
Karol Miller · Adam Wittek 
Grand Joldes · Martyn P. Nash 
Poul M. F. Nielsen   Editors

Computational 
Biomechanics 
for Medicine
Solid and Fluid Mechanics 
for the Benefit of Patients



Computational Biomechanics for Medicine



Karol Miller • Adam Wittek • Grand Joldes
Martyn P. Nash • Poul M. F. Nielsen
Editors

Computational Biomechanics
for Medicine
Solid and Fluid Mechanics for the Benefit
of Patients



Editors
Karol Miller
Intelligent Systems for Medicine Laboratory
The University of Western Australia
Perth, WA, Australia

Adam Wittek
Intelligent Systems for Medicine Laboratory
The University of Western Australia
Perth, WA, Australia

Grand Joldes
Intelligent Systems for Medicine Laboratory
The University of Western Australia
Perth, WA, Australia

Martyn P. Nash
Department of Engineering Science
Auckland Bioengineering Institute
University of Auckland
Auckland, New Zealand

Poul M. F. Nielsen
Department of Engineering Science
Auckland Bioengineering Institute
University of Auckland
Auckland, New Zealand

ISBN 978-3-030-42427-5 ISBN 978-3-030-42428-2 (eBook)
https://doi.org/10.1007/978-3-030-42428-2

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-42428-2


Preface

Extending the success of computational mechanics to fields outside traditional
engineering, in particular to biology, the biomedical sciences and medicine has
been recognised as one of the greatest challenges facing the computational
engineering and computational mechanics communities. While advancements
are being made towards clinically relevant computational biomechanics models
and simulations, there is still much work ahead before personalised medicine
underpinned by personalised computer simulations becomes an integral part of
healthcare.

The first volume in the Computational Biomechanics for Medicine book series
was published in 2010. Since then, the book has become an annual forum for
specialists in computational sciences to describe their latest results and discuss
the possibility of applying their techniques to computer-integrated medicine. This
eleventh volume in the Computational Biomechanics for Medicine book series
comprises eleven of the latest developments in continuum biomechanics and patient-
specific computations, by researchers from Australia, New Zealand, China, France,
Germany, Greece and Poland. Some of the topics covered in this book are as
follows:

• Medical image analysis
• Image-guided surgery
• Surgical intervention planning
• Disease prognosis and diagnosis
• Cell biomechanics
• Soft tissue biomechanics
• Injury mechanism analysis

The Computational Biomechanics for Medicine book series does not only
provide the community with a snapshot of the latest state of the art, but more
importantly, when computational biomechanics and patient-specific modelling is a

v



vi Preface

mainstay of personalised healthcare, it will serve as a key reminder of how the field
has overcome one of its greatest challenges.

Perth, Australia Karol Miller
Perth, Australia Adam Wittek
Perth, Australia Grand Joldes
Auckland, New Zealand Martyn P. Nash
Auckland, New Zealand Poul M. F. Nielsen



Contents

What Has Image Based Modelling of Cerebrospinal Fluid Flow
in Chiari Malformation Taught Us About Syringomyelia
Mechanisms? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Lynne E. Bilston

Part I Computational Solid Mechanics

Lung Tumor Tracking Based on Patient-Specific Biomechanical
Model of the Respiratory System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Hamid Ladjal, Michael Beuve, and Behzad Shariat

Design of Auxetic Coronary Stents by Topology Optimization . . . . . . . . . . . . . 17
Huipeng Xue and Zhen Luo

Physics-Based Deep Neural Network for Real-Time Lesion
Tracking in Ultrasound-Guided Breast Biopsy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Andrea Mendizabal, Eleonora Tagliabue, Jean-Nicolas Brunet,
Diego Dall’Alba, Paolo Fiorini, and Stéphane Cotin

An Improved Coarse-Grained Model to Accurately Predict Red
Blood Cell Morphology and Deformability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Nadeeshani Maheshika Geekiyanage, Robert Flower, Yuan Tong Gu,
and Emilie Sauret

Development of a Computational Modelling Platform
for Patient-specific Treatment of Osteoporosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Madge Martin, Vittorio Sansalone, and Peter Pivonka

Part II Topics in Patient-Specific Computations

Towards Visualising and Understanding Patient-Specific
Biomechanics of Abdominal Aortic Aneurysms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
K. R. Beinart, George C. Bourantas, and Karol Miller

vii



viii Contents

Pipeline for 3D Reconstruction of Lung Surfaces Using Intrinsic
Features Under Pressure-Controlled Ventilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Samuel Richardson, Thiranja P. Babarenda Gamage, Toby Jackson,
Amir HajiRassouliha, Alys Clark, Martyn P. Nash, Andrew Taberner,
Merryn H. Tawhai, and Poul M. F. Nielsen

A Flux-Conservative Finite Difference Scheme for Anisotropic
Bioelectric Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
George C. Bourantas, Benjamin F. Zwick, Simon K. Warfield,
Damon E. Hyde, Adam Wittek, and Karol Miller

A Fast Method of Virtual Stent Graft Deployment for Computer
Assisted EVAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Aymeric Pionteck, Baptiste Pierrat, Sébastien Gorges, Jean-Noël Albertini,
and Stéphane Avril

Efficient GPU-Based Numerical Simulation of Cryoablation
of the Kidney . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Joachim Georgii, Torben Pätz, Christian Rieder, Hanne Ballhausen,
Michael Schwenke, Lars Ole Schwen, Sabrina Haase, and Tobias Preusser

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195



What Has Image Based Modelling
of Cerebrospinal Fluid Flow in Chiari
Malformation Taught Us About
Syringomyelia Mechanisms?

Lynne E. Bilston

Abstract Chiari Malformation is a congenital disorder of the hindbrain, in which
the cerebellar tonsils protrude through the foramen magnum, impeding normal cere-
brospinal fluid (CSF) flow into the spinal canal. It is associated with pain, dizziness
and headaches, particularly related to coughing and straining. The mechanisms by
which Chiari malformation gives rise to these symptoms are not understood. In a
large proportion of patients, a fluid-filled cavity develops in the spinal cord, called
a syrinx. Syrinxes can cause additional neurological deficits, including sensory
changes, weakness and upper limb pain. Syrinxes are associated with disturbances
to normal CSF dynamics, usually as a result of obstructions in the spinal canal, but
precisely how this occurs is not known. Animal studies suggest that fluid transport
into the spinal cord is increased in the presence of spinal canal obstructions, likely
via annular spaces surrounding penetrating arteries (perivascular spaces). Human
phase contrast magnetic resonance imaging studies can quantify both cardiac
driven motion of cerebrospinal fluid flow, and, more recently, respiratory and other
influences. These data can be used to generate subject-specific computational fluid
dynamics models of the hindbrain and spinal canal to estimate spinal canal pressure
dynamics in patients with Chiari malformation, patients with syrinxes, and healthy
controls. Computational models of perivascular space flow can be linked to these
macroscopic models, to enable investigation of the feasibility of hypotheses about
mechanisms of syrinx formation. To date, these studies have demonstrated that
several popular hypotheses about Chiari mechanisms and syrinx formation are
inconsistent with the mechanics of CSF flow, and generated novel mechanistic
hypotheses. Subject-specific image based modelling provide a useful adjunct to
human and animal experimental research into CSF flow disorders such as Chiari
malformation and syringomyelia.
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Lung Tumor Tracking Based on
Patient-Specific Biomechanical Model
of the Respiratory System

Hamid Ladjal, Michael Beuve, and Behzad Shariat

Abstract In this chapter, we evaluate the 3D tumor trajectories from patient-
specific biomechanical model of the respiratory system, which takes into account
the physiology of respiratory motion to simulate irregular motion. The behaviour
of the lungs, driving directly by simulated actions of the breathing muscles, i.e. the
diaphragm and the intercostal muscles (the rib cage). In this chapter, the lung model
is monitored and controlled by a personalized lung pressure-volume relationship
during a whole respiratory cycle. The lung pressure is patient specific and calculated
by an optimization framework based on inverse finite element analysis. We have
evaluated the motion estimation accuracy on two selected patients, with small and
large breathing amplitudes (Patient 1 = 10.9 mm, Patient 10 = 26.06 mm). In this
order, the lung tumor trajectories identified from 4D CT scan images were used
as reference and compared with the 3D lung tumor trajectories estimated from
finite element simulation during the whole cycle of breathing. Over all phases of
respiration, the average mean error is less than 1.8 ± 1.3 mm. We believe that
this model, despite of others takes into account the challenging problem of the
respiratory variabilities and can potentially be incorporated effectively in Treatment
Planning System (TPS) and as lung tumor motion tracking system during radiation
treatment.

Keywords Biomechanics · Respiratory motion · Breathing mechanics · Lung
tumor tracking · Radiation therapy · Medical imaging · Finite element method
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1 Introduction

Organ motion due to patient breathing introduces a technical challenge for dosime-
try and lung tumor treatment by radiation therapy. Accurate dose distribution
estimation requires patient-specific information on tumor position, size and shape as
well as information regarding the material density and stopping power of the media
along the beam path. In order to calculate and to ensure sufficient dose coverage
throughout the treatment, the internal margin (IM) and setup margin (SM) are added
to the clinical target volume (CTV) to compensate for the breathing movement and
to obtain target volume (PTV). Generally, the addition of different margins leads to
an excessively large PTV that would go beyond the patient’s tolerance, and does not
reflect the actual clinical consequences [1]. In the case of moving tumors, the PTV
is increased so that the tumor lies inside the treatment field at all times. Breathing is
an active and a complex process where the respiratory motion is non-reproducible,
and the breathing periodicity, amplitude and motion path of patients’ organs are
observed during the respiration [2, 3]. Various different types of correspondence
models that have been used and developed in the literature (linear, piece-wise linear,
polynomial, B-spline, neural networks) in order to correlate the internal motion to
respiratory surrogate signals. For more information on the correspondence models
please see the complete review in Chap. III of Ehrhardt & Lorenz 2013 [3].

The biomechanical approaches aim at identification and taking into account
the different anatomical and physiological aspects of breathing dynamics. These
approaches attempt to describe respiratory-induced organ motion through a math-
ematical formulation based on continuum media mechanics solved generally on
Finite Element Methods (FEM) [4–6]. Unfortunately, most of the time, the authors
have used a single organ (lung) with nonrealistic of boundary conditions, or the lung
motion is simulated by using simple displacement boundary conditions which are
not realistic and do not take into account the real physiological respiratory dynamics.
However, in [7] the authors present an ad-hoc evolutionary algorithm designed to
explore a search space with 15 dimensions for the respiratory system including
different organs. The method tries to estimate the parameters of a complex organ
behavior model (15 parameters). The authors in [8] have proposed a FE model
of the lung motion using a generic pressure-volume curve, which is not patient
specific. Recently, the authors in [9] have proposed patient specific biomechanical
model of the lung motion from 4D CT images for half respiratory cycle, where the
motion is not constrained by any fixed boundary condition. The authors have used
4 and 16 pressure zones on the sub-diaphragm and thoracic cavity, respectively.
Unfortunately, none of these methods take into account the real physiological
respiratory properties, and are not able (or difficult) to be controlled or monitored
by the external parameters. In this chapter, we evaluate the 3D tumor trajectories
from patient-specific biomechanical models of the respiratory system for a whole
respiratory cycle, based on personalized physiological pressure-volume curve [10].
This model has coupled an automatic tuning algorithm to calculate the personalized
lung pressure and diaphragm force parameters.
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2 Materials and Methods

2.1 Anatomy and Physiology of the Respiratory System

The lung is a passive organ which is divided into two halves, the right and left
lung. It is situated in the thorax on either side of the heart. The pleural cavity
is surrounded by the chest wall on the sides, and the diaphragm on the bottom.
This space contains pleural fluid which facilitates near frictionless sliding at this
boundary. The diaphragm is a dome-shaped musculofibrous membrane concave
toward the lungs which separates the thorax from the abdominal cavity (Fig. 1).
It is composed of a peripheral part (muscular fibre) and a central part (tendon).
Lungs are linked to the diaphragm and to the ribs through the pleura. The mechanics
of human breathing involves two steps that alternate with each other: inhalation
(inspiration) and exhalation (expiration). Negative pressure in the pleural cavity
(natural breathing) initiates when the diaphragm and chest wall move away from
the lung. The negative pressure expands lung volume, dropping the internal lung
pressure, allowing air to enter passively in the lung. The ability of the lungs to
expand is expressed by using a measure known as the lung compliance. Lung
compliance is the relationship between how much pressure is required to produce a
degree of volume change of the lungs. It is affected by the elastic properties of the
lung. The pulmonary compliance therefore reflects the lungs ability to develop in
response to an increase in pressure.

2.2 3D Segmentation and CAD Reconstruction

Biomechanical modeling of the respiratory system necessitates the geometrical
modeling of involved organs. For this purpose a correct segmentation of organs on
CT images is necessary. Various approaches for multi-organ and lung segmentation
have been developed based on CT images, which include gray-level thresholding,

Fig. 1 Respiratory
mechanics: the role of the
diaphragm and thorax in
breathing
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3D segmentation CAD Patient specific 3D tetrahedral mesh

Fig. 2 3D Segmentation, CAD reconstruction and 3D mesh patient specific adapted for finite
element simulation

region growing, edge tracking. In this paper, the thorax, the lungs and the external
skin are segmented automatically using gray-level thresholds algorithms available
within ITK-SNAP library.1 Automatic segmentation of the diaphragm is difficult
due the lack of image contrast of the diaphragm with its surrounding organs as well
as the respiration-induced motion artifacts in 4D CT images. The diaphragms were
manually segmented within ITK-SNAP [11, 12]. In order to extract the mediastinum
structure, we have used the different segmentation masks of the lungs, thorax, the
inner thoracic region and the diaphragm. The accurate segmentation of lung tumors
remains quite challenging, and the correct segmentation can only be achieved by
medical experts.
After segmentation, a 3D surface mesh and a CAD-based approach has been
developed. The organs shape are reconstructed as a solid using non-uniform
rational B-spline (NURBS) curves. Using the resulting smooth surface, a quality
mesh using a first-order tetrahedra elements (C3D4) is generated using Abaqus
packages (Fig. 2).

2.3 Biomechanical Patient-Specific Model of the Respiratory
System

The organs are considered as isotropic, elastic and hyperelastic materials. For an
isotropic elastic or hyperelastic material, the elastic energy, denoted W , may be
written as:

W(E) = λ

2
(tr E)2 + μ (tr E2) (1)

1ITK-SNAP is a software application used to segment structures in 3D medical images.
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where E is the Green-Lagrange strain tensor, λ and μ are the Lame coefficients. The
Lame coefficients can be written in terms of Young’s modulus, E, and Poisson’s
ratio, ν.

μ = E

2(1 + ν)
λ = ν

E

(1 − 2ν)(1 + ν)
(2)

The second Piola-Kirchhoff stress tensor and the Green-Lagrange strain tensor
given by:

S = λ (tr E) I + 2 μ E (3)

For dynamic simulation using FEM, the equation of motion of a vertex l of the organ
mesh can be written:

Ml{ül} + γ l{u̇l} +
∑

τ∈νl

({
Fint

l

})
=
{

Fl
ext

}
(4)

Where Ml , γ l are respectively the mass and damping coefficients of each vertex.
The νl is the neighborhood of vertex l (i.e., the tetrahedra containing node l). To
solve the dynamic system, we have chosen the implicit finite difference scheme in
time for more stability.

In our simulation, the mass density of each tissue is patient-specific, calculated
and determined directly from CT scan images, based on the density mapping algo-
rithm defined and developed in our previous works [14]: First, organs tetrahedral
meshes are generated from segmented CT scanner images. Next, the Hounsfield
values issued from CT scanner images are converted into density values that are
mapped to the node of the mesh, respecting the principles of mass conservation
(Fig. 3). For more information related to density mapping algorithm, one may refer
to [13, 14].

Fig. 3 Tetrahedral density
map generation. The mass of
a tetrahedral element equals
the sum of the masses of
volumes of intersection
between the tetrahedron and
the grid of voxels:
m(Tk) = m(I 1

k ) + m(I 2
k ) +

m(I 4
k ) + m(I 5

k ) + m(I 6
k ) +

m(I 8
k ) + m(I 9

k )

CT scan :Voxels
Tetrahedral Elements

ρ1
1 2 3

4 5 6

7 8 9

ρ2 ρ3
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2.4 The Boundary Conditions

The developed biomechanical respiratory model is monitored directly by simulated
actions of the breathing muscles; the diaphragm and the intercostal muscles/the rib
cage. For the diaphragm, we have applied the radial direction of muscle forces,
which corresponds anatomically to the direction of muscle fibers. The pressure is
applied on the muscular part of the diaphragm and a simple homogeneous Dirichlet
boundary conditions is applied in the lower part of the diaphragm and the Lagrange
multiplier’s method used for the contact model. In order to simulate the sliding of
the lungs, a surface-to-surface contact model is applied on the lung-chest cavity, as
well as lung-diaphragm cavity. The frictionless contact surfaces are used to simulate
the pleural fluid behavior.

In our previous works [11, 12, 15], we have presented a methodology to study
rib kinematics, using the finite helical axis method, where ribs could be considered
as rigid bodies compared to other surrounding anatomical elements. The idea is
to predict, from the transformation parameters, the rib positions and orientation at
any time. Each rib transformation parameter is automatically computed between the
initial and final states (Fig. 4). Then, we have applied a linear interpolation of the
transformation to predict the rib motion at any intermediate breathing states. For
more details about finite helical axis method, one can refer to [15].

In this work, the amplitude of the lung pressure and diaphragm force are patient
specific, they are determined at different respiratory states by an optimization
framework based on inverse finite element method [10]. The model is controlled
by personalized pressure-volume curves (semi-static compliance), calculated by
Css = 3(1−2ν)

E Vt−1
at different states. Where E, ν and Vt−1 are Youngs modulus, Poisson

coefficient and lung volume at step t−1 respectively. The mechanical properties and
behaviors of the different organs used in our simulations are settled in the Table 1.

Fig. 4 The boundary conditions (BC) of our patient specific biomechanical model of the
respiratory system
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Table 1 Mechanical properties of breathing system: LE Linear Elastic, HVSK Hyperelastic Saint
Venant Kirchhoff, E Youngs modulus, ν Poisson coefficient, ρ volumetric density [10–12]

Tissues Mechanical behavior E (MPa) ν ρ (kg/m3)

Lungs HSVK 3.74 ∗ 10−3 0.3 3 ∗ 102

Lung tumor LE 49 0.4 1.5 ∗ 103

Mediastinum LE 5.87 ∗ 10−3 0.4 1 ∗ 102

Diaphragm muscle HSVK 5.32 0.33 1 ∗ 103

Diaphragm tendon LE 33 0.33 1 ∗ 103

Ribs LE 5000 0.3 1.5 ∗ 103

Cartilage LE 49 0.3 1 ∗ 103

Body of sternum LE 11,500 0.3 1.5 ∗ 103

Thoracic vertebra LE 9860 0.3 1.5 ∗ 103

Flesh LE 5.32 0.4 1 ∗ 106

3 Results and Experimental Validation

3.1 Mesh Quality

The quality of the mesh plays a significant role in the accuracy and stability of
the numerical computation. In our simulation, we have used the linear tetrahedral
continuum elements (C3D4). These elements permit mesh refinement around areas
of high stress concentration. By default, poor quality elements are those that fulfill
one or several of the following criteria: jacobian greater than 0.6, ratio of the
maximum side length to the minimum side length larger than 10, the shape factor
ranges from 0 to 1, minimum interior angle smaller than 20 degrees, and maximum
interior angle larger than 120 degrees.

In this chapter, the mesh quality Fig. 5 is performed using Abaqus packages.
The above criteria for these elements are: 97, 83% of the elements with shape
factor

(
EV

OEV

)
2 between 0.1 and 1, 82, 95% elements with minimum angle ≥ 20,

99, 5% with maximum angle ≤ 140, 95, 9% with minimum length edge ≥ 3 mm,
99, 1% with maximum length edge ≤ 15 mm. From DIR-Lab Dataset [16], we
have evaluated the motion estimation accuracy on two selected patients, with small
and large breathing amplitudes (Patient 1 = 10.9 mm, Patient 10 = 26.06 mm). In
our finite element simulation, we simulate the full breathing cycle, including 10
intermediate states (see Fig. 6). We define the simulation time for the inspiration
phase is 2 s and for the expiration phase is 3 s. The Fig. 7 shows the displacement
field of the lungs and diaphragm during breathing. For the diaphragm, we can
observe the maximum displacement on the right-posterior (RP) and left-posterior
(LP) sides. It is also possible to notice a slightly larger (RP) side motion than (LP)

2EV: element volume and OEV: Optimal element volume is the volume of an equilateral
tetrahedron with the same circumradius as the element. (The circumradius is the radius of the
sphere passing through the four vertices of the tetrahedron.)



12 H. Ladjal et al.

Table 2 Average landmark lung error (mm) during exhalation at different respiratory states: the
first state T00, the end inspiration (T50), the end expiration (T10)

Patients Mean ± SD (mm) Mean Amplitude

T10 T20 T30 T40 T50 All states

Patient 1 2,0 ± 1,5 2,1 ± 1,2 2,1 ± 1,5 1,6 ± 1,3 1,2 ± 0,8 1,7 ± 1,3 10.9 (mm)

Patient 10 2,1 ± 1,5 2,2 ± 1,2 2,1 ± 1,6 1.6 ± 1,5 1.1 ± 0.8 1.8 ± 1.3 26,06 (mm)

%

%
%

Long side

80

Minimum angle 60
40
20

Form factor

Maximum angle 0

Short side

60,00

50,00

40,00

30,00

20,00

10,00

0,00

Angle min

0°-5°    5°-10° 10°-20° 20°-30° 30°-40° 40°-50°

50,00

40,00

30,00

20,00

10,00

0,00

Angle max

Fig. 5 Some criteria of mesh quality of tetrahedral elements. The triangular mesh element
showing the longest side, shortest side, maximum interior angle and the minimum interior angle

side motion, according to the physiological anatomy. For the lungs deformation, the
maximum displacement occurring in the posterior region along the superior-inferior
(SI) direction (diaphragm direction).

Preliminary study was conducted to verify the efficiency of the developed finite
element model and to evaluate lung tumor motion during full breathing cycle. In
this order, the 3D lung tumor trajectories identified from 4D CT scan images were
used as reference and compared with the 3D lung tumor trajectories estimated from
finite element simulation during the whole cycle of breathing (10 phases between
the EI and EE). The accuracy of the proposed tumor tracking method is evaluated
by comparing and calculating the average Euclidean distance between the 3D mesh
surface of the segmented tumor and predicted FE lung tumor. The Fig. 8 shows a
comparison study between the hysteresis trajectories of the lung tumor during the
whole cycle of the breathing compared to the trajectory calculated directly from 4D
CT images. The results illustrate that our patient specific biomechanical model for
tumor lung tracking is accurate and the average mean error is less than 1.8±1.3 mm.
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Fig. 6 Lung deformations during the full breathing cycle and intermediate states (10 states). Image
slices of a patient case are taken from the DIR-lab data base [16]. The curve is only for illustration
purposes
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Fig. 7 Qualitative analysis of patient specific biomechanical simulation; lungs and diaphragm
deformations from the end inhalation (EI) to end exhalation (EE), T00, T20, T40 and T50 are
the intermediate states of the respiration between the EI to EE
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Fig. 8 3D lung tumor trajectory (in mm) issued from 4D CT scan images compared to the
trajectory calculated by biomechanical finite element model including rib kinematics for patient
P10 for DirLab data set [16]

4 Discussion and Conclusion

In this research work, we have developed a patient specific biomechanical model
of the respiratory system for lung tumor tracking for the whole respiratory cycle.
Our preliminary results are quite realistic compared to the 4D CT scan images. This
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could be a potential tool to provide valuable tumor motion information for physician
to reduce the margins between clinical target volume (CTV) and planning target
volume (PTV). One of the limitations of our work that the multiple organ shape
reconstruction is time consuming and manual operations for each patient. In order
to avoid manual contouring and 3D geometry segmentation for different organs, and
to reduce the computational costs without lowering the quality, we plan to develop
and use a realistic atlas-based 3D shape reconstruction of the respiratory system
based on statistical training or machine learning, to get a fast and automatic patient-
specific model. Also, the use of few patients is another limitation of the presented
work. Future work could investigate more patients from DirLab data set [16] or other
data bases. Currently, we are working on the optimization of our model. The goal
is to produce a novel 4D computational patient specific model using non-invasive
surrogates to predict and to monitor lung tumor motion during the treatment.
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Design of Auxetic Coronary Stents
by Topology Optimization

Huipeng Xue and Zhen Luo

Abstract Coronary artery stents are the most important implantation devices for
the practice of the interventional cardiology to treat coronary artery disease (CAD)
since the mid-1980s. However, the problems of stent thrombosis (ST) and in-
stent restenosis (ISR) still exist. In addition to the reasons of implanted materials
and coatings, mechanical and structural factors are also important factors and
responsible for the complications, such as inadequate stent expansion, incomplete
stent apposition and stent fracture in design. This research aims to develop a
concurrent topology optimization by a parametric level set method associated
with numerical homogenization method, to generate novel architectures for self-
expanding (SE) stents with mechanical auxetic metamaterials. The topological
design is firstly implemented in MATLAB, and then the optimized architecture
is further improved and optimized in the commercial software ANSYS. The final
stenting structure is numerically validated to demonstrate the effectiveness of the
design method.

Keywords Self-expanding stents · Auxetics · Level sets · Topology optimization

1 Introduction

Coronary artery disease (CAD) also known as ischemic heart disease (IHD) has a
high mortality even nowadays. Percutaneous coronary intervention (PCI) technol-
ogy has been widely accepted as an effective treatment after 40 years development
[1, 2]. Among that, the implantation of coronary stents can significantly decrease
the rates of restenosis and abrupt closure of arteries to increase life expectancy of
patients [3, 4].

H. Xue · Z. Luo (�)
School of Mechanical and Mechatronic Engineering, University of Technology Sydney,
Ultimo, NSW, Australia
e-mail: zhen.luo@uts.edu.au

© Springer Nature Switzerland AG 2020
K. Miller et al. (eds.), Computational Biomechanics for Medicine,
https://doi.org/10.1007/978-3-030-42428-2_3

17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-42428-2_3&domain=pdf
mailto:zhen.luo@uts.edu.au
https://doi.org/10.1007/978-3-030-42428-2_3


18 H. Xue and Z. Luo

In the early days, bare-metal stents (BMS) were used in conjunction with
angioplasty due to successful results in treating abrupt and susceptible vessel closure
[5, 6]. However, the incidence of stent thrombosis (ST), in-stent restenosis (ISR)
and other complications [7] resulted in the generation of drug-eluting stents (DES)
[8]. DES are superior to BMS in that it can reduce the rate of ISR but have a
higher risk of ST in the late thrombosis [9, 10], due to drug coatings. Even for the
new generation of biodegradable stents (BDS) and bioresorbable vascular scaffolds
(BVS), these drawbacks still remain [11, 12]. Compared with the risk of ST in the
late healing stage, DES show an obvious decrease of ISR in the short-term treatment
without brachytherapy or intracoronary radiation. This is the reason why DES are
more popular recently. Nevertheless, it has been reported that DES result in a higher
risk of late thrombosis compared with BMS. The much higher cost of DES doesn’t
lead to a significant increase in life expectancy than other stents [13].

According to different expansion mechanisms, stents can also be divided into
self-expanding (SE) and balloon-expandable (BE) stents. In 1986, stents with self-
expanding properties were firstly introduced into balloon angioplasty for treating
abrupt closure of arteries [3]. The characteristics of positive supporting and shape
memory metal materials [14] gave good short-term treatment results. The most
advantages of SE stents can be summarized as: (1) The gradual expansion manner
of SE stents leads to a lower incidence of edge dissections. It can avoid immediate
vessel wall injury compared with BE stents, which makes SE stents more suitable
for treating small-diameter vessels [15], (2) The good conformability makes it easily
to match different lesion shapes, which is superior to any other stent for treating
vulnerable plaques and bifurcation lesions, as well as preventing inadequate stent
expansion, and (3) The used superelastic materials exhibit much better mechanical
properties than materials of BE stents with respect to fracture toughness, flexibility,
fatigue strength and corrosion resistance.

However, some unfavorable features [16, 17] of SE stents limit their clinical
use. First, the SE stents are usually hosed into cumbersome catheters during the
implantation, which makes the delivery difficult. Second, the complicated placement
demands high accuracy due to the phenomenon of foreshortening after deployment.
Third, the continual outward supporting of conventional SE stents is not adaptive
and difficult to accurately control, which may lead to a larger luminal diameter than
the original size that will further pose a thrombotic threat.

Besides biological factors, structural or mechanical aspects also play an impor-
tant role in stents, and they can trigger serious complications finally leading to ST
and ISR, such as inadequate stent expansion, incomplete stent apposition and stent
fracture in design [18]. These issues can be addressed via new stenting structures,
new artificial materials or new expansion methods. Hence, the alternative designs
that can avoid or help reduce these complications are still in demands.

In this paper, we will focus on the development of a novel family of SE stents
using topological design optimization technology together with a new type of
mechanical metamaterials-auxetics, with a view to generating new stenting struc-
tural architectures, to help reduce the occurrence of ST and ISR after implantation.
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Compared to most conventional materials with positive Poisson’s ratios, auxetics
are a special kind of mechanical metamaterials artificially designed to exhibit
negative Poisson’s ratios (NPR) [19, 20]. Auxetic materials will contract in trans-
verse directions when they are compressed uniaxially. Auxetics provides enhanced
mechanical properties such as indentation resistance, fracture toughness, and shear
stiffness, which greatly facilitate a range of applications, including energy absorp-
tion, anti-impact, thermal isolation and biomedical applications [21, 22].

Topology optimization provides an efficient way to find the best material
distributions under the boundary and loads conditions in the design domain. It has
been wildly used in the structural and material designs over the past two decades,
and several popular methods have been developed, such as the solid isotropic
material with penalization (SIMP) method [23, 24], the evolutionary structural
optimization (ESO) method [25], and level set method (LSM) [26–28].

The numerical homogenization method [29, 30] has been developed to evaluate
the effective properties of microstructures. It is usually combined with other
topology optimization methods for the design of microstructures and the related
cellular composites. This kind of cellular composites mostly consists of periodic
microstructures and the microstructures can be given special properties such as
auxetics. The topological design of multifunctional cellular composites enables
many applications in engineering [31].

LSM is one of the recently developed method for topological shape optimization
of structures. It has shown excellent ability to capture geometry and shape of the
design. The key concept is to embed the design boundary of a structure as the
zero-level set of a higher-dimensional level set function. Since the evolution of
the level set function can be described by the Hamilton-Jacobi Partial Differential
Equation (PDE) [32], the dynamic motion of the level set function can be tracked
by solving this equation. However, some strict conditions are required during the
numerical implementation of the H-J PDE, such as the Courant-Friedrichs-Lewy
(CFL) condition, boundary velocity extensions, and re-initializations [32]. As one
of the alternative LSMs, the parametric level set method (PLSM) [33–35] has shown
it is high efficiency in solving topology optimization [36] and this paper will apply
the PLSM to design the stenting structural architectures.

To realize the design of ASE stents, a concurrent topological design method will
be applied to find auxetic stenting architecture as microstructures, and at the same
time the compliance of the macro stenting structure is considered to maintain the
stiffness requirement of stents. Topology optimization will be applied to explore
the best material layout for the SE stents, and the auxetics will be included into
the biocompatible materials to enable an adaptive “self-expanding” procedure of
stenting structures. The structure periodically consists of identical auxetic unit
cells. This will deliver a new kind of auxetic SE (ASE) stents to address the
above problems relevant to ST and ISR due to the mechanical and structural issues
of the current stenting designs. The topological optimization can help find the
most efficient stenting structures, and auxetics will make SE stents much smaller
when compressed, beneficial to deliverability. The optimized ASE stents can also
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Fig. 1 Level set function (left) and design domain located at zero level set (right)

eliminate the foreshortening to help the deployment. Moreover, the auxetic behavior
can also enhance the flexibility, conformability, and fatigue strength of SE stents.

2 Parametric Level-Set Method

The unique characteristic of the level set method is the implicit description of the
structural boundary which is presented at the zero level set of a higher dimensional
level set function Φ(x), as shown in Eq. (1) As a 2D example illustrated in Fig. 1,
Φ(x) = 0 shows the boundary of a structure located at zero level set.

⎧
⎨

⎩

�(x) > 0
�(x) = 0
�(x) < 0

x ∈ 	\∂	

x ∈ ∂	

x ∈ D\ (	 ∪ ∂	)

(Material)

(Boundary)

(V oid)

(1)

where x is the point in the space D, Ω and ∂Ω denote the design domain and
the boundary, respectively. The dynamic motion of the design domain Ω can be
achieved by solving Hamilton-Jacobi PDE, as shown in (2). In that process, the
normal velocity filed Vn of the boundary ∂Ω is used to enable the dynamic motion
of the level set function.

∂� (x, t)

∂t
− Vn |∇�(x, t)| = 0 (2)

The interpolation of the level set function Φ(x) by using CSRBFs ϕ(x) based on
the fixed knots in the design domain can be described as Eq. (3).

�(x, t) = ϕ(x)T α(t) =
N∑

i=1

ϕi(x)αi(t) (3)

where N is the total number of fixed knots in the design domain, αi(t) is the
expansion coefficient of the interpolation with respect of the ith knot, and the
CSRBFs of the ith knot used with C2 continuity is given by:
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ϕi(x) = max
{
0, (1 − ri(x))4} (4ri(x) + 1)

ri(x) = dI /dmI =
√

(x − xi)
2 + (y − yi)

2/dmI

(4)

where dI denotes the distance between the current sample knot (x, y) and the ith knot
(xi, yi), and dmI denotes the radius of the support domain of the ith knot.

Then, the conventional Hamilton–Jacobi PDE is transformed as Eq. (5), and the
new velocity field Vn can be described as (6). Therefore, the dynamic motion of
level set function Φ(x) is only related to the design variables expansion coefficient
vector α(t). Because α(t) is being evaluated by all knots in the design domain, no
addition extension scheme is required. In this way, the standard LSM is converted
into a parametric form.

ϕ(X)T α̇(t) − Vn

∣∣∣(∇ϕ)T α(t)

∣∣∣ = 0 (5)

Vn = ϕ(X)T∣∣(∇ϕ)T α(t)
∣∣ α̇(t), where α̇(t) = dα(t)

dt
(6)

3 Numerical Homogenization Method

The numerical homogenization method has been widely used to approximate the
effective properties of microstructures. The effective elasticity tensor DH ijkl of a
2D microstructure can be calculated by:

DH
ijkl = 1∣∣	MI

∣∣

∫

	MI

(
ε

0(ij)
pq − ε

∗(ij)
pq

(
uMI (ij)

))

× Dpqrs

(
ε0(kl)
rs − ε∗(kl)

rs

(
uMI (ij)

))
H
(
�MI

)
d	MI

(7)

where the superscript ‘MI’ indicates the quantities in the microscale; ΩMI is the
design domain of the microstructure; |ΩMI | is the area of the microstructure; and
·MI is the level set function in the microscale. i, j, k,l = 1, 2. Dpqrs is the elasticity

tensor of the base material. H(·MI) is the Heaviside function [27]. ε
0(ij)
pq is the test

unit strain field, where (1,0,0)T , (0,1,0)T and (0,0,1)T are used in 2D models; ε
∗(ij)
pq

is the locally varying strain fields and defined by:

ε
∗(ij)
pq

(
uMI (ij)

)
= 1

2

(
u

MI (ij)
p,q + u

MI (ij)
q,p

)
(8)
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By using the virtual displacement field νMI(kl) in U
(
	MI

)
that is the space con-

sisting of all the kinematically admissible displacements in ΩMI , the displacement
field uMI(ij) can be calculated through finite element analysis using the periodical
boundary conditions of the microstructure:

∫

	MI

(
ε

0(ij)
pq − ε

∗(ij)
pq

(
uMI (ij)

))
Dpqrsε

∗(kl)
rs

(
vMI (kl)

)

× H
(
�MI

)
d	MI = 0, ∀ vMI (kl) ∈ U

(
	MI

) (9)

4 The First Optimization Stage for the Design of Auxetics

4.1 The Concurrent Optimization Scheme

The concurrent topology optimization scheme is defined as a multi-objective
optimization problem to find an expansion coefficient vector αn

MI for microstruc-
ture to obtain negative Poisson’s ratios, and minimum the compliance of the
macrostructure. A piece of the stent approximated as rectangle shape is used as the
micro design domain consisted of one unique microstructure, shown in Fig. 2; two
coordinates are used to describe the design domains: the macrostructure(X1, X2) and
microstructure(Y1, Y2); the vertical degree of freedom is fixed at the top and bottom
edges of the macro structure, while two unit forces F are applied on the left and
right edges in the horizontal direction. 2D four-node rectangle elements is adopted
and each element has a unit length, height. The artificial base material model with
Young’s modulus 1 and Poisson’s ratio 0.3 used. The numerical design scheme can
be described as Eq. (10).

Fig. 2 The macrostructure(left) and microstructure(right)
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Find αMI
n (n = 1, 2, . . . , N)

Min J = JMA + JMI

S.T. G = ∫
	MI H

(
�MI

)
d	MI ≤ V max

aMA
(
uMA, vMA

) = lMA
(
vMA

)
,∀vMA ∈ U

(
	MA

)

aMI
(
uMI , vMI ,�MI

) = lMA
(
vMA,�MI

)
,∀vMI ∈ U

(
	MI

)

αMI
min ≤ αMI

n ≤ αMI
max

where,

JMA = 1
2

∫
	MAεij

(
uMA

)
DH

ijklεkl

(
uMA

)
d	MA

JMI = (
DH

12/D
H
11 + 1

)2 + (
DH

12/D
H
22 + 1

)2

(10)

where, the superscript ‘MA’ and ‘MI’ denotes the macro and micro quantities,
respectively. The expansion coefficients of the CSRBF interpolation αMI

n is the
design variable in the microscale, which are within αMI

min and αMI
max . N is the

total number of fixed knots in the micro design domain. J is the total objective
function, which is comprised of the macro objective function JMA the compliance
of the macrostructure, and micro objective function JMI the Poisson’s ratios of the
microstructure. DH

11,D
H
12,D

H
22 are specific values of the effective elasticity tensor

of the microstructure. Here, the optimized microstructure is defined as isotropic
or orthotropic material, thus there are two Poisson’s ratios defined the in micro
objective function. G is the volume constraint and the upper limitation is defined as
Vmax. u and v are the real and virtual displacement fields.

