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Abstract. Disaster relief logistics is a critical part of humanitarian emergency
operations. In this study, we develop integer programming models with a focus on
the pre-disaster location selection for depots in which relief items would be stored
and the post-disaster distribution of relief items to demand locations. The goal is
to determine the optimal depot locations and depot-demand node allocations by
minimizing the total transportation cost of delivering relief items. We incorporate
performance measures that represent the efficiency, efficacy, and equity of the
decisions in ourmodels in terms of total transportation cost, total waiting time, and
percent of unmet demand, respectively. We consider the uncertainties that would
affect the decisions made in terms of demand and transportation times in our case
study by analyzing the results under various scenarios. We provide observations
regarding the performance of different objectives under different scenarios for
demand and transportation network conditions.

Keywords: Disaster management · Humanitarian relief logistics · Location
selection · Integer programming · Multi-objective programming · Demand and
distance uncertainty

1 Introduction

One of the most important challenges that humanity faces are dealing with disasters.
According to the International Federation of Red Cross and Red Crescent Societies
(IFRC), a disaster is “a sudden, calamitous event that seriously disrupts the functioning
of a community or society and causes human, material, and economic or environmental
losses that exceed the community’s or society’s ability to cope using its own resources”
(IFRC2019).Disasters canhavenatural or human-made causes.Natural disasters include
floods, hurricanes, earthquakes, and cyclones, whereas human-made disasters include
wars, famines, and epidemics, all of which are relevant threats for the world population
today. It is extremely important to be prepared for disasters to alleviate the problems
during disaster relief operations.As one of themost frequently observed natural disasters,
earthquakes are experienced in various locations that cause significant damage and a
great number of casualties. For example, more than 165,000 people died as a result of
the Indian Ocean earthquake that triggered tsunamis and hit Indonesia in 2004 and more
than 222,000 people died in the 2010 earthquake in Haiti, which is considered the worst
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earthquake encountered by the United Nations (UN) (de la Torre et al. 2012). Even with
the advanced seismic technology, it is extremely difficult to determine where and when
the earthquake will attack early enough to take precautions.

In Turkey, Istanbul, being a densely populated mega-city with a population of 15+
million, is facing a great risk as it is in the highly active North Anatolian Fault Zone
(NAFZ). It has been reported by geoscientists that an earthquake of magnitude 7 or
greater is expected to originate in the eastern Marmara Sea, twenty kilometers south
of Istanbul, where there has not been an earthquake since 1776 (Weston 2017). Such
an earthquake could devastate the region, and many people would need shelter, food,
water, and medical care. To prevent further damage to people in the aftermath of such
an earthquake, required relief items must be delivered timely to the affected population,
and the success of these logistics operations relies on the level of preparedness. In this
study, we focus on the pre-disaster location selection for depots in which relief items
would be stored and the post-disaster distribution of relief items to demand locations.

Disaster operations management (DOM) deals with activities before, during, and
after the disasters aiming mainly to minimize casualties and costs. DOM is commonly
described in four phases in the literature: mitigation, preparedness, response, and recov-
ery (Altay and Green 2006). Mitigation and preparedness are pre-disaster phases in
which the goal is to reduce the possible impacts of a disaster and prepare a community
to respond effectively when a disaster occurs. Response and recovery are post-disaster
phases in which the affected people are helped by the government and non-governmental
organizations (NGOs) immediately using the available resources and the stabilization
efforts continue to support the community until returning to a state of normalcy. This
study aims to determine the best depot locations in the preparedness phase and the best
possible depot assignments to demand locations in the response and recovery phase of
a disaster.

