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Abstract. A first step in the process of automating weed removal in precision
agriculture is the semantic segmentation of crops, weeds and soil. Deep learning
techniques based on convolutional neural networks are successfully applied
today and one of the most popular network architectures in semantic segmen-
tation problems is U-Net. In this article, the variants in the U-Net architecture
were evaluated based on the aggregation of residual and recurring blocks to
improve their performance. For training and testing, a set of data available on
the Internet was used, consisting of 60 multispectral images with unbalanced
pixels, so techniques were applied to increase and balance the data. Experi-
mental results show a slight increase in quality metrics compared to the classic
U-Net architecture.
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1 Introduction

The sustainability of agriculture is one of Sustainable Development Objectives
(SDO) of the United Nations. To achieve this objective, new smart farming methods
are required to increase or maintain crop yields minimizing environmental impact.
Precision agriculture techniques achieve this goal through the spatial study of key
indicators of crop health and the application of treatments such as herbicides, pesticides
and fertilizers, only in relevant areas [1].

Conventional weed control systems apply uniformly with the same dose of her-
bicide in the entire field. In contrast, the new perception-controlled elimination systems
offer the potential to perform a treatment for each plant, for example, by selective
spraying or mechanical weed control. However, this process requires a plant classifi-
cation system that can analyze the image data recorded in the field in real time and label
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individual plants as crops or weeds [2]. Field images acquired with these new systems
can provide abundant information, however, their natural environment with different
plants that grow together in a messy scene present many challenges [3]. Among the
challenges are vegetation segmentation (vegetation in the first layer and ground in the
background), segmentation of individual plants, segmentation of crops and weeds, and
phenotyping of individual plants. The first three challenges are addressed directly by
machine learning. The fourth challenge includes the growth stage, the position of the
plant stem, the amount of biomass, the leaf count, the leaf area, among others. In
addition, the crop/weed coverage index, crop spacing, crop plant counts and other
derived measurements are of special interest to farmers.

This article focuses on the design, implementation and evaluation of deep learning
algorithms based on the U-Net convolutional network architecture for crop and weed
segmentation in multispectral images used in precision agriculture. The main contri-
bution is the evaluation of modifications on the U-Net network in order to make it more
optimal for the recognition of weeds and crops. For this reason, three variants of the
U-Net convolutional network architecture are presented and its performance is evalu-
ated using metrics such as the Jaccard index or Intersection over Union (IoU) and
recall. The rest of this article is structured as follows: Section 1 presents a synthesis of
the contribution of the main articles focused on this problem. Section 2 describes the
methodology to follow. Experimentation and results are presented in Sect. 3 and finally
in Sect. 4 discussions and future work.

1.1 Related Work

Image filters are used using the computational vision approach [4]. Segaard [5] uses
active shape models to classify weed types.

For weed discrimination, models were used for real-time detection [6] using the
Haar wavelet transform (HWT) for image decomposition and the k-nearest neighbors
(KNN) method obtaining 94% of precision improving the used baselines. Random
Forest and support vector machines (SVM) are used for detection [7]. Also, semi-
supervised approaches were used [8].

In recent years several studies have been carried out for the application of deep
learning in agriculture, among them we have the works [9, 11] of the techniques used
for deep learning. Convolutional neural networks (CNN) are studied in [2, 11]. In other
investigations, unsupervised models of labeling is used first, then apply CNN based on
ResNet18 [12]. Another approach uses a CNN with sliding windows [13], where from
the calculation of a relationship between weed detection rate (WD) and crop waste
(CW), it was discovered that the size of the sliding window of [80 80] results in an
effective detection of weeds with 63.28% and a minor cause of crop damage with
13.33%. Lottes [14] uses fully convolutional networks (FCN) with an encoder-decoder
structure achieving a level of completeness of 92.4% for weeds and 96.1% for culti-
vation. In other investigations, 86.2% accuracy is achieved for 22 types of weeds with
crops [15] and 94% accuracy at pixel level [16].
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1.2 U-Net

In biomedical image segmentation context, it is assumed that thousands of training data
are required for successful training of a deep learning network. Ronneberger [17]
presented the U-Net model based in CNN with a training strategy that focus primarily
on data augmentation and contraction-expansion to use the available data more effi-
ciently (see Fig. 1). The network can be trained from few images and its performance is
remarkable. U-Net was also used in other applications such as radiofrequency [18]. The
use of U-Net for this problem is explain in [10], where it is compared with other neural
networks. There are other alternatives such as SegNet [19] applied to weed detection
[1] or WeedMap that has been used in precision agriculture [20].
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Fig. 1. Architecture U-Net [17].