The bilinear energy and the linear load forms of the finite element model in the
macroscale can be described as:

aMA
(
uMA, vMA

)
=
∫

	MA

εij

(
uMA

)
DH

ijklεkl

(
vMA

)
d	MA (11)

lMA
(
vMA

)
=
∫

	MA

pvMAd	MA +
∫

	MA

τvMAd�MA (12)

where p is the body force and τ is the traction of the boundary Γ MA. The bilinear
energy and the linear load forms of finite element model in the microscale can be
described as:

aMI
(
uMI , vMI ,�MI

)

=
∫

	MI

ε
∗(ij)
ij

(
uMI (ij)

)
Dpqrsε

∗(kl)
kl

(
vMI (kl)

)
H
(
�MI

)
d	MI

(13)

lMI
(
vMI ,�MI

)
=
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	MI

ε
0(ij)
ij Dpqrsε

∗(kl)
kl

(
vMI (kl)

)
H
(
�MI

)
d	MI (14)
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4.2 The Sensitivity Analysis

Based on the concurrent topology optimization model presented in Sect. 4.1, the
sensitivity analysis of the design variables is required. It is divided into two parts due
to the two different scales and calculated based on the first-order derivatives of the
objective functions with respect to the expansion coefficients αMI

n . The sensitivity
in the macro-scale is:

∂JMA

∂αMI
n

= 1

2

∫

	MA

εij

(
uMA

) ∂DH
ijkl

∂αMI
n

εkl

(
uMA

)
d	MA (15)

Since the elastic system is self-adjoint [37], the shape derivative of the elasticity
tensor DH

ijkl can be calculated by:

∂DH
ijkl

∂t
= − 1∣∣	MI

∣∣

∫

	MI

β
(
uMI

)
ϕMI (x)T Vn

∣∣∣∣
(
∇�MI

)T
∣∣∣∣ δ

(
�MI

)
d	MI

(16)

where δ(·MI) is the derivative of the Heaviside function H(·MI), and β(uMI) is:

β
(
uMI

)
=
(
ε

0(ij)
pq − ε

∗(ij)
pq

(
uMI (ij)

))
Dpqrs

(
ε0(kl)
rs − ε∗(kl)

rs

(
uMI (kl)

))
(17)

Substituting the normal velocity V MI
n defined in Eq. (6) into Eq. (17):

∂DH
ijkl

∂t
= −

N∑

n=1

(
1∣∣	MI

∣∣

∫

	MI

β
(
uMI

)
ϕMI (x)T δ

(
�MI

)
d	MI

)
α̇MI

n (t)

(18)

While, the first-order derivative of the effective elasticity tensor DH
ijkl with

respect to t can be directly obtained by the chain rule:

∂DH
ijkl

∂t
=

N∑

n=1

∂DH
ijkl

∂αMI
n

α̇MI
n (t) (19)

Comparing (18) and (19), the derivative of the effective elasticity tensor DH
ijkl

with respect to the design variables αMI
n can be calculated as:

∂DH
ijkl

∂αMI
n

= − 1∣∣	MI
∣∣

∫

	MI

β
(
uMI

)
ϕMI (x)T δ

(
�MI

)
d	MI (20)
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Then the derivative of the macro objective function JMA with respect to the design
variables αMI

n can be obtained by Substituting Eq. (20) into (15). Similarly, the
derivative of the micro objective function JMI with respect to the design variables
can be calculated, as shown in (21), and the derivative of the volume constrains G
with respect to the design variables are given by (22).

∂JMI

∂αMI
n

= ∂
(
DH

12/D
H
11 + 1

)2

∂αMI
n

+ ∂
(
DH

12/D
H
22 + 1

)2

∂αMI
n

(21)

∂G

∂αMI
n

=
∫

	MI

ϕMI (x)T δ
(
�MI

)
d	MI (22)

4.3 Numerical Results

One of the main purposes of ISR is to implanting materials into the vessels, so the
design of a stent usually uses as less material as possible to decrease the contacts
between the stent and vessel walls. Meanwhile, the volume fraction of 35% is used
for the microstructure design to ensure structural stiffness. To evaluate the numerical
result, two values of Poisson’s ratios Mu1 and Mu2 in two directions are defined as
Eq. (23).

Mu1 = DH
12/D

H
11, Mu2 = DH

12/D
H
22 (23)

Different discretized size of micro design domain will lead to different results,
that is because more elements used in the design domain may capture more details
of the optimized structure. Therefore, three different size of discretization 60 × 60,
100 × 100, 40 × 40 are used, and the relevant results are list in the Table 1. All
three results are of clear and smooth boundaries of the microstructures, and exhibit
NPR properties in both two directions. The material of the stent should be uniformly
distributed. In the result of 100 × 100, the bridges in the middle, top and bottom are
too thin compared with other parts, so this is not a very good choice.

Mu1 and Mu2 are used to illustrate the Poisson’s ratios in two directions, where
Mu1 can be used to evaluate the deformation along the horizontal direction when
deformed in the vertical direction, and Mu2 is used to describe the opposite situation.
Although both negative values of Mu1 and Mu2 are desired to obtain a smaller
volume of stent when compressed, a smaller absolute value of Mu1 can lead to
a smaller deformation in the axis direction when stent supporting the vessel, which
will prevent the shortening of the stent in axis direction. Hence, the result of 40 × 40
is better than 60 × 60. From that, we can see more elements may capture more
details of the structure, but it may also lead to a complex or ununiform distribution
of material which may not suitable for the stent design.
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Fig. 3 The macro structure (left), 9 × 9 microstructures (middle), and the unit cell of microstruc-
ture (right)

Fig. 4 The stent structure built by the first design result

The optimized structure of 40 × 40 element scale is adopted in the first numerical
optimization stage, as shown in Fig. 3. From the figure, we can see the microscale
is much smaller than the macroscale. However, as mentioned before, if much
smaller microstructures are used, the one piece of the stent will be fully filled with
the material as the left figure shown in Fig. 3. By doing this, the flexibility and
conformability of the stent will decrease, and the incidence of ISR will significantly
increase. Therefore, the optimized microstructure will be regarded as a smaller
periodical macro unit cell in the macroscale.

5 The Second Optimization Stage and the Numerical
Validation

Since the mechanical behavior of a stent is more similar to a shell that the dimension
of the thickness is much smaller than the dimensions of the length and width.
2D four-node rectangle element is used in the first step due to the computational
efficiency, while the shell element needs to be adopted in the second stage of
the optimization to amend the accuracy of the final design. Thus, the commercial
software ANSYS v19.2 is utilized to preform topology optimization for a stent again
with shell elements, based on the optimized result from the first stage. The geometry
is built by 12 unit cells along the circumference and 16 unit cells along the axis, and
10 times bigger than the real stent as shown in Fig. 4.

The volume fraction of the microstructure is specified as 35% in the first stage,
and not too much material needs to be removed in the current stage. Hence, 10%
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Fig. 5 The result of the second topology optimization

Fig. 6 The pression test: the front view(left) and the right view(right)

volume fraction is used to maximum the global compliance of the stent in the second
stage. The optimized result can be seen in Fig. 5, and we can see small holes are
generated in all the joints of the unit cells.

The numerical validation is performed to test the auxetic property of the
optimized stent in ANSYS. In the simulation, the degree of freedom in the X
direction of the left edge and one point in the left end is fixed and a force applied
on the right edge of the stent to compress or stretch it. The test under pression is
shown in Fig. 6. The colourful structure shows deformed stent, while the grey colour
shows undeformed stent. From the figure we can see the stent contract in the radial
directions when they are compressed uniaxially. In the right-side view, the diameter
become smaller compared with the original size of the stent.
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Fig. 7 The stretching test: the front view(left) and the right view(right)

Then, a stretching test is also performed, the result as shown in Fig. 7. The stent
expanded in the radial directions when they are stretched uniaxially. Therefore,
both compression and stretching test performed for the optimized stent illustrate
a significant auxetic property.

6 Conclusion

The properties of auxetic structures can well satisfy the mechanic requirements of
SE coronary artery stents and enhance their abilities of dealing with the mechanical
factors of ST and ISR. The stent design using parametric level set topology
optimization method provides a concurrent design of both material microstructures
and macro meta-structure, which benefits the stent designs for applications in
practice. However, another important characteristic of the materials of SE stents is
the property of shape memory, and it will influence the deformation mechanism
during the expanding. Therefore, the shape memory behaviour may need to be
integrated into the auxetic design of SE stent in the near future.
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Physics-Based Deep Neural Network
for Real-Time Lesion Tracking
in Ultrasound-Guided Breast Biopsy
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Diego Dall’Alba, Paolo Fiorini, and Stéphane Cotin

Abstract In the context of ultrasound (US) guided breast biopsy, image fusion
techniques can be employed to track the position of US-invisible lesions previously
identified on a pre-operative image. Such methods have to account for the large
anatomical deformations resulting from probe pressure during US scanning within
the real-time constraint. Although biomechanical models based on the finite element
(FE) method represent the preferred approach to model breast behavior, they cannot
achieve real-time performances. In this paper we propose to use deep neural
networks to learn large deformations occurring in ultrasound-guided breast biopsy
and then to provide accurate prediction of lesion displacement in real-time. We train
a U-Net architecture on a relatively small amount of synthetic data generated in
an offline phase from FE simulations of probe-induced deformations on the breast
anatomy of interest. Overall, both training data generation and network training are
performed in less than 5 h, which is clinically acceptable considering that the biopsy
can be performed at most the day after the pre-operative scan. The method is tested
both on synthetic and on real data acquired on a realistic breast phantom. Results
show that our method correctly learns the deformable behavior modelled via FE
simulations and is able to generalize to real data, achieving a target registration
error comparable to that of FE models, while being about a hundred times faster.
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1 Introduction

Breast biopsy is the preferred technique to evaluate the malignancy of screening-
detected suspicious lesions. To direct the needle towards the target, biopsy proce-
dures are performed under image guidance, normally done with ultrasound (US)
probes due to their ability to provide real-time visualization of both the needle and
the internal structures [18]. However, proper needle placement with US remains a
challenging task. First, malignant lesions cannot always be adequately visualized
due to the poor image contrast of US. Furthermore, navigation towards complex
3D lesion geometries is commonly achieved using 2D freehand US (FUS) systems,
which provide information in a lower-dimensional space [11]. Since highly sensitive
pre-operative images (such as MRI or CT) can provide accurate positions of the
lesions, finding a method to update these positions from real-time US images
during an intervention would highly benefit current biopsy procedures. Several
commercial and research platforms have implemented image fusion techniques that
align pre-operative and intra-operative data, exploiting rigid or affine registration
methods [6]. However, when dealing with breast anatomy, large deformations arise
due to compression forces applied by the US probe. To provide accurate probe-
tissue coupling and acceptable image quality, an appropriate alignment procedure of
the pre-operative and US data is required.

Accurate modelling of soft tissue deformation in real-time is a far-from-being-
solved problem. Biomechanical models relying on the finite element method (FEM)
realistically calculate soft tissue deformations by using a mathematical model based
on continuum mechanics theory. Although these models have been successfully
employed for multimodal breast image registration, they have never been applied to
registration between pre-operative data and intra-operative US, due to difficulties in
providing a prediction within real-time constraints [8]. This is especially true when
considering large, non-linear deformations which involve hyperelastic objects, as it
is the case for the breast.

In order to meet real-time compliance, various techniques have been proposed
to simplify the computational complexity of FEM. Some of them have focused
on optimizing linear solvers (the main bottleneck of FEM) or the formulation
itself, such as corotational [5] and multiplicative jacobian energy decomposition
[13]. Very efficient implementations also exist, like Total Lagrangian explicit
dynamics (TLED) [15], which can achieve real-time performances when coupled
with explicit time integration and GPU-based solvers [10]. Another possible option
to lower the simulation time is through dimensionality reduction techniques, like
Proper Orthogonal Decomposition (POD), where the solution to a high-dimensional
problem is encoded as a subset of precomputed modes. The most optimized
approach used to model breast biomechanics is the one proposed by Han et al.
in [7], which relies on GPU-based TLED formulation. Despite the significant
simulation speedup achieved, solving the FE system took around 30 s, which is still
not compatible with real-time. Modelling methods that do not rely on continuum
mechanics laws have also been used to approximate soft tissues behavior. Among
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these, the position-based dynamics (PBD) approach has been used to predict breast
lesions displacement due to US probe pressure in real-time, providing comparable
accuracy with FE models [21]. However, not being based on real mechanical
properties, such model requires an initial optimization of simulation parameters to
obtain a realistic description of the deformation.

An emerging approach which has the potential of being both accurate and fast,
exploits neural networks to estimate soft tissue behavior. Machine learning-based
methods have proven successful to predict the entire 3D organ deformation starting
either by applied surface forces [17, 22] or by acquired surface displacements
[1, 19]. Being networks trained with synthetic data generated from FE simulations,
they can reproduce a realistic physics-based description of the organ mechanical
behavior. Using FE simulations for model training in the context of MRI-US
deformable image registration has already been proposed in [9], where the authors
build a statistical model of prostate motion which can account for different
properties and boundary conditions. In the case of the breast, the potentiality of
employing machine learning techniques has been already shown in [14], where
several tree-based methods have been employed to estimate breast deformation due
to compression between biopsy plates. These methods have been trained on 10
different patient geometries with a very specific FE simulation, where the upper
plate is displaced vertically towards the lower one.

Similarly to works in [1, 19], we propose an approach where a neural network
is trained to predict the deformation of internal breast tissues starting from the
acquired surface displacements induced by the US probe. Our network can be seen
as a patient-specific model. We train it on a single patient geometry before surgery,
with a relatively small amount of training data. However, in contrast to the work
of [14], FE simulations that compose the training set are generated with several
random input displacements, making our approach able to generalize to different
probe positions and compression extents.

The proposed method consists in a U-Net architecture, described in Sect. 2.2,
and an immersed boundary method used for generating patient-specific simulations,
described in Sect. 2.3. Results presented in Sect. 3 show the efficiency of the method
when applied to both synthetic and ex vivo scenarios. Our contribution consists of a
novel method to generate a real-time capable soft tissue model to improve target
visualization during needle-based procedures. The position of lesions identified
beforehand on pre-operative images can be updated from intra-operative ultrasound
data and visualized by the surgeon in real-time.

2 Methods

This work presents a data-driven method to estimate in real-time the displacement
of the breast internal structures due to probe pressure during US scanning. In
our pipeline, we assume to have a patient-specific geometric model of the breast,
obtained from pre-operative imaging such as MRI, and to know the position and
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orientation of the US probe at each time, thanks to a spatial tracking system. If the
tracking coordinate system and the coordinate system of pre-operative imaging are
registered, knowledge about the 3D pose and the geometry of the US probe directly
allows to identify the contact surface between the breast and the probe. Since the
US probe is represented as a rigid body, we can reasonably assume that when the
anatomy is deformed by the probe during the image acquisition process, points on
the breast surface below the US probe will be displaced to the same exact extent
as the probe itself. As a consequence, our method can predict the displacements
of all the points within the anatomy given as input the displacement of the surface
nodes in contact with the US probe. The decision of relying on surface displacement
inferred from the spatial tracking of the US probe instead of directly tracking surface
deformations (through, for example, an RGBD camera) was taken from the fact that
probe-induced deformations are large but local, and the probe itself would occlude
most of the deformed surface to the sensor, thus preventing an accurate estimation
of the contact surface displacements.

2.1 The U-Net Architecture

The objective of our work is to find the relation function f between the partial
surface deformation under the US probe and the deformation inside the breast. Let
us be the surface deformation and uv the volumetric displacement field. In order
to find f a minimization is performed on the expected error over a training
set {(us

n, uv
n)}Nn=1 of N samples:

min
θ

1

N

N∑

n=1

‖f (us
n) − uv

n‖2
2 (1)

where θ is the set of parameters of the network f . We propose to use the same
architecture as in [1], that is a U-Net [20] adapted to our application (see Fig. 1).
The network consists of an encoding path that reduces the high dimensional input
into a reduced space, and a decoding path that expands it back to the original shape.
The skip connections transfer features along matching levels from the encoding
path to the decoding path through crop and copy operations. As Fig. 1 shows, the
encoding path consists of k sequences (k = 3 in our case) of two padded 3 × 3 × 3
convolutions and a 2 × 2 × 2 max pooling operation. At each step, each feature
map doubles the number of channels and halves the spatial dimensions. In the lower
part of the U-Net there are two extra 3 × 3 × 3 convolutional layers leading to
a 1024-dimensional array. In a symmetric manner, the decoding path consists of
k sequences of an up-sampling 2 × 2 × 2 transposed convolution followed by two
padded 3 × 3 × 3 convolutions. At each step of the decoding path, each feature map
halves the number of channels and doubles the spatial dimensions. There is a final
1×1×1 convolutional layer to transform the last feature map to the desired number
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Fig. 1 U-Net architecture for a padded input grid of size 32 × 24 × 16

of channels of the output (three channels in our case). The design of the U-Net is
based on a grid-like structure due to this up- and down-sampling process. Hence we
directly mesh our deformable object with regular hexahedral elements as explained
in the next section.

2.2 Simulation of Breast Tissue Using Hexahedral Grids

The training data set consists of pairs of (us, uv) where us is the input partial surface
displacement and uv is the volumetric displacement field. Even though the data
generation process takes place in an offline phase, in order to generate enough
training data with FE simulations within clinically acceptable times (the intervention
can be performed on the day after pre-operative scan is acquired), it is important to
have simulations that are both accurate and computationally efficient.

We consider the boundary value problem of computing the deformation on a
domain Ω under both Dirichlet and Neumann boundary conditions. Let Γ be the
boundary of Ω (in our case, Γ corresponds to breast external surface, while Ω

represents the entire breast volume). We assume that Dirichlet boundary conditions
are applied to ΓD and are a-priori known, whereas Neumann boundary conditions
are applied to ΓN , a subset of Γ that represents probe-tissue contact area and
changes depending on current US probe position. In this work, training data for the
network are generated by solving the discretized version of the following boundary
value problem, exploiting the FE method:

⎧
⎨

⎩

−∇ · σ = 0 in Ω

u = 0 on ΓD

σn = t on ΓN

(2)
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Fig. 2 Breast surface mesh
obtained from a pre-operative
CT scan immersed in a
hexahedral grid for FEM
computations

where σ is the Cauchy stress tensor, n is the unit normal to ΓN and t is a traction
force applied to the boundary. Note that in (2) we neglect all time-dependent terms
and we do not apply any body force like gravity, since our geometric model already
accounts for the effect of gravity force. The relation between stress and strain is
described through the Saint Venant-Kirchhoff model, which is the simplest and
most efficient extension of a linear elastic material to the nonlinear regime. This
choice is motivated by the fact that a simple linear elastic model would not be
able to appropriately describe the large deformations undergone by the breast.
An iterative Newton-Raphson method is used to solve the non-linear system of
equations approximating the unknown displacement.

We choose to discretize the domain into 8-node hexahedral elements not only for
their good convergence properties and lock-free behavior, but also because it is the
required structure for the input to the network. To do that, the 3D breast geometry
is embedded in a regular grid of hexahedral elements (see Fig. 2) and we use an
immersed-boundary method to correctly approximate the volume of the object in
the FE method computations.

2.3 Data Generation

The input to the network corresponds to the displacement us of the points belonging
to the breast-probe contact area. The punctual displacements are spread to the nodes
of the surrounding cuboid cell through a barycentric mapping and the corresponding
volume displacement uv is obtained by the previously explained FE approach in
response to us. The data used to train the network must be representative of the
application scenario and must allow the network to extract the pertinent features
of the tissue behavior. In order to train our model to estimate breast volume
deformation in response to pressure imposed with the US probe, we simulate several
random probe-induced deformations using the following strategy:
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– Select a random node p in the breast surface
– Select an oriented bounding box A centered in point p and normal to the breast

surface, whose dimensions match those of the US probe lower surface, which
represents current probe-tissue contact area

– Select all the surface points P falling within the box A

– Select as force direction d the normal to the surface at point p plus a random
angle α (α ∈ [−π

4 , π
4

]
)

– Apply the same force f of random magnitude (|f | ∈ [0.0, 0.8]) along direction
d to the P selected points simultaneously

– Store the displacement at the set of points P (input to the network) and the
displacement of all the points in the volume (output to the network)

– Repeat the procedure until N + M samples are generated

The choice of applying force f allowing some angle deviation from normal
direction enables us to include in our dataset samples where the probe compression
is not precisely normal to the surface, as it can be the case in freehand US
acquisitions. The maximal force magnitude (e.g., 0.8 N ) is set such that the amount
of maximal deformation reproduced in the training dataset never exceeds too much
that observed in real clinical settings. The described strategy is used to generate
the set {(us

n, uv
n)}Nn=1 of N samples which is used to train the network, and the

set {(us
n, uv

n)}Mn=1 of M samples which is left for validation. The training dataset
is generated with the SOFA framework [3] on a laptop equipped with an Intel i7-
8750H processor and 16 GB RAM.

3 Experiments and Results

The network presented in this work is used to predict US probe-induced defor-
mations of a realistic multi-modality breast phantom (Model 073; CIRS, Norfolk,
VA, USA). The 3D geometry model of the phantom surface and 10 inner lesions
(diameter of 5–10 mm) is obtained by segmenting the corresponding CT image,
relying on ITK-SNAP and MeshLab frameworks [2, 24]. A Freehand Ultrasound
System (FUS) based on a Telemed MicrUs US device (Telemed, Vilnius, Lithuania)
equipped with a linear probe (model L12-5N40) is used to acquire US images
of the 10 segmented lesions. The dimension of the probe surface is (5 × 1 cm).
For each lesion, we acquire US images in correspondence of four different input
deformations. The MicronTracker H×40 (ClaronNav, Toronto, Canada) optical
tracking system is used to track US probe in space (Fig. 3a). The overall probe
spatial calibration error is below 1 mm (±0.7147), estimated through the PLUS
toolkit [12]. Landmark-based rigid registration is performed to refer the CT-
extracted 3D model, the US probe and the US images to the same common
coordinate system, exploiting 3D Slicer functionalities [4]. The registration process
does not only enable us to extract the breast-probe contact area, as described in
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Fig. 3 (a) Experimental setup. From left to right: monitor showing real-time US images; CIRS
breast phantom during FUS acquisition; optical tracking system that allows to map the real
positions of the CIRS breast phantom and the US probe to the preoperative geometry model.
(b) External surface and inner lesions of the CIRS breast phantom

Sect. 2, but also to know in real-time the 3D position of any point belonging to the
US image. In this way, it is possible to refer lesions position extracted from US
images to the 3D space.

3.1 Predict Displacement on Synthetic Data Sets

Elastic properties of the physics model used to generate training data are set in
accordance with the values estimated in [23] for the same breast phantom considered
in this study. However, as we are imposing surface displacements, the values of
the elasticity parameters do not affect the displacement field inside the simulated
volume as long as the ratio of the different stiffness values is maintained [16], thus
making the method reliable for any patient specificity. Dirichlet boundary conditions
are imposed by constraining the motion of all the nodes belonging to the lowest
phantom surface.

Using the method described in Sects. 2.2 and 2.3, we discretized the breast
phantom into 2174 hexahedral elements and we simulated several probe-induced
displacements. Overall we generated N = 800 samples for training and M = 200
samples for testing. The U-Net is trained in a GeForce GTX 1080 Ti using a
batch size of 4, 100,000 iterations and the Adam optimizer. We used a Pytorch
implementation of the U-Net. To assess the learning capability of the network, we
perform a statistical analysis of the mean norm error e over the testing data set. Let
uv

m be the ground truth displacement tensor for sample m generated using the finite
element method described in Sect. 2.2 and f (us

m) the U-Net prediction. The mean
norm error between uv

m and f (us
m) for sample m reads as:
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Table 1 Error measures over the testing data set for a breast having 2174 H8 elements, with
maximal nodal deformation of 79.09 mm

e (mm) σ (e) (mm)
max
m∈M

e (mm)
Prediction time (ms) Total training time (min)

0.052 0.050 0.266 3.14 ± 0.56 278

Fig. 4 (a) Sample with maximal deformation (79.09 mm). (b) Sample with maximal mean norm
error (0.266 mm). The green mesh is the U-Net prediction and the red mesh is the FEM solution.
The initial rest shape is shown in grey. (c) U-Net prediction on phantom data

e(uv
m, f (us

m)) = 1

n

n∑

i=1

|uv
m
i − f (us

m)i |. (3)

where n is the number of degrees of freedom of the mesh. We compute the average
e, standard deviation σ(e) and maximal value of such norm over the testing data set.
The obtained results are shown in Table 1. The maximal error is of only 0.266 mm
and corresponds to the sample shown in Fig. 4b. The most striking result is the small
computation time required to make the predictions: only 3.14±0.56 ms. In contrast,
the FE method takes on average 407.7 ± 64 ms to produce the solution. Obviously,
the resolution of the FE mesh could be reduced to accelerate the computations but
at the cost of an accuracy loss.

3.2 Predict Displacement on Phantom Data

In our experiments, we consider one lesion at a time and we reposition the US
probe on the surface of the breast such that the lesion considered is visible on the
US image. In order to validate our model, we manually extract lesions position from
US image acquired at rest (i.e., without applying any deformation, when the probe is
only slightly touching the surface) and we consider it as a landmark to track. We then
impose four deformations of increasing extent for each lesion, and we compare the
U-Net-predicted displacement with real displacements extracted from US images.
The comparison is performed computing target registration error (TRE) between the
predicted position of the lesion and its ground-truth position. The performance of
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Table 2 Target registration errors in millimeters for different tumors and different deformation
ranges in the breast phantom. The first table is for the proposed method, while the second table
reports results obtained with the FE model used for data generation. Not-acquired data is reported
as (–)

U-Net predictions

TumorID D10 D15 D20 D25 D30 Mean STD

1 – 1.936 2.002 1.506 3.053 2.124 0.569

2 3.211 2.905 4.068 – 4.137 3.580 0.534

3 2.032 – 4.709 7.134 10.90 6.194 3.262

4 0.505 2.225 5.313 5.903 – 3.486 2.217

5 0.932 2.768 3.454 – 4.893 3.012 1.425

6 3.923 6.349 5.625 – 6.724 5.655 1.075

7 3.454 3.864 4.543 6.710 – 4.643 1.255

8 2.422 3.261 4.320 5.136 – 3.785 1.030

9 – 3.928 4.214 4.578 4.858 4.394 0.353

10 5.529 3.272 3.940 4.846 – 4.397 0.860

Mean 2.751 3.390 4.219 5.116 5.761

STD 1.638 1.294 1.007 1.854 2.788

FE method

TumorID D10 D15 D20 D25 D30 Mean STD

1 – 1.326 2.151 2.075 3.759 2.328 0.887

2 1.956 2.738 3.945 – 4.025 3.166 0.865

3 1.595 – 4.748 7.044 10.932 6.080 3.404

4 0.755 1.991 4.544 5.120 – 3.103 1.795

5 1.029 2.863 3.330 – 4.541 2.941 1.262

6 2.579 3.409 2.871 – 2.337 2.799 0.400

7 2.605 3.219 4.095 6.750 – 4.167 1.582

8 2.695 2.748 4.321 5.411 – 3.794 1.139

9 – 2.745 2.497 2.510 4.193 2.986 0.704

10 2.916 2.542 3.015 3.868 – 3.085 0.485

Mean 2.016 2.620 3.552 4.682 4.964

STD 0.765 0.593 0.856 1.803 2.757

our method is compared to that of the FE model used for data generation. In Table 2
are shown the target registration errors for each phantom lesion with respect to the
applied deformation. The input deformations are classified into five ranges based on
the probe displacements. Displacement ranges indicated as D15, D20 and D25 have
a fixed length of 5 mm each and are centered at 15, 20 and 25 mm respectively. D10
and D30 contain the extreme cases under 12.5 mm or above 27.5 mm.

Values in Table 2 highlight that the average TRE for all the tumors and for all
the deformations is smaller than 6.194 mm which is comparable to the maximum
value obtained with the FE method (6.080 mm). The average error increases with
the deformation range just like in the FE method. There is no significant difference
between the values of the two tables, meaning that in terms of accuracy, our method
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is comparable to the data generation method used to train it. In order to compute
each deformation, the FE method needs about 407.7 ms whereas the U-Net predicts
the deformation in only 3 ms.

4 Conclusion

In this work we have proposed to use a deep neural network to learn the deformable
behavior of the breast from numerical simulations based on the finite element
method, in order to bypass the high computational cost of the FEM. Our approach
represents an interface between precise biomechanical FE modeling (not capable
of real time) and clinical applications requiring both high accuracy and very high
speed. We have shown that our framework allows for extremely fast predictions
of US probe-induced displacements of the breast during US scanning, achieving
comparable accuracy to other existing methods. Therefore, it has the potential to be
employed to update in real-time the estimated position of breast lesions identified on
a pre-operative scan on US images, enabling continuous visualization of the biopsy
target, even when sonography fails to render it.

Although the FE model used to train our network does not perform in real-time,
its prediction delay of less than 1 s might be considered already acceptable for our
specific application. However, such good computational performance is achieved
since in this preliminary evaluation we use a very simplistic model, that does not
account for heterogeneity or complex boundary conditions happening in clinical
cases. Usage of a more complex FE model will certainly cause an increase of
computation load. On the contrary, an important feature of our approach is that
the prediction time remains close to 3 ms regardless of the grid resolution and of
the biomechanical model used for the data generation process. This means that
increasing the complexity of the model used to generate the data set will not affect
the prediction speed. Moreover, our pipeline allows the method to be insensitive to
patient specific elastic properties as it imposes surface displacements. It is worth
noting that for inhomogeneous objects, the displacement field still depends on the
ratio of the different stiffnesses [16]. Another advantage of our method is the easy
meshing process. Any geometry can be embedded in a sparse grid and through the
use of immersed boundary simulations the deformations are correctly estimated.

The main limitation of our method remains the training process, which is
burdensome and has to be repeated for every new geometry or application. However,
we have shown that a limited amount of training data can be sufficient to train a U-
Net such that it obtains accurate prediction within clinically acceptable times. As a
future work, we plan to use a more general training strategy leading to a network
model able to predict deformations induced by any type and number of compression
tools (for example, different probe shapes or the two biopsy compression plates).
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An Improved Coarse-Grained Model
to Accurately Predict Red Blood Cell
Morphology and Deformability
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and Emilie Sauret

Abstract Accurate modelling of red blood cells (RBCs) has greater potential over
experiments, as it can be more robust and significantly cheaper than equivalent
experimental procedures to investigate the mechanical properties, rheology and
dynamics of RBCs. The recent advances in numerical modelling techniques for
RBC studies are reviewed in this study, and in particular, the discrete models for
a triangulated surface to represent the in-plane stretching energy and out-of-plane
bending energy of the RBC membrane are discussed. In addition, an improved
RBC membrane model is presented based on coarse-grained (CG) technique that
accurately and efficiently predicts the morphology and deformability of a RBC.
The CG-RBC membrane model predicts the minimum energy configuration of
the RBC from the competition between the in-plane stretching energy of the
cytoskeleton and the out-of-plane bending energy of the lipid-bilayer under the
given reference states of the cell surface area and volume. A quantitative evaluation
of several cellular measurements including length, thickness and shape factor, is
presented between the CG-RBC membrane model and three-dimensional (3D)
confocal microscopy imaging generated RBC shapes at equivalent reference states.
The CG-RBC membrane model predicts agreeable deformation characteristics of a
healthy RBC with the analogous experimental observations corresponding to optical
tweezers stretching deformations. The numerical approach presented here forms the
foundation for investigations into RBC morphology and deformability under diverse
shape-transforming scenarios, in vitro RBC storage, microvascular circulation and
flow through microfluidic devices.
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Abbreviations

2D Two-dimensional
3D Three-dimensional
ADE Area-difference-elasticity
AFM Atomic force microscopy
BCM Bilayer-coupling model
BIM Boundary integral method
CG Coarse-graining
CGMD Coarse-grained molecular dynamics
DPD Dissipative particle dynamics
FEM Finite element method
HE Hereditary elliptocytosis
HPC High performance computing
HS Hereditary spherocytosis
IBM Immersed boundary method
MD Molecular dynamics
QUT Queensland University of Technology
RBC Red blood cell
SAGM Saline-adenine-glucose-mannitol
SCM Spontaneous curvature model
SEM Scanning electron microscopy
SF Shape factor
SP Spring-particle
SPH Smoothed particle hydrodynamics
TEM Transmission electron microscopy
WLC Worm-like-chain

1 Introduction

Red blood cells (RBCs), though remarkably simple in structure [1], perform a
vital physiological function, transferring oxygen and carbon dioxide between lung
and body tissues. RBCs are composed of a composite membrane surrounding a
haemoglobin rich cytoplasm, and the cell deformability is primarily influenced
by mechanical and geometrical factors of the cell such as cell surface area and
volume, elasticity and viscosity of the cell membrane, and volume and viscosity
of the cytosol [2–8]. The changes in the cell membrane structure and its mechanical
properties adversely affect the cell deformability, and the loss of cell deformability
is a potential indicator of cell functional impairments in many pathophysiological
conditions [9–12]. Therefore, loss of RBC deformability is an indicator of cell
functional impairments in many pathophysiological conditions [9–12]. The RBC
deformability and its morphology are associated together, and changes to the
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Fig. 1 Representation of the
cross-sectional view of a
biconcave shape of a healthy
RBC

healthy biconcave discocyte morphology reflect the impaired cell deformability.
The RBC morphology is influenced by the cell age, in several diseased conditions
(e.g. hereditary spherocytosis, hereditary elliptocytosis, and sickle cell anaemia)
[13] and some extracellular environmental conditions (e.g. amphiphilic substances,
osmolality, ionic strength and pH) [14].

Different experimental and numerical techniques have been applied to investigate
the physical, mechanical, rheological, and dynamic properties of RBCs under a
variety of healthy and diseased conditions. In particular, numerical modelling is
an attractive approach to overcome some of the experimentation-related challenges
and have been applied successfully to investigate the RBC morphology and
deformability in a variety of circumstances. In this background, this chapter initially
presents an overview of recent advances in numerical modelling techniques for RBC
studies. Especially, the discrete models for a triangulated surface to represent the in-
plane stretching energy and out-of-plane bending energy of the RBC membrane are
discussed. Then, an improved RBC membrane model is presented based on coarse-
grained (CG) technique that accurately and efficiently predicts the morphology and
deformability of a RBC, which is followed by a comprehensive discussion of its key
applications, limitations and future prospects.

1.1 RBC Cellular Structure

RBCs not only play the critical role of transporting oxygen and carbon dioxide
between lungs and body tissues [15], but are also involved in inflammatory
processes and coagulation [16]. RBCs are unique nucleus-free cells [16–19], of
which 95% of its cytoplasm is haemoglobin, the metalloprotein responsible for
oxygen transfer [16, 20]. A healthy RBC at physiological conditions assumes the
shape of a biconcave disc with dimensions of ∼ 8 μm in diameter [2, 21, 22] and
∼ 2 μm in thickness [20], and a simple representation of a healthy RBC is presented
in Fig. 1. Having a cell volume of ∼ 90 μm3 and cell surface area of ∼ 140 μm2,
a RBC holds 40% excess surface area compared to a sphere with the same volume
[19, 23]. The RBC cell membrane consists of a fluid bilayer of thickness ∼ 4 nm
[21] and a cytoskeletal complex [16, 17, 20, 24]. The offset between the bilayer and
the cytoskeleton is only 30–50 nm [21, 25].
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The bilayer is a complex combination of phospholipids, cholesterol and dissolved
proteins that are asymmetrically distributed in the two leaflets of the bilayer
[26], and acts as an osmotic barrier for the cell controlling the passage of water,
ions and larger solute molecules through it [21]. The major constituents of the
outer bilayer-leaflet are lipids such as phosphatidylcholine, sphingomyelin, and
glycophospholipids, whereas phosphatidylserine and phosphatidylethanolamine are
the major constituents of the inner leaflet [21, 27]. The predominant lipids in the
outer leaflet are neutral at physiological pH, whereas the phosphatidylserine in the
inner leaflet is negatively charged, and therefore, there exists a significant charge
difference between these two leaflets. The hydrophobic ends of the phospholipids
are embedded in the bilayer while the hydrophilic ends are protruding from it.

The thin cytoskeleton is a hexagonally linked network which is composed
primarily of spectrin filaments and actin protofilaments [28]. Each spectrin tetramer
consists of two heterodimers of intertwined and antiparallel α-spectrin and β-
spectrin filaments with an extended length of ∼ 200 nm [29]. There are about
33,000 hexagonal junctional complex structures in the RBC cytoskeleton, of which
the actin protofilament is the central piece while up to six spectrin dimers are
connected to this. The distance between the vertices of the hexagonal junctional
complex is ∼ 76 nm. The head-to-head association of spectrin dimers that connects
them into a tetramer links these junctional complexes horizontally, and there
are vertical connections to link the cytoskeleton with the bilayer as well. The
cytoskeleton-bilayer connection through ankyrin, protein 4.2 and band 3 protein
is the primary, whereas the connection at actin protofilaments through protein 4.1
and glycophorin C is the secondary connection [14, 17, 19, 24, 30]. The ability
of band 3 and glycophorin C to drift within the lipid-bilayer provides horizontal
mobility to the bilayer-cytoskeleton connection [28]. Although the RBC membrane
is heterogeneous at the molecular length scale, it can reasonably be approximated to
be homogeneous in its properties on scales above 100 nm [4, 21]. The following
subsection discusses the morphology of a healthy RBC and some morphology
transformation conditions where different RBC morphologies can be observed.