Research in disaster relief logistics deals with decisions regarding the numbers,
capacities, and locations of depots to store emergency relief items and shelters to protect
the affected population as well as the transportation of items to those in need. The
challenges in disaster relief operations are mainly due to destabilized infrastructure,
limited time and capacity to distribute relief materials, and uncertain demand (de la Torre
et al. 2012).As the frequency and scale of disasters increase, efficient and accountable use
of scarce resources has become crucial in relief operations and the quality of decisions
made in disaster relief logistics can be measured in terms of efficiency, efficacy, and
equity (Beamon and Balcik 2008; Huang et al. 2012). In this study, we incorporate
performance measures that represent the efficiency, efficacy, and equity of the decisions
in our model in terms of total transportation cost, total waiting time, and percent of
unmet demand, respectively.

As disasters occur at uncertain times and locations, the post-disaster demand and
transportation conditions are also uncertain. In modeling systems with such uncertain-
ties involved, one must take into account a range of possible scenarios to provide more
applicable solutions. Therefore, we consider the uncertainties that would affect the deci-
sions made in terms of demand and transportation times in our case study by analyzing
the results under various scenarios.



A Comparative Study of Multiple Objectives for Disaster Relief Logistics 15

2 Literature Review

The increase in the number and impact of disasters in the recent decades necessitated
the smart use of scarce resources, which, in essence, is a common goal in operations
research and management sciences (OR/MS). Therefore, the OR/MS community has
been increasingly studying disaster management issues and developing quantitative
methods to support humanitarian operations. Altay and Green (2006) review the OR/MS
studies in DOM from 1980 to 2004 and report that, of the 109 papers, 44% address miti-
gation, 21.1% address preparedness, 23.9% address response, and 11% address recovery
in the disaster lifecycle. Galindo and Batta (2013) also review the OR/MS literature in
DOM from 2005 to 2010 and show that, of the 155 papers, 23.9% are in mitigation,
28.4% are in preparedness, 33.5% are in response, only 3.2% are in recovery, and 11%
are in multiple stages, similar to this study where we deal with both pre-disaster and
post-disaster decisions. This shows that more research needs to focus on, especially
recovery operations, including relief distribution.

A review of 83 papers in relief distribution networks with an OR component from
1990 to 2013 by Anaya-Arenas et al. (2012) shows that only 8 of these papers study
both location and transportation problems. Our study deals with both depot location
selection and transportation problems, contributing to this less studied area of research.
This review article also points out the need to design more sophisticated but realistic
models that are capable of supporting crisis managers.

One realistic assumption regarding disaster management, in general, is that there
are multiple perspectives (of NGOs, government organizations, or affected population);
hence, multiple objective functions. Boonmee et al. (2017) review the optimizationmod-
els for facility location problems in humanitarian logistics, specifically themodels in four
categories: deterministic, dynamic, stochastic, and robust. Minimizing response time,
risk, cost (in terms of distance, time, facility fixed costs, or operating costs), unsatisfied
demand are found to be the main objectives in the emergency humanitarian logistics
literature. To support integrated disaster stage management, developing new objective
functions by integrating the facility locationproblemwith other problems such as routing,
evacuation, inventory, resource allocation, and relief distribution problems is suggested.

