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Abstract Survival data that have a multivariate structure occur in many health
sciences including biomedical research, epidemiology studies and, clinical trials. In
most cases, an analysis of multivariate survival data deals with association structures
among survival times within same subjects or clusters. Under the conditional
(frailty) model approach, the baseline survival functions are modified using mixed
effects that incorporates cluster-specific random effects. This approach can be
routinely applied and implemented in several statistical software packages with
tools to handle analyses of clustered survival data. The random cluster terms are
typically assumed to be independently and identically distributed from a known
parametric distribution. However, in most practical application, the random effects
may change over time, and the assumed parametric random effect distribution could
be incorrect. In such cases, nonparametric forms could be used instead. In this
chapter, we develop and apply two approaches that assume (a) time dependent ran-
dom effects and (b) nonparametric random effect distribution. For both approaches,
full Bayesian inference using the Gibbs sampler algorithm is used for computing
posterior parameter for the mixing distribution and regression coefficients. The
proposed methodological approaches are demonstrated using real data sets.

1 Introduction

Modeling and analysis of clustered survival data complicate the estimation proce-
dures since independence between the survival times can no longer be assumed.
It has been proven that ignoring clustering effects when an analysis of such data
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is undertaken could lead to biased estimates of both fixed effect and variance
parameters (Heckman and Singer 1984; Pickles and Crouchley 1995; Ha et al.
2001). Random effects models and marginal models are the two most common
approaches to modeling clustered survival data. Marginal models focus on the
population average of the marginal distributions of multivariate failure times, and
the correlation is treated as a nuisance parameter to reduce the dependence of the
marginal models on the specification of the unobservable correlation structure of
clustered survival data. Parameters are often estimated using generalized estimating
equations and the corresponding variance-covariance estimators are corrected prop-
erly to account for the possible dependence structure. An excellent overview, with
examples, of the marginal approach is discussed in Lin (1994).

On the other hand, random effects models explicitly formulate the underlying
dependence in the survival data using random effects. They provide insights into the
relationship among related failure times. Conditional on the cluster-specific random
effects, the failure times are assumed to be independent. A more general framework
for incorporating random effects within a proportional hazards model is given
in Sargent (1998) and Vaida and Xu (2000). Random effect survival models are
commonly referred to as shared frailty models because observations within a cluster
share the same cluster-specific effects (Clayton 1991). The nomenclature of frailty
effect survival data has its roots from seminal work on univariate survival analyses
developed by Vaupel et al. (1979). The frailty effect is taken to collectively represent
unknown and unmeasured factors, which affect the cluster-specific baseline risk.
The frailty effects can be nested at several clustering levels (Sastry 1997; Bolstad
and Manda 2001).

Most of the methodological and analytical developments in the context of frailty
models have been based on assuming that the random effects are independent and
time-invariant. Within parametric Bayesian hierarchical models (see, for example,
Gilks et al. 1996), the usual set-up uses first stage modeling in the observed
outcomes. The second stage involves an exchangeable prior distribution on the
unobservables (the random frailties), which parameterize the distribution for the
observables. However, for some diseases, there may be an increase in the patient’s
frailty, especially after the first failure event. In such cases, there is need to
accommodate the effect of past infection patterns as well as the possibility of time-
dependent frailty, for example in recurrent event data. This first part is usually
accomplished by a monitoring risk variable, which is introduced as a fixed effect
covariate. This measures the effect of the deterministic time-dependent component
of frailty which can be modeled by the number of prior episodes as in Lin (1994)
and Lindsey (1995), or by the total time from study entry as in McGilchrist and Yau
(1996) and Yau and McGilchrist (1998). A positive coefficient corresponding to a
monitoring risk variable would imply that the rate of infection increases once a first
infection has occurred and might indicate serial dependence in the patient’s frailty.
Alternatively, time-dependent frailty could be modelled using an autoregressive
process prior. A simple model uses a stochastic AR(1) prior for the subject (cluster)-
specific frailty and residual maximum likelihood estimation procedures have been
used (Yau and McGilchrist 1998).
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Perhaps a more restrictive assumption is on the parametric model for the frailty
effects. For computational convenience, in many applications, the random frailty
effects are usually assumed to be independent and identically distributed from a dis-
tribution of some known parametric family; in particular, under multiplicative frailty
effects, the frailty distribution is from gamma or lognormal families. In practice,
information about the distribution of the random effects is often unavailable, and
this might lead to poor parameter estimates when the distribution is mis-specified
(Walker and Mallick 1997). Furthermore, estimates of covariate effects may show
changes in both sign and magnitude depending on the form of frailty distribution
(Laird 1978; Heckman and Singer 1984). To reduce the impact of distributional
assumptions on the parameter estimates, finite mixture models for frailty effects
have been studied (Laird 1978; Heckman and Singer 1984; Guo and Rodriguez
1992; Congdon 1994). A more flexible approach uses nonparametric modelling of
frailty effect terms, though this is not used widely in practice (Walker and Mallick
1997; Zhang and Steele 2004; Naskar 2008). Furthermore, asymptotic unbiasedness
for estimates of frailty variance depend on the form of the frailty distribution
(Ferreira and Garcia 2001). Thus, it is not correct to always assume that the random
frailty effects are constant over the study period nor that they arise from a known
parametric distribution with its restrictive unimodality and shape. It is important to
choose the distribution of the frailty effects to be more flexible in order to account
for arbitrary multimodality and unpredictable skewness types (Walker and Mallick
1997). These possibilities can be addressed when the frailty effects distribution is
drawn from a large class of distributions. Such a large class could be formed by
using nonparametric approaches to model the frailty effect distribution.