1.3 Dataset

For the labeling data process, it is necessary Human intervention, which can be a very
tedious task, initiatives [21] are proposed for the automatic generation of data sets
based on a series of key features. Other several investigations use their own set of data
taken on drones or cameras [12, 15]. Huag [3] proposes a data set of 60 images called
CWFID (Crop Weed Field Image Dataset) which is complemented in [1]. This data set
is used in investigations [7, 10] and in this article.

2 Methods

The objective of this article is to answer the questions: Is the U-Net convolutional
network architecture effective for the segmentation of weeds and crops? Is it possible to
improve the effectiveness of the U-Net convolutional network architecture by adding
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residual and recurrent layers for weed and crop segmentation? To answer these
questions, the methodology described below is followed (see Fig. 2):

— Acquisition of the data set containing masks of weeds, soils and crops.

— Pre-processing through data augmentation explained above.

— Separation of test sets, validation and tests.

— Reduced tests (less steps) of the model using the hyper-parameters chosen in order
to choose the best values.

— Training with the chosen hyper-parameters, using the set of tests and validation.

— Obtaining the metrics defined by validating the model with the set of tests.

1. Framework 3. Create a Training

Model

2. Dataset Creation 4. Model Training

Hyperparameters
CWEFID DATASET Tuning
1296x966

Augmentation
DATASET

Monitoring
Training

Run

Training

5. Validate Trained Model 6.
HoseiSeiecton
Model Review
Validation Data Validation Results
=

Fig. 2. Proposed process.

2.1 Pre-processing

Generally, these data sets contain very few images, so augmentation was performed
with the following strategies:

— Reflection of images horizontally and vertically.
— Sliding images.

— Noise by altering the RGB channels.

— Elastic deformation.

— Gaussian noise.

— Cropping.

Additionally, the size of the images was reduced in order to have sufficient com-
putational capacity to perform the tests.
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2.2 Quality Metrics

The Jaccard index or Intersection Over Union (IOU) was used, since it is a metric
widely used in object detection and allows measuring the degree of similarity between
the predicted image and the mask image.

Another metric used is recall due to the interest in controlling the proportion of real
positives correctly identified. In the case of the problem, it is of interest to keep the
number of crops identified as weeds (negative faults) as low as possible [7].

Additionally, precision and F1 score were used as complementary metrics in order
to make comparisons with the baseline.

2.3 Proposed Model

The models evaluated are variants of the U-Net convolutional network architecture,
which is one of the most popular architectures in segmentation applications.

First, a recurrent convolutional neural network based on U-Net was evaluated, since
the accumulation of characteristics with recurrent residual convolutional layers guar-
antees a better representation of the characteristics for segmentation tasks. Secondly, a
residual convolutional neural network based on U-Net models was evaluated, because a
residual unit helps the training of a deep architecture. Thirdly, a recurrent residual
convolutional neuronal network was evaluated in order to use the advantages already
mentioned. In Fig. 3 the U-Net base architecture is observed, where the blocks in red
are convolutional units modified according to the variants shown in Fig. 4.
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Fig. 3. Architecture variants U-Net [17]. (Color figure online)

Outputs Outputs Outputs Outputs
'y - A A
) )
Conv. + RelU Conv. + RelU '\l Y
'Y P ) » . ¥
Conv. + RelU Conv. + RelU
¥ A v A
Conv. + RelU Conv. + Retu ¢
A - Conv. + RelU Conv. + RelU
v ) v
Inputs Inputs Inputs Inputs

(a) (b) (c) (d)

Fig. 4. Variants of convolutional units: (a) front convolutional units, (b) recurrent convolutional
block (c¢) residual convolutional unit, and (d) recurrent residual convolutional units [22].
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3 Results

3.1 Dataset

The data set used in this investigation is the Crop Weed Field Image Dataset (CWFID)
[3], which consists of a set of 60 images of 1296 x 966 pixels, labeled with 3 classes
(soil, weed, crop) that are shown in Fig. 5. Scaling was performed to reduce images to
246 x 256 pixels in order to improve computational capacity.