Several humanitarian logistics studies adopt multiple objective functions. Gutjahr
and Nolz (2016) provide a review on multi-criteria optimization in humanitarian OR
and classify criteria in three categories: efficiency (cost), effectiveness (time, coverage,
travel distance, reliability, and security), and equity (fairness). As an example in relief
logistics, Tzeng et al. (2007) propose a multi-objective relief distribution model with
three objectives: minimizing the total cost and the total travel time for efficiency and
maximizing the minimal satisfaction for fairness. In another study, Huang et al. (2015)
assume three objective functions of lifesaving utility, delay cost, and fairness with a
rolling horizon approach to update information in their convex quadratic network flow
problem. Zhan et al. (2014) propose a multi-objective, multi-supplier, multi-affected
area, multi-relief, and multi-vehicle relief allocation problem based on disaster scenario
information updates to coordinate efficiency and equity. Gralla et al. (2014) study the
trade-offs among multiple objectives in an immediate humanitarian aid delivery after an
earthquake scenario by surveying 18 expert humanitarian logisticians. They identify the
amount of cargo delivered to be the most important and the cost to be the least important
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objective, compared to the prioritization of aid by commodity type, the prioritization
of aid by delivery location, and the delivery speed. Ransikarbum and Mason (2016)
develop a multi-objective network optimization model that integrates supply distribu-
tion and network restoration decisions. This model maximizes the minimum percent
of satisfying demand, minimizes the total unsatisfied demand, and minimizes the total
network restoration and transportation costs as a weighted objective function subject to
capacity, resource, and budget constraints. Ferrer et al. (2018) develop a compromise
programming model for multi-criteria optimization in humanitarian last mile distribu-
tion for a single commodity using a convoy of vehicles with the criteria of time, cost,
equity, priority, security, and reliability. This model is illustrated using a case based on
the 2010 Pakistan floods, and a detailed vehicle schedule is produced. To ensure equity
in humanitarian relief distribution, Gutjahr and Fischer (2018) propose extending the
deprivation cost objective, that quantifies human suffering due to the lack of resources or
services, by a term proportional to the Gini inequity index. The frequency of deliveries
of a single commodity with recurring demand is decided. The model is illustrated using
the 2015 Nepal earthquake, and it is argued that a high level of equity can be obtained
at the expense of a slight increase in deprivation cost.

There are also studies using two-stage stochastic models in humanitarian opera-
tions such as emergency relief distribution (Barbarosoglu and Arda 2004, Rawls and
Turnquist 2010) and facility location (Mete and Zabinsky 2010). Gonçalves et al. (2013)
also propose a two-stage linear stochastic optimization model for humanitarian aid sup-
ply operations of theWorldFoodProgram (WFP) inEthiopia. Thefirst stage of thismodel
includes supply and prepositioning stock decisions, and the second stage includes dis-
tribution flows from an origin to a destination. They show that incorporating uncertainty
in model parameters such as demand, transportation cost, and accessibility improve the
cost-effectiveness of the food aid distribution operations. Noyan et al. (2015) develop
a two-stage stochastic programming model to design the last mile relief network. The
model determines the locations and capacities of distribution points, assigns demand
locations to distribution points, and allocates supplies with a hybrid allocation policy
and criteria of accessibility and equity. The model also considers the uncertain demand
and transportation network conditions.

According to the aforementioned classifications in the disaster relief logistics litera-
ture, our study proposes a deterministic model for both the pre- and post-disaster stages
where demand and transportation time uncertainties are included by considering various
scenarios.

3 Methodology

The disaster relief logistics models proposed in this study are integer programmingmod-
els with the objectives of minimizing costs (in terms of total distance and transportation
cost), total waiting time, and maximum percent of unmet demand. The assumptions of
the proposed model are as follows:

1. There is enough storage capacity at the depots to meet the total demand.
2. Only a specific number of locations can be chosen out of the total number of available

depot locations.
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3. Each depot can send relief aid to a specific number of demand nodes based on the
number of available vehicles for that depot.

4. The unit transportation cost is a constant that does not depend on the depot-demand
node pair.

5. Loading time and unloading time for a truck are assumed to be equal.
6. There is enough number of trucks available at time zero, such that all demand can

be loaded starting at the same time and delivered immediately.

The notation used in the model is defined as follows.
Sets:

S: a set of alternative depot nodes, i = 1, 2, . . . , S
D: a set of demand nodes, j = 1, 2, . . . , D
K i : set of available vehicles (trucks) at depot i , k = 1, 2, . . . , Nvi

Parameters:

capi : The capacity of depot i in number of pallets
dem j : Demand of node j in number of pallets
di j : Distance between depot i and demand node j in kilometers
ti j : Total transportation cost per pallet from depot i to demand node j in dollars

(the per pallet cost based on the sum of fuel cost, fi j , distribution cost, Disti j ,
and worker cost, Wri )

Accui j : Accumulated waiting time in minutes (the sum of loading time, unloading
time, and the time needed to reach demand nodes)

MD: Maximum number of depots that can be opened
Nvi: Number of vehicles available at each depot at time zero
vcap: Capacity of a truck in a number of pallets

Decision variables:

xi j : Number of pallets delivered from depot i to demand node j

wi j =
{
1, depot i serves node j
0, otherwise

yi =
{
1, i f depot location i is selected
0, otherwise

Themathematical models for the depot location selection problemwith two different
objective functions are called Model 1 and Model 2 and are formulated as follows.

