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Abstract An abdominal aortic aneurysm (AAA) is a permanent and irreversible
dilation of the lower aortic region. The current clinical rupture risk indicator for
AAA repair is an anterior-posterior AAA diameter exceeding 5.5 cm. This is an
inadequate rupture risk indicator given that 60% of AAAs with larger diameters than
5.5 cm often remain stable for the patient’s lifetime while 20% of smaller AAAs
have ruptured. A more robust predictor of rupture risk is therefore crucial to save
lives and reduce medical costs worldwide. Rupture is a local failure of the wall that
occurs when local mechanical stress exceeds local wall strength. A comparison of
the AAA tension and stretch during the cardiac cycle will provide the indication of
wall structural integrity necessary for reliable rupture risk stratification. Employing
engineering logic, mismatches between tension and stretch are likely to indicate
localized wall weakening and the likelihood of rupture (e.g. a high stretch resulting
from a low tension). Biomechanics based Prediction of Aneurysm Rupture Risk
(BioPARR) is an AAA analysis software application that currently only determines
aneurysm wall tension. This study seeks to investigate the feasibility of determining
surface stretches within the AAA wall using methods compatible with clinical
practices. It additionally aims to create and validate a new procedure for AAA
rupture risk stratification.
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1 Introduction

An abdominal aortic aneurysm (AAA) is a permanent and irreversible dilation of the
lower aortic region. The condition is usually symptomless and is typically detected
during an unrelated procedure. If left untreated, the aneurysm can dissect or rupture
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with the high mortality rates of approximately 80–90% [1]. Considering the dangers
and expenses related to the surgical treatment, rupture risk classification is essential.
If this rupture risk outweighs the risk of surgery, the patient will be considered for
endovascular (EVAR) or open repair surgery.

The current clinical rupture risk indicator for repair is an anterior-posterior AAA
diameter exceeding 5.5 cm or a diameter growth rate greater than 1 cm/year [2]. This
is an inadequate rupture risk indicator given 60% of AAAs with larger diameters
than 5.5 cm often remain stable for the patient’s lifetime [3] while 20% of smaller
AAAs have ruptured [4]. Additionally, AAA rupture has been linked to other risk
factors, including: genetic history, smoking, high mean arterial pressure (MAP),
gender, vessel asymmetry, growth of intraluminal thrombus (ILT) and increased
metabolic activity [5, 6]. Simplistic conclusions based on diameter alone are thus
inadequate. A more robust and reliable predictor of rupture risk is therefore crucial
to save lives and reduce medical costs worldwide.

Many researchers believe that a patient specific biomechanics-based approach is
a promising alternative that could significantly improve the clinical management of
AAA patients. With recent advancements in medical imaging and analysis software,
geometrically accurate patient specific AAA three-dimensional (3D) models can
now be constructed for the purpose of computer simulations that calculate wall
stress. Studies have demonstrated that peak wall stress is a better indicator of
individual rupture risk compared to aortic diameter [7]. Stress alone, however, will
not provide an accurate estimation of rupture risk as mechanical failure of the wall
is dependent on both local wall stress and local wall strength. Vande Geest et al.
derived a statistical model for the non-invasive estimation of wall strength [8]. This
strength model, however, is population-based, not patient specific and moreover not
localized.

Many studies have utilized displacement tracking algorithms on time-resolved
(4D) ultrasound scans to investigate local AAA wall deformations [9]. High local
strains alone, however, cannot provide an indication of wall strength, as they may
be generated by high local wall tensions.

AAA rupture is a local failure of the wall that occurs when local mechanical
stress exceeds local wall strength [10]. This study proposes that a comparison
of AAA tension with stretch during the cardiac cycle will provide the indication
of wall structural integrity necessary for reliable rupture risk stratification. It is
hypothesized that mismatches between local tension and resulting tangential stretch,
such as high stretch with low tension, indicate localised wall weakening and the
likelihood of rupture.

