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�Introduction

In the biological sense, the term growth has intricate ramifications that we have only 
started to comprehend. Growth is the overall increase in cell mass or size of a tissue 
or organism (Conlon and Raff 1999; Cook and Tyers 2007; Edgar 1999; Raff 1996). 
Growth may be due to increase in cell number resulting from cell division (cell 
proliferation), increase in cellular mass without cell division (cell enlargement), or 
release of more extracellular matrix (cell accretion). These processes are intimately 
linked, and it is clear that if coordinated growth has to occur in an organism, it is 
necessary for various biological pathways to interact and relay appropriate signals 
to proper cell types. Growth regulation is precisely controlled and affected by sev-
eral intrinsic and extrinsic factors (Cooper 2004; Crickmore and Mann 2008; 
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Grebien et al. 2005; Johnston and Gallant 2002). The intrinsic factors mainly involve 
synthesis and secretion of signals or ligands, which bind to their cognate receptors 
to relay downstream signals. These signals consist of a variety of molecules such as 
hormones, mitogens, apoptosis-inducing signals, patterning and axis-determining 
signals, etc. which eventually determine organ size and tissue homeostasis (Johnston 
and Gallant 2002; Mitchison et al. 1997; Montagne 2000; Tumaneng et al. 2012a). 
Growth of a tissue or organ is impacted not only by cell division but also by regu-
lated cell death (apoptosis or programmed cell death) (Bangs and White 2000; 
Jacobson et  al. 1997; Martin et  al. 2009; Oldham et  al. 2000a; Richardson and 
Kumar 2002; Rusconi et al. 2000).

In this chapter, we will focus on growth regulation in imaginal discs (epithelial 
sacs that are precursors of adult appendages) in Drosophila melanogaster 
(Bergantinos et al. 2010; Bryant 1978, 1987, 2001; Bryant and Schmidt 1990). The 
obvious advantages that Drosophila has to offer as a model organism include short 
life cycle, high fecundity, low-cost maintenance, and lack of redundancy in genome 
(Bier 2005; Blair 2003; Boutros and Ahringer 2008; Pagliarini et  al. 2003; St 
Johnston 2002; Vidal and Cagan 2006). Furthermore, the sophisticated fly genetics 
provides great deal of versatility in terms of designing experiments. The plethora of 
knowledge thus generated through exhausting efforts of scientists has not only 
revealed to us classic information about how growth occurs but has also led to better 
understanding of growth-related diseases such as cancer.

�Drosophila Eye as a Model to Study Regulation of Growth

The compound eyes of Drosophila arise from the eye-antennal imaginal discs, a 
monolayer epithelial sheet of cells that is responsible for the development of the 
eyes, the antennae, the ocelli, and a major part of the adult head cuticle. Each eye of 
the adult fruit fly on an average consists of about 800 ommatidia (Wolff and Ready 
1993). Ommatidia arise from a set of 19 precursor cells that are generated by spa-
tially and temporally coordinated cellular processes such as cell proliferation, cell 
differentiation, and cell death in the eye imaginal discs. Eighteen of these cells 
contribute to the eye per se, whereas the 19th cell gives rise to a sensory bristle 
(Cagan 1993). A key feature that distinguishes the eye from the rest of the organs is 
its ability to perceive light and relay the signal to distinct areas in the brain called 
the optic lobes. The eye imaginal discs arise from about 50 primordial cells that 
express the Drosophila PAX 6 gene eyeless (ey) during mid to late embryogenesis. 
Two such discs develop in each larva and differentiate into two compound eyes, 
antennae, ocelli, and the head cuticle in the adult.

Much is known about the regulation of growth and differentiation of the eye-
antennal imaginal discs (Baker 2001; Cagan 1993; Dominguez and Casares 2005; 
Hafen 1991; Kramer and Cagan 1994; Kumar 2001). Until the second larval instar 
of development, the cells of the eye-antennal discs proliferate without differentia-
tion (Baker 2001; Wolff and Ready 1993). During the second instar stage, a unique 
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process of cell differentiation begins in the eye-antennal disc that paves the way for 
formation of photoreceptor neurons in the posterior region of the eye-antennal ima-
ginal disc (Wolff and Ready 1993). The differentiation occurs in the wake of a so-
called morphogenetic furrow—a front marked by apical constriction of epithelial 
cells in response to complex developmental signaling from the Hedgehog, Dpp, 
Wg, and EGFR pathways (Acquisti et al. 2009; Chen and Chien 1999; Firth et al. 
2010; Harvey et al. 2001; Kango-Singh et al. 2003; Penton et al. 1997). Posterior to 
the morphogenetic furrow, the cells begin to acquire particular photoreceptor cell 
fates and organize into ommatidial clusters.

Anterior to the furrow, cells divide asynchronously and do not differentiate; how-
ever, in the morphogenetic furrows, cells are arrested in the G1 phase of the cell 
cycle, synchronize, and either start to differentiate into photoreceptor cells as they 
leave the furrow or undergo one additional round of cell division, referred to as the 
second mitotic wave (SMW) before differentiating into the remaining photorecep-
tor, cone, pigment, and bristle cells (Baker 2001; Dickson and Hafen 1993; Wolff 
and Ready 1993). The cells posterior to the morphogenetic furrow enter G1 arrest 
caused by Dpp (decapentaplegic) signaling that is maintained by the roughex (rux) 
gene, which negatively regulates G1-S transition. The cells that are temporarily 
trapped in the G1 phase begin differentiation with specification of the R8 (photore-
ceptor) cell due to expression of the proneural protein Atonal (Ato) (Baker et al. 
1996; Chen and Chien 1999; Daniel et al. 1999; Dominguez 1999; Greenwood and 
Struhl 1999; Jarman et al. 1994). R8 recruits other photoreceptor cells—R2, R3, R4, 
and R5—to form a cluster of five photoreceptor precursors. Once specified, these 
cells never enter cell cycle or cell division again. All other non-specified cells reen-
ter cell cycle only once—a process referred to as the second mitotic wave (SMW) 
(Anon 2003; Baker 2001; de Nooij and Hariharan 1995). Cells in SMW undergo 
G2/M phase that is mediated through local signaling from Spitz (Spi). Binding of 
Spi to its cognate receptor EGFR in precursor cells causes activation of downstream 
string (Bakal) that completes the G2-M transition during mitosis. Local Spi-EGFR 
signaling also plays an important role limiting the progression of SMW. For 
instance, on an average, the Spi signal from one pre-cluster can span to a length of 
seven cells only causing these cells to divide, whereas the remaining cells remain 
arrested in G2 phase and fail to divide (Baker 2001; Brumby and Richardson 2003) 
(de Nooij and Hariharan 1995; Jarman et al. 1994; Price et al. 2002) (Wolff and 
Ready 1991). The progression of the morphogenetic furrow is complete by the mid-
third instar of larval development, and the eye-antennal disc is fully grown to about 
50,000 cells (Kumar 2009; Kumar and Moses 2000, 2001; Sun 2007).

Following development in larval stages, supernumerary cells are eliminated via 
apoptosis during pupal development. This event is mediated through Notch signal-
ing (Bonini and Fortini 1999; Burke and Basler 1997; Sawamoto and Okano 1996; 
Treisman and Heberlein 1998; Zipursky 1989). By contrast, survival of pupal cells 
is brought about by EGFR expression that mediates its cell survival function through 
suppressing the transcriptional activity of the pro-apoptotic gene head involution 
defective (hid) (Bonini and Fortini 1999). In addition, survival signals emanating 
from cone or primary pigment cells in each ommatidium play a role in survival and 
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proliferation of secondary and tertiary pigment cells and secondary bristle organs 
(Cagan 1993, 2009; Rubin 1989; Singh et al. 2012; Tsachaki and Sprecher 2012; 
Yamamoto 1993). During metamorphosis, the two eye-antennal imaginal discs fuse 
at the dorsal midline to form the fly head with three ocelli, two antennae, and 
compound eyes. Thus, the eye-antennal disc is ideal for the study of organogenesis, 
morphogenesis, pattern formation, and several cell biological processes including 
the regulation of cell cycle, cell death, cell junctions and adhesion, transport of 
molecules, cell signaling, and metabolism. Recently, the eye discs have been used 
as an experimental system for genetic screens to discover postembryonic lethality 
and for screening small molecule inhibitors in chemical and drug screens.