Models 1 and 2:

Minimize Z1 =
∑

i∈S
∑

j∈D
(
xi j di j

)
(1)

Minimize Z2 =
∑

i∈S
∑

j∈D
(
xi j ti j

)
(2)
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Subject to:

∑
j∈D xi j ≤ Capi × yi ∀i ∈ S (3)

∑
i∈S xi j ≥ dem j ∀ j ∈ D (4)

∑
i∈S yi ≤ MD (5)

xi j ≥ 0, integer ∀i ∈ S,∀ j ∈ D (6)

yi ∈ {0, 1} ∀i ∈ S (7)

The objective function Z1 in (1) minimizes the total distance between the demand
nodes and the depot locations selected. The objective function Z2 in (2) minimizes the
total transportation cost that consists of fuel cost, distribution cost, and worker cost.
Constraint (3) ensures that the storage capacity of depots is not exceeded while (4)
ensures the amount of relief materials will satisfy the demand for each node. Constraint
(5) controls the number of selected depot locations with the maximum number required.
Constraint (6) and (7) are the non-negativity and binary constraints for the xi j and yi
variables, respectively.

The mathematical models for the response stage problems in which depots are
allocated to demand nodes are given as Models 3 and 4 below.

Model 3:

Minimize Z3 =
∑

i∈S
∑

j∈D
(
xi j Accui j

)
(8)

Subject to: (3)–(7)

∑
j∈D xi j ≤ vcap × Nvi ∀i ∈ S (9)

xi j ≤ vcap × wi j ∀i ∈ S,∀ j ∈ D (10)

∑
j∈D wi j ≤ Nvi × yi ∀i ∈ S (11)

wi j ∈ {0, 1} ∀i ∈ S,∀ j ∈ D (12)

The objective function Z3 in (8) minimizes the total accumulated waiting time for
the demand nodes to receive relief items. In addition to constraints (3)–(7), constraint (9)
limits delivered pallets with the number of vehicles. Constraint (10) ensures the number
of delivered pallets is at most as much as the capacity of vehicles for each trip. Constraint
(11) limits the number of demand nodes that can be served by a depot with the number
of available vehicles at that depot. Constraint (12) defines the binary wi j variables.
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Model 4:

Minimize Z4 (13)

Subject to: (3), (5)–(7), (9)–(12)

Z4 ≥ dem j − ∑
i∈S xi j

dem j
∀ j ∈ D (14)

∑
i∈S xi j ≤ dem j ∀ j ∈ D (15)

The objective function Z4 in (13) minimizes the maximum percent of unmet demand
defined by constraint (14). To allow for unmet demand, constraint (4) is modified as
constraint (15).

The disaster relief logistics optimizationmodels defined above are related to decision
making in the preparedness stage and the response stage. These decisions are based
on different performance metrics, which requires a multi-objective decision-making
approach.

3.1 Multi-objective Optimization

In multi-objective optimization problems, there is usually a trade-off between vari-
ous objectives. Different studies have offered many approaches to model the trade-off
between multiple objective functions from the decision maker’s perspective. According
to Chiandussi et al. (2012), a priori preference articulation assume that the decision
maker can pre-order the objectives before searching for the solution. The Global Crite-
rion Method (GCM) is one of the a priori preference articulation methods. The target
of GCM is to know how close the model is to the ideal solution (or the vector of optimal
solutions for every objective function separately, while achieving all of the objective
functions at the same point). We apply the GCM to determine the best set of objective
function weights using the following equation.

