 Bayesian Spatial Models

Fourteen Bayesian spatial models used in disease mapping are considered. These
can be divided into two broad types, namely ‘global’ spatial smoothing models
that have a common spatial correlation term across the region, and ‘local’ spatial
smoothing models that allow for differential spatial correlation depending on
neighbourhood characteristics.

10.2.1 Global Spatial Smoothing

Global spatial smoothing means that the same correlation parameters are applied
consistently across the entire region [26]. Although the global CAR-based models
are relatively easy to implement in a range of software, disadvantages of global
models include the potential to obscure genuine deviations in the underlying
spatial patterns (i.e. to over-smooth), as discontinuities between adjacent areas are
smoothed over.

10.2.1.1 Intrinsic CAR and BYM Models

The most commonly used prior for enabling spatial correlation within a Bayesian
model is the intrinsic CAR distribution. This approach allows for smoothing of
estimates over neighbouring areas, but it assumes a common variance for the
smoothing term (and therefore a smooth spatial trend) over the whole region.

The intrinsic CAR (ICAR) model specifies the following set of conditional
distributions for the spatial random effect parameter:

Ri = Si

Si |s\i ∼ N
(∑

j wij sj∑
j wij

,
σ 2
s∑

j wij

)

or in matrix notation

Si |s\i ∼ N
({

D−1Ws
}

i
, σ 2

s

{
D−1

}

ii

)
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where wij is the element of a spatial weights matrix W corresponding to row i and

column j [6, 10], and D is a diagonal matrix with elements diag
{∑

j wij

}
. The

term W determines the spatial proximity between the random effects, and it is most
commonly defined as a binary, first-order, adjacency matrix, whereby

wij =
{

1 if areas i and j are adjacent

0 otherwise.
(10.1)

This model implies that the conditional expectation of Si is equal to the mean of
the random effects at neighbouring locations.

The Si can be regarded as structured spatial random effects. If Ri = Si + Ui ,
so that unstructured spatial random effects Ui ∼ N (

0, σ 2
U

)
are also included, the

resulting model is referred to as the convolution model, or the BYM model in honour
of Besag et al. [8]. However, the two separate random effects components cannot be
individually identified—only their sum is identifiable [15]. Note that for all CAR-
based models, the strength of the partial autocorrelation depends on the number
of neighbouring areas rather than on any underlying relationship [27]. The BYM
remains the most popular approach to incorporating spatial smoothing, in part due
to its computational synergy with fairly standard MCMC approaches [47] and ease
of implementation.

10.2.1.2 Proper CAR Model

The full conditionals for the ICAR prior are proper, but the joint distribution is
improper since the precision matrix is singular [7]. The impropriety of the ICAR
prior can be overcome by redefining the precision matrix

T = 1

σ 2
s

(D − W)

to

T = 1

σ 2
s

(D − φW)

such that the conditional distributions for the spatial random effect are:

Si |s\i ∼ N
(
φ
∑

j wij sj∑
j wij

,
σ 2
s∑

j wij

)

with the constraint |φ| < 1, where φ represents the expected proportional ‘reaction’
of Si to

∑
j wij sj /

∑
j wij [5]. This ensures that the covariance matrix T−1 is

positive definite and S has a proper joint distribution [19]. The proper CAR prior
may have certain disadvantages, including potentially limiting the breadth of the
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posterior spatial pattern. Moreover, φ will likely need to be very close to 1 for there
to be a reasonable amount of spatial association [5].

10.2.1.3 Leroux CAR Model

Another variant of the BYM model was proposed by Leroux et al. [29],

Si |s\i ∼ N
(

ρ
∑

j wij sj

ρ
∑

j wij + 1 − ρ
,

σ 2
s

ρ
∑

j wij + 1 − ρ

)

which only requires a single set of random effects [24]. This avoids the
difficulties in identifiability, and also the selection of hyperpriors (given that in the
BYM model, the Si variance are conditional on neighbouring areas, while the Ui

have a marginal variance term) [41].
The precision matrix can be expressed as

T = 1

σ 2
s

[ρ (D − W) + (1 − ρ)] .

This mixture representation consists of correlated smoothing of the neighbouring
random effects (weighted by ρ) as well as uncorrelated smoothing to a global mean
of zero (weighted by (1 − ρ)) [26]. Thus Si has a conditional expectation based
on a weighted average of both the independent random effects and the spatially
structured random effects. The ICAR prior is therefore a limiting case of both the
proper CAR and Leroux CAR models when ρ is set to 1. The spatial autocorrelation
parameter ρ is typically given either a continuous [19, 25] or a discrete [24] uniform
prior

ρ ∼ Uniform (0, 1) ,

where the discrete case offers gains in computational efficiency [24], although other
priors have been suggested such as a diffuse Gaussian prior on the logit scale [27].

10.2.1.4 Geostatistical Model

Here, the residual spatial structure is modelled as a Gaussian process using a
geostatistical design [11]. Because this model incorporates distance, counts are
assumed to be located in the centroid of an area.

Ri ∼ N (
Si, σ

2
)

Si = exp
(−(λdij )

k
)
, λ > 0



250 S. Cramb et al.

where λ controls the rate of decay, k is the “degree of spatial smoothing”, and dij
is the distance between points (e.g. centroids of areas) i and j [11]. This expression
is the exponential decay function with the addition of the power k. Rather than
fix decay parameter λ a priori, a hyperprior is specified as a fourth stage of the
hierarchy:

λ ∼ Uniform (0.1, 6) .

The justification for the bounds 0.1 and 6 were based on the minimum and
maximum separating distance in decimal degrees between area centroids to ensure
that the spatial correlation was able to be high at the minimum distance, and
likely to be low at the maximum distance. This choice is also able to give near
zero correlation for distances within the study region, which is vital to avoid non-
identifiability of the mean and correlation parameters [10].

Alternative functions are possible, including the disc model [40] (a linear
decrease with increasing distance, where two discs of common radius are centred
on centroids, and the correlation is proportional to the disc intersection area), or
combining two parametric functions to obtain different shapes of decrease, such
as the Matern class [10]. Note that often limited information is available to guide
the choice of functional form, or correlation parameters, especially as complexity
increases [10]. Because the covariance matrix is inverted at each iteration, these
models can be computationally intensive and slow to run in a naïve algorithm,
although this can be mitigated to some extent with the use of sparse matrix algebra.

10.2.1.5 Global Spline Models

The spline model also assumes that the cases are all located at the centroid of each
area [17].

There are two main methods: smoothing splines and P-splines [32]. Smoothing
splines are penalised splines which have knots on all data points. P-splines allow
for a smaller number of knots, and are commonly formulated as a penalised spline
regression under a ‘difference penalty’ based on the coefficients of adjacent B-spline
bases or other spline bases [32].

The correlation between areas i and j can be modelled by a two-dimensional
smooth surface [17]. First, define the longitude and latitude pairs representing the
centroid of each area, denoted (c1i, c2i ). Then

Ri = f (c1i , c2i )

where the smooth function f (·) is expressed as

f (c1i, c2i ) = θ1B1(c1i, c2i ) + · · · + θkBk(c1i, c2i )
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which is estimated using P-splines with B-spline bases B1, . . . , Bk . The terms
θ1, . . . , θk are unknown coefficients which are penalised to control for “wiggliness”
through a penalty matrix, and k depends on the number of knots and the degree of
the B-spline bases.

Define c1 = (c11, . . . , c1N)
T and c2 = (c21, . . . , c2N)

T and univariate B-
spline bases B1 = {

B11(c1), . . . , B1k1(c1)
}

and B2 = {
B21(c2), . . . , B2k2(c2)

}
.

The bivariate B-spline basis is then constructed as the row-wise Kronecker product
(denoted by �) of the marginal B-spline bases:

B = B2 � B1

=
(

B2 ⊗ 1T
k1

)
�
(

1T
k1

⊗ B1

)
.

The basis B is of dimension N × k where k = k1k2, the symbols ⊗ and �
represent the Kronecker product and “element-wise” matrix product respectively,
and 1k1 and 1k2 are column vectors of ones of length k1 and k2 [17].

Overall this model provides a relatively smooth surface, as the covariance
structure is impacted by long distance effects that influence the smoothing. This
is in contrast to the covariance structure of the CAR model where an area’s estimate
depends on the mean of its neighbours [17].

The formulation of the P-spline model using the row-wise Kronecker product, or
tensor product, is better suited to data which lie on a regular grid, or at least have
similar distances between the centroids.

An alternative formulation [42] is to define the B-spline bases in terms of the
distances,

zik = exp

(
−dik

�

)(
1 + dik

�

)

where dik is the distance between the i th area and the kth knot, and � is a constant
used to normalise the distances so that the values of B are more evenly spread
between the lower and upper limits. This version of the P-spline uses a radial basis
function which achieves rotational invariance [42].

10.2.2 Local Spatial Smoothing

In contrast to the global smoothing models, local smoothing is focused on allowing
nearby areas to potentially have different amounts of spatial smoothing. Many of
these are based on modifying the CAR prior to allow for discontinuous surfaces.
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10.2.2.1 CAR Dissimilarity Models

Lee and Mitchell [26] based this model on the Leroux CAR prior, with ρ set to
be 0.99 to ensure strong global spatial smoothing which could then be altered
locally through estimating

{
wij |i ∼ j

}
. Here, the elements in W are modelled so

the partial autocorrelations can be reduced between certain adjacent random effects.
This approach can have binary or non-binary elements in W.

The similarity between areas is determined by including non-negative dissimilar-
ity metrics in the model, i.e. zij = (zij1, . . . , zijq ) where zijk = |zik − zjk|/σk and
σk is the standard deviation of |zik − zjk| over all pairs of contiguous areas.

The set of wij are determined using regression parameters α = (
α1, . . . , αq

)
.

These can be based on social or physical factors. Physical boundaries (e.g.
river/railway line, or the distance between centroids) can be used if the aim is to
explain the spatial pattern in the response and include covariates in the model.
Alternatively, covariate information can be used to construct the dissimilarity
metrics if the aim is to identify the locations of any boundaries [25].

Ri = Si

Si |s\i ∼ N
(

0.99
∑

j wij (α)sj+0.01μ0

0.99
∑

j wij (α)+0.01 ,
σ 2
s

0.99
∑

j wij (α)+0.01

)
.

The default binary formulation is:

wij (α) =
{

1 if exp
(−∑q

k=1 zijkαk
) ≥ 0.5 and i ∼ j

0 otherwise

αk ∼ Uniform (0,Mk) for k = 1, . . . , q

where Mk is fixed so that a maximum of 50% of borders could be defined as
boundaries [26]. The non-binary formulation (which does not allow identification
of hard boundaries, but does allow for localised smoothing) is:

wij (α) = exp
(−∑q

k=1 zijkαk
)

αk ∼ Uniform (0, 50) for k = 1, . . . , q.

10.2.2.2 Localised Autocorrelation

The spatially smooth random effects in this model are augmented with a piecewise
constant intercept (cluster model). This allows for large jumps in the risk surface
between adjacent areas if they are in different clusters. The approach by Lee and
Sarran [28] partitions the I areas into a maximum of G clusters, each with their
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own intercept term (λ1, . . . , λG). The model is thus given by:

Ri = Si + λzi

Si |s\i ∼ N
(∑

j wij sj∑
j wij

,
σ 2
s∑

j wij

)

λg ∼ Uniform
(
λg−1, λg+1

)
for g = 1, . . . ,G

f (Zi) = exp
(−δ(Zi−G∗)2)

∑G
r=1 exp(−δ(r−G∗)2)

δ ∼ Uniform(1,M)

where f (Zi) denotes a shrinkage prior on Zi which shrinks extreme values towards
the middle intercept value. Label switching is prevented by ordering the cluster
means (λ1, . . . , λG) so that λ1 < λ2 < · · · < λG. The penalty term δ(Zi − G∗)2

where G∗ = (G + 1)/2 means that if G is odd then each data point will be shrunk
towards a single intercept λG∗ , but if G is even, there may be two different intercept
terms used even if there is a spatially smooth residual structure. Lee and Sarran
[28] thus recommend setting G to be a small odd number, such as 3 or 5. Area i

is assigned to one of the G intercepts by Zi ∈ {1, . . . ,G}, and there is no spatial
smoothing imposed on the indicator vector Z. The clustering is purely non-spatial,
and it is the CAR prior on the Si term that accounts for spatial autocorrelation [28].

10.2.2.3 Locally Adaptive Model

The locally adaptive model takes a similar approach to the above dissimilarity
model, except that here the boundaries are not identified by the use of additional
information and the modelled wij are binary only. Lee and Mitchell [27] again based
this on the Leroux CAR model:

Si |s\i ∼ N
(

ρ
∑

j wij sj

ρ
∑

j wij + 1 − ρ
,

σ 2
s

ρ
∑

j wij + 1 − ρ

)
.

Here ρ can be estimated in the model, or fixed at a specified value. (Lee and
Mitchell [27] recommend 0.99.)

The spatial weights matrix starts out as the binary, first-order, adjacency matrix
given by Eq. (10.1) and is subsequently updated at each iteration which allows the
weights corresponding to neighbours to be estimated as either 1 or 0 (with wij

fixed at zero for non-neighbouring areas). Because only weights corresponding to
neighbouring areas are estimated, this approach should be more computationally
feasible than areal wombling [30] where all values in W are estimated.

The matrix W is estimated as follows. For adjacent areas i and j : if the marginal
95% credible intervals (CIs) of si and sj overlap, then set wij = 1; else set wij = 0.
It is therefore not a ‘fully’ Bayesian method of estimation for these terms, as they are
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not considered to be random variates. For further details, refer to Lee and Mitchell
[27], who implemented this using INLA.

10.2.2.4 Weighted Sum of Spatial Priors

The BYM model with its spatially structured component Si and its unstructured
spatial component Ui was extended by Lawson and Clark [23] to be able to
incorporate discontinuities:

Ri = piSi + (1 − pi)Zi + Ui. (10.2)

The Z component models abrupt discontinuities between areas. Although a range
of options is possible, Lawson and Clark [23] based the prior for this parameter on
the total absolute difference in risk between neighbouring areas, i.e.

π (Z1, . . . , ZN) ∝ 1√
λ

exp

⎛

⎝− 1

λ

∑

i∼j

|Zi − Zj |
⎞

⎠

where λ acts as a constraining term.
Note that if pi = 1 in Eq. (10.2), then the model reverts to the BYM model.

Conversely, if pi = 0, then the model is entirely discontinuous.

10.2.2.5 Leroux Scale Mixture Model

Using a scale mixture model within a Leroux prior also enables detection of
abrupt changes between areas, with the advantage over the above approaches of
incorporating non-normality (heavy tailed distributions). This was proposed by
Congdon [12] as follows:

Si |s\i ∼ N
⎛

⎝ ρ
∑

j wij sj

ρ
∑

j wij + 1 − ρ
,

σ 2
s

κi

[
ρ
∑

j wij + 1 − ρ
]

⎞

⎠ .

If ρ = 0, this reduces to an unstructured iid scale mixture Student-t density,
which is a heavy-tailed distribution. Small values of κj (<1) will indicate areas
differ from their neighbours and result in less smoothing between neighbouring
areas. The scale mixture is implemented by κi ∼ Gam(0.5ν, 0.5ν), where ν is a
hyperparameter.
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The precision matrix has the following diagonal terms [12]:

{T}ii = 1

σ 2
s

κi

⎡

⎣(1 − ρ) + ρ
∑

j �=i

wij

⎤

⎦

and off-diagonal terms:

{T}ij = 1

σ 2
s

ρκiκj I(i ∼ j).

10.2.2.6 Skew-Elliptical Areal Spatial Model

Another approach that focused on incorporating skewness was introduced by
Nathoo and Ghosh [36]. Here

Ri = η−0.5
i (δ|Zi| + Si)

where δ|Zi | is the skewing component where Zi is a set of skewing variables
each independently drawn from a standard normal distribution, η provides the scale
mixing and Si is from the CAR model, i.e.

Si |s\i ∼ N
(
κ

∑
j wij sj∑
j wij

,
σ 2
s∑

j wij

)

where κ is a spatial smoothing parameter (note that if κ is set to 0 then the
distribution corresponds to uncorrelated skew-t random effects) and other terms are
defined as before.

Two versions were proposed by Nathoo and Ghosh [36]. The first aims to ensure
each Ri has a skew-elliptical distribution, with the marginal distribution for each
spatial effect belonging to the skew-t family of distributions.

The second is a semiparametric version that uses an approximation to a Dirichlet
process to allow for data-driven departures from the parametric version. This
accommodates uncertainty in the mixing structure, and gives greater flexibility in
the tail behaviour of marginal distributions [36].

10.2.2.7 Hidden Potts Model

In contrast to the above approaches, this model is based on a hidden Markov field,
so spatial correlation occurs in an additional latent hierarchy of the model [47]. This
approach was proposed by Green and Richardson [18] and assigns each area to one
of several risk categories. The spatial random effect is modelled on the log scale,
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as a K-component mixture model, where each component represents a different
risk category, and the allocation of each area to a component follows a spatially
correlated process. The number of components K is considered unknown and is
estimated by the model.

Ri = log(Szi )

Sk ∼ Gamma(a, b) for k = 1, . . . ,K

K ∼ Uniform(1,Kmax).

The Potts model is proposed as the allocation model,

p(z|ψ,K) = exp(ψU(z) − δk(ψ))

where ψ > 0 is the interaction parameter to be estimated and U(z) = ∑
i∼j I(zi =

zj ) is the number of like labelled pairs of neighbouring areas. This model allows for
discontinuities between areas in different risk categories and also for the amount of
spatial correlation to vary by risk category. However, it does require careful MCMC
implementation due to having an unknown number of risk categories and unknown
area allocation to these categories. It is also more often implemented in high-
dimensional data rather than disease mapping, as its greater flexibility generally
has more advantages as data complexity increases [47].

10.2.2.8 Spatial Partition Model

Closely related to the above Hidden Potts model are the spatial partition models
[14, 21]. These also have K non-overlapping clusters of areas, each with a constant
relative risk, and K is unknown [10]. The key differences are in defining the
clusters and the hyperprior specifications [10]. Specifically, the spatial partition
model assigns up to K areas as cluster centres, which are allocated with a uniform
prior probability, and the number of clusters is chosen according to the distribution
p(K = k) ∝ (1 − c)k where c ∈ [0, 1) is fixed a priori. Smaller values of
c makes this prior less informative, with the limiting case c = 0 yielding a
uniform distribution. The remaining N − K areas are then assigned to their nearest
cluster, according to the minimal number of boundaries that have to be crossed.
Both this model and the above hidden Potts model have been criticised for forcing
discontinuities into a surface, and for assuming constant relative risk within a cluster
[23].

10.2.2.9 Local Spline Model

An extension to the global spline models described in Sect. 10.2.1 that results in
a less smooth surface is the incorporation of unstructured random effects as in the
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penalised random individual dispersion effects (PRIDE) model, originally proposed
by Perperoglou and Eilers [37]. Here

Ri = f (c1i , c2i ) + γi

where γi is an area-specific random effect, whose vector follows a multivariate
normal distribution [17]. This means that the covariance matrix captures the
unstructured heterogeneity by containing an identity matrix multiplied by a variance
component, in addition to the eigenvalues from the P-spline model component [17].

10.3 Case Study

10.3.1 Data

Since the dissemination of actual cancer data is restricted due to privacy and
confidentiality requirements of the data custodians, simulated data that reflected
the general distributions of actual data were generated to enable data sharing and
reproduction of the presented results (see contact the authors for data and model
code). Two datasets were generated that reflected the incidence of cancer types with
a strong socioeconomic gradient: one with low total counts per geographical area
over ten years (median of 2, range 0–19), considered a rare cancer, and one with
higher counts over 10 years (median 25 cases, range 0–163), considered a common
cancer. The focus on socioeconomic gradients meant we expected neighbouring
areas having different socioeconomic levels would have different incidence rates.

The areas used were statistical areas 2 (SA2s) based on the 2011 Australian
Statistical Geography Standard (ASGS) boundaries [4]. After excluding some areas
with no/nominal resident populations, the number of areas was 2153. The median
population of the included SA2s was 9055 (range: 3–50,251). Land area size varied
from 0.8 to 520,000 km2, with a median of 15.6 km2.

10.3.2 Model Selection

Of the fourteen models introduced in Sect. 10.2 and described in Table 10.1, five
were excluded from the application. Two of these were on theoretical grounds: the
localised P-spline and the proper CAR models. The localised P-spline model was
not investigated because implementing the P-spline had many challenges within
the Australian context of vastly differing area sizes. The disadvantages of the
proper CAR formulation such as the potentially limited breadth of estimates have
limited appeal for spatial modelling [5]. We attempted to run a Hidden Potts model,
spatial partition model and skew-elliptical areal spatial model, but were unable to
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successfully achieve this due to the computational complexity of the models, so
they are also excluded from this section. The skew-elliptical model was unable to
compile in WinBUGS [31], while the multidimensionality required for the spatial
partition model and Hidden Potts model became too unwieldy.

10.3.3 Model Variants

Of the nine models successfully implemented, multiple variants were considered
for the global P-spline model, CAR dissimilarity models, localised autocorrelation
models, and the locally adaptive models, and these are detailed below. Specifications
for the geostatistical model are also documented. These resulted in a total of 13
versions of models applied to the simulated data (Table 10.1).

Table 10.1 Software used for models applied to simulated data

Models investigated Authors Software used

Global spatial smoothing

BYM (Intrinsic CAR) Besag et al. [8] R (CARBayes)

Proper CAR Besag [6] –

Leroux Leroux et al. [29] R (CARBayes)

Geostatistical Clements et al. [11] JAGS

P-spline (tensor) Lang and Brezger [22] JAGS

P-spline (radial) Ruppert et al. [42] JAGS

Local spatial smoothing

CAR dissimilarity model
(binary)

Lee and Mitchell [26] R (CARBayes)

CAR dissimilarity model
(non-binary)

Lee and Mitchell [26] R (CARBayes)

Localised autocorrelation
(G = 3)

Lee and Sarran [28] R (CARBayes)

Localised autocorrelation
(G = 5)

Lee and Sarran [28] R (CARBayes)

Locally adaptive model (ρ
estimated)

Lee and Mitchell [27] R (INLA)

Locally adaptive model
(ρ = 0.99)

Lee and Mitchell [27] R (INLA)

Weighted sum of spatial
priors

Lawson and Clark [23] WinBUGS

Leroux scale mixture Congdon [12] WinBUGS

Skew-elliptical areal spatial Nathoo and Ghosh [36] –

Hidden Potts Green and Richardson [18] –

Spatial partition Denison and Holmes [14], Knorr-Held and
Raßer [21]

–

Local spline Goicoa et al. [17], Perperoglou and Eilers [37] –
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10.3.3.1 Global P-spline Model

Two formulations of the global P-spline model were implemented: the first uses a
tensor product (refer to Sect. 10.2.1.5 for a definition) to define the basis, and the
second uses a radial basis based on distances. No further modifications were made
to the tensor product version.

The radial P-spline model had the knots evenly spaced at intervals of 5 degrees
of latitude and longitude, as shown in Fig. 10.1. Knots which were too distant from
the centroids of SA2 areas were subsequently dropped. A total of 47 knots were
retained for modelling. Based on these knots, � was set to 500.

Fig. 10.1 Location of knots (crosses) in relation to SA2 centroids (dots) for the P-spline radial
model
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10.3.3.2 CAR Dissimilarity Model

The CAR dissimilarity model can also be applied in a variety of forms. As
discussed in Sect. 10.2.2.1, the weighting matrix can be binary or non-binary,
and the dissimilarity measure can be based on distance, geographical features
(such as railways or mountains), or covariate information. Here we examine
both binary and non-binary forms of this model based on the Socioeconomic
Indexes for Areas (SEIFA) dissimilarity. This gives a continuous score for each
area which is designated based on a range of socioeconomic measures, including
house ownership, car ownership, employment and internet access. Several indices
are available, and we used the Index of Relative Socioeconomic Disadvantage.
Further details on SEIFA are available in Australian Bureau of Statistics [ABS]
[3].

10.3.3.3 Localised Autocorrelation Models

Two variants of this model were assessed based on the value of G, the maximum
number of clusters, being set to 3 or 5. See Sect. 10.2.2.2 for discussion of these
choices.

10.3.3.4 Locally Adaptive Models

Two variants of this model were assessed based on the value of ρ, the spatial
autocorrelation parameter, one being set to 0.99 (as recommended by Lee and
Mitchell [27]) and the other allowed to vary between 0 and 1. The aim of fixing
the value of ρ close to one is to ensure there is spatial smoothing occurring when
wij > 0. Note that if ρ = 0 then wij vanishes from the model and cannot be used to
determine if discontinuities are present. Setting ρ to 1 is not ideal, as the precision
matrix would become singular.

10.3.3.5 Geostatistical Model

The geostatistical model had two adjustments made to provide a better fit. First,
the priors for λ and k were changed according to the possible values of spatial
correlation observed given different combinations of λ, k, and distances dij . This
exploratory analysis suggested using

λ ∼ Uniform(0.01, 1)

k ∼ Uniform(0.1, 20).
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To allow for further flexibility, λ and k were replaced by one of {λ1, . . . , λ5}
and {k1, . . . , k5} respectively according to the remoteness of the area (major
city, inner regional, outer regional, remote, and very remote) to allow the degree
of smoothing to vary between the five levels of remoteness. Second, to make
this model computationally feasible, the distance matrix {d}ij was modified by
imposing a remoteness-specific radius of influence {r1, . . . , r5} on each area,
such that areas beyond this threshold are not considered neighbours. These radii
were {50, 100, 200, 400, 800}km respectively. This induces a Markov random field
(MRF) structure which should have only a negligible effect on parameter estimation
while greatly increasing computational efficiency. Some remote and very remote
areas are relatively close to major city and inner regional areas, which can lead to
some areas having more than 1000 neighbouring SA2s, thereby drastically reducing
any computational gains. Therefore, the imposed MRF was further modified to
exclude major city areas as neighbours of remote areas, and to exclude both major
city and inner regional areas as neighbours of very remote areas. This is also sensible
given the differences in cancer incidence and underlying influences between these
areas [13]. This was achieved by setting the distances to these excluded areas to
infinity. The result of these adjustments lead to

{S}ij =
⎧
⎨

⎩
exp

(
−(λzi dij )

kzi

)
if dij ≤ rzi

0 if dij > rzi

Si = f (S) = 1
Ni

∑Nr

j=1 {S}ij
where Ni is the number of areas within a radius of rzi units from the centroid of area
i (including area i), Nr = max

i
{Ni}, and zi represents the degree of remoteness for

area i, where zi = 1 corresponds to an area in a major city.

10.3.4 Statistical Software

Code for implementing the models in freely available software (Table 10.1) is
available on request, as are the data sets.

The main software used to implement the statistical models were WinBUGS [31]
and JAGS [38], which were run via R [39] using the packagesR2WinBUGS [44] and
R2jags [45] respectively, and also the R package CARBayes [25]. R-INLA [33]
was also used for one model.
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10.3.5 Model Comparison

Models were compared using several criteria, which are described below. The
posterior SIR was calculated as exp(μi) = exp(α + Ri), as no covariates were
included in these models. The median, lower and upper bounds of the 80% CIs
were calculated as the 50th, 10th and 90th percentiles of the posterior, respectively.

10.3.5.1 Convergence

Convergence was predominately based on calculating the Geweke convergence
diagnostic [16] for each area’s posterior SIR. A p-value for the test statistic below
0.01 was interpreted as suggestive evidence of non-convergence for that area.
The trace and density plots for a subsample of areas were also examined for
convergence.

10.3.5.2 Plausibility of Estimates

To determine how plausible the posterior SIR estimates were, the CI width was
visually inspected, with unreasonably large CIs (with many of the 80% CIs
spanning ± 5000% or more of the median estimate) providing evidence the estimate
was not well-defined; while very precise estimates (the majority within ± 4%)
were evidence that uncertainty was not appropriately included. The magnitude of
smoothing of the median posterior SIRs in comparison to the raw SIRs was also
visually examined. A smoothed SIR which was very similar to the raw SIR was
suggestive of under-smoothing, particularly in areas with small populations.

10.3.5.3 Model Goodness-of-Fit

Three model goodness-of-fit measures were considered: Deviance information
criterion (DIC) [43], Watanabe-Akaike information criterion (WAIC) [48] and
Moran’s I on the residuals [35].

DIC and WAIC are both useful for comparing the predictive accuracy between
models. Although DIC is a commonly used measure to compare Bayesian models,
WAIC has several advantages over DIC, including that it closely approximates
Bayesian cross-validation, it uses the entire posterior distribution and it is invariant
to parameterisation [46]. For both these measures, smaller values indicate a better
fitting model.

Moran’s I was applied to the model residuals to determine if spatial autocorrela-
tion was present after fitting the models. This measure can be quite sensitive to the
spatial weights matrix used to define the spatial dependencies between areas, and
while a range of spatial weights matrices (inverse-distance, third-order neighbours
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etc) were considered, we used a matrix based on first-order neighbours. As values
of Moran’s I close to 0 indicate very low or no residual spatial autocorrelation,
here we consider values above 0.2 to be suggestive of some positive spatial
autocorrelation. The closer Moran’s I is to zero, the better the model accounts for
spatial autocorrelation [2].

10.3.5.4 Computational Time

The microbenchmark R package [34] was used to monitor computational time
to run each model. The models were run on two different computers. However, the
specifications of these computers were similar and any differences should have a
negligible influence on computation time.

10.4 Results and Discussion

Substantive differences in the posterior estimates were observed between the 13
model variants applied, especially for the rare cancer (Table 10.2, Figs. 10.2, 10.3,
10.4, and 10.5). Depending on the model chosen, the modelled SIR estimates for the
same geographical area could range from well below to well above the Australian
average (Figs. 10.3 and 10.5).