�The Mosaic Analysis Systems and the Drosophila Eye

Mutagenesis screen is a very well-established tool for gene discovery in flies [for 
review, see (Bellen et al. 2011, 1989; Blair 2003; Pfeiffer et al. 2010; St Johnston 
2002; Venken and Bellen 2012; Xu and Rubin 1993)]. Over the years, the mosaic 
techniques have evolved to include the FLP-FRT, eyFlp, EGUF, eyFlp cl w+, Flp-
out clones, and MARCM [for review, see (Blair 2003; St Johnston 2002)]. One of 
the first tissue-specific mosaic systems was developed in the eye-antennal discs 
where the mosaic clones were restricted to the eye-antennal discs by virtue of 
expression of the Flippase gene under the control of the eyeless promoter (com-
monly referred to as the “ey-FLP system”) (Newsome et  al. 2000). This tissue-
specific system was further refined by the development of the “cell-lethal” system, 
where effects of loss of function of a gene could be surveyed more clearly because 
the wild-type twin clones are eliminated due to the presence of cell-lethal mutations 
(the cell-lethal FLP-FRT system) (Newsome et al. 2000). We focus on the genetic 
screens performed about 10–12 years ago (simultaneously in our labs) that lead to 
the identification of many new genes that were shown to belong to the two major 
growth regulatory networks: the Hippo pathway and the TSc-ToR pathway.

�Genetic Screens for Genes That Regulate Growth: 
The “Big-Head” and “Pin-Head” Mutations

Barry Dickson’s group (Newsome et al. 2000) improved the traditional FLP-FRT 
approach developed in the Rubin Lab (Xu and Rubin 1993), to allow generation of 
essentially mutant eye discs by eliminating the wild-type twin clone via a cell-lethal 
mutation (the cell-lethal FLP-FRT system) (Fig.  1). This so-called “cell-lethal” 
approach allows the mutant clones to grow to their highest potential due to elimina-
tion of competitive interactions between the mutant cells and their wild-type neigh-
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bors. Using this system, several groups carried out mutagenesis screens in flies (on 
the X, 2L, 2R, 3L, 3R chromosomes) and found mutations that affected patterning, 
growth, cell death, and differentiation [for review, see (St Johnston 2002)].

Of special interest were gene mutations which caused a remarkable effect on 
growth without disrupting the patterning process (Conlon and Raff 1999; Johnston 
and Gallant 2002; Mitchison et al. 1997; Oldham et al. 2000a; Raff 1996; Su and 
O’Farrell 1998; Tumaneng et al. 2012a). Characterization of these mutants revealed 
the mechanisms that regulate growth and tissue size by controlling cell number 
(Hippo pathway) (Zhao et al. 2011b) or cell size (InR/TSC-TOR pathway) (Kim 
and Guan 2011; Loewith 2011; Montagne 2000; Potter et al. 2003; Soulard et al. 
2009) in a developing organ. Typically, loss-of-function mutations in positive regu-
lators of these pathways caused development of enlarged heads that showed over-
growth—referred to as the “big-head” mutations (Hafen 2004; Oldham and Hafen 
2003; Pan 2007, 2010). In contrast, loss-of-function mutations in negative regula-
tors of these pathways caused reduction in head size and development of smaller 
organs, which may be due to cell death or reduction in cell size, and were referred 
to as the “pin-head” mutations.

Fig. 1  Mutagenesis schemes for eye-specific mosaics lead to the identification of several Hippo 
and Tsc-TOR pathway mutants. (a) Modified mutagenesis scheme, (b) typical phenotypes of 
Hippo and Tsc-TOR pathway mutant from the mutagenesis screen

Regulation of Growth Control in Drosophila Eye



220

�The Hippo Signaling Pathway

The Hippo signaling pathway was first discovered in flies following characteriza-
tion of “big-head” mutants identified from genetic screens [for review, see (Edgar 
2006; Pan 2007; Saucedo and Edgar 2007)]. Analysis of the loss-of-function pheno-
types revealed that a fundamental function of the Hippo pathway was the regulation 
of organ size (Boggiano and Fehon 2012; Harvey and Hariharan 2012; Schroeder 
and Halder 2012; Staley and Irvine 2012). Interestingly, the pathway received its 
name just after some growth regulatory genes [warts (wts), salvador (sav, aka shar-
pie, shrp)] were characterized. Warts (wts) was named based on the bumpy “warts-
like” phenotype of the mutant cells in mitotic (mosaic) clones on the body of the 
adult flies that were reminiscent of the warts on toads (Justice et al. 1995). Another 
group led by Xu et al. (1995) also independently found warts in the initial FLP/FRT-
based screen and named it large tumor suppressor (lats) (Xu et al. 1995). Two inde-
pendent groups identified the gene encoding the adaptor protein Salvador (Sav) (aka 
Shar-pie, Shrp after the dog species of the same name as the mutant flies showed a 
characteristic phenotype of folded dark cuticle on the overgrown heads) from com-
plementation groups isolated from the big-head genetic screens (Kango-Singh et al. 
2002; Tapon et al. 2002). Interestingly, both Wts and Sav regulated growth by sup-
pressing proliferation and promoting apoptosis. Hippo was the name given to 
another complementation group from the “big-head” screens that showed a pheno-
type that was very similar to Wts and Sav (Harvey et  al. 2003; Jia et  al. 2003; 
Pantalacci et al. 2003; Udan et al. 2003; Wu et al. 2003).

Molecular analysis of the three genes revealed that Wts and Hpo genes encode 
for serine-threonine (S-T) kinases, whereas Sav is a WW domain-containing adap-
tor protein (Kango-Singh et al. 2002; Tapon et al. 2002). By this time, it was clear 
that Warts, Salvador, and Hippo all show similar loss-of-function phenotypes and 
control organ size by a common signaling pathway that promotes apoptosis and 
restricts cell proliferation (Edgar 2006; O’Neill and Kolch 2005; Rothenberg and 
Jan 2002), and the pathway got its name from the last member of this trio of genes. 
A complete pathway that relays a growth regulatory signal from the plasma mem-
brane to the nucleus has emerged over the last decade. Although genetic mutagen-
esis screens led to the initial discovery of this pathway, several components were 
identified by other genetic screening strategies and biochemical approaches (e.g., 
yeast two-hybrid screens, TAP-TAG-based protein interaction assays) [for review, 
see (Halder and Johnson 2011; Kango-Singh and Singh 2009; Staley and Irvine 
2012; Tumaneng et al. 2012a; Varelas and Wrana 2012)]. Today the Hippo pathway 
has grown to a large network of tumor suppressor genes that function upstream and 
downstream of the three initial members of the Hippo pathway (aka the core kinase 
cascade) that control several aspects of tissue homeostasis. Overall, the Hippo sig-
naling pathway is a key size regulatory pathway that controls organ size in flies and 
vertebrates, and misregulation of Hippo signaling is implicated in several diseases 
including cancer [for review, see (Harvey and Hariharan 2012; Schroeder and 
Halder 2012; Staley and Irvine 2012; Zhao et al. 2011b)] (Fig. 2).
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�Regulation by Core Kinase Cascade of the Hippo Pathway

The molecular analysis of the three initial members of the Hippo pathway in 
Drosophila revealed that Hpo codes for a S-T kinase of the mammalian sterile-20 
family of kinases (Harvey et al. 2003; Jia et al. 2003; Pantalacci et al. 2003; Udan 
et  al. 2003; Wu et al. 2003) and can physically associate with the WW domain-
containing adaptor protein Sav (Harvey et al. 2003; Jia et al. 2003; Pantalacci et al. 
2003; Udan et al. 2003; Wu et al. 2003). Wts is a S-T kinase protein of the DMPK 
family that associates with another adaptor protein Mob as tumor suppressor (Mats) 
(Justice et al. 1995; Lai et al. 2005; Shimizu et al. 2008; Wei et al. 2007; Xu et al. 
1995). Loss of function of these genes in genetic mosaics revealed strong over-
growth phenotype caused by increased cell proliferation and diminished sensitivity 
to apoptosis. Hyperactivation of the pathway by overexpression of Hpo, Sav, Wts, 
or Mats leads to formation of smaller organs due to increased apoptosis (Harvey 
et al. 2003; Pantalacci et al. 2003; Udan et al. 2003; Wei et al. 2007; Wu et al. 2003). 
Biochemical analysis showed that the Hpo kinase phosphorylates and can physi-
cally associate with Sav, Wts, and Mats to form protein complexes in vitro (Wei 
et al. 2007) (Fig. 2). However, Hpo associates with its cognate adaptor protein Sav 