L(x) =
F∑
f =1

c f

(
Z f (x) − Z∗

f

Z∗
f

)
(16)

Where F is the number of objectives, c f is the weight of objective function f ,
Z f (x) is the function value at solution x , Z∗

f is the ideal function value, and L(x) is
the closeness percentage. This approach is also called compromise programming. A
second methodology, linear combination of weights or the weighted sum method, is an
a posteriori preference articulation according to Chiandussi et al. (2012). We determine
the objective function weights that provide the minimum closeness measure based on
the GCM and use those weights when minimizing the weighted sum of objectives as
min

∑F
f=1 c f Z f (x).
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4 Case Study and Computational Results

This case study is based on a sample network shown in Fig. 1 below. In this network, there
are 12 demand nodes (blue nodes) and 7 alternative depot locations (orange triangular
nodes), and 2 collection points (black squares). The collection points will be used when
the direct access from depots to demand nodes is limited because of the disaster impact.
In those scenarios, the relief items will be sent from depots to the available collection
point and then sent to the demand nodes, which is reflected in the models as increased
distances to be traveled. At most 4 depot locations can be selected out of 7 to open depots
at (MD = 4). The capacity of each depot is 600 pallets (capi = 600,∀i ∈ S).

Fig. 1. The sample disaster relief logistics network

The vehicles used for transportation are truckswith a capacity of 160 pallets (vcap =
160). Average truck speed is assumed to be 45 km/hr. The total loading and unloading
time is assumed to be 40 min. It is assumed that 5 workers and 5 vehicles are available
at each depot (Nvi = 5). Since the number of vehicles available at each depot is 5, and
we assume that each vehicle is sent to one demand node, each depot can serve at most
5 distinct demand nodes.

Fuel cost, fi j , is the product of distances and the unit transportation cost of $2.5
per km. Distribution cost, Disti j , is related to shipping taxes, truck driver cost, and
maintenance cost, that depend on distances traveled. We assume that there are three
levels of distribution costs (low, medium, and high) depending on the location of depots,
as shown in Table 1. Worker cost Wri is equal to the product of the number of workers
at a depot and the wage of each worker for that depot, which also depends on the type
of depot classified as Grade A, B, or C.

The relief items are stored on pallets at depots. As an international collaborative
project of NGOs, the Sphere Handbook provides universal minimum humanitarian stan-
dards, such as 2100 calories and 2.5–3 L of water per person per day (The Sphere Project
2018). The assumptions regarding the demand for relief items are made based on these
standards. The types of items that should be stored on a pallet are determined based
on Tzeng et al. (2007), and the quantities of items per pallet are determined to provide
relief aid for four people. The value or cost of items on a pallet is estimated by an online
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Table 1. Distribution and worker costs for depots

Depots (i) Distribution Cost
(Disti j ) ($)

Depots (i) Worker Cost (Wr2i ) ($)

Low 1 120 Grade A 4, 7 40

Medium 2, 3, 4 140 Grade B 2, 5 30

High 5, 6, 7 160 Grade C 1, 3, 6 20

search for these types of relief aid items. The number of items of each type and their
costs are shown in Table 2.

Table 2. Pallet contents

Relief Materials Amount Volume (cm3) Volume (unit) Price ($)

Sleeping bag 4 12375 1 7.5

Tent 1 27300 2.21 50

Box of mineral
water

1 28080 2.27 18

Rice (5 kg) 2 5225 0.42 10

Box of instant
noodles

1 21199 1.71 12

Box of dry food 2 18468 1.49 15

Box of canned
food

2 3532 0.29 36

In this study, we consider the demand and distances to be random parameters. We
use a set of scenarios, �, to represent uncertainty regarding demand and distance in
the model. The probability of each scenario is Ps, s ∈ �, where Ps ∈ [0, 1] and∑

s∈� Ps = 1. As shown in Table 3, we define three demand scenarios: high demand
scenario with 30% probability, medium demand scenario with 45% probability, and low
demand scenario with 25% probability. A set of demand values are generated from the
Uniform distribution between 100 and 150 pallets for the medium demand case. Then,
125% of the medium demand is taken as the high demand case, and 75% of the medium
demand is taken as the low demand case. The total random demand values for each
demand scenario are shown in Table 3.