While small numbers in geographical areas require smoothing, it remains
possible that the neighbouring areas may have genuinely different incidence rates.
These differences would be obscured during the smoothing process. Detecting these
differences is problematic, and even many of the models designed to allow for local
variation gave results similar to the BYM and Leroux models (Figs. 10.2, 10.3,
10.4, and 10.5), suggesting there was insufficient statistical power to adequately
detect local differences. Of the models that obtained greater variation in the
median SIR estimates between areas and less smoothing, there was often excessive
uncertainty around these estimates, such as the localised autocorrelation model
results (Figs. 10.2 and 10.4).

The number of area-specific SIR estimates that had evidence of non-convergence
(based on Geweke p-value < 0.01) did vary between models and with the extent
of data sparseness. In many cases, very wide CIs were symptomatic of non-
convergence. For instance, the localised autocorrelation (G = 3) model for the rare
cancer had 86% of area-specific SIRs with significant Geweke p-values, suggesting
lack of convergence, and this model had among the widest CIs (Table 10.2). In
contrast, models which had implausibly narrow CIs generally had very few/no areas
with small Geweke p-values. However, overly narrow CIs are equally problematic
as they over-exaggerate confidence in the plausibility of the estimates, which may
actually be over- or under-smoothed.

In general, especially as data sparsity increased, our application of these models
suggested that global models with more smoothing tended to have ‘well-behaved’,
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Fig. 10.2 Graphs of posterior SIR results by model, rare cancer. Note: Axes are consistent.
Column 1 shows the 80% CI (shaded as per the tones on the maps in Fig. 10.3), the black line
is the median SIR (in ascending order), the dots are the raw SIRs and the horizontal line at 1
represents the national average. For column 2, the 80% CIs are the BYM model, and the SA2s are
ordered according to the BYM median SIR. The black line is the median estimate for the model
named
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Fig. 10.3 Rare cancer median posterior SIR mapped by model. (a) Raw (observed/expected),
(b) BYM, (c) Leroux, (d) Geostatistical, (e) P-spline (tensor), (f) P-spline (radial), (g) CAR
dissimilarity (binary), (h) CAR dissimilarity (non-binary), (i) Localised autocorrelation (G = 3),
(j) Localised autocorrelation (G = 5), (k) Locally adaptive (ρ estimated), (l) Locally adaptive
(ρ = 0.99), (m) Weighted sum of spatial priors, (n) Leroux scale mixture
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Fig. 10.4 Graphs of posterior SIR results by model, common cancer. Note: Axes are consistent.
Column 1 shows the 80% CI (shaded as per the tones on the maps in Fig. 10.5), the black line is the
median SIR (in ascending order), the dots are the raw SIRs and the horizontal line at 1 represents
the national average. For column 2, the 80% CIs are the BYM model, and the SA2s are ordered
according to the BYM median SIR. The black line is the median estimate for the model named
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Fig. 10.5 Common cancer median posterior SIR mapped by model. (a) Raw (observed/expected),
(b) BYM, (c) Leroux, (d) Geostatistical, (e) P-spline (tensor), (f) P-spline (radial), (g) CAR
dissimilarity (binary), (h) CAR dissimilarity (non-binary), (i) Localised autocorrelation (G = 3),
(j) Localised autocorrelation (G = 5), (k) Locally adaptive (ρ estimated), (l) Locally adaptive
(ρ = 0.99), (m) Weighted sum of spatial priors, (n) Leroux scale mixture
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reliable estimates, while local models tended to struggle in producing plausible
estimates (Figs. 10.2 and 10.4). The estimates for the binary CAR dissimilarity
model (based on socioeconomic differences) in our study were often unreliable, and
this is likely due to its tendency to remove too many neighbours. This is expected to
also apply to other formulations, such as distance-based models.

The DIC and WAIC (Table 10.2) measures of goodness of model fit were gen-
erally in consensus for a given cancer type, apart from the localised autocorrelation
models which had among the lowest DIC, but highest WAIC. Some models fit
the data well for one type of simulated data, but not the other. For example, the
geostatistical and P-spline models fit the common cancer quite well, but resulted in
poor to average model fit for the rare cancer.

Moran’s I statistic (Table 10.2) generally indicated that the residual spatial
autocorrelation is quite small. The only models with noticeable remaining corre-
lation were the centroid based geostatistical and P-spline models, and this apparent
correlation may result from using a weights matrix based on first-order neighbours
when calculating Moran’s I.

Computational time varied substantially across the models, with times for the
rare cancer ranging from 5 minutes (Leroux model in CARBayes) to over 20 hours
(geostatistical model in JAGS). Models able to be run in CARBayeswere generally
very fast, while models run in JAGS or WinBUGS took longer (approximately
between 0.5 and 2.5 hours, excluding the geostatistical model). Of note though,
are the implications these varying computing times may have when many models
need to be run, such as considering multiple cancer types, or repeating models to test
different hyperprior specifications. While increasing computing specifications may
reduce these times, it is still an important consideration when choosing between two
(or more) otherwise well performing models.

It is a tenet of statistical research that the choice of model depends on the data
characteristics and the aims of the analysis. However, when data are sparse and there
is extreme variation in area size, such as are consistent with our simulated data, we
found that the geostatistical or P-spline models generally had poor performance. The
geostatistical model is prohibitively slow for these type of data, and when combined
with the unpredictable model fit, this model is not recommended.

A previous comparison by Adin et al. [1] of the global P-spline model against
the moving average and CAR models found the P-spline performed well for sparse
disease mapping, although Goicoa et al. [17] found it to be more prone to detecting
more false high-risk areas than either the CAR or a local P-spline model. This model
is also rather complex to implement, requiring a penalty matrix and the number of
knots to be specified, both of which are subjective and can have a large impact on
model fit. The main concern with the P-spline model, however, was the specification
of the basis matrix using the tensor product, which does not adequately address the
fact that the SA2s are irregular in shape and the distances between their centroids
can be vastly different. The radial basis version of the P-spline model was designed
to address this, but aside from being computationally faster, it provided similar
levels of smoothing and a worse model fit.
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The BYM and Leroux models may be prone to over-smoothing when neighbour-
ing areas have abrupt differences [23, 27], but they generally converged, provided a
reasonable model fit with plausible estimates and were computationally efficient to
implement. The Leroux model may be preferred over the BYM model to avoid the
inability of the BYM model to identify both the structured and unstructured spatial
random effects separately, but we found that in some cases it struggled to achieve
convergence for its mixing parameter.

The locally adaptive models provided results similar to that of the BYM model,
with slightly wider credible intervals. The main disadvantage was the difficulty in
obtaining samples from the posterior due to the script calling up INLA from within
another function.

A non-binary dissimilarity model may also provide an adequate fit, as this
smooths more than a P-spline but less than BYM or Leroux. The non-binary
dissimilarity formulation using the SEIFA covariate worked quite well for both
cancer types, with noticeably less constraining of modelled SIR estimates than
under BYM or Leroux. Whether these SIR estimates are appropriate or are under-
smoothed will depend on data characteristics and the aims of the analysis.

Note that the final specification of each model requires additional sensitivity
analyses to determine the influence of the priors and hyperpriors, the topic of which
was outside the scope of this chapter.

10.5 Conclusion

The number of Bayesian spatial models available continues to increase, along
with the capacity of the computing software and hardware. Determining the
optimal amount of smoothing in spatial analyses remains difficult, but our study
demonstrates the benefits of running a range of model types and provides insights
into the relative merits of the different models for the study dataset. Comparing
estimates from several different model types is important to assess consistency of
results when conducting a spatial analysis

In summary, in sparse data contexts, the BYM, Leroux, locally adaptive, non-
binary CAR dissimilarity models or some versions of localised autocorrelation
models may outperform the other models examined. We suggest considering using
centroid-based smoothing models only when areas are of similar size and shape.
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Chapter 11
An Ensemble Approach to Modelling
the Combined Effect of Risk Factors
on Age at Parkinson’s Disease Onset

Aleysha Thomas, Paul Wu, Nicole M. White, Leisa Toms, George Mellick,
and Kerrie L. Mengersen

Abstract Ensemble approaches to statistical modelling combine multiple statistical
methods to form a comprehensive analysis. They are of increasing interest for
problems that involve diverse data sources, complex systems and subtle outcomes
of interest. An example of such an ensemble approach is described in this chapter,
in the context of a substantive case study that aimed to tease out factors affecting the
age at onset of the neurodegenerative medical condition, Parkinsons Disease (PD),
with a particular focus on the role of a particular potential risk factor, pesticide
exposure.

Keywords Bayesian network · Parkinson’s disease · Organochlorine pesticide ·
Risk factors · Combined effect

11.1 Introduction

Parkinson’s disease (PD) is the second most common neurodegenerative disorder
in the world. The aetiology and pathogenesis of PD is not well understood [1].
Genetic studies have identified multiple genes and genetic variations associated with
the disease [2–10] and research on twins have discussed the larger role of non-
genetic risk factors on the incidence of PD [11–17]. The association between the
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incidence of PD and non-genetic risk factors has been well studied [17–19]. Some
of the risk factors that have been analysed for an association with the incidence of
PD include family history [18, 20, 21], smoking [22, 23], coffee [23, 24], alcohol
intake [25–27], pesticide exposure [28–31], prior head injury [32–34], stroke [35] as
well as red meat consumption [36]. Pesticide exposure, particularly organochlorine
pesticides (OCPs) have been known to be associated with the incidence of PD [37,
38]. There have been studies on the association between PD and combined effect of
smoking, coffee as well as non-steroidal anti-inflammatory drugs [39, 40], however
the combined effect of other risk factors on PD has not been well explored.

A notable characteristic of PD is its gradual onset. The disease is often mistaken
for normal ageing [41, 42]. There is usually a lag of two to three years between the
time of the first symptom and clinical diagnosis [41]. A systematic understanding of
the association between the age at onset and risk factors could lead to early diagnosis
of PD in patients. This can contribute to timely disease and symptom management
[42]. However, the combined effect of risk factors on the age at PD onset is not well
studied or understood. Studies have focused on separate effects of risk factors on the
age at PD onset. OCP exposure [43, 44], smoking [45–47], alcohol [45, 46], coffee
[47], hydrocarbon exposure [48], plasma nitrate concentrations [49, 50], ferritin iron
[51], exercise [45], red meat consumption [46], the use of multivitamins [46], prior
head injuries [32, 45, 46] and family history [52, 53] are some risk factors that are
associated with the age at onset of PD. However, risk factors for a feature like age
at onset for a complex disease such as PD rarely occur in isolation and it is essential
to investigate the combined effects of multiple risk factors on the age at PD onset.
To the best of our knowledge there have been no such studies on this association.
This gap in the literature could be a result of the lack of understanding of the age
at onset of PD. Financial limitations and the effort required to conduct a population
based study on multiple risk factors could also be reasons not to pursue such a study.
Modelling can help to address this gap and inform future studies to better understand
the age at PD onset.

This chapter retrospectively analyses the combined effect of non-genetic risk
factors and quantitative serum OCP concentrations on the early age at PD onset.
As it is expensive and time consuming to attain a single data source on patient
information, risk factor exposure as well as serum OCP concentrations, we integrate
multiple data sources and available literature. The source of data for PD patient
information and risk factors is the Queensland Parkinson’s Project (QPP) [54].
Serum OCP concentrations are taken from a general population study in South-East
Queensland [55]. Estimates of the association between risk factors and the age at
PD onset are sourced from the published literature.

An ensemble model approach, comprised of a meta-analysis and Bayesian
Network (BN), is applied to this study. Meta-analysis is a common method where
the results of multiple research studies are combined to understand inferences from a
study in the context of related studies [56]. A meta-analysis is adopted to determine
an overall estimate of the association between risk factors and age at onset from
published literature. The method is also applied to the general population study to
estimate the combined OCP exposure for each age group and gender. Estimates of
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the PD patient population and their risk factors, estimates from a systematic survey
of the published literature as well as estimates of OCP exposure are integrated into
a BN. A BN is a directed acyclic graphical model that are useful for combining
uncertain knowledge under a probabilistic framework [57]. This approach is the
most appropriate method for integrating the available data sources and estimates
into a single model that infers the combined effects of risk factors with uncertainty.
The structure of the BN model represents the relationship between risk factors and
the age at PD onset, and a conditional probability table (CPT) is determined for each
variable [58].

11.2 Data

11.2.1 Queensland Parkinson’s Project

The risk factor information was collected on a cohort of 350 PD patients as part of
the Queensland Parkinson’s Project (QPP). The subjects were recruited from three
specialist movement disorder clinics in Brisbane, Australia between 2002 and 2008
[54]. All subjects provided informed consent for the study and were de-identified. At
the time of the survey, all patients had a diagnosis of idiopathic PD and no previous
treatment. Ethics exemption for the use of this data source was granted by the
Queensland University of Technology (QUT) Ethics Committee (Ethics Exemption
Number: 1700000480).

11.2.2 OCP Concentration

Concentrations of five organochloride pesticides, namely hexachlorobenzene
(HCB), β-hexachlorocyclohexane (β-HCH), trans-nonachlor, p,p′-dichlorodipheny-
ldichloroethylene (p,p-DDE) and p,p′-dichlorodiphenyltrichloroethane (p,p′-DDT),
were measured from pooled samples of human blood serum from males and females
collected in Brisbane, Australia in 2002/03, 2006/07, 2008/09, 2010/11 and 2012/13
across the age groups 5–15, 16–30, 31–45, 46–60 and >60 years [55]. The age
group 0–4 years was available but excluded from the analysis due to missing data
for the samples collected in 2002/2003. Further details on data collection and a
summary of the data are provided in Thomas et al. [55]. Ethics approval for this
study was granted by The University of Queensland (UQ) Medical Research Ethics
Committee and Queensland University of Technology (QUT) Ethics Committee
(Ethics Approval Number: 2013000317).
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11.2.3 Previous Literature

Estimates of the association between risk factors and age at onset were taken from
literature resulting from two unpublished systematic surveys. The systematic survey
on the association between the age at PD onset and risk factors yielded 16 studies
and the survey on the association between the age at PD onset and OCP exposure
resulted in 1 study (presented in Supporting Information). The literature search took
place between 3rd and 10th July 2017. The survey was based on protocols described
in the Cochrane Handbook for Systematic Reviews of Interventions, Preferred
Reporting Items for Systematic Reviews (PRISMA) and Critical Appraisal Skills
Programme (CASP). Research articles that reported an odds ratio (OR) estimate
and a 95% confidence interval (95% CI) were included in the meta-analysis.
ORs for smoking, alcohol, head injury and family history were extracted from
articles authored by Tsai et al. [45], Stern et al. [44] and Rybicki et al. [53]. It is
acknowledged that these studies span more than a decade, so there is an implicit
assumption that the relationships between factors and the age at onset remained
similar over this time period.

As the definition of early age at onset varies between the research articles
identified in the systematic survey [43–45, 53], we adopted a standard mean age
at onset (50 years) as a threshold to interpret the outcome node of the BN.

11.3 Methods

11.3.1 Meta-analysis

A meta-analysis is a model to combine estimates of multiple scientific studies
on the same effect of interest [56]. A hierarchical linear model was adopted and
implemented using two data sources, namely to combine log OR estimates on
the association between an earlier age at PD onset and risk factors from previous
literature (Tables 11.5 and 11.6, see Appendix) and combine OCP concentrations
for each combination of age group and gender (estimates presented in Thomas et al.
[55]).

The following meta-analysis model was adopted to parameterise part of the BN.

yi ∼ N(θi, σ
2
i )

θi ∼ N(θ0, σ
2
0 )

θ0 ∝ 1

σ 2
0 ∼ U(0, 100) (11.1)
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As the meta-analyses of the effects of smoking and of prior head injury on age at
onset of PD involved the combination of only two studies each, the between-study
variance in the above model was set to σ 2

0 = 0. This is equivalent to reversion from
a random effects model to a fixed effects model [56].

For each ith OCP, yi was the concentration estimate, and the OCP-specific mean
(θi) and variance (σ 2

i ) were reported from the original hierarchical model presented
in Thomas et al. [55]. Each θi was further considered to have been generated from
a Normal distribution with an overall mean θ0 and overall variance σ 2

0 . The prior
distributions for θ0 and σ0 were chosen to represent a lack of knowledge about the
overall estimates. Separate models were run for each combination for age group and
gender. The population average of OCP concentrations (θ0) for each age group and
gender were used to parameterise part of the BN.

11.3.2 Bayesian Network

BNs can integrate diverse data sources that may include different variables collected
over different time periods. Here, the BN modelled the associations between
selected non-genetic risk factors, including OCP exposure, and the age at PD
onset. Nodes represent risk factors while arcs/links denote direct dependencies
between nodes. The dependencies between nodes are parameterised by conditional
probability tables (CPTs). The conditional probability table for each node Xi

describes the probability of that node given its parent nodes or P(Xi |parents(Xi)).
Once the BN is specified, the joint probability distribution of a collection of nodes
can be determined by the local CPTs.

11.3.2.1 Building the BN

The main outcome of interest in this analysis was an early age at PD onset. The
BN was applied to study the combined impact of selected non-genetic risk factors
on an early age at PD onset (Fig. 11.1 with definitions in Table 11.1). The risk
factors included smoking, alcohol, head injury, family history, age, gender and OCP
exposure. As there is no single data source that explicitly captures interactions
between all risk factors, we developed a network model to combine data sources
as well as the effects of risk factors using latent nodes, lifestyle effect and medical
history effect. These nodes reflected the effect of the relevant risk factors that are
conducive to an early age at onset. The latent nodes were conceptualised to describe
the combined effect of lifestyle, medical history and OCP exposure on an early age
at onset.

The inclusion of the latent nodes also managed the size of the CPT for the
terminal node as the CPT size scales quickly with the number of parent nodes. Fewer
states in a node also reduced the size of the CPT and avoided over-parameterisation
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Early age at PD
onset

Medical history

Lifestyle

Smoking

Alcohol

Head injury
Family history

Age

GenderOCP exposure

Fig. 11.1 Bayesian network. Graphical model of multiple risk factors and the final outcome—an
early age at onset given that the patient will develop PD. The risk factors in the BN are smoking
and alcohol which lead to an overall lifestyle effect, family history and head injury which lead to
an overall medical history effect as well as age and gender which determine the OCP exposure
levels

given the availability of data. In this BN, all nodes except ‘Age’ were limited to two
states (Table 11.1).

We quantified the CPTs for the BN using the systematic survey of previous
literature as well as the QPP and OCP population study. The CPTs for the root
nodes, smoking, alcohol, head injury, family history, age and gender were quantified
with the QPP data source. The probabilities were estimated using the proportion
of patients with these risk factors. The meta-analysis method was adopted to
parameterise the CPT for the OCP exposure node as described in Sect. 11.3.1.
Thresholds were applied to the posterior distribution of θ0 (described in Eq. 11.1) to
obtain the conditional probability for ‘High’ or ‘Low’ OCP concentration for each
age and gender combination. The threshold values were taken from the quantiles
of the posterior distribution of overall OCP concentrations, irrespective of age and
gender. The CPTs for the lifestyle and medical history effect as well as the early age
at PD onset are parameterised from OR estimates obtained from the meta-analysis
on previous studies.

Let Y represent early age at onset and X represent the presence of one or more
risk factors, which include smoking, alcohol, head injury or family history. Let Xc

represent the absence of risk factors and define E as,

E = Y ∩ (X) (11.2)

where E can be a lifestyle or medical history effect conducive to an early age at
onset, such that when E represents lifestyle, X = {X1 = smoking,X2 = alcohol}.
When E represents medical history, X = {X1 = head injury,X2 = family history}.

We wish to quantify the conditional probabilities P(E|X) using the data
available in the form of ORs and marginal probabilities derived from the meta-
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analyses. These ORs take the following form,

OR(E|X) = odds(E|X)

odds(E|Xc)
=

P(E|X)

1 − P(E|X)

P(E|Xc)

1 − P(E|Xc)

(11.3)

Equation 11.3 can be rearranged to express OR(E|X) entirely in terms of P(E|X)

and its marginal probabilities, P(X), P(Xc), P(E) and P(Ec). Solving for
P(E|X), we obtain

P(E|X) = OR(E|X)P(X) + OR(E|X)P(E) − P(Xc) + P(E) ± √
ψ

2[OR(E|X)P(X) + P(X)]
whereψ = [OR(E|X)P(X) + OR(E|X)P(E) + P(Xc) + P(E)]2

− 4[OR(E|X)P(X) + P(X)][OR(E|X)P(E)] (11.4)

In the presence of more than one risk factor, due to the absence of data covering
different combinations of risk factors, we assume conditional independence. For
example, to estimate the lifestyle effects CPT P(E|X1,X2), assuming smoking
(X1) and alcohol (X2) are conditionally independent, the CPT is quantified as,

P(E|X1,X2) = P(E|X1)P (E|X2)

P (E)
(11.5)

where P(E|X1) andP(E|X2) can be evaluated as per Eq. 11.4. From Eq. 11.2
where we have the presence of at least one risk factor, P(E) is,

P(E) = P(Y,X1,X2) + P(Y,X1,X
c
2) + P(Y,Xc

1,X2) (11.6)

Full details on the derivation of Eqs. 11.5 and 11.6 are provided in Supplementary
Material.

Using the QPP data source, we derived an OR for early onset given pesticide
exposure using logistic regression. We assume this is approximately equal to the
OR for early onset given OCP, OR(Y |OCP) where OCP represents exposure to
OCPs. Thus, we apply Eq. 11.4 to estimate P(Y |EOCP ) where EOCP represents
the effect of OCP exposure conducive to an early age at onset.

To estimate the conditional probabilities of the terminal node P(Y |EL,EM,

EOCP ), we assume that EL, EM and EOCP are conditionally independent of each
other due to the lack of existing studies on the combined effects of lifestyle, medical
history and OCP exposure on an early age at onset of PD.

P(Y |EL,EM,EOCP ) = P(Y |EL)P(Y |EM)P(Y |EOCP )

P (Y )2 (11.7)
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We can obtain P(Y |EL) and equivalently P(Y |EM) based on their relevant risk
factors.

P(Y |EL) = P(Y |S ∨ A) = P(Y, S,A) + P(Y, S,Ac) + P(Y, Sc,A)

P (S,A) + P(S,Ac) + P(Sc,A)
(11.8)

where S and A represent smoking and alcohol respectively and Sc and Ac represent
the absence of smoking and alcohol respectively.

Additional detail can be found in supplementary information. The resultant CPTs
for the BN are presented in Tables 11.7, 11.8, 11.9, 11.10 and 11.11.

11.3.2.2 Network Interrogation and Outcomes

The BN was created, quantified and analysed in GeNIe 2.0 [59]. The BN was
conditional on patient-only cases. A sensitivity analysis as well as strength of
influence analysis were applied to observe the impact of risk factors on the terminal
node. An additional sensitivity analysis was performed to determine the effect of
varying OCP concentration thresholds for the OCP exposure node. The posterior
marginal probability distribution for the terminal node was observed when the BN
was updated with no set evidence. The probability distribution of the final node
was also observed when evidence was set for smoking, alcohol, head injury, family
history, age and gender. This was compared to results when evidence was set for the
same nodes as well as OCP exposure.

11.4 Results

11.4.1 Meta-analysis

The results of the meta-analysis are given in Table 11.2. The overall odds ratios
were estimated to be 0.878 for smoking and 1.094 for head injury; however these
were not substantively different from 1 given the large standard deviations.

Table 11.2 Summary of observed log odds ratio with corresponding 95% confidence intervals
and combined log odds ratio with corresponding standard deviation on the association between
age at onset of PD and smoking as well as head injury

Risk factor Study reference Observed Log OR (95%CI) Combined Log OR (SD)
Smoking Stern −0.22 (−0.92, 0.47) −0.13 (1.10)

Tsai −0.08 (−1.51, 1.34)
Head injury Stern 1.10 (0.18, 2.03)

0.09 (1.18)
Tsai 1.50 (0.05, 2.97)
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Table 11.3 Summary of posterior θ0 and σ0 of five OCPs (HCB, β-HCH, transnonachlor, p,p′-
DDE and p,p′-DDT) for each combination of age group and gender

θ0 σ0

Age Gender Mean 2.5% 97.5% Mean 2.5% 97.5%

16–30 Male 1.9554 −0.6976 4.522 1.726 0.9304 6.768

16–30 Female 2.0903 −0.5872 4.7044 1.756 0.9517 6.91

31–45 Male 2.4085 −0.1175 4.8258 1.598 0.8536 6.308

31–45 Female 2.4258 −0.1482 4.9215 1.656 0.888 6.605

46–60 Male 2.9588 0.0729 5.7329 1.886 1.0251 7.289

46–60 Female 3.1691 0.3034 5.86 1.825 0.9839 7.104

>60 Male 3.6816 0.7535 6.5348 1.917 1.037 7.561

>60 Female 4.0266 1.0022 6.9247 1.969 1.0621 7.744

The posterior mean OCP exposure (in ng/g lipid) across five OCPs, four age
groups and two genders was 2.854 (2.297, 3.402) and the posterior standard
deviation was 1.614 (1.292, 2.121). A summary of posterior mean OCP exposure
(in ng/g lipid) across five OCPs for each combination of age group and gender is
summarised in Table 11.3.

11.4.2 Bayesian Network

11.4.2.1 Sensitivity Analyses

The results of the sensitivity analysis identified that the terminal node was suscep-
tible to changes in medical history effect, family history, head injury, age and OCP
exposure (Fig. 11.2). The analysis demonstrated that based on the quantification
of the nodes, the posterior marginal probabilities of an early age at onset could
range from 0.037 to 0.708. The terminal node was most sensitive to OCP exposure,
followed by medical history, followed by lifestyle.

11.4.2.2 Strength of Influence

Results of the strength of influence in the BN showed that OCP exposure had the
strongest direct influence on the terminal node (Table 11.4). Medical history also
had a strong influence on the terminal node. OCP exposure and medical history
were strongly influenced by age and family history, respectively. Alcohol also had
a strong influence on lifestyle however the latter had a weak direct effect on the
terminal node.

The sensitivity analysis and strength of influence reconciled the influence of OCP
exposure, medical history and lifestyle on the terminal node. The direct influence of
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Fig. 11.2 Illustration of sensitivity results on the BN. This illustration provides results of a
sensitivity analysis on the BN when the node of interest is an early age at onset. Darker shades
of red for a node indicate higher sensitivity of the terminal node to the risk factor

Table 11.4 BN strength of influence

Parent node Daughter node Strength of influence

Family history Medical history effect 0.244

Age OCP exposure 0.178

Alcohol Lifestyle effect 0.119

Head injury Medical history effect 0.115

OCP exposure Early onset|PD 0.096

Medical history effect Early onset|PD 0.082

Smoking Lifestyle effect 0.034

Lifestyle effect Early onset|PD 0.031

Gender OCP exposure 0.024

age on OCP exposure and family history on medical history is also observed in both
analyses.

11.4.2.3 Altering BN Evidence

When the evidence for OCP exposure was altered in the BN along with smok-
ing, alcohol, head injury, family history, age and gender, the posterior marginal
probability of an early age at onset varied with all risk factors (Fig. 11.3). The
probability of an early age at onset did not differ by age or gender due to d-
separation of the age and gender nodes from an early age at onset. The probability
of an early age at onset when OCP exposure was ‘High’ was larger compared
to ‘Low’ OCP exposure. The difference in ‘High’ or ‘Low’ OCP exposure for
outcome probabilities was approximately 0.06 if there was no history of head
injury or family history. On the other hand, the difference was approximately 0.08
if there was a history of head injury and family history. There was also a small
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Fig. 11.3 Heat map of the posterior probability of an early age at onset with OCP exposure as
input. Illustration of the posterior probability of an early age at onset given PD when the evidence
for smoking, alcohol, head injury, family history, age, gender and OCP exposure was altered.
Values in the plot are the posterior probabilities of an early age at onset. The range of colours
represent the probability where red and green indicate a higher and lower probabilities of an early
age at onset respectively

variation in the probability of an early age at onset for smoking and alcohol.
The absence of one or both medical history risk factors resulted in a smaller
probability of an early age at onset than the presence of both head injury and family
history.

When the evidence for smoking, alcohol, head injury, family history, age and
gender was altered while keeping OCP exposure constant, the posterior marginal
probability of an early age at onset varied by all risk factors that were altered
(Fig. 11.4). Similar to the previous results, the probability of an early age at onset
varied by smoking, alcohol, head injury and family history. The conditions for the
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Fig. 11.4 Heat map of the posterior probability of an early age at onset with input from risk factors
excluding OCP exposure. Illustration of the posterior probability of an early age at onset when the
evidence for smoking (Smok), alcohol (Alc), head injury (HI), family history (FH), age and gender
was altered. Values in the plot are the posterior probabilities of an early age at onset. The range of
colours represent the probability where red and green indicate a higher and lower probabilities of
an early age at onset respectively

smallest probabilities were smoking, alcohol as well the lack of head injury and
family history. The presence of head injury and family history without smoking and
alcohol had the highest probabilities for an early age at onset. Smoking and alcohol
appeared to be protective risk factors for the disease, as demonstrated by previous
literature [22, 23]. When the evidence for smoking and alcohol were positive,
patients with medical history of only family history had a smaller probability (0.012)
of an early age at onset compared to those with only head injury. Older age groups
had higher probabilities than younger age groups; the difference was approximately
0.019–0.028 where the difference was larger for patients with exposure to both
lifestyle risk factors. Women also had an incrementally higher probability of an
early age at onset than men.

11.5 Discussion

This chapter has proposed an ensemble model approach to investigate the combined
effects of risk factors on the age at PD onset. We combined a meta-analysis model
and BN to identify the combined effect between smoking, alcohol consumption,
prior head injury, family history, age, gender and cumulative serum OCP concentra-
tions on an early age at onset of PD. Inferences from the ensemble model focused
on how the probability of an early age at onset varied by the presence or absence of
risk factors as well as the strength of influence of risk factors.