1.2 RBC Morphology

RBCs display a range of morphologies corresponding to the cell age, several
diseased conditions, and some extracellular environmental conditions. The charac-
teristic biconcave shape of a healthy RBC observed during normal physiological
conditions is acknowledged as the ‘discocyte’ morphology. The discocyte mor-
phology of a healthy RBC gradually transforms into echinocyte and then to
sphero-echinocyte during storage.

RBC diseases, such as hereditary spherocytosis (HS), hereditary elliptocytosis
(HE) and sickle cell disease, alter the RBC morphology as well [5, 13, 19, 23, 30–
34]. RBC diseases are often associated with defects from mutations in proteins
modifying their inter-connectivity and their connectivity with the lipid-bilayer
[30]. For example, under HS and HE conditions RBCs become spherical due to
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Fig. 2 Scanning electron
microscope (SEM) images of
(a) stomatocyte, (b) discocyte
and (c) echinocyte RBC
morphologies (M.A.
Balanant, unpublished data,
personal communication,
March 20, 2018)

partial loss of the lipid-bilayer and contain higher haemoglobin concentration than
usual; malaria infection alters the RBC membrane properties and make the cell
spherical at the later stages of parasite development; and sickle cell anaemia causes
haemoglobin polymerization [5, 13, 19, 23, 30–34]. In addition, modifications to
the extracellular environment can influence the RBC morphology, and in particular,
there are stomatocytogenic and echinocytogenic shape-transforming environments
that can produce stomatocytes and echinocytes respectively [14, 18, 19, 27, 35–53].
The appearance of the ‘stomatocyte’ and ‘echinocyte’ morphologies are cup-shaped
and spiculated respectively, and representative images of stomatocyte, discocyte
and echinocyte morphologies are presented in Fig. 2. A detailed classification of
many RBC morphologies along with probable disease conditions and extracellular
environmental factors is first presented by Bessis [52]. For example, the RBC
morphology becomes stomatocytic and echinocytic at cellular pH levels of 5.6 and
8.8, respectively [43]. In addition, echinocyte forms can be observed at 300 mmHg
on day 5 of storage in phosphate-dextrose-adenine-1 preservative solution [40]; due
to the adhesion of nano-diamonds on RBC membrane [39]; and under storage in
saline-adenine-glucose-mannitol (SAGM) at days 42 of storage [54]. A detailed
classification of many RBC morphologies along with probable disease conditions
and extracellular environmental factors is first presented by Bessis [52]. The RBC
morphology and its deformability are interlinked, and the following subsection
details the deformability determinants of a RBC.

1.3 RBC Deformability

RBCs require high deformability to sustain passage through the microcirculation
[17, 55]. The determinants of the cell deformability are the cell geometry, the
cytoplasmic viscosity, and the membrane deformability characteristics [3, 8, 13,
22, 23, 56]. The cell geometry can be attributed to the ratio of the cell surface
area to its volume. The larger cell surface area not only increases the exchange
of gases that take place on its surface [57], but also facilitates a broad range of RBC
shapes under a variety of mechanical deformation scenarios. However, the surface
area incompressibility of the lipid-bilayer, shear resistance of the cytoskeleton and
the volumetric incompressibility of the cytosol, limit any change in cell geometry.
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The cohesion between the cytoskeleton and the bilayer facilitate the maintenance
of the cell surface area under deformation. A healthy RBC can deform with linear
extensions of up to ∼ 250%, however, a 3–4% increase in surface area results in
cell lysis [19]. Loss of cell surface area due to membrane vesiculation and cell
fragmentation, and any change in cell volume due to defective ion transport [19,
58] adversely influences RBC deformability.

The cytoplasmic viscosity influences the rapidity of cell shape changes in
response to fluid shear stresses and is determined by the intracellular haemoglobin
concentration. The maintenance of cell haemoglobin concentration within a very
narrow range minimizes the fluctuations in cytoplasmic viscosity [19, 56, 59], and
conserves the cell flexibility to traverse narrow capillaries in the microcirculation.
The RBC membrane is highly deformable and facilitates large reversible defor-
mation of the cell. The lipid-bilayer contributes to the cell’s bending resistance,
whereas the cytoskeletal spectrin network contributes to its shear resistance [13, 19,
22, 23, 60, 61]. The bending resistance is characterized by the bending modulus (κ),
and κ for a healthy RBC lies between 1×10−19 and 7×10−19 Nm [13]. Similarly,
the membrane shear resistance is characterized by the shear modulus (μ0), and
μ0 for a healthy RBC lies between 4 and 12 μNm−1 [13, 62, 63]. The structural
organization of the RBC membrane is crucial for the cell to maintain its shape
and mechanical integrity [16]. The dynamic equilibrium of the cell membrane
exists due to the association and dissociation of the inter-protein and intra-protein
linkages. It is possible to rupture the cytoskeletal connections and cytoskeleton-
bilayer connections under mechanical loads [28], which can lead to structural
instability and lowered deformability of the RBC.

The RBC deformability characteristics are strongly linked to structural and
molecular alterations induced by the onset and progression of many pathophysi-
ological conditions [2, 64–66]. Altered lipid composition and bilayer asymmetry
that influences the RBC shape, and the modifications in cytoskeletal proteins
that affect the RBC membrane integrity, have severe implications on the RBC
function and viability [17]. Less deformable RBCs can obstruct capillaries and
require significantly higher transit time to navigate through the microvasculature,
leading to decreased levels of oxygen delivery to organs [67–69]. In addition, less
deformable RBCs are promptly removed from the circulation at the spleen [70, 71].
Therefore, RBC deformability is a potential measure of cell functional impairments
under many pathophysiological conditions [65]. As such, the associated changes
in RBC membrane elasticity, cell geometry and intracellular viscosity during RBC
morphology transformation corresponding to cell age, disease conditions, and extra-
cellular environment, affect the cell deformability. Therefore, the RBC morphology
and its deformability are linked together, and the deviation of RBC morphology
from the discocyte shape towards other RBC morphologies generally indicates
impaired cell deformability [3, 25, 72, 73]. The measurements of membrane shear
modulus and bending modulus of a discocyte indicate significant increase during
RBC morphology transformations as well [72, 74]. However, the change in RBC
deformability is associated with the stage of its morphology rather than the severity
of the morphology transformation condition [3].



An Improved Coarse-Grained Model to Accurately Predict Red Blood Cell. . . 53

Numerous experimental and numerical studies have been performed to investi-
gate the physical, mechanical, rheological, and dynamic properties of RBCs under
a variety of physiological and pathophysiological circumstances (e.g. membrane
vesiculation, membrane defects, cell lysis, optical tweezers stretching, micropipette
aspiration, atomic force microscopy (AFM) indentation, membrane thermal fluctu-
ations, large-scale blood flow, cell margination, and microfluidics) [4, 6, 13, 20, 22,
23, 63, 64, 72, 74–85]. However, some experimental and pre-preparation procedures
can influence the associated measurements. For example, the limited resolution
of bright field and phase contrast microscopy imaging, require cell fixation prior
to SEM imaging, cell adhesion on the substrate prior to AFM studies, and cell
proximity to glass surface during experiments can influence the cell response, and
therefore, the exact measurements [86]. It is difficult to control precisely the exact
location of the RBC membrane-bead attachment under optical tweezers technique,
which can affect the cell response [87]. In addition, certain experimental techniques
are time consuming, labour-intensive, require special technical skills, expensive
equipment, and may require high-speed video microscopy systems as well (e.g.
optical tweezers, micropipette aspiration, AFM, and microfluidics) [75]. The cell
response to experimental techniques is inconsistent from donor to donor. As a result,
most of the measured cell parameters are averaged values based on these inhomo-
geneous RBC samples. However, the selection of most appropriate technique that
matches with the experimental objectives results in a better determination of RBC
properties. In addition, numerical analysis established on experimental studies can
facilitate more efficient and effective decision-making on RBC systems. Following
subsection reviews recent advances in numerical modelling techniques for RBC
studies.

1.4 Numerical Investigations on RBC Morphology
and Deformability

Accurate modelling of RBCs has great potential, as it can be more robust and signif-
icantly cheaper than the equivalent experimental procedures [84, 88]. For example,
the experimental outcomes can be influenced by factors such as the experimental
protocol in use, any experimental errors or uncertainties and donor variability, and
lead to a statistically significant deviation of the results. However, accurate RBC
modelling can produce consistent predictions. In addition, the rapid advancement in
computational systems enables very large and sophisticated simulations analogous
to complex experimental techniques. Due to the simplicity of the RBC structure, it
can be numerically approximated as a bag of concentrated haemoglobin solution
surrounded by a thin macroscopically homogeneous membrane [21]. The RBC
membrane can be treated as a two-dimensional (2D) viscoelastic surface in a three-
dimensional (3D) space in the cellular length scale [13, 20, 21], as the thickness
of the lipid-bilayer is only ∼ 4 nm [18] and the offset between lipid-bilayer and
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cytoskeleton is only ∼ 30–40 nm [18]. In addition, the heterogeneous nature of
the RBC membrane can be reasonably approximated to be homogeneous in its
properties for length scales above 100 nm [21, 89] and is suitable for mesoscopic
and macroscopic scale investigations. However, a more realistic and accurate RBC
representation requires a detailed description of its structure, especially for studies
on the mechanics of many pathophysiological conditions [30], and therefore,
necessitates the incorporation of the properties of the lipid-bilayer, cytoskeleton,
transmembrane proteins and their interrelation.

There are several types of numerical modelling techniques for RBC studies,
and the primary approaches are continuum, particle-based and hybrid continuum-
particle [5, 20, 80, 89] based techniques. Continuum-based numerical techniques
(e.g. finite element method (FEM), boundary integral method (BIM), and immersed
boundary method (IBM)) treat the RBC membrane and associated fluid components
as homogeneous materials, whereas the particle-based numerical techniques (e.g.
dissipative particle dynamics (DPD), smoothed particle hydrodynamics (SPH),
lattice Boltzmann method (LBM), molecular dynamics (MD), and coarse-grained
molecular dynamics (CGMD)) represent these components via a network of partic-
ulate assembly [5, 13, 20, 31, 32, 63, 84, 90]. Continuum-based modelling has been
successfully applied to study large-scale blood flow conditions [85], tank-treading
motion of RBCs [91], and optical tweezers stretching deformation [2]. Continuum-
based modelling can accurately predict the RBC behaviour on the whole cell level
but has limited potential to capture the subcellular and molecular level details,
whereas particle-based modelling can successfully capture these details. In addition,
it is easier to implement complex structures with particle-based modelling, since this
method is based on arbitrarily distributed particles [80]. DPD and LBM techniques
can take into account the thermal fluctuations, and therefore are suitable for studies
where thermal fluctuations play a significant role (e.g. RBCs aggregation) [80]. In
addition, DPD and SPH techniques consider a set of particles inside a specified
influence domain, and therefore cause a lower computational cost than LBM, which
is a hybrid-mesh particle based method.

There are molecularly detailed RBC membrane models, which successfully
capture the membrane structure and its response under both normal and defective
states [1, 5, 7, 13, 22, 62, 63, 92–94]. However, these models can be compu-
tationally very expensive when extended for large systems containing multiple
cells, and therefore, coarse-grained techniques and/or hybrid continuum-particle-
based techniques are probable solutions to reduce the computational complexity
[5, 13, 20, 29, 62, 63, 81, 84, 90, 95–98]. Coarse-grained (CG) particles represent
a cluster of particles, and capture the important features with a smaller number
of particles while effectively reducing the computational expense [29, 97, 98].
For example, the two-component CGMD composite model developed by Li and
Lykotrafitis [33] investigated the mechanisms of RBC membrane vesiculation
for a small piece of the membrane of 0.8 μm × 0.8 μm and is composed of
32,796 CG particles. The OpenRBC model by Tang et al. [92] represents the RBC
membrane to the level of protein resolution and facilitates studies such as RBC
vesiculation and lysis under different pathophysiological conditions. OpenRBC is
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strengthened with many features to optimize simulation efficiency (i.e. adaptive
partitioning of the particles, parallelization, and simultaneous hardware threads).
For example, OpenRBC can simulate a whole RBC composed of 3,200,000 particles
in only 1346 s on IBM POWER8 “Minsky” computer system through 1 core
and 1 non-uniform memory access (NUMA) domain. Therefore, OpenRBC is a
powerful tool to investigate biomechanics of the RBC at single cell level. Hybrid
continuum-particle-based technique is a cross-fertilization between the continuum
and particle-based techniques, and can also facilitate accurate RBC modellings at
higher computational efficiency [5, 20, 98]. For example, Lye et al. [98] developed
a hybrid continuum-coarse-grained RBC model combining an existing continuum
vesicle model with a coarse-grained cytoskeleton, and have simulated the RBC
characteristics during cell sedimentation, optical tweezers stretching deformation
conditions and motion of a single RBC in a capillary. However, these simulations
only consider the stationary shapes of the RBC, and therefore require improvements
to consider RBC dynamics. The availability of several RBC models based on variety
of numerical techniques facilitate simulation of RBC systems at macroscopic,
mesoscopic and microscopic scales; however, one has to carefully select the most
suitable RBC model for the investigation to be performed.

The treatment of fluid-RBC and RBC-RBC interactions is another challenge
in RBC simulations. For example, DPD and SPH numerical techniques treat the
RBC membrane as a set of physical particles and consider the fluid-membrane
particle interactions as fluid-fluid interactions. Even though this approach is simple,
a critical balance for the number of particles and the simulation time-step is required
to achieve numerical consistency as the RBC membrane has negligible mass
compared with that of cytoplasm or plasma. Therefore, the adoption of numerical
techniques such as IBM provides a more realistic physical approach as it treats the
membrane as an immersed boundary [80]. In addition, the microscopic interaction
distance between RBC-RBC is generally enlarged in mesoscopic and macroscopic
simulations where the RBC-RBC interactions are important due to limitations of
computational resources. Therefore, multiscale or hybrid continuum-particle-based
numerical techniques are more suitable to investigate RBC behaviour under these
circumstances.

1.5 Numerical Predictions of the Equilibrium RBC
Morphology

For numerical investigation purposes, the biconcave discocyte shape can be
expressed as follows using Cartesian coordinates.
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where D0 = 7.82 μm is the cell diameter, a0 = 0.05179025, a1 = 2.002558 and
a2 = −4.491048 [28, 63, 95, 97]. This relationship can produce a biconcave shape
having a surface area of 135 μm2 and enclosed volume of 94 μm3, which agrees
well with the physiological discocyte shape of the RBC. In addition, the equilibrium
RBC shape was derived by minimizing the in-plane stretching energy and the out-
of-plane bending energy of the RBC membrane under the reference constraints of
cell membrane area and cell volume [13, 20, 99, 100].

The in-plane stretching energy (EStretching) of the RBC membrane is represented
by several forms of linear (ELinear

Stretching) and non-linear (e.g. EWLC−C
Stretching ,

EWLC−POW
Stretching and EFENE−C

Stretching) approximations of spring models. ELinear
Stretching ,

EWLC−C
Stretching , EWLC−POW

Stretching and EFENE−C
Stretching can be given as in Eqs. 2, 3, 4, 5, 6,

and 7 [62, 101].

ELinear
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2
kl
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(
lj − lj,0

)2 (2)

where kl is the linear spring constant, NS is the number of adjacent vertex-vertex
connections of the triangulated membrane surface, lj is the length of jth link, and
lj, 0 is the equilibrium length of jth link.
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where kB is the Boltzmann constant, T is the absolute temperature, lj, max is the
length of jth link at maximum extension, and p is the persistence length. xj is defined
as xj = lj/lmax and xj, 0 defined as xj, 0 = lj, 0/lj, max. NT is the number of triangles and
Ak, 0 is the equilibrium area of kth triangle.
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where kp is the power function coefficient and m is an exponent such that m > 0 [62].
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where ks is the FENE spring constant. A brief review of the above in-plane stretching
energy models is presented in Table 1.

The linear form is the simplest; however, wormlike chain (WLC) and finitely
extensible non-linear elastic (FENE) models give better representation of non-linear
nature of spectrin molecules. The maximum extension of the jth link is limited
to lj, max as the corresponding spring force reaches infinity when the spring length
approaches lj, max. The first term of the right hand side of EWLC−C

Stretching , EWLC−POW
Stretching

Table 1 Summary of in-plane stretching energy (EStretching) models of the RBC membrane

Model Eq. # Main Characteristics Examples of Applications

ELinear
Stretching

2 Simplest; less expensive;
limited potential to capture the
non-linear nature of the
spectrin links; individual
equilibrium spring lengths can
be easily defined

Elastic force of RBC membrane
during tank-treading motion [102];
Deformation of RBCs in
non-uniform capillaries [101];
RBC membrane mechanics during
AFM indentation [88].

EWLC−C
Stretching

3 Commonly used than the
linear, WLC-POW and
FENE-C models; better
stability at large deformations;

RBC membrane deformations
during optical tweezers stretching
[103];
RBC membrane mechanics at
extreme temperature conditions
[104];
RBC rheology in multiscale
domains [105].

EWLC−POW
Stretching

4 First proposed by Fedosov
et al. [62]; requires a weak
local area constraint for
stability at large deformations;
individual equilibrium spring
lengths can be easily defined

RBC large deformation in a
microfluidic system [22];
Stomatocyte-discocyte-echinocyte
morphology transformations of a
RBC [106];
RBCs in type 2 diabetes mellitus
[107].

EFENE−C
Stretching

7 More rapid spring hardening
compared to WLC models at
large deformations; less stable
at large deformations and
requires smaller time steps
than WLC;

RBC motion in a capillary [98];
Coarse-graining of spectrin level
RBC models [62].
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and EFENE−C
Stretching represents attractive potentials in the springs, and therefore results

in triangular area compression. However, the second term of the right hand side of
EWLC−C

Stretching and EFENE−C
Stretching provides triangular area expansion, and therefore guides

the spring length towards equilibrium. EWLC−POW
Stretching is not composed of a triangular

area expansion term; however, includes a repulsive potential as a power function
(EPOW (lj)) to restrict the length of the spring. EWLC−POW

Stretching was first proposed by
Fedosov et al. [62]. In addition, there are continuum models based triangular spring
models [108], which can be used to represent the stretching characteristics of the
RBC membrane. However, a comprehensive analysis of the suitability of existing
stretching models for accurate modelling of RBC mechanical properties, rheology
and dynamics, is still lacking to the best of the authors’ knowledge.

The out-of-plane bending energy (EBending) of the RBC membrane is represented
by the spontaneous curvature model (SCM), bilayer-coupling model (BCM), and
area-difference-elasticity (ADE) [13, 109]. The SCM describes the membrane
bending energy (ESCM

Bending) for a membrane with surface area, A, and local bending
modulus, κ , such that [109, 110]:

ESCM
Bending [C1, C2] = κ

2

∮
dA

(
C1 (r) + C2 (r) − C0

)2
(8)

where C1(r) and C2(r) are the principal curvatures at the point r on the membrane
surface, whereas C0 is the spontaneous curvature and indicates any asymmetry
between the two bilayer-leaflets. Therefore, in the SCM-derived models, vesicle
shape is obtained at the minimum of ESCM

Bending for given A and vesicle volume, V.

The discocyte RBC shape is usually derived from the SCM approach at C0 ∼ 0
[62].

The BCM is based on the bilayer-couple hypothesis and assumes a fixed area
for a membrane lipid molecule and no molecular exchange between the two
bilayer-leaflets. Therefore, the area of each bilayer-leaflet remains constant, and the
area-difference between the two bilayer-leaflets (ΔA) can be determined from the
integrated mean curvature over the membrane surface, such that [109]:

�A = D

∮
dA (C1(r) + C2(r)) (9)

where D is the distance between bilayer-leaflets. The membrane bending energy
EBCM

Bending in this instance is determined for a defined reference surface with fixed
ΔA as another constraint, such that [109]:

EBCM
Bending [C1, C2] = κ

2

∮
dA (C1(r) + C2(r))

2 (10)

The BCM model-derived vesicle shape is obtained at minimum EBCM
Bending for

given A, V and ΔA. It has been proven elsewhere [100, 110, 111] that both SCM and
BCM models lead to the same shape equations, and the vesicle shape behaviour is
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an extensively studied aspect [18, 21, 100, 109–122]. The ADE model is a combined
representation of SCM and BCM, and the ADE model determined membrane energy
(EADE) for a vesicle having A, V and ΔA is as follows [109],

EADE [C1, C2,�A] = κ

2

∮
dA

(
C1(r)+C2(r)−C0

)2 + κ

2

π

A D2 (�A − �A0)
2

(11)

where κ is the non-local bending modulus and ΔA0 is the reference area-difference
between bilayer-leaflets. The ADE model converges to the SCM model at κ/κ →
0, and into BCM at κ/κ → ∞ [109, 114, 118]. Several studies [100, 109, 110,
118] have comprehensively reviewed these out-of-plane bending energy models for
a vesicle. Many research studies have numerically investigated vesicle shapes along
with RBC morphologies under a variety of morphology transformation conditions
[18, 21, 100, 109, 110, 115, 117–119]. However, the existing numerical predictions
of RBC morphology are validated qualitatively only against analogous experimental
observations, and a framework of quantitative validation is yet to be implemented.
Therefore, the coarse-grained (CG)-RBC membrane model is developed primarily
to overcome this limitation. The following sections detail the achievement of the
numerical framework such that an improved CG model is developed to accurately
predict RBC morphology and deformability.

2 Development of the CG-RBC Membrane Model

Coarse-graining (CG) is a popular particle-based numerical technique, and has sev-
eral advantages making it the most suitable for the present investigation. A CG-RBC
membrane model has better computational efficiency as each membrane particle
represents a group of cytoskeletal actin junctional complexes, and therefore, reduces
the exhausting number of required particles to discretise the RBC membrane. In
addition, the CG technique facilitates the integration of membrane heterogeneity
and structural defects, and a greater potential to investigate the influence of
storage lesion induced membrane defects on cell morphology and deformability.
Furthermore, a CG-RBC membrane model is also suitable to investigate the RBC
characteristics under varying other pathophysiological conditions such as hereditary
haemolytic disorders (e.g. spherocytosis, elliptocytosis and ovalocytosis) [1, 2],
sickle cell disease, malaria [31, 72, 81, 84, 87, 97, 123, 124], and shape-transforming
conditions (e.g. stomatocytogenic and echinocytogenic environments) [21, 46, 48,
120, 125–127].

Following subsections describe the formulation of the CG-RBC membrane
model for predicting the equilibrium RBC state. Section 2.1 presents the free-energy
function of the CG-RBC membrane, and describes the numerical minimization
of the overall free-energy of the RBC membrane for given reference conditions
such that the equilibrium cell state is achieved. Sections 2.2 and 2.3 describe the
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construction process of the initial geometry, and the cytoskeletal reference state
of the CG-RBC membrane respectively. The computational implementation of the
CG-RBC membrane model to achieve the equilibrium RBC state is detailed in
Sect. 2.4. Section 2.5 describes the process of CG-RBC membrane model prediction
of the healthy discocyte RBC morphology analogous to experimental observations,
whereas Sect. 2.6 validates the numerically predicted equilibrium RBC shape
against analogous experimental observations.

2.1 Free-Energy of the CG-RBC Membrane

The CG-RBC membrane model is composed of NV vertices that represent the actin
junctional complexes in the RBC membrane cytoskeleton and forms a 2D triangu-
lated surface having NT triangles. The total free-energy of the CG-RBC membrane
(E) is the collective contribution of in-plane stretching energy (EStretching), out-of-
plane bending energy (EBending) and the energy penalty to maintain reference cell
surface area (ESurface − area) and cell volume (EVolume), and is given as [1, 62]:

E = EStretching + EBending + ESurf ace−area + EV olume (12)

The Ns adjacent vertex-vertex connections of the triangulated membrane surface
represent the spectrin links attached to the actin junctional complexes and contribute
to EStretching. EStretching was estimated based on the coarse-grained EWLC−POW

Stretching (Eq.
4) approach implemented by Fedosov et al. [62]. The membrane shear modulus (μ0)
in this instance is given by [62]:

μ0 =
√

3 kB T

4 p lmax x0

[
x0

2 (1 − x0)
3 − 1

4 (1 − x0)
2 + 1

4

]
+

√
3 kp (m + 1)

4 lm+1
0

(13)

where l0 is the equilibrium spectrin link length and defined as x0 = l0/lmax. The
parameters kp and p are estimated for a given μ0 and x0 using Eqs. 4 and 13 at the
equilibrium cytoskeletal reference state.

EBending of the RBC membrane was estimated based on the discrete approxima-
tion proposed by Jülicher [91] at zero spontaneous membrane curvature, such that:

EBending = 2 κ
∑NS

j=1

M2
j

ΔAj

(14)

where κ is the membrane bending modulus, Mj is the membrane curvature at the jth
link, and �Aj is the membrane surface area associated with the jth link. Mj and �Aj

corresponding to the triangle-pair composed of T1 and T2 triangles that share the
jth link (Fig. 3), were estimated as follows:
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Mj = 1

2
lj θj (15)

ΔAj = 1

3
(AT 1 + AT 2) (16)

where θ j is the angle between outward normal vectors to the triangles T1 and T2,
and AT1 and AT2 are the planer area associated with T1 and T2 triangles respectively.
θ j is defined such that the concave arrangement of a triangle-pair corresponds to a
positive θ j, whereas the convex arrangement corresponds to a negative θ j (Fig. 3),
and results in positive or negative Mj respectively.

The energy components of ESurface − area and EVolume were estimated as follows
[62, 128]:

ESurf ace−area = 1
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j, lj

θj

Cell Interior

Cell Exterior

(b) Convex triangle-pair arrangement

-θj

Cell Interior

Cell Exterior

(c) Concave triangle-pair arrangement

(a)

Fig. 3 (a) Illustration of θ j, lj, AT1 and AT2 corresponding to the triangle-pair made of triangles T1
and T2 triangles that share the jth link, and illustration of (b) convex, and (c) concave triangle-pair
arrangements resulting in positive and negative θ j respectively. nT1 and nT2 are the normal vectors
to the tringles T1 and T2
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where A0 is the reference membrane surface area, A is the instantaneous membrane
surface area, Ak, 0 is the reference area of kth triangle, Ak is the instantaneous area
of kth triangle, V0 is the reference cell volume and V is the instantaneous cell
volume. kA, ka and kV represent the total surface area, local surface area and volume
constraint coefficients respectively. The resistance of the lipid-bilayer for surface
area change was considered for both the whole RBC membrane surface and for
the individual triangles, as the lipid-bilayer is anchored to the cytoskeleton through
transmembrane proteins, and therefore, the movement of lipid molecules over the
membrane is restricted. The first term of the right-hand side of the Eq. 17 represents
the total surface area constraint whereas the second term of the right-hand side of
the Eq. 17 represents the triangle surface area constraint.

It was assumed that the vertex points move over the RBC membrane surface to
achieve the minimum free-energy state, which is the equilibrium RBC shape. The
force (Fi) acting on the ith membrane vertex at point ri on the surface was derived
from the principle of virtual work, such that:

Fi = −∂E

∂ri
, i ∈ 1 . . . NV (19)

The resulting motion of the ith membrane vertex was then estimated from the
Newton’s second law of motion as follows:

Fi + f ext
i = mir̈i + c ṙi (20)

where f ext
i is the contribution from any external forces on ith vertex point, mi is the

mass of ith vertex point, dot (.) is the time derivative and c is the viscosity of the
RBC membrane.

2.2 Construction of Initial Spherical Geometry for RBC
Membrane

The RBC membrane was initially assumed to be a sphere having an equivalent
surface area to a RBC (A0). The initial spherical geometry was built upon an
icosahedron inscribed within a sphere of radius 1.0 m. This icosahedron, which
constitutes the initial RBC membrane triangulation, is composed of 12 vertices, 20
equilateral triangles and 30 edges. The position of the icosahedron vertices were
then projected to a spherical surface of radius with a surface area equivalent to
A0, such that the resulting icosahedron is inscribed within a sphere of radius RRBC.
The triangulation refinement was obtained by generating additional vertices at the
midpoint of each triangle edge and connecting these new vertices together such
that the preceding triangle is divided into four smaller triangles. The new vertices
were then projected radially onto the spherical surface with the radius RRBC. The
Cartesian coordinates of the new vertex point projected on to the spherical surface
are given by:
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where (x1, y1, z1) and (x2, y2, z2) are the Cartesian coordinates of the icosahedron
vertices associated with the edge. The desired level of triangulation was achieved
through the successive refinement of the resulting triangulation. The resulting
number of membrane triangles (NT ), vertices (NV ), and adjacent vertex-vertex
connections (NS) are given by:

NT = 20 ×
(

4NDegree

)
(22)

NV = 1

2
(NT + 4) (23)

NS = NT + NS–2 (24)

where NDegree is the number of triangulation refinement stages. The values of NT ,
NV and NS at 0 ≤ NDegree ≤ 6, are summarised in Table 2.

RBC cytoskeleton has about 27,000–45,000 actin junctional complexes [62],
and therefore, the triangulation at NDegree = 6 was considered as the spectrin
level triangulation. The stages of the first triangulation refinement of the initial
icosahedron is presented in Fig. 4.

The subsequent studies presented in this thesis do not consider further remod-
elling of the triangulated membrane surface, and therefore, NT , NV , NS and their
associate interconnections remain constant. Therefore, it is important to identify the
refinement of the membrane triangulation such that the triangulation quality and
the membrane resolution satisfy the minimum requirements to achieve accurate and
efficient numerical predictions. The following subsections detail the assessment of
the minimum triangulation quality and the membrane resolution of the CG-RBC
membrane model.

Table 2 The values of NT ,
NV and NS at first six
triangulation refinement
stages

NDegree NT NV NS

0 20 12 30
1 80 42 120
2 320 162 480
3 1280 642 1920
4 5120 2562 7680
5 20,480 10,242 30,720
6 81,920 40,962 122,880
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Fig. 4 Stages of first triangulation refinement from initial icosahedron geometry, (a) initial
icosahedron, (b) implementing successive triangulation, and (c) projecting the new vertices onto
the spherical surface

Table 3 The distribution of edge length (d(l)) and vertex attachment to neighbouring triangles
(NV-T ) for 0 ≤ NDegree ≤6

NDegree d(l) Vertices (%) having NV — T = 6 Vertices (%) having NV — T = 5

0 0.000 0.000 100.000
1 0.104 71.429 28.571
2 0.065 92.593 7.407
3 0.065 98.131 1.869
4 0.065 99.532 0.468
5 0.065 99.883 0.117
6 0.065 99.971 0.029

2.2.1 Required Minimum Triangulation Quality of the RBC Membrane

The triangulation quality was characterized by the distribution of edge length
and distribution of the vertex attachment to neighbouring triangles [62]. The
distribution of edge length (d(l)) was characterised as d(l) = σ(l)/l, where σ (l)
is the standard deviation for edge length and l is the average edge length. The
distribution of vertex attachment to neighbouring triangles was characterized by
the relative percentage of vertices having a different number of vertex attachment to
neighbouring triangles (NV − T ). The 12 vertices on the initial icosahedron are each
attached to five neighbouring triangles (NV − T = 5) whereas additional vertices
formed by triangulation refinement are each attached to six neighbouring triangles
(NV − T = 6). Therefore, the CG-RBC membrane has only two different numbers of
vertex attachment to neighbouring triangles. The theoretical estimations of the RBC
membrane properties are based on a triangular network composed of equilateral
triangles having NV − T = 6 [62]. Therefore, higher triangulation quality is achieved
at the combination of low d(l) and a higher percentage of vertices having NV − T =
6. Table 3 summarises the distribution of d(l) and NV − T for 0 ≤ NDegree ≤ 6.
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The quality of the triangulation improved with NDegree, and the relative percent-
age of vertices having NV − T = 5 falls below 1.0% for NDegree ≥ 4. Therefore,
the CG-RBC membrane should be at least NT ≥ 5120 to achieve reasonable
triangulation quality.

2.2.2 Required Minimum Resolution for the CG-RBC Membrane

The required minimum particle resolution of the RBC membrane was determined
based on the error between numerically obtained and exact values of the CG-RBC
membrane parameters (i.e. EStretching, EBending, A0 and V0) of the initial spherical
geometry. The exact value of EStretching for a spherical geometry composed of NT

equilateral triangles was estimated at μ0 = 4.0 μNm−1, x0 = 0.45 and m = 2 [62].
The exact value of out-of-plane bending energy (E∗

Bending) for a closed membrane
surface A is given in Eq. 25, and is equivalent to 8 π κ for a spherical surface [122]:

E∗
Bending = 2 κ

∮
(2 H)2 dA ≡ 8 π κ (25)

where H is the spontaneous mean curvature over the surface. Similarly, the exact
values of the spherical surface area (A∗

0) and enclosed volume (V ∗
0 ) were estimated

as A∗
0 = 4 π R2

RBC and V ∗
0 = 3/4 π R3

RBC . The absolute percentage error (ε)
between numerically and theoretically determined values for the spherical geometry
for 0 ≤ NDegree ≤ 6, is summarised in Table 4, where the subscript of ε denote the
corresponding parameter (i.e. EStretching, EBending, A0 or V0).

The numerical and theoretical estimations for EStretching, EBending, A0 and V0
parameters agreed well for NDegree ≥ 3, and therefore, the CG-RBC membrane
resolution should be at least NT ≥ 1280 to achieve reasonable accuracy in
numerically predicted results.

Table 4 The absolute percentage error (ε) between numerically and theoretically determined
values for the spherical geometry for 0 ≤ NDegree ≤ 6. Subscript of ε denote the corresponding
parameter in consideration; EStretching, EBending, A0 and V0

NDegree εEStretching
(%) εEBending

(%) εA0 (%) εV0 (%)

0 10.094 23.808 23.808 39.454
1 3.440 6.183 7.166 12.655
2 1.897 0.791 1.882 3.384
3 1.573 0.630 0.477 0.861
4 1.528 0.989 0.120 0.216
5 1.534 1.080 0.030 0.054
6 1.545 1.102 0.008 0.014
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The CG-RBC membrane at NDegree = 4, which is composed of NV = 2562, NT =
5120 and NS = 7680 was selected as the most suitable triangulation for subsequent
studies, since it fulfils the requirements of minimum triangulation quality and
membrane resolution.

2.3 Cytoskeletal Reference State of the CG-RBC Membrane

The stress-free cytoskeletal reference state was assumed to be an ellipsoid [115, 117,
122], having a reduced volume of 0.94 of a sphere having A0, Cyto surface area (νCyto

= 0.94) [106]. A similar approach as in Lim et al. [117] was performed to generate
cytoskeletal reference states and the CG-RBC membrane model was adapted to
represent only the cytoskeletal spectrin network such that the stable minimum
energy state is determined at set reference cytoskeletal surface area (A0, Cyto),
cytoskeletal volume (V0, Cyto) and cytoskeletal reduced volume (νCyto). A0, Cyto was
assumed to be equivalent to that of the RBC (A0) whereas the reference triangular
element surface area of the cytoskeleton (Ak, 0, Cyto) was set at the corresponding
triangular element area at the initial spherical geometry having the radius RRBC.
The presence of EBending, in the form of a stronger bending modulus, weakens the
contribution from shear modulus and leads to an unstressed cytoskeletal state. In
addition, the presence of cytoskeletal shear modulus, though in weaker form, avoids
any numerical inconsistency. Therefore, a significantly higher bending modulus
(κ = 5.010−18Nm) was used at the physiological cytoskeletal shear modulus
(µ0 = 4.0 µNm−1) in order to predict the resultant cytoskeletal equilibrium state.
The constraint coefficients; kA, ka and kV were set to 1 × 10−3 Nm−1, 5 × 10−5

Nm−1 and 100 Nm−2 respectively. The stress-free equilibrium cytoskeletal state
was acknowledged at the minimum free-energy state of the triangulated surface at
the above cytoskeletal reference conditions, and corresponding l0 was extracted at
νCyto. The ellipsoidal stress-free cytoskeletal reference state obtained through the
CG-RBC membrane model is presented in Fig. 5.

Fig. 5 The CG-RBC model predicted cytoskeletal reference state at νCyto = 0.94: (a) Front view,
(b) Top view, and (c) Rotated view of the cytoskeletal reference state
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2.4 Computational Implementation of the CG-RBC Membrane
Model

The equilibrium RBC shape was derived under the set reference conditions, where
the CG-RBC membrane model particles moved over the space in agreement with
Newton’s second law of motion and in progressive iterations such that the minimum
free-energy state is achieved. The time step (�t) for succeeding iteration, and mi

and c in Eq. 20 do not affect the equilibrium RBC shape, though control the speed
of convergence to the equilibrium state and should be suitably set to avoid any
numerical inconsistency. The updated velocity (ṙi) and the position (ri) of the ith
vertex at the time (t + �t) from time (t) is given as:

ṙi (t + Δt) = c ṙi(t) + r̈i (t) Δt (26)

ri (t + Δt) = ri(t) + ṙi (t + Δt) Δt (27)

The iterations were continued until the RBC membrane reached the equilibrium
state, which is the minimum free-energy state of the RBC membrane at given
reference conditions. In the present computational implementation, the equilibrium
cell state was acknowledged and the derivation was terminated when the change
between each analogous energy component (EStretching, EBending, ESurface Area,
EVolume, EArea − difference, ETotal − curvature) at two successive iterations is less than
1 × 10−7 in the order of energy component in consideration.

The initial spherical geometry was generated according to Sect. 2.2 using
MATLAB R2017b, and the source codes for the CG-RBC membrane model was
implemented using FORTRAN 90 programming language based on previous work
done by Polwaththe-Gallage et al. [101] and Barns et al. [88]. The relationship of the
source codes arrangement of the CG-RBC membrane model is presented in Fig. 6.
The CG-RBC membrane model computations were carried out on QUT’s high
performance computing (HPC) resources, and the data analysis and visualization
were performed on Microsoft Excel and MATLAB software applications.