The other random factor is the condition of the transportation network. We define
three distance scenarios as shown in Table 3: normal transportation conditions scenario
with 40%probability, limited accessibility of demand nodeswith 35%probability (direct
transportation is not possible, collection point 1 must be used), and highly affected
transportation network scenario with 25% probability (direct transportation or using
collection point 1 is not possible, collection point 2 must be used). Therefore, S1 is the
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Table 3. Scenario probabilities

Demand

Low (25%) Medium (45%) High (30%)

Total demand (pallets) 987 1312 1647

Distances Direct transportation (40%) 10%
S1

18%
S2

12%
S3

Limited accessibility (collection point
1) (35%)

8.75%
S4

15.75%
S5

10.5%
S6

Highly affected network (collection
point 2) (25%)

6.25%
S7

11.25%
S8

7.5%
S9

best-case scenario in terms of low demand and short distances to be traveled, whereas
S9 is the worst-case scenario with high demand and long distances to be travelled.

The case study problem is solved forModel 1–4 under scenarios S1–S9. First, Model
1–4 are individually solved for each scenario and Z∗

f are obtained. The weights of
objective functions are determined to be c2 = 0.1 and c1 = c3 = c4 = 0.3 having the
lowest closeness percentage according to the GCM from Eq. (16) and these are used
in the linear combination of weights to find Z∗

weighted . The results are obtained using
GAMS 24.6.1 software with CPLEX 12.6.3 solver on a computer with 1.50 GHz CPU
AMD processor and 4 GB RAM. We provide the optimal objective function values in
Table 4 and optimal depot locations in Table 5.

Table 4. Optimal objective values for each demand-distance scenario

Scenario Z∗
1 Z∗

2 Z∗
3 Z∗

4 (%) σZ4 (%) Z∗
weighted

S1 5,599 249,220 47,385 6.7 0.372 44,135

S2 7,442 335,830 62,987 6.2 0.202 57,728

S3 9,347 427,823 79,077 24.8 11.862 72,571

S4 16,139 267,410 61,305 3.5 0.458 53,624

S5 21,462 362,660 81,503 5.7 2.136 68,078

S6 26,937 465,210 102,308 24.8 11.929 86,678

S7 16,108 267,330 61,259 3.5 0.458 50,429

S8 21,405 362,520 81,421 5.7 1.548 68,024

S9 26,872 465,040 102,210 24.8 12.340 86,615

Our observations based on these results are as follows:

1. Given a certain distance scenario, Z∗
1 , Z

∗
2 , and Z∗

3 values decrease as the demand
decreases. These objective function values are at their lowest level (best value) for
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Table 5. Optimal depot locations for each demand-distance scenario

Scenario Model 1 Model 2 Model 3 Model 4

S1 2, 4, 5, 7 1, 3 2, 4, 5, 7 1, 3, 6

S2 2, 4, 5, 7 1, 3, 6 2, 4, 5, 7 1, 2, 3, 6

S3 2, 4, 5, 7 1, 3, 6 2, 4, 5, 7 1, 3, 4, 6

S4 2, 5 1, 3 1, 2, 5 1, 3, 6

S5 1, 2, 5 1, 3, 6 1, 2, 5 1, 3, 5, 6

S6 1, 2, 5 1, 3, 6 1, 2, 5 1, 2, 3, 6

S7 4, 7 1, 3 1, 4, 7 1, 3, 6

S8 1, 4, 7 1, 3, 6 1, 4, 7 1, 3, 4, 6

S9 1, 4, 7 1, 3, 6 1, 4, 7 1, 3, 4, 6

the low demand scenarios (S1, S4, S7) and their highest level (worst value) for the
medium demand scenarios (S2, S5, S8). They have slightly lower values for the high
demand scenarios (S3, S6, S9) than for the medium demand scenarios.