This analysis integrated OR estimates from a systematic survey on published
literature about the association between the age at PD onset and risk factors as
well as OCP exposure, QPP data on PD patient risk factors and a population study
on serum OCP concentrations. The meta-analysis was adopted to determine the
overall estimates for selected risk factors and combined OCP exposure. This was
later incorporated into the BN. The results of the meta-analysis were converted into
conditional probabilities for the BN. The application of the BN was motivated by its
unique probabilistic features that allow multiple disparate data sets to be combined
in a single model. The ability to alter evidence for the BN nodes was a key feature
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that contributed to understanding the combined effects of risk factors on the age at
PD onset.

Results of the analysis highlighted that OCP exposure was an influential risk
factor that led to variation in the probability of an early age at onset. Medical history
effects and its associated risk factors, head injury and family history, also had a
substantial effect on the age at onset.

The probability of an early age at PD onset varied widely when evidence for
the selected non-genetic risk factors was altered. These results demonstrate the
necessity and usefulness of understanding the combined effects of risk factors on
PD age at onset and the inclusion of quantitative OCP measurements in an analysis.

When the evidence for all risk factors, including OCP exposure, was altered,
there was no variation in the probability of an early age at onset due to d-separation
between the terminal node and the nodes for age group. However when OCP
exposure was kept constant, there was a difference in the probability for an early age
at onset across age groups, genders and the presence of lifestyle and medical history
risk factors. The change in probabilities in both cases is indicative of a combined
effect of risk factors on the early age at onset of PD. We also observed that altering
the threshold of ‘High’ or ‘Low’ OCP exposure did not substantively change the
probability of an early age at onset.

These results are not meant to be interpreted as conclusive inferences due to the
disparity of the data sources as well as the required approximations owing to the
lack of data. The resulting inferences are intended to guide potential further studies
on the combined impact of risk factors on PD. This ensemble model is not meant to
replace a valid, well designed study and analysis.

The absence of a single data source is a major limitation in the study that prevents
conclusive inferences. The disparity between the data sources also led to the forced
integration of two separate populations (based in Brisbane, Australia) into a single
analysis.

The QPP data source did not have information on control subjects. Therefore the
BN model was conditional on the patients eventually being diagnosed with PD. As
the focus of the paper was on the age at PD onset, it was reasonable to exclude
information on controls from the model. Previous studies that conducted analyses
focused on age at PD onset had also excluded controls from the study [46, 47, 60,
61].

A range of estimates was used to summarise the research articles identified
in the systematic survey of literature (Tables 11.5 and 11.6). ORs were adopted
for the ensemble model as they were the most frequently reported estimates on
individual risk factors and the age at PD onset. The scarcity of data on the combined
effects of risk factors on age at PD onset necessitated the use of assumptions
and approximations from the available data sources. We assumed that estimates
of ORs from published studies of the association between early onset and a
risk factor could approximate the probability of an effect conducive to early
onset given exposure to the risk factor. The CPT for the terminal node, early
age at PD onset, was also approximated from available OR estimates as there
was no information on the combined effects of smoking and alcohol on lifestyle
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effects conducive to an early age at onset or head injury and family history on
medical history effects conducive to an early age at onset. These assumptions
made use of the data sources available and incorporated feasible information into
the terminal node and latent nodes, lifestyle effect and medical history effects.
The resultant CPTs for the BN are presented in Tables 11.7, 11.8, 11.9, 11.10
and 11.11.

Table 11.7 Conditional
probability tables for
smoking, alcohol, head
injury, family history, age and
gender

Risk factor State Proportion

Smoking Yes 0.49

No 0.51

Alcohol Yes 0.42

No 0.58

Head injury Yes 0.13

No 0.87

Family history Yes 0.24

No 0.76

Age group 16–30 0.00

31–45 0.01

46–60 0.19

>60 0.80

Gender Male 0.65

Female 0.35

Table 11.8 Conditional
probability table for lifestyle
effect conducive to an early
onset age in PD patients

Smoking Alcohol Lifestyle effect Probability

Yes Yes Yes 0.02

Yes Yes No 0.98

Yes No Yes 0.12

Yes No No 0.88

No Yes Yes 0.04

No Yes No 0.96

No No Yes 0.17

No No No 0.83

Table 11.9 Conditional
probability table for a medical
history effect conducive to an
early onset age in PD patients

Head injury Family history Medical history Probability

Yes Yes Yes 0.50

Yes Yes No 0.50

Yes No Yes 0.07

Yes No No 0.93

No Yes Yes 0.17

No Yes No 0.83

No No Yes 0.03

No No No 0.97
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Table 11.10 Conditional probability table for OCP exposure at each threshold

Threshold number Age Gender OCP exposure Probability

1 a16_30 Male High 0.50

1 a16_30 Male Low 0.50

1 a16_30 Female High 0.53

1 a16_30 Female Low 0.47

1 a31_45 Male High 0.61

1 a31_45 Male Low 0.39

1 a31_45 Female High 0.61

1 a31_45 Female Low 0.39

1 a46_60 Male High 0.70

1 a46_60 Male Low 0.30

1 a46_60 Female High 0.75

1 a46_60 Female Low 0.25

1 a60_ Male High 0.81

1 a60_ Male Low 0.19

1 a60_ Female High 0.85

1 a60_ Female Low 0.15

2 a16_30 Male High 0.36

2 a16_30 Male Low 0.64

2 a16_30 Female High 0.39

2 a16_30 Female Low 0.61

2 a31_45 Male High 0.45

2 a31_45 Male Low 0.55

2 a31_45 Female High 0.46

2 a31_45 Female Low 0.54

2 a46_60 Male High 0.58

2 a46_60 Male Low 0.42

2 a46_60 Female High 0.62

2 a46_60 Female Low 0.38

2 a60_ Male High 0.71

2 a60_ Male Low 0.29

2 a60_ Female High 0.77

2 a60_ Female Low 0.23

3 a16_30 Male High 0.30

3 a16_30 Male Low 0.70

3 a16_30 Female High 0.33

3 a16_30 Female Low 0.67

3 a31_45 Male High 0.39

3 a31_45 Male Low 0.61

3 a31_45 Female High 0.40

3 a31_45 Female Low 0.60

(continued)
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Table 11.10 (continued)

Threshold number Age Gender OCP exposure Probability

3 a46_60 Male High 0.52

3 a46_60 Male Low 0.48

3 a46_60 Female High 0.57

3 a46_60 Female Low 0.43

3 a60_ Male High 0.67

3 a60_ Male Low 0.33

3 a60_ Female High 0.72

3 a60_ Female Low 0.28

4 a16_30 Male High 0.25

4 a16_30 Male Low 0.75

4 a16_30 Female High 0.28

4 a16_30 Female Low 0.72

4 a31_45 Male High 0.33

4 a31_45 Male Low 0.67

4 a31_45 Female High 0.34

4 a31_45 Female Low 0.66

4 a46_60 Male High 0.47

4 a46_60 Male Low 0.53

4 a46_60 Female High 0.51

4 a46_60 Female Low 0.49

4 a60_ Male High 0.62

4 a60_ Male Low 0.38

4 a60_ Female High 0.68

4 a60_ Female Low 0.32

5 a16_30 Male High 0.15

5 a16_30 Male Low 0.85

5 a16_30 Female High 0.17

5 a16_30 Female Low 0.83

5 a31_45 Male High 0.20

5 a31_45 Male Low 0.80

5 a31_45 Female High 0.21

5 a31_45 Female Low 0.79

5 a46_60 Male High 0.34

5 a46_60 Male Low 0.66

5 a46_60 Female High 0.38

5 a46_60 Female Low 0.62

5 a60_ Male High 0.49

5 a60_ Male Low 0.51

5 a60_ Female High 0.56

5 a60_ Female Low 0.44
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Table 11.11 Conditional probability table for final outcome node, an early onset age given PD
(EO|PD)

Lifestyle effect Medical history effect OCP exposure EO|PD Probability

Yes Yes High Yes 0.40

Yes Yes High No 0.60

Yes Yes Low Yes 0.23

Yes Yes Low No 0.77

Yes No High Yes 0.22

Yes No High No 0.78

Yes No Low Yes 0.13

Yes No Low No 0.87

No Yes High Yes 0.32

No Yes High No 0.68

No Yes Low Yes 0.19

No Yes Low No 0.81

No No High Yes 0.18

No No High No 0.82

No No Low Yes 0.10

No No Low No 0.90

The BN model in this paper could be further extended to incorporate information
on more risk factors. This would provide a more comprehensive understanding of
combined risk factor effects on PD age at onset. The inclusion of genetic data in the
BN would provide a quantitative understanding of the influence of family history
on the age at onset. It would also be valuable to have longitudinal information on
patients to match to the cumulative serum OCP concentrations over time to observe
any change in probability of an early age at onset over time and altered risk factors.

Appendix: Supporting Information

Let Y represent early age at onset and X represent the presence of one or more
risk factors, which include smoking, alcohol, head injury or family history. Let Xc

represent the absence of risk factors and define E as,

E = Y ∩ (X) (11.9)

where E can be a lifestyle or medical history effect conducive to an early age
at onset, such that when E represents lifestyle, X = {X1 = smoking,X2 =
alcohol}. When E represents medical history, X = {X1 = head injury,X2 =
family history}.

We wish to quantify the conditional probabilities P(E|X) and the data available
is in the form of ORs and marginal probabilities as derived from the literature and
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from meta-analyses. These ORs take the following form,

OR(E|X) = odds(E|X)

odds(E|Xc)
=

P(E|X)

1 − P(E|X)

P(E|Xc)

1 − P(E|Xc)

(11.10)

Equation 11.10 can be rearranged to express OR(E|X) entirely in terms of
P(E|X) and its marginal probabilities,

OR(E|X) =
P(E|X)

1 − P(E|X)

P(E) − P(E|X)P(X)

P(Xc)

1 −
(
P(E) − P(E|X)P(X)

P(Xc)

)

=
P(E|X)

(
1 − P(E) − P(E|X)P(X)

P(Xc)

)

(1 − P(E|X))

(
P(E) − P(E|X)P(X)

P(Xc)

)

=
P(E|X) − P(E|X)

(
P(E) − P(E|X)P(X)

P(Xc)

)

(1 − P(E|X))

(
P(E) − P(E|X)P(X)

P(Xc)

)

=
P(E|X)P(Xc)

P (Xc)
− P(E|X)(P (E) − P(E|X)P(X))

P (Xc)

(1 − P(E|X))

(
P(E) − P(E|X)P(X)

P(Xc)

)

OR(E|X) = P(E|X)P(Xc) − P(E|X)(P (E) − P(E|X)P(X))

(1 − P(E|X))(P (E) − P(E|X)P(X))
(11.11)

We solve Eq. 11.11 for P(E|X), which involves solving for the roots of the
quadratic on P(E|X), to obtain the following expression for the CPT,

P(E|X) = OR(E|X)P(X) + OR(E|X)P(E) + P(Xc) + P(E) ± √
ψ

2[OR(E|X)P(X) + P(X)]
whereψ = [OR(E|X)P(X) + OR(E|X)P(E) + P(Xc) + P(E)]2

− 4[OR(E|X)P(X) + P(X)][OR(E|X)P(E)] (11.12)
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In the presence of more than one risk factor, due to the absence of data covering
different combinations of risk factors, we assume conditional independence. For
example, to estimate the lifestyle effects CPT P(E|X1,X2), assuming smoking
(X1) and alcohol (X2) are conditionally independent, the CPT is quantified as,

P(E|X1,X2) = P(E,X1,X2)

P (X1,X2)

= P(E,X1,X2)

P (X1)P (X2)

= P(X1|E,X2)P (E,X2)

P (X1)P (X2)

= P(X1|E)P(E,X2)

P (X1)P (X2)

= P(E|X1)P (X1)P (E,X2)

P (E)P (X1)P (X2)

= P(E|X1)P (E,X2)

P (E)P (X2)

= P(E|X1)P (E|X2)P (X2)

P (E)P (X2)

P (E|X1,X2) = P(E|X1)P (E|X2)

P (E)
(11.13)

where P(E|X1) andP(E|X2) can be evaluated as per Eq. 11.12. From Eq. 11.9
where we have the presence of atleast one risk factor, P(E) is,

P(E) = P(Y,X1,X2) + P(Y,X1,X
c
2) + P(Y,Xc

1,X2) (11.14)

In the QPP data source, we derived an OR for early onset given pesticide
exposure using logistic regression. We assume this is approximately equal to the
OR for early onset given OCP, OR(Y |OCP) where OCP represents exposure to
OCPs. Thus, we apply Eq. 11.12 to estimate P(Y |EOCP ) where EOCP represents
the effect of OCP exposure conducive to an early age at onset.

To estimate the conditional probabilities of the terminal node P(Y |EL,EM,

EOCP ), we assume that EL, EM and EOCP are conditionally independent of each
other due to the lack of existing studies on the combined effects of lifestyle, medical
history and OCP exposure on an early age at PD onset. Here, EL represents lifestyle
effect and EM represents medical history effect.

P(Y |EL,EM,EOCP ) = P(Y,EL,EM,EOCP )

P (EL,EM,EOCP )

= P(EL|Y,EM,EOCP )P (Y,EM,EOCP )

P (EL)P (EM)P(EOCP )
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= P(EL|Y )P (Y,EM,EOCP )

P (EL)P (EM)P(EOCP )

= P(EL|Y )P (EM |Y )P (Y,EOCP )

P (EL)P (EM)P(EOCP )

= P(EL|Y )P (EM |Y )P (Y |EOCP )

P (EL)P (EM)

= P(EL, Y )P (EM, Y )P (Y |EOCP )

P (EL)P (EM)P(Y )2

P(Y |EL,EM,EOCP ) = P(Y |EL)P(Y |EM)P(Y |EOCP )

P (Y )2
(11.15)

We can obtain P(Y |EL) and equivalently P(Y |EM) based on their relevant risk
factors as informed by the QPP data source.

P(Y |EL) = P(Y |S ∨ A) = P(Y, S,A) + P(Y, S,Ac) + P(Y, Sc,A)

P (S,A) + P(S,Ac) + P(Sc,A)
(11.16)

where S and A represent smoking and alcohol respectively and Sc and Ac represent
the absence of smoking and alcohol respectively.
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Chapter 12
Workplace Health and Workplace
Wellness: Synergistic or Disconnected?

G. Davis, E. Moloney, M. da Palma, Kerrie L. Mengersen, and F. Harden

Abstract Workplace health and wellness is paramount in many businesses and
industries, for economic and social reasons. Workplace wellness programs have
emerged to meet this need. This paper pursues a deeper understanding of the
relationship between workplace health and workplace wellness initiatives in Aus-
tralia. Based on a survey of published literature, Bayesian networks are developed
to describe and quantify factors that contribute to each of these components of
workplace efficiency. Workplace health was found to be a complex system of acute
and chronic occupational medical conditions, as well as lifestyle factors. Successful
wellness programs were found to be those that have a high level of participation and
positive financial impacts, and are integrated into business strategy and company
culture. It was observed that many workplace wellness programs tend to target non-
occupational health risks and that there is an opportunity to address other critical
components of worker health risk factors. The outputs of the Bayesian networks
can provide an interrogative monitor of workplace health and the potential impact
of corresponding wellness initiatives, facilitating the development of more targeted
and cost-effective programs.

12.1 Introduction

Occupational health is increasing as a priority in workplaces around the world [44].
In Australia, for example, healthy workers are almost three times more productive in
the workforce than their unhealthy counterparts [18]. Chronic disease is recognised
as one of the key causes of absenteeism and presenteeism, early retirement and lost
productivity in the workforce, and acute disease and adverse mental health are also
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known concerns [7, 8, 15]. Despite government strategies over the past 15 years,
many of these health outcomes have not declined [57, 59].

Unhealthy workers and those with chronic diseases are a significant strain on
corporate and national spending [7, 24, 48]. This has resulted in an international
surge in workplace wellness initiatives that target various health risks [3, 22, 24, 39,
72, 78]. This is not a new phenomenon [27]. For example, a study published in 2003
reported that 66% of more than 1200 organisations in 47 countries offered a formal
wellness strategy [74].

Notwithstanding the popularity of workplace wellness programs, their effective-
ness has been questioned [22, 56]. This is in part due to the multi-factorial nature of
occupational diseases and the many non-occupational contributing factors [8], but
also because there is great variability in activities offered through the programs,
substantive differences in employee outcomes and little consistency in methods
to identify, monitor and evaluate the outcomes and benefits of the programs [24,
54]. Indeed, there is increasing concern that wellness programs can have negative
consequences for companies, for example by biasing health data collection [1].

In this paper, creating and maintaining a ’healthy worker’ workforce is seen
as a complex system, comprising not only health factors but their interaction
with personal, social, economic, external and other factors. A model of this
system is developed, based on a survey of the occupational health risks including
musculoskeletal disorders, cardiovascular diseases, obesity, noise-induced hearing
loss, cancers, and respiratory diseases, as well as lifestyle factors, particularly the
effect of excessive alcohol consumption on work. A similar systems perspective is
taken for workplace wellness, based on a survey of a range of wellness programs
with focus on their various definitions, program characteristics, target health areas,
methods of evaluation, and documented successes and failures. The systems models
for healthy workers and workplace wellness are developed as Bayesian Networks.
The models are probabilistically quantified and are then used to provide scenario
evaluations and interrogations to develop a deeper understanding of these two
areas. The article concludes with a discussion of the strengths and limitations of
research on healthy workers and workplace wellness programs, the apparent points
of synergy and disconnection and the potential utility of the proposed systems model
as a method for integrating and analysing this body of research.

12.2 Methods

The first stage of this study comprised a substantive literature survey which
aimed to identify key occupational health risks and factors that contribute to
the occupational diseases discussed above. For specificity and scope, a primary
focus was on the Australian context. Journal articles were the primary information
source, as well as papers published by respected organisations. Several official
government documents, such as the National Occupational Health and Safety (OHS)
Strategy 2001–2012, were also included. The Safe Work Australia website provided
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government reports on occupational diseases prevalent in Australia. The Australian
Health Survey (AHS) conducted by the Australian Bureau of Statistics (ABS) was
used to gauge the current overall health of Australia’s adult population. The AHS is
a combination of the current National Health Survey (NHS), the National Aboriginal
and Torres Strait Islander Health Survey, the National Health Measures Survey
(NHMS) and the National Nutrition and Physical Activity Survey (NNPAS). It is
the largest, most comprehensive health survey ever conducted in Australia. Given
the relatively low unemployment rate (5.4% of Australians over the age of 18 were
as of December 2012) [6], it was assumed that the data provided by the AHS on
adult Australians is acceptably representative of the general health of Australia’s
working force.

A similar survey of literature on workplace wellness programs was undertaken,
along with a collection of case studies. Both published and unpublished (grey)
material was examined. Articles were located through the reference lists of other
articles and through keyword searches in Google scholar. The most common
searches included “workplace wellness programs” along with other words such as
“types”, “characteristics”, “definitions”, “successes”, “failures”, “diet”, “exercise”
and other specific phrases. The unpublished or grey material was obtained primarily
from similar searches of Google web and from government published studies. Case
studies were classified by country and then broken into three main components in
order to analyse their effectiveness. These were purpose of the program, methods
undertaken, and achievements of the program.

The second stage of the study involved the construction of systems models based
on the healthy worker and workplace wellness surveys. The models were developed
as Bayesian networks. A Bayesian network (BN) is a representation of a complex
or complicated system, which can be graphically depicted as a set of factors (nodes)
and their relationships (directed arrows). Hence a network is comprised of a set
of nodes, each of which is influenced by ‘parent’ node/s and which in turn may
influence ‘daughter’ nodes. These connections flow through the system to a final
target node. Each node in the network is then probabilistically quantified, taking
into account its parent node/s. This quantification can be achieved using diverse data
sources. The resultant model provides an overall probability of the target outcome,
given the various contributing factors. It can also be interrogated to identify most
influential factors that impact on the target outcome, and quantitatively evaluate
‘what-if’ scenarios involving changes to these factors. BNs have been used in a wide
variety of contexts, including many problems in health and industry [9, 36, 55, 76].

Two BNs were created in this study. The first represents the various identified
health factors that contribute to the overall target outcome of a ‘healthy worker’.
The second represents the various identified factors that contribute to a successful
workplace wellness initiative. The systems models were quantified in a nominal
manner, with a future intention in mind of enabling a workplace to input and
assess their own program factors. Each node was categorised as binary, for example
‘yes’ or ‘no’, or ‘positive’ or ‘negative’. The model was quantified using a generic
approach, as described in Appendix 3. This provides a platform which can be
modified for specific workplaces, workforces or wellness programs.
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The BNs were critically surveyed by an expert panel comprising an occupational
physician, a health scientist, a workplace wellness expert and a statistician. The
networks were presented to employer and employee groups in moderated meetings,
and feedback was incorporated.

12.3 Results

12.3.1 Healthy Worker Survey

Results of the healthy worker survey are presented in Appendix 1. The survey identi-
fied a range of associations between health outcomes and workplace conditions and
exposures. The health outcomes included musculoskeletal disorders, cardiovascular
disease, noise-induced hearing loss, respiratory illness, cancers and mental health
disorders.

Occupational risk factors associated with musculoskeletal disorders included
one-time traumatic events, repetitive use, excessive loading, excessive workloads,
insufficient rest breaks, fatigue, poor posture and stress. Factors associated with
cardiovascular disease included exposure to air pollutants, occupational stress, and
lack of social support. Excessive noise was also associated with elevated blood pres-
sure, reduced performance, sleeping difficulties, annoyance and stress, temporary
shift in the hearing threshold and tinnitus. Workplace agents that were reported to
exacerbate or cause respiratory disease include pesticides, herbicides, dust, lead,
fumes, chemicals, gases, faulty air conditioners, particulates and gases emitted from
fire and other activities, emissions from furnishings, and so on. Occupational dust
was reported to be a significant contributor to the development of bronchitis, asthma,
chronic obstructive pulmonary disease and other respiratory illnesses. There were
also numerous respiratory carcinogens including asbestos, arsenic, radon, silica,
chromium, cadmium, nickel and beryllium. Occupational exposures associated
with cancer included asbestos, silica, nickel, chromium, arsenicals, vinyl chloride,
and halo ethers as well as ionising and solar radiation. Finally, mental health
disorders among workers were found to lead to work impairment and reduced
job commitment and satisfaction. Traumatic events associated with work related
incidents have been linked to mental disorders, and high mental stress levels have
been associated with an increased risk of musculoskeletal diseases, cardiovascular
diseases and obesity.

All of these risk factors and health outcomes were documented to contribute to
absenteeism and/or presenteeim. Common lifestyle confounders included obesity
and alcohol consumption. Obesity was associated with a range of occupational
health complications, including an increased risk of hypertension, cardiovascular
diseases, asthma, musculoskeletal disorders, and some cancers, increased potential
for occupational stress, impaired immune response to chemical exposures and
increased risk of disease from occupational neurotoxins. Alcohol consumption
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reportedly affects hepatic and pancreatic systems and has also been related to
increased blood pressure, an increased risk of developing certain cancers, and
cerebral dysfunction. It has also been linked with other more subtle effects such
as late arrival at work and reduced promotion success. Moderate drinking has also
been shown to have adverse health effects.

12.3.2 Workplace Wellness Survey

The results of the workplace wellness survey are presented in Appendix 2. A number
of wellness definitions were identified, ranging from that used by the World Health
organization as a “state of complete physical, mental and social-wellbeing and not
merely the absence of disease or infirmity” [75] to others based on holistic notions
of ‘self’.

A total of 25 wellness programs that provided on-line information about their
goals, methods and outcomes were identified. Of the nine Australian worksite
wellness programs examined, seven detailed their purpose, all nine described their
methods and seven disclosed their achievements. Of the eight programs examined
from the United States, these figures were five, six and seven, respectively. Among
the seven programs evaluated from the United Kingdom, none listed their purpose,
but all of them reported their methods and outcomes. The studies were cross-
checked with the survey findings and case studies published by Mattke et al. [44] to
ensure consistency and representativeness.

Among the Australian studies, the most common aims were to improve physical
health and wellbeing of employees and reduce the risk of lifestyle disease; the most
common methods were employee health assessments, employee needs assessments
and information sessions on healthy lifestyle and management support, and the most
common reported achievement was a reduction in sedentary category. Among the
US studies, the main aims included reduction of tobacco intake and reduction of
stress; the only method common to all studies was a tobacco cessation program,
and all seven programs that reported outcomes listed saved money as a primary
success. The second most common outcome was reduced absenteeism, reported in
four studies. Among the United Kingdom programs, four offered smoking cessation
classes along with stress interventions, and the most common reported outcome was
a decrease in absenteeism.

These companies were further delineated depending on whether they comprised
primarily blue collar or white collar employers. No substantive difference was found
between the programs implemented in these two groups. Program delivery modes
were also surveyed. The four most common delivery methods in 2004 were printed
materials, the internet, in-person methods and telephone systems.

Wellness initiatives were categorised according to three functional levels [27]:
awareness programs, lifestyle modification programs, and programs to promote the
sustainability of these modifications. Of the Australian case studies examined, most
were level one and none were level three. The United States programs run were
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evenly distributed between level one and two programs, with the only level three
programs being the provision of onsite exercise facilities. In the United Kingdom
there was a greater proportion of level two programs, with only one level one
program (blood pressure testing) and one level three program (healthy eating options
at work) offered by more than one company.

Characteristics of workplace wellness programs were also surveyed. Successful
wellness programs reported integration of the program into business strategy and
company culture; the inclusion of a full time or part time program co-ordinator;
support from upper level management; social support; the use of incentives to
increase participation in the program; co-worker support, and the convenience and
accessibility of the program. These were contrasted with the 2004 National Worksite
Health Promotion Survey, which found that the most commonly used definitions of
success involved employee feedback and participation, reductions in health-related
costs and reductions in absenteeism.

12.4 Healthy Worker and Wellness Systems Models

Tables 12.1 and 12.2 provide lists of the factors included in the health worker model
and workplace wellness model, respectively, based on the respective literature
surveys in Appendices 1 and 2. The corresponding systems models are shown in
Figs. 12.1 and 12.2.

In Fig. 12.1, the target node, Worker Health, is seen to be directly influenced by
three nodes representing ‘Mental’, ‘Chronic’ and ‘Acute’ health outcomes, which
are themselves influenced by a range of health outcomes, personal factors and
occupational risks. For example, it is seen that occupational stress affects mental
health, both directly and also indirectly via depression. Occupational stress is in turn
affected by workload, noise level and excessive working hours. All specified occu-
pational diseases affect chronic health, whereas only musculoskeletal diseases, liver
disease, cancers, cardiovascular disease and respiratory disease affect acute health.

Table 12.1 Influential factors in Workplace Health, based on literature survey

Overall health outcomes Occupational health outcomes Factors

Mental Hearing loss Workload
Chronic Respiratory diseases Noise level
Acute Depression Excessive hours

Cardiovascular disease Air quality
Hypertension Smoking
Liver disease Alcohol consumption
Musculoskeletal disease Sun exposure
Occupational stress Exercise required in job
Obesity Recreational exercise

Diet
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In Fig. 12.2, the target node, ‘Effectiveness of Program’ is directly affected
by ‘Participation in Program’, ‘Increase in Wellness’ and ‘Return on Investment’.
These nodes are in turn affected by the factors drawn from the survey. For example,
increased physical health resulting from a wellness program is influenced by a
reduction in obesity, increase in physical activity, decrease in risk of lifestyle
diseases, improved cholesterol and decreased blood pressure. Physical health in
turn impacts directly on increase in wellness, which affects the effectiveness of the
wellness program. Participation in the wellness program is seen to be central to the
program success, and is affected by the five factors listed in Table 12.2.

Details of the quantification of the two systems models are provided in Appendix
3. As described there, the quantification is generic and intended for exposition, and
hence is not interpreted definitively. It is helpful in its own right but if desired, the
general platform provides a foundation for models tailored to specific workplaces,
workforces or wellness programs in a straightforward manner.

An illustration of the quantified workplace wellness model is given in Fig.
12.3. Tables 12.3, 12.4 and 12.5 show the results of the quantification, based on
the literature survey and the methods described in Appendix 3. Table 12.3 shows
the relative probabilities, expressed as percentages, for each of the worker health
outcomes. The table indicates that a worker has a substantially smaller probability
of good mental health, compared with acute or chronic health, although these latter
two outcomes are still substantially less than an optimal level of 100%.

Similarly, Table 12.4 shows that a wellness program has about an even chance
(48%) of having a high participation rate and of being effective overall, but less
chance of a high return on investment. While there is a relatively high chance that
the program has an impact on reduced workforce turnover, there is much less chance
of reducing absenteeism and very little chance (8%) of reducing presenteeism.

Table 12.5 shows the sensitivity of the outcomes of workplace wellness programs
to changes in worker participation levels. Although the return on investment of
the program changes only slightly (a 5% increase) as participation changes, the
probability of an effective program overall more than doubles. This type of scenario
or ‘what-if’ assessment can be used to assess most influential factors in the system,
which in turn can be used as drivers to influence positive outcomes of the programs.

12.5 Discussion

This study aimed to contribute to the literature regarding workplace wellness and the
effectiveness of programs that aim to improve wellness by undertaking a systematic
assessment of impacting factors and their relative bearing. This is the first study to
our knowledge to combine a large-scale program survey with statistical analysis in
order to produce a predictive as well as analytic model.