Biomechanics based Prediction of Aneurysm Rupture Risk (BioPARR) is an
existing, free and semi-automatic AAA analysis software application that currently
only determines aneurysm wall tension [11]. This study seeks to investigate the
feasibility of determining surface stretches within the AAA wall using methods
compatible with clinical practice. It additionally aims to validate the approach of
pairing surface stretches with tension as a measure of AAA rupture potential.
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A variety of approaches have been utilized by researchers to obtain ground
truth data for validation purposes. Most methods are inaccurate and inefficient
due to the errors introduced by reference tracking algorithms, sparse location of
reference markers and the bias introduced by these markers on the tracking problem.
Additionally, fabrication of physical phantoms to simulate realistic physiological
deformation is both challenging and expensive.

Synthetic data provides a valuable reference for assessing the accuracy of
tracking algorithms due to knowledge of the exact deformation. In this case,
the reference displacement field is unbiased by any motion estimation algorithm.
Additionally, exact deformation is known at each voxel. Furthermore, a wide range
of digital data can easily be created by researchers thus eliminating the requirement
for complex experimental phantoms. The usefulness of synthetic data as a validation
tool, however, is highly dependent on the degree of realism of the generated
synthetic scans.

One method of creating synthetic datasets involves the use of algorithms that
simulate the physics of the imaging process. Models of virtual patient anatomy can
consequently be ‘imaged’ using these projection algorithms. Models of the patient
anatomy are only simplified geometries that have been mathematically derived
and are therefore largely unrealistic. Furthermore, the organs and substructures are
modelled as homogenous with constant pixel intensity. Image artefacts introduced
by the heterogenous tissues are not simulated [12]. Therefore, although these
phantoms can be used for dosimetry studies, they are inadequate for reliably
assessing techniques dependent on image quality.

In the pursuit of increasingly realistic synthetic data, new techniques use
biomechanical models extracted from the segmentation of real patient anatomy. A
single static real medical scan is then warped with the deformation field of this
model [13]. The use of real scans enables more accurate synthetic data creation by
accounting for the heterogeneous tissue voxel intensities. Exact and simple methods
to achieve this have not been clearly outlined in the literature. Additionally, these
methods have mainly been restricted to the modelling of cardiac motion using
only echocardiography and MRI [13]. This study therefore additionally aims to
extend the existing literature by developing and clearly outlining simple methods
for the simulation of realistic CT images using open source software for the given
application of AAA.

2 Methods

2.1 Synthetic Data

A simple method of creating a synthetic 4D CT dataset was developed. This was
achieved by warping a static CT scan using the transformation matrices obtained
after modelling the pulsatile motion of the abdominal aortic aneurysm geometry.
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Fig. 1 Left: The local weakened (red) and healthier (green) tissue regions of the model. Right:
Fixed Boundary Conditions applied to the ends of the AAA model

One abdominal aortic aneurysm computed tomography angiography DICOM
scan was provided by Dr. Hozan Mufty of UZ Leuven academic hospital, Belgium.
A 3D model of the AAA was created by segmenting the CT scan in 3D Slicer 4.10.1,
a free open source medical image analysis and visualization software package.

The outer wall of the abdominal aortic aneurysm model was imported into
Abaqus Explicit 2018. This was taken as the geometry that had been pre-loaded
with the diastolic pressure. A linear tetrahedral element mesh was used due to its
compatibility with Abaqus Explicit. The mesh contained approximately 4 × 106

nodes. The simulation consisted of a periodic loading cycle using an internal
pulsatile pressure of 10 kPa. This represents a high pulse pressure that would
realistically be observed in AAA patients. The upper and lower ends of the aneurysm
were constrained in all directions using fixed boundary conditions (Fig. 1). Non-
linear, hyper-elastic material properties were used to model the aneurysm tissue
using the strain energy function presented by Raghavan and Vorp [14]. This strain
energy function (W) shown below, was obtained by the researchers after examining
the mechanical properties of excised AAA tissue.

W = a (I1c − 3) + b(I1c − 3)2 (1)

a and b are the material properties and I1c is the first invariant of the right Cauchy-
Green tensor. Most of the aneurysm tissue was modelled using a = 113.4 kPa,
b = 9.2 kPa and a density of 1000 kg/m3 [15]. A randomly chosen local
region of the aneurysm model was purposely weakened by halving each of these
material parameters. In addition to location, the extent and range of weakening was
arbitrarily selected. The local weakened and healthier tissue regions are indicated in
Fig. 1 in red and green respectively.