2. The Z∗
4 values are the same in S3, S6, S9, where the demand is high. So, no matter

what the distance scenario is, the best possible maximum percent of unmet demand
is 24.8% for this case study. The Z∗

4 values for S4 and S7 are equal, the Z∗
4 values

of S5 and S8 are equal, as well.
3. We can also see from the results of Model 4 that the equity of percent of unmet

demand gets worse as the demand gets higher. The standard deviations of percent
of unmet demand among demand nodes, σZ4 , (provided in Table 4) are significantly
higher in S3, S6, and S9 than other scenarios.

4. It is clear from the results that the first model can also present the optimal values not
just for Z∗

1 also, it gives the optimal values for Z∗
3 .

5. The Z∗
weighted value increases as the demand gets higher, given any distance scenario.

It also increases in the second and third distance scenarios compared to the normal
traffic conditions scenario.

6. In all the models, depot location decisions do not change significantly depending on
the level of demand. There are exceptions only in the form of selecting a subset of
the depots when the demand is lower, such as in S4 and S7 for Model 1 and S1, S4,
and S7 in Model 2.

7. Depot location decisions inModel 1,Model 3, andModel 4 change as thematrices of
distance, total transportation cost, and total accumulated waiting time are changed,
i.e., as the distances change. We can see this behavior for Model 1: In S4 and S7,
two depot locations are selected as opposed to four locations in S1. Also, in S5 (or
S6) and S8 (or S9), three depot locations are selected as opposed to four locations
in S2 (or S3). Model 3 results also show a similar pattern. However, Model 2 depot
location decisions are not affected by the changing distances, and this is because
the objective function cost coefficients are proportionally increasing as the distances
increase. Therefore, the optimal solutions for S4 and S7 are the same for Model 2,
and the optimal solution for S1 is slightly different in terms of only a few x∗

i j values.
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8. Considering the limitation that at most 4 depot locations can be chosen, Model 1
and Model 3 choose 4 depots only in the direct transportation scenarios, but Model
4 chooses 4 depots in all but the low demand scenarios to ensure equity in terms of
percent of unmet demand.

5 Discussion and Conclusion

In this comparative study of multiple objectives for disaster relief logistics, we develop
models to determine depot locations and plan the distribution of relief items to demand
nodes in a region affected by a disaster such as an earthquake. We consider multiple
scenarios for uncertain demand and uncertain transportation network conditions. Based
on the comparison of results for different objective functions and different scenarios,
we identify the characteristics of the decisions made in each case. We observe that
given a certain distance scenario, total distance (Z∗

1), total transportation cost (Z
∗
2), and

accumulated waiting time (Z∗
3) values decrease with demand. Depot location decisions

in Model 1, Model 3, and Model 4 change as the distances change; however, they are
not affected in Model 2 since cost coefficients are proportionally increasing with the
distances. Also, the equity of percent of unmet demand (Z∗

4) gets worse as demand rises.
As a future research direction, the assumption that there are enough vehicles to

deliver relief aid can be modified such that not all the demanded pallets can be loaded
starting at time zero. In this case, either additional vehicles must wait, or the initial
vehicles must be waited to return from the demand nodes after delivery, which would
make Model 3 (minimizing the accumulated waiting time) more realistic. Considering
the uncertainties in time-related parameters at the time of a disaster, this humanitarian
aid distribution problem can be studied using stochastic modeling to improve the appli-
cability of solutions. Another future research direction would be the application of the
proposed models based on real data for a central region of a city such as Istanbul where
the population that can be affected by a disaster is dense.

Uncertainty in demand and transportation network conditions necessitates consider-
ation of different scenarios for disaster relief logistics. This scenario-based comparative
study of multiple objectives provides valuable information regarding the performance
of relief distribution decisions in various cases, and such studies can provide decision
makers different perspectives and options to improve disaster relief operations and help
reduce the losses due to disasters.
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