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Preface

In modern times, the field of statistics has sustained itself as the intersection of
modelling and learning of data, in both theoretical and applied contexts. Continuous
unification of these contexts remains meaningful and relevant to graduate students,
academics, and practitioners, by fostering novel ways of developing and reaching
insight into the phenomena of random behaviour. The context within which
this insight is sought connects closely to modern buzzwords such as big data
and machine learning—thereby highlighting the continuous and crucial role that
statistics keep playing within learning and understanding data. In a more theoretical
sense, postulating methodological frameworks by proposing and deriving shapes
and distributions for data remains of certain value by ensuring continuous devel-
opment and enhancement of theory-based probabilistic models that may serve the
said phenomena of random behaviour mathematically. A more applied context calls
these theoretical developments to action, with approaches many times requiring
computationally challenging environments in which the modelling effort may be
enriched with subsequent estimation and hypothesis testing.

Within this context, this contributed volume houses a collection of contemporary
essays in statistical advancement on a variety of topics, all of which are rooted
in this intersection of theoretical and applied research. The main objective is to
unify fundamental methodological research in statistics together with computational
aspects of the modern era. Three distinct realms of sustained statistical interest
occupy this book: theory and application of statistical distributions, supervised and
unsupervised learning, and biostatistics. This book is intended for readers who are
interested in consuming contemporary advancements in these domains.

By reflecting on the above, this volume’s three main parts provide advancements
in their respective fields, with dedicated contributions paving the way for future
research and innovation within statistics. The overarching goals of this book
include:

1. emphasising cutting-edge research within both theoretical and applied statistics
and motivating the value of both;

2. highlighting computational challenges and solutions within these spheres;
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viii Preface

3. further stimulating the research within the respective focus area of our discipline
of statistics; and finally,

4. continuously unifying these spheres as part of the larger statistical field of both
an academic and practical nature.

The editing team has endeavoured to provide a balanced and stimulating
contributed book that will appeal to the diverse interests of most readers from a
fundamental theoretical as well as applied statistical background. We believe that
the topics covered in the book are timely and have high potential to impact and
influence in statistics in the three spheres of interest here.

Outline of this Book Volume

This book volume brings together 23 chapters that are organised as follows: Recent
Developments in Theory and Applications of Statistical Distributions (Part I),
Recent Developments in Supervised and Unsupervised Modelling (Part II), and
Recent Developments in Biostatistics (Part III). All the chapter contributions have
undergone a thorough and independent review process.

Part I of this book includes nine papers focusing on modern developments in
the theory and applications of statistical distribution theory. In Chap. 1, the authors
discuss computational aspects of maximum likelihood estimation within a skew
distribution paradigm. Ley and Simone provide geostatistical models for modelling
earthquake behaviour in Chap. 2. Chapter 3 contains theoretical contributions in
a multivariate setting relating to order statistics. In Chap. 4, the authors address
variable selection in a regression context based on information theoretic measures
Chapter 5 provides a departure from the usual normality assumption in modelling
condition numbers of Wishart matrices with applications within a multiple-input
multiple-output environment. Geldenhuys and Ehlers provide refreshing contribu-
tions within bivariate Polya–Aeppli modelling in Chap. 6. In Chap. 7, Arashi et al.
describe and apply a multivariate construction technique with a Dirichlet flavour.
Chapter 8 sees a contribution of normal mean–variance mixture using Birnbaum–
Saunders distribution and evaluation of risk measures by Naderi et al. Finally, in
Part I, Chap. 9 contains new suggestions for modelling of linear combinations of
chi-square random variables by Coelho.

Part II comprises seven chapters that highlight contemporary developments in
supervised and unsupervised modelling. In Chap. 10, Banerjee discusses conjugate
Bayesian approaches within a geostatistical setting for massive data sets. Roozbeh
et al. provide an approach for modelling high-dimensional data using improved yet
robust estimators in Chap. 11. Chan et al. investigate optimal allocation subject to
time censoring in a regression sense in Chap. 12, and Stein et al. explore a copula
approach to spatial interpolation of extreme value modelling in Chap. 13. Chapter 14
discusses a scale mixture approach to t-distributed mixture regression, and Samawi
writes on improving logistic regression performance by way of extreme ranking in
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Preface ix

Chap. 15. Finally, Ge et al. provide insight into the application of spatial statistics
in a policy framework for China in Chap. 16.

Part III includes seven chapters that focus on recent contributions within the
realm of biostatistics. Chapter 17 includes a thorough and meaningful contribution
within novel Bayesian adaptive designs in cancer clinical trials. In Chap. 18, the
authors utilise topological data analysis in a computational and statistical sense
in a real data application. Chapter 19 provides refreshing contributions within
simultaneous variable selection and estimation of longitudinal data, and Chap. 20
also contains contributions of variable selection but within an interval-censored
failure time data framework. Manda discusses the modelling of frailty effects in
clustered survival data in Chap. 21. Arreola and Wilson apply partitioned GMM
models to survey data in Chap. 22, and the book concludes with a contribution from
Chen and Lio about a generalised Rayleigh–Exponential–Weibull distribution and
its application within interval-censored data in Chap. 23.
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Part I
Recent Developments in Theory and

Applications of Statistical Distributions



Some Computational Aspects of
Maximum Likelihood Estimation
of the Skew-t Distribution

Adelchi Azzalini and Mahdi Salehi

Abstract Since its introduction, the skew-t distribution has received much attention
in the literature both for the study of theoretical properties and as a model for data
fitting in empirical work. A major motivation for this interest is the high degree
of flexibility of the distribution as the parameters span their admissible range, with
ample variation of the associated measures of skewness and kurtosis. While this
high flexibility allows to adapt a member of the parametric family to a wide range
of data patterns, it also implies that parameter estimation is a more delicate operation
with respect to less flexible parametric families, given that a small variation of the
parameters can have a substantial effect on the selected distribution. In this context,
the aim of the present contribution is to deal with some computational aspects of
maximum likelihood estimation. A problem of interest is the possible presence of
multiple local maxima of the log-likelihood function. Another one, to which most
of our attention is dedicated, is the development of a quick and reliable initialization
method for the subsequent numerical maximization of the log-likelihood function,
both in the univariate and the multivariate context.

1 Background and Aims

1.1 Flexible Distributions: The Skew-t Case

In the context of distribution theory, a central theme is the study of flexible
parametric families of probability distributions, that is, families allowing substantial
variation of their behaviour when the parameters span their admissible range.
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For brevity, we shall refer to this domain with the phrase ‘flexible distributions’.
The archetypal construction of this logic is represented by the Pearson system
of curves for univariate continuous variables. In this formulation, the density
function is regulated by four parameters, allowing wide variation of the measures
of skewness and kurtosis, hence providing much more flexibility than in the basic
case represented by the normal distribution, where only location and scale can be
adjusted.

Since Pearson times, flexible distributions have remained a persistent theme
of interest in the literature, with a particularly intense activity in recent years.
A prominent feature of newer developments is the increased consideration for
multivariate distributions, reflecting the current availability in applied work of larger
datasets, both in sample size and in dimensionality. In the multivariate setting, the
various formulations often feature four blocks of parameters to regulate location,
scale, skewness and kurtosis.

While providing powerful tools for data fitting, flexible distributions also pose
some challenges when we enter the concrete estimation stage. We shall be working
with maximum likelihood estimation (MLE) or variants of it, but qualitatively
similar issues exist for other criteria. Explicit expressions of the estimates are
out of the question; some numerical optimization procedure is always involved
and this process is not so trivial because of the larger number of parameters
involved, as compared with fitting simpler parametric models, such as a Gamma
or a Beta distribution. Furthermore, in some circumstances, the very flexibility of
these parametric families can lead to difficulties: if the data pattern does not aim
steadily towards a certain point of the parameter space, there could be two or more
such points which constitute comparably valid candidates in terms of log-likelihood
or some other estimation criterion. Clearly, these problems are more challenging
with small sample size, later denoted n, since the log-likelihood function (possibly
tuned by a prior distribution) is relatively more flat, but numerical experience has
shown that they can persist even for fairly large n, in certain cases.

The focus of interest in this paper will be the skew-t (ST) distribution introduced
by Branco and Dey (2001) and studied in detail by Azzalini and Capitanio (2003);
see also Gupta (2003). The main formal constituents and properties of the ST family
will be summarized in the next subsection. Here, we recall instead some of the
many publications that have provided evidence of the practical usefulness of the ST
family, in its univariate and multivariate version, thanks to its capability to adapt
to a variety of data patterns. The numerical exploration by Azzalini and Genton
(2008), using data of various origins and nature, is an early study in this direction,
emphasizing the potential of the distribution as a tool for robust inference. The
robustness aspects of ST-based inference has also been discussed by Azzalini and
Capitanio (2014, § 4.3.5) and more extensively by Azzalini (2016). On the more
applied domain, numerous publications motivated by application problems have
further highlighted the ST usefulness, typically with data distributions featuring
substantial tailweight and asymmetry. For space reasons, the following list reports
only a few of the many publications of this sort, with a preference for early work:
Walls (2005) and Pitt (2010) use the ST distribution for modelling log-transformed
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returns of film and music industry products as a function of explanatory variables;
Meucci (2006) and Adcock (2010) develop methods for optimal portfolio allocation
in a financial context, where long tails and asymmetry of returns distribution are
standard features; Ghizzoni et al. (2010) use the multivariate ST distributions to
model riverflow, jointly at multiple sites; Pyne et al. (2009) present an early model-
based clustering formulation using the multivariate ST distributions as the basic
component for flow cytometric data analysis.

Given its value in data analysis, but also the above-mentioned possible crit-
ical aspects of the log-likelihood function, it seems appropriate to explore the
corresponding issues for MLE computation and to develop a methodology which
provides good starting points for the numerical maximization of the log-likelihood.
After a brief summary of the main facts about the ST distribution in the next
subsection, the rest of the paper is dedicated to these issues. Specifically, one section
examines qualitatively and numerically various aspects of the ST log-likelihood,
while the rest of the paper develops a technique to initialize the numerical search
for MLE.

To avoid potential misunderstanding, we underline that the above-indicated
program of work does not intend to imply a general inadequacy of the currently
available computational resources, which will be recalled in due course. There are,
however, critical cases where these resources run into problems, most typically
when the data distribution exhibits very long tails. For these challenging situations,
an improved methodology is called for.

1.2 The Skew-t Distribution: Basic Facts

Before entering our actual development, we recall some basic facts about the
ST parametric family of continuous distributions. In its simplest description, it
is obtained as a perturbation of the classical Student’s t distribution. For a more
specific description, start from the univariate setting, where the components of the
family are identified by four parameters. Of these four parameters, the one denoted
ξ in the following regulates the location of the distribution; scale is regulated by the
positive parameter ω; shape (representing departure from symmetry) is regulated by
λ; tail-weight is regulated by ν (with ν > 0), denoted ‘degrees of freedom’ like for
a classical t distribution.

It is convenient to introduce the distribution in the ‘standard case’, that is, with
location ξ = 0 and scale ω = 1. In this case, the density function is

t (z; λ, ν) = 2 t (z; ν) T
(
λz

√
ν + 1

ν + z2
; ν + 1

)
, z ∈ R, (1)
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where

t (z; ν) = �
( 1

2 (ν + 1)
)

√
π ν �

( 1
2ν
) (1 + z2

ν

)−(ν+1)/2

, z ∈ R, (2)

is the density function of the classical Student’s t on ν degrees of freedom and
T (·; ν) denotes its distribution function; note however that in (1) this is evaluated
with ν + 1 degrees of freedom. Also, note that the symbol t is used for both
densities in (1) and (2), which are distinguished by the presence of either one or
two parameters.

If Z is a random variable with density function (1), the location and scale
transform Y = ξ + ωZ has density function

tY (x; θ) = ω−1 t (z; λ, ν), z = ω−1(x − ξ), (3)

where θ = (ξ, ω, λ, ν). In this case, we write Y ∼ ST(ξ, ω2, λ, ν), where ω is
squared for similarity with the usual notation for normal distributions.

When λ = 0, we recover the scale-and-location family generated by the t

distribution (2). When ν → ∞, we obtain the skew-normal (SN) distribution with
parameters (ξ, ω, λ), which is described for instance by Azzalini and Capitanio
(2014, Chap. 2). When λ = 0 and ν → ∞, (3) converges to the N(ξ, ω2)

distribution.
Some instances of density (1) are displayed in the left panel of Fig. 1. If λ was

replaced by −λ, the densities would be reflected on the opposite side of the vertical
axis, since −Y ∼ ST(−ξ, ω2,−λ, ν).
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Fig. 1 The left plot displays a set of univariate skew-t density functions when λ = 5 and ν varying
across a range of values; the right plot displays the contour level plot of a bivariate skew-t density
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Similarly to the classical t distribution, moments exist when their order is smaller
than ν. Under this condition, expressions for the mean value, the variance and the
coefficients of skewness and excess kurtosis, namely the standardized third and
fourth cumulants, are as follows:

μ = E {Y } = ξ + ω bν δ, if ν > 1,

σ 2 = var{Y } = ω2
[

ν

ν − 2
− (bν δ)

2
]
= ω2σ 2

Z , say, if ν > 2,

γ1 = bν δ

σ 3
Z

[
ν(3 − δ2)

ν − 3
− 3 ν

ν − 2
+ 2 (bν δ)

2
]
, if ν > 3,

γ2 = 1

σ 4
Z

[
3ν2

(ν − 2)(ν − 4)
− 4(bν δ)2ν(3 − δ2)

ν − 3
+ 6(bν δ)2ν

ν − 2
− 3(bν δ)

4
]
− 3

if ν > 4,

where

δ = δ(λ) = λ

(1 + λ2)1/2
∈ (−1, 1), bν =

√
ν �

(
1
2 (ν − 1)

)
√
π �

(
1
2ν
) if ν > 1.

(4)
It is visible that, as λ spans the real line, so does the coefficient of skewness γ1

when ν → 3 from above. For ν ≤ 3, γ1 does not exist; however, at least one of the
tails is increasingly heavier as ν → 0, given the connection with the Student’s t .
A fairly similar pattern holds for the coefficients of kurtosis γ2, with the threshold
at ν = 4 for its existence. If ν → 4+, the range of γ2 is [0,∞). The feasible
(γ1, γ2) space when ν > 4 is displayed in Figure 4.5 of Azzalini and Capitanio
(2014). Negative γ2 values are not achievable, but this does not seem to be a major
drawback in most applications.

The multivariate ST density is represented by a perturbation of the classical
multivariate t density in d dimensions, namely

td (z; �̄, ν) = �((ν + d)/2)

(νπ)d/2 �(ν/2) det(�̄)1/2

(
1 + Q(z)

ν

)− ν+d
2

, z ∈ R
d . (5)

where �̄ is a symmetric positive-definite matrix with unit diagonal elements and
Q(z) = z��̄−1z. The multivariate version of (1) is then given by

td (x) = 2 td (z; �̄, ν) T
(
α�z

√
ν + d

ν +Q(z)
; ν + d

)
, z ∈ R

d (6)
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where α is a d-dimensional vector regulating asymmetry. An instance of density (6)
with d = 2 is displayed in the right panel of Fig. 1 via contour level curves.

Similarly to the univariate setting, we consider the location and scale transforma-
tion of a variable Z with density (6) to Y = ξ + ωZ where now ξ ∈ R

d and ω is a
diagonal matrix with positive diagonal elements. For the resulting variable, we use
the notation Y ∼ STd(ξ,�, α, ν) where � = ω�̄ω.

One property required for our later development is that each marginal component
of Y is a univariate ST variable, having a density of type (1) whose parameters are
extracted from the corresponding components of Y , with the exception of λ for
which the marginalization step is slightly more elaborate.

There are many additional properties of the ST distribution which, for space
reasons, we do not report here and refer the reader to the quoted literature. A self-
contained account is provided by the monograph (Azzalini and Capitanio 2014); see
specifically Chapter 4 for the univariate case and Chapter 6 for the multivariate case.

2 On the Likelihood Function of ST Models

2.1 Basic General Aspects

The high flexibility of the ST distribution makes it particularly appealing in a
wide range of data fitting problems, more than its companion, the SN distribution.
Reliable techniques for implementing connected MLE or other estimation methods
are therefore crucial.

From the inference viewpoint, another advantage of the ST over the related SN
distribution is the lack of a stationary point at λ = 0 (or α = 0 in the multivariate
case), and the implied singularity of the information matrix. This stationary point
of the SN is systematic: it occurs for all samples, no matter what n is. This peculiar
aspect has been emphasized more than necessary in the literature, considering that
it pertains to a single although important value of the parameter. Anyway, no such
problem exists under the ST assumption. The lack of a stationary point at the
origin was first observed empirically and welcomed as ‘a pleasant surprise’ by
Azzalini and Capitanio (2003), but no theoretical explanation was given. Additional
numerical evidence in this direction has been provided by Azzalini and Genton
(2008). The theoretical explanation of why the SN and the ST likelihood functions
behave differently was finally established by Hallin and Ley (2012).

Another peculiar aspect of the SN likelihood function is the possibility that the
maximum of the likelihood function occurs at λ = ±∞, or at ‖α‖ → ∞ in
the multivariate case. Note that this happens without divergence of the likelihood
function, but only with divergence of the parameter achieving the maximum. In this
respect the SN and the ST model are similar: both of them can lead to this pattern.

Differently from the stationarity point at the origin, the phenomenon of divergent
estimates is transient: it occurs mostly with small n, and the probability of its
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occurrence decreases very rapidly when n increases. However, when it occurs for
the n available data, we must handle it. There are different views among statisticians
on whether such divergent values must be retained as valid estimates or they must be
rejected as unacceptable. We embrace the latter view, for the reasons put forward by
Azzalini and Arellano-Valle (2013), and adopt the maximum penalized likelihood
estimate (MPLE) proposed there to prevent the problem. While the motivation for
MPLE is primarily for small to moderate n, we use it throughout for consistency.

There is an additional peculiar feature of the ST log-likelihood function, which
however we mention only for completeness, rather than for its real relevance. In
cases when ν is allowed to span the whole positive half-line, poles of the likelihood
function must exist near ν = 0, similarly to the case of a Student’s t with unspecified
degrees of freedom. This problem has been explored numerically by Azzalini and
Capitanio (2003, pp. 384–385), and the indication was that these poles must exist at
very small values of ν, such as ν̂ = 0.06 in one specific instance.

This phenomenon is qualitatively similar to the problem of poles of the likelihood
function for a finite mixture of continuous distributions. Even in the simple case of
univariate normal components, there always exist n poles on the boundary of the
parameter space if the standard deviations of the components are unrestricted; see
for instance Day (1969, Section 7). The problem is conceptually interesting, in both
settings, but in practice it is easily dealt with in various ways. In the ST setting, the
simplest solution is to impose a constraint ν > ν0 > 0 where ν0 is some very small
value, such as ν0 = 0.1 or 0.2. Even if fitted to data, a t or ST density with ν < 0.1
would be an object hard to use in practice.

2.2 Numerical Aspects and Some Illustrations

Since, on the computational side, we shall base our work the R package sn,
described by Azzalini (2019), it is appropriate to describe some key aspects of
this package. There exists a comprehensive function for model fitting, called selm,
but the actual numerical work in case of an ST model is performed by functions
st.mple and mst.mple, in the univariate and the multivariate case, respectively.
To numerical efficiency, we shall be using these functions directly, rather than via
selm. As their names suggest, st.mple and mst.mple perform MPLE, but they
can be used for classical MLE as well, just by omitting the penalty function. The rest
of the description refers to st.mple, but mst.mple follows a similar scheme.

In the univariate case, denote by θ = (ξ, ω, α, ν)� the parameters to be
estimated, or possibly θ = (β�, ω, α, ν)� when a linear regression model is
introduced for the location parameter, in which case β is a vector of p regression
coefficients. Denote by logL(θ) the log-likelihood function at point θ . If no starting
values are supplied, the first operation of st.mple is to fit a linear model to
the available explanatory variables; this reduces to the constant covariate value 1
if p = 1. For the residuals from this linear fit, sample cumulants of order up to
four are computed, hence including the sample variance. An inversion from these
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values to θ may or may not be possible, depending on whether the third and fourth
sample cumulants fall in the feasible region for the ST family. If the inversion is
successful, initial values of the parameters are so obtained; if not, the final two
components of θ are set at (α, ν) = (0, 10), retaining the other components from
the linear fit. Starting from this point, MLE or MPLE is searched for using a general
numerical optimization procedure. The default procedure for performing this step is
the R function nlminb, supplied with the score functions besides the log-likelihood
function. We shall refer, comprehensively, to this currently standard procedure as
‘method M0’.

In all our numerical work, method M0 uses st.mple, and the involved function
nlminb, with all tuning parameters kept at their default values. The only activated
option is the one switching between MPLE and MLE, and even this only for the
work of the present section. Later on, we shall always use MPLE, with penalty
function Qpenalty which implements the method proposed in Azzalini and
Arellano-Valle (2013).

We start our numerical work with some illustrations, essentially in graphical
form, of the log-likelihood generated by some simulated datasets. The aim is to
provide a direct perception, although inevitably limited, of the possible behaviour
of the log-likelihood and the ensuing problems which it poses for MLE search and
other inferential procedures. Given this aim, we focus on cases which are unusual,
in some way or another, rather than on ‘plain cases’.

The type of graphical display which we adopt is based on the profile log-
likelihood function of (α, ν), denoted logLp(α, ν). This is obtained, for any given
(α, ν), by maximizing logL(θ) with respect to the remaining parameters. To
simplify readability, we transform logLp(α, ν) to the likelihood ratio test statistic,
also called ‘deviance function’:

D(α, ν) = 2 {logLp(α̂, ν̂)− logLp(α, ν)} (7)

where logLp(α̂, ν̂) is the overall maximum value of the log-likelihood, equivalent
to logL(θ̂). The concept of deviance applies equally to the penalized log-likelihood.

The plots in Fig. 2 displays, in the form of contour level plots, the behaviour of
D(α, ν) for two artificially generated samples, with ν expressed on the logarithmic
scale for more convenient readability. Specifically, the top plots refer to a sample
of size n = 50 drawn from the ST(0, 1, 1, 2); the left plot, refers to the regular
log-likelihood, while the right plot refers to the penalized log-likelihood. The plots
include marks for points of special interest, as follows:


 the true parameter point;
◦ the point having maximal (penalized) log-likelihood on a 51 × 51 grid of points

spanning the plotted area;
+ the MLE or MPLE point selected by method M0;
∗ the preliminary estimate to be introduced in Sect. 3.2, later denoted M1;
× the MLE or MPLE point selected by method M2 presented later in the text.
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Fig. 2 Contour level plots of the deviance function for simple samples from ST(0, 1, α, ν)
associated to the log-likelihood (on the left side) or to its penalized version (on the right side).
The top plots refer to a sample of size n = 50 from ST(0, 1, 1, 2); the bottom plots refer to a
sample of size n = 300 from ST(0, 1, 2, 3). See the text for explanation of the marked points

It will be noticed that the top-left plot does not show a + mark. This is because
the MLE point delivered by M0 has α̂ = ν̂ → ∞ (actually some huge values
representing a numerical ‘approximations of infinity’), where logLp ≈ −81.85;
consequently the maximum of logLp over the plotted area takes place at its margin.
Note that the log-likelihood function has a local maximum at about (α, ν) =
(1.45, 5.6), where logLp ≈ −84.09; this local maximum is quite close to the true
parameter point, especially so in the light of the limited sample size. There are two
messages from this example: one is that the log-likelihood may have more than one
maximum; the other is that a local maximum can provide a better choice than the
global maximum, at least in some cases.

Given that α̂ = ∞, consider MPLE estimation in the top-right plot. The
maximum of logLp, marked by ◦, is now close to the point (1.45, 5.6), but method
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M0 fails to find it, and it picks up the point (15.5, 6.4). This must be due to a poor
choice of the initial point for numerical search, given that method M2, which differs
only for this initial point, lands on the correct point.

Peculiar behaviours, either of the log-likelihood or of the estimation procedures
or both of them, are certainly more frequent when n is small or moderate, but
problems can persist even for fairly large n, as illustrated by the bottom two plots
of Fig. 2 which refer to a sample of size n = 300 from ST(0, 1, 2, 3). In this case,
M0 yields α̂ ≈ 3 and ν̂ → ∞, denoted by the vertical ticks below the top side of
the plotted area; the associated logLp value is −422.5 for the left plot, −424.4 for
the right plot. Both these values are lower than the corresponding maximal logLp
values, −419.8 and −420.8. Again, better initial search points used by method M2
leads to the correct global maxima, at about (2.4, 5.6) and (2.3, 5.0), respectively.

3 On the Choice of Initial Parameters for MLE Search

The aim of this section, which represents the main body of the paper, is to develop
a methodology for improving the selection of initial parameter values from where
to start the MPLE search via some numerical optimization technique, which should
hopefully achieve a higher maximum.

3.1 Preliminary Remarks and the Basic Scheme

We have seen in Sect. 2 the ST log-likelihood function can be problematic; it is then
advisable to select carefully the starting point for the MLE search. While contrasting
the risk of landing on a local maximum, a connected aspect of interest is to reduce
the overall computing time. Here are some preliminary considerations about the
stated target.

Since these initial estimates will be refined by a subsequent step of log-likelihood
maximization, there is no point in aiming at a very sophisticate method. In addition,
we want to keep the involved computing header as light as possible. Therefore, we
want a method which is simple and quick to compute; at the same time, it should be
reasonably reliable, hopefully avoiding nonsensical outcomes.

Another consideration is that we cannot work with the methods of moments, or
some variant of it, as this would impose a condition ν > 4, bearing in mind the
constraints recalled in Sect. 1.2. Since some of the most interesting applications of
ST-based models deal with very heavy tails, hence with low degrees of freedom,
the condition ν > 4 would be unacceptable in many important applications. The
implication is that we have to work with quantiles and derived quantities.

To ease exposition, we begin by presenting the logic in the basic case of
independent observations from a common univariate distribution ST(ξ, ω2, λ, ν).
The first step is to select suitable quantile-based measures of location, scale,
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asymmetry and tail-weight. The following list presents a set of reasonable choices;
these measures can be equally referred to a probability distribution or to a sample,
depending on the interpretation of the terms quantile, quartile and alike.

Location The median is the obvious choice here; denote it by q2, since it coincides
with the second quartile.

Scale A commonly used measure of scale is the semi-interquartile difference, also
called quartile deviation, that is

dq = 1
2 (q3 − q1)

where qj denotes the j th quartile; see for instance Kotz et al. (2006, vol. 10,
p. 6743).

Asymmetry A classical non-parametric measure of asymmetry is the so-called
Bowley’s measure

G = (q3 − q2)− (q2 − q1)

q3 − q1
= q3 − 2 q2 + q1

2 dq
;

see Kotz et al. (2006, vol. 12, p. 7771–3). Since the same quantity, up to
an inessential difference, had previously been used by Galton, some authors
attribute to him its introduction. We shall refer to G as the Galton-Bowley
measure.

Kurtosis A relatively more recent proposal is the Moors measure of kurtosis,
presented in Moors (1988),

M = (e7 − e5)+ (e3 − e1)

e6 − e2

where ej denotes the j th octile, for j = 1, . . . , 7. Clearly, e2j = qj for j =
1, 2, 3.

A key property is that dq is independent of the location of the distribution, and G
and M are independent of location and scale.

For any distribution ST(ξ, ω2, λ, ν), the values of Q = (q2, dq,G,M) are
functions of the parameters θ = (ξ, ω, λ, ν). Given a set of observations y =
(y1, . . . , yn) drawn from ST(ξ, ω2, λ, ν) under mutual independence condition, we
compute sample values of Q̃ = (q̃2, d̃q , G̃, M̃) of Q from the sample quantiles and
then inversion of the functions connecting θ and Q will yield estimates θ̃ of the
ST parameters. In essence, the logic is similar to the one underlying the method of
moments, but with moments replaced by quantiles.

In the following subsection, we discuss how to numerically carry out the
inversion from Q to θ . Next, we extend the procedure to settings which include
explanatory variables and multivariate observations.
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3.2 Inversion of Quantile-Based Measures to ST Parameters

For the inversion of the parameter set Q = (q2, dq,G,M) to θ = (ξ, ω, λ, ν), the
first stage considers only the components (G,M) which are to be mapped to (λ, ν),
exploiting the invariance of G and M with respect to location and scale. Hence, at
this stage, we can work assuming that ξ = 0 and ω = 1.

Start by computing, for any given pair (λ, ν), the set of octiles e1, . . . , e7 of
ST(0, 1, λ, ν), and from here the corresponding (G,M) values. Operationally, we
have computed the ST quantiles using routine qst of package sn. Only non-
negative values of λ need to be considered, because a reversal of the λ sign simply
reverses the sign of G, while M is unaffected, thanks to the mirroring property of
the ST quantiles when λ is changed to −λ.

Initially, our numerical exploration of the inversion process examined the contour
level plots of G and M as functions of λ and ν, as this appeared to be the more
natural approach. Unfortunately, these plots turned out not to be useful, because of
the lack of a sufficiently regular pattern of the contour curves. Therefore these plots
are not even displayed here.

A more useful display is the one adopted in Fig. 3, where the coordinate axes are
now G and M . The shaded area, which is the same in both panels, represents the
set of feasible (G,M) points for the ST family. In the first plot, each of the black
lines indicates the locus of points with constant values of δ, defined by (4), when ν
spans the positive half-line; the selected δ values are printed at the top of the shaded
area, when feasible without clutter of the labels. The use of δ instead of λ simply
yields a better spread of the contour lines with different parameter values, but it
is conceptually irrelevant. The second plot of Fig. 3 displays the same admissible
region with superimposed a different type of loci, namely those corresponding to
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Fig. 3 Loci of the (G,M) space for given values of δ as ν varies (left plot) and for given values
of ν as δ varies (right plot)
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specified values of ν, when δ spans the [0, 1] interval; the selected ν values are
printed on the left side of the shaded area.

Details of the numerical calculations are as follows. The Galton-Bowley and the
Moors measures have been evaluated over a 13 × 25 grid of points identified by the
selected values

δ∗ = (0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99, 1),

ν∗ = (0.30, 0.32, 0.35, 0.40, 0.45, 0.50, 0.60, 0.70, 0.80, 0.90, 1, 1.5, 2,

3, 4, 5, 7, 10, 15, 20, 30, 40, 50, 100, ∞) .

The G and M values so obtained form the basis of Fig. 3 and subsequent calcula-
tions. Note that, while the vectors δ∗ and ν∗ identify a regular grid of points on the
(δ, ν) space, they correspond to a curved grid on the shaded regions of Fig. 3.

Boundary parameter values require a special handling. Specifically, δ = 1 and
correspondingly λ = ∞ identify the Student’s t distribution truncated below 0, that
is, the square root transformation of the Snedecor’s F(1, ν) distribution; hence, in
this case the quantiles are computed as square roots of the F(1, ν) quantiles. The
associated points lie on the right-side boundary of the shaded area. Another special
value is ν = ∞ which corresponds to the SN distribution. In this case, function qsn
of package sn has been used; the corresponding points lie on the concave curve in
the bottom-left corner of the shaded area.