2.5 The CG-RBC Membrane Model Predicted Discocyte
Morphology

2.5.1 The CG-RBC Membrane Model Parameters for Discocyte
Morphology Prediction

The biconcave discocyte morphology was generated initiating from spherical CG-
RBC membrane. The physiological RBC surface area being ∼ 140.0 μm2 [19, 23],
A0 was selected as 140.0 μm2, and therefore, the estimated RRBC = 3.34 μm. μ0
was set at 4.0 μNm−1 and agree with the RBC physiological shear modulus [13,
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Fig. 6 Relationship of the source codes arrangement in the CG-RBC membrane model

62], and the parameters kp, p and lmax were estimated at T = 296.15 K, m = 2 and
x0 = 0.45 [62]. The experimentally estimated RBC membrane bending modulus
lies in the range of 1.0 × 10−19 – 7.0 × 10−19 Nm [13, 95], and therefore, κ was
selected to be 2.5 × 10−19 Nm. The constraint coefficients; kA, ka and kV were set
to 1.0 × 10−3 Nm−1, 5.0 × 10−5 Nm−1 and 100.0 Nm−2 respectively. Ak, 0 was set
at the corresponding triangular element area at cytoskeletal reference state at vCyto

= 0.94. V0 was considered as 93.48 μm3 in agreement with the physiological RBC
volume [19, 23], and is 0.6 of volume of the sphere of radius RRBC. The motion of
RBC membrane vertices to reach the equilibrium state was estimated at c = 1.0 ×
10−7 Nsm−1 and mi = 1.0 × 10−9 kg.



An Improved Coarse-Grained Model to Accurately Predict Red Blood Cell. . . 69

Fig. 7 Evolution of cell shape while reaching the equilibrium discocyte morphology: (a–h)
represent cell shapes at t = 0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2 and 2.0 s respectively

2.5.2 Evolution of Cell Shape, Membrane Free-Energy and Forces During
Discocyte Morphology Prediction

The initial spherical shape progressively reaches the equilibrium discocyte mor-
phology at reference A0, Ak, 0 and V0 constraints. Several instantaneous cell shapes
at intermediate time points while the system reaches the equilibrium discocyte
morphology are presented in Fig. 7. It can be observed that the CG-RBC membrane
gradually reduces its enclosed volume and reaches V0 at A0, achieving the biconcave
discocyte morphology as the minimum energy state.

The RBC membrane initially has very high free-energy due to the energy penalty
from the cell volume constraint as V being much deviated from V0, and therefore, the
forces acting on membrane vertices are considerably high as well. The movement of
CG-RBC membrane vertices are initially governed primarily by the energy penalty
from the cell volume constraint and later by EBending energy component while
satisfying the reference constraint conditions as well.

2.6 Validation of the CG-RBC Membrane Model Through
Predicted Discocyte Morphology

The equilibrium discocyte morphology was compared against experimentally
observed discocyte morphology from SEM imaging, and it can be observed (Fig. 8)
that these discocyte morphologies qualitatively agree well with each other. These
SEM imaging experiments were performed by Dr. M. A. Balanant, a colleague of
the ‘Red blood cell’ research group for her doctoral thesis ‘Experimental studies
of red blood cells during storage’ [129], and the detailed information on SEM
experimental protocol is available at https://doi.org/10.17504/protocols.io.yvhfw36.

http://dx.doi.org/10.17504/protocols.io.yvhfw36
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Fig. 8 Comparison of (a) SEM imaging observed (M.A. Balanant, unpublished data, personal
communication, March 20, 2018), and (b) front view, (c) top view, and (d) rotated views of the
CG-RBC membrane model predicted equilibrium discocyte morphology

In addition to the above qualitative validation, a quantitative analysis was
performed on the predicted discocyte morphology against data extracted from
3D confocal microscopy imaging experiments. 3D confocal microscopy imag-
ing data of a randomly selected discocyte RBC morphology were employed
to generate an identical triangulated surface mesh, and analogous cell surface
area (Aex) and cell volume (Vex) were extracted (Table 5). These 3D confocal
microscopy imaging experiments were also performed by Dr. M. A. Balanant for
her doctoral thesis [129]; refer to the protocol available at https://doi.org/10.17504/
protocols.io.yjyfupw for detailed information of 3D confocal imaging experiments.
The equivalent reduced cell volume (νex) was estimated by:

νex = V ex

Volume of a sphere having equivalent Aex
(28)

Afterwards, the analogous RBC membrane shape was predicted at νex through
the CG-RBC membrane model and resulting cell dimensions were quantitatively
compared against the triangulated surface mesh generated from 3D confocal
imaging. Assuming rigid body conditions, the centre of mass of the whole cell and
its three-principal axes of inertia were determined for each experimentally observed
and numerically predicted cell shapes. H1, H2 and H3 are defined as the distance
between the furthest vertex points on RBC membrane surface along the three-
principal axes of inertia of the cell such that H1 ≤ H2 ≤ H3 (Fig. 9), and used
to estimate the cellular measurements: the normalized cell length (Hx), normalized
cell thickness (Hz) and shape factor (SF). Hx is defined as the ratio between H3 and
the equivalent spherical radius (R∗ ), where R∗ is the radius of the sphere having an
equivalent cell surface area. Similarly, Hz is defined as the ratio between H1 and
R∗ . SF = H1/

√
H2 × H3 [130], and indicates the sphericity of the cell. The cell

becomes more spherical as SF reaches the value 1 and becomes a more flattened
disc as SF reaches 0.

These three cellular measurements; Hx, Hz and SF were used to quantitatively
compare the corresponding experimentally observed and numerically predicted
discocyte RBC morphology. The estimated percentage error values (ε) for Hx, Hz

http://dx.doi.org/10.17504/protocols.io.yjyfupw
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Principal axis of inertia1

(Direction for measurement)

Principal axis of inertia3

(Direction for measurement)

Principal axis of inertia2

(Direction for measurement)

Fig. 9 Measurement of H1, H2 and H3 for a RBC shape. Superscripts 1, 2 and 3 distinguish the
three-principal axes of inertia along which H1, H2 and H3 are measured respectively

and SF between corresponding experimentally observed and numerically predicted
RBC shapes are presented in Table 5. It can be observed that the equilibrium
discocyte morphology obtained through the CG-RBC membrane model agrees well
with the morphology derived from 3D confocal microscopy imaging. For instance,
the experimentally determined RBC thickness is in the range of 2–2.5 μm whereas
RBC diameter is in the range of 6.2–8.2 μm, leading to a maximum percentage
deviation of 29% for SF. Therefore, the values of ε for Hx, Hz and SF are reasonable
and the maximum ε (= 20.995%) is for the SF. The discocyte shape observed
under confocal microscopy imaging not being a completely flattened cell, leads to
a higher Hz value, which also affects SF determination. Therefore, ε for Hz and SF
between experimentally observed and the CG-RBC model predicted discocyte shape
indicates higher values. Furthermore, any experiment error during 3D confocal
microscopy imaging and image analysis can contribute to ε while triangulated
surface generation can also be another contributing factor. Therefore, the resulting ε

is the resultant effect of any experimental errors, any triangulated surface generating
errors and any error in the CG-RBC shape predictions. The maximum ε being
20.995% is acceptable based on all these uncertainties, and therefore, the CG-
RBC model is capable of quantitatively representing equilibrium RBC shape as
well. The present quantitative comparison considered the cellular measurements
corresponding to a single cell only. However, the availability of experimentally
extracted cellular information on multiple discocyte cells can provide average
cellular information for better comparison between experimentally observed and
numerically predicted RBC morphology.

This section detailed the development of the CG-RBC membrane model for
predicting the equilibrium RBC shape for given reference conditions. Then the
deformation behaviour of the CG-RBC membrane model predicted discocyte mor-
phology is investigated in the following section under optical tweezers stretching
conditions.
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3 Deformation Behaviour of Discocyte During Optical
Tweezers Stretching

Cell deformability is a potential criterion to examine the health of a RBC subjected
to morphological, structural and functional changes. Deformability investigations
provide valuable insights into the physiology, cell biology and biorheology under
such pathophysiological conditions. Different techniques have been used to inves-
tigate the RBC deformability in vitro, and descriptions of these techniques can
be found in [4, 23, 30, 31, 62, 63, 72, 74, 75, 79, 84, 88, 94, 95, 101]. Optical
tweezers is one such technique and provides a highly sensitive assessment of the
cell deformability at the single-cell level. With optical tweezers, it is possible to
trap, manipulate and displace a living cell or a part of it without damage, either
directly or using specific handles such as dielectric beads of silica [2, 87, 131–
133]. The RBC membrane is primarily responsible for the cell morphology and its
elastic response during optical tweezers stretching deformation as the intracellular
fluid is purely viscous and has no elasticity [131]. Therefore, the CG-RBC
membrane model was employed to investigate the deformability characteristics
of a discocyte during optical tweezers stretching deformation. Section 3.1 details
the numerical implementation of optical tweezers stretching forces on the RBC,
whereas Sect. 3.2 discusses the validation of the numerically predicted discocyte
deformation behaviour against reported experimental observation.

3.1 Implementation of Optical Tweezers Stretching

The impact of optical tweezers stretching forces on the CG-RBC membrane model
predicted discocyte RBC morphology were numerically investigated. Assuming
rigid body conditions, the centre of mass of the whole cell and its three-principal
axes of inertia were determined for each RBC morphology. The total stretching
force (Fext) was applied on N+ = a NV vertices whereas −Fext is applied on
N− = a NV vertices along the principal axis of inertia3 (Fig. 10) [1, 62]. N+ and
N− are the vertices that locate within the circular region of radius dC/2 on the initial
spherical geometry, and from the two vertices (iXmax and iXmin

) on the furthest ends
of the equilibrium cell shape along the principal axis of inertia3 (Fig. 10). dC is
the contact diameter between the cell membrane and the attached silica beads. The
vertex fraction a corresponds to dC and is given by a = π d2

C/ (4 A0). Therefore,
f ext

i was applied on ith vertex, such that:

f ext
i =

⎧
⎨

⎩−
Fext/N+, i ∈ N+
Fext/N−, i ∈ N−

0, i /∈ (N+ ∪ N−)

(29)
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Principal axis of inertia2

Principal axis of inertia3

(a)

2⁄
+

(b)

−

(c)

Fig. 10 Optical tweezers stretching implementation on discocyte cell: (a) identification of iXmax
and iXmin vertices, (b) identification of N+ vertices, and (c) contact region between RBC membrane
and binding silica beads

Fext was gradually applied on the cell via regular force increments of �Fext

where the cell was provided with sufficient time to converge to the equilibrium
stretched state after each force increment. The equilibrium stretched cell state was
determined at equivalent A0, Ak, 0, and V0 of discocyte at the corresponding Fext.
The resultant force and motion of ith membrane vertex were determined according
to the principle of virtual work (Eq. 19) and Newton’s second law of motion (Eq.
20) respectively. Equivalently, the computational implementation considered Fext as
the applied external force during time integration (Fig. 6), and the equilibrium cell
state was determined.

3.2 Validation of the CG-RBC Membrane Model Predicted
Discocyte Deformation Behaviour

The optical tweezers stretching deformation of the equilibrium discocyte cell was
investigated at equivalent reference conditions and model parameters as in Sect. 2.5.
Analogous to experimental optical tweezers stretching experiments by Suresh et al.
[64], Fext was applied on the cell such that 0 ≤Fext≤ 200.0 pN. dC was approximated
as 2.0 μm [1, 2, 62, 64, 123], and accordingly Fext was applied on a = 0.02
membrane vertices in regular increments of �Fext = 10.0 pN. The evolution of
axial diameter (DA) (measured along the principal axis of inertia3) and transverse
diameter (DT ) (measured along the principal axis of inertia2) of the equilibrium
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Fig. 11 Measurement of axial (DA) and transverse (DT ) diameters of a RBC at equilibrium cell
stretched state
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Fig. 12 Comparison between the CG-RBC membrane model predicted deformation behaviour
at kAD = 7.5 × 10−17 Nm and kAD = 7.5 × 10−18 Nm, versus experimentally observed [64]
deformation behaviour of discocyte cell undergoing optical tweezers stretching. The curves in the
top represent the evolution of axial diameter (DA) whereas the curves in the bottom represent the
evolution of transverse diameter (DT )

stretched cell state at Fext, were then compared against experimental observations
by Suresh et al. [64]. Refer to Fig. 11 for a graphical representation of DA and DT .

It was observed (Fig. 12) that the deformation behaviour of the discocyte
agrees very well with the analogous experimental observations. The maximum
deviation (εOTS) between numerically predicted and experimentally observed DA

is only 4.78%. The disagreement in the DT may be partially due to experimental
errors arising from the fact that the optical tweezers stretching measurements have
been performed from a single observation angle [62, 63]. A RBC undergoing
stretching may rotate on the plane perpendicular to the initial principal axis of
inertia3, and therefore, measurements from a single observation angle may lead
to deviations from actual DT . The numerically estimated DT was measured along
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the principal axis of inertia2 of the equilibrium cell stretched state, and therefore,
gives improved accuracy. Therefore, the CG-RBC membrane model is capable of
accurately representing the morphology characteristics of a RBC.

This section demonstrated the potential of the CG-RBC membrane model to
accurately capture the deformation characteristics of a healthy discocyte RBC under
optical tweezers stretching conditions. The numerical approach produces agree-
able discocyte deformation behaviour with comparison to analogous experimental
observations and facilitates successful predictions on deformation characteristics of
different RBC morphologies under variety of mechanical deformation conditions.
Following section presents the concluding remarks of this chapter.

4 Summary and Conclusions

This chapter detailed the development of the CG-RBC membrane model; an
improved CG model to accurately and efficiently predict RBC morphology and
deformability for given reference conditions. RBC properties such as cell mor-
phology, deformability, cell surface area and volume are affected by several
diseased [13] and morphology transformation conditions [14, 52]. Therefore, a
numerical model that accurately and efficiently predicts RBC characteristics at
given reference conditions facilitates better diagnostics and treatments. Following
concluding remarks can be drawn from this chapter.

The RBC membrane can successfully be represented as a network of CG
particles, and the equilibrium RBC state can be achieved through numerically
minimizing the membrane free-energy for given reference conditions. The free-
energy of the CG-RBC membrane model consists of the in-plane stretching energy
(EStretching), out-of-plane bending energy (EBending) and the energy penalty to
maintain reference cell surface area (ESurface − area) and cell volume (EVolume). The
numerical implementation successfully predicts the equilibrium state of a healthy
biconcave discocyte cell, which qualitatively and quantitatively agrees well with
analogous experimental observations. In addition to the usual qualitative validation,
a quantitative analysis was performed to improve the accuracy of the numerically
predicted equilibrium RBC state against analogous experimental observations.
In addition, the numerical approach produces agreeable discocyte deformation
behaviour with comparison to analogous experimental observations. Therefore,
the CG-RBC membrane model represents an improved RBC membrane model to
accurately and efficiently predict the discocyte morphology and deformability of a
healthy RBC.

This study facilitates comprehensive knowledge of morphological and
deformability characteristics of RBCs under several shape-transforming conditions.
Geekiyanage et al. [106] discuss the application of the CG-RBC membrane
model to accurately represent the complete sequence of RBC morphologies and
their deformability associated with the echinocytogenic and stomatocytogenic
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shape-transforming environments. However, there are some limitations associated
with the CG-RBC membrane model that need to be clarified. The quantitative
validation of the CG-RBC model predicted discocyte morphology is performed
against experimental observations of a single RBC. However, the availability of
cellular information on multiple RBCs can provide average cellular information for
more accurate numerical predictions. In addition, there is insufficient information
on cytoskeletal reference state. The stress-free cytoskeletal reference state is a
controversial subject, and this study assumes an ellipsoidal cytoskeletal reference
state having a reduced volume of 0.94 of a sphere with equivalent cell surface area,
which has been validated in Geekiyanage et al. [106]. However, these investigations
were based on the assumptions that the cytoskeletal surface area is equivalent
to that of the RBC and is at no pre-stressed condition. It was observed that the
numerically predicted morphological and deformability characteristics are affected
by the choice of cytoskeletal reference state [103, 106, 117], and therefore, improved
understanding on the exact cytoskeletal reference state is required. The CG-RBC
membrane model represents the composite RBC membrane and does not explicitly
model the cytoplasmic or extracellular fluid components. The dynamics of the RBC
while reaching the equilibrium cell state at given reference conditions and during
mechanical deformations are influenced by the cytoplasmic and environmental
factors. Therefore, the presence of fluid components is required to accurately
capture the associated contribution on RBC morphological and deformability
characteristics.

However, the CG-RBC membrane model is an improved and general numerical
approach to investigate the biomechanics of the RBC membrane with respect to
its morphological and deformability changes. Several future research directions
that can be built on the findings of the present study are as follows. The present
numerical framework can be applied to investigate the deformation characteristics
of RBCs having different morphologies subjected to varied mechanical defor-
mation scenarios (e.g. during the passage through microfluidics and the in vivo
microcirculation, micropipette aspiration, and AFM indentation). These studies
can facilitate improved understanding on RBC biomechanics with respect to
its morphology under varying loading configurations. The CG-RBC membrane
model can be easily refined to represent the detailed RBC membrane structure
including its heterogeneity and any structural defects, and interactions between the
bilayer-leaflets and the cytoskeleton for improved morphology predictions that are
associated with the cell age, diseased conditions, and extracellular environmental
conditions. Introduction of the membrane structural remodelling can facilitate the
successful predictions of the RBC membrane vesiculation observed at the higher
strength of above shape-transforming conditions, splenic sequestration of less
deformable RBCs, and several hereditary haemolytic disorders (e.g. spherocytosis,
elliptocytosis and ovalocytosis) for better diagnostics and treatments. Different
haemolytic disorders affect the RBC geometry and cellular properties distinctively.
For example, the cytoskeleton detaches from the lipid bilayer due to the defects
in ankyrin, protein 4.2 or band-3 proteins in HS [13]. The cell biomechanical
properties are affected by the Plasmodium parasite in malaria infected RBCs [13]. In
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addition, sickle-cell anaemia is caused by the intracellular HbS polymerization due
to a single point mutation in haemoglobin causing RBC sickling [13]. Therefore,
pre-diagnostics can help identify the most sensitive CG-RBC model parameters
for a comprehensive study of RBC mechanics and hemodynamic characteristics
under these pathophysiological conditions for better diagnostics and treatments. For
example, the cytoskeletal defects under HE diseased condition can be incorporated
into the CG-RBC membrane model by setting the equilibrium length of the
spectrin links individually, whereas the disruption of vertical connections between
lipid-bilayer and cytoskeletal actin junctions is incorporated into the model by
cancelling the in-plane shear deformation for the spectrin links attached to these
actin junctions. The loss of membrane surface in HS is possible to be introduced
to the model by appropriate adjustments to reduced cell volume. However, the
cytoskeleton is under compression as it is attached to a lipid-bilayer having a lower
surface area than a healthy cell. Therefore, the cytoskeletal reference state would
need adjustments to discuss HS cell behaviour through the CG-RBC membrane
model. Therefore, this study facilitates many investigations into RBC morphology
and deformability under diverse shape-transforming scenarios, in vitro RBC storage,
microvascular circulation and flow through microfluidic devices.
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Development of a Computational
Modelling Platform for Patient-specific
Treatment of Osteoporosis

Madge Martin, Vittorio Sansalone, and Peter Pivonka

Abstract Osteoporosis (OP) is considered as a major health burden worldwide. OP
drug treatments aim at reducing the augmented risk of bone fracture caused by OP-
induced loss of bone mass and increased bone matrix brittleness. The development
of bone biomarkers over the past decades improved the understanding of the
pathophysiology of OP, providing indicators of bone formation and resorption on a
short time scale. Biomarkers can therefore be used to characterize bone remodeling
and to quantify drug efficacy in OP. Recently, mechanistic pharmacokinetic-
pharmacodynamic (PK-PD) models have been developed to quantitatively charac-
terize drug effects on OP disease progression. These frameworks aim at accurately
describing the mechanobiology of bone remodeling which then creates the neces-
sary biochemical and mechanical interface for drug and exercise interventions. This
chapter will present a recently-developed multiscale computational model which
includes mechanobiological description of bone remodeling together with osteocyte
feedback to study the effects of a virtual anti-sclerostin therapy on bone remodeling
and changes in bone biomarkers. Mechanistic PK-PD models of OP treatment have
great potential to quantitatively predict the long-term effects of drugs on clinical
outcomes and allow patient-specific estimation of bone gain, in particular via the
integration of multiple treatment options and bone mineralization.
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1 Introduction

Osteoporosis (OP) is characterised by fractures of spine, hip and wrist as primary
clinical manifestations. It is a major health problem in society when considering
prevalence, lifetime risk and socio-economical impact [21]. OP is also referred
to as silent disease due to the fact that the disease is commonly diagnosed only
after fractures occur. Understanding the origin of the disease and to find effective
treatments is paramount for addressing this health issue [4]. New drugs are
continually being developed and tested on animals, only the most promising ones
are then tested on humans in the course of clinical trials. Drug efficacy and safety
are usually assessed using biomarkers. Important biomarkers include bone mineral
density (BMD) and bone turnover markers (BTMs). While the former provide
insight into bone matrix properties, the latter allow to assess the activity of bone
cells in the entire body by measuring bone molecular product concentrations in
blood and/or urine.

Traditionally, pharmacokinetic-pharmacodynamic (PK-PD) modeling is used to
characterise the time course of a drug effect with the primary objective of optimising
the dosing regimen and the delivery profile. Over the past decade, PK-PD models
have also been applied in the drug development process [7]. It is well known that
conventional PK-PD models are descriptive, empirical and driven by large amount
of data. Consequently, these models are unable to predict clinical responses beyond
the data which they are based on. To overcome these limitations, more sophisticated
models have been developed which take into account the underlying mechanisms of
a pathology and the action of the drug, with the aim of characterising the biological
processes between the drug administration and the drug effect. The latter models are
referred to as mechanistic PK-PD models and rely on biomarker data and on model
parameters [42, 43, 49].

As reviewed previously [54], the first model of bone remodeling coupling
biochemical mechanisms was proposed by Lemaire and co-authors [25] and
successively refined by Pivonka and co-workers [40, 41]. Both of these models –
referred to as bone cell population models (BCPM) – take into account the major
bone cell types involved in the remodeling, together with the significant regulatory
factors. The major conceptual breakthrough with respect to mechanobiology of bone
was achieved by Pivonka et al. to develop an evolution equation for the bone volume
fraction (BV/TV) which is proportional to active osteoclast and osteoblast numbers.
The latter formulation paved the way for mechanobiological extensions of the model
[17, 27, 36, 39, 47]. Note that the majority of models of bone remodeling and
adaptation are driven exclusively by mechanical quantities with no consideration of
underlying bone-cellular activities. In this context, a major advantage of mechanistic
models is to provide a translation towards bone biology and clinical bone research.

Note that both the model from Lemaire et al. and the original model from
Pivonka et al. do not incorporate the concept of Frost’s mechanostat [12], i.e.,
they lack inclusion of a mechanobiological feedback mechanism. According to
the mechanostat, bone overloading leads to increased bone formation responses,
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whereas bone disuse leads to increased bone resorption responses. This feedback
warrants that, after sufficient time, bone reaches a new equilibrium state. Given
the importance of mechanobiological feedback in (re)-modeling, Pivonka and co-
workers combined the bone cell population model with a micromechanical model
of bone stiffness including the mechanostat concept [39, 47]. This mechanistic
BCPM uses the strain energy density (SED) induced in the bone matrix as a
feedback variable to control the bone formation and resorption response. The latter
model was extended in several ways: (i) use of osteocyte lacunar pressure as
mechanobiological feedback quantity [36] and (ii) translating SED into biochemical
signalling molecules including nitric oxide and sclerostin concentration [27]. These
mechanistic models of bone remodeling can further be used in combination with
drug treatments to investigate drug efficacy. The following mechanistic PK-PD
models have been developed: treatment of PMO with denosumab [28, 48] and
treatment of an OVX rat model with PTH [55]. Moreover, Hambli et al. recently
proposed a numerical finite-element study of the effects of denosumab on bone
density and recovered local BMD changes in the femur observed in a human
cohort [15].

The objective of this chapter is to introduce a recently developed mechanistic
pharmacokinetic-pharmacodynamic (PK-PD) model of disease progression and
therapeutic intervention in osteoporosis (OP) [27]. Key features of this model
are: (i) bone cells concentrations (osteocytes, active osteoblasts, active osteoclasts
and their precursor cells), (ii) cell-cell signalling pathways (RANK-RANKL-OPG
pathway) and Wnt pathway, (iii) major regulatory molecules including parathyroid
hormone (PTH), transforming growth factor β (TGF-β) and sclerostin (Scl), (iv)
mechanobiological feedback, i.e., strain energy density in the bone matrix is sensed
by osteoctyes to produce nitric oxide (NO) and sclerostin (Scl). This model is
used to investigate postmenopausal osteoporosis (PMO) and its treatment with
an anabolic drug targeting sclerostin. As a first approximation the drug action is
simulated as a constant sink term in the sclerostin evolution equation. Finally,
we will provide an outlook on how to extend current mechanistic models of
bone remodeling in a modular fashion with the aim to continuously include new
regulatory pathways and drug actions.

2 Methods

In this section, we present a mechanistic model of bone remodelling and its
application towards the anabolic treatment of osteoporosis with sclerostin antibody
drug treatment.
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2.1 Mechanistic Tissue-Scale Model of Bone Remodeling

In the following, a description of a mechanobiological computational model of bone
cell interactions in bone remodeling is provided. This model takes into account
catabolic and anabolic signaling pathways including the RANK-RANKL-OPG
pathway and the Wnt-Scl-LRP5/6 signaling pathway together with the action of
PTH, NO, and TGF-β on bone cells as presented by Martin et al. [27]. In particular,
in this mechanistic framework, one can account for the role of mechanical loading
on bone cells turnover and ligands expression.

In particular, Martin et al. proposed a model focusing on two regulatory
molecules produced by osteocytes which affect bone remodeling: nitric oxide and
sclerostin. On the one hand, osteocytes produce high levels of nitric oxide (NO)
in response to mechanical loading both in vitro and in vivo [60]. Mechanical
strain stimulates NO production via the upregulation of eNOS mRNA and protein
which decreases the RANKL/OPG ratio, and therefore the catabolic action of the
RANK-RANKL-OPG pathway [10, 45]. On the other hand, sclerostin is a major
potent mechanosensory signal inhibiting the anabolic Wnt pathway. In particular,
osteocytes’ sclerostin expression increases with reduced loading (mouse hindlimb
unloading [46], simulated micro-gravity on osteocyte cell lines [50] or human bed
rest [13]).

These mechanically-regulated processes control bone remodeling by stimulating
or inhibiting ligand-binding reactions. The interactions of the aforementioned
pathways are schematically illustrated in Fig. 1:

Fig. 1 Overview of the biochemical mechanostat feedback. (Adapted from Martin et al. [27])
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(a) The receptor RANK is expressed on osteoclast precursor cells. RANKL, a
membrane bound ligand, is expressed by osteoblast precursor cells, while OPG
is produced by active osteoblasts.

(b) Action of TGF-β on bone cells is taken into account as previously described
[25, 40]: TGF-β increases osteoblast precursor cells concentration (Obp) by
up-regulating differentiation of uncommitted osteoblasts and down-regulating
the differentiation of osteoblast precursor cells. The action of TGF-β exerted
on osteoclasts is to up-regulate apoptosis of active osteoclasts

(c) Co-regulation of RANKL (expressed on osteoblast precursor cells) by NO,
which is produced by osteocytes responding to changes in mechanical loading.

(d) Wnt signaling, activated through β-catenin, is an anabolic pathway promoting
osteoblasts proliferation and bone formation. Extracellular Wnt ligands (pro-
duced by bone marrow stromal cells) bind to Frizzled receptor proteins and
lipoprotein receptor-related proteins (LRP5/6), triggering intracellular activa-
tion of β-catenin. Sclerostin modulates the signaling pathway by interacting
with LRP5/6 receptors, therefore preventing the formation of a Wnt-Frizzled-
LRP5/6 complex.

(e) Osteocytes embedded in the bone matrix respond to mechanical loading which
is interpreted via the mechanical stimulus �bm, modifying their biochemical
signalling.

The bone cell types (i.e., state variables) considered in this model are: (i)
osteoblast precursor cells (Obp), (ii) active osteoblasts (Oba), (iii) osteocytes
(Ot), and (iv) active osteoclasts (Oca). Figure 1 displays an overview of the cell
populations included in the model. The cell pools of uncommitted osteoblasts (Obu)
and osteoclast precursors (Ocp) are assumed to be much larger than the other cell
pools and thus are not included explicitly into the model (Fig. 1).

Using the above described regulatory mechanisms, the mechanobiological model
of bone remodeling can be formulated as cell balance equations describing in- and
outflow of cells of the respective cell pools:

dObp

dt
= DObu

Obuπ
TGF−β

act,Obu
+ PObp

ObpπWnt
act,Obp

− DObp
Obpπ

TGF−β

rep,Obp
(1)

dOba

dt
= DObp

Obpπ
TGF−β

rep,Obp
− �Oba

Oba (2)

dOca

dt
= DOcp

OcpπRANK
act,Ocp

− AOca
Ocaπ

TGF−β

act,Oca
(3)

dOt
dt

= η
dfbm

dt
(4)

where DObu
, DObp

, DOcp
are differentiation rates of uncommitted osteoblast

progenitor cells and osteoblast/osteoclast precursor cells, respectively. PObp
denotes

the proliferation rate of osteoblast precursor cells, �Oba
is the rate of clearance of
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active osteoblasts through apoptosis or differentiation and AOca
is the apoptosis

rate of active osteoclasts. Equation (4) indicates that we assume that the change in
osteocyte population is proportional to the change in bone matrix fraction dfbm

dt
. The

factor η indicates the average concentration of osteocytes embedded in the bone
matrix In the previous set of equations (1)–(4), the populations are accounted as
concentrations (numerical values in pM, as in Table 2) in the RVE. In the following,
all concentrations of regulatory factors and cell numbers are evaluated with respect
to the RVE.

Similar to previous model formulations, we assume that the change in bone
matrix fraction (fbm) depends on the number of active osteoclasts and osteoblasts
(Eq. (5)) and their respective bone resorption and formation rates [38, 40, 47]:

dfbm

dt
= −kresOca + kformOba, (5)

where kres and kform are respectively the rates of bone resorption and formation (see
Table 3 in Appendix).

Furthermore, differentiation, proliferation, and apoptosis are regulated by several
‘activator’ (πY

act,X) and ‘repressor’ functions (πY
rep,X), i.e., functions which promote

or inhibit differentiation, proliferation or apoptosis of cells, as well as ligand
production. These regulating functions are Hill functions reflecting the binding of
ligands to receptors. Their mathematical definition is described in the Appendix.

2.2 Osteocyte-Driven Mechanical Feedback

As presented earlier, osteocytes biochemical signalling regulates bone remodeling.
Meanwhile, this phenomenon is controlled by the mechanical environment of
osteocytes, which, in turn, is affected by bone remodeling. We make the assumption
here that osteocytes biochemical signalling is driven by the mechanical stimulus
�bm, which is defined as the strain energy density in the bone matrix as per Scheiner
et al. [47]. The mechanical stimulus �bm is calculated using a micro-mechanics
framework and the Mori-Tanaka method based on Eshelby’s classical matrix-
inclusion problem [31]. This definition implies a dependency of the mechanical
stimulus on bone’s microstructure and macroscopic porosity.

This subsection develops the mathematical quantification of osteocytes biochem-
ical response to mechanical stimuli in terms of Scl and NO production, and how
these ligands then affect bone remodeling via the Wnt and RANK-RANKL-OPG
pathways, respectively.
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2.2.1 Modelling the Mechanical Feedback: Modulation of Osteocytes
Biochemical Response

We present here the mechanostat feedback from the osteocytes, based on a
setpoint strain energy criterion. Osteocytes mechanosensitivity is represented via
the definition of functions regulating the production of Scl and NO by osteocytes to
account for the influence of mechanical loading on osteocytes ligand production.
In turn, these functions regulate the Wnt and RANKL signaling pathways. We
introduce mechanically-controlled regulating functions embracing the whole range
of stimuli:

• Up-regulation of osteocytes’ nitric oxide production by the mechanical stimulus
�bm: π

�bm
act,NO;

• Down-regulation of osteocytes’ sclerostin production by the mechanical stimulus
�bm: π

�bm
rep,Scl.

The feedback activator function π
�bm
act,NO takes the mechanical stimulus (strain

energy density in the bone matrix �bm) as an input and drives the osteocytes’
NO production. In the same manner, π

�bm
rep,Scl represents the influence of the value

of the strain energy density on osteocytes’ sclerostin production. Both actions are
represented via sigmoidal Hill functions as suggested by Peterson et al. [37]:

π
�bm
act,NO = ρact + (αact − ρact)�bm

γact

δ
γact
act + �bm

γact
, (6)

π
�bm
rep,Scl = ρrep + (αrep − ρrep)�bm

γrep

δ
γrep
rep + �bm

γrep
, (7)

where ρ∼,α∼,γ∼,δ∼, are respectively the minimum anticipated response, the max-
imum anticipated response, the sigmoidicity term influencing the steepness of the
response, and the value of the stimulus that produces the half-maximal response
[37]. The values of the parameters defining the activator and repressor mechanical
functions can be found in Table 1.

Table 1 Parameters of the
mechanical regulation, as per
Martin et al. [27]

Symbol Value Unit

ρact 0.000 –

ρrep 0.000 –

αact 1.000 –

αrep 1.000 –

γact 7 –

γrep 9 –

δact 4.368 10−6 –

δrep 9.226 10−6 –
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2.2.2 Modelling the Action of Sclerostin on Bone Remodeling

As described in Sect. 2.1, Wnt signaling is an anabolic pathway promoting
osteoblasts proliferation and bone formation. Sclerostin inhibits the Wnt pathway
by binding with osteoblastic LRP5/6 receptors. In the present study, we simplify the
dynamics and assume that Scl and Wnt bind directly to LRP5/6 (Fig. 1d). Utilizing
this receptor-ligand binding model, Wnt signaling can be quantified by the receptor
occupancy πWnt

act,Obp
, defined as the ratio between Wnt−LRP5/6 complexes and the

total concentration of LRP5/6 receptors [LRP5/6]tot, including the ones binding to
sclerostin:

πWnt
act,Obp

= [Wnt − LRP5/6]
[LRP5/6]tot

, (8)

where

[LRP5/6]tot = [LRP5/6] + [Wnt − LRP5/6] + [Scl − LRP5/6]. (9)

[LRP5/6] is the concentration of free LRP5/6 receptors, whereas [Wnt −
LRP5/6] and [Scl−LRP5/6] are respectively the concentration of Wnt−LRP5/6
and Scl − LRP5/6 complexes expressed on osteoblast precursors.

Using the steady-state assumption, the total concentration of receptors
[LRP5/6]tot can also be expressed as the sum of free and bound receptors as
follows:

[LRP5/6]tot = [LRP5/6]
(

1 + [Wnt]
K

Wnt−LRP5/6
D

+ [Scl]
K

Scl−LRP5/6
D

)
, (10)

where K
Wnt−LRP5/6
D and K

Scl−LRP5/6
D are the dissociation constants of the Wnt-

LRP5/6 and Scl-LRP5/6 complexes, respectively.
Additionally, given that we assume that the binding reactions are much faster than

the processes they regulate (steady-state assumption), there is a balance between the
production and degradation of LRP5/6 (see Eq. (20) expressing the balance between
ligand production and degradation in Appendix). This balance equation leads to the
expression of free LRP5/6 levels as a function of LRP5/6 complexes concentrations
and sclerostin levels (see Martin et al. [27] for extensive mathematical develop-
ments).

We assume that the concentration [Wnt] of available Wnt proteins stays constant,
given as a basal concentration of free Wnt proteins in the medium. This assumption
is based on the assumption that the degradation of the complex Wnt-LRP5/6 is
negligible and on the fact that bone marrow mesenchymal stem cells (uncommitted
osteoblasts Obu) are producing Wnt, while the latter population is assumed constant
in our model. Additionally, the total number of LRP5/6 receptors per osteoblast
precursor cell N

LRP5/6
Obp

is assumed to be constant.



Development of a Computational Modelling Platform for Patient-specific. . . 93

The sclerostin balance (as per the general balance equation (Eq. (20))) is a
function of the local sclerostin production by osteocytes which is regulated via the
mechanical repressor function π

�bm
rep,Scl, as follows:

PScl,b + PScl,d = D̃Scl[Scl] + D̃Scl−LRP5/6[Scl − LRP5/6] (11)

PScl,b = βScl,Otπ
�bm
rep,Scl[Ot]

(
1 − [Scl]

[Scl]max

)
(12)

where PScl,d is an external sclerostin dosage term, which is set to zero throughout
the rest of this paper, PScl,b the sclerostin body production and D̃X the degradation
rate of X. The set of equations (11, 12) gives the current sclerostin concentration.

Finally, the concentration of Scl obtained from the previous equations (Eqs. (11,
12)) regulates the Wnt binding to LRP5/6 (Eqs. (9, 10)), therefore driving the
osteoblast precursors proliferation.

2.2.3 Modelling the Action of Nitric Oxide on Bone Remodeling

The action of nitric oxide on bone remodeling is accounted for via its regulation of
the RANK-RANKL-OPG pathway. RANKL transcription is both up-regulated by
PTH and inhibited by NO. These antagonistic influences were merged into a co-
regulatory function π

PTH,NO
act/rep,RANKL capturing both effects. The competition between

the two actions is accounted for by the definition of the co-regulatory function
as a weighted sum of the total of the activator and repressor actions and a term
accounting for the combined influence:

π
PTH,NO
act/rep,RANKL =λs

(
πPTH

act,RANKL+πNO
rep,RANKL

)
+λc πPTH

act,RANKLπNO
rep,RANKL, (13)

where λs = 0.4505 and λc = 0.9009 are constants respectively describing single
and combined influences of respective activator/repressor functions, as per Martin
et al. [27]. Note that, unlike the classical Hill functions, this competitive regulatory
function π

PTH,NO
act/rep,RANKL can take values higher than 1 (πPTH,NO

act/rep,RANKL ∈ [0, 1.35]).