Fig. 2  Schematic representation of the Hippo pathway in Drosophila melanogaster. (a) Hippo 
pathway is downregulated in response to extracellular signals. Hippo (Hpo, #3206) fails to get 
phosphorylated and does not phosphorylate Warts (Wts). Inactive Wts cannot phosphorylate 
Yorkie (Yki) and allows Yki to enter the nucleus to bind cognate transcription factors and induce 
expression of target genes. (b) Hippo pathway is activated by stress, wherein Hippo (Hpo, #3206) 
is phosphorylated and in turn phosphorylates Warts (Wts) with the help of adaptor proteins 
Salvador (Sav) and Mats. Activated Wts phosphorylates Yorkie (Yki) and prevents it from entering 
the nucleus, thus preventing transcription of target genes. In addition, cell death is induced when 
the pathway is hyperactivated
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to form the Hpo-Sav complex for efficient activation of the downstream kinase Wts 
(Huang et al. 2005; Wu et al. 2003). Wts itself associates with Mats to form the 
downstream Wts-Mats complex of the core kinase cascade of the Hippo pathway 
(Wei et al. 2007). Association of these adaptor proteins is known to stimulate the 
catalytic activity of the Hpo and Wts kinases (Dong et al. 2007; Pan 2007; Wei et al. 
2007). Moreover, phosphorylation of Mats by the Hpo kinase increases its affinity 
for the Wts kinase (Dong et al. 2007; Pan 2007, 2010; Wei et al. 2007). Wts is acti-
vated by autophosphorylation and phosphorylation by Hpo kinase. Activated Wts 
associates with Mats (thus Mats cannot simultaneously associate with Hpo and 
Wts), which acts as a coactivator for the kinase activity of Wts (Dong et al. 2007; 
Huang et al. 2005; Oh and Irvine 2008, 2009). A major output of the core kinase 
cascade is to inhibit the growth-promoting activity of Yorkie (Yki), the Drosophila 
homolog of the mammalian YAP oncogene that acts as a transcriptional coactivator 
(Dong et al. 2007; Huang et al. 2005) (Fig. 2). Yorkie (Yki) was identified via a 
yeast two-hybrid screen as an interactor of Warts. Overexpression of Yki phenocop-
ies the loss of function of hpo, sav, wts, and mats (all genes of the core kinase cas-
cade) and causes overgrowth (Dong et al. 2007; Wei et al. 2007). Loss of function 
of yki results in formation of smaller organs due to induction of cell death (Huang 
et al. 2005).

Yki activity is regulated by controlling its subcellular localization via phosphor-
ylation- dependent and phosphorylation-independent interactions with the core 
kinase cascade of the Hippo pathway (Oh and Irvine 2008, 2010; Ren et al. 2010b). 
Yki associates with Wts, and one mechanism by which the Wts kinase restricts Yki 
activity is via phosphorylation at Ser168 that creates a 14-3-3 protein-binding site 
(Goulev et al. 2008; Peng et al. 2009; Ren et al. 2010b; Wu et al. 2008; Zhang et al. 
2008b, 2009a). Interestingly, only phosphorylated forms of Yki can associate with 
14-3-3 proteins. Yki is phosphorylated at multiple sites (e.g., Ser 111 and S250), 
which increase Yki activity making it less sensitive to Hpo/Wts-mediated inhibition. 
These phosphorylation events act in parallel to phospho-Yki/14-3-3-mediated 
mechanisms and inhibit Yki nuclear localization and activity. It is suggested that 
nuclear export is required for shuttling Yki to the nucleus in response to Hpo signal-
ing, and binding of 14-3-3 proteins is thought to impede nuclear import and/or pro-
mote nuclear export, thereby facilitating nucleocytoplasmic shuttling of target 
proteins (Brunet et al. 2002; Kumagai and Dunphy 1999). Nuclear transport of Yki 
depends on its binding with cognate transcription factors as Yki does not have an 
intrinsic nuclear localization signal (NLS) (Goulev et al. 2008; Zhang et al. 2008a, 
b) (Fig. 2). Currently, it is unclear if binding of 14-3-3 proteins to Yki prevents its 
binding with cognate transcription factors or masks the nuclear localization signals 
or promotes export from the nucleus. Nevertheless, coactivator Yki/YAP is the criti-
cal downstream regulatory target of the Hpo kinase cascade, and regulation of its 
subcellular localization is the primary mechanism by which the Hpo pathway influ-
ences target gene expression (Goulev et al. 2008; Huang et al. 2005; Oh and Irvine 
2008, 2009, 2010; Oh et al. 2009; Peng et al. 2009; Ren et al. 2010b).

Yki (like Sav) is a WW domain-containing protein and interacts with the PPXY 
motifs in Wts (Huang et  al. 2005; Kango-Singh et  al. 2002; Tapon et  al. 2002). 
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Besides Wts, the WW domains of Yki interact with the PPXY motifs present in 
other components of Hippo signaling pathway like Expanded (Ex), Hpo, WW 
domain-binding protein 2 (Wpb2), and Myopic (Gilbert et  al. 2011) to regulate 
Hippo signaling via phosphorylation-independent mechanisms (Badouel et  al. 
2009; Gilbert et al. 2011; Oh et al. 2009; Zhang et al. 2011b). Another protein that 
acts via its WW domains is Kibra which associates with the PPXY motifs in Ex (and 
binds Mer in a WW domain-independent manner) (Baumgartner et  al. 2010; 
Genevet et  al. 2010). The identification of multiple proteins that act through the 
interaction between WW domains and PPXY motifs in the Hippo pathway suggests 
that these motif-specific interactions are important for regulation of Hippo signaling 
[reviewed in (Sudol 2010; Sudol and Harvey 2010)].

�Yki Activity and Regulation of Expression of Target Genes

Hyperactivation of the pathway, for example, by overexpression of Hpo, leads to 
phosphorylation and activation of Hpo and Wts with the help of adaptor proteins 
Sav and Mats. Wts, in turn, phosphorylates the transcriptional coactivator Yki, 
which associates with 14-3-3 proteins and remains sequestered in the cytoplasm 
(Dong et al. 2007; Huang et al. 2005; Oh and Irvine 2008; Oh et al. 2009; Ren et al. 
2010b). Analysis of adult and imaginal disc phenotypes reveals that overexpression 
of Hpo results in induction of ectopic apoptosis early in development in imaginal 
disc cells due to induction of caspase-dependent cell death (Hamaratoglu et  al. 
2006; Harvey et al. 2003; Udan et al. 2003; Verghese et al. 2012a). In mammalian 
cells, activation of MST1/2 and hyper-phosphorylation of YAP2 by MST2 and 
LATS1 kinase lead to activation of cell death. MST1/2 are known targets of cas-
pases. Furthermore, YAP1/2 are known to interact with p73 via a PDZ domain in 
YAP and induce apoptotic target genes (Bertini et al. 2009; Sudol 2010; Sudol and 
Harvey 2010). However, these mechanisms of regulating apoptosis may not be con-
served in flies because the site for caspase cleavage is not conserved in Drosophila 
Hpo (Wu et al. 2003), and Drosophila Yki does not have the conserved PDZ domain 
(Sudol and Harvey 2010). Nevertheless, Hpo overexpression in flies induces apop-
tosis through an alternate mechanism that does not involve caspase cleavage or p73. 
Recently, it was shown that the effector caspase Dronc (Drosophila homolog of 
mammalian caspase-9) is induced in conditions when Hippo pathway is hyperacti-
vated. Further, using reporter genes, it was shown that dronc transcription is induced 
during gain-of-function and downregulated during loss-of-function conditions of 
the Hippo pathway, suggesting that dronc is a transcriptional target of the Hippo 
pathway (Verghese et al. 2012a). However, the molecular mechanism by which Yki 
interacts with Dronc remains unclear. Both phosphorylation-dependent (e.g., with 
14-3-3 by phosphorylation-dependent mechanisms) and phosphorylation-
independent mechanisms (binding with Hpo, Wts, or Ex) result in cytoplasmic 
retention of Yki in multiple protein complexes. Thus, the possibility remains that 
hyperactivation of Hippo pathway releases Yki from one or more cytoplasmic com-
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plexes to allow its binding to transcription factors and shuttle into the nucleus to 
induce dronc transcription. Alternatively, hyperactivation of the Hippo pathway 
involves a transcriptional repressor that acts together with or independent of Yki to 
control dronc expression. Thus, although it is clear that hyperactivation of the Hippo 
pathway leads to induction of apoptosis, the molecular mechanisms underlying this 
process are yet unidentified.

When the pathway is downregulated, the genes of the core kinase cascade act as 
tumor suppressors by suppressing the growth-promoting activity of Yki (Fig. 2). 
Under these conditions, Yorkie can partner with transcription factors like the TEAD 
family protein, Scalloped (Sd), and enter the nucleus and cause transcription of 
target genes which regulate cell proliferation and apoptosis. Sd was identified as the 
transcriptional factor of the pathway via yeast two-hybrid screen and in vitro Yki 
activity assays (luciferase assay) (Goulev et al. 2008; Wu et al. 2008; Zhang et al. 
2008b). Sd is required for wing development (Campbell et al. 1992; Liu et al. 2000), 
whereas Yki is required for regulating growth of all imaginal disc cells. Other tran-
scription factors that bind Yki to regulate growth via Hippo signaling have since 
been discovered. These include Mothers Against Dpp (Mad) (Alarcon et al. 2009; 
Oh and Irvine 2010; Peng et al. 2009), Homothorax (Hth), and Teashirt (Tsh) (Peng 
et al. 2009). Mad is a known transcription factor within the Dpp/TGFβ signaling 
pathway, and Mad and Hth were shown to control the activity of the bantam miRNA 
(Alarcon et al. 2009; Peng et al. 2009). Mad, Hth, and Tsh are known transcription 
factors that respond to other signals and are required for patterning of imaginal discs 
during development.