Conceptually, Fig. 3 represents the key for the inversion from (G,M) to (δ, ν)
and equivalently to (λ, ν) since λ = (1 − δ2)−1/2δ. However, in practical terms, we
must devise a mechanism for inversely interpolating the (G,M) values computed at
the grid points. Evaluation of this interpolation scheme at the sample values (G̃, M̃)

will yield the desired estimates.
To this end, the second plot indicates the most favourable front for tackling the

problem, since its almost horizontal lines show that the Moors measure is very
nearly a function of ν only. Denote by M◦ the value of M when δ = 0. The 25
available values of M◦ at ν∗ are reported in the second column of Table 1; the
remaining columns will be explained shortly. From these 25 values, an interpolating
spline of 1/ν as a function of M◦ has been introduced. Use of the 1/ν transformed
variable substantially reduces the otherwise extreme curvature of the function.
Evaluation of this spline function at the sample value M̃ and conversion into its
reciprocal yields an initial estimate ν̃.

Consider now estimation of δ or equivalently of λ, a task which essentially
amounts to approximate the curves in the first plot in Fig. 3. After some numerical
exploration, it turned out that a closely interpolating function can be established in
the following form:

log λ ≈ η
(ν)
1 u+ η

(ν)
2 u3 + η

(ν)
3 u−3, u = logG. (8)
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Table 1 Coefficients used
for interpolation of the G and
M tabulated values

ν∗ M
∣∣
δ=0 η

(ν)
1 η

(ν)
2 η

(ν)
3

0.30 9.946 2.213831 −0.315418 −0.007641

0.32 8.588 2.022665 −0.240821 −0.012001

0.35 7.110 1.790767 −0.164193 −0.021492

0.40 5.525 1.506418 −0.090251 −0.047034

0.45 4.543 1.305070 −0.050702 −0.087117

0.50 3.888 1.156260 −0.028013 −0.143526

0.60 3.088 0.952435 −0.005513 −0.307509

0.70 2.630 0.819371 0.004209 −0.536039

0.80 2.339 0.724816 0.008992 −0.818739

0.90 2.142 0.653206 0.011596 −1.142667

1.00 2.000 0.596276 0.013136 −1.495125

1.50 1.652 0.417375 0.015798 −3.365100

2.00 1.517 0.314104 0.016371 −5.011929

3.00 1.403 0.192531 0.016274 −7.304089

4.00 1.354 0.123531 0.015682 −8.676470

5.00 1.327 0.080123 0.014987 −9.546498

7.00 1.298 0.030605 0.013674 −10.561206

10.00 1.277 −0.003627 0.012113 −11.335506

15.00 1.262 −0.024611 0.010334 −11.977601

20.00 1.254 −0.030903 0.009149 −12.343369

30.00 1.247 −0.031385 0.007650 −12.789281

40.00 1.244 −0.027677 0.006721 −13.074983

50.00 1.241 −0.023285 0.006079 −13.284029

100.00 1.237 −0.005288 0.004478 −13.874691

∞ 1.233

where the fitted values of the coefficients η(ν)j for the selected ν∗ values are reported
in the last three columns of Table 1, with the exception of ν = ∞. Use of (8)
combined with the coefficients of Table 1 allows to find an approximate value of λ
for the selected values of ν. If an intermediate value of ν must be considered, such
that ν1 < ν < ν2 where ν1, ν2 are two adjacent values of ν∗, a linear interpolation
of the corresponding coefficients is performed. More explicitly, a value of η(ν)j is

obtained by linear interpolation of η(ν1)
j and η(ν2)

j , for j = 1, 2, 3; then (8) is applied
using these interpolated coefficients. If ν is outside the range of finite ν values in
the first column of Table 1, the η(ν)j values associated with the closest such value of
ν are used.

Operationally, we use the just-described scheme with ν set at the value ν̃ obtained
earlier, leading to an estimate λ̃ of λ.

Numerical testing of this procedure has been performed as follows. For a number
of pairs of values (α, ν), the corresponding octiles and the (G,M) measures have
been computed and the proposed procedure has been applied to these measures. The
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returned parameter values were satisfactorily close to the original (α, ν) pair, with
some inevitable discrepancies due to the approximations involved, but of limited
entity. If necessary, a refinement can be obtained by numerical search targeted
to minimize a suitable distance between a given pair (G,M) and the analogous
values derived from the associated (α, ν) pair. However, this refinement was not felt
necessary in the numerical work described later, thanks to the good working of the
above-described interpolation scheme.

We are now left with estimation of ξ and ω. Bearing in mind the representation
Y = ξ + ωZ introduced just before (3), ω is naturally estimated by

ω̃ = q3 − q1

qST
3 − qST

1

(9)

where the terms in the numerator are sample quartiles and those in the denominator
are quartiles of Z ∼ ST(0, 1, λ̃, ν̃).

Consideration of Y = ξ + ωZ again says that an estimate of ξ can be obtained
as an adjustment of the sample median q2 via

ξ̃ = q2 − ω̃ qST
2 (10)

where qST
2 is the median of Z ∼ ST(0, 1, λ̃, ν̃).

The estimates so produced are marked by an asterisk in the examples of Fig. 2,
showing to perform well in those cases, while requiring a negligible computing time
compared to MLE.

3.3 Extension to the Regression Case

We want to extend the methodology of Sect. 3.2 to the regression setting where
the location parameter varies across observations as a linear function of a set of p,
say, explanatory variables, which are assumed to include the constant term, as it is
commonly the case. If xi is the vector of covariates pertaining to the ith subject,
observation yi is now assumed to be drawn from ST(ξi, ω, λ, ν) where

ξi = x�i β, i = 1, . . . , n, (11)

for some p-dimensional vector β of unknown parameters; hence now the parameter
vector is θ = (β�, ω, λ, ν)�. The assumption of independently drawn observations
is retained.

The direct extension of the median as an estimate of location, which was used in
Sect. 3.2, is an estimate of β obtained by median regression, which corresponds to
adoption of the least absolute deviations fitting criterion instead of the more familiar
least squares. This can also be viewed as a special case of quantile regression,
when the quantile level is set at 1/2. A classical treatment of quantile regression
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is Koenker (2005) and corresponding numerical work can be carried out using the
R package quantreg, see Koenker (2018), among other tools.

Use of median regression delivers an estimate β̃m of β and a vector of residual
values, ri = yi − x�i β̃m for i = 1, . . . , n. Ignoring β estimation errors, these
residuals are values sampled from ST(−m0, ω

2, λ, ν), where m0 is a suitable value,
examined shortly, which makes the distribution to have 0 median, since this is the
target of the median regression criterion. We can then use the same procedure of
Sect. 3.2, with the yi’s replaced the ri’s, to estimate ω, λ, ν, given that the value of
m0 is irrelevant at this stage.

The final step is a correction to the vector β̃m to adjust for the fact that yi − x�i β
should have median m0, that is, the median of ST(0, ω, λ, ν), not median 0.
This amounts to increase all residuals by a constant value m0, and this step is
accomplished by setting a vector β̃ with all components equal to β̃m except that
the intercept term, β0 say, is estimated by

β̃0 = β̃m0 − ω̃ qST
2

similarly to (10).

3.4 Extension to the Multivariate Case

Consider now the case of n independent observations from a multivariate Y variable
with density (6), hence Y ∼ STd(ξ,�, α, ν). This case can be combined with the
regression setting of Sect. 3.3, so that the d-dimensional location parameter varies
for each observation according to

ξ�i = x�i β, i = 1, . . . , n, (12)

where now β = (β·1, . . . , β·d) is a p × d matrix of parameters. Since we have
assumed that the explanatory variables include a constant term, the regression
case subsumes the one of identical distribution, when p = 1. Hence we deal
with the regression case directly, where the ith observation is sampled from Yi ∼
STd(ξi, �, α, ν) and ξi is given by (12), for i = 1, . . . , n.

Arrange the observed values in a n × d matrix y = (yij ). Application of the
procedure presented in Sects. 3.2 and 3.3 separately to each column of y delivers
estimates of d univariate models. Specifically, from the j th column of y, we obtain
estimates θ̃j and corresponding ‘normalized’ residuals z̃ij :

θ̃j = (β̃�·j , ω̃j , λ̃j , ν̃j )�, z̃ij = ω̃−1
j (yij − x�i β̃·j ) . (13)
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where it must be recalled that the ‘normalization’ operation uses location and scale
parameters, but these do not coincide with the mean and the standard deviation of
the underlying random variable.

Since the meaning of expression (12) is to define a set of univariate regression
modes with a common design matrix, the vectors β̃·1, . . . , β̃·d can simply be
arranged in a p × d matrix β̃ which represents an estimate of β.

The set of univariate estimates in (13) provide d estimates for ν, while only one
such a value enters the specification of the multivariate ST distribution. We have
adopted the median of ν̃1, . . . , ν̃d as the single required estimate, denoted ν̃.

The scale quantities ω̃1, . . . , ω̃d estimate the square roots of the diagonal
elements of �, but off-diagonal elements require a separate estimation step. What is
really required to estimate is the scale-free matrix �̄. This is the problem examined
next.

If ω is the diagonal matrix formed by the squares roots of �11, . . . , �dd , all
variables ω−1(Yi − ξi) have distribution STd(0, �̄, α, ν), for i = 1, . . . , n. Denote
by Z = (Z1, . . . , Zd)

� the generic member of this set of variables. We are
concerned with the distribution of the products ZjZk , but for notational simplicity
we focus on the specific product W = Z1 Z2, since all other products are of similar
nature.

We must then examine the distribution of W=Z1Z2 when (Z1, Z2) is a bivariate
ST variable. This looks at first to be a daunting task, but a major simplification
is provided by consideration of the perturbation invariance property of symmetry-
modulated distributions, of which the ST is an instance. For a precise exposition
of this property, see for instance Proposition 1.4 of Azzalini and Capitanio (2014),
but in the present case it says that, since W is an even function of (Z1, Z2), its
distribution does not depend on α, and it coincides with the distribution of the case
α = 0, that is, the case of a usual bivariate Student’s t distribution, with dependence
parameter �̄12.

Denote by FW(w; ρ, ν) the distribution function of the product W of variables
(Z1, Z2) having bivariate Student’s t density (5) in dimension d = 2 with ν

degrees of freedom and dependence parameter ρ where |ρ| < 1. An expression of
FW(w; ρ, ν) is available in Theorem 1 of Wallgren (1980). Although this expression
involves numerical integration, this is not problematic since univariate integration
can be performed efficiently and reliably with the R function integrate.

To estimate �12, we search for the value of ρ such that the median of the
distribution of W equates its sample value. In practice, we compute the sample
values w̃1, . . . , w̃n where w̃i = z̃i1z̃i2, using the residuals in (13), and denote their
median by mw̃. Then we must numerically solve the non-linear equation

FW(mw̃; ρ, ν̃) = 1/2 (14)

with respect to ρ. The Solution of this equation is facilitated by the monotonicity
of FW(w; ρ, ν) with respect to ρ, ensured by Theorem 2 of Wallgren (1980). The
solution of (14) is the estimate �̃12.
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Proceeding similarly for other pairs of variables (Zj , Zk), all entries of matrix
�̄ can be estimated; the diagonal elements are all 1. However, it could happen
that the matrix so produced is not a positive-definite correlation matrix, because of
estimation errors. Furthermore, an even more stringent condition has to be satisfied,
namely that

�∗ =
(
�̄ δ

δ� 1

)
> 0 . (15)

This condition on �∗ applies to all skew-elliptical distributions, of which the ST is
an instance; see Branco and Dey (2001, p. 101) or Azzalini and Capitanio (2014,
p. 171).

Denote by �̃∗ the estimate of �∗ with ˜̄� in the d × d top-left block obtained
by solutions of equations of type (14) and δ̃ computed by applying δ(λ̃j ) in (4) to
λ̃1, . . . , λ̃d . If �̃∗ is positive definite, then we move on to the next step; otherwise,
an adjustment is required.

There exist various techniques to adjust a nearly positive-definite matrix to
achieve positive-definiteness. Some numerical experimentation has been carried out
using procedure nearPD of R package Matrix; see Bates and Maechler (2019).
Unfortunately, this did not work well when we used the resulting matrix for the next
step, namely computation of the vector

α = (
1 − δ��̄−1δ

)−1/2
�̄−1δ (16)

which enters the density function (6); see for instance equation (4) of Azzalini and
Capitanio (2003), which is stated for the SN distribution, but it holds also for the
ST. The unsatisfactory outcome from nearPD for our problem is presumably due
to modifications in the relative size of the components of �̃∗, leading to grossly
inadequate α vectors, typically having a gigantic norm.

A simpler type of adjustment has therefore been adopted, as follows. If condition
(15) does not hold for �̃∗, the off-diagonal elements of the matrix are shrunk by a
factor 0.95, possibly repeatedly, until (15) is satisfied. This procedure was quick to
compute and it did not cause peculiar outcomes from (16).

Hence, either directly from the initial estimates of �̄ and δ or after the adjustment
step just described, we obtain valid components satisfying condition (15) and a
corresponding vector α̃ from (16). The final step is to introduce scale factors via

�̃ = ω̃ ˜̄� ω̃

where ω̃ = diag(ω̃1, . . . , ω̃d). This completes estimation of (β,�, α, ν).
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3.5 Simulation Work to Compare Initialization Procedures

Several simulations runs have been performed to examine the performance of
the proposed methodology. The computing environment was R version 3.6.0.
The reference point for these evaluations is the methodology currently in use, as
provided by the publicly available version of R package sn at the time of writing,
namely version 1.5-4; see Azzalini (2019). This will be denoted ‘the current method’
in the following. Since the role of the proposed method is to initialize the numerical
MLE search, not the initialization procedure per se, we compare the new and the
current method with respect to final MLE outcome. However, since the numerical
optimization method used after initialization is the same, any variations in the results
originate from the different initialization procedures.

We stress again that in a vast number of cases the working of the current method
is satisfactory and we are aiming at improvements when dealing with ‘awkward
samples’. These commonly arise with ST distributions having low degrees of
freedom, about ν = 1 or even less, but exceptions exist, such as the second sample
in Fig. 2.

The primary aspect of interest is improvement in the quality of data fitting. This
is typically expressed as an increase of the maximal achieved log-likelihood, in its
penalized form. Another desirable effect is improvement in computing time.

The basic set-up for such numerical experiments is represented by simple random
samples, obtained as independent and identically distributed values drawn from a
named ST(ξ, ω, λ, ν). In all cases we set ξ = 0 andω = 1. For the other ingredients,
we have selected the following values:

λ : 0, 2, 8,
ν : 1, 3, 8,
n : 50, 100, 250, 500

(17)

and, for each combination of these values, N = 2000 samples have been drawn.
The smallest examined sample size, n = 50, must be regarded as a sort of

‘sensible lower bound’ for realistic fitting of flexible distributions such as the ST.
In this respect, recall the cautionary note of Azzalini and Capitanio (2014, p. 63)
about the fitting of a SN distribution with small sample sizes. Since the ST involves
an additional parameter, notably one having a strong effect on tail behaviour, that
annotation holds a fortiori here.

For each of the 3 × 3 × 4 × 2000 = 72, 000 samples so generated, estimation of
the parameters (ξ, ω, λ, ν) has been carried out using the following methods.

M0: this is the current method, which maximizes the penalized log-likelihood
using function st.mple as described in Sect. 2.2.

M1: preliminary estimates are computed as described in Sect. 3.2;
M2: maximization of the penalized log-likelihood, still using function st.mple,

but starting from the estimates of M1;
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M3: similar to M2, but using a simplified form of M1, where only the location
and scale parameters are estimated, setting λ = 0 and ν = 10.

An exhaustive analysis of the simulation outcome would be far too lengthy and
space consuming. As already mentioned, our primary interest is on the differences of
maximized log-likelihood. Specifically, if denote by log L̂h the maximized value of
the penalized log-likelihood using method Mh, we focus on the quantities D20, D23

and D30, where Dhk = log L̂h− log L̂k . Table 2 reports the observed frequencies of
Dhk values, grouped in intervals

(−∞,−20], (−20,−2], (−2,−0.2], (−0.2, 0], (0, 0.2], (0.2, 2], (2, 20], (20,∞]
crosstabulated either with n or with ν.

We are not concerned with samples having valuesDhk in the interval (−0.2, 0.2),
since these differences are not relevant from an inferential viewpoint; just note that
they constitute the majority of cases. As forD20, the fraction of cases falling outside

Table 2 Frequency tables of grouped values of D20, D23 and D30 crossed with values of n and
of ν in case of simple random sampling

Frequencies of D20 × n

n (−∞,−20] (−20,−2] (−2,−0.2] (−0.2, 0] (0, 0.2] (0.2, 2] (2, 20] (20,∞]
50 1 0 5 9380 8562 47 3 2

100 0 0 0 9359 8606 31 3 1

250 0 0 0 9235 8730 24 5 6

500 0 0 0 9163 8807 10 8 12

Total 1 0 5 37,137 34,705 112 19 21

Frequencies of D20 × ν

ν (−∞,−20] (−20,−2] (−2,−0.2] (−0.2, 0] (0, 0.2] (0.2, 2] (2, 20] (20,∞]
1 1 0 1 12,903 11,035 21 18 21

3 0 0 2 11,926 12,054 17 1 0

8 0 0 2 12,308 11,616 74 0 0

Frequencies of D23 × n

n (−∞,−20] (−20,−2] (−2,−0.2] (−0.2, 0] (0, 0.2] (0.2, 2] (2, 20] (20,∞]
50 1 0 3 9445 8550 1 0 0

100 0 0 0 9324 8676 0 0 0

250 0 0 0 9117 8883 0 0 0

500 0 0 0 9011 8989 0 0 0

Total 1 0 3 36,897 35,098 1 0 0

Frequencies of D30 × n

n (−∞,−20] (−20,−2] (−2,−0.2] (−0.2, 0] (0, 0.2] (0.2, 2] (2, 20] (20,∞]
0 0 0 3 8925 9020 47 3 2

100 0 0 0 9075 8890 31 3 1

250 0 0 0 9132 8833 24 5 6

500 0 0 0 9195 8775 10 8 12

Total 0 0 3 36,327 35,518 112 19 21
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(−0.2, 0.2) is small, but it is not negligible, and this justifies our efforts to improve
over M0. As expected, larger D20 values occur more easily when n or ν are small,
but sometimes also otherwise. In all but a handful of cases, these larger differences
are on the positive sides, confirming the effectiveness of the proposed method for
initialization. The general indication is that both methods M2 and M3, and implicitly
so M1, improve upon the current method M0.

Visual inspections of individual cases where M1 performs poorly indicates
that the problem originates in the sample octiles, on which all the rest depends.
Especially with very low n and/or ν, the sample octiles can occasionally happen to
behave quite differently from expectations, spoiling everything. Unfortunately, there
is no way to get around this problem, which however is sporadic.

Another indication from Table 2 is that M3 is essentially equivalent to M2, in
terms of maximized log-likelihood, and in some cases it is even superior, in spite of
its simplicity.

Another aspect is considered in Table 3 which reports computing times and their
differences as frequencies of time intervals. A value tk represents the computing
time for estimation from a given sample using method Mk, obtained by the first
value reported by the R function system.time. For M2 and M3, tk includes the
time spent for initialization with M1, although this is a very minor fraction of the
overall time. Clearly, the samples considered are of quite different nature, especially
so for sample size. However, our purpose is solely comparative and, since exactly
the same samples are processed by the various methods, the comparison of average
computing times is valid. Table 3 shows a clear advantage of M2 over M0 in terms
of computing time and also some advantage, but less prominent, over M3.

Additional simulations have been run having the location parameter expressed
via a linear regression. Given a vector x formed by n equally spaced points on the
interval (−1, 1), design matrices have been built using p transformations Tj (x),
inclusive of the constant function T0(x) = 1, as follows:

T0(x) T1(x) T2(x) T3(x)

case A (p = 3) : 1 x
√

1 + x

case B (p = 3) : 1 x sin 3x
case C (p = 4) : 1 x sin 3x x/(1 + 0.8 x)

Computation of Tj (x) over the n values of x yields the columns of the design matrix;
the regression parameters β1, . . . , βp have been set at βj = 1 for all js. For each of
the A, B, C design matrices, and for each parameter combinations in (17),N = 2000
have been generated, similarly to the case of simple random samples.

In Table 4, we summarize results only for case C, as the other cases are quite
similar. The distribution of D20 in the top two sub-tables still indicate a superiority
of M2 over M0, although less pronounced than for simple samples. The lower
portion of the table indicates a slight superiority of M3 over M2, reinforcing the
similar indication from Table 2.
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In the two subtables of Table 4 about D20, note that there are 160 samples where
M0 goes completely wrong. All these samples were generated with ν = 1, a fact
which is not surprising considering the initial parameter selection of st.mple,
in its standard working described at the beginning of Sect. 2.2. Since that initial
selection is based on a least-squares fit of the regression parameters, this step clashes
with the non-existence of moments when the underlying ST distribution has ν = 1
degrees of freedom. Not only the regression parameters are poorly fitted, but the
ensuing residuals are spoiled, affecting also the initial fit of the other parameters.

A set of simulations has also been run in the bivariate case, hence sampling from
density (6) with d = 2. The scale matrix and the shape vector have been set to

� =
(

1 1/2
1/2 1

)
, α = λ

(
1
2

)

Table 4 Frequency tables of grouped values of D20, D23 and D30 crossed with values of n and
of ν in case of a linear regression setting with p = 4 explanatory variables

Frequencies of D20 × n

n (−∞,−20] (−20,−2] (−2,−0.2] (−0.2, 0] (0, 0.2] (0.2, 2] (2, 20] (20,∞]
50 0 138 278 8480 8772 195 94 43

100 0 15 44 8829 8984 75 19 34

250 0 0 1 9029 8902 23 9 36

500 0 0 0 9326 8597 14 16 47

Total 0 153 323 35,664 35,255 307 138 160

Frequencies of D20 × ν

ν (−∞,−20] (−20,−2] (−2,−0.2] (−0.2, 0] (0, 0.2] (0.2, 2] (2, 20] (20,∞]
1 0 118 188 12,967 10,291 156 120 160

3 0 23 88 11,074 12,759 44 12 0

8 0 12 47 11,623 12,205 107 6 0

Frequencies of D23 × n

n (−∞,−20] (−20,−2] (−2,−0.2] (−0.2, 0] (0, 0.2] (0.2, 2] (2, 20] (20,∞]
50 0 177 329 8413 8864 167 50 0

100 0 18 43 8802 9096 37 4 0

250 0 0 3 8899 9096 2 0 0

500 0 0 0 9066 8934 0 0 0

Total 0 195 375 35,180 35,990 206 54 0

Frequencies of D30 × n

n (−∞,−20] (−20,−2] (−2,−0.2] (−0.2, 0] (0, 0.2] (0.2, 2] (2, 20] (20,∞]
50 0 32 117 8856 8641 200 111 43

100 0 3 26 9069 8783 63 22 34

250 0 0 1 9160 8770 24 9 36

500 0 0 0 9188 8735 14 16 47

Total 0 35 144 36,273 34,929 301 158 160
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where λ spans the values given in (17). Also n and ν have been set like in (17),
with the exception that n = 50 has been not included, considering that 50 data
points would constitute a too small sample in the present context. On the whole,
33 × 2000 = 54, 000 bivariate samples have then been generated. They have been
processed by function mst.mple of package sn and the initialization method of
Sect. 3.4, with obvious modifications of the meaning of notation M0 to M3.

The summary output of the simulations is presented in Table 5. There is a clear
winner this time, since M3 is constantly superior to the others. Between M0 and
M2, the latter is still preferable for ν = 1, but not otherwise.

The almost constant superiority of M3 over M2 is quite surprising, given
the qualitatively different indication emerging in the univariate case. This rather
surprising effect must be connected to transformation (16), as it has also been
indicated by direct examination of a number of individual cases: a moderate
estimation error even of a single λj component, and consequently of δj , transforms
into a poor estimate of α. It so happens that the conservative choice α = 0 of M3
avoids problems and can be, in its simplicity, more effective.

Table 5 Frequency tables of grouped values of D20, D23 and D30 crossed with values of n and
of ν in the bivariate case

Frequencies of D20 × n

n (−∞,−20] (−20,−2] (−2,−0.2] (−0.2, 0] (0, 0.2] (0.2, 2] (2, 20] (20,∞]
100 28 71 238 9410 8169 61 9 14

250 8 8 29 9613 8326 7 1 8

500 0 3 4 9330 8657 1 1 4

Total 36 82 271 28,353 25,152 69 11 26

Frequencies of D20 × ν

ν (−∞,−20] (−20,−2] (−2,−0.2] (−0.2, 0] (0, 0.2] (0.2, 2] (2, 20] (20,∞]
1 1 3 8 8368 9578 14 2 26

3 12 14 61 9814 8094 5 0 0

8 23 65 202 10,171 7480 50 9 0

Frequencies of D23 × n

n (−∞,−20] (−20,−2] (−2,−0.2] (−0.2, 0] (0, 0.2] (0.2, 2] (2, 20] (20,∞]
100 28 71 232 9607 8006 50 6 0

250 8 8 29 9747 8205 3 0 0

500 0 3 4 9611 8382 0 0 0

Total 36 82 265 28,965 24,593 53 6 0

Frequencies of D30 × n

n (−∞,−20] (−20,−2] (−2,−0.2] (−0.2, 0] (0, 0.2] (0.2, 2] (2, 20] (20,∞]
100 0 0 25 8924 8998 36 3 14

250 0 0 2 9035 8946 8 1 8

500 0 0 0 8839 9155 1 1 4

Total 0 0 27 26,798 27,099 45 5 26
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3.6 Conclusions

The overall indication of the simulation work is that the proposed preliminary
estimates work quite effectively, providing an improved initialization of the numer-
ical MPLE search. The primary aspect is that higher log-likelihood values are
usually achieved, compared to the currently standard method, M0, sometimes by
a remarkable margin. Another positive aspect is the saving in the overall computing
time.

Of the two variant forms of the new initialization, leading to methods M2 and
M3, the latter has emerged as clearly superior in the multivariate case, but no
such clear-cut conclusion can be drawn in the univariate setting, with indications
somewhat more favourable for M2. In this case, it is advisable to consider both
variants of the preliminary estimation and carry out two numerical searches. Having
to choose between them, the quick route is to take the one with higher log-
likelihood. However, direct inspection of both outcomes must be recommended,
including exploration of the profile log-likelihood surface.

Surely, it would have been ideal to identify a universally superior method, to be
adopted for all situations, but this type of simplification still eludes us.
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Modelling Earthquakes: Characterizing
Magnitudes and Inter-Arrival Times

Christophe Ley and Rosaria Simone

Abstract Statistical modelling of earthquakes is a challenging and delicate topic:
research activity is vivid in this respect, and tailored to an improved understanding
of the seismic phenomena and of their dynamics over time and space in all its
shades. By surfing on some of the available literature, a critical investigation of
the probability distributions best fitting earthquake sizes and inter-arrival times is
performed, by using data on the Pacific Ring of Fire as illustrative example. As a by-
product of our analysis, new ideas about adequate modelling of earthquake sizes and
inter-event times together with the location of the earthquakes are advanced, which
in turn could pave the way to further developments in a directional perspective.

1 Introduction

Earthquakes modelling is a challenging topic, yet its comprehension is crucial if
we wish to improve our understanding of the phenomenon and of its dynamics
over time and space. Finding the best probability distribution to model the various
phenomena of the earthquakes is therefore an important task, and the devoted
statistical literature is huge. Nevertheless, research directions narrow down mainly
to three different topics: earthquake sizes (in terms of magnitude, for instance, or
other measurement units), inter-arrival times and location. Our critical overview
will focus on the first two problems. Indeed, an effective modelling of earthquake
strengths within statistical seismology is required to deal with measurements of
the seismic hazard and risk, thus assessing the probability of a major shock in a
future time period in order to enhance both civil engineering and geophysics efforts
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to prevent damages and understand earth-dynamics: according to Betbeder-Matibet
(2008, Part 3), seismic hazard analysis concerns mainly the latter subject, whereas
seismic risk addresses the former issues on earthquakes’ impact on the territory. In
both cases, the main challenge is to understand the tail behaviour of earthquake sizes
and, as a consequence, a quite large time span should be considered (or large areas).

Let us first focus on earthquake sizes. Power-law models are very popular in these
endeavours. Departing from the Gutenberg-Richter law, many research efforts are
continuously addressed to the proposal of candidate size distributions for seismic
events. Our critical overview tests classical proposals and discusses advantages
and pitfalls of several alternatives: Pareto, tapered Pareto, truncated Gamma, and
log-normal. Specifically, when dealing with deviations from the power law, an
interesting scenario is opened when comparing the log-normal to power-laws.
Evidence from our comparative overview suggests that a composite Pareto-Log-
Normal model could provide an adequate fit to earthquake sizes. Indeed, model
selection between a Pareto and a tapered Pareto model requires a careful analysis,
since large shocks in the data are in small number and few deviations from that
might change the results. Several datasets have been investigated and support this
claim, referring to different geographical areas.

For inter-event times, instead, several candidate models have been proposed in
the literature with reference to different geographical areas. Despite the wide range
of models, it can be noticed that the Generalized Gamma model offers a universal
framework after rescaling (Corral 2004). This distribution is a versatile tool allowing
for both a scale-invariant part and an exponential taper, that features several other
sub-models, for instance the Gamma and the Weibull. Our comparative analysis of
model fits advances that indeed inter-event times obey to a unifying scheme that
foresees the Generalized Gamma as an adequate leading model.

Our results from the present chapter pave the way to the next natural research
step: the joint modelling of inter-arrival times and earthquake sizes together with the
location on the surface of the earth where the earthquake took place. The addition
of the location places the problem within a directional perspective. We shall briefly
outline our idea of how to address this issue in future research.

The present chapter is organized as follows. In Sect. 2 we describe the data used
throughout this chapter for our comparison of models. Section 3 then deals with
the sizes of earthquakes, while Sect. 4 is concerned with inter-arrival times. In each
section, we describe, discuss and compare the most used models from the literature,
and propose alternative options. Conclusions and an outlook on future research are
provided in Sect. 5.

2 The Pacific Ring of Fire

For illustrative purposes, we shall consider data referring to the Pacific Ring of Fire.
This is a belt of active volcanoes that runs along the Pacific coasts from Oceania,
Asia and the American continents, see Fig. 1. Data are taken from the Northern
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Fig. 1 Illustration of the Pacific Ring of Fire (image taken from Wikipedia)
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Fig. 2 Kernel density plots of earthquakes’ magnitude exceeding the threshold of 5.8 (left panel)
and with a focus on the tail distributions (right panel).

California Earthquake Data Center (NCEDC 2014) and have been downloaded from
http://www.ncedc.org/anss/catalog-search.html.

Given that the faults have different seismic behaviour (see, e.g., Fig. 2), we
will split the area in four corners: South-West (SW), South-East (SE), North-West
(NW) and North-East (NE). The partition has been obtained using the tool https://
mynasadata.larc.nasa.gov/latitudelongitude-finder/ that allows drawing a map of
a polygon for which latitude and longitude are returned at its corners. Figure 2
displays kernel density plots of magnitudes of seismic events that exceed the
threshold of 5.8 on the Richter scale, according to the above-mentioned division
into four zones, at a depth that does not exceed 70 km. The reason we focus on this
set of data is multifold: first, seismic hazard is mainly concerned with strong and

http://www.ncedc.org/anss/catalog-search.html
https://mynasadata.larc.nasa.gov/latitudelongitude-finder/
https://mynasadata.larc.nasa.gov/latitudelongitude-finder/
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Table 1 Number of earthquakes in the SW area of the Pacific Ring of Fire above increasing
thresholds, for the period from January 1st, 1967 to August 31st, 2017

Magnitude threshold 5.8 6.3 6.8 7 7.5 7.8 8

Number of events 1920 617 207 139 43 18 5

shallow earthquakes. Secondly, we do not deal with the issue of classification of
elements of an earthquake sequence into main events, foreshocks and aftershocks:
then, such magnitude constraint mitigates possible dependences among events. Last,
it is a common practice to set a lower threshold for magnitude when the analysis of
earthquake catalogs is concerned to take into account the incompleteness problem.
Indeed, seismic detection devices are sensitive only to events that occur with a
magnitude greater than a certain value, and thus they might not be able to monitor
the weakest seismic activity. This is a prominent issue in studies concerning the
economic impact of earthquakes (see Ficcadenti and Cerqueti 2017, for instance),
and the development of statistical methods to assess the completeness of a catalog
is a quite vivid topic in the literature (see Rydelk and Selwyn Sacks 1989;
Schorlemmer et al. 2010, for instance). Nevertheless, the analysis hereafter pursued
focuses on strong seismic events, thus the completeness of the used catalogues in
the chosen time window can be safely claimed.