2.2.4 Closing the Feedback Loop of the Bone Remodeling ‘mechanostat’

Using the above functions, the mechanobiological feedback loop is complete:
osteocytes sense the mechanical stimulus, leading to a change in ligand production,
namely Scl and NO. The latter factors act on different cells in the bone multicellular
units (BMU), therefore changing the BMU remodeling response which then modi-
fies bone matrix fraction. The change in material properties directly influences the
mechanical stimulus �bm via the micro-mechanical representation.
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2.3 Integrating Post-menopausal Osteoporosis
Pathophysiology into a Mechanistic Framework of Bone
Remodeling

In previous studies, increased RANKL/OPG ratios have been reported in post-
menopausal osteoporotic patients [19, 26, 29], which might be resulting from the
decreasing levels of estrogen which stimulates both osteoclast proliferation and
activity [26]. Hence, we simulate here post-menopausal osteoporosis by means of
an external injection of RANKL via an external production term in the RANKL
balance (Eq. (20)): PRANKL,d = 2.000 pM.day−1.

Furthermore, studies have shown an increase of serum sclerostin in post-
menopausal subjects [3, 20], while sclerostin expression (local mRNA levels) was
found to decrease in animal models of menopause [20]. This discrepancy between
the serum levels and the local expression of sclerostin is acknowledged by assuming
an exponential decay of the degradation rate of sclerostin: D̃Scl(t = tmenop + τ) =
D̃Scl,PMO(τ ), where D̃Scl,PMO is the function defined as follows:

D̃Scl,PMO(τ ) = D̃0
Scl exp(− τ

τPMO

), (14)

where τPMO = 20 yrs is the characteristic time of the decay.

2.4 Modelling Osteoporosis Treatment with Anti-sclerostin
Antibody Therapy: From Drug Pharmacokinetics to
the Quantification of Bone Remodeling

As described earlier, osteocytes produce sclerostin, and the latter binds to low-
density lipoprotein receptor-related protein (LRP), therefore inhibiting Wnt signal-
ing and the anabolic β-catenin pathway [5]. Therefore, sclerostin levels are directly
connected to bone turnover and are negatively correlated to bone formation.

In the past decade, several studies assessed the influence of sclerostin monoclonal
antibody, inhibiting sclerostin regulation of bone formation. Warmington and
collaborators led in 2004 the first research testing the therapeutic potential of
sclerostin neutralizing antibodies [56]. They found that a sclerostin monoclonal
antibody mediated blockade led to a significant BMD increase in adult mice and rats,
including up to 64% in tibial metaphysis trabecular bone. Since then, various studies
investigated the administration of a sclerostin monoclonal antibody as a means to
counter osteoporosis-induced bone loss [22, 35] or promote bone fracture healing
[22, 23].

A novel anabolic treatment for osteoporosis has been developed in the recent
years which is based on an anti-sclerostin antibody commercialized under the name
Evenity® [2]. This drug treatment is approved for marketing in Japan, South Korea,
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US and Canada, and recently in EU. Evenity® treatment relies on a humanized
anti-sclerostin antibody, called romosozumab. While the antibody injections have a
short-term significantly positive impact on bone mass [30, 34], the influence of the
treatment on bone mass and turnover markers [51, 59] as well as its interaction with
other pathways [53] are not fully understood.

Pharmacokinetic (PK) models help understand how drugs interact with the bio-
logical systems, in particular in the case of monoclonal antibodies [6, 8]. These
models can be used to study drug pharmacodynamics (PD), which gives insights on
the biochemical, physiological and molecular effects of drugs on the body. Studying
sclerostin antibody pharmacokinetics and pharmacodynamics has the potential to
shed light on the dynamics of bone resorption and formation during a treatment (see
Eudy et al.’s study on romosozumab [9] and Tang et al. on blosozumab [52]).

Pharmacokinetic modelling involves the choice of model compartments. Gene-
rally, the central compartment refers to the compartment where the drug binds to
the target (e.g., antibody binding to the ligand in the serum). The addition of a depot
accounts for a time-delay between drug administration and the absorption of the
drug into the central compartment, for example to account for the injection mode:
intravenous injections introduce the drug directly into the central compartment,
whereas drugs injected subcutaneously are continuously absorbed into the serum
[9, 48]. The addition of supplementary compartments can account for large time
delays (lymph compartment), or for processes that occur in select sites after the
binding process in the central compartment. For instance, in the context of anti-
sclerostin drug treatment, Eudy et al. chose to integrate a peripheral compartment in
their PK model of romosozumab [9], implying a slower distribution in bone tissue
than in the central compartment.

The definition of the PK model allows one to follow drug levels in the model
compartment(s). The drug concentration is obtained as a function of time depending
on dosage and treatment interval. In two-compartment models, the tissue and central
compartments are separate and the evolution of drug concentration depends on the
current target concentration, while, in one-compartment models, the current target
concentration does not affect drug kinetics. In the context of romosozumab phar-
macokinetics, the drug enters the sclerostin balance as another binding molecule.
Therefore, Eq. (11) becomes:

PScl,b+PScl,d=
D̃Scl[Scl]+D̃Scl−LRP5/6[Scl −LRP5/6]+D̃Scl−Rom[Scl − Rom], (15)

where Rom is the concentration of romosozumab.
As a result, pharmacokinetics can be linked to bone remodelling via the

biochemical regulation of bone multicellular units.
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3 Results

In this section, we illustrate the ability of a mechanistic representation of bone
remodeling to estimate bone cells dynamics and bone turnover in the context of
osteoporosis, and in particular in the case of an anti-sclerostin anabolic treatment
with romosozumab.

3.1 Osteocytes Anabolic and Catabolic Responses
to Mechanical Stimuli

As explained in Sect. 2.2, where the Scl and NO regulatory functions have been
introduced, mechanobiological regulations via biochemical feedback are C1 conti-
nuous functions depending on �bm, which may differ from the homeostatic stimulus
�̆bm, depending on bone tissue properties and loading conditions.

3.1.1 Influence of Mechanically-Controlled Signalling Pathways in PMO

We investigated the contribution of different signaling pathways involved in
mechanobiological feedback on changes of the trabecular bone matrix fraction
(fbm) (Fig. 2). For this purpose, we activated/inactivated the NO production term
and/or the Wnt activator function. For instance, in order to disable the NO pathway,
we artificially kept the osteocyte NO production rate constant (no regulation:
∀t, π

�bm
act,NO(�bm(t)) = π

�bm
act,NO(�̆bm)), corresponding to the initial homeostatic

state. This allowed to visualize what part the catabolic NO regulation played in
the remodeling. In the same way, we were able to disable the Scl pathway by
maintaining the regulatory function π

�bm
rep,Scl constant, in order to analyze the role

of Wnt signaling in the mechanobiological feedback. This strategy was applied to
a simulation of post-menopausal osteoporosis and the quantification of bone loss
in the forearm (Fig. 2a). Initial values of the simulation correspond to steady-state
values, which are displayed in Table 2.

In Fig. 2a, the thin solid line represents the absence of mechanical feedback,
i.e., no model response to changes in mechanical loading. The thick solid line
represents both the anabolic and catabolic pathways active in the bone remodeling
model, which corresponds to the complete model. The dash-dotted and dashed lines
respectively represent the cases where the Wnt/Scl-pathway feedback and the NO-
pathway feedback are disabled, respectively.

One may note that the impact of NO production on the overall bone response due
to osteoporosis is small, which indicates that the catabolic feedback is secondary in
the mechanostat feedback in an osteoporotic state. On the other hand, when setting
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Fig. 2 Influence of active/inactive signaling pathways regulating mechanobiological feedback in
remodeling response: simulation of (a) post-menopausal osteoporosis (PMO) and (b) decrease in
osteocytes numbers

Table 2 Steady-state values
of bone cell concentrations
and tissue-scale stress σ for
bone remodeling simulations
at the forearm, as per Martin
et al. [27]

Symbol Value Unit

Ob0
a 8.939 10−4 pM

Ob0
p 1.129 10−3 pM

Ob0
u 1.000 10−2 pM

Oc0
a 1.788 10−5 pM

Oc0
p 5.592 10−3 pM

σFA −3.350 MPa

the sclerostin expression to a constant value, bone loss increases significantly,
meaning that the mechanical feedback is weaker. This suggests that osteocyte
sclerostin production drives the anabolic feedback response, while NO only has a
minor contribution.
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3.1.2 Influence of Osteocytes Density on Bone Mechanobiological
Feedback: The Example of Glucocorticoid-Induced Osteoporosis

One can also investigate the regulating role of osteocytes by studying the influence
of a decrease in osteocytes concentration in the bone matrix. Such a phenomenon
can be triggered by increased osteocytes apoptosis with glucocorticoid treatment
[58]. To this end, we simulate the evolution of osteocytes concentration as follows:

ηt (t ≥ 0) = 0.9η. (16)

Figure 2b depicts the influence of a depletion of osteocyte numbers on bone
matrix fraction. As expected, we find that the reduction of osteocyte density induces
an increase in porosity, which is consistent with experimental observations of
glucocorticoid-induced osteoporosis [57]. In fact, we observe that an increased
turnover tends to decrease bone matrix fraction. In our simulation, glucocorticoid
treatment leads to a reduced inhibition of both the Wnt and the RANKL pathway
and therefore an increase of the turnover. In other words, glucocorticoid treatment
decreases osteocytes’ ligand production (Scl and NO), which results in an increase
in the bone forming and bone resorbing cell populations. Note that the increase of
the RANKL/OPG ratio was observed experimentally by Hofbauer et al. [18], which
results in an augmentation of osteoclastogenesis.

3.2 Modelling Osteoporosis-Induced Bone Loss at Different
Bone Sites

We compared our model of post-menopausal osteoporosis to several existing
longitudinal studies in human at different bone sites [1, 11, 14, 16, 33, 44]. Note
that each bone site is characterized by a different value of the bone matrix fraction
fbm, and therefore a specific value of the habitual stress σss.

While acknowledging that the experimental measurements of BMD do not reflect
the exact evolution of the bone matrix fraction, we assume here that they are close
enough for us to compare their trend to our simulations.

The values of the stresses in Table 2 relate to the mechanical environment in
the forearm (fbm = 20%). Now, based on data from the literature, we assumed
respectively for the femoral neck and the lumbar spine that their steady-state bone
matrix fractions were fbm = 25% [32] and fbm = 12.5% [24], which corresponds
to habitual stresses σFN = −4.405 MPa and σLS = −2.041 MPa.

Figure 3 displays literature experimental results for the evolution of BMD with
time in post-menopausal osteoporosis at different bone sites ((a) distal radius, (b)
lumbar spine and (c) femoral neck), along with our simulation results (solid lines).
While the experimental data exhibits large standard deviations, the model is able to
predict the mean trends providing confidence in the presented model formulation.
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Fig. 3 Evolution of the bone matrix fraction (fbm) with time: comparison of the simulations in
(a) distal radius, (b) lumbar spine and (c) femoral neck with experimental results on the evolution
of BMD in post-menopausal osteoporosis. (Reproduced from Martin et al. [27], with permission)

3.3 Virtual Anti-sclerostin Therapy of Post-menopausal
Osteoporosis

In this Subsection, we study the effect of an anti-sclerostin antibody injection
(romosozumab). Here, we do not account for pharmacokinetics and investigate
the impact of the drug on bone turnover markers and bone matrix fraction (fbm).
To this end, we simulate post-menopausal osteoporosis (PMO) as per Sect. 2.3
and we simulate a sclerostin antibody injection after 5 years of PMO by setting
romosozumab concentration as follows:

[Rom](t) =
{

2 · 10−1 pM if t > 0 & t < 1 month,

0 otherwise.
(17)

Figure 4 describes the changes in bone remodeling biomarkers following the
drug injection. In particular, one can observe that cell numbers increase in different
proportions after injection (52% increase in osteoblasts numbers against 8.2%
increase in osteoclasts numbers after 1 month) and decreases after the treatment
stops (a). One may also notice that the model captures the delay between the primary
osteoclasts response and the osteoblasts proliferation that happens afterwards.

As expected, the percentage of LRP5/6 receptor occupancy by Wnt proteins
(evaluated through the Hill function πWnt

act,Obp
) increases (b), as a consequence of

low sclerostin serum levels (d). One may also note the feedback of the system
which increases osteocytes sclerostin expression (c) in consequence of the higher
bone matrix fraction resulting from drug injection (b). Conversely, before injection,
sclerostin expression decreases: osteocytes respond anabolically to the PMO-
induced bone loss. During this simulation, the variations of nitric oxide in terms
of expression by osteocytes and serum levels stay small in comparison to that of
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Fig. 4 Evolution of osteoclasts (red, dashed) and osteoclasts (blue, solid) concentration (a), bone
matrix volume fraction fbm (red, dashed) and LRP5/6 occupancy by Wnt proteins πWnt

act,Obp
(blue,

solid) (b), percentage of maximum nitric oxide (red, dashed) and sclerostin (blue, solid) expression
by osteocytes (c) and their serum levels (d) after an imposed change of romosozumab levels
([Rom] = 2 · 10−1 pM, t < 1 month (gray area))

sclerostin (c,d). This last observation is consistent with the findings highlighted in
Sect. 3.1, as PMO is mainly controlled by the anabolic sclerostin pathway.

To summarize, the present model gives the tools for a comprehensive understand-
ing of bone remodeling during romosozumab treatment by providing a description
of biochemical changes in bone tissue.

4 Discussion and Outlook

The presented numerical simulation results for postmenopausal osteoporosis and its
intervention with a sclerostin inhibitor have demonstrated that the proposed model
is able to describe disease progression accurately. The virtual drug intervention
strategy that was applied, i.e., targeting osteocyte produced sclerostin, seems
very effective in stopping bone loss and eventually restoring bone mass. The
simulations also showed that inclusion of a mechanical feedback system is essential
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for simulations of longer time scales in order to achieve good comparison with
experimental data. The presented BCPM is an extension of earlier models of bone
cell populations that describe the bone remodeling process. A major feature of
the model is incorporation of osteocytes which are crucial for the formulation
of mechanobiological feedback. The latter was achieved via the production of
sclerostin and nitric oxide by osteocytes that, respectively, inhibit osteoblastogenesis
and the catabolic RANK-RANKL-OPG pathway. As was pointed out in Martin
et al., the model simulations reflect essential features of the bone remodeling
process [27]:

• The BCPM describes the dynamics of bone remodeling accounting for changes
in mechanical loading, as well as hormonal changes (post-menopausal osteo-
porosis).

• Anabolic and catabolic bone remodeling responses were separated in the model
based on two different signaling pathways.

• Catabolic model responses were linked to the nitric oxide (NO) pathway. This
model feature was capable of driving resorptive osteoclastic activity. Hence, NO
production by osteocytes was connected to bone loss as well as achievement of a
new steady state.

• Conversely, anabolic model responses were linked to the Wnt signaling pathway.
The latter model feature is a key factor for the observed bone formation response.
Furthermore, it helps stabilizing the bone matrix fraction in PMO as it counters
the enhanced resorptive action of the RANKL pathway.

Patient-specific modelling requires the quantification of bone biomarkers which
helps assessing the state of the disease, by quantifying resorption and apposition
(turnover markers) or quantifying site-specific bone loss (BMD). This data provides
the tools to generate a targeted bone gain: bone turnover markers indicate the impor-
tance of signalling pathways and assessment of BMD at different time points marks
the evolution of bone tissue. By tuning the influence of the signalling pathways – via
the corresponding Hill coefficients – and the severity of the PMO-induced bone loss
– via PMO parameter PRANKL,d , one could account for variations among patients.
This method could allow for the design of a specific drug treatment plan to obtain
targeted bone gains, provided a prior validation of the pharmacodynamics of the
drug, in particular via its impact on BMD and bone turnover markers. Note that the
presented numerical modelling platform involves solving a system of six differential
equations (Eqs. (1)–(4)) and one algebraic equation corresponding to RANKL
balance. This operations only requires short computation time (less than 30 s for
a simulation of PMO (Fig. 3)). This would eventually enable easy application to
clinics in the form of patient-specific numerical calculations informing treatment
planning.

As a future outlook, we envision that a computational modeling platform for
osteoporosis and various intervention strategies will be developed where we can
share our models with the wider bone research community. Particularly, the modular
structure of BCPM may allow to continuously extend various model features
with latest discoveries of signalling pathways and regulatory factors in bone cells
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involved in the bone remodeling process. Also, the platform will allow to develop a
suit of pharmacokinetic (PK) models that target various signalling molecules in the
BCPM. The interventions that can be studied are physiological exercise and drug
treatments including denosumab, PTH and others. Ultimately, use of this platform
will help understanding complex interactions in multidrug treatments of OP and
come up with new hypothesis for effective combinations of currently available OP
drugs.

Appendix

In line with Pivonka et al. [40], the balance of the production rate PL of a ligand
L with its degradation DL – which itself can be assumed to be proportional to the
concentration of L – reads as follows:

PL + DL = PL − (D̃L[L] +
∑

S

D̃L−S[L − S]) = 0, (18)

where D̃Y is the degradation rate of the species Y and [L − S] represents the
concentration of ligand L bound to S, a species in the medium that can bind to L.
Note that the degradation DL comprises the degradation of the ligand in all its forms,
including bound complexes L-S. The parameters regulating the ligand balance are
listed in Table 3.

The production rate can be decomposed into two components: PL,b (body
production) and PL,d (external dosage). The body production is assumed to be
limited by a maximum concentration [L]max, leading to the following expression:

PL,b =
∑

X,Y

βL,XπY
act/rep,XX(1 − [L]

[L]max
), (19)

PL,b + PL,d = D̃L[L] +
∑

S

D̃L−S[L − S], (20)

where X is the concentration of the cell type X producing L, with a production rate
βL,X regulated by the species Y by means of the regulating activator or repressor
function πY

act/rep,X.
Moreover, TGF-β levels were calculated as derived in [40]: [TGF−β] = α Oca ,

where α is a parameter listed in Table 3.
Pivonka et al. [38] formalized the regulation of a cell population X, and in

particular through their proliferation, differentiation or ligand production. The
regulation via the formation of the complex L − R is quantitatively defined as
the ratio between the occupied receptors R by ligands L and the total number of
receptors:
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Table 3 Biochemical
parameters regulating bone
remodeling, as per Martin
et al. [27]

Symbol Value Unit

Differentiation rates

DObu
1.660 10−1 day−1

DObp
1.850 10−1 day−1

DOcp
1.958 10−2 day−1

Proliferation rate

PObp
2.203 day−1

Clearance rates

�Oba
2.120 10−1 day−1

AOca
10.00 day−1

Release factor of TGF-β

α 1.000 –

Resorption/Formation rates

kres 2500 pM−1.day−1

kform 50.00 pM−1.day−1

Dissociation coefficients of Hill functions

K
TGF−β

D,act 5.633 10−4 pM

K
TGF−β
D,rep 1.754 10−4 pM

KRANK
D,act 16.70 pM

Concentrations of osteocytes in bone matrix

η 4.143 10−8 (4.143 10−2) pmol.mm−1 (pM)

πL
act,X = [L − R]

[R]tot
= [L − R]

[R] + ∑
L′ [L′ − R] , (21)

where [L−R] is the concentration of ligands bound to the receptor R, and L’ is any
ligand that can bind to the receptor R (including L).

Conversely, the repressor action of the receptor-ligand binding reads:

πL
rep,X = [R]tot − [L − R]

[R]tot
= [R] + ∑

L′ �=L[L′ − R]
[R] + ∑

L′ [L′ − R] (22)

In the context of a simple ligand-receptor binding without competition, the above
expressions result in simple first-order Hill activator and repressor functions.
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Towards Visualising and Understanding
Patient-Specific Biomechanics
of Abdominal Aortic Aneurysms

K. R. Beinart, George C. Bourantas, and Karol Miller

Abstract An abdominal aortic aneurysm (AAA) is a permanent and irreversible
dilation of the lower aortic region. The current clinical rupture risk indicator for
AAA repair is an anterior-posterior AAA diameter exceeding 5.5 cm. This is an
inadequate rupture risk indicator given that 60% of AAAs with larger diameters than
5.5 cm often remain stable for the patient’s lifetime while 20% of smaller AAAs
have ruptured. A more robust predictor of rupture risk is therefore crucial to save
lives and reduce medical costs worldwide. Rupture is a local failure of the wall that
occurs when local mechanical stress exceeds local wall strength. A comparison of
the AAA tension and stretch during the cardiac cycle will provide the indication of
wall structural integrity necessary for reliable rupture risk stratification. Employing
engineering logic, mismatches between tension and stretch are likely to indicate
localized wall weakening and the likelihood of rupture (e.g. a high stretch resulting
from a low tension). Biomechanics based Prediction of Aneurysm Rupture Risk
(BioPARR) is an AAA analysis software application that currently only determines
aneurysm wall tension. This study seeks to investigate the feasibility of determining
surface stretches within the AAA wall using methods compatible with clinical
practices. It additionally aims to create and validate a new procedure for AAA
rupture risk stratification.

Keywords Abdominal aortic aneurysm · Rupture · Computed tomography
angiography · Time-resolved · Four-dimensional · Synthetic · Tension · Stretch

1 Introduction

An abdominal aortic aneurysm (AAA) is a permanent and irreversible dilation of the
lower aortic region. The condition is usually symptomless and is typically detected
during an unrelated procedure. If left untreated, the aneurysm can dissect or rupture
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with the high mortality rates of approximately 80–90% [1]. Considering the dangers
and expenses related to the surgical treatment, rupture risk classification is essential.
If this rupture risk outweighs the risk of surgery, the patient will be considered for
endovascular (EVAR) or open repair surgery.

The current clinical rupture risk indicator for repair is an anterior-posterior AAA
diameter exceeding 5.5 cm or a diameter growth rate greater than 1 cm/year [2]. This
is an inadequate rupture risk indicator given 60% of AAAs with larger diameters
than 5.5 cm often remain stable for the patient’s lifetime [3] while 20% of smaller
AAAs have ruptured [4]. Additionally, AAA rupture has been linked to other risk
factors, including: genetic history, smoking, high mean arterial pressure (MAP),
gender, vessel asymmetry, growth of intraluminal thrombus (ILT) and increased
metabolic activity [5, 6]. Simplistic conclusions based on diameter alone are thus
inadequate. A more robust and reliable predictor of rupture risk is therefore crucial
to save lives and reduce medical costs worldwide.

Many researchers believe that a patient specific biomechanics-based approach is
a promising alternative that could significantly improve the clinical management of
AAA patients. With recent advancements in medical imaging and analysis software,
geometrically accurate patient specific AAA three-dimensional (3D) models can
now be constructed for the purpose of computer simulations that calculate wall
stress. Studies have demonstrated that peak wall stress is a better indicator of
individual rupture risk compared to aortic diameter [7]. Stress alone, however, will
not provide an accurate estimation of rupture risk as mechanical failure of the wall
is dependent on both local wall stress and local wall strength. Vande Geest et al.
derived a statistical model for the non-invasive estimation of wall strength [8]. This
strength model, however, is population-based, not patient specific and moreover not
localized.

Many studies have utilized displacement tracking algorithms on time-resolved
(4D) ultrasound scans to investigate local AAA wall deformations [9]. High local
strains alone, however, cannot provide an indication of wall strength, as they may
be generated by high local wall tensions.

AAA rupture is a local failure of the wall that occurs when local mechanical
stress exceeds local wall strength [10]. This study proposes that a comparison
of AAA tension with stretch during the cardiac cycle will provide the indication
of wall structural integrity necessary for reliable rupture risk stratification. It is
hypothesized that mismatches between local tension and resulting tangential stretch,
such as high stretch with low tension, indicate localised wall weakening and the
likelihood of rupture.

Biomechanics based Prediction of Aneurysm Rupture Risk (BioPARR) is an
existing, free and semi-automatic AAA analysis software application that currently
only determines aneurysm wall tension [11]. This study seeks to investigate the
feasibility of determining surface stretches within the AAA wall using methods
compatible with clinical practice. It additionally aims to validate the approach of
pairing surface stretches with tension as a measure of AAA rupture potential.
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A variety of approaches have been utilized by researchers to obtain ground
truth data for validation purposes. Most methods are inaccurate and inefficient
due to the errors introduced by reference tracking algorithms, sparse location of
reference markers and the bias introduced by these markers on the tracking problem.
Additionally, fabrication of physical phantoms to simulate realistic physiological
deformation is both challenging and expensive.

Synthetic data provides a valuable reference for assessing the accuracy of
tracking algorithms due to knowledge of the exact deformation. In this case,
the reference displacement field is unbiased by any motion estimation algorithm.
Additionally, exact deformation is known at each voxel. Furthermore, a wide range
of digital data can easily be created by researchers thus eliminating the requirement
for complex experimental phantoms. The usefulness of synthetic data as a validation
tool, however, is highly dependent on the degree of realism of the generated
synthetic scans.

One method of creating synthetic datasets involves the use of algorithms that
simulate the physics of the imaging process. Models of virtual patient anatomy can
consequently be ‘imaged’ using these projection algorithms. Models of the patient
anatomy are only simplified geometries that have been mathematically derived
and are therefore largely unrealistic. Furthermore, the organs and substructures are
modelled as homogenous with constant pixel intensity. Image artefacts introduced
by the heterogenous tissues are not simulated [12]. Therefore, although these
phantoms can be used for dosimetry studies, they are inadequate for reliably
assessing techniques dependent on image quality.

In the pursuit of increasingly realistic synthetic data, new techniques use
biomechanical models extracted from the segmentation of real patient anatomy. A
single static real medical scan is then warped with the deformation field of this
model [13]. The use of real scans enables more accurate synthetic data creation by
accounting for the heterogeneous tissue voxel intensities. Exact and simple methods
to achieve this have not been clearly outlined in the literature. Additionally, these
methods have mainly been restricted to the modelling of cardiac motion using
only echocardiography and MRI [13]. This study therefore additionally aims to
extend the existing literature by developing and clearly outlining simple methods
for the simulation of realistic CT images using open source software for the given
application of AAA.

2 Methods

2.1 Synthetic Data

A simple method of creating a synthetic 4D CT dataset was developed. This was
achieved by warping a static CT scan using the transformation matrices obtained
after modelling the pulsatile motion of the abdominal aortic aneurysm geometry.
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Fig. 1 Left: The local weakened (red) and healthier (green) tissue regions of the model. Right:
Fixed Boundary Conditions applied to the ends of the AAA model

One abdominal aortic aneurysm computed tomography angiography DICOM
scan was provided by Dr. Hozan Mufty of UZ Leuven academic hospital, Belgium.
A 3D model of the AAA was created by segmenting the CT scan in 3D Slicer 4.10.1,
a free open source medical image analysis and visualization software package.

The outer wall of the abdominal aortic aneurysm model was imported into
Abaqus Explicit 2018. This was taken as the geometry that had been pre-loaded
with the diastolic pressure. A linear tetrahedral element mesh was used due to its
compatibility with Abaqus Explicit. The mesh contained approximately 4 × 106

nodes. The simulation consisted of a periodic loading cycle using an internal
pulsatile pressure of 10 kPa. This represents a high pulse pressure that would
realistically be observed in AAA patients. The upper and lower ends of the aneurysm
were constrained in all directions using fixed boundary conditions (Fig. 1). Non-
linear, hyper-elastic material properties were used to model the aneurysm tissue
using the strain energy function presented by Raghavan and Vorp [14]. This strain
energy function (W) shown below, was obtained by the researchers after examining
the mechanical properties of excised AAA tissue.

W = a (I1c − 3) + b(I1c − 3)2 (1)

a and b are the material properties and I1c is the first invariant of the right Cauchy-
Green tensor. Most of the aneurysm tissue was modelled using a = 113.4 kPa,
b = 9.2 kPa and a density of 1000 kg/m3 [15]. A randomly chosen local
region of the aneurysm model was purposely weakened by halving each of these
material parameters. In addition to location, the extent and range of weakening was
arbitrarily selected. The local weakened and healthier tissue regions are indicated in
Fig. 1 in red and green respectively.

Mesh nodal coordinates from five phases of the pulsating biomechanical model,
between the two extremes of ‘diastole’ and ‘systole’, were extracted and exported
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from Abaqus to 3D Slicer. The transformation matrices, mapping each of the nodal
coordinates from phase 0 to each of the respective phases, were obtained using the
‘Scattered Transform’ module [16]. The module interpolates displacements at nodes
using a BSpline Algorithm. Once the transformation matrices were obtained, the
4D synthetic dataset was created using the ‘Data’ module. The initial CT scan was
warped by each of these transformation matrices after dragging and dropping it
onto the relevant transform. The new CT frames were then saved by hardening the
transforms onto the volume. This resulted in a stack of synthetic CTs corresponding
to each phase of the pulsating biomechanical model.

2.2 Voxel Displacement Tracking

As an alternative to producing an in-house code for the implementation of the
displacement tracking techniques, open-source tools are available, such as those
used for the registration of medical scans. Registration is the task of mapping
one image to another image. This is typically used by clinicians to align scans
of different modalities, or even align scans taken at different points in time such
as for follow up procedures. Registration can therefore also be used to determine
displacements of the aneurysm wall from scans at different points in time during the
cardiac cycle.

Thirion proposed the Demons algorithm for non-rigid registration [17]. The
Diffeomorphic Demons algorithm minimizes the sum of square differences of inten-
sity, contains a smoothness constraint and additionally limits the transformation
to be one-to-one. The Demons algorithm embodies a computationally efficient
simplification of the optical flow problem.

The Demons Diffeomorphic Registration was implemented in 3D Slicer using the
‘BRAINSDemonWarp’ module. A course-to-fine pyramidal approach was utilized
using 5 pyramid levels. A shrink factor of 16 and iteration count of 300, 50, 30, 20
and 15 for each respective pyramid level was employed. Linear interpolation and
a Diffeomorphic Registration Filter were used. These parameter settings produced
the most accurate results when visually compared with ground truth.

Each synthetic CT frame was registered to the initial frame. The outputs of these
registrations were transformation matrices mapping points from one image to the
next. The transformation matrices were then converted to displacement fields in the
‘Transforms’ module. Using the ‘Probe Volume’ module, the displacement field was
then overlayed onto the surface of the segmented aneurysm geometry.

2.3 Determining Maximum Principal Stretch

The point coordinates of the AAA surface and the displacements at these nodes
were read into MATLAB. An in-house modified moving least squares (MMLS)
code was utilized in order to determine the deformation gradient from these nodal
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displacements [18]. The deformation gradient (F) was obtained by determining the
derivative of the displacement vectors with respect to the undeformed configuration
(X) and adding the identity matrix (I):

F = I + ∂u

∂X
(2)

Additional code was added in order to determine the principal stretches. We
computed the right Cauchy Green strain tensor: C=FTF. Eigenvalues of the right
Cauchy Green strain tensor are the square of the principal stretches. The maximum
principal tangential stretches and its directions were obtained after aligning the
minimum eigenvectors with the surface normals. This is compatible with reality
whereby the aorta wall will compress radially but stretch tangentially when it is
inflated by the blood pressure.

2.4 Determining Maximum Principal Tension

The Maximum Principal Tension was determined via BioPARR utilizing the
following inputs: a constant wall thickness of 1 mm, 16 kPa pressure applied to
the interior AAA surface representing the patient’s mean arterial blood pressure
and a ten-node tetrahedral hybrid element (C3D10H) mesh. The ‘no ILTP’ case was
modelled. This case ignores the intraluminal thrombus and loads the interior surface
of the AAA with blood pressure. This was done for simplicity and because the ILT
was neglected when modelling the AAA motion.

2.5 New Rupture Risk Index

The MATLAB code was additionally updated to read-in the maximum principal
tensions obtained from BioPARR. A structural integrity index (SII) was created by
dividing the maximum principal tension by the largest maximum principal stretch
during the cardiac cycle. A relative structural integrity index map (RSII) was created
by dividing the SII map by the maximum structural integrity index over the AAA
volume. This enables clear visualization of weakened areas by comparing all the
structural integrity indices over the AAA volume with the strongest tissue present.

2.6 Validation of Techniques

The technique was validated by correlating displacements and maximum principal
stretches obtained from 4D CT registration with the ground truth values obtained
from Abaqus. This was implemented for each phase of the cardiac cycle. A Pearson
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correlation test was conducted in Excel with significance evaluated using a p-value
of 0.05. Similarity to ground truth was also observed by visualizing displacements
and maximum principal stretches in Paraview, an open-source data analysis and
visualization application.

This new rupture risk predictor was then validated by determining if the
randomly located purposely weakened area of the model was detected. This
was achieved by visualizing relative structural integrity indices below 0.15 using
Paraview. This represents the weakest 15% of tissue within the AAA.

3 Results

3.1 Validation of Displacement Tracking

A high similarity was observed between the ground truth displacement fields
obtained via Abaqus and that obtained from registration of the synthetic 4D CT
scans. This is depicted in Fig. 2 which displays the tangential displacement fields of
the abdominal aortic aneurysm model during one phase of the cardiac cycle. This is
additionally indicated by the high Pearson’s correlation coefficients of displacement

Fig. 2 Tangential displacements of the abdominal aortic aneurysm model during one phase of the
cardiac cycle
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Table 1 Correlation coefficients for each phase of the cardiac cycle

Frame Correlation (X) Correlation (Y) Correlation (Z) Correlation (magnitude) P-value

1 0.99961 0.99930 0.99575 0.98571 P<0.001
2 0.98952 0.99934 0.99628 0.98952 P<0.001
3 0.99971 0.99952 0.99674 0.99347 P<0.001
4 0.99976 0.99966 0.99722 0.99602 P<0.001
5 0.99975 0.99965 0.99684 0.99750 P<0.001

Fig. 3 Maximum Principal Tangential Stretch of the abdominal aortic aneurysm model during
each phase, obtained via Abaqus (bottom) and registration of 4D synthetic CT scans (top)

magnitudes (R = 0.986, 0.990, 0.993, 0.996, 0.998, p < 0.001) and directions for
each of the respective phases analysed (Table 1).

3.2 Maximum Principal Stretches

A high similarity was also observed between maximum principal stretches obtained
from registered synthetic 4D CT scans and ground truth stretches obtained via
Abaqus. This is evident in Fig. 3, where for each of the phases analyzed, stretch
magnitudes and patterns obtained via registration are comparable to ground truth.

3.3 Relative Structural Integrity Index (RSII)

The largest maximum principal stretch during the cardiac cycle was then paired with
the maximum principal tension obtained from BioPARR to compute the relative
structural integrity index (RSII). A correlation analysis between the ground truth and
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Fig. 4 Lowest 15% of relative structural integrity indices (RSII) of the aneurysm model

registered RSII distributions indicated that good agreement was obtained (R = 0.98,
Pearson’s correlation, p < 0.001). As evident in Fig. 4, an illustration of the lowest
15% of RSII successfully identifies the purposely locally weakened tissue depicted
in Fig. 1.

4 Discussion

This study has successfully developed a procedure to accurately determine surface
stretches within the AAA wall using methods compatible with clinical practices.

Most researchers have focused on utilizing time-resolved ultrasound to determine
deformation of AAAs. This study has highlighted the feasibility of using 4D CT as
an alternative. This is compatible with clinical workflow due to the current practice
of employing 3D CT angiography for preoperative imaging of the AAA. Unlike
ultrasound, 4D CT additionally enables quick, repeatable acquisition of the full
volume of the AAA.

The use of the Demons Diffeomorphic registration technique to track defor-
mation during the cardiac cycle from 4D CT scans was validated. The obtained
displacements and resulting stretches were highly accurate with strong correlation
to ground truth.

This novel study has introduced a new and improved rupture risk metric. The
RSII utilizes a holistic engineering approach by accounting for both local stretches
and tensions to enable the characterization of tissue integrity local to the AAA. This
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enables a patient specific measure of wall strength that other procedures have not
considered. Even if stresses are computed correctly, high stresses alone cannot be
interpreted as a loss of wall structural integrity without knowledge of local wall
strength. i.e. clearly high wall stress is not an issue if it is present in a strong wall.
Similarly, methods utilizing only high stretch as a measure of tissue integrity are
flawed. These local high stretches may be generated by local high tensions and
may not be due to weakened tissue. The RSII was validated by illustrating that a
randomly located, purposely weakened area of the model was detected with high
accuracy. These findings have advanced the state of the art of AAA management.

This method of creating a synthetic 4D CT sequence has granted access to the
required data to test the feasibility of determining surface stretches within the AAA
wall, without reliance on a clinic. It additionally enabled accurate knowledge of
ground truth values and thus the ability to reliably assess the novel techniques
used. This essential validation step would not have been possible with real patient
data where access to exact ground truth is unattainable. Synthetic data provides a
reference displacement field that is unbiased to any motion estimation algorithm.
This is unlike that required by intermodal registration reference methods and
techniques relying on the tracking of implanted markers. Unlike previous methods
that utilise sparsely located reference markers, the technique used in this study
provides knowledge of exact deformation at each voxel. Furthermore, the simple,
low cost computer-based biomechanical model is more realistic compared to other
mock-ups such as complicated physical phantoms, due to easier control of material
properties and pressures. This opens the door to the generation of a wide range
of synthetic data, from normal to varying diseased states, as demonstrated by this
AAA study. The usefulness of synthetic data as a validation tool, however, is highly
dependent on the degree of realism of the generated sequence. Unlike synthetic
datasets created using projection algorithms, this study uses methods that produce
realistic synthetic data. This was achieved by using real scans to extract exact patient
anatomy and to simulate the heterogenous voxel intensities of imaged tissue.

The simple and easily accessible methods developed in this study can similarly
be used by other researchers to progress pilot studies without being impeded by
clinical bureaucracy. Additionally, the flexibility offered by this simple technique
provides a platform to optimize and validate emerging technologies and methods
without being impeded by the multitude of external restrictions imposed by the other
validation techniques discussed.