The Healthy Worker literature survey presents strong evidence that employees
are occupationally exposed to numerous risks in their workplace that may have
an impact on their overall health. These include but are not limited to noise, car-
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Table 12.3 Results of quantified BN for worker health: overall score for selected occupational
health outcomes, based on quantification described in Appendix 3

Health outcome Score

Overall worker health 89
Mental health 50
Chronic health 86
Acute health 72

Score is out of 100, with larger score indicating greater likelihood of worker health

Table 12.4 Results of quantified BN for workplace wellness: overall score for selected workplace
wellness outcomes, based on quantification described in Appendix 3

Overall effectiveness of program 48

Increase in wellness 41
Physical 37
Behavioural 34

Return on investment 37
Reduced presenteeism 8
Reduced absenteeism 38
Reduced workforce turnover 76

Participation in program 50

Score is out of 100, with larger score indicating greater likelihood of program success

Table 12.5 Evaluation of relative impact on three wellness program outcomes, namely overall
increase in wellness, return on investment and program effectiveness, arising from changes in
program participation level, based on workplace wellness BN

Condition

Pr (High
participation in
program)

Pr (Large
increase in
wellness)

Pr (Large return
on investment)

Pr (Effective
program)

Based on
literature survey

0.50 0.41 0.52 0.44

100% High
participation

1.00 0.44 0.55 0.60

100% Low
participation

0.00 0.39 0.50 0.28

cinogens, air particulate, long hours and sedentary or strenuous activities and these
may increase the likelihood of exacerbating an existing condition or heighten the
risk of developing an occupational disease. The net results are that the individuals
or groups concerned may suffer as a consequence of the disease, and that there
can be substantive lost productivity and economic loss due to absenteeism and
presenteeism in the workplace. Conversely, proactive prevention or reduction in
the development of occupational diseases in workers is a key factor in sustaining
a healthy, productive and cost-effective workplace.

The interplay of non-occupational factors, such as diet, exercise, smoking and
alcohol consumption, can considerably influence susceptibility of developing a
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chronic, acute or mental disease. Nevertheless, occupational exposures are sig-
nificant and employers have a duty of care to ensure that potentially modifiable
occupational factors are regulated to mitigate risk. It is therefore vital to determine
which factors are most likely to cause or exacerbate disease and evaluate their
overall contribution to risk. Investigation into the importance of each health risk
factor will provide valuable information to workplaces and enable them to target
interventions or wellness programs to those individuals and or groups most in need.

Workplace health promotion programs have become increasingly popular as
a way to target the growing incidence of lifestyle disease. All the programs
analysed in this study have demonstrated positive results; however due to the
lack of comprehensive analysis on the part of employers, it is very difficult to
conclusively define a workplace health promotion program as successful. However,
the literature and models reveal some common insights. For example, workplace
wellness programs arguably do not have a high effectiveness rate if attendance is
not satisfactory. This agrees with previous studies [56] and shows that programs that
focus on encouraging attendance through workplace support, dedicated program
coordinators and integration of the program into company culture are far more likely
to see successful outcomes. Through the examination of wellness definitions, types
of wellness programs and their characteristics along with successes and failures of
workplace health promotion programs, it is clear that these programs have huge
potential. A more systematic and open approach to evaluating the effectiveness
of these programs would help to improve their outcomes, with positive effects for
workers, workplaces and business.

The Bayesian networks presented in this paper are intended to contribute to this
endeavour. The systems models of factors contributing to a healthy worker, and
similarly a successful workplace wellness program, have been developed based on
available literature. It is anticipated that both the structure of the models and the
probabilistic inputs will change as the literature grows, and other researchers and
practitioners interrogate and contribute to these models. Indeed, this dynamic nature
of BNs is a positive feature, facilitating currency of knowledge and richer insights
at both global and individual workplace scales.

The BN models presented in this study can be modified to enable employers to
describe systems specific to their own workplace, workforce and wellness programs.
The structure of the model, including the nodes and connections, as well as the
definition of the target outcomes, can be modified as required. The definition of
the binary quantities for the nodes can also be adapted to the situation at hand.
In the BNs in this paper, the binary quantities included yes/no and present/absent
depending on the context, and the internal nodes were defined in terms of a ‘relative
load’ based on the number of parents nodes that were positive (yes, present, etc).
This facilitates the evaluation of ‘best’ and ‘worst’ scenarios. Alternatively, the net-
work probabilities could be quantified using real data, such as individual health data
obtained as part of ongoing hygiene and medical assessments, or survey results on
the effectiveness or otherwise of wellness programs. Such information can also be
used for predicting where health and wellness programs could be best targeted and
enable better use of resources to target those individuals and groups most at risk.
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Appendix 1

Healthy Worker Literature Survey

The following table summarises selected literature that identifies occupational
associations with health outcomes among workers.

Health outcome Occupational associations

Obesity
• Around 2/3 of Australians are overweight or
obese, and the proportion is growing [5].
• The economic costs of being overweight in
the workplace have been shown to be higher
than those of smoking, drinking, and poverty
[26, 67, 68].

• Increases risk of hypertension,
cardiovascular diseases, asthma,
musculoskeletal disorders, some cancers [21,
62].
• Modifies response to occupational stress,
immune response to chemical exposures, and
risk of disease from occupational neurotoxins
[62].
• Modifies intensity of response to various
occupational hazards including heat
exhaustion, pesticide exposure, accidents with
equipment operators, and respiratory and
physiological strain during hard physical
work [31].
• Reduces effectiveness of personal respirator
tests, protective equipment and clothing,
particularly in hot and humid conditions [62].
• Increases absenteeism [49, 62, 73].
• Increases incidence of sick leave [13, 61]
• Increases presenteeism [26].
• Occupational stress and fatigue increases
behaviours associated with weight gain [77].
• Augments endocrine factors related to
weight gain caused by psychological strain
[77].

Musculoskeletal Disorders
• Encompasses a variety of inflammatory and
degenerative conditions involving muscles,
tendons, ligaments, joints, peripheral nerves
and supporting blood vessels
• Can be caused by one acute traumatic event,
or by chronic stress over a period of time due
to repetitive use [58].

• Muscular stress due to lifting, carrying,
lowering, and handling of objects as well as
from other strenuous physical movements
[58].
• Repetitive movements, excessive loading,
muscle overuse and vibration are specific
activities often associated with a heightened
risk of musculoskeletal diseases [62].
• Exacerbated by jobs that demand excessive
workloads and high responsibilities, time
pressures, insufficient rest breaks, and
inadequate resources and workplace support
and resulting in increased injury risk from
fatigue, poor posture, and stress [42].

(continued)
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Health outcome Occupational associations

Cardiovascular Disease
• Encompasses a range of disorders including
heart disease and circulatory conditions.
• A major cause of death globally [65].

• Air pollution, including short and long term
exposure to gases, chemicals and particulate
matter, can potentially increase the risk of
heart disease. This is exacerbated by the
well-established relationship between
smoking, both active and passive, and heart
disease and stroke [12, 30, 71].
• Occupational stress can increase the risk of
cardiovascular disease [29, 35, 47].
• Impact of occupational cardiovascular
disease on absenteeism and presenteeism, but
this is not trivial [41]. Altering risk factors
such as diet, exercise and smoking can aid in
preventing the onset of various cardiovascular
diseases [4, 28, 43].

Noise-induced hearing loss
• Noise exposure has a range of undesirable
effects including elevated blood pressure,
reduced performance, sleeping difficulties,
annoyance and stress, temporary shift in the
hearing threshold, tinnitus and noise-induced
hearing loss (NIHL) [55].

• Exposure to excessive noise at the
workplace can cause NIHL, also known as
industrial deafness [58].
• The extent of hearing loss can be affected by
the level of noise and the length of exposure
[52, 55] and by the type of exposure [46].
• NIHL impedes spoken communication and
can cause social isolation and stress [55, 60].
• Hearing loss is the second most self reported
occupational disease [52].

Respiratory Diseases
• Various respiratory diseases have been
associated with workplaces, including
bronchitis, asthma, upper and lower
respiratory illness, chronic obstructive
pulmonary disease, lung cancer,
pneumoconiosis [10, 20].

• Agents in the workplace that can exacerbate
or cause several respiratory diseases include
pesticides, herbicides, dust, lead, fumes,
chemicals, gases, faulty air conditioners,
particulates and gases emitted from fire and
other activities, emissions from furnishings,
and so on [10, 20].
• Occupational dust is a significant contributor
to the development of bronchitis, asthma and
other respiratory illnesses [20, 53].
• Exposure to dust in the workplace is also
associated with chronic obstructive
pulmonary disease with potential for
continued development of the disease many
years after exposure [10].
• There are also numerous respiratory
carcinogens including asbestos, arsenic,
radon, silica, chromium, cadmium, nickel and
beryllium [10].
• Asbestos-related disorders and industrial
bronchitis and asthma are respiratory diseases
that have been amongst the most common
occupational diseases, and silicosis and
pneumoconiosis have been reported in US
coal workers [20].

(continued)
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Health outcome Occupational associations

Cancers
• A variety of cancers are reportedly
associated with occupational carcinogens,
including lung, bone, liver, thyroid, bladder,
skin and leukaemia [33].

• Well recognised carcinogenic agents include
asbestos, silica, nickel, chromium, arsenicals,
vinyl chloride, and halo ethers as well as
ionising and solar radiation [33].

Mental Health Disorders
• Poor mental health among workers is
pervasive [14].
• It can lead to work impairment [37, 40],
reduced job commitment and satisfaction
[38].
• Anxiety disorders can be more costly than
alcohol-related disorders due to their higher
frequency rate [64].

• Occupational factors that can lead to poor
mental health include long hours [32, 70],
shift work [17, 25], low job control and high
work demand [70].
• Traumatic events associated with work
related incidents, harassment, bullying and
exposure to violence have also been linked to
mental disorders [58].
• Occupational stress can lead to absenteeism,
loss of productivity, unemployment, social
impairment and a high use rate of health care
[16].

Alcohol-related Disorders
• Alcohol affects hepatic and pancreatic
systems [23, 34] and is also related to
increased blood pressure, an increased risk of
developing certain cancers, and cerebral
dysfunction [23].

• Excessive alcohol consumption is related to
poor health, resulting in absenteeism and
presenteeism. It has also been linked with late
arrival at work and reduced promotion
success [34].

Appendix 2

Workplace Wellness Literature Survey

Definition of Wellness

Wellness is a balance of positive mental, physical and social health. It is variously
defined, for example by the World Health organization as a “state of complete
physical, mental and social-wellbeing and not merely the absence of disease or
infirmity” [75], or “the process and state of a quest for maximum human functioning
that involves the body, mind, and spirit” [51]. Models for wellness also exist, such
as the Indivisible Self Model [50] which comprises five components, namely The
Essential Self, The Creative Self, The Coping Self, The Social Self and The Physical
Self.

Wellness Programs: Case Studies

The following table provides a summary of the wellness programs surveyed for the
purposes of developing the Workplace Wellness BN. Numbers in brackets refer to
number of programs.
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Country Aims Methods Outcomes

Australia:
No. programs
surveyed (9).
No. programs
that detailed:
- purpose (7)
- methods (9)
- outcomes (7)

• Improved physical
health and wellbeing of
employees (5)
• Reduced risk of
lifestyle disease (3)
• Save money, improve
productivity, improve
staff relationships,
reduce stress, reduce
absenteeism, provide
information to
employees on benefit
of a healthy lifestyle,
improve quality of life,
ensure employees are
fit to work (≥ 2)

• Comprehensive
health assessment of
each employee (7)
• Needs assessment and
information sessions
on healthy lifestyle (5)
• Exercise programs,
financial support to
participate in
community events (3)
• Marketing of events
outside the program,
workplace audit,
meditation classes,
health challenges (2).

• Reduced sedentary
category (4)
• Improved blood
pressure, energy, eating
habits and staff morale,
decreased stress levels
(3)
• Increase in
employees in healthy
weight range, increase
in employees in ideal
category for total
cardiac risk, increased
health knowledge,
improved physical
health, enhanced
motivation, improved
mental health, better
staff relationships,
increased job
satisfaction (2)

USA:
No. programs
surveyed (8).
No. programs
that detailed:
- purpose (5)
- methods (6)
- outcomes (7)

• Reduction of tobacco
intake (4)
• Reduction of stress
(3)
• Improve exercise,
improve diet, manage
employee weight,
improve employee
fitness, reduce business
costs (2)

• Tobacco cessation
program (6)
• Nutrition classes (4)
• On-site exercise
facilities, weight
control programs,
health services, free
health screenings (3)
• Educational material
on health, stress
management programs,
fitness and activity
programs,
vaccinations, wellness
magazines or
newsletters, incentive
programs, fitness
classes (2)

• Saved money (7)
• Reduced absenteeism
(4)
• Reduced weight,
cholesterol, smoking
and blood pressure (2)
• Increased
productivity,
improvements in
nutrition and emotional
health, increased
exercise, decreased
alcohol use (≥ 1)

UK:
No. programs
surveyed (7).
No. programs
that detailed:
- purpose (0)
- methods (7)
- outcomes (7)

N/A • Smoking cessation
classes and stress
interventions (4)
• Massage sessions,
healthy eating options
at work, fitness classes,
weight management
courses, discounts at
local gyms, blood
pressure testing,
counselling services
(3)
• Pedometer use (2)

• Decrease in staff
absence (5)
• Decrease in staff
turnover, increase in
corporate image,
decrease in risky
behaviour including
smoking cessation,
increased physical
activity (3)
• Increased employee
engagement (2)



320 G. Davis et al.

Types of Wellness Initiatives

Wellness initiatives have been categorised in many ways over many years. For
example, Gebhardt and Crump [27] separated workplace wellness programs into
three functional levels. Level one involves awareness programs such as newsletters,
health fairs, screening sessions, posters, flyers and educational classes. These are not
solely aimed at improving participants’ health or instantiating long term behavioural
change, but are aimed at raising awareness of the consequences of unhealthy
behaviours. Level two programs aim for behaviour and lifestyle modification and
include self-administered fitness programs, memberships at local fitness facilities,
classes related to proper performance of physically demanding work tasks, etc.
Level three programs aim to create an environment that supports the sustainability
of new healthy behaviours, for example via the provision of equipment, space or
locker facilities at the worksite, availability of healthy foods and the removal of
unhealthy temptations.

This historic categorisation generally conforms to more recent classifications of
wellness initiatives. For example, Mattke et al. [45] performed a cluster analysis
of a large dataset and identified five common configurations of workplace wellness
programs that offered different levels of service for health risk screening, lifestyle
management to reduce health risks and encourage healthy lifestyles, and chronic
disease management.

Of the Australian case studies examined, a large proportion were level one
programs, with the most popular being health and needs assessments. Information
sessions on healthy lifestyle were also very popular, followed by marketing of the
program audits of the workplace, health risk screening and marketing of events
outside the program. Level two programs in Australia most commonly included:
exercise programs; financial support to participate in community events; challenges
and meditation sessions. None of the Australian case studies examined included any
level three wellness programs.

In the United States wellness programs run were evenly distributed between level
one and two programs, with the most popular level one programs: nutrition classes,
free health screenings, educational materials on health and wellness newsletters
or magazines. Level two programs included tobacco cessation programs; weight
control programs, fitness classes and fitness and activity programs. The only level
three program was the provision of onsite exercise facilities.

In the United Kingdom studies there was a greater proportion of level two
programs, with only one level one and level three program offered by more than
one company. The level one program was blood pressure testing. The most common
level two programs included smoking cessation classes, fitness classes, discounted
bicycle purchase, weight management courses, discounts at local gym, counselling
services and the provision of pedometers. The level three option included was
healthy eating options at work.
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Characteristics of Successful Wellness Initiatives

In order to evaluate the success of a work-based wellness programme, it is necessary
to establish what is used to define a program as either a success or a failure.
Success can be defined in terms of financial, health and social benefits, and within
different timeframes. For example, results from the 2004 National Worksite Health
Promotion (NWHP) Survey revealed that the most commonly used definition of
success was employee feedback, followed by employee participation, workers’
compensation costs, health care claims costs and reduced absenteeism, whereas
the most common barriers to success were lack of employee interest, lack of staff
resources and funding, lack of participation of high-risk employees and lack of
support from upper level management.

These findings have been echoed in later surveys, for example, in the com-
prehensive studies of U.S. employers [45] and in U.K businesses [24]. The latter
study reported reduced sickness absence (in 82% of programs surveyed), reduced
staff turnover (33%), reduced accidents and injuries (29%), increased employee
satisfaction (25%), reduced resource allocation (16%), increased company profile
(15%), increased productivity (15%), and increased health and welfare (15%). Each
of these was linked to positive economic contributions.

Similar benefits were observed among the successful wellness programs sur-
veyed in the present paper. These included integration of the program into business
strategy and company culture, the inclusion of a full time or part time program
co-ordinator, support from upper level management, social support, the use of incen-
tives to increase participation in the program and the convenience and accessibility
of the program.

The following table provides a selection of references to literature supporting
these findings.

Factors that increase the likelihood of success of a workplace wellness initiative:
• The program is woven into the business strategy and culture of the company; a program is
more vulnerable if it is considered to be a luxury rather than a necessity [11]
• Strong management support for the program; the more an individual perceives support from
their supervisor, the higher their participation [63].
• Employee involvement in the program design and implementation [69]
• A full time or part time coordinator with the ability to motivate participation [27]
• Use of incentives to increase employee participation [69]. Incentives work positively because
employees prefer to feel that they are acting of their own volition rather than being forced to
act by management policies [11].
• Accessibility and convenience of a program. In order to ensure maximum accessibility
making a program either free or low cost to participants must be a priority [11].
• Onsite integration of wellness programs, making participation more straightforward and
convenient for employees [11].
Factors that have contentious influence:
• Co-worker support is reported in some studies to be an important influential factor on
participation in health-related and fitness activities for all employee subgroups [19] but not in
other studies [2, 63].
• Mattke et al. [45] found little evidence of the benefit of employee participation in the
management aspects of wellness programs.
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A final method of determining success is to examine the purpose of the program
as set out by the company and then examining the achievements that were reported
by the company. To be considered successful the company must as a minimum
achieve the majority of the points set out in its “purpose of program statement”.
For the Australian case studies, five of the nine companies detailed their purpose
of program as well as the achievements. Based upon the criteria of a successful
program, two of the five Australian programs that listed both their purpose of
program as well as the achievements of their program can be labelled as successful.
Four of the eight case studies examined from the United States detailed both
their purpose of program and achievements. Three of these four programs can
be classed as successful programs based on the criteria of a successful program.
Three companies reportedly achieved everything they set out to achieve, saved
money and improved productivity, although only one of these provided data on
specific outcomes to support their claims. Success of the United Kingdom programs
could not be evaluated due to the lack of recorded information on their purpose of
program.

Appendix 3

Quantification of the Bayesian Networks

The Healthy Worker and Workplace Wellness BNs were quantified as follows. The
quantification is intended for exposition purposes only. The resultant probabilities
should not be interpreted medically, socially or economically, nor with respect to
particular workplaces or wellness programs. However, the structure of the Healthy
Worker network and its quantification could be targeted to a particular workplace
cohort if data about the associated personal and lifestyle factors, health outcomes
and workplace risks were made available. Similarly, the Workplace Wellness
network could be structured and quantified using program-specific information,
resulting in interpretable probabilities of success.

For the Healthy Worker model, each node was categorised as ‘yes’ or ‘no’. All
exposures and factors at the top of the network were set to equal probabilities
for each category and each health outcome was assigned equal weight. Thus the
probability of a health outcome was determined by the number of detrimental
factors affecting the node (depicted as directed arrows to the node) divided by the
total number of factors affecting the node. Exceptions to this rule were made for
respiratory diseases and acute & chronic diseases. Since the survey indicated that
exercise heightens the inhalation of unwanted air pollution, exercise was included as
a factor when combined with poor quality air, but was ignored for good quality air.
However, since exercise was reportedly not as influential a risk factor as smoking, a
weight of 0.2 of developing a respiratory disease was assigned to exercise alone, 0.4
to both smoking and poor air quality, 0.6 to performing strenuous activity and poor
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air quality, and 1.0 if the worker also smoked. For the node representing acute &
chronic diseases, it was determined that if a worker had three or more diseases then
they were deemed to have a higher chronic disease rate. Having two diseases was
given a 2/3 weighting; having 1 disease was given a 1/3 weighting and no disease
was given a 0 weighting. While this approach simplified the quantification of the
network, the many nodes linking to the chronic and acute nodes meant that it was
relatively easy to obtain a poor score on the chronic, acute, and overall worker health
nodes.

The systems model for the workplace wellness programs was quantified in a
similar manner. Probabilities were then assigned to each node, based on these
information sources and on the other nodes in the model. For each of the nodes
such as participation in program, physical, behavioural, and return on investment,
the probability of a positive outcome was directly proportional to the number of
positive outcomes in the parent nodes, with the maximum value set to 0.95 if all
parent nodes were positive and the minimum value set to 0.05 if all parent nodes
were ‘negative’. For those with two parent nodes, such as increase in wellness and
accessibility of program, the probability of a positive outcome was set to 0.80 if
both parent nodes were positive and to 0.2 if both parent nodes were negative.
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Chapter 13
Bayesian Modelling to Assist Inference on
Health Outcomes in Occupational Health
Surveillance

Nicholas J. Tierney, Samuel Clifford, Christopher C. Drovandi,
and Kerrie L. Mengersen

Abstract Objectives: Occupational Health Surveillance (OHS) facilitates early
detection of disease and dangerous exposures in the workplace. Current OHS
analysis ignore important workplace structures and repeated measurements. There
is a need to provide systematic analyses of medical data that incorporate the data
structure. Although multilevel statistical models may account for features of OHS
data, current applications in occupational health medicine are often not appropriate
for OHS. Additionally, typical OHS data has not been analysed in a Bayesian
framework, which allows for calculation of probabilities of potential events and
outcomes. This paper’s objective is to illustrate the use of Bayesian modeling
of OHS. Three analytic aims are addressed: (1) Identify patterns and changes
in health outcomes; (2) Explore the effects of a particular risk factor, smoking
and industrial exposures over time for individuals and worker groups; (3) identify
risk of chronic conditions in individuals. Method: A Bayesian hierarchical model
was developed to provide individual and group level estimates and inferences for
health outcomes, FEV1%, BMI, and Diastolic and Systolic blood pressure. Results:
We identified individuals with the greatest degree of change over time for each
outcome, and demonstrated how to flag individuals with substantive negative health
outcome change. We also assigned probabilities of individuals moving into “at risk”
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health categories 1 year from their last visit. Conclusion: Bayesian models can
account for features typically encountered in OHS data, such as individual repeated
measurements and group structures. We describe one way to fit these data and obtain
informative estimates and predictions of employee health.

13.1 Introduction

Occupational Health Surveillance (OHS) is the systematic collection, analysis, and
dissemination of employee exposure and health data to facilitate early detection of
disease and dangerous exposures in the workplace [1]. Australian employers have a
responsibility to identify, assess, and control risks arising from workplace hazards
[2, 3]. There is a rigorous methodology for OHS data collection, but a surprising
lack of agreement about analysis of these data [4]. Indeed, industry OHS data col-
lection is often targeted for managing risk and implementing engineering controls.
Consequently, many of the analyses conducted in industry focus on the likelihood
of exposure rather than the impact of these risk factors on health. Moreover, current
practices may ignore important data structures such as repeated measurements and
workplace structures. This results in inferences not being applicable for individuals
over time, or for groups with similar exposures within the workplace.

There is a need to provide systematic analyses of medical data that incorporate
workplace structure, relevant to risk factors. An example of such a workplace
structure is segmentation of the workplace into similar exposure groups (e.g., as in
[5]). Moreover, such analyses need to incorporate typical features of OHS data, in
particular where individuals have multiple health measurements, or single repeated
measurements over time, or missing data. These analyses should provide both
individual and group health predictions, and should improve the understanding of
exposure effects on the workplace population as a whole, as well as similar exposure
groups and individuals. Such analyses could flag individuals and groups for further
health monitoring. The absence of such analyses in industry means that chronic
disease and dangerous work environments may go unidentified and that health
funding is not optimally or effectively targeted.

These features of OHS data described above can be accounted for with multilevel
statistical models. These are in wide use in epidemiology [6, 7], and have been used
in occupational health medicine to evaluate decline in lung function for ceramic fibre
workers [8], assess impacts of asbestos [9], measure decline from cystic fibrosis [10]
and model leptospirosis in abattoir employees [11].

However, applications of multilevel models in occupational health medicine do
not quite mimic the analyses conducted in standard industry environments, as they
might ignore individuals with only one measurement, population minority groups,
or workplace structures [8, 9]. This is likely due to the fact that the goal of these
papers is often to demonstrate the use of a new method [9, 10, 12], or discover new
health risk factors or exposures [13–17].
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In contrast, the goal of OHS analysis is to provide individual predictions for
health, understand the effect of exposures on groups, and monitor exposures and
health over time, so that individuals and groups at risk of some disease can be
flagged for further health monitoring. Thus, ignoring cases with only one medical
visit or analysing only subsets of the population for reasons such as sufficient sample
size, can increase bias and/or variance of estimates.

Bayesian models provide a pragmatic framework for this research problem, as
they provide simple and effective ways of analysing small effects, and provide a
rich set of results that can be interpreted with probabilistic statements. Bayesian
methodology also allows for direct comparison between groups and individuals,
and provides probabilities on potential events and outcomes.

Bayesian techniques have been recently applied in occupational health, with
[5] demonstrating the use of hierarchical models to combine monitoring data and
professional judgement from occupational hygienists to facilitate decision making.
Bayesian hierarchical models have also been applied to quantify chemical exposure
variation in human populations [18], and to combine two data sources from animal
studies and human industrial studies to create informative priors to estimate human
lung function changes [19].

Industry data used in the literature typically consist of longitudinal data collected
from employees in a particular industry, or set of industries. These data are used
to evaluate the effect of the working conditions, such as long hours with no sleep
[20, 21], metal smelting, and other exposures [8–12, 17]. Other OHS studies focus
on small populations, using experiments to evaluate effects of increasing some
exposure on health [22, 23], or larger cross-sectional studies using registry data,
cohort studies, or surveys to evaluate the effect of an environmental exposure on
diseases such as rhinitis or cystic fibrosis [10, 16].

Notwithstanding these studies, there are no examples of Bayesian hierarchical
modelling and analysis of typical OHS data with applications in an industry context.
This paper analyses OHS data from selected industrial sites around Australia
to identify risk factors for health outcomes. The multilevel model adopted is a
Bayesian hierarchical model providing individual and group level estimates and
inferences.

The aims of the analysis are threefold, and are focused on the following health
outcomes: lung function (as a percentage of predicted Forced Expiratory Volume
in 1 s (FEV1, FEV1%), Body Mass Index (BMI), and systolic and diastolic blood
pressure. These health outcomes were selected as they are clinically substantive in
the case study population and are well known in OHS. The first analytic aim is
to identify patterns and changes in health outcomes. The second aim is to explore
the effects of a particular risk factor: smoking and industrial exposures over time
for individuals and worker groups. The third aim is to identify risk of chronic
conditions (such as obesity, hypertension, and obstructive/restrictive lung disease)
in individuals.
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13.2 Method

13.2.1 Case Study Data

The case study considered in this paper is typical of many large companies that
are involved in a range of activities, such as construction, mining, manufacturing
and agriculture. For reasons of confidentiality, the particular industry and associated
sites are not named here. The data are comprised of over 3000 employee medical
records from nearly 2000 individuals located at a number of sites. Each observation
is a medical visit, and while most employees have one or two visits, some have
over ten visits over a 10 year period. Employees are typically grouped by their
workplace exposure; for example, Administration employees are less likely to be
exposed to environmental factors such as dust or noise, compared to maintenance
exposure groups. In this way, Administration provides a useful control group to
compare to the other exposure groups. Employees may change positions within the
company over their career and thus may also change their exposure group. The
pattern of measurements over time for individuals are illustrated in Fig. 13.1, which
displays individual measurements of lung function (FEV1%) over visits for selected
exposure groups.

The frequency of medical visits changes for each exposure group, as certain
exposure groups require more frequent medical examinations to ensure that they

Fig. 13.1 Individual employee lung function (FEV1%) over their medical visit number (1, up
to 10), for each exposure group. A sample of 50% of employees is used to reduce overplotting.
Individuals are linked by a line between observations. A point on the 2nd or later visit which is not
joined to previous points by a line indicates individuals who have changed exposure group. Broken
lines and individual floating points without lines indicate where individuals have changed exposure
group. Note that the number of days between visits varies by individual and exposure group
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are fit for work. The times between visits for each worker were not equally spaced,
with median number of days since first visit being 1028 (IQR = 193–3363), or 2.8
years (IQR = 0.5–9.2 years). Gender (male or female) and smoking status (ever
smoker or never smoker) were also recorded. Dust data were not recorded for some
dates and were interpolated using a loess model [24] fitted for each exposure group,
so that the values corresponded to medical examination dates. Interpolated values
should be treated with care, and explored with visual and numerical summaries.

13.2.2 Ethics

The Queensland University of Technology Human Research Ethics Committee
assessed that this research met the conditions for exemption from HREC review and
approval in accordance with section 5.1.22 of the Australian National Statement on
Ethical Conduct in Human Research.

13.2.3 Patient and Public Involvement

The development of the research questions and outcomes were informed by
discussion with health practitioners who helped collect the data. The patients were
not involved in the results, design, or recruitment. The paper will be shared with
the medical practitioners for their use in future designs. We thank the health
practitioners and patients involved in the data collection.

13.2.4 Modelling

We construct four multilevel Bayesian hierarchical models. Each model predicts one
of the four outcomes: lung function (FEV1%), Body Mass Index (BMI), systolic
blood pressure, and diastolic blood pressure.

Let Yij be the ith individual’s j th health observation, at a time dayij after
their first visit. We assume that Yij follows a normal distribution with mean μij

and variance σ 2
y . Let β0i and βdi be respectively the individual intercept and

individual health trend coefficient associated with the j th day for the ith person;
these individual parameters are centered around an overall intercept β0c and an
overall slope βdc, the effect of the number of days since arriving at the workplace.
Thus βdi is the linear trend over time for the health characteristics of interest for
the ith individual, over and above the overall population effect. Let βg be the effect
of being female (compared to being male); let βs be the effect of being a smoker

(compared to a never smoker), and let
∑nexposure−1

k=1 βkI (exposureij = k) be the effect
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of a workplace exposure, where I (.) indicates whether an individual i at a visit j is
in exposure group k, with the baseline exposure group set to Administration. Thus
the model for a particular health outcome is represented as:

Yij ∼ N (μij , σ
2
y )

with

μij = β0i+βdidayij +βggenderij +βssmokeij +βpdustij +
nexposure−1∑

k=1

βkI (exposureij = k)

β0i ∼ N(β0c, σ
2
0 )

βdi ∼ N(βdc, σ
2
d )

for i = 1 . . . nI , j = 1 . . . n0i , k = 1 . . . , nE , where nI is the total number of
individuals, n0i is the number of observations for each individual, and nE is the
number of exposure groups.