Mesh nodal coordinates from five phases of the pulsating biomechanical model,
between the two extremes of ‘diastole’ and ‘systole’, were extracted and exported
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from Abaqus to 3D Slicer. The transformation matrices, mapping each of the nodal
coordinates from phase 0 to each of the respective phases, were obtained using the
‘Scattered Transform’ module [16]. The module interpolates displacements at nodes
using a BSpline Algorithm. Once the transformation matrices were obtained, the
4D synthetic dataset was created using the ‘Data’ module. The initial CT scan was
warped by each of these transformation matrices after dragging and dropping it
onto the relevant transform. The new CT frames were then saved by hardening the
transforms onto the volume. This resulted in a stack of synthetic CTs corresponding
to each phase of the pulsating biomechanical model.

2.2 Voxel Displacement Tracking

As an alternative to producing an in-house code for the implementation of the
displacement tracking techniques, open-source tools are available, such as those
used for the registration of medical scans. Registration is the task of mapping
one image to another image. This is typically used by clinicians to align scans
of different modalities, or even align scans taken at different points in time such
as for follow up procedures. Registration can therefore also be used to determine
displacements of the aneurysm wall from scans at different points in time during the
cardiac cycle.

Thirion proposed the Demons algorithm for non-rigid registration [17]. The
Diffeomorphic Demons algorithm minimizes the sum of square differences of inten-
sity, contains a smoothness constraint and additionally limits the transformation
to be one-to-one. The Demons algorithm embodies a computationally efficient
simplification of the optical flow problem.

The Demons Diffeomorphic Registration was implemented in 3D Slicer using the
‘BRAINSDemonWarp’ module. A course-to-fine pyramidal approach was utilized
using 5 pyramid levels. A shrink factor of 16 and iteration count of 300, 50, 30, 20
and 15 for each respective pyramid level was employed. Linear interpolation and
a Diffeomorphic Registration Filter were used. These parameter settings produced
the most accurate results when visually compared with ground truth.

Each synthetic CT frame was registered to the initial frame. The outputs of these
registrations were transformation matrices mapping points from one image to the
next. The transformation matrices were then converted to displacement fields in the
‘Transforms’ module. Using the ‘Probe Volume’ module, the displacement field was
then overlayed onto the surface of the segmented aneurysm geometry.

2.3 Determining Maximum Principal Stretch

The point coordinates of the AAA surface and the displacements at these nodes
were read into MATLAB. An in-house modified moving least squares (MMLS)
code was utilized in order to determine the deformation gradient from these nodal
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displacements [18]. The deformation gradient (F) was obtained by determining the
derivative of the displacement vectors with respect to the undeformed configuration
(X) and adding the identity matrix (I):

F = I + ∂u

∂X
(2)

Additional code was added in order to determine the principal stretches. We
computed the right Cauchy Green strain tensor: C=FTF. Eigenvalues of the right
Cauchy Green strain tensor are the square of the principal stretches. The maximum
principal tangential stretches and its directions were obtained after aligning the
minimum eigenvectors with the surface normals. This is compatible with reality
whereby the aorta wall will compress radially but stretch tangentially when it is
inflated by the blood pressure.

2.4 Determining Maximum Principal Tension

The Maximum Principal Tension was determined via BioPARR utilizing the
following inputs: a constant wall thickness of 1 mm, 16 kPa pressure applied to
the interior AAA surface representing the patient’s mean arterial blood pressure
and a ten-node tetrahedral hybrid element (C3D10H) mesh. The ‘no ILTP’ case was
modelled. This case ignores the intraluminal thrombus and loads the interior surface
of the AAA with blood pressure. This was done for simplicity and because the ILT
was neglected when modelling the AAA motion.

2.5 New Rupture Risk Index

The MATLAB code was additionally updated to read-in the maximum principal
tensions obtained from BioPARR. A structural integrity index (SII) was created by
dividing the maximum principal tension by the largest maximum principal stretch
during the cardiac cycle. A relative structural integrity index map (RSII) was created
by dividing the SII map by the maximum structural integrity index over the AAA
volume. This enables clear visualization of weakened areas by comparing all the
structural integrity indices over the AAA volume with the strongest tissue present.