Limitations, however, do exist in the presented work. This method of synthetic
CT creation does not completely take the physics of image acquisition into account.
Instead it re-uses the same texture of the initial CT, which is warped according to
the differences between the original scan and the simulated motion. Changes in
the geometry of the moving organ, however, will alter the path length along which
the radiation travels through the organ. This will cause variations in voxel intensity
throughout the cardiac cycle. The change in voxel intensity during deformation is
not reflected in the synthetic data creation technique discussed.

One method discussed in the literature partly accounts for this by using a template
4D DICOM dataset to partially increase the degree of realism of the generated
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synthetic sequence [19]. This is achieved by spatio-temporal alignment of the
template sequence with the biomechanical model. In this method instead of warping
a single static scan at the initial phase of the cardiac cycle, the template scan is
warped by the biomechanical model at each of the respective phases. This partially
accounts for the change in intensities that will be present as a result of deformation
because it reduces the difference between the reference and deformed frames. The
risk of unrealistic texture warping does, however, still exist with this method when
the simulated motion of the model deviates too far from the template motion. That
method, however, requires the presence of an initial 4D dataset. In novel studies
such as this one, access to an initial 4D dataset is not always possible. A 4D CT
protocol of the AAA is not yet utilized in the clinic. Once access to real data from
this protocol is achieved, a future study can further validate the methods used by
implementing this improved technique.

A basic assumption made using the Demons algorithm is that the intensity of
voxels remains constant through time. The geometry of the aneurysm, however,
will be changing during the cardiac cycle, which, as discussed, will alter voxel
intensities. Since this synthetic data is slightly unrealistic in that the intensity of
voxels remains constant despite motion, the methods used on this artificial dataset
are acceptable. When using real data, however, this may not remain true. An option
for dealing with this issue could be to not register each frame to the initial frame,
as was done using this synthetic dataset. Instead one could register each frame
to the previous frame but use the preceding transform as an initialization to the
registration. This would enable the constant intensity assumption to hold true as the
geometry between consecutive frames would not change significantly.

The next step required to progress this novel technique into normal clinical
practice is an initial pilot study using real patient data. Further studies will need
to establish the relationship between RSII and the progression of abdominal aortic
aneurysms using follow up analyses.
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Pipeline for 3D Reconstruction of Lung
Surfaces Using Intrinsic Features Under
Pressure-Controlled Ventilation
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Abstract The measurement of whole lung mechanics forms the basis of diagnostic
measurements for many respiratory diseases. Despite this, there are currently no
quantitative methods to link alterations in pulmonary microstructures to measure-
ments of whole lung function. The normal decline in the lung’s microstructure
that occurs with age is virtually indistinguishable from early disease on imaging
or standard lung function measurements, leading to frequent misdiagnosis in the
elderly. Accurate characterisation of lung mechanics across spatial scales has
the potential to assist distinguishing age from pathology, which would benefit
patients across a range of medical conditions and procedures. While computational
modelling promises to be a useful tool for improving our understanding of lung
mechanics, there is currently no unified structure-function computational model
that explains how age-dependent structural changes translate to decline in whole
lung function. This paper presents novel instrumentation and imaging techniques
for measurements of intact ex vivo lung tissue mechanics. We seek to address
problems of weak parameterisation that existing models suffer from, due to lack
of reliable measurements. To begin addressing this issue, we have developed a
full-field stereoscopic imaging system for tracking surface deformation of the rat
lung during pressure-controlled ventilation. This study presents a pipeline for the
reconstruction and tracking of the intact left lobe of a rat lung during inflation, ex
vivo. Model-based 3D reconstruction of the lungs enabled the 3D shape of a surface
patch of the imaged lung to be determined. The 3D reconstruction and tracking
of the fresh lung surface patch in this study was completed with three cameras
across 21 pressure steps, encompassing a total pressure change from 2069 Pa to
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2386 Pa. This approach shows that reconstructing intact ex vivo fresh lungs, with no
additional surface markers, is feasible.

Keywords Image reconstruction · Lung · Respiratory disease · Computational
modelling · Lung tissue mechanics · Pulmonary microstructure

1 Introduction

Despite the importance of the lungs in delivering oxygen to the body, aspects of their
mechanics remain poorly understood [1]. A key reason for this is that any disruption
of the lung structure results in a change in the mechanical response of the tissue,
making traditional mechanical testing poorly suited to investigating lung tissue [2].
Many studies have attempted to characterise the mechanics of lung tissues, however,
it was not until the middle-to-late twentieth century that respiratory mechanics
began to be studied as a separate field, and it was during this time that the majority of
our understanding was developed [3, 4]. Despite advances in imaging technologies,
fundamental questions concerning key processes that occur in the lungs remain
unanswered. For example, there is no unifying theory for alveolar dynamics and
recruitment during respiration. It remains unclear if the alveoli expand isotropically,
heterogeneously, or by a combination of both [5]. This has been debated in the
literature, with consensus being hindered by difficulties in imaging the small and
constantly moving alveoli during respiration.

Computational modelling may prove to be a useful tool for improving our
understanding of lung mechanics, and several computational models have been
proposed for the mechanics of lung tissue. However, there is currently no unified
structure-function computational model that explains how age-dependent structural
changes translate to decline in whole lung function. Existing models suffer from
weak parameterisation due to lack of available data. In this study, we designed a real-
time full field stereoscopic imaging system for tracking lung surface deformation
under pressure-controlled inflation. This system will enable us to acquire rich,
accurate, robust, and previously unavailable physiological data on lung tissue
mechanics from whole rat lungs, that can ultimately be used to parameterise
computational models of lung mechanics.

2 Methodology

2.1 Lung Ventilation

Fresh post-mortem lungs were acquired from female (350 ± 50) g Sprague-Dawley
rats, after the animals were sacrificed following separate experimental studies that
did not involve the chest cavity. The Sprague-Dawley strain was chosen for two
key reasons: similarities to humans in alveolar air-space enlargement with age [6];
and their relatively large alveoli (~90 μm diameter) [6] compared with lung size
(~20 mL). A cannulated rat lung is shown in Fig. 1.
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Fig. 1 Inflated left lung lobe
held at 3000 Pa, in a Petri
dish full of phosphate
buffered saline solution and
cannulated with a plastic 16
Gauge blunted needle

Fig. 2 Left, PV loops from two full range inflations and an imaging cycle of three PV loops from
2000 Pa to 3000 Pa and back. Arrows depict the direction of increasing time. Right, expanded view
of the three PV loops used for imaging

A CompactRio (National Instruments) based real time pressure control system
was developed to control the inflation of the lungs. A syringe pump enabled real
time pressure control, with volume and pressure resolutions of ±5 μl and ± 5 Pa
respectively. A 100 ml glass syringe was mounted and actuated by a Physik
Instrumente DC-Mike linear actuator that has an encoder resolution of 0.0592 μm.

During stereoscopic imaging of the lungs, images were captured at regular
intervals corresponding to increments/decrements in pressure of 15 Pa. Figure 2
shows the pressure-volume (PV) loops from the stereoscopic measurement of the
lung lobe. The imaged inflation cycle (red in Fig. 2) shows three cycles between
2000 Pa and 3000 Pa. The PV loops between 2000 Pa and 3000 Pa are approximately
linear, with a small amount of hysteresis visible between 2800 Pa and 3000 Pa.
There was an increase in lung volume of 0.2 mL across the three loops, when
comparing the volumes at 2000 Pa.
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2.2 Lung Surface Imaging

A 12 camera full field stereoscope was designed and built in-house to enable
imaging of the surface displacement of the lung during pressure-controlled inflation.
FLIR BlackflyS monochrome cameras that feature a SONY IMX250 sensor were
selected for imaging the lung due to their high quantum efficiency and high signal
to noise ratio (4760 signal to noise ratio or 73 dB dynamic range). The sensors had
a 2448 pixel × 2048 pixel resolution (5.0 MP) with a 3.45 μm pixel size and were
capable of imaging at 75 frames per second. The control code for these cameras was
written in LabView (National Instruments), enabling data from all 12 cameras to be
saved concurrently.

To ensure accurate 3D reconstruction of the imaged objects, the cameras were
calibrated to find their intrinsic and extrinsic parameters, and the mounting of
the cameras was designed for rigidity, to ensure that the cameras remain fixed
relative to one another. The design and construction of this stereo system has been
described previously for eight cameras [7]. Several modifications have been made
since this was previously reported and are presented in the following sections.

2.2.1 Stereo Rig Construction

A rigid camera frame was designed in Solidworks. To ensure sufficient rigidity
between the cameras, the geometry of the camera frame was designed as a regular
octahedron, as shown in Fig. 3. To ensure consistent lighting, eight high-power
1270 lm LED Engin LZ1-10R200 light emitting diodes were used with diffusers
to ensure even lighting and to reduce noise in the camera images. Image acquisition
from the cameras was performed in LabVIEW and the cameras were synchronized
using a hardware trigger from the pressure control FPGA. This enabled images to
be triggered, based on changes in pressure.

Lungs were dissected from the rats en bloc, with the heart and trachea attached.
The heart and right lobes were removed, leaving the left lobe and a length of
bronchus for cannulation. After cannulation of the lungs onto a blunted needle,
they were attached to the syringe pump system. This enabled the initial inflation
of the lungs from their collapsed state. The lungs were inflated to a pressure of
3000 Pa and held at that pressure until fully inflated. After a full inflation/deflation
cycle, the lungs were bathed in phosphate buffered saline (PBS) to ensure that they
remained hydrated. Post hydration, the lungs were mounted into the centre of the
stereo camera system.

2.2.2 Stereo Rig Calibration

Camera calibration is necessary to achieve high accuracy imaging and 3D recon-
struction. The accuracy of any 3D measurement made with a stereo imaging system
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Fig. 3 Frame constructed for performing full-field imaging of the lung surface during pressure-
controlled inflation experiments. Left shows a CAD rendering of the stereo rig, Right shows the
physical rig

depends, in part, on the accuracy of the calibration of the stereo cameras. The
process of calibrating a camera system is a complex problem, which grows in
complexity with every additional camera. The calibration method used in this
study was developed by HajiRassouliha et al. [8] using a checkerboard calibration
template. This has been described by HajiRassouliha et al. in [8] for cameras where
all cameras could see the same calibration template. In this study, we extended
the calibration approach to allow for calibration of all cameras in the stereo rig.
This involved calibrating overlapping groups of four cameras, followed by an
alignment of the calibrated cameras sets using a 3D triangular template with three
white cellulose precision microspheres of a known diameter attached to each of its
vertices. The diameters and spacing between spheres were identified using micro-
CT imaging with a resolution of 2.7 μm.

2.2.3 Initial Surface Reconstruction

The first step in an inflation was to acquire images of the ex vivo lung while it
was illuminated by a laser line, as depicted in Fig. 4. Images including laser lines
were acquired without LED illumination These data were used to generate an initial
3D reconstruction of the lung shape. This involved segmenting and fitting the laser
lines on the lung lobe using piecewise cubic splines in each of the 2D images from
each camera view. The pixel coordinates of these splines were triangulated into 3D
space by determining their locations across multiple cameras using an intersecting
ray approach, as described in [9], with the requirement that four rays intersect for a
point to be considered valid. This resulted in a 3D point cloud which described the
surface of the lung.
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Fig. 4 Examples of laser line images. The lungs were held at a fixed pressure while each line
was acquired individually. In this data set, the lungs were held at 2000 Pa. Firstly, images of the
lungs were taken at different levels of illuminations from LEDs, then 22 images were recorded of
individual laser lines on the lungs

Immediately after laser line data acquisition, the lungs were cyclically inflated
and deflated for imaging.

2.3 Lung Fixing and Micro Computed Tomography (CT)
Imaging

To obtain an initial estimate of the 3D shape of the lungs, after stereoscopic imaging,
lungs were fixed and imaged using a Bruker SkyScan 1272, micro-CT scanner at a
pixel resolution of 25 μm. The lungs were fixed by inflating the lungs with 2.5%
glutaraldehyde buffered with phosphate buffered saline solution, up to a pressure of
2450 Pa (25 cmH2O). Tissue samples fixed in glutaraldehyde are extensively cross-
linked, providing excellent ultrastructural stiffening that maintains the structure of
the alveoli, enabling imaging with micro-CT [10]. This process was carried out
after stereoscopic imaging, as cross-linking reactions of glutaraldehyde are largely
irreversible [11].

The lungs were held at the fixation pressure for 24 h. After 24 h the lungs were
attached to a regulated air source, which maintained an even pressure of 2450 Pa
(25 cmH2O) to air dry the fixed lungs. The result of this process was a dried lung
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Fig. 5 Left, Micro-CT of the fixed lung lobe. Right, view of fixed speckled lung from a single
camera

lobe, with no living tissues, and with the structural proteins cross-linked to maintain
the lung structures. An example of this can be seen in Fig. 5.

The micro-CT image of the lung lobe, shown in Fig. 5, enabled the creation of a
mesh of the lung lobe. This process started with thresholding of the 2D images to
create binary masks. Any holes in the masks were corrected manually. An ITK-
based marching cubes algorithm was then implemented to convert each binary
mask into a 3D isosurface, which was converted into a point cloud that represented
the surface of the lungs from the micro-CT data. While some discrepancies were
introduced by the cross-linking procedure and shrinkage during the air-drying
process, the mesh of the fixed lung generated from micro CT imaging provided
a close approximation to the shape of the unfixed lung.

2.4 Improving Lung Surface Reconstruction and Tracking
Motion

The dense point cloud created from the segmented micro-CT data described in Sect.
2.3 was aligned to the sparsely reconstructed laser line data acquired from the stereo
rig described in Sect. 2.2.3 using a coherent point drift algorithm to rigidly translate,
rotate, and scale the point cloud.

A quadratic Lagrange surface mesh was fitted to the aligned micro-CT point
cloud using the fitting algorithms in GIAS2 [12], which minimises the weighted sum
of the projections of the point cloud onto the surface. The result of this procedure
was an initial surface mesh that was aligned with the position of the stereo-imaged
lung, as shown in Fig. 6.
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Fig. 6 Fresh lung meshes.
Laser line points are white.
The micro-CT point cloud is
green, and the quadratic patch
Lagrange patch is gold to
black

A model-based reconstruction approach was then used to improve upon the initial
reconstruction, by mapping texture information across camera views to generate a
dense set of corresponding 3D points on the lung surface [9]. In this case, the micro-
CT surface mesh was used as a prior model to aid reconstruction of the lung surface.
This involved projecting pixels from a reference camera (in this case, Camera
1) onto the quadratic Lagrange micro CT surface mesh. These points were then
backprojected to another camera’s sensor (in this case, Camera 2) and resampled to
generate a new image, which closely resembled the real view from Camera 2. Cross-
correlation techniques were then used to identify corresponding points between the
resampled image and the real image from Camera 2. These corresponding points
were then triangulated to generate a 3D reconstruction of the surface. This operation
requires knowledge of the positions of the cameras, which were found during the
camera calibration procedure.

The lung surface was reconstructed in this manner at the same inflation pressure
used for fixing the lung. The motion of the lung surface during subsequent
inflation pressure steps was tracked by performing 2D cross-correlation of the
reconstructed corresponding points across the images acquired from each individual
camera. These tracked image points were then triangulated to provide a 3D surface
reconstruction at each of the inflation pressures.

3 Results

3.1 Tracking of Intrinsic Features

One of the primary concerns with reconstructing and tracking the motion of the fresh
lung lobes was the lack of surface texture. To test the ability of the 2D subpixel
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image registration code [13] to track the intrinsic features of the fresh lung lobe,
tracking was performed on a single camera view of a lung across several pressure
steps, as shown in Fig. 7.

Confidence thresholds [13] were set to remove points that did not have a strong
correlation peak. Figure 7 illustrates that the subpixel image registration method is
capable of tracking intrinsic features on the surface of the fresh lung. Failure of the
2D subpixel image registration algorithm would result in no or randomly oriented
vectors being returned. The patchy, non-uniform pattern visible in Fig. 7 is a result
of the single camera tracking not having sufficient data to capture the displacements
of the complex 3D surface of the lung.

3.2 3D Reconstruction Results

To test that reconstruction was effective on fresh lung, a region of interest (ROI) on
the back of the lung, which had few specular reflections, was selected, as can be
seen in Fig. 8.

Fig. 7 Single camera tracking of the intrinsic features of a left lung lobe. The pressure difference
between the reference image and tracked image is shown in the top left

Fig. 8 Region of interest for
a reference camera selected
on fresh lung. In the reference
state the lung was inflated to
2069 Pa
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Fig. 9 Reconstructed lung surface points displayed as spheres, coloured by displacement magni-
tude, viewed from three angles to display the surface curvature

The model-based reconstruction approach described in Sect. 2.4 was then applied
to determine corresponding points with the region of interest across the other
cameras in the rig that could see the same region. For the selected ROI, two other
cameras could see the same region. The resulting set of corresponding points were
then triangulated to find their 3D locations, as seen in Fig. 9.

The 3D locations of these points were then tracked across a range of inflation
pressures. This resulted in a 3D deformation field, such as that seen in Figs. 9 and 10.

The 3D reconstruction of the fresh lung enabled tracking of the motion of the
lung as a result of pressure increases. In this study, the fresh lung was tracked across
a pressure change of 317 Pa. Over this range, the mean magnitude of the 3D motion
(0.525 mm) was computed by determining the Euclidean distances between point
positions at each pressure. Areas of non-uniformities in the displacement vectors are
likely due failure to identify corresponding points across the three cameras. Spurious
vectors could be eliminated by adjusting the cross-correlation confidence thresholds
to be appropriate for 3D tracking.

4 Summary

This paper presents a pipeline for the reconstruction and tracking of the 3D motion
of the ex vivo, intact, left lobe of a rat lung, as a result of changes in pressure.
Model-based 3D reconstruction of the lungs enabled corresponding points to be
found between camera views of the fresh lungs. From these, the 3D shape of a patch
of the imaged lung could be determined.

The 3D reconstruction of the fresh lung patch in this study was completed with
three cameras across 21 pressure steps, encompassing a total pressure change of
317 Pa. The 317 Pa pressure increase resulted in the total mean magnitude of the
motion of the lung being 525.7 μm.
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Fig. 10 3D location of the fresh lung surface tracked during inflation. The first frame is shown
overlaid on the quadratic Lagrange mesh

This study shows that the 3D reconstruction of the surface of the lungs, using
only intrinsic features, is a viable approach to determine 3D shape. A prior 3D
mesh was generated from a micro-CT reconstruction of a fixed lung. This mesh was
aligned with sparse stereoscopic points identified using a combination of laser line
identification and boundary identification on the fresh lung in the stereo-imaging
rig. It was shown in this study that a combination of laser line and boundary point
identification was sufficient to align the stereoscopic data with the mesh. A model-
based reconstruction approach was then used to map texture information across
camera views to generate a dense set of corresponding 3D points on the lung surface.

The reconstruction in this study focused on using three cameras to reconstruct a
patch of the lung. This demonstrated the feasibility of using such a pipeline for the
reconstruction and tracking of fresh lung tissue across a range of pressures without
the need for additional surface markers.
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The pipeline presented in this chapter represents the first stereoscopic imaging
of ex vivo lungs. In addition, this work provides the first 3D tracking of the surface
motion of the lungs using only intrinsic features.

As part of future work, we aim to extend the reconstruction to the whole lung,
making use of all 12 cameras. This will enable 3D tracking of whole lung motion.
From this, it will be possible to determine the volume change in the lung as a result
of changes in pressure. This will, in turn, enable the assessment of the accuracy of
the reconstruction, as volume change in the inflation system is directly measured.
Future studies will apply these methods of measuring 3D deformations to identify
and model the constitutive properties of the intact lung tissue.
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A Flux-Conservative Finite Difference
Scheme for Anisotropic Bioelectric
Problems

George C. Bourantas, Benjamin F. Zwick, Simon K. Warfield,
Damon E. Hyde, Adam Wittek, and Karol Miller

Abstract We present a flux-conservative finite difference (FCFD) scheme for solv-
ing inhomogeneous anisotropic bioelectric problems. The method applies directly
on the raw medical image data without the need for sophisticated image analysis
algorithms to define interfaces between materials with different electrical conduc-
tivities. We demonstrate the accuracy of the method by comparison with analytical
solution. Results for a patient-specific head model highlight the applicability of the
method.

Keywords Flux-conservative finite difference · Anisotropic electrical
conductivity · Bioelectric field · Epilepsy · EEG · Patient-specific head model

1 Introduction

Epilepsy is a neurological condition of recurrent or unprovoked seizures that is
thought to affect 1% of children [1]. Antiepileptic drugs serve as the primary
treatment [2]. Treatment strategy relies on two key issues. First, the quality of life
of an epileptic patient fails to improve until the permanent cessation of seizures.
Second, one third of patients experience drug resistance [2, 3]. Surgery to remove
or alter the region of the brain where seizures originate is recommended to patients
who fail to respond to antiepileptic drug therapy [4].
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Around 100,000–500,000 patients in the United States of America with drug-
resistant epilepsy are surgical candidates each year [2]. However, due to the high
risk associated with the surgical procedure, less than 1% of patients are treated
this way [2]. For surgical epileptic seizure management, there are two realistic
options available: focal resection; or disconnection of the epileptogenic cortex [3].
Of these two options, only complete focal resection of the epileptic lesion offers the
possibility of eliminating seizures.

Success of the surgical intervention depends on the ability to accurately identify
the seizure onset zone (SOZ), which is to be resected. Intracranial electrodes help
to identify the SOZ and map eloquent areas of the brain [5]. Currently, the clinical
standard for identifying the SOZ are invasive electroencephalography (iEEG) grids
and strips, or stereo-EEG (sEEG) electrodes, deployed stereotactically through
holes in the skull [6]. The iEEG or sEEG data recorded during the day is collected
and manually interpreted by expert neurophysiologists to identify the electrode(s)
most implicated in seizure onset.

Patients (usually young) unable to tolerate conscious cortical mapping for
resection are candidates for intracranial electrode-mediated extra-operative mapping
[3]. The aim of this mapping is to identify the epileptogenic zone. This zone,
which is characterized by low-voltage, fast-current neuronal activity, represents
the minimum amount of cortex that must be resected to eliminate seizures [7].
Magnetic resonance images (MRIs) are routinely used to determine the distribution
of various tissue types throughout the brain. EEGs are used to localize the SOZ
and the corresponding area of the brain, which is known as the eloquent cortex [8].
Following the initial MRI, patients undergo a craniotomy to implant intracranial
EEG electrodes to the edges of the dura [3]. A low-resolution computed tomography
(CT) scan is then used to locate the electrodes within the deformed brain [9].

Source localization of the epileptic zone can be enhanced using computational
methods combined with the available imaging modalities. The pre-surgical planning
capabilities for resection of the epileptogenic cortex will then be more accurate.
Calculating the voltage distribution throughout a patient-specific head model is a
key component of the forward problem of EEG source localization. The forward
problem has been solved in previous studies using a preoperative brain model [4,
7, 10, 11]. However, a more efficient method for computing the voltage terms
is required for patient-specific applications and efficient implementation into the
clinical workflow. Previous studies employed finite element methods or boundary
element methods to localize the epileptogenic source [12–14]. These methods,
however, are limited by their dependence on meshes that sufficiently capture
the discontinuity of electrical conductivities between the differing media within
the head [15]. Another issue with mesh-based methods is their reliance on pre-
determined boundary positions at patient-specific conductivity interfaces within the
cortex. Although a high-quality mesh will provide a simple solution to the forward
problem, it requires an experienced analyst, thereby decreasing the practicality of
implementing this technology into clinical practice.
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In this study, we apply the flux-conservative finite difference (FCFD) method to
numerically solve the forward problem of EEG source localization. The bioelectric
problem is described by a set of partial differential equations. FCFD method
discretizes these equations into a system of linear algebraic equations. The numer-
ical solution of the linearized system determines the electric potential distribution
throughout a patient-specific conducting volume (head model). The FCFD method
applies to the rectangular grid of material properties extracted from patient data.
This eliminates image segmentation and meshing that is required in mesh-based
methods. The conductivity assigned to each node is used to form a system of linear
equations that is then solved to compute the voltage term. We apply an anisotropic
tensor for the electrical conductivity. We solve a simple problem with analytical
solution to highlight the accuracy of the proposed scheme before applying it to a
patient-specific head model of an epilepsy patient.

2 Methods

2.1 Electromagnetic Modeling Using the Flux-Conservative
Finite Difference Method

2.1.1 Governing Equations

Source localization methods usually use a linear model, often called leadfield
matrix, to correlate measured electrode voltages to their cerebral current sources.
Computing the leadfield matrix requires the numerical solution of Maxwell’s
equations within the head (conducting medium). Since the frequencies employed
for EEG are typically less than 100 Hz, transient signals are negligible, and the
quasi-static approximation can be employed [4]. Therefore, the relationship between
current sources and the induced voltage field is given as:

∇ ·
(=
σ (x) ∇Φ (x)

)
= ∇ · J (x) (1)

with �(x) being the voltage potential at location x in the spatial domain 	,
=
σ (x)

the spatially varying conductance of the volume, and J(x) the current source density
at the nodes of the volume. The inhomogeneous conductivity tensor

=
σ (x) can be

represented by a 3 × 3 matrix as

=
σ (x) =

⎡

⎢⎢⎣

σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

⎤

⎥⎥⎦ (2)

while the left-hand side of Eq. (1) in its expanded form is given as



138 G. C. Bourantas et al.

∇ ·
(=
σ (x) ∇Φ (x)

)
= ∂

∂x

(
σxx

∂Φ

∂x
+ σxy

∂Φ

∂y
+ σxz

∂Φ

∂z

)

+ ∂

∂y

(
σyx

∂Φ

∂x
+ σyy

∂Φ

∂y
+ σyz

∂Φ

∂z

)
+ ∂

∂z

(
σzx

∂Φ

∂x
+ σzy

∂Φ

∂y
+ σzz

∂Φ

∂z

)

(3)

Using the Taylor series expansion and applying the flux-conservative finite
difference scheme we can compute the spatial derivatives of Eq. (3). In the
FCFD method, we can efficiently and accurately deal with the anisotropy and
the discontinuities in the electrical conductance of the different materials (e.g. bone,
soft tissue) in the brain. In the FCFD method we do not apply the chain rule in
the computation of the spatial derivatives in Eq. (3), instead we treat the terms in
the parenthesis for the spatial derivatives ∂

∂x
, ∂

∂y
, ∂

∂z
as the unknow field functions.

Therefore, the typical methodology applied in the classical FD methods is extended
to account for the anisotropy of the field variables.

2.2 Flux-Conservative Finite Difference Method

The FD method works efficiently on Cartesian grids (that can be directly
obtained from DICOM images) and computes the nonlinear convective term

∇ ·
(=
σ (x) ∇Φ (x)

)
by applying a flux-conservative scheme. All Flux-Conservative

FD formulations give a nodal equation for the potential field �(x) at each node of
the grid. The nodal equations finally form a linear algebraic system which can be
solved using direct or iterative solvers (for FD method several robust solvers exist).

This scheme computes spatial derivatives for the electric field using the stencil
defined in Fig. 1. This is identical to the classical FD stencil except that in the FCFD
stencil, fluxes in the fictitious grid points ((i + 1/2,j), (i-1/2,j), (i,j + 1/2), (i,j + 1/2))
are preserved. Computation of the diffusion term at the grid points ((i,j), (i-1,j),
(i,j + 1), (i,j + 1), (i,j-1)) will lead to an erroneous non-conservative FD formulation.
Application of classical (non-conservative) FD stencil by directly applying the chain
rule to compute the spatial derivatives of the convective term will lead to incorrect
calculation of fluxes.

Using the flux conservative approach, the terms at the central node (i,j,k) of the
stencil shown in Fig. 1 can be written (for the x coordinate) as

∂Qx

∂x
=

Qx(
1+ 1

2 ,j,k
) − Qx(

1− 1
2 ,j,k

)

hx

(4)

where

Qx = σxx

∂Φ

∂x
+ σxy

∂Φ

∂y
+ σxz

∂Φ

∂z
(5)
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Fig. 1 The 3D stencil
configuration used in the
flux-conservative finite
difference method

We compute the terms σ xx, �,x, σ xy, �,y, σ xz and �,z on the off-grid nodes(
i + 1

2 , j, k
)

and
(
i − 1

2 , j, k
)

. The electrical conductance σ xx, σ xy, σ xz values

are not defined on the off-grid nodes. Instead, they are computed using interpo-
lating/approximating methods such as arithmetic averaging of the known values for
the electrical conductance on the grid nodes, or the harmonic average. The former
applies for the case of the σ xx electrical conductance (the same applies for σ xy and
σ xz) as

σxx
(
i+ 1

2 ,j,k
) = σxx(i+1,j,k) + σxx(i,j,k)

2
(6)

while the latter is written as

σxx
(
i+ 1

2 ,j,k
) = 2σxx(i+1,j)σxx(i,j)

σxx(i+1,j) + σxx(i,j)

(7)

The two approaches, despite their success in delivering reliable results, may
result in decreased accuracy for the numerical solution when steep gradients in
material properties (higher than 6 orders of magnitude) are present. This is because
only the two nodes adjacent to the fictitious point are used in the computation,
disregarding all the other nodes in the close vicinity. High order methods can be
used to provide more accurate results but these increase the computational cost.

Furthermore, we need to compute the spatial derivatives of the electrical potential

�(x) on the off-grid nodes. The derivative �,x on the
(
i + 1

2 , j, k
)

and
(
i − 1

2 , j, k
)

nodes is given as

∂Φ(i+1/2,j,k)

∂x
= Φ(i+1,j,k) − Φ(i,j,k)

hx

(8)
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and

∂Φ(i−1/2,j,k)

∂x
= Φ(i,j,k) − Φ(i−1,j,k)

hx

(9)

The derivative �,y on the
(
i + 1

2 , j, k
)

and
(
i − 1

2 , j, k
)

nodes is given as

∂Φ(i+1/2,j,k)

∂y
=

Φ(
i+ 1

2 ,j+1/2,k
) − Φ(

i+ 1
2 ,j−1/2,k

)

hy

(10)

and

∂Φ(i−1/2,j,k)

∂y
=

Φ(
i− 1

2 ,j+1/2,k
) − Φ(

i− 1
2 ,j−1/2,k

)

hy

(11)

where

Φ(
i+ 1

2 ,j+1/2,k
) = Φ(i,j,k) + Φ(i+1,j,k) + Φ(i+1,j+1,k) + Φ(i,j+1,k)

4
(12)

Φ(
i+ 1

2 ,j−1/2,k
) = Φ(i,j,k) + Φ(i+1,j,k) + Φ(i+1,j−1,k) + Φ(i,j−1,k)

4
(13)

Φ(
i− 1

2 ,j+1/2,k
) = Φ(i,j,k) + Φ(i,j+1,k) + Φ(i−1,j+1,k) + Φ(i−1,j,k)

4
(14)

Φ(
i− 1

2 ,j−1/2,k
) = Φ(i,j,k) + Φ(i,j−1,k) + Φ(i−1,j,k) + Φ(i−1,j−1,k)

4
(15)

Finally, the derivative �,z on the
(
i + 1

2 , j, k
)

and
(
i − 1

2 , j, k
)

nodes is given
as

∂Φ(i+1/2,j,k)

∂z
=

Φ(
i+ 1

2 ,j,k+1/2
) − Φ(

i+ 1
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)

hz

(16)

and

∂Φ(i−1/2,j,k)

∂z
=

Φ(
i− 1

2 ,j,k+1/2
) − Φ(

i− 1
2 ,j,k−1/2

)

hz

(17)
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Fig. 2 The 3D stencil configuration used in the flux-conservative finite difference method

where

Φ(
i+ 1

2 ,j+1/2,k
) = Φ(i,j,k) + Φ(i+1,j,k) + Φ(i+1,j+1,k) + Φ(i,j+1,k)

4
(18)

Consequently, for computing the partial derivative with respect to x for the Qx

term, eight neighbors are involved. Figure 2 shows the grid nodes used in the

computation of the term ∂
∂x

(
σxx

∂Φ
∂x

+ σxy
∂Φ
∂y + σxz

∂Φ
∂z

)
.

The same procedure applies for the other two partial derivatives
∂
∂y

(
σyx

∂Φ
∂x

+ σyy
∂Φ
∂y + σyz

∂Φ
∂z

)
and ∂

∂z

(
σzx

∂Φ
∂x

+ σzy
∂Φ
∂y + σzz

∂Φ
∂z

)
in Eq. (3).

Therefore, 27 neighboring nodes form the stencil for computing the left-hand side
in Eq. (1). The right-hand side (∇ · J(x)) is also defined on the grid nodes and can
be defined as a continuous function, discretized over the nodes, or as point sources.

3 Results

3.1 Verification of the FCFD Scheme

To demonstrate the accuracy of the proposed FCFD scheme we solve the Laplace
equation for an inhomogeneous anisotropic medium in a unit volume box. The
problem has an analytical solution of the form

Φ (x) = ex+y+z (19)
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Table 1 Maximum relative error and normalized root mean square error (NRMSE) for increas-
ing grid resolution

Grid resolution Solution time (s) L∞ NRMSE

51 × 51 × 51
101 × 101 × 101
201 × 201 × 201

13
228

3363

2.21 × 10−5

1.02 × 10−5

6.72 × 10−6

2.13 × 10−6

7.08 × 10−7

6.59 × 10−7

For an inhomogeneous anisotropic medium, the conductivity tensor giving the
analytical solution has the form

=
σ (x) =

⎡

⎢⎢⎣

ex+y+z −0.25ex+y+z −0.75ex+y+z

−0.25ex+y+z 1.5ex+y+z −1.25ex+y+z

−0.75ex+y+z −1.25ex+y+z 2ex+y+z

⎤

⎥⎥⎦ (20)

We apply Dirichlet boundary conditions on the boundary nodes, according to the
analytical solution (Eq. 19).

The linear system of the Laplace equation can be solved using direct or iterative
solvers. The former are extremely accurate but have memory limitations, especially
for 3D problems with large number of nodes. The latter do not always converge but
are extremely efficient and have less computational cost compared to direct solvers.
For the systems used in the present study, we use the minimum residual method,
which applies to nonsymmetric systems. We used an Intel i7 quad core processor
with 16 GB RAM for our simulations.

We compare the numerical solution against the analytical one using the Normal-

ized Root Mean Square Error defined as NRMSE =
√

1
N

∑N
i=1

(
unumerical

i −u
analytical
i

)2

u
analytical
max −u

analytical
min

.

To study the convergence of the solution, we used successively denser grids starting
from 51 × 51 × 51 up to 201 × 201 × 201.

The results (Table 1) suggest that both the maximum relative error and NRMSE
will converge to zero as the number of nodes increases, confirming the accuracy
of the FCFD scheme for solving anisotropic, three-dimensional, bioelectric field
problems. Figure 3 shows the potential distribution computed by the analytical
solution at plane z = 0.5 and a histogram displaying the differences, node by node,
of the numerical solution with the analytical one for a grid resolution of 1013.

For source localization, the computational time needed to solve the forward
problem is crucial because multiple forward problems must be solved. Therefore,
the accuracy and efficiency provided from the proposed scheme makes it a strong
candidate to be used in clinical practice.
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Fig. 3 Axial view of the (a) numerical solution and (b) histogram of the differences with the
analytical solution using the flux-conservative finite difference method for the for inhomogeneous
anisotropic medium verification problem

3.2 Patient-Specific Head Model

In this section, we apply the FCFD method to a patient-specific head model of a
five-year old epilepsy patient. The electrical conductivities were extracted from the
patient’s diffusion-weighted MRI using the method described in [16]. A node was
assigned to the corner of each voxel to create a 160 × 192 × 192 grid comprised
of 5,898,240 points. An anisotropic conductivity was assigned to all nodes inside
the conducting volume. The three-dimensional finite difference brain volume was
comprised of white and grey matter, as well as cerebrospinal fluid and air. We
model air, grey matter and cerebrospinal fluid conductivities using isotropic tensors,
while white matter fibers were assigned anisotropic tensors. Using the Cartesian
grid (voxels) directly from the raw data we avoid the need for image segmentation
to assign constitutive properties (Fig. 4).

We compute the electric potential distribution throughout the brain volume by
applying the point electrode model. We selected electrodes as the source and
sink. We apply a current of 1 A at the source, and we remove 1 A at the
sink. In the presence of any external current source, Poisson’s equation (Eq. 10)
governs the potential distribution within the head volume incorporating anisotropic
conductivity. At the boundaries, we enforce Neumann boundary conditions (Eq. 2).
We numerically solve the linear system of equations using the minimum residual
method. We model air using an isotropic conductivity of 10−9 (S/m), assigning this
to all voxels outside of the head volume. This is demonstrated in Fig. 5a–c as the
voltage approaches zero outside the skull-air interface boundary.

Figure 5 shows the electric potential distribution throughout the brain in the
axial, coronal and sagittal planes. These slices center around the midpoint of the
preselected source/sink configuration to best illustrate the voltage distribution (we
positioned the source at (143, 114, 101) and the sink at (110, 102, 104)). As
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Fig. 4 (a) Sagittal and (b) axial view of the brain raw data

expected, the source and sink generate a voltage inside the conducting volume that
is greatest close to the corresponding electrodes and approaches zero as the distance
from these regions increases.

4 Conclusion

In this study, we successfully applied the FCFD method to numerically solve the
bioelectric problem to obtain the voltage distribution throughout the head. We first
applied the FCFD method to a simple problem with an analytic solution. Following
verification, the proposed scheme has been applied to a patient-specific head model
(created using raw medical image data) to compute the electric potential distribution
throughout the conducting volume for a specified source/sink configuration.

The accuracy of the patient-specific head model may be improved by using a
complete electrode model instead of the point-electrode model used in the present
study. The complete electrode model incorporates the size of the electrodes, their
shape and the contact impedance, providing a better approximation of the electrode-
tissue interface. With the point-electrode model, currents in the electrodes are not
considered in the numerical solution. Therefore, the voltages close to the electrodes
are of greater amplitude compared to those expected in real-world cases.