In the absence of other information, all of the regression coefficients were
allocated independent normal priors with a mean of 0 and a variance of D1 = 103.

β0c, βdc, βdi, βg, βs, βp, βk ∼ N(0,D1)

Priors on σ0, σy , σd were set to a uniform distribution with bounds of zero and
D2, where D2 = 100 for BMI and FEV1%, and D2 = 50 for Systolic and Diastolic
blood pressure. D2 is intended to better reflect the variation in BMI and FEV1%
compared to blood pressure. Note also that we do not recommend automatically
choosing set values for the uniform, but to instead choose sensible bounds based on
the problem at hand.

σy, σ0, σd ,∼ Uniform(0,D2)

Note also that the priors used for the β terms are proper priors, which produce
a proper posterior. In some cases improper priors such as an infinite uniform prior
might be used, but these are sometimes not valid choices (See [25] and [26] for
more details). It is worthwhile to consider the choice of prior for the variance
terms. Although we have used inverse gamma and uniform priors, other weakly
informative priors could be considered, such as a half-t-prior (represented as a half-
Cauchy) [27]. It is important to not automatically choose uniform or half-t-priors,
but to explore options during model building.

Data processing and manipulation were implemented using the R statistical pro-
gramming language [28] and various R packages [29–34]. To ensure reproducibility,
the paper was written using rmarkdown and knitr [35, 36]. Potential outliers in
the data were checked administratively and confirmed for biological plausibility
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in the context of the workforce under consideration. Given this, we elected to
include them in the analyses. Moreover, the modelling goal is to identify those who
are risk, so removing outliers seems counter to that goal. The model was run for
20,000 iterations (10,000 burnin) using JAGS [37, 38]. Thinning was applied to
the analysis, removing every 20th value to assist in reducing autocorrelation and
for computational storage. We note that thinning is not absolutely necessary in an
analysis, and should be assessed case by case [39]. We note that other software
such as STAN, WinBUGS or OpenBUGS, Nimble, and greta could also have
been used [40–43]. The diagnostics for MCMC convergence were predominantly
graphical and statistical [44, 45]. Graphical evaluation included expert examination
of posterior density plots, traceplots and autocorrelation plots of parameters.
Statistical evaluation included calculation of the Geweke diagnostic and effective
sample size.

Missing values were imputed from their respective posterior conditional distri-
butions as part of the Bayesian analysis. Posterior estimates of each parameter,
including mean, 95 and 80% credible intervals, and probability of being negative
were calculated after burnin. An effect was nominated as substantive if the
corresponding credible interval did not contain zero. The probability of individual
health outcomes reaching the threshold value of being a chronic condition was
also calculated. Individuals were identified as being “at risk” if the corresponding
estimates of the parameter for change over time, βdi , contained 0 in the 95%
credible intervals, and βdi was far away from zero. For the purposes of exposition,
individuals with 3 or more visits were selected as examples to explore further.

Patterns and trends in health outcomes were examined by exploring individuals’
change over time and identifying substantive effects, addressing analytic aim 1. The
effects of smoking and industrial exposures over time for individuals and exposure
groups were examined by evaluating substantive effects of smoking and dust for
each outcome, and finding those exposure groups substantively different from the
Administration population, addressing aim 2. To identify future risk of chronic
conditions, 1 year forecasts for each individual and corresponding 95% credible
intervals were calculated from the respective posterior predictive distribution, and
the probability of having a chronic condition in 1 year was obtained, addressing aim
3. Model fit was evaluated by examining the proportion of observed values lying
within the 95% and 80% posterior predictive intervals [46, 47].

13.3 Results

13.3.1 Demographics

In the case study dataset, the population was predominantly male (86%), with
the mean overall age being 35.8 years. Males were older on average, but not
significantly so, compared with females. For all exposure groups there were more
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Table 13.1 Percent of the
population in selected
exposures

Exposure % of population

Technology 18–20

Administration 8–10

Interior maintenance 8–10

Technicians 6–7

Emergency 5–6

Exterior maintenance 4–5

Field experts 2–3

males than females, except in the Administration exposure group. The proportion of
individuals in selected exposure groups is shown below in Table 13.1.

13.3.2 Model Fit

Figure 13.2 shows the posterior predictions for each outcome plotted on the y axis
against the observed values on the x axis. The points represent the observed values
and the corresponding posterior means with vertical lines representing the respective
95% posterior predictive intervals. A line of perfect prediction runs from the bottom
left to the top right corner. The points and lines are shown in red to indicate when
the observed value lies outside of the 95% posterior predictive interval.

Model fit was assessed by visual inspection of Fig. 13.2, and by assessing
the percentage of observed values that lie within nominated posterior predictive
intervals (Table 13.2). The models for BMI and FEV1% had very high proportions
of observed values in the 95% intervals and 80% intervals, indicating reasonable
model fit.

Figure 13.3 shows four selected “at risk” individuals and their posterior mean
and credible intervals for the health characteristics systolic blood pressure, FEV1%,
diastolic blood pressure, and BMI. The proportion of individuals “at risk” for each
health outcome, and the mean and standard deviation for each health outcome for
those at risk and not at risk, are shown in Table 13.3. Individuals were identified
as “at risk” in this case according to whether their parameter estimates for change
over time βd were the furthermost away from zero (and did not contain zero in
the credible interval) for the health characteristics systolic blood pressure, FEV1%,
diastolic blood pressure, and BMI. As described in the method section, these
individuals had 3 or more visits.

Table 13.4 shows the posterior mean, 95% credible interval, and probability of
being negative for each of the risk factors considered, namely smoking, dust, and
days, since commencement.

The number of days since first visit had a substantive effect on all outcomes, and
was associated with a decrease in FEV1%, and a decrease in BMI, diastolic and
systolic blood pressure. Dust did not have a substantive impact on any outcomes,
but was associated with an 11% chance of decreased BMI, a 22% chance of
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Fig. 13.2 Observed values for each health outcome plotted against the posterior mean values
(point) with their respective 95% posterior predictive interval (lines). A line of perfect prediction is
shown. The points and lines are shown in red to indicate when the 95% posterior predictive interval
lies outside the line of perfect prediction

Table 13.2 Percent of
observed values inside the 95
and 80% posterior prediction
intervals and RSS for each
model outcome

Outcome Inside 95% PI Inside 80% PI

BMI 99.09 97.52

Diastolic BP 98.38 90.18

FEV1 (%) 98.96 95.91

Systolic BP 98.32 92.15

decreased FEV1%, a 31% chance of decreased systolic blood pressure, and a 73%
chance of decreased diastolic blood pressure. Being a smoker was associated with
substantively decreased FEV1%, a 100% chance of decreased FEV1 %, a 95%
chance of decreased BMI, a 13% chance of increased diastolic blood pressure, and
a 24% chance of increased systolic blood pressure.
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Fig. 13.3 Individuals whose parameter estimates for change over time, βd , were the furthest away
from zero (and did not contain zero in the credible interval) for the health characteristics systolic
blood pressure, FEV1%, diastolic blood pressure, and BMI

Table 13.3 The proportion of individuals with 3 or more visits who were ‘at risk’ (95% credible
interval for change over time did not include zero) and the health outcomes for the ‘at risk’ and
‘not at risk’ groups

Summary BMI FEV1% Systolic Diastolic

Proportion at risk 0.1 0.02 0.01 0.98

Mean (SD) not at risk 27.68 (3.84) 100.19 (12.36) 126.46 (13.32) 73.89 (10.98)

Mean (SD) at risk 30.55 (5.22) 102.00 (23.76) 140.77 (19.01) 80.94 (10.04)

Table 13.4 Estimated posterior mean, 95% credible intervals and probability of the effect of Day,
Dust, and Smoking parameters being less than zero

Terms BMI FEV1% Systolic Diastolic

Days 6.09 × 10−4 −8.44 × 10−4 1.35 × 10−3 1.78 × 10−3

(4.72 ×
10−4, 7.52 ×
10−4)

(−1.41 ×
10−3,−2.51 ×
10−4)

(7.30 ×
10−4, 1.97×10−3)

(1.34 ×
10−3, 2.17×10−3)

0 9.98 × 10−1 0 0

Dust 0.11 0.33 0.24 −0.21

(−0.06, 0.3) (−0.52, 1.15) (−0.72, 1.16) (−0.92, 0.51)

0.11 0.22 0.31 0.73

Smoking −0.33 −1.87 0.47 0.52

(−0.72, 0.07) (−3.24, −0.55) (−0.8, 1.79) (−0.38, 1.44)

0.94 1 0.24 0.13

All exposure group effects were compared to the baseline Administration, and the
effects for each outcome over all exposure groups are shown in Fig. 13.4. BMI was
substantively lower in Maintenance, Emergency, and Field Experts. Diastolic blood
pressure was substantively lower in Technology and Field Expert exposure groups.
Technologists had substantively lower systolic blood pressure, and Technicians had
substantively higher FEV1%.

Figure 13.5 shows the same four selected individuals previously identified as
being “at risk”, from Fig. 13.3, and the observed and predicted values for health
outcomes. Observed outcomes are shown as blue points and model mean posterior
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Fig. 13.4 Posterior mean and 95% credible interval for exposure group parameters, for each
model. The baseline exposure group is Administration

values are shown as a blue line. The dark blue ribbon around the blue line represents
an 80% credible interval, and the light blue ribbon the 95% credible interval. A 1
year forecast is shown as a red line extending from the blue line, and similarly
the 80% and 95% credible intervals are displayed. A dotted line is shown for each
outcome, which represents a clinically relevant threshold of chronic disease for each
outcome. Individual probabilities of chronic condition in the 1 year forecast are
labelled directly on Fig. 13.5.

13.4 Discussion

This paper set out to develop a Bayesian approach to analysing OHS data and
to illustrate three analytic aims focussed on the health outcomes lung function
(FEV1%), Body Mass Index (BMI), and systolic and diastolic blood pressure. Aim
1 investigated patterns and trends in the health outcomes. Aim 2 explored the effects
of smoking and industrial exposures over time for individuals and worker groups.
Aim 3 identified future individual risk of chronic conditions.

Aim 1 was addressed by examining individual change over time and identifying
individuals with the greatest degree of change over time for each outcome. We
demonstrated how one could then assess the overall change over time for these
individuals, which could be used to identify trends in other health outcomes. We
also identified the proportion of individuals who fell into an “at risk” category.
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Fig. 13.5 Individuals from Fig. 13.3 and their observed (points), predicted (blue region and line),
and forecasted (red region and lines) values for the health outcomes shown with 80% (darker
region) and 95% credible intervals (lighter region). Labels show the probability of the individual
having a clinically defined chronic disease at the forecasted timepoint

Identifying those individuals with substantive negative change in BMI, lung func-
tion, systolic, and diastolic blood pressure means that medical professionals could
flag these individuals as at risk (compared to the overall worker population), and
provide more frequent medical attention to better monitor their health.

Aim 2 was addressed by examining the probability that the effects of smoking
and dust were different from zero for each outcome, finding those exposure groups
that were substantively different from the reference group (Administration), and
identifying individuals at risk based on substantive change over time in health
outcomes. Smoking was associated with negative health outcomes for lung function
and systolic and diastolic blood pressure. This information can be used to further
support health policies, such as implementation of tobacco bans in the workplace.

The nominated industrial exposure, dust was not substantively associated with
health outcomes in the workplaces in this case study. The relevant parameter
estimates had quite wide credible intervals, possibly due to interpolation of the
data, which was used to align dust measurement points with health measurements.
This demonstrates that frequent measurements of industrial exposures of concern
can provide more certainty in the measurement of effects. Interestingly, results
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identified that employees in Administration should be more closely monitored and
perhaps should be the focus of health interventions and healthy worker programs
in workplaces. Providing descriptive statistics of the outcomes for at risk and not at
risk populations (Table 13.3) provides medical professionals with a measure of how
meaningfully different these populations are, and facilitates more targeted health
and wellness programs.

Aim 3 was addressed by calculating posterior predictions and corresponding
intervals and 1 year forecasts for all individuals. This allows medical professionals
to assign a probability that an individual might move into an “at risk” category 1
year from their last visit. This means that individuals may be flagged as “at risk”
and further action can be taken, perhaps in the form of more frequent medical visits
to more closely monitor their health measures. his demonstrates how forecasting
could identify “at risk” individuals, by placing a threshold on the probability of
health outcomes being medically classified as chronic or acute conditions. Some
individuals might cross the threshold over the observed times, whilst others might
be predicted to enter the threshold with a given probability over the next year.

The Bayesian hierarchical model accounts for important features of data such
as multiple measurements for individuals, and the exposure group structure in the
workplace. The definition of a Bayesian credible interval as a range of probable
values for a parameter makes it easier to communicate model inferences. The
model also provides probabilities of interest directly, conditional on the data. This
is a useful complement to credible intervals. Forecasting of future observations in
a Bayesian framework also allows for probabilistic statements based directly on
the posterior predictive distribution. The Bayesian framework naturally includes
additional uncertainty due to imputation of missing values. These features compare
favourably to their frequentist modelling counterparts.

Extensions to the Bayesian models developed here are also straightforward.
For example, an obvious next step in analysis might be to add interactions into
the model, such as smoking and dust, or BMI and blood pressure. One relatively
straightforward way to explore the impact of interactions is to evaluate the Bayes
factors for each variable, approximated using the Savage-Dickey density ratio,
which only requires samples from the posterior [48, 49]. This can add time to
the model building process, in terms of deciding upon the most useful model,
but is worth the effort if the practitioner is genuinely interested in one or two
interaction terms. As with any working population, there may be some healthy
cohort effect [50, 51], where, being employable, employees are healthier than the
general population. The methods provided in this study identify employees and
groups that are different from the population. Combining this information with
reference chronic conditions provides a more comprehensive approach which might
otherwise have missed healthy employees.

It is also possible that there may perhaps be less measurement error for long
term employees; here a model that predicts the number of visits for each individual
may be useful, where the number of visits n0i for each individual is the outcome.
Additionally, there may be some correlation between the slope and the intercept,
which could be accounted for by modelling them as coming from some bivariate
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normal distribution [46]. It is acknowledged that the model fit is not ideal,
particularly with respect to underestimation and overestimation of very high and
low values, respectively. While this regression to the mean is to be expected given
the random effects terms, the fit could be improved for the other outcomes, perhaps
by including interactions as previously discussed.

As far as we are aware, this is the first time Bayesian methods have been applied
to this kind of OHS data. It is our hope that this paper can serve as one way to fit
and interpret these data, and serve as encouragement for researchers in the field of
OHS, to include Bayesian approaches in their analytic toolkit. The ultimate ambition
is to provide more informative evidence-based OHS assessments for a healthier
workforce and more profitable workplaces.

13.5 Summary

13.5.1 Strengths and Limitations of the Study

• Strength: This is the first application of Bayesian methods to typical data found
in occupational health surveillance.

• Strength: The methods used account for important features of data such as
multiple measurements for individuals, and the group structure of exposure
groups in the workplace.

• Strength: The model allows for groups and individuals to be flagged as “at risk”,
enabling proactive action on individual health.

• Strength: The definition of a Bayesian credible interval as a range of probable
values for a parameter makes it easier to communicate model inferences.

• Strength: The model provides probabilities of interest directly, conditional on the
data, which is a useful complement to credible intervals that makes effects and
uncertainty simpler and easier to communicate to health practitioners.

• Limitation: No account was taken of the healthy worker effect, so whilst the focus
of the paper is on employees rather than the general population, the analysis may
be biased if healthier employees remain longer in the industry.

• Limitation: The model used vague priors, and so future work could explore the
use of more informative priors, based on, for example, previous data collected in
similar fields.
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Chapter 14
Bayesian Networks for Understanding
Human-Wildlife Conflict in Conservation

Jac Davis, Kyle Good, Vanessa Hunter, Sandra Johnson,
and Kerrie L. Mengersen

Abstract Human-wildlife conflict is a major threat to survival and viability of many
native animal species worldwide. Successful management of this conflict requires
evidence-based understanding of the complex system of factors that motivate and
facilitate it. However, for many affected species, data on this sensitive subject are
too sparse for many statistical techniques. This study considers two iconic wild
cats under threat in diverse locations and employs a Bayesian Network approach to
integrate expert-elicited information into a probabilistic model of the factors affect-
ing human-wildlife conflict. The two species considered are cheetahs in Botswana
and jaguars in the Peruvian Amazon. Results of the individual network models
are presented and the relative importance of different conservation management
strategies are presented and discussed. The study highlights the strengths of the
Bayesian Network approach for quantitatively describing complex, data-poor real
world systems.
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14.1 Introduction

Among the 105,732 species listed in the update to the International Union for the
Conservation of Nature (IUCN) update to the Red List of Threatened Species, over
a quarter (28,338) are reported to be threatened with extinction [11]. The single
most important threat identified in the report is humans. This threat is realised
through a range of activities, including but not limited to over-exploitation of the
species, habitat loss, spread of disease, environmental mismanagement associated
with human activities, and conflict.

In this study, we focus on this last factor, namely conflict, and its impact
on a particular set of species, namely wildlife. Although human-wildlife conflict
includes both negative impacts of wildlife on humans, and of humans on wildlife
(WPC Recommendation [35]), for the purposes of the current paper we confine our
attention to direct negative impacts of human behaviour on wildlife.

Many threatened wildlife species have home ranges that extend into modified
urban, agricultural and industrial landscapes. The requirements of urban, agri-
cultural and industrial land uses often conflict with the requirements of wildlife
biodiversity conservation, contributing to threatening processes which drive wildlife
population declines. Proximity of threatened wildlife to urban and rural human pop-
ulations also leads to diverse and often polarised societal attitudes towards wildlife,
thereby threatening agents and conservation efforts to save threatened wildlife. The
need to reconcile diverse societal attitudes and conservation imperatives further
complicates decision-making processes and conservation efforts.

Substantial resources have been committed to understanding the factors associ-
ated with threatened wildlife species, and although resource managers recognize
that these factors range across ecological, biological, physical, social and economic
perspectives, research and management efforts are typically confined to specific
issues. A major reason for this is because it is often difficult to consider the multitude
of factors in a coherent, transparent manner.

One approach to modelling the many facets of human-wildlife conflict is
through a Bayesian Network (BN). BNs are increasingly being used for ecological,
environmental and conservation modelling, among many other applications [8,
14–16, 17]. A key advantage of this method is that it can integrate quantitative
information from a variety of sources, including expert knowledge [15]. This is
advantageous when there is a lack of observed data, which is the case for many
situations involving threatened species. In the case of human-wildlife conflict, a BN
based on expert knowledge can help to identify the major factors that are associated
with this conflict and their relative impact, as well as quantitatively evaluating the
impact of changes to one or more of these factors in light of all the other influences
in the system. In this manner, the BN can also be used to prioritise interventions that
support the species’ continued survival.

In this chapter, we present BN models for two threatened wildlife species,
namely cheetahs in Botswana and jaguars in the Peruvian Amazon. Each of these
models was developed and quantified using expert information. The intention
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of these models was to understand the viability of the species from a multi-
faceted perspective that not only crosses disciplines but integrates the diversity of
stakeholder perspectives. We focus on bringing together the ecological, biological,
societal and economic pressures on, and opportunities for the species, in order to
facilitate decision-making and conservation initiatives. In addition to illustrating the
probabilistic assessments that arise from such models, we also highlight some of the
similarities and differences between the factors that were considered to be important
for each species.

Cheetah numbers in Botswana are declining, partially as a result of human-
cheetah conflict [9, 33]. Human-cheetah conflict can take many forms. Some of
the most common are farmers killing cheetahs to protect livestock [25], out of fear
for their personal safety, or hunting for skins, meat, and other cheetah products.
The scale of this conflict has prompted calls for interventions to prevent local
people from killing cheetahs at an unsustainable rate [31]. Implementing these
interventions, however, is not a trivial matter, and considering the social context
of the intervention is vital [24]. Rural villages are made up of people from either
the majority ethnic group (the Tswana), which has a strongly hierarchical structure,
or minority ethnic groups, who are marginalised and very poor. The livelihoods
of rural people, particularly those from these minority groups, are very dependent
on hunting and gathering veldproducts, and may be highly impacted by wildlife
management interventions [29].

Jaguars are a declared near-threatened species (IUCN) which means that they
have the potential to go extinct sometime in the near future. Although it is
acknowledged that prime jaguar habitat is the Amazon rainforest, remarkably little
is known about jaguar occupancy or abundance in many parts of the jungle. A case
in point is the northern part of Peru. Although Peru has the second largest remaining
tract of rainforest in the world and an extensive series of national parks and reserves,
there have been very few formal studies of jaguars in these areas. Key reasons for
this paucity of data include the time required to reach study sites, difficulties in
travelling through the jungle, the elusiveness of the target animal and the need to
engage with the indigenous residents of the forest.

The chapter proceeds as follows. Section 14.2 provides a description of the BN
methodology used to quantitatively evaluate the factors associated with human-
wildlife conflict. This is described in general and then for each study in particular.
Section 14.3 provides a summary of the results of the BN modelling for each case
study, followed by an illustration of the types of inferences that can be made on the
basis of these models. These inferences include identification of priority factors and
assessment of the sensitivity of the network to hypothetical scenarios of interest.
The chapter concludes with a discussion in Sect. 14.4.
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14.2 Methods

14.2.1 Bayesian Networks

A Bayesian Network (BN) modelling approach was used to construct a systems
model for describing the set of interacting factors that influence the viability of
the target wildlife species. The BN model is often represented graphically, with the
variables depicted as nodes (circles) and the interactions depicted as directed arrows
(arcs). Probabilistic quantification of the model follows, in which the probabilities
associated with each factor are conditional on the factors that impact on it (i.e.
the parent nodes, connected to the node of interest by directed arrows). These
probabilities can be based on a range of available information sources, including
observational or experimental data, estimates from published literature or previous
studies, expert judgement and so on. Although continuous probability distributions
can be employed, it is common practice to discretise the corresponding variable,
thereby creating a BN in which each node is quantified by a marginal probability
table if it has no parents or a conditional probability table otherwise. The advantages
of such a representation include fast computation of marginal probabilities for nodes
of interest (including the final outcome node) based on all of the other nodes in the
model, and common representation of information as probabilities despite its source.

By evaluating the probabilities in the BN, the model can be used to understand
the relative impact of different factors on key nodes in the network, and importantly
on the overall outcome node. Sensitivity analyses and scenario assessment can also
be undertaken by modifying the underlying marginal and conditional probability
tables appropriately. Using the Bayesian formulation, it is also possible to identify
conditions for optimum outcomes.

14.2.2 Cheetah Study

Information for the BN for the cheetah case study was gathered via a workshop with
twelve experts in cheetah conservation. The experts included local conservationists
and ecologists, experts in cheetah biology and ecology, and government agents
knowledgeable about relevant policy. The workshop was held over 4 days in
Gaborone, the capital city of Botswana.

The BN network structure and the corresponding set of conditional probabilities
were elicited using a structured approach that had been validated in other wildlife
conservation BN studies [20, 27, 32]. At the workshop, the experts were asked to
identify target nodes for the network (the primary outcomes of the model), and then
to list all relevant factors that may influence these nodes. The final set of factors
and the directed relationships between them was then agreed between the group
members via a Delphi selection approach. Finally, the states of the nodes were
identified and the underlying conditional probability tables populated, in an iterative
process similar to that described in Johnson et al. [15].
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14.2.3 Jaguar Study

The initial BN for this study was developed and quantified based on a structured
interview with three members of the project team: the leader of a local conserva-
tion foundation, an international environmental journalist and a local indigenous
representative. The first two members of this group were chosen because they
had knowledge of international activities regarding the environment and jaguar
protection, close links with the indigenous residents and established links with
relevant local and state government agents responsible for the area. The local
representative was chosen because he had spent many years living in the deep
jungle as well as in the village, and he was highly knowledgeable about the area, the
forest and jaguars in the region. As for the cheetah study, the network structure and
the corresponding set of conditional probabilities were elicited using a well-tested
structured approach.

The draft BN was then refined using results of a survey administered to local
indigenous residents in a number of villages in the region. The aim of the survey
was to obtain information about jaguar encounters and conflict, perceived trends
in jaguar numbers in the past and future, usage of the forest and attitudes with
respect to health, culture, environment, food and other benefits, and small and
large scale forest clearing and industrial activities such as mining. The survey
design and instrument broadly followed that developed by Meijaard et al. [28]
for a study of orangutans and attitudes to the forest in Kalimantan, Indonesia,
and was conducted in the form of questionnaires administered to local people
through personal interviews. The questionnaire was initially drafted in English and
subsequently translated into the local language. By necessity, respondents were not
chosen randomly. People with a range of duties in the village were interviewed,
with a preference for those who had knowledge about local wildlife, in particular
jaguars. Steps were also taken to reduce desirability bias and recall bias [1, 28, 30].
The reliability of a respondent’s responses about jaguars was determined by asking
respondents to identify nine mammal species from a set of photographs, including
a number of locally occurring large cat species. Only those respondents who were
deemed to be sufficiently reliable were included in the present study.

The refined BN was then presented to and ratified by government representatives
in Lima.

14.3 Results

14.3.1 Case Study BNs

14.3.1.1 Cheetahs

The following factors were agreed by the group of experts as important factors in
human-cheetah conflict.
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Government factors: Governments can affect human-cheetah conflict through
enacting key policies, such as commercial hunting laws and conservancies. Govern-
ments may also be influenced by international pressure, NGOs, and pressure from
citizens who favour cheetah conservation.

Economic factors: Botswana covers a vast area, and is sparsely populated [4],
prohibiting timely responses to calls for assistance with cheetahs. Therefore, farmers
may take it upon themselves to kill problem cheetahs, rather than waiting for them to
be captured and relocated. Since the viability of wild cheetah populations depends
on the survival of adult members, it is important that farmers are encouraged not
to kill cheetahs to protect their livestock. Other sources of livestock protection,
and sustainable management programs, may thus provide economic benefits to
decreasing human-cheetah conflict. Farmers, and rural people, are directly affected
by the presence of wild cheetahs and likely to be the target groups of interventions
aiming to reduce conflict. Therefore, conservation strategies must consult with and
engage the local community, take care to comply with village etiquette and politics,
and protect disadvantaged members of the community.

Education factors: Cheetah education and rehabilitation programs, and improved
access to these programs and facilities, would serve to reinforce other management
programs. Rehabilitation of orphaned cheetahs can play an important role in wildlife
education in general, and in knowledge of cheetahs in particular. Short- and long-
term conflict may be influenced by education strategies aimed at the public such as
media and information stalls, farmer education through workshops and site visits,
or youth education through training teachers, distributing materials on cheetah
conservation or school talks.

The expert group convened to develop the Cheetah BN agreed that interventions
may have different impacts in the short and long term. Therefore, the network was
designed to predict two main outcomes: a short term decrease in human-cheetah
conflict, and a long-term decrease in human-cheetah conflict. The relationships
between the factors and these two outcomes are presented in Fig. 14.1. Correspond-
ing subnetworks underpinning some of the major nodes are shown in Fig. 14.2.

14.3.1.2 Jaguars

The three key factors affecting the viability of the jaguar in the wild were determined
to be related to human impacts, prey insecurity and habitat loss. These are highly
interdependent, as indicated in the BN model described and depicted below.

Four key human impact factors were identified, namely hunting jaguars, moni-
toring, human settlement and illegal logging. Hunting jaguars was in turn affected
by levels of official corruption, effective policing and effective monitoring, with the
latter influenced also by effective international monitoring. Human settlement was
perceived to be both a benefit and a threat depending on the nature of the settlement,
with indigenous villagers potentially protecting or killing the species. Growth in
human settlement was perceived as a threat and was in turn affected by squatting,
which is a major problem in the Amazon forest since these people are less likely to
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Long term 
Conflict decrease

Short term 
Conflict decrease

Conservation 
awareness

Media

Farmer 
management Diversify

Farmer 
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International 
awareness

NGO 
activities

Youth education

Public education Farmer education DWNP 
training

Policy enforcement

Economic 
benefits

Fig. 14.1 Bayesian network for predicting and managing human-cheetah conflict in Botswana

have a history of co-existence with forest animals such as the jaguar. Illegal logging,
which is acknowledged to be one of the most serious factors affecting the forest, was
also influenced by effective policing.

Four key factors affecting prey insecurity were also identified. Although one of
these, namely weather variability, was not human-induced, the other three were
due to human activity. These included illegal logging, hunting for bush meat and
harvesting a major forest fruit, aguaje, on which many wildlife species rely. The
amount of illegal logging was perceived to be strongly influenced by the degree of
effective policing; hunting for bush meat was influenced by human settlement, and
aguaje harvest was influenced by economic development.

Drivers of habitat loss were reported to include illegal logging, aguaje harvest
(since often the entire tree is cut down to access the fruit), weather variability,
agriculture and pollution. The latter was believed to be a major factor and associated
with petroleum production and exploration, which were driven by economic
development.

The quantified human-jaguar BN is displayed in Fig. 14.3. The figure shows
the marginal probabilities derived from the set of conditional probabilities for each
node.
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14.3.2 Inferences Based on the BN

14.3.2.1 Cheetah Case Study

We employ the cheetah case study to highlight inferences that can be made based on
the probabilities determined in the BN, as well as the sensitivity of the outcome—
the viability of cheetahs in the wild—to specified changes in the system.