2.6 Validation of Techniques

The technique was validated by correlating displacements and maximum principal
stretches obtained from 4D CT registration with the ground truth values obtained
from Abaqus. This was implemented for each phase of the cardiac cycle. A Pearson
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correlation test was conducted in Excel with significance evaluated using a p-value
of 0.05. Similarity to ground truth was also observed by visualizing displacements
and maximum principal stretches in Paraview, an open-source data analysis and
visualization application.

This new rupture risk predictor was then validated by determining if the
randomly located purposely weakened area of the model was detected. This
was achieved by visualizing relative structural integrity indices below 0.15 using
Paraview. This represents the weakest 15% of tissue within the AAA.

3 Results

3.1 Validation of Displacement Tracking

A high similarity was observed between the ground truth displacement fields
obtained via Abaqus and that obtained from registration of the synthetic 4D CT
scans. This is depicted in Fig. 2 which displays the tangential displacement fields of
the abdominal aortic aneurysm model during one phase of the cardiac cycle. This is
additionally indicated by the high Pearson’s correlation coefficients of displacement

Fig. 2 Tangential displacements of the abdominal aortic aneurysm model during one phase of the
cardiac cycle
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Table 1 Correlation coefficients for each phase of the cardiac cycle

Frame Correlation (X) Correlation (Y) Correlation (Z) Correlation (magnitude) P-value

1 0.99961 0.99930 0.99575 0.98571 P<0.001
2 0.98952 0.99934 0.99628 0.98952 P<0.001
3 0.99971 0.99952 0.99674 0.99347 P<0.001
4 0.99976 0.99966 0.99722 0.99602 P<0.001
5 0.99975 0.99965 0.99684 0.99750 P<0.001

Fig. 3 Maximum Principal Tangential Stretch of the abdominal aortic aneurysm model during
each phase, obtained via Abaqus (bottom) and registration of 4D synthetic CT scans (top)

magnitudes (R = 0.986, 0.990, 0.993, 0.996, 0.998, p < 0.001) and directions for
each of the respective phases analysed (Table 1).

3.2 Maximum Principal Stretches

A high similarity was also observed between maximum principal stretches obtained
from registered synthetic 4D CT scans and ground truth stretches obtained via
Abaqus. This is evident in Fig. 3, where for each of the phases analyzed, stretch
magnitudes and patterns obtained via registration are comparable to ground truth.

3.3 Relative Structural Integrity Index (RSII)

The largest maximum principal stretch during the cardiac cycle was then paired with
the maximum principal tension obtained from BioPARR to compute the relative
structural integrity index (RSII). A correlation analysis between the ground truth and
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Fig. 4 Lowest 15% of relative structural integrity indices (RSII) of the aneurysm model

registered RSII distributions indicated that good agreement was obtained (R = 0.98,
Pearson’s correlation, p < 0.001). As evident in Fig. 4, an illustration of the lowest
15% of RSII successfully identifies the purposely locally weakened tissue depicted
in Fig. 1.

4 Discussion

This study has successfully developed a procedure to accurately determine surface
stretches within the AAA wall using methods compatible with clinical practices.

Most researchers have focused on utilizing time-resolved ultrasound to determine
deformation of AAAs. This study has highlighted the feasibility of using 4D CT as
an alternative. This is compatible with clinical workflow due to the current practice
of employing 3D CT angiography for preoperative imaging of the AAA. Unlike
ultrasound, 4D CT additionally enables quick, repeatable acquisition of the full
volume of the AAA.

The use of the Demons Diffeomorphic registration technique to track defor-
mation during the cardiac cycle from 4D CT scans was validated. The obtained
displacements and resulting stretches were highly accurate with strong correlation
to ground truth.

This novel study has introduced a new and improved rupture risk metric. The
RSII utilizes a holistic engineering approach by accounting for both local stretches
and tensions to enable the characterization of tissue integrity local to the AAA. This
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enables a patient specific measure of wall strength that other procedures have not
considered. Even if stresses are computed correctly, high stresses alone cannot be
interpreted as a loss of wall structural integrity without knowledge of local wall
strength. i.e. clearly high wall stress is not an issue if it is present in a strong wall.
Similarly, methods utilizing only high stretch as a measure of tissue integrity are
flawed. These local high stretches may be generated by local high tensions and
may not be due to weakened tissue. The RSII was validated by illustrating that a
randomly located, purposely weakened area of the model was detected with high
accuracy. These findings have advanced the state of the art of AAA management.