Yki activity is controlled by the upstream signals (Grusche et al. 2010; Oh and 
Irvine 2010) (Fig. 2). A large number of target genes have been identified over the 
past decade, which include the cell cycle regulators E2F1 and cyclins E, A, B, and 
D; the growth promoter Myc and cell survival-promoting miRNA bantam; genes 
regulating cell death like the Drosophila inhibitor of apoptosis diap1, hid, and 
dronc; and cytoskeletal proteins like F-actin, which drive cell proliferation and cell 
survival (Fig. 3) (Goulev et al. 2008; Harvey et al. 2003; Huang et al. 2005; Jia et al. 
2003; Kango-Singh et al. 2002; Neto-Silva et al. 2010; Nolo et al. 2006; Pantalacci 
et al. 2003; Peng et al. 2009; Tapon et al. 2002; Thompson and Cohen 2006; Udan 
et al. 2003; Wu et al. 2003, 2008; Zhang et al. 2008a; Ziosi et al. 2010). Yki also 
controls the expression of several upstream components of the Hpo pathway like 
Ex, Mer, Kibra, Crumbs (Crb) and Four-jointed (Fjose et al. 1984) by a negative 
feedback loop (Cho et  al. 2006; Fjose et  al. 1984; Genevet et  al. 2009, 2010; 
Hamaratoglu et al. 2006). Recently, Yki was shown to affect the expression of com-
ponents of other signaling pathways, such as ligands for the Notch, Wnt, EGFR, and 
Jak-Stat pathways (Cho et al. 2006; Karpowicz et al. 2010; Ren et al. 2010a; Shaw 
et al. 2010; Staley and Irvine 2010, 2012; Zhang et al. 2009a). These interactions 
suggest that Hippo pathway interacts with the major signal transduction pathways, 
and these points of contact between different pathways may play an important role 
in controlling correct tissue sizes and maintaining homeostasis (Fig. 3).

Genetic and biochemical studies thus provide a basic premise for how Yki activ-
ity is modulated when Hippo signaling is down- or upregulated (Halder and Johnson 

S. Verghese et al.
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2011; Harvey and Hariharan 2012; Schroeder and Halder 2012; Staley and Irvine 
2012). Studies in imaginal discs and other cell types like intestinal stem cells and fat 
cells revealed that Hippo signaling is needed in all cell types to regulate growth and 
that the activity of the pathway is modulated to achieve tissue homeostasis (Halder 
et al. 2012; Halder and Johnson 2011; Harvey and Hariharan 2012; Tumaneng et al. 
2012a; Zhao et al. 2008a, 2010a). Whether Hippo signaling pathway is regulated by 
other global instructive signals (e.g., morphogen gradients) or if the pathway is 
constitutively active remains unknown. However, several inputs that communicate a 
growth regulatory signal to the core kinase cascade have been identified. We will 
discuss the key inputs and their connection to the core kinase cascade in the follow-
ing sections.

�Upstream Regulators of the Hippo Pathway

Since the discovery of the core kinase cascade, several upstream regulators of the 
Hippo pathway were identified (Table 1). These discoveries highlighted two remark-
able properties of the Hippo pathway—one, that the Hippo pathway is a signaling 
network with multiple points of signal integration rather than a linear system of 

Fig. 3  Hippo pathway target genes regulate cell proliferation and apoptosis: (a–d, #6887) 
GMRGAL4 UASHpo third instar eye-antennal imaginal disc showing effect on target proteins upon 
pathway hyperactivation in the GMR domain. (a) Cyc E is downregulated, (b) DIAP-1 levels 
remain unaffected, and (c) Drice is activated (Drice is the homolog of Drosophila Caspase3∗ and 
is a readout of active Dronc). (d) Dronc is upregulated in the GMR domain upon Hpo overexpres-
sion. (e) Loss-of-function clones of ft (GFP negative) made with yw hsFLP; UbiGFP [hsFLP; 
FRT40A ftfd/FRT40A ubiGFP] show upregulation of Cyc E in the mutant cells. This effect is very 
strong in the region of the second mitotic wave (SMW). (f–h) GMRGAL4 UASYki third instar eye-
antennal imaginal discs. (f) DIAP-1 is upregulated, (g) Caspase3∗ staining is not observed, and (h) 
Dronc is downregulated in the GMR domain consistent with overproliferation and no apoptosis

Regulation of Growth Control in Drosophila Eye
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epistatic genes (Fig.  2), and two, the interactions between various protein com-
plexes (at the signal integration points) may play a decisive role in shaping the 
outcome, i.e., Yki activity levels. Although our understanding of the network is 
incomplete in both these areas, it is clear that signaling interactions within this path-
way are shaped by several distinct inputs.

�Fat Signaling and the Hippo Pathway

fat (ft) alleles were spontaneous mutations first described by Mohr (1923, 1929). 
Subsequent analysis of mutations in the ft locus revealed both viable and lethal 
alleles, of which the null alleles are larval lethal and show hyperplastic overgrowth 
of imaginal discs thereby acting as tumor suppressor genes (Bryant et al. 1988). 
Molecular cloning of ft revealed that it codes for a transmembrane protein, which is 
an atypical cadherin (Mahoney et al. 1991). Loss of ft affects two distinct aspects of 
imaginal disc growth and development, restriction of cell proliferation and genera-
tion of correctly oriented cells within the epithelial sheet, phenotypes that were 
mapped to two distinct signaling pathways—the Hippo and the planar cell polarity 
(PCP) pathway (see (Cho 2006 #659) (Brittle et al. 2010; Matakatsu and Blair 2006, 
2008, 2012)]. Ft is ubiquitously expressed; however, its functions are regulated by 
two genes, Dachsous (Ds) and Fj, which are expressed in gradients in developing 
tissues (Matakatsu and Blair 2004; Reddy and Irvine 2008). Ds is another proto-
cadherin in flies that acts as the ligand for Ft for both the Hippo and PCP pathways 
[reviewed in (Thomas and Strutt 2012)]. Fj is a Golgi-localized kinase that phos-
phorylates the extracellular cadherin domains of Ft and Ds to promote their binding 
(Ishikawa et al. 2008; Simon et al. 2010). Phosphorylation of Fat by Fj increases its 
affinity to Ds, while phosphorylation of Ds reduces its affinity to Ft. One way in 
which Fat regulates growth and PCP is based on the slope and vector of the Ds and 
Fj gradients (Halder and Johnson 2011; Willecke et  al. 2008; Zecca and Struhl 
2010) (Fig. 2).

Several years after Ft was discovered, it was realized that the growth regulatory 
functions of Fat were tied to the Hippo pathway (Bennett and Harvey 2006; Cho 
et al. 2006; Silva et al. 2006; Willecke et al. 2006). Loss of ft in mutant clones phe-
nocopied the loss-of-function phenotypes of genes within the core kinase cascade of 
the Hippo pathway. Imaginal discs containing somatic clones of ft mutant cells con-
tinued to proliferate when normal cells had stopped, thereby forming large over-
grown discs. Transcriptional targets of Hippo pathway are induced within the ft 
mutant cells, a phenotype similar to loss of function of positive regulators of Hippo 
pathway (e.g., wts, Hpo, sav, mats). Ft affects the levels and localization of Hippo 
pathway components, including Wts, Ex, and Yki (Bennett and Harvey 2006; Cho 
et al. 2006; Oh and Irvine 2008; Silva et al. 2006; Tyler and Baker 2007; Willecke 
et al. 2006). Ft influences Hippo signaling independent of other upstream regulators 
like expanded, merlin (mer), and kibra which form a heteromeric complex (Ex-Mer-
Kibra) and other genes like the Tao-1 kinase (Boggiano et  al. 2011; Poon et  al. 

Regulation of Growth Control in Drosophila Eye



230

2011) that act upstream of Hpo (Boggiano and Fehon 2012). However, several other 
genes were recently identified that specifically act downstream of Ft and integrate 
with the Hippo pathway by influencing the activity of the downstream kinase Wts. 
Thus, the Fat branch of the Hippo pathway has emerged that independently influ-
ences Wts activity and tissue growth (Halder and Johnson 2011; Kango-Singh and 
Singh 2009; Reddy and Irvine 2008; Staley and Irvine 2012) (Fig. 2).

Several components of the Ft branch influence the intracellular domain of Ft—
the region critical for transducing the signal within cells (Fig. 2). These include the 
Drosophila Discs overgrown (Dco, #6929), a homolog of casein kinase I, which 
phosphorylates the Ft intracellular cytoplasmic domain in a Ds-dependent manner 
(Cho et al. 2006; Feng and Irvine 2009; Sopko et al. 2009), and the unconventional 
myosin Dachs (D) (Cho et al. 2006; Cho and Irvine 2004; Mao et al. 2006). Loss of 
function of dco3, a hypomorphic allele, in homozygous discs and in somatic clones 
results in tissue overgrowth and shows elevated levels of Fj and Diap-1 (Bryant and 
Schmidt 1990; Feng and Irvine 2009; Guan et al. 2007). Dco binds to the cytoplas-
mic domain of Fat, and in dco mutants, Fat intracellular domains fail to phosphory-
late. Ds enriches availability of Fat at the point of cell contacts by forming cis-dimers 
with Fat. This promotes the transphosphorylation of Fat by Dco. Lowfat is a novel 
protein that interacts with the intracellular domains of Fat and Ds and stabilizes the 
Fat-Ds interaction (Mao et al.). Lowfat was identified in a genome-wide yeast two-
hybrid screen as a Fat- and Ds-interacting protein (Mao et al. 2006, 2009). In addi-
tion, the palmitoyltransferase Approximated (App) acts downstream of Ft, and Ft 
regulates the localization of D to the membrane through APP (Matakatsu and Blair 
2008). Recently, the apical-basal polarity gene scribble (scrib) (Verghese et  al. 
2012b) and the LIM-domain protein zyxin 102 (zyx) (Rauskolb et al. 2011) were 
shown to act in the Fat branch of Hippo signaling pathway (Bennett and Harvey 
2006; Cho et al. 2006; Meignin et al. 2007; Polesello and Tapon 2007; Reddy et al. 
2010; Silva et al. 2006; Willecke et al. 2006).

The differences in Ds and Fj expression between neighboring cells stimulate Yki 
activity, whereas the vector property of the gradients affects PCP signaling. 
Localization of D to the membrane is regulated by Fj, Ds, and Ft (Cho et al. 2006; 
Mao et al. 2006; Rogulja et al. 2008; Willecke et al. 2008). D controls Yki activity 
by two alternative mechanisms: the first involves posttranslational effects of Ft on 
Wts, and the second involves the localization of Ex to the subapical membrane 
(Bennett and Harvey 2006). The apical-basal polarity gene scrib and the atypical 
myosin D are responsible for partitioning the growth regulatory signal from Ft to 
downstream genes. Genetic epistasis experiments placed Ft upstream of D and the 
apical regulator of the pathway—Expanded (Ex) (Cho et al. 2006; Mao et al. 2006; 
Verghese et al. 2012b). D can reverse the effects of loss of ft on growth and expres-
sion of Fat target genes like Wg, Serrate, and Fj (Mao et al. 2006). Scrib was also 
placed upstream of D and Ex and downstream of Ft based on genetic epistasis 
experiments (Verghese et al. 2012b) (Fig. 2). When Ft is inactive, D is regulated by 
Approximated (App) (Matakatsu and Blair 2008). App posttranscriptionally modi-
fies D and affects its localization at the apical cell cortex. Hence, App functions in 
the Hippo pathway by affecting the availability of D at the apical cell cortex. When 
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Ft is activated, D is released from App and binds to Zyxin (Zyx), which in turn 
interacts with Wts and stabilizes Wts activity (Rauskolb et al. 2011). Zyx binds to 
D; genetic epistasis experiments placed Zyx downstream of Ft and Dco and upstream 
of Wts (Feng and Irvine 2007, 2009; Rauskolb et al. 2011). Thus, influencing Wts 
stability is a primary mechanism by which Ft controls growth via Hippo signaling 
(Fig. 2). However, the other input via Ex remains less clear although there is clearly 
an input from Ft to Ex that also contributes to the Fat-branch-related phenotypes 
and regulation of the Hippo signaling pathway. Whether Fat signaling simultane-
ously signals through Ex (and the core kinase cascade) and D or the signals down-
stream of Ft are partitioned to allow maximum and more efficient signal transduction 
to the core kinase cascade remains unknown. Currently, the possibility that certain 
extracellular signals preferentially transmit the signal to Ex or D downstream of Ft 
has not been addressed.

�Apical Membrane Proteins of the Hippo Pathway

Over the last 5 years, it has become clear that membrane-localized proteins are an 
intrinsic part of the Hippo signaling pathway (Genevet and Tapon 2011; Grusche 
et al. 2011; Halder et al. 2012; Schroeder and Halder 2012) (Table 1). Among these 
are the cell polarity proteins and proteins required for maintaining the cytoskeleton 
(Fig. 2). The FERM domain-containing adaptor proteins Ex and Merlin (Mer) were 
among the earliest Hippo pathway components that were known to localize to the 
apical membrane (Hamaratoglu et al. 2006; McCartney et al. 2000). Ex and Mer act 
upstream of the Hpo kinase and regulate pathway activation (Hamaratoglu et  al. 
2006). Loss of mer and ex together in somatic clones caused dramatic overprolifera-
tion of cells leading to overgrowths. These effects were synergistic because loss of 
function of ex or mer alone does not cause similar defects. These genes function 
together to control proliferation by regulating expression of transcriptional targets 
of Hippo pathway (e.g., cyclin E and DIAP1). Expanded can also regulate the path-
way by independently interacting with Yki and sequestering it in the cytoplasm 
(Badouel et al. 2009; Oh et al. 2009).

Another protein that binds Ex and Mer and acts upstream of Hpo is the WW and 
C2 domain-containing adaptor protein Kibra. Ex, Mer, and Kibra form a complex at 
the apical membrane in epithelial cells, which then activates the downstream core 
kinase cascade (Baumgartner et  al. 2010; Cho et  al. 2006; Genevet et  al. 2010; 
Hamaratoglu et al. 2006; Pellock et al. 2007; Tyler and Baker 2007) (Fig. 2). Kibra 
was identified via a genome-wide screen in Drosophila and in S2 cells for candi-
dates that modified Yki activity (Baumgartner et al. 2010; Genevet et al. 2010; Yu 
et  al. 2010). Genetic epistasis experiments placed Kibra upstream of Hpo and 
Yorkie. Kibra affects the phosphorylation of Hpo and Yorkie. Kibra acts synergisti-
cally with Ex and Mer to regulate Wts phosphorylation, and Kibra binds to Sav and 
Hpo in a Sav-dependent manner (Baumgartner et al. 2010; Genevet et al. 2010).
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Cell polarity genes have been well characterized in flies and mammalian model 
systems, and recent studies reveal a role for cell polarity genes in the regulation of 
Hippo signaling (Table 1, Fig. 2) (Genevet and Tapon 2011; Grusche et al. 2010; 
Grzeschik et  al. 2007, 2010a; b; Schroeder and Halder 2012). Crumbs (Crb), a 
transmembrane protein, is the upstream regulator that regulates Ex activity (Chen 
et al. 2010; Ling et al. 2010; Robinson et al. 2010). Crb is required for proper local-
ization of Ex. Crb regulates Yki activity by interacting with Expanded (Chen et al. 
2010; Grzeschik et  al. 2010a; Robinson et  al. 2010). Crb was found through a 
genetic screen, and loss and gain of function of Crb cause overgrowth of tissues and 
upregulation of the Hippo pathway target genes. Echinoid (Ed) is another upstream 
regulator of the Hippo pathway that like kibra interacts with both Ex and Yki 
(Baumgartner et al. 2010; Genevet et al. 2010; Yu et al. 2010; Yue et al. 2012). Cells 
mutant for ed cause mislocalization of Sav from the subapical membrane without 
affecting Ex or Mer localization. Ed also interacts physically with Hpo, Ex, Mer, 
and Kibra (Yue et al. 2012).

F-actin acts as an upstream regulator of the Hippo pathway (Fig. 2). Increased 
levels of F-actin inhibit the pathway, and activation of Hippo pathway inhibits 
F-actin accumulation (Fernandez et  al. 2011; Richardson 2011; Sansores-Garcia 
et al. 2011). Tao-1 phosphorylates Hpo and acts upstream of Hpo at T195 (Boggiano 
and Fehon 2012; Boggiano et  al. 2011; Poon et  al. 2011). RNAi knockdown of 
Kibra, Ex, and Mer (KEM) resulted in a significant decrease of endogenous Hpo 
protein in the membrane fraction (Boggiano and Fehon 2012; Boggiano et al. 2011; 
Poon et al. 2011). Thus, the apical proteins regulate Hpo at least in part by bringing 
the latter to the membrane, where Hpo may be activated via mechanisms yet to be 
determined.

�Negative Regulators of the Hippo Pathway

Several members of the Hippo pathway were identified based on their effects on 
tissue growth, and the loss-of-function phenotypes of these components showed 
dramatic outgrowths and benign lesions in fly epithelia (Table 1). It was clear that 
additional components that keep this pathway in check (e.g., phosphatases or kinase 
inhibitors) must exist, as Hippo activity would need to be modulated both positively 
and negatively for maintaining tissue homeostasis. Thus, the search for negative 
regulators began that yielded many important and critical regulators of the Hippo 
pathway. Among the first genes identified in this category was the Ras Association 
Family (RASSF) gene, dRASSF1 (Polesello et al. 2006) (Fig. 2). The dRASSF pro-
tein negatively regulates the pathway by inhibiting the phosphorylation of Hpo, thus 
interrupting the Hpo kinase from signaling to the downstream kinase Wts (Polesello 
et al. 2006; Scheel and Hofmann 2003). Other inhibitors that act by dephosphorylat-
ing Hpo are the phosphatases—striatin-interacting phosphatase (STRIPAK) and 
protein phosphatase 2A (PP2A) (Ribeiro et al. 2010) (Fig. 2). A second mechanism 
of inhibition of Yki activity was identified by the Drosophila Ajuba family gene, 
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djub (Das Thakur et al. 2010) (Fig. 2). Loss of djub in mutant clones in imaginal 
discs caused reduced proliferation and increased apoptosis, akin to yki mutant 
clones. Genetic interaction studies showed that djub acts downstream of Hpo but 
upstream of Yki and Wts (Das Thakur et al. 2010). Furthermore, Djub can physi-
cally associate with Wts and Sav and influence the signaling activity of Yki. Thus, 
djub negatively regulates the Hippo signaling by interfering with Yki phosphoryla-
tion and its subcellular localization (Das Thakur et  al. 2010). Recently, another 
negative regulator, myopic (Bonner and Boulianne 2011), was identified in a genetic 
screen for conditional growth suppressors (Gilbert et al. 2011) (Fig. 2). mop encodes 
the Drosophila homolog of human His domain protein tyrosine phosphatase gene 
(HD-PTP or PTPN23) (Toyooka et al. 2000). mop mutant cells show overgrowth 
phenotypes due to a block in cell death. This growth is accompanied by upregula-
tion of a subset of Yki transcriptional targets but not the antiapoptotic gene diap1. 
mop interacts genetically with yki and acts downstream of wts but at the level of ex 
and yki. Myopic PPxY motifs bind conserved residues in the WW domains of the 
transcriptional coactivator Yorkie, and Myopic colocalizes with Yorkie at endo-
somes (Gilbert et al. 2011). Thus, several negative regulators of the Hippo pathway 
are now known; however, much remains unknown about their mechanism of action 
and their influence on growth regulation during development (Tables 1 and 2).

�Hippo Pathway Cross-Talks with Other Pathways

Hippo pathway is known to interact with other pathways to regulate growth (Table 2). 
In mice it has been shown that Mst2 interacts with Raf-1 of the ERK/MAPK path-
way (Graves et al. 1998). Raf-1 inhibits dimerization of Mst2 and recruits a phos-
phatase to dephosphorylate Mst2, thereby inactivating it, a function independent of 

Table 2  Pathways known to interact with the Hippo network

Pathway 
interactions Responses References

JNK pathway Cell competition, compensatory 
proliferation, regeneration, cytoskeletal 
integrity, tumorigenesis

Chen et al. (2012), Sun et al. 
(2011), Densham et al. (2009), 
Enomoto et al. (2012)

Wingless pathway Growth control Verelas et al. (2010)
EGFR pathway Growth control Herranz et al. (2012)
Decapentaplegic 
pathway

Growth control Rogulja et al. (2008)

Hedgehog pathway Growth control, neuronal differentiation Kagey et al. (2012), Lin et al. 
(2012)

Notch pathway Neural stem cell maintenance, polar cell 
fate during oogenesis, cell 
differentiation, proliferation

Li et al. (2012), Chen et al. 
(2011), Yu et al. (2008)

TSC-TOR pathway Latest paper from Tapon
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the MAPK pathway (O’Neill and Kolch 2005). More recently, many points of inter-
section between Hippo and other signaling pathways have come to light. For exam-
ple, in the last 5 years, Hippo pathway was shown to interact with JNK pathway to 
regulate compensatory proliferation, regeneration, and tumor progression (Chen 
et al. 2012; Doggett et al. 2011; Grzeschik et al. 2010a; Staley and Irvine 2010; Sun 
and Irvine 2010, 2011; Tyler et al. 2007; Varelas et al. 2010a). Furthermore, Hippo 
pathway interacts with Wingless/Wnt pathways in flies and mammals (Varelas et al. 
2010a, b). Hippo pathway restricts Wnt/beta-catenin signaling by promoting an 
interaction between TAZ and DVL in the cytoplasm. TAZ inhibits the CK1delta/
epsilon-mediated phosphorylation of DVL, thereby inhibiting Wnt/beta-catenin sig-
naling (Azzolin et al. 2012; Tsai et al. 2012; Varelas et al. 2010a). In Drosophila, 
Hippo signaling modulates Wg target gene expression (Varelas et  al. 2010a, b). 
More connections of Hippo signaling with pathways that control morphogenetic pat-
terning and growth have been uncovered which include the discovery of the regula-
tion of TGF beta/SMAD complexes by YAP/TAZ in mammalian models and Yki in 
flies (Chan et al. 2011; Meignin et al. 2007; Polesello and Tapon 2007; Rogulja et al. 
2008; Sudol and Harvey 2010; Varelas et al. 2010b). Dpp (Decapentaplegic) signal-
ing interacts with D to maintain Fj and Ds gradient in order to regulate proliferation 
in the wing (Rogulja et  al. 2008). Hippo pathway also intersects the PI3K/TOR 
pathway via multiple interactions (Bellosta and Gallant 2010; Collak et al. 2012; 
Karni et al. 2008; Kim et al. 2010; Mills et al. 2008; Sekido 2008; Strassburger et al. 
2012; Tumaneng et al. 2012a, b; Wehr et al. 2013), with G-protein-coupled receptor 
(GPCR) signaling (Yu et  al. 2012) and receptor tyrosine kinase signaling (Gadd 
et al. 2012; Garami et al. 2003). In fact, the web of interactions has grown exponen-
tially over the last few years such that oftentimes the Hippo pathway is sometimes 
referred to as a network or superhighway (Barry and Camargo 2013) (Fig. 4).

�Mammalian Hippo Pathway

Hippo pathway is responsible for regulating organ size and is involved in regenera-
tion (Bertini et al. 2009; Hiemer and Varelas 2013; Hong and Guan 2012; Liu et al. 
2012a). The core kinase pathway is highly conserved in mammals (Hong and Guan 
2012; Liu et al. 2012a; Zhao et al. 2008a). In vertebrate models, the core kinase 
cascade consists of Mst1/2 (Hpo homolog) and Lats1/2 (Wts homolog) along with 
their adaptor proteins WW45 (Sav) and MOB1 (Mats homolog), which control 
growth by regulating phosphorylation of YAP (Yki homolog) (Hong and Guan 
2012; Liu et al. 2012a; Zhao et al. 2008a). Ft1-4 (Ft homolog), Dchs1-2 (Ds homo-
log), and Fjx1 (Fj homolog) are known to regulate planar cell polarity; however, 
their connection to other Hippo pathway components still needs to be explored 
(Brittle et al. 2010; Hiemer and Varelas 2013; Skouloudaki et al. 2009; Sopko et al. 
2009; Zhao et al. 2007).

The other downstream components like Dco and Lowfat homolog have not been 
shown yet to function within the Hippo pathway (Sopko et al. 2009; Zhang et al. 
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2008a, 2011a; Zhao et al. 2010a). However, Dco homolog CK1δ/ε has been shown to 
be involved in YAP/TAZ degradation (Zhao et al. 2010b). Neurofibromatosis type II 
(NF2), the Mer homolog, is the most extensively studied upstream regulator in mam-
mals (Sekido 2011; Striedinger et al. 2008; Zhang et al. 2009b; Zhao et al. 2007). 
NF2 interacts with CD44 and adherens junction to relay the signal downstream to 
other Hippo pathway components during contact inhibition (Li et al. 2012; Morrison 
et al. 2001; Zhao et al. 2007). KIBRA is known to interact with Lats2 to promote its 
phosphorylation (Zhang et al. 2012). It also protects Lats2 from proteosomal degra-
dation by preventing its ubiquitination. KIBRA is also the transcriptional target of 
Hippo pathway (Angus et al. 2012; Ishiuchi and Takeichi 2012; Visser-Grieve et al. 
2012; Xiao et al. 2011). Angiomotin family (AMOT) interacts with its PPxY domain 
to YAP WW domain and TAZ PDZ domain independent of the upstream compo-
nents. This interaction inhibits the activity of YAP/TAZ (Chan et al. 2011; Paramasivam 
et al. 2011; Skouloudaki and Walz 2012; Wang et al. 2009, 2012a; Zhao et al. 2011a). 
Ex1/FRMD6/Willin (Ex homolog) interacts with upstream Hippo pathway compo-
nents like Mer (Angus et al. 2012; Ishiuchi and Takeichi 2012; Visser-Grieve et al. 
2012). Crb interacts with YAP/TAZ and promotes its phosphorylation, which is 

Fig. 4  Hippo pathway is linked to many biological and developmental processes. Hippo signaling 
has been shown to participate in generating myriad cellular responses that are aimed at attaining 
tissue homeostasis in addition to regulating organ size. Thus, the role of Hippo signaling is impli-
cated not only during organ development but also in differentiated tissues. Further, tumorigenesis 
has also been attributed to dysregulation of Hippo signaling pathway placing it in the global net-
work of regulatory mechanisms required for proper growth
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dependent on cell density and at the same time inhibits TGF-β SMAD pathway 
(Varelas et al. 2010b). Unlike Drosophila RASSF1, mammalian RASSF homologs 
activate MST1/2 (Avruch et al. 2012; Guo et al. 2007; Hergovich 2012; Hwang et al. 
2007; Kim et al. 2003; Polesello et al. 2006; Ribeiro et al. 2010; Schagdarsurengin 
et al. 2010; Seidel et al. 2007).

NPHP4, a known cilia-associated protein that is mutated in the severe degenera-
tive renal disease nephronophthisis, acts as a potent negative regulator of mamma-
lian Hippo signaling (Habbig et al. 2011, 2012). NPHP4 directly interacted with the 
kinase Lats1 and inhibited Lats1-mediated phosphorylation of the Yes-associated 
protein (YAP) and TAZ (transcriptional coactivator with PDZ-binding domain), 
leading to derepression of these protooncogenic transcriptional regulators. 
Moreover, NPHP4 induced release from 14-3-3 binding and nuclear translocation 
of YAP and TAZ, promoting TEA domain (TEAD)/TAZ/YAP-dependent transcrip-
tional activity (Habbig et al. 2011). ITCH interacts with LATS to negatively regu-
late its stability (Ho et al. 2011; Salah et al. 2011; Wang et al. 2012a). α-Catenin 
interacts with YAP and affects its stability by stabilizing the YAP/14-3-3 complex to 
restrict YAP activity and by preventing PP2A to interact with YAP (Azzolin et al. 
2012; Schlegelmilch et al. 2011; Silvis et al. 2011; Tsai et al. 2012) (Varelas 2010 
#1830; Konsavage 2013 #3450; Mauviel et al. 2012 #3755). Zona occludens-2 
(ZO-2) promotes the pro-apoptotic function of YAP (Oka et al. 2010). The ASPP 
(apoptosis-stimulating protein of p53) family of proteins can function in the nucleus 
to modulate the transcriptional activity of p53, with ASPP1 and ASPP2 contributing 
to the expression of apoptotic target genes (Vigneron et al. 2010). ASPP increases 
YAP/TAZ nuclear availability by preventing LATS interaction with YAP/TAZ 
(Vigneron et al.). Similarly, PP1A interacts with ASPP1 to dephosphorylate TAZ 
leading to increased TAZ nuclear availability (Liu et al. 2010, 2011).

In mammalian cell lines, E-cadherin acts as an upstream regulator of the pathway, 
which activates the pathway in response to contact inhibition. YAP and TAZ interact 
with several transcriptional factors. YAP/TAZ interacts with TEAD1/4 and Runx2. 
TAZ interacts with thyroid transcription factor-1, peroxisome proliferator-activated 
receptor gamma (PPARγ), Tbx5, Pax3, and Smad2/3/4. Yap interacts with p73 to 
mediate its pro-apoptotic functions. Various target genes are as follows: CTGF, 
AREG, BIRC5-2, and GLI-2 (Liu et  al. 2012b; Zhao et  al. 2008a, 2010a). YAP1 
interacts with sonic hedgehog pathway to promote the proliferation of cerebellar 
granule neuron precursors (CGNPs). TAZ inhibits Wnt signaling by inhibiting the 
phosphorylation of dishevelled (DVL) by CKIδε. YAP/TAZ has also been shown to 
interact with SMAD to regulate tumorigenesis (Zhang et al. 2011a; Zhao et al. 2011b).

�The Insulin Receptor Signaling Pathway: Regulation 
of Cell Size

The pin-head screens showed a large number of mutations that primarily caused 
decreased growth due to formation of smaller cells (Oldham et al. 2000a; Stocker 
and Hafen 2000). These mutants were subsequently categorized into two well-
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studied signaling pathways: the insulin/phosphoinositide 3-kinase (PI3K) path-
way and the TOR (target of rapamycin) pathway. Using genetic and biochemical 
strategies, the epistatic and molecular interactions were elucidated for genes that 
comprise these pathways.

�The Regulation of Cell Size and Not Cell Numbers

�The PI3K Pathway

Drosophila has one insulin/IGF (insulin-like growth factor) receptor homolog 
known as dInR (Chen et al. 1996; Fernandez et al. 1995) and several insulin-like 
peptides (dILPs) (Brogiolo et  al. 2001). These together control the carbohydrate 
metabolism and growth in flies (Ikeya et al. 2002; Rulifson et al. 2002). Through a 
mechanism that involves phosphorylation of its carboxy-terminal end, the dINR 
recruits downstream signaling molecules without the need for adaptor proteins. The 
signaling also involves the insulin receptor substrate (IRS) protein Chico, which 
contains a phosphotyrosine-binding domain (PTB) that facilitates its binding with 
activated dINR (Bohni et al. 1999; Poltilove et al. 2000). Subsequently, the pathway 
functions by activating the PI3K pathway, via activation of the Drosophila 
PI3K-Dp110 and its adaptor subunit Dp60 (Leevers 2001; Leevers et  al. 1996; 
Weinkove et al. 1999). Dp110/Dp60 heterodimers are recruited to the plasma mem-
brane following the binding of p60 SH2 domain to phosphorylated dInr and Chico, 
which allows the PI3K access to the phosphoinositide substrates in the plasma 
membrane. This sets up a signaling cascade in which PIP3 transduces the signal to 
downstream effectors that contain the PIP3-binding PH domains and causes relocal-
ization of these proteins to the plasma membrane (Fig. 5).

In flies, two such effectors exist—which are the Drosophila homolog of 
phosphoinositide-dependent kinase 1 (PDK1) and its substrate AKT aka protein 
kinase B (PKB). PDK1 localizes to the membrane during low levels of PI3K activ-
ity via its affinity to PIP3, whereas AKT requires high levels of PI3K activity to 
become membrane localized, through a process involving binding of PIP3 to its PH 
domain and phosphorylation by PDK1 (Vanhaesebroeck and Alessi 2000). In flies, 
the activity of DAkt is reduced in the absence of Dp110, and co-expression of 
dPDK1 and dAKT activates dAKT and induces growth (Cho et al. 2001; Radimerski 
et al. 2002b; Rintelen et al. 2001) (Fig. 5).

A negative regulator of the PI3K activity is the lipid phosphatase PTEN, which 
removes the 3′ phosphate from three phosphoinositides generated by PI3K (Gao 
et al. 2000; Goberdhan et al. 1999; Huang et al. 1999) (Fig. 5). Genetic interaction 
studies support the model where PTEN directly antagonizes PI3K. Loss of PTEN 
leads to overgrowths due to increased levels of PIP3 (Oldham et al. 2002). Recently, 
the FOXO family of transcription factors was identified as the target that enabled 
AKT to regulate growth (Tran et al. 2003). AKT-mediated phosphorylation of FOXO 
antagonizes its transcriptional activity by creating a 14-3-3 binding site that leads to 
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cytoplasmic sequestration of FOXO (Brunet et al. 1999, 2002; Burgering and Kops 
2002). Drosophila has one FOXO family transcription factor (dFOXO)—which 
functions downstream of AKT. Interestingly, loss of function of dFOXO has no 
apparent effect on cell size or growth as flies homozygous mutant for dFOXO are 
viable and normal in size (Junger et al. 2003).

The loss of function of Dp110, p60, chico, dINR, dPDK1, and dAKT shows 
similar effects on cell size and tissue growth (Fig. 5). For example, twin-spot analy-
sis revealed that loss-of-function clones of mutations in these genes are smaller than 
the corresponding wild-type twin clones that lead to formation of smaller structures 
(Bohni et al. 1999; Brogiolo et al. 2001; Rintelen et al. 2001; Verdu et al. 1999; 
Weinkove et al. 1999). Overexpression of PI3K pathway components like Dp110 
leads to increased insulin/PI3K signaling and a corresponding increase in cell size, 
cell number, and tissue growth (Goberdhan et al. 1999; Huang et al. 1999; Leevers 
et  al. 1996). Overall, changes in levels of insulin/PI3K signaling have profound 
effects on organ and organismal size due to effects on cell growth and cell division 
throughout development and affect the final body/organ size (Fig. 5).

�The TSC-TOR Pathway

Two target of rapamycin (TOR) genes, TOR1 and TOR2, were initially identified in 
yeast and were shown to be kinases that regulate growth in all organisms by acting 
as nutrient sensors that couple signaling to nutrient availability (for review, see 

Fig. 5  Model depicting regulation of INR/TOR signaling pathway governed by nutritional status 
in Drosophila. Cellular growth in part is also dependent on the availability of nutrients. This aspect 
of growth regulation is mainly regulated by the insulin/TOR signaling pathway. Some of the well-
studied players of the pathway include phosphatidylinositide 3-kinase and Akt that integrate 
upstream signaling from growth factor receptors and relay it to TSC1 and TSC2 to regulate ribo-
somal and protein biosynthesis in addition to actin organization. Other energy-sensing and amino 
acid-sensing mechanisms are also thought to interact with the core TSC/TOR pathway. However, 
the exact role or the mechanism by which this takes place remains largely unknown
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Neufeld 2003; Gingras et al. 2001). Drosophila TOR (dTOR) promotes growth by 
stimulating translation via promoting the activity of the Drosophila S6Kinase 
(Montagne et al. 1999) and inhibiting the Drosophila 4E-BP1 (a homolog of the 
eukaryotic translation initiator 4E)—the translational inhibitor of eIF4E, which is a 
part of the translation initiation complex (Gingras et al. 2001; Lasko 2000). Hyper-
phosphorylation of d4E-BP1, which is in part controlled by the TOR kinase, relieves 
its interaction with eIF4E leading to translation initiation.

TOR signaling is negatively regulated by a complex formed by the tuberous scle-
rosis complex tumor suppressors, TSC1 and TSC2 (Marygold and Leevers 2002) 
(Fig. 5). Mutations in TSC1/2 cause formation of large cells and are implicated in 
the inherited benign hamartomas observed in the tuberous sclerosis patients (Kandt 
2002; Montagne et al. 2001). The Drosophila Tsc1/2 genes show similar effects on 
cell size and were identified by several groups in the eyFLP cell lethal screens as 
mutants with overgrown heads (Gao and Pan 2001; Potter et al. 2001; Tapon et al. 
2001). Loss of Tsc1/2 causes increased growth, whereas overexpression of TSC1/2 
causes reduced growth due to slow cell cycle progression in the mutant cells. Growth 
regulation via TSC1/2 happens through preventing dS6K activation via dTOR (Gao 
et al. 2002; Radimerski et al. 2002a, b). Another important component of this path-
way is the GTPase Rheb, which is a target of TSC (Saucedo et al. 2003; Stocker 
et al. 2003; Zhang et al. 2003). The Rheb-GTP levels play a central role in regulat-
ing the activity of TOR pathway and the TOR protein that exists in two large multi-
meric complexes in the cell, viz., the rapamycin-sensitive TORC1 complex and the 
rapamycin-resistant TORC2 complex (Hara et  al. 2002; Kim et  al. 2002, 2003; 
Loewith et al. 2002; Sarbassov et al. 2004).

The TORC1 complex consists of TOR, Raptor, and LST8; and responds to the 
presence of growth factors and nutrients to control protein synthesis (Fig. 5). The 
small GTPase protein Rheb (Ras homolog enriched in the brain) is a direct activator 
of TORC1 (Long et  al. 2004; Saucedo et  al. 2003; Stocker et  al. 2003), and the 
tuberous sclerosis (TSC) complex (TSC1/TSC2) negatively regulates TORC1 by 
functioning as a GTPase-activating protein (GAP) for Rheb (Potter and Xu 2001; 
Zhang et al. 2003). Growth factors such as insulin or insulin-like growth factors 
(IGFs) activate TORC1 signaling upstream of the TSC1/TSC2 (TSC1/2) complex 
through the insulin receptor (InR)/phosphoinositide 3-kinase (PI3K)/AKT signal-
ing pathway (Inoki et  al. 2002; Potter et  al. 2002). TORC1 also senses nutrient 
availability. Amino acids regulate TORC1 through mechanisms independent or 
downstream of TSC complex, and recently the Rag small GTPases have been shown 
to interact with TOR and promote TORC1 activity by controlling its subcellular 
localization (Nellist et al. 2008; Sancak et al. 2010).

TORC2 complex (Fig.  5) consists of TOR, Rictor, Sin1 (stress-activated map 
kinase-interacting protein 1), and LST8 and phosphorylates and activates several 
AGC family kinases, including AKT, serum and glucocorticoid-regulated kinase 
(SGK), and protein kinase C (PKC), and thereby regulates cell survival, cell cycle 
progression, and metabolism (Pearce et al. 2010) (Li 2010 #8573; Gao 2010 #8574). 
In contrast to TORC1, little is known about the upstream activators of mTORC2. 
Although the general mechanisms have not been accepted, PI3K, TSC, and Rheb 
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have been shown to regulate TORC2 activity, and Rictor has been identified as a 
substrate of S6 kinase (S6K), suggesting possible regulation of TORC2 through the 
TORC1 pathway (Dibble et  al. 2009; Treins et  al. 2010; Yang et  al. 2006). 
Nevertheless, it is generally thought that growth factors may control TORC2, either 
directly or indirectly (Zinzalla et al. 2011). TORC2 has been proposed to function 
independent of amino acid availability (Jacinto et al. 2006); however, recent find-
ings show that amino acids may also activate TORC2 (Tato et al. 2011).

The central role of TOR in cell growth has been largely attributed to TORC1, but 
mounting evidence points to a role for TORC2 as well in this basic cellular process. 
For instance, TORC2 localizes in polysomal fractions and associates with ribo-
somal proteins, indicating a potential role for TORC2 in protein synthesis and matu-
ration (Cybulski and Hall 2009; Zinzalla et al. 2011). lst8 knockout flies are viable 
but small, similar to rictor mutants but dissimilar to files with tor or rheb mutations, 
which are lethal (Avruch et al. 2009; Liao et al. 2008; Wang et al. 2012b). Neither 
loss nor overexpression of LST8 affected the kinase activity of TORC1 toward S6K 
or autophagy, whereas the kinase activity of TORC2 toward AKT was completely 
lost in the lst8 mutants (Avruch et al. 2009; Liao et al. 2008; Wang et al. 2012b).

In terms of effects of TOR signaling on growth phenotypes in Drosophila, loss 
of dTOR leads to a decrease in larvae size; however, the larvae fail to mature and 
die before reaching adulthood. In mosaic Drosophila, loss of dTOR leads to a 
decrease in cell size while maintaining the general organization of the tissue 
(Oldham et al. 2000b; Zhang et al. 2000). However, it is less clear how cell size is 
regulated downstream of mTOR. One of the most potent candidates in this regula-
tion is S6K.  In Drosophila, knockout of S6K results in high rates of embryonic 
lethality. In the surviving adults, however, there is a decrease in body size. 
Knockdown of either dPTEN or dTSC1is sufficient to increase cell size; however, 
a double knockdown of dPTEN and dTSC1 has additive effects on cell size regula-
tion. This suggests that in Drosophila, the pathways may have independent compo-
nents in the regulation of cell size (Gao and Pan 2001). It may also highlight the 
differences in the regulation of TSC2 by AKT in Drosophila as seen by mutations 
of the AKT phosphorylation sites on TSC2 (Dong and Pan 2004; Pan et al. 2004). 
Loss of either dPTEN or dTSC1 can lead to increases in cell size; however, a report 
has suggested that only knockdown of dTSC1 leads to increases in dS6K 
(Radimerski et al. 2002a), whereas other reports have also seen increases in dS6K 
with the knockdown of dPTEN (Sarbassov et al. 2004; Yang et al. 2006). It is pos-
sible that dTSC1 regulates cell size in a dTOR-dependent manner, whereas dPTEN 
partially regulates cell size in a dTOR-independent manner (Radimerski 
et al. 2002b).

In conclusion, the TOR signaling pathway is a complex network of cell size 
regulators that is also implicated in tumorigenesis and cell survival (Fig. 5). Several 
pathways interact and intersect with the TOR pathway at multiple points upstream 
and downstream of TOR.
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�Growth Regulation: A Network of Tumor Suppressors

Overall, growth control occurs through the Hippo and TSC-TOR pathways in con-
junction with pathways regulating pattern formation during development. These 
pathways intersect in complicated signaling networks in all cell types and coordi-
nately regulate overall growth of an organism. Our progress in understanding of 
these pathways has led the way to find molecules and interactions important for 
regenerative growth and wound healing—phenomena that have been well docu-
mented but not well understood at the molecular level for a long time. In addition, 
the establishment of these growth regulatory networks has led many insights in the 
fields of cancer (e.g., the underlying genetics and biology link between hamartomas 
and TSC genes; schwannomas and NF2; YAP and hepatocellular carcinoma, TAZ 
and breast cancer, etc.). In the future, it will be interesting to learn about the regula-
tion of these pathways by extracellular and intracellular mechanisms, an area 
expected to expand rapidly with our increased understanding of the integration 
points in the circuitry of these networks.
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