Successful application of the proposed scheme enhances current pre-surgical
planning capabilities for resection of the epileptogenic cortex. In contrast to
traditional mesh-based methods such as the finite element and boundary element
methods, with our method there is no need for image segmentation and mesh
generation.



A Flux-Conservative Finite Difference Scheme for Anisotropic Bioelectric Problems 145

Fig. 5 Electric potential distribution throughout the brain in (a) axial plane 103, (b) coronal plane
108, and (c) sagittal plane 127
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A Fast Method of Virtual Stent Graft
Deployment for Computer Assisted
EVAR

Aymeric Pionteck, Baptiste Pierrat, Sébastien Gorges, Jean-Noël Albertini,
and Stéphane Avril

Abstract In this paper we introduce a new method simulating stent graft deploy-
ment for assisting endovascular repair of abdominal aortic aneurysms. The method
relies on intraoperative images coupled with mechanical models. A multi-step
algorithm has been developed to increase the reliability of simulations. The first
step predicts the position of the stent graft within the aorta. The second step
is an axisymmetric geometric reconstruction of each individual stent. The third
step minimizes the rotation of each stent around its main axis. Finally, the last
step virtually deploys each stent within a deployment box extracted from the
preoperative CT scan. A proof of concept is performed on a patient. The accuracy
is compatible with the clinical threshold of 3 mm: the average distance between
target and simulated stents is 1.73 ± 0.37 mm. Fenestrations of the stent-graft are
reconstructed with a maximum error of less than 2.5 mm, which enables a secure
catheterization of secondary arteries. In summary, the method is able to assist EVAR
practitioners by providing all necessary information for a fast and accurate stent
graft positioning, combining intraoperative data and a mechanical model in a very
low cost framework.
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Keywords Abdominal aortic aneurysms (AAA) · Endovascular aneurysm repair
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1 Introduction

Abdominal aortic aneurysm (AAA) is a frequent asymptomatic pathology that
results in abnormal local deformation of the aorta. Each year, aneurysm ruptures
are responsible for 10,000 deaths in the United States [1]. Clinical monitoring
of the evolution of the aneurysmal sac diameter is used to decide whether an
intervention is necessary [1, 2]. Two options are available: conventional open
surgery or endovascular surgery (EVAR). Endovascular surgery is associated with a
lower mortality rate (1.5%) than open surgery (4.6%), although long-term mortality
is similar [3, 4].

During EVAR, the surgeon first makes a small incision in the groin to reach
the femoral artery. From this incision, tools are introduced to position the stent
graft (SG) launcher within the aneurysm. Then the SG is progressively deployed.
The success of the intervention depends on the precise positioning of the SG in the
artery. In some cases, a fenestrated SG is required if the aneurysm extends beyond
the ostia of the renal arteries. In this case, the fenestrations of the SG must be
positioned precisely in front of the renal ostium whose diameter is about 5–7 mm.
This phase is delicate but essential to allow the catheterization of the secondary
arteries and avoid occlusions and post-operative complications [5–8]. The lack of
3D information obliges the surgeon to perform a mental reconstruction of the scene
using several images with different incidence angles, which considerably increases
the duration of the procedure, as well as the time of exposure to X-rays and the
volume of injected contrast products. Therefore, the virtual 3D representation of the
tool location and particularly the SG in the aorta is a valuable aid to the surgeon. This
would reduce the surgery time and the number of X-ray images required. Moreover,
it would reduce the number of postoperative complications, most often related to
inaccurate SG positioning. Latest generation systems enable the acquisition of 3D
images of the tool during the intervention [9, 10]. Recently, efforts have been made
to use biplanar fluoroscopic acquisitions to reconstruct the 3D shape of the device
[11–14]. However, all these methods are based on expensive equipment which
are not commonplace in all hospitals, usually equipped with simple mobile C-
arms. Another solution should therefore be available to obtain a three-dimensional
representation of the inserted SG at low cost. Modelling and numerical simulation
of SG deployment then appears as essential.

First studies on numerical simulation of SG deployment were based on finite
element analyses to study the mechanics of stents and to simulate their deployment
in arteries [15–17], integrating different types of constitutive behavior for the
different materials of SGs [18–20].

Perrin et al. [21–24] developed a preoperative planning tool to predict the
postoperative position of the SG from patient-specific models. Although essential
for preoperative planning, these studies have two important limitations with regard
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to their use as real time assistance for the practitioner: (i) inappropriately long
computation time, and (ii) lack of update from intraoperative images. Some studies
have focused on reducing the computation time and developed algorithms to
simulate stent deployment in “real time”. They often rely on simplifications such as
modeling vessels as generic tubes, on which the stent armatures are then mapped
[25–27]. The Fast Virtual Stenting (FVS) technique was proposed by Larrabide
et al. [28]. This technique is based on constrained deformable simple models and
can virtually model stent deployment in vessel and aneurysm models. The FVS
technique was tested and compared with experimental results [29] and with finite
element models [30, 31]. Alternative methods have been proposed, based on mass-
spring models [32, 33] or on active contours [34]. Although efficient and fast,
most of these models are based on simplified mechanics and can be challenged
by complex vascular geometries. In addition, applications focus on preoperative
planning, as none of the work mentioned above considered intraoperative images.

A small number of studies integrated information from intraoperative images.
For example, Demirci et al. [35] proposed an algorithm to automatically match a
3D model of the SG with an intraoperative 2D image of its structure. Zhou et al.
[36], and Zheng et al. [37] introduced a real-time framework to generate the 3D
shape of a fenestrated SG from a single 2D fluoroscopic image and position of
added radio-opaque markers. These methods have reduced computation times and
can accurately represent the deployment of SGs in simple geometries. However,
more complex cases cannot be addressed without the use of a mechanical model.

To our best knowledge, no studies have ever combined these different aspects
into a single method. Achieving this combination is the objective of the present
work, in order to propose a method that can assist EVAR practitioners by providing
all necessary information for a fast and accurate SG positioning.

The details of the method are given in this book chapter, first introducing the
global algorithm, then describing each step and finally showing a proof of concept
for a patient case.

2 Methods

The global algorithm of the method is summarized in Fig. 1. The input data are the
2D intraoperative images from a mobile C-arm and the 3D geometry of the aorta
obtained from a preoperative CT scan. The algorithm is divided into four main steps.
The first two steps can be combined into a single stage called Stage 1. This stage
is essential for the following steps but may reach insufficient accuracy, hence the
possible following Stage 2. During the first step of Stage1, barycenters of each stent
are positioned in 3D using a FEM model of the SG in the aorta. Then, the stents
are geometrically reconstructed during the second step of Stage 1. If necessary,
two refining steps are achieved during Stage 2, which is an updating or refining
stage. These suplemental steps require a slightly longer calculation time but reach
higher accuracy. The first step of Stage 2 consists in recovering the rotation of the
stent around its main axis through a minimization loop. The second step of Stage 2
consists in deploying each stent individually.
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Fig. 1 Schematic of the general algorithm

2.1 Data Acquisition

In this section, we list the input data and describe how they are processed to extract
relevant information and feed the simulations. Data available at the beginning of SG
reconstruction include the SG model, updated 3D aorta geometry and intraoperative
imaging. The SG models are obtained using the method described in [22, 38].
Briefly, stent geometries are obtained from manufacturer specifications and are
discretized into finite elements using a dedicated Matlab® routine. All simulations
are constrained and guided by intraoperative imaging. To isolate the contour of
the stents, a combination of Frangi filters [39] and masks is applied to the image
[35]. The Frangi filter is generally used to detect vessels or tubular structures in
volumetric image data. The Frangi filter is available in open-source libraries and
software such as ITK or ImageJ. The filter includes a measuring scale that allows
the isolation of tubular structures of different sizes. By modifying the scale of the
filter and combining it with masks, it is possible to extract binary tubular structures
of the stents (Fig. 2). Then, the convex hull of each stent is extracted. The two-
dimensional coordinates of stent barycenters are simply obtained from the convex
hull (Fig. 2). Apparent deployment diameters are also measured. For each stent, the
proximal diameter dp and distal diameter dd are recorded. They will be used for the
further geometric reconstruction of stents.
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Fig. 2 Example of stent deployment in a 3D printed AAA replica: original image (a), stent
detection (b) and extraction (c), convex hull (d) and 2D barycenters (e)

In the following steps, the SG is virtually positioned in the 3D geometry of the
aorta. The aortic geometry, including the centerline and the volume, is previously
extracted from the preoperative scan. The volume of the aorta is segmented from
the DICOM file of the preoperative scan with a front collision method implemented
in VMTK [40]. Then, the centerline is extracted using the Voronoi diagram
method, also implemented in VMTK. The geometry of the aorta obtained from
the preoperative scans may be slightly different of the aortic geometry at the day
of the intervention. Indeed, it can be deformed, especially when stiff guidewires are
inserted. The aortic geometry must be updated before simulating SG deployment. To
do so, the geometry is rigidly and then non-rigidly registered on the intraoperative
images. Several methods are available for this step [41, 42] ([43] under review). In
addition, we assume that we know the projection matrix of the C-arm.

2.2 Corotational Euler-Bernoulli Beam Elements

In this section we describe the corotational Euler-Bernoulli beam elements that
are used in the following steps to discretize the simplified geometry of the SG
in the global positioning step, and then the stents in the individual deployment
step. Simulations are carried out with Project Chrono [44, 45]. The details of the
theory and implementation of beam elements are described in [46]. We review
here the main concepts. Among the different methods that allow simulating large
deformations by finite elements, the corotational approach is one of the most
versatile as it is based on classical linear finite elements. The corotational approach
allows large displacements, but requires that the strains remain small (Fig. 3).
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Fig. 3 Schematic representation of the corotational approach [46]

A floating coordinate system F follows the deformed element, so that the overall
movement in the deformed CD state can be assumed to be composed of a large
rigid body movement from the reference configuration C0 to the so-called floating
or phantom configuration CS, times a small local deformation from CS to CD. The
underlined symbols represent variables expressed in the floating reference basis F. A
global tangent stiffness Ke and a global force vector fe are derived for each element
e, given its local matrix K, its local force f and the rigid body motion of F in C0 to
F in CS. At each time step, the position and rotation of F are updated.

2.3 Stage 1 (Preliminary Stage)

Stage 1 combines the first two steps of the algorithm: positioning of the stent
barycenters in the aorta and axisymmetric reconstruction of the stents. This step
can be run in real-time as it has a marginal computational cost. However, it is based
on assumptions that may not be fully satisfied in practice. Thus, the output of this
preliminary stage will serve as the starting-point for the updating stage presented in
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Fig. 4 Overview of the algorithm for 3D positioning of barycenters

the next section. The first step is to recover the global position of the SG inside the
aorta. The SG is simulated with a simplified finite element model. The algorithm for
positioning barycenters in 3D is summarized in Fig. 4.

2.3.1 Barycenter Positioning

It is very challenging to find the position of the SG directly in the global reference
frame from a single image. Indeed, the intrinsic nature of the C-arm conical
projection and the discretization in pixels of the detectors lead to a significant
incertitude along the projection axis. A pixel from the flat panel can be assimilated
to a surface, therefore its back projection geometry is not a line but a pyramidal
volume. It is from this volume that the uncertainty on point positioning comes
from (Fig. 5). This uncertainty represents the distance along which an object can
be moved along the projection axis without moving in the projection plane. This
uncertainty depends on the position of the object, i.e. the source-object distance
but also the distance from the projection axis. When the pixel gets closer to the
projection axis, the uncertainty may tend towards infinity. Close to the edges
of the image, the uncertainty becomes lower. For a standard case (source-object
distance = 800 mm, source-detector distance = 1300 mm, 750 pixel × 750 pixel
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Fig. 5 Back projection lines of 2D barycenter coordinates, according to the configuration of the
mobile C-arm and uncertainty of positions along the projection axis at an estimated source-object
distance

detector), a point located 175 pixels from the projection axis has an uncertainty of
4.6 mm.

However, our objective is to reduce this uncertainty as much as possible.
Accordingly, our method uses the aortic geometry as a support for the overall
SG positioning. The first step is to relate each stent barycenter with the closest
point of the artery centerline. This association is achieved in two dimensions. The
centerline of the aorta is projected according to the same projection parameters
as the intraoperative image. Each two-dimensional barycenter is simply associated
with the nearest projected centerline point. This associativity is converted into three
dimensions, assuming that the nearest 2D point is almost equivalent to the nearest
3D point. Each barycenter is then related to the corresponding centerline position
CL (xCL, yCL, zCL).

The next step is to obtain the back-projection lines of each 2D barycenter. For
each stent, we know (from previous image processing) the convex hull and the 2D
position of its barycenter BIm (UIm, VIm) in the screen frame. The position of the
target image in the 3D space, representing the configuration of the X-ray source
and the flat panel detector, is known. Thus, each barycenter on the image can be
associated with a three-dimensional position B2D (x2D, y2D, z2D). Since we know
the projection matrix, we can obtain the corresponding back projection line for each
barycenter. These lines are combined with the geometry of the aorta to obtain the
global position of the SG in the 3D frame. Equations of the projection lines result
from the elementary Cartesian geometry. The X-ray source is at the origin of the
global coordinate system. Therefore, all projection lines have point O (0,0,0) in
common. The projection parameters are known. Thus, each B2D target point of
the image is associated with a back-projection line passing through this point and
through the origin (Fig. 5). The normalized vector of line −→v (

vx, vy, vz

)
is:



A Fast Method of Virtual Stent Graft Deployment for Computer Assisted EVAR 155

−→v =
−−−−→
B2DO∥∥∥
−−−−→
B2DO

∥∥∥
(1)

The SG must now be pre-positioned inside the aorta. The coordinates of each
three-dimensional barycenter B3D (x3D, y3D, z3D) have then a back-projection line
and have previously been associated with the closest centerline point CL (xCL, yCL,
zCL). We know that each barycenter 3D coordinate is located on its back projection
line, but the coordinate p (Eq. 2) of B3D along its line is initially unknown.

B3D (x3D, y3D, z3D) = B2D (x2D, y2D, z2D) + p ∗ −→v (
vx, vy, vz

)
(2)

As a first approximation, we assign to each barycenter the coordinate p from the
nearest centerline point such as z3D = zCL. From Eq. 2, we obtain the following
system of equations:

⎧
⎨

⎩

x3D = x2D + p ∗ vx

y3D = y2D + p ∗ vy

z3D = z2D + p ∗ vz

(3)

Hence:

p = z3D − z2D

vz
(4)

(x3D, y3D) are calculated by solving the system of Eq. (3). Then, we have a first
approximation of the position of barycenters, based on the centerline. In some cases,
this approach is insufficient and must be completed using a finite element model of
the SG. Figure 6 shows what can happen in the case of a large aneurysm sac. In
this case, the centerline follows the shape of the artery. With the approach described
above, stents would be positioned in the sac, which is unlikely and mechanically
unrealistic.

Therefore, stents that are likely to be badly positioned must be separated from
the other ones. In order to define the most precise boundary conditions for the finite
element simulation, stents are divided into two categories: free and locked stents.
The maximum diameter dSmax of the stent, i.e. the diameter of the fully deployed
stent, is compared to the local diameter of the aorta dA at the associated point of
the centerline. If dSmax > dA, the stent is locked. In this case, we assume that the
stent is in equilibrium in the artery and that its barycenter is therefore very close
to the local center of the artery, and therefore to CL. If dSmax < dA, for example if
the stent is in the aneurysm sac, the stent is free. The position of the locked stents
is assigned according to the centerline (see previous section). The position of the
barycenters of free stents will be calculated using a simplified finite element model
of the SG. From the initial three-dimensional geometry of the stent, the 3D position
of each stent barycentre is extracted. Barycenters are connected between each other
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Fig. 6 Error in barycenter positioning due to a deformed centerline: normal centerline (a),
centerline deformed in an aneurysm sac (b), resulting unrealistic stent positioning (blue) in the
sac area and realistic positioning (green) in non-deformed sections (c), expected actual positioning
(d)

by corotational Euler-Bernoulli beam elements according to the initial configuration
of the SG [46] (Fig. 7). The model is set up using the Project Chrono libraries.

The SG model in its initial configuration is pre-positioned in the aorta. Then,
displacements are prescribed onto the locked stents and the resulting displacements
of the free stents are calculated. Free stents cannot go outside the aortic lumen. A
SG is a tubular structure with a high degree of mechanical inhomogeneity due to
the combination of metal stents and textile graft. The SG model is very simplified,
reducing the SG model to a succession of beam elements with the same mechanical
behavior. The mechanical characteristics of these beams therefore have no physical
reality, and have been optimized to ensure the robustness and stability of the model.
As the model is subject to successive boundary conditions (back-projection lines,
aortic volume), we assume that this simplified model is sufficient for our application,
while allowing a very short computation time. The 3D positions of barycenters are
finally determined, hence stent orientation.

2.3.2 Geometric Stent Reconstruction

From the updated 3D position of the barycenters, a geometric reconstruction of
the stent is performed. The initial geometry of each stent, i.e. the metal structure,
is first discretized into a set of points (Fig. 8). Each point is defined as a vector−→
V
(
Vx, Vy, Vz

)
, which originates from the stent barycenter B3D and is expressed

in the stent local coordinate system. Initially, the local reference coordinate system
is the translated global coordinate system. Therefore, the coordinates S(x,y,z) of the
n points of a stent are defined by:
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Fig. 7 From the simplified
geometry of the SG (a), 3D
coordinates of barycenters are
first extracted (b), then
barycenters are connected
using beam elements (c)

Si:1→n = Bi
3D +

−→
Vi (5)

The proximal deployment diameters dp and distal dd are measured during the
image processing step. Here we assume that the stent deployment is axisymmetric.
Thus, the diameter measured in the plane of the image is assumed to be the
same in all directions. The local deployment diameter d of the stent is therefore
interpolated along its main axis z′, initially coinciding with the axis z of the

global reference frame (Fig. 8). New reconstruction vectors
−→
Vd

(
Vdx, Vdy, Vdz

)
are

updated according to the diameter reduction rd such as:

rd = 1 − dSmax − d

dSmax
(6)

⎧
⎨

⎩

Vdx = Vx ∗ rd

Vdy = Vy ∗ rd

Vdz = Vz

(7)

Reconstruction vectors
−→
Vd in the global reference frame is expressed in the global

frame with the rotation matrix R according to:
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Fig. 8 Stent geometric reconstruction, with the local frame O′(x′,y′,z′) and the global frame
O(x,y,z), initial model (a) and after reconstruction (b)

(−→
Vd

1

)
= R

⎛

⎝
−→
Vd

1

⎞

⎠ (8)

Finally, the new position of the stent is calculated with Eq. 5 from the updated

vectors
−→
Vd. The SG is eventually reconstructed (Fig. 8).

Positioning and reconstruction of stents is based on two assumptions: the center
of gravity of the stents is close to the centerline of the aorta and the deployment of
the stents is axisymmetric. Results of Stage 1 (III.C) show that these assumptions
are a source of uncertainty during stent reconstruction, which may prevent in some
cases to correctly simulate stent deployment. Additional steps of individual stent
modeling and deployment corrections are therefore required.

2.4 Stage 2 (Refining Stage)

Individual stent deployment may not be accurate enough and need to be improved.
This stage combines two individual refining steps: minimization of rotation and
individual deployment of stents. The goal of the first step is to determine the actual
angle of rotation Φ of each stent, around its main axis z′. The aim of the second step
is to individually simulate the deployment of the stent in a deployment box. Both
have clinical applications. When the SG is deployed, the actual SG deployment can
be reconstructed in 3D. When the SG is not fully deployed, the EVAR practitioner
can visualize how the SG would deploy at its current position.



A Fast Method of Virtual Stent Graft Deployment for Computer Assisted EVAR 159

2.4.1 Minimization of the Rotational Difference

During deployment, the stent may be subject to rotations Φ around its main
axis z′. In the case of axisymmetric stents, this rotation has little impact on its
final deployment, although the surgeon may wish to improve the accuracy of
reconstruction for critical stents. However, in the case of stents with fenestrations,
their positioning depends on the rotation of the stent. It is therefore essential to
determine these rotations. This step is performed within a minimization loop with a
differential evolution algorithm.

In the case of axisymmetric stents, the value to be minimized is the difference
eS. This difference is calculated in two dimensions. The 3D model of the stent
geometrically reconstructed at the end of the previous step is projected according
to the projection parameters of the target image. eS is the average distance between
each point of the reconstructed stent and its nearest neighbor. This loop is used to
determine the proper rotation Φ ± kθ , where θ is the periodic angle separating two
peaks of the Z-shape axisymmetric stent and k a real integer. Considering fenestrated
SG, all stents with fenestrations or scallops have radiopaque markers to guide the
positioning. The new eM deviation to be minimized is calculated by considering
only the distance between the radiopaque markers. In this case, the proper rotation
Φ is exact and does not depend on θ . Indeed, the positioning of fenestrations is
asymmetrical.

2.4.2 Individual Stent Deployment

The objective of this deployment box is to make maximum use of intraoperative
image data. Thus, the deployment of the stent will be constrained not only by the
geometry of the aorta, but also by the information from its convex hull on the image.
From the convex hull obtained previously, we define a back-projection polyhedron
(BpP). Each side of the BpP is a triangular element. The X-ray source is at the origin
of the global coordinate system. Therefore, all triangular elements have a common
point O (0, 0, 0). Each edge of the convex hull is defined as the edge opposite to the
apex O (Fig. 9). The volume is closed by the surface of the convex hull discretized
in triangular elements. The Boolean intersection of the BpP with the aorta gives a
volume called the deployment box. Boundaries of the volume are meshed with rigid
shell elements. The stent is positioned in this rigid box according to its previously
determined configuration.

The stents are composed of corotational Euler-Bernoulli beam elements. The
mesh size is refined in high curvature areas. The stents are modelled in their 3D
position and orientation determined in the previous steps. Only the diameter of the
stent is changed. The stent model is initialized in its deployed configuration. Then it
is pre-constrained to the diameter of the SG launcher before the simulation begins.
Euler-Bernoulli beam elements have an elastic linear behaviour. The stents have a
diameter of 0.125 mm and are made of 316 L steel which mechanical characteristics
are summarized in [38].
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Fig. 9 Deployment box extracted from the intersection of the aorta volume and the BpP

Each stent, or a selection of stents at the practitioner’s discretion, is deployed
individually. The crimped stent is positioned inside the deployment box. The
position of its barycenter and its orientation have already been recovered during
the global positioning step. Then the stent is deployed (elastic recoil as the stent
was crimped). The deployment is calculated using the Project Chrono engine
[45], with solver Math Kernel Library (MKL) from Intel®. After the first contact,
the time step is reduced to ensure the stability of the model. The contacts are
modelled using the penalty algorithm implemented in Project Chrono, the Smooth-
Contact (SMC) modeling approach. SMC uses penalty (in a discrete element method
(DEM) [47, 48], regularizing the frictional contact forces, with “imaginary” spring-
dashpot systems at each contact) and as such objects in contact will have slight
interpenetration and integration time-step will likely be small. The simulations are
performed on a computer with 4 CPUs, 3.40GHz, 16 GB RAM, but without paral-
lelization. The computation time for deploying a stent is less than 6 minutes, without
optimization. In addition, the complete calculation is easily parallelizable, as each
stent deployment can be simulated on a separate core. The overall calculation time
could therefore be compatible with clinical use.

3 Proof of Concept

The method described above was applied to a patient who underwent an EVAR
procedure.
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Table 1 Clinical summary of EVAR procedure

Sex Male

Age (y) 78
Stent-graft:

Number of stents
Proximal graft diameter (mm)
Distal graft diameter (mm)

ENBF-28-20-C-170-EE
20
28
20

Anevrismal sac thrombus: No

3.1 Clinical Data

Details about the device are given in Table 1. An additional stent was tested,
including three fenestrations: right renal artery, mesenteric artery and left renal
artery fenestrations. The preoperative and postoperative CT scans were acquired at
the Saint-Etienne University Hospital under clinical conditions. Use of the clinical
data was approved by the institutional review board and informed consent was
obtained from the patient. The voxel size of the scans was 0.9395 × 0.9395 × 2
mm3.

First, we evaluated the results of Stage 1. As the results were not precise enough
in terms of radial expansion, a second step of individual stent deployment was
required. We evaluated the results of the complete method, including Correction
Part. The average diameter of the renal arteries was 5–7 mm. If the fenestration
positioning error is less than 3 mm, the surgeon can catheterize the secondary arter-
ies such as renal arteries. Above this threshold, it is considered that intraoperative
complications are likely to arise. Therefore, the clinical validation value was set at
3 mm in accordance with experienced clinicians.

3.2 Quality Assessment of Stent Deployment

First, to isolate and test the stent reconstruction algorithm as precisely as possible,
the following assumptions were made: the projection matrix was known; the 3D
geometry of the aorta was assumed to be perfectly registered. This ensured that not
introducing positioning errors related to aortic registration. Thus, target images and
the 3D model of the aorta were generated from the postoperative scan. The actual 3D
position of the SG was therefore known, and served as a reference to be compared
with the simulation for the sake of validation (Fig. 10).

Several parameters were used to assess the quality of the reconstruction. The first
parameter was the DB distance, which was the distance between the 3D barycentres
of the target stent and the reconstructed stent. This distance was used to assess the
quality of stent positioning within the artery. The second parameter was the distance
DM , which was the average distance between the point clouds of the target stent and
the reconstructed stent. It was defined as the average of the Euclidean distances
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Fig. 10 Flowchart of the validation scheme

between a node of the reconstructed stent and its nearest neighbor among the points
of the target stent. This distance allowed reaching the quality of stent positioning
and deployment to be assessed at the same time. Finally, the last parameter is CSAS,
i.e. the cross-sectional area overlap of target and reconstructed stents, which allows
the quantitative comparison of stent deformations at the SGs folds. Cross-section
areas along the entire stent were measured after deployment in the aneurysm. After
deployment, the cross-sectional areas were modified, particularly in terms of SG
folds. Let AT be the area of the target cross-section ST and AR the area of the
reconstructed cross-section SR. AU is the area of the SU intersection between ST

and SR.

SU = ST ∪ SR (9)

CSAS = 100 ∗ AT − |AT − AU |
AT

(%) (10)

3.3 Results and Discussion

Figure 11 shows the results of Stage 1 and Stage 2 and Table 2 shows a comparison
of the results of the two stages. Concerning Stage 1, the average DB is generally
lower than the clinical validation value, the positioning of stents in the artery is
generally good. However, the error is too large on the contralateral limb, close to
or greater than 3 mm with a maximum of 3.71 mm. About DM , the average error
is less than 3 mm, however the distance map shows that a significant number of
stents have an error too close to the limit. The CSAS map confirms this result, with
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Fig. 11 Distance map representing the distance between the barycenters of the target and the
reconstructed SG from Stage 1 (a) and Stage 2 (b), the RMS distance between the cloud points
of the target and the reconstructed stents from Stage 1 (c) and Stage 2 (d), and the cross-sectional
surface superposition between target and reconstructed stents from Stage 1 (e) and Stage 2 (f).
Each square represents a stent

Table 2 Summary and comparison of Stage 1 and Stage 2 performances

Preliminary part Correction part Difference Difference (%)

DB (mm) Mean ± std 1.02 ± 1.03 0.75 ± 0.32 −0.27 −26.5
Max 3.71 1.40 −2.31 −62.3
Min 0.05 0.15 0,1 200.0

DM (mm) Mean ± std 2.21 ± 0.44 1.73 ± 0.37 −0.48 −21.7
Max 3.12 2.28 −0.84 −26.9
Min 1.54 0.90 −0.64 −41.6

CSAS (%) Mean ± std 69.2 ± 12.8 86.6 ± 5.1 17.4 25.1
Max 89.3 95.2 5.9 6.6
Min 46.9 73.7 26.8 57.1

an average superposition of about 70% and a minimum of 47%, which is much too
low. Thus, an additional step of individual deployment seems necessary. Stage 2
showed a clear improvement in the quality of stent simulation. All measurements
were below the threshold value, with a maximum for the DB of 1.40 mm and for the
DM of 2.28 mm. The mean values were also improved, by reducing the mean error
of −26.5% for the DB and − 21.7% for the DM compared to Stage 1. There was
also a clear improvement in the CSAS by a mean value of 25%.

Figure 12 shows how fenestration positions (front view) were predicted. The
size difference between the target and reconstructed fenestrations results from
the segmentation of the post-operative SG. The fenestrations are surrounded by
radio-opaque markers that create artifacts during imaging. These artifacts make
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Fig. 12 Comparison of the positions of the fenestrations. In red, the target, in blue the recon-
structed fenestration after Stage 1, in green after Stage 2. Right renal fenestration (a), mesenteric
fenestration (b) and left renal fenestration (c)

Table 3 Distance between the center of gravity of target fenestrations and reconstructed fenestra-
tions, before and after Stage 2

Right renal fenestration Mesenteric fenestration Left renal fenestration

DB Stage 1 (mm) 3.06 3.05 6.05
DM Stage 2 (mm) 0.41 1.64 2.46

the markers appear larger than reality. The average distances between the centers
of gravity of the fenestrations are summarized in Table 3. The overlapping of
fenestrations is improved after the refining steps, which is visible on the Fig. 12. The
method, after correction, was therefore able to position the fenestrations precisely
enough to allow the catheterization of secondary arteries, with a maximum distance
less than 2.46 mm for the left renal fenestration.

These results are interesting in comparison with previous work. Indeed, pre-
operative finite element simulations [21] have an average error of about 3.5 mm,
which is higher than the results obtained here, with a longer computation time,
as they are intended for planning purposes. It is though difficult to compare the
previous fast methods with the one presented here. Indeed, the evaluation criteria
are not similar. For example, in [33], the results of the fast method (FM) were
compared with finite element simulations (FE), which may themselves differ from
reality. In complex cases, the average distance between FM and FE is about 3–
4 mm, for a very short calculation time (<1 min). However, these methods are not
guided by intraoperative imaging. In [36], an accuracy of about 2–3 mm is reached,
which is comparable to our results, with a shorter computation time. However, their
method was based on additional markers bonded onto the device, which does not
seem suitable. Compared to these previous studies, our method seems to achieve a
promising compromise between accuracy, computation time and compatibility with
current clinical conditions.

With a computer powered by 4 CPUs, 3.40GHz, 16 GB RAM, the calculation
time for Stage 1 is under 20 seconds. The calculation time for the rotation
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minimization is under 1 minute. The maximum calculation time for the deployment
simulation is 6 minutes. Co optimization and parallelization are currently ongoing
to enable applications in clinical conditions.

The results of Stage 1 (first and second steps) show that the SG position is
globally well predicted in the artery, but that the radial deployment of stents is
not sufficiently accurate, with errors exceeding the 3 mm threshold. However,
corrections made in Stage 2 (third and fourth step) yield a reasonable accuracy. More
specifically, accurate predictions of fenestration positions after Stage 2 would avoid
complex catheterization of secondary arteries, which is one of the major source of
complications for practitioners.

However, the method has several limitations. First, it depends on the quality of
the input data. Indeed, we assume that stents can be individualized using image
processing. If this assumption is usually satisfied, overlapped stent can challenge
it, for example, in the case of very pronounced angulation of the proximal neck of
the aneurysm. In addition, the geometry of the aorta is assumed to be known, as it
was updated using a non-rigid registration method previously. However, registration
errors could occur and add to the other errors mentioned in the chapter. The
non-rigid registration step also involves restriction for clinical applications. As
we assume that we know the geometry of the aorta before the SG deployment
simulation, the non-rigid registration must be performed each time the mobile C-
arm position is changed, which implies to perform a DSA in order to visualize the
aorta. The method should therefore only be used at key points in the procedure.
Moreover, segmentation errors of the aorta volume are possible, but they are difficult
to identify and probably have a minor influence on the results. A priori, the presence
of thrombus is not a major problem for segmentation. Indeed, the aortic lumen is
segmented during preoperative planning, not the aorta itself, and the SG is deployed
in the lumen. Effects of thrombus on overall aortic stiffness are considered in
the previous non-rigid registration step. But local variations in stiffness, due to
thrombus, calcifications or surrounding tissues are not taken into account. Other
limitations are related to the method itself. In order to save calculation time, the
deployment of stents was simulated individually within rigid boxes. The rigid nature
of the boxes is obviously a simplified mechanical behavior of the arterial wall but it
did not induce significant errors when the simulations were compared with the post-
operative CT scan. Finally, by simulating the individual deployment of stents, we do
not consider the effect of the textile graft connecting them together. For example, a
highly crimped stent can change the deployment diameter of the neighboring stent
independently of the local geometry of the aorta. However, initial results show that
these limitations do not hamper the accuracy more than what is compatible with
clinical expectations. The influence of other assumptions should be investigated
further with additional patient data.

This method would be particularly suited for complex cases of thoracoabdominal
aortic aneurysms that require the use of fenestrated stent grafts. Indeed, when
positioning fenestrations, the surgeon can potentially encounter difficulties. In most
cases, the method is able to provide assistance to the surgeon. A few exceptions can
challenge the method. The method is based on data extracted in the plane of the
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intraoperative image. Missing information along the projection axis are provided by
simulations. If the main deployment axis of the stent graft was located along the
projection axis, the method may have difficulty simulating the device. In practice,
this situation seems very unlikely though.

4 Conclusion

We have presented in this chapter a methodology for simulating SG deployment
based on intraoperative images coupled with mechanical models. The algorithm
consists of a series of successive steps with increasing precision. A first step
simulates the positioning of the SG within the aorta using a simplified finite element
model and the centerline of the artery. The second step is an axisymmetric geometric
reconstruction of the stents. The third step minimizes the rotation of the stent around
its main axis. Finally, the last step consists in deploying each stent individually
within a deployment box extracted from the imaging and geometry of the aorta.

The results of combined Stage 1 and Stage 2 yield a reasonable accuracy. More
specifically, accurate positioning of fenestration would facilitate catheterization of
secondary arteries. But the method suffers from several limitations. First, it depends
on the quality of the input data and the ability of image processing to distinguish
stents. In addition, the geometry of the aorta is supposed to be known. Next, the
wall of the artery is considered rigid when the stents are deployed. Lastly, textiles
are not simulated. The influence of these limitations on the accuracy of simulations
needs to be explored further using additional patient data.

Finally, the translation of our methodology seems promising and could be
generalized to all operating rooms equipped with mobile C-arms to assist SG
deployment using real-time simulations in the future.
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Efficient GPU-Based Numerical
Simulation of Cryoablation of the Kidney
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and Tobias Preusser

Abstract Cryoablation, a minimally invasive technique for treating cancer, could
benefit from computer support in planning, intervention and follow-up. For employ-
ing such treatment planning in daily clinical routine, individualized simulation
of cryoablation needs to be sufficiently accurate and fast. This paper describes a
simulation of cryoablation of human kidney permitting high-performance simula-
tions on graphics hardware. The simulation involves partial differential equations
modeling temperature evolution and phase changes in the tissue, as well as equations
describing the dependence of tissue parameters on tissue temperature. A mushy
region approach and a predictor-corrector time stepping scheme are utilized for
discretization to achieve an efficient numerical scheme implemented on graphics
hardware. The simulation is planned to be integrated in an approved medical device.

Keywords Cryoablation · Enthalpy approach · Tissue parameter model ·
Numerical simulation · GPU computing

1 Introduction

Thermal ablation for cancer treatment has reached significant attention in recent
decades. As a minimally invasive technique, it allows treating patients with pal-
liative and curative intent when surgery is not possible. In hyper-thermal ablation,
energy is introduced into the tissue, heating it locally up to temperatures at which
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proteins denaturate and cells die. The energy entry is achieved through laser
light (LITT), microwaves (MWA), radio-frequency current (RFA), or high inten-
sity focused ultrasound (HIFU, FUS) [8]. In hypo-thermal percutaneous ablation
(cryoablation), the focus of this paper, an applicator (cryoprobe) is inserted into the
target structure, cooling the tissue below freezing. The general treatment protocols
include an alternating sequence of cooling, passive thawing (no cooling), and
active thawing (warming). During freezing and thawing, complex processes take
place in the tissue, including crystallization of water, cell dehydration, metabolic
derangement, and vascular stasis [9]. Cyroablation has been in clinical use for many
decades. Today it is performed in a variety of organs [34], including prostate, kidney,
bone, breast, and pancreas.

For the aforementioned ablation techniques, it has been hypothesized that
computer support for the planning, execution, and follow-up allows achieving better
outcome [7, 15, 27]. In this context, many research activities on mathematical
modeling, numerical simulation, and optimization of thermal ablation have been
conducted in the past decades. In addition to tasks of image processing, such as
registration, segmentation, and quantification, computer models are used to simulate
the temperature fields or tissue destruction on patient-specific image data. Based
on such thermal simulation, optimal probe placement can also be calculated by
computer programs. For post-treatment follow-up, image registration can be used
to assess the result of the treatment.

Clinical applicability of numerical simulation and optimization, however, faces
several constraints and challenges:

1. Patient-specific data on biophysical tissue properties is not available
2. Computational power is mostly limited to contemporary desktop/laptop PCs
3. Established clinical workflows only allow for small timeframes in which a

numerical simulation can take place.

Thus, any effort on numerical simulation or optimization intending to yield an
impact in the clinical setting must strike a balance in the “force-field” created
by these constraints: Computational accuracy must be balanced with limited
computational power, uncertainty of tissue data must be quantified, and sensitivity
of the simulation results with respect to data uncertainty must be analyzed.