In this chapter, we develop methodologies for the analysis of clustered survival
where frailty random terms are modelled as time-dependent and nonparametrically.
For time-dependent random frailty effect, both the deterministic monitoring risk
and stochastic AR(1) model are developed. For the nonparametric frailty model, a
Dirichlet process prior is employed (Ferguson 1973). In both frailty effects construc-
tions, parameters are estimated within full Bayesian framework by implementing
the Gibbs sampling algorithm in WinBUGS, a statistical software package for
Bayesian inference (Spiegelhalter et al. 2004). Both methodologies are applied to
example data, and comparisons are made to the constant frailty model using the
deviance information criteria (DIC) (Spiegelhalter et al. 2002). Further details on
the methods described here could be found in Manda and Meyer (2005) and Manda
(2011). We develop the methodology for the nonparametric frailty model. In Sect. 2,
we describe the standard conditional survival model and possible extensions. The
Dirichlet process prior for nonparametric modelling of the unknown distribution of
the frailty effects is presented in Sect. 3, which also describes two constructions
of the process: the Polya urn scheme and the stick-breaking construction. We also
describe how the model can be computed using the Gibbs sampler. The child
survival data and the resulting parameter estimates are given in Sect. 4. Section 5
presents the proposed time-dependent frailty model for recurrent event analysis,
and in Sect. 5.1, we apply the proposed methodology to a data set from Fleming and
Harrington (1991) on patients suffering from chronic granulomatous disease. The
proposed methodologies are discussed in Sect. 6.
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2 Conditional Frailty Survival Model

2.1 Basic Model and Notation

Following Andersen and Gill (1982) (see also Clayton (1991) and Nielsen et al.
(1992)), the basic proportional hazards model is formulated using counting process
methodology. A counting process N(t) t ≥ 0, is a stochastic process with N(0) = 0.
The sample path of N(t) is increasing, piecewise constant, with jumps of size 1 and
right-continuous. Additionally, a stochastic process Y (t) is defined to indicate alive
and under observation at time t .

We extend the counting process methodology to account for clustered events
data. The methodology could easily be adopted to work with recurrent-times
data. Let J be the number of clusters and each has Kj subjects. For subject
jk (j = 1, . . . , J ; k = 1, . . . , Kj ), a process Njk(t) is observed, which is
a cumulative count of observed events experienced by the subject by time t . In
addition, a process Yjk(t), which indicates whether the subject was at risk for
the event at time t is also observed. We also measure a possibly time-varying p-
dimensional vector of covariates, xjk(t). Thus, for the (jk)th subject the observed
data are D = {Njk(t), Yjk(t), xjk(t); t ≥ 0}, and are assumed independent. Let
dNjk(t) be the increment of Njk(t) over an infinitesimal interval [t, t + dt); i.e.
dNjk(t) = dNjk[(t + dt)−] − dNjk(t

−); (t− is time just before t). For right-
censored survival data, the change dNjk takes a value 1 if an event occurred at time
t or 0, otherwise. Suppose Ft− is the available data just before time t . Then

E[dNjk(t)|Ft−] = P(dNjk(t) = 1|Ft−) = Yjk(t)hjk(t)dt

is the mean increase in Njk(t) over the short interval [t, t + dt), where hjk(t)

is hazard function for subject jk. The process Ijk(t) = Yjk(t)hjk(t) is called the
intensity process of the counting process. The effect of the covariates on the intensity
function for subject jk at time t is given by the Cox proportional covariate effects
function (Cox 1972)

Ijk(t |λ0, β, xjk(t), wj ) = Yjk(t)λ0(t)wj e
βT xjk(t) (1)

where β is a p-dimensional parameter vector of regression coefficients; wj is the
cluster-specific unobserved frailty, which captures the risk of the unobserved or
unmeasured risk variables; and λ0(t) is the baseline intensity, which is unspecified
and to be modelled nonparametrically. In the present study, the frailty effect wj is
assumed time-invariant, but this can be relaxed in certain situations (Manda and
Meyer 2005). Under non-informative censoring, the (conditional) likelihood of the
observed data D is proportional to
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J∏

j=1

Kj∏

k=1

∏

t≥0

(Ijk(t |λ0(t), β, xjk(t), wj ))
dNjk(t)e−Ijk(t |λ0(t),β,xjk(t),wj )dt . (2)

This is just a Poisson likelihood taking the increments dNjk(t) as inde-
pendent Poisson random variables with means Ijk(t |λ0, β, xjk(t), wj )dt =
Yjk(t)wj exp(βT xjk(t))d�0(t), where d�0(t) is the increment in the integrated
baseline hazard function in interval [t, t+dt). We conveniently model the increment
d�0(t) by a gamma d�0(t) ∼ gamma(cdH0(t), c) prior, where H0(t) is a known
non-decreasing positive function representing the prior mean of the integrated
baseline hazard function and c is the confidence attached to this mean (Kalbfleisch
1978; Clayton 1991). Mixtures of beta or triangular distributions could also be used
to nonparametrically model the baseline hazard function (Perron and Mengersen
2001), but this is not done here.

2.2 Prior on the Frailty Distribution

In a nonparametric Bayesian hierarchical structure, prior uncertainty is at the level
of the frailty distribution function F (Green and Richardson 2001). One such
prior is the Dirichlet process, which models nonparametrically the distribution
function F as a random variable. The use of the Dirichlet process prior to model
a general distribution function arises from the work of Ferguson (1973). However,
the resulting flexibility comes with higher cost due to increased computational
complexity of the analysis. A number of algorithms have been proposed recently
for fitting nonparametric hierarchical Bayesian models using Dirichlet process
mixtures; namely Gibbs sampling, sequential imputations and predictive recursions.
In a comparative analysis of these three algorithms using an example from multiple
binary sequences, Quintana and Newton (2000) found the Gibbs sampler, though
computational intensive, was more reliable. It is the algorithm of choice for studies
involving the Dirichlet process mixture to model random effects distributions in
linear models (Kleinman and Ibrahim 1998) and in multiple binary sequences
(Quintana and Newton 2000).