Fig. 5. Right: multispectral image. Left: labeled Image [3].

A data set with the following characteristics has been prepared: 40 images ran-
domly chosen as training set. From the training set we will take the images number 11,
20, 41 and 52 to be aligned with the baseline. The set of tests will be the remaining 20
images.

The image is reduced to a resolution of 256 by 256 pixels.

For the augmentation the following strategies are carried out that will be applied
only to the training and validation sets:

— Reflection of images horizontally, vertically and diagonally. With this we would
have 3 additional images for each image. The Numpy library written in Python was
used.

On all the images generated previously the following strategies were used:

— Sliding of the images: The sliding was done by random values and filling the
remaining space with part of the image as shown in Fig. 6.

— Noise by altering the RGB channels. A color will be chosen randomly as shown in
Fig. 6.

— FElastic deformation with random selection of alpha and sigma values as shown in
Fig. 6.

— Gaussian noise in order to prevent overfitting. It will be added to each model and
the best value will be validated by selecting hyper parameters.

— Crop in order to generate new images using fragments of it.
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Fig. 6. (a) Sliding images. (b) Noise with channel alteration. (c) Elastic deformation. (Color
figure online)

After making these modifications we have the following sets of data: 1560 images
as a training set, 520 as a validation set and 20 as a test set.

3.2 Experimentation Environment and Baseline

Google Collaboratory has been used as a cloud platform. It allows us to carry out a
collaborative and distributed work. It uses an Intel (R) Xeon (R) CPU @ 2.30 GHz
processor with 12 GB of RAM. A Tesla P100 GPU with 16 GB of memory. Exper-
iments were performed using Anaconda as a development environment and Python 3.6
as a programming language. The neural network models were developed using the
Keras library on Tensorflow 2.0.

The strategies used were aligned to the research carried out by Cereda [10] which
contains experimentation with U-Net and he uses the chosen metrics. The proposed
models were developed from [22]. Cereda [13] conducted the experiment with 10
classifiers, which were evaluated with the indicators: Accuracy, Precision, Recall, F1
and Jaccard. This evaluation was performed at the pixel level in full size of the images
extracted for the test set. The results of the neural network models are shown in
Table 1. It can be seen in the results of Table 1 that the U-Net classifier has better
performance levels in the majority of quality indicators used in the evaluation of the
investigation.
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Table 1. Results obtained in Cereda’s research with the data set.

Model Accuracy | Precision | Recall | F1 Jaccard
U-Net 0.897 0.886 0.972 | 0.922 | 0.879
U-ReNet | 0.863 0.873 0.942 | 0.898 | 0.879
U-ReNet2 | 0.873 0.895 0.915 | 0.897 | 0.879
ReSeg 0.854 0.860 0.946 | 0.894 | 0.879
ReConv | 0.737 0.770 0.883 | 0.809 | 0.879
ReConcat | 0.743 0.769 0.846 | 0.799 | 0.879

3.3 Model Training

The following hyper parameters have been used during training. For them, each model
was run 10 times with data set 1 using the following hyper-parameters.

— Learning rate (Ir): It controls how much the weights of our model are adjusted with
respect to the gradient. Possible values assigned: 0.01, 0.005, 0.001.

— L2: Assigned possible values: none, 0.01, 0.001, 0.0001.

— Gaussian filter: it will help us control overfitting. Possible values assigned: 0.5,
0.05, 0.005.

— Dropout that will be added to each of the convolutional layers. Possible values
assigned: none, 0.1, 0.2.

— Batch normalization that will be added to each of the convolutional layers.

After performing the tests, the following hyper parameters have been chosen for
each model in Table 2.

Table 2. Better hyper parameters.

Model Jaccard

U-Net Ir = 0.001, Gaussian filter = 0.005, batch normalization
ResU-Net | Ir = 0.001, Gaussian filter = 0.005, batch normalization
RU-Net |Ir = 0.001, Gaussian filter = 0.005, batch normalization
R2U-Net |Ir = 0.001, Gaussian filter = 0.005, batch normalization

Next, the training was carried out using the selected hyper parameters. Each model
was executed in 200 periods using as a loss function: categorical crossentropy, Adam
as an optimizer and a batch size of 30 for U-Net and ResU-Net, and 10 for RU-Net and
R2U-Net. Table 3 shows the most relevant configurations.