In this paper, we report our activities in the development of a high-performance
simulation of cryoablation that runs on contemporary graphics hardware and is
fast enough to be utilized in the daily clinical routine. Our work merges findings
of previous authors on modeling cryoablation and temperature-dependent tissue
parameters (see citations below and in the following sections) in an engineering
effort. We leave open scientific questions untouched and instead choose a pragmatic
approach towards a numerical simulation with appropriate accuracy and speed.
The cryoablation simulation described in this paper has been quality assured and
developed according to ISO13485 [13]. Together with an industry partner, the
simulation has been validated and is planned to be integrated into an approved
medical device.
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Our simulation is to be utilized by a user (clinical doctor) with access to
patient-specific image data (CT or MRI) of the patient’s kidney. Through image
segmentation, the user must have identified the organ, the target region (lesion or
tumor), blood vessels, and risk structures. The segmented image regions determine
tissue classes to be considered as an input to the numerical simulation. Based
on parameters of a cryoprobe and a user-prescribed cryoablation protocol, i.e., a
cycle of alternating phases of freezing and thawing, the simulation calculates the
temperature field at the end of the ablation cycle. The user can decide to overlay
this temperature field with the segmented image data and draw conclusions about
possible tissue damage.

Related Work In a related approach, Rossi, Rabin et al. [22, 23] presented efficient
numerical schemes and approaches to experimental validation of cryosurgery.
Keelan et al. [14] investigated GPU-based bioheat simulation in the context of
cryoablation and its use as a training tool. Further, Rabin et al. [19, 28] presented
a training tool for prostate cryosurgery. Zhang et al. [35] discussed numerical
simulation of cryoablation in prostate cancer. Furthermore, Baissalov et al. [2]
worked on an in-silico treatment planning used for optimization of multi-probe
cryoablation. We will cite further publications throughout this paper in the realm
of modeling of cryosurgery and the dependence of material parameters on tissue
temperature.

Structure of the Paper The mathematical model for cryoablation is presented in
the following Sect. 2. A tissue parameter model is discussed in Sect. 3. Thereafter,
Sect. 4 presents our discretization tailored towards implementation on GPU hard-
ware as described in Sect. 5. Some numerical tests and an example using real patient
data are shown in Sect. 6. Finally, we summarize our work, draw conclusions and
give an outlook on future work in Sect. 7.

2 Mathematical Model for Cryoablation

Our goal is to achieve a simulation of the tissue temperature T and the tissue
freezing state F in the 3D spatial domain Ω = Ωtissue ∪ Ωneedle ∪ Ωactive ⊂ IR3

and within the time interval I := [0, tend] where tend denotes the overall duration
of a freeze-thaw cycle of a cryoablation of the kidney. Here, Ωneedle ∪ Ωactive
denotes the volume covered by the ablation probe(s), Ωactive is their active zone(s),
and Ωtissue the surrounding tissue. We refer to Fig. 1 for a schematic illustration
of these domains in 2D. Note that Ωneedle and Ωactive may denote the respective
volumes of multiple needles that are used simultaneously and are driven by the
same therapy protocol. We assume, however, that the isolated needle parts have
negligible influence on the temperature evolution and let Ωneedle = {}. The outer
boundary of Ω is denoted by ∂Ω .
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Fig. 1 Computational
domain sketched in 2D

Fig. 2 Enthalpy H vs
temperature T during phase
transition between liquid and
frozen water

H

TTfreezing

latent heat L

2.1 Temperature Model

Modeling temperature during cryoablation involves the phase change from liquid
water to frozen water. Thus, the governing equations must consider enthalpy per
volume H = ρcT , i.e., thermal energy and latent heat L, the energy released in the
freezing process. At the freezing point Tfreezing, the enthalpy jumps by an amount
equal to the latent heat, see Fig. 2. The heat conduction process is described by
(cf. [12])

∂

∂t
(ρcT + L) = ∇ · (k∇T ) + Q in I × Ω, (1)

with appropriate boundary and initial conditions, see below. Here and in the
following, T (t, x) denotes temperature (in K), L(t, x) denotes latent heat (in J/m3),
ρ(t, x; T , F ) denotes density (in kg/m3), c(t, x; T , F ) denotes specific heat capacity
(in J/kg K) also called specific heat, and k(t, x; T , F ) denotes the heat conductivity
(in W/mK). The variables ρ, c, and k are patient-specific tissue parameters whose
modeling and the associated uncertainty are discussed below. We emphasize that ρ,
c, and k depend on the temperature T and the freezing state F . Heat sources and
sinks are denoted by Q(t, x).
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Latent Heat Our approach models a lumped energy balance which does not
distinguish between intracellular and extracellular constituents of the tissue. Instead,
the thermodynamical properties result from the volume fractions of ice and water.
Thus, the latent heat L depends on the mass fraction of water present which is
capable of undergoing freezing and thus can be expressed as

L(t, x) = lρ(t, x; T , F )Λ(1 + F(T )) (2)

where l is the mass-specific latent heat (in J/kg) and Λ (unitless) is the total volume
fraction of water within a unit volume of tissue (water content). The state F ∈
[−1, 0] (unitless) represents the phase of water. A value of −1 indicates a fully
frozen unit volume of water, and a value of 0 indicates a fully liquid unit volume of
water. Thus, 1 + F is the mass fraction of liquid water.

Heat Sources and Sinks When modeling thermal ablation, the source term Q(t, x)

in (1) considers

(A) volumetric heat sources and sinks qs(t, x),
(B) the heat sink1 effect by capillary perfusion qp(t, x) and larger blood vessels,
(C) the heat induced by metabolic activity qm(t, x).

A. Volumetric Heat Sources and Sinks The energetic interaction between the
cryoablation needles and the surrounding tissue is purely through heat diffusion
through the surfaces of the needles. Because the needle is kept at an extremely
low temperature by the cryoablation device, we use a Dirichlet boundary condition
rather than a volumetric source/sink term. Thus, we let qs(t, x) = 0.

B. Capillary Perfusion We model the heat sink effect due to capillary perfusion
through an effective conductivity term [33]. Thus, we let qp(t, x) = 0 and we
replace the thermal conductivity k with

keff(t, x; T , F ) = k(t, x; T , F )(1 + αwblood(t, x;F) ) (3)

(again in W/mK). The (unit-less) blood perfusion rate wblood is known from the
classical Pennes model [17]. The value α = 2 (unitless) is based on Shih et al. [29]
and describes the local blood vessel size and density.

C. Metabolic Activity Because metabolic activity ceases when temperatures
approach freezing, it is safe to let qm(t, x) = 0.

Blood Vessels In our approach, we model only capillary perfusion. Larger blood
vessels could be modeled through distinct material properties or by an additional
internal Dirichlet boundary. However, there is no bench data available that allows
developing a model for the heat sink effect of blood vessels during cryoablation, and

1Note that in cryoablation, blood vessels act as “warming devices”. Nevertheless, we employ the
widely used “heat sink effect” notion seen in the literature.
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the limited amount of available clinical data is not sufficient for a rigorous heat sink
model. From clinical data, the heat sink effect of blood vessels during cryoablation
is known to be less prominent than for hyperthermal ablation, i.e., the ablation area
is close to ellipsoidal, and the effects of different tissue characteristics surrounding
the needles seem to dominate the influence of the vessels in the available data. Thus,
we refrain from modeling large blood vessels explicitly.

Combining all equations from above as the temperature model, we arrive at the
following extension of the classical bioheat transfer equation

∂

∂t
(ρcT ) = ∇ · (keff∇T ) − lΛ

∂

∂t
(ρ(1 + F)) in I × Ω. (4)

Boundary and Initial Conditions Equation (4) is a parabolic PDE to be solved
in the time-space cylinder I × Ω with appropriate boundary and initial conditions:
Because tissue is at body temperature (Tbody = 310.15 K) at the beginning of the
therapy, a straightforward and meaningful initial condition is given by T (0, x) =
Tbody and F(0, x) = 0 for x ∈ Ω . Assuming that the computational domain Ω

is large enough that the cooling of the cryoprobe does not interfere with the body
regions outside of the computational domain, we consider the outer boundary ∂Ω

to be a Dirichlet boundary with a constant body temperature, so T (t, x) = Tbody for
t ∈ I and x ∈ ∂Ω .

The inner boundary ∂Ωactive is used during the freezing and active thawing cycle
only. During passive thawing the temperature in Ωactive is not fixed, but follows the
diffusion equation (4) like all other parts of the domain Ω . During active thawing,
the temperature in Ωactive is set to Tbody. Finally, during the freezing phases, we
prescribe a fixed temperature Tneedle on the active zones of the instrument.

In summary, the boundary conditions on the active zone are

T (t, x) =
{

Tneedle if x ∈ ∂Ωactive, t ∈ freezing phase,

Tbody if x ∈ ∂Ωactive, t ∈ active thawing phase.
(5)

2.2 Freezing Model

To model tissue freezing, we employ a mushy region approach in which F(T )

denotes the volume fraction of water that has undergone the phase change from
liquid to frozen. We use an explicit relation between the temperature T and the
freezing state F of the form

F(T ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−1 if T ≤ T0,
T1 − T

T0 − T1
if T0 < T < T1,

0 if T ≥ T1.

(6)
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We follow [20, 22] and choose T0 = 247.15 K and T1 = 273.15 K. Note that by
the chain rule, ∂

∂t
F (T ) = ∂F

∂T
∂T
∂t

= F ′ ∂T
∂t

, the derivative of F can be calculated
piecewise in (6). Regarding the influence of enthalpy on the energy balance in
Eq. (4), this result means that an additional change of temperature F ′ ∂T

∂t
is active

only during the phase transition, i.e., when T ∈ (T0, T1).
With the mushy region approach, the jump in the enthalpy per volume at freezing

is converted into an invertible approximation given by

H(T ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ T

0
ρ(θ)c(θ) dθ if T ≤ T0,

∫ T

0
ρ(θ)c(θ) dθ + (1 + F(T )) lρ(T )Λ if T0 < T < T1,

∫ T

0

(
ρ(θ)c(θ) + lρ(θ)Λ

)
dθ if T ≥ T1.

(7)

2.3 Damage Model

Various approaches to model the freezing-induced tissue damage have been
reported [9]. The criteria deduced for tissue damage vary significantly. Therefore,
our simulation only provides the temperature distribution at the end of the simulated
freeze/thaw cycle. An interpretation of this temperature distribution is left to
a clinical expert that would be using the simulation. Consequently, all tissue
parameters have to be modeled with dependency on the tissue temperature and
not on the tissue state.

3 Tissue Parameter Model

The model equations from the previous sections involve tissue parameters that
are state-dependent (cf. (1)) and spatially resolved. In our approach, we introduce
a label function T : Ω → L. Each spatial location x in the computational
domain Ω is assigned one of the tissue types in the set of tissue labels L =
{kidney, kidney tumor, kidney background}. The tissue label kidney background
represents the mixture of different tissues outside the organ of interest. These may
appear in the computational domain when it does not completely lie inside the organ
but crosses its boundaries. When using the simulation for patient specific treatment
planning, these domains need to be obtained by segmentation of the corresponding
patient specific image data.

We assume that all parameters depend on the type of tissue T and its tem-
perature T . Furthermore, the heat capacity c and thermal conductivity k depend
on the freezing state F . However, due to the coupling of the freezing state and
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the temperature via the mushy region approach (cf. (6)), this dependency can be
expressed solely through the temperature T . Thus, our tissue parameters are of the
form c(t, x; T , F ) = c(T(x), T (t, x)) etc. The effective thermal conductivity keff
results, as before, from (3).

We maintain the density ρ with respect to changes in the temperature T to
account for mass conservation in our model equations and their discretization, i.e.,
ρ(t, x; T , F ) = ρ(T(x)).

Thermal Conductivity k As described above, k is given in units W/mK. We omit
units for constants throughout this section to simplify notation.

Kidney Pham and Willix [18] investigated the change of thermal conductivity in
ex-vivo thermodynamical measurements of fresh lamb meat and suggest

k(T ) = a + bT + c

T
for T < Tfreezing (8)

for appropriately chosen values of a, b, and c. In this equation, the term bT accounts
for the variation of thermal conductivity of ice with temperature. The term c/T

models the change of thermal conductivity with the fraction of frozen water, which

itself varies as 1 − Tfreezing
T

. Pham and Willix set Tfreezing = 272.25 K (−1◦C) as
an approximation to the temperature at which the jump occurs in the enthalpy-
temperature curve, see Fig. 2. For temperatures above freezing, i.e., T > Tfreezing,
the c/T term is omitted, thus

k(T ) = d + eT (9)

with appropriate values d and e.
Pham and Willix used linear regression and interpolation to find the correspond-

ing values of a, . . . , e from their measurement data. We use their results for lamb
kidney tissue and reformulate equations (8) and (9) to arrive at

k(kidney, T ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0.507 − 0.0075(T − Tfreezing)

+0.78

(
1

(T − 273.15)
− 1

(Tfreezing − 273.15)

)
⎫
⎪⎬

⎪⎭
if T ≤ Tfreezing,

0.507 + 0.0012(T − Tfreezing) if T > Tfreezing.

(10)

Kidney Tumor In [31], tumor tissue is reported to show significantly different
properties than water. Deshazera et al. [6] refer to studies that show that the thermal
conductivity of tumors resected from humans and animals is as much as 20%
higher than healthy liver tissue. We apply this finding for kidney tumors and set
k(kidney tumor, T ) = 1.2 kkidney(T ).
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Kidney Background We assume that fat tissue dominates in the tissues that
surround the liver. To the authors knowledge, no investigations on the temperature
dependence of the thermal conductivity of human fat tissue have been reported in
the literature. ITIS [11] reports values at body temperature of 310.15 K.

Consequently, we base our model on the work of [10], who investigated the
thermal conductivity of dairy products, whose fat, like human fat tissue, mainly
consists of triglycerides. They report affine linear dependence, i.e., k(T ) = a + bT .
Empirical equations are given for different fat content, e.g., for 60% and 80% as

kcream, 60% fat(T ) = 0.1743 + 0.001264 · (T − 273.15),

kcream, 80% fat(T ) = 0.1653 + 0.000997 · (T − 273.15).
(11)

Assuming water content of 30% for adipose tissue [26] and 70% fat content, we
derive the thermal conductivity for adipose tissue as mean value of these equations,
thus

k(fat, T ) = 1

2

(
kcream, 60% fat(T ) + kcream, 80% fat(T )

)
. (12)

For temperatures below the freezing, we directly adopt the values listed in Choi
et al. [4] for bovine fat, see Table 1.

Specific Heat Capacity c

Kidney Choi and Bischoff [4] present values for the specific heat capacity in lamb
kidney at different temperatures below freezing. Rossmann and Haemmerich [24]
present values for temperatures above the freezing. We take the values from these
references as shown in Table 2 and we interpolate linearly between them.

Table 1 Values of k in fat T k

[ ◦C] [K] [ W
m K ]

−18 255.15 0.28

−9.4 263.75 0.3

−7.6 265.55 0.216

−5 268.15 0.266

0.1 273.25 0.193

37 310.15 0.21145

Table 2 Values of c in
kidney

T c

[◦C] [K] [ J
kg K ] Reference

−40 233.15 1630 [4]

−23 250.15 2140 [4]

10 283.15 3505 [24]
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Table 3 Values of c in fat T c

[ ◦C] [K] [ J
kg K ] Reference

−160 113.15 865 [4]

−120 153.15 1015 [4]

−80 193.15 1380 [4]

−40 233.15 1950 [4]

20 293.15 2348 [11]

Table 4 Values of ρ ρ

Tissue type [ kg
m3 ] Comments & references

Kidney 1066 [11]

Kidney tumor 1066 Like native tissue

Fat (kidney bg) 911 [11]

Table 5 Values of Λ Λ

Tissue type [%] Comments & references

Kidney 79.47 [16]

Kidney tumor 83.44 Kidney + 5% [21]

Fat (kidney bg) 30 [26]

Kidney Tumor Due to lack of data, we pragmatically set c(kidney tumor, T ) =
c(kidney, T ).

Kidney Background Again, Choi et al. [4] serves as our reference for values of the
specific heat capacity of bovine and pig fat (which is the kidney background tissue)
between 113.15 K and 233.15 K. Because the references give a range (min/max) of
heat capacity values, we use the averages of porcine and bovine fat values for the
available temperature samples as shown in Table 3.

Density ρ For reasons of energy and mass conservation, we assume that the tissue
density does not change with temperature, see Table 4.

Water Content � We base the values for water content on [16] and [25].
Furthermore, according to Ross [21], tumor tissue in the liver has up to 5% more
water than normal liver tissue. We also use this observation for the water content of
kidney tumors, see Table 5.

Perfusion Rate wblood In our model, the relative perfusion rate wblood is needed as
part of the heat sink term in the bioheat transfer Eq. (4). Thus, this parameter refers
to capillary perfusion in the tissue in contrast to blood flow in larger blood vessels.
Because the tissue freezes below Tfreezing, we set the relative capillary perfusion
rate wblood to zero below this temperature. No information on the temperature
dependence of wblood can be found in the literature. Therefore, we interpolate
linearly between Tfreezing and Tbody, where the values of wblood for Tbody are
computed from the specific perfusion rates reported in the literature with the density
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Table 6 Values of spec. perfusion rate and resulting rel. perfusion rate wblood

Spec. perf. wblood

Tissue type rate [ m3

kg
1
s ] [ s−1 ] Comments & references

Kidney 6.66 · 10−5 0.071 [30]

Kidney tumor 6.66 · 10−5 0.071 Like native tissue

Fat (kidney bg) 0.00175 Estimated, [3, 30]

values from Table 4. Due to the lack of further information for higher temperatures
and because we do not consider a warming process, we pursue with constant
perfusion rate above body temperature in our approach. Due to the lack of data for
tumor tissue types, we use the values of native tissue instead. The resulting values
are reported in Table 6.

4 Discretization

4.1 Temporal Discretization

For increased performance on the proposed graphics hardware architecture (GPU
computing), we choose an explicit time-stepping scheme with a fixed time step
size τ . Equidistant time points ti = iτ are introduced such that the final time
point tend is reached and such that the minimal number of time steps J is used
with tend = Jτ and τ . The time step size τ is deliberately not chosen adaptively but
such that it fulfils the CFL condition [5] asserting stability for all possible values of
the material coefficients and their state dependency. The selection of the stable time
step is detailed below.

In the following, we denote time discrete quantities with a superscript (i), i.e., for
i = 0, . . . , J we write T (i)(x) = T (ti , x), F (i)(x) = F(T (i)(x)), etc. For later use,
we introduce the set of boundary points Γ (i), which varies according to the phases
of the cryoablation cycle, thus,

Γ (i) = ∂Ω ∪
{

∂Ωactive if ti ∈ freezing phase or active thawing phase,

∅ else.
(13)

Also, we introduce the temperature at the active tip of the cryoprobe for each time
step in which the active zone acts as Dirichlet boundary as

T
(i)
probe =

{
Tneedle if ti ∈ freezing phase,

Tbody if ti ∈ active thawing phase.
(14)
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Predictor Step for Temperature Computation As a central ingredient of our
time-stepping scheme, we evaluate all nonlinearities at the old time step ti , assuming
that tissue parameters change slowly with temperature and freezing state and thus
can be regarded as constant per time step. Consequently, we can use a simple
forward difference quotient to approximate

∂

∂t
(ρcT )(ti , x) ≈ ρ(i)(x)c(i)(x)

T (i+1)(x) − T (i)(x)

τ
. (15)

In this approximation, we intentionally omit the time derivatives of ρ and c because
we assume that they are constant per time step. Using this, a prediction of the
updated temperature is obtained by

T (i+1/2)(x) = T (i)(x) + τ

ρ(i)(x)c(i)(x)

[
∇ ·

(
k
(i)
eff(x)∇T (i)(x)

)]
. (16)

Corrector Step for Temperature Computation To approximate the enthalpy term
of (4), we use a correction step that allows us to achieve an enthalpy-conserving
discrete scheme for temperatures within the mushy region [T0, T1]. To this end, we
approximate the nonlinear enthalpy-temperature relation from Eq. (7) (see Fig. 2) by
an idealized and invertible approximation H̃ (i):

H̃ (i)(T ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c(i)T − lΛ if T ≤ T0,

c(i)T +
(

T − T0

T1 − T0
− 1

)
lΛ if T0 < T < T1,

c(i)T if T ≥ T1.

(17)

This approximation H̃ interpolates the slope of the enthalpy H locally around T (i),
see Fig. 3 (left). Based on Eq. (17), we evaluate the current enthalpy of the prediction
step as

T1T0

H

T

liquid

mushy 
region

frozen

Tfreezing

~

T1T0

H

TT i

HH

H

i+1/2

i+1/2

T

~

Fig. 3 Left: Enthalpy vs. temperature curve in an idealized setting used in the discretization. Right:
The temperature correction step projects the temperature estimate T (i+1/2) back to the curve of H̃ ,
keeping the local enthalpy H(i+1/2) constant
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H(i+1/2) = c(i)T (i+1/2) +
(

T (i) − T0

T1 − T0
− 1

)
lΛ. (18)

We consider the freezing state from the old temperature T (i) to evaluate the
latent heat. Due to the unrestricted temperature update from Eq. (15), the temper-
ature/enthalpy pair (T (i+1/2), H (i+1/2)) computed here may not fulfil the desired
temperature/enthalpy relation, see Fig. 3 (right). Thus, we project the current
enthalpy back on the prescribed enthalpy/temperature relation, solving the right
hand side of the linearized enthalpy approximation (17) and yielding the temper-
ature update

T̃ (i+1/2) = H(i+1/2)(T1 − T0) + T1lΛ

c(i)(T1 − T0) + lΛ
. (19)

The freezing state is updated according to the corrected temperature value, F (i+1) =
F−1(T̃ (i+1/2)) where the invertible relation (6) is used.

Conservation of Energy Special care needs to be taken to maintain the con-
servation of energy prescribed by the conservation law (1) in the discretized
model. Therefore, we introduce a post-processing energy conservation step after
the temperature and enthalpy predictor-corrector step.

The state-dependent heat capacity c(x; T ) may alter the local energy at a point
x ∈ Ω . Thus, when updating the heat capacity c we must modify T as well to
ensure an energy consistent modification of the material based on the enthalpy
approximation from Eq. (17). This is done by calculating the “artificial” energy (see
Fig. 4) that would result from the heat capacity change if not corrected

Ẽ(x) = 1

2

(
c(i+1/2)(x) − c(i)(x)

) (
T̃ (i+1/2)(x) − T (i)(x)

)
. (20)

Fig. 4 Relation between the
artificial energy Ẽ and the
enthalpy approximation H̃

for the energy-conserving
material update

c

Ti
T i+1/2

c i+1/2

T

H(T )
~ i

E(T )
~ i+1/2

c i
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This artificial energy Ẽ is then used to correct the local temperature estimate via

T (i+1)(x) = T̃ (i+1/2)(x) − Ẽ(x)

c(i+1)(x)
. (21)

Conservation of Mass Mass conservation is ensured by using a constant density
ρ, i.e., independent of temperature or freezing state.

Time Stepping Algorithm In summary, we arrive at the following algorithm for
the computation of one time-step of the simulation, i.e., computing the values of
T (i+1) and F (i+1) given T (i), F (i), and the respective tissue parameters:

1. Compute a predictor T (i+1/2) for the updated temperature through one timestep
of the bioheat equation (4) without the enthalpy term according to (17).

2. If the temperature estimate T (i+1/2) lies

(a) within the mushy region, i.e., T (i+1/2) ∈ (T0, T1), an additional change of the
temperature due to the phase change is necessary. In this case, we perform
the energy correction step from Sect. 4.1, yielding an updated estimate
T̃ (i+1/2)(x).

(b) outside the mushy region, i.e., T (i+1/2) �∈ (T0, T1) the energy correction is
not applied, thus T̃ (i+1/2)(x) = T (i+1/2)(x).

3. The freezing state is updated according to the corrected temperature value,
F (i+1) = F−1(T̃ (i+1/2)) where the invertible relation (6) is used.

4. The energy conservation step corrects the temperature T̃ (i+1/2) according to the
new value of the heat capacity c(i+1), see Eqs. (20) and (21). This step yields the
final temperature update T (i+1).

This algorithm is visualized as a flow diagram in Fig. 5.

4.2 Spatial Discretization

Assuming that the computational domain Ω is always a cuboid, we introduce a
regular and isotropic hexahedral grid on Ω with a grid width (resolution) of h.
Thus, we introduce nodes xl,m,n = h(l,m, n)t ∈ Ω for l = 0, . . . , Nx, m =
0, . . . , Ny, n = 0, . . . , Nz. Whereas the grid with h is variable from the viewpoint
of numerical analysis, for computations on real patient data we choose h = 0.001 m
comparable to the voxel size of patient-specific image data.

To fully discretize our model, the time-discrete quantities from Sect. 4.1 are only
evaluated on these grid points. The corresponding values are denoted by a subscript,

i.e., T
(i)
l,m,n = T (i)(xl,m,n), ρ

(i)
l,m,n = ρ

(
x; T

(i)
l,m,n, F

(i)
l,m,n

)
, etc. Consequently, we

transform the space-continuous time-discrete equations into a fully discrete equation
in (Nx + 1)(Ny + 1)(Nz + 1) DOF per state and time step.
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START
initialize i = 0,

F (0) ≡ 0, T (0) ≡ Tbody

compute time step
size τ , cf. (26)
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Fig. 5 The time stepping of the cryo simulation is visualized as a flow diagram

To discretize the nabla operator in the predictor equation (16), we use the relation

∇ ·
(
k
(i)
eff(x)∇T (i)(x)

)
= ∇k

(i)
eff(x) · ∇T (i)(x) + k

(i)
eff (x)ΔT (i)(x). (22)
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To discretize the Laplacian, we use the classical 7-point stencil, i.e.,

ΔT (i)(xl,m,n) ≈ 1

h2

(
6T

(i)
l,m,n

−T
(i)
l−1,m,n

−T
(i)
l+1,m,n

−T
(i)
l,m−1,n

−T
(i)
l,m+1,n

−T
(i)
l,m,n−1−T

(i)
l,m,n+1

)
.

(23)

For ∇k
(i)
eff(xl,m,n) and ∇T (i)(xl,m,n) we use one-sided differencing, i.e.,

∇k
(i)
eff(xl,m,n) ≈ 1

h

⎛

⎜⎝
(k

(i)
eff)l,m,n − (k

(i)
eff )l−1,m,n

(k
(i)
eff)l,m,n − (k

(i)
eff )l,m−1,n

(k
(i)
eff)l,m,n − (k

(i)
eff )l,m,n−1

⎞

⎟⎠ ,

∇T (i)(xl,m,n) ≈ 1

h

⎛

⎜⎝
T

(i)
l,m,n − T

(i)
l−1,m,n

T
(i)
l,m,n − T

(i)
l,m−1,n

T
(i)
l,m,n − T

(i)
l,m,n−1

⎞

⎟⎠ , (24)

These formulae are used away from any boundary, i.e., for inner points of
the domain xl,m,n �∈ Γ (i), such that the indexing is appropriate. Combining all
approximations, we arrive at the following update formula for the temperature
prediction (cf. (16))

T
(i+1/2)
l,m,n = T

(i)
l,m,n + τ

ρ
(i)
l,m,nc

(i)
l,m,n

1

h2

( (
(k

(i)
eff )l,m,n − (k

(i)
eff )l−1,m,n

) (
T

(i)
l,m,n − T

(i)
l−1,m,n

)

+
(
(k

(i)
eff )l,m,n − (k

(i)
eff )l,m−1,n

) (
T

(i)
l,m,n − T

(i)
l,m−1,n

)

+
(
(k

(i)
eff )l,m,n − (k

(i)
eff )l,m,n−1

) (
T

(i)
l,m,n − T

(i)
l,m,n−1

)

+(k
(i)
eff )l,m,n

(
6T

(i)
l,m,n − T

(i)
l−1,m,n − T

(i)
l+1,m,n − T

(i)
l,m−1,n − T

(i)
l,m+1,n

− T
(i)
l,m,n−1 − T

(i)
l,m,n+1

))
if xl,m,n �∈ Γ (i)

(25)
The boundary values for nodes xl,m,n ∈ Γ (i) are excluded from this update formula.
They are updated in a separate loop according to the actual phase of the simulation
cycle (freezing, active thawing, passive thawing).

A general sufficient condition for the stability of explicit finite difference
schemes is the non-negativity of all coefficients [1]. Thus, taking into account the
above spatial discretization and by estimating the maximum respectively minimum
values of the material parameters c, ρ and keff over all possible temperatures we
compute an upper bound τ̃ for a stable time step as

min
l,m,n

{
h2 minT cl,m,n minT ρl,m,n

3 maxT (keff)l,m,n+ maxT (keff)l−1,m,n+ maxT (keff)l,m−1,n+ maxT (keff)l,m,n−1

}
=τ̃

(26)
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The employed time step τ ≤ τ̃ is chosen to minimize the steps J needed to reach
tend = Jτ , see Sect. 4.1.

4.3 Discretization of Material Parameters

The spatial discretization with points xl,m,n induces a straightforward discretization
of the tissue label function T. Furthermore, all material parameter models from
Sect. 3 are discretized by sampling the equations (or tables) at a number temperature
values over an interval [Tmin, Tmax]. We use piecewise linear interpolation between
the (not necessarily equidistant) sampling points in [Tmin, Tmax] to evaluate any
material parameter, with constant extrapolation of the corresponding boundary value
outside [Tmin, Tmax].

5 Numerical Implementation

The numerical model is discretized in such a way that the computation for all
voxels in the domain are independent of each other, i.e., they can be computed
in parallel. Therefore, we provide an implementation based on the OpenCL
language specifically developed to support single instruction multiple data (SIMD)
computations on various hardware device, e.g., CPUs as well as GPUs (graphics
processing units). OpenCL implementations follow the design of a kernel method
(defining the instructions) and a data grid (defining the data to be operated on). Our
regular computation domain can be directly used to define the data grids for the
OpenCL kernel programs.

Because we use uniform hexahedral grids, the instruments positioned in the
domain are rasterized, i.e., the hexahedral grid cells covered by the active zones
of the instruments are determined. This set of cells is handled as Dirichlet boundary
during freezing and active thawing. The ∂Ω boundary is implemented by omitting
the boundary cells in the explicit updating scheme. This allows always using the
full stencils in the update formulas. The condition on ∂Ωactive is implemented as a
correction step. After updating the temperature and freezing values in the domain
Ω\∂Ω , we loop over all voxels in ∂Ωactive and set the respective boundary value
dependent on the current simulation cycle state (freezing: Tneedle, active thaw: Tbody,
passive thaw: skip). The freezing state is set based on the temperature using the
mapping F . The implementation utilizes an index set that stores the indices of the
nodes that require the correction step.



188 J. Georgii et al.

6 Numerical Examples

Grid Convergence To test the discretization of our model and its implementation,
we performed classical grid convergence tests. To this end, we considered the
simulation of tend = 20 s freezing on a cube grid with Nx = Ny = Nz = 2j − 1, for
j = 3, . . . , 9. Thus, we have a total of (2j )3 degrees of freedom in the domain.
We vary the grid with h = 0.05 m/2j accordingly and compare the resulting
temperature field T (tend, ·) with the result of the temperature simulation on the finest
grid T512(tend, ·), thus evaluating

E[T ] = ∥∥T (tend, ·) − T512(tend, ·)
∥∥

L2(Ω)
. (27)

This numerical experiment was performed for homogeneous tissue (one material
present) and for heterogeneous tissue (two different material types present), and the
results are reported in Table 7.

Because Ωneedle and Ωactive are treated as internal boundaries of the domain,
we lose the well-known second-order convergence. In our numerical experiments,
the grid convergence is between first and second order, see columns 2 and 3 of
Table 7. Therefore, we also performed an analysis of the solver of the Pennes
bioheat equation (4)/(16) against the well-known analytic solution (convolution with
a Gaussian kernel of varying standard deviation) yielding an error Ẽ[T ]. Column
4 of Table 7 shows the expected quadratic convergence. Finally, we analyzed the
stability with respect to the time step size τ , which confirmed consistent results
compared to the analytic solution, i.e., the L2 error is in the same order as in Table 7
for the respective grid size.

Energy Conservation To test the freezing model, we evaluated energy conservation
of the whole system. We analyzed the energy starting from a frozen state and an

Table 7 We analyze the convergence of our numerical implementation on different grids (first
column). We perform a freezing simulation of 20 s with one needle in the domain using
homogeneous material (second column) or two different material types (third column). In both
cases, we use the solution on the finest grid size (5123) as ground truth. The last column analyzes
the error of the Pennes solver (i.e., the temperature predictor with no needle in the domain) for
different grid resolutions using the analytic solution as ground truth

Grid
E[T ] E[T ] Ẽ[T ]
Homogeneous Heterogeneous Analytic

83 43.12 43.13 4.46 · 100

163 23.92 24.14 1.92 · 10−1

323 15.42 15.49 6.75 · 10−3

643 6.67 6.79 2.74 · 10−5

1283 2.62 2.69 1.16 · 10−5

2563 1.06 1.09 2.29 · 10−7

5123 – – 1.48 · 10−8
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Table 8 Performance analysis of a 24-min cryo-cycle of 10 min freezing, 5 min passive thawing,
1 min active thawing, and 8 min freezing with two needles on different grid resolutions. The CPU
device is a 4-core Intel(R) i7-6700k @ 4.00 GHz, the GPU device a NVIDIA GTX 980 Ti with
6 GB dedicated device memory. The third column states the acceleration achieved on the GPU
compared to the CPU computation time, while the last column shows the acceleration against real
time

Grid
Computational Computational Speedup Speedup

time GPU time GPU (GPU vs. CPU) (GPU vs. real time)

643 2.3 s 28.2 s 12 626

1283 15.7 s 253.1 s 16 92

2563 114.5 s 1972.8 s 17 12

unfrozen (body temperature) state, using both homogeneous as well as heteroge-
neous material to achieve a checkerboard pattern domain. The relative loss of energy
was below 0.001 for all of these scenarios.

Performance Finally, we evaluated the runtime of our implementation and com-
pared it to an optimized parallel CPU implementation. In this test, the CPU was a
4-core Intel(R) i7-6700k running at 4.00 GHz, and the GPU was a NVIDIA GTX
980 Ti with 6 GB dedicated device memory. As shown in Table 8, we achieve an
acceleration of 12 to 18 times compared to the CPU (depending on the grid size).
Even with a grid size of 2563, we are approximately 12 times faster than real time.
The results for the CPU are based on the same optimized OpenCL code.

For clinical applications, we found h = 0.001 m (close to standard resolutions
used in patient-specific imaging data) to be a good compromise between speed and
accuracy. Furthermore, a grid of 1283 allows for a cuboid simulation domain with
128 mm extent, which is large enough for typical clinical applications.

In comparison to [14], we achieve similar acceleration of about 90 times over
real time. However, we can simultaneously handle 1283 = (27)3 = 221 DOFs in a
regular grid (with an extent of 128 mm in each dimension), whereas [14] mentions
up to 80,000 DOFs in a mixed 1 mm/3 mm regular grid (which allows for a maximal
extent of 43 mm in a cubic domain).

Clinical Example Finally, Fig. 6 shows a screenshot of our Software Assistance
for Interventional Radiology (SAFIR) [32], which uses the numerical simulation
of cryoablation on a real kidney data set. We use different material properties for
the tumor, the kidney, and the surrounding tissue. The corresponding domains have
been segmented from the patient specific image data. The example shows simulation
of freezing for 600 s with a cryoprobe of diameter 1.5 mm and cooling temperature
of 113.15 K.

As mentioned before, for the patient specific image data we use a resolution of
h = 0.001 m and a hexahedral grid of 1283 DOFs. In the vicinity of the probe, a
part of the segmented image data with this size is passed on to the cryo-simulation
in order to define the tissue types according to Sect. 3. Figure 7 shows the location
of the computational domain within the 3D patient data set. Also, Fig. 7 shows
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Fig. 6 A screenshot of our Software Assistance for Interventional Radiology (SAFIR) is shown. It
visualizes the simulation of cryoablation in a real kidney dataset overlaid on patient-specific image
data. The kidney and a tumor are segmented in orange. Isosurfaces/isolines show the temperature
field obtained from the simulation. (Dataset courtesy RWTH Aachen)

Fig. 7 For the application to patient specific data that is depicted in Fig. 6 we show the
computational domain for the temperature computation. A cuboid domain with hexahedral grid
of extent 1283 mm, corresponding to 1283 DOF, is used to compute the temperature in the target
region. Left: The location of the computational grid within the 3D patient image data set is
shown as one slice through the 3D volume. Right: The temperature is shown on one slice of the
computational domain. The rasterization of the cryoprobe, on which the temperature boundary
conditions are prescribed, is visible at white voxels/pixels. In both images, color codes the
temperature according to the scale shown in Fig. 6
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the computed temperature on one slice of the 1283 computational grid in which
the rasterization of a cryoprobe is visible. On these voxels the boundary conditions
from (14) are set.

7 Summary, Conclusions, and Future Work

We have presented a model for cryoablation tailored towards implementation on
graphics hardware. We use explicit time-stepping and a predictor corrector approach
to account for the non-linearities resulting from the phase change of liquid to frozen
water. Values for material parameters have been taken from literature.

To test our solver we have performed classical convergence analysis tests for
both the full model and the Pennes bioheat equation. For the full model we obtain
convergence rates between 1 and 2, which is to be expected because of the boundary
conditions on the cryoprobes that are set in the interior of the domain. Our Pennes
bioheat equation solver has been tested against an analytical solution and yields
convergence rates above 2.

We have furthermore applied our simulation of cryoablation to real patient data
in which we use a resolution of h = 0.001 m and 1283 DOFs. In such situation our
algorithm needs about 17 seconds to compute the tissue temperature at the end of a
typical cryoablation cycle. Compared to our CPU implementation this is a speedup
of 16 times. Such performance seems to be suitable for applications in the daily
clinical routine.

As outlined in the introduction, our aim is to include the presented algorithm
into a medical product, for which a rigorous validation, risk analysis, and sensitivity
analysis must be performed. Reporting our activities in this regard is ongoing and
future work. We plan to compare our temperature simulations to data obtained on
phantoms and real patient data sets. Also, we will report how the results change
with variations of parameters, and finally we will investigate wether the results of
the temperature simulation can be improved through parameter variations of the
tissue parameter models that we considered in Sect. 3.
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