The Dirichlet process has previously been successfully used by Escobar (1994)
and Maceachern (1994) to estimate a vector of normal means. Recently, Dubson
(2009) introduced many interesting applications of Bayesian nonparametric priors
for inference in biomedical problems. A number of examples provide motivation
for non-parametric Bayes methods in bio-statistical applications. These ideas have
been expanded upon by (Muller and Quintana 2009) focussing more on inference for
clustering. Naskar et al. (2005) and Naskar (2008) suggest Monte Carlo Conditional
Expected Maximisation (EM), a hybrid algorithm to analyse HIV infection times in
a cohort of females and recurrent infections in kidney patients, respectively, using a
Dirichlet process mixing of frailty effects.



494 S. Manda

3 Nonparametric Dirichlet Frailty Process Frailty Model

3.1 Dirichlet Process Prior

Parametric Bayesian hierarchical modelling uses first stage modelling in the
observed outcomes dN11(t), dN12(t), . . ., dNJKJ

(t); t ≥ 0, and the second stage
uses an assumed exchangeable prior, F , usually a gamma or lognormal distribution,
on the unobservable w1, w2, . . . , wJ . Thus, we have

Stage 1 : Ijk(t |λ0, β, xjk(t), wj ) = Yjk(t)λ0wje
βT xjk(t)

Stage 2 : wj ∼ F

A stage where F is allowed to be an unknown random variable is added. Thus, we
have

Stage 3 : F ∼ DP(M0, F0(γ ))

where DP(M0, F0(.)) is a Dirichlet process (DP) prior on the distribution function
F . The DP prior has two parameters: the function F0(.), which is one’s prior
best guess for F , and the scalar M0, which measures the strength of our prior
belief on how well F0 approximates F . The Dirichlet process prior for distribution
function F stems from the work of Ferguson (1973). The property of the process
is that for any finite partition (A1, . . . , Aq) on the real line R+, the random
vector of prior probabilities (F (A1), . . . , F (Aq)) has a Dirichlet distribution with
parameter vector (M0F0(A1), . . . ,M0F0(Aq)). Using the moments of the Dirichlet
distribution, the DP has prior mean M0F0(0, .]/M0F0(0,∞) = F0(.) and variance
[M2

0 (1 − F0(.))F0(.)]/(M0 + 1).
A number of useful constructive characterisations of the Dirichlet process (DP)

have been proposed in the literature. For instance, Sethuraman (1994) (see also
Ishwaran and James (2001)), proposed that the unknown distribution F could be
represented as

F ∼
N∑

j=1

πjδwj
(3)

a random probability measure with N components; (w1, w2, . . . , wN) are
independent and identically distributed random variables with a distribution F0;
(π1, π2, . . . , πN) are random weights independent of (w1, w2, . . . , wN) . The
random weights are chosen using a stick-breaking construction

π1 = V1 and πj = (1 − V1)(1 − V2) · · · (1 − Vj−1)Vj ; j = 2, . . . , N (4)
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where Vj ’s are independent Beta (1, M0) random variables. It is necessary to set
VN = 1 to ensure that

∑N
j=1 πj = 1. In this paper, we use another important

characterisatisation of the DP mixture model: the Polya urn and Gibbs sampling
inference.

3.2 Polya Urn Sampling Scheme

The Dirichlet process is not very useful for sampling purposes. Blackwell and
Macqueen (1973) presented the process as being generated by a Polya urn scheme.
In this scheme, w1 is drawn from F0 and then the j th subsequent cluster effect wj

is drawn from this mixture distribution:

p(wj |w1, . . . , wj−1) =
mj∑

k=1

m∗
k,j

M0 + j − 1
δw∗

k,j
+ M0

M0 + j − 1
F0(.)

where δw∗
k,j

is a degenerate distribution giving mass 1 to the point w∗
k,j ; (w∗

1,j . . . ,

w∗
mj ,j ) are unique set of values in (w1, . . . , wj−1) with frequency (m∗

1,j , . . . ,

m∗
mj ,j ); i.e. m∗

1,j + . . . + m∗
mj ,j = j − 1. Thus, if M0 is very large compared

to J , little weight is given to previous samples of wj , implying that the Dirichlet
process leads to a full parametric modelling of the random frailty effects by F0. On
the other hand, if M0 is small, then the process leads to draws from the previous
sampled frailty effect.

Polya urn scheme essentially generates samples of wj from a finite mixture
distribution where the components of the mixture are all prior draws {w1, . . . , wj−1}
and w1 ∼ F0 with probabilities described in the Polya urn scheme above. Polya urn
sampling is a special case of what is known as a Chinese Restaurant Process (CRP),
a distribution on partitions obtained from a process where J customers sit down in
a Chinese restaurant with an infinite number of tables (Teh et al. 2005). The basic
process specifies that the first customer sits at the first table, then the j th subsequent
customer wj sits at table w∗

k,j , with probability proportional to the number m∗
k,j of

customers already seated at the table, otherwise the customer sits at a new table with
probability proportional to M0

Using this representation of the Dirichlet model, the joint prior distribution of
w = (w1, . . . , wJ ) is given by

p(w) =
J∏

j=1

∑j−1
l=1 δw∗

l
+ M0f0(wj )

M0 + j − 1
(5)

where δb is a degenerate distribution giving mass 1 to the point b, and f0(b) =
dF0(b).
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The Polya urn sampling results in a discrete distribution for a continuous frailty
effect by partitioning the J clusters into latent sub-clusters whose members have
identical values of w distinct from members in other sub-clusters. The number of
latent sub-clusters depends on the parameter value M0 and the number of the frailty
terms (Escobar 1994). This inherent property of partitioning a continuous sample
space into discrete clusters, has often led to the Dirichlet process being criticized as
selecting a discrete distribution for an otherwise continuous random variable.