The cheetah BN structure revealed four direct predictors of decrease in human-
cheetah conflict over the long term: government policy, youth education, economic
benefits, and decrease in short-term conflict. Each of these factors was in turn
influenced by others in the network.

The BN model provided a set of probabilities—the probability that over the long
term, human-cheetah conflict would decrease at a high rate, a low rate, or not at
all—conditional on the state of the whole network system. An example of one of
the conditional probabilities is presented in Fig. 14.4; plots of the other conditional
probability tables are given in the Appendix.

When all factors are optimised—youth education is high, there is a high decrease
in short-term human-cheetah conflict, government policy protecting cheetahs is
present, and economic benefits to decreasing conflict are high—then the overall
probability of a high decrease in long-term human-cheetah conflict is high, as would
be expected. An observation of the other conditional probability plots allows us to

Decrease in Long Term Conflict

0.0

HIGH

LOW

NONE

Le
ve

ls

0.2 0.4 0.6 0.8 1.0
Probabilities

HIGH

LOW

NONE

0.0 0.2 0.4 0.6 0.8 1.0
HIGH
HIGH

HIGH
PRESENT
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ABSENT
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ABSENT

HIGH
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LOW
PRESENT

Fig. 14.4 Exemplar representation of the conditional probability table for decrease in long term
conflict with cheetahs in the wild in Botswana, based on the levels of the four parent nodes,
respectively Youth Education, Short Term Conflict, Government Policy and Economic Benefits
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examine more complex scenarios. For example, when short-term conflict decrease
is low, and economic benefits are low, but youth education is high and government
policy is present, then the probabilities of a low or high decrease in human-cheetah
conflict are roughly equal, and when government policy is absent, a low decrease in
conflict becomes the most likely outcome.

Examining the network reveals that, surprisingly, if youth education is low and
government policy is absent, but short-term conflict decrease is high, and there
are high economic benefits to decreasing conflict, then it is very likely that the
decrease in human-cheetah conflict will be high in the long term. Furthermore, if
government policy is present but all other factors are low, it is very likely that there
will be no decrease in human-cheetah conflict in the long term. Together, these
scenarios suggest that government policy is less impactful in the long term than
other strategies for decreasing human-cheetah conflict.

14.3.2.2 Jaguar Case Study

We employ the jaguar case study to illustrate the ability of the BNs to provide a
quantitative assessment of the sensitivity of the network outcomes to hypothetical
scenarios.

Based on a sensitivity analysis of all nodes in the system, the strongest links in the
jaguar BN were determined to be between the following pairs of factors: Economic
development and Aguaje harvest; Effective monitoring and Illegal logging; Human
settlement and bush meat; Human settlement and agriculture; Petroleum exploration
and petroleum production; Effective policing and squatting; and Effective external
monitoring and effective policing.

Six scenarios were evaluated. The first four involved modifying in turn the three
nodes that were parents of the target node (Viability of jaguars in the wild), i.e.
Human impact = No, Prey insecurity = No, Habitat loss = No, and all three
factors = No, respectively. All other factors remained unchanged. The results of
these evaluations are shown in Fig. 14.5. The last two scenarios comprised two
positive management decisions: 100% effective monitoring and no aguaje harvest;
and no official corruption or illegal logging. The results of these evaluations are
shown in Table 14.1.

14.4 Discussion

A Bayesian network model was used to synthesise citizen knowledge in a wide
variety of domains concerning human-wildlife conflict with two iconic threatened
species in two very different locations, namely the plains of Botswana and the jungle
of Peru. In each study, the BNs were developed and quantified using the combined
expertise from government agents, ecologists and conservationists. In both cases,
the BNs reflected the most important factors perceived by the group, the directed
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19%
27%
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65%

66%

6% 8%

24%
63%

90%
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1. No human impactBaseline (Fig. 14.3) 2. No prey insecurity

3. No habitat loss 4. None of the 3 threats

75%

Low Medium High Low Medium High

Low Medium High Low Medium High

Low Medium High

Fig. 14.5 Results of first four hypothetical scenarios for the jaguar case study, varying the three
parent nodes of the target node. Last scenario is best case (no human impact, prey insecurity or
habitat loss)

connections between these factors, and the quantitative evidence relating to the
behaviour of each factor in light of the other impacting influences. Importantly,
the BNs were able to describe and predict the outcomes of multiple management
strategies at once, incorporating the kind of complex and multifaceted solutions
needed to effectively address human-wildlife conflict [3, 7, 19, 21, 23].

No data exist against which to validate the predictions of the BNs developed
and reported in this study. However, the system of factors identified by the BNs
are echoed in conservation papers elsewhere. For example, in the cheetah study,
the experts separated the short-term and long-term effects of conflict management
strategies, a distinction which is increasingly recognised as important in conserva-
tion biology in general, and human-wildlife conflict in particular [6]. In addition,
social factors were well-represented in both BNs, and have been identified as
essential to successful conflict management for cheetahs, jaguars and other species
[2, 6, 11, 18, 21, 22, 36].

For both systems, data on the respective human-wildlife conflict are scarce
and difficult to access, but using the BN allows for the knowledge hidden in
experts’ heads to be extracted, quantified, and synthesised across domains. The BN
supports decision making by identifying most influential factors that impact on the
outcome of interest, and allowing various scenarios to be simulated before they are
implemented. In this way the BN can provide a key planning tool for managing
human-wildlife conflict for big cats in particular, and for other wildlife species in
general.



14 Bayesian Networks for Understanding Human-Wildlife Conflict in Conservation 359

T
ab

le
14

.1
R

es
ul

ts
of

la
st

tw
o

hy
po

th
et

ic
al

sc
en

ar
io

s
re

pr
es

en
ti

ng
po

si
tiv

e
m

an
ag

em
en

td
ec

is
io

ns
fo

rj
ag

ua
rc

on
se

rv
at

io
n:

Sc
en

ar
io

5
(1

00
%

ef
fe

ct
iv

e
ex

te
rn

al
m

on
ito

ri
ng

,n
o

ag
ua

je
ha

rv
es

t)
an

d
Sc

en
ar

io
6

(n
o

of
fic

ia
lc

or
ru

pt
io

n,
no

il
le

ga
ll

og
gi

ng
)

Fa
ct

or
H

um
an

im
pa

ct
Pr

ey
in

se
cu

ri
ty

H
ab

it
at

lo
ss

H
un

ti
ng

ja
gu

ar
s

V
ia

bi
li

ty
of

ja
gu

ar
s

in
th

e
w

il
d

B
as

el
in

e
(F

ig
.1

4.
4)

0.
10

,0
.3

2,
0.

58
0.

10
,0

.0
7,

0.
68

0.
06

,0
.0

7,
0.

87
0.

05
,0

.2
2,

0.
73

0.
75

,0
.1

9,
0.

06
Sc

en
ar

io
5

0.
17

,0
.3

2,
0.

50
0.

12
,0

.2
1,

0.
67

0.
06

,0
.0

9,
0.

85
0.

07
,0

.3
7,

0.
57

0.
73

,0
.2

1,
0.

06
Sc

en
ar

io
6

0.
41

,0
.3

2,
0.

37
0.

44
,0

.2
8,

0.
28

0.
15

,0
.2

2,
0.

63
0.

08
,0

.6
7,

0.
25

0.
40

,0
.4

5,
0.

15

P
ro

ba
bi

li
ti

es
pe

rt
ai

n
to

L
ow

,M
ed

iu
m

an
d

H
ig

h
st

at
es

of
th

e
co

rr
es

po
nd

in
g

no
de

in
th

e
B

N
ne

tw
or

k
di

sp
la

ye
d

in
Fi

g.
14

.3



360 J. Davis et al.

The BNs presented here are limited in scope; for example, they do not account
for larger forces like poverty reduction or economic forces, which are often closely
intertwined and are all important to human-cheetah and human-jaguar conflict.
However the focus here is on what can be done to manage conflict; for this
reason, the networks emphasised the factors that could reasonably be affected by an
intervention. Future work could also improve the decision support utility by adding
decision nodes and cost information, to more fully support conservation decisions.
Finally, it is important to consider that conflict management strategies can only
be successful when implemented with a commitment to ongoing evaluation (e.g.,
[10, 34]). An example of this is the important role of national and international
monitoring in the jaguar BN.

Different people have different interests and want different things from conser-
vation policy. Substantial effort is required to bridge these differences [5]. The tools
described here can help identify differences in policy objectives. Moreover, given
that there are currently insufficient funds available to support the acknowledged,
published recovery actions for threatened species, conservation managers and
politicians alike are faced with the difficult task of deciding where those limited
funds are best used. This process often works first at the policy decision-making
level, and then again at the management level, be that within conservation agencies
or non-government organizations in receipt of funds. Access to tools such as the
BNs and associated products described in this chapter can make it much easier for
those charged with making decisions to see where the greatest impact might be
gained from particular actions. The tools are also likely to be useful in other areas
of natural resource management [26]. Communication, education and participation
will be able to be better integrated as a result, something which Jiménez et al. [13]
have identified as necessary for improved participation of multiple stakeholders in
developing policy and implementing management strategies in biodiversity projects.

We close this discussion with a few concluding comments about the systems
approaches that we have proposed in this paper, along with a call for a cautious
application of this approach to managing diverse types of data. First, the systems
frameworks in general are not suggested as solutions to the whole issue of conser-
vation evaluation and management. Many other statistical and qualitative tools are
highly valuable in highlighting particular aspects of these very complex problems.
Examples of such tools are population viability analyses, species distribution
models, statistical risk models and predictive models based on field data, surveys,
focus group meetings and other evaluations.

The second note aims to highlight the simplicity of the integration of infor-
mation using the proposed approach. The BN framework can accommodate full
(conditional) probability distributions where these are available, or alternatively all
it requires is discrete (e.g. high-med-low) descriptors. These probability tables can
be quantified using a wide range of information, from observational and experi-
mental data, to literature-based estimates, to expert judgement. The exploitation
of expert information in these complex problems, based on careful elicitation and
probabilistic representation [27], has strong appeal. This use of a simple common
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currency is similar to economists’ use of monetary measures to compare otherwise
incommensurable variables.

Thirdly, we note that any quantitative analysis of social or ecological systems
(and especially a socio-ecological system) is necessarily a gross simplification of
something that is very complex. However, if it was not simplified it could not be
done at all. Moreover, despite the simplicity, it is still not trivial to characterise these
systems. It is our experience that attempting to do this in a rigorous, transparent
manner results in a deeper, if still incomplete, understanding of the system, and is
far better than the alternative which is no representation of the system or integration
of information at all.
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Appendix: Conditional Probability Tables for Long and Short
Term Outcomes for Cheetah Case Study

Decrease in Long Term Conflict

Conditional probability tables for decrease in long term conflict with cheetahs in the
wild in Botswana, based on the levels of the four parent nodes, respectively Youth
Education (violet), Short Term Conflict (light blue), Government Policy (green) and
Economic Benefits (orange).
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Decrease in Short-Term Conflict

Conditional probability tables for decrease in long term conflict with cheetahs in the
wild in Botswana, based on the levels of the four parent nodes, respectively Policy
Enforcements (pink), Livestock Protection (violet), Farmer Perceptions (light blue),
Economic Benefits (green), Conservation Awareness (orange).
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Chapter 15
Bayesian Learning of Biodiversity Models
Using Repeated Observations

Ana M. M. Sequeira, M. Julian Caley, Camille Mellin,
and Kerrie L. Mengersen

Abstract Predictive biodiversity distribution models (BDM) are useful for under-
standing the structure and functioning of ecological communities and managing
them in the face of anthropogenic disturbances. In cases where their predictive
performance is good, such models can help fill knowledge gaps that could only
otherwise be addressed using direct observation, an often logistically and finan-
cially onerous prospect. The cornerstones of such models are environmental and
spatial predictors. Typically, however, these predictors vary on different spatial and
temporal scales than the biodiversity they are used to predict and are interpolated
over space and time. We explore the consequences of these scale mismatches
between predictors and predictions by comparing the results of BDMs built to
predict fish species richness on Australia’s Great Barrier Reef. Specifically, we
compared a series of annual models with uninformed priors with models built using
the same predictors and observations, but which accumulated information through
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time via the inclusion of informed priors calculated from previous observation years.
Advantages of using informed priors in these models included (1) down-weighting
the importance of a large disturbance, (2) more certain species richness predictions,
(3) more consistent predictions of species richness and (4) increased certainty in
parameter coefficients. Despite such advantages, further research will be required to
find additional ways to improve model performance.

15.1 Introduction

Estimating biodiversity metrics is a central pursuit in ecological research and
management. These metrics inform our understanding of the states and trends of
ecosystems [13, 19], their responses to biotic and abiotic factors [11, 22, 29], and
the best options for their management, conservation, and the on-going provision of
ecosystem services [4, 13, 16, 18, 31].

Estimating biodiversity metrics, however, is often challenging because of the
high costs of surveying and monitoring coupled with limited available resources,
and because ecological systems are often highly diverse and respond in complex
ways to myriad biotic and abiotic interacting factors [13]. Consequently, the
data available to estimate biodiversity metrics are often insufficient to address
current needs [7]. In some cases though, long-running monitoring programs provide
extensive repeated measures of biological communities and can contribute to robust
estimates of these metrics. Such data, however, are typically most useful for
estimating the status and trends of observed biological communities, whereas esti-
mates and their associated uncertainties are often required for entire communities
across a hierarchy of spatial scales [30]. For example, the Australian Institute of
Marine Science’s (AIMS) Long Term Monitoring Program (LTMP) of the Great
Barrier Reef (GBR) has monitored individual reefs annually for more than three
decades using a spatial design that samples representative cross-shelf habitats,
latitudinal sectors, and management regimes [28]. Although it is one of the most
spatially extensive long-term monitoring programs on Earth, it only monitors a small
fraction of all the reefs present (<2% of all GBR reefs). Consequently, biodiversity
estimation beyond this relatively small set of reefs must rely on predictions for
unmonitored reefs (e.g. [15]) and requires good predictability into unsampled space
(a component of spatial statistical modeling: [25]).

Where it is desirable to predict biodiversity into a larger domain than a series of
observed communities, biodiversity distribution models (BDM), a general case of
species distribution models (SDM) where the response variable may be a composite
metric such as species richness or total abundance across species, can be constructed
using combinations of environmental and spatial variables. These models can then
be useful to predict biodiversity metrics across domains where values are not
observed [15, 24, 26, 32, 33]. While such models have proven effective to varying
degrees, there is commonly a mismatch between the states and dynamics of the eco-
logical communities being predicted and the environmental and spatial observations
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used to predict them. For example, ecological communities are typically sampled at
regular intervals (e.g., yearly). Spatial predictors, such as a community’s location
relative to geological features, vary over geological time and can be assumed to be
invariant with respect to ecological prediction, whereas environmental predictors
vary on a variety of temporal and spatial scales. For the purposes of predictive
modelling, these environmental predictors are often available only as long-term
annual averages and spatially interpolated to common scales (e.g. marinehub.org).
Consequently, repeated measures of ecological metrics often rely on a set of
predictors that are inherently less variable than the metric they are being used to
predict, either because of the characteristics of the predictor (e.g. spatial predictors)
or the way it was collected and processed (e.g. environmental predictors). These
characteristics of predictors may in turn compromise the performance of predictive
models given that a diversity metric might vary through time and space at rates
unrelated to the variables used to predict it.

The consequences of these scale mismatches between predictors and predictions
on the performance of such models are likely to vary from year to year, as the
response variable changes but the predictor variables do not. These changes have
the potential to affect the predictive performance of a model in a number of
ways including the ability to predict true values and their associated uncertainties,
the coefficients of the predictors estimated for the model, and the structure of
the best performing model. Despite the potential importance of such mismatches,
understanding of their influence on the construction and application of BDMs is
poor. To begin addressing this knowledge gap, we explore ways in which analytical
approaches to building and applying BDMs affect their predictive performance, the
estimation of the coefficients of model parameters, and the selection of the best
model structure in cases where recorded values of the response variables vary in
space or time but observations of predictor variables vary less over time.

When repeated observations from a monitoring program are available, common
approaches to their analysis include considering each repeated set of observa-
tions separately and then making post-hoc comparisons between them to infer
community states through time, or averaging all data across replicates and then
estimating the best model. A disadvantage of such approaches is that they fail to
use all the information available from repeated observations to help understand
how a predictive model might improve as monitoring continues through time.
Comparisons between models can also be difficult as the importance of predictors
change between years. Moreover, understanding how such information accumulates
through time can facilitate more efficient and effective allocation of limited and
valuable monitoring resources through the implementation of adaptive sampling
designs [12]. By adopting a Bayesian learning approach to this problem, it should
be possible to better understand how the performance of such models changes
with the addition of information through time. In such an approach, the results
obtained from a previous survey or surveys can be used as prior information in
the analysis of the data for the latest survey. Adopting this approach results in an
iterative updating of information as it becomes available which has theoretical and
computational advantages. Theoretically, compared with the independent analysis

http://marinehub.org
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of surveys described above, the obtained estimates should move closer to true values
more quickly and smoothly, any trend in the replicate estimates should be smoother,
the estimates obtained in each replicate should be more precise (i.e., have narrower
credible intervals), and post-hoc analysis across the time series should no longer
be needed. Similarly, the estimates of the coefficients of the model and the model
structure should converge to the true values and be associated with progressively
decreasing uncertainties. Computationally, compared with analysing all available
data each time new observations become available, the Bayesian learning approach
does not require reanalysis of the entire dataset during updating but instead requires
a simpler and less computationally costly analysis of the current data and the prior
which encapsulates information from past surveys.

Bayesian modelling of data with repeated measures is now commonplace and
offers advantages over other approaches in terms of estimation, model flexibility,
and inference [3]. Bayesian learning, also known as recursive Bayesian estimation
or Bayesian filtering, is commonly employed for a wide variety of problems that
require iterative updating of information from quality monitoring and control [1]
to analyses of streaming data [23]. To explore the comparative benefits of using
a Bayesian learning approach for estimating biodiversity using typical monitoring
data, we analysed species richness patterns of fishes on Australia’s Great Barrier
Reef (GBR). We analyse the annual LTMP data using uninformed priors for each
year analogous to the frequentist analyses of individual repeated observations, and
compare these results to those obtained using informed priors derived from previous
observations. Based on the results of these analyses we make recommendations for
improved learning where a set of temporally less variable predictors are used to
make predictions from observations that vary to a greater extent through time.

15.2 Methods

15.2.1 Fish Species Counts and Environmental and Spatial
Predictors

We used counts of fish species on the GBR collected by the Australian Institute
of Marine Science’s (AIMS) Long-Term Monitoring Program (LTMP) [28] for the
years 2003–2013. For this period, annual survey data were available for each year
from 2003 to 2005 and every second year after 2005 due to a change of sampling
design. A total of 46 reefs were monitored across six latitudinal sectors (Cooktown-
Lizard Island, Cairns, Townsville, Whitsunday, Swain and Capricorn-Bunker)
spanning 150,000 km2 of the GBR. In each sector, with the exception of the Swain
and Capricorn-Bunker sectors, at least two reefs were sampled in each of three shelf
positions (i.e., inner, mid- and outer). At each reef, 5 transects in each of 3 sites were
sampled and we analysed observations from the same 133 locations in each of these
7 years. Observations were made using transect-based underwater visual survey.
Transects were randomly selected, permanently marked, and ran roughly parallel to
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the reef crest, each separated by at least 10 m along the 6–9 m depth contour. Counts
of 251 fish species from across 10 taxonomic families were recorded. This set of
species excluded cryptic and nocturnal species. Larger mobile species were counted
first along a 5 m wide transect, and smaller, less mobile species (e.g. damselfishes:
Pomacentridae) were counted in a 1-m wide strip along the same transect during
the return swim (for detailed methods and species counted, see [10]). To prevent
potential systematic bias in the fish counts associated with different observers,
calibration of all divers occurred annually [10]. To predict these fish species counts
(i.e. species richness), we used both environmental and spatial predictors. We used
a set of environmental predictors available for Australia at a national scale and
at a 0.01◦ resolution (marinehub.org) including sea surface temperature (SST),
chlorophyll-a (Chl a), salinity, nutrients (NO3, PO4, and SI), light (K490av), depth
(as a proxy for habitat), oxygen, and sediment characteristics including percentages
of carbonates, gravel, sand, and mud [14]. To account for geographical effects on
the distributional patterns of reef fishes, we also included two spatial predictors: the
shortest distances to coast (coast) and to the outer limit of the reefs (barrier), which
have been used to successfully predict fish species richness and abundances on the
GBR [15, 24]. We calculated these distances for each sampled site and node on the
0.01◦ national grid using the Near tool in ArcGIS10.1 (ESRI, Redlands, CA, USA)
and an equidistant cylindrical coordinate system. We then assigned each sampling
site to the closest node on the 0.01◦ national grid and used the environmental and
spatial predictors corresponding to these locations.

15.2.2 Bayesian Models

Using reef as a random effect to account for the hierarchical nature of the dataset
with sites nested within reefs, we developed Bayesian generalized linear mixed-
effects models (GLMM) of fish species richness assuming a Poisson distributed
response Sij for the ith location in the jth reef, with a log-link and linear and
quadratic regression terms for the covariates Xij. Seven separate models were
developed using each yearly dataset of fish species richness observations from
the GBR as a response variable (Table 15.1). Allowing for extra-Poisson variation
through a residual εi~N(0,σ 2), the likelihood is thus given by

Sij ∼ Poisson
(
μij

)

log
(
μij

) = αj + Xβ + εi.

An uninformative Gaussian prior (i.e., zero mean and relatively large variance)
was specified for the random effect for reef, αj. Twelve combinations of covariates
were considered for each set of yearly models (Table 15.1). Univariate priors for
each of the regression coefficients in the vector β were specified. Two sets of such
priors were considered. First, we used independent uninformative Gaussian priors

http://marinehub.org
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Table 15.1 Description of fitted models

No. Model description Covariates included in model

1 Comprehensive model Reef + Coast + Coast2 + Barrier + Barrier2 + Depth
+ Depth2 + Slope + O2 + SST + SST2 + Light

2 Distance to domain boundaries Reef + Coast + Coast2 + Barrier + Barrier2

3 Physical predictors Reef + Depth + Depth2 + Slope + Aspect
4 Particular sediment type Reef + Gravel
5 Particular sediment type Reef + Sand
6 Particular sediment type Reef + Mud
7 Nutrients Reef + NO3 + PO4 + Silica
8 Oxygen and salinity Reef + O2 + Salinity
9 Productivity Reef + Chl a

10 Temperature Reef + SST + SST2

11 Light availability Reef + Light
12 Intercept only Reef

All models included a random effect for reef. Coast: distance to coast; Barrier: distance to the reef’s
outer limit; Gravel, Sand and Mud represent percentage of gravel, sand, and mud, respectively;
average concentrations of NO3: nitrate, PO4: phosphate, SI: silicate, O2: dissolved oxygen, Chl a:
chlorophyll a; Sal: salinity; SST: average annual sea surface temperature; Light: coefficient of light
attenuation at 490 nm. All predictors were mean centred, and superscript 2 indicates predictors
included as quadratic terms. Sediment variables (gravel, mud and sand) were included in separate
models (4–6) due to collinearity

as above, assuming no prior knowledge of the relationships between the response
variable and the set of predictors being included in each model. This approach
provided a baseline against which we compared a second set of models using
informed priors and which therefore could exploit potential benefits of Bayesian
methods. In this second approach, we modelled the first year’s observations using
uninformative Gaussian priors as described above. Consequently, the results of both
approaches will be the same for the first year. In each subsequent year, we used
the posterior mean and variance from the previous year(s) to construct an informed
Gaussian prior, which was then used to model the responses of the current year of
observation (Table S2).

We used a Markov Chain Monte Carlo (MCMC) algorithm with 100,000
iterations, a burn in of 10,000, a thinning rate of 2 (i.e., discarding every second
simulated value to reduce autocorrelation and Monte Carlo error), and ran three
chains to check convergence. To ensure the behaviour of the chains would not
differ for larger MCMC runs, we also compared results from 600,000 iterations
after burn in. Due to limits to computational power, we ran this larger MCMC
in steps of 20,000 iterations by updating the chains with the last value obtained
in each of the previous iterations. The modelling results shown here are derived
from the last 10,000 iterations in each MCMC, having ensured convergence had
been reached based on the Gelman-Brooks-Rubin diagnostic (i.e., rhat < 1.1). The
retained MCMC samples were used to obtain posterior means and 95% credible
intervals (CrI). CrIs were estimated for parameters of interest and a posterior
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predictive check of their individual contributions made using the sum of squared
Pearson residuals, the raw residual divided by the square root of the variance.

To understand the effects of the different modelling methods on our results,
we used wBIC and wAICc for comparison, as the use of DIC and wDIC can
be inconsistent for GLMM [17]. Moreover, the wAICc diagnostic provided a
more straightforward comparison with previous published results obtained using
a frequentistic approach (e.g. [15]). We also included a posterior predictive check
and report Bayesian p-values to assess the resulting predictions from our Bayesian
models. To predict species richness across the entire GBR, we used a model-
averaging procedure using wAICc to average the set of model formulations included
in each model run.

15.3 Results

Observed species richness of fishes varied among years with the greatest species
richness densities and variation among reefs recorded in 2011 (range: 10–80
species). The peak density of this year was also shifted left compared to the other
years of observations (Figs. 15.1 and 15.2a), which displayed less variability (range:
25–70 species) and lower peak densities (Figs. 15.1 and 15.2a). With independent
priors, the Bayesian models identified Chl a, SST, or light as influential in models 9,
10 and 11, respectively, for all yearly datasets, with emphasis differing between
linear and quadratic terms for SST in different years. PO4 (model 7) in years
2005, 2007 and 2013, and salinity (model 8) in all years also showed substantively
non-zero effects in that the 95% CrIs excluded zero. The analogous CrIs for the
coefficients of all other predictors overlapped zero (Table S1). Results for models
and datasets using informative priors were similar but with some additional effects
observed for predictors included in models 4–7 in early years only (Table S2).

Chl a and Light in models 9 and 11, respectively, were the only two predic-
tors for which the 95% CrIs for the coefficient estimates excluded zero for all

Fig. 15.1 Map of sampled species richness in the GBR across six latitudinal sections of the Great
Barrier Reef (GBR) and three shelf positions (outer, mid and inner). Legend indicates number of
species recorded per site after pooling counts made using 5 × 50-m long transects per site
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Fig. 15.2 Density plot of observed (a) and predicted species richness across datasets when using
independent (b) or informative priors (c)

datasets irrespective of the application of informative or non-informative priors.
The coefficient estimates for these two predictors averaged across models within
years tended to be more negative toward the end of this time series (Fig. 15.3).
Models with uninformative priors varied in goodness of fit according to wBIC, but
generally models 2 (reef and reef position relative to spatial domains), 10 (reef and
temperature), and 11 (reef and light) were among the best-fitting models (Table
15.2). As expected, when using informative priors, wBIC values were generally
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Fig. 15.3 Estimates of coefficient for Chl a and Light. Results are shown for each model run
across datasets and when using independent (open circle with grey standard deviation lines) and
informative priors (filled triangle with black standard deviation line)

lower. Goodness of fit according to wAICc showed similar patterns to those obtained
with wBIC (Table 15.2).

15.3.1 Model Predictions

Density plots of species richness predictions demonstrate that each model set
differed across datasets, but were more consistent when using informative priors
(cf. Fig. 15.2b, c). Posterior predictive checks resulted in Bayesian p-values close to
0.5, indicating good predictive performance only for years 2011 and 2009, ranging
respectively from 0.349–0.511 and 0.605–0.682 for uninformed priors and from
0.354–0.503 and 0.625–0.689 for informed priors. For all other datasets across all
model runs, the Bayesian p-value was always close to one (0.916–0.989 for un-
informative, and 0.916–0.989 for informative priors), indicating poor fits between
observed and predicted species richness distribution, and hence, poor predictive
performance. In no case, however, was the Bayes p-value >0.99, which would
indicate major failure of model fit [8]. Irrespective of the use of independent or
informative priors, higher fish species richness was predicted mostly in the northern-
central offshore reefs, with the difference between inner and outer reefs being more
marked in some years (e.g., 2003, 2005 and 2011 with independent priors) (Fig.
15.4).
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Fig. 15.4 Model predictions of species richness across the entire GBR for each model set run from
yearly datasets when using independent (a) and informed (b) priors. Figure shows model-averaged
results when using wAICc to average the contribution of each model in the model set

15.4 Discussion

Despite the difficulty and expense of observing complex natural ecosystems [13],
the need to estimate ecosystem states and trajectories through time as they are
influenced by increasingly frequent and severe disturbances is becoming more
urgent. It is important, therefore, to understand how best to use information currently
available to estimate these states and trajectories, understand their causes, and
how to optimize the design of survey and monitoring programs to improve our
understanding of these dynamics. In light of these information needs, we have
compared here a series of independent annual analyses using uninformative priors
with a recursive approach using informative priors based on previous data. The
models were evaluated in the context of constructing and testing BDMs with specific
reference to the prediction of fish species richness on Australia’s Great Barrier
Reef. The performances of the models, constructed using either of these approaches,
indicate further room for improvement in how such models are constructed and
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some advantages to the use of informed priors. We detail below knowledge gained
that would not have been possible using uninformed priors alone.

It is widely appreciated that natural ecosystems are affected by a variety of
disturbances that can have large effects on the states and subsequent trajectories
of the biological communities they host. Many direct observations of such impacts
and recovery are now recorded in the literature (e.g., [5, 6, 9, 16, 20, 21, 27]). Such
disturbances, however, can also affect model selection of BDMs by affecting the
inclusions of particular predictors that are upweighted in specific situations where
extreme values are reached because of either the immediate or longer-term effects
of disturbances. Consequently, over the longer term, it may be desirable to down-
weight or average these effects to achieve a more general view of the role of these
predictors. For example, in early 2011 cyclone Yasi, one of the largest Australian
cyclones over the past 20 years, caused extensive damage to the coral communities
of the GBR [2]. Yasi also seems to have affected the species richness of the fish
communities both in terms of the densities of species observed and their variability
(Fig. 15.2a). Our study suggests that the impacts from such rare events on predicted
species richness was much less for the models with informed priors that showed
much greater consistency in both density and variation across all modeled years.

Bayesian approaches also provide opportunities to assess estimates and uncer-
tainties in parameter values and model structure. In our study, Chl a and Light,
were the only two predictors for which coefficient estimates were substantively
different from zero for all datasets, irrespective of the application of informative
or non-informative priors. These two parameters, therefore, provide an opportunity
to examine the effect of these two modelling approaches on estimating their values
and uncertainties across years as the Bayesian priors contained progressively more
information. In all cases, estimates based on informed priors were more certain,
however, modal values were not consistently greater or smaller, nor were the
credible intervals progressively smaller as information accumulated in the informed
priors and these intervals overlapped extensively. The two modelling frameworks
also nominated different model structures as best. The recursive analysis, using
informed priors based on previous survey data, indicated statistical contributions
from more predictors than did the independent analysis of each time period.
Accordingly, more information was harnessed by using informed priors indicating
that greater investment in observations of these predictors may have additional
utility.

While much was learned here by comparing Bayesian models with informed
and uniformed priors, neither model performed very well with respect to predic-
tion, indicating much is still to be learned regarding how best to increase their
performance. The options for improvement here are many and will depend on the
interests and opportunities of individual researchers and their groups. In contrast
to this study, previous studies of predictive models based on these and similar
data were better able to predict species richness and abundance by averaging these
responses across the time-series of observations [15, 24]. Therefore, the challenge
of better predictive performance identified here appears to be in generating finer-
scale temporal predictions. Where predictions at this scale are desirable, our results



15 Bayesian Learning of Biodiversity Models Using Repeated Observations 383

suggest Bayesian models with informed priors can be useful for better selection of
model structures, estimation of their parameters, and the down weighting of rare but
significant events. Nonetheless, even though the time series used here to build these
predictive models was spatially extensive and long compared to many ecological
data series, the complexity of the processes, and potentially their non-stationarity,
that can configure a metric such as species richness are likely to remain challenging.
This challenge is likely to be exacerbated when predicting other biodiversity metrics
such as abundances of individual species or abundances summed across species.

It is also clear that much longer time series may be required before prior proba-
bilities can become sufficiently informed to facilitate more substantial reductions in
parameter uncertainty. In the meantime, however, even a modest number of repeated
observations appears to inform priors sufficiently to obtain quite consistent 95%
CrIs and modal predicted values.
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Chapter 16
Thresholds of Coral Cover That Support
Coral Reef Biodiversity

Julie Vercelloni, M. Julian Caley, and Kerrie L. Mengersen

Abstract Global environmental change, such as ocean warming and increased
cyclone activity, is driving widespread and rapid declines in the abundance of key
ecosystem engineers, reef-building corals, on the Great Barrier Reef. Our ability
to understand how coral associated species, such as reef fishes, respond to coral
loss can be impeded by uncertainty surrounding natural spatio-temporal variability
of coral populations. To address this issue, we developed a semi-parametric
hierarchical Bayesian model to estimate long-term trajectories of habitat-forming
coral cover as a function of three spatial scales (sub-region, habitat and site) and
environmental disturbances. The relationships between coral cover trajectories and
fish community structure were examined using posterior predictive distributions
of estimated coral cover from the statistical model. In the absence of direct
observations of fish community structure, we used the probability of coral cover
being above some ecological threshold values as a proxy for potential disruptions
of fish community structure. Threshold values were derived from published field
studies that estimated changes in the structure of coral-reef fish communities and
coral cover after major disturbances. In these studies, fish community structure
did not change where post-disturbance coral cover was >20%. Disruptions in the
structure of these communities were observed when coral cover dropped to between
10–20% and declines in fish diversity were typical where coral cover ranged from
between 5 and 10%. Based on these thresholds values, posterior probabilities of
coral cover being above 20% and between 10 and 20% and between 5 and 10%
were calculated across spatial scales on the Great Barrier Reef (GBR) from 1995 to
2011. At the GBR scale, probabilities of coral cover being above these thresholds
remained relatively stable through time. Across years, probabilities of coral cover
being at least >20% remained null for the sub-regions of Cairns, Townsville,
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Whitsundays and Swain but highly variable between reef sites within these sub-
regions, with the exception of Townsville. In the Townsville area, probabilities of
coral cover being between 10–20% and 5–10% declined from 0.75 to 0 during the
study period. This finding highlights potential sub-regional fish community structure
disruptions which have not yet been observed at this spatial scale. As frequency and
intensity of disturbance events continue to rise, and consequently, as coral cover
declines further, the probabilistic Bayesian approach presented in this chapter could
be used to help provide early warnings of major ecological shifts at management
relevant scales in the absence of direct observations.

16.1 Introduction

Healthy functioning of tropical coral reefs depends on corals, sponges and other
sessile species to create three-dimensional structure that provides shelter, and a
space to live [2, 5, 13, 25]. Indeed, the biogenic structure of coral reefs host in the
order of one million multicellular species [12]. These valuable marine ecosystems
are degrading rapidly, typified by the substantial loss of habitat-forming corals
[4, 10, 34]. Similar trends around the world portend the degradation of coral reefs
toward non coral-dominated ecosystems [17] and associated losses of biodiversity
[6].

The percentage of hard coral cover is closely related to fish community structure
with specific types of corals being strong predictors of fish species richness [21, 22].
A single colony of branching coral can provide habitat and refuge from predators
for several fish species that vary in abundance as a function of the available
space between the branches of the coral. These species-specific and community
patterns, however, can be disrupted when percent cover of habitat-forming corals
(e.g. branching corals) drop below 20% [13] and the loss of fish species has been
observed when coral cover drops below 10% [21]. On some coral reefs, such as
those of the Great Barrier Reef (GBR), changes in the species composition of fish
communities in past decades [7] and recent loss of reef fish richness following
disturbance events [22] suggest an influence of declining habitat-forming corals on
fish communities.

By generating finer-scale understanding through monitoring changes in coral
cover, our ability to understand the broader impacts of declining habitat-forming
corals on reef biodiversity should also improve. With recent advances in the analyses
of big-data, learning from long-term coral-reef monitoring data can help address
these critical conservation challenges for coral reefs. For example, the Long-Term
Monitoring Program (LTMP) of the GBR, one of the longest and most extensive
coral reef survey in the world, monitors ∼1.5% of the individual reefs of the
GBR [30]. The resulting datasets, while not large by big data standards, are highly
complex with myriad interacting biotic and abiotic ecological processes affecting
trajectories in coral cover across space and time. Indeed, non-linear trajectories
in coral cover can differ substantially on coral reefs situated only a few hundreds
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meters apart [32]. These differences can be attributed to fine-scale responses of
corals to disturbances that vary as a function of their nature and intensity but
also reef topography, differential susceptibility of coral taxa to disturbances, and
legacy of past disturbance events. Consequently, inferences derived from these data,
without sufficient regard to the variability of coral cover trajectories across scales
of space and time, has fueled scientific debate regarding the origins of coral decline
and recovery [16, 29, 31]. Moreover, uncertainty regarding states and trajectories of
coral cover has the potential to compromise effective reef management strategies
[3, 11] and impede learning about how changes in habitat-forming coverage might
affect the biodiversity hosted by corals.

To address these knowledge gaps, a semi-parametric Bayesian hierarchical model
[9] was developed for the LTMP data to identify and locate sources of uncertainty
when modelling this complex dataset [32], estimate long-term trajectories in
Acropora spp. cover, the primary provider of habitat-forming on the GBR, across
spatial scales [34], and quantify the cumulative effect of disturbances on these
trajectories [33]. Extending from these previous analyses, we investigated potential
relationships between changes in coral cover trajectories and fish community
structure by using posterior predictive distributions of estimated coral cover from
the statistical model. The benefit of using these predictive distributions is the
preservation of the observed spatial and temporal structure of the LTMP data
during the estimation of coral cover. In the absence of direct observations of fish
community structure, we used the probability of Acropora spp. cover being above
three ecological threshold values (20% and between 10–20% and 5–10%) as a proxy
for the effects of changes in coral cover on associated fish communities. These
probabilities were calculated from the posterior predictive distributions of coral
cover across spatial scales on the Great Barrier Reef (GBR) from 1995 to 2011. This
approach to investigating the relationships between coral cover and proxies of fish
community structure provides a novel framework for future assessments of early
warnings of major ecological shifts resulting from the decline of habitat-forming
corals across a wide range of spatial scales.

16.2 Methods

Coral Cover Data
Observations of coral cover from the LTMP from 1995 to 2011 were used to model
coral cover trajectories [30]. The LTMP sampled benthic cover annually from 1995
to 2005, and then every second year, for 141 reef sites between six and nine meters
depth. The program was designed to track changes in benthic coral reef communities
over time across 47 coral reefs within six management sub-regions (aka sectors) of
the GBR. Within these sub-regions, the LTMP monitors three reef habitats defined
by the position of reefs on the continental shelf (aka shelf positions), except for
the Swain and Capricorn-Bunker sub-regions in which only two (mid-shelf and
outer-shelf) and one (outer-shelf) habitats, respectively, are represented. Inner-reefs,
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being closest to the coast, are most exposed to terrestrial influences. The mid-shelf
habitat extends over a large part of the GBR lagoon, with reefs situated at various
distances between the inner and outer habitats of the GBR. Outer-reef habitat
extends into oceanic conditions. The survey is spatially replicated on two to four
reefs per habitat and sub-region, each reef being itself sampled at three distinct sites
using five permanent transects. Hard coral cover was estimated at the genus level
and expressed as a percentage of transect area based on observations taken at 200
random points along each transect. The five transects per site were pooled within
sites for the purposes of this study. The percentage of coral cover of Acropora spp.
(hereafter referred to as coral cover) was used to model the trajectories as these taxa
are the most abundant on the GBR and responsible for most of its annual and decal
variability in coral cover changes [23].

Disturbance Data
The LTMP also recorded disturbances by matching observed variations in coral
cover on sites with observations of particular phenomena [30]. Since 1995, coral
bleaching, crowns-of-thorns starfish outbreaks (CoTS), storms/cyclones, coral dis-
eases, and multiple and unknown disturbances were systematically monitored.
Distinct signatures of these disturbances allowed disturbance types to be identified
in the field [23]. Also, the availability of meteorological data allowed estimation of
storm and cyclones tracks at a relative fine-scale. Following the LTMP methodology,
disturbances were recorded as having had an impact if total coral cover (Acropora
spp. plus all other coral genera) at the reef scale decreased by more than 5%
on a scale of 0–100% between two survey periods. To calibrate disturbance data
at the site scale, we assumed the presence of a disturbance (coded as 1) with a
>5% decline of coral cover between two consecutive years pooled for the three
sites within a reef and absence (coded as 0) otherwise. The cumulative effect of
disturbances was estimated by summing the presence of disturbances of all types
over the previous years for each reef site. We assumed that a disturbance influenced
the coral cover trajectories uniformly during the entire surveyed years, and that
all possible combinations of disturbances, irrespective of their nature and intensity,
acted in isolation and are added in the same way [33].

The Semi-parametric Bayesian Hierarchical Model
The semi-parametric Bayesian hierarchical model (SPa-BaHM) was developed to
examine different ecological aspects of the long-term trajectories of the habitat-
forming corals across spatial scales (Fig. 16.1). These previous investigations
focused on the different stages of the model such as the parameters stage to identify
sources of uncertainty when estimating coral cover trajectories within a sub-region
[32] and across the GBR [34] or the process stage in order to estimate the cumulative
effect of disturbances on coral cover [33]. For model selection, values of Deviance
Information Criterion (DIC) were computed for each model formulation per sub-
region. Smaller values of the DIC indicated more preferable models with respect to
goodness-of-fit to the observed data and model parsimony. DIC associated with the
three model versions showed a better model fit with the presence of disturbances and
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Fig. 16.1 Conceptual representation of the three-tiered semi-parametric Bayesian hierarchical
model [33]

Table 16.1 Values of DIC
for the three published
versions of the
semi-parametric Bayesian
hierarchical models

Sub-region [32] [34] [33]

Cooktown-Lizard Island −1178 −1176 −1417

Cairns −1194 −1394 −1761

Townsville −934 −1202 −1528

Whitsundays −1085 −1198 −1561

Swain −726 −799 −1120

Capricorn-Bunker −360 −380 −459

their cumulative effect into the model formulation (Table 16.1). This result guided
the development of model presented here.

In this chapter, we examine relationships between coral cover trajectories and
proxies of fish community structure using posterior predictive distributions of coral
cover from the third stage of the model, the data stage.

Within each sub-region, the cover of Acropora spp., yij , at time t indexed by
site i (i=1–141) and time period j (j=1–17) was modelled using a three-tiered
hierarchical model (Fig. 16.1). For the first tier of the model (the data stage),
values of coral cover yij were arcsine square root transformed to be normally
distributed with an expected value μij and a sampling variance σ 2. For the second
tier (the process stage), the expected value μij was described by the contribution of
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coral trajectories at three spatial scales: fs(.) describes the overall mean trajectory
at the scale of the sub-region, and deviations from this overall curve represent
hierarchically, the habitat and site-specific dynamics, indexed by h(s) and i(sh)

respectively. For the last tier (the parameters stage), the unknown parameters of the
model and associated uncertainty were described.

Coral cover trajectories were modelled using a semi-parametric approach com-
posed of a linear and non-linear component [9]. This approach benefits from esti-
mating ecological trends from the data while allowing for increases and decreases
in coral cover among years resulting from coral recovery and disturbances, respec-
tively [32]. In order to estimate changes in coral cover through time, the linear
component was estimated using slope and intercept parameters at each spatial scale.
Fixed parameters were used to estimate coral cover trajectories at the scales of
habitat and sub-region. These parameters were described by vague normal prior
distributions with a mean equal to 0 and a large variance of 103. At the site scale,
coral cover trajectories were estimated using random slope and intercept parameters
which allowed us to explore the variability in coral cover changes between the reef
sites through time. We also modelled the cumulative effect of disturbances (δ2i ) of
coral cover changes at this scale. Gamma priors were used to describe the associated
variance parameters for each reef site. The variability in coral cover was modelled
by adding smooth non-linear functions to the linear components for each spatial
scale. These penalized splines [9] were described by the matrices zt and zOcc that
indicated the positions of the knots (K1,K2,K3=4) along the year and disturbance
(at the site scale only) variables. These matrices were associated with additional
model parameters that constrained the smoothing effect. Therefore, the number of
knots used in the model is not critical unlike other non-linear regression approaches
such as Generalized Additive Models which are commonly implemented to model
coral cover trajectories.

Statistical diagnostics including deviance information criteria (DIC), posterior
predictive checks, and residual analysis were used to identify the preferred model.
Convergence from the MCMC runs was assessed by performing tests available
in the CODA R packages [26]. Gelman and Rubins and Geweke’s convergence
diagnostics, trace and density-plots of parameters and autocorrelation plots between
MCMC draws confirmed the convergence of MCMC chains. Three MCMC chains
were simultaneously run to confirm convergence to stationarity. Model convergence
was reached after 800,000 iterations, of which 500,000 values were discarded
as burn in and using a thinning rate of 50 iterations. Inferences presented here,
therefore, are based on 6000 values from three different MCMC chains. The model
was fitted using the Bayesian software analysis WinBUGS [27] from the R package
R2WinBUGS [28].

arcsin
√
yij ∼ N (μij , σ

−2)

μij = fs + fh(s) + fi(hs)

fs = β0 + β1 × tij +
K1∑

k=1

ckz
s
tijk
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fh(s) = γ0 + γ1h × tij +
K2∑

k=1

dhkz
h
tijk

(16.1)

fi(hs) = δ0i + δ1i × tij + δ2i × Cumulij +
K3∑

k=1

gikz
i
tijk

+
K3∑

k=1

hikz
i
Occijk

β0, β1, γ0, γ1h ∼ N (0, 103)

c, d, g, h, δ0i , δ1i , δ2i ∼ N (0, σ−2
(.) )

σ−2
(.)

∼ G(10−3, 10−3)

The variability of coral cover trajectories was well captured by the model fit
with an average of 85.6% of coral cover observations included in the 95% credible
intervals of the coral cover posterior distributions. Coral cover predictions (number
of times that coral observations were included in the 95% credible intervals) were
the most accurate for the southern sub-region of Capricorn-Bunker (88.4%) and the
less accurate in Cooktown-Lizard Island (83.6%).

Posterior Probabilities and Thresholds
Posterior predictive distributions of coral cover ŷij were previously examined in
order to estimate long-term coral cover trajectories and associated uncertainty at the
scale of individual reef site (Fig. 16.2, [33]). In this chapter, these distributions were
used to calculate proxies of fish community structure defined as the probabilities of
coral cover being above 20% and between 10–20% and 5–10%. These thresholds
were chosen to broadly represent degrees of stability of associated reef fish
communities. Posterior probabilities were calculated by estimating the number of
times, ŷij , was greater than the proxies using the 6000 values from the MCMC
simulations. Probabilities were estimated for each surveyed year at the scales of
coral reef, sub-region, and GBR. Proxies for fish community structure were arcsine
squared-root transformed to align with coral cover prediction outputs.

16.3 Results

Disturbance Regimes and Coral Cover Trajectories
For the period 1995–2011, 294 disturbances were recorded by the LTMP. During
this period, Unknown and Storm/Cyclone were the two most frequent and spatially
widespread disturbances. Coral Bleaching was recorded in the sub-regions of
Townsville and Whitsundays and Coral Disease in the two most northern and
southern sub-regions. Coral decline associated with CoTS outbreaks were the
most frequent in the sub-regions of Cairns, Townsville, and Swain sub-regions.
Storm/Cyclone disturbance was the most prevalent during the last 2 years of this
period [33]. The two category 5 tropical cyclones [8] were associated with a 68%
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Fig. 16.2 Example of coral cover trajectories for the sub-region Cooktown-Lizard Island.
Coloured dots and dotted lines indicate the measurements of coral cover at site and shaded areas
the 95% credible intervals from the posterior predictive distributions of coral cover estimated by
the model

decline in coral cover across >1000 km of the central-southern part of the GBR [8].
Coral decline associated with Coral Bleaching was recorded in 1998–1999 and 2003
(the survey year following bleaching in late 2002) and match with records of heat
stress [18].

The accumulation of disturbances of all types increased from 4 records in 1995 to
100 in 2000, 181 in 2005 and 286 in 2011 (Fig. 16.3). The presence of disturbances
was recorded in all of the six sub-regions from 1999. Disturbances were the most
recorded in the sub-region of Townsville with a total of 77 accumulated events in 16
years data followed by Swain (46), Cairns and Whitsundays (45), Cooktown-Lizard
Island (41) and Capricorn-Bunker (38).

Posterior Probabilities and Thresholds
The proxies used to examine potential disruptions to fish community structure as a
function of coral cover changes through time did not reveal any trends at the GBR
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Fig. 16.3 (a) Spatial locations of surveyed reefs within region along the Great Barrier Reef. (b)
Cumulative sum of disturbances across all types per sub-region

scale. The probabilities of coral cover being >20% and between the ranges of 10–
20% and 5–10% remained stable through time with the exception of a decline from
0.5 to 0.25 for the probabilities of coral cover being between 5–10% from 2009 to
2011 (Fig. 16.4).

Probability trajectories were variable between and within sub-regions ranging
from 0 to 1 through the studied period. At the sub-region scale, the probabilities
of a coral cover >20% was close to 0 during the entire period for the sub-regions
of Cairns, Townsville and Whitsundays. In the Cairns sub-region, few reef sites
displayed varying probability trajectories with some probabilities close to 1,
whereas, the decline in posterior probabilities was homogeneous across all the reef
sites within the Townsville sub-region. In the Cooktown-Lizard Island sub-region,
probabilities of coral cover between 10–20% increased from 0.10 in 1995 to 0.50 in
1999 and remained stable throughout the year. This latest trend was also detected
for the probabilities coral cover between 5–10% but with variations in probabilities
ranging between 0 and 1 at the reef site scale within this sub-region. The southern-
most sub-region of Capricorn-Bunker displayed similar probabilities across its reef
sites and thresholds through time. The central sub-regions of Cairns, Townsville,
Whitsundays, and Swain also showed similar differences in regional probability
trajectories between the thresholds but at different magnitudes. Probabilities were
typically higher for the 5–10% coral cover threshold especially for the sub-regions
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Fig. 16.4 Posterior probabilities of percent of coral cover strictly above a threshold of >20% (a),
between >10 and 20% (b) and between >5 and 10% (c), used as proxies for potential disruptions
in fish community structure. Broad-spatial scales probabilities are indicated by black tick lines at
the scale of the Great Barrier Reef (left panels) and sub-regions (right panels). Coloured dots and
lines show posterior probabilities at the reef site scale within each sub-region

of Cairns and Whitsundays with a different magnitudes ranging from 0.25 to 0.50
throughout the years. The sub-region of Townsville displayed long-term declines
in probabilities of coral cover being above any of the three thresholds at different
rates starting from 1999. Probabilities of coral cover being between 10 and 20%
decreased from 0.50 to 0 between 1997–2003, whereas the decline in probabilities
of coral cover between 5 and 10% ranged from 0.75 in 1999 to 0.25 in 2003. From
2003 onward, these probabilities remained stable.
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16.4 Discussion

Modern Bayesian approaches to the study of biological communities are able to help
address gaps in monitoring data required for conservation and management across
communities and spatial scales [20]. Our application of the Bayesian statistical
framework to data for habitat-forming corals allowed us to understand different
aspects of the trajectories of these communities while controlling for several sources
of uncertainties inherent in monitoring data, ecological processes, and model
parameter estimation [32]. By retaining information at different hierarchical spatial
scales in a non-linear context while considering the effects of disturbances, we were
able to estimate 16 years of variation in coral cover trajectories with associated
estimates of uncertainty across different spatial scales [33, 34]. Using posterior
predictive distributions of estimated coral cover, the investigation of probabilities
of coral cover beyond certain critical thresholds demonstrates that information
contained in coral cover data may be used to indirectly infer the structure of other
organisms that depend on corals to provide habitat space. In the field of coral-reef
ecology, this approach could help understand flow-on effects of changes in coral
cover on the dynamics of biodiversity dependant on it without the need for direct
observations. Considering that only 15% of the Great Barrier Reef is regularly
monitored (>2 surveyed years) by several organizations with different purposes,
it is essential that the future coral reef research acknowledges these data gaps and
look for innovative approaches to monitor changes in coral reef biodiversity across
the entire GBR [1, 19, 24].

The probabilistic approach adopted here to assume changes in fish community
structure as a function the spatio-temporal variability in coral cover reveals that the
conditions favourable to the maintenance in fish community structure (i.e. >20%
coral cover) remained stable throughout the study period and never exceed p =
0.25 at the scale of the GBR. The probabilities of fish community structure being
disrupted (i.e. when coral cover is between >10 and 20%) or decline in fish diversity
(i.e. when coral cover is between >5 and 10%) varied the most at the regional
and reef levels. This variability in probabilities through time and space within and
between sub-regions suggests that the processes responsible for changes in coral
cover mostly acted at fine spatial scales with the exception of Capricorn-Bunker
and Townsville sub-regions.

The LTMP surveys recorded numerous disturbances along the GBR including
early CoTS outbreaks in the northern parts [30] and storms in the south [14].
These disturbance events were reflected in the low probabilities of coral cover
being between 10 and 20% in the Capricorn-Bunker and Cooktown-Lizard Island
regions in 1995, respectively. Large and widespread effects of storms in 2008 and
tropical cyclone Hamish in 2009 dramatically reduced the probabilities coral cover
being between 5 and 10% for all the coral reefs in the Capricorn-Bunker sub-
region. From 1999, the decline in probabilities of coral cover being above the
critical thresholds suggests potential disruptions of fish community structures in
the Townsville sub-region. The numerous disturbances including tropical cyclone
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Justin in 1997, coral bleaching in 1998 and other types of disturbances recorded
almost every surveyed year resulted in the accumulation of 77 disturbances in 16
years and likely prevented recovery at the sub-regional scale. Nonetheless, no sub-
regional trends in fish community disruptions were reported [30]. Therefore, the
choice of the thresholds based on the literature may be conservative and warrant
further investigation to more carefully define how, and at what levels, they operate.

In this chapter, we demonstrate the benefits of carefully modelling of habitat
forming corals in order to extract information on their trajectories at different
spatial scales and their potential implications for coral reef associated biodiversity.
This information has the potential to inform management of coral reefs in the
face of increasing anthropogenic disturbances. For example, the sub-regions of
Townsville and Whitsundays may require specific intervention as a result of very
low probabilities coral cover being between 10 and 20%. Also, the decline in
probabilities of coral cover being between 5 and 10% used as a proxy for fish
diversity loss for all the sub-regions, with the exception of the Cooktown-Lizard
Island, should be carefully monitored. In the absence of signs of recovery (i.e.
increase in probabilities of coral cover being between 5 and 10%) options should be
considered regarding how best to arrest any further declines and support recovery
to reduce the risks of major ecological shifts. Operational methods for managing
the Great Barrier Reef using information extracted from statistical models is not
yet well developed or deployed. As the Anthropocene unfolds, associated with
unprecedented rapid decline of habitat-forming corals [15, 18], a more robust
quantitative framework, at management relevant scales such as the entire GBR, is
urgently required.
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Chapter 17
Application of Bayesian Mixture Models
to Satellite Images and Estimating the
Risk of Fire-Ant Incursion in the
Identified Geographical Cluster

Insha Ullah and Kerrie L. Mengersen

Abstract Bayesian non-parametric mixture models have found great success in
the statistical practice of identifying latent clusters in data. However, fitting such
models can be computationally intensive and of less practical use when it comes
to tall datasets, such as Landsat imagery. To overcome this issue, we propose to
obtain multiple samples from data using stratified random sampling to enforce
adequate representation in each sample from sub-populations that may exist in
data. The non-parametric model is then fitted to each sample dataset independently
to obtain posterior estimates. Label correspondence across multiple estimates is
achieved using multivariate component densities of a chosen reference partition
followed by pooling multiple posterior estimates to form a consensus posterior
inference. The labels for pixels in the entire image are inferred using the conditional
posterior distribution given pooled estimates, thereby substantially reducing the
computational time and memory requirement.

The method is tested on Landsat images from the Brisbane region in Australia,
which were compiled as a part of the national program for the eradication of the
imported red fire-ant that was launched in September 2001 and which continues to
the present date. The aim is to estimate the risk of fire-ant incursion in each of the
identified geographical cluster so that the eradication program focuses on high risk
areas.
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17.1 Introduction

Imported red fire-ant have been a cause for concern in Brisbane, Australia. They
are an invasive species and their spread could have serious social, environmental
and economic impacts throughout Australia. They were first discovered in February
2001 in surrounding areas of the Port of Brisbane but are believed to have been
imported a couple of decades prior to 2001. Despite the eradication program, which
was launched in September 2001, spread from the initial Brisbane infestation has
led to infestations around the greater Brisbane area. Isolated incursions have been
found even beyond the greater Brisbane area.

In order to prioritize the use of the surveillance budget and to promote better
decision making, modelling is performed to estimate the risk of fire-ant incursion in
each area so that the eradication program focuses on high risk areas. As part of the
surveillance program the colony locations were recorded prior to their eradication.
The analysis of imagery data in combination with the location observations helps
identify the preferred habitats of fire-ants [29]. However, the field data are presence-
only data [9]: information on observed absences is not available and it is not
reasonable to assume that areas where the pest has not been observed are absences
since they are known to have very wide potential habitat. Hence supervised learning
models such as logistic regression to predict occurrence probability are too arbitrary
for the presence-only data and are not justifiable in this situation [11].

In light of the above, unsupervised clustering methods are more appealing for
these presence-only data. These methods involves dividing the whole region into
smaller clusters based on available covariate data and determining the possibility of
presence in each cluster. In the context of our case study, the covariates are obtained
from the satellite imagery and the presence if interest is fire-ants. However, this
requires model selection that is the pre-specification of the number of clusters, K .

Dirichlet process Gaussian mixture models (DPGMMs) have been widely
adopted as a data-driven cluster analysis technique. The main attraction of these
models lies in sidestepping model selection by assuming that data are generated
from a distribution that has a potentially infinite number of components. However,
for a limited amount of data, only a finite number of components is detected and
an appropriate value for the number of components has to be determined directly
from data in a Bayesian manner (hence the term, ‘data-driven’). These infinite, non-
parametric representations allow the models to grow in size to accommodate the
complexity of the data dynamically. However, they are computationally demanding
and do not scale well to the satellite imagery data, each image of which is usually
made up of millions of pixels. This is because they need to iterate through the full
dataset at each iteration of the MCMC algorithm [see, e.g., 1]. The computational
time per iteration increases with the increasing sizes of the datasets.

How to scale Bayesian mixture models up to massive data comprises a significant
proportion of contemporary statistical research. One way to speed up computations
is to use graphics processing units [see, e.g., 18, 30] and parallel programming
approaches [see, e.g., 4, 8, 31]. Relatively less computationally demanding methods
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for fitting the mixture models include approximate Bayesian inference techniques
such as variational inference [3, 13, 23, 25] and approximate Bayesian computa-
tion [22, 24]. Other strategies to speed up computations are the sampling based
approaches. This is adopted by Huang and Gelman [14] who partition the data
at random and perform MCMC independently on each subset to draw samples
from the posterior given the data subset. They suggested methods based on normal
approximation and importance re-sampling to make consensus posteriors. A similar
idea has been proposed in [27] with a different rule for combining posterior draws.
Manolopoulou et al. [21] improve inference about the parameters of the component
of interest in the mixture model. An initial sub-sample is analysed to guide selection
from targeted components in a sequential manner using Sequential Monte Carlo
sampling. This approach depends critically on an adequate representation of the
component of interest in the initial random sample. However, in a massive dataset, a
low probability component of interest is likely to escape the initial random sample,
which will lead to unreliable inference.

In satellite imagery, most of the data are replications. For example, all water
pixels should appear similar while pixels from the land covered with the same crop
should produce similar observations. Thus, inference based on a stratified random
sample of the data should be representative of the whole image. This is possible
in the case of supervised learning where the training data is labelled a priori. In
the case of unsupervised learning one could use a computationally faster method
such as k-means clustering to first label the data. These labels could then be used
to obtain a stratified random sample (hence enforcing representation from each sub-
population). A much more reliable inference based on a stratified random sample
can be obtained using more flexible and sophisticated mixture models which allow
incorporation of additional available information and also take into account the
correlation between variables rather than imposing a simple model, such as k-means
clustering, just because of computational problems.

In this article, we fit a Bayesian mixture model to stratified samples that have
been selected from pre-clustered images. Importantly, we make use of the strengths
of two clustering methods: the computationally less demanding method of k-
means clustering and the more sophisticated DPGMMs, which not only account
for correlations between variables, but also learn K in a data-driven fashion. Our
method is explained in Sects. 17.2 and 17.3 and applied to a case study in Sects. 17.4
and 17.5. Conclusions are presented in Sect. 17.6.

17.2 Dirichlet Process Gaussian Mixture Models

Assume that we are interested in clustering real-valued observations contained
in X = (x1, . . . , xn), where xi is a p-dimensional sample realization made
independently over n objects. Denoting the p-dimensional Gaussian density by
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N(·), a mixture of K Gaussian components takes the form

f (x|θ1, . . . , θK) =
K∑

k=1

πkN(x|θk), (17.1)

where θk = {μk,Σk} contains the unknown mean vector μk and the covariance
matrix Σk is associated with component k. The parameters π = {π1, . . . , πK } are
the unknown mixing proportion, which satisfies 0 ≤ πk ≤ 1 and

∑K
k=1 πk = 1.

In Dirichlet process Gaussian mixture models [26], the number of components
K is an unknown parameter without any upper bound and inference algorithms are
used to facilitate learning K from the observed data. Therefore, with every new data
observation, there is a chance for the emergence of an additional component.

Define a latent indicator zi , i = 1, . . . , n, such that the prior probability of
assigning a particular observation xi to a cluster k is p(zi = k|π) = πk . Given
the cluster assignment indicator zi and the prior distribution G on the component
parameters, the model in (17.1) can be expressed as:

x|zi = k, θk ∼ N(x|θk),
θk|G ∼ G,

G|α,G0 ∼ DP (α,G0),

where G0 is the base distribution for the Dirichlet process prior such that E(G) =
G0 and α is the concentration parameter. Integrating out the infinite dimensional G
from the posterior allows the application of Gibbs sampling to DPGMM [6, 7, 19].
By integrating out G, the predictive distribution for a component parameter follows
a Pólya urn scheme [2]

θk|θ1, . . . , θk−1 ∼ α

k − 1 + α
G0 + 1

k − 1 + α

k−1∑

i=1

δθi (·).

Specifying a Gamma prior over the Dirichlet concentration parameter α, α ∼
Ga(η1, η2), allows the drawing of posterior inference about the number of com-
ponents, K .

Simpler and more efficient methods have been developed to fit the DPGMM.
Consider two independent random variables Vk ∼ Beta(1, α) and θk ∼ G0, for
k = {1, 2, . . .}. The stick-breaking process formulation of G is such that

πk =
{

Vk (k = 1)
Vk

∏k−1
i=1 (1 − Vi) (k > 1)

,
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and

G =
∞∑

k=1

πkδθk (·),

where δθi (·) is a discrete measure concentrated at θk [28]. In practice, however, the
Dirichlet process is truncated by fixing K to a large number such that the number
of active clusters remains far less than K [15]. A truncated Dirichlet process is
achieved by letting VK = 1, which also ensures that

∑K
k=1 πk = 1. The base

distribution G0 is specified as a bivariate normal-inverse Wishart

G0(μk,Σk) = N(μk|μ0, a0Σk)IW(Σk |s0, S0),

where μ0 is the prior mean, a0 is a scaling constant to control variability of μ

around μ0, s0 denotes the degrees of freedom and S0 represent our prior belief about
the covariances among variables. The data generating process can be described as
follows:

1. For k = 1, . . . ,K: draw Vk|α ∼ Beta(1, α) and θk|G0 ∼ G0.

2. For the nth data point: draw zi |V1, . . . , Vk ∼ Mult (π) and draw xi |zi = k, θk ∼
N(x|θk)

17.2.1 Blocked Gibbs Sampling Scheme to Fit DPGMM

A blocked Gibbs sampler [15] avoids marginalization over the prior G, thus
allowing G to be directly involved in the Gibbs sampling scheme. The algorithm
is described as follows:

1. Update z by multinomial sampling with probabilities

p(zi = k|x, π, θ) ∝ πkN(xi|μk,Σk)

2. Update the stick breaking variable V by independently sampling from a beta
distribution

p(V |x) ∼ Beta

(
1 + nk, α +

K∑

i=k+1

ni

)
,

where Vk = 1 and nk is the number of observations in component k. Obtain π

by setting π1 = V1 and πk = Vk

∏k−1
i=1 (1 − Vi) for k > 1.



404 I. Ullah and K. L. Mengersen

3. Update α by sampling independently from

p(α|V ) ∼ Ga

(
η1 + K − 1, η2 −

K−1∑

i=1

log(1 − Vi)

)
,

4. Update Σk by sampling from

p(Σk |x, z) ∼ IW(Σk |sk, Sk),

where

sk = s0 + nk,

Sk = S0 +
∑

zi=k

(xi − x̄k)(xi − x̄k)
t + nk

1 + nka0
(x̄k − μ0)(x̄k − μ0)

t

and

x̄k = 1

nk

∑

zi=k

xi .

5. Update μk by sampling from

p(μk |x, z,Σk) ∼ N(μk|mk, akΣk),

where

mk = a0μ0 + nkx̄k

a0 + nk

and

ak = a0

1 + a0nk
.

17.3 The Method

As noted earlier, in satellite imagery, many of the pixels are exact replicates or
at least provide similar information (different up to a level of noise). To reduce
computational time and memory storage requirements, it is sufficient to obtain
an adequate representation from each group of similar observations rather than
analysing data that include tens of thousands of duplicate copies of observations.
The full dataset can be mapped onto the cluster obtained based on sample data.
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Many authors have resorted to this option; for example, [17] used a 0.1% sample
of 500 million documents and extended results to cluster the rest of the documents.
However, if a sample is selected at random, it is likely that some smaller clusters of
interest are not sampled. This eventually will produce results that are biased towards
a small number of larger clusters, which may in turn lead to lower quality clusters
[5].

We use a similar sampling based strategy but select a sample of size n in a way
that potentially ensures representation from very small clusters that may exist in the
data. This is made possible by first arbitrarily clustering the N pixels of the whole
image into a large number, say C, of smaller clusters (C is much larger than the
actual number of clusters one can expect in the whole image) using computationally
faster k-means clustering [20], which is a popular clustering algorithm because of
its scalability and efficiency in large data sets [16]. The pre-clustered image is then
sampled using stratified sampling with proportional allocation; that is, a sample of
size ni = n(Ni/N) is chosen from the ith cluster, where i = 1, . . . , C and Ni

denotes the number of pixels in ith cluster. Note that the total sample size, n =
n1+. . .+nC , should be large enough to contain a reasonable number of observations
from the smallest cluster obtained via k-means clustering. Another way to ensure
adequate representation from the smallest cluster is, for example, by increasing each
ni by the size of smallest cluster, say ns , that is ni = n(Ni/N)+ ns or by a fraction
of ns if ns is large. The sample of size n thus obtained is clustered using DPGMM.

To control for sampling variation we obtain M samples each of size n using
the above process and apply DPGMM independently to each sample. The label
correspondence across mixture components from the multiple samples is created
using multivariate component densities of a chosen reference partition and the mean
vectors from the rest of M partitions as data. This is followed by pooling posterior
estimates based on multiple samples to form consensus posterior estimates. Denote
the mth stratified random sample obtained from X by X(m), m = 1, . . . ,M , the
respective sample-data posterior by p(θ |X(m)) and the sample-posterior estimate of
the kth component parameter by θ̂k(m) = {μ̂k(m), Σ̂k(m)}. Then the pooled estimates
of the parameters of the kth component are obtained using the following identities
[14]:

μ̂k = Σ̂k

(
M∑

m=1

Σ̂−1
k(m)μ̂k(m)

)

and

Σ̂k =
(

M∑

m=1

Σ̂−1
k(m)

)−1

.

The labels for the N pixels in the entire image are inferred using the conditional
posterior distribution given the pooled estimates.
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17.4 The Data

Since the launch of the fire-ant eradication program in September 2001, data have
been collected on the location of each colony that has been found. The dataset used
in this case study comprises 17,717 locations where nests of fire-ants were identified
during the years 2001–2013. These locations are indicated on a Google image snap-
shot provided in Fig. 17.1. The proportion of colonies identified for each year are
provided in Fig. 17.2. A sudden rise in the number of identified nests during 2009–
2010 and then a drop back to normal in the following years is surprising. There may
be a number of factors responsible for this phenomenon, such as flooding events,
changes in surveillance processes or major developmental projects, but definitive
reasons for it still require further investigation.

A Landsat image is also available for each year of the study. These were acquired
on days of low cloud coverage, generally in the period between May and September,
most commonly in July. These images were chosen as being typical winter images,
and sufficiently near to the date required to be included in the winter planning period
for summer surveillance. The images were converted into workable data files using
the ‘raster’ package [12] in R. Note that we use 6 Landsat spectral bands (variables):
visible blue, visible green, visible red, near infrared, middle infrared, and thermal

Fig. 17.1 Google image snapshot of the study area and the observed location of fire-ant colonies
(indicated by red dots) over the study period 2001–2013
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Fig. 17.2 Proportions of fire-ant colonies detected each year from 2000–2013

infrared. The Landsat variables were centred at mean zero and scaled to a unit
variance.

We also used R for the substantive statistical analysis. To solve the k-means
problem, we used the algorithm in [10], which is a default option in the R function
kmeans(), available from the ‘stats’ package. Since it is recommended to make
repeated runs with different random starting points and choose the run that gives the
minimum within-class variance, we used 8 random starting points in our analysis.
Note that the function kmeans() also allows to specify multiple random starting
points. A larger number of starting points, however, increases computation cost,
particularly when the number of clusters is larger, which is due to multiple runs
of the algorithm. We avoided this by using the parallel processing facility in R
provided by foreach loop from the ‘foreach’ package. Since the k-means clustering
is intended to include small strata in order to acquire a representative sample (rather
than final clustering), we did not find noticeable differences in terms of visual
interpretation when used a single random starting point.

To fit a DPGMM, we translated Matlab code, available at http://ftp.stat.duke.
edu/WorkingPapers/09-26.html, into R code [for details about Matlab codes, see,
21]. Due to having no formal convergence guarantee, we did experiments with

http://ftp.stat.duke.edu/WorkingPapers/09-26.html
http://ftp.stat.duke.edu/WorkingPapers/09-26.html
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different images (considered in this study) to decide on the total number of iterations
of the blocked Gibbs sampling algorithm including the burn-in iterations. In our
experiments we found that the algorithm provided visually interpretable solutions
after 1000 iterations (our final results can be visualized and checked with Google
maps) and we did not see any noticeable difference when used with a larger number
of iterations (30,000 iterations excluding 5000 burn-in iterations). Therefore, we
used 10,000 iterations of a blocked Gibbs sampler excluding the first 2000 burn-in
iterations in all the analyses whose results are shown here. The overall computation
time averaged over the 13 images considered in this study was 8 h and 11 min when
we set n = 100,000 andM = 10. This computation time increased to 14 h and 5 min
for n = 200,000. Note that we used the high performance computing facility at
the Queensland University of Technology for our computations which has 2.6 GHz
processors with 251 Gb memory.

17.5 Analysis and Results

The aim of the analyses was to find out about the potential characteristics of fire-
ants’ preferred habitats by classifying the satellite images. The images were first
clustered arbitrarily into large number of clusters using k-means clustering. We
tried C = 50, 100, 150, 200, 250, 300 and show the results for C = 100, since
we did not notice significant improvement for larger values of C in terms of
visual interpretation. Ten stratified samples (M = 10) each of size n = 100,000
were selected using proportional allocations. The DPGMM was then fitted to
each sample independently in parallel and the pooled estimates were obtained by
combining the posterior estimates across the multiple samples. The results based on
different samples were very consistent apart from the labels correspondence issue.
For example, the component-1 represented water in the partitioning based on the
sample-1 but it represented forest areas in the partitioning based on the sample-2. We
dealt with this problem by using density of a chosen reference partition (the one that
gave the maximum number of components) and considering the mean vectors from
the rest of the partitions as data. In this way, the water component in all partitions
had a high probability to correspond with the water component in the reference
partition; therefore, we re-labelled them the same across different partitions. In
our analysis we used M = 10 because of the availability of high performance
computing facility. However, we did not notice any visually interpretable change
when we used a smaller value of M = 5 on a personal 8-core Intel platform
with processor speed 3.4 GHz and 16 GB of memory. The whole process for this
experiment took 5 h with 5000 iterations of a blocked Gibbs sampler excluding
1000 burn-in iterations. The reference partition was chosen, among M partitions,
as the one with the largest number of components. The labels for the whole image
are inferred using obtained posterior distribution given the pooled estimates. This
process was performed independently for each image from the year 2001 to 2013.
We tested a range of values of n (between 10,000 and 300,000, inclusive) and found
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that the number of components and their structure did not change (in terms of visual
interpretation) as we increased the value of n beyond 100,000. Therefore, we set
n = 100,000 for all the results shown here.

The classification based on the images from years 2003 and 2010 are shown,
respectively, in Figs. 17.3 and 17.4. The proportion of observed fire-ants identified
in each cluster are presented in Tables 17.1 and 17.2. Note that each of these tables
is based on a single year image; however, the proportions of the observed fire-ants
for the rest of the study period that falls in a particular class are also provided
for prediction purpose. The figures for other years and their respective tables are
diverted to the supplementary material due to the compatibility of the results across
different years.

The final number of components per image varied across different years but
stayed below 36. The variation in the number of components was mainly due to
a number of very small clusters that each contained less than 1% of the total pixels.
However, the number of components that consisted of more than 1% of the pixels
were quite consistent across different years and remained around 20. Some of the
variation in the number of clusters across different years could possibly be attributed
to the time of the day the image was acquired. For example, the mountainous
area was broken into a various number of components in images from different
years possibly because of shadows (see components 10 and 12 in Fig. 17.3 and
components 10, 13 and 18 in Fig. 17.4). In the image from 2001, clouds over the
mountains were well separated (image not shown here). Other variations are because
of the changes in the landscape over time. For example, Wyaralong Dam cannot be
seen in Fig. 17.3 but can be seen in Fig. 17.4 since it was built in 2009–2010.

The large components were materially similar across different years and were
visually interpretable into different land cover classes, namely, hills, forest, water,
residential areas, warehouses, roads, parks and play grounds, plain areas with
natural non-forest vegetation (scrub-land) and some impervious surfaces, and new
development sites or land with recent deforestation. Other smaller clusters (each
consisting of less than 1% of the pixels and visually not interpretable) are found to
be of less interest and are therefore merged together in the figures.

The water component in the image was always well separated from the rest of the
components and was often partitioned into shallow and deep water (see components
6, 18 and 20 in Fig. 17.3 and components 12 and 14 in Fig. 17.4). Although this
component is not of interest to us, it helps in identifying and interpreting other
components. The parks and playgrounds were found to be consistently at risk
of infestation over time (see components 17 and 9, respectively in Tables 17.1
and 17.2). The components that represent the scrub-land with thinner forest and
the land with natural vegetation are generally the largest by area and are found to
be consistently at risk of fire-ant incursion (see components 1 and 2 in Table 17.1;
components 1, 3, and 4 in Table 17.2); in particular, the incursion in component 3
of Table 17.2 has increased over time.

The residential area (see component 3 in Table 17.1 and components 7 and 19
in Table 17.2) including the areas with commercial buildings (see component 21 in
Table 17.1 and component 15 in Table 17.2) were found to be at high risk in the
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Fig. 17.3 Cluster analysis of satellite image of the Brisbane area taken in 2004. For clarity, some
of the clusters are merged together, in dark-orange (top) and gray colours (bottom), and the results
are presented in two plots: (top panel) 1: scrub-land with thinner forest, 2: scrub-land with natural
vegetation, 3: residential area 4: Dense forest, 5: mountainous areas with scarce forest, 6: water,
7: mix of impervious surfaces and scrub-land, 8: mountainous areas, 9: mountainous areas, 10:
hills and forest, 11: mountainous areas with scars forest; (bottom panel) 12: hilly areas, 13: hard
for visual interpretation, 14: residential area, 15: hard for visual interpretation, 16: fields, 17: mix
of parks, playgrounds and grassland, 18: shallow water, 19: fields with crops, 20: seashore and
shallow water, and 21: commercial buildings. Cluster 22 to cluster 35 are too small to be visually
interpreted
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Fig. 17.4 Cluster analysis of satellite image of the Brisbane area taken in 2011. For clarity, some
of the clusters are merged together, in dark-orange (top) and gray colours (bottom), and the
results are presented in two plots: (top panel) 1: scrub-land with thinner forest, 2: dense forest,
3: impervious surfaces and scrub-land, 4: scrub-land with natural vegetation, 5: mountainous
areas with thinner forest, 6: forest, 7: residential area, 8: mountainous areas scarce forest, 9:
parks and playgrounds, 10: hills with dense forest, 11: mountainous areas with scarce forest;
(bottom panel) 12: deep water, 13: hilly areas with dense forest, 14: shallow water, 15: mix of
commercial buildings and fields without crops, 16: hard for visual interpretation, 17: hard for visual
interpretation, 18: hills, 19: residential areas, 20: hard for visual interpretation, and 21: fields with
crops. Cluster 22 to cluster 34 are too small to be visually interpreted
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Table 17.1 The percentages of fire-ant colonies identified in each of the spatial components
(shown in Fig. 17.3) over the period of 13 years conditional on the image acquired in 2004
(highlighted in italics)

C.No C.Size 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

1 17.48 13.9 11.2 16.2 16.7 20.6 16.8 5.5 9.5 10.2 11.8 10.8 18.5 19.9

2 9.77 1.1 1.9 3.3 10.7 3.1 0.5 4.7 9.8 11.5 36.1 4.3 10.7 8.7

3 8.75 53.1 47.7 50.8 23.4 53.3 56.4 35.9 33.8 26.3 9.6 30.2 18.6 14.4

4 8.06 1.0 1.9 1.1 1.0 0.8 1.6 0.7 1.2 3.9 2.2 6.2 12.9 13.0

5 6.02 1.7 1.3 1.4 5.7 1.5 0.8 0.7 2.0 4.0 5.4 2.6 2.8 3.9

6 5.58 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

7 5.49 1.3 2.1 2.9 27.1 0.0 0.3 14.4 18.6 19.6 21.4 12.8 11.2 7.4

8 5.37 0.0 0.3 0.5 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.3 1.4 1.5

9 4.65 0.1 0.0 0.3 0.3 0.8 0.0 0.0 0.0 0.2 0.0 0.1 0.5 1.3

10 4.16 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.4

11 4.04 0.3 0.6 1.0 2.7 0.0 0.0 0.0 0.2 0.8 0.3 0.2 0.6 1.1

12 3.78 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0

13 2.94 0.2 1.0 1.1 0.3 0.0 0.0 0.0 0.0 0.2 0.5 1.0 1.4 1.4

14 2.37 9.9 10.7 10.1 4.4 5.4 5.9 3.1 3.4 6.5 4.1 4.2 4.3 6.9

15 2.01 0.0 0.0 0.1 0.5 0.8 0.0 0.0 0.0 0.2 0.6 0.3 0.9 0.9

16 1.99 1.1 3.6 1.5 1.0 0.8 7.6 25.9 15.0 6.6 5.0 22.3 8.7 12.0

17 1.86 0.7 2.7 2.0 1.6 3.1 2.2 0.5 0.9 1.7 0.5 1.0 2.2 2.0

18 1.78 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

19 1.09 0.7 0.3 0.6 0.6 2.3 2.2 0.5 1.0 4.5 0.2 0.7 1.5 0.9

20 0.64 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.2

21 0.61 9.5 10.9 3.7 2.1 4.6 1.6 1.9 1.0 1.1 1.5 1.7 1.3 1.8

22 0.48 4.6 3.1 2.3 0.5 0.0 2.2 3.8 2.5 0.6 0.1 0.1 0.9 0.6

23 0.36 0.1 0.3 0.3 0.0 3.1 1.5 1.8 0.3 1.6 0.1 0.7 1.2 1.0

24 0.34 0.2 0.1 0.3 0.0 0.0 0.0 0.2 0.1 0.0 0.1 0.1 0.0 0.1

25 0.23 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.2 0.2

26 0.06 0.0 0.0 0.0 0.5 0.0 0.3 0.2 0.0 0.0 0.0 0.0 0.0 0.0

27 0.03 0.3 0.3 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.1 0.0 0.0 0.1

28 0.03 0.2 0.1 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

29 0.02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

30 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0

31 0.01 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.1

32 0.00 0.1 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

33 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

34 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

35 0.00 0.0 0.0 0.0 0.0 0.0 0. 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Total incursions 1788 701 928 387 130 365 547 965 664 5690 2866 1272 1414

The C.No indicates component numbers corresponding to the component numbers in Fig. 17.3. The
C.Size (in %) indicates the size of a cluster relative to image. The clusters are sorted in descending order
with respect to their sizes
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Table 17.2 The percentages of fire-ant colonies identified in each of the spatial components
(shown in Fig. 17.4) over the period of 13 years conditional on the image acquired in 2011
(highlighted in italics)

C.No C.Size 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

1 12.05 2.5 3.9 6.0 14.8 6.9 8.9 3.6 3.8 2.4 14.7 3.2 1.8 4.5

2 9.59 1.4 1.6 2.4 4.5 3.1 1.4 0.0 0.2 0.0 0.1 0.1 0.3 0.5

3 7.93 9.0 10.2 9.0 30.1 21.3 7.4 27.9 24.2 40.1 24.2 49.2 29.8 30.9

4 7.40 0.2 0.4 0.1 3.8 0.0 0.0 4.7 0.5 4.1 27.7 11.3 0.9 3.9

5 6.01 0.1 0.3 0.8 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.8

6 5.28 10.3 9.8 11.0 4.8 7.7 7.9 1.9 5.6 7.0 2.3 2.0 1.2 2.5

7 5.27 27.6 27.4 28.1 12.7 13.9 23.4 13.6 16.6 14.2 5.0 10.1 23.6 20.5

8 4.85 0.2 0.3 0.1 0.8 0.0 2.1 1.6 0.4 0.2 0.5 0.5 0.6 0.7

9 4.79 6.7 7.4 9.3 7.2 15.3 23.1 3.2 4.3 13.5 5.3 5.1 6.3 6.3

10 4.72 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

11 4.36 0.1 0.1 0.1 0.3 0.0 0.0 0.2 0.2 0.0 0.0 0.0 0.1 0.1

12 4.10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

13 3.65 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

14 3.51 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

15 3.38 31.6 29.6 21.0 10.5 14.3 18.7 27.2 31.5 6.2 3.1 6.5 9.2 9.4

16 3.12 0.2 0.0 0.4 1.3 1.5 0.0 0.7 0.0 0.2 1.6 0.9 0.1 0.6

17 2.81 0.1 1.1 0.2 4.5 0.0 0.0 4.5 1.5 3.8 11.1 2.2 3.4 1.5

18 1.66 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

19 1.43 8.7 5.9 9.6 1.8 7.7 5.7 1.9 1.4 3.2 0.9 2.2 2.2 1.7

20 1.25 0.1 0.1 0.2 0.0 0.8 0.8 0.4 0.6 1.5 2.3 0.9 0.2 0.6

21 0.99 0.3 0.4 0.1 0.8 0.0 0.0 0.0 0.7 0.5 0.1 0.5 0.7 0.9

22 0.48 0.2 0.0 0.1 0.0 0.0 0.0 0.0 1.0 0.0 0.1 0.0 0.0 0.0

23 0.44 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

24 0.27 0.2 0.6 0.4 1.0 3.8 0.0 6.6 2.4 2.4 0.4 3.5 10.9 9.9

25 0.24 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

26 0.24 0.2 0.6 0.3 0.0 3.7 0.5 2.2 4.8 0.9 0.2 1.6 8.5 4.6

27 0.12 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

28 0.04 0.5 0.4 0.3 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0

29 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.2 0.1 0.0 0.1

30 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

31 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

32 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0

33 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

34 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Total incursions 1788 701 928 387 130 365 547 965 664 5690 2866 1272 1414

The C.No indicates component numbers corresponding to the component numbers in Fig. 17.4. The
C.Size (in %) indicates the size of a cluster relative to image. The clusters are sorted in descending
order with respect to their sizes
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initial years when the eradication program started. However, the risk of incursion
declined soon after the launch of eradication program in this class, which probably
shows that the eradication program has been more effective in the residential areas.
A potential reason could be swift reporting once the incursion has been observed.
The risk of incursion increased in the components that represent agricultural fields
and in the components that represents impervious surfaces and scrub-land (see,
respectively, component 16 and 7 in Table 17.1).

The components with forest areas were found to be consistently at low risk of
fire-ant incursion (see component 4 in Table 17.1 and component 2 Table 17.2).
Similarly, the mountainous areas were also found to be at low risk (see components
10 and 12 in Table 17.1 and components 10, 13 and 18 in Table 17.2).

As mentioned above, Tables 17.1 and 17.2 also present the proportions of fire-
ant nests observed in the years other than the one in which the analysed image was
acquired. In general, the classes with high proportions of fire-ant nests in the image
year calibrate well with the proportions in a few years that follow. For example,
in Table 17.1 areas in component 1 were at risk of fire-ant incursions in 2003
(contained 16.2% of the observed nests) remained at similar risk in the following
year (component 1 contained 16.7% of the observed nests in 2004). The risk of
infestation in component 3 of Table 17.1 is consistent for a few years following
2003 (2004 is an exception that contained 23.4% of the observed nests) with a
gradual decreasing trend in the later years. Similarly, in Table 17.2, which is based
on classification of image from 2011, component 3 was found to be at highest
risk in 2011 (contained 49.2% of the observed nests) and remained at high risk
in the following 2 years (contained 29.8% in 2012 and 30.9% in 2013). The risk
of incursion in component 7 was almost doubled in the following years (contained
10.1% of the observed nests in 2011, 23.6% of the observed nests in 2012 and 20.5%
of the observed nests in 2013). The component 15 contained 6.5% in 2011 and 9.2%
in 2012. Some of the potential factors for anomalous changes could possibly be
attributed climatic events such as floods or drought.

The above results indicate that image classification provides useful information
for operational projects. The classification can be produced routinely at a low
cost, which when combined with the observed data helps in learning about the
high risk areas. These high risk areas could be prioritized in order to satisfy
budgetary constraints. For example, as mentioned above the infestation of fire-ants
has declined in residential areas over a period of 13 years and probably reflects the
success of the eradication program but has increased in other components such as
scrub-land and agricultural fields that needs to be prioritized in future.

17.6 Conclusions and Recommendations

DPGMM are computationally prohibitive for tall datasets such as satellite imagery
data. We used computationally faster k-means clustering to pre-cluster the data
into a large number of clusters and obtain stratified samples of suitable sizes to
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ensure representation from very small clusters. These samples are partitioned using
DPGMM and the posterior estimates are pooled across multiple samples. The labels
for all the pixels in the image are predicted using the posterior distribution given
the pooled estimates of components parameters. The proposed method enables
classification of a dataset with millions of observations in a matter of hours and
minutes.

We clustered satellite images to identify the land cover classes that are at high,
medium, and low risk of infestation of fire-ants. Residential areas were found to be
at a high risk of infestation in the initial years of the eradication program that started
in 2001. However, the risk of incursion in the residential area declined within a few
years after the start of eradication program. The scrub-land with natural vegetation
and the classes that represent agricultural fields have seen high incursions in the later
half of the study period. Parks, playgrounds and some impervious surfaces were also
found to be at risk of infestation.

The overall analyses show that clustering satellite images could be very useful to
make rational decisions about where the eradication program needs to focus next.
For example, the eradication program is found to be successful in the residential
areas perhaps due to prompt response from the residents and businesses. However,
as mentioned earlier, other clusters such as scrub-land with natural vegetation,
agricultural fields, parks, playgrounds and roads have seen high incursions in the
later years of the study periods. Since having fire-ants at home or at the commercial
places are more threatening as compared to having encountered them at the park
or on a road, people are more likely to report them when they are posing a threat
to their personal comfort. This makes it important to create awareness among the
public about these high risk areas, in order to better support the collective effort to
detect and manage this pest.

Note that this is was an initial exploratory study and has some limitations
pertaining to it. First, the information from both the images and fire-ant incursions
data have spatio-temporal structures, we fitted a separate model for each year and
calculated the proportions of presence-only data observed in that year in the clusters
found by the model. A more principled way would be to embed the presence-only
data in the fitted model. This would require a hierarchical model that in one level
performs the clustering based on the spectral bands and in the other level uses the
clusters as predictors in a model for the presence-only data. One need to account
for spatial dependence in such model, which could potentially play an important
role in the problem being tackled. Second, we did not account for the temporal
effects in our model and calculated the proportions of the observed presence-only
data for other years assuming no significant temporal changes in the land-cover
over a period of few years. A more sophisticated model that take into account the
temporal variation in the land cover would be required. We leave these extensions
for future research.
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