Throughout this chapter, we will mainly focus on the SW area of the Pacific
Ring of Fire (latitude ranging from −42.740 to 0 and longitude ranging from 100 E
to 180 E). The sample consists of n = 1921 seismic events occurring from January
1st, 1967 to August 31st, 2017. Table 1 reports the number of larger events (tails)
for increasing thresholds.

Data analysis has been performed in the R environment, by using standard
optimization and graphical tools. In addition, libraries gendist and actuar,
available on the official CRAN repository, have been considered as far as composite
models’ estimation is concerned (Dutang et al. 2008; Abu Bakar 2015).

3 Modelling Earthquake Sizes

As underlined in Kagan and Schoenberg (2001) and firstly advanced by Vere-
Jones et al. (2001), an effective modelling of the size or strength of earthquakes
within statistical seismology requires dealing with measurements of both the seismic
hazard and risk. In what follows, we shall present and discuss various options to
model earthquake sizes. On the basis of our dataset we shall furthermore compare
the fitting abilities of the distinct models.
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3.1 The Gutenberg-Richter Law and the Exponential
Distribution

The very first result you come across when digging into the statistics of earthquakes
is the Gutenberg-Richter law (Gutenberg and Richter 1941), derived from the
empirical observation that the number N(m) of earthquakes with magnitude m
exceeding a given threshold m̄ ∈ R

+
0 is exponentially distributed, see Utsu (1999)

for a comprehensive discussion. This law thus assumes that the magnitude size
follows the (lower) truncated exponential distribution, with density f (x; λ, m̄) and
distribution function F(x; λ, m̄) respectively given by:

f (x; λ, m̄) = λ exp
(−λ(x−m̄)), F (x; λ, m̄) = 1−exp

(−λ(x−m̄)), x > m̄, (.1)

with scale parameter λ ∈ R
+
0 . In other words, on the log-scale the magnitude-

frequency relation is of linear type, with slope that is approximately unitary and
intercept related to the seismic activity of the region (Utsu 1999). The left panel
of Fig. 3 shows evidence for the Gutenberg-Richter law for the SW corner of the
Pacific Ring of Fire, on a doubly logarithmic scale as customarily.

Here we have set the threshold at the magnitude m̄ = 5.8 since seismic hazard
analysis is mainly concerned with larger events. It is worth mentioning that such
a threshold has to be set also when considering smaller and moderate earthquakes
because of the limited sensitivity of the seismographic measurements.

However, the exponential distribution is not the best suited to express the
earthquake sizes. Indeed, the size of earthquakes is a system that manifests a scale
invariance property:

f (c x) = ck f (x) ∝ f (x), (2)

and this property is not warranted by the exponential law. Thus, alternative proposals
ought to be looked at.

3.2 The Gutenberg-Richter Law Revisited and the Power-Law
Distributions

In addition to the mentioned fact that the exponential law cannot satisfy the scale
invariance property (2), magnitude is not a proper physical unit. For this reason, it is
acknowledged that the most suited measure of earthquake size is the scalar seismic
moment M , measured in Newton-meters (somehow related to the energy release
(Utsu 1999)), related to magnitude m by a relation of the type:

m ≈ 2

3
log10(M)− 6. (3)



34 C. Ley and R. Simone

This choice implies that the Gutenberg-Richter law should be based on a power-law
distribution.

3.2.1 The Pareto Distribution

Let M̄ be the seismic moment corresponding to the chosen magnitude truncation
point m̄ (here, m̄ = 5.8). The arguably most popular power-law distribution
is the Pareto model (Pareto 1897) with density and distribution functions given
respectively by:

fP (x;β, M̄) = β

M̄

(
M̄

x

)β+1

, FP (x;β, M̄) = 1 −
(
M̄

x

)β
, x ≥ M̄,

(4)
with scale parameter β ∈ R

+
0 . Then, the scale invariance requirement is fulfilled.

However, even if this choice is practical and flexible (the tails of several distributions
have a power law decay), this model has serious pitfalls. One is obvious, and it is
the poor fit achieved for larger events which are overpredicted by the Pareto model
(see the right panel of Fig. 3). Furthermore, this choice is difficult to support from
a physical point of view because it entails an infinite mean value for the seismic
moment when β ≤ 1, thus mismatching the required finiteness of the seismic
moment: see Sornette and Sornette (1999) for a discussion on this topic, among
other results.

3.2.2 The Tapered Pareto Distribution

The inadequacy of the baseline Pareto model has led scholars to search for more
performing distributions. Among the solutions that have been advanced, the most
natural one is to truncate the distribution from above. This choice is not that
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Fig. 3 Gutenberg-Richter law for the SW corner of the Pacific Ring of Fire: in terms of moment
magnitude (left) and in terms of scalar seismic moment (right)
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satisfactory because it contradicts both some physical principles of dissipative
energy and the fact that every measurement is accompanied by error (Kagan 1993),
so it is not conceivable that an earthquake of size slightly larger than the chosen hard
cutoff has zero probability of occurrence (Lomnitz-Adler and Lomnitz 1979). These
considerations motivate the modification of the Gutenberg-Richter law with the
introduction of a soft cutoff θ , leading to the so-called tapered Pareto distribution,
obtained with the application of an exponential smoother to the distribution function
(Vere-Jones et al. 2001; Kagan and Schoenberg 2001):

fTAP (x;β, θ, M̄) =
(
M̄

x

)β
exp

(
M̄ − x

θ

)(
β

x
+ 1

θ

)
, x ≥ M̄, (5)

FTAP (x;β, θ, M̄) = 1 −
(
M̄

x

)β
exp

(
M̄ − x

θ

)
, x ≥ M̄. (6)

The additional positive parameter θ is called the corner moment and governs the
transition from a linear to an exponential decay for large shocks; the shape parameter
β, instead, drives the decrease in frequency with seismic moments. For the sake of
completeness, it is worth to mention that Vilfredo Pareto introduced both the Pareto
distribution and its tapered version in his seminal work (Pareto 1897).

3.2.3 Parameter Estimation and Comparison

It is widely acknowledged by scientists and scholars in the fields of statistical
seismology that the shape parameter β in both the Pareto and tapered Pareto
distributions is easily estimable and it can be set as globally constant for certain
classes of earthquakes of shallow events, like those related to subduction and
those occurring in continental (estimated magnitude about 8), as well as in oceanic
regions (estimated magnitude in the range (5.8, 7.2)). In particular, customarily it
is assumed that β̂ ∈ (0.6, 0.7), or slightly higher in certain cases: see Kagan and
Schoenberg (2001) and references therein for a discussion on the topics. Given
such a universality property, one usually considers a benchmark value for β (for
instance, β = 0.67), and focuses, for the tapered Pareto, on the estimation of θ
rather than pursuing joint estimation of parameters (Kagan and Schoenberg 2001).
This practice is advantageous mostly because the estimation of the upper cutoff θ
is tricky, depending mainly on the largest events (so all asymptotic results might
be unreliable given the small sample size). Specifically, in order to deal with such
issue, it is advisable to consider a large time span and wide geographical zones.

We consider maximum likelihood methods for estimating the parameters of both
models (β for the Pareto and (β, θ) for its tapered version) in both situations when β
is fixed to a certain value and not fixed. For data from the SW corner of the Pacific
Ring of Fire, we plot the fit of both models in Fig. 4 in terms of complementary
cumulative distribution function on log-log scale. The table reported along with
Fig. 4 provides the parameter estimates and the value of the log-likelihood: for the
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Fig. 4 Pareto and tapered Pareto model for the SW corner of the Pacific Ring of Fire: results from
joint estimation of parameters are displayed with dashed lines. The scale parameter β is set to 0.67
and both models are estimated conditional on this value

tapered Pareto model, we report also the magnitude value m̂ corresponding to the
estimated cutoff θ̂ . We clearly see that the tapered Pareto provides a better fit than
the Pareto distribution, and this both when β is fixed to 0.67 or estimated. This
underpins the announced superiority of the tapered Pareto model.

3.3 Criticism on the Tapered Pareto Distribution

The good performance of the tapered Pareto model for earthquakes’ seismic moment
is not a universal rule. For instance, evidence is found against the tapered Pareto
model in some data catalogs after the Sumatra earthquake in 2004 (Slifka et al.
2000). Specifically, in that case it is found that the best fitting performances are
those granted by a truncated version of the Gamma distribution, which had already
been considered for earthquake sizes in Sornette and Sornette (1999), Kagan (1997),
and Kagan and Knopoff (1984).

Specifically, a Gamma distribution truncated at M̄ , with M̄ ≥ 0, has probability
density function given by:

fTG(x; β̃, θ, M̄) = 1

θ �(−β̃, M̄
θ
)

(
θ

x

)1+β̃
exp

(
− x

θ

)
, M̄ ≤ x ≤ ∞

(7)
with β̃ ∈ R, θ > 0, and �(·, ·) denoting the upper incomplete Gamma function with
possibly negative shape parameter, defined ∀a �= 0, a �= −k, k ∈ N, for x > 0, as
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�(a, x) = xa
∞∑
n=0

(−1)nxn

n!(a + n)
(8)

and satisfying

�(a + 1, x) = a�(a, x)+ xa exp(−x). (9)

This model has both probabilistic and physical background as it arises when
minimizing the Kullback-Leibler divergence with respect to the Pareto model
(see Sornette and Sornette (1999) and references therein), and corresponds to the
branching model under a subcritical regime (cascade mechanism). Nevertheless, in
some sense the tapered Pareto distribution and the truncated Gamma are not that far
apart. Indeed, it has been noticed in Slifka et al. (2000) that the tapered Pareto arises
as a mixture of two truncated Gamma distributions:

fTAP (x;β, θ, M̄) = p fTG(x;β, θ, M̄)+(1−p) fTG(x;β−1, θ, M̄) , x ≥ M̄,

(10)
with

p=β �
(
−β, M̄

θ

)(
M̄

θ

)β
exp

(
M̄

θ

)
, 1−p=�

(
1−β, M̄

θ

)(
M̄

θ

)β
exp

(
M̄

θ

)
(11)

Via the properties of the incomplete Gamma, we can see that indeed the mixture of
truncated Gamma distributions defining the tapered Pareto model is well-defined,
since identity (9) for x = M̄

θ
reduces to:

�

(
1 − β,

M̄

θ

)
+ β�

(
−β, M̄

θ

)
=
(
θ

M̄

)−β
exp

(
−M̄

θ

)
, (12)

and thus the mixing weights for (10) sum up to 1.
However, despite this theoretical match, the truncated Gamma model is some-

what more involved for estimation purposes because the normalizing constant
depends on the incomplete Gamma function with possibly negative shape parameter.
For this reason, the truncated Gamma distribution is not considered in our compar-
ative analysis.

3.4 Power-Law or Log-Normal Distribution?

In the previous section, we discussed in how far the tapered Pareto model is a better
choice to model earthquake sizes as it overcomes the tail rigidity of the Pareto
model. However, estimation of the soft cutoff θ for tapered Pareto models is not
stable as it requires a reasonable amount of data in the tail.
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The literature has wondered in several directions about the identification of
alternative good models for earthquake sizes. For instance, sometimes also the log-
normal distribution with probability density function

fLogN(x;μ, σ) = 1√
2π σ x

exp

(
−
(

log(x)− μ√
2σ

)2)
, x > 0, μ ∈ R, σ ∈ R

+
0 ,

(13)
has been mistaken for a power law distribution (see Mitzenmacher (2003) for a
comparative overview), and this is due to the fact that, taken on logarithmic scale
and if σ is sufficiently large, the quadratic term in the logarithm of the density
function becomes negligible, which then becomes approximately linear in log(x).

Indeed, the log-normal fit to earthquake size distributions has found support in
the literature (Kagan 1969; Lomnitz 1964). In order to check its potential suitability,
we apply the log-normal model on seismic moment data for the SW corner of
the Pacific Ring of Fire and use the Bayesian Information Criterion (BIC) to
assess fitting performances. As can be appreciated from Fig. 5 and Table 2, the fit
implied by the log-normal improves when increasing the lower threshold, since the
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Fig. 5 SW corner of the Pacific Ring of Fire: fitting performances of earthquake sizes for
competing models when varying the lower threshold
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Table 2 SW corner of the
Pacific Ring of Fire:
(rounded) Bayesian
Information Criterion (BIC)
of competing models for
earthquake sizes when
varying the lower threshold

m ≥ 5.8 m ≥ 6.5 m ≥ 6.8 m ≥ 7

Pareto 167,641 37,069 19,400 13,138

Tapered
Pareto

167,634 37,062 19,396 13,135

Log-
normal

169,614 37,404 19,565 13,267

difference in BIC with respect to the tapered Pareto model decreases. Hence the
log-normal seems to be a valid choice, which we further investigate here.

Since the log-normal fit is sometimes mistaken to be of power-law type, and
since it achieves a good fit when enlarging the upper cutoff, the idea fostered is to
set up a procedure that (1) automatically checks if the power law model holds over
the log-normal alternative in the tail, and (2) switches regime when the log-normal
behaviour is supported by the data in the tail. In order to address this comparative
test, we briefly recall a debate between (singly) truncated normal and exponential
distributions, as if we were not working on the log-scale of seismic moments but
directly on magnitudes.

The singly truncated normal distribution (STN) is an increasing failure rate
distribution: it is a member of the non-steep class of the full exponential family,
with sufficient statistic T (x) = (x,−x2) and Laplace transform (del Castillo 1994)

LT (θ1, θ2) =
∫ ∞

0
exp

(
θ1 x − θ2 x

2) dx, (θ1, θ2) ∈ D, (14)

where

D = (R× R
+) ∪ R

− × {0}. (15)

Let us elaborate on two well-known particular situations:

• If (θ1, θ2) ∈ Int (D) = R×R
+, and we set θ1 = μ

σ 2 , θ2 = 1
2σ 2 , then the truncated

normal distribution arises (we denote by � the cumulative distribution function
of the standard normal distribution):

f (x; θ1, θ2) =
(√

2πσ�
(μ
σ

))−1

exp

(
− (x − μ)2

2σ 2

)
, x > 0; (16)

• If (θ1, θ2) is on the border of D, which is R− × {0}, then the exponential model
arises:

f (x; θ, 0) = −θ exp
(
θ x

)
, θ < 0, 0 < x < ∞. (17)

It can be proved (Hollander and Proschan 1972) that the likelihood equations for the
STN model resort to the following identity for the coefficient of variation c:
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c2 = C2(γ ), γ = − θ1

2
√
θ2
, (18)

where

C(x) = −xh(x)+ x2 + 0.5

(h(x)− x)2
− 1, h(x) = exp(−x2)

2
√
π
(
1 −�(

√
2 x)

) . (19)

The coefficient of variation for the singly truncated normal satisfies c < 1, whereas
c = 1 on the border (in case the exponential is the reference model). Thus, the
lower c, the larger evidence against the null of the hypothesis testing problem
H0 :Exponential against H1 :STN. Thus, the critical region will be of the form
CR(α) : C(γ ) < kα , for critical values kα to be obtained numerically given the
distribution of C(γ ) under the null. One of the strategies1 proposed in del Castillo
and Puig (1999) is based on the fact that the LRT statistic for this hypothesis testing
problem can be written as a function of γ , say W(γ ): then, an estimate γ̂ of γ
can be obtained numerically by equating W(γ ) to the α-quantile of its asymptotic
distribution, which is a 50:50 mixture of a degenerate mass at 0 and a χ2

1 for a given
significance level α (≈ 2.706 for α = 0.05). Then, κα = √

C(γ̂ ), with C(γ ) defined
in (19), is the approximated lower tail percentage point of the model coefficient of
variation under the null.

This is a UMPU test for exponentiality against STN (del Castillo and Puig 1999),
which has been used to settle a debate on the distribution of city sizes (Malevergne
et al. 2011). For earthquake sizes, this test can be applied for the tail distribution of
the seismic moment to test the Pareto against the log-normal model. For illustrative
purposes and for the SW corner of the Pacific Ring of Fire, we consider seismic
moments values t lying in [D5,D9]2 and the tail of seismic moments M such that
M ≥ t . For such data, we test the Exponential against the STN model on the

transformed sample log

(
M

t

)
, M ≥ t . Results for the derived model with log-

normal tails are displayed in Fig. 6 for one special value of t and summarized in
Table 3 for all considered situations. In this table, n stands for the size of the sub-
sample M ≥ t for each t and m(t) denotes the magnitude corresponding to seismic
moment t ; the sample coefficient of variation c and the approximated κα are also
reported. As we see, the null hypothesis is rejected in the majority of the cases,
showing that the log-normal clearly improves on the basic Pareto distribution in the
tails of earthquake sizes.

1Some other methods are proposed in del Castillo and Puig (1999) to speed up the convergence of
the LRT distribution to its asymptotic distribution.
2Here, Di denotes the ith decile of the seismic moments distribution.
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Fig. 6 Pareto, tapered Pareto
and truncated log-normal
models fitting the tails of
seismic moments (expressed
in magnitude m ≥ 6.15) of
the SW corner of the Pacific
Ring of Fire

2e+18 5e+18 2e+19 5e+19 2e+20 5e+20 2e+21

0.
00

2
0.

01
0

0.
05

0
0.

20
0

1.
00

0 Magnitude >=6.15

Seismic Moment

P
r(

M
>

=
x)

Pareto
Tapered Pareto
LogN 

Pareto
Tapered Pareto
LogN−Tr 

Table 3 Testing the
exponentiality against the
STN on tails of
log-transformed seismic
moments of the SW corner of
the Pacific Ring of Fire

m(t) n κ0.05 c Reject H0?

6.15 758 0.9413 0.8966 TRUE

6.25 617 0.9351 0.8904 TRUE

6.35 506 0.9285 0.8962 TRUE

6.45 403 0.9201 0.8752 TRUE

6.5 403 0.9201 0.9906 FALSE

6.55 330 0.9120 0.8842 TRUE

6.65 264 0.9020 0.8772 TRUE

6.75 207 0.8898 0.8486 TRUE

6.8 207 0.8898 0.9693 FALSE

6.85 164 0.8769 0.8252 TRUE

6.9 164 0.8769 0.9452 FALSE

6.95 139 0.8668 0.8868 FALSE

7.05 104 0.8473 0.8406 TRUE

7.1 104 0.8473 0.9768 FALSE

3.5 A New Proposal: Composite Models

The evidence collected in the previous sections suggests that composite models
might be a good modelling framework to deal with earthquake sizes: see Dominicy
and Sinner (2017) for a concise introduction to the topic, here recalled briefly. Let
f1(x) and f2(x) be two probability distributions over the positive real halfline, with
cumulative distribution functions F1(x) and F2(x), respectively. Then the density of
the composite model is defined as

f (x) =
{
c f �1 (x), 0 < x ≤ u

(1 − c) f �2 (x), u < x < ∞,
(20)

where
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f �1 (x) =
f1(x)

F1(u)
, f �2 (x) =

f2(x)

1 − F2(u)
(21)

For instance, the log-normal-Pareto composite model is very popular for actuarial
data (Cooray and Ananda 2005).

Now, given the fact that the tails of earthquake sizes can be log-normal dis-
tributed, but the cut-off is data driven, the above strategy can be applied to identify
the best option for a Pareto-log-normal composite model. The next section will
shed light on the fitting abilities of this new model compared to the aforementioned
models.

3.6 Full Comparative Analysis

For the SW corner of the Pacific Ring of Fire, Fig. 7 compares the fitting abilities
of the Pareto, tapered Pareto and log-normal models to the Pareto-log-normal
composite model. It is obvious both visually and numerically that this composite
model improves on the other proposals.

Similar evidence can be checked also on a more complex dataset, taken from the
Kaggle repository (https://www.kaggle.com/usgs/earthquake-database), and which
concerns significant earthquakes occurring all over the globe in the period 1965–
2016, with magnitude 5.5 or higher. Here we consider the sub-sample of n = 9358
shallow earthquakes (depth ≤ 70 km) with magnitude m ≥ 5.8; see Fig. 8. Again
the composite model yields the best fit.

We thus conclude that, for earthquake sizes, the composite Pareto-log-normal
model is the best choice as probability distribution.

Model BIC

Pareto 167660.7
Tap. Pareto 167648.5
Truncated Log-normal 167710.1
Pareto-LogN(u=6.15) 167546.2
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Fig. 7 Fitting results of competing models for the SW corner of the Pacific Ring of Fire

https://www.kaggle.com/usgs/earthquake-database
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Model BIC:

Pareto 815511.6
Tap. Pareto 815507
Pareto-LogN (u=6.15) 815013.5
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Fig. 8 Fitting results of competing models for the Kaggle dataset on significant earthquakes

4 Modelling Inter-Arrival Times

In this section, we undertake the analysis of inter-arrival times (IAT, for short) of
seismic events. Again we shall focus only on shallow earthquakes (depth within
70 km) with magnitude exceeding the threshold m ≥ 5.8. After a concise review of
the state of the art on the topic, we challenge the Generalized Gamma model (Stacy
1962) as general reference model for earthquake inter-arrival times, with possible
sub-specification at different geographical areas. We shall discuss performances of
the main competing models on the sample of data for the Pacific Ring of Fire.

4.1 The State of the Art

For small events, it is acknowledged that a Poisson process is a good choice if
after- and foreshocks are removed. For larger events, instead, empirical evidence
has suggested temporal models allowing for a long-term clustering. Several models
were tested to assess the distribution of inter-events of the selected earthquakes. The
most popular distributions arising in geostatistics in the framework of earthquakes’
IAT modelling are:

• the Gamma distribution, for example for a study in the Taiwan region (Chen et al.
2013):

• the log-normal distribution, for example for a study of earthquakes occurred in
Japan and Greece (Musson et al. 2002);

• the tapered Pareto distribution, for example for modelling seismic events in
Southern California (Schoenberg et al. 2009). These findings provided new
insights in the understanding of the phenomenon, starting from formal assess-
ment of the adequacy of the Pareto model to fit distance in time and in space
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between a seismic event and the sequence of its aftershock (see references in
Schoenberg et al. 2009).

In Schoenberg et al. (2009), the authors conclude their analysis by claiming that
Further study is needed to determine whether similar results are obtained with
other catalogs and in other seismic zones. Indeed, it is of foremost importance
to characterize earthquakes’ statistical distributions regardless of the data under
examination. Stemming from this principle, we pursue a comparative analysis on the
behaviour of competing models by adding an overarching model: the generalized
Gamma distribution. This proposal has already appeared in the literature as a
universal distribution for rescaled recurrence times (see Corral 2004 and references
therein), but, to the best of our knowledge, no extensive comparative analysis of this
model with respect to other state of the art models has been pursued so far.

4.2 The Generalized Gamma Model

The goal of this very short section is to present the Generalized Gamma model
(Stacy 1962) with density

fGG(x; a, b, s) = b xa−1

sa �(a
b
)

exp

(
−
(x
s

)b )
.

This distribution is a versatile tool allowing for both a scale-invariant part and an
exponential taper, and it features several other sub-models, for instance the Gamma
and the Weibull for specific parameter values (see Fig. 9). Its fitting abilities for IAT
will be evaluated in the next section with respect to model sub-specifications and
alternative candidates.
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Fig. 9 Generalized Gamma probability density functions for specific parameters, and submodels
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Table 4 Comparison of the competing models for modelling inter-arrival times of earthquakes in
the Pacific Ring of Fire

BIC S-W N-W N-E S-E pv: K-S test S-W N-W N-E S-E

Tap.
Pareto

11,330.35 9894.62 4855.66 3584.17 Tap. Pareto 0.010 0.005 0.557 0.133

Gen.
Gamma

11,431.94 10,021.52 4910.34 3629.69 Gen. Gamma 0.409 0.235 0.090 0.522

Log-
normal

12,061.30 10,721.48 5247.76 3765.94 Log-normal � � � �

Gamma 11,430.28 10,026.10 4913.08 3626.20 Gamma 0.082 0.017 0.020 0.459

Weibull 11,511.90 10,143.08 4952.76 3658.86 Weibull � � 0.006 0.005

n 1920 1656 579 455 n

Left: BIC values, Right: p-values associated with the Kolmogorov-Smirnov goodness-of-fit test (�:
p-value < 10−10)

4.3 Comparison of the Generalized Gamma Distribution to
State-of-the-Art Models

For the chosen competing models, we will check goodness-of-fit on inter-event
times measured in days since the last occurrence, and this for all four regions of the
Pacific Ring of Fire. In the same spirit as Schoenberg et al. (2009), the comparative
analysis will be based on QQ-plots, the Kolmogorov-Smirnov goodness-of-fit test
and the BIC. Specifically, for earthquakes data in the chosen time windows, we see
that the tapered Pareto model gives dominant goodness-of-fit in terms of the BIC
(Table 4, left), and that the Generalized Gamma is, in general, the second to best
(if one considers its sub-specifications). Regarding the KS test, the Generalized
Gamma yields the largest p-values and would be the preferable model from
that perspective (Table 4, right). Figure 10 displays the QQ-plot of the selected
distributions fitted to inter-arrival times of seismic events in the given time windows
for the Pacific Ring of Fire. Both the tapered Pareto and Generalized Gamma lead
to the best visual fit, underlining that these two distributions ought to be chosen
for modelling IATs, at least for the Pacific Ring of Fire. However, given that the
tapered Pareto is sometimes only weakly supported by the KS test, we suggest that
the Generalized Gamma model should be chosen as the generating model for the
inter-arrival times in general.

In the spirit of Nishenko (1991); Panagiotopoulos (1995), we conclude this
section by reporting the estimated probability, under a given model, for an earth-
quake of magnitude greater than a certain threshold to occur within a month (p30)
and within a year (p365) from the last event: see Table 5. Inter-event times have
been recomputed on each sub-sample of observations determined by a magnitude
threshold. Standard maximum likelihood estimation has been implemented in the R
environment: for the tails samples (m ≥ 7,m ≥ 7.5), initial values should be chosen
carefully, and in certain cases, it is advisable to trim data from below (by eliminating
the lowest 5% of the distribution, for instance; see also Schoenberg et al. 2009).



46 C. Ley and R. Simone

0 20 40 60 80

0
20

40
60

80

Sample Quantiles

Th
eo

re
tic

al
 Q

ua
nt

ile
s

Gamma
Weibull
Log−Normal
Gen. Gamma
Tap. Pareto

0 50 100 150 200 250 300

0
50

10
0

15
0

20
0

25
0

30
0

Sample Quantiles

Th
eo

re
tic

al
 Q

ua
nt

ile
s

Gamma
Weibull
Log−Normal
Gen. Gamma
Tap. Pareto

0 20 40 60 80

0
20

40
60

80

Sample Quantiles

Th
eo

re
tic

al
 Q

ua
nt

ile
s

Gamma
Weibull
Log−Normal
Gen. Gamma
Tap. Pareto

0 50 100 150 200 250 300 350

0
50

10
0

15
0

20
0

25
0

30
0

35
0

Sample Quantiles

Th
eo

re
tic

al
 Q

ua
nt

ile
s

Gamma
Weibull
Log−Normal
Gen. Gamma
Tap. Pareto

Fig. 10 QQ-plots of the competing distributions for the inter-arrival times in the North-West
corner (top left), North-East corner (top right), South-West corner (bottom-left), and South-East
corner (bottom-right) of the Pacific Ring of Fire

5 Conclusions and Future Development Plan

We have discussed and compared various probability distributions for modelling
earthquake sizes and inter-arrival times. We have found that, for earthquake sizes,
the composite Pareto-log-normal model is the best choice, while for inter-arrival
times the Generalized Gamma distribution is the safest option. Of course, we should
keep in mind that these conclusions are drawn on the basis of data from the Pacific
Ring of Fire, and a large-scale comparison should be done. This will be achieved in
future work, but we hope to have stimulated interest in these probability distributions
for seismological research purposes.

We conclude this chapter by presenting the next and more challenging issue that
we will address, namely the combination of earthquake size and/or IAT with the
location on the earth where the earthquake took place. As a starting point, we may
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consider the Abe-Ley proposal for circular-linear data (Abe and Ley 2017), defined
for θ ∈ [−π, π), x ∈ [0,∞) by:

f (x, θ) =
(
1 + λ sin(θ − μ)

)
2π cosh(κ)

a xa−1

sa
exp

(
−
(x
s

)a (
1 + tanh(k) cos(θ − μ)

))
(22)

where μ ∈ [−π, π) is the location parameter on the circle, κ ≥ 0 the circular
concentration, λ ∈ (−1, 1) regulates circular skewness, and a, s are the shape
parameters as in the classical Weibull distribution. The Abe-Ley model has orig-
inally been termed WeiSSVM because it is a combination of the linear Weibull
distribution and the circular sine-skewed von Mises distribution, see Abe and Ley
(2017) for details. This model has already been proven to be a versatile and effective
tool for a broad set of applications (Lagona et al. 2015; Sadeghianpourhamami
et al. 2019; Cremers et al. 2019), due to easiness of parameter interpretation and
estimation. We intend to propose an extension of this model for spherical-linear
data, where now the non-linear parameter θ no longer takes values on the unit circle,
but rather on the unit sphere. With this model, we shall be able to model earthquake
size, IAT and location, which would definitely lead to new means of analysing
earthquake data. In particular, we will then use as linear parts the composite Pareto-
log-normal model and the Generalized Gamma distribution, based on the results of
the comparative analysis done in this chapter.
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Multivariate Order Statistics Induced
by Ordering Linear Combinations
of Components of Multivariate Elliptical
Random Vectors

Ahad Jamalizadeh, Roohollah Roozegar, Narayanaswamy Balakrishnan,
and Mehrdad Naderi

Abstract In this chapter, by considering a np-dimensional random vector(
X�

1 , . . . ,X�
n

)�
, Xi ∈ R

p, i = 1, . . . , n, having a multivariate elliptical
distribution, we derive the exact distribution of multivariate order statistics induced
by ordering linear combinations of the components. These induced multivariate
order statistics are often referred to as the concomitant vectors corresponding to
order statistics from multivariate elliptical distribution. Specifically, we derive a
mixture representation for the distribution of the rth concomitant vector, and also
for the joint distribution of the rth order statistic and its concomitant vector. We
show that these distributions are indeed mixtures of multivariate unified skew-
elliptical distributions. The important special cases of multivariate normal and
multivariate student-t distributions are discussed in detail. Finally, the usefulness of
the established results is illustrated with a real dataset.