3.3 Posterior Distribution Using Polya Urn Scheme

The marginal and joint posterior distributions of the model parameters given the data
are obtained from the product of the data likelihood (2); the priors for �0 , β, w and
the hyperprior for γ . To overcome this computational difficulty, the Gibbs sampler
(Tierney 1994), a Markov Chain Monte Carlo (MCMC) method, is used to obtain
a sample from the required posterior distribution. The Gibbs sampler algorithm
generates samples from the joint posterior distribution by iteratively sampling from
the conditional posterior distribution of each parameter, given the most recent values
of the other parameters. Let π(.|.) denote the conditional posterior distribution of
interest, �0(−t) and w−j be the vectors �0 and w, excluding the element t and j

respectively.
The conditional of wj : From Theorem 1 in Escobar (1994), conditional on the

other w and the data, wj has the following mixture distribution:

π(wj |β,w−j , N(t), Y (t)) (6)

∝
∑

l �=j L(Nj (t), Yj (t)|�0, β,wl)δwl + M0g0(wj |γ )L(Nj (t), Yj (t)|�0, β, wj )

M0
∫

L(Nj (t), Yj (t)|�0, β, wj )f0(wj |γ )dwj + ∑
l �=j L(Nj (t), Yj (t)|�0, β, wl)

where L(Nj (t), Yj (t)|�0, β,wj ) is the sampling distribution of the data in the j th
cluster. We note that

π(wj |�0, β, γ,Nj (t), Yj (t))= f0(wj |γ )L(Nj (t), Nj (t)|�0, β,wj )/π(Nj (t), Yj (t))

where π(Nj (t), Yj (t)) is the marginal density of (Nj (t), Yj (t)) which, typically,
is evaluated by numerical integration. This can be costly when the number J of
clusters is large. In order to ease the computational burden, the base measure F0 is
selected to be conjugate to the likelihood of the data. We chose F0 to be a gamma
distribution with mean 1 and variance σ 2 = 1/γ . The marginal distribution of the
cluster-specific observed data (Nj (t), Yj (t)) when wj has the gamma f0 prior is

π(Nj (t), Yj (t)) ∝
∫ Kj∏

k=1

∏

t≥0

[
(wjd�0(t)e

βT xj (t))dNj (t)e−Yj (t)wie
βT xj (t)

d�0(t)

]

w
γ−1
j e−γwj dwj
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= 	(γ + Dj)

(γ + Hj)
γ+Dj

∏

t≥0

(d�0(t)e
βT xj (t))dNj (t) (7)

where Dj and Hj = ∑
t Yj (t) exp(βT xj (t))d�0(t) are the total number of events

and integrated hazard function for cluster j , respectively. Substituting (5) into (4),
we have a two-component mixture for the posterior distribution of wj , which is
drawn in the following manner. Using probability proportional to

Ki∏

k=1

∏

t≥0

(wid�0(t)e
βT xik(t))dNik(t) exp(−Yik(t)wie

βT xik(t)d�0(t))

the selection is made from δwi
, which means that wj = wi ; and with probability

proportional to M0π(Nj (t), Yj (t)) we select wj from its full conditional posterior
distribution π(wj |�0, β, γ,Nj (t), Yj (t)), which is given by

π(wj |�0, β, γ,Nj (t), Yj (t)) ∝ F0(wj |γ )L(Nj (t), Yj (t)|�0, β,wj )

= (γ + Hj)
γ+Dj

	(γ + Dj)
w

γ+Dj −1
j e−(γ+Hj )wj

a gamma(γ + Dj, γ + Hj) distribution. This is a mixture of point masses and
a gamma distribution. This process draws a new frailty term for cluster j more
often from the sampled effects wl, l �= j if the observed likelihood for the cluster
conditional on the wl’s are relatively large; otherwise the draw is made from its
conditional gamma distribution.

The conditional distribution of d�0(t) is

π(d�0(t)|�0−t , β,w,N(t), Y (t)) ∝ d�0(t)
cdH0(t)+dN+(t)−1e−(c+R+(t |β,wi))d�0(t)

where dN+(t) = ∑J
j

∑Kj

k dNjk(t) and R+(t |β,wi) = ∑J
j

∑Kj

k Yjk(t)wj

exp(βT xjk(t)). This conditional is the gamma(cdH0(t)+dN+(t), c+R+(t |β,wi))

distribution, and will be sampled directly.
The conditional posterior distribution of β is

π(β|�0, w, γ,N(t), Y (t)) ∝ π(β)

J∏

j=1

Kj∏

k=1

∏

t≥0

wj(e
βT xjk(t))dNjk(t)

exp(−Yjk(t)wj e
βT xjk(t)d�0(t))

(8)

where π(β) is a prior density for β, commonly assumed to be the multivariate
normal distribution with mean zero and the covariance matrix having zero off-
diagonal terms. This conditional does not simplify to any known standard density.
The vector β can readily be sampled using a Metropolis-Hastings step with a
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multivariate Gaussian density centred at the last draw (Tierney 1994). That is, at
iteration m, a candidate β∗ is generated from N(βm−1,Dβ), and with probability

min

{
π(β∗|�0, w, γ,N(t), Y (t))

π(β(m−1)|�0, β,w, γ,N(t), Y (t))
, 1

}

the draw β(m) is set to β∗, otherwise β(m) = β(m−1). The covariance matrix Dβ

may be tuned to allow for an acceptance rate of around 50%.
We model the hyperparameter γ by a hyperprior gamma distribution with known

shape κ1 and scale κ2. Its conditional distribution uses the J ′ ≤ J distinct values
w∗ = (w∗

1, . . . , w∗
J ′), which are regarded as a random sample from F0 (Quintana

and Newton 2000). Subjects sharing a common parameter value in w∗ have a
common distribution and thus are in the same group. The conditional posterior
density of γ is

π(γ |β,w∗, N(t), Y (t)) ∝ γ κ1−1e−κ2γ
γ J ′γ

(	(γ ))J
′

J ′∏

j=1

(w∗
j )

γ−1e
−γ

∑J ′
j=1 w∗

j (9)

∝ γ J ′γ+κ1−1

(	(γ ))J
′ e−γ (sumj −log prodj +κ2)

where sumj = ∑J ′
j=1 w∗

j is the sum of the distinct frailty values, and prodj =
∏J ′

j=1 w∗
j is their product. This conditional does not simplify to any standard

distribution, thus requiring a non-standard method of sampling from it.