Table 3. Description and relevant settings.

Model Total parameters | Trainable parameters | Non-trainable parameters
U-Net 7768099 7764131 3968
ResU-Net | 8117827 8113859 3968
RU-Net | 24281347 24269443 11904
R2U-Net |24631075 24619171 11904
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The metrics obtained are shown in Table 4.

Table 4. Results obtained with the data set.

Model Accuracy | Precision | Recall | F1 Jaccard
U-Net 0.8825 1 0.8939 |0.9307 |0.8351 |0.9760
ResU-Net | 0.8724 1 0.9397 |0.9669 | 0.8505 | 0.9749
RU-Net |0.9027 09212 |0.9675|0.8917 | 0.9783
R2U-Net | 0.8660 |0.9311 |0.9649 |0.8376 |0.9740

The learning curves for the training and validation sets are shown in Fig. 7. The
execution times are shown in Table 5.

Table 5. Runtime in milliseconds per image.

Model Time
U-Net 12
ResU-Net | 14
RU-Net |37
R2U-Net |40

— : ‘ —

U-NET ResU-Net

RU-NET P a T
R2U-Net

Fig. 7. Learning curve for data set.
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4 Discussion

As part of this chapter, based on the results, some topics will be discussed to interpret
the experiments performed and find opportunities for improvements.

In Table 6 shows the best values of each data set. The results obtained with respect
to the baseline are better except in the recall metric and F-1. The RU-Net model
obtained the best results in all metrics except Precision.

The research proposes three additional models that don’t use the baseline, and
U-Net is the only one presented in both. When comparing the results, the baseline has
been exceeded in precision and Jaccard.

Table 6. Better values in the data set.

Model Accuracy | Precision |Recall |F1 Jaccard
Base line | U-Net U-ReNet2 | U-Net |U-Net | All
Base line | 0.897 0.925 0972 0922 |0.879
Best model | RU-Net | ResU-Net | RU-Net | RU-Net | RU-Net
Best model | 0.9027 | 0.9397 0.9675 |0.8917 |0.9783

The learning curve of the models used is shown in Fig. 7. It is important to note
that all graphs have a similar shape. Note that some models show temporary fluctua-
tions in the loss function in the validation set. This could be due to a possible noise in
the data due to augmentation.

It is show clearly that the model differentiates well between the cultivation and
vegetation. However, we see some problems to distinguish between cultivation and
weeds. One of the main problems detected is when the weeds (red) and the crop (green)
are overlapping or very close as is shown in Fig. 8.

input correct_output_label prediction_raw

(a) Best prediction

correct_output_label prediction_raw

(b) Worst Prediction

Fig. 8. Predictions with RU-Net. (Color figure online)
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During the experiment, data augmentation has been used, as part of the improve-
ment opportunity it is proposed to increase the amount of data augmentation. For
example, in the baseline It is used up to 25,000 images with the almost 1000 used.
Also, perform more tests by making changes in hyperparameters. Perform tests with a
larger batch size, although this requires greater computational capacity. Additionally,
Try other optimizers like RMSProp. Tests were performed using dropout layers and
batch normalization layers where better results could be observed. It is necessary to
improve the architecture using and/or proposing improvements to the layers such as
attention mechanisms that allow efficient location of objects and an increase in per-
formance in general.

4.1 Conclusions

From a practical point of view, this work should be expanded to be able to distinguish
different types of weeds and to estimate the growth status of the crops. This implies
extending the manual annotation to include this new data. For the weed detection
problem, it is necessary to obtain a larger data set than the used for the present
investigation.

The main objective of the present work was to carry out the experimentation of
architectures of neural networks based on U-Net applied to the segmentation of crops
and weeds having as base line an experimentation already carried out [10]. It is con-
cluded from the results that using recurrent layers within the U-Net architecture allows
to improve the effectiveness in the problem of crop and weed segmentation with
multispectral images of the data set used. In contrast, the residual layers did not add any
improvement.

From the evaluation analysis of the segmentation, it was observed that the same
metric result can be obtained in different ways, therefore, it should be interesting to
investigate which of the metrics is most suitable for resolving this type of problem.
Finally, it is proposed to deepen research on topics such as data augmentation, the
choice of hyper-parameters and assembly models in order to achieve better results.
Additionally, Perform the experiment with other architectures and different data sets.
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