This method of creating a synthetic 4D CT sequence has granted access to the
required data to test the feasibility of determining surface stretches within the AAA
wall, without reliance on a clinic. It additionally enabled accurate knowledge of
ground truth values and thus the ability to reliably assess the novel techniques
used. This essential validation step would not have been possible with real patient
data where access to exact ground truth is unattainable. Synthetic data provides a
reference displacement field that is unbiased to any motion estimation algorithm.
This is unlike that required by intermodal registration reference methods and
techniques relying on the tracking of implanted markers. Unlike previous methods
that utilise sparsely located reference markers, the technique used in this study
provides knowledge of exact deformation at each voxel. Furthermore, the simple,
low cost computer-based biomechanical model is more realistic compared to other
mock-ups such as complicated physical phantoms, due to easier control of material
properties and pressures. This opens the door to the generation of a wide range
of synthetic data, from normal to varying diseased states, as demonstrated by this
AAA study. The usefulness of synthetic data as a validation tool, however, is highly
dependent on the degree of realism of the generated sequence. Unlike synthetic
datasets created using projection algorithms, this study uses methods that produce
realistic synthetic data. This was achieved by using real scans to extract exact patient
anatomy and to simulate the heterogenous voxel intensities of imaged tissue.

The simple and easily accessible methods developed in this study can similarly
be used by other researchers to progress pilot studies without being impeded by
clinical bureaucracy. Additionally, the flexibility offered by this simple technique
provides a platform to optimize and validate emerging technologies and methods
without being impeded by the multitude of external restrictions imposed by the other
validation techniques discussed.

Limitations, however, do exist in the presented work. This method of synthetic
CT creation does not completely take the physics of image acquisition into account.
Instead it re-uses the same texture of the initial CT, which is warped according to
the differences between the original scan and the simulated motion. Changes in
the geometry of the moving organ, however, will alter the path length along which
the radiation travels through the organ. This will cause variations in voxel intensity
throughout the cardiac cycle. The change in voxel intensity during deformation is
not reflected in the synthetic data creation technique discussed.

One method discussed in the literature partly accounts for this by using a template
4D DICOM dataset to partially increase the degree of realism of the generated
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synthetic sequence [19]. This is achieved by spatio-temporal alignment of the
template sequence with the biomechanical model. In this method instead of warping
a single static scan at the initial phase of the cardiac cycle, the template scan is
warped by the biomechanical model at each of the respective phases. This partially
accounts for the change in intensities that will be present as a result of deformation
because it reduces the difference between the reference and deformed frames. The
risk of unrealistic texture warping does, however, still exist with this method when
the simulated motion of the model deviates too far from the template motion. That
method, however, requires the presence of an initial 4D dataset. In novel studies
such as this one, access to an initial 4D dataset is not always possible. A 4D CT
protocol of the AAA is not yet utilized in the clinic. Once access to real data from
this protocol is achieved, a future study can further validate the methods used by
implementing this improved technique.

A basic assumption made using the Demons algorithm is that the intensity of
voxels remains constant through time. The geometry of the aneurysm, however,
will be changing during the cardiac cycle, which, as discussed, will alter voxel
intensities. Since this synthetic data is slightly unrealistic in that the intensity of
voxels remains constant despite motion, the methods used on this artificial dataset
are acceptable. When using real data, however, this may not remain true. An option
for dealing with this issue could be to not register each frame to the initial frame,
as was done using this synthetic dataset. Instead one could register each frame
to the previous frame but use the preceding transform as an initialization to the
registration. This would enable the constant intensity assumption to hold true as the
geometry between consecutive frames would not change significantly.

The next step required to progress this novel technique into normal clinical
practice is an initial pilot study using real patient data. Further studies will need
to establish the relationship between RSII and the progression of abdominal aortic
aneurysms using follow up analyses.
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