4 Application of the Model

4.1 Data

The example data concerns child survival collected in the 2000 Malawi Demo-
graphic and Health Survey. The data are hierarchically clustered in 559 enumeration
areas (EAs); these form our community clustering units. We concentrate on all of
the 11,926 births in the 5 years preceding the survey. The distribution of the number
of births per community had a mean of 21 and median of 20 with an interquartile
range of 16–26. The minimum and maximum number of births per community was 5
and 68, respectively. Infant and under-five mortality rates per 1000 live births were
estimated to be 104 and 189, respectively (NSO 2001). These rates are still very
high when compared to those around the world (56 and 82, respectively) (Bolstad
and Manda 2001). We considered some standard explanatory variables used in the
analysis of child mortality in sub-Saharan countries (Manda 1999). The distributions
of the predictor variables are presented in Table 1.
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Table 1 Descriptive
statistics of explanatory
variables used in the analysis

Variable Frequency Percent

Gender of child

Male 5951 49.9

Female 5975 51.1

Preceding birth interval

First birth 2924 24.5

<24 months 1514 12.7

24–36 months 3569 29.9

>36 months 3919 32.9

Maternal education

No education 3547 29.7

Primary 7213 63.0

Secondary and higher 866 7.3

Residence

Urban 2084 17.5

Rural 9842 82.5

Region

Northern 1936 16.2

Central 4394 36.8

Southern 5596 46.9

Total 11,926 100.0

Mean Median

Birth order 3.4 3.0

Maternal age 25.8 24.3

4.2 Implementation and Results

In a previous analysis of childhood mortality using the 1992 Malawi Demographic
Health Survey data, Manda (1999) found that the rate of death for children under
five years was 0.0055 deaths per birth per month. Thus, we set the mean cumulative
increment in the baseline child death rate as dH0(t) = 0.0055 dt , where dt

denoted a one-month interval. Our prior confidence in the mean hazard function
is reflected by assigning c = 0.1, which is weakly informative. We adopt a vague
proper gamma (1, 0.1) prior for the precision of the community frailty effect γ . This
implies that apriori the community-specific frailty wj has variance 1/10 = 0.1,
which we thought to be reasonable as the differences in risk are likely to be minimal
because we have adjusted for some important community-level factors: region and
type of residence. We do not have sufficient prior information on the prior precision
and concentration parameter M0, so we assigned it a gamma (0.001, 0.001) prior
implying a mean of 1, but with reasonable coverage across its space.

The computation of the parameter estimates was run in WinBUGS software
(Spiegelhalter et al. 2004). For each model considered, three parallel Gibbs sampler
chains from independent starting positions were ran for 50,000 iterations. All fixed
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effects and covariance parameters were monitored for convergence. Trace plots of
sample values of each of these parameters showed that they were converging to the
same distribution. We formally assessed convergence of the three chains using the
German-Rubin reduction factor, and it stabilised to 1.0 by 2000 iterations. However,
for posterior inference, we used a combined sample of the last 30,000 iterations.
Using the posterior samples of the parameters, we calculated 50% (median) and
(2.5% 97.5%) (95% CI) percentiles for posterior summaries. We also performed
limited model selection using the Bayesian Information Criterion (BIC). BIC is
defined as BIC = −2 ∗ log likelihood + P log g, where P is the number of
unknown parameters in the model and g is the sample size. A better fitting model has
a smaller BIC value. The parametric gamma and the nonparametric model had BIC
values of 13,657.68 and 11,797.96, respectively, showing that the nonparametric
approach to frailty was a better fitting model for the data.

Posterior summaries are presented in Table 2 for both the gamma frailty model
and the Dirichlet process frailty model. For the fixed effects, the results are presented
on the logarithm scale where no risk is represented by 0. The estimates of the fixed

Table 2 Posterior median and 95% credibility interval (CI) of the parameters for the Malawi child
survival data