A. Jamalizadeh (�)
Department of Statistics, Shahid Bahonar University, Kerman, Iran
e-mail: a.jamalizadeh@uk.ac.ir

R. Roozegar
Department of Mathematics, College of Sciences, Yasouj University, Yasouj, Iran
e-mail: roozegar@yu.ac.ir

N. Balakrishnan
McMaster University, Hamilton, ON, Canada
e-mail: bala@mcmaster.ca

M. Naderi
Department of Statistics, Faculty of Natural & Agricultural Sciences, University of Pretoria,
Pretoria, South Africa
e-mail: m.naderi@up.ac.za

© Springer Nature Switzerland AG 2020
A. Bekker et al. (eds.), Computational and Methodological Statistics and
Biostatistics, Emerging Topics in Statistics and Biostatistics,
https://doi.org/10.1007/978-3-030-42196-0_3

51

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-42196-0_3&domain=pdf
mailto:a.jamalizadeh@uk.ac.ir
mailto:roozegar@yu.ac.ir
mailto:bala@mcmaster.ca
mailto:m.naderi@up.ac.za
https://doi.org/10.1007/978-3-030-42196-0_3


52 A. Jamalizadeh et al.

1 Introduction

Let X1, . . . ,Xn be a set of n independent and identically distributed p-dimensional
absolutely continuous random vectors. Over the past few decades, several papers
have appeared in which efforts have been made to generalize the concept of order
statistics from the univariate case to the multivariate case. All these works can be
subsumed by an ordering induced, where we consider the random vectors Xi’s as
concomitants, by an univariate auxiliary random variable. This auxiliary random
variable might be one of the components or a linear combination of the components.
In this regard, David (1973) was the first to introduce the concept of multivariate
order statistics in the case when the multivariate data are ordered by one of its
components. The behavior of these induced multivariate order statistics is of interest
in many practical situations (see David 1982; Bhattacharya 1984). Balakrishnan
(1993) and Song and Deddens (1993) computed the moments of multivariate order
statistics induced by an ordering of linear combinations of the components of a
multivariate normal distribution. Finally, Arnold et al. (2009) introduced a general
form for the distribution of the rth multivariate order statistic via multivariate
concomitants.

It is important to mention here that all the above mentioned works are based on
independent and identically distributed (i.i.d.) samples. But, this assumption may
not be realistic in the some situations. In this chapter, we generalize these results
for the case when the joint distribution of the random vectors X1, . . . ,Xn follows a
general structure as

⎛
⎜⎝

X1
...

Xn

⎞
⎟⎠ ∼ ECnp

⎛
⎜⎝μ =

⎛
⎜⎝

μ1
...

μn

⎞
⎟⎠ ,� =

⎛
⎜⎝

�11 · · · �1n
...

. . .
...

�n1 · · · �nn

⎞
⎟⎠ , h(np)

⎞
⎟⎠ , (1)

the (n× p)-dimensional elliptical distribution with location parameter μ, scale
parameter � and density generator h(n). The class of elliptically distributions is
a rich family of symmetric distributions which contain most important distributions
like normal, student-t , Cauchy, Laplace and logistic distributions.

So, the main objective of this chapter is to present an exact distribution for
the rth multivariate order statistic induced by ordering linear combinations of the
components when the random vectors X1, . . . ,Xn follow the distribution presented
in (1). We also derive the joint distribution of the rth order statistic and its
concomitant vector in this case. We show that these distributions are indeed mixtures
of multivariate unified skew-elliptical (SUE) distributions and use them to discuss
some properties.
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2 Preliminaries

An n-dimensional random vector X is said to have an elliptically contoured (EC)
distribution with location vector μ ∈ R

n, non-negative definite dispersion matrix
� ∈ R

n×n and characteristic generator ϕ(n) if the centered random vector X−μ has
characteristic function of the form ϕ

(n)
X−μ (t) = ϕ(n)

(
t��t

)
, for t ∈ R

n. Moreover,
if the probability density function (pdf) of X exists, it is of the form

fECn

(
x ;μ,�, h(n)

)
= |�|− 1

2 h(n)
(
(x − μ)� �−1 (x − μ)

)
, x ∈Rn, (2)

when h(n) is the density generator function. In this case, we use the notation X ∼
ECn

(
μ,�, h(n)

)
. For more details, see Kelker (1970), Cambanis et al. (1981) and

Fang et al. (1990).
Over the past two decades, several authors have proposed different forms

of univariate and multivariate skew elliptical distributions to accommodate both
asymmetry and heavy tails. Interested readers may refer to Azzalini (1985), Henze
(1986), Azzalini and Dalla Valle (1996), Arnold and Beaver (2002) and Genton
(2004). A unification of different forms of skew-elliptical distributions has been
presented by Arellano-Valle and Azzalini (2006) in the following way.

Let U and V be two m and n dimensional random vectors, respectively, and

(
U
V

)
∼ ECm+n

((
η

ξ

)
,

(
� ��
� �

)
, h(m+n)

)
. (3)

The n-dimensional random vector X is then said to have the multivariate unified
skew-elliptical (SUE) distribution with parameter θ = (ξ , η,�,�,�) , denoted by
X ∼ SUEn,m

(
ξ , η,�,�,�, h(m+n)) or simply by X ∼ SUEn,m

(
θ, h(m+n)), if

X d= V | (U > 0) , (4)

where ξ ∈ R
n and η ∈ R

m are location vectors, � ∈ R
n×n and � ∈ R

m×m
are dispersion matrices, � ∈ R

n×m is a skewness/shape matrix and h(m+n) is the
density generator function. The pdf of X takes on the form (see Arellano-Valle and
Genton 2010 or Arellano-Valle and Azzalini 2006)

gSUEn,m

(
x; θ , h(m+n)) (5)

=fECn
(
x; ξ ,�, h(n))

FECm
(
η;�, h(m)) ×FECm

(
η+���−1 (x−ξ) ;�−���−1�, h

(m)
w(x)

)
, x ∈Rn,

where FECm
(·;�, h(m)) denotes the cdf of ECm

(
0,�, h(m)

)
and w (x) =

(x−ξ)� �−1 (x−ξ). Furthermore, we can generate the SUE distribution by using
the convolution approach, utilizing the stochastic representation
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X d= ξ + ��−1X0η + X1, (6)

where X1 ∼ ECn
(
0,� − ��−1��, h(n)

)
and X0η ∼ T ECm

(−η; 0, �, h(m)
)
,

with T ECm (c;μ,�) representing the multivariate elliptical variable with compo-
nents truncated below c. From (6), we can easily derive the first moment of SUE
distribution, as presented in the following lemma.

Lemma 1 If X ∼ SUEn,m
(
ξ , η,�,�,�, h(m+n)) , then we have

E (X) = ξ + ��−1E
(
X0η

)
. (7)

The marginal and conditional distributions of the SUE distribution have been
presented by Jamalizadeh and Balakrishnan (2012) in terms of the parametrization
in (5) as follows.

Suppose X1 and X2 are two random vectors of dimensions n1 and n − n1,
respectively, such that

(
X1

X2

)
∼ SUEn,m

(
ξ , η,�,�,�, h(m+n)) .

Corresponding to X1 and X2, let us consider the following partitions of ξ , � and �

with the dimensions matching suitably:

ξ =
(

ξ1

ξ2

)
, � =

(
�11 �12

�21 �22

)
and � =

(
�1

�2

)
.

Lemma 2 We then have

(i) X1 ∼ SUEn1,m

(
ξ1, η,�11,�,�1, h

(m+n1)
)
.

(ii) For x1 ∈ R
n1 ,

X2 | (X1=x1) ∼ SUEn−n1,m

(
ξ2.1(x1), η

2.1(x1),�
22.1,�2.1,�2.1, h

(m+n−n1)
q(x1)

)
,

where

ξ2.1(x1) = ξ2 + �21�
−1
11

(
x1 − ξ1

)
, η2.1(x1) = η + ��

1 �−1
11

(
x1 − ξ1

)
,

�22.1 = �22 − �21�
−1
11 �12, �2.1=� − ��

1 �−1
11 �1, �2.1=�2 − �21�

−1
11 �1

and q(x1) =
(
x1 − ξ1

)�
�−1

11

(
x1 − ξ1

)
.

For a proof, one may refer to Aghamohammadi et al. (2012).



Multivariate Order Statistics 55

2.1 Two Special cases

An important special case of SUE distribution is the multivariate unified skew-
normal distribution (SUN). Specifically, if the density generator function in (5) is
h(m+n) (u) = (2π)−(m+n)/2 exp (−u/2) (u ≥ 0), we obtain the SUN distribution,
denoted by X ∼ SUNn,m (θ), with pdf (see Arellano-Valle and Azzalini 2006)

gSUNn,m (x;θ) =
φn (x; ξ ,�)
�m (η;�) ×�m

(
η + ���−1 (x − ξ) ;� − ���−1�

)
,

where φn (·; ξ ,�) denotes the pdf of Nn (ξ ,�) and �m (·;�) denotes the cdf of
Nm (0,�).

Another important special case of SUE distribution is the multivariate unified

skew-t (SUT) distribution. Specifically, if h(m+n)(u)= �( ν+m+n
2 )

�( ν2 )(νπ)
m+n

2

(
1+u

ν

)−(ν+m+n)/2,

we obtain the multivariate unified skew-t (SUT) distribution, denoted by
Y ∼ SUTn,m (θ , ν), with pdf

gSUTn,m (x; θ , ν) =
tn(x; ξ ,�, ν)
Tm (η;�, ν)

×Tm
(

η+���−1 (x−ξ) ; ν+ (x−ξ)� �−1 (x−ξ)

ν+n
(
�−���−1�

)
, ν+n

)
,

where tn (·; ξ ,�, ν) denotes the pdf of multivariate student-t distribution with
location vector ξ , dispersion matrix � and degrees of freedom ν, and Tm (·;�, ν)
denotes the corresponding cdf of tm (·; 0,�, ν) .

Using the results in Lemma 2, we can obtain the marginal and conditional
distributions of SUT distribution as presented in the following corollary.

Corollary 1 Let

(
X1

X2

)
∼ SUTn,m (ξ , η,�,�,�, ν) .

Then, we have:

(i) X1 ∼ SUTn1,m

(
ξ1, η,�11,�,�1, ν

)
.

(ii) For x1 ∈ R
n1 ,

X2 | (X1 = x1) ∼ SUTn−n1,m

(
θ2.1(x1), ν + n1

)
,

where θ2.1(x1) =
(
ξ2.1(x1), η

2.1(x1),�
22.1(x1),�

2.1(x1),�
2.1(x1)

)
with

ξ2.1(x1) and η2.1(x1) are as in Lemma 2, and
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�22.1(x1) = ν + q1(x1)

ν + n1
�22.1, �2.1(x1) = ν + q1(x1)

ν + n1
�2.1,

�2.1(x1) = ν + q1(x1)

ν + n1
�2.1.

The moments of multivariate truncated normal and student-t distributions have
been derived by many authors. In particular, Ho et al. (2012) derived these moments
in a matrix form. In the following lemma, we present their results in the left
truncated case, which we need for the derivations in subsequent sections.

Lemma 3 Let X ∼ TNp (0,�;X > a) and Y ∼ Ttp (0,�, ν;Y > a) , and the
vector a and the m×m positive definite matrix � be partitioned, for i = 1, . . . , m,
as (

ai

a−i

)
,

(
σii σ�−ii

σ−ii �−i−i

)
. (8)

Then, we have

E (X) = 1

�m (−a;�)�qN (a;�) , E (Y) =
√

ν
ν−2

Tm (−a;�, ν)�q t (a;�, ν) ,

where qN (a;�) and qt (a;�, ν) are two p × 1 vectors whose ith elements are

qNi (a;�) = φ (ai; σii)�m−1

(
σ−ii
σii

ai − a−i;�−i|i
)
,

qti (a;�, ν)=t
(
ai

√
ν−2

ν
; σii , ν−2

)
Tm−1

⎛
⎝σ−ii

σii
ai−a−i;�−i|i

ν+ a2
i

σii

ν−1
, ν − 1

⎞
⎠ ,

with �−i|i = �−i−i − σ−iiσ�−ii
σii

.

By using the results in Lemma 3 and the convolution representation in (6), we can
derive the first moments of SUN and SUT distributions as presented in the following
theorem.

Theorem 1 Let X ∼ SUNn,m (ξ , η,�,�,�) and Y ∼ SUTn,m (θ , ν). Then, we
have

E (X) = ξ + �qN (−η;�)
�m (η;�) , E (Y) = ξ + �qt (−η;�, ν)

Tm (η;�, ν)
.
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3 Concomitant Vector of Order Statistics

Let X1, . . . ,Xn be random vectors of the same dimension p having elliptical
distribution in (1), and let for i = 1, 2, . . . , n, Yi = a�Xi be a linear combination
of these vectors, where a = (

a1, . . . , ap
)� ∈ Rp and a �= 0 = (0, . . . , 0)�.

Further, let Y(n) = (
Y(1), . . . , Y(n)

)�
, with Y(1) < · · · < Y(n), denote the vector

of order statistics arising from Y = (Y1, . . . , Yn)
�, and X[r] denote the vector of

concomitants corresponding to the rth order statistic Y(r).
In this section, we establish a mixture representation for the distribution of X[r]

in terms of univariate SUE distribution. For this purpose, we shall first introduce the
following notation. Let 1 ≤ r ≤ n be an integer, and for integers 1 ≤ j1 < · · · <
jr−1 ≤ n − 1, let Sj1...jr−1 = diag (s1, . . . , sn−1) be a (n − 1) × (n − 1) diagonal
matrix where

si =
{

1 i = j1, . . . , jr−1

−1 otherwise.

In the special cases, we have Sj1···jn−1 = In−1 and Sj0 = −In−1. Furthermore, let,
for i = 1, . . . , n, the random vector Y = (Y1, . . . , Yn)

� be partitioned as

Y =
(
Yi

Y−i

)
,

where we use the notation Y−i for the vector obtained from Y by deleting its ith
component.

Now, let us introduce the following partitions for μY, �YY and �YX
i
:

μY =
(
μYi
μY−i

)
, �YY =

(
σYiYi σ�

Y−iYi
σY−iYi �Y−iY−i

)
, �YX

i
=
(

σ YiXi

σY−iXi

)
.

We now derive the exact distribution of X[r], for r = 1, 2, . . . , n, in the following
theorem.

Theorem 2 The cdf of X[r], for r = 1, 2, . . . , n and t ∈ R
p, is given by

F[r]

(
t;μ,�, h(np)

)
=

n∑
i=1

∑
j1<···<jr−1

1≤jk≤n−1

πij1,...,jr−1GSUEp,n−1

(
t;θ ij1,...,jr−1 , h

(p+n−1)
)
,

where GSUE
p,n−1

(·; θ , h(p+n−1)
)
denotes the cdf of SUEp,n−1

(
θ , h(p+n−1)

)
, and

the mixing probabilities are
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πij1,...,jr−1 = FECn−1

(
ηij1,...,jr−1

;�ij1,...,jr−1 , h
(n−1)

)
and

θ ij1,...,jr−1 = (
ξ i , ηij1,...,jr−1

,�i ,�ij1,...,jr−1 ,�ij1,...,jr−1

)
,

where

ξ i = μXi , ηij1,...,jr−1
= Sj1...jr−1

(
1n−1μYi−μY−i

)
, �i = �XiXi ,

�ij1,...,jr−1 =
[
Sj1...jr−1

(
1n−1σYiXi − �Y−iXi

)]�
,

�ij1,...,jr−1 = S
j1 ...jr−1

(
σYiYi 1n−11�n−1−1n−1σ�

Y−i Yi−σY−i Yi 1
�
n−1+�Y−iY−i

)
S
j1 ...jr−1

.

Proof See Appendix. ��
For i = 1, 2, . . . , n, let θ i =

(
ξ i , ηi ,�i ,�i ,�i

)
, where

ξ i = μXi
, ηi =

(
1n−1μYi−μY−i

)
, �i = �XiXi

, (9)

�i =
(
1n−1σ YiXi

− �Y−iXi

)�
,

�i =
(
σYiYi1n−11�

n−1 − 1n−1σ
�
Y−iYi − σY−iYi1

�
n−1 + �Y−iY−i

)
.

Then, we obtain the following result.

Corollary 2 The cdf of X[n] and X[1], t ∈ R
p, are given by

F[n]

(
t;μ,�, h(np)

)
=

n∑
i=1

πiGSUEp,n−1

(
t;θ i , h(p+n−1)

)
,

F[1]

(
t;μ,�, h(np)

)
=

n∑
i=1

π
′
iGSUEp,n−1

(
t;θ ′

i , h
(p+n−1)

)
,

where

πi = FECn−1

(
ηi;�i , h

(n−1)
)
, π

′
i = FECn−1

(
−ηi;�i , h

(n−1)
)
,

θ
′
i =

(
ξ i ,−ηi ,�i ,�i ,−�i

)
.

Proof In Part (i), Sj1...jn−1 = In−1 and in Part (ii), Sj0 = −In−1, and so the proof
follows directly from Theorem 2. ��
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3.1 An Exchangeable Case

Now, we focus on an exchangeable case when in (1), for i, j = 1, . . . , n, and i �= j,

we have

μXi
= μX, �XiXi

= �1 and �XiXj
= �2. (10)

In what follows, Jn−1 denotes the vector
(
1�
r−1,−1�

n−r
)�

. From the mixture form
in Theorem 2, we can simply obtain the exact distribution of X[r] for this special
exchangeable case as follows.

Corollary 3 In the exchangeable case as in (10), we have, for r = 1, 2, . . . , n,

X[r] ∼ SUEp,n−1

(
μX, 0,�1,�

∗,�∗, h(p+n−1)
)
,

where

�∗ =
[
a� (�1 − �2) a

] (
Jn−1J�

n−1 + In−1

)
, �∗ =

[
Jn−1a� (�1 − �2)

]�
.

Proof We can show in this special case that

σ YiXi
= a��1, �Y−iXi

= 1n−1a��2,

σYiYi = a��1a, σY−iYi = 1n−1a��2a,

�Y−iY−i = a��2a
(

1n−11�
n−1

)
+
(

a��1a − a��2a
)

In−1,

and so the required result can be obtained by some simple algebraic calculations.
��

The following result is an immediate consequence of Corollary 3.

Corollary 4 Let in (10), �2 = 0 and �1 = �, then we have

X[r] ∼ SUEp,n−1

(
μ, 0,�,�′,�′, h(p+n−1)

)
,

where �′ = a��a
(
J n−1J

�
n−1 + In−1

)
, �′ = [

J n−1a
��

]�
.

3.2 Multivariate Normal Case

In the special case of the multivariate normal distribution, from the general mixture
form in Theorem 2, we get the following corollary.
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Corollary 5 If

⎛
⎜⎝

X1
...

Xn

⎞
⎟⎠ ∼ Nnp

⎛
⎜⎝μ =

⎛
⎜⎝

μ1
...

μn

⎞
⎟⎠ ,� =

⎛
⎜⎝

�11 · · · �1n
...

. . .
...

�n1 · · · �nn

⎞
⎟⎠
⎞
⎟⎠ , then the

cdf of X[r], for t ∈ R
p, is given by

F[r] (t;μ,�) =
n∑
i=1

∑
j1<···<jr−1

1≤jk≤n−1

πij1,...,jr−1GSUNp,n−1

(
t;θ ij1,...,jr−1

)
,

where GSUN
p,n−1

(·; θ) denotes the cdf of SUNp,n−1 (θ), and the mixing probabili-
ties are

πij1,...,jr−1 = �n−1
(
ηij1,...,jr−1

;�ij1,...,jr−1

)
,

and θ ij1,...,jr−1 is as given in Theorem 2.

In addition, upon using the mean of SUNn,m (θ) presented in Theorem 1, the
mean of X[r] can be readily obtained as

E
(
X[r]

) = n∑
i=1

∑
j1<···<jr−1

1≤jk≤n−1

πij1,...,jr−1μij1,...,jr−1
, (11)

where μij1,...,jr−1
denotes the mean of SUNp,n−1

(
θ ij1,...,jr−1

)
.

3.3 Multivariate Student-t Case

In the case of multivariate student-t distribution, we can easily obtain the exact
distribution of X[r] as follows.

Corollary 6 If

⎛
⎜⎝

X1
...

Xn

⎞
⎟⎠ ∼ tnp (μ,�, ν) , then the cdf of X[r], for t ∈ R

p, is given

by

F[r] (t;μ,�) =
n∑
i=1

∑
j1<···<jr−1

1≤jk≤n−1

πij1,··· ,jr−1GSUTp,n−1

(
t;θ ij1,··· ,jr−1 , ν

)
,

whereGSUTp,n−1 (·; θ , ν) denotes the cdf and pdf of SUTp,n−1 (θ , ν) and the mixing
probabilities are
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πij1,...,jr−1 = Tn−1
(
ηij1,...,jr−1

;�ij1,...,jr−1 , ν
)
,

and θ ij1,··· ,jr−1 is as defined in Theorem 2.

By using the mixture representation in Corollary 6 and the mean of
SUTn,m (θ , ν) presented in Theorem 1, the mean of X[r] is readily obtained as

E
(
X[r]

) = n∑
i=1

∑
j1<···<jr−1

1≤jk≤n−1

πij1,...,jr−1μ
t
ij1,...,jr−1

, (12)

where μt
ij1,...,jr−1

denotes the mean of SUTp,n−1
(
θ ij1,...,jr−1 , ν

)
.

4 Joint Distribution of
(
X[r], Y(r)

)�

We now derive the exact joint distribution of
(
X[r], Y(r)

)�, for r = 1, . . . , n,
and show that this distribution is indeed a mixture of unified skew-elliptical
distributions.

Theorem 3 The joint cdf of
(
X[r], Y(r)

)�
, for t = (

t�1 , t2
)� ∈ R

p+1, is given by

F[r],(r)

(
t;μ,�, h(np)

)
=

n∑
i=1

∑
j1<···<jr−1

1≤jk≤n−1

πij1,...,jr−1GSUEp+1,n−1

(
t;θ∗i,j1,...,jr−1

, h(p+n)
)
,

where, for i = 1, . . . , n and 1 ≤ j1 < · · · < jr−1 ≤ n− 1, the mixing probabilities
πij1,...,jr−1 are as given in Theorem 2, and

θ∗
ij1,...,jr−1

=
(
ξ∗
i , ηij1,...,jr−1

,�∗
i , �ij1,...,jr−1

,�∗
ij1,...,jr−1

)
,

with

ξ∗
i =

(
μXi

μYi

)
, �∗

i =
(

�XiXi
σXiYi

σ�
XiYi

σYiYi

)
,

�∗
ij1,...,jr−1

=
([

Sij1,··· ,jr−1

(
1n−1σ YiXi

− �Y−iXi

)]�[
Sij1,··· ,jr−1

(
1n−1σYiYi − σY−iYi

)]�
)
.

Proof This theorem can be proved by proceeding exactly as done in Theorem 2.
��
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From Lemma 2, we can easily derive the conditional distribution of X[r], given
Y(r), as presented in the following corollary.

Corollary 7 The conditional distribution of X[r], given Y(r) = t2, for r = 1, . . . , n
and t2 ∈ R, is given by

FX[r]| Y(r)=t2
(

t1;μ,�, h(np)
)

=
n∑
i=1

∑
j1<···<jr−1

1≤jk≤n−1

πeij1,··· ,jr−1
GSUEp,n−1

(
t1;θ 1.2

ij1,··· ,jr−1
(t2) , h

(p+n−1)
ui (t2)

)
, t1 ∈ R

p,

where

θ
1.2

ij1,··· ,jr−1
(t2) =

(
ξ

1.2

i (t2) , η
1.2

ij1,··· ,jr−1
(t2) ,�

1.2

i ,�
1.2

ij1,··· ,jr−1
,�

1.2

ij1,··· ,jr−1

)
,

with

ξ
1.2

i (t2) = μXi
+ σXiYi

t2 − μYi

σYiYi
,

η
1.2

ij1,··· ,jr−1
(t2) = ηij1,··· ,jr−1

+ [
Sij1,··· ,jr−1

(
1n−1σYiYi − σY−iYi

)] t2 − μYi

σYiYi
,

�
1.2

i = �XiXi
− σXiYiσ

T
XiYi

σYiYi
,

�
1.2

ij1,··· ,jr−1
= �ij1,··· ,jr−1

−
[
Sij1,··· ,jr−1

(
1n−1σYiYi−σY−iYi

)] [
Sij1,··· ,jr−1

(
1n−1σYiYi−σY−iYi

)]T
σYiYi

,

�
1.2

ij1,··· ,jr−1
= [

Sij1,··· ,jr−1

(
1n−1σ YiXi

− �Y−iXi

)]T
−σXiYi

σYiYi

[
Sij1,··· ,jr−1

(
1n−1σYiYi − σY−iYi

)]T
and

ui (t2) =
(
t2 − μYi

)2

σYiYi
,

and the mixing probabilities πeij1,··· ,jr−1
are
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πij1,··· ,jr−1gSUE1,n−1

(
t2; θ ′

ij1,··· ,jr−1
, h(n)

)
n∑
i=1

∑
j1<···<jr−1

1≤jk≤n−1

πij1,··· ,jr−1gSUE1,n−1

(
t2; θ ′

ij1,··· ,jr−1
, h(n)

) ,

where

θ
′
ij1,··· ,jr−1

=
(
μYi , ηij1,··· ,jr−1

, σYiYi ,�ij1,··· ,jr−1 ,�
′
ij1,··· ,jr−1

)
,

with

�
′
ij1,··· ,jr−1

= [
Sij1,··· ,jr−1

(
1n−1σYiYi − σY−iYi

)]T
.

4.1 Multivariate Normal Case

As an immediate consequence, we obtain the following corollary when(
X�

1 , . . . ,X
�
n

)�
follows a multivariate normal distribution.

Corollary 8 If

⎛
⎜⎝

X1
...

Xn

⎞
⎟⎠ ∼ Nnp (μ,�) , then the conditional distribution of X[r],

given Y(r) = t2, for t2 ∈ R, is given by

FX[r]| Y(r)=t2 (t1;μ,�)

=
n∑
i=1

∑
j1<···<jr−1

1≤jk≤n−1

πnij1,··· ,jr−1
GSUNp,n−1

(
t1; θ 1.2

ij1,··· ,jr−1
(t2)

)
, t1 ∈ R

p ,

where the mixing probabilities are

πnij1,··· ,jr−1
=

πij1,··· ,jr−1gSUN1,n−1

(
t2;θ ′

ij1,··· ,jr−1

)
n∑
i=1

∑
j1<···<jr−1

1≤jk≤n−1

πij1,··· ,jr−1gSUN1,n−1

(
t2;θ ′

ij1,··· ,jr−1

) ,

and θ
1.2

ij1,··· ,jr−1
(t2) and θ

′
ij1,··· ,jr−1

are as given in Corollary 7.

The conditional mean of X[r], given Y(r) can be easily deduced, using the mean
of SUNn,m (θ) presented in Theorem 1 as
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E
(
X[r]

∣∣ Y(r) = t2
) = n∑

i=1

∑
j1<···<jr−1

1≤jk≤n−1

πnij1,··· ,jr−1
μij1,··· ,jr−1

(t2) , (13)

where μij1,··· ,jr−1
(t2) denotes the mean of SUNp,n−1

(
θ

1.2

ij1,··· ,jr−1
(t2)

)
.

4.2 Multivariate Student-t Case

Corollary 9 If

⎛
⎜⎝

X1
...

Xn

⎞
⎟⎠ ∼ tnp (μ,�, ν) , then the conditional distribution of X[r],

given Y(r) = t2 for t2 ∈ R, is given by

FX[r]| Y(r)=t2 (t1;μ,�, ν)

=
n∑
i=1

∑
j1<···<jr−1

1≤jk≤n−1

πtij1,··· ,jr−1
GSUTp,n−1

(
t1;θ ∗1.2

ij1,··· ,jr−1
(t2) , ν + 1

)
, t1 ∈ R

p ,

where the mixing probabilities are

πtij1,··· ,jr−1
=

πij1,··· ,jr−1gSUT1,n−1

(
t2;θ ′

ij1,··· ,jr−1
, ν
)

n∑
i=1

∑
j1<···<jr−1

1≤jk≤n−1

πij1,··· ,jr−1gSUT1,n−1

(
t2;θ ′

ij1,··· ,jr−1
, ν
) ,

and

θ∗1.2

ij1,··· ,jr−1
(t2)=

(
ξ

1.2

i (t2) , η
1.2

ij1,··· ,jr−1
(t2) ,�

1.2

i (t2) ,�
1.2

ij1,··· ,jr−1
(t2) ,�

1.2

ij1,··· ,jr−1
(t2)

)
,

with ξ
1.2

i (t2) and η
1.2

ij1,··· ,jr−1
(t2) being as in Corollary 7, and

�
1.2

i (t2) = �
1.2

i

ν + ui (t2)

ν + 1
,

�
1.2

ij1,··· ,jr−1
(t2) = �

1.2

ij1,··· ,jr−1

ν + ui (t2)

ν + 1
,

�
1.2

ij1,··· ,jr−1
(t2) = �

1.2

ij1,··· ,jr−1

ν + ui (t2)

ν + 1
.

In a similar manner, the conditional mean of X[r], given Y(r) is given by
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E
(
X[r]

∣∣ Y(r) = t2
) = n∑

i=1

∑
j1<···<jr−1

1≤jk≤n−1

πtij1,··· ,jr−1
μ∗
ij1,··· ,jr−1

(t2) , (14)

where μ∗
ij1,··· ,jr−1

(t2) denotes the mean of SUTp,n−1

(
θ∗1.2

ij1,··· ,jr−1
(t2) , ν

)
.

5 Illustrative Example

To illustrate the results derived in the preceding sections, we consider a real dataset
from Johnson and Wichern (2007) (the data are presented in Table 1). This dataset
gives the mineral content of three bones obtained by photon absorptiometry from
25 older women. Measurements were recorded on three bones (radius, humerus and
ulna) on the dominant and non-dominant sides. Let us specifically denote

Table 1 Mineral content in bones

Subject Dominant radius Radius Dominant humerus Humerus Dominant ulna Ulna

1 1.103 1.052 2.139 2.238 0.873 0.872

2 0.842 0.859 1.873 1.741 0.590 0.744

3 0.925 0.873 1.887 1.809 0.767 0.713

4 0.857 0.744 1.739 1.547 0.706 0.674

5 0.795 0.809 1.734 1.715 0.549 0.654

6 0.787 0.779 1.509 1.474 0.782 0.571

7 0.933 0.880 1.695 1.656 0.737 0.803

8 0.799 0.851 1.740 1.777 0.618 0.682

9 0.945 0.876 1.811 1.759 0.853 0.777

10 0.921 0.906 1.954 2.009 0.823 0.765

11 0.792 0.825 1.624 1.657 0.686 0.668

12 0.815 0.751 2.204 1.846 0.678 0.546

13 0.755 0.724 1.508 1.458 0.662 0.595

14 0.880 0.866 1.786 1.811 0.810 0.819

15 0.900 0.838 1.902 1.606 0.723 0.677

16 0.764 0.757 1.743 1.794 0.586 0.541

17 0.733 0.748 1.863 1.869 0.672 0.752

18 0.932 0.898 2.028 2.032 0.836 0.805

19 0.856 0.786 1.390 1.324 0.578 0.610

20 0.890 0.950 2.187 2.087 0.758 0.718

21 0.688 0.532 1.650 1.378 0.533 0.482

22 0.940 0.850 2.334 2.225 0.757 0.731

23 0.493 0.616 1.037 1.268 0.546 0.615

24 0.835 0.752 1.509 1.422 0.618 0.664

25 0.915 0.936 1.971 1.869 0.869 0.868
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Fig. 1 The chi-squared Q-Q
plot for the six-dimensional
data
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X11 : mineral content in dominant side of Radius bone,

X12 : mineral content in non-dominant side of Radius bone,

X21 : mineral content in dominant side of Humerus bone,

X22 : mineral content in non-dominant side of Humerus bone,

X31 : mineral content in dominant side of Ulna bone,

X32 : mineral content in non-dominant side of Ulna bone,

and Xi = (Xi1, Xi2)
�, i = 1, 2, 3. We first calculate the generalized Shapiro–Wilk

statistic (Villasenor-Alva and Gonzalez-Estrada 2009) and the E-statistic (energy)

(Szekely and Rizzo 2005) to evaluate the joint normality of
(
X�

1 , X�
2 , X�

3

)�
.

We found the corresponding p-values to be 0.7801 and 0.1952, respectively. These
p-values, as well as the chi-squared Q-Q plot shown in Fig. 1, support the joint
normality assumption on these variables.

We, therefore, assume that
(
X�

1 , X�
2 , X�

3

)�
∼ N6

(
μ̂,�̂

)
, where μ̂ and �̂

are the MLEs of the mean vector and the covariance matrix, given by

μ̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

μ̂X11

μ̂X12

μ̂X21

μ̂X22

μ̂X31

μ̂X32

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0.8438
0.8183
1.7927
1.7348
0.7044
0.6938

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, �̂XX =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0.0125 0.0100 0.0215 0.0193 0.0088 0.0076
0.0110 0.0178 0.0203 0.0082 0.0086

0.0771 0.0641 0.0162 0.0123
0.0667 0.0170 0.0161

0.0111 0.0077
0.0102

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

Let Yi = Xi1 + Xi2, and suppose we are interested in finding the best (nonlinear)
prediction (under square error loss) of the mineral content in dominant and non-
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dominant sides of a bone where for this bone the sum of mineral content in both
sides is less than that of other bones, i.e., we are interested in E

(
X[1]

)
.

From (11), the estimated mean of X[1] can be determined as

Ê
(
X[1]

) = 3∑
i=1

π̂i μ̂i ,

where μ̂i denotes the mean of SUN2,2

(
θ̂ i

)
, with μ̂i =

(
ξ̂ i , η̂i , �̂i, �̂i, �̂i

)
.

Then, we find

μ̂Y1 = 1.6621, μ̂Y2 = 3.5275, μ̂Y3 = 1.3982,

ξ̂1 =
(

0.8438

0.8183

)
, ξ̂2 =

(
1.7927

1.7348

)
, ξ̂3 =

(
0.7044

0.6938

)
,

η̂1 =
(

1.8654

−0.2639

)
, η̂2 =

(−1.8654

−2.1293

)
, η̂3 =

(
0.2639

2.1293

)

�̂1 =
[

0.0125 0.0100
0.0100 0.0110

]
, �̂2 =

[
0.0771 0.0641
0.0641 0.0667

]
, �̂3 =

[
0.0111 0.0077
0.0077 0.0102

]
,

λ̂1=
[

0.0183 0.0171
−0.0061 −0.0042

]
, λ̂2=

[
−0.1019 −0.0912
−0.1127 −0.0977

]
, λ̂3=

[
−0.0018 −0.0017
0.0144 0.0105

]
,

�̂1 =
[

0.1577 −0.007
−0.007 0.0138

]
, �̂2 =

[
0.1577 0.1647
0.1647 0.1855

]
, �̂3 =

[
0.0138 0.0208
0.0208 0.1855

]
,

and

π̂1 = 0.012337, π̂2 = 0.000000297, π̂3 = 0.9876627,

μ̂1 =
(

0.709155

0.721094

)
, μ̂2 =

(
0.4427732

0.5553359

)
, μ̂3 =

(
0.7039037

0.6933313

)
.

Therefore, we find

Ê
(
X[1]

) = (
0.7039685

0.6936738

)
.

Next, suppose we are interested in finding the best (nonlinear) prediction (under
square error loss) of the mineral content in the dominant and non-dominant sides
of a bone where for this bone the sum of mineral content in both sides is minimum
in comparison with the other bones and its value is 1.5, i.e., we are interested in
E
(
X[1]

∣∣Y(1) = 1.5
)
.
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From (13), the estimated conditional expectation can be determined as

Ê
(
X[1]

∣∣Y(1) = 1.5
) = 3∑

i=1

π̂ni μ̂i (1.5) ,

where

π̂n1 = 0.01336501, π̂n2 = 2.731107e − 09, π̂n3 = 0.986635,

μ̂1 (1.5) =
(

0.4944770

0.5225139

)
, μ̂2 (1.5) =

(−4.101705

−3.583772

)
, μ̂3 (1.5) =

(
0.7554106

0.7423744

)
,

so that we find

Ê
(
X[1]

∣∣Y(1) = 1.5
) = (

0.7519232

0.7394359

)
.

6 Conclusion

In this chapter, we have derived the exact distribution of multivariate order statistics
induced by ordering linear combinations of the components when the random
vectors X1, . . . ,Xn follow a multivariate elliptical distribution. We also derive the
joint distribution of the rth order statistic and its concomitant vector in this case.
The class of multivariate normal and student-t distributions have been discussed in
detail as special cases. Finally, we illustrate the usefulness of the established results
by a real dataset.

Appendix

Proof of Theorem 2

Proof The cdf of X[r] is

F[r]

(
t;μ,�, h(np)

)
= Pr

(
X[r] ≤ t

) = n∑
i=1

Pr
(
Xi ≤ t , Y(r) = Yi

)
. (15)

Let us consider the ith term on the RHS of (15), and express it as

Pr
(
Xi ≤ t , Y(r) = Yi

)
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=
∑

j1<···<jr−1
1≤jk≤n−1

Pr
(

Xi ≤ t ,S
j1 ···jr−1

(1n−1Yi − Y−i ) > 0
)

=
∑

j1<···<jr−1
1≤jk≤n−1

Pr
(

Xi ≤ t
∣∣∣ S

j1 ···jr−1
(1n−1Yi − Y−i ) > 0

)

Pr
(

S
j1···jr−1

(1n−1Yi − Y−i ) > 0
)
,

for i = 1, . . . , n. Now,

Pr
(

S
j1 ···jr−1

(1n−1Yi − Y−i ) > 0
)
= πij1,...,jr−1 ,

and since(
S
j1 ...jr−1

(
1n−1Yi − Yi(−1)

)
Xi

)

∼ ECn(p+1)−1

((
ηi,j1,...,jr−1

ξ i

)
,

(
�i,j1,...,jr−1 λi,j1,··· ,jr−1

λ�
i,j1,...,jr−1

�i

)
, h(p+n−1)

)
,

we obtain, by (4),

Pr
(

Xi ≤ t
∣∣∣ S

j1 ...jr−1
(1n−1Yi − Y−i ) > 0

)
= GSUEp,n−1

(
t; θ i,j1,...,jr−1 , h

(p+n−1)
)
,

which readily yields the required mixture representation for the cdf. ��

Program Code
The program of Q-Q plot and the p-values of energy and generalized Shapiro–
Wilk tests.

\library(foreign)
\library(energy)
\library(mvnormtest)
\mvnorm.etest(Data)
\library(mvShapiroTest)
\mvShapiro.Test(Data)
\n=nrow(Data)
\D=c()
\Sigma.hat=((n-1)/n*cov(Data))
\Mean.hat=colMeans(Data)

(continued)
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\for(i in 1:n){D[i]=t(Data[i,]-Mean.hat)
%*%solve(Sigma.hat)%*%(Data[i,]-Mean.hat)}

\Q=(1:n-0.5)/n
\Theoretical=qchisq(Q,df=6)
\Emprical=sort(D)
\plot(Emprical,Theoretical)
\abline(a=0,b=1)
\Mean.hat
\round(Sigma.hat,4)
\mvnorm.etest(Data, R = 999)
\mvnorm.e(Data)
\normal.e(Data)
\mvnorm.etest
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Variable Selection in Heteroscedastic
Regression Models Under General
Skew-t Distributional Models Using
Information Complexity

Yeşim Güney, Olcay Arslan, and Hamparsum Bozdogan

Abstract In this paper we study several competing models under general class of
skew-t distributions. Namely. we consider joint location and scale model (JLSM)
under Student’s t and under skew-t distributions, respectively. Similarly, we consider
the extension of JLSM to joint location-scale and skewness model (JLSSM) under
skew-t distribution in heteroscedastic regression models for subset selection of
variables and to deal with heavy-tailedness, and skewness in a data set. To this end,
for the first time, we introduce and develop the information-theoretic measure of
complexity (ICOMP) criterion in such problems to select the best subset of predictor
variables. We provide the computational forms of the celebrated Fisher information
and the inverse Fisher information matrices for these models to be used in ICOMP.
A large-scale Monte Carlo simulation study is carried out to study the performance
of ICOMP in such complicated models. In addition, a real example is provided on a
real benchmark data set to select the best subset of the predictors under these three
competing models without knowing the true structure and the distributional form
of the regression model. Our approach shows the flexibility and versatility of our
approach for model selection in complex models.

1 Introduction

The normal distribution is a common continuous probability model which is used
almost always to analyze data set in many statistical applications. However, when
the data exhibits very high skewness and heavy or tick tails, it is no longer that
normal probability model is a good choice in models complex data structures.
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In the literature, therefore, joint location and scale models (JLSMs) have
been popular for modelling complex data sets. In particular, there are several
research works focused on JLSM to model data sets involving heteroscedasticity. In
reviewing the literature, for example, we see that Park (1966) proposed a log-linear
model for the scale parameter and described the Gaussian model using a two-
stage process to estimate the parameters. Harvey (1976) investigated the maximum
likelihood (ML) estimation of the location and suggested a likelihood ratio test
for heteroscedasticity. Aitkin (1987) offered to model variance heterogeneity in
normal regression analysis and provided ML estimation for a JLSM. However,
since the normal distribution is not suitable for modeling heavy-tailed data sets,
alternative distributions, such as t-distribution is used by Lange et al. (1989).
Further, Taylor and Verbyla (2004) proposed the JLSM of the t-distribution for
modeling heteroscedastic data sets that are symmetric and heavy-tailed. For the
multivariate data sets, Lin and Wang (2009) proposed a t-based joint modeling of
mean-scale covariance for the analysis of longitudinal data and demonstrated its
robustness through several real examples. Later, Lin and Wang (2011) investigated
Bayesian inference for the JLSM under the t distribution for longitudinal data.

If we are dealing with asymmetric data sets, modeling such data sets with
a symmetric distribution may result in wrong statistical inferences. Therefore,
for such data sets skew distributional models would be more appropriate to be
used for general modeling purposes. Although there are several skew distributions
that can be used as alternative to the symmetric distributions for modeling skew
and/or heavy-tailed data sets, Azzalini type skew normal and skew-t distributions
(Azzalini 1985, 2003), and their variants are the most popular skew distributions
used in literature. For this reason, the JLSM of Azzalini type skew distributions
have also been considered for modeling heteroscedasticity of skew data sets. For
example, Li and Wu (2014) studied the JLSM of the skew normal distribution, Wu et
al. (2013) obtained the ML estimators of the JLSM of the skew-t-normal distribution
and Wu (2014) proposed a method for parameter estimation in the JLSM of the
skew-t-normal distribution. Although, all of the skew distributions mentioned above
have a parameter controlling skewness, the proposed joint models only involve
modeling location and scale parameters not the skewness parameter. The first
attempt to model skewness parameter along with the location and scale parameters
is given by Li et al. (2017). In their paper, joint location, scale and skewness
model (JLSSM) of the skew-normal distribution is only considered. Later, many
researchers have proposed modeling the skewness parameters to understand the
source of variability in skewness.

When we deal with JLSM, the location, and scale parameters are expressed with
models involving unknown parameters and explanatory variables. One of our tasks
is to estimate the unknown parameters. Similarly, if we have joint location-scale and
skewness model (JLSSM), beside the location and scale parameters the skewness
parameter is also expressed with a model involving some explanatory variables
along with other unknown parameters. In general, all of the unknown parameters in
these models need to be estimated. It is experienced that in applications a large num-
ber of explanatory variables are usually introduced at the initial stage of the model
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to learn possible modeling biases. However, including unnecessary explanatory
variables can degrade the efficiency of the resulting estimation procedure and yields
less accurate predictions. On the other hand, omitting an important explanatory
variable may produce biased parameter estimates and prediction results. Therefore,
selecting significant explanatory variables in JLSM and JLSSM is a challenging
problem. To handle this problem, many researchers have turned their attentions to
the problem of variable selection in these models, but they have only considered
selecting explanatory variables in location and scale models. For example, Wang
and Zhang (2009) proposed only variable selection of the mean explanation variable
criterion based on the extended quasi-likelihood for joint generalized linear models
with structured dispersions. Zhang and Wang (2011) proposed a simultaneous
variable selection criterion for selecting both the mean model and variance model
in a special class of heteroscedastic linear models. Wu and Li (2012) proposed
a unified procedure simultaneously to select significant variables in mean and
dispersion model under the inverse Gaussian distribution. Wu et al. (2012) proposed
a unified procedure, which can simultaneously select significant variables in the
joint mean and variance models using the Box–Cox transformation. Wu et al. (2013)
proposed a unified penalized likelihood method, which can simultaneously per-
form parameter estimation and variable selection in JLSM under skew-normal
distribution. Wu (2014) proposed a parameter estimation and variable selection
method based on the penalized likelihood in JLSM under the skew-t-normal
distribution. Zhao and Zhang (2015) developed an efficient penalized likelihood-
based method in JLSM under the Student t-distribution. Later, Wu et al. (2016)
developed a unified penalized t-type pseudo-likelihood method to simultaneously
select significant variables for the mean and dispersion models in the t-type joint
generalized linear model. In these studies, the variable selection is considered for
only location and scale models. Although, selecting significant variables in the
skewness model to determine the source of variability in skewness is as important as
that in the location and scale models, few number of research have been carried out
to study variable selection in JLSSM. Recently, Li et al. (2017) and Wu et al. (2017)
have considered variable selection in JLSSM under the skew-normal distribution
and skew-t-normal distribution, respectively. In both papers, they have used the
penalized maximum likelihood method to carry out the parameter estimation and
variable selection, simultaneously. However, since a JLSSM involves three different
models with different sets of unknown parameters and the related explanatory
variables, the penalized likelihood methods usually become computationally very
intensive due to the large number of unknown parameters that need to be either
estimated or chosen.

In addition to the previous studies, in this paper our objectives are twofold. One
of these objectives is to use the JLSSM of the skew-t distribution as an alternative to
the JLSSM under the skew-normal distribution if robustness against non-normality
or outliers is a concern. Since Student’s t distribution and its Azzalini type skew
extension (Azzalini 2003) are very popular among researchers for modeling data
sets with heavy-tails and asymmetric features, in this paper we will use Azzalini
type skew-t distribution. Our second objective is to carry out variable selection in
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the JLSSM under the skew-t distribution using a computationally efficient model
selection method for variable selection in both JLSM and JLSSM. To be more
specific, in this paper, for the first time, we will introduce and use the information-
theoretic measure of complexity (ICOMP) criterion developed by Bozdogan (1990,
2000, 2003, 2004) to select the important subsets of explanatory variables in three
models related to the location, scale and skewness parameters of the JLSSM under
the skew-t distribution. Since the ICOMP is based on the covariance matrix of
the parameter estimates or the estimated inverse Fisher information matrix (IFIM)
of the estimators under consideration, we first derive these matrices for the three
models. Then, we provide the analytical forms of ICOMP criterion to select the
important explanatory variables in the JLSSM under the skew-t distribution. After
establishing parameter estimation and proposed variable selection procedure, we
carry out a large-scale Monte Carlo simulation study to study the performance of
the information criterion. A real benchmark data example is also shown to assess the
finite sample performance of the proposed JLSSM and variable selection procedure.

The rest of the paper is organized as follows. In Sect. 2, we develop the
heteroscedastic regression models under the general skew-t distributions for the
JLSM under Student’s t distribution, JLSM and JLSSM under skew-t distributions.
We present the implementation of ML estimation of the parameters of interest.
Moreover, we also derive the Fisher information matrices (FIMs) and the inverse
Fisher information matrices (IFIMs) needed to score ICOMP. In Sect. 3, we
introduce and derive ICOMP for JLSM under Student’s t and skew-t distributions
and JLSSM under skew-t distribution. Section 4 presents our results from a large-
scale Monte Carlo simulation to study the performance of proposed criterion. In
Sect. 5, we illustrate the subset selection of variables on a real benchmark data set.
Finally, Sect. 6 concludes the paper.

2 Heteroscedastic Regression Models Under General Skew-t
Distributions

In this section, we present the JLSM and JLSSM based on the Student’s t and the
skew-t distributions and provide the parameter estimates of each of the models for
the heteroscedastic regression for variable selection.

2.1 Model 1-JLSM: Under Student’s t Distribution

It is common for observations to come from a population that has a heavy-tailed
distribution. Student’s t distribution is one of the basic models for describing heavy-
tailed data, which is common in a variety of applications.
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Let yi ∈ R, for i = 1, 2, . . . , n, be independently distributed random variables
and assume that for each i, yi has the student t distribution (yi ∼ t

(
μi, σ

2
i , ν

)
) with

the following probability density function (pdf)

f (yi;μi, σi, ν) = cν

σi

(
ν + (yi − μi)

2

σ 2
i

)− ν+1
2

(1)

where μi ∈ R and σi > 0 are the location and scale parameters, respectively. Here
ν is the degrees of freedom that can be seen as a robustness parameter and down
weights the effect of the outliers. As ν tends to infinity, this model reduces the JLSM
under normal distribution. In this study, the parameter ν is regarded as known and
we take ν = 3 to achieve the robustness (see Lange et al. 1989; Arslan and Genç
2003). Figure 1 shows the plots of the pdf of the Student t distribution for different
degrees of the freedom.

Now, let us consider the JLSM of the student t distribution given by

⎧⎪⎪⎨
⎪⎪⎩
yi ∼ t

(
μi, σ

2
i , ν

)
μi = xTi β

log σ 2
i = zTi γ

i = 1, 2, . . . , n

(2)

where xi = [
xi1, xi2, . . . , xip

]T and zi = [
zi1, zi2, . . . , ziq

]T are the observed

covariates corresponding to the response yi , and β = [
β1, β2, . . . , βp

]T ∈ R
p and

γ = [
γ1, γ2, . . . , γq

]T ∈ R
q are the unknown parameter vectors in the location and

scale models, respectively. We will assume that n > p + q. Note that, although
we use two different sets of explanatory variables to model location and scale

0.
4

0.
3

0.
2

f(
x)

–3 –2 –1 0
x

1 2 3

0.
1

0.
0

v = 1
v = 3
v = 5
v = ∞

Fig. 1 Pdf of the Student t distribution for different values of the degrees of freedom ν



78 Y. Güney et al.

parameters, there may be only one set of explanatory variables to model location
and scale parameters in some problems.

In this model the first major problem is to estimate the unknown parameter
vectors β and γ . We will use the maximum likelihood (ML) estimation method
to estimate the unknown parameters. Let θ = (θ1, θ2, . . . , θs1) = (βT , γ T ) with
s1 = p+q be the combined vector of unknown parameters that need to be estimated.
Given independent observations y1, y2, . . . , yn the log likelihood function of θ

corresponding to the JLSM of the student t distribution can be written as follows

� (θ | y, x, z) = n log (cν)− 1

2

n∑
i=1

log σ 2
i − ν + 1

2

n∑
i=1

log

(
ν + (yi − μi)

2

σ 2
i

)

= n log (cν)− 1

2

n∑
i=1

zTi γ

−ν + 1

2

n∑
i=1

log

(
ν +

(
yi − xTi β

)2

ezTi γ

)
, (3)

where cν = �
(
ν+1

2

)
νν/2

√
π�( ν2 )

and (xi , zi ), for i = 1, 2, . . . , n are the corresponding

explanatory variables. The ML estimate of θ can be obtained by setting the score
function S(θ) to zero and solving the score equations. The components of the score
function S(θ) = (STβ ,S

T
β )

T are:

Sβ =
n∑
i=1

ωi
xi
(
yi − xTi β

)
ezTi γ

, (4)

Sγ = 1

2

n∑
i=1

(
ωi

(
yi − xTi β

)2

ezTi γ
− 1

)
zi . (5)

Here ωi = ν+1

ν+ (yi−xT
i

β)
2

e
zT
i

γ

is a weight for the ith point in the ith subject. Since ωi

decreases with increasing
(
yi−xTi β

)2

e
zT
i

γ
when ν < ∞, the ML estimations of the

parameters are robust in the sense that outliers are downweighted.
For the sake of simplicity, let X = [x1, x2, . . . , xp] with rank(X) = p, y =

[y1, y2, . . . , yn]T , R = diag

{
1
σ 2
i

}n
i=1

and W = diag {ωi}ni=1 be diagonal (n× n)

matrices. Then we get the following equation for the ML estimate of β

β̂ =
(
XT R̂ŴX

)−1 (
XT R̂Ŵy

)
, (6)

provided that
(
XT R̂ŴX

)−1
exists.
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To obtain the estimate of the scale parameter vector γ , we need to solve the
following equation

ZT (̂r − 1n×n) = 0, (7)

where Z = [z1, z2, . . . , zq ] with rank(Z) = q, r is the vector of length n with ith

element ωiu2
i , ui = (yi−μi)

σi
, and 1n×n = [1, 1, . . . , 1]T .

Equations (4) and (5) are clearly non-linear equations, which means that there
is not a straightforward solution. Thus, iterative procedures such as the Newton-
Raphson or Fisher-scoring methods have been considered in the literature (Taylor
and Verbyla 2004) in order to obtain the ML estimates of β and γ .

The covariance matrix of the ML estimators of the parameters can be obtained
by using the inverse of the following FIM

FJLSM-t =
[
ν+1
ν+3 (X

TRX) 0
0 ν

2(ν+3)Z
TRRZ

]
(8)

(Taylor and Verbyla 2004). Then the estimated IFIM, that is, the celebrated Cramer-
Rao lower bound matrix is given by

F̂−1
JLSM-t =

[
ν+3
ν+1 (X

T R̂X)−1 0
0 2(ν+3)

ν
(ZT R̂R̂Z)−1

]
. (9)

2.2 Model 2-JLSM: Under Skew-t Distribution

In addition to heavy tailedness, there can be a presence of high skewness in the
data. To accommodate skewness and heavy tailed data together, the construction of
flexible parametric skew distributions has received considerable attention in recent
years. Numerous authors have developed various classes of these distributions. In
this study, we will use the skew-t distribution, which is proposed by Azzalini (2003).
To provide a wide and flexible family of modeling data that account for skewness
and heavy tail, Azzalini (2003) have proposed skew-t distribution by introducing a
generalization of the Student’s t distribution.

Let yi ∈ R, for i = 1, 2, . . . , n, be independently distributed random variables
and assume that for each i, yi has the skew-t distribution (yi ∼ St (μi, σi, λi, ν))

with the following pdf

fSt,ν(yi;μi, σi, λi, ν) = 2

σi
tν (yi0, ν) Tν+1

(
λyi0

√
ν + 1

ν + y2
i0

)
(10)

where μi ∈ R, σi > 0 and λi ∈ R are the location, scale and skewness parameters,
respectively. Here yi0 = (yi−μi)/σi , tν (·) denotes the pdf of Student t distribution



80 Y. Güney et al.

0.
5

0.
4

0.
3

f(
x)

0.
2

0.
1

0.
0

–3 –2 –1 0
x

1 2 3

λ = –2, v = 1
λ = –1, v = 1
λ = 0, v = 3
λ = 1, v = 4
λ = 2, v = 4

Fig. 2 Pdf of the skew t distribution for different values of the skewness parameter λ and the
degrees of freedom ν

with ν degrees of freedom and Tν+1 (·) denotes the cumulative distribution function
(cdf) of Student t distribution with ν + 1 degrees of freedom (Azzalini 2003).
Figure 2 shows the plots of the pdf of the skew-t distribution for different values
of λ and ν.

Similar to the Student’s t distribution case, the JLSM under skew-t distribution is
defined as follows.

⎧⎪⎪⎨
⎪⎪⎩
yi ∼ St

(
μi, σ

2
i , λ, ν

)
μi = xTi β

log σ 2
i = zTi γ

i = 1, 2, . . . , n

(11)

Note that, the skewness parameter λ has no variability in this model. When λ

is equal to zero, this model reduces the JLSM of Student t distribution. Moreover
when λ = 0 and ν → ∞, this model reduces the JLSM of normal distribution. Here
we will assume that n > p + q + 1. Similar to Student’s t distribution case, the
parameter ν is taken 3 to achieve the robustness and regarded as known.

We first obtain the ML estimates of the parameters of JLSM of skew-t distribu-
tion. Let θ = (θ1, θ2, . . . , θs2) = (βT , γ T ) with s2 = p + q + 1 be the combined
vector of unknown parameters. Given independent observations y1, y2, . . . , yn the
log likelihood function of θ corresponding to the JLSM of the skew t distribution
can be written as follows.

� (θ | y,x, z) = n log (cν)− 1

2

n∑
i=1

zTi γ − ν + 1

2

n∑
i=1

log

(
ν +

(
yi − xTi β

)2

ezTi γ

)
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+
n∑
i=1

log Tν+1

⎛
⎜⎜⎜⎝λui

√√√√√ ν + 1

ν +
(
yi−xTi β

)2

e
zT
i

γ

⎞
⎟⎟⎟⎠ , (12)

where ui = (yi−μi)
σi

as defined in Sect. 2.1. The components of the score function

S(θ) = (STβ ,S
T
γ ,S

T
λ )

T are given by

Sβ =
n∑
i=1

ωi
xi
(
yi − xTi β

)
ezTi γ

− ν

ν + 1

n∑
i=1

λ
tv+1

(
ti
√
ωi
)

Tν+1
(
ti
√
ωi
) ω

3/2
i

e
1
2 zTi γ

xi , (13)

Sγ = 1

2

n∑
i=1

(
ωi

(
yi − xTi β

)2

ezTi γ
− 1

)
zi

− ν

2(ν + 1)

n∑
i=1

λ

e
1
2 zTi γ

tv+1
(
ti
√
ωi
)

Tν+1
(
ti
√
ωi
)xiziω3/2

i , (14)

Sλ =
n∑
i=1

tv+1
(
ti
√
ωi
)

Tν+1
(
ti
√
ωi
)
(
yi − xTi β

)
e

1
2 zTi γ

√
ωi. (15)

Setting Eq. (13) to zero and solving the equation gives the following equation for β̂

β̂ =
(
XT R̂ŴX

)−1 (
XT R̂Ŵy − XT P̂ Ŵ

3/2̂
δ
)
. (16)

Here P = diag
{
λ
σi

}n
i=1

and W 3/2 = diag
{
ω

3/2
i

}n
i=1

are diagonal (n×n)matrices.

δ is the vector of length n with ith element δi = ν
ν+1

tν+1(λui
√
ωi)

Tν+1(λui
√
ωi)

. It is observed that

unlike β̂ given in Eq. (6), the estimating equation here includes δ vector whose
elements are extra weights and P matrix which is based on the skewness parameter.
The ML estimates of γ and λ can be obtained by setting Eqs. (14) and (15) to zero
and solving them iteratively. In the JLSM under skew-t distribution case, the ML
estimators of the parameters reduce to the ML estimators for Student’s t distribution
when λ is equal to zero.

In addition, denoting the second partial derivatives of the log likelihood func-
tion by Sββ ,Sβγ ,Sβλ,Sγβ ,Sγγ ,Sγλ,Sλβ ,Sλγ ,Sλλ in what follows, the FIM is
defined as
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FJLSM-St (β, γ ,λ) = −E
⎡
⎣Sββ Sβγ Sβλ

Sγβ Sγγ Sγλ

Sλβ Sλγ Sλλ

⎤
⎦ . (17)

The elements of the FIM are obtained from the equations given in the Appendix.
A major difficulty is that some of the elements of the FIM given in Eq. (17) have
no closed analytical form. Therefore, we can use the observed FIM which can be
derived using following equation to obtain the approximate covariance matrix of the
ML estimators.

Fobs,JLSM-St (β, γ ,λ) = −
⎡
⎣Sββ Sβγ Sβλ

Sγβ Sγγ Sγλ

Sλβ Sλγ Sλλ

⎤
⎦

β=β̂,γ=γ̂ ,λ=̂λ
. (18)

2.3 Model-3 JLSSM: Under Skew-t Distribution

JLSMs of Student’s t and skew-t distributions are limited in addressing only the
heteroscedasticity. However, the skewness parameter is at least as important as the
other parameters to model the data and it may be different for each observation
and depend on some of the covariates. Because of this case, modeling the skewness
may also be required. Since our main concern is to provide the best modeling of
all parameters and to obtain the best modeling of the data, we also consider the
skewness model in addition to location and scale. For this purpose, JLSM under
skew-t distribution can be extended to JLSSM under skew-t distribution in order to
allow modeling the skewness of the data. In this subsection, we consider the JLSSM
under skew-t distribution to take into account the variability of skewness parameter.

Let yi ∈ R, for i = 1, 2, . . . , n, be independently distributed with St (μ, σ, λ, ν)
In some cases, in addition to μ and σ 2, the skewness parameter λ may also be
different for each yi , i = 1, 2, . . . , n, and may also be related to a number of
variables. Then, the JLSSM under skew-t distribution is defined as follows.⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

yi ∼ St
(
μi, σ

2
i , λi, ν

)
μi = xTi β

log σ 2
i = zTi γ

λi = vTi α

i = 1, 2, . . . , n

(19)

where vi = [vi1, vi2, . . . , vir ]T denote the observed covariates and α =
[α1, α2, . . . , αr ]T ∈ R

r is the unknown parameter vector in the skewness model.
We will assume that n > p + q + r .

It is important to stress that the JLSSM under skew-t distribution includes
the previous models given in Eqs. (2) and (11) as special cases. If the skewness
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parameter does not have variability, then JLSSM under skew-t distribution reduces
to the JLSM under skew-t distribution. If the skewness parameter is equal to
zero, the model reduces the JLSM under Student t distribution. In addition when
ν → ∞, the JLSSM under skew-t distribution reduces the JLSSM under skew-
normal distribution. The advantage of the JLSSM under skew-t distribution is that it
may give a better fit for heavy-tailed and/or asymmetric data sets.

We next obtain the ML estimates of the parameters of the JLSSM of skew-t
distribution. Here, in addition to the parameters of the location and scale models,
we also need to estimate the parameter vector of skewness model. Let θ =
(θ1, θ2, . . . , θs3) = (βT , γ T ,αT ) with s3 = p + q + r be the combined vector
of unknown parameters. Given independent observations y1, y2, . . . , yn the log
likelihood function of θ corresponding to the JLSSM of the skew t distribution can
be written as follows.

� (θ | y,x, z, v) = n log (cν)− 1

2

n∑
i=1

zTi γ − ν + 1

2

n∑
i=1

log

(
ν +

(
yi − xTi β

)2

ezTi γ

)

+
n∑
i=1

log Tν+1

⎛
⎜⎜⎜⎝vTi αui

√√√√√ ν + 1

ν +
(
yi−xTi β

)2

e
zT
i

γ

⎞
⎟⎟⎟⎠ . (20)

The components of the score function S(θ) = (STβ ,S
T
γ ,S

T
α )

T are given by

Sβ =
n∑
i=1

ωi
xi
(
yi − xTi β

)
ezTi γ

− ν

ν + 1

n∑
i=1

vTi α
tv+1

(
ti
√
ωi
)

Tν+1
(
ti
√
ωi
) ω

3/2
i

e
1
2 zTi γ

xi , (21)

Sγ = 1

2

n∑
i=1

(
ωi

(
yi − xTi β

)2

ezTi γ
− 1

)
zi

− ν

2(ν + 1)

n∑
i=1

vTi α

e
1
2 zTi γ

tv+1
(
ti
√
ωi
)

Tν+1
(
ti
√
ωi
)xiziω3/2

i , (22)

Sα =
n∑
i=1

tv+1
(
ti
√
ωi
)

Tν+1
(
ti
√
ωi
)
(
yi − xTi β

)
e

1
2 zTi γ

√
ωi. (23)

Setting Eq. (21) to zero and solving the equation give the following equation
for β̂

β̂ =
(
XT R̂ŴX

)−1 (
XT R̂Ŵy − XT P̂ ∗Ŵ 3/2̂

δ
)
. (24)
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Here R, W , W 3/2 and δ are defined previously for the ML estimate of β for

the JLSM under the skew-t distribution. P ∗ = diag
{
λi
σi

}n
i=1

is a diagonal (n × n)

matrix.
The ML estimates of γ and α can be obtained by setting Eqs. (22) and (23) to

zero and solving them simultaneously. Iterative procedures are used to obtain the
ML estimates of the parameters as mentioned before in previous sections.

The expected FIM is defined as

FJLSSM-St (β, γ ,λ) = −E
⎡
⎣Sββ Sβγ Sβα

Sγβ Sγγ Sγα

Sαβ Sαγ Sαα

⎤
⎦ . (25)

As in JLSM under skew-t distribution, some of the elements of the FIM given in
Eq. (25) have no closed analytical form. So, we use the following observed FIM

Fobs,JLSSM-St (β, γ ,λ) = −
⎡
⎣Sββ Sβγ Sβα

Sγβ Sγγ Sγα

Sαβ Sαγ Sαα

⎤
⎦

β=β̂,γ=γ̂ ,α=α̂

. (26)

whose elements given in the Appendix.

3 Derived Forms of ICOMP for Variable Selection

Model selection criteria are generally introduced to balance between the ability of
a model to fit the data set and the complexity of the model to achieve the fidelity
in the data. In this context, model complexity interpretation is critical in defining
model selection criteria. There are different definitions of model complexity in
the literature. For example, Akaike (1973) in his AIC defines the complexity of
a model in terms of the number of free parameters estimated in a model. On the
other hand, Bozdogan defined his ICOMP criterion based on a generalization of the
covariance complexity index introduced by Van Emden (1971). His rationale was to
measure model complexity with both the number of free model parameters and the
interdependency of the parameter estimates at the same time, which is different from
counting and penalizing the number of parameters. Therefore, ICOMP provides
a more flexible form than AIC-type criteria. In contrast to AIC, ICOMP uses
the entropic structural complexity of random vectors via a generalization of
the information-based covariance complexity index of Van Emden (1971). The
penalization of the covariance matrix of the coefficients is carried out with the
concept of maximal covariance complexity which is defined as:

Definition 1 A maximal information-theoretic measure of complexity of a covari-
ance matrix � of a multivariate normal distribution is
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C1 (�) = s

2
log

[
tr(�)

s

]
− 1

2
log |�| (27)

Bozdogan (1988, 1990).

ICOMP uses (−2) times the maximized log-likelihood to measure the lack of fit of
the model and the maximal information-theoretic measure of complexity C1(.) of
the covariance matrix to measure the complexity of the model. It can be seen from
Eq. (27) that unlike other criteria, the penalty term in ICOMP is not only based on
the number of parameters used by the model, but also depends on the covariance
matrix of the coefficients.

Based this Bozdogan (1994, 1997, 2000, 2004) defines his information-theoretic
measure of complexity (ICOMP) (“I” for information and “COMP” for complexity)
given by

ICOMP = −2 logL
(̂
θ
)+ 2C1

(
�̂model

)
, (28)

where θ̂ is the ML estimator of the parameter vector under the model whose
covariance matrix is denoted by �̂model = Ĉov

(
θ̂
)
. C1(.) represents a real-

valued complexity measure of �̂model. �̂model can be obtained in several ways
since it is the estimated covariance matrix of the model parameters. Here, we use
the celebrated Cramer-Rao lower bound matrix, which is equal to the inverse of
estimated IFIM of the model. Therefore, the most general form of ICOMP, referred
to as ICOMP(IFIM), is defined by

ICOMP(IFIM) = −2 logL
(̂
θ
)+ 2C1

(
F̂−1

)
, (29)

where C1 denotes the maximal information complexity of F̂−1
, the estimated IFIM.

The best model according to the criterion is the one that gives the minimum value
ICOMP among the competing the models. For more details on ICOMP, we refer the
readers to Bozdogan (1994, 1997, 2000, 2004), Bozdogan and Haughton (1998),
and others.

3.1 ICOMP for Model-1 JLSM Under Student’s t Distribution

ICOMP for the JLSM under Student’s t distribution is defined as

ICOMPJLSM-t = −2 logL
(̂
θ
)+ 2C1

(
F̂−1
JLSM-t

)
, (30)

where L
(̂
θ
)

is the maximized likelihood function, θ̂ is the ML estimate of the
parameter vector θ . To derive the complexity term of ICOMP for JLSM under
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Student’s t distribution, we need the determinant and trace of F̂−1
JLSM-t . After some

work, we obtain the following.

tr
(
F̂−1
JLSM-t

)
= ν + 3

ν + 1
tr

((
XT R̂X

)−1
)

+ 2 (ν + 3)

ν
tr

((
ZT R̂R̂Z

)−1
)
,

(31)∣∣∣F̂−1
JLSM-t

∣∣∣ = (ν + 3)p

(ν + 1)p

∣∣∣∣(XT R̂X
)−1

∣∣∣∣+ 2q
(
ν + 3

ν

)q ∣∣∣∣(ZT R̂R̂Z
)−1

∣∣∣∣ . (32)

For the JLSM under Student’s t distribution, the ICOMP penalty term defined in
Eq. (27) can be expressed as

C1

(
F̂−1
JLSM-t

)
= s1

2
log

⎛
⎝ ν+3

ν+1 tr
((

XT R̂X
)−1

)
+2

(
υ+3
υ

)
tr
((

ZT R̂R̂Z
)−1

)
s1

⎞
⎠

−1

2
log

(∣∣∣∣ (ν+3)p

(ν+1)p

(
XT R̂X

)−1
∣∣∣∣+2q

(
υ+3

υ

)q ∣∣∣∣(ZT R̂R̂Z
)−1

∣∣∣∣
)

(33)

where s1 = p + q is the number of the free model parameters. In the special
case, when ν → ∞ ICOMPJLSM-t reduces to ICOMP for JLSM under normal
distribution.

3.2 ICOMP for Model-2 JLSM Under Skew-t Distribution

In a similar manner, ICOMP for the JLSM under skew-t distribution defined in
Eq. (11) can be obtained as

ICOMPJLSM-St = −2 logL
(̂
θ
)+ 2C1

(
F̂−1
JLSM-St

)
, (34)

where L
(̂
θ
)

is the maximized likelihood function, θ̂ is the ML estimate of the
parameter vector θ . To derive ICOMP for the JLSM under skew-t distribution, we
need the IFIM. Since the inverse of the expected FIM given in Eq. (17) is difficult
to obtain for the JLSM under skew-t. However, it suffices to use the complexity of
the observed IFIM in our numerical examples. Also note that, when λ = 0, then
ICOMPJLSM-St reduces ICOMPJLSM−t given in Eq. (30).
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3.3 ICOMP for Model-3 JLSSM Under Skew-t Distribution

In this subsection, we derive ICOMP for JLSSM under skew-t distribution, which
has a similar derivation to ICOMPJLSM-St defined as

ICOMPJLSSM-St = −2 logL
(̂
θ
)+ 2C1

(
F̂−1
JLSSM-St

)
, (35)

where L
(̂
θ
)

is the maximized likelihood function, θ̂ is the ML estimate of the
parameter vector θ . To derive ICOMP for the JLSSM under skew-t distribution, we
need the IFIM. Similar to JLSM under skew-t distribution, since it is not possible
to obtain an analytical forms of the expected FIM given in Eq. (25), we will use the
observed FIM given in Eq. (26) in our numerical examples. If λ has no variability,
then ICOMPJLSSM-St reduces to ICOMPJLSM-St given in Eq. (34).

4 Monte Carlo Simulation Study

In this section, we conduct a large-scale Monte Carlo simulation study to illustrate
the performance of the model selection criteria described in Sect. 3. We simulate
data from JLSM under Student’s t, JLSM and JLSSM under skew-t distribution
presented in Sect. 2:

Model 1

⎧⎪⎪⎨
⎪⎪⎩
yi ∼ t

(
μi, σ

2
i , ν

)
μi = xTi β

log σ 2
i = zTi γ

i = 1, 2, . . . , n

(36)

Here we set the true values of the location parameter to β = [1, 1, 0, 0]T and the
scale parameter to γ = [1, 0, 1]T .

Model 2

⎧⎪⎪⎨
⎪⎪⎩
yi ∼ St

(
μi, σ

2
i , λ, ν

)
μi = xTi β

log σ 2
i = zTi γ

i = 1, 2, . . . , n

(37)

For the true coefficients, we use β = [1, 1, 0, 0]T , the scale parameter to γ =
[1, 0, 1]T , and λ = 0.1, 0.5, and 0.9.
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Model 3 ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

yi ∼ St
(
μi, σ

2
i , λ|i, ν

)
μi = xTi β

log σ 2
i = zTi γ

λi = vTi α

i = 1, 2, . . . , n

(38)

For the true coefficients, we use β = [1, 1, 0, 0]T , the scale parameter to γ =
[1, 0, 1]T , and α = [2, 3, 0]T .

Note that throughout the Monte Carlo simulation study and the real data example,
we have fixed the degrees of freedom of the Student’s t and skew-t distributions to
3, since the small values are suggested for the sake of robustness in the literature
(e.g., see Lange et al. 1989; Arslan and Genç 2003).

First, we generate the covariates, xi , zi (and vi for JLSSM), from uniform
distribution, U(−1, 1) . Then, yi is generated according to Models 1–3. For the
sample size, we consider the following sample sizes n = 30, 50, and 100. The
number of replications of the simulation is set to 100. We count the frequency of the
true model chosen by the information criteria to determine their hit ratios.

To highlight the differences between these three models, we give Figs. 3 and 4.
For these figures, we take the sample size n = 100.

Figure 3 shows the three dimension scatter plots of the data from JLSMs of
student t and skew t distributions to show the differences between Models 1 and
2. To obtain the scatter plot we consider the dimensions of the location and scale
models as p = q = 1. Here we generate the covariates, xi and zi from uniform
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Fig. 3 Scatter plot of the data sets generated from JLSMs under the student t and skew-t
distributions
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Table 1 Simulation results for JLSM under Student t Distribution

Location Scale Skewness

n Criteria CF MSE CF MSE MSE CPU

30 ICOMPJLSM-t 83 0.185 84 0.193 − 1019

ICOMPJLSM-St 82 0.191 82 0.198 0.066 1032

ICOMPJLSSM-St 80 0.199 79 0.201 0.054 1147

50 ICOMPJLSM-t 85 0.075 87 0.071 − 1095

ICOMPJLSM-St 83 0.081 84 0.080 0.022 1100

ICOMPJLSSM-St 82 0.086 80 0.085 0.025 1208

100 ICOMPJLSM-t 89 0.014 90 0.012 − 1158

ICOMPJLSM-St 86 0.019 85 0.016 0.015 1169

ICOMPJLSSM-St 85 0.020 82 0.023 0.019 1271

The criteria shown in bold are the criteria for the model in which the data set is generated

distribution, U(−1, 1) as in the simulation study and we take the true values of
parameters as β = 1, the scale parameter to γ = 1, and ν = 3 for both of the
models. We take λ = 1 for the JLSM of skew-t distribution.

Figure 4 shows the data generated from JLSM and JLSSM of skew t distribution
to display the differences between Models 2 and 3. Here we generate the covariates,
xi , zi (and vi for JLSSM) from uniform distribution, U(−1, 1) as in the simulation
study and we take the true values of parameters of the JLSM and JLSSM of skew- t
distribution as given in Models 2–3. In Model 2, we take λ = 0.5.

Our simulation results based on 100 replications are summarized in Tables 1, 2,
3, 4, and 5. In these tables, we give the frequencies of selecting the correct model,
the MSE values of the parameter estimates and the average computation time (CPU)
(seconds) for each model selection criterion. The MSE values are calculated by:
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Table 2 Simulation results for JLSM under St distribution with λ = 0.1

Location Scale Skewness

n Criteria CF MSE CF MSE MSE CPU

30 ICOMPJLSM-t 72 0.192 74 0.156 − 1021

ICOMPJLSM-St 86 0.196 85 0.177 0.047 1103

ICOMPJLSSM-St 83 0.212 83 0.296 0.039 1132

50 ICOMPJLSM-t 76 0.152 75 0.124 − 1123

ICOMPJLSM-St 89 0.081 88 0.078 0.034 1139

ICOMPJLSSM-St 86 0.099 86 0.087 0.028 1212

100 ICOMPJLSM-t 78 0.078 77 0.097 − 1162

ICOMPJLSM-St 90 0.024 91 0.017 0.012 1175

ICOMPJLSSM-St 89 0.052 89 0.038 0.015 1295

The criteria shown in bold are the criteria for the model in which the data set is generated

Table 3 Simulation results for JLSM under St distribution with λ = 0.5

Location Scale Skewness

n Criteria CF MSE CF MSE MSE CPU

30 ICOMPJLSM-t 67 0.146 71 0.190 − 1064

ICOMPJLSM-St 85 0.111 87 0.147 0.088 1178

ICOMPJLSSM-St 81 0.132 82 0.183 0.093 1183

50 ICOMPJLSM-t 70 0.062 74 0.063 − 1128

ICOMPJLSM-St 88 0.038 89 0.027 0.041 1179

ICOMPJLSSM-St 84 0.043 84 0.031 0.045 1229

100 ICOMPJLSM-t 74 0.027 76 0.025 − 1186

ICOMPJLSM-St 90 0.019 92 0.012 0.021 1214

ICOMPJLSSM-St 88 0.025 87 0.018 0.033 1312

The criteria shown in bold are the criteria for the model in which the data set is generated

Table 4 Simulation results for JLSM under St distribution with λ = 0.9

Location Scale Skewness

n Criteria CF MSE CF MSE MSE CPU

30 ICOMPJLSM-t 64 0.253 61 0.295 − 1092

ICOMPJLSM-St 83 0.198 84 0.277 0.077 1120

ICOMPJLSSM-St 80 0.247 81 0.284 0.061 1203

50 ICOMPJLSM-t 67 0.095 64 0.096 − 1146

ICOMPJLSM-St 86 0.089 85 0.078 0.058 1155

ICOMPJLSSM-St 82 0.090 83 0.083 0.032 1246

100 ICOMPJLSM-t 70 0.371 68 0.323 − 1204

ICOMPJLSM-St 88 0.036 90 0.045 0.013 1257

ICOMPJLSSM-St 85 0.055 86 0.062 0.015 1355

The criteria shown in bold are the criteria for the model in which the data set is generated
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Table 5 Simulation results for JLSSM under St distribution

Location Scale Skewness

n Criteria CF MSE CF MSE CF MSE CPU

30 ICOMPJLSM-t 75 0.215 66 0.284 – − 1098

ICOMPJLSM-St 78 0.202 76 0.213 – 0.079 1132

ICOMPJLSSM-St 82 0.177 80 0.185 82 0.075 1227

50 ICOMPJLSM-t 76 0.142 73 0.156 – − 1158

ICOMPJLSM-St 81 0.128 79 0.125 – 0.042 1180

ICOMPJLSSM-St 88 0.104 85 0.116 84 0.039 1269

100 ICOMPJLSM-t 79 0.087 78 0.036 – − 1215

ICOMPJLSM-St 83 0.026 80 0.028 – 0.018 1278

ICOMPJLSSM-St 92 0.021 88 0.014 85 0.014 1384

The criteria shown in bold are the criteria for the model in which the data set is generated

MSEβ = (
β − β̂

)T
XT X

(
β − β̂

)
MSEγ = 1

4
(γ − γ̂ )T ZT Z (γ − γ̂ )

MSEα = (α − α̂)T VT V (α − α̂)

MSEλ = (
λ− λ̂

)2
(39)

The results in Tables 1, 2, 3, 4, and 5 show that as the sample size increases,
the frequency of choosing the correct model of the information complexity criteria
and the averaged computational times also increase. Looking at Table 1, we observe
that ICOMPJLSM − t chooses the correct model when the data is generated from
JLSM under indeed Student’s t distribution. Performances of ICOMPJLSM − St and
ICOMPJLSSM − St, are in the same order of magnitude of ICOMPJLSM − t, but a bit
less, since the true data generation was done under the Student’s-t distribution and
with no skewness.

Tables 2, 3, and 4 show the results for the data generated from JLSM under
skew-t distribution with different values of λ. From these results, obviously
ICOMPJLSM − St chooses the correct model followed by ICOMPJLSSM − St.
ICOMPJLSM − t does not perform well and does not take into account the presence of
skewness since the data was generated from skew-t distribution although there is no
variability in the skewness, it also tries to select the variables, which have an effect
on skewness parameter. Further, we note that the performance of ICOMPJLSM − t
decreases as the skewness increases since it does not take into account the skewness
of the data. Inspecting the results in Table 5, we observe that ICOMPJLSSM − St is
able to select correct model more than the others do in the presence of skewness.
To summarize our results, we observe that ICOMPJLSSM − St has reasonable
performance in all Monte Carlo simulation scenarios. This is encouraging, since in
the literature, AIC, or AIC-type model selection criteria do not have the provision
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of capturing skew behavior of the data due to the fact that these criteria penalize
the number of parameters, which is necessary but not sufficient. On the other hand,
ICOMP captures the model complexity better and is much robust criterion.

In a future study, we will generate the covariates, xi , zi (and vi for JLSSM),
from other distributions other than the uniform distribution, U(−1, 1), and study
the performance of our proposed approach.

5 A Real Benchmark Data Example

In this section, we provide a real data example using a well-known benchmark data
set to choose the best subset of variables using the three competing models without
knowing the distributional property of this data set with our proposed approach. We
consider Australian Institute of Sport (AIS) data given in Cook and Weisberg (1994).
AIS data was also analyzed by Azzalini and Dalla-Valle (1996), Azzalini (2003,
2005), among others. This data set includes 100 females and 102 males with 13
variables. We use only the 8 variables of this data set for space considerations to
carry out 28 = 256 possible subset of predictors, instead of 213 = 8192 possible
subsets of predictors to illustrate our proposed approach. The names of the variables
of 8 variables chosen are given in Table 6.

Plot of the distribution of y for the AIS data set is shown in Fig. 5.
We consider the models given in Eqs. (2), (11), and (19) to model this data set and

to carry out variable selection under each of these models using ICOMP developed
in Sect. 4. For comparative purposes we also score the classic AIC (Akaike 1973)
on the AIS dataset. Our results are summarized in Table 7.

From Table 7, we note that AICJLSM − t and ICOMPJLSM − t criteria chose the
common variables x1, x4, x5 and x8 in location model and x8 in scale model when
the JLSM under Student’s t is fitted. When the JLSM under skew-t distribution is
fitted to this data set, the selection of the variables has changed. AICJLSM − St and
ICOMPJLSM − St criteria commonly chose the variables x1, x4, x7 and x8 in location
model and variables x1 and x8 in scale model. In the case of modeling the skewness,
while the location model chosen by AICJLSSM − St is changed, ICOMPJLSSM − St
chooses the same location model. In addition, it is seen that the selected scale models
change by modeling the skewness for both criteria. Both criteria commonly select

Table 6 Variables of AIS
dataset

y: lbm (lean body mass)

x1: rcc (red blood cell count)

x2: wcc (while blood cell count)

x3: hc (hematocrit)

x4: hg (hemoglobin concentration)

x5: fe (plasma ferritins)

x6: bmi (body mass index)

x7: sff (sum of skin folds)

x8: bfat (percent body fat)
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Table 7 Variable selection in JLSM-t, JLSM-St and JLSSM-St for AIS data

Criterion Criterion value Location Scale Skewness

AICJLSM-t 1338.793 {x1, x4, x5, x6, x8} {x8} –

AICJLSM-St 1329.856 {x1, x4, x6, x7, x8} {x1, x8} –

AICJLSSM-St 1240.793 {x1, x4, x5, x6, x7, x8} {x5, x8} {x1, x7, x8}
ICOMPJLSM-t 1304.789 {x1, x4, x5, x7, x8} {x5, x8} –

ICOMPJLSM-St 1283.483 {x1, x4, x5, x7, x8}
{
x1,x5, x8

}
–

ICOMPJLSSM-St 1209.709 {x1, x4, x5, x7, x8} {x7, x8} {x1, x4, x8}
The minimum criteria value which indicate the best criterion is given in bold

the variables x1 and x8 in the skewness model. The skewness model selected by
AICJLSSM − St criterion also includes variable x7, while the ICOMPJLSSM − St also
selects variable x4. We can report the skewness in variable x4 and x7 to determine
which variable has the largest skewness. Our results have close connections with
the results given in Li et al. (2017). According to the common variables chosen by
AICJLSSM − St and ICOMPJLSSM − St, the group of variables, which have significant
effect on the location, scale and the skewness on y (bmi) are respectively x1, x4, x7
and x8 (on location of y), x8 (on scale of y), x1, and x8 (on skewness of y). On
the other hand, variables x2 and x3 have no significant impact on location, scale
and skewness of the response y. From criteria values, we select the model chosen
by ICOMPJLSSM−St . In this manner, in general, we can isolate, which predictor
variables are affecting on the location (mean), scale and skewness of the response
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Fig. 6 Observed and fitted y values for AIS data obtained from the models given in Table 7

variable y. Further, we provide the index plot of observed and the fitted y’s in Fig. 6.
This plot reveals the robustness of all the models based on the Student t and the
skew t distributions in terms of outliers.

6 Conclusion

In this paper, we considered the model selection in JLSM under Student’s t, JLSM
and JLSSM under Azzalini type skew-t distributions by introducing and developing
information-theoretic measure of complexity (ICOMP) criterion. We used ICOMP
to select the variables, which have an effect on location, scale and skewness of the
heteroscedastic, skew datasets with heavy tails. With our numerical examples and
the results, we illustrated that ICOMPJLSSM − St yields better performance overall,
and hence it can be considered as a criterion of choice to be used to model data on
location, scale and skewness with heteroscedasticity. As a conclusion, it is suggested
that the proposed forms of ICOMP can be used to determine the significant variables
in JLSM under Student’s t, JLSM and JLSSM under skew-t distribution models.

Note that, throughout this study, we fixed the degrees of freedom parameter to 3
for the Student t and the skew t distributions for the sake of robustness as suggested
in the literature (see Lange et al. 1989; Arslan and Genç 2003). However, the degrees
of freedom parameter can also be estimated by forming the score function associated
with the degrees of freedom parameter and solving the likelihood equations obtained
from the score functions as given by Taylor and Verbyla (2004). Further research
work will be carried out on other real data sets and Monte Carlo simulation protocols
to study the performance of the proposed approach when the degrees of freedom
parameter is unknown. The results will be reported elsewhere.
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Appendix

For the sake of simplicity, let define ui = (yi−xTi β)

e
zT
i

γ/2
and ϕi = tν+1(λui

√
ωi)

Tν+1(λui
√
ωi)

. By taking

the second derivatives of the log-likelihood function given in Eq. (12) with respect
to the parameters, the elements of observed FIM for JLSM of skew-t distribution
are obtained as follows.
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Here Suu shows the second derivative of the log-likelihood function of the JLSM of
skew-t distribution given in (12) with respect to ui . It can be written as follows.
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Let define ψi = tν+1
(
vTi αui

√
ωi
)

Tν+1
(
vTi αui

√
ωi
) . Similar to the JLSM of skew-t distribution case,

by taking the derivatives of the log-likelihood function given in (20) the elements of
observed FIM for JLSSM of skew-t distribution are obtained as follows.
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where S∗

uu represents the second derivative of the log-likelihood function of the
JLSSM of skew-t distribution given in (20) with respect to ui . It can be written as
follows.
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The AIS data can be obtained from the R package “sn”.
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Weighted Condition Number
Distributions Emanating from Complex
Noncentral Wishart Type Matrices

Johannes T. Ferreira and Andriëtte Bekker

Abstract This chapter investigates an analytical characterisation of MIMO (multi-
ple input multiple output) statistics; in particular that of the condition number. The
channel propagation matrix is assumed to be complex matrix variate elliptically
distributed; this assumption allows the analysis of the condition number in broad
generality. The complex matrix variate elliptical class includes, amongst others,
the complex matrix variate normal-, t-, and slash distributions as special cases.
Specifically, the probability density function (pdf), moment generating function
(mgf), and cumulative distribution function (cdf) of the condition number of a
dual noncentral Wishart type matrix is derived, and studied for the known complex
noncentral matrix variate normal, as well as for the previously unstudied complex
noncentral matrix variate t- and slash case. This dual setting is of interest stemming
from a practical consideration; viz. dual-branch systems which are equipped with
two transmit- and receive antennas. A numerical- and comparative study supports
the analytical expressions.

1 Introduction

Since the 1980s, authors have investigated the stochastic behaviour of the condition
number of a random matrix in detail. How does it behave, how can limiting
probabilities of the condition number be determined, how can it be interpreted
in context of random matrices? Particularly, the distribution of the condition
number of a random matrix has been shown to be of interest in the design and
analysis of MIMO (multiple input multiple output) systems. Usually defined as
the ratio between the largest and smallest eigenvalue of the Wishart form of the
MIMO propagation channel, this measure reflects the spread of the eigenvalues
and provides an inherent sense of the multipath richness of the channel. As
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such, the study of random matrices, their Wishart form and their corresponding
eigenvalue behaviour are of sustained interest. The underlying probability density
structure for the channel propagation matrix is usually assumed to be that of
the complex matrix variate normal distribution. However, Ferreira et al. (2020)
and Ferreira and Bekker (2019) questioned this complex normal assumption and
observed superior performance of some performance measures within the MIMO
arena when assuming alternative members emanating from an underlying complex
elliptical model. The authors also utilised a weighted representation of the complex
matrix variate elliptical model to create a platform where practitioners can access
previously unconsidered models. Ferreira and Bekker (2019) investigated and
illustrated the value of assuming an underlying complex elliptical assumption under
rank-1 assumption of the noncentrality matrix within the MIMO paradigm. In
fact, De Souza and Yacoub (2008) mentioned that the Rayleigh probability density
function (pdf) is usually derived based on the assumption that from the central limit
theorem for large number of partial waves, the resultant process can be decomposed
into two orthogonal zero-mean and equal-standard deviation Gaussian random
processes. This is an approximation and the restriction of complex Gaussian may
be unnecessarily restrictive—it is not always a large number of interfering signals.
Thus a more general assumption than that of complex normal may not be that far
from reality, see also Ollila et al. (2011) and Choi et al. (2007).

Many papers have appeared which provide valuable insight into the structure and
behaviour of the condition number of a random matrix under the complex matrix
variate normal assumption. The contribution of Edelman (1988) may be considered
a pioneering starting point in these analyses of condition numbers with an emphasis
specifically within numerical analysis of large random matrices. Edelman and
Sutton (2005) studied the tail behaviour of the distributions of condition numbers,
and Chen and Dongarra (2005) further investigated the behaviour of condition
numbers emanating for Gaussian random matrices (see also Ratnarajah et al. 2004).
Matthaiou et al. (2009) described the usefulness of the condition number in a
MIMO setting, which Matthaiou et al. (2010) explored further. Zhong et al. (2011)
considered the Demmel condition number in particular, where Dharmawansa et al.
(2013) also provide some refreshing contributions in this regard. More recently,
condition numbers from random matrices have also been studied by Movassagh and
Edelman (2015) and Shakil and Ahsanullah (2017).

In particular, this chapter focusses on the dual matrix setting; this interest stems
from a practical consideration—viz. dual-branch systems which are equipped with
two transmit- and arbitrary m number of receive antennas. Therefore this chapter
extends the work of Matthaiou et al. (2009) to arbitrary degrees of freedom for
the complex Wishart case; and similar interest in this dual structure with arbitrary
degrees of freedom has also been studied in Movassagh and Edelman (2015). This
chapter therefore provides a methodology for the practitioner within the MIMO
environment to potentially consider the distribution of the condition number which
emanates from a complex noncentral Wishart type matrix; built from members from
the complex matrix variate elliptical class.
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This paper is outlined as follows: in Sect. 2 the channel propagation matrix
X within the MIMO design is assumed to be complex matrix variate elliptically
distributed for a m× 2 channel—whereafter emphasis is placed on deriving certain
statistical properties such as the Wishart type distribution W = �−1XHX (XH

denotes the conjugate-transpose of matrix X, and � denotes the row covariance
matrix) and the corresponding joint distribution of the eigenvalues. The complex
matrix variate t- and slash distributions are of particular interest. In Sect. 3, specific
distributional characteristics of the condition number of W is studied; with particular
focus cases. Section 4 contains some numerical examples and discussions and
Sect. 5 concludes the paper.

2 Dual Complex Noncentral Wishart Type Construction

Let X : m× 2 have a complex noncentral matrix variate elliptical distribution with
the following (pdf) (trX indicates the trace of matrix X, and R

+ denotes the positive
real line):

f (X) = h
[
−tr�−1 (X − M) (X − M)H

]
(1)

denoted as X ∼ CEm,2(M,� ⊗ I2, h), with density generator h : R+ → R
+, row

covariance matrix � : m×m, and where I2 denotes a 2 × 2 identity matrix. Bekker
et al. (2018) and Ferreira and Bekker (2019) have illustrated the above complex
noncentral matrix variate elliptical pdf as a scale mixture (in other words, weighted)
of complex matrix variate normal distributions:

f (X) =
∫
R+

W(t)fCNm,2(M,t−1�⊗I2)
(X|t)dt (2)

where fCNm,2(M,t−1�⊗I2)
(X|t) is the pdf of a complex matrix variate normal distri-

bution with mean M and covariance structure t−1�⊗I2 (denotedCNm,2(M, t−1�⊗
I2)) and W(t) is a weight function depending only on t .

Consider W̃ = XHX. It has pdf

f (W̃)

=
∫
R+

exp
(
−trt�−1MMH

)
0F̃1

(
2; t2�−1MMH�−1W̃

) det
(
t−1�

)−2

�̃2 (2)

× exp
(
−trt�−1W̃

)
W (t) dt

=
∫
R+

t4

�̃2 (2)
exp (−trt�) 0F̃1

(
2; t2��−1W̃

)
det (�)−2 exp

(
−trt�−1W̃

)
W (t) dt

=
∫
R+

f
(

W̃|t
)
W (t) dt (3)
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where � = �−1MMH , �̃2 (2) denotes the complex gamma function (see Ferreira
and Bekker 2019), and 0F̃1 (·; ·) is the complex hypergeometric function of complex
matrix argument (see also James 1964).

Remark 1 If M = 0 is substituted into (3) then the pdf of W̃ is given by

f (W̃) = 1

�̃2 (2) det (�)2

∫
R+

t4 exp
(
−trt�−1W̃

)
W (t) dt

=
G
(

W̃
)

�̃2 (2) det (�)2

where G(W̃) = ∫
R+ t4 exp(−trt�−1W̃)W(t)dt . This is the pdf of a dual complex

central matrix variate elliptical distribution with covariance structure t−1�⊗I2 (see
Eq. 6 p. 3 of Ferreira et al. 2020). �

Consider now the following transformation W = �−1W̃, with Jacobian J (W̃ →
W) = det (�)2; then

f (W)

=
∫
R+

t4

�̃2 (2)
exp (−trt�) 0F̃1

(
2; t2�W

)
exp (−trtW)W (t) dt (4)

=
∫
R+

t4

�̃2 (2)
exp (−t tr (� + W)) 0F̃1

(
2; t2�W

)
W (t) dt

=
∫
R+

f (W|t)W (t) dt.

The following remarks describes some special cases of the pdf (4) of W.

Remark 2 If X follows a complex matrix variate normal distribution, then:

W(t) = δ(t − 1) (5)

where δ(·) is the dirac-delta function. Substituting this weight (5) into (4) gives the
pdf of W as

f (W) =
∫
R+

t4

�̃2 (2)
exp (−t tr (� + W))0F̃1

(
2; t2�W

)
δ (t − 1) dt.
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Let x = t − 1, then t = x + 1 and dx = dt :

f (W) =
∫
R+

(x + 1)4

�̃2 (2)
exp (−t tr (� + W))0F̃1

(
2; (x + 1)2 �W

)
δ (x) dx

= 1

�̃2 (2)
exp (−t tr (� + W))0F̃1 (2;�W)

using the properties of the dirac-delta function, and reflects the result of James
(1964). �
Remark 3 If X follows a complex matrix variate t distribution with v > 0 degrees
of freedom, then:

W (t) = (tv)v exp (−tv)
t� (v)

(6)

where �(·) denotes the usual gamma function. Substituting this weight (6) into (4)
gives the pdf of W as

f (W) =
∫
R+

t4

�̃2 (2)
exp (−t tr (� + W))0F̃1

(
2; t2�W

) (tv)v exp (−tv)
t� (v)

dt

= vv

� (v) �̃2 (2)

∫
R+

t4+v−1 exp (−t (tr (� + W)+ v))0F̃1

(
2; t2�W

)
dt.

�
Remark 4 If X follows a complex matrix variate slash distribution with b > 0, then
(see Lachos and Labra 2014):

W (t) = btb−1. (7)

Substituting this weight (7) into (4) gives the pdf of W as

f (W) =
∫ 1

0

t4

�̃2 (2)
exp (−t tr (� + W))0F̃1

(
2; t2�W

)
btb−1dt

= b

�̃2 (2)

∫ 1

0
tb+3 exp (−t (tr (� + W)))0F̃1

(
2; t2�W

)
dt.

�
Next, the joint pdf of the eigenvalues of W if X follows a complex matrix variate

elliptical distribution is given. Let w1 > w2 > 0 denote the real ordered eigenvalues
of W (thus ω = diag (w1, w2)), and let � = diag

(
λ1,λ2

)
where λ1 > λ2 > 0

denote the real ordered eigenvalues of �. From Eq. 93, p. 488 in James (1964), the
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pdf for the joint eigenvalues ω is given by

f (ω) = π2(2−1)

�̃2 (2)

⎡
⎣ 2∏
i<j

(
wi − wj

)2

⎤
⎦∫

U(2)
f
(

UWUH
)
dU

where U (2) denotes the unitary space of dimension 2. Using (4) and after some
simplification:

f (ω)

= π2(2−1)

�̃2 (2)
(w1 − w2)

2
∫
U(2)

∫
R+

t4

�̃2 (2)
exp

(
−t tr

(
� + UWUH

))

×0F̃1

(
2; t2� UWUH

)
W (t) dtdU

= π2

�̃2 (2) �̃2 (2)
(w1 − w2)

2
∫
R+

t4 exp (−t tr�)
∫
U(2)

exp
(
−t trUWUH

)

×0F̃1

(
2; t2� UWUH

)
dUW (t) dt

= (w1−w2)
2
∫
R+

t4 exp (−t tr�) exp (−t trω)
∫
U(2)

0F̃1

(
2; t2� UWUH

)
dUW (t) dt

= (w1 − w2)
2
∫
R+

t4 exp

⎛
⎝−t

2∑
i=1

(λi + wi)

⎞
⎠ 0F̃1 (2; t�, tω)W (t) dt (8)

by using the definition of complex multivariate gamma function (Eq. 83, p. 487),
and the splitting formula (Eq. 92, p. 488) in James (1964).

Remark 5 See that 0F̃1 (2; t�, tω) above can be written as follows:

0F̃1 (2; t�, tω) = det
(

0F1
(
1; t2wiλj

))
(tλ1 − tλ2) (tw1 − tw2)

= det
(

0F1
(
1; t2wiλj

))
t2 (λ1 − λ2) (w1 − w2) .

where 0F1 (·; ·) denotes the confluent hypergeometric function of scalar argu-
ment; and by using Eq. 4.8 p. 239 of Gross and Richards (1989). Note that
0F1 (s + 1; x) = s!x− s

2 Is
(
2
√
x
)
, where Is (·) is the sth order modified Bessel

function of the first kind. Then

det
(

0F1

(
1; t2wiλj

) )
= det

(
I0

(
2t
√
wiλj

))

=
∣∣∣∣∣ I0

(
2t
√
w1λ1

)
I0
(
2t
√
w1λ2

)
I0
(
2t
√
w2λ1

)
I0
(
2t
√
w2λ2

)
∣∣∣∣∣

= I0

(
2t
√
w1λ1

)
I0

(
2t
√
w2λ2

)
− I0

(
2t
√
w1λ2

)
I0

(
2t
√
w2λ1

)
.
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This particular Bessel function of the first kind has series expansion (see Eq. 8.447.1,
p. 919 of Gradshteyn and Ryzhik 2014):

I0 (x) =
∞∑
k=0

(
1

k!
)2 (x

2

)2k
.

Then follows that

det
(

0F1
(
1; t2wiλj

) ) = ∞∑
k=0

∞∑
n=0

(
1

k!n!
)2 [2t

√
w1λ1

2

]2k [
2t
√
w2λ2

2

]2n

−
∞∑
k=0

∞∑
n=0

(
1

k!n!
)2 [2t

√
w1λ2

2

]2k [
2t
√
w2λ1

2

]2n

=
∞∑
k=0

∞∑
n=0

t2k+2n

(k!n!)2
[
wk

1λ
k
1w

n
2λ

n
2 − wk

1λ
k
2w

n
2λ

n
1

]

=
∞∑
k=0

∞∑
n=0

t2k+2n

(k!n!)2 (w1w2)
k+n [λk1λn2 − λk2λ

n
1

]
.

Finally,

0F̃1 (2; t�, tω) =
∞∑
k=0

∞∑
n=0

t2k+2n (w1w2)
k+n [λk1λn2 − λk2λ

n
1

]
(k!n!)2 t2 (λ1 − λ2) (w1 − w2)

(9)

�
Using (9) and substituting into (8) we have

f (ω) = (w1 − w2)
2
∫
R+

t4 exp

(
−t

2∑
i=1

(λi + wi)

)

×
∞∑
k=0

∞∑
n=0

t2k+2n (w1w2)
k+n [λk1λn2 − λk2λ

n
1

]
(k!n!)2 t2 (λ1 − λ2) (w1 − w2)

W (t) dt

= (w1 − w2)
2

∞∑
k=0

∞∑
n=0

(w1w2)
k+n [λk1λn2 − λk2λ

n
1

]
(k!n!)2 (λ1 − λ2) (w1 − w2)

×
∫
R+

t2k+2n+2 exp

(
−t

2∑
i=1

(λi + wi)

)
W (t) dt (10)
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which gives the joint pdf of the eigenvalues of W if X follows a complex matrix
variate elliptical distribution. The following remarks describes some special cases
of (10).

Remark 6 If X follows a complex matrix variate normal distribution, then we
substitute the weight (5) into (10) which gives the joint pdf of the eigenvalues of
W as:

f (ω)

= (w1 − w2)
2
∫
R+

t4 exp (−t
2∑
i=1

(λi + wi))0F̃1 (2; t�, tω) δ (t − 1) dt

= (w1 − w2)
2 exp (−

2∑
i=1

(λi + wi))0F̃1 (2;�,ω)

= (w1 − w2)
2

∞∑
k=0

∞∑
n=0

(w1w2)
k+n [λk1λn2 − λk2λ

n
1

]
(k!n!)2 (λ1 − λ2) (w1 − w2)

exp

(
−

2∑
i=1

(λi + wi)

)

which reflects Eq. 1, p. 1213 of Matthaiou et al. (2009). �
Remark 7 If X follows a complex matrix variate t distribution with v degrees of
freedom, then the weight (6) is substituted into (10) which gives the joint pdf of the
eigenvalues of W as

f (ω)

= (w1 − w2)
2
∫
R+

t4 exp (−t
2∑
i=1

(λi + wi))0F̃1 (2; t�, tω) (tv)
v exp (−tv)
t� (v)

dt

= vv

� (v)
(w1 − w2)

2
∫
R+

t4+v−1 exp (−t
(

2∑
i=1

(λi + wi)+ v

)
)0F̃1 (2; t�,tω) dt

= vv

� (v)
(w1 − w2)

2
∫
R+

tv+3 exp (−t
(

2∑
i=1

(λi + wi)+ v

)
)

×
∞∑
k=0

∞∑
n=0

t2k+2n (w1w2)
k+n [λk1λn2 − λk2λ

n
1

]
(k!n!)2 t2 (λ1 − λ2) (w1 − w2)

dt

= vv (w1 − w2)
2

� (v) (λ1 − λ2) (w1 − w2)

∞∑
k=0

∞∑
n=0

[
λk1λ

n
2 − λk2λ

n
1

]
(w1w2)

k+n

(k!n!)2

×
∫
R+

tv+2k+2n+1 exp (−t
(

2∑
i=1

(λi + wi)+ v

)
)dt
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= vv (w1 − w2)

� (v) (λ1 − λ2)

∞∑
k=0

∞∑
n=0

[
λk1λ

n
2 − λk2λ

n
1

]
(w1w2)

k+n � (v + 2k + 2n+ 2)

(k!n!)2 (λ1 + λ2 + w1 + w2 + v)v+2k+2n+2

using the gamma integral (Eq. 3.381.4, p. 346 of Gradshteyn and Ryzhik 2014). �
Remark 8 If X follows a complex matrix variate slash distribution, then the weight
(7) is substituted into (10) which gives the joint pdf of the eigenvalues of W as

f (ω)

= (w1 − w2)
2
∫ 1

0
t4 exp (−t

2∑
i=1

(λi + wi))0F̃1 (2; t�, tω) btb−1dt

= b (w1 − w2)
2
∫ 1

0
tb+3 exp (−t

(
2∑
i=1

(λi + wi)

)
)

×
∞∑
k=0

∞∑
n=0

t2k+2n (w1w2)
k+n [λk1λn2 − λk2λ

n
1

]
(k!n!)2 t2 (λ1 − λ2) (w1 − w2)

dt

= b (w1 − w2)
2

(λ1 − λ2) (w1 − w2)

∞∑
k=0

∞∑
n=0

[
λk1λ

n
2 − λk2λ

n
1

]
(w1w2)

k+n

(k!n!)2

×
∫ 1

0
tb+2k+2n+1 exp (−t

(
2∑
i=1

(λi + wi)

)
)dt

= b (w1 − w2)

(λ1 − λ2)

∞∑
k=0

∞∑
n=0

[
λk1λ

n
2 − λk2λ

n
1

]
(w1w2)

k+n

(k!n!)2

×γ (2k + 2n+ b + 2,
∑2

i=1 (λi + wi))

(
∑2

i=1 (λi + wi))2k+2n+b+2

where γ (·, ·) denotes the lower incomplete gamma function (see Eq. 8.350.1, p.
899 Gradshteyn and Ryzhik 2014 and using Eq. 3.381.1, p. 346 of Gradshteyn and
Ryzhik 2014). �

3 Condition Number

In this section, certain statistical characteristics of the condition number emanating
from (4) and using (10) is derived.

Define the condition number as z = w1
w2

, where w1 and w2 are the real ordered
eigenvalues of W (see (4)). Consider the joint transformation to z = w1

w2
and w2 =
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w2. The Jacobian is given by J ((w1, w2) → (z, w2)) = w2. Then

fZ (z) =
∫ ∞

0
f (zw2, w2)w2dw2

using (10). See that w1 − w2 = w2 (z− 1), and w1 + w2 = w2 (z+ 1). Then from
(8) and (10) it follows that

fZ (z) =
∫ ∞

0
w2 (w2 (z− 1))2

∫
R+

t4 exp (−t (λ1 + λ2))

× exp (−t (w2 (z+ 1))) 0F̃1
(
2; t�, tω′)W (t) dtdw2

where ω′ = (zw2, w2). Using (9) leaves

fZ (z)

=
∞∑
k=0

∞∑
n=0

∫
R+

t2k+2n

(k!n!)2
t2 exp (−t (λ1 + λ2)) (z− 1) zk

(λ1 − λ2)

[
λk1λ

n
2 − λk2λ

n
1

]

×
∫ ∞

0
wk+n+2

2 exp (−w2 (t (z+ 1))) dw2W (t) dt

=
∞∑
k=0

∞∑
n=0

∫
R+

t2k+2n

(k!n!)2
t2 exp (−t (λ1 + λ2)) (z− 1) zk

(λ1 − λ2)

[
λk1λ

n
2 − λk2λ

n
1

]

× � (k + n+ 3)

(t (z+ 1))k+n+3W (t) dt

=
∞∑
k=0

∞∑
n=0

zk (z− 1) � (k + n+ 3)

(k!n!)2 (λ1 − λ2) (z+ 1)k+n+3

[
λk1λ

n
2 − λk2λ

n
1

]

×
∫
R+

tk+n−1 exp (−t (λ1 + λ2))W (t) dt

=
∞∑
k=0

∞∑
n=0

zk (z− 1) � (k + n+ 3)

(k!n!)2 (λ1 − λ2) (z+ 1)k+n+3

[
λk1λ

n
2 − λk2λ

n
1

]
κ (t) (11)

where κ (t) = ∫
R+ tk+n−1 exp (−t (λ1 + λ2))W (t) dt , and leaves the final result.

The following remarks describes some special cases of (11).

Remark 9 If X follows a complex matrix variate normal distribution, then the
weight (5) is substituted into (11) which gives the pdf of the condition number of
W as
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fZ (z) (12)

=
∞∑
k=0

∞∑
n=0

zk (z− 1) � (k + n+ 3)

(k!n!)2 (λ1 − λ2) (z+ 1)k+n+3

[
λk1λ

n
2 − λk2λ

n
1

]

×
∫
R+

tk+n−1 exp (−t (λ1 + λ2))δ (t − 1) dt

=
∞∑
k=0

∞∑
n=0

zk (z− 1) � (k + n+ 3) exp (− (λ1 + λ2))

(k!n!)2 (λ1 − λ2) (z+ 1)k+n+3

[
λk1λ

n
2 − λk2λ

n
1

]

which reflects Eq. 7, p. 1214 by Matthaiou et al. (2009). �
Remark 10 If X follows a complex matrix variate t distribution with v degrees of
freedom, then the weight (6) is substituted into (11) which gives the pdf of the
condition number of W as

fZ (z) (13)

= vv

� (v)

∞∑
k=0

∞∑
n=0

zk (z− 1) � (k + n+ 3)
[
λk1λ

n
2 − λk2λ

n
1

]
(k!n!)2 (λ1 − λ2) (z+ 1)k+n+3

� (k + n+ v − 1)

(λ1 + λ2 + v)k+n+v−1

since

κ (t) =
∫
R+

tk+n−1 exp (−t (λ1 + λ2))W (t) dt

=
∫
R+

tk+n−1 exp (−t (λ1 + λ2))
(tv)v exp (−tv)

t� (v)
dt

= vv

� (v)

∫
R+

tk+n+v−2 exp (−t (λ1 + λ2 + v))dt

= vv

� (v)

� (k + n+ v − 1)

(λ1 + λ2 + v)k+n+v−1
(14)

by using Eq. 3.381.4, p. 346 of Gradshteyn and Ryzhik (2014). �
Remark 11 If X follows a complex matrix variate slash distribution, then the weight
(7) is substituted into (11) which gives the pdf of the condition number of W as

fZ (z) (15)

=
∞∑
k=0

∞∑
n=0

zk (z− 1) � (k + n+ 3)

(k!n!)2 (λ1 − λ2) (z+ 1)k+n+3

[
λk1λ

n
2 − λk2λ

n
1

]
κ (t)

= b

∞∑
k=0

∞∑
n=0

zk (z− 1) � (k + n+ 3)
[
λk1λ

n
2 − λk2λ

n
1

]
(k!n!)2 (λ1 − λ2) (z+ 1)k+n+3

γ (k + n+ b − 1, λ1 + λ2)

(λ1 + λ2)
k+n+b−1
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since

κ (t) =
∫ 1

0
tk+n−1 exp (−t (λ1 + λ2))W (t) dt

=
∫ 1

0
tk+n−1 exp (−t (λ1 + λ2))bt

b−1dt

= b

∫ 1

0
tk+n+b−2 exp (−t (λ1 + λ2))dt

= b
γ (k + n+ b − 1, λ1 + λ2)

(λ1 + λ2)
k+n+b−1

(16)

by using Eq. 3.381.1, p. 346 of Gradshteyn and Ryzhik 2014). �
Dharmawansa et al. (2013) also studied the moment generating function (mgf)

of the condition number and illustrated that it is meaningful within the discipline of
random matrix theory. The mgf pertaining to (11) under the complex matrix variate
elliptical assumption of X is now derived:

MZ (r)

= E (exp (rZ))

=
∫ ∞

0
exp (rz) fZ (z) dz

=
∫ ∞

0
exp (rz)

∞∑
k=0

∞∑
n=0

zk (z− 1) � (k + n+ 3)

(k!n!)2 (λ1 − λ2) (z+ 1)k+n+3

[
λk1λ

n
2 − λk2λ

n
1

]
κ (t) dz

=
∞∑
k=0

∞∑
n=0

� (k + n+ 3)

(k!n!)2 (λ1 − λ2)

[
λk1λ

n
2 − λk2λ

n
1

]
κ (t)

×
∫ ∞

0
exp (rz) zk (z− 1) (z+ 1)−(k+n+3) dz

where∫ ∞

0
exp (rz) zk (z− 1) (z+ 1)−(k+n+3) dz

=
∫ ∞

0
exp (rz) zk+1 (z+ 1)−(k+n+3) dz−

∫ ∞

0
erzzk (z+ 1)−(k+n+3) dz

=
∞∑
m=0

rm

m!
[∫ ∞

0
zmzk+1 (z+ 1)−(k+n+3) dz−

∫ ∞

0
zmzk (z+ 1)−(k+n+3) dz

]
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by using the series expansion of the exponential function. Recognising the last
two integrals effectively as the kernel of a beta type II distribution (or beta prime
distribution) with parameters k + 1 and n+ 2, and k and n+ 2 respectively:

∞∑
m=0

rm

m!

[
B (k + 1, n+ 2)

∫ ∞

0
zm
zk+1 (z+ 1)−(k+n+3)

B (k + 1, n+ 2)
dz

−B (k + 1, n+ 2)
∫ ∞

0
zm
zk (z+ 1)−(k+n+3)

B (k + 1, n+ 2)
dz

]

=
∞∑
m=0

rm

m!
[
B (k + 1, n+ 2)

B (k + 1 +m, n+ 2 −m)

B (k + 1, n+ 2)

−B (k, n+ 2)
B (k +m, n+ 2 −m)

B (k, n+ 2)

]

=
∞∑
m=0

rm

m! [B (k + 1 +m, n+ 2 −m)− B (k +m, n+ 2 −m)]

where B (·, ·) denotes the beta function and using the identity for the moments of a
beta type II distribution (see p. 248 in Johnston et al. 1994). This leaves the mgf of
(11) as

MZ (r) =
∞∑
m=0

∞∑
k=0

∞∑
n=0

rm� (k + n+ 3)

m! (k!n!)2 (λ1 − λ2)

[
λk1λ

n
2 − λk2λ

n
1

]
(17)

× [B (k + 1 +m, n+ 2 −m)− B (k +m, n+ 2 −m)] κ (t) .

The following remarks describes some special cases of (17).

Remark 12 If X follows a complex matrix variate normal distribution, then the
weight (5) is substituted into (17) which gives the mgf of the condition number
of W as

MZ (r) =
∞∑
m=0

∞∑
k=0

∞∑
n=0

rm� (k + n+ 3)

m! (k!n!)2 (λ1 − λ2)

[
λk1λ

n
2 − λk2λ

n
1

]
exp (− (λ1 + λ2))

× [B (k + 1 +m, n+ 2 −m)− B (k +m, n+ 2 −m)] .

�
Remark 13 If X follows a complex matrix variate t distribution with v degrees of
freedom, then the weight (6) is substituted into (17) which gives the mgf of the
condition number of W as
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MZ (r) = vv

� (v)

∞∑
m=0

∞∑
k=0

∞∑
n=0

rm� (k + n+ 3) � (k + n+ v − 1)

m! (k!n!)2 (λ1 − λ2) (λ1 + λ2 + v)k+n+v−1

×
[
λk1λ

n
2 − λk2λ

n
1

]
[B (k + 1 +m, n+ 2 −m)− B (k +m, n+ 2 −m)]

using (14). �
Remark 14 If X follows a complex matrix variate slash distribution, then the weight
(7) is substituted into (17) which gives the mgf of the condition number of W as

MZ (r) = b

∞∑
m=0

∞∑
k=0

∞∑
n=0

rm� (k + n+ 3) γ (k + n+ b − 1, λ1 + λ2)

m! (k!n!)2 (λ1 − λ2) (λ1 + λ2)
k+n+b−1

×
[
λk1λ

n
2 − λk2λ

n
1

]
[B (k + 1 +m, n+ 2 −m)− B (k +m, n+ 2 −m)]

using (16). �
Next the cumulative distribution function (cdf) of the condition number z (see

(11)) under the complex matrix variate elliptical assumption of X is also derived
and studied:

FZ (x) =
∫ x

1
f (z) dz

=
∞∑
k=0

∞∑
n=0

� (k + n+ 3)

(k!n!)2 (λ1 − λ2)

[
λk1λ

n
2 − λk2λ

n
1

]
κ (t)

∫ x

1

zk (z− 1)

(z+ 1)k+n+3 dz

=
∞∑
k=0

∞∑
n=0

� (k + n+ 3)

(k!n!)2 (λ1 − λ2)

[
λk1λ

n
2 − λk2λ

n
1

]
κ (t)

∫ x

1

zk+1 − zk

(z+ 1)k+n+3 dz

where

∫ x

1

zk+1 − zk

(z+ 1)k+n+3 dz =
∫ x

1

zk+1

(z+ 1)k+n+3 dz−
∫ x

1

zk

(z+ 1)k+n+3 dz

=
∫ x

0

zk+1

(z+ 1)k+n+3
dz−

∫ 1

0

zk+1

(z+ 1)k+n+3
dz

−
∫ x

0

zk

(z+ 1)k+n+3 dz+
∫ 1

0

zk

(z+ 1)k+n+3 dz

= D
k+1,k+n+3
1 (x)−D

k,k+n+3
1 (x)
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using Result 3.194.1, p. 315 from Gradshteyn and Ryzhik (2014); where

D
p,q

1 (x)=
(
xp+1

p + 1

)
2F1 (q, p+1;p+2;−x)−

(
1

p+1

)
2F1 (q, p + 1;p + 2;−1)

and 2F1 (·) is the Gauss hypergeometric function. Therefore

FZ (x) (18)

=
∞∑
k=0

∞∑
n=0

� (k+n+3)

(k!n!)2 (λ1 − λ2)

[
λk1λ

n
2−λk2λn1

] [
D
k+1,k+n+3
1 (x)−Dk,k+n+3

1 (x)
]
κ (t) .

The following remarks describes some special cases of (18).

Remark 15 If X follows a complex matrix variate normal distribution, then the
weight (5) is substituted into (11) which gives the cdf of the condition number of
W as

FZ (x) (19)

=
∞∑
k=0

∞∑
n=0

� (k + n+ 3) exp (− (λ1 + λ2))

(k!n!)2 (λ1 − λ2)

[
λk1λ

n
2 − λk2λ

n
1

]
(20)

×
[
D
k+1,k+n+3
1 (x)−D

k,k+n+3
1 (x)

]
which reflects Eq. 11, p. 1214 of Matthaiou et al. (2009). �
Remark 16 If X follows a complex matrix variate t distribution with v degrees of
freedom, then the weight (6) is substituted into (11) which gives the cdf of the
condition number of W as

FZ (x) = vv

� (v)

∞∑
k=0

∞∑
n=0

� (k + n+ 3) � (k + n+ v − 1)

(k!n!)2 (λ1 − λ2)

[
λk1λ

n
2 − λk2λ

n
1

]
(λ1 + λ2 + v)k+n+v−1

×
[
D
k+1,k+n+3
1 (x)−D

k,k+n+3
1 (x)

]
. (21)

using (14). �
Remark 17 If X follows a complex matrix variate slash distribution, then the weight
(7) is substituted into (11) which gives the cdf of the condition number of W as

FZ (x) = b

∞∑
k=0

∞∑
n=0

� (k + n+ 3)
[
λk1λ

n
2 − λk2λ

n
1

]
(k!n!)2 (λ1 − λ2)

γ (k + n+ b − 1, λ1 + λ2)

(λ1 + λ2)
k+n+b−1

×
[
D
k+1,k+n+3
1 (x)−D

k,k+n+3
1 (x)

]
(22)

using (16). �
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4 Numerical Experiments

In this section, analytical results are presented to illustrate the contribution of the
derived results. As in Matthaiou et al. (2009), the eigenvalues of the noncentrality
matrix is considered as � = diag

(
λ1,λ2

) = (7.0336, 5.6155).

4.1 Truncation Error of Infinite Sums

The infinite double summation in (18) has the potential of causing high compu-
tational complexity; however, Table 1 shows that even by considering a truncated
finite subset of terms, convergence of values for FZ(z) for both the normal-, t , and
slash cases (illustrated here for v = 5 and b = 5) is reached by truncating the
expressions at 30 odd terms. In Table 1, T indicates the truncation value.

4.2 Percentiles

Certain percentiles of the distribution of FZ(z) are obtained numerically by solving
the equation FZ(x) = α. In particular, upper percentiles are computed for the
normal case (see (19)) and for the t case (see (21)) for different values of v in
Table 2; whereas the same is computed for the normal- and for the slash case (see
(22)) for different values of b in Table 3. These values highlight the computational
use of these results as they act as potential critical values for testing hypothesis
regarding test statistics pertaining to the condition number emanating from an
underlying complex matrix variate normal-, t , or slash distribution.

Table 1 Truncated value for
infinite sums of cdfs (19),
(21), and (22)

FZ (x) T = 25 T = 30 T = 35

Normal(20) 0.978848 0.978849 0.978849

t (20) 0.957192 0.959675 0.960013

Slash(20) 0.960977 0.960977 0.960977

Normal(25) 0.985299 0.985299 0.985299

t (25) 0.967068 0.969552 0.969890

Slash(25) 0.971377 0.971377 0.971377

Normal(30) 0.988947 0.988947 0.988947

t (30) 0.973128 0.975612 0.975950

Slash(30) 0.977594 0.977594 0.977594
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Table 2 Percentiles of cdfs
(19) and for (21) for
different v

α t (2) t (5) t (10) Normal

0.90 13.2197 10.2197 9.28070 8.33532

0.95 24.5197 16.9027 14.4340 12.1904

0.975 46.7810 29.0380 23.2610 18.1116

0.99 114.016 64.0161 47.0161 32.0468

Table 3 Percentiles of cdfs
(19) and for (22) for
different b

α Slash(2) Slash(5) Slash(10) Normal

0.90 15.2007 10.6284 9.3784 8.33532

0.95 27.5108 16.9511 14.3011 12.1904

0.975 51.2501 27.7173 22.1173 18.1116

0.99 122.0683 59.2771 45.3121 32.0468

Fig. 1 Cdfs (19) and (21) for
different values of v, lower
tail

4.3 Illustration of cdfs

Figures 1, 2, and 3 illustrate the cdfs (19) and (21) for v = 2, 5, 10 respectively;
and Figs. 4, 5, and 6 illustrate the cdfs (19) and (22) for different values of b =
2, 5, 10 respectively. It is clear that (21) tends to the normal case as the value of v
increases; similar behaviour is observed from (22). These figures highlight the value
which an underlying complex matrix variate elliptical assumption could provide the
practitioner having the engineering expertise within the MIMO arena with. This
elliptical platform allows theoretical and practical access to previously unconsidered
models (such as the underlying complex matrix variate t) that could potentially yield
improved fits to experimental data.
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Fig. 2 Cdfs (19) and (21) for
different values of v, mid
section

Fig. 3 Cdfs (19) and (21) for
different values of v,
complete

Fig. 4 Cdfs (19) and (22) for
different values of b, lower
tail
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Fig. 5 Cdfs (19) and (22) for
different values of b, mid
section

Fig. 6 Cdfs (19) and (22) for
different values of b,
complete

5 Concluding Remarks

In this paper the dual branch MIMO channel propagation matrix X is assumed to be
complex matrix variate elliptically distributed with a noncentrality matrix M. The
distribution of W = �−1XHX was explored together with the joint distribution
of the eigenvalues. This generalisation allows the user the flexibility to assume an
alternative underlying distribution for X; in particular, this chapter focussed on the
complex matrix variate t distribution. The stochastic nature of the condition number
of W was of particular interest and its characteristics were studied and accompanied
by a numerical investigation. This assumption of an underlying complex matrix
variate elliptical distribution allows the analysis of the condition number and other
related MIMO performance measures in broad generality.



118 J. T. Ferreira and A. Bekker

Acknowledgements The authors would like to hereby acknowledge the support of the StatDisT
group at the Department of Statistics, University of Pretoria, and also to the two reviewers
for valuable comments that improved this chapter. The authors would also like to thank Dr.
Prathapasinghe Dharmawansa and Prof. Mohammad Arashi for valuable discussions about the
work in its early stages. This work is based upon research supported by the National Research
Foundation, South Africa (ref. SRUG190308422768 grant nr. 120839 and SARChI Research Chair
UID:71199) and the Research Development Programme at the University of Pretoria grant nr.
296/2019.

References

Bekker, A., Arashi, M., & Ferreira, J. (2018). New bivariate gamma types with MIMO application.
Communications in Statistics: Theory and Methods, 48(3), 596–615 (2018). https://doi.org/10.
1080/03610926.2017.1417428

Chen, Z., & Dongarra, J. (2005). Condition numbers of gaussian random matrices. SIAM Journal
of Matrix Analysis and Application, 27(3), 603–620.

Choi, S.H., Smith, P., Allen, B., Malik, W.Q., & Shafi, M. (2007). Severely fading MIMO channels:
Models and mutual information. In 2007 IEEE international conference on communications
(pp. 4628–4633). Piscataway, NJ: IEEE.

De Souza, R., & Yacoub, M. (2008). Bivariate Nakagami-m distribution with arbitrary correlation
and fading parameters. IEEE Transactions on Wireless Communications, 7(12), 5227–5232
(2008).

Dharmawansa, P., McKay, M., & Chen, Y. (2013). Distributions of Demmel and related condition
numbers. SIAM Journal of Matrix Analysis and Application, 34(1), 257–279.

Edelman, A. (1998). Eigenvalues and condition numbers of random matrices. SIAM Journal of
Matrix Analysis and Application, 9(4), 543–560.

Edelman, A., & Sutton, B. (2005). Tails of condition number distributions. SIAM Journal on Matrix
Analysis and Applications, 27(2), 547–560.

Ferreira, J., & Bekker, A. (2019). A unified complex noncentral Wishart type distribution inspired
by massive MIMO systems. Journal of Statistical Distributions and Applications, 6(1), 4.

Ferreira, J., Bekker, A., & Arashi, M. (2020). Advances in Wishart type modeling for channel
capacity. REVStat Statistical Journal (in press).

Gradshteyn, I., & Ryzhik, I. (2014). Table of integrals, series, and products (7th ed). London:
Academic Press.

Gross, K., & Richards, D. (1989). Total positivity, spherical series, and hypergeometric functions
of matrix argument. Journal of Approximation Theory, 59(2), 224–246.

James, A. (1964). Distributions of matrix variate and latent roots derived from normal samples.
Annals of Mathematical Statistics, 35, 475–501.

Johnston, N., Kotz, S., & Balakrishnan, N. (1994). Continuous univariate distributions (Vol. 2).
New York, NY: Wiley.

Lachos, V.H., & Labra, F.V. (2014). Multivariate skew-normal/independent distributions: Proper-
ties and inference. Pro Mathematica, 28(56), 11–53.

Matthaiou, M., Laurenson, D., & Wang, C. (2009). On analytical derivations of the condition
number distributions of dual non-central Wishart matrices. IEEE Transactions on Wireless
Communications, 8(3), 1212–1217.

Matthaiou, M., McKay, M., Smith, P., & Nossek, J. (2010). On the condition number distribution
of complex Wishart matrices. IEEE Transactions on Communications, 58(6), 1705–1716.

Movassagh, R., & Edelman, A. (2015). Condition numbers of indefinite rank 2 ghost Wishart
matrices. Linear Algebra and Its Applications, 483, 342–351.

https://doi.org/10.1080/03610926.2017.1417428
https://doi.org/10.1080/03610926.2017.1417428


Condition Number Distributions 119

Ollila, E., Eriksson, J., & Koivunen, V. (2011). Complex elliptically symmetric random variables—
generation, characterisation, and circularity tests. IEEE Transactions on Signal Processing,
59(1), 58–69.

Ratnarajah, T., Vaillancourt, R., & Alvo, M. (2004). Eigenvalues and condition numbers of
complex random matrices. SIAM Journal on Matrix Analysis and Applications, 26(2), 441–456.

Shakil, M., & Ahsanullah, M. (2017). Some inferences on the distribution of the Demmel condition
number of complex wishart matrices. Special Matrices, 5(1), 127–138.

Zhong, C., McKay, M., Ratnarajah, T., & Wong, K. (2011). Distribution of the Demmel condition
number of Wishart matrices. IEEE Transactions on Communications, 59(9), 1309–1319.



Weighted Type II Bivariate Pólya-Aeppli
Distributions

Claire Geldenhuys and René Ehlers

Abstract In this chapter we extend the existing theory of the Type II bivariate
Pólya-Aeppli distribution, a compound Poisson distribution with a bivariate geo-
metric compounding distribution, to the weighted case for two different weight
functions. The weight functions address different cases of dispersion of data which
allows for more flexible distributions that can be fitted to bivariate count-valued data.
We derive the probability generating and probability mass functions, the marginal
and conditional distributions and some properties of the distributions. Graphical
displays comparing the dispersion of these new distributions are also included.
Method of moments estimation of model parameters is discussed and we use real
and simulated data to compare the fit of the existing Type II bivariate Pólya-Aeppli
and newly proposed weighted Type II bivariate Pólya-Aeppli distributions to the
data. Finally the theory is also extended to the multivariate case.

1 Introduction

The Pólya-Aeppli distribution was first introduced by Anscombe (1950). He
credited the first derivation of the distribution to G. Pólya in 1930, who based it off
of a thesis published by A. Aeppli in 1924. The distribution was henceforth known
as the Pólya-Aeppli distribution or as a compound Poisson geometric distribution,
due to the fact that the distribution arises from a compound Poisson distribution with
a geometric compounding random variable.

The univariate Pólya-Aeppli distribution as derived and discussed in Johnson
et al. (2005) is a widely used distribution in risk theory for estimating ruin
probability as well as many other applications using count-valued data. The property
of over-dispersion makes this distribution more appropriate for modelling certain
count-valued data than the equi-dispersed Poisson distribution.
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Weighted distributions was first introduced by Fisher (1934) and it is well known
from Patil and Ord (1976) and Patil (2002) as well as various other statistical
literature that a random variable Yw with probability mass function f w(y) is
referred to as the weighted version of a random variable Y with probability mass
function f (y), if Y is non-negative and is observed with a probability proportional
to the non-negative weight function w(y). The distribution of the observed sample
is then given by f w(y) = w(y)f (y)

E(w(Y ))
, where E (w(Y )) is the normalizing factor,

provided that E (w(Y )) exists. In the referenced statistical literature, weighted
distributions are applied with the purpose of finding the true distribution when data
points from a sampling framework do not have equal probabilities of being observed
within the sample.

The weighted univariate Pólya-Aeppli distribution along with its properties and
Fisher indexes of dispersion for a variety of different weight functions was first
derived by Minkova and Balakrishnan (2013). In their paper, weighted distributions
was utilized to allow for distributions with increased flexibility when fitted to over-
dispersed univariate data.

Minkova and Balakrishnan (2014a,b) also introduced the Type I bivariate
Pólya-Aeppli distribution which is a compound bivariate Poisson distribution with
geometric compounding distribution, as well as the Type II bivariate Pólya-Aeppli
distribution which arises when we have a compound Poisson distribution with
a bivariate geometric compounding distribution. Both the Type I and Type II
bivariate Pólya-Aeppli distributions are over-dispersed with respect to the bivariate
Poisson distribution. In their paper Minkova and Balakrishnan (2014a) derived
various properties of the Type II bivariate Pólya-Aeppli distribution including the
probability generating function, probability mass function through use of recursive
relations and conditional distribution.

Qin et al. (2017) derived and compared the method of moments and maximum
likelihood estimation of the model parameters of the Type II bivariate Pólya-Aeppli
distribution.

In this chapter our main focus will be the extension of the theory to include
the weighted Type II bivariate Pólya-Aeppli distribution. We will utilize weighted
distributions in the same manner as Minkova and Balakrishnan (2013), with the
purpose of finding distributions with increased flexibility when fitted to over-
dispersed bivariate data. Two weight functions are considered which allows for over
and under-dispersion with respect to the Type II bivariate Pólya-Aeppli distribution.
This gives a set of distributions that are more flexible with respect to the bivariate
Poisson distribution. The distributions are also extended to the multivariate case.

The existing results of the Type II bivariate Pólya-Aeppli distribution, as well
as the multivariate extension are given in Sect. 2 together with an alternative and
simpler method to derive the probability mass functions. In Sections 3 and 4
the weighted Type II bivariate Pólya-Aeppli distributions Case I and Case II are
respectively derived, as well as the Fisher indexes of dispersion and the extension
to the multivariate cases. The method of moments estimates are also derived for the
weighted distributions and the marginal and conditional distributions are given. In
Sect. 5 a simulation study is used to compare properties of the estimates of the three
Type II bivariate Pólya-Aeppli distributions. Bootstrap methods are used to compare
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the confidence intervals of the model parameters. The distributions are also fitted to
real and simulated data. Some concluding remarks are given in Sect. 6.

2 Type II Bivariate Pólya-Aeppli Distribution

This distribution and its properties was first derived by Minkova and Balakrishnan
(2014a) and is a compound Poisson distribution with a bivariate geometric distribu-
tion (see Kocherlakota and Kocherlakota 1992) as the compounding distribution.

Let X = (X1, X2) have a bivariate geometric distribution with a pgf given by

ψ1 (s1, s2) = θ

1 − θ1s1 − θ2s2
, (1)

where 0 < θ1, θ2 < 1, θ = 1 − θ1 − θ2 �= 0, x1, x2 = 0, 1, 2 . . . and we denote
ρ1 = θ1

1−θ2
and ρ2 = θ2

1−θ1
. Also let Y ∼ Poi(λ) be a random variable with pgf

given by

ψ2(s) = e−λ(1−s), (2)

and define (N1, N2) such that N1 = ∑Y
i=1 X1i and N2 = ∑Y

j=1 X2j . The joint
distribution of (N1, N2) is then said be a Type II bivariate Pólya-Aeppli distribution
denoted as (N1, N2) ∼ BivPAII (λ, θ1, θ2). From (1) and (2) the pgf of the
distribution follows as

ψN1,N2(s1, s2) = ψ2 (ψ1 (s1, s2))

= e
−λ

(
1− θ

(1−θ1s1−θ2s2)
)
.

(3)

From Minkova and Balakrishnan (2014a), N1 ∼ PA (λρ1, ρ1) and N2 ∼
PA (λρ2, ρ2) and the expected values are E (N1) = λθ1

θ
, E (N2) = λθ2

θ
and

E (N1N2) = λθ1θ2
θ2 (2 + λ) . The variances are V ar (N1) = λθ1(1+θ1−θ2)

θ2 and

V ar (N2) = λθ2(1+θ2−θ1)

θ2 , and the covariance and correlation between N1 and N2
are

Cov(N1, N2) = E (N1N2)− E (N1) E (N2) = 2λθ1θ2

θ2

Corr(N1, N2) ≡ R = 2

√
θ1θ2

(1 + θ1 − θ2) (1 + θ2 − θ1)
.

(4)

In order to measure the variability of the data, Minkova and Balakrishnan (2014a)
introduced the theoretical bivariate Fisher index of dispersion, given by
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FI2(N1, N2) =
[
V ar(N1)

E(N1)
+ V ar(N2)

E(N2)
− 2R

Cov(N1, N2)√
E(N1)

√
E(N2)

]
1

1 − R2 .

(5)
Calculating this for (N1, N2) ∼ BivPAII (λ, θ1, θ2) gives

FI2(N1, N2) = 2

(1 − ρ1) (1 − ρ2)

×
(1 + ρ1) (1 + ρ2) (1 − ρ1ρ2)− 4ρ1ρ2

√(
1 − ρ2

1

) (
1 − ρ2

2

)
(1 + ρ1) (1 + ρ2)− 4ρ1ρ2

.

(6)

For the special case ρ1 = ρ2 = ρ it follows that

FI2(N1, N2) = 2 (1 + ρ)

(1 − ρ)
> 2.

Since the bivariate Fisher index of dispersion is equal to 2 for the bivariate Poisson
distribution, this implies that for ρ1 = ρ2 = ρ the Type II bivariate Pólya-Aeppli
distribution is over-dispersed with respect to the bivariate Poisson distribution and
equi-dispersed with respect to the Type I bivariate Pólya-Aeppli distribution (see
Minkova and Balakrishnan 2014a).

Minkova and Balakrishnan (2014a) derived the pmf of the Type II bivariate
Pólya-Aeppli distribution using recursive formulas. In addition they derived the pmf
of the multivariate extension of the distribution by expanding the pgf in powers of
s1, . . . , sk , however this does not allow for a closed form expression of the pmf. In
the following two subsections we use an alternative approach for the derivation of
the pmf of the bivariate and multivariate distributions respectively, using Laguerre
polynomials in a similar manner as was first done for the univariate Pólya-Aeppli
distribution in Galliher et al. (1959). This methodology is not only much simpler
and more elegant compared to the use of recursive formulas, but also allows for a
closed form expression of the pmf in the multivariate case. Results for the marginal
and conditional distributions, including the conditional expected values can be
found in Minkova and Balakrishnan (2014a). The method of moments estimates
for the parameters of the bivariate distribution as derived by Qin et al. (2017) are

θ̂1 = X̄(
λ̂+ X̄ + Ȳ

) θ̂2 = Ȳ(
λ̂+ X̄ + Ȳ

) and λ̂ = 2X̄Ȳ

m1,1 − X̄Ȳ
.

2.1 Joint Probability Mass Function

Theorem 1 The pmf of (N1, N2) ∼ BivPAII (λ, θ1, θ2) is
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f (0, 0) = e−λ(1−θ)

f (i, j) = λθ

(i + j)

(
i + j

j

)
θi1θ

j

2

× L1
i+j−1 (−λθ) f (0, 0) , i, j = 0, 1, . . . , (i, j) �= (0, 0)

(7)

where Lαn (x) is the generalized Laguerre polynomial of degree n, defined in the
Appendix (see Bayin 2013).

Proof For the initial value it is known that f (0, 0) = ψN1,N2(0, 0) (see Kocher-
lakota and Kocherlakota 1992). It follows from the pgf in (3) that

f (0, 0) = e−λ(1−θ).

If we let x = −λθ and z1 = θ1s1 and z2 = θ2s2, then we can write the pgf in (3) as

ψN1,N2(s1, s2) =
∞∑
i=0

∞∑
j=0

P (N1 = i, N2 = j) si1s
j

2

= e−λ(1−θ)e
(
x(z1+z2)
z1+z2−1

)
.

Differentiating ψN1,N2(s1, s2) partially with respect to z1 and using results (A1),
(A2), (A3), and (A5) from the Appendix, we see that

∂ψN1,N2(s1, s2)

∂z1
= λθ

(1 − (z1 + z2))
2
e

(
x(z1+z2)
z1+z2−1

)
f (0, 0)

= λθ

∞∑
i=0

L1
i (x) (z1 + z2)

i f (0, 0)

= λθ

∞∑
i=0

i∑
j=0

(
i

j

)
L1
i (x) z

i−j
1 z

j

2f (0, 0)

= λθ

∞∑
j=0

∞∑
i=j

(
i

j

)
L1
i (x) z

i−j
1 z

j

2f (0, 0)

= λθ

∞∑
i=0

∞∑
j=0

(
i + j

j

)
L1
i+j (x) zi1z

j

2f (0, 0)

=
∞∑
i=1

∞∑
j=0

[
λθ

(
i + j − 1

j

)
L1
i+j−1 (x) f (0, 0)

]
zi−1

1 z
j

2



126 C. Geldenhuys and R. Ehlers

Additionally from the definition of a pgf

∂ψN1,N2(s1, s2)

∂z1
=

∞∑
i=1

∞∑
j=0

i
P (N1 = i, N2 = j)

θ i1θ
j

2

zi−1
1 z

j

2 .

The result for i = 1, 2, . . . and j = 0, 1, 2, . . . follows by setting

i
P (N1 = i, N2 = j)

θ i1θ
j

2

= λθ

(
i + j − 1

i

)
L1
i+j−1 (x) f (0, 0)

and solving for P (N1 = i, N2 = j). The result for P (N1 = i, N2 = j), i =
0, 1, 2, . . . and j = 1, 2, . . . follows similarly by differentiating ∂ψN1,N2(s1, s2)

partially with respect to z2. ��
Remark 2.1 Using (A6) in the Appendix, it can be shown that the last expression in
(7) is equivalent to

f (i, j) =
(
i + j

j

)
θi1θ

j

2

i+j∑
m=1

(
i + j − 1
m− 1

)
(λθ)m

m! f (0, 0) .

This is the result obtained by Minkova and Balakrishnan (2014a).

2.2 Multivariate Extension

A multivariate extension of the Type II bivariate Pólya-Aeppli distribution was
introduced in Minkova and Balakrishnan (2014a). In this chapter we will also
consider the multivariate extension, but we will give an alternative and simplified
approach for deriving the pmf using Laguerre polynomials, which gives a closed
form expression of the pmf.

Let X = (X1, . . . , Xk) have a multivariate geometric distribution with pgf given
by

ψ1 (s1, . . . , sk) = θ

1 − θ1s1 − . . .− θksk
,

where 0 < θ1, . . . , θk < 1 and θ = 1−θ1−. . .−θk �= 0. Let Y ∼ Poi(λ) and define

(N1, . . . , Nk) such that Ni =
Y∑

mi=1

Ximi for i = 1, . . . , k. The joint distribution

of (N1, . . . , Nk) is then said be a Type II multivariate Pólya-Aeppli distribution



Weighted Type II Bivariate Pólya-Aeppli Distributions 127

denoted as (N1, . . . , Nk) ∼ MVPAII (λ, θ1, . . . , θk). The pgf of the distribution is

ψN1,...,Nk (s1, . . . , sk) = ψ2 (ψ1 (s1, . . . , sk))

= e
−λ

(
1− θ

(1−θ1s1−...−θksk)
)
.

(8)

From Minkova and Balakrishnan (2014a) it is known that Ni ∼ PA (λρi, ρi)

for i = 1, . . . , k, and it follows that the expected values are E (Ni) = λθi
θ

and

E
(
NiNj

) = λθiθj

θ2 (2 + λ) ,where i = 1, . . . , k, j = 1, . . . , k, i �= j . The variances

are V ar (Ni) = λθi (θ+2θi )
θ2 and the covariance and correlation are Cov(Ni,Nj ) =

E
(
NiNj

)− E (Ni)E
(
Nj

) = 2λθiθj
θ2 and Corr(Ni,Nj ) = 2

√
θiθj

(θ+2θi )(θ+2θj )
.

Theorem 2 The pmf of (N1, . . . , Nk) ∼ MVPAII (λ, θ1, . . . , θk) is

f (0, . . . , 0) = e−λ(1−θ)

f (n1, . . . , nk) = λθ
(n1 + · · · + nk − 1)!

n1! · · · nk! θ
n1
1 · · · θnkk

× L1
n1+···+nk−1 (−λθ) f (0, . . . , 0) ,

n1, . . . , nk = 0, 1, . . . , (n1, . . . , nk) �= (0, . . . , 0)

where Lαn (x) is the generalized Laguerre polynomial of degree n.

Proof The proof is similar to that of Theorem 1. Since f (0, . . . , 0) =
ψN1,...,Nk (0, . . . , 0), it follows from the pgf in (8) that

f (0, . . . , 0) = e−λ(1−θ).

If we let x = −λθ and zi = θisi for i = 1, . . . , k, then the pgf in (8) can be
written as

ψN1,...,Nk (s1, . . . , sk) =
∞∑

n1=0

· · ·
∞∑

nk=0

P (N1 = n1, . . . , Nk = nk) s
n1
1 . . . s

nk
k

= e−λ(1−θ)e
(
x(z1+···+zk)
z1+···+zk−1

)
.

Differentiating ψN1,...,Nk (s1, . . . , s2) with respect to z1 and using results (A1), (A2),
(A3), and (A5) from the Appendix, we see that
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∂ψN1,...,Nk (s1, . . . , sk)

∂z1

= λθ

(1 − (z1 + · · · + zk))
2
e

(
x(z1+···+zk)
z1+···+zk−1

)
f (0, . . . , 0)

= λθ

∞∑
n1=0

L1
n1
(x) (z1 + · · · + zk)

n1 f (0, . . . , 0)

= λθ

∞∑
n1=0

n1∑
n2=0

· · ·
nk−1∑
nk=0

(
n1
n2

)
· · ·

(
nk−1
nk

)
L1
n1
(x) z

n1−n2
1 · · · znk−1−nk

k−1 z
nk
k
f (0, . . . , 0)

= λθ

∞∑
n1=0

∞∑
n2=0

· · ·
∞∑

nk=0

(
n1 + n2 + · · · + nk

n2 + · · · + nk

)
· · ·

(
nk−1 + nk

nk

)

× L1
n1+n2+···+nk (x) z

n1
1 · · · znk

k
f (0, . . . , 0)

=
∞∑

n1=0

· · ·
∞∑

nk=0

[
λθ
(n1 + · · · + nk)!

n1! · · · nk ! L1
n1+···+nk (x) f (0, . . . , 0)

]
z
n1
1 · · · znk

k

=
∞∑

n1=1

· · ·
∞∑

nk=0

[
λθ
(n1 + · · · + nk − 1)!
(n1 − 1)! · · · nk ! L1

n1+···+nk−1 (x) f (0, . . . , 0)

]
z
n1−1
1 · · · znk

k

and additionally it can be shown that

∂ψN1,...,Nk (s1, . . . , sk)

∂z1
=

∞∑
n1=1

· · ·
∞∑

nk=0

n1
P (N1 = n1, . . . , Nk = nk)

θ
n1
1 · · · θnkk

z
n1−1
1 · · · znkk .

Similar results can be derived by differentiating with respect to zi for i = 2, . . . , k.
From these results it follows that for n1, . . . , nk = 0, 1, . . . , and (n1, . . . , nk) �=
(0, . . . , 0) where k = 2, 3, . . . , that

f (n1, . . . , nk) = λθ
(n1 + · · · + nk − 1)!

n1! · · · nk! θ
n1
1 · · · θnkk

× L1
n1+···+nk−1 (−λθ) f (0, . . . , 0) .

(9)

��
Remark 2.2 Using (A6) in the Appendix, it can be shown that the expression in (9)
is equivalent to
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f (n1, . . . , nk) = (n1 + · · · + nk)!
n1! · · · nk! θ

n1
1 · · · θnkk

×
n1+···+nk∑
m=1

(
n1 + · · · + nk − 1

m− 1

)
(λθ)m

m! f (0, . . . , 0) .

which is a closed form expression of the pmf.

3 Weighted Type II Bivariate Pólya-Aeppli Distribution
Case I

In Minkova and Balakrishnan (2013), the weighted univariate Pólya-Aeppli distri-
bution was obtained by applying the weights to the Poisson random variable, where
the weighted Poisson distribution is a generalization of the Poisson distribution.

In Sects. 3 and 4 we apply two different non-negative weight functions to Y ∼
Poi(λ), namely w(y) = y and w(y) = 1

y+1 , where y = 0, 1, . . . . The weighted
univariate Pólya-Aeppli distributions with these two weights are under and over-
dispersed with respect to the univariate Pólya-Aeppli distribution, therefore we
chose to also apply these two weights in the bivariate case in order to create two
models that are under and over-dispersed with respect to the Type II bivariate Pólya-
Aeppli distribution.

Let X = (X1, X2) have a bivariate geometric distribution with a pgf given by

ψ1 (s1, s2) = θ

1 − θ1s1 − θ2s2
, (10)

where 0 < θ1, θ2 < 1 and θ = 1 − θ1 − θ2 �= 0. Let Yw be the weighted version of
Y ∼ Poi(λ), with a non-negative weight function w(y) = y, y = 0, 1, . . .. It then
follows that Yw has a shifted Poisson distribution Yw − 1 ∼ Poi (λ) and the pgf of
Yw is

ψw
2 (s) = E

(
sY

w
)
= se−λ(1−s). (11)

Define
(
Nw

1 , N
w
2

)
as Nw

1 = ∑Yw

i=1 X1i and Nw
2 = ∑Yw

j=1 X2j . The joint distribution
of
(
Nw

1 , N
w
2

)
is then said to be a weighted Type II bivariate Pólya-Aeppli distribu-

tion Case I, denoted as (Nw
1 , N

w
2 ) ∼ WBivPA

(1)
II (λ, θ1, θ2). Using (10) and (11)

the pgf of the distribution is expressed as

ψNw
1 ,N

w
2
(s1, s2) = ψw

2 (ψ1 (s1, s2))

= θ

1 − θ1s1 − θ2s2
e
−λ

(
1− θ

1−θ1s1−θ2s2
)
.

(12)
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The expected values of (Nw
1 , N

w
2 ) ∼ WBivPA

(1)
II (λ, θ1, θ2) areE

(
Nw

1

) = θ1(1+λ)
θ

,

E
(
Nw

2

) = θ2(1+λ)
θ

and E
(
Nw

1 N
w
2

) = θ1θ2(λ+1)2+θ1θ2(2λ+1)
θ2 . The variances are

V ar
(
Nw

1

) = (1+θ1−θ2)θ1λ+(1−θ2)θ1
θ2 and V ar

(
Nw

2

) = (1+θ2−θ1)θ2λ+(1−θ1)θ2
θ2 and the

covariance and correlation are Cov
(
Nw

1 , N
w
2

) = (2λ+1)θ1θ2
θ2 and

Corr(Nw
1 , N

w
2 ) = (2λ+ 1)

×
√

θ1θ2

[(1 + θ1 − θ2) λ+ (1 − θ2)] [(1 + θ2 − θ1) λ+ (1 − θ1)]
.

As λ tends toward infinity, the correlation will tend towards the following limit

lim
λ→∞Corr(Nw

1 , N
w
2 ) = 2

√
θ1θ2

(1 + θ1 − θ2) (1 + θ2 − θ1)
,

which is the same as (4), the correlation for (N1, N2) ∼ BivPAII (λ, θ1, θ2).
The expression for the Fisher index of (Nw

1 , N
w
2 ) ∼ WBivPA

(1)
II (λ, θ1, θ2) can

be calculated using (5) and will be studied graphically in Sect. 5 for different values
of the parameters. It can be shown that as λ tends towards infinity, FI2(N

w
1 , N

w
2 )

will tend towards the following limit

lim
λ→∞FI2(N

w
1 , N

w
2 ) = FI2(N1, N2) (13)

where FI2(N1, N2) is the Fisher Index of (N1, N2) ∼ BivPAII (λ, θ1, θ2) given
in (6).

3.1 Joint Probability Mass Function

Theorem 3 The pmf of (Nw
1 , N

w
2 ) ∼ WBivPA

(1)
II (λ, θ1, θ2) is

f w (i, j) = θ

(
i + j

j

)
θ i1θ

j

2L
0
i+j (−λθ) e−λ(1−θ), i, j = 0, 1, . . . , (14)

where Lαn (x) is the generalized Laguerre polynomial of degree n.

Proof If we let x = −λθ and z1 = θ1s1 and z2 = θ2s2, and using results (A1),
(A2), (A3), and (A5) from the Appendix, we can write the pgf in (12) as
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ψNw
1 ,N

w
2
(s1, s2) = θ

(1 − z1 − z2)
e

(
x(z1+z2)
z1+z2−1

)
e−λ(1−θ)

= θ

∞∑
i=0

L0
i (x) (z1 + z2)

i e−λ(1−θ)

= θ

∞∑
i=0

i∑
j=0

(
i

j

)
L0
i (x) z

i−j
1 z

j

2e
−λ(1−θ)

= θ

∞∑
j=0

∞∑
i=j

(
i

j

)
L0
i (x) z

i−j
1 z

j

2e
−λ(1−θ)

= θ

∞∑
i=0

∞∑
j=0

(
i + j

j

)
L0
i+j (x) zi1z

j

2e
−λ(1−θ)

=
∞∑
i=0

∞∑
j=0

[
θ

(
i + j

j

)
θi1θ

j

2L
0
i+j (x) e−λ(1−θ)

]
si1s

j

2 .

and from the definition of a pgf

ψNw
1 ,N

w
2
(s1, s2) =

∞∑
i=0

∞∑
j=0

P
(
Nw

1 = i, Nw
2 = j

)
si1s

j

2 .

Therefore by setting

P
(
Nw

1 = i, Nw
2 = j

) = θ

(
i + j

j

)
θi1θ

j

2L
0
i+j (x) e−λ(1−θ)

the result follows. ��
Remark 3.1 Using (A6) in the Appendix, it can be shown that the expression in (14)
is equivalent to

f w (i, j) =
(
i + j

j

)
θi1θ

j

2

i+j∑
m=0

(
i + j

m

)
λmθm+1

m! e−λ(1−θ).

3.2 Marginal and Conditional Distributions

The derivation for the marginal distribution is similar to the derivation for the joint
pmf in Sect. 3.1 and the derivation for the conditional distribution and conditional



132 C. Geldenhuys and R. Ehlers

expected value is similar to the derivation of these properties for the Type II bivariate
Pólya-Aeppli distribution in Minkova and Balakrishnan (2014a), so we will only
give these results here.

If (Nw
1 , N

w
2 ) ∼ WBivPA

(1)
II (λ, θ1, θ2), then the marginal pmf for Nw

1 is
given by

P
(
Nw

1 = i
) = e−λρ1 (1 − ρ1) ρ

i
1L

0
i (−λ (1 − ρ1)) i = 0, 1, . . .

where Lαn (x) is the generalized Laguerre polynomial of degree n. The marginal pmf
of Nw

2 follows similarly. The conditional pgf of Nw
2 given Nw

1 is

ψNw
2 |(Nw

1 =i) (s2) =
(

1 − θ2

1 − θ2s2

)i+1
∑∞

m=0

(
m+ i

m

)
λmθm

m!
1

(1−θ2s2)
m

∑∞
m=0

(
m+ i

m

)
λmθm

m!
1

(1−θ2)
m

i = 0, 1, . . .

and the conditional mean of Nw
2 given Nw

1 is

E
[
Nw

2 |Nw
1 = i

] = θ2

(1 − θ2)

⎡
⎢⎢⎢⎢⎣(i + 1)+

∑∞
m=1 m

(
m+ i

m

)
λmθm

m!
1

(1−θ2)
m

∑∞
m=0

(
m+ i

m

)
λmθm

m!
1

(1−θ2)
m

⎤
⎥⎥⎥⎥⎦ i = 0, 1, . . .

The conditional mean of Nw
1 given Nw

2 follows similarly.

3.3 Method of Moments Estimates

In order to calculate the method of moments parameter estimates for (Nw
1 , N

w
2 ) ∼

WBivPA
(1)
II (λ, θ1, θ2), we denote the joint moments of the random variable Nw

1
and Nw

2 by

μ
′
r,s = E

(
N
w(r)
1 , N

w(s)
2

)
r, s = 0, 1, 2, . . . ,

where μ
′
1,0 = E

(
Nw

1

) = θ1(1+λ)
θ

, μ
′
0,1 = E

(
Nw

2

) = θ2(1+λ)
θ

and μ
′
1,1 =

E
(
Nw

1 , N
w
2

) = θ1θ2(λ+1)2+θ1θ2(2λ+1)
θ2 are the population moments. Equating the first

sample moments X̄w and Ȳ w to the population moments, the moment estimates for
the parameters θ1 and θ2 are
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θ̂1 = X̄w(
λ+ X̄w + Ȳ w + 1

) and θ̂2 = Ȳ w(
λ+ X̄w + Ȳ w + 1

) .
To find the moment estimate for λ, we equate the mixed sample moment mw

1,1 to the

population moment μ
′
1,1, which gives

(
λ̂2 + 2λ̂+ 1

)
nw1 n

w
2 − λ̂2nw1 n

w
2 =

(
λ̂+ 1

)2 (
mw

1,1 − X̄wȲ w
)
.

Solving this for λ̂ gives

λ̂ = 1√
X̄wȲw(

2X̄wȲw−mw
1,1

) − 1
.

3.4 Multivariate Extension

The weighted Type II bivariate Pólya-Aeppli distribution Case I can naturally be
extended to the multivariate case and we will give the newly proposed results of this
distribution here.

Let X = (X1, . . . , Xk) have a multivariate geometric distribution with pgf

ψ1 (s1, . . . , sk) = θ

1 − θ1s1 − . . .− θksk
,

where 0 < θ1, . . . , θk < 1, θ = 1 − θ1 − . . . − θk �= 0 and Yw is the
weighted version of Y ∼ Poi(λ), with a non-negative weight function w(y) = y

and pgf given by (11). Define
(
Nw

1 , . . . , N
w
k

)
as Nw

i =
Yw∑
mi=1

Ximi for i =

1, . . . , k. The joint distribution of
(
Nw

1 , . . . , N
w
k

)
is then said to be a weighted

Type II multivariate Pólya-Aeppli distribution Case I, denoted as (Nw
1 , . . . , N

w
k ) ∼

WMVPA
(1)
II (λ, θ1, . . . , θk). Extending the pgf in (12), we can express the pgf of

the distribution as

ψNw
1 ,...,N

w
k
(s1, . . . , sk) = ