
Yongpan Liu
Youn-Long Lin
Chong-Min Kyung
Hiroto Yasuura   Editors

Smart 
Sensors and 
Systems
Technology Advancement and 
Application Demonstrations



Smart Sensors and Systems



Yongpan Liu • Youn-Long Lin • Chong-Min Kyung
Hiroto Yasuura
Editors

Smart Sensors and Systems
Technology Advancement and Application
Demonstrations



Editors
Yongpan Liu
Circuits and Systems Division
Tsinghua University Circuits
and Systems Division
Beijing, China

Youn-Long Lin
National Tsing Hua University
Hsichu, Taiwan

Chong-Min Kyung
#310 IT Convergence Building (N1)
Center for Integrated Smart Sensors
Yuseong-gu, Daejeon, Korea
(Democratic People’s Republic of)

Hiroto Yasuura
Kyushu University
Fukuoka Shi, Japan

ISBN 978-3-030-42233-2 ISBN 978-3-030-42234-9 (eBook)
https://doi.org/10.1007/978-3-030-42234-9

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-42234-9


Preface

Internet of Things (IoTs) is becoming the key technology for smart social informa-
tion systems. To realize the smart society by IoTs, effective sensing technologies
of various aspects of physical world are required. The huge sensing data should be
intelligently processed and integrated by smart sensor systems. This book shows
essential issues of the IoTs and smart sensor technologies in various aspects, from
fundamental devices to actual social applications.

Following previous three editions, this book brings together multidisciplinary
sensor technology from biological, optical, chemical, and electrical domains. The
research field is expanding to various application areas, and new researches are
being explored. This book presents up-to-date approaches of sensor devices and
smart sensor systems in real-world applications including biomedical, video, and
fundamental IoT techniques.

Chapters 3, 4, and 9 illustrate biosensor techniques, including optogenetics-based
implantable neural interfaces, plasmonic nanostructures for biomarker sensing, and
bio-imaging and PDMS film process for thin and flexible sensors. Specifically,
(1) Chap. 3 introduces optogenetics, one of the most powerful research tools
to selectively control or modulate the activity of specific types of neurons. As
an alternative light source in place of laser, two different types of LED-based
implantable neural interfaces are compared in terms of efficiency, fabrication
complexity, multifunctionality, and biosafety. (2) Chapter 4 presents recent progress
in the fabrication of practical plasmonic nanostructures for surface-enhanced Raman
spectroscopy (SERS) applications. A nano-transfer printing of sub-20 nm metallic
nanostructures is illustrated for cost-effective and reproducible plasmonic nanos-
tructures, which is promising for biomedical applications such as biomarker sensing
and bio-imaging. (3) Chapter 9 proposes a low-cost processing technique for
microstructuring PDMS film. Pressure and strain sensors are fabricated with these
PDMS films and integrated in wearable systems for monitoring diverse human
physiological signals and body motions, including wrist pulse monitoring, static
and dynamic foot pressure monitoring, and neck posture monitoring.

Chapters 1, 2, and 5 present better performance and energy efficiency techniques
for video sensor applications, consisting of a Poisson Mixture Model (PMM)-based

v

http://dx.doi.org/10.1007/978-3-030-42234-9_3
http://dx.doi.org/10.1007/978-3-030-42234-9_4
http://dx.doi.org/10.1007/978-3-030-42234-9_9
http://dx.doi.org/10.1007/978-3-030-42234-9_3
http://dx.doi.org/10.1007/978-3-030-42234-9_4
http://dx.doi.org/10.1007/978-3-030-42234-9_9
http://dx.doi.org/10.1007/978-3-030-42234-9_1
http://dx.doi.org/10.1007/978-3-030-42234-9_2
http://dx.doi.org/10.1007/978-3-030-42234-9_5


vi Preface

background subtraction, vision-based and Bayesian filtering motion estimation, and
simultaneous localization and mapping algorithms for visual tracking. Specifically,
(1) Chap. 1 presents a new background subtraction scheme for camera systems
based on a PMM for modeling dynamic backgrounds, and it achieves a significant
speed-up compared to FPGA implementations, making it especially suitable for
embedded applications. (2) Chapter 2 improves motion estimation approaches by
a novel visual simultaneous localization and mapping (SLAM) approach in which
both vision-based motion estimation and Bayesian filtering are combined to reduce
the estimation errors of the estimated path. (3) Chapter 5 presents basics and
recent advances in visual tracking for augmented reality, computer vision, and
robotics applications. Specifically, it focuses on visual simultaneous localization
and mapping (vSLAM) algorithms that allow both camera pose estimation and 3D
model generation in unprepared environments.

Chapters 6, 7, 8, and 10 discuss novel IoT techniques including wireless
backhaul network techniques, vehicle detection using sidewalk microphones, high-
performance algorithm-architecture co-design and nonvolatile memory-based IoT
sensor nodes. Specifically, (1) Chap. 6 proposes a wireless backhaul network in
which access points (APs) are linked wirelessly with the capability of relaying
packets, which realizes a wide Wi-Fi coverage area without installing a huge
number of access cables. Four example applications are described: a ubiquitous
camera network, a Wi-Fi tag tracking system, a criminal fishing system, and a
networked vehicle. (2) Vehicle detection is one of the fundamental tasks in the ITS
(intelligent transportation system). Chapter 7 presents a new approach of vehicle
sensing using sidewalk microphones for vehicle detection. (3) Chapter 8 innovates
discussions on Smart System-on-Chip design, in expediting the field of signal
and information processing systems into futuristic new era of the IoTs and high-
performance computing based on algorithm/architecture co-design. (4) Chapter 10
discusses architecting PCM, especially MLC PCM, as main memory for IoT devices
to replace conventional DRAM deployment. However, PCM/MLC PCM suffers
from long write latency and large write energy; this work proposes a write mode
aware loop tiling approach to effectively reduce the lifetime of write instances and
maximize the number of efficient fast writes in loops.
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Poisson Mixture Model for High Speed
and Low-Power Background Subtraction

Muhammad Umar Karim Khan and Chong-Min Kyung

1 Introduction

Internet of Things (IoT) has been driving research in industry as well as academia
for the past decade. An IoT system presents numerous challenges to designers
of different expertise. One of the major tasks of designing an IoT system is to
develop the sensors at the front-end of the system. These sensors are required to
perform their respective tasks in real-time with limited energy and area. Inefficient
implementation of sensors in IoT clusters with battery-operated nodes will result in
limited operational time, as high energy consumption will quickly drain the battery.
Although energy-efficient communication in IoT has been thoroughly researched,
relatively little progress has been made in the design of energy-efficient sensors.

Vision sensors in the form of smart cameras are expected to be a core part of the
IoT. This is because many real-life applications depend on visual understanding of a
scene. Designing a smart camera for IoT that infers from the scene is a challenging
proposition. First, computer vision algorithms have high computational complexity,
making them inefficient for IoT. Second, accuracy is generally compromised in
hardware implementations of computer vision algorithms for achieving higher
speed, lower power, or smaller area.

Background subtraction (BS) is a core computer vision algorithm to segment
moving objects from the dynamic or static background. BS algorithms aim to model
the background that is robust against lighting changes, camera jitter, and dynamic
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backgrounds [1]. Generally, BS provides a region of interest (the moving object)
in the frame of a given video, which is either used to trigger an alarm or further
analyzed to understand the scene. Computational gain is achieved by only analyzing
the moving objects in the scene rather than the whole frame.

Researchers have proposed many BS schemes in the past. Almost all of these
schemes target high accuracy of BS. Such an approach is useful in some applications
but not for smart cameras. The reason is that the algorithms that solely target high
accuracy are computationally complex, resulting in high power consumption, delay,
and area. On the other hand, some researchers have proposed dedicated implemen-
tations of BS, which provide relatively high speed and low-power consumption.
However, these implementations generally degrade the accuracy of the algorithms.

Previously, we have described the use of BS in surveillance systems, its implica-
tions and proposed a novel method. Khan et al. [2] presents a strategy for obtaining
the ideal learning rate of GMM-based BS to minimize energy consumption. A dual-
frame rate system was proposed in [3], which allows efficient use of memory in a
blackbox system. We proposed an accurate, fast, and low-power BS scheme in [4].

Shot noise is the most dominant source of noise in camera system. Shot noise is
modeled by a Poisson distribution. Therefore, in this paper, we use a Poisson dis-
tribution under the shot noise assumption to model the background pixel intensity.
In fact, we use a Poisson mixture model (PMM) to model dynamic background. We
use a relatively stable approach for online approximation of the parameters of the
distribution. Resultantly, the proposed method provides competitive performance
compared to common BS schemes.

The rest of the chapter is structured as follows. Section 2 describes some efficient
implementations of BS from the literature. In Sect. 3, we present a brief review of
EBSCam for BS. Section 4 describes the proposed method of BS. Experimental
results are discussed in Sect. 5 and Sect. 6 concludes the chapter.

2 Previous Work

This section is divided into two parts. In the first part, we describe numerous
BS algorithms. In the second part, efficient implementations of BS algorithms are
presented.

2.1 Background Subtraction Algorithms

Previously, numerous surveys have been performed on BS schemes [5–7]. These BS
schemes can be classified into region-based and pixel-based categories.

Region-based schemes make use of the fact that background pixels of the same
object have similar intensities and variations over time. In [8], authors divide a
frame into N × N blocks and each block is processed separately. Samples of the
N2 vectors are then used to train a principal component analysis (PCA) model. The
PCA model is used for foreground classification. A similar technique is described
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in [9]. In [10], independent component analysis (ICA) of images from a training
sequence is used for foreground classification. A hierarchical scheme for region-
based BS is presented in [11]. In the first step, a block in the image is classified as
background and the block is updated in the second step.

Pixel-based BS schemes have attracted more attention due to their simpler imple-
mentations. In these schemes, the background model is maintained for each pixel
in the frame. The simplest of these methods are classified as frame differencing,
where the background is modeled by the previous frame [12] or by the (weighted)
average of the previous frames. Authors in [13] use the running average of most
recent frames so that old information is discarded from the background model.
This scheme requires storing some of the previous frames; thereby, larger memory
space is consumed. In [14] and [15], a univariate Gaussian distribution is associated
with each pixel in the frame, i.e., pixel intensities are assumed to be of Gaussian
distribution and the parameters of the distribution (mean and variance) for each
pixel are updated with every incoming frame. The mean and the variance of the
background model for each pixel are then used to classify foreground pixels from
the background.

Sigma-delta (Σ-Δ)-based BS [16, 17] is another scheme which is popular in
embedded applications [18, 19]. Inspired from analog-to-digital converters, these
methods use simple non-recursive approximates of the background image. The
background pixel intensity is incremented, decremented, or unchanged if the pixel
intensity is considered greater than, less than, or similar to the background pixel
intensity, respectively.

Kernel density estimation (KDE) schemes [20, 21] accumulate the histogram of
pixels separately in a given scene to model the background. Although claimed to be
non-parametric, the kernel bandwidth of KDE-based schemes needs to be decided
in advance. Using a small bandwidth produces rough density estimates whereas a
large bandwidth produces over-smoothed ones.

Perhaps the most popular BS methods are the ones based on Gaussians mixture
models (GMM). These methods, first introduced in [22], assume that background
pixels follow a Gaussian distribution and model a background pixel with multiple
Gaussian distributions to include multiple colors of the background. Numerous
improvements have been suggested to improve foreground classification [23] as well
as speed [24–27] of GMM-based methods. Notable variants of the original work are
[28] and [29]. In [28], an adaptive learning rate is used to update the model. In [29],
which is usually referred to as extended GMM or EGMM, author uses the Dirichlet
prior with some of the update equations to determine the sufficient number of
distributions to be associated with each pixel. The Flux Tensor with Split Gaussians
(FTSG) scheme [30] uses separate models for the background and foreground. The
method develops a tensor based on spatial and temporal information, and uses the
tensor for BS.

Another pixel-based method for BS is the codebook scheme [31] and [32], which
assigns a code word to each background pixel. A code word, extracted from a
codebook, indicates the long-term background motion associated with a pixel. This
method requires offline training and cannot add new code words to the codebook at
runtime.
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ViBe [33] is a technique enabling BS at a very high speed. The background
model for each pixel includes some of the previous pixels at the given pixel location
as well as from the neighboring locations. A pixel identified as background replaces
one of the randomly selected background pixels for the corresponding and the
neighboring pixel locations. The rate of update is controlled by a fixed parameter
called the sampling factor. Despite its advantages, the BS performance of ViBe
is unsatisfactory in challenging scenarios such as dark backgrounds, shadows, and
under frequent background changes [34].

PBAS [35] is another BS scheme that only maintains background samples in
the background model. PBAS has a similar set of parameters as ViBe. It operates
on the three independent color channels separately, and combines their results
for foreground classification. Another sample based scheme is SACON [36]. This
method computes a sample consensus by considering a large number of previous
pixels, similar to ViBe. Authors assign time out map values to pixels and objects,
which indicate for how long a pixel has been observed in consecutive frames. These
values are used to add static foreground objects to the background.

Recently, several BS schemes based on human perception have been proposed.
In [37], authors assumed that human vision does not visualize the scene globally but
is rather focused on key-points in a given scene. Their proposed method uses key-
point detection and matching for maintaining the background model. Saliency has
been used in [38] for developing a BS technique. In [34], authors consider how the
human visual system perceives noticeable intensity deviation from the background.
Authors in [39] present a method of BS for cell-phone cameras under view angle
changes.

2.2 Hardware Implementation of Background Subtraction
Schemes

Some implementations of BS algorithms for constrained environments have been
proposed in the past. The BS algorithm presented in [40] has been implemented
on a Spartan 3 FPGA in [41]. Details of the implementation are missing in their
work. Furthermore, [40] assumes the background to be static, which is impractical.
In [42], authors present a modification to the method proposed in [43]. They have
achieved significant gains in memory consumption and execution time; however,
they have not presented the BS performance results over a complete dataset.
Authors in [44] implement the algorithm presented in [45] on the Spartan 3 FPGA.
The implemented algorithm, however, is non-adaptive and applicable to static
backgrounds only. Furthermore, the algorithm of [45] lacks quantitative evaluation.
An implementation of single Gaussian-based BS on a Digilent FPGA is given
in [46]. As [45], the implemented algorithm cannot model dynamic backgrounds.
Another implementation of a BS scheme for static backgrounds, more specifically
the selective running Gaussian filter-based BS, has been performed on a Virtex 4
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FPGA in [47]. In [48], authors present a modified multi-modal Σ-Δ BS scheme.
They have achieved very high speed with their implementation on a Spartan
II FPGA. Like other methods discussed above, they have not evaluated the BS
performance of their method on a standard dataset.

Many researchers have implemented comparatively better performing BS
schemes as well. A SoC implementation of GMM is presented in [49], which
consumes 421 mW. In [50], an FPGA implementation of GMM is presented, which
is faster and requires less energy compared to previous implementations. The
authors maneuver the update equations to simplify the hardware implementations.
Other implementations of GMM include [51] and [52]. An implementation of the
codebook algorithm for BS is presented in [53]. Similarly, FPGA implementations
of ViBe and PBAS algorithms have presented in [54] and [55], respectively.

It should be noted that the above implementations do not exactly implement the
original algorithms but use a different set of parameters or post-processing to adapt
their methods for better hardware implementations; therefore, the BS performance
of these implementations is expected to be different from the original algorithms.

3 Review of EBSCam

EBSCam is a BS scheme proposed in [4]. It uses a background model that is robust
against the effect of noise. In this work, we use EBSCam to estimate the parameters
of the PMM distribution for every pixel.

It is shown in [4] that the noise in the input samples results in the background
model of each pixel to fluctuate. This results in BS scheme making classification
errors, i.e., identifying background pixels as foreground and vice versa. These errors
are typically defined in terms of false positive and false negatives. A false positive
is said to occur if a pixel belonging to the background is identified to be part of a
moving object. Similarly, a false negative is said to occur if a pixel belonging to the
moving object is identified as to be part of the background. In [4], the probability of
false positives and false negatives with GMM-based BS is shown to be

P [FP ] = 1 − erf

⎛
⎜⎜⎝

√
T σBG√

2
(
σ 2

BG + s2
μ,k (αk, σBG) + ψ + √

T s2
σ,k (αk, σBG)

)

⎞
⎟⎟⎠

(1)
and

P [FN ] = 1 − erf

⎛
⎜⎜⎝

E [IFG] −
(

E [IBG] + √
T σBG

)
√

2
(
σ 2

FG + s2
μ,k (αk, σBG) + √

T s2
σ,k (αk, σBG)

)

⎞
⎟⎟⎠ , (2)
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respectively. Note that here s2
μ,k and s2

σ,k denote the variance in the estimated mean
and standard deviation parameters of GMM, respectively. Kindly, refer to [4] for the
definition of the rest of the symbols as these are not relevant here. From the above
equations it is seen that the variance in the estimated parameters increases the error
probabilities. EBSCam mitigates this variance in the estimated parameters to reduce
errors in BS.

In EBSCam, the intensity of the background of each pixel is limited to have
K different intensities at maximum. In other words, the background can have K

different layers to allow the method to estimate dynamic backgrounds. For every
pixel i, a set Ei of K elements is formed. Each element of Ei represents a single
layer of the background.

The pixel intensity at i-th pixel is compared against the elements of the set Ei to
populate Ei . If the pixel intensity differs from all the elements of the set Ei by more
than a constant D, then it is stored as a new element in the set Ei . Let us define

Ri,t = ∪K
j=1[E(j)

i,t−1 − D,E
(j)

i,t−1 + D], (3)

where E
(j)

i,t−1 is the j -th element of Ei at time t − 1 and D is a global threshold,
then the sampling frame (if the input intensity belongs to Si,t then it is included in
Ei) at time t is defined as

Si,t = I \ Ri,t . (4)

Here I is the set of all possible values of background pixels and \ denotes set
subtraction.

It is seen from the above equations that the background model only changes when
the input intensity differs from all the elements of Ei by more than D, otherwise,
the background model does not fluctuate. In other words, triggering the update of
the background model is thresholded by a step-size of D in EBSCam. Furthermore,
pixel intensities can be used for estimating the background intensity as under the
assumption of a normal distribution the mean and the mode are the same. In other
words, the most frequently observed value of the background intensity is likely to
be very close to the mean of the intensity, i.e.,

arg max
IBG

fIBG
(IBG) = E[IBG], (5)

where fIBG
is the probability density function (PDF) of the background intensity.

The background model in EBSCam is not limited to the estimates Ei but also
the credence of individual estimates, which is stored in a set Ci . The credence gives
the confidence in each estimate. In [4], it is shown that the credence should be
incremented if an estimate is observed and should be decremented if the respective
estimate is not observed. More precisely,

C
(j)
i,t = C

(j)

i,t−1 + 1 if Ii,t ∈ [E(j)

i,t−1 − D,E
(j)

i,t−1 + D] (6)
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and

C
(j)
i,t = C

(j)

i,t−1 − 1 if (Ii,t ∈ [E(j)

i,t−1 − D,E
(j)

i,t−1 + D]′ ∧ C
(j)

i,t−1 > Cth), (7)

where Cth is a constant.
The background model in EBSCam is updated blindly. In blind updates, the input

intensity at a pixel updates the background model regardless of the pixel intensity
being part of the background or foreground. On the other hand, in non-blind updates
only the background pixel intensities are used to update the background model.
Whenever a pixel intensity that differs from all the elements of Ei by more than D

is observed then it is included as a new estimate. The new estimate has a credence
value of zero. Note that the new estimate replaces the estimate about which we are
least confident, i.e., the estimate with the minimum credence.

The background model is used to classify pixels to either belonging to the
background model (background pixels) or the foreground. The decision to classify
a pixel to background or foreground is straightforward. First, the set of estimates
about which we are confident enough are defined as

Bi,t = ∪K
j=1(E

(j)

i,t−1|C(j)

i,t−1 > Cth), (8)

i.e., if the credence of an estimate is greater than a threshold then we can consider the
estimate to be valid. The pixel intensity is compared against the valid background
estimates. If the pixel intensity matches the valid background estimates, then it is
considered as part of the background, otherwise, it is considered to be part of the
foreground. The foreground mask at a pixel i is obtained as

Fi,t =
{

0 if Ii,t ∈ [B(m)
i,t − D,B

(m)
i,t + D] over any m

1 otherwise
(9)

where B
(m)
i,t is the m-th element of Bi,t .

4 EBSCam with Poisson Mixture Model

In EBSCam, a fixed threshold is used for distinguishing the foreground pixels
from the background. Although such an approach has been used by numerous
authors, such as [33], it lacks theoretical foundation. The variation in the background
pixel intensities varies spatially and temporally over video frames; therefore, an
adaptive threshold should be used for distinguishing the foreground pixels from the
background pixels.

Generally, the Poisson distribution is used to model the shot noise of image
sensors. The probability that m photons have been absorbed at a pixel i is given by
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(Xi,t = m) ∼ g(m; λi) = λm
i e−λi

m! , (10)

where λi is a parameter denoting both the mean and the variance of the distribution.
Assuming that the number of photons are such that the relationship between the
observed intensity and the number of photons is linear, the observed intensity can
be given by

Ii,t = aXi,t , (11)

where a is the gain factor. Thus, the mean and the variance of the observed intensity
are given by

μi,t = aλi (12)

and

σ 2
i,t = a2λi = aμi,t , (13)

respectively.
The Poisson distribution can be used to model the noise or the variance of

the background pixel intensities. In order to deal with dynamic backgrounds, we
propose using a Poisson mixture model (PMM) for modeling the background
intensities. Each subpopulation of the mixture model is representative of a layer
of the background. Thus, the background pixel intensity can be modeled as

(IBG,i,t = m) ∼
K∑

k=1

ψ
(k)
i g(m; λ

(k)
i ). (14)

The parameters of the distribution can be estimated as

λ
(k)
i =

∑T
t=1 1{IBG,i,t ∈ k}IBG,i,t∑T

t=1 1{IBG,i,t ∈ k} (15)

and

ψ
(k)
i =

∑T
t=1 1{IBG,i,t ∈ k}

T
, (16)

where T is the total number of frames. Generally, expectation maximization
algorithm is used to estimate the above parameters.

The approach in (15) and (16) for estimating the parameters of the distribution
of the background pixel intensities is not feasible for two reasons. First, it requires
maintaining all the frames of the video. Second, EM is an iterative procedure and
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is constrained by speed requirements. Here, we propose using EBSCam for online
approximation to estimate the parameters of the PMM. Since the mean and the mode
of the Poisson distribution are the same, we can write

λ
(k)
i,t = E

(k)
i,t . (17)

Rather than using the normalized values of ψ
(k)
i for which

∑K
k=1 ψ

(k)
i = 1, we can

use non-normalized values by replacing ψ
(k)
i of (16) by

φ
(k)
i =

T∑
n=1

1{IBG,i,n ∈ k}. (18)

This approximation is plausible for the reason that the ψ
(k)
i values are used for

comparison between subpopulations. Since overall k division by T takes place as
shown in (16), therefore, the scaling of ψ

(k)
i by T will not have an effect on the

result of comparison over all k. From (18),

φ
(k)
i,t =

t∑
n=1

1{IBG,i,n ∈ k} = φ
(k)
i,t−1 + 1{IBG,i,t ∈ k}. (19)

In detail, the approximate weight of the k-th subpopulation is incremented if
the input intensity matches the k-th subpopulation. Similarly, to get rid of old,
unobserved background layers we decrement φ

(k)
i,t if IBG,i,t does not belong to the

k-th subpopulation. In case a new background layer needs to be stored, the least
observed background layer is to be removed. Based on this, the approximate weight
φ

(k)
i,t can be replaced by C

(k)
i,t .

The decision whether the input intensity matches an estimate is modified as

(
Ii,t − E

(j)

i,t−1

)2
< c2

(
σ

(j)

i,t−1

)2
(20)

or

(
Ii,t − E

(j)

i,t−1

)2
< c2E

(j)

i,t−1 (21)

or

∣∣∣Ii,t − E
(j)

i,t−1

∣∣∣2 < c

√
E

(j)

i,t−1, (22)

where c is a constant. Thus, an adaptive threshold is used to distinguish foreground
intensities from the background. The threshold is determined by the mean or the
variance of PMM, which can be approximated by Ei .
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Algorithm 1 EBSCam-PMM
1: INPUT : It ← video frame at time t , P ← set of all pixels, K ← cardinality of the estimates
2: OUTPUT : Ft ← foreground mask at time t

3: All elements of Ei and Ci are set to zero for the first frame
4: for i = 1 to P do
5: Fi,t = 1;
6: match = 0;
7: for j = 1 to K do
8: diff = |Ii,t − E

(j)
i,t |;

9: if diff < c

√
E

(j)
i,t then 	 Estimate is observed

10: C
(j)
i,t = C

(j)

i,t−1 + 1;
11: match = 1;
12: if C

(j)

i,t−1 > Cth then
13: Fi,t = 0;
14: end if
15: else 	 Estimate is not observed
16: if C

(j)

i,t−1 > Cth then

17: C
(j)
i,t = C

(j)

i,t−1 − 1;
18: end if
19: end if
20: end for
21: if match == 0 then
22: Find m such that C

(m)
i,t < C

(j)
i,t over j = 1 : K

23: E
(m)
i,t = Ii,t ; 	 Initializing the estimate

24: C
(m)
i,t = 0;

25: end if
26: end for

The update of Ei and foreground classification is performed similar to EBSCam.
Since, the proposed method uses EBSCam to estimate the distribution parameters
of PMM, we term the proposed scheme as EBSCam-PMM. A step-wise procedure
is shown in Algorithm 1.

5 Parameter Selection

In EBCam-PMM, there are two parameters namely c and K . If a too large value
of K is used, then it will cover more than the background model, resulting in
false negatives. Similarly, a too small value of K will result in false positives, as
background intensities will not be fully covered by the estimated mixture model.
For c we propose using a value of 2, i.e., the intensity at a pixel is said to match
a background estimate if it is within two standard deviations of the estimate. We
choose c = 2 for a couple of reasons. First, two standard deviations sufficiently
cover the distribution. Second, assuming integer values of the input intensity, we
can write the condition in (22) as



PMM for High Speed and Low-Power BS 11

∣∣∣Ii,t − E
(j)

i,t−1

∣∣∣ <

⌊
c

√
E

(j)

i,t−1

⌋
. (23)

With a non-negative integer c, the above can be written as

∣∣∣Ii,t − E
(j)

i,t−1

∣∣∣ < c

⌊√
E

(j)

i,t−1

⌋
. (24)

By using (24), we can replace the complicated square-root operation by simple
LUTs. For example, for all values of E

(j)
i,t between 170 and 224, the value of⌊√

E
(j)

i,t−1

⌋
is 14. Generally, for an n-bit wide input intensity, we require only 
2

n
2 �

if-else conditions to compute

⌊√
E

(j)

i,t−1

⌋
.

We applied EBSCam-PMM to the dataset in [56] with different values of K . In
Fig. 1, we show the percent of wrong classification (PWC) defined as

PWC = FP + FN

T P + T N + FP + FN
× 100. (25)

Here T P are true positives and T N are true negatives. With EBSCam-PMM,
optimal performance is achieved with K = 5 as seen in Fig. 1.

2 3 4 5 6 7

PW
C

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

Fig. 1 The effect of changing K on background subtraction performance of EBSCam-PMM over
CDNET-2014 dataset
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6 Hardware Implementation of EBSCam-PMM

In this section, a dedicated implementation of EBSCam-PMM is described as
dedicated implementations can attain much higher processing speed and much lower
energy compared to a general purpose implementation.

The abstract diagram of the overall system is shown in Fig. 2. The scene is
captured by the sensor array. Afterwards, the intensity values of the scene are passed
to the image signal processor (ISP). The ISP performs multiple image processing
tasks, which include providing the luminosity values which are used in BS. Note
that this front-end configuration is not fixed and can be replaced by any system
which provides luminosity values of the scene.

The EBSCam-PMM engine performs the task of identifying the foreground
pixels from the background. The EBSCam-PMM engine is composed of the
memory unit and the EBSCam-PMM circuit. The memory unit maintains the
background model, which is used by the EBSCam-PMM circuit to classify a given
pixel into foreground or background.

Sensor Array
Image Signal 

Processor

Lens and 

Aperture 

System

Captures the scene 

in the view angle

Converts the 

observed scene 

(light energy) into 

electrical signals

Performs numerous 

low-level processing 

tasks including 

color-conversion

Pixel 

intensities

Foreground

Camera System

EBSCam-PMM Engine

Memory

EBSCam-

PMM Circuit

Maintains the 

background model 

of all pixels

Updates the 

background model 

and creates the 

foreground mask

Fig. 2 Abstract diagram of the overall system
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Comparator

credenceUpdate

addNewEs�mate

fgGenerate postProcess

addEs�mate

Intensity

E

C

8

40

50

5

50

40

50
C(updated)

Foreground

M

E(updated)

addNewComponent

C’

Fig. 3 Block diagram of EBSCam-PMM circuit. Bit-widths are based on FPGA implementation
(Sect. 7)

The block diagram of the BS circuit is shown in Fig. 3. This implementation uses
8 and 10 bits for pixel intensities and C

(j)
i for all j , respectively. In the graphical

representation of each of the constituent modules of EBSCam-PMM circuit, we
have excluded the pixel index i as the same circuit is used for all pixels. Similarly,
we have excluded the time index from the notation in this section as it can be directly
derived from the time index of input intensity. Also, we have not included clock and
control signals in the figures to emphasize the main data-flow of the system.

The comparator module in the BS circuit compares all the elements of Ei with
Ii,t in parallel, and generates a K-bit wide output M . M(j) = 1 indicates that the

pixel has matched E
(j)
i and vice versa, which is determined by comparing |Ii,t −

E
(j)
i | with c

⌊√
E

(j)

(i,t−1)

⌋
. The rest of the hardware is the same for EBSCam and

EBSCam-PMM. Note that multiple M(j) can be high at the same instant.
A new estimate needs to be added to the background model if M(j) = 0 for

j = 1 to K . The addNewEstimate module checks this condition by performing a
logical-NOR of all the bits of M .

Next, the credenceUpdate module updates C
(j)
i values based on M(j), i.e.,

credenceUpdate module is an implementation of (6) and (7).
The addEstimate module is used to add a new estimate to the background

model. A new estimate is added to the background model of a pixel if the output
of addNewEstimate module is high. The module is further subdivided into two
submodules.

The replaceRequired submodule determines the index of the estimate which
needs to be replaced, and the replaceEstimate submodule generates the updated
estimates and credence values. If required, the addEstimate module replaces the
estimate with minimum credence value by the intensity of the pixel. Also, the
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credence value is initialized to zero. Note that if multiple C
(j)
i are minimum at the

same time, then the C
(j)
i and E

(j)
i with smallest j are initialized to zero and Ii,t ,

respectively.
The foreground pixel should be high if M(j) = 0 and C

(j)
i > Cth for all j . This

task is implemented by the fgGenerate block. The output of the fgGenerate block is
then passed to the postProcess block which applies a 7 × 7 median filter to its input.

7 Experimental Results

To analyze the performance of EBSCam-PMM, we present results of applying
EBSCam-PMM to standard datasets. Also, in this section we discuss the FPGA
implementation and results of EBSCam-PMM. The performance of the proposed
method is compared against some state-of-the-art implementations as well.

7.1 Background Subtraction Performance

To analyze the accuracy of BS under different scene conditions, we have applied
EBSCam-PMM to the CDNET-2014 dataset, which is the most thorough BS
evaluation dataset available online. CDNET-2014 [56] is an extensive dataset of
real-life videos. It includes 53 video sequences divided into 11 categories.

We have used a fixed set of parameters for evaluation of our method. In practice,
the value of Cth should be varied with the frame rate of the video. However, here
we have used a fixed value of Cth over the whole dataset. We have used a 7 ×
7 median filter as a post-process. The PWC metric has been used to evaluate the
performance, as it is a commonly used performance metric to evaluate and compare
binary classifiers such as BS.

In Table 1, we present and compare the performance of EBSCam-PMM with
GMM [22], EGMM [29], KDE [57], ViBe [33], PBAS [35], and EBSCam [4]. From
Table 1, it is seen that EBSCam-PMM shows improved performance compared to
GMM, EGMM, KDE, and ViBe and is only next to PBAS.

To compare the accuracy of dedicated implementations, we show the PWC
results of FPGA implementations of ViBe and PBAS algorithms. The results
are shown over the CDNET-2012 [58] dataset. It is seen that EBSCam-PMM
outperforms most of the methods except for ViBe. However, it will be seen shortly
that the hardware complexity of ViBe is much higher compared to the proposed
method (Tables 2, 4 and 6).
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Table 1 PWC comparison of different methods on CDNET-2014

Category
GMM
[22]

EGMM
[29] KDE [57] ViBe [33]

PBAS
[35]

EBSCam
[4]

EBSCam-
PMM

B. Weather 0.79 0.77 0.72 1.11 0.60 1.19 1.36

Baseline 1.53 1.32 0.55 1.08 1.88 2.05 1.88

C. Jitter 4.22 4.41 5.13 15.34 2.77 3.21 2.53

D. Background 1.21 1.17 1.64 11.57 1.00 1.41 0.86

I. O. Motion 5.19 5.49 10.07 8.75 5.23 5.15 5.53

L. Frame-rate 1.29 1.36 1.31 5.46 1.17 1.64 1.87

N. Videos 4.92 4.72 5.27 4.23 2.03 2.62 2.15

PTZ 14.53 16.94 32.31 35.37 6.15 10.32 5.34

Shadow 2.19 2.19 1.68 1.84 2.00 2.72 2.43

Thermal 4.26 4.30 1.67 2.49 4.73 5.05 5.58

Turbulence 1.27 1.24 1.51 2.12 0.22 2.11 0.74

Overall 3.77 3.99 5.14 8.13 2.53 3.41 2.75

Table 2 PWC comparison of FPGA implementations on CDNET-2012

Category GMM [50] ViBe [54] PBAS [55] EBSCam [4] EBSCam- PMM

Baseline 1.88 N.A. N.A 2.05 1.88

C. Jitter 5.54 N.A. N.A 3.21 2.53

D. Background 2.19 N.A. N.A 1.41 0.86

I. O. Motion 6.40 N.A. N.A 5.15 5.53

Shadow 2.74 N.A. N.A 2.72 2.43

Thermal 4.58 N.A. N.A 5.05 5.58

Overall 3.83 1.7 3.43 3.27 3.15

The actual foreground masks generated by different algorithms for a variety of
scenes are shown in Table 3. False negatives are observed when the foreground and
background intensities are very similar. However, it is seen that generally EBSCam-
PMM shows lower number of false positives compared to other methods. It is also
seen that PBAS cannot distinguish foreground from the background as seen with the
dynamic background sequence.

7.2 FPGA Implementation of EBSCam-PMM

To analyze the area utilization, power consumption, and speed of EBSCam-PMM
for embedded applications such as smart cameras, in this subsection we discuss the
FPGA implementation. We also compare the FPGA implementation of the proposed
method with other implementations of BS schemes.
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Table 3 Foreground masks of CDNET-2014 using EBSCam-PMM

B.
Weather tion rate

BaselineC. JitterD. Bg IO. Mo-L. F.N.
Videos

PTZ Shadow ThermalTurbulence

Input

Ground-
truth

EBSCam-
PMM

EBSCam[4]

GMM[50]

ViBe[33]

PBAS[35]

Table 4 Memory bandwidth comparison

Method Bits per pixel Bandwidth for 20 HD fps (Gbits/s)

EBSCam-PMM 90 7.26

GMM [50] 99 7.96

GMM [51] 108 8.65

GMM [59] 132 ≥2.63 compressed

10.51 uncompressed

ViBe [54] 160 12.67

PBAS [55] 2048 78.09

For synthesis of the circuit, we used XST. ISE was used for place and route on
the FPGA. To verify the functionality of the RTL, Xilinx ISE simulation (ISIM) was
used. Power estimates were obtained using XPower analyzer.

Due to increasing video resolutions and frame rates, the number of pixels that
need to be processed in digital videos is continuously increasing. Thus, the memory
bandwidth becomes an important feature of hardware design. Algorithms which
require lower memory bandwidths are more suitable to hardware implementations.
The number of bits maintained per pixel of the frame in EBSCam-PMM is 90.
It is seen in Table 4 that the memory bandwidth of EBSCam-PMM is lower
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compared to GMM. Compared to ViBe and PBAS, the memory bandwidth of
EBSCam-PMM is very small, showing the utility of the proposed method compared
to these implementations. In [59], authors have used compression to reduce the
memory bandwidth of GMM-based BS. However, compression adds to the circuitry,
resulting in increased power consumption, area, and delay.

The implementation results of EBSCam-PMM engine on an FPGA are shown in
Table 5. The background model is stored in the internal SRAM of FPGA. From
these results, it is seen that EBSCam-PMM requires low area, has high speed,
and consumes low power. As an example, for SVGA sequences EBSCam-PMM
consumes 1.192 W at 30 fps. Also, a frame rate of approximately 96 can be achieved
with EBSCam-PMM at SVGA resolution.

To compare the performance of the proposed method against previous art, we
show the implementation results of our method and other methods in Table 6.
It is seen that EBSCam-PMM requires significantly lower power compared to
GMM. This comes as no surprise as EBSCam-PMM uses parameters that do
not fluctuate rapidly, resulting in lower switching activity and, thus, lower power
consumption. The logic resources of the FPGA used by EBSCam-PMM are also
lower and EBSCam-PMM can achieve higher speeds compared to GMM. The
logic requirement and speed of EBSCam-PMM are significantly better than ViBe
and PBAS. In fact, the power consumption of EBSCam-PMM is almost negligible
compared to that of PBAS. Note that EBSCam-PMM only requires slightly more
logic resources compared to EBSCam, with almost similar speed and power
consumption.

Recently, [61] proposed a method to reduce the memory bandwidth of GMM.
From Table 7, it is seen that their method achieves a lower memory bandwidth
compared to EBSCam-PMM. However, it is seen that the speed and power
consumption of our implementation are much lower compared to [61]. Also, note
that their method can at best achieve the accuracy of GMM, whereas it is seen earlier
that EBSCam-PMM outperforms GMM in BS accuracy.

8 Conclusion

This chapter presented a new background subtraction scheme based on Poisson
mixture models called EBSCam-PMM. Since shot noise is the most dominant form
of noise in natural images, it is natural to use a Poisson mixture model to model
the background intensity. A sequential approach to estimating the parameters of the
Poisson mixture model is also presented. The estimated parameters are more robust
against noise in the samples. Resultantly, the proposed method shows superior
performance compare to numerous common algorithms. Furthermore, an FPGA
implementation of the proposed method is also presented. EBSCam-PMM requires
low memory bandwidth and battery power while providing very high frame rates at
high resolutions. These features of EBSCam-PMM make it a suitable candidate for
smart cameras.
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Table 7 Comparison of CoSCS-MoG and EBSCam-PMM

Bandwidth (Gbits/s) Energy per
Method Design Delay/frame (ms) at 20 HD fps frame (mJ)

CoSCS-MoG Ref. [61] 65.3 1.68 125.96

EBSCam-PMM Prop. 1.82 × 10−5 7.26 3.4
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Key-Frame SLAM Based on Motion
Estimation and Stochastic Filtering Using
Stereo Vision

Jungho Kim, Youngbae Hwang, and In So Kweon

1 Introduction

Simultaneous Localization and Mapping (SLAM) is the problem of building up a
global map of an unknown environment while simultaneously estimating the current
pose of a robot (or a sensor) with given sensor measurements. For decades, there
has been intensive research on visual SLAM that primarily uses visual sensors
such as cameras for this task. This problem has attracted immense attention in
the robotics and computer vision communities. Technically, visual SLAM can be
defined as the problem of estimating the posterior distribution of the current state
vector represented in the probabilistic form as

p(xt |z1:t , u1:t ), (1)

where z1:t and u1:t are given visual measurements and control inputs obtained up
to time t , respectively, and xt is the current state vector constructed by the camera
pose and 3D locations of observed landmarks.

To recursively estimate the posterior distribution of the current state in Eq. (1)
over time, we decompose it into the measurement model, the process model, and
the posterior distribution of the previous state using the Bayes’ theorem as follows:
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p(xt |z1:t , u1:t ) = ηp(zt |xt )

∫
xt−1

p(xt |xt−1, ut )p(xt−1|z1:t−1, u1:t−1)dxt−1. (2)

Here, η is a normalizing constant.
In Eq. (2), we have two probabilistic models: the process model p(xt |xt−1, ut )

and the measurement model p(zt |xt ) [1, 2]. In the process model, the current state
xt is governed by the probabilistic function of the previous state xt−1, the control
input ut , and the additive process noise wt as:

xt = f (xt−1, ut , wt ) . (3)

The process noise wt is the statistical description of the errors in the process model.
The measurements zt are also governed by the probabilistic function of the

current state and the additive measurement noise vt as

zt = h (xt , vt ) . (4)

Here, two random variables, wt and vt , representing the process noise and
the measurement noise, respectively, are assumed to be independent as shown
in Fig. 1 [2, 3]. To ensure the independence between the process noise and the
measurement noise, a constant-velocity model independent of visual data has been
employed for the control input ut involved in the process model in many visual
SLAM approaches [4–6]. However, if a camera undergoes sudden motion changes,
a constant-velocity model is not valid any more and yields poor results. On the other
hand, some other sensors such as a wheel encoder [7] and an inertial measurement
unit (IMU) [8] are used to obtain control inputs. However, wheel encoders cannot be
used to obtain the 6-degree-of-freedom (DOF) poses and IMUs suffer from an error
accumulation problem. In this sense, global positioning system (GPS) sensors are

Fig. 1 Bayesian network describing the relation between process and measurement models
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Fig. 2 The GPS coordinates obtained near the buildings show its weakness for jamming problems
(Alignment with the Google map was done with a program provided by a GPS manufacturer)

powerful for localization, because they can avoid an error accumulation problem.
However, their performance is strongly affected by environment conditions: for
example, if a GPS is located near the buildings, its output is not reliable as shown in
Fig. 2. Moreover, a GPS cannot be used for indoor environments.

In contrast, motion estimation approaches can be adopted to reliably estimate the
6-DOF pose under erratic camera motion. However, if we use motion estimation
methods for the process model, then the control input ut directly depends on
measurements zt and the independence assumption of the process noise and the
measurement noise is no longer valid.

To resolve this problem, we divide visual measurements (i.e., image features)
into two categories—common features consistently observed in the consecutive key-
frame images and new features newly detected in the current key-frame image. Two
groups of features are used for process and measurement models, separately. Here,
we focus on the uncertainty or noise of feature detection and association for vision
sensors, even though visual measurements for visual SLAM are also corrupted by
various factors such as system calibration errors, quantization errors, and image blur
due to motion, etc.

In Eq. (2), we first predict the distribution of the current state from the process
model, and then correct it by using the measurement model. As a camera moves,
the information about its new pose is predicted. Here, the problem is that the
accuracy naturally decreases and the uncertainties equivalently increase at the same
time. However, when some of the landmarks are re-observed in the images, their
observations are used for updating the camera pose estimation and improving the
estimation of observed landmark locations. Therefore, those observations decrease
the uncertainties of the camera pose and landmark locations.
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In this sense, we formulate a key-frame-based Bayesian filtering framework
for visual SLAM. In the proposed framework, the camera path is composed of
key-frame poses that are effectively estimated by observations at non-key-frame
locations. Thus, our key-frame SLAM approach reduces the number of predictions,
which increase the uncertainties, by reducing the number of camera poses to be
estimated in the path. In addition, we update the distribution of the camera path by
using many observations obtained at the non- key-frame locations to decrease the
uncertainties further.

For efficient estimation of 3D landmarks, we employ a FastSLAM [9]-type
approach in which each 3D landmark is individually estimated with the given
camera path.

Effectively approximating the distribution of the 6-DOF camera pose is a chal-
lenging task in the particle filter-based localization or FastSLAM because a particle
filter, which constructs a sample-based representation of the entire distribution,
requires many particles of the variable of interest even when the dimension of
state increases. Consequently, it becomes infeasible to manage enough particles to
represent the posterior distribution of the state.

To effectively approximate the distribution of the relative motion by a limited
number of particles, we directly use some hypotheses coming from motion estima-
tion.

In summary, our contribution is twofold:

• We achieve the independence between the process noise and the measurement
noise, which is a critical factor when using vision-based motion estimation
approaches for the process model.

• We present a novel key-frame SLAM approach to reduce the number of camera
poses to be estimated in the path. In addition, we propose key-frame-based
Bayesian filtering to effectively update the posterior distribution of the camera
path by using many observations obtained at non- key-frame locations.

The remainder of this paper is organized as follows: Section 2 introduces the
related works. Section 3 describes the details of our visual odometry for motion
estimation. Section 4 depicts our key-frame-based Bayesian filtering to compensate
for errors involved in sensor measurements and motion estimation. Section 5 shows
various experimental results and the evaluation of the proposed method. We will
then conclude the paper in Sect. 6.

2 Related Works

To solve the SLAM problem, many methods based on the recursive estimation
of the posterior distribution have been introduced. Davison [4, 10] successfully
performed monocular SLAM by employing an extended Kalman filter (EKF) and
adopting an initialization process to determine the depth of the 3D landmarks by
using the particle filter-type approach. In [9], the authors proposed FastSLAM which
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factorizes the full posterior into a product of conditional landmark distributions
and a distribution over camera paths. This algorithm is an instance of the Rao-
Blackwellized particle filter [11, 12] that results in a substantial computational gain
as one only has to sample some of variables and apply closed-form filtering such
as Kalman filtering to lower dimensional sub-networks for the rest of variables.
Kim et al. [13] proposed a SLAM algorithm based on unscented transformation
called unscented FastSLAM (UFastSLAM) which overcomes drawbacks of the
Rao-Blackwellized particle filter caused by non-linear relations. Eade and Drum-
mond [14] utilized the FastSLAM-type particle filter in single-camera SLAM to
manage a greater number of landmarks because the computational requirements of
EKF-based SLAM approaches rapidly grow with the number of landmarks. In [5],
the authors described a visual SLAM algorithm that is robust to erratic camera
motion and visual occlusion by using efficient scale prediction and exaemplar-based
feature representations in conjunction with the use of an unscented Kalman filter
(UFK) [15]. Recently, Eade et al. [6] proposed a monocular SLAM system in which
map inconsistencies can be prevented by coalescing observations into independent
local coordinate frames, building a graph of the local frames, and optimizing the
resulting graph. This approach is based on hierarchical optimization in that local
states are updated using local bundle adjustment and multiple observations sharing
between local coordinates are used for updating nodes (local coordinate frames)
by graph optimization. For the similar problem with Eade’s work, Paz et al. [16]
presented a 6-DOF visual SLAM system based on conditionally independent local
maps and the strategy of updating the global map by using observations sharing
between local maps instead of directly estimating the global map. Here, it is worth
noting that in most 3D visual SLAM approaches, a constant-velocity model is
employed to achieve the independence between the process and measurement noise.
However, in the constant velocity model, when cameras undergo sudden motion,
these SLAM approaches are highly prone to fail, resulting in inconsistencies in the
global map. In [17], the authors combined the particle filter-based localization with
the UKF-based SLAM to cope with erratic camera motion while maintaining a small
number of landmarks.

On the other hand, in the vision community, structure-from-motion (SFM)
approaches [18] have been studied independent of SLAM to estimate camera
trajectories by using a sequence of images only. For example, Nister et al. introduced
“‘visual odometry”’ that estimates the relative movements of the stereo head in the
Euclidean space [19]. Recently, Zhu et al. [20] developed a helmet-based visual
odometry system that consists of two pairs of stereo cameras mounted on a helmet;
one pair faces forward while the other faces backward. By utilizing the multi-stereo
fusion algorithm, they improved the overall accuracy in pose estimation. Here,
we should note that, in many previous studies, optimization techniques such as
bundle adjustment [21, 22] have been adopted to avoid inconsistencies in the global
map. However, it is not feasible to perform conventional bundle adjustment in on-
line approaches because the computational cost rapidly grows with the number of
3D landmarks and their observations (the image coordinates over the sequence).
Recently, Jeong et al. [23] proposed a fast method for bundle adjustment by using
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block-based preconditioned conjugate gradient and embedded point iterations. In
addition, to achieve the computational efficiency and the consistency of the global
map, local bundle adjustment [24, 25] and hierarchical bundle adjustment [26]
techniques have been studied. In [27], FrameSLAM was presented using non-linear
least-squares estimation for local registration and loop closure that result in accurate
maps.

3 The Visual Odometry System

Our visual odometry system consists of a few sub-components including feature
matching, motion estimation, and key-frame selection.

3.1 Feature Extraction and Stereo Matching

For each stereo pair, we first extract corner points in the left image and then
apply the 1D KLT feature tracker [28] to stereo images to obtain correspondences.
Because the KLT tracker gives the sub pixel locations of matched points, we can
reconstruct more accurate structures. We assume that a point (x, y) in the left image
I corresponds to a point (x − dmin − dx, y) in the right image J , and we linearize
J (x − dmin − dx, y)1 by Taylor expansion as

I (x, y)  J (x − dmin, y) − gxdx., (5)

Here, dmin is a minimum disparity which makes dx smaller to satisfy the first
order approximation of Taylor expansion, and gx is an intensity gradient along
the horizontal axis. We determine the disparity dx that minimizes the following
dissimilarity measure:

ε =
∫ ∫

A

[h(x, y) − gxdx]2w dA, (6)

where A denotes a local mask, w is a weight within the local mask, and h(x, y) =
J (x − dmin, y) − I (x, y). To find the disparity dx , we set the derivative of Eq. (6)
w.r.t. dx to zero. Finally, dx is computed by

dx =
∫ ∫

A
h(x, y)gxw dA∫ ∫

A
g2

xw dA
. (7)

1I (x, y) represents an intensity value of a point (x, y) in the left image I and J (x − dmin − dx, y)

represents an intensity value of a point (x − dmin − dx, y) in the right image J .
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(a)

(b)

(c)

Fig. 3 Comparison of 3D reconstruction. (a) Left image from stereo. (b) The top-down view of
3D reconstruction by NCC stereo matching. (c) The top-down view of 3D reconstruction by 1D
KLT stereo matching

Figure 3 shows the top views of 3D reconstruction computed from NCC and
1D-KLT stereo matching methods, respectively.

The 3D coordinates of the matched corner points are used for map building and
for motion estimation.
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3.2 Motion Estimation

Nister et al. [19] introduced a method called “‘visual odometry”’ for the real-
time estimation of the movement of a stereo head or a single camera. In this
approach, the 3-point algorithm [29] is employed: the images of three known world
points are used to obtain up to four possible camera poses (one solution can be
automatically obtained by using more than three point). Here, we additionally
employ the RANSAC [30] where a set of 3 world points and their image coordinates
are randomly selected to compute the relative camera pose. The estimated pose is
evaluated by using other correspondences.

3.3 Key-Frame Designation

The number of tracked corners between an incoming image and a previous key
image can be a measure to determine the key-frame locations. In [31], the authors
automatically select key- frames suited for structure and motion recovery on the
basis of the number of the tracked features. Similarly, if the number of points tracked
by the KLT tracker is smaller than a pre-defined threshold, we designate an incoming
image as a key-frame image and estimate the relative pose w.r.t the previous key-
frame. This strategy can partially prevent error accumulation.

4 Key-Frame-Based Bayesian Filtering

4.1 Independency

When we use existing motion estimation methods for the process model, the noise
in motion estimation is affected by the measurement noise, which renders the
assumption on independency invalid. To solve this problem, we first divide the
observations into two categories when a new key-frame images is determined:
common features consistently observed in the consecutive key-frame images zc and
newly detected features in the current key-frame image zd (= z − zc), as shown in
Fig. 4. All the features are generally independent of each other because they are
individually extracted and tracked. zc are used to evaluate the posterior distribution
of the state xt , and zd are used to estimate the relative pose, ut , as the control input
involved in the process model.

We can re-define the process model and the measurement model from two sets
of measurements as shown in Eq. (8). This means that the process noise wt is only
dependent on the measurements zd

t and the measurement noise vt is determined by
the measurements zc

t .
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Fig. 4 Achieving independence between process noise and measurement noise by dividing
observations. (a) Consecutive key-frame images. (b) Black circles and white rectangles represent
features belonging to zd

t and zc
t , respectively

Fig. 5 Bayesian network that describes the independence between process and measurement noise
in the case of divided observations. There is no closed path within the directed graph

xt = f
(
xt−1, z

d
t , wt

)

zc
t = h (xt , vt )

(8)

We then achieve the independence between the process noise and measurement
noise by simply dividing the observations instead of using another sensor as shown
in Fig. 5. Thus the posterior distribution defined by u1:t and z1:t in Eq. (2) can be
formulated with two sets of image features, zc

1:t and zd
1:t , as

p(xt |zc
1:t , z

d
1:t ) = p(zc

t |xt )

∫
xt−1

p(xt |xt−1, z
d
t )p(xt−1|zc

1:t−1, z
d
1:t−1)dxt−1. (9)
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4.2 Proposed Target Distribution

In the proposed method, the camera path is composed of camera poses at the key
frames. In this case, our target distribution for both the camera path n1:k and a
collection of landmarks M is expressed as

p
(
n1:k,M|zc

1:t , z
d
1:t , d1:t

)
, (10)

where d1:t , k, and t indicate data association up to t , the number of key-frame
locations, and the number of all the frames, respectively.

By employing a Rao-Blackwellized particle filtering technique [11, 12], a SLAM
problem is decomposed into a localization problem and a collection of landmark
estimation problems that are conditioned on path estimates as follows:

p
(
n1:k,M|zc

1:t , z
d
1:t , d1:t

)
= p

(
n1:k,M, zc

1:t , z
d
1:t , d1:t

)

p
(
zc

1:t , z
d
1:t , d1:t

)

= p
(
n1:k|zc

1:t , z
d
1:t , d1:t

)
p
(
M|n1:k, zc

1:t , z
d
1:t , d1:t

)
.

(11)
The idea of a Rao-Blackwellized particle filter is to partition the state vector so

that one component of the partition can be represented by a parametric distribution
that is analytically estimated. The particle filter is then used only for the non-
linear and non-Gaussian portion of the state-space. In [9], the path estimator is
implemented using the particle filter and the landmark estimator is implemented
using an EKF with a separate filter for different landmarks, because all the 3D
landmarks are independent of each other with a given path as

p
(
M|n1:k, zc

1:t , z
d
1:t , d1:t

)
=

L∏
l=1

p
(
ml |n1:k, zc

1:t , z
d
1:t , d1:t

)
, (12)

where ml represents each landmark in M .

4.3 Key-Frame-Based Path Estimation

We estimate the distribution of the camera path, p (n1:k|z1:t , d1:t ), that consists of a
sequence of camera poses at only the key-frame locations instead of all the frames,
as shown in Fig. 6. When designating an incoming image as a key-frame image, we
elongate the path, n1:k+1, by adding the relative pose, ut , with respect to the last
key-frame pose, nk , to the previous path, n1:k .
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(a)

(b)

Fig. 6 State transition. (a) State transition for sequential SLAM—it recursively estimates the
current state by using incoming observations. Where xt is the state, ut is an encoder input, and
zt is a sensor measurement at time t . (b) State transition for proposed (key-frame-based) SLAM—
it recursively estimates the state consisting of key frames using incoming observations. where nk

is the state corresponding to the kth key frame, zd
t is a set of measurements for the process model,

zc
t is a set of measurements for the measurement model, and xt is the state for non- key frames

The posterior distribution of n1:k with the given z1:t (= zc
1:t + zd

1:t ) and d1:t (an
indicator for correspondences between the landmarks M , and observations zc

1:t ) is
estimated by marginalizing out the relative pose ut from the joint distribution as

p
(
n1:k|zc

1:t , z
d
1:t , d1:t

)
=
∫

ut

p
(
n1:k, ut |zc

1:t , z
d
1:t , d1:t

)
dut . (13)

This means that ut is a latent variable that is marginalized out to estimate
the distribution of n1:k at non- key-frame locations. The joint distribution
p(n1:k, ut |zc

1:t , z
d
1:t , d1:t ) estimated up to time t is used for updating the previous

camera path defined at key-frame locations to re-estimate the posterior distribution
of the camera path n1:k , and that posterior distribution is updated by using
observations at the non-key-frame locations unless the new key- frame is designated.
Also, the prediction of the current state is performed from the previous key-frame
location, not the location of the previous frame, as shown in Fig. 6, because visual
odometry that is used for the process model provides the relative pose with respect
to the previous key-frame location.
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Using the Bayes’ theorem, the joint distribution is decomposed as follows:

p
(
n1:k, ut |zc

1:t , z
d
1:t , d1:t

)

= p
(
n1:k, ut , z

c
t , z

d
t , dt , z

c
1:t−1, z

d
1:t−1, d1:t−1

)

p
(
zc

1:t , z
d
1:t , d1:t

)

= ηp
(
zc
t |n1:k, ut , dt

)
p
(
ut |zd

t

)
p
(
n1:k|zc

1:t−1, z
d
1:t−1, d1:t−1

)
(14)

under the following conditions:,

(a) The observations zc
t are only dependent on the global pose computed by n1:k

and ut and current data association dt .

p
(
zc
t |n1:k, ut , dt

) = p
(
zc
t |n1:k, ut , z

d
t , dt , z

c
1:t−1, z

d
1:t−1, d1:t−1

)

(b) The relative movements ut are determined by only the observations zd
t .

p
(
ut |zd

t

)
= p

(
ut |n1:k, zd

t , dt , z
c
1:t−1, z

d
1:t−1, d1:t−1

)

(c) Without observations zc
t , n1:k is independent of dt .

p
(
n1:k|zc

1:t−1, z
d
1:t−1, d1:t−1

)
= p

(
n1:k|zc

1:t−1, z
d
1:t−1, dt , d1:t−1

)

where p(zc
t |n1:k, ut , dt ) is a likelihood for the measurement model only depending

on the measurements zc
t , and p(ut |zd

t ) is the posterior distribution of the relative
pose for the process model depending on the measurements zd

t , as defined by
Eqs. (19) and (16), respectively. p(n1:k|z1:t−1, d1:t−1) is the previous posterior
distribution up to t − 1.

Thus our key-frame SLAM approach can reduce the number of camera poses
to be estimated in the path by generating the poses only at key-frame locations
and effectively update the posterior distribution of the camera path by using many
observations obtained at non- key-frame locations.

4.4 Non-parametric Representation

The posterior distribution p(n1:k|zc
1:t , z

d
1:t , d1:t ) is represented by a set of weighted

particles, as shown below:.

p
(
n1:k|zc

1:t , z
d
1:t , d1:t

)
=
∑

i

p
(
ni

1:k|zc
1:t , z

d
1:t , d1:t

)
δ
(
n1:k − ni

1:k
)

, (15)



Key-Frame SLAM Based on Motion Estimation and Stochastic Filtering Using. . . 37

where δ (x) represents the Dirac delta function that returns 1 if x is zero, and 0
otherwise.

The posterior distribution of the relative pose is also approximated by a set
of particles coming from the RANSAC, where relative poses are estimated by
selecting multiple sets of minimal correspondences. (For the 3-point algorithm,
three correspondences are required.) Each pair of the minimal set provides a single
hypothesis on the relative pose, and its weight is computed according to the number
of inliers among all correspondences. Thus, in our approach, we use multiple
hypotheses that are generated in the RANSAC step. The RANSAC is an efficient
technique for determining a good hypothesis, but unfortunately the hypothesis
selected with the best score (the number of inliers) does not always correspond to the
correct estimate. Therefore, instead of selecting an unique hypothesis, we propagate
multiple reasonable hypotheses to the subsequent frames to re-estimate the posterior
distribution by using more observations. We represent the posterior distribution of
the relative pose (6 DOF) using the hypotheses and their weights according to the
number of inliers as

p
(
u

j
t |zd

t

)
∝

N
j
inlier

Ntotal

,
∑
j

p
(
u

j
t |zd

t

)
= 1, (16)

where N
j
inlier is the number of inliers for u

j
t , and Ntotal is the total number of

correspondences in zd
t .

Thus, we compute the weight for each particle by marginalizing out the relative
pose as

p
(
ni

1:k|zc
1:t , z

d
1:t , d1:t

)
=
∑
j

p
(
ni

1:k, u
j
t |zc

1:t , z
d
1:t , d1:t

)
. (17)

We compute the joint probability of a camera path, ni
1:k , and a relative pose, u

j
t ,

using Eq. (18) that is based on Eq. (14).

p
(
ni

1:k, u
j
t |zc

1:t , z
d
1:t , d1:t

)
= ηp

(
zc
t |ni

1:k, u
j
t , dt

)
p
(
u

j
t |zd

t

)

× p
(
ni

1:k|zc
1:t−1, z

d
1:t−1, d1:t−1

) (18)

4.5 Likelihood Estimation and Outlier Rejection

The likelihood estimation is based on the number of inliers for each particle. It is
computed by examining how many scene points ml are projected close to relevant
measurements zl

t belonging to zc
t as
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p
(
zc
t |ni

1:k, u
j
t , dt

)
=
∫

M

p
(
zc
t ,M|ni

1:k, u
j
t , dt

)
dM

=
∫

M

p
(
zc
t |M,ni

1:k, u
j
t , dt

)
p
(
M|ni

1:k, u
j
t , dt

)
dM

= 1

L

L∑
l=1

d
(
zl
t , ml, n

i
1:k, u

j
t

)
,

(19)

where

d
(
zl
t , ml, n

i
1:k, u

j
t

)
=
⎧⎨
⎩

1 if
∥∥∥zl

t − z
(
m̂l,

(
ni

1:k ⊕ u
j
t

))∥∥∥ < σl

0 otherwise

σl =
√

e2
0 + e2

l .,

Here, e0 is a pre-defined observation uncertainty for the likelihood and el represents
the uncertainty of the landmark ml in the image space, computed by Eq. (22). m̂l is
the updated 3D location of the landmark as shown in Sect. 4.7. (ni

1:k ⊕u
j
t ) indicates

the global pose of the camera computed from the path ni
1:k and the relative pose u

j
t .

d(zl
t , ml, n

i
1:k, u

j
t ) indicates whether the point ml is an inlier or outlier with respect

to the observation zl
t and the camera pose (ni

1:k ⊕ u
j
t ), and z(m̂l, (n

i
1:k ⊕ u

j
t )) is

the projection of a scene point m̂l for a particular camera pose (ni
1:k ⊕ u

j
t ). L is

the number of scene points that are associated with the current measurements, as
defined by dt .

We eliminate the outliers zo
t among zl

t that are not supported by any particles in
the computation of the likelihood values as

zo
t =

⎧⎨
⎩zl

t |
∑

i

∑
j

d
(
zl
t , ml, n

i
1:k, u

j
t

)
= 0

⎫⎬
⎭ . (20)

Thus, we eliminate the outliers in zd
t using the RANSAC when estimating the

relative pose, ut , and the outliers in zc
t when computing the likelihood values.

4.6 Path Generation

Whenever we have a new key-frame image, we elongate the path using the previous
posterior distribution of the camera path and the relative pose as follows:
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n
Nj ×i+j

1:k+1 ←
{
ni

1:k,
(
ni

1:k ⊕ u
j
t

)}
,

p
(
n

Nj ×i+j

1:k+1 |z1:t , d1:t
)
∝ p

(
u

j
t |zd

t

)
p
(
ni

1:k|z1:t , d1:t
)

,

(21)

where Nj is the number of particles for the relative pose. Here, before adding the
relative pose to the particles of the camera path, we prune some hypotheses on the
camera path on the basis of their weights. In our implementation, only the 10 best
particles remain.

4.7 Landmark Estimation

For the efficient estimation of 3D landmarks, we employ a FastSLAM-type
approach in which each 3D landmark is individually estimated with the given
camera path.

We model the posterior distribution of each landmark p(ml |n1:k, zl
1:k, d1:k)

defined in Eq. (12) using an optimized 3D landmark location, m̂l , and its uncertainty
in the image space, el ; we re-triangulate all observations including first two stereo
views corresponding to each landmark for each particle by using SVD [18] to
compute m̂l , and el is determined by the projection error of m̂l for the last pose,
nN , as

el =
∥∥∥zl

N − z
(
m̂l, nN

)∥∥∥ , (22)

where N is the number of camera poses that observe the landmark.

5 Experimental Results

For experiments, we used a stereo camera with a 12 cm baseline and a 6 mm lens,
which provide a narrow field of view.

5.1 Outdoor Experiments

Figure 7b and c shows the global maps and the camera paths computed by visual
odometry and by using the proposed method with the corresponding Google map,
respectively. For this experiment, we captured 10,667 images while walking more
than 400 m in the outdoor environment with the stereo camera in hand. During this
experiment, 325 key-frame images were designated from a sequence of images,
which means that our key-frame SLAM only estimates the camera path that is
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Fig. 7 The results obtained by visual odometry and our visual SLAM that are overlapped with
the corresponding Google map (red dots: the key-frame locations of the camera, black points:
the locations of the landmarks). (a) Some key-frame images designated during SLAM. (b) The
top-down view of the 3D map and the key-frame locations estimated by visual odometry. (c) The
top-down view of the 3D map and the key-frame locations estimated by using the proposed method

composed of 325 camera poses, and 110,076 landmarks were estimated. Figure 7a
shows some key-frame images. We can see that the results obtained with the
proposed visual SLAM approach, in which the visual odometry and stochastic
filtering are combined, are much better than those obtained by only visual odometry.

Unfortunately, comparison with GPS data is indeed impossible due to unreliable
outputs of the GPS, as shown in Fig. 2. Instead, we compared the proposed SLAM
results with those of local bundle adjustment, because standard global bundle
adjustment using all landmarks and the entire camera path cannot be feasibly
performed for a long image sequence. A local bundle adjustment method ensures
the good accuracy and consistency of the estimated camera poses as introduced
in [24]. Recently, in [32], the authors analyzed the relative advantages of filtering
and sparse optimization for sequential monocular SLAM.

Since we use a stereo camera, we include the feature coordinates in both left
and right images in performing bundle adjustment to eliminate the depth ambiguity.
In our dataset, we carried out local bundle adjustment when a new key frame is
selected (the number of matched points with the last key frame is below 80% of the
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Fig. 8 Camera trajectories estimated by the proposed method (blue) and local bundle adjustment
(red) along with different numbers of iterations (m). (a) Comparison with local bundle adjustment
(15 LM iterations). (b) Comparison with local bundle adjustment (40 LM iterations)

observed features in the last key frame). For one local bundle adjustment, we used
10 last key frames and it is reported that local bundle adjustment can be performed
within 73 ms when we set the number of Levenberg–Marquardt (LM) iterations
to 15. Figure 8 shows the estimated paths obtained from visual SLAM and local
bundle adjustment along with different numbers of LM iterations. As the number of
iterations increases, the estimated path from local bundle adjustment is more similar
with the path estimated from our visual SLAM.

In contrast to bundle adjustment, our visual SLAM recursively estimates the
distribution of the state by using only incoming observations without previous
observations and achieves the accuracy for the camera poses and landmarks as well
as the computational efficiency. In addition, the part of stochastic filtering can be
faster if it is implemented using multiprocessing programming such as Open Multi-
Processing (OpenMP).

To show the validity of the proposed method that ensures the independence
between process and measurement noise, we compute the camera path when we do
not divide the observations. This means that all the observations are simultaneously
used for both the process model and the measurement model. Figure 9a shows
the results for this case. We observe that the results in Fig. 9a are less consistent
than those of the proposed method that divides the observations according to each
purpose, as shown in Fig. 8.

Our SLAM approach divides features into two subsets and uses the decreasing
number of features for each model. To show the importance of achieving indepen-
dence between two models, we intentionally removed some features for proposed
SLAM and show the experimental results along with different numbers of features
as shown in Fig. 9b–d that are more consistent than the result of Fig. 9a. These
results demonstrate that achieving independence between process and measurement
models is important even if it reduces the number of observations for each model.
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Fig. 9 The paths of visual SLAM along with different numbers of features (red: the camera path
obtained from local bundle adjustment using 40 LM iterations, blue: the camera path of visual
SLAM). (a) The camera path of visual SLAM when all features are used but those are not divided.
(b) The camera path of visual SLAM when 70% of features are used and those are divided. (c) The
camera path of visual SLAM when 80% of features are used and those are divided. (d) The camera
path of visual SLAM when 90% of features are used and those are divided

Figure 10 shows the SLAM results for another environment after we captured an
image sequence from a hand-held stereo camera in an outdoor environment while
walking approximately 415 m and forming a loop. Finally, 390 key-frame poses
and 95,125 landmarks were estimated. Figure 10 shows the estimated camera paths
computed by visual odometry and by our visual SLAM.

To quantitatively measure the accuracy of our SLAM, we calculated the final
pose errors and Table 1 lists the final pose errors for translation and rotation. For this
purpose, we applied a corner matching method [33] to the third key-frame image and
the last image which are influenced by view and illumination changes as shown in
Fig. 11 because the KLT tracker cannot provide reliable correspondences between
them.
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Fig. 10 The top-down view of the camera path (m) (blue: visual odometry, red: our visual SLAM)

Table 1 Final pose errors of three different methods for the outdoor experiment (approximately
415 m navigation) shown in Fig. 10

Translation error Rotation error

x-Axis y-Axis z-Axis Roll Pitch Yaw

Visual odometry 4.049 m 8.381 m 14.469 m 2.305◦ 11.499◦ 1.193◦

SLAM using only 0.091 m 6.790 m 2.014 m 3.497◦ 7.623◦ 1.134◦

Key-frame measurements

Proposed SLAM 1.199 m 0.122 m 0.935 m 0.784◦ 1.764◦ 1.117◦

5.2 Evaluation on Various Conditions

The performance of our SLAM can be affected by various factors such as the
number of particles, the criterion for key- frame selection, etc. In this section, we
evaluate our SLAM performance on various conditions.

5.2.1 The Number of Particles

We run our SLAM algorithm while varying the number of particles for the path and
the relative motion, and estimated paths are shown in Fig. 12. Table 2 shows the
final pose errors with different numbers of particles. As we increase the number of
particles for the relative motion, we can significantly improve SLAM performance
compared to varying the number of particles for the path in that many particles
are generated from our process model and our SLAM can accurately evaluate the
probabilities of particles from our measurement model.
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Fig. 11 Corner matching results between the third key-frame image and the last image for
calculating final pose errors
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Fig. 12 Estimated paths obtained by the different number of particles from the outdoor experiment
(approximately 415 m navigation) shown in Fig. 10. (a) 10 motion particles. (b) 7 motion particles.
(c) 3 motion particles. (d) Enlarged results for a. (e) Enlarged results for b. (f) Enlarged results for c

Table 2 Final pose errors on different numbers of particles for the outdoor experiment (approxi-
mately 415 m navigation) shown in Fig. 10

Translation error Rotation error

1 particle 5 particles 10 particles 1 particle 5 particles 10 particles

3 motion particles 12.32 m 12.13 m 11.92 m 10.72◦ 9.01◦ 9.45◦

7 motion particles 9.52 m 4.85 m 5.12 m 7.83◦ 3.92◦ 3.99◦

10 motion particles 9.12 m 3.72 m 1.52 m 6.34◦ 2.41◦ 3.66◦
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5.2.2 The Criterion for Key-Frame Selection

We run our SLAM algorithm while changing the criterion for key- frame selection
that the number of tracked features is below a certain percentage of the number of
features in the last key frame. Thus we change the value of a percentage threshold
between 30% and 70% to designate different key frames. Figure 13 shows the
estimated paths from different percentage thresholds and Fig. 14 shows the final
pose errors. As we increase the value of the percentage threshold, more key- frames
are designated, consequently, more prediction steps are performed, which yields
significantly accumulated error. On the contrary to this, we decrease the value of the
percentage threshold, then our SLAM uses the decreasing number of measurements
to update the camera path and the map, which also yields accumulated error. For this
reason, 50% for the threshold value shows the best performance in this evaluation.

5.2.3 The Level of Independence

One of the contributions for our SLAM is to ensure the independence between
the process noise and the measurement noise when using a single visual sensor.
In order to demonstrate the importance of independency between the process and
measurement noise, we first intentionally add some of new features, zd , to a set
of common features, zc and calculate the final pose errors along with the different
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Fig. 13 Estimated paths obtained by the different criterion for key- frame selection from the
outdoor experiment (approximately 415 m navigation) shown in Fig. 10. (a) From 0.3 to 0.4. (b)
From 0.45 to 0.55. (c) From 0.6 to 0.7. (d) Enlarged results for a. (e) Enlarged results for b. (f)
Enlarged results for c
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Fig. 14 Final pose errors for the different criterion for key- frame selection from the outdoor
experiment (approximately 415 m navigation) shown in Fig. 10. (a) Translation error. (b) Rotation
error
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Fig. 15 Estimated paths obtained by adding the different percentange of new features, zd to the
common feature set zc from the outdoor experiment (approximately 415 m navigation) shown in
Fig. 10. (a) From 10% to 30%. (b) From 40% to 60%. (c) From 70% to 90%. (d) Enlarged results
for a. (e) Enlarged results for b. (f) Enlarged results for c

percentage of new features which are added to a set of common features as shown
in Fig. 15. We show the final pose errors with different percentage of added features
in Fig. 16. When we perfectly decouple visual features into two sets, the proposed
SLAM algorithm shows the best performance for the outdoor dataset.
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(a) (b)

Fig. 16 Final pose errors for the different percentage of new features zd in the common feature set
zc from the outdoor experiment (approximately 415 m navigation) shown in Fig. 10. (a) Translation
error. (b) Rotation error

5.3 Evaluation on Karlsruhe Datasets

To evaluate the proposed SLAM performance, we also used Karlsruhe datasets2

which contain stereo sequences recorded from a moving vehicle in Karlsruhe and
corresponding ground truth coordinates from a GPS sensor. These sequences were
used in [34] as well.

For evaluation, we tested our SLAM approach by using the first four stereo
sequences in Karlsruhe datasets; 2009-09-08-drive-10, 2009-09-08-drive-12, 2009-
09-08-drive-15, and 2009-09-08-drive-16 sequences. We evaluated the accuracy of
the estimated paths using the GPS coordinates as shown in Fig. 17. To clearly show
the error accumulation problem when sequentially performing visual SLAM using
all the frames,3 we additionally show the camera paths computed from sequential
SLAM in Fig. 17. According to our results shown in Fig. 17, our key-frame SLAM
approach reduces the number of predictions, which increase the uncertainties, by
reducing the number of camera poses to be estimated in the path, and updates the
distribution of the camera path by using many measurements obtained at the non-
key-frame locations to further decrease the uncertainties.

Table 3 lists the numbers of key frames and landmarks estimated by our visual
SLAM for each stereo sequence and shows the location errors computed by GPS
coordinates.

Figure 18 shows camera paths and maps from four stereo sequences estimated
by using the proposed SLAM approach.

2Datasets are available at http://www.cvlibs.net/datasets.html.
3For this purpose, we designate all the frames as key frames, and the camera path consists of the
camera poses for all the frames.

http://www.cvlibs.net/datasets.html
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Fig. 17 Comparison between estimated camera paths of proposed key-frame-based visual SLAM,
sequential visual SLAM, and GPS coordinates for Karlsruhe datasets (mm). (a) The camera paths
with GPS data for the 2009-09-08-drive-0010 stereo sequence (432 m). (b) The camera paths with
GPS data for the 2009-09-08-drive-0012 stereo sequence (488 m). (c) The camera paths with GPS
data for the 2009-09-08-drive-0015 stereo sequence (395 m). (d) The camera paths with GPS data
for the 2009-09-08-drive-0016 stereo sequence (344 m)

Table 3 Evaluation of our SLAM results on Karlsruhe datasets

Number of Number of Number of Total Final location Maximum
Sequence frames key frames landmarks distance (m) error (m) error (m)

drive-10 1423 114 20,197 432 1.2943 1.7723

drive-12 910 141 30,806 488 4.4719 4.8532

drive-15 1021 127 21,003 395 3.3865 3.3865

drive-16 1206 162 48,065 344 1.5475 2.5006
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(a) (b)

(c) (d)

Fig. 18 The results of our visual SLAM for Karlsruhe stereo sequences (mm). (a) The camera
path and the map using the 2009-09-08-drive-0010 stereo sequence. (b) The camera path and the
map using the 2009-09-08-drive-0012 stereo sequence. (c) The camera path and the map using the
2009-09-08-drive-0015 stereo sequence. (d) The camera path and the map using the 2009-09-08-
drive-0016 stereo sequence

6 Conclusion

We presented a novel visual SLAM method in which visual odometry and key-
frame-based Bayesian filtering are combined to cope with sudden camera motion
and to obtain consistent maps. Visual odometry and Bayesian filtering compen-
sate for each other’s drawbacks—our visual SLAM approach can make robust
predictions for the camera pose owing to visual odometry, while proposed key-
frame-based Bayesian filtering alleviates error accumulation involved in visual
odometry. In order to ensure the independence between the process and measure-
ment noise, we divide observations into two categories. The proposed Bayesian
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filtering approach can be adopted in existing motion estimation approaches to avoid
error accumulation. Our visual SLAM approach is especially efficient for large-
scale environments since (1) we reduce the number of possible camera poses in the
path by formulating the key-frame SLAM framework, and (2) effectively update the
distribution of the camera path by using many observations obtained at non- key-
frame locations, and (3) our SLAM approach is based on the Rao-Blackwellized
particle filter that can efficiently manage a great number of landmarks.
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by the Ministry of Science, ICT & Future Planning as the Global Frontier Project.
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LED-Based Optical Neural Implants

Sunghyun Yoo, Sang Beom Jun, and Chang-Hyeon Ji

1 Introduction

For several decades, there have been a number of attempts to monitor and control the
signaling in the nerve systems for the purposes of investigation of brain functions
as well as treatment of neurological diseases. Traditionally, electrical methods have
been employed for both the detection of neural activity and the stimulation of the
nerves. For example, a single neuron can be stimulated, and the action potentials
from the neuron can be recorded via patch-clamp methods for research purposes
[1]. On the other hand, a population of neurons in the nerve system can also be
stimulated or recorded noninvasively via electroencephalogram and transcranial
direct current stimulation [2–5]. Due to the remarkable advances in electronic
systems, the electrical communication with nerve systems has become one of
the most conventional methods. The microfabrication technology also enabled the
development of microelectrode arrays which can provide high-density electrode-
neuron interfaces for in vivo and in vitro applications [6, 7]. Nowadays, the strategy
of electrical stimulation on nerve system is not only applied for research but also
successfully applied to treat neurological disorders as well as to restore the disabled
sensory functions such as vision and hearing [8–10]. Deep brain stimulation system
has been successfully used for more than a decade to treat a variety of neurological
diseases such as Parkinson’s disease, essential tremor, and dystonia via delivering
electrical voltage pulses to the target brain area through implanted electrode [11,
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12]. Auditory prosthesis system had been developed more than 30 years ago and
has enabled the restoration of hearing ability in the people with profound deafness
[13, 14]. Recently, based on the similar design principle, visual prosthetic system is
also developed and clinically applied to people with blindness [15, 16].

Despite the successful outcome of electrical approaches to connect to nerve sys-
tems in both researches and clinical applications, there are still several drawbacks.
For example, the electrical signals recorded from individual neurons or a group
of neurons include all the signals from every electrical sources neighboring the
electrode without any information of neuronal cell types. However, as the extensive
knowledge in neuroscience has accumulated, it is becoming more important to
identify the signaling from specific types of neurons because different cell types
form different synapses via a specific neurotransmitter–receptor pair. Similarly,
electrical stimulation also has a limitation of nonspecific targeting of neuronal cells
because ionic current flow diffuses away only depending on the conductive path.
Therefore, several researchers have raised the need for different approaches to detect
and modulate the activity of specific neuronal cell types.

In order to overcome the drawback of electrical neural interfaces, various
methods have been proposed for neural interfaces including optical, mechanical,
thermal, chemical, and magnetic neural stimulation and/or detection. It is because
there have been several new findings regarding the mechanisms for activation or
blocking of neural signaling. A number of different alterations of surrounding
conditions such as optical irradiation, mechanical vibration, temperature change,
and chemicals binding to receptors are shown to be effective in modulating the
activity of neurons. Focused magnetic field is also employed to induce the activation
of neurons via electromagnetic coupling in the electrolytes and now being used for
clinical treatment. Among those various techniques for neural modulation, during
the last decade, optogenetics has become one of the most powerful research tools
to selectively control or modulate the activity of specific types of neurons, which
has been impossible with conventional electrical methods. As one of optical neural
interface methods, optogenetics has been enabled by the use of exogenous optical
indicators or actuator mostly based on genetically expressed fluorescence proteins.

For several decades, the use of fluorescence protein was utilized mainly for
the purpose of fluorescent microscopy. Afterward, due to the development of
genetic techniques such as gene modification through viral vector injection or cell
transfections, the fluorescence optics has become a unique tool to identify specific
subcellular structures. In addition, combining fluorescence proteins and genetics
finally enabled not only the morphological imaging but also the novel powerful tools
for neural interface. The fundamental mechanism is to optically control or detect
the activity of genetically modified neurons in the nerve system simply by exposure
to a light of specific wavelength, which is called optogenetics. More specifically,
optogenetics is understood as a technique to control the light-sensitive ion channels
expressed on genetically selected nervous tissues. In addition to the modulation of
channel currents, the activity-dependent fluorescence markers can give us a new
way to optically detect the activity of genetically selected neurons. For instance,
the development of genetically encoded Ca2+ activity-dependent fluorescence has
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provided a new paradigm of neuroscience research, which enabled the simultaneous
monitoring of hundreds of neurons through fluorescence microscopy [17–19].

Even though the optogenetic techniques have become an important tool in
neuroscience field, there are still several hurdles to be overcome to be applied to
animal studies or clinical applications. Compared to traditional electrical neural
interfaces, the optical equipment is difficult to be miniaturized due to high power
consumption, bulky light sources, coupling between light source and waveguides,
and so on. Therefore, during the last decade, there have been several attempts
to develop a miniaturized, implantable, power-efficient, multifunctional optical
systems for the neural interfaces and mainly for optogenetic applications. For
example, head-mountable and miniaturized optical instruments were developed so
that neuronal activities in the brain can be measured while the experimental animal
can freely move around and perform specific behavior tasks [20–27].

This chapter describes the current state-of-the-art technologies for implantable
optical neural interfaces based on the optogenetic technology mostly for neuromod-
ulation. The implantable system comprises of several components and tools, which
include implantable waveguides, light sources, control electronics, power supply,
tools for implantations and combination with electrical interfaces, and so on. LED-
based optical interface systems are mostly described in this chapter because the use
of laser and conventional optics is inappropriate for a miniaturized and wireless
implantable systems for animal or clinical applications. Two different types of
LED-based systems are compared. First approach is to use an LED for direct light
illumination of the target nerve cells, and the other is to use an LED coupled with
waveguides. Several approaches with the waveguides are also compared in terms of
efficiency, fabrication complexity, multifunctionality, and biosafety. In addition to
current relevant technologies, existing challenges are discussed to achieve the ideal
implantable optical system for practical purposes.

2 Optical Neural Interfaces

Researches on optogenetics up to the present can be categorized into two main
branches: the development of opsin genes including transgenic technology [28] and
the development of the optical neural interfaces [29]. Progresses in either branch to
improve the opsins or the control interfaces are expected to extend the scope and
application of experiments which will significantly contribute to the broadening of
human knowledge of the neural system as well as to the treatment of intractable
neurological diseases.

Implantable optical neural interface for modulating nerve functions can be
defined as a miniaturized device that delivers light with specific wavelengths to
the targeted area of the neural system. During the past decade, there has been a
significant progress in the development of these types of devices, which include the
integration of multiple sensing electrodes, microfluidic channels for drug injection,
and temperature monitoring sensors. In general, implantable optical neural interface
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can be grouped into two major types depending on the type of light sources used:
laser-based [30–41] and LED-based systems [42–47].

At the early stage of the development, the optical fibers coupled with external
laser sources were the most common tools for light delivery to targeted neural
cells. A bare optical fiber was directly utilized as an optical waveguide for direct
light delivery to a living rodent’s target region in the brain for the first time in
an experiment conducted by Dr. Deisseroth and his group at Stanford University
[30, 31]. Figure 1 illustrates the typical optical fiber-based light delivery probe and
operation principle. This approach has been one of the most widely used methods
for the past decade since the researchers without in-depth knowledge of optics can
easily construct an experimental setup by combining commercially available optical
components.

Among various light sources, laser has many advantages over other candidates
in terms of high output light intensity, low light beam divergence, and coherence
with narrow bandwidth. Direct illumination of neural cells via optical fiber fully
utilizes the advantages of fiber-optic and laser-based systems while maintaining
a low light loss performance. This approach also benefits from the availability of
various mature peripheral equipment technologies used in the field of fiber optics.
Moreover, compared to other types of approaches, direct illumination using a bare
optical fiber allows for more scalability in probe length, which is critical for the
stimulation of deep brain regions. It has also been shown that the laser-based optical
fiber systems can be integrated with metal electrodes for neural signal recording [32,
33], polymer-based waveguides [34, 35], and glass optrode array [36]. Examples of
optical neural interfaces utilizing laser light sources are summarized in Fig. 2.

Despite the numerous advantages mentioned above, conventional fiber-optic
probe combined with a laser source has fundamental limitations. It is very challeng-
ing to realize an untethered and miniaturized system with wireless control capability
using this configuration, as a complicated and bulky structure is inevitable for the

Fig. 1 Optical fiber as a light delivery probe: (a) typical implanted optical fiber for optogenetics
and (b) illustration of optical neural cell stimulation and electrical signal generation [31]
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Fig. 2 Various optical neural interfaces utilizing laser light sources [37–41]: (a) dual-core optical
fiber system for both optical stimulation and electrical recording, (b) multimode optical fiber
assembled with four tetrode bundles for recording, (c) optrode array with a multimode optical
fiber adapted from a Utah electrode array, (d) in-plane neural probe with embedded waveguide
and microfluidic channels, (e) waveguide array with waveguide combs assembled on a base plate
holder (Reproduced from Ref. [48] with permission from The Royal Society of Chemistry)

coupling between the laser light source and optical fiber. The need for an untethered
system arises from the growing demand for neuroscience experiments using freely
behaving animals. Moreover, the challenge becomes more severe when multiple
optical fibers or an array of fibers are required for increased exposure area or
integration with additional electrodes is required for reading out electrical signal.
Limited scalability of the fiber array and low spatial resolution of the fibers are
added issues that need to be addressed in these types of fiber–optic probe system,
considering that the fibers need to be glued and fixed to the bulky guide structure.

Considering the recent demand for the miniaturization of optical neural inter-
faces, utilization of LED as a light source, instead of the laser counterpart, can
be an option. Since the size of an LED can be less than a millimeter on one
side, ranging from tens to hundreds of micrometers, various integration approaches
can be utilized with the aid of microfabrication technology, which resulted in
a successful demonstration of light delivery probes integrated with micro LEDs
(μLEDs) [42, 49]. Availability of commercial LED products with wide variety
of specifications in terms of size, wavelength, output power, and configuration is
another advantage [50–52]. LEDs typically have small size with high spatial resolu-
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tion and low power consumption, which are essential properties for implementing a
wirelessly controlled implantable optical neural interface system. In addition, stable
illumination and fast switching speed also make LEDs suitable for the optical neural
interfaces.

In contrast to the advantages mentioned above, LED-based probes also have
drawbacks. Due to the incoherence and Lambertian light emission, LED-based
probes inherently suffer from low light coupling efficiency between the light source
and the waveguide, which can potentially lead to light power handling issue. Also,
concerns are being posed, which are related to the reliability and biocompatibility
of this type of configuration due to the high amount of localized current and heat
generated during operation. Still, direct cell illumination using μLEDs gives more
efficient light emission than illumination through waveguides.

Recently, significant research has been conducted on both the laser-based and
LED-based optical neural interfaces to achieve efficient light delivery together with
integration of other functionalities, such as bidirectionality (simultaneous stimula-
tion and response signal sensing), multiwavelength illumination, drug delivery, and
various sensing capabilities. Both methods have respective advantages and disad-
vantages, as well as relevant requirements, depending on the specific applications
where the developed system will be used. Although many studies are still under
way to overcome the limitations of previously reported approaches and to improve
the performance of individual systems and provide unprecedented capabilities,
LED-based probes can potentially be advantageous for the implementation of an
untethered system and are being utilized more in researches targeting the realization
of implantable optical neural interfaces.

3 LED-Based Light Probe

LED-based light delivery probes can be categorized based on the types of LEDs
utilized, which are commercially available LED chips and microfabricated μLEDs
(Fig. 3). For the commercially available LED chips, a number of manufacturers such
as Cree, Osram, Kingbright, and SunLED offer packaged LED chips that are only
a few millimeters in size. Some of these chips are available in multicolor, which
can be utilized in the development of the multiwavelength optical neural interfaces.
The luminescence characteristics and the power efficiency of the commercial
LED chips have been improving steadily. Due to the significant growth of the
μLED-based display industry, μLEDs using III–V compound semiconductor are
rapidly becoming much smaller in size than the conventional LEDs [53], and the
optical and the electrical performances are also being improved dramatically. These
advancements in LED technology are expected to have a considerable impact on the
development of LED-based neural probes.

The LED-based neural probes for implantable systems have been proposed and
developed through a wide variety of approaches, each of which has contributed
to the advances in the field of optogenetics with their unique and excellent
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Fig. 3 Typical approaches with LED-based light probes: (a) commercial LED-based probe and
(b) μLED-based probe

performances. This subchapter focuses on the light delivery for neuromodulation,
bidirectionality, reliability, biocompatibility, and multifunctionality of LED-based
light probes.

3.1 Light Delivery Using LED for Neurostimulation

Efficient delivery of sufficient light power is one of the most important and
fundamental requirements for optical neural interfaces for optogenetics. Effective
light delivery becomes more crucial when the probes are designed for a wirelessly
controlled implantable system with limited electrical energy, which is becoming
more common in these days. Although wireless supply of electrical power can be
considered, many of the wireless neural interfaces under development are based on
integrated energy storage components. For effective delivery of light to the nerve
system, light intensity, luminous area, and coupling efficiency between the optical
components in the probe should be taken into account.

The light intensity required for the activation of light-sensitive opsins is well
known to be above 1–5 mW/mm2 for in vitro stimulation with blue light [54, 55] and
over 7 mW/mm2 for in vivo inhibition when measured with red light [56]. However,
simply estimated light intensity under conventional laboratory environment is often
not enough in practice due to light absorption and scattering in tissues. In principle,
the light intensity is attenuated exponentially as a function of penetration depth
[30]. It has been reported that the irradiance decreases to below 10% of the
value measured at the tissue surface within approximately 300 μm depth [30, 57].
Therefore, practical in vivo photostimulation of living animals requires a much
higher grade of light power at the probe tip. Alternatively, an accurate insertion that
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puts the probe facet as close as possible to the targeted area in terms of insertion
depth can minimize the required light output power.

Precise lateral alignment between the probe and the targeted area can also
affect the success or failure of sufficient light delivery during a practical animal
experiment. Figure 4 plots the maximum instantaneous light intensity used in
photostimulations on living animals as a function of the illumination area of the
probe from three laser-based [34, 35, 58] and six LED-based [42–47] neural probes.
While the light intensity required for the activation of channelrhodopsin-2 (ChR2)
is well known to be 1 mW/mm2 [54, 55], the practical intensities used in animal
experiments are required to be several orders higher, up to 1714 mW/mm2, at the
probe tip. In the figure, the solid line refers to the rational function with the average
light output power (0.946 mW) as the coefficient of the function. Distribution
of the data points in Fig. 4 indicates that practical photostimulation requires a
certain amount of total light power. Furthermore, the optical probes with a smaller
illumination area require a relatively higher light intensity in practice than the probes
with larger illumination area, as the probes with small illumination area are more
vulnerable to lateral misalignment. However, since there is a risk of photo damage
of overexposed tissue, there also exists a limit for the increased light intensity.
Therefore, according to the desired three-dimensional illuminated brain area, the
intensity and the illumination property of light should be determined carefully.

Fig. 4 Light output power of neural probes used in living animal experiment [34, 35, 42–47, 58]
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Precise measurement of the light intensity in the three-dimensional space filled
with material having optical properties close to tissue or accurate simulation of light
distribution using ray tracing tool can be helpful.

Despite the practical requirement of total light power for photostimulations
on living animals, current LED-based neural probes with integrated waveguides
generally have low power coupling efficiency, which is the amount of light power
delivered at the probe tip compared to the consumed electrical power. Figure 5
summarizes the power coupling efficiency of current LED-based neural probes [42–
44, 46, 47, 59, 60]. It clearly verifies that the probes with waveguides have much
lower average power efficiency of −27.6 dB when compared with the probes with
direct LED exposure. In this sense, LED-based probes with waveguides require a
power handling capability of 544 mW in order to achieve 0.946 mW output light
power, which is relatively high for untethered implantable systems, especially for
biomedical applications. On the other hand, LED-based probes without waveguides
require only 61 mW for the same output light power. Due to the low light coupling
efficiency between the LED and the waveguide, direct utilization of μLED is more
competitive for an implantable system, in terms of power handling issue although

Fig. 5 Comparison of power efficiency for LED-based neural probes [42–44, 46, 47, 59, 60]
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other issues such as packaging, heat dissipation, and biocompatibility arise when
the μLED is to be implanted in the nerve tissue.

3.2 Reliability and Biocompatibility

Ensuring both reliability and biocompatibility is the most critical requisite of
implantable neural interfaces for biomedical applications. Many researchers have
provided well-organized validation of safety matters in their devices, as probes are
generally inserted inside the living body with direct contact to neural cells. Direct
insertion of a μLED into the brain still requires utmost care with regard to both
localized heat dissipation and electrical leakage. Several researches have suggested
integrating either a polymer waveguide or optical fibers as possible solutions to the
potential hazards of the direct μLED insertion approach [46, 50, 59, 60]. Integration
of the LED chip and optical fiber in the macroscale is a proven technology
with relatively simple and straightforward process compared to the integration
of μLED on a microfabricated probe tip. However, the use of optical fibers as
waveguides involves a labor-intensive manual assembly process in general and may
lead to difficulties in ensuring a uniform performance among manufactured devices.
To overcome the issue with assembly process, which can be critical for mass
production, a standardized fabrication approach or utilization of microfabricated
components is required. However, the use of optical fibers can be advantageous in
fabricating a two-dimensional (2D) array of probes to increase the illumination area.
The polymer waveguides are generally fabricated using microfabrication processes.
Therefore, it can be precisely designed and fabricated to meet the requirements
of the user and has excellent expandability such as integration with electrodes for
readout and a microfluidic channel for drug injection.

In terms of the materials used in the device, polymers are not yet fully validated
for its long-term biocompatibility, which can potentially be a significant issue in
chronic and clinical applications. Moreover, a significant light delivery degradation
in polymer waveguide has been reported, which could also affect the device
performance in the long term [45, 46]. Optical fiber has relatively small degradation,
and the probes with optical fiber as a waveguide [50, 59, 60] are implemented by
integrating a segmented optical fiber with an LED chip. Although not yet fully
validated, existing studies have elaborated on the feasibility of a 2D fiber array
for wirelessly controllable system [59, 60]. A wirelessly controlled illumination
through a single ferruled fiber has also been demonstrated successfully [50].
Since the LED is significantly larger than the fiber in terms of light receiving or
transmitting area in these approaches, a monolithic integration approach is applied
for the fibers and the light source to maximize the light coupling efficiency between
the LED and the fiber by arranging them in direct contact [61] and to free them from
the alignment error during the assembly.
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3.3 Bidirectionality

In general, the experimental procedure in optogenetics consists of optical control
and probing. A light delivery probe is inserted into the body, and light is flashed on
the neural cells, which draws the desired responses from only the targeted neurons
through light-sensitive ion channels or pumps. The result of the photostimulation
is analyzed by either observing the animal behavior or by measuring the electrical
activity near the light-exposed neural cell.

In order to accurately examine the light-evoked neuronal activities, an electrical
potential difference of several tens of microvolts or less around the cell should be
measured. Therefore, in electrode design and arrangement for electrical recording,
it is important to consider factors such as spatial proximity to the light illuminated
region, high spatial resolution, simultaneous multiple spot recording, and impedance
control of the electrode. As the electrical neurostimulation and recording have
already been studied for decades ahead of optogenetics and photostimulation using
the bare optical fiber has been demonstrated successfully, various approaches for
the integration of the recording electrode with optical probe have been reported
[62–64]. Examples include direct deposition of metal layer on optical fiber [62],
integration of microfabricated silicon-based electrode array using UV curable epoxy
[63], and flexibly arranging multiple optical fibers and electrodes using customized
guide module, namely, the flexDrive [64].

Studies on the integration of such electrodes have also been actively conducted
in LED-based optical light delivery devices [42, 43, 46, 47]. In these approaches,
electrodes are formed with materials such as platinum, gold/chromium, and copper.
Passivation layers are formed with biocompatible insulating materials for improved
electrical properties and biosafety. Considering the ease of manufacturing process,
mechanical robustness and flexibility, and heat dissipation, shank was fabricated
with various materials such as polyethylene terephthalate (PET) [42], polyimide
[43], polydimethylsiloxane (PDMS) [46], and polycrystalline diamond (PCD) [47].

3.4 Multifunctionality

Ever since the first validation on a living animal [30], optical neural probes have
been improved in various aspects, which include the integration of functionalities
such as bidirectionality, drug delivery capability, temperature sensing, and multi-
wavelength illumination. Among these, multiwavelength illumination is essential
for selective stimulation and inhibition using single device, considering that opsins
such as channelrhodopsin (ChR) and halorhodopsin (HR) respond to lights of
different wavelengths. Direct utilization of optical fiber and laser source allows
for a relatively easy implementation of multiwavelength illumination. One way to
realize the system is to simply use a 1:2 fiber coupler and two separate laser sources
of different wavelengths. However, laser sources can be costly, especially for the
yellow light.
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Several hurdles must be overcome for an LED-based light delivery systems,
in terms of probes both with and without the waveguides. In general, LED-based
neural probes have issues such as low light coupling efficiency and low output
light power. Therefore, implementing a multiwavelength illumination capability by
integrating separate LEDs of different colors will make the situation even more
complicated. This could potentially be the reason why there have been no reports,
to the authors’ knowledge, on multiwavelength LED-based light delivery probes
with high perfection.

One approach to achieve a multiwavelength direct μLED illumination system
is to place separate μLEDs on the substrate or the silicon-based tips. However,
it is very difficult to achieve precise alignment and consistent illumination on the
same target area in this type of arrangement. Moreover, extremely complicated and
difficult fabrication procedure of installing multiple μLEDs is frequently mentioned
as its drawbacks. Compared to direct illumination, probes with waveguides are even
more vulnerable to light power handling issues. Conventional butting method is
adopted in the probes utilizing optical fibers as waveguides to optimize the light
coupling efficiency between the LED and the optical fiber. In this configuration,
installing multiple LED sources in the system requires a novel approach to overcome
the difficulties related with LED integration and alignment with the fiber.

In terms of the safety of animal during the experiment, heat generated by
light illumination and probe circuitry is a critical issue. Temperature changes of
approximately 2–3◦C in neural system affect not only the outcome of the experiment
but also the safety of the subject [65]. Therefore, many researchers are trying to
maintain the temperature change of the distal end of the neural interface and its
periphery less than 1◦C during the experiment. In this context, it would be helpful
to integrate a sensor that monitors the temperature change around the target tissues
in real time during the experiment. Systems with temperature monitoring capability
have been reported, but the performance is still limited due to difficulties with
fabrication process and complexities of the fabricated system [42, 66].

4 Discussion and Conclusion

Table 1 shows the representative LED-based optical neural interfaces summarized
in terms of advantages and current issues in the field of research. LED-based neural
implants for optogenetics can be classified into two representative types: direct
μLED-illuminated devices and probes with LED light sources and waveguides.
Optical probes with waveguide structures employ either microfabricated polymer
waveguides or commercially available optical fiber as waveguide.

While the practical instantaneous light power required for the optogenetic
modulation is approximately 1 mW, current LED-based neural probes lack appro-
priate light power handling capability. In terms of sufficient light delivery, direct
illumination using μLEDs can be preferable for systems targeting wirelessly
controlled, implantable devices. On the contrary, probes with waveguides can be
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Table 1 LED-based optical neural interfaces

Typical devices and descriptions Reference

Systems
without
waveguides

1 × 4 array of GaN μLED (6.45 μm thick, 50 × 50 μm2), Pt
electrode, Si photodiode, and temperature sensor stacked on an
epoxy microneedle

[42]

Systems with
waveguides

1×5 array of 40 μm diameter μLEDs fabricated from a
commercial GaN 450 nm LED wafer with sapphire substrate

[67]

Two 4×4 arrays of μLEDs integrated on a polyimide substrate
bonded with array of SU-8 microwaveguides with integrated Au
electrodes

[46]

Advantages 3 × 3 array of LEDs integrated on a polyimide ribbon cable and
assembled with optical fibers using micromachined Si housing

[61]

• Wireless capability: low power consumption, small size
• Illumination stability • Fast switching time

Disadvantages • Light power issue: low coupling efficiency • Thermal and
electrical leakage (direct contact with μLED) • Material issue
for unverified polymer waveguide

more adequate for therapeutic usage, as these types of devices are advantageous
in securing the reliability and biocompatibility due to less or no exposure to
electrically and thermally induced risks. In terms of the materials used in the
devices, polymers have not yet been fully tested for their biosafety and long-term
reliable operation. In this sense, utilizing commercially available optical fiber can
be safer compared to polymer waveguides. However, utilizing optical fiber involves
unavoidable manual and labor-intensive procedures. Multiwavelength illumination
is an essential function to achieve complete control of the nerve system. However, a
novel approach is required to overcome existing constraints in light delivery and
device fabrication. As the optical neural interface becomes more elaborate and
additional functions are integrated, more study on the stability and safety of the
device will be needed. In addition, new approaches that can guarantee a simple
fabrication process with high yield and throughput should also be developed.
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Scalable Nanofabrication of Plasmonic
Nanostructures for Trace-Amount
Molecular Sensing Based
on Surface-Enhanced Raman
Spectroscopy (SERS)

Seunghee H. Cho, Kwang Min Baek, and Yeon Sik Jung

1 Introduction

Detection of trace-amount molecules has become an important issue in various
fields such as environmental pollution [1], security and counterterrorism [2],
food safety [3], and human healthcare [4–6]. Harmful chemicals have notorious
effects even at trace-amount concentrations due to their bioaccumulation over long
periods of time [7–11]. Traditional and still widely used analysis tools for low-
concentration molecules in the environment include gas chromatography [12] and
mass spectrometry [13–15]. Gas chromatography collects information of their phys-
ical and chemical properties, and mass spectrometry derives elemental information.
Although useful for accurate analysis, most of these technologies require complex
and destructive methods for sample preparation. In biomedical fields, trace-amount
sensing is also crucial in the early diagnosis of diseases through the detection
of biomarkers [16]. Current techniques mostly utilize antibiotic and enzymatic
reactions using cell-culture methods [17]. Yet, the determination of biological
species within a sample is limited to using blood-drawn samples, which requires
a facile and noninvasive method of sensing. Furthermore, the costly equipment
and the time-consuming nature of measurements make it difficult to access the
technology. Hence, next-generation methods for universal molecular detection and
analysis are in great demand to be applied in various fields.

Meanwhile, Raman spectroscopy is a widely used analysis tool first introduced
by Sir C. V. Raman to identify molecular structures by detecting the Raman
scattering phenomenon [18, 19], a form of inelastic scattering when incident
photons hit a molecule. An extremely small portion (∼10−7) of the incident photons
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scatters inelastically by interacting with the vibrational and rotational states, reading
the molecular structure of the sample. The resulting Raman spectrum, therefore,
serves as a characteristic fingerprint of a specific molecule, allowing highly accurate
identification of unknown molecules [20, 21]. Also, Raman spectroscopy is highly
advantageous in rapid and nondestructive analysis for a wide range of materials
in solid, liquid, and gas forms. However, Raman signals are weak in intensity
due to the small probability of Raman scattering and thus lack low-concentration
sensitivity [22]. In order to resolve this issue, extensive research has been focused
on enhancing the Raman signal intensity. In 1977, it was reported that noble metals
can strengthen Raman signals substantially by amplifying the local electromagnetic
field through plasmonic effects [23]. In addition, it has been demonstrated that the
morphologies of metallic structures play a key role in generating localized surface
plasmon resonance (LSPR) effects for further enhancement of signal intensities [24–
34]. This technique, where the surface morphology of metallic structures is modified
to increase the Raman signal intensity by several orders of magnitude, has been
named surface-enhanced Raman spectroscopy (SERS) (Fig. 1). Later studies on
plasmonic nanostructures for SERS have shown single-molecule-level sensitivities
[35, 36], and thus SERS has risen as a strong candidate for the detection of trace-
amount molecules owing to its rapid, facile, nondestructive nature of measurement
as well as its high sensitivity [37–41].

Fig. 1 Schematic illustration of surface-enhanced Raman spectroscopy (SERS) analysis
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The main purpose of this chapter is to provide a description of various plasmonic
nanostructures for SERS and their state-of-the-art fabrication techniques. First we
briefly explain the mechanism of SERS and the important factors that contribute
to signal improvement, and we then describe various approaches for fabricating
plasmonic nanostructures: top–down, bottom–up, and a combination of both.

2 SERS Enhancement Mechanism

Signal enhancement in SERS mainly depends on the LSPR effect. LSPR, a
non-propagating surface plasmon, occurs at the surface of an isolated metallic
nanostructure [42]. For example, at the curved surface of a metal nanoparticle,
the electron cloud oscillates upon incident light due to the displacement from the
electromagnetic wave and restoring force from the coulombic attraction with the
nuclei [30, 43]. Collective electron oscillation along the metallic surface forms
“hot spots” [44] where local electromagnetic fields are greatly amplified (Fig. 2a).
To observe the electric field enhancements close to hot spots, calculation methods

Fig. 2 Mechanism of localized surface plasmon resonance (LSPR) and electric field enhancement.
(a) Plasmon oscillation between metal spheres. (b) Simulation of electric field near a metal sphere.
(Reprinted with permission from Ref. [43]. Copyright (2003), ACS). (c) Electromagnetic field
simulation of nanogap between particles. (d) Enhancement factor changes by interparticle distance.
(Reprinted with permission from Ref. [45]. Copyright (2012), ACS)
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such as finite-difference time–domain (FDTD) can be used. Using different shades
of contour, the distribution of the electric field nearby a metallic nanoparticle is
illustrated in Fig. 2b. Also, electric field enhancement may be further increased
by forming nano-sized gaps between metallic nanostructures. Studies have tested
the enhancement of SERS signals for nanoparticles with different nanogap sizes
[45]. In particular, FDTD calculations show maximum electric field strength at the
smallest gap between two nanoparticles (Fig. 2c). Experimental data also confirmed
the strongest enhancement for gaps smaller than 1 nm compared to structures with
no gap and nanogaps larger than 1 nm (Fig. 2d). Though LSPR occurs at the
surface, LSPR is mainly generated in the near-field, and thus electromagnetic fields
are most enhanced within a nanoscale range of the surface. In addition, the strong
enhancement is partially attributed to the resonance properties due to the fact that
the electromagnetic field enhancement is maximal when the resonance frequency
matches that of the incident photons [46–49]. The resonance frequency of a metallic
nanostructure is determined by the size and shape, and thus careful and systematic
tuning of morphology can contribute to additional enhancements.

For the design of effective SERS structures, there are various key principles. Most
importantly, plasmonic nanostructures should demonstrate strong enhancement of
electromagnetic fields. Also, the reproducibility and stability are also crucial in
Raman spectroscopy measurements of chemicals. This is directly related to the
second principle, use of an efficient fabrication method. Complex and costly
fabrication methods have often been an issue for designing SERS structures. In this
regard, ideal SERS structures must have high enhancement factors and should be
fabricated with a cost-effective, facile, and scalable process.

3 Nanofabrication of Plasmonic Nanostructures

3.1 Top–Down Lithography

E-beam lithography is a powerful and extensively used technique for the fabrication
of high-resolution nanostructures [50, 51]. Its advantages include the ability to freely
design desired nanostructures with high reliability. Such advantages have been used
to explore the fundamental physics behind the amplification of the electric field at
nanoscale hot spots near metallic nanostructures [52]. Au plasmonic nanostructures
of various morphologies with sub-10 nm gaps have been fabricated, as shown in
Fig. 3a–d. Arrays of Au squares, triangles, bowties, and trimers with controlled
nanogaps were designed (Fig. 3a–d), and as the nanogap size decreased, resonance
bands significantly redshifted. This confirmed the possibility of precisely tuning
the plasmon resonance. Among Au nanohexagons, nanosquares, and nanotriangles
that were fabricated with optimized nanogap sizes, nanotriangles have shown the
largest SERS enhancement. Raman measurement results of 4-aminothiophenol (4-
ATP) using various morphologies confirm the effect of nanoparticle shape, where
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Fig. 3 (a–d) SEM images of various Au nanostructures: (a) nanosquares, (b) nanotriangles, (c)
bowties, and (d) trimers. (e, f) SERS spectra of 4-ATP. (Reprinted with permission from Ref.
[52]. Copyright (2011), ACS.) (g–j) Schematic and SEM images of nanostar dimers. (k, l) SERS
intensity of p-aminothiophenol (pATP) of different sizes and excitation wavelengths. (Reprinted
with permission from Ref. [53]. Copyright (2014), ACS)

the sharp edges in triangles had the strongest enhancement [54] (Fig. 3e). All nanos-
tructures were designed to have plasmon resonance in a spectral alignment with the
excitation laser wavelength of 785 nm (Fig. 3f). Three-dimensional structures can
also be fabricated via e-beam lithography. Three-dimensional nanostar dimers of
different sizes were fabricated to observe the effect on plasmon resonance properties
[53]. Bimetallic AgAu nanostar dimers were lithographically produced in a ring, as
shown in Fig. 3g–j. SERS measurements with excitation wavelengths of 532, 633,
and 830 nm have shown maximum enhancement at different sizes of nanostars (Fig.
3k–l). This demonstrates the tunability of plasmon resonance by controlling the
nanostructure dimensions to match the excitation laser.

Nanoimprint lithography is a useful method to fabricate highly reproducible
nanostructures. As shown in SEM images, gold fingers with a high aspect ratio have
been fabricated to utilize the capillary force upon dropping an analyte solution and
trigger coalescence of the nanofingers [55] (Fig. 4a–d). The self-closing behavior of
gold fingers is capable of trapping trans-1,2-bis(4-pyridyl)ethylene (BPE) molecules
between the gold tips for SERS enhancement, as shown in Fig. 4e. To clarify the
effect of entrapment, peak shifting in Raman spectra of BPE for preclosed and
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Fig. 4 (a–d) Schematic and SEM images of self-closing Au nanofingers. (e) SERS spectra of
preclosed and BPA-trapped nanofingers. (Reprinted with permission from Ref. [55]. Copyright
(2011), ACS.) (f) Schematic illustration of fabrication process for Au-decorated nanoporous SiO2
microcylinders. (g–i) SEM image of Au-decorated nanoporous SiO2 microcylinders of different
deposition times: (g) 15, (h) 30, (i) 45 min. (j) Dense microcylinders decorated with Au. (k, l)
SERS spectra of BT with Au-decorated nanoporous SiO2 microcylinders of different deposition
times. (Reprinted with permission from Ref. [56]. Copyright (2013), ACS)

BPE-trapped fingers was observed. Compared to preclosed fingers, upright fingers
that have undergone capillary–force-driven solution drying showed significantly
stronger Raman signals. This confirmed that BPE molecules must be placed at the
sub-nanometer gaps between gold tips and also the bonding of BPE to gold tips
should be formed. Porous plasmonic nanostructures can also be fabricated from
imprint-based lithography. An array of nanoporous SiO2 microcylinders has been
produced by micro-imprinting block copolymers and decoration of Au nanoparticles
to form SERS-active structures [56] (Fig. 4f). Nanoporous structures improve the
diffusion of analyte solutions into nanoscale hot spots of a SERS structure and thus
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are advantageous for Raman measurements. SEM images in Fig. 4g–j clearly show
how Au particles penetrate the porous templates and also that thickness and density
are increased with longer Au deposition times. Densely packed Au nanoparticles
generate plasmonic coupling due to LSPR, greatly enhancing the Raman signals of
benzenethiol (BT) molecules (Fig. 4k–l).

Even without optical lithographic techniques, plasmonic nanostructures can
be fabricated by applying surface treatments to various substrates. Ag-coated
Si nanowires were fabricated using close-packed nanosphere arrays as a mask
for metal-assisted chemical etching [57]. Figure 5a shows the morphology of
hexagonally packed nanowires and the Ag–shell–Si–core structures. Despite the
relatively large size (110 nm in diameter, 700 nm in length), Ag-coated Si nanowires
are an example of a nanogap-free SERS system. Unlike non-propagating LSPR of
dipolar plasmon resonance [59], continuous Ag shells create propagating surface
plasmons with a higher mode of plasmon excitation [60]. FDTD calculations of

Fig. 5 (a) SEM image of Ag-coated Si nanowires. Inset is TEM image. (b, c) FDTD simulation
of electric field for smooth and rough Ag-coated Si nanowires. (d) SERS spectra of BPE, 4-ABT,
and R6G. (Reprinted with permission from Ref. [57]. Copyright (2013), ACS.) (e–h) Fabrication
process of Ag-capped Si nanopillars. (i) SEM image of Ag-capped Si nanopillars. (j) SERS spectra
of BPE. Inset is uniform distribution (side view) and aggregation of nanopillars (top view) before
and after detection. (k) SERS signal uniformity across large area. (Reprinted with permission from
Ref. [58]. Copyright (2015), ACS)
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electric fields in Fig. 5b, c exhibit six antinodes on the surface of Ag-coated Si
nanowires for both smooth and rough structures (Fig. 5b, c). As demonstrated in
contoured shades, surface roughness contributed to further enhancement of electric
fields. Raman measurements using three different analytes each show significant
SERS enhancement up to an enhancement factor of ∼106 (Fig. 5d). Wafer-scale
SERS structures can also be fabricated by taking advantage of non-lithographic
surface treatment methods. High-aspect-ratio Si pillar arrays were easily fabricated
by maskless reactive ion etching (RIE), and subsequent Ag deposition formed Ag
capping layers for SERS analysis [58] (Fig. 5e–i). According to finite element
method (FEM) calculations, plasmon coupling in the Ag cap cavity and Ag–
Si material interface are the largest factors for SERS enhancement (Fig. 5j). In
addition, the maskless etching process allows large-scale fabrication and also shows
reliable uniformity across a 5 × 5 mm2 substrate.

3.2 Bottom–Up Synthesis

The simple solution-phase synthesis of metal nanoparticles is beneficial in fabri-
cating plasmonic SERS structures. It provides control over the shape and size of
the particles by changing synthesis parameters, which also enables fine-tuning of
the plasmon resonance wavelength. As branches are grown from Au nanoparticles,
local electric fields are significantly enhanced at the tips of branches, leading to
highly intensified Raman signals [61] (Fig. 6a–j). Silica-coated Au nanoparticles of
different shapes (spheres, rods, and triangles) were used as templates to grow branch

Fig. 6 (a–d) 2D and (e–h) 3D TEM characterization of Au nanoparticles with different mor-
phologies. (i, j) SERS spectra of CV before and after templated branching of Au nanoparticles.
(Reprinted with permission from Ref. [61]. Copyright (2015), ACS.) (k) Schematic illustration of
Au nanoparticle synthesis with intra-nanogaps. (l) Solution color and TEM images. (m, n) SERS
spectra of excitation wavelengths 633 and 785 nm. (Reprinted with permission from Ref. [62].
Copyright (2015), ACS)
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tips using a solution-phase method. This improved the surface-to-volume ratio,
which increased analyte adsorption and produced higher enhancement of electric
fields by similar mechanisms as demonstrated for Au nanostars in previous research
[63]. As shown in Fig. 6i, j, from Raman measurements of crystal violet (CV), the
detection limit of branched Au nanoparticles was 10−6 M, and signal intensities
were increased by one order of magnitude compared to spherical particles. Other
than changing the shape of metal nanoparticles, narrow nanogaps can be formed
within the particle for a coupling effect. Au nanoparticles with intra-nanogaps
have also been reported to successfully tune the plasmon absorption for SERS
enhancement at 785 nm excitation [62]. During their synthesis, Au nanoparticles are
surface-modified with DNA containing a spacer sequence, and the outer Au shell
is grown with solution-phase methods, as shown in Fig. 6k. SERS enhancement
is derived from the strong plasmon coupling between the Au core and shell, and
thus narrower gaps produce larger enhancement. As shown in Fig. 6, transmission
electron microscopy (TEM) images clearly demonstrate the presence of nanogaps
among Au nanoparticles synthesized using various spacer sequences. Among those,
Au nanoparticles prepared using thymine spacers produced Raman signal intensities
more than seven times higher than the others (Fig. 6n). This can be supported by
the sub-nanometer gaps formed with thymine, unlike other spacers, as presented in
the TEM images and also by plasmon resonance that better matches the 785 nm
excitation.

Although isolated metallic nanoparticles can generate plasmonic resonance,
the effects can be further enhanced by increasing the number and areal density
of hot spots. In this aspect, self-assembly of metallic particles is a simple but
effective technique to achieve drastically improved SERS enhancements. A vertical
monolayer of Au nanorods has been fabricated by a simple and robust evaporation-
induced self-assembly strategy [64]. As shown in Fig. 7a, b, the plasmon band of
vertically standing close-packed Au nanorods is located near 717 nm and SEM
images confirm monolayer formation. Nanogap sizes were reduced by changing
the ionic strength of the Au nanorod solution, which is expressed in Debye
length, and further UV ozone treatments created sub-nanometer gaps by removing
surfactant molecules to bring the nanoparticles closer together (Fig. 7c–e). Raman
measurements with a vertical monolayer of Au nanorods were used to successfully
detect trace amounts of the food contaminants benzyl butyl phthalate (BBP,
C19H20O4) and bis(2-ethylhexyl)phthalate (DEHP, C24H38O4) in orange juice (Fig.
7g). Metal nanoparticles can also be self-assembled with spacer molecules to
control and rigidly fix the nano-sized junctions [65]. Au nanoparticle clusters are
fabricated using a hollow macrocyclic spacer known as cucurbit[n]uril (CB[n],
n = 5–8, 10) to form precisely sized nanojunctions of 0.9 nm (Fig. 7h). Raman
measurements were conducted to detect the photochemical activity and inclusion of
diaminostilbene (DAS) within Au nanoparticle–CB[n] clusters upon UV irradiation.
Figure 7i, j shows SERS spectra of DAS inserted into the nanojunctions of Au
nanoparticle clusters with increasing UV irradiation time. The Au nanoparticle
clusters demonstrate large SERS enhancements due to the hot spots formed at the
nanogaps and also the plasmon resonance modes across the chain [66].
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Fig. 7 (a) Absorption spectrum of Au nanorods. Inset is TEM image. (b) SEM image of
hexagonally arranged vertical Au nanorod monolayer. (c) Edge-to-edge gap distance plotted by
Debye length. (d, e) SEM image of hexagonally arranged vertical Au nanorod monolayers: (d)
before and (e) after UV treatment. (f) Nanogap size distribution after UV treatment. (g) SERS
spectra of orange juice containing BBP and DEHP. (Reprinted with permission from Ref. [64].
Copyright (2013), ACS.) (h) Schematic illustration of self-assembled Au nanoparticle nanoclusters
with fixed separation. (i, j) SERS spectra of DAS inserted into Au nanoparticle nanoclusters after
UV irradiation and intensities at 1630 cm−1 by UV irradiation time. (Reprinted with permission
from Ref. [65]. Copyright (2013), ACS)

Colloidal or nanosphere lithography is a scalable and cost-effective tool for
reproducible fabrication of submicron structures with dense plasmonic nanogaps.
A low-cost fabrication strategy for annular cavity arrays has been reported using
polystyrene (PS) spheres [67]. After embedding hexagonally packed PS spheres in
silica gel, PS spheres were partially etched using reactive ion etching (RIE), and Ag
deposition was carried out to form annular cavity arrays (Fig. 8). Along with electric
field enhancement from nanogaps in the cavities, cylindrical surface plasmon
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Fig. 8 (a) Schematic illustration of fabrication of annular cavity arrays. (b, c) Cross-section model
and SEM image of annular cavity arrays. (d–i) Annular cavity arrays fabricated with different
dimensions: (d, g) SEM cross sections, (e, h) SEM top views, (f, i) photographs. (Reprinted with
permission from Ref. [67]. Copyright (2015), ACS.) (j–l) Fabrication process of Au nanoparticle-
decorated Ag film over nanosphere structure. (m) SEM image. (n) Illustration of SERS effect. (o–
q) SEM image top views and cross-view of Au nanoparticle-decorated Ag film over nanospheres:
(o) before and (p) after Au decoration. (r) SERS spectra of Au nanoparticles on Ag film, Ag film on
nanosphere, and Au nanoparticle-decorated Ag film on nanosphere structure. (s, t) Raman mapping
of Au nanoparticle-decorated Ag film over nanosphere before and after Au decoration. (Reprinted
with permission from Ref. [68]. Copyright (2015), ACS)

resonance properties [69] of annular cavity array structures have attracted strong
interest for SERS. The tunability of geometry parameters such as nanogap width,
depth, and radius was demonstrated to modulate the plasmon resonance across
the entire optical wavelength range (Fig. 8d–i). Hybrid plasmonic nanostructures
can also be fabricated using nanosphere lithography. As shown in Fig. 8j–q, Au
nanoparticle-decorated Ag films over nanosphere structures have been produced
using hexagonally close-packed PS spheres, Ag deposition, and Au nanoparticle
decoration [68]. SERS spectra of the fabricated structures using BT molecules
showed significant enhancements compared to those without Au nanoparticles. The
increased Raman signals can be attributed to not only the particle-film plasmon
coupling but also the interparticle coupling generated by the hybrid structure.

Block copolymer self-assembly is a simple method to produce large-area,
ordered nanostructures of various morphologies [70–72]. By incorporating metallic
elements, nanostructures with highly tunable plasmonic resonance can be achieved.
Hexagonal arrays of Au–Ag core–shell and alloy nanoparticles have been fabricated
using block copolymer self-assembly [73]. Solution-phase Au and Ag incorpora-
tion into self-assembled polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) thin
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films has been conducted (Fig. 9a). Scanning electron microscopy (SEM) and TEM
images present successful formation of Au and Au–Ag nanostructures in hexagonal
arrays of nanopatterns (Fig. 9b–g). As shown in Fig. 9h, i, Raman measurements
of Au–Ag nanoparticle arrays displayed significant enhancements and high reli-
ability due to systematically tuned broadband surface plasmon resonance [75].
Nanoparticles can also be self-assembled into arrays of clusters with the aid of
block copolymer self-assembly. Au nanoparticle cluster arrays were electrostatically
self-assembled onto the surface of polystyrene-block-poly(2-vinylpyridine) (PS-b-
P2VP) reverse micelle particles [74] (Fig. 9j). The number of particles per cluster
(Fig. 9k–r) and intercluster separation distance have been controlled, where the
Raman signal enhancement ratio was maximized for the highest number of particles
per cluster and the smallest intercluster separation distance (Fig. 9s, t).

Fig. 9 (a) Schematic illustration of Au–Ag core–shell nanopatterning process. (b) SEM image
of solvent-annealed PS-b-P4VP film. (c, d) TEM image of Au–Ag core–shell nanoparticles. (e)
SEM image of Au–Ag core–shell nanoparticle arrays. Inset is TEM image. (f, g) EDS elemental
mapping. (h) SERS spectra, and (i) Raman mapping image of R6G. (Reprinted with permission
from Ref. [73]. Fabrication process of Au nanoparticle cluster. Copyright (2015), ACS.) (j)
Fabrication process of Au nanoparticle cluster arrays. (k–r) TEM images of Au nanoparticle
clusters with increasing number of nanoparticles per cluster. (s, t) SERS spectra of CV using Au
nanoparticle clusters: (s) different numbers of nanoparticles per cluster, and (t) different intercluster
separations. (Reprinted with permission from Ref. [74]. Copyright (2012), ACS)
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3.3 Combined Approach

In recent years, a combined approach of top–down lithography and bottom–up syn-
thesis has been reported, namely, directed self-assembly of block copolymers [76].
Using predesigned trenches, block copolymer films form self-assembled nanostruc-
tures with controlled position, orientation, and geometry [77–79]. Au nanowires
and nanorods were fabricated to tune the plasmonic resonance and improve the
Raman signals of molecules [80]. After self-assembled block copolymer nanowire
structures are treated using plasma, polymer replicas function as a medium for Au
deposition using an evaporator. By carefully controlling the deposition conditions,
either continuous nanowires or discrete nanorods can be produced (Fig. 10a, e). As
shown in Fig. 10b–d, e–h, average nanogap sizes below 5 nm are highly effective
hot spots for SERS signal enhancement, and thus Raman signals for R6G using
nanorods show the highest enhancement (Fig. 10j). Self-assembly guiding trenches
may have different geometries such as hexagonally packed circular mesh patterns
[81]. Hexagonally close-packed PS spheres were used as masks for Au deposition,
and block copolymer self-assembly is conducted within circular trenches followed
by an additional Au deposition on the polymeric cylinder nanostructures. As
shown in SEM images, cylinders guided by circular trenches resulted in concentric
rings, which varied in number of rings depending on the trench dimensions (Fig.
10k–n). With an increasing number of rings, the areal density of the nanogaps

Fig. 10 (a–h) Schematic representation and SEM images of Au nanowires and Au nanorods.
(i) Absorption spectra of Au nanowires and Au nanorods. (j) SERS spectra of R6G using Au
nanowires and Au nanorods. (Reprinted with permission from Ref. [80].) (k–n) Controlled number
of cylinders per circular trench for concentric Au nanoring structures. (o) SERS spectra of R6G
using concentric Au nanorings. (p) SERS intensity with increasing number of rings. (Copyright
(2016), Wiley. Reprinted with permission from Ref. [81]. Copyright (2015), ACS)
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Fig. 11 (a) Fabrication process of 3D cross-point Au nanostructures. (b) Hot spot formation at
cross-points. (c) SEM images of multi-stacking capabilities up to 10 layers. (d) Transmittance
spectra of multi-stacked Au nanostructures. (e) SERS spectra of 3D cross-point Au nanostructures.
(f) SERS intensity of R6G with increasing number of multi-stacked layers. (g) Angle dependency
of multi-stacked Au nanostructures. (Reprinted with permission from Ref. [80]. Copyright (2016),
Wiley.) (h) Nanotransfer printing of Ag nanostructures onto the surface of an apple. Scale bar 1 cm,
5 μm (inset). (i) SERS spectra of tetramethylthiuram disulfide (Thiram) using Ag nanostructures
printed on the apple. (Reprinted with permission from Ref. [82]. Copyright (2014), Nature
Publishing Group)

that form between rings significantly increases, leading to large Raman signal
amplifications (Fig. 10o).

Nanotransfer printing is another powerful tool to fabricate plasmonic SERS
structures. Previously reported plasmonic nanostructures are mostly based on two-
dimensional patterns, yet increased hot spot density not only laterally but also
vertically could further enhance Raman signal intensities. In this regard, 3D cross-
point Au nanostructures have been produced for effective SERS applications [80]
using nanotransfer printing [82]. As shown in Fig. 11a, b, Au nanowire layers are
sequentially stacked upon each other with a 90◦ difference in orientation so that
there are vertical hot spots between adjacent layers of Au nanowires. Multi-stacking
capabilities up to 10 layers have been demonstrated, and Raman measurement
results have shown maximum enhancement at 4–5 layers of multi-stacking due to
limited penetration depths of excitation lasers (Fig. 11c–g). Nanotransfer printing is
advantageous in forming plasmonic SERS structures on almost any desired surface.
For example, Ag nanowires were printed onto the surface of an apple and Raman
measurements were successfully taken (Fig. 11h, i).
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4 Molecule Detection and Analysis

Rapid, facile, and noninvasive detection of trace-amount molecules is in demand
for various fields of sensing applications [83]. Exploiting the advantages of Raman
spectroscopy and low-cost, robust fabrication techniques of plasmonic SERS
nanostructures, the requirements for highly sensitive trace-amount detection are
expected to be satisfied. Major applications of SERS-based detection include
single-molecule-level detection, multiplexing, biomedical sensing, and bio-imaging
(Fig. 12).

In particular, SERS technologies are useful in biomedical applications for rapid
and label-free identification of biomarkers and cancer cells, which enable effective
diagnosis early into a disease [84]. For example, glucose levels in blood and human
fluids are well known as an indicator of diabetes. A contact-lens-type SERS sensor
for glucose in tears has been fabricated using Ag nanostructures and nanotransfer
printing techniques [80]. As shown in Fig. 13a–d, Ag nanorod arrays were transfer-
printed onto a hard and soft contact lens to form a “SERS contact lens.” After the
SERS contact lens was mounted on an artificial eye, detection of glucose levels
as low as 10−4 M was successfully demonstrated (Fig. 13e). There still remain
several challenges for practical applications such as the development of a safe
excitation method and a data processing tool that enables quantitative analysis. Also,
cancerous and noncancerous prostate cells within human fluids can be detected
through Raman measurements. A detection platform using microfluidics and SERS
has been fabricated for the analysis of mammalian cells flowing through human
fluids [85]. Mixtures of cancerous and noncancerous cells were first incubated with
SERS-sensitive tags for effective sensing. Hydrodynamic flow forces the cells to
pass through the microfluidic channel in a single-file manner, allowing the Raman
excitation laser to focus (Fig. 13f). Complex Raman spectra were processed using
the classical least-squares (CLS) method for accurate analysis of cancerous and
noncancerous cells (Fig. 13g, h). Although reliable in batch-to-batch stability,
current Raman analysis technologies of living cells are limited to labelled sensing.

Furthermore, bio-imaging using SERS can effectively visualize the distribution
of biomolecules within a living organism. In vitro bio-imaging of tumors has been
achieved by fabricating plasmonic Raman tag particles [86]. Raman tags consist
of mesoporous silica shells and sphere-shaped Au nanoparticles with an internal
nanogap. As illustrated in Fig. 14a, in vivo Raman measurements were taken
by extracting tumors from an orthotopic prostate cancer mouse after direct or

Fig. 12 Selected applications
of SERS technologies
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Fig. 13 (a) Fabrication of SERS contact lens. (b–d) Photograph of SERS contact lenses and
Raman measurement of SERS contact lens mounted on artificial eye. (e) SERS spectra of glucose
using SERS contact lens. (Reprinted with permission from Ref. [80]. Copyright (2016), Wiley.)
(f) Schematic illustration of SERS measurement with microfluidic channel. (g, h) SERS spectra of
cancerous and normal cells and CLS processing of SERS data. (Reprinted with permission from
Ref. [85]. Copyright (2015), ACS)

intravenous injection of the Raman tags. Upon excitation, strong Raman signals
were generated exclusively from tumors and remained stable for up to 30 min
compared to unstable fluorescence images, which disappeared within 6 min. Also,
SERS-based bio-imaging can enable vivid visualization of tumor margins or lesions
in organs otherwise invisible to the naked eye. In vivo imaging of liver tumors
was demonstrated using SERS nanoparticles containing Raman-sensitive reporter
molecules [87]. SERS nanoparticles were Au cores coated with BPE encapsulated
by a silica shell to prevent agglomeration and undesired contact with surroundings.
Compared to fluorescence imaging, which uses indocyanine green (ICG), SERS
nanoparticles showed higher contrast between normal and tumor cells in livers (Fig.
14b, c). The direct classical least-squares (DCLS) method aided the visualization of
fluorescence and SERS imaging results.

5 Conclusion and Future Outlook

Detection of trace-amount molecules in natural form has been realized through
various tools of analysis such as gas chromatography and mass spectrometry.
However, due to the complexity in sample preparation and test methods, Raman
spectroscopy has been suggested as an alternative, although weak signal intensity is
the only drawback for wide applications. Recently, SERS, which utilizes plasmonic



Scalable Nanofabrication of Plasmonic Nanostructures for Trace-Amount. . . 87

Fig. 14 (a) Bio-imaging using mesoporous silica-coated gap-enhanced Raman tags (MS-GERT)
for visualization of tumors. (Reprinted with permission from Ref. [86]. Copyright (2017), ACS.)
(b, c) Comparison of signal contrast for SERS-based bio-imaging and ICG-assisted fluorescence
imaging of cancerous cells. (Reprinted with permission from Ref. [87]. Copyright (2016), ACS)

effects to amplify the Raman signal, has provided a solution. Since then, significant
efforts have been devoted to developing plasmonic nanostructures for SERS, and
thus a variety of fabrication techniques have been introduced.

Top–down methods such as e-beam lithography, nanoimprint lithography, and
surface treatment are capable of precisely designing nanostructures, yet are costly.
Bottom–up methods such as nanoparticle synthesis, self-assembly of nanoparticles,



88 S. H. Cho et al.

and block copolymer self-assembly are useful in large-scale fabrication, but are
limited in reproducibility. Nanotransfer printing of noble metal nanostructures com-
bines the advantages of both techniques and demonstrates excellent enhancement of
Raman signals and notable reproducibility.

SERS analysis shows promising results in various fields in need of trace-
amount molecule detection. In particular, in biomedical applications, detection of
low-concentration biomarkers can improve diagnostics. Effective design of SERS
structures combined with advances in portable Raman spectroscopy equipment may
significantly improve in vivo detection and analysis of biological species. In the
future, molecular and cellular SERS using nanofabricated structures and materials is
expected to lead to breakthrough medical technology by early diagnosis, tracking of
treatment effects, and simultaneous diagnosis and treatment. For more widespread
applications of SERS in biomedical areas, however, achieving sufficient measure-
ment reproducibility and selective detection of biomolecules without sacrificing
sensitivity are remaining challenges.
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Basics and Advances in Monocular
vSLAM

Hideaki Uchiyama, Takafumi Taketomi, Sei Ikeda, and Shohei Mori

1 Introduction

Augmented reality (AR) is a research field dealing with the enhancement of
human perception with information and communication technologies. Since 1990s,
visual enhancement has been proposed such that users see an object in the 3D
space through a display with a camera such as a mobile phone, and computer-
generated (CG) objects are seamlessly superimposed onto images captured by the
camera [2]. The main motivation of the enhancement is to support human activities
by visualizing instructive annotations. This visualization technology has widely
been applied to user interfaces and image synthesis for broadcasting [13]. In contrast
to AR based visualization adding CG objects onto images, diminished reality (DR)
has also been proposed as a new concept that unneeded or undesirable objects in
the images are naturally hidden or removed by visualizing their background, as an
operation of subtraction [29]. Nowadays, other perceptions such as taste sensation
have also been enhanced, and such technologies can be categorized into a new
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research field referred to as augmented human [32, 36]. In this chapter, we focus on
the traditional AR that enhances human vision using computer vision technologies.

To develop AR applications, one important technology is to estimate camera
poses of sequential images with respect to an object in the 3D space [27]. A
camera pose is generally represented by a 3D position and a 3D orientation
with respect to a certain coordinate system. In other words, it is equivalent to
6 Degree-of-Freedom (DoF) parameterization. Camera pose estimation is crucial
for continuously superimposing CG objects onto the images as if they really exist
in the 3D space. Specifically, it is important to keep geometric and photometric
consistencies between the CG objects and the 3D space. This technical issue is
generally referred to as visual tracking because camera poses are computed and
tracked only from visual information. If IMU is available for the tracking, the issue
can be categorized into visual-inertial tracking [35].

Existing visual tracking algorithms can be divided into two main approaches:
model-based and model-less ones. In the model-based approaches, the 3D model
of an object is given or generated beforehand as a reference, and camera poses
are computed with respect to the object using the model [20]. The model normally
comprises visual features such as a set of 3D points or lines with textures. Since such
model is not always available, model-less approaches have also been investigated,
and are generally referred to as visual simultaneous localization and mapping
(vSLAM) [40]. In the vSLAM, camera pose estimation (localization) and online
3D model generation (mapping) are iteratively performed so that camera poses
can sequentially be computed in unprepared environments. The vSLAM has been
considered an active and important research topic in computer vision, robotics, and
augmented reality for decades [3, 11]. Since the performance of vSLAM has been
drastically improved, vSLAM can run in real time even on mobile devices.

In this chapter, we review visual tracking technologies for augmented reality,
computer vision, and robotics applications. Specifically, we focus on vSLAM algo-
rithms using a monocular RGB camera as a model-less approach that has actively
been investigated in recent years. The chapter comprises two main sections: basics
and advances of the vSLAM. In the basics, basic computer vision technologies
used in vSLAM are first explained because they are necessary for understanding
the process of vSLAM algorithms. Then, a basic framework and existing vSLAM
algorithms are summarized. This paper aims to explain vSLAM algorithms for non-
experts who started to learn the algorithms. Note that vSLAM using a RGB-D
camera can be found [4, 16].

2 Basics

The vSLAM can be achieved with the combination of several computer vision
technologies. To understand vSLAM algorithms, the knowledge of each technology
is required. First, camera geometry, keypoint matching, triangulation, and bundle
adjustment are introduced as basics of the vSLAM.
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2.1 Camera Geometry

As illustrated in Fig. 1, a point in the world coordinate system Xw = [Xw, Yw,Zw]T

is projected onto the image coordinate system u = [u, v]T by a perspective
projection model:
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where fu, fv , cu, and cv are focal lengths and the principal point as camera intrinsic
parameters, K is a matrix containing the intrinsic parameters, rij and ti are the
elements of the 3 × 3 rotation matrix R and the 3 × 1 translation vector t as
camera extrinsic parameters, P is the 3×4 projection matrix containing both camera
intrinsic and extrinsic parameters, ˜ is a homogeneous coordinate that is useful for
matrix operations in projective geometry [14], and s is a scale factor. t represents the
origin of the world coordinate system in the camera coordinate system, and r1, r2,
and r3 are the basis vectors of the world coordinate system in the camera coordinate
system. In Eq. (1), a lens distortion effect is not considered for a brief description.
In general, the distortion process is applied after u is computed [14].

Since camera intrinsic parameters including lens distortion parameters can be
fixed when a lens and an image sensor are determined, they are computed before-
hand by a camera calibration method [43], and are considered as known parameters.
Therefore, camera pose estimation in the vSLAM is equivalent to computing R and
t from sets of Xw and u. This issue is referred to as the Perspective-n-Point (PnP)
problem, and several solutions have been proposed [21, 23]. In the next section, the

Fig. 1 Coordinate systems for vSLAM. The world coordinate system Xw is first defined in 3D
space. The camera coordinate system Xc is then defined such that XcYc plane is parallel to the
image coordinate system u and Zc axis is the optical axis
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process of computing Xw and u with keypoint matching is explained. It should be
noted that the relationship between the world coordinate system Xw and the camera
coordinate system Xc is represented by the following equation:

Xc = RXw + t

X̃c =
[

R t

0T 1

]
X̃w.

(2)

2.2 Keypoint Matching

To compute R and t in Eq. (1), it is necessary to compute the correspondences
between Xw and u. Since Xw is given when a 3D model is available, the issue is
how to detect a pixel u in an image projected from a 3D point Xw. This can normally
be done by using keypoint matching [15, 28].

Figure 2 illustrates an example of camera pose estimation with respect to a
box. The process of keypoint matching is divided into extraction, description,
and matching. The texture and shape of a 3D model are first prepared as a
reference where the world coordinate system is defined. In the extraction, pixels,
where local intensity distribution around the pixels are different from the others
or discriminative, are selected in both the texture of the 3D model and the input
image for camera pose estimation. Such pixels are referred to as feature points or
keypoints [22, 42]. In the description, the canonical orientation of a keypoint is

(a) (b) (c)

Fig. 2 Keypoint matching. The first row represents the process for a 3D model and the second
one does that for the input image. Keypoint matching is composed of (a) extraction of keypoints,
feature (b) description for each keypoint, and (c) matching of keypoints between the model and the
input image
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first computed from the intensity distribution [12]. This process allows keypoint
matching to be invariant to rotational changes of the images. The feature vector of
a keypoint is then computed from the intensity distribution with a feature descriptor
such as the histogram of gradients. In the literature, various methods have been
proposed for these two processes [26, 38]. In the matching, the feature vector of
a keypoint in the image is matched with those in the reference. This is generally
solved by using a nearest neighbor searching method [1].

From keypoint matching, the correspondences between Xw and u can be
computed and are used for computing R and t in Eq. (1) with the solutions for the
PnP problem [21, 23]. Since the correspondences may include some wrong ones, a
robust estimator is incorporated in the computation of R and t [5, 9].

2.3 3D Reconstruction

In the model-based visual tracking, the 3D model of an object must be generated
offline, and camera poses are computed with respect to the object online. On the
other hand, vSLAM algorithms compute the 3D model of an object or 3D space
online in addition to camera pose estimation. This process is referred to as 3D
reconstruction or mapping.

The simplest mapping method is the triangulation using two views. Figure 3
illustrates an example of the triangulation for a point Xw observed in the two images
whose projection matrices are P and P ′, and the projected locations in the image
coordinate system are u and u′, respectively. From Eq. (1), the projection to each
image can be represented as follows:

sũ = PX̃w

s′ũ′ = P ′X̃w.
(3)

In the two equations, u, u′, P , and P ′ must be known such that sets of u and u′ can
be computed by using keypoint matching between the two images, and P and P ′ are

Fig. 3 Triangulation. Xw is
computed by solving Eq. (3)
with u, u′, P , and P ′
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computed from a reference or objects whose 3D models are known in the 3D space.
In other words, only Xw is unknown parameters. Since the degree of freedom of
Xw is 3 and the number of equations is 4, Xw can be computed with a least squares
solution [14].

2.4 Bundle Adjustment

In the vSLAM, camera poses are estimated from objects whose 3D models are
known, and the models of new parts in the space are reconstructed to allow
them to be known. In this process, the error of camera pose estimation and 3D
reconstruction can be accumulated. To globally refine all of the estimated results,
bundle adjustment is normally applied [25, 41]. First, Eq. (1) is expressed without
using a homogeneous coordinate as follows:

u = proj(K,R, t,X), (4)

where proj is a function to project a 3D point X onto the image coordinate system
using K , R, and t . Then, the following energy function for minimizing reprojection
error is defined:

E =
∑

i

∑
j∈F i

‖uj − proj
(
K,Ri , t i ,Xj

) ‖2, (5)

where i is a number for images, j is a number for 3D points, and F i is a set of
points visible in an image i. By updating all of the Ri , t i , and Xj , the energy is
minimized. Since this optimization process is highly non-linear, a local minimum
can be computed.

3 Advances

In the previous section, computer vision technologies used in the vSLAM were
explained. In this section, a basic framework of vSLAM and existing vSLAM
algorithm are introduced.

3.1 vSLAM Framework

As illustrated in Fig. 4, the vSLAM is mainly composed of the following five
processes.
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Fig. 4 vSLAM framework. vSLAM is mainly composed of five processes: initialization, localiza-
tion, mapping, relocalization, and global optimization

• Initialization
• Localization (equivalent to camera pose estimation)
• Mapping (equivalent to 3D reconstruction)
• Relocalization
• Global optimization (bundle adjustment, etc.) by loop closure

The initialization is the process for both defining the world coordinate system and
generating an initial 3D model in the coordinate system. This is necessary at the
beginning of the vSLAM because the world coordinate system must be defined to
compute camera poses. For instance, a fiducial marker can be prepared in the 3D
space for the initialization [6]. After the initialization, the localization and mapping
are performed. The relocalization is the process for computing a camera pose when
the localization is failed due to fast camera motion or some disturbances. The
global optimization is the process for refining all of the results of both camera pose
estimation and 3D reconstruction. The bundle adjustment is one method for the
optimization. The optimization effectively works if a re-visiting moment when the
same object is captured again is detected to generate a closed loop. To understand
vSLAM algorithms, it is important to know how each process is achieved.

3.2 History

The history of vSLAM algorithms is summarized in Table 1, and their relationship is
illustrated in Fig. 5. The algorithms are categorized from two aspects: localization
and mapping methods, and density of 3D reconstruction. As a framework of the
localization and mapping, feature based methods have been proposed since 2003 [6,
18, 31]. In these methods, keypoints are extracted in the images, and used for the
localization and mapping. Therefore, objects containing keypoints must exist in the
environments. Since the drawback of these methods is that the methods do not work
under texture-less environments, direct methods using more pixels in the image,
namely feature-less methods because feature points are explicitly not extracted, have
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Table 1 History of vSLAM
algorithms

Year Algorithm

2003 MonoSLAM [6]

2007 PTAM [18]

2011 DTAM [33]

2014 LSD-SLAM [7], SVO [10], ORB-SLAM [31]

2017 DSO [8]

Fig. 5 Classification of
vSLAM algorithms. vSLAM
algorithms are classified
according to localization and
mapping methods
(direct/feature based), and the
density of 3D reconstruction
(dense/sparse)

been proposed to allow vSLAM to be more robust, as an alternative framework [7,
33]. The density of 3D reconstruction is also an important aspect. Basically, the
density of 3D reconstruction in feature based methods can be determined from the
number of keypoints extracted in image sequences. Normally, this density is referred
to as sparse. On the other hand, the density in direct methods varies according to
the methods. For example, the map of the DTAM is highly dense because all of
the pixels in the image are used for 3D reconstruction [33]. Then, the density has
become more sparse [8, 10].

It should be noted that one of the drawbacks of feature based approaches is
the sparsity of points in the 3D reconstruction. This indicates that a robust feature
selection regarding appearance changes due to viewpoint changes is the minimum
requirement to compute camera poses robustly and accurately. However, in terms
of 3D reconstruction for scene understanding and photometric registration in AR
environments, fully reconstructed 3D space is preferable. Therefore, RGB-D SLAM
that achieves dense reconstruction is often used for solving the issues [24, 37].

3.3 Feature Based Approach

The world’s first monocular 6DoF vSLAM was proposed in 2003 by Andrew
Davison [6], namely MonoSLAM. MonoSLAM achieved the localization and
mapping using extended Kalman filtering (EKF). A camera pose and 3D positions of
keypoints are represented as a state vector in EKF. As camera moves, new keypoints
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are added into the state vector. Therefore, target environments were relatively small
because the state vector becomes larger and cannot be updated in real time as the
environment becomes larger.

To solve the computational cost issue for larger environments in MonoSLAM, a
novel framework spiting the localization and mapping tasks into different threads
on CPU was proposed in PTAM [18]. The advantage of this framework is that
the computational cost of the mapping does not affect the localization because the
localization and mapping are performed in different threads. As a result, bundle
adjustment was incorporated into the mapping to refine the 3D reconstruction.
This indicates that the localization thread estimates camera poses in real time, and
the mapping thread performs accurate 3D reconstruction using bundle adjustment.
After PTAM was proposed, many vSLAM algorithms based on multi-threading
approaches have been proposed for real-time applications.

ORB-SLAM [31] can be considered an extended PTAM for large scale envi-
ronments. If the error accumulation becomes larger as a camera moves, it may be
difficult to compute the global minimum in bundle adjustment due to the numerous
number of parameters in camera poses and keypoints in the 3D space. Pose graph
optimization is a solution to avoid this problem [19]. After a loop is detected at
a re-visiting moment [30], only camera poses are first optimized using the loop
constraint. Then, bundle adjustment is performed to refine the results of both camera
poses and 3D reconstruction.

The feature based approaches are finally summarized as follows:

• MonoSLAM: EKF based vSLAM
• PTAM: Keyframe based vSLAM
• ORB-SLAM: PTAM + Pose graph optimization

3.4 Direct Approach

In the feature based approaches, only geometric consistency such as keypoint
positions in an image and 3D space are considered for the localization and mapping.
In contrast, direct approaches are a new framework incorporating photometric
consistency such that a camera pose is computed by comparing the image intensity
with the intensity of keypoints in the 3D model.

DTAM is the first direct method for the vSLAM. The localization is done by
comparing the input image with synthetic view images generated from the 3D
model. This process can simply be considered registration between two images [33].
Since the synthesis of view images is time-consuming, it is implemented on GPU.
The mapping is based on using multi-baseline stereo [34] for all of the pixels, and
then it is refined using a surface continuity [39].

In DTAM, all of the pixels in an image are reconstructed. However, they are
redundant for the localization task. Therefore, the mapping of the areas containing
high intensity gradient was proposed in LSD-SLAM [7]. The idea of this approach
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is to ignore texture-less areas because it is difficult to estimate accurate depth
information from images. In addition, loop closure detection and pose graph
optimization were incorporated.

SVO [10] and DSO [8] are the direct method for sparse keypoints. In SVO, the
localization is based on a feature based approach while the mapping is done with
the direct method. DSO is a fully direct method such that the input image is divided
into several blocks, and then high intensity points are selected for the localization
and mapping. Since the direct method can be affected by photometric changes such
as illumination, photometric camera calibration is performed online.

The direct approaches are finally summarized as follows:

• DTAM: Dense mapping with all the pixels
• LSD-SLAM: Semi-dense mapping for pixels containing high intensity gradients
• SVO and DSO: Sparse mapping with keypoints

4 Conclusion

This paper presented basics and recent advances of vSLAM as a framework of visual
tracking in unprepared environments. Since the vSLAM can be achieved with the
combination of several computer vision technologies, camera geometry, keypoint
matching, triangulation, and bundle adjustment were introduced as basics. In the
vSLAM, a common basic framework is composed of initialization, localization,
mapping, relocalization, and global optimization with loop closure. For the local-
ization and mapping, there are two main approaches: feature based and direct ones,
and their history was introduced. The framework described in this paper assumes
that an image is captured with global shutter indicating all of the pixels are captured
at the same moment. However, rolling shutter is normally used for CMOS cameras
and does not preserve the camera geometry in Eq. (1). This indicates that all of
the pixels are captured at different moments and this should be considered in the
localization and mapping [17].
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Wireless Backhaul Technology
in Wireless Sensor Networks: Basic
Framework and Applications

Hiroaki Togashi, Ryuta Abe, Junpei Shimamura, Ikumi Koga, Kento Hayata,
Ryusuke Nibu, Yasuaki Koga, Hiroaki Kondo, and Hiroshi Furukawa

1 Introduction

Sensing equipment has decreased significantly in cost and has spread rapidly in this
decade, even though its measurement accuracy and communication performance
have improved. Consequently, wireless sensing systems have been widely studied
and developed. Setting up a wireless sensor network (WSN) in a wide area
requires installing large amounts of wireless communication equipment, viz., sensor
gateways, and the installation costs tend to be high, depending on the extension of
the sensing area.

Similar problems are occurring in setting up Wi-Fi networks. Currently, the
importance of traffic off-loading from cellular networks to Wi-Fi networks is
increasing owning to the rapid growth of network traffic [1] caused by the
proliferation of smartphones and tablet devices. To extend Wi-Fi coverage areas,
a significant number of Wi-Fi access points (APs) are being installed in urban
areas. However, installation and maintenance costs become high, depending on the
increase in the number of APs. To assist in alleviating this concern, we developed a
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wireless AP that uses wireless backhaul technology. We expect that this technology
can alleviate the problems related to setting up wide wireless sensing areas. This
article considers how wireless backhaul technology can be used in WSNs.

The remainder of this article is organized as follows. Section 2 briefly describes
related technologies. Section 3 describes our basic sensing framework utilizing
wireless backhaul technology. In Sect. 4, applications working in this framework
are shown. Section 5 presents our concluding remarks.

2 Related Technologies

2.1 WSNs and Sensor and Actuator Networks (SANs)

A sensor network is a framework for observing the surrounding environment, e.g.,
temperature, illuminance, and noise, in a particular area. A typical sensor network
consists of sensor nodes, sensor gateways, database servers, and access networks.
Each sensor node is used to collect surrounding environmental data and transmit
them to database servers. Sensor gateways are located in the same network as
database servers and aggregate communication between sensor nodes and database
servers.

WSNs are sensor networks that partially or fully use wireless communication
technology. In some WSNs, sensor nodes can relay data transmitted from other
nodes. Wi-Fi, Bluetooth, Bluetooth low energy, and LoRa technologies are often
used in the infrastructures of WSNs. Wi-Fi is standardized as the IEEE 802.11
series [2] and is certified to have interoperability by the Wi-Fi alliance [3]. Most
commoditized wireless access points (APs) use Wi-Fi technology. Bluetooth [4]
is a technology for exchanging data over short distances (less than 10 m) and is
standardized as IEEE 802.15.1 [5]. Bluetooth low energy (Bluetooth LE, BLE)
is a type of Bluetooth technology that has low power consumption, data rate (in
the range of 10 kbps), and latency (ms). LoRa (LoRaWAN) [6] is a wireless
communication technology for an Internet of Things network and is standardized
as IEEE 802.15.4 g. LoRa has a long communication distance (km) and low data
rate (kbps).

A SAN is a combined framework consisting of a sensor network, data analysis
functionalities, and actuators. Data analysis functionalities provide several kinds of
analysis results, e.g., statistical calculation, forecasting, and situation recognition,
on the basis of gathered sensor data. Actuators take appropriate actions with
regard to the surrounding environment, e.g., lighting adjustment and airflow control,
depending on the analysis results. Using machine learning algorithms in a SAN
can provide more appropriate and natural actuation after a specific duration of
continuous operation.
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2.2 Wireless Backhaul Technology

Small cells are the key technology in setting up a wide Wi-Fi coverage area and
achieving a large network capacity. To connect small cells to the core network (e.g.,
Internet), backhaul is essential. However, wired backhaul method is uneconomical
and convenient, because all APs are wired to the core network. And achieving wide
Wi-Fi coverage areas requires installing huge numbers of cables.

Wireless backhaul is a wireless multi-hop network in which APs are linked
wirelessly with the capability of relaying packets. In a wireless backhaul network,
a few APs (we refer to them as core nodes) are wired to the core network and serve
as gateways connecting the wireless multi-hop network to the Internet. Therefore,
wireless backhaul is advantageous in achieving a wide Wi-Fi coverage area, because
this technology can reduce wiring cost significantly. For example, as in Fig. 1, the
Wi-Fi coverage area can be set up by placing wireless APs with only one AP wired
to the core network. However, mobile devices in this area can access the Internet,
regardless of the AP with which a device is associated.

2.3 PCWL-0200

PCWL-0200 [7] is a wireless local area network (LAN) AP developed in our
laboratory that uses wireless backhaul technology. This AP can set up a Wi-Fi
coverage area without manually configuring frame relay routes among APs; the
route is determined autonomously on the basis of the radio wave propagation
environment, e.g., the received signal strength indications observed between each
two APs. PCWL-0200 has been commercialized, and a significant number of Wi-Fi

Fig. 1 Introduction of
wireless backhaul network.
This technology enables
extending a large Wi-Fi
coverage area without laying
huge numbers of access
cables; only one AP is
required to be wired to the
core network
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Fig. 2 Actual Wi-Fi access area set up using our Wi-Fi APs PCWL-0200; the length of the area is
approximately 600 m, with only four APs wired to the core network

access areas set up using the APs are in practical use. Figure 2 shows an example of
an approximately 600 m-long Wi-Fi access area using our Wi-Fi AP [8]. This Wi-Fi
area is capable of accepting 4000 distinct users in a day, even though only four APs
are wired to the core network.

Another feature of PCWL-0200 is that this AP can configure frame relay routes
among the APs dynamically. By periodically reconfiguring a relay route, these
APs can maintain a relay route with a specific level of communication quality and
performance. This feature is suitable for mobile APs, e.g., APs located on moving
vehicles, for comprising a wireless network, because this AP can reconfigure relay
routes according to the locational changes of an AP.

3 Wireless Backhaul Network and WSNs

Our wireless AP PCWL-0200 can set up wide Wi-Fi access areas installing only
a few access cables. This AP is also capable of connecting with a wired LAN
device and serving as a gateway connecting the device to a wireless backhaul
network. Owing to this feature, sensor gateways equipped with LAN connectors can
transfer data to networked servers through a wireless backhaul network by wiring
sensor gateways to slave APs simply. Note that connections between sensor nodes
and gateways can be established using any optional technology. Data from sensor
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nodes are transmitted to a networked server via a wireless backhaul network; the
AP referred to as the core serves as a gateway to connect this wireless network
to the core network. Introducing wireless backhaul technology into WSNs leaves
communications among sensor gateways unwired; this can reduce installation and
maintenance costs of WSNs.

Figure 3 shows the components of an example WSN that uses wireless backhaul
technology. PCWL-0200s are used to set up a wireless access infrastructure. Each
sensor gateway is connected to the nearest adjacent slave AP and transmits data
from sensor nodes to the networked server via the wireless backhaul network.
Data communications among slave APs and between slave APs and the core AP
are performed wirelessly; each slave AP is wired only to a sensor gateway with
considerably fewer cables than in ordinary WSNs. In this framework, the core AP
is wired to the core network, and sensor data are stored in the networked server. In
the event that a WSN uses a local server, the core AP is wired only to the server.

The functionality of this WSN can be enhanced by connecting several types of
servers to the database. For example, sensing results can be displayed visually using
a web browser by connecting a web server to the database. To set up a SAN on this
framework, a data analysis server and a control server for operating several types of
actuators, e.g., cylinders and motors, are combined with this WSN. In the event that
the system handles huge amounts of analysis data, high-performance servers and
large-capacity databases for data analysis can be used in this sensing framework.

Fig. 3 Example WSN with wireless backhaul technology. Each sensor gateway is wired to the AP
and relays sensing data gathered from surrounding sensor nodes to a server connected to the AP
via a wireless backhaul network
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3.1 Sensor Data Visualization Framework

We developed a sensor data visualization framework in this WSN framework.
Figure 4 shows an example of the visualized temperature data in a laboratory room.
In this figure, the respective circles indicate the locations of sensor nodes, and each
square indicates the location of a sensor gateway. The sensing area is divided into a
0.2 m × 0.2 m grid, each unit of which is colored according to a sensor measurement
as indicated in the legend shown at the bottom; higher values are indicated by red,
and lower values are indicated by blue. This visualization framework uses a simple
interpolation technique to estimate the environment of a particular sensing area from
spatially sparse data. The environment of a particular sensing area can be recognized
visually.

Our visualization framework can also show the time-series trend of each sensor
node measurement. Figure 5 shows an example of a time-series plot. The horizontal
axis corresponds to measuring times, and the vertical axis corresponds to measured
values. Each dot is colored in the same manner as in the case of the room
environment visualization.

Fig. 4 Example of sensor data visualization. This figure shows the temperature environment of a
particular room. Each circle indicates the location of a sensor node, and each square indicates the
location of a sensor gateway
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Fig. 5 Example of a time–series plot. Each dot is colored according to its measurement value

4 Applications of Wireless Backhaul Sensor Networks

This section introduces four applications using wireless backhaul sensor networks, a
ubiquitous camera network, a Wi-Fi tag tracking system, a criminal fishing system,
and a networked vehicle.

4.1 Ubiquitous Camera Network

A wireless camera network can be set up by connecting network cameras to slave
APs. We refer to this framework as a ubiquitous camera network. Figure 6 shows
the components of such a network. Each single-board computer with a universal
serial bus (USB) camera is wired to a slave AP. Several types of information can
be obtained by analyzing the camera images shot in the vicinity of the cameras and
stored in the database.

However, transmission of many high-resolution images consumes sufficient
wireless network bandwidth to degrade communication quality, e.g., to increase
packet loss and network delay. To alleviate this problem, we considered analyzing
camera images using single-board computers and transmitting only the analysis
results. TensorFlow [9] is used in the ubiquitous camera network to analyze camera
images. Inception-v3 [10], an image recognition model that works on TensorFlow,
can recognize what is photographed in a particular picture and enumerate it
as textual information. Recognition results (we refer to them as spatial textual
information) are shown as five candidate synsets registered in WordNet [11] with
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Fig. 6 Example of a ubiquitous camera network. Each single-board computer with a USB camera
is wired to a slave AP. Spatial textual information is transmitted to a server connected to the AP
referred to as the core via wireless backhaul network

Fig. 7 Applications of spatial textual information. Left: vacancy of a parking area can be
recognized in an image by printing logos on each parking space. Right: vehicle congestion can
be recognized by printing logos on vehicle floors

a confidential score on each synset. In the ubiquitous camera network, each single-
board computer executes TensorFlow and transmits spatial textual information to the
database server. Generally, the data size of a still image is measured in megabytes,
and spatial textual information measures less than 1 KB.

Through the use of spatial textual information, occupancy and vacancy of a
particular region can be recognized by observing the region visually. For example,
in Fig. 7, the vacancy of a parking area can be recognized by printing logos, i.e.,



Wireless Backhaul Technology in Wireless Sensor Networks: Basic Framework. . . 113

pictures easy to distinguish from each other, on each parking spot and monitoring
the area. When the logo can be recognized, the parking spot is vacant. In the same
manner, congestion on each train vehicle can be observed by printing logos on the
floor and observing the floor through captured images; when many logos can be
recognized, the vehicle is less crowded.

4.2 Wi-Fi Tag Tracking System

Demand for care services, especially for children and the elderly, has been
increasing. Several Global Positioning System (GPS)-based pedestrian tracking
systems are being investigated and developed [12, 13], but GPS cannot provide
accurate position estimates in high-rise areas and indoor environments. To alleviate
this issue, we propose a pedestrian tracking system that uses Wi-Fi beacons held
by target persons and Wi-Fi APs placed widely and densely in a specified area.
The proposed tag tracking system uses probe request signals broadcast by mobile
devices to estimate their positions. Our pedestrian tracking system uses Wi-Fi
APs to set up a positioning area and Wi-Fi beacons that broadcast probe request
signals periodically. Each beacon’s position, i.e., target user’s position, in this area
is estimated using a networked server, on the basis of the probe request signals
broadcast by the beacons and captured by the APs. The position estimates are stored
in a networked database. The trajectories of each beacon are estimated on the basis
of the position estimates, taking the floor plan of the area into account.

The system components are shown in Fig. 8. Each target user holds a Wi-Fi
beacon. PCWL-0200s are used to set up a Wi-Fi coverage area, i.e., a positioning
area, and capture the probe request signals broadcast by surrounding beacons. These
APs transmit these signals to a positioning server implemented in Python via the
wireless backhaul network at the request of the server. A single probe request
signal can be captured on multiple APs. Each beacon’s position is estimated on the
positioning server through analysis of these signals. Position estimates are stored in
a MongoDB [14] positioning database. The trajectory of each beacon is estimated
from its position estimates and stored on the positioning server. These trajectories
are displayed visually using the D3.js [15] JavaScript library. The web server is
implemented using Django [16].

Figure 9 shows a screenshot of the proposed pedestrian tracking system. The
main panel (Panel 1) displays the estimated trajectory of each Wi-Fi beacon.
The filled numbered circles indicate the locations of the respective APs, and the
respective arrows and unfilled circles, colored as shown in the legend, indicate the
estimated trajectories of individual beacons. The arrows indicate the route each
beacon has traveled for a specific duration, and the unfilled circles indicate locations
at which the beacon has remained. In Fig. 9, Beacon 1 (blue) has remained near
AP12, and Beacon 3 (green) has traveled from AP7 to AP5. This panel also has
functionalities to show the floor on which each beacon is located and to change the
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Fig. 8 Components of the tag tracking system. Each beacon’s position is estimated on the
positioning server by analyzing the probe request signals captured by wireless APs. Probe request
signals are gathered to the server via the wireless backhaul network

Fig. 9 Screenshot of the pedestrian tracking system. The arrows and unfilled circles colored as
shown in the legend indicate the estimated positions of respective beacons

floor to display estimated trajectories. The floor on which each device is located
is displayed in the right-hand table of the main panel. This table also indicates the
names of users who hold Wi-Fi beacons.
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4.3 Criminal Fishing System

Criminal activities, such as graffiti, shoplifting, larceny, and kidnapping, occur in
urban areas, causing various types of social damage. We expect that utilizing large
numbers of APs in urban areas as a component of a criminal investigation assistance
system can reduce the frequency of criminal activity and improve public safety. The
proposed “criminal fishing system” uses a large number of wireless LAN APs and
cameras. This system enumerates candidate media access control (MAC) addresses
of a culprit’s mobile device from probe request signals gathered by APs during the
period in which a culprit remains near the incident scene.

Figure 10 illustrates the components of the system. The principal components
are an administrative server, PCWL-0200s (Wi-Fi APs), and USB cameras. Each
AP gathers probe request signals and periodically transmits radio wave fingerprints
to the administrative server. In this system, we refer to a probe request signal as
a radio wave fingerprint, because it contains a MAC address basically unique to a
particular network interface. Each AP executes motion, an image-capturing program
that captures images when the program recognizes moving objects. These images
are transmitted to the administrative server via a wireless backhaul network. The
transmitted radio wave fingerprints and images are stored in the database on the
server. The administrative server is equipped with a web application for enumerating
the candidate MAC addresses of a culprit’s device from a huge amount of stored

Fig. 10 Criminal fishing system. Each access point gathers probe request signals broadcast by
surrounding devices. These signals and photos near each AP are transmitted to the administrative
server via a wireless backhaul network
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Fig. 11 Example of
surveillance assistance using
candidate MAC addresses.
After candidate MAC
addresses are enumerated, the
system monitors the
appearance of the MAC
address. When the culprit’s
MAC address is observed in
one of the investigation areas,
the system issues an alert and
captures photos around the
area

data. A facility administrator uses the web application to determine the duration
that the culprit remains near the scene of the incident while checking the stored
images. The administrative server enumerates candidate MAC addresses during this
time.

Even if the detailed appearance of the culprit cannot be obtained near the scene
of the incident, it can be obtained later at another location by surveilling the
enumerated MAC addresses, as shown in Fig. 11. When a MAC address is captured
in a particular area, the appearance of the device owner can be obtained from the
camera image shot near there. The probability of identifying the culprit can be
improved by locating APs over wide areas, with high density.

We must consider how our criminal fishing system works if the culprit has
a mobile device with a spoofed or randomized MAC address. In short, MAC
spoofing and randomization themselves have no critical effect on this system.
These technologies sometimes trigger frequent changes of MAC address, which
undeniably affect the criminal fishing system. In the case in which a MAC address is
changed very frequently, e.g., every few minutes, the address cannot be enumerated
as one of the candidate MAC addresses. Depending on the frequency of MAC
address changes, the criminal fishing system can assist criminal investigation as
follows. If the MAC address is not changed for several days (perhaps even several
hours), the usual appearance of the owner of the device, i.e., the candidate culprit,
can be obtained by monitoring the MAC address. In this manner, the system can
assist crime investigations, even if the MAC address has been changed before the
candidate culprit is actually questioned regarding the incident. In a case in which
the MAC address is rarely changed regardless of whether the address is factory-
assigned or spoofed, this MAC address itself can be considered as evidence that the
person is a culprit in the incident.
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4.4 Networked Vehicle and WSN

As mentioned in Sect. 2.3, a PCWL-0200 AP is capable of configuring frame
relay routes among the APs comprising a wireless network autonomously and
dynamically. This feature enables a WSN to use networked vehicles equipped with
AP functionality and several types of sensors and actuators.

A prototype of the networked vehicle, PicoRover, has been developed based on
this concept. The vehicle is shown in Fig. 12. Its principle components are a PCWL-
0200 Wi-Fi AP, a Raspberry Pi, a USB camera, and a motor driver integrated circuit.
To operate PicoRover, a remote computer sends control commands to the vehicle via
a wireless backhaul network. The Raspberry Pi decodes the commands and operates
the vehicle using a motor driver, sending camera images to a remote computer via
the wireless backhaul network at the user’s request.

PicoRover can be enhanced to a networked sensing vehicle by attaching several
types of sensors to a Raspberry Pi on the vehicle. Sensing data can be transmitted
to a networked server via a wireless backhaul network in the same manner as
camera images. Using networked sensing vehicles in a WSN can reduce the number
of sensor nodes significantly. The total installation cost of sensor nodes can be
reduced, even though the installation cost of a network sensing vehicle is estimated
to be higher than that of ordinary sensor nodes. Maintenance costs of sensor nodes
can also be reduced by introducing networked sensing vehicles, since the total
number of sensor nodes is reduced. Another feature of such a vehicle is that the
sensing area of a WSN can be formed dynamically and flexibly using these vehicles,
since the vehicles are capable of configuring frame relay routes among themselves
autonomously and dynamically. For example, in Fig. 13, the sensing area is formed
by driving each sensing vehicle remotely, owing to the functionality of the PCWL-

Fig. 12 PicoRover. This
vehicle is equipped with a
PCWL-0200 and works as a
moving AP. Control
commands are sent to the
vehicle via a wireless
backhaul network. A
Raspberry Pi decodes the
commands and operates the
vehicle, which is equipped
with a USB camera whose
images are transmitted to a
remote computer
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Fig. 13 Extension of sensing area using networked sensing vehicles. The sensing area can be
extended and adjusted by driving these vehicles. Frame relay routes among sensing vehicles are
configured autonomously and dynamically, and control commands and sensing data are exchanged
using a wireless backhaul network

0200 AP. In this manner, the sensing area can be extended to locations that ordinary
WSNs find difficult to cover, e.g., where access cables are difficult to lay, where
sensor gateways and nodes cannot be placed permanently, or where persons have
difficulty entering the region.

To measure the environment of a particular area continuously and autonomously,
a sensing vehicle must be equipped with the functionality of inspecting the area and
measuring the surrounding environment autonomously. The measurement frequency
at a location, i.e., the frequency of passing vehicles, can be adjusted by changing the
number of sensing vehicles and their inspection routes.

Introducing networked sensing vehicles in a WSN also enables on-demand
sensing. Users of this sensing framework can obtain environmental information
anytime and anywhere at the request of the user. In an ordinary WSN, it is difficult
to satisfy this kind of demand; measuring the environment of a specific location
requires that a person go there and place sensors in advance. Using networked
sensing vehicles in WSNs can eliminate this preparation. Switching between
autonomous and on-demand sensing can be expected to increase the usability of
the vehicle. Coexistence of multiple sensing methods will be a unique characteristic
of a WSN with networked sensing vehicles.

5 Conclusion

This paper described the introduction of wireless backhaul technology into WSNs.
Doing this unwires communication among sensor gateways. Because communi-
cation between sensor nodes and gateways can be established with any optional
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technology, it is easy to replace the network infrastructure of existing WSNs. Instal-
lation and maintenance costs of WSNs can be reduced by using this technology,
since the number of access cables is reduced significantly.

Four application systems based on this sensing framework were described, a
ubiquitous camera network, a Wi-Fi tag tracking system, a criminal fishing system,
and a networked vehicle. Using networked vehicles in a sensor network can reduce
the number of sensor nodes significantly. The total installation and maintenance cost
of sensor nodes can be reduced, even though the installation cost of a networked
sensing vehicle is estimated to be much higher than that of an ordinary sensor node.
Moreover, using a networked sensing vehicle is also beneficial because a user of this
sensing framework can measure environmental information anytime and anywhere
at the request of the user.

This sensing framework has the potential to be used with many types of sensing
systems, because any kind of sensing equipment can be used with it. We would
like to conduct further investigations aiming at the discovery of further application
scenarios, and we expect to report novel sensing applications on other occasions.
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Basics and Challenges in Acoustic Vehicle
Sensing Using Sidewalk Microphones

Shigemi Ishida, Shigeaki Tagashira, and Akira Fukuda

1 Introduction

The past decade has seen the rapid development of ITS (intelligent transporta-
tion system). The main purpose of the ITS is to improve the safety, efficiency,
dependability, and cost effectiveness of transportation systems. Products such as
car navigators make the ITS more prevalent nowadays.

In the ITS, vehicle detection is one of the fundamental tasks. Automatic vehicle
sensing systems have been widely deployed to detect vehicles. The deployment of
the vehicle sensing system is, however, limited to high traffic roads because of high
deployment and maintenance costs of the system in terms of roadwork closing a
target road section. Current automatic vehicle sensing systems also suffer from a
motorbike detection problem because of small coverage of vehicle sensors.

We therefore developed a simple vehicle sensing system using acoustic sensors,
namely, microphones. Stereo microphones are installed at a roadside and capture
acoustic signals generated from vehicle tires to detect passing vehicles. We can
detect vehicles on multiple lanes from one side of a road because sound signals are
diffracted over obstacles, which drastically reduces roadwork costs for deployment
and maintenance.

Some literature studies on a vehicle sensing system using acoustic sensors [1, 3–
5]. Vehicle sensing systems presented in these studies rely on a microphone array
to draw a sound map, i.e., a map of time difference of vehicle sound on different
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microphones. The studies manually analyzed the sound map and demonstrated the
feasibility of vehicle sensing using the sound map.

We extended these sound map studies and developed an automatic vehicle
sensing system. We have experimentally demonstrated that our vehicle sensing
system had successfully detected vehicles with an F-measure of 0.92 using a state-
machine based vehicle detection algorithm [7] or template matching [6].

In this paper, we review the basics of our acoustic vehicle sensing system
including a theoretical background of the sound mapping and initial design as well
as implementation of the system. We also present challenges we are working for
accuracy improvement at multi-lane high traffic roads.

The remainder of this paper is organized as follows. Section 2 overviews related
works on vehicle sensing. Section 3 describes our vehicle sensing system including a
theoretical background and extends the system in Sect. 4 to address practical issues.
In Sect. 5, we implement our vehicle sensing system and conduct experiments to
evaluate the detection performance. Section 6 indicates challenges we are facing,
implying future research directions. Finally, Sect. 7 summarizes the paper.

2 Related Works

Vehicle sensors are divided into two types: intrusive and non-intrusive.
Loop coils and photoelectric tubes are categorized into the intrusive vehicle

sensors. These vehicle sensors need to be installed under the road surface, which
results in high costs due to roadwork closing a target road section. Loop coils and
photoelectric tubes also suffer from a motorbike detection problem; motorbikes are
highly missed because of small sensor coverage.

The non-intrusive sensors are based on laser, infrared, ultrasound, radar, or
camera. The non-intrusive vehicle sensors are installed above or by a road for better
performance. Deployment above a road requires high installation and maintenance
costs in terms of roadwork. Although installation of roadside non-intrusive vehicle
sensors requires no roadwork, the roadside sensors can be applied to single lane
roads. Most of non-intrusive sensors are based on laser, infrared, or ultrasound,
which have small coverage suffering from the motorbike detection problem.

To reduce installation and maintenance costs, camera-based vehicle sensors using
CCTVs installed in the environment have been proposed [2, 9]. CCTVs, however,
are available in limited areas, especially in city areas. Camera location and angle are
designed for security surveillance not for vehicle sensing, resulting in low detection
accuracy in bad weather conditions.

On the contrary, acoustic approach is a promising candidate for vehicle sensing
at a low installation and maintenance costs. Using stereo microphones at a sidewalk,
we can locate a sound source, i.e., a vehicle on a road. Vehicles on multiple lanes
are detected from one side of a road because vehicle sounds are diffracted over other
vehicles.
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Several studies have reported on a vehicle monitoring system using acoustic
sensors. Forren et al. and Chen et al. proposed traffic monitoring schemes using
a microphone array [3–5]. The monitoring schemes draw a sound map, i.e., a
map of time difference of vehicle sound on different microphones and analyze the
sound map to monitor traffic. The monitoring schemes are missing design details
of vehicle detection from the sound map. Microphone array is installed in a high
height configuration at a roadside to monitor vehicles on multiple lanes. The high
height configuration results in high installation and maintenance costs in terms of
safety installation and maintenance.

Barbagli et al. reported an acoustic sensor network for traffic monitoring [1]. The
acoustic sensor network installs sensor nodes at roadsides. Each sensor node draws a
sound map and combines the sound map with an energy detection result to monitor
traffic flow distribution. The sensor network requires many sensor nodes at both
sides of the road to monitor real-time traffic flow, resulting in high deployment and
maintenance costs. The paper also lacks an evaluation of vehicle detection accuracy
because main focus of the paper is on traffic flow monitoring with small energy
consumption.

3 Acoustic Vehicle Sensing System

3.1 System Overview

Figure 1 depicts the overview of our acoustic vehicle sensing system. Our vehicle
sensing system consists of three components: a sound retriever, sound mapper,
and vehicle detector. A sound retriever is two microphones followed by LPFs
(low-pass filters) reducing high frequency environmental noise. Stereo microphones
are installed at a sidewalk of a road and capture acoustic signals generated by
vehicle tires. The sound mapper calculates cross-correlation between sounds on the
stereo microphones to estimate TDOA (time difference of arrival) and generate a
sound map. A vehicle detector finally detects vehicles using a state-machine based
algorithm.

Following subsections describe each component.

Fig. 1 Overview of acoustic
vehicle sensing system
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3.2 Sound Retriever

Figure 2 depicts the microphone setup. Two microphones M1 and M2 are installed
parallel to a road at a distance of L. The two microphones are separated by D.
Sound signals generated by vehicle tires travel to the microphones with different
distances d1 and d2, therefore form a time difference between signals on M1 and
M2. Let x be the location of a vehicle. When a vehicle on a road is far from the
microphones, difference |d1 − d2| of sound traveling distance becomes maximum
at |d1 − d2|  D. The maximum time difference Δtmax of sound arrival on the
microphones is therefore calculated as

|Δtmax| = D

c
, (1)

where c is the speed of sound in air. As a vehicle moves from left to right in the
figure, the time difference Δt increases from −Δtmax to Δtmax.

To reduce the influence of environmental noise, we apply a LPF (low-pass filter).
The majority of frequency components of sound signals generated by vehicle tires
is under 2.0 kHz [11]. The cut-off frequency of the LPF is therefore set to 2.5 kHz
including a margin. Because tires generate sound signals for all types of vehicles,
our vehicle sensing system is capable of detection of all types of vehicles.

3.3 Sound Mapper

A sound map is time difference of signals on the two microphones as a function of
time. Sound traveling distances d1 and d2 in Fig. 2 are calculated as

d1 =
√(

x + D

2

)2

+ L2, (2)

d2 =
√(

x − D

2

)2

+ L2. (3)

Sound delay Δt between the two microphones is therefore

Fig. 2 Microphone setup.
Two microphones M1 and M2
are installed at a roadside
parallel to a road at a distance
of L. The microphones are
separated by distance of D
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Δt = d1 − d2

c

= 1

c

⎧⎨
⎩

√(
x + D

2

)2

+ L2 −
√(

x − D

2

)2

+ L2

⎫⎬
⎭ . (4)

Equation (4) indicates that the location of a vehicle can be calculated from sound
delay Δt . The sound delay is estimated using a cross-correlation function defined as

R(t) = s1(t) ∗ s2(t), (5)

where s1(t) and s2(t) are signals received by the two microphones and ∗ denotes the
convolution operation.

The cross-correlation function R(t) becomes maximum at t = Δt when the
microphones receive the same sound signals with time shifted by Δt , i.e., s1(t) =
s2(t + Δt). We can estimate sound delay Δt by finding a peak of R(t).

We use a GCC (generalized cross-correlation) function [8], which is commonly
used in acoustic source localization, instead of a normal cross-correlation function
to increase robustness against environmental noise. The sound mapper divides sound
signals into chunks with a small window and applies the GCC to the each chunk to
estimate a sound delay. Plotting the sound delay as a function of time gives a sound
map.

Figure 3 shows a typical sound map. As a vehicle passes in front of the
microphones, Δt rises up or drops down on the sound map drawing an S-curve;
direction of the S-curve corresponds to the direction of the vehicle.

Fig. 3 Example of sound
map. Vehicle passing is
drawn as an S-curve on sound
map. Direction of the S-curve
depends on the direction of
the vehicle passing

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

30 35 40 45 50

So
un

d 
de

la
y 
Dt

 [
m

s]
 

Time t [s]



126 S. Ishida et al.

3.4 Vehicle Detector

Figure 4 illustrates an S-curve on a sound map when a vehicle passes in front of
microphones from left to right. We can divide an S-curve into three sub-curves as
shown in Fig. 4; sub-curves 1, 2, and 3 are observed when a vehicle coming toward
microphones, passing in front of microphones, and going away from microphones,
respectively. The sub-curves 1 and 3 are close to asymptotes Δt = ±Δtmax given
by Eq. (1).

Order of sub-curves depends on vehicle direction because the direction of an S-
curve depends on vehicle passing direction. We separately apply a vehicle detection
algorithm for each vehicle direction on a sound map. This subsection describes
vehicle detection algorithm using an S-curve of a vehicle passing from left to right,
as an example. The detection algorithm is a state machine that tracks sub-curves on
a sound map.

Figure 5 illustrates a state machine diagram of a vehicle detection process. The
detection process consists of four states. The process starts from a sub-curve 1

Fig. 4 S-curve on sound map indicating vehicle passing. The S-curve consists of three sub-curves

Fig. 5 State machine diagram of vehicle detection process (for vehicles passing from left to right).
State transitions are based on sound delay Δt
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detection state. Sub-curve 1 is close to an asymptote Δt = −Δmax. If the sound
delay Δt stays flat approximately at Δt  −Δtmax for the specific duration, the
detection process switches to a sub-curve 2 detection state.

In the sub-curve 2 detection state, the detection process tracks the sound delay Δt

increasing as time increases. When the sound delay Δt = 0, the detection process
temporarily switches to a passing time recording state to make a tentative record of
vehicle passing time.

When Δt reaches Δtmax, the detection process switches its state to a vehicle
detected state and goes back to the sub-curve 1 detection state to start a next
detection process. In a sub-curve 2 detection state, the detection process returns
to a sub-curve 1 detection state when Δt decreases to restart the detection process.

4 Practical Issue

4.1 Big Vehicle Detection Problem

Sound delay draws an S-curve for a vehicle, as shown in Fig. 3. For big vehicles such
as buses, trucks, sound delay partially splits into two curves, resulting in failure of
vehicle detection.

Figure 6 shows an example of sound map when a bus is passing in front of
microphones. An S-curve partially splits into two curves around Δt = 6 s. The
maximum separation between the two curves is approximately 1 ms. A curve on
a sound map indicates a vehicle; two curves mistakenly indicate two vehicles and
result in a false positive detection.

The two curves on a sound map are generated by front and rear tires. Consider
the case of a bus passing right in front of microphones as shown in Fig. 7. Let l

be a wheelbase of the bus. Sound delays ΔtF and ΔtR of front and rear tires are

Fig. 6 Example of sound
map when bus is passing
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Fig. 7 Bus passing right in
front of microphones. Delays
ΔtF , ΔtR of sound signals
generated from front and rear
tires are significantly different
because of long wheelbase

calculated by Eq. (4). We derive difference δ between the sound delays of front and
rear tires as

δ = ΔtR − ΔtF , (6)

ΔtF = 1

c

⎧⎨
⎩

√(−l + D

2

)2

+ L2 −
√(−l − D

2

)2

+ L2

⎫⎬
⎭ , (7)

ΔtR = 1

c

⎧⎨
⎩

√(
l + D

2

)2

+ L2 −
√(

l − D

2

)2

+ L2

⎫⎬
⎭ . (8)

When l = 4.5 m, D = 0.5 m, and L = 4 m, the sound-delay difference δ is
calculated to be 1.4 ms. The sound-delay difference is considerable compared to the
maximum sound delay Δtmax ≈ 1.5 ms in Fig. 3.

4.2 Image Processing for Sound Map

To address the big vehicle detection problem, we apply a simple image processing
technique to a sound map. The image processing combines separated two curves
to generate a single bold curve. No modification on the vehicle detection algorithm
presented in Sect. 3.4 is required. The image processing also reduces the influence
of environmental noise and improves detection performance.

Figure 8 illustrates an overview of image processing. We replace each point on
a sound map with a translucent rectangle. The rectangles overlap each other and
reproduce a bold curve with a vague outline.

The height and width of the rectangles are determined from the maximum length
of vehicles and a road speed limit, respectively. The height of the rectangles is
set to the maximum sound-delay separation. Maximum sound-delay separation is
calculated by substituting the maximum length of vehicles for l in Eq. (6). The
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Fig. 8 Overview of image processing. Each point on a sound map replaced with a translucent
rectangle. The rectangles overlap and generate a bold line for S-curves that indicate vehicle passing

Fig. 9 Sound map after
image processing derived
from Fig. 6

width of the rectangles should be set to a time duration such that a vehicle at the
speed limit moves negligible distance compared to the vehicle length.

We apply our image processing technique to a sound map shown in Fig. 6 and
derive Fig. 9. Comparing the figures reveals the effect of the image processing; we
can observe a single bold curve on a sound map for a vehicle.

5 Evaluation

5.1 Experiment Setup

We conducted experiments in our university evaluating the basic performance of our
vehicle sensing system. Figure 10 shows an experiment setup. A target road has two
lanes, one lane for each direction. Two microphones were installed at a sidewalk of
the road. We recorded vehicle sound for approximately 30 min using a Sony PCM-
D100 recorder with OLYMPUS ME30W microphones. The sound was recorded
at a sampling frequency of 48 kHz and word length of 16 bits. We recorded video
monitoring the target road, which was used as ground truth data.

The two microphones were separated by D = 50 cm, which was determined
based on preliminary experiment results. In a preliminary experiment, we changed
microphone separation from 50 to 150 cm and performed vehicle detection for
approximately 20 min to compare vehicle detection performance. The distance L

between road center and microphones was 2 m, which was physically restricted.
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Fig. 10 Experiment setup.
Two microphones were
installed at a roadside parallel
to a two-lane road

Comparing the results derived by our system with the video, we evaluated the
numbers of true positives (TPs), false negatives (FNs), and false positives (FPs), TP,
FN, and FP are defined as the case that a vehicle detected when a vehicle passing,
no vehicle detected when a vehicle passing, and a vehicle detected when no vehicle
passing, respectively. We excluded true negatives (TNs), which is defined as the case
that no vehicle detected when no vehicle passing, because TNs were not countable
in our experiments. Using the numbers of TPs, FNs, and FPs, we also evaluated a
precision, recall, and F-measure defined as follows:

Precision = TP

TP + FP
(9)

Recall = TP

TP + FN
(10)

Fmeasure = 2 · Precision · Recall

Precision + Recall
. (11)

5.2 Experiment Results

Table 1 summarizes the numbers of TPs, FNs, and FPs. As described in Sect. 3.4,
our vehicle sensing system separately detects vehicles for each vehicle direction.
We therefore derived the numbers of TPs, FNs, and FPs for each vehicle direction
and summed the results to retrieve a total result. A precision, recall, F-measure are
calculated from the numbers of TPs, FNs, and FPs.

From Table 1, we can confirm that our vehicle sensing system successfully
detected vehicles with an F-measure of 0.92. Our vehicle sensing system achieved
the performance at the same level as existing sensors; the accuracy of a vehicle
sensing system using a magnetic sensor was 95 % as reported in [10].
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Table 1 Experiment results Left to right Right to left Total

TP 63 87 150

FN 11 15 26

FP 0 0 0

Precision 1.00 1.00 1.00

Recall 0.85 0.85 0.85

F-measure 0.92 0.92 0.92

Table 2 Experiment results vs. vehicle types

Normal cars Buses, trucks Small cars Motorbikes All

TP 62 42 29 17 150

FN 17 4 1 4 26

FP 0 0 0 0 0

Precision 1.00 1.00 1.00 1.00 1.00

Recall 0.78 0.91 0.97 0.81 0.85

F-measure 0.88 0.95 0.98 0.89 0.92

The number of FPs was zero. Our vehicle sensing system exhibited high
tolerance to environmental noise such as wind and people chattering. There was
no mistake on detection of vehicle direction. We observed the same performance
for both vehicle directions although left-to-right vehicles passed on the other side of
the road.

Table 2 shows the experiment results for each type of vehicles. We confirmed
that all types of vehicles were successfully detected with a minimum F-measure
of 0.88. Our system exhibited the smallest F-measure for normal cars. This was
mainly caused that there were many normal cars simultaneously passing in front of
microphones. The numbers of simultaneous passing of normal cars, buses/trucks,
small cars, and motorbikes were 27, 9, 8, and 6, respectively.

6 Challenges

To accurately detect vehicles at multi-lane high traffic roads, our vehicle sensing
system faces three big challenges.

6.1 Sparse Sound Map

In our vehicle sensing system, we fully rely on a sound map to detect vehicles.
When a sound map is sparse and indistinct, our vehicle detection algorithm fails to
detect vehicles. A sound map tends to be sparse when multiple vehicles are in front
of microphones.
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Figure 11 shows an example of sparse sound map. When two vehicles are
simultaneously passing in front of microphones in opposite directions, a sound
mapper highly fails to estimate sound delay of the vehicle sound. A cross-correlation
function of mixed sounds from two vehicles gives two peaks corresponding to the
two vehicles. The peaks, however, exhibit lower value compared to a peak derived
when one vehicle is passing because sound of one vehicle works as a noise to the
other vehicle sound. The weakened sound signals have higher chance to be affected
by environmental noise, resulting in a sparse sound map. Sparse sound map is more
problematic at multi-lane high traffic roads because simultaneous passing occurs at
a higher probability.

Figure 12 shows a GCC result when two vehicles are simultaneously passing in
front of microphones. The GCC gives six peaks, the two of them at sound delay of
−1.4 and 1.4 ms correspond to the two vehicles. The peak at −0.75 ms is caused by
an environmental noise, which is greater than the peaks by the vehicles.

Fig. 11 Sparse sound map
derived when two vehicles
simultaneously passing in
opposite directions. Sound
map becomes sparse when
two vehicles are
simultaneously passing
because a single value of
sound delay is calculated at
each time point
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Fig. 12 GCC results when
two vehicles are
simultaneously passing in
front of microphones. Peaks
at around −1.4 and 1.4 ms
correspond to two vehicles.
The peak at −0.75 ms is
caused by an environmental
noise, which is the biggest
peak in this GCC result
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6.2 High Power Consumption

As described in Sect. 3.3, our vehicle sensing system relies on GCC (generalized
cross-correlation) in a sound mapper. The GCC computation requires convolution
computations for many times. Real-time computation of GCC therefore requires a
computer with significant resources, resulting in high power consumption.

High power computers prevent large deployment because of restrictions on a
power line. Although detected sensor data can be sent via wireless links, we still
need a power cable. Energy saving is therefore an important aspect for battery
operation.

As a suggestion, a two-step wake-up scheme might be employed in our vehicle
sensing system. Ultra low-power vehicle detector using a non-accurate sensor
roughly detects vehicles to wake the vehicle sensing system presented in this paper
to accurately detect vehicles. Toward this goal, we need ultra low-power vehicle
detectors.

6.3 Multiple Vehicle Detection Algorithm

The vehicle detection algorithm described in Sect. 3.4 is a simple but effective state
machine that keeps track of S-curves on a sound map. The algorithm is, however,
too simple to detect multiple vehicles at a time. The presented algorithm follows
the increase or decrease of S-curves; S-curves lose their S-shape when S-curves are
overlapping each other, resulting in detection failures even if we use a clear sound
map.

Acoustic vehicle sensing system is capable of vehicle detections on multi-lane
roads from one side of a road because sound signals are diffracted over obstacles.
Toward robust vehicle detection at multi-lane high traffic roads, we need a new
approach of sound map analysis. There are many works on pattern recognition
algorithms. We believe that some of them can be useful in our vehicle sensing
system.

7 Summary

In this paper, we presented an acoustic vehicle sensing system that comes with a
low deployment cost. Our vehicle sensing system only relies on stereo microphones
installed at a sidewalk of a road. We draw and analyze a sound map, i.e., a
time-difference map of vehicle sound on the two microphones, to find S-curves
that indicate vehicles. To reduce the false detections caused by big vehicles, we
apply a simple image processing to a sound map generating bold S-curves. We
conducted experimental evaluations and demonstrated that our vehicle sensing
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system accurately detected vehicles with an F-measure of 0.92. We also presented
challenges at multi-lane high traffic roads, implying the future research directions.

Acknowledgements This work was supported in part by JSPS KAKENHI Grant Numbers
JP15H05708, JP16K16048, JP17H01741 and the Cooperative Research Project of the Research
Institute of Electrical Communication, Tohoku University.

References

1. Barbagli B, Manes G, Facchini R, Manes A (2012) Acoustic sensor network for vehicle traffic
monitoring. In: Proc. IEEE int. conf. on advances in vehicular systems (VEHICULAR), pp 1–6

2. Buch N, Cracknell M, Orwell J, Velastin SA (2009) Vehicle localisation and classification in
urban CCTV streams. In: Proc. ITS World congress, pp 1–8

3. Chen S, Sun ZP, Bridge B (1997) Automatic traffic monitoring by intelligent sound detection.
In: Proc. IEEE conf. intelligent transportation systems (ITSC), pp 171–176

4. Chen S, Sun Z, Bridge B (2001) Traffic monitoring using digital sound field mapping. IEEE
Trans Veh Technol 50(6):1582–1589

5. Forren JF, Jaarsma D (1997) Traffic monitoring by tire noise. In: Proc. IEEE conf. intelligent
transportation systems (ITSC), pp 177–182

6. Ishida S, Liu S, Mimura K, Tagashira S, Fukuda A (2016) Design of acoustic vehicle count
system using DTW. In: Proc. ITS World congress, pp 1–10. AP-TP0678

7. Ishida S, Mimura K, Liu S, Tagashira S, Fukuda A (2016) Design of simple vehicle counter
using sidewalk microphones. In: Proc. ITS EU congress, pp 1–10. EU-TP0042

8. Knapp CH, Carter GC (1976) The generalized correlation method for estimation of time delay.
IEEE Trans Acoust Speech Signal Process 24(4):320–327

9. Nurhadiyatna A, Hardjono B, Wibisono A, Jatmiko W, Mursanto P (2012) ITS information
source: vehicle speed measurement using camera as sensor. In: Proc. int. conf. on advanced
computer science and information systems (ICACSIS), pp 179–184

10. Taghvaeeyan S, Rajamani R (2014) Portable roadside sensors for vehicle counting, classifica-
tion, and speed measurement. IEEE Trans Intell Transp Syst 15(1):73–83

11. Wu H, Siegel M, Khosla P (1998) Vehicle sound signature recognition by frequency vector
principal component analysis. In: Proc. IEEE instrumentation and measurement technology
conf. (IMTC), vol 1, pp 429–434



Algorithm/Architecture Codesign: From
System on Chip to Internet of Things
and Cloud

Gwo Giun (Chris) Lee, Chun-Fu Chen, and Tai-Ping Wang

1 Introduction

In the 1960s, Marshall McLuhan published the book entitled, “The Extensions of
Man,” focusing primarily on television, an electronic media as being the outward
extension of human nervous system, which from contemporary interpretation marks
the previous stage of big data.

In concurrent Industry 4.0 ecosystem, Internet of Things (IoT) facilitates
extrasensory perception in reaching out even farther via sensors interconnected
through signals with information exchange. Innovations in intelligent surveillance
and monitoring technologies have not only made possible advancements toward
smart cities, intelligent transportation systems (ITS) including autonomous cars,
intelligent home (iHome), and intelligent biomedical and healthcare systems
but also lead to the generation of even bigger data which will inevitably be
witnessed. Further inward extension of human information perception could also
be experienced when observing genomic, neurological, and other physiological
phenomena when going deeper inward into the human body, again with
tremendously big data such as from the human brain and especially the human
genome.

Ubiquitous artificial intelligence (AI), brought forth by wearable, mobile, and
other IoT devices, requires not only more complex algorithms but also automated
analytics algorithm for versatile applications which start from science and engi-
neering such as multimedia, communication, and biotechnology and will diversify
toward other cross-disciplinary domains. Machine learning algorithms such as
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deep learning which have self-learning capabilities also demand excessively high
complexity in processing these big heterogeneous data.

With mathematical fundamentals as foundations for the analysis of correspond-
ing dataflow models from algorithms; intelligent, flexible, and efficient analytics
architectures including both software and hardware for VLSI, GPU, multicore, high-
performance computing, and reconfigurable computing systems; etc., this chapter
innovates discussions on Smart system on chip design, in expediting the field of
signal and information processing systems into futuristic new era of the Internet of
Things and high-performance computing based on algorithm/architecture codesign.

2 Algorithm/Architecture Codesign: Analytic Architecture
for Smart SoC

Niklaus Emil Wirth introduced the innovative idea that programming = algo-
rithm + data structure. Inspired by this, we advance the concept to the next level
by stating that design = algorithm + architecture. With concurrent exploration
of algorithm and architecture entitled algorithm/architecture codesign (AAC), this
methodology innovates a leading paradigm shift in advanced system design from
system on a Chip to IoT and heterogeneous systems.

As high-performance computing becomes exceedingly demanding and IoT-
generated data becomes increasingly bigger, flexible parallel/reconfigurable pro-
cessing is crucial in the design of efficient and flexible signal processing systems
with low power consumption. Hence the analysis of algorithms for potential
computing in parallel, efficient data storage and data transfer is crucial. In anal-
ogous to the analysis of speech and image data in machine learning, this section
characterizes the analysis of dataflow models representing algorithms, for analytics
architecture, a cross-level-of-abstraction system design methodology for SoC on
versatile platforms [1].

2.1 Architectural Platform

Current intelligent algorithms such as those for big data analytics and machine learn-
ing are becoming ever more complex. Rapid and continuous enhancements in semi-
conductor and information communication technologies (ICT) with innovations in
especially advanced systems and architectural platforms capable of accommodating
these intelligent algorithms targeting versatile applications including ubiquitous AI
are therefore in high demand. These broad application-specific requirements such
as for Smart SoC platforms necessitate trade-off among efficiency represented by
performance per unit of silicon area (performance/silicon area), flexibility of usage
due to changes or updates in algorithms, and low power consumption.



Algorithm/Architecture Codesign: From System on Chip to Internet of Things. . . 137

Fig. 1 Architectural platforms trading off performance/area, flexibility, and power

Conventional implementations of algorithms were usually placed at two archi-
tectural extremes of either pure hardware or pure software. Although application-
specific integrated circuit (ASIC) implementation of algorithms provides the highest
speed or best performance, this is however achieved via trade-off of platform
flexibility. Pure software implementations on single-chip processors or CPUs are
the most flexible, but require high power overhead and result in slower processing
speed. Hence, several other classes of architectural platforms, such as instruction set
digital signal processors (DSP) and application-specific instruction set processors
(ASIP), have also been used as shown in Fig. 1.

It is thus crucial that system design methodologies, such as Smart SoC systems,
emphasize optimal trade-off among efficiency, flexibility, and low power consump-
tion. Consequently, embedded multicore processors or SoCs and reconfigurable
architectures may frequently be favored. Furthermore, heterogeneous data generated
from versatile IoT devices have further escalated system design toward cloud and
heterogeneous systems in the post-Moore’s law era.

2.2 Algorithm/Architecture Codesign: Abstraction
at the System Level

As signal and information processing applications such as visual computing and
communication become increasingly more complicated, the corresponding increase
in hardware complexity in SoC design has also required reciprocity in software
design especially for embedded multicore processors and reconfigurable platforms.
In coping with large systems, design details for specific applications are abstracted
into several levels of abstraction.
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In traditional ASIC design flow, physical characteristics are typically abstracted
as timing delay at the RTL level. For Smart SoC with yet even higher complexity,
abstraction has been elevated further to system level with algorithmic intrinsic
complexity metrics intelligently extracted from dataflow models, featuring both
hardware and software characteristics for subsequent cross-level abstraction design.

2.2.1 Levels of Abstraction

The design space for a specific application is composed of all the feasible software
and hardware implementation solutions or instances and is therefore spanned by
corresponding design attributes characterizing all abstraction levels [2].

In a top–down manner, the design process in this method proceeds from
algorithm development to software and/or hardware implementation. Abstracting
unnecessary design details and separating the design flow into several hierarchies of
abstraction levels as shown in Fig. 2 could efficiently enhance the design capability.
For a specific application, the levels of abstraction include the algorithmic, archi-
tectural, register transfer, gate, and physical design levels. As shown in Fig. 2, more
details are added as the design progresses to lower abstraction levels and hence with
larger design space.

Figure 3 illustrates design details at every abstraction level of the design space.
At the algorithmic level, functionalities are explored, and the characterizing time

Fig. 2 Levels of abstraction
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Fig. 3 Features at various levels of abstraction

unit used is in order of seconds. Real-time processing, for example, is a common
constraint for visual applications, and the temporal domain precision is measured in
terms of frames per second (FPS).

At the architectural level, exploration focuses on data transaction features
including data transfer, storage, and computation. This information subsequently
facilitates design for hardware/software partition, memory configuration, bus proto-
col, and modules comprising the system. The time unit is in the number of cycles.

At the silicon intellectual property (IP) or macro level, micro-architecture
characteristics including the datapath and controller are considered, with the timing
accuracy also counted in cycles. At the module level, features could, for instance,
be various arithmetic units comprising the datapath. The gate level is characterized
by logic operation for digital circuits. At the circuit level, voltage and current are
notable. And finally, electrons are considered at the device level.

The discussions above reveal that higher levels of abstraction are characterized
by coarser timing and physical scales and finer for lower levels. In traditional ASIC
design flow, efforts were focused primarily at the register transfer level (RTL), where
physical circuit behaviors with parasitical capacitance and inductance are abstracted
within timing delay. In the currently proposed AAC design methodology, abstraction
is further elevated to the system level where dataflow or transaction-level modeling
bridges the cross-algorithm and architecture level design space.
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2.2.2 Joint Exploration of Algorithms and Architecture

Traditional design methodologies are usually based on the execution of a series of
sequential stages: the theoretical study of a fully specified algorithm, the mapping
of the algorithm to a selected architecture, the evaluation of the performance,
and the final implementation. However, these sequential design procedures are
no longer adequate to cope with the increasing complexity demands of Smart
SoC design challenges. Conventional sequential design flow yields independent
design and development of the algorithm from the architecture. However, with ever-
increasing complexity of both algorithm and system platforms in each successive
generation, such unidirectional steps in traditional designs will inevitably lead to
the scenario that designers may either develop highly efficient but highly complex
algorithms that cannot be implemented or offer platforms that are impractical for
real-world applications because the processing capabilities cannot be efficiently
exploited by the newly developed algorithms. Hence, a seamless weaving of the
previously autonomous algorithmic development and architecture development will
unavoidably be observed.

As shown in Fig. 4, AAC facilitates the concurrent exploration of algorithm and
architecture optimizations through the extraction of algorithmic intrinsic complexity
measures from dataflow models. Serving as a bridge between algorithms containing
behavioral information and architecture with design or implementation information,
system-level features including the number of operations, degree of parallelism,
data transfer rate, and data storage requirements are extracted as quantitative
complexity measures to provide early understanding and characterization of the
system architecture in cross-level designs.

As depicted in Fig. 2, the cost of design changes is high when designs have
already progressed to the later stages at a lower level of abstraction and frequently
affects the success of the overall project. Hence it is crucial that these algorithmic
intrinsic complexity measures provide an early understanding of the architectural
design and subsequent implementation requirements within the algorithm and
architecture codesign space as shown in Fig. 5. This is in essence a systematic
analytics architecture mechanism for the mapping of algorithms to platforms
with the optimal balancing of efficiency, flexibility, and power consumption via
architectural space exploration before software/hardware partitioning.

Fig. 4 Concept of
algorithm/architecture
co-exploration
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Fig. 5 Advanced visual system design methodology

Situations when the existing architectures or platforms are not able to accom-
modate the complexities that it is necessary to feedback or back-annotate the
complexity information to the algorithmic level for algorithm modification are
depicted in Figs. 4 and 5.

Hence AAC provides a cross-level methodology for smart system design by
which abstraction of architecture features within complexity metrics has been
further escalated to the system level! This is of course the same technique in
traditional ASIC design flow with physical characteristics at physical layers being
abstracted as timing parameters at the microarchitecture or RTL level.

2.3 Algorithmic Intrinsic Complexity Metrics and Assessment

Since algorithm/architecture co-exploration (AAC) is an iteration process of syn-
thesis from algorithm to architecture and reconfiguration from architecture to
algorithm, defining and extracting metrics of algorithms for processing AAC are
crucial. The algorithmic intrinsic complexity metrics should not be biased toward
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software or hardware and should be platform independent so as to reveal the
anticipated architectural features in AAC process. This section introduces four
essential algorithmic intrinsic complexity metrics of Lee et al. [3] for characterizing
the complexity of algorithms that are number of operations, degree of parallelism,
data transfer rate, and data storage requirement.

2.3.1 Number of Operations

In terms of arithmetic and logic operators, evaluating the number of operations could
represent the computational complexity of an algorithm because the number of
operations is one of the most intuitive metrics of algorithms. The estimated number
of operations of the algorithm can give designers an insight into either software
or hardware development in early design stages, and it can effectively facilitate
software/hardware partition and codesign.

To make the metric more accurate, we should consider the types of computational
operations since various operations have different costs in implementation. The
complexity of addition and subtraction is similar and simplest among the four basic
arithmetic operators. Multiplication is more complex and can be performed by a
series of additions and shifts based on Booth’s algorithm [4]. Since division needs
to be executed by shifts, subtractions, and comparisons, it is the most complicated.

Moreover, the precision of operand in terms of bit depth and type of operand
(fixed point or floating point) also significantly influences the implementation cost
and hence needs to be especially specified. In general, the gate count of processing
elements increases as the precision grows higher. Besides, the hardware propagation
delay is affected by the precision as well. If an algorithm is implemented on the
processor-orientated platforms composed of general-purpose processors, single-
instruction multiple-data machines, or application-specific processors, the precision
of operand will directly determine the number of instructions needed to complete an
operation. Consequently, the operand precision is also a very important parameter
for measuring the number of operations.

2.3.2 Degree of Parallelism

The degree of parallelism is another metric characterizing the complexity of
algorithms. Some partial operations within an algorithm are independent. These
independent operations can be executed simultaneously and hence reveal the degree
of parallelism. An algorithm whose degree of parallelism is higher has larger
flexibility and scalability in architecture exploration. On the contrary, greater data
dependence results in less parallelism, thereby giving a more complex algorithm.
The degree of parallelism embedded within algorithms is one of the most essential
complexity metrics capable of conveying architectural information for parallel and
distributed systems at design stages as early as the algorithm development phase.
This complexity metric is again transparent to either software or hardware. If
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an algorithmic function is implemented in hardware, this metric is capable of
exhibiting the upper bound on the number of parallel PEs in the datapath. If the
function is intended in software, the degree of parallelism can provide insight
and hence reveal information pertaining to parallel instruction set architecture in
the processor. Furthermore, it can also facilitate the design and configurations of
multicore platforms.

One of the versatile parallelisms embedded within algorithms can be revealed as
the independent operation sets that are independent of each other and hence can be
executed in parallel without synchronization. However, the independent operation
sets are composed of dependent operations that have to be sequentially performed.
Hence, in a strict manner, the degree of parallelism embedded in an algorithm is
equal to the number of fully independent operation sets. To efficiently explore and
quantify such parallelism, Lee et al. [5] proposed to represent the algorithm by a
high-level dataflow model and analyze the corresponding dataflow graph (DFG).
The high-level dataflow model is capable of well depicting the interrelationships
between computations and communications. The generated DFG can clearly reveal
the data dependencies between the operations by vertexes and directed edges, where
the vertexes denote the operations and the directed edges represent the sources
and destinations of the data. Inspired by the principal component analysis in the
information theory, Lee et al. [5] further employed the spectral graph theory [6]
for systematically quantifying and analyzing the DFGs via eigendecomposition, so
that the spectral graph theory can facilitate the analysis of data dependency and
connectivity of the DFGs simplistically by means of linear algebra. Consequently, it
is capable of quantifying the parallelism of the algorithm with robust, mathematical,
and theoretical analysis applicable to a broad range of real-world scenarios.

Given a DFG G of an algorithm is composed of n vertexes that represent
operations and m edges that denote data dependency and flow of data, in which the
vertex set of G is V(G) = {v1, v2, . . . , vn} and the edge set of G is E(G) = {e1,
e2, . . . , em}. The spectral graph theory can study the properties of G such as
connectivity by the analysis of the spectrum or eigenvalues and eigenvectors of the
Laplacian matrix L representing G, which is defined as [6, 7]:

L (i, j) =
⎧⎨
⎩

degree (vi) if i = j,

− 1 if vi and vj are adjacent,
0 otherwise.

(1)

where degree (vi) is the number of edges connected to the ith vertex vi. In the
Laplacian matrix, the ith diagonal element shows the number of operations that are
connected to the ith operation, and the off-diagonal element denotes whether two
operations are connected. Hence, the Laplacian matrix can clearly express the DFG
by a compact linear algebraic form.

Based on the following well-known properties of the spectral graph theory: (1)
the smallest Laplacian eigenvalue of a connected graph equals 0 and the corre-
sponding eigenvector = [1, 1, . . . , 1]T, (2) there exists exactly one eigenvalue = 0
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for the Laplacian matrix of a connected graph, and (3) the number of connected
components in the graph equals the number of eigenvalue = 0 of the Laplacian
matrix; it is obvious that in a strict sense, the degree of the parallelism embedded
within the algorithm is equal to the number of the eigenvalue = 0 of the Laplacian
matrix of the DFG. Besides, based on the spectral graph theory, the independent
operation sets can be identified according to the eigenvectors associated with the
eigenvalues = 0.

This method can be easily extended to the analysis of versatile parallelisms
at various data granularities, namely, multigrain parallelism. These multigrain
parallelisms will eventually be used for the exploration of multicore platforms
and reconfigurable architectures or instruction set architecture (ISA) with coarse
and fine granularities, respectively. If the parallelism is homogeneous at fine data
granularity, the single-instruction multiple-data (SIMD) architecture is preferable,
since the instructions are identical. On the contrary, the very long instruction word
(VLIW) architecture is favored for dealing with the heterogeneous parallelism
composed of different types of operations. As the granularity goes coarser, the
types of parallelism can help design the homogeneous or heterogeneous multicore
platforms accordingly. In summary, this method can efficiently and exhaustively
explore the possible parallelism embedded in algorithms with various granularities.
The multigrain parallelism extracted can then facilitate the design space exploration
for the advanced AAC.

By directly setting eigenvalues of L = 0, it is easy to prove that the degree of
parallelism is equal to the dimension of the null space of L and the eigenvectors
are the basis spanning the null space. In general, the number of operations needed
to derive the null space of a Laplacian matrix is proportional to the number of
edges. Hence, this method provides an efficient approach to quantify the degree of
parallelism and the independent operation sets. This method is applicable to large-
scale problems by avoiding the computation-intensive procedures of solving the
traditional eigendecomposition problem. In addition, since the Laplacian matrix is
sparse and symmetrical, it can be efficiently implemented and processed by linking
list or compressed row storage (CRS) format.

2.3.3 Storage Configuration

A system is said to be memoryless if its output depends on only the input signals
at the same time. However, in visual computing applications such as video coding
and processing, some intermediate data have to be stored in memory depending
on the dataflow of algorithms in higher abstraction levels. Consequently, in order
to perform the appropriate algorithmic processing, data storage must be properly
configured based on the dataflow scheduling of the intermediate data. Hence, the
algorithmic storage configuration is another essential intrinsic complexity metric
in AAC design methodology, which is transparent to either software or hardware
designs. For software applications, the algorithmic storage configuration helps in
designing the memory modules such as cache or scratch pad and the corresponding
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data arrangement schemes for the embedded CPU. In hardware design, the immedi-
ate data can be stored in local memory to satisfy the algorithmic scheduling based
on this complexity metric.

To provide a better visual quality in visual computing, for example, more context
information should be stored to exploit, and hence the storage size requirement
is intended to be increased. Usually, the picture data is stored in the external
storage due to the large amount of data. Therefore, the data transfer rate balance
between internal and external storage is crucial. There are two extreme cases of
this consideration: (1) All the needed data is stored in the internal storage that
requires the minimum external data transfer rate and (2) all the required data is
stored in the external storage that requires the maximum external data transfer rate
since the needed data would be fetched when the algorithm demands. An intuitive
manner is to allocate partial picture data in the internal storage and remaining data in
the external storage. However, these two factors are usually inversely proportional.
In the following, a systematic manner to explore the balance between internal
data storage and external data transfer rate through different executing orders is
demonstrated. Hence, a feasible solution can be found during the design space
exploration for the target application of multidimensional video signal processing.

An executing order in dataflow affects internal storage size and external data
transfer rate, and the executing order is always restricted to the data causality of the
algorithm. Figure 6 shows a dataflow dependency graph of a typical image/video
processing algorithm exploiting the contextual information in the spatial domain.
To a causal system, only upper and left contextual information can be referenced.

Three different executing orders are illustrated in Fig. 7, including (a) the raster
scan order, (b) diagonal scan order with two rows, and (c) diagonal scan order with
three rows, and the number labeled on the vertices denotes the executing order of
nodes. There are some assumptions applied for discussing the effect of executing

Fig. 6 Dataflow dependency graph of a typical image/video processing algorithm
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order on the internal data storage and the external data transfer rate. The contextual
information at left side is stored in the internal storage, and the data at upper line
should be fetched from external storage. Thus, the internal storage size is counted
according to the data size of left reference, and the average external data transfer rate
is measured based on the amount of upper data reference which should be fetched
within one time unit.

By analyzing the dataflow illustrated in Fig. 7a, the required storage size is one
data unit, and the external data transfer rate is three data units. The dataflow depicted
in Fig. 7b needed to store three data units and transfer three data units during the
processing of every two data units. The last one dataflow illustrated in Fig. 7c stored
five data units, and three data units should be transferred when processing every
three data units.

In summary, the first dataflow requires the smallest data storage requirement,
but the average data transfer rate is the largest among these three dataflow models
due to the fact that the required data would be fetched from external data storage
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once requisition. On the other hand, the third dataflow possesses the largest internal
storage size since more contextual information should be kept to process the data
unit at distinct rows; however, the required average data transfer rate is the smallest
one because most of the data have been stored in the internal storage already.

The trade-off between internal storage size and average data transfer rate is made
in accordance with the distinct executing orders. Figure 8 shows the analyzed result
of the diagonal scan from 1 row to 32 rows. The normalized average data transfer
rate is inverse proportional to the internal data storage size. Figure 8 shows that
the reduction ratio of average data transfer rate could be achieved by adding some
overhead on the internal storage size. The curve in Fig. 8 can facilitate the design
space exploration in terms of the internal data storage and external data transfer rate
based on AAC.

2.3.4 Data Transfer Rate

In addition to the number of operations, degree of parallelism, and storage configu-
ration, the amount of data transfer is also an intrinsic complexity metric as executing
an algorithm. Algorithms can be represented by natural languages, mathematical
expressions, flowcharts, pseudocodes, high-level programming languages, and so
on. In signal processing applications, mathematical expression is one of the most
abstract, definite, and compact methods to represent an algorithm. The correspond-
ing signal flow graphs and dataflow models [2, 8] can be then obtained based on
the mathematical representation [9]. The dataflow model is capable of depicting the
interrelationships between computations and communications.

To systematically extract the information embedded in the graph, matrix repre-
sentation is commonly used to represent a DFG. For instance, the adjacent matrix
introduces the connections among vertices, and the Laplacian matrix also displays
the connectivity embedded in the graph. These matrix representations are usually in
behalf of undirected graphs; however, in the study of data transfer of visual signal
processing, data causality is also significant information that should be retained
in matrix representation. Hence, a dependency matrix conveying data causality
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of a directed or undirected graph is required, and its mathematical expression is
illustrated as (2):

M (i, j) =
⎧⎨
⎩

−1, if vertex vj is the tail of edge ei

1, if vertex vj is the head of edge ei

0, otherwise
(2)

To explore the method to quantify the corresponding data transfer rate via
dependency matrix, edge cut is applied since edge cut is a cut that results in a
connected DFG into several disconnected sub-DFGs by removing the edges in this
cut. Therefore, the size of edge cut (or the number of edges in this cut) could be
used to estimate the amount of data that would be transferred among sub-DFGs due
to the fact that data should be sent or received (via edges) by tasks (vertices). On the
other hand, the behavior of edge cut in DFG is equivalent to applying an indicator
vector x that separates vertices in DFG into two sides for the dependency matrix,
M. Furthermore, by computing Mx, the characteristics of edges in DFG would be
revealed. According to Mx, the amount of data transfer was equal to half of the
summation of all absolute values in Mx. Therefore, Mx clearly presents the number
of edges crossed by this edge cut, and hence corresponding data transfer rate could
be systematically quantified due to the fact that data transactions occurred on the
edges in DFG.

For example, a simple DFG of an average filter is shown in Fig. 9. The indicator
vector x of corresponding edge cut is [1, −1, −1, 1]T; this edge cut separates v1
and v4 into one group and v2 and v3 into the other group. (The vertices at the side
with more input data would be set as 1.) In this example, Mx is [2, 0, −2]T, and
there are three types of edges that are introduced by Mx, including in-edge-cut
(positive value in Mx, e1), out-edge-cut (negative value in Mx, e3), and non-edge-
cut (zero value in Mx, e2). The corresponding dependency matrix (M), indicator
vector (x), characteristics of edges (Mx), and amount of data transfer are depicted
in (3). Consequently, the amount of data transfer of this edge cut is 2.

Fig. 9 A simple DFG and an
edge cut separate vertices into
two sides

+

y[n] = x[n-1] + x[n]

x[n-1] x[n]

y[n]

v1 v2

v3

v4

e1 e2

e3

Edge cut
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M = e1

e2

e3

v1 v2 v3 v4⎡
⎣

1 0 −1 0
0 1 −1 0
0 0 1 −1

⎤
⎦ , x =

⎡
⎢⎢⎣

1
− 1
− 1
1

⎤
⎥⎥⎦ ⇒ Mx =

⎡
⎣

2
0
− 2

⎤
⎦

Amount of data transfer = 1
2

N∑
i=1

|Mx(i)| = 2

(3)

3 Toward Big Data Analytics in SMARTECH/AI
with Analytic Architecture for Edge/Fog/Cloud Computing

As discussed in previous sections, AAC can not only be used in hardware design
but also be suitable for software design and edge/fog/cloud computing deployment.
Deploying cloud computing for AI development needs to consider distributing
compute, data bandwidth, and storage. On edge computing, we should take data
reusability and computation saving into consideration. AAC could help us find
out optimized solutions for edge/cloud computing. This section states what paral-
lel/reconfigurable computing in AAC is and gives an edge/fog computing by AAC
method.

3.1 Intelligent Parallel/Reconfigurable Computing

In signal processing, Fourier transformation is adopted to analyze and synthesize
signals. AAC also provides a similar framework called parallel and reconfigurable
computing in analytic architecture. The eigen analysis of dataflow graphs and graph
component synthesis in AAC are for parallel and reconfigurable computing.

AAC presents a spectral graph theory technique which systematically lays out the
full spectrum of potential parallel processing components eigendecomposed into all
possible data granularities. This makes possible the study of both quantitative and
qualitative potentials for homogeneous or heterogeneous parallelization at different
granularities as opposed to systolic array for homogeneous designs at only one
single fixed granularity. In addition, the capabilities of AAC also include facilitating
systematic analyses of dataflow models for flexible and efficient data transfer and
storage.

Reconfigurable architectures including multicore and GPU platforms provide a
balance between flexibility, performance, and power consumption. Starting from
algorithms, the data granularity could be reduced so as to extract common function-
alities among different algorithms. To reduce the granularity from the architectural
side, the eigendecomposition of dataflow models described above could also be
used to decompose connected graphs to disconnect components with different
granularities. These commonalities would then require one design of either software
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or hardware which could be shared. These lower granularity commonalities also
provide quantitative guidance in reconfiguring architectural resources such as in
multicores or GPUs through graph component synthesis.

3.2 Edge/Fog Computing

Deep learning drew significant attention in the machine learning community around
one decade ago [10], especially in computer vision area. Deep convolutional
neural network (CNN) exploits hierarchical visual characteristics through very
deep neural network architecture to achieve impressive performance in several
visual applications, such as facial recognition [11], image classification [12], object
detection [13], etc. In many applications, only a fixed trained model is required to
inference or predict the most probable class of test targets. On the other hand, the
time-consuming part, training deep CNN model, can be completed offline through
high-performance computing machines. For instance, we can train a deep CNN
model via a high-performance CPU/GPU cluster and then deploy the trained model
onto edge/mobile devices for performing inference or build cloud applications to
achieve machine intelligence.

To achieve device intelligence, there are two typical ways with respect to where
the computation is completed: (1) cloud-based solution, which uploads data to
the cloud and then receives results, and (2) edge computation, which processes
through edge computation engine. There are three major weaknesses for the cloud-
based solution, including latency, privacy, and power consumption. The cloud-based
solution needs to send/receive data to/from the cloud which depends on the network
environment, and the data might be leaked during transferring. Furthermore, cloud-
based inference requires more than two times power as compared to processing on
edge/mobile devices [14]. In contrast, edge computing can provide promising on-
device inference without the above issues.

For deep CNN inference engine on edge computing, two features are included
to resolve heavy computation load in a convolution layer: (1) high data reusability
for low power and highly effective bandwidth for parallel computing and (2) convo-
lution kernel redundancy removal to save computations and storage size. Based on
algorithm/architecture co-exploration [1], we explore dataflows with different sizes
of computing block (CB), where CB denotes 3-D data volume of produced outputs,
to exploit the degree of data reusability to maximize the equivalent data transfer
rate. Therefore, with a highly effective data transfer rate, every computing thread
could get data on time to achieve high throughput. Furthermore, since deep CNN is
usually over-parametrized, we reduce computation complexity and model size via
exploiting redundant convolution kernels.
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3.2.1 Data Reusability Exploration

On edge devices, we need to carefully utilize resources to maximize computing
power or throughput, e.g., we would like to reuse data as much as possible to
reduce power consumption in data loading. In our proposed data locality-awareness
computing system, we exploit the data locality to maximize the data reusability
and parallel computing; therefore, we leverage the memory bandwidth to parallelize
convolution, which requires massive data loading operations.

In convolution layers, every kernel loads an entire input map to produce one
output map which results in massive data transfer. In a naive approach and without
considering data reuse, to produce a point in output map, it requires loading
coefficients of convolution kernels and corresponding input data; therefore, it results
in 2 × C × H × W data transfer, where C, H, and W are channel, height, and width
of one convolution kernel. To generate all output maps (N × Y ′ × X′), the amount
of data transfer needed is (2 × C × H × W) × (N × Y ′ × X′), where N, Y ′, X′ are
channel, height, and width of the output tensor. On the other extreme, we can only
load input map and all convolution kernels once and then generate whole output
maps; in this case, only (C × X × Y) + (N × C × H × W) + (N × Y ′ × X′) data
transfer is required which is significantly lower than the naive approach, but it leads
to a larger storage size to buffer the entire input map and convolution kernels, where
C, Y, and X are channel, height, and width of the input tensor. Similar results can be
conducted in the pooling layer and the fully connected layer.

Therefore, we explore different dataflows at various CBs to reuse data among
all computing threads to resolve the very high bandwidth requirement for parallel
computing based on previous work [15]. The dataflow of a convolution layer is
regular, and we can analyze data reusability via mathematical expressions directly.
With different sizes of CB, we explore the degree of data reusability to find out
suitable CB for our target systems.

Data reuse happens when moving from the current CB to the next CB. Since
the current CB is usually right next to the next CB, partial data are shared among
two consecutive CBs. We do not need to load all data required by the next CB
if we reuse common data used by the current CB and the next CB. To simplify
the analysis, we assume that the first CB starts from the top-left of an image
and goes with raster scan order and different processing flows can be analyzed in
similar ways. The degree of data reusability is defined as the number of reusable
data divided by number of generated output data, and it can be formulated as
((W − 1) × (CBy + H − 1) × C + W × H × C)/(CBx × CBy × CBz), where
numerator is to-be-updated data when moving from the current CB to the next CB
and CBi is the CB size along i-axis (i can be x, y, or z, which denotes the three axes
of a tensor, respectively.). Figure 10 displays data reusability at various CBs and
kernel sizes, and the value on the y-axis is normalized to the case of CB4 × 4 × 32;
this analysis also shows that the ratio of data reusability keeps consistent trend
no matter what the kernel sizes are. Therefore, it is a generic approach to reduce
bandwidth via reusing data as much as possible; however, the analyzed results show
that we achieved high data reusability with a small buffer, e.g., when comparing
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Fig. 10 Degree of data reusability at various computing block sizes and kernel sizes. The highest
reusability is normalized to 1 and the total computing thread is 512

CB32 × 16 × 1 and CB4 × 4 × 32 at 3 × 3 kernel size, CB4 × 4 × 32 can reuse 31.5 times
the data with only 2.3 times the buffer size.

On the other hand, temporary buffers stored intermediate features (output of
every layer) in deep CNN that can be reused easily via a ping-pong buffer
strategy since lifetime of all intermediate features immediately finish after they are
consumed; therefore, we can just use two buffers instead of multiple buffers to save
storage size.

3.2.2 Computation Saving

Deep CNN usually uses over-parametrized models to extract features with thou-
sands of convolution kernels; therefore, lots of kernels might contribute little or
none at all. This situation can be observed while the CNN is very deep such as
VGG16 or VGG19, which are developed by Visual Geometry Group (VGG). The
weight sparsity at deeper convolution layers is usually high since deeper layers are
used to extract specific features. Therefore, we can exploit kernel redundancy to
reduce computation complexity and storage requirement for deep CNN.

The weight distributions of convolution layers in VGG16 are like single-side
Laplace distribution with different scales, and the scales of the first three layers are
larger than the last three layers. Lots of weights at the last three convolution layers
are close to zero; in other words, weights could be sparse. Hence, lots of kernels do
not extract features, so we can discard them with slight performance degradation to
reduce the computation complexity. We prune redundant kernels via exploiting the
sparsity of each kernel. Subsequently, after pruning, we need to fine-tune the model
to transfer the features learned by pruned kernels to remained kernels. We define the
sparsity of the nth convolution kernel as (4), where th1 is the threshold considering
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the weights are ignorable. Then, if a kernel has several coefficients less than th1,
Sparsity(n) is close to 1 and it means this kernel is sparse. Afterward, we evaluate
sparsity via another threshold, th2, to determine which kernel should be discarded,
since if most coefficients in one kernel are close to zero, it also denotes this kernel
is unused.

Sparsity(n) =
∑C

c

∑H
j

∑W
i σ(W(n,c,j,i))

C×W×H

σ(x) =
{

1, if | x |< th1

0, otherwise

(4)

The advantage of this pruning approach is the entire computation flow does not
change, but the number of kernels at a convolution layer is reduced. Therefore, we
do not need to redesign our computation engine of a convolution layer, and the
speedup is also linearly proportional to the reduced operations. Furthermore, by
reducing kernel numbers, we can also gain the benefits of lower storage require-
ments for trained kernels. With fewer convolution kernels, the feature dimension
also decreases, and it results in the weights between the last convolution layer and
the first fully connected layer to become smaller.
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Engineering Elastomer Dielectric for
Low-Cost and Reliable Wearable Health
and Motion Monitoring

Sujie Chen, Siying Li, Yukun Huang, Jiaqing Zhao, Wei Tang,
and Xiaojun Guo

1 Introduction

Thin and flexible sensors directly attached on the skin surface or cloths for real-time
monitoring of diverse human physiological signals and body motions have attracted
wide attention for applications in wearable healthcare and patient rehabilitation
[1, 2]. For example, as illustrated in Fig. 1, with the strain and pressure sensors,
various physiological signals related to health conditions and body motions can be
monitored [3, 4]. To be able to detect these different physical signals in real time,
the sensors need to achieve the required limit of detection, detection range, and
sensitivity with fast enough response and recovery. For long-term wearable appli-
cations, biocompatibility with human skin, low power consumption, and durability
of sensing performance are also key prerequisites. Another important feature, which
would determine wide adoption of the sensors, is being imperceptible when they are
worn on the human body. For that, the sensors need to be ultrathin, light, and of low
Young’s modulus. Moreover, in some application cases (e.g., sensors on exposed
parts of the skin), transparency or semitransparency is preferred for the sensors to
be invisible [5]. Currently, polydimethylsiloxane (PDMS) elastomer is the popularly
used base material for constructing various kinds of pressure and strain sensors due
to its excellent flexible and elastic properties, biomedical compliance with human
tissues, and commercial availability [6–9]. With external pressure or strain being
applied, the induced mechanical structure deformation of PDMS (e.g., length or
film thickness) results in changes of the resistance or capacitance of the fabricated
devices to measure the applied stimuli [10, 11]. Therefore, the sensing performance
is determined by the mechanical properties of the elastomer film. Unsatisfactorily,
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Strain sensors Pressure sensors

Fig. 1 Illustration of using the strain and pressure sensors to monitor various physiological signals
related to health conditions and body motions

the bulk PDMS film, having a modulus of ∼1 MPa, cannot generate large enough
structure deformation to be converted to detectable signal changes under weak
pressure or strain forces [12]. Structuring the PDMS films to reduce the modulus
for improved sensitivity has become a research hotspot [6, 13–18]. On the other
hand, to obtain light and imperceptible sensors, processes and designs of making
devices on ultrathin PDMS film are needed [19].

This chapter will firstly review the device structures based on PDMS elastomer
for both pressure and strain sensors. Then, the developed low-cost processing
techniques for microstructuring PDMS films and making ultrathin PDMS films
will be introduced. Pressure and strain sensors are fabricated with these films
and integrated in wearable systems for monitoring diverse human physiological
signals and body motions, including wrist pulse monitoring, static and dynamic foot
pressure monitoring, and neck posture monitoring.

2 Device Structures

The pressure and strain sensors can be both constructed based on either capacitor or
resistor structures using PDMS elastomer. With the capacitor structure, the PDMS
layer is sandwiched between two electrodes (Fig. 2a). For pressure sensing, an
external pressure is applied onto the surface of the top electrode, and the induced
deformation of the dielectric layer (e.g., reduction in the dielectric layer thickness)
causes changes of the capacitance to be measured. With the similar capacitor
structure, if a strain force is applied along the transverse direction, the resulted
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Fig. 2 Illustration of structures for constructing both pressure and strain sensors based on PDMS
films: (a) capacitor structure and (b) resistor structure

change of the dielectric thickness can also cause the capacitance change to be
detected for strain sensing [20].

For the different resistor structures as shown in Fig. 2b, the active part between
two electrodes uses PDMS elastomer mixed with different forms of conducting
materials, which could be powders (e.g., carbon black), or 0D/1D/2D nanostructure
materials (nanoparticles, carbon nanotubes, metal nanowires, graphene, etc.). These
conductive materials form conductive paths in the insulating host polymer. For
pressure sensing, the deformation of the PDMS layer enhances the contacts or
shortens the distance among the conductive materials and in turn causes the
measured resistance change. For strain sensing, the deformation of the PDMS film
(e.g., change in the length) upon the applied strain force affects the connections of
the conductive materials, resulting in the measured resistance change as well.

For these device structures, the mechanical properties of the PDMS layer play an
important role of determining the sensing performance. To improve the sensitivity, it
is needed to decrease the modulus of the PDMS layer. In the following two sections,
two approaches including microstructuring PDMS film and making ultrathin films
will be introduced for this purpose.

3 Microstructured PDMS for Pressure Sensors

For the capacitor structure sensors in Fig. 2a, the bulky PDMS elastomer film is
not able to produce enough deformation upon very small compression to obtain
detectable capacitance change [10]. As a result, the fabricated sensors are not
applicable for reliable sensing of weak physiological signals such as wrist pulse.
Moreover, the viscoelastic behavior of unstructured PDMS thin film might cause
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slow relaxation time after removal of the applied force [10], which is an issue for
real-time applications. To address these problems, different approaches for creating
microstructured PDMS films were developed, with formed air voids inside the
film to reduce elastic resistance and also induce additional change of the effective
dielectric constant of the dielectric layer upon applied pressure for higher sensitivity
since air has a lower dielectric constant (ε = 1.0) than PDMS (ε ~ 3.0) [21, 22].

3.1 Microstructuring with 3D Printed Mold

The most straightforward approach for microstructuring the PDMS film is using
a prefabricated mold. Silicon wafer molds were fabricated to obtain different
well-defined geometries for the purpose [13–17]. However, this method requires
expensive and complicated photolithography and chemical etching processes and is
thus not applicable for low-cost large area manufacturing.

Three-dimensional (3D) digital printing, which has recently been popularly used
for rapid prototyping, is proposed as an alternative choice to replace photolithogra-
phy for low-cost and convenient mold fabrication [21]. As illustrated in Fig. 3a,
a mold of 3 cm × 3 cm size with periodical microgrooves on the surface was
fabricated by a 3D printer (UP Plus 2 from Tiertime) using acrylonitrile butadiene
styrene (ABS). The periodical microgrooves are of 100 μm in depth and 150 μm
in width with the period width of 400 μm. The period width is designed as large
as possible for maximized air-void ratio in the replicated PDMS film based on the
mold. A prepared 10:1 mixture of PDMS elastomer (Sylgard 184, Dow Corning)

Fig. 3 (a) Photo image of the 3D printer (UP Plus 2 from Tiertime) used for fabricating the mold
based on acrylonitrile butadiene styrene (ABS). (b) Photo image of the fabricated freestanding
PDMS film (3 cm × 3 cm) with the scanning electron microscope (SEM) showing the surface
structure. (Edited from [21])
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to cross-linker was cast onto the fabricated mold and degassed in the vacuum
chamber for 10 min, followed by a curing process at 65 ◦C for 60 min. The
freestanding PDMS film with microstructured surface was peeled off from the mold
and strengthened by another curing process at 100 ◦C for 60 min. The photo image
of the obtained microstructured PDMS film is shown in Fig. 3b with the surface
image taken by scanning electron microscope (SEM). The formed periodical micro-
strips on the surface have a width of about 129 μm and a period width of about
550 μm, resulting in a very high air-void ratio of about 94% in the layer. When an
external pressure is applied onto the fabricated sensor, the high air-void ratio will
help to induce large deformation and change of the effective dielectric constant and
in turn large capacitance change for high sensitivity in the low-pressure regime. The
high air-void ratio in the PDMS layer also helps to reduce the relaxation time after
removal of the pressure load, and fast response can thus be achieved. In the structure,
the micro-strip width can be further reduced by using a higher-resolution 3D printer
to fabricate the mold, so that the period width can be decreased while maintaining
the similar air-void ratio.

To test its application for pressure sensors, the microstructured PDMS film was
laminated onto an indium tin oxide (ITO)-coated poly(ethylene terephthalate) (PET)
film, which was then cut into smaller pieces for use. The sensor devices were
constructed by laminating two pieces of PDMS/ITO/PET films face-to-face with the
micro-strip structures on two PDMS films perpendicularly crossing as shown in Fig.
4a. Electrical contacts were made by attaching conductive copper tapes (3 M 1811)
onto the ITO electrodes. The photo image of the finished flexible sensor device is
shown in Fig. 4b. The measured relative capacitance change (C/C0) as a function
of the applied pressure (P) for the sensor device is shown in Fig. 4c. C0 is the
capacitance when no pressure is applied on the capacitance (5.15 pF in this work),
and C is the measured capacitance change upon external applied pressure. The
pressure sensitivity S is defined as S = δ(C/C0)/δP. It can be seen from Fig. 4c
that the sensor exhibits a high sensitivity of 1.62 kPa−1 in the low-pressure regime
(<0.2 kPa). For monitoring human physiological signals, the devices are operated in
the low-pressure regime. As compared in the inset of Fig. 4c, the achieved sensitivity
in the low-pressure regime with the device is higher than those of previous work
using silicon molds made by micro-fabrication processes. The sensor also presents
fast response and recovery in the millisecond range upon loading and unloading
external pressure of different levels, as shown in Fig. 4d, e, which indicates its
capability for real-time pressure monitoring applications. The operational stability
of the sensor was characterized by applying more than 1000 cycles of repeated
loading/unloading a pressure of 1 kPa for 2500 s, as shown in Fig. 4f. The device
presented excellent stability with very small C/C0 variation less than 2% during
the test.

Finally, as a practical application example for monitoring human physiological
signals, the sensor was connected to the self-designed data acquisition (DAQ) circuit
board, which was powered by a 3.3 V voltage supply using a Li-ion battery and able
to acquire the measured capacitance value from the connected sensor for further
process, and sent the data to a mobile phone wirelessly through Bluetooth. As shown
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Fig. 4 (a) Illustration of the device structure of the fabricated capacitive pressure sensors and
(b) photo image of the finished device in a size of 1.5 cm × 1.5 cm. (c) The measured relative
capacitance change (C/C0) as a function of the applied pressure for the sensor device. Inset:
comparison of the measured sensitivity in the low-pressure regime (<0.2 kPa) with previously
reported flexible capacitive sensor with unstructured PDMS layer and microstructured PDMS
layers using micro-fabricated silicon molds. Dynamic response of the sensor upon placement and
removal of (d) a rice grain (15 mg, corresponding to the pressure of 3 Pa) and (e) a weight (5 g,
corresponding to the pressure of 1 kPa). (f) Characterization results of the operational stability of
the sensor with continuous measurement of relative capacitance change (C/C0) for 2500 s by
applying more than 1000 cycles of repeated loading/unloading a pressure of 1 kPa. (Edited from
[21])

in Fig. 5a, the whole system was placed on the radial artery of the wrist and fixed
by transparent adhesive tape. Continuous real-time monitoring of wrist pulse would
thus provide a convenient and noninvasive way for diagnosing medical diagnosis
[23]. The upper part of Fig. 5b shows the real-time measured relative capacitance
change C/C0 for the volunteer. The full wrist pulse contour can be clearly detected
with the wearable sensor system, showing regular and repeatable pulse shape with a
pulse frequency of about 79 beats/min. The lower part of Fig. 5b presents the details
of the pulse wave in one period, which contains the percussion wave (P-wave), the
tidal wave (T-wave), and the diastolic wave (D-wave). These three different parts
are related to the systolic and diastolic blood pressure, the ventricular pressure, and
the heart rate, respectively, and can provide important clinical information [23]. The
results demonstrate the capability of the fabricated pressure sensor to be integrated
in a wearable system for monitoring the weak human physiological signals in real
time.
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Fig. 5 (a) The whole sensor system, composed of the pressure sensor and the self-designed data
acquisition (DAQ) circuit board, is placed on the radial artery of the wrist and fixed by transparent
adhesive tape for real-time monitoring of wrist pulse. (b) The real-time measured wrist pulse
waveform with relative capacitance change C/C0 (upper), and the details of the pulse wave in
one period (bottom), which contains the percussion wave (P-wave), the tidal wave (T-wave), and
the diastolic wave (D-wave). (Edited from [21])

3.2 Porous PDMS Films

A more facile approach is developed for one-step processing of large area
microstructured elastomer film with high-density micro-features of air voids and
can be seamlessly integrated into the process flow for fabricating flexible capacitive
pressure sensors. With this approach, the prefabricated molds are not needed. As
illustrated in Fig. 6a, the mixed solution of PDMS prepolymer and its curing agent
with ammonium bicarbonate (NH4HCO3) were drop-casted onto an ITO-coated
PET film. NH4HCO3 is a commonly used foaming agent in the food industry. The
other ITO/PET film was laminated on top with two thin glass strips as the spacers,
defining the gap distance between two electrodes and in turn the thickness of the
PDMS dielectric layer. Then, the sample was annealed at 100 ◦C for 4 h to cure the
PDMS prepolymer, and NH4HCO3 was decomposed into NH3, H2O, and CO2 at
the same time, forming microstructured PDMS film of high-density air void micro-
features as shown in Fig. 6b. With such a facile approach, the sensor performance
can be optimized through varying the NH4HCO3 concentration and the PDMS film
thickness. The fabricated large area samples can be cut into small pieces of sensor
devices for use.
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Fig. 6 (a) Schematic illustration of one-step processing of the microstructured PDMS film based
on a mixture of PDMS prepolymer and its curing agent with ammonium bicarbonate (NH4HCO3)
and its seamless integration into the process flow for fabricating a flexible capacitive sensor.
(b) The photo image of the fabricated large area microstructured PDMS film. (Edited from [22])

When an external pressure is applied, the PDMS film can be easily compressed
with the deformation of air voids (Fig. 7a). As shown in Fig. 7b, the sensor device
made of this microstructured PDMS film has a sensitivity of 0.26 kPa−1 in the low-
pressure regime (0–0.33 kPa), which is close to that using prefabricated pyramid
structure PDMS layer via complicated microfabrication processes (0.55 kPa−1)
[10]. Figure 7c shows the sensing responses of the device upon placement and
removal of loads in low-, medium-, and high-pressure ranges. It can be seen that
the sensor can be used to detect loads over a wide pressure range with fast response
time of less than 15 ms. Compared with previous works on capacitive sensors using
elastic dielectric layer [13–18], a significant advantage of this sensor is the capability
of maintaining a relatively high sensitivity in a much wider pressure range, which
enables to detect small pressure changes at heavy loads.

The endurance test for the sensor device was carried out by hitting the device
with a hammer, which induced a pressure load exceeding 1 MPa, as shown in Fig.
7d. The sensor can recover to its initial value quickly after each hit, which further
proves the excellent endurance of the device.

With high sensitivity, fast response, and excellent endurance over a large pressure
range, the sensor can thus be used to monitor a wide range of human activities at
different pressure levels from wrist pulses to foot plantar pressure [23, 24]. Here
pressure sensors were fabricated and integrated in insoles, which allow the users to
accurately monitor their walking steps and speed and assess the energy expenditure
for the promotion of healthy lifestyle.

Moreover, static and dynamic measurement of foot pressure and its distribution
across the plantar foot surface and bony structures is clinically essential to identify
anatomical foot deformities and guide the diagnosis and treatment of gait disorders
and leads to strategies for identifying significant foot-related sport injury risk such
as ankle sprain and preventing pressure ulcers in diabetes [25]. Real-time foot
pressure measurement is also helpful to guide the postsurgical patients to resume a
correct load distribution over both legs in order to facilitate bone osteogenesis [26].
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Fig. 7 (a) The cross-sectional photo images of the microstructured PDMS film clipped by a
tweezer without pressure (upper) and with pressure (bottom). (b) The measured capacitance
changes as a function of the applied pressure for the pressure sensors using the microstructured
and unstructured PDMS films (inset: the display of the results in the low pressure range (0–
10 kPa)). (c) The transient response of the pressure sensors upon the applied pressure at different
pressure levels (inset: a red bean (75 mg) and a rice grain (15 mg), respectively, on a thin glass
slide (15 mm × 10 mm, 150 mg), which covers the entire sensor area, for measurement in the
low-pressure range). (d) The durability of the pressure sensor hit by a hammer with pressure loads
larger than 1 MPa. (Edited from [22])

For these smart insole applications, in addition to the basic requirements of low
cost and maintaining comfort of wear, the sensors need to sustain high-pressure
loads with high durability while being able to detect small pressure changes. The
exhibited excellent features of high sensitivity over a wide pressure range, excellent
durability under heavy loads, and very simple fabrication processes enable such a
microstructured PDMS film-based sensor to be an ideal technology of choice for
smart insole applications.

As shown in Fig. 8a, seven sensors were integrated in the fabricated insole, which
were placed at the key locations of the foot area according to gait kinetics as well
as normal and pathological foot anatomy [22]. Although more sensor points can
be easily made on the insole with this sensor technology, a reduced number of
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sensors will be helpful to reduce the cost of the control electronics and the power
consumption. The outputs of the seven sensors were connected to the self-designed
DAQ circuit board with 14 measurement channels, which communicated with the
mobile phone through a Bluetooth module. A continuous image of foot plantar
pressure can be reconstructed from the data of a limited number of sensors for gait
analysis (Fig. 8b). The shoe with the insole inside was worn by a volunteer for tests.
The high sensitivity under high-pressure loads with this sensor also enables the worn
smart insole to detect the change less than 1 kg (corresponding to a pressure change
of 0.3 kPa) for a 70 kg adult as shown in Fig. 8c. When he walked or run, the
dynamic capacitance changes can be real time monitored through the sensors as
shown in Fig. 8d. From the measured data on one sensor (point 6), the walking or
running status can be clearly clarified, and the steps can also be accurately counted.
The transient results of the seven sensors under walking and running conditions are
given in Fig. 8e, f. The results prove that such a smart insole system can be used for
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Fig. 8 (a) Illustration of the structure of the smart insole with seven sensors being connected to a
self-designed DAQ circuit board, which communicates with the mobile phone through a Bluetooth
module. (b) A continuous image of foot plantar pressure is reconstructed from the data of the
seven sensors for gait analysis, which is processed in the mobile phone with a software developed
in Android. (c) The measurement results show the capability of the smart insole for detecting very
small weight change of less than 1 kg (corresponding to a pressure change of 0.3 kPa) for a 70 kg
adult. (d) The measured real-time dynamic capacitance changes of one sensor (point 6) clearly
show the walking and running conditions and the walked or run steps. (e) The transient results
of the seven sensors under walking. (f) The transient results of the seven sensors under running.
(Edited from [22])
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gait analysis to provide key clinical and sports information. With the demonstrated
capabilities of real-time monitoring the walking or running speed and steps and
measuring the slight weight change, the smart insole based on the developed sensor
would be a promising technology to be used for evaluation of sports performance
during training or competition and assessment of energy expenditure in daily life.

4 Ultrathin PDMS Films for Strain Sensors

A general approach to obtain PDMS films for sensor devices is coating the mixed
solution of PDMS prepolymer and its curing agent on a supporting substrate such as
a glass slide or a silicon wafer and then peeling off the PDMS film from the substrate
after thermal curing. To easily peel off the PDMS film from the substrate without
damages, a PDMS film with thickness of a few hundred micrometers (>500 μm)
is generally required to sustain the tensile stress during the process [27, 28], which
is determined by the adhesion strength between the PDMS film and the supporting
substrate. Such a thick PDMS film is difficult for fabricating sensors to meet the
unperceivable and invisible wearable application requirements.

The adhesion strength between the PDMS and the glass substrate was shown
to be effectively decreased by surface treatment of the glass substrate with
a fluoroalkylsilane-trichloro (1H,1H,2H,2H-perfluorooctyl)silane (FOTS) self-
assembled monolayer (SAM) to reduce the surface wetting (Fig. 9a). A very
thin PDMS film was thus able to be easily fabricated. To fabricate strain sensors,
silver nanowires (AgNWs) were used to be incorporated into the PDMS film
considering their advantages of high dc conductivity and optical transmittance,
excellent mechanical flexibility, and environmental and economical advantages
for manufacturing [29]. The fabrication process of the ultrathin AgNW/PDMS
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Fig. 9 (a) The measured water contact angles on glass substrate before and after surface treatment
with the fluoroalkylsilane-trichloro (1H,1H,2H,2H-perfluorooctyl)silane (FOTS) self-assembled
monolayer (SAM). (b) Illustration of the fabrication procedure for the ultrathin (∼20 μm)
poly(dimethylsiloxane) (PDMS) elastomer film integrating a conductive composite of silver
nanowires (AgNWs) and neutral-pH poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)
(PEDOT:PSS) for strain sensors. (Edited from [19])
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composite film is depicted in Fig. 9b. The surface of a clean glass slide
(4 cm × 4 cm) was treated with FOTS in a vacuum. With a hydrophobic substrate
surface after the FOTS treatment to decrease the adhesion strength between the
PDMS and the substrate, an ultrathin (about 20 μm) AgNW/PDMS composite film
was able to be easily peeled off from the glass substrate, as illustrated in the center
of Fig. 9b.

The fabricated 20 μm-thick PDMS film presents nearly 80% transparency over
the visible light wavelength range from 400 to 800 nm, while the 800 μm-thick
one having much poorer transparency less than 60% (Fig. 10a). The results indicate
the advantage of using ultrathin elastomer film for transparent invisible wearable
sensors. Figure 10b shows that with an applied tensile force of 0.196 N (20 g
counterweight) to the 20 μm-thick film sensor, the resulted mechanical strain (ε)
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Fig. 10 (a) The measured optical transmittance of the strain sensors with 20 μm and 800 μm-
thick PDMS films, respectively. (b) Photo images comparing the mechanical deformation upon
applying and removing tensile force for the sensors with different thick PDMS films (800 μm
and 20 μm). (c) The measured related changes in the electrical resistance (R/R0) at different
mechanical strains (ε) for both devices. (d) The measured R/R0 at different applied strain forces
for both devices. (Edited from [19])
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of about 10% (defined as the relative length change L/L) is similar to that of the
800 μm-thick sensor device with a tensile force of 1.96 N (200 g counterweight).
The ultrathin film sensor is much easier to be deformed under tensile force. After
removal of the loads, both sensors recovered to their initial states. For wearable
applications, the required tensile force (F) to induce a certain mechanical strain
should be minimized to make the sensors unperceivable to the users. According to
Hooke’s law [30], the tensile force can be expressed as:

F = ε · E · w · d (1)

where E is the Young’s modulus and w and d are the width and the thickness of
the strain sensor, respectively. Therefore, to achieve the same mechanical strain
(determined by the human activities to be monitored), less tensile force is required
on the device of a thinner PDMS film. The measured related changes in the electrical
resistance (R/R) at different mechanical strains (ε) for both devices are shown in
Fig. 10c, presenting the similar gauge factor (GF) of about 15. The gauge factor
(GF) is defined as the ratio of R/R to ε [31]. With the similar GF, but much larger
mechanical strain being induced under the same tensile force, the 20 μm-thick film
sensor presents a tensile force sensitivity (S) of 5.39 N−1, which is more than 20
times higher than that of the 800 μm-thick film device (0.194 N−1) as shown in Fig.
10d. S is defined as the ratio of R/R to the applied tensile force (F) in the form of
S = (R/R0)/F. For the ultrathin film sensor with much improved S, the required
tensile force for a certain mechanical strain is significantly minimized, which has
benefits to achieve unperceivable sensors for wearable applications.

The long-term operation stability of the ultrathin PDMS film sensor was carried
out by applying 1000 cycles of repeated stretching/releasing with a maximum strain
of 20% to the sensor for 1400 s based on the experimental setup shown in Fig. 11a.
The results in Fig. 11b indicate that the ultrathin film strain sensor can have excellent
mechanical durability against long-term repeated elongation/relaxation cycles for
monitoring human motion. Finally, the fabricated ultrathin PDMS film sensor was
demonstrated for neck posture monitoring. Very large percent of the population
suffers with neck pain and its associated problems caused by prolonged poor neck
posture during work or life (e.g., when texting, reading, gaming, or watching media
information with a computer, a smartphone, or other devices) [32]. When the head
is bent forward and down, the neck posture becomes away from the natural curve of
the cervical spine, and the stress on the cervical spine will be substantial depending
on the angle of the bend and the amount of time spent with this neck posture. The
stress may lead to early wear and tear on the spine, early spinal degeneration,
muscle strain, pinched nerves, herniated discs, and abnormalities to the neck’s
natural curvature and has also been linked to headaches, neurological problems, and
heart diseases [32]. To help individuals rectify their neck posture timely to avoid or
minimize these issues, real-time monitoring of neck posture is very essential. In this
work, the ultrathin film sensor was stuck to a volunteer’s neck with medical adhesive
tape. The output of the sensor is connected to the self-designed DAQ circuit board,
which is fixed onto the collar of the coat. The circuit board received the sensor
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Fig. 11 (a) The durability test results by applying 1000 cycles of repeated stretching/releasing
with a maximum strain of 20% to the strain sensor for 1400 s. Inset: photo image of the
experimental setup for durability test for the strain sensor. (b) Real-time monitoring of a volunteer’s
neck posture with the fabricated thin PDMS film strain sensor, when the volunteer performed
normal activities in the working place including writing, watching the computer monitor, and
typing. (Edited from [19])

signals and communicated wirelessly with the mobile phone through Bluetooth. A
software developed in Android was deployed in a mobile phone to display the data
on the screen in real time. The volunteer’s neck posture was continuously monitored
for about 2 h when he performed normal activities in the working place including
writing, watching the computer monitor, and typing, as shown in Fig. 11b. The
results prove that the sensor can be used for neck posture real-time monitoring.
Further, with its features of high sensitivity (low tensile force for sensing) and high
transparency, the ultrathin film technology would be an ideal choice for developing
invisible and unperceivable sensors in wearable applications.

5 Conclusions

Polydimethylsiloxane (PDMS) elastomer has been popularly used as base materials
for constructing various kinds of pressure and strain sensors, due to its excellent
flexible and elastic properties, biomedical compliance with human tissues, and
commercial availability. For high sensitivity and imperceptible sensors to be worn
on human body, it is important to obtain microstructured and ultrathin PDMS
films. Engineering techniques with low-cost scalable manufacturing processes
are developed for this purpose. Typical application examples, including wrist
pulse monitoring, static and dynamic foot pressure monitoring, and neck posture
monitoring, were demonstrated. These results prove such engineering of PDMS
elastomer would be able to provide a versatile technology platform for developing
various pressure and strain sensors to meet the wearable health applications.
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Write Mode Aware Loop Tiling for
High-Performance Low-Power Volatile
PCM in Embedded Systems

Keni Qiu, Qingan Li, Jingtong Hu, Weigong Zhang, and Chun Jason Xue

1 Introduction

DRAM-based main memory is facing huge challenges due to the scalability
limitation as well as the energy efficiency problem. As an alternative, phase
change memory (PCM) is becoming a promising replacement to be deployed as
main memory in the deep submicron regime [1–3]. PCM has the advantages of
comparable read speed as DRAM, near zero leakage power consumption, good
scalability, and nonvolatility [4]. However, PCM suffers long latency and high
energy on write operations [5–7]. Multiple level cell (MLC) PCM pays the cost of
slow write performance while increasing the density of PCM [8, 9]. With a limited
power budget, slow and high energy PCM writes can hurt system performance [10].
Loops are usually the most computation-intensive part of embedded applications.
This work aims to optimize write performance and energy for loops on MLC PCM.
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A lot of exciting work has been done to reduce energy consumption for MLC
PCM [11, 12]. Recent work shows the potential of trading off write performance
with data retention time for MLC PCM with write speed option. The research in [13,
14] shows that the nonvolatility of MLC PCM can be traded for better performance
and lower write energy. By architecting MLC PCM as the main memory for micro-
controller units (MCUs), Li et al. have proposed a compiler directed dual-write
(CDDW) scheme to adopt two types of write modes, referred as slow mode and fast
mode, for different write operations [15]. With respect to the hardware limitation
in MCU systems which do not consider memory refreshes, the CDDW scheme can
totally avoid refresh operations. Significant improvements on performance and write
energy by the CDDW scheme are reported for the selected MiBench programs [15].

This work focuses on loops with intensive data array operations, which have read
and write dependencies. This class of loops is often used to implement relaxation
methods in numerical simulations and signal processing [16]. We observe that, as
the loop scales up, the lifetime of write instances will be very long, necessitating
slow write mode. In this scenario, the CDDW scheme exhibits very low efficiency
in performance and dynamic energy improvement.

Loop tiling is a classic loop transformation technique to enhance data locality
[16–20]. In this work, we employ the loop tiling technique for a novel objective. We
propose to effectively implement loop tiling to reduce the lifetime of write instances
in loop nests. With loop tiling, the define-use chains of most data write instances in
each tile are limited within the tile so that their lifetimes are also limited within the
tile’s execution time. With dedicated tile size selection, the new lifetime of write
instances can be reduced below the fast write retention time. Consequently, most
original slow write instances can be written in fast mode. This proposed write mode
aware loop tiling approach, incorporated with the CDDW scheme, can achieve high
performance and low power for loops on MLC PCM. We conducted experiments to
evaluate the proposed scheme for different loop kernels. Results show that the pro-
posed loop tiling approach improves the performance by 70.0%/51.8%/50.8% and
reduces dynamic energy by 35.6%/33.7%/32.0% compared to the fast/slow/CDDW
scheme on average.

The rest of this work is organized as follows. The volatile MLC PCM model and
the CDDW scheme are introduced in Sect. 2. A motivational example is presented to
illustrate the benefit of loop tiling in Sect. 3. The proposed write mode aware loop
tiling approach is described in detail in Sect. 4. Section 5 presents the evaluation
results. Finally, we conclude the work in Sect. 6.

2 Background

In this section, we introduce the volatile PCM model and the CDDW scheme.
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2.1 Volatile PCM Model

We first introduce the study background on MLC PCM write operations and the
trade-off between MLC PCM write latency (energy) and the retention time.

2.1.1 MLC PCM and its Write

PCM utilizes the phase-change behavior of chalcogenide glass such as GST
(Ge2Sb2Te5) to record data. By injecting electrical pulses to Joule heater (Fig. 1a),
GST can be switched between large resistance state (amorphous state) and small
resistance state (crystalline state). MLC PCM exploits intermediate resistance levels
between these two states to store multiple logic bits per cell.

Due to process variations and material composition fluctuation, different PCM
cells in one memory line respond distinctively to programming pulses, and even
the same cell responds differently at different time. Therefore, PCM widely adopts
an iteration-based programming and verifying (P&V) write scheme (Fig. 1b) to
precisely control the cell resistance. A RESET operation is always first conducted
to put the cell in an initial state. A series of SET and verify (read) operations then
follow until the target resistance level is reached.

2.1.2 Trade-Off Between Write Latency and Retention Time

The multilevel states of resistances of MLC PCM follow a normal distribution
considering process variation [21–24]. As Fig. 2 shows, MLC PCM uses resistance
ranges to represent the information stored in the cell. Four resistance ranges
indicate four data value, from “01” to “00” (gray encoding). For MLC PCM, a
small resistance range, referred as guardband, is intentionally left between two
resistance states to prevent the lower resistance state from drifting into the higher
resistance state [25]. Due to the relaxation of the parameters of amorphous phase,
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Fig. 1 PCM cell and its write operation. (a) PCM cell. (b) MLC PCM write
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Fig. 2 MLC PCM resistance distribution and resistance drift

the resistance of PCM spontaneously increases [13]. This phenomenon is known as
resistance drift. In Fig. 2, the broken curves illustrate the resistance distribution after
drift. And the drifting speed is proportional to the volume fraction of amorphous
phase [13]. Drift affects the stability of the electrical behavior of MLC PCM cell
and thus the reliability of MLC storage.

In [13], the guardband between “10” and “00” is identified as the most drift-
prone one. We use the guardband between “10” and “00” as illustrated in Fig.
2 as illustration. Longer retention time can be obtained by increasing guardband
size, since larger guardband can tolerate larger resistance drifting. Large guardband
requires tight distribution of each neighborhood resistance state. To increase the
programming accuracy and achieve tight resistance distribution, more write itera-
tions and energy must be paid in each write operation. MLC PCM cells, if written
according to this setting, are considered as nonvolatile. On the contrary, shorter
write latency produces smaller guardband, which introduces smaller retention time.
In this case, the cells are considered as volatile.

2.1.3 Volatile MLC PCM Model

The current/resistance of MLC PCM model calculates the resistance of MLC PCM
cell when applying a RESET or SET current on the cell for a given latency
[26]. MLC PCM usually adopts iteration-based programming method. By applying
different amplitudes of current on PCM cell [15], different resistances can be
obtained. A process variation distribution is produced on the key parameters of PCM
cell, such as heater radius. The distance between worst-case resistances is selected as
the PCM resistance guardbands. Using the PCM resistance drifting model proposed
in [13], different retention times for different guardbands can be obtained [26]. This
retention time is defined as the shortest drifting time elapsed from the time that
the resistance is only just recognizable to the time that the resistance reaches the
corresponding state threshold. We consider the worst-case drifting distance (starting
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Table 1 The volatile MLC PCM model

Iteration (#) Current (μA) N. energy Retention time (s)

10 310 1 (baseline) 11158.84
8 320 0.85 4823.178
7 330 0.75 2084.719
6 340 0.72 713.7916
5 360 0.674 83.67949
4 380 0.6 20.67646
3 410 0.524 1.87

from the 3σ point in the normal distribution and ending on the middle point of the
guardband between states “10” and “00”) and worst-case drifting state (the most
drift-prone state “10”) when calculating the retention time. In this way, the derived
retention time covers the worst cases and thus provides safe boundary of retention
time for volatile storage. The volatile MLC PCM model is summarized in Table 1
[15]. This MLC PCM model supports multilevel retention time and write latencies.

To ensure data reliability, in general, the volatile write mode (or fast mode)
needs periodical refresh if the write instances’ lifetime exceeds the retention time,
which not only involves hardware overhead but also consumes additional energy
and execution cycles. On the other hand, the nonvolatile mode (or slow mode)
provides long enough lifetime insurance, but leads to longer write latency and
energy inefficiency.

2.2 CDDW Scheme

MCUs are commonly applied in embedded systems. From the perspective of
the hardware limitation in MCU systems, we do not consider dedicated refresh
hardware support in the MCU design. Targeting the computing system consisting
of MCU- and PCM-based main memory with no caches, Li et al. [15] propose the
CDDW approach to exploit the trade-off between performance and retention time
of PCM. In the CDDW scheme, different write modes are selected for different
memory write instructions (MWIs) according to their lifetime. The lifetime of a
MWI instance is defined as the elapsed time from the time that this MWI instance
writes a value into a memory line to the time that the last read of this value occurs.
Each MWI instance starts a new lifetime. The lifetime of a MWI is illustrated in
Fig. 3.

The characteristics of PCM writes demonstrate that, if the lifetime of a MWI
instance is shorter than the retention time of PCM cells, no refresh is needed for this
write and the data correctness can be guaranteed. In summary, the dual write mode
in the CDDW scheme involves two aspects. First, for a MWI with lifetime longer
than the fast write retention time, slow mode is applied to it to avoid refreshes. And
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Fig. 3 The lifetime of a MWI

Fig. 4 The dual write modes in the CDDW scheme

second, for a MWI with lifetime shorter than the fast write retention time, fast mode
is applied to it to enjoy short latency and energy saving for write operations.

It is not practical to identify the exact lifetime of each MWI instance at runtime,
since such kind of information is sensitive to program structure and program inputs.
The CDDW utilizes the worst-case lifetime (WCLT) of each MWI to represent the
MWI’s lifetime based on static analysis. The CDDW scheme is illustrated in Fig. 4.
More details can be found in [15].

3 Motivation

With respect to large-scale loops, we observe that the CDDW scheme is often
fruitless because the lifetimes of most MWIs are too long, necessitating the
expensive slow mode. Figure 5a shows a nested loop example. Figure 5b shows
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Fig. 5 Motivational example. (a) A loop nest. (b) Architectural parameters. (c) Loop tiling in
the iteration space. (d) Write cost comparisons under CDDW with tiling and with no tiling.
(e) Dynamic write energy comparisons under CDDW with tiling and with no tiling

the assumptions of architectural parameters. There exist read after write (RAW)
dependencies in the data array computations as depicted in Fig. 5c. With no loop
tiling, each MWI’s lifetime is constant and equals to the execution time of 101
iteration points. That is, each MWI’s lifetime is 303 (101 × (1 + 1 + 1)) cycles
using fast mode (without counting refresh cost) or 505 (101 × (3 + 1 + 1)) cycles
using slow mode. Since the fast write retention time is only 150 cycles, all the write
instances should adopt slow mode according to the dual write mode selection metric
in the CDDW scheme [15].

We find that the loop tiling technique can be utilized to reduce MWIs’ lifetime
and thus improve the MLC PCM’s access performance and save write energy. We
tentatively partition the iteration space of the loop nests into small tiles with size
of 10 × 4 as indicated by red boxes in Fig. 5c and then execute them one by
one according to the default row-wise direction. It can be seen that the lifetime
of each MWI in the dashed rectangle is less than or equal to the execution time of
45 iteration points for each tile. In other words, the lifetime of MWIs in this area is
135 cycles using fast mode or 225 cycles using slow mode. Since lifetimes of MWIs
in the dashed rectangle are shorter than the fast write retention time, we can select
fast mode for these 36 (9 × 4) writes according to the CDDW scheme. In terms of



178 K. Qiu et al.

the MWIs occurring at the top boundary of the tile as indicated by gray circles, their
lifetimes equal to the execution time of 1000 iteration points, larger than the original
ones without tiling, still necessitating slow mode. In terms of the MWI indicated by
the black circle, its lifetime equals to the execution time of 1041 iteration points,
also necessitating slow mode.

Under the CDDW scheme, the write cycle cost and dynamic write energy
comparisons are depicted in Fig. 5d, e, respectively. It can be seen that, the write
cycles and write energy with loop tiling (12,000 cycles/1.1 × 107 pJ) are reduced
by 70% and 45% comparing to that with no tiling (40,000 cycles/2 × 107 pJ)
respectively. This is because the loop tiling effectively reduces most MWIs lifetime
and thus transforms their original slow mode to the more efficient fast mode with no
refresh overhead.

Motivated by the example, this work aims to incorporate the write mode aware
loop tiling into the CDDW scheme, to achieve high performance and low power for
loops when architecting MLC PCM as main memory.

4 Write Mode Aware Loop Tiling

Tile shape and tile size are the key factors when implementing loop tiling transfor-
mations. The tile shape should guarantee legal tiling. The tile size can impact how
many MWIs achieve lifetime reduction and how much their lifetime is reduced. In
this section, we discuss how to determine the legal tile shape and the optimal tile
size.

4.1 Overview

Data array computations in loops lead to the characteristic of constant dependency
vectors, i.e., data dependencies that have a constant distance in the iteration
space. As loops scale up, MWIs’ lifetime will exceed fast write retention time,
necessitating slow mode. This work proposes a write mode aware loop tiling
(WMALT) approach to apply the optimal loop tiling to loop nests and effectively
enable maximal fast writes for performance and energy improvements.

The proposed WMALT approach consists of two parts: legal tile shape deter-
mination and optimal tile size selection. The first part determines the directions of
tiling vectors to guarantee legality. The second part calculates the optimal tile size to
effectively reduce MWIs’ lifetime so as to maximize fast writes among the MWIs.

For simplicity, we use two-level loop nests without instructions between loops
as examples to derive the optimal loop tiling solution. The two dimensions are
generically referred as y and x dimensions. The solution of the multilevel case can
be derived analogously.
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4.2 Legal Tile Shape

Loop transformation must preserve the temporal sequence of all dependencies. In
order to do legal tiling, we first need to analyze the data dependencies in loops.
There are totally four kinds of data dependencies: read after write (RAW, flow
dependence), write after read (WAR, antidependence), write after write (WAW,
output dependence), and read after read (RAR, input dependence). The RAW and
WAR dependencies prohibit execution sequence reordering. This work focuses on
the MWI’s lifetime analysis which is correlated to the RAW dependency.

A dependency vector d = (dy, dx) means the computation of a data array at
iteration (i, j) depends on the execution of the data array at iteration (i − dy, j
− dx). In the example shown in Fig. 6, it is assumed there are four dependency
vectors: d1, d2, d3, and d4 in two-level nested loops, where d3 is the extreme CCW
(counterclockwise) vector and d4 is the extreme CW (clockwise) vector. Legal tile
vectors can only be outside of CW and CCW or aligned with them [27]. In Fig. 6,
we choose the tile vector Ty to be aligned with CCW and the tile vector Tx with
x-axis, which is outside of CW. It is a legal tiling direction choice as indicated by
the dotted lines. We observe that the y-elements of dependency vectors are mostly
positive or zero in the nested loops for real applications. Therefore, we choose the
Ty vector to be aligned with the CCW vector and Tx vector to be aligned with the
positive x-axis; thus a legal tiling can be obtained.

It is not always possible to do legal tiling directly. The work [19] points out that
a loop i through a loop j in nested loops can realize tiling if and only if they are
fully permutable. In general, we can use loop transformation techniques such as
loop retiming, skewing, etc. to preprocess the loops and then obtain legal tiling.

4.3 Optimal Tile Size

In previous studies, loop tiling has often been employed to tailor loop nests into
smaller tiles to improve cache hit rate. In this work, we use loop tiling for the novel

Fig. 6 Legal tile shape determination
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purpose of reducing MWI’s lifetime and enable as many as possible write operations
to be written in fast mode. Hence, the overall efficiency of the MLC PCM can be
improved.

The definition of the lifetime of a MWI implies that MWI’s lifetime analysis
is only correlated to the RAW dependency. Therefore, we only consider the RAW
dependencies and the CCW dependency vector when determining the tile size.

For easier analysis, two constraints are imposed on the tiling vectors Ty and Tx:

• Ty Constraint: The vectors Ty shall be large enough so that no RAW dependency
vector starting from the tile origin can pass through an entire tile along the y-
element directions.

• Tx Constraint: The vectors Tx shall be large enough so that no RAW dependency
vector starting from the tile origin can pass through an entire tile along the x-
element directions.

Figure 7a, b presents two cases that are against the Ty constraint and the Tx

constraint, respectively. In Fig. 7a, the tiling vector along the y-element direction is
not large enough, because the RAW dependency vector d1 crosses the top boundary
of the tile. In Fig. 7b, the tiling vector along the x-element direction is not large
enough, because the RAW dependency vector d2 crosses the right boundary of the
tile.

Before deriving the optimal tile size, we first propose the concept of base tile. A
base tile is a tiling solution, satisfying the above constraints and having the minimal
tile lengths along the y-element and x-element directions. The Ty and Tx constraints
guarantee that all the RAW dependency vectors that are starting from the origin of
a base tile should be included within the base tile.

A base tile is expressed as T base
y × T base

x where T base
y and T base

x denote its
y-element and x-element tile lengths, respectively. It is assumed that there are
three dependency vectors, d1 = (dy1,dx1), d2 = (dy2,dx2), and d3 = (dy3,dx3),
denoting the ones with the largest x-element dependency length, the largest y-
element dependency length, and the CCW direction in loop nests, respectively, as
shown in Fig. 7c. In particular, we use dymax and dxmax to represent the largest
y-element length and x-element length, respectively. In the case of Fig. 7c, we have
dymax = dy2, dxmax = dx1. It is further assumed that α denotes the angle of the
dependency vector in CCW direction and β denotes the angle of the dependency
vector with the largest x-element length.

Fig. 7 (a) Ty constraint. (b) Tx constraint. (c) The base tile calculation
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In order to cover all the RAW dependency vectors starting from the origin “O”
within the base tile, the y-element tiling vector Ty and the x-element tiling vector Tx

should satisfy Eqs. (1) and (2), respectively:

Ty ≥ dy max (1)

Tx ≥ |OB| − |AB|
= dx max −dx max tan β cot α
= dx max · (1 − cot α tan β)

(2)

Therefore, the base tile size can be solved as Eq. (3):

{
T base

y = dy max
T base

x = [dx max · (1 − cot α tan β)]
(3)

For ease of analysis, we propose a virtual dependency vector dv = (dyv, dxv) to
represent the vector which has both the longest y-element length and the longest
x-element length of all concerned RAW dependency vectors in an iteration as
indicated by the red dashed line in Fig. 7c. The virtual dependency vector is defined
as starting from the origin of the base tile and ending at the diagonal. It can be
expressed as dy = (dymax, dxmax (1 cotα tanβ) + dymax cotα), relative to the origin
of the base tile. This virtual dependency vector is corresponding to the virtual MWI
in loop nests. The virtual MWI is the longest define-use chain which is written at
the origin and read at the diagonal of the base tile. It covers the longest distance that
the real dependency vectors could possibly reach in all dependency directions. So it
is convenient and safe to adopt the virtual MWI to represent all the real dependency
vectors. The base tile and the virtual MWI offer us a basic framework to derive the
optimal tile size.

We call the tile being executed as current tile and the one that will be executed
next as next tile relative to the current one. Any other tiles excluding them are called
remote tiles relative to the current one. A tile can be partitioned into four parts A, B,
C, and D as shown in Fig. 8. The partitioning metrics are as follows:

• All the virtual MWIs written in part A can realize their reuses in the current tile.
• All the virtual MWIs written in part B can only realize their reuses in the next

tile.
• All the virtual MWIs written in part C and D can only realize their reuses in the

remote tiles.

The parameters and their descriptions with respect to a two-level loop tiling are
shown in Table 2.

In terms of part A, all the virtual MWIs written in this area realize their reuses in
the current tile. In order to have the MWIs in this area written in fast mode, Eq. (4)
should be satisfied:

ET(Ty
base×Tx

) < tr (4)
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Fig. 8 Tile size analysis

Table 2 Parameter description

Parameter Description

Size The whole iteration space of a two-level nested loop
Ty, Tx Tiling vectors in the y-element and x-element directions, respectively, and

x-element directions, respectively
T bound

y , T bound
x Upper bounds of tiling vectors in the y-element and x-element directions,

respectively
T base

y , T base
x y-element vector and x-element vector of the base tile

M Tile number of the whole loop nests, representing as M = size/ (Ty−Tx)
tr , Tx The retention time of the MLC PCM with a certain iteration-based

programming scheme
t−r Time slot which is close to tr , representing as t−r = tr × (BND − 1)/BND

where BND denotes an integer
ET(size) The execution time of the iteration space (size)

In terms of part B, all the virtual MWIs written in this area realize their reuses in
the next tile. In order to have the MWIs in this area written in the fast mode, Eq. (5)
should be satisfied:

ET(
Ty×Tx+T base

y ×Tx

) < tr (5)

In terms of part C, all the virtual MWIs written in this area realize their reuses in
the remote tile. Their lifetime is prolonged by ET((

Ty−T base
y

)
×
(
T bound

y −Tx

)). In terms

of part D, all the virtual MWIs written in this area realize their reuses in the remote
tile. Their lifetime is prolonged by ET((

Ty−T base
y

)
×T bound

). If the virtual MWIs in

parts C and D are written in slow mode in the original loop form by CDDW scheme,
it can be seen that these slow writes cannot be transformed into fast mode via loop
tiling. In order to have the area of parts C and D as small as possible, it is expected
that the value of T base

y × Tx × M is minimized as shown in Eq. (6):
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Min
(
T base

y × Tx × M
)

= Min
(
T base

y × Tx × size
Ty×Tx

)

∝ Min size
Ty

(6)

It is observed that Eq. (4) can be merged into Eq. (5). In addition, it is further
expected that the tile number M is as small as possible so as to minimize the cost
of executing the outer controlling loops in the tiled loop form. This expectation has
lower priority than Eq. (6). Putting all together, we can obtain the set of formulas as
follows. This formula set covers all the expectations on the optimal size.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(I) T base
x ≤ Tx ≤ T bound

x

(II) T base
y ≤ Ty ≤ T bound

y

(III) ET(
Ty+T base

y

) × Tx

)
< tr

(IV) Min size
Ty

(high priority)

(V) Min(M) = Min
(

size
Ty×Tx

)
(low priority)

(7)

In Formula (7), the subformula set consisting of (I), (II), and (III) aims to obtain
the tiling solutions by which the original slow writes in parts A and B can be
transformed to fast writes. The subformulas (IV) and (V) further aim to make parts
C and D as well as the number of tiles as small as possible.

For loops with iterative regular data array computations, it is reasonable to
assume that a MWI’s lifetime in a tile is proportional to the MWI’s lifetime in the
loop nests by the ratio of tile size to the entire loop nest size. The rationale of this
assumption is that the execution time of the loop nests is proportional to the loop
size. This relationship can be represented by Eq. (8):

ET(size)

ET(Ty×Tx)
= size

Ty × Tx

(8)

Applying the deduction in Eq. (8) into the third statement of Formula (7), we can
obtain Formulas (9) and (10):

Tx <
size × tr

ET(size) ×
(
Ty + T base

y

) (9)

Ty <
size × tr

ET(size) × Tx

− T base
y (10)

Since ET(size) is simulated under fast mode while MWIs in parts C and D
should be written in slow mode, a key parameter t−r is introduced in our method.
It is represented as t−r = tr × (BND − 1) /BND where BND denotes an integer,
indicating a time slot close to tr. This mechanism provides a safe distance between
the estimated lifetime and the retention time. The smaller the value of B is, the safer
our estimation is. Although ET(Ty×Tx) in Eq. (8) is estimated by simulation, we can
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Fig. 9 Three cases of loop
tile size selection: (a)
δ > T bound

x , (b)
T base

x < δ ≤ T bound
x , (c)

δ ≤ T base
x

adjust the value of BND during iterative profiling to obtain conservative boundary
of t−r sizes to ensure data reliability in parts A and B.

Considering the constraints on Ty and Tx indicated in Formulas (7) (I) and (II)
and Formula (9), there exist three cases to solve the tile size as shown in Fig. 9. We

assign δ = size×t−r
ET(size)×

(
T bound

y +T base
y

) . Obviously, δ > 0.

Case 1 If δ > T bound
x as indicated in Fig. 9a, then the solutions in the shaded area

can satisfy Formulas (7)(I), (II), and (III). Considering Formulas (7)(IV) and (V),
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we can obtain the optimal tiling solution in Case 1 as follows. This solution implies
that no tiling is needed.

{
T OP

y = T bound
y

T OP
x = T bound

x

(11)

Case 2 If T base
x < δ ≤ T bound

x as indicated in Fig. 9b, then the solutions in the
shaded area can satisfy Formulas (7)(I), (II), and (III). Targeting the objectives in
Formulas (7)(IV) and (V), we choose Ty = T bound

y in order to achieve minimal size
Ty

and choose Tx = sizet−r
ET(size)×

(
T bound

y +T base
y

) in order to achieve the minimal tile number.

In summary, the optimal tiling solution in Case 2 is as follows:

⎧⎨
⎩

T OP
y = T bound

y

T OP
x = size×t−r

ET(size)×
(
T bound

y +T base
y

) (12)

Case 3 If δ ≤ T base
x as indicated in Fig. 9c, then the solutions in the shaded

area can satisfy Formulas (7)(I), (II), and (III). Targeting the objective in Formula
(7)(IV), we choose Tx = T base

x in order to achieve minimal size
Ty

; thus we have

Ty = size×t−r
ET(size)×T base

x −T base
y

. In summary, the optimal tiling solution in Case 3 is as

follows:

{
T OP

y = size×t−r
ET(size)×T base

x
− T base

y

T OP
x = T base

x

(13)

The worst-case execution time ET(size) under the fast mode for the entire loop
nests can be obtained by simulation. Then the parameter B can be safely worked out
by iterative profiling along with the simulation. Thereby, the item δ can be obtained.
Finally, we identify the case where the loop nests can be in and calculate the
corresponding optimal tile size. The shading area in Fig. 9 covers all the solutions
that meet subformulas (I), (II), and (III), and the optimal one indicated by a dot
means that it meets all the five subformulas in Formula (7) for each case. The
optimal loop tiling result for a given loop indicates the solution that meets all the
requirements in Formula (7). In other words, the optimal tiling solution can achieve
the maximal fast writes for the MWIs in the loop and meanwhile produce the
minimal tile number. Therefore, the “optimal” solution implies the largest benefit
on performance improvement and energy saving.

Taking the loop nests of wave benchmark as an example, Fig. 10a depicts its
source code. The base tile can be obtained through Eq. (3) as shown below:

{
T base

y = 1
T base

x = 2
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Fig. 10 Loop tiling for the
wave kernel. (a) Loop kernel
of wave. (b) Optimal loop
tiling

The retention time tr is 1.87 s for a fast PCM write. It is further measured that the
worst-case execution time under the fast write scheme is 3.3 × 109 cycles. The value
of δ can be obtained as 5.67, which indicates that the optimal tile size calculation
is involved in Case 2. We specify t−r as 1.85 s by assigning a safe value of BND
as slow write fast write 100 through initial profiling. Therefore, we can employ Eq.
(12) to work out the optimal tile size as below:

{
T OP

y = 10000
T OP

x = 6

For the data which are determined to be written in fast mode during loop
execution, if they will be read again at some time outside of the loop, they may be
unreliable at the time of being reused. In this case, these data can be first identified
by liveness analysis. And then rewrite action with slow mode will be taken for them
when exiting the loop. Thus, their correctness can be ensured when being reused
outside of loop. In our experiments, we found only a few data in the benchmarks
have such feature, while most data are just temporarily used inside loop.

4.4 Multilevel Loop Tiling

For multilevel loop nests with multidimension dependence vectors d = (dn, dn − 1,
. . . , d1), similarly, the legal tiling shape can be derived as follows. The d1 vector is
chosen to be aligned with the positive 1-axis, and the dn, dn − 1, . . . , d2 vectors are
chosen to be aligned with their CCW vector directions, respectively.

An iterative tiling procedure is used to determine the tiling size. In the first
iteration, the n-level loop nests are regarded as two-level loop nests consisting of the
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innermost first loop and the outer n−1 loops. We assign δ1 = sizen×tn−
r

ET(sizen)×
(
T bound

2→n +T base
2→n

)

where sizen denotes the whole iteration space and T2 → n-like expressions denote the
tile size starting from the second loop to the n-th loop. Following the optimal tile
size derivation in Sect. 5.3, there exist three cases to solve the tile size as follows.

Case 1 If δ1 > T bound
1 , the optimal tile size is solved as shown in Eq. (15).

This solution implies that no tiling is needed.

{
T OP

2→n = T bound
2→n

T OP
1 = T bound

1
(14)

The expression T OP
2→n = T bound

2→n can be further finalized by assigning the upper-
bound value for each loop. Equation (14) can be transformed into the expressions as
below.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

T OP
n = T bound

n

T OP
n−1 = T bound

n−1
. . . . . .

T OP
2 = T bound

2
T OP

1 = T bound
1

(15)

Case 2 If T base
1 < δ1 ≤ T bound

1 , the optimal tile size is solved as shown in Eq. (16).

⎧⎨
⎩

T OP
2→n = T bound

2→n

T OP
1 = sizen×tn−

r

ET(sizen)×
(
T bound

2→n +T base
2→n

) (16)

The above equation set can be further finalized as below.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

T OP
n = T bound

n

T OP
n−1 = T bound

n−1
. . . . . .

T OP
2 = T bound

2

T OP
1 = sizen×tn−

r

ET(sizen)×
(
T bound

n ×···×T bound
2 +T base

n ×···×T base
2

)

(17)

Case 3 If δ1 ≤ T base
1 , the optimal tile size is solved as shown in Eq. (18).

⎧⎨
⎩

T OP
2→n = sizen×tn−

r

ET(sizen)×T base
1

− T base
2→n

T OP
1 = T base

1

(18)

In Cases 1 and 2, the final optimal tile size for every level loop can be obtained
directly. In Case 3, only the optimal tile size of the innermost loop and the overall
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tile size of the outer n − 1 loop (i.e., T OP
2→n) can be obtained. Then, we need

to further solve the tiling solution for the outer n − 1 loops. Analogously, the
outer n − 1 loop nests can be regarded as two-level loop nests consisting of the
innermost second loop and the outer n − 2 loops. Also, we have tn−1

r = tnr
T base

1
,

δ2 = sizen−1×t
(n−1)−
r

ET(sizen−1)×(T bound
3→n +T base

3→n

) , and three cases for the outer (n − 2)-level loop tiling.

This iterative tiling procedure is depicted in Algorithm 1.

Algorithm 1 Iterative loop tiling.
Require:
sizen: the whole iteration space
sizen−i+1: the iteration space from the outermost loop to the ith loop
tnr : the retention time for the whole iteration space
tn−i+1
r : the regarded retention time for the iteration space from the outermost loop to the ith

loop
Ti→j: the tile size starting from the ith loop to the jth loop

1: δ1 = sizen×tn−
r

ET(sizen)×
(
T bound

2→n +T base
2→n

) ;
2: for i = 1 to n do
3: if δi > T bound

i then
4: //The final optimal tiling solution from the outermost loop to the ith loop is:
5: T OP

i+1→n = T bound
i+1→n;

6: T OP
i = T bound

i ;
7: i = n + 1; The overall solution is obtained. Break.
8: else
9: if T base

i < δi ≤ T bound
i then

10: //The final optimal tiling solution from the outermost loop to the ith loop is:
11: T OP

i+1→n = T bound
i+1→n;

12: T OP
i = sizen−i+1×t

(n−i+1)−
r

ET(sizen−i+1)×(T bound
i→n +T base

i→n

)

13: i = n + 1; //The overall solution is obtained. Break.
14: else
15: //δi ≤ T base

i ;
16: //The optimal tiling solution is:

17: T OP
i→n = sizen−i+1×t

(n−i+1)−
r

ET(sizen−i+1)×T base
i

− T base
n−i+1→n;

18: T OP
i = T base

i ;
19: //Recalculate δ and the regarded retention time for the next round

20: δi+1 = sizen−i×t
(n−i)−
r

ET(sizen−i )×(T bound
i+2→n+T base

i+2→n

) ;
21: tn−i

r = tnr
T base

1→i

;
22: i++;
23: end if
24: end if
25: end for
26: return the final optimal tiling results;
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5 Experiments

In this section, we first introduce the experimental setup. Then the results on
performance and dynamic energy by applying the proposed approach are presented.
Furthermore, the sensitivity to PCM size is discussed. Finally, we discuss the
accuracy of the proposed deductions.

5.1 Experimental Setup

This work targets energy efficient MCUs which have on-chip or off-chip memory
built by PCM, but do not have caches. MCUs with similar targeting configuration
include Tiny12 [28], ARM7TDMI [29], megaAVR [30], and PIC [31] series. These
MCUs have neither cache nor SPM. Therefore, CPU can access the off-chip main
memory directly. There are also MCUs that adopt an on-chip nonvolatile memory.
For example, MSP430FR series [32] have on-chip FRAM memory and SRAM
memory that work as SPM. In both cases, the nonvolatile memories are part of
the main memory address space, and CPUs can directly access them. Therefore, the
proposed loop tiling approach in our work can be applied. In the experiments, we
choose the 10-iteration programming mode as the slow mode and the 3-iteration
programming mode as the fast mode. The baseline configuration is illustrated in
Table 3.

It is assumed that the PCM size equals to the real size utilized by the programs.
To evaluate the proposed approach, totally four schemes are evaluated, as depicted
in Table 4.

In the fast scheme, all writes are conducted in fast mode, so the MWIs with
lifetime longer than the fast write retention time need refreshes. For the data arrays
which are useful during the whole program execution time, a DRAM-style refresh
method is employed to refresh them during the whole execution period. For the data
arrays whose MWIs’ lifetime only lasts for a period of the whole program execution
time, a reasonable N-refresh method [33] is employed to refresh them, where the

Table 3 Parameter description

Component Parameter

MCU core Single issue, 1 MHz, no cache, no MMU
Code memory 1 cycle per instruction without access to data memory
Data memory 32-bit width

Read cost: 1 μs and 48 pJ

Fast write cost: 3 μs and 955.2 pJ

Slow write cost: 10 μs and 1542.4 pJ

Fast write retention time: 1.87 s

Slow write retention time: 11158.84 s
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Table 4 Write schemes for experimental evaluation

Write scheme Brief description

Fast All writes are conducted in fast mode, requiring refreshes
Slow All writes are conducted in slow mode. No refresh
CDDW A MWI is conducted in fast mode if and only if all its instances are

conservatively estimated to have a short lifetime less than the fast write
retention time. No refresh

WMALT + CDDW The proposed WMALT preprocessing is conducted to effectively reduce
MWIs’ lifetime in loops before applying the CDDW scheme

data arrays are refreshed 2N−1 times of the fast write retention time. The N-refresh
method prolongs the fast MWIs’ validation time. It is more performance-efficient
and energy-efficient than the DRAM-style refresh method. In the evaluation, the
value of N is set to be 5.

In the CDDW scheme, write modes are statically selected for different MWIs
[15]. In the WMALT + CDDW scheme, the proposed WMALT approach is
embedded to preprocess the loops before implementing the CDDW scheme.

The WCLT analysis is implemented on the Chronos platform [34] using the
method [15]. An initial iterative profiling is conducted to obtain t−r and ensure
that it is safe enough to guarantee MWIs’ correctness of parts A and B. For each
benchmark, we have four evaluation versions, corresponding to the four write
schemes in Table 4. For the WMALT + CDDW scheme, loop tiling is determined
based on the Worst-case execution time (WCET) results under the fast schemes.
The loop tiling preprocessing is done on the source code. For each version, the
benchmarks are compiled by GCC “static.” An initial iterative profiling will be
conducted to ensure that t−r is safe enough to guarantee MWIs’ correctness of
parts A and B. By analyzing the binary file together with the WCLT information,
different write latencies and energy consumptions are assigned to the MWIs; thus
the performance and energy results can be obtained.

The benchmarks are all loop kernels, extracted from DSP programs, Blitz++
library [35], and MiBench suite [36]. Basic characteristics of the selected bench-
marks are given in Table 5. We assign diverse loop sizes for the loop nests. The
optimal tiling size calculated by the proposed WMALT approach is listed in Table 6.
In the original loop form, at least one data array’s MWIs are characteristic of their
WCLT longer than the fast retention time.

5.2 Results and Analysis

In this subsection, the four schemes are compared in terms of performance and
dynamic energy consumption.
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Table 5 Benchmark characteristics

Benchmark Description Dynamic instructions Reads Writes

Wave Wavefront computation 4.4E + 09 1.4E + 09 2.1E + 08
wdf Wave digital filter 3.8E + 09 1.2E + 09 2.1E + 08
iir Infinite impulse response 1.1E + 10 3.8E + 09 2.1E + 08
acou2d Acoustic2d 1.7E + 10 4.0E + 09 4.0E + 08
acou3d Acoustic3d 3.3E + 10 6.4E + 10 4.8E + 09
Stencil Array stencil 3.3E + 10 6.4E + 10 4.8E + 09
Array Array computation 3.3E + 10 6.4E + 10 4.8E + 09
formatBit formatBitstream module in Lame 9.9E + 08 3.3E + 08 1.6E + 08
Floyed Floyed algorithm 4.8E + 10 8.0E + 09 2.0E + 09
mm Matrix multiplication 2.8E + 10 9.5E + 09 2.9E + 09

Table 6 Data array size and optimal loop tiling size

Benchmark Loop size Array # Optimal tiling size

Wave 104 × 104 3 10,000 × 6
wdf 104 × 104 1 8250 × 2
iir 104 × 104 3 331 × 4
acou2d 104 × 104 4 10,000 × 2
acou3d 103 × 103 × 103 4 1000 × 1000 × 16
Stencil 103 × 103 × 103 2 1000 × 1000 × 15
Array 103 × 103 × 103 2 1000 × 1000 × 11
formatBit 104 × 104 3 10,000 × 3
Floyed 103 × 103 × 103 1 1000 × 343 × 2
mm 103 × 103 3 1000 × 284 × 2

Fig. 11 Performance improvement

5.2.1 Performance

Figure 11 shows the performance comparisons among the four write schemes. The
results are normalized to the slow scheme. We have the following observations:

For most benchmarks, the fast scheme achieves the worst performance, which
is caused by the expensive refresh cost. For other benchmarks, such as formatbit,
floyed, and mm, the fast scheme has better performance than that under the slow
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scheme. The reason lies in that, the involved data array number and the refresh
number are both small; thus the fast scheme works better with small refresh cost.

For all benchmarks, the performance of the pure CDDW scheme is close to that
of the slow scheme. This is because most MWIs’ lifetime is larger than the fast
write retention time, being assigned slow mode. The proposed WMALT + CDDW
scheme always achieves the best performance. On average, it outperforms the fast,
slow, and CDDW schemes by 70.0%, 51.8%, and 50.8%, respectively. Compared to
the fast scheme with large refresh cost and the slow scheme with long write latency,
the WMALT approach can effectively reduce most of MWIs’ lifetime so that most
write instances can be written in fast mode. The CDDW scheme guarantees that
each write instance is written in the more efficient mode. Combining these two
approaches, the performance is significantly improved.

5.2.2 Dynamic Energy

The dynamic energy includes the dynamic write and read energy. Figure 12 shows
the dynamic energy under the four schemes. All results are normalized to the slow
scheme. The fast scheme costs the most dynamic energy for most benchmarks. The
WMALT + CDDW scheme reduces dynamic energy by 35.6%, 33.7%, and 32.0%
compared to the fast, slow, and CDDW schemes, respectively.

For acou2d, acou3d, and iir, the improvement by the proposed approach is
significantly compared to the fast scheme. The reason is that, the number of refresh
operations is large relative to the number of writes in these benchmarks, and thus
the refresh overhead is significant. This also explains the phenomenon that the slow
scheme works better than the fast scheme for these three applications. In this case,
the WMALT approach can bring large benefit by reducing MWIs’ lifetime and
enabling maximal fast writes.

Fig. 12 Dynamic energy improvement
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5.3 Sensitivity Study of PCM Size

Furthermore, the effectiveness of the proposed WMALT + CDDW scheme is
discussed by changing PCM sizes for measurements. Figures 13 and 14 show the
impacts of PCM size on performance and energy consumption for the benchmarks
iir, formatbit, and stencil, respectively. The PCM size is represented by the loop size
as shown in Table 7.

We have the following observations:
As the loop size becomes larger, the fast scheme degrades sharply because the

large additional cost from refresh operations is introduced. This refresh cost is
proportional to the data array size. In this case, the CDDW scheme chooses slow
mode for the MWIs of data arrays, presenting similar performance to the slow
scheme. However, the WMALT approach can make most MWIs’ lifetime reduced

Fig. 13 Impacts of PCM size on performance



194 K. Qiu et al.

Fig. 14 Impacts of PCM size on dynamic energy

Table 7 Variable loop size Benchmark Loop size

iir(1) 103 × 103

iir(2) 104 × 104

iir(3) 105 × 105

stencil(1) 102 × 102 × 102

stencil(2) 103 × 103 × 103

stencil(3) 104 × 104 × 104

formatBit(1) 103 × 103

formatBit(2) 104 × 104

formatBit(3) 105 × 105
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below the fast write retention time bound. Thus the WMALT + CDDW scheme can
make large possible MWIs written in fast mode to achieve significant improvement
on performance and dynamic energy.

As the loop size becomes smaller, the MWIs’ lifetime of data arrays becomes
smaller than the PCM fast write retention time. Thus most write operations in the
applications can be written in fast mode with no refreshes under the CDDW scheme
to achieve high performance and low power. There is no need to call the WMALT
approach.

In either case, the WMALT + CDDW scheme always offers double guarantees to
outperform the slow scheme and the fast schemes and achieves good improvement.

5.4 Discussion on Accuracy

Addressing data reliability under fast write mode, we have taken multiple steps
to obtain conservative loop tiling solutions to ensure data correctness. First, the
retention time of the volatile MLC PCM model is generated taking into account
the worst cases of process variation and resistance drifting ratio. In fact, the
retention time tr in Eqs. 9 and 10 has been underestimated. Second, the write mode
selection is determined based on static analysis of write instructions’ worst-case
lifetime (WCLT) [15]. This WCLT analysis has overestimated the lifetime of each
write instruction. Third, the parameter BND provides a safe distance between the
estimated lifetime and the retention time. It is assigned to first ensure that MWIs’
lifetime in area B (as well as area A) does not exceed the retention time of fast write
mode of MLC PCM. Meanwhile, the parameter BND should make the introduced
parameter t−r as close as possible to the retention time tr to obtain as large as possible
performance and power improvements. Altogether, all the above mechanisms can
largely provide a conservative calculation and try to make sure that MWIs’ lifetime
in area B is less than the retention time in fast mode with our tiling method.

This work focuses on stencil loops in embedded applications such as digital
signal processing, numerical simulations, and image processing. In these loops,
the computation is regular and predictable, where Eq. (8) will hold. Therefore, the
proposed technique can always ensure the correctness.

However, if each iteration’s execution time is not fixed, the proposed technique
does not always apply. In this case, the estimation of execution time of a loop tile
is not accurate. The lifetime of some elements may exceed the retention time of
fast write mode and lead to data unreliability. We will investigate this scenario and
propose techniques to handle this situation in our future work.
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6 Conclusion

This work presents a write mode aware loop tiling (WMALT) approach to effec-
tively reduce memory write instances’ lifetime and maximize fast writes in stencil
loop applications. Hence, the performance and energy consumption for loops on
MLC PCM can be significantly improved. The optimal tile size determination
is fully discussed. Experimental validation demonstrates the effectiveness of the
WMALT approach.
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