The parametric frailty The nonparametric frailty

Parameter Median 95% CI Median 95% CI

Male child (0: No, 1: Yes) 0.095 −0.008, 0.200 0.091 −0.008, 0.186

Birth order −0.025 −0.112, 0.066 −0.027 −0.133, 0.073

Birth order2 0.003 −0.006, 0.010 0.002 −0.006, 0.010

Preceding birth interval

<2 years 0 –, – –, –

2–3 years −0.383 −0.528, −0.243 −0.381 −0.522, −0.252

>2 years −0.404 −0.555, −0.254 −0.406 −0.570, −0.254

Maternal age

(Age-26)/10 0.009 −0.154, 0.174 0.019 −0.154, 0.189

((Age-26)/10)2 0.123 0.018, 0.230 0.117 0.006, 0.227

Maternal education

Secondary+ (0: No, 1: Yes) −0.197 −0.472, 0.060 −0.206 −0.465, 0.052

Region of residence

Northern region 0 –, –

Central region −0.101 −0.275, 0.077 −0.106 −0.278, 0.079

Southern region 0.014 −0.155, 0.184 0.013 −0.152, 0.190

Rural residence (0: No, 1: Yes) 0.305 0.142, 0.479 0.295 0.127, 0.457

Frailty effects

No of risk classes 21 3, 79

Variance of sub-risk frailties 0.073 0.026, 0.379

DP precision (M0) 4.172 0.454, 33.83

Variance of frailty effects 0.056 0.027, 0.101
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effects are largely the same between a fully parametric and a nonparametric model.
Based on the 95% CI, not all of the fixed effects are significant; however, the median
estimated effects of the modelled covariates support the findings in previous studies
on child mortality in sub-Saharan Africa and other less developed countries (Sastry
1997; Manda 1999). A male child has slightly higher risk of death. Birth order has
a decreasing risk effect. A long preceding birth interval greatly reduces the risk of
death for the index child. The coefficient of the quadratic part of the age of the
mother indicates a child born to a younger or older mother has higher risk. Maternal
education is clearly an important factor: higher educational level is a surrogate for
many positive economic and social factors. Living in rural areas has an increased
risk. Region of residence is a risk factor, though not greatly pronounced.

The nonparametric Dirichlet mixing process has identified 21 classes into which
the 559 communities can be separated according to their childhood mortality risk.
The distinct latent risk values have a posterior median variance of 0.073, slightly
larger than the variance of the frailty effects under the full parametric gamma frailty.
The precision of the DP process has a median of 4, well below the total number of
communities, indicating that distribution of the community effects is more likely
multimodal and nonparametric.

5 Time Dependent Frailty

We have seen that in Sect. 3, stage 2 could be modelled conveniently, using a
gamma distribution with mean one and unknown variance. However, apart from
being restrictive, the gamma distribution has some undesirable properties in that
it is not symmetric or scale-invariant; a property which ensures that the inference
does not depend on the measuring units (Vaida and Xu 2000). We have shown how
this frailty effect could be modeled nonparametrically. In here, we still use stage
2 modeling as in Sect. 3, where some flexibility is imposed on the random frailty
effects by assuming it is time-dependent. Thus, the notation for subject frailty effect
is slightly changed to depend on t . Thus, in the following, wi(t) is assumed to follow
a first-order autocorrelated AR(1) process prior:

wi(t)|wi(t−1) = φwi(t−1) + ei(t); i = 1, . . . , I, t ≥ 0 (10)

where wi(0) ∼ Normal(0, σ 2
w) and ei(t) are i.i.d random variables having a

Normal(0, σ 2
w) distribution. The parameter φ is constrained to lie between -1 and

1 and it measures the degree of serial correlation in the subject-specific frailty. The
prior density of the frailty vector w = (w1(t), . . . , wI (t)) is given by

p(w|φ, σ 2
w) ∝

I∏

i=1

c∏

t≥0

(σ 2
W)−1/2 exp

(
− 1

2σ 2
w

(wi(t) − φwi(t−1))
2
)
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5.1 Example Data

The example data is taken from Fleming and Harrington (1991) and it describes a
double-blinded placebo controlled randomised trial of gamma interferon (γ -IFN)

in chronic granulomatous disease (CGD). The disease is a group of rare inherited
disorders of the immune function, characterized by recurrent pyogenic infections.
These infections result from the failure to generate microbicidal oxygen metabolites,
within the phagocytes, to kill ingested micro-organisms. The disease usually
presents early in life and may lead to death in childhood. There is evidence that
gamma interferon is an important macrophage activating factor which could restore
superoxide anion production and bacterial killing by phagocytes in CGD patients.
A total of 128 patients were followed for about a year and 203 infections/censorings
were observed, with the number of infections per patient ranging from 1 to 8. Of the
65 patients on placebo, 30 had at least one infection, but only 14 of the 63 patients
on gamma interferon treatment had more than one infection. This resulted in 56 and
20 infections amongst the placebo and gamma interferon groups respectively.

The original data set is shown by treatment group in Table 3. The use of
corticosteroid on entry is not sufficiently varied in the data (a very small proportion
of the subjects were using it), hence it is not used in the present analysis. These data
have previously been analysed using gap-times between infections and total times
using the number of preceding events and a shared frailty model. In our analysis,
we also use the logarithm of the number of previous infections plus 1 (labelled as
PEvents (t)) as the deterministic time-dependent component of frailty. Its parameter
ω measures the effect of past infections on the risk of the current infection. We used
5-day intervals for each patient, resulting in 88 such intervals.

Table 3 Baseline characteristics according to treatment group

Baseline characteristic Placebo Gamma interferon

No. of patients 65 63

Pattern of inheritance

(0: autosomal recessive, 1: X-linked) 41 (63.1%) 45 (71.4%)

Age (in years)a 14.98 (9.64) 14.29 (10.12)

Height (in cm)a 140.55 (34.10) 139.57 (27.24)

Weight (in kg)a 42.30 (24.32) 38.76 (19.92)

Corticosteroid use (0: No, 1: Yes) 2 (3.1%) 1 (1.6%)

Prophylactic antibiotic use (0: No, 1: Yes) 55 (84.6%) 56 (88.9%)

Gender (0: male, 1: female) 12 (18.5%) 12 (19.1%)

Hospital region (0: USA, 1: Europe) 22 (33.8%) 17 (27.0%)
aMean with standard deviation (SD) in parenthesis
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5.2 Prior Specification and Model Comparison

In running the Gibbs sampling algorithm, the prior specifications were as follows:
For both the baseline and fixed effect parameters, σ 2

0 was set to 1000, resulting in a
normal distribution which is very uninformative. In specifying noninformativeness
for the frailty variance σ 2

W , the hyperparameters κ0 and ω0 of the inverse-gamma
prior are usually set to very low values, typically 0.001 is used in the WinBUGS
software. However, κ0 and ω0 values near 0 can result in an improper posterior
density. Moreover, when the true frailty variance is near 0, inferences become
sensitive to choices of κ0 and ω0 (Gelman 2004). For numerical stability, we chose
σ 2

W ∼ inverse-gamma(1, 1). In specifying a Beta(ξ0, ϕ0) prior for ξ , the values of
ξ0 and ϕ0 were set at 3 and 2. This centres ξ at 0.6 (and φ at 0.2), but is flat far away
from this value.

We considered a number of competing models for these data and compared them
using the Deviance Information Criterion (DIC) developed by Spiegelhalter et al.
(2002). The DIC is defined as DIC = D̄ + pD where D̄ is the posterior mean
of the deviance (measures model fit) and pD is the effective number of parameters
in the model (measures model complexity). The parameter pD is calculated using
pD = D̄ − D(ψ̄), where D(ψ̄) is the deviance evaluated at the posterior mean
of the unknown parameters. The DIC is particularly useful in situations involving
complex hierarchical models in which the number of parameters used is not known.
It is a generalisation of the Akaike Information Criterion (AIC) and works on similar
principles. The models we compared were:

• Model 1: ηi(t) = βT Xi(t) + ωPEvents(t). This model allows for differences
in the infection times that only depend on the measured risk variables including
a deterministic time-dependent component of frailty; it does not allow for the
random frailty component.

• Model 2: ηi(t) = βT Xi(t) + ωPEvents(t) + Wi . This model allows for
differences depending on the covariates as well as the random frailty component
for each patient. However, it assumes that the patient random frailty is constant
over time. Thus, Wi can be considered as the frailty on entry for the ith patient
and it does not change with time.

• Model 3: ηi(t) = βT Xi(t) + ωPEvents(t) + Wi(t). Rather than assuming
a constant model for the random subject frailty effect, Model 3 uses a time-
dependent random frailty. This became our main model, which we suggest is
better at explaining all the variation in the data.

For each model, the Gibbs sampler was run for 100,000 iterations and using trace
plots of sample values, we found very rapid convergence for the baseline and
fixed effect parameters, but a longer burn-in was required for the convergence of
variance and correlation parameters. The first 50,000 iterations were discarded and
the remaining 50,000 samples were used for posterior inference. The estimates of
DIC and pD for the three competing models are presented in Table 4. It should be
noted that the use of DIC is not meant to show a true model, but rather to compare
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Table 4 DIC parameters for
model selection

Model I D̄ D(ψ̄) pD DIC

Model I 812.00 803.04 8.96 821.33

Model II 783.24 750.14 33.10 816.74

Model III 724.74 651.11 73.62 798.36

different sets of models. Model choice is based on a combination of model fit,
complexity and the substantive importance of the model. Starting with the fixed
effect Model 1, the effective number of parameters pD is 8.96, nearly equal to the
correct number of parameters which is 10 (8 fixed effects, a longitudinal parameter
and a constant baseline hazard). This model does not offer any meaningful insights
into the variation in the data above that given by the observed covariates. Thus,
we are motivated to consider random effects models, which are Models 2 and 3.
For Models 2 and 3, the estimates of pD are roughly 33 and 74 respectively. The
number of unknown is 139 and 11,266 for Models 2 and 3, respectively. Thus, even
though the number of unknown parameters in Model 3 is about 80 times larger
than that in Model 2, its effective number of parameters is just a little over twice as
large. This suggest that Model 3 is still quite sparse. Furthermore, it has the lowest
goodness-of-fit as measured by D̄. The effectiveness of Model 3 is further supported
by its lowest DIC value, indicating that this model is best in terms of overall model
choice criterion that combines goodness-of-fit with a penalty for complexity. In
these circumstances, we prefer Model 3, as it is more effective and explains the
variation in the data better.

5.3 Results

The posterior estimates from Model 1 are given in columns two and three in
Table 5. The posterior distribution of the treatment effect has mean −0.875 and
standard deviation (SD 0.276), showing that the (γ -IFN) treatment has the effect
to reduce substantially the rate of infection in CGD patients. Other covariates
that have an effect on the rate of infection include pattern of inheritance, age,
the use of prophylactic at study entry, gender and hospital region. Height and
weight were not significantly related to rate of infection. The results also show
that the risk of recurrent infection significantly increases as the number of previous
infections increases (mean 0.712 and SD 0.225). For comparison, the treatment
and the longitudinal effects in Lindsey (1995), without controlling for the other
covariates, were estimated at −0.830 (SD 0.270) and 1.109 (SD 0.227), respectively,
using maximum likelihood estimation. When we left out the number of previous
infections, the effect of treatment increases to −1.088; the same was also observed
in Lindsey (1995) where it changed to −1.052. Thus, the effect of treatment is
partially diminished by the inclusion of the number of previous infections.
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Table 5 Posterior estimates of parameters using the Gibbs sampling

Model 1 Model 2 Model 3

Parameter Mean SD Mean SD Mean SD

γ -IFN −0.875 0.276 −1.065 0.353 −0.889 0.283

Inheritance −0.458 0.297 −0.542 0.393 −0.466 0.308

Age −0.063 0.034 −0.073 0.045 −0.063 0.035

Height 0.004 0.010 0.008 0.015 0.005 0.011

Weight 0.001 0.016 0.005 0.022 0.009 0.017

Prophylactic −0.541 0.323 −0.726 0.466 −0.561 0.336

Sex −0.507 0.400 −0.536 0.520 −0.507 0.412

Hospital region −0.553 0.312 −0.658 0.400 −0.556 0.319

ω 0.712 0.225 0.146 0.330 0.699 0.247

σ 2
W – – 0.788 0.459 0.879 0.507

φ – – – – 0.313 0.278

Next, we consider Model 2 which compares to analyses in McGilchrist and Yau
(1996), Yau and McGilchrist (1998) and Vaida and Xu (2000) using (restricted)
maximum likelihood estimation on inter-event times and the EM algorithm on
the Cox model, respectively. The results are presented in columns four and five
of Table 5. The posterior estimates of the risk variables are fairly close to those
obtained under Model 1, except that the effect of the longitudinal parameter ω

is now much reduced and no longer significant. Similar results were found in
Vaida and Xu (2000), where the effect of the number of previous infections was
reduced to a non-significant result when the random frailty term was included in
the analysis. The variance of patient frailty effect is estimated with a posterior
mean 0.788 and SD 0.459 and is significant. In comparison, the estimates of the
frailty variance were 0.237 (SD 0.211) and 0.593 (SD 0.316) under ML and REML
methods, respectively, in McGilchrist and Yau (1996) when the number of the
previous infections was adjusted for, and 0.743 (SD 0.340) in Yau and McGilchrist
(1998) without controlling for the number of previous infections. It appears that the
number of previous infections explains most of the variation in the patient’s frailty
effects. However, we argue for the inclusion of both deterministic time-dependent
and random components of frailty as they control for order and common dependence
in recurrent-event times. Moreover, using a random frailty effect will also account
for the effects of the missing covariates.

Finally, we examine the results from Model 3 and these are given in the last two
columns of Table 5. Posterior means and SDs of the risk variables are in general
agreement with those obtained in Models 1 and 2. The frailty correlation parameter
φ is estimated with a posterior mean 0.313 and SD 0.278, indicating the presence of
a positive serial correlation between the recurrent event times, but not sufficiently
significant. The variance of frailty has posterior mean 0.879 and SD 0.507, showing
that, apart from the serial dependence, the recurrent event times within a subject
share a common frailty effect that partially summarizes the dependence within the
subject.
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The general criticism of using a normal model for the subject random effects is
its susceptibility to outliers. Thus, we considered three other comparable models
for the subject random effects: double exponential, logistic and td distributions
for sensitivity analyses on the parameter estimates. Using a small d, say 4, the
t4 distribution can also be used as a robust alternative model for the subject
random effects. We fitted each alternative model as in Model 3 with the same prior
specification for β and the variance parameters. The fixed effects were essentially
the same as those in Table 5. For instance the effect of treatment was estimated
with posterior mean −0.909, −0.894 and −0.883 with SD 0.296, 0.284 and 0.281,
respectively, for the double exponential, logistic and t4 models. There was a slight
sensitivity to the frailty variance estimate with mean and SD values 0.255 (0.093),
0.418 (0.112) and 0.349 (0.122) respectively. However, the overall conclusions that
the frailty variance is significant is the same for the models and in general this
application is insensitive and robust.

Our analyses yield posterior means and SDs of fixed effect parameters that are
lower than those obtained by Yau and McGilchrist (1998) using either ML or REML
estimation. However, we obtain an estimate of the frailty variance, which is larger
than the ML estimate (0.200, SD 0.480), but similar to the REML estimate (0.735,
SD 0.526). The Bayesian estimate of the correlation parameter is also lower than
both the ML (0.729, SD 0.671) and REML (0.605, SD 0.325) estimates. It should
be noted that they used total time since the first failure to define a deterministic
time-dependent frailty, in addition to using inter-event times in their models, so
these differences might be due to the modelling strategy of recurrent event times
and the deterministic time-varying component of frailty.

6 Discussion

This chapter has introduced two flexible approaches to dealing with associations
between survival times in a conditional model for the analysis of multivariate
survival data. The two approaches were demonstrated using real data sets. Firstly,
we assumed that frailty effect could be modelled nonparametrically using a Dirichlet
process prior, which specifies prior uncertainty for random frailty effects at the
level of the distribution function; this offers infinite alternatives. This could have
practical benefits in many applications, where, often, the concern is grouping units
into strata of various degrees of risk. In our analysis of the child survival data, the
nonparametric approach allowed us to categorize the sample of the communities
into 21 classes of risk of childhood mortality. Understanding that communities can
be classified according to their risk of childhood mortality provides useful guidance
on the effective use of resources for childhood survival and preventive interventions.
The identified 21 sub-classes of risk could be administratively convenient and
manageable for child health intervention programs.

We note that the model could be extended to have the covariate link function
unspecified and modelled nonparametrically, for instance, by a mixture of beta or
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triangular distributions (Perron and Mengersen 2001). Such an extension would
make the proportional hazards model fully nonparametric in all parts of the model.
A similar model involving minimal distributional assumptions on fixed and frailty
effects was presented in Zhang and Steele (2004). However, implementation of such
models would be computationally more complex and intensive, especially when
there are many short intervals for the counting process.

For the data example, the estimates of the fixed effects and 95% confidence
intervals were similar under both frailty model assumptions; thus substantive
conclusions are not affected by whether or not we use a nonparametric form for
the frailty effects. The fact that a seemingly more complex model produces similar
results to those under a simpler model is irrelevant when we consider that there is
no reason aprior to believe that a gamma shape is adequate for the distribution of
the random frailties (Dubson 2009). A parametric gamma model would have been
unable to model frailty adequately if the distribution of the frailties had arbitrary
shapes and if there were interactions between the observed and the unobserved
predictors. Thus, a nonparametric frailty model validates the parametric gamma
model in this application.

In the second approach, we have shown that a model encompassing dependence
through a time-varying longitudinal parameter with complex structure, that accounts
for both intra-subject and order correlation, provides a better fit than other traditional
models of dependence. It has also been shown for these data that only the
deterministic time component of frailty is important. In the more complex models,
using an AR(1) frailty model, the correlation and the random component show high
positive dependence and variation, respectively, though with minimal significance
since these estimates are marginally larger than their standard deviations. Despite
this, we are satisfied that a model has been presented for consideration in the
analysis of similar data structures, whether binary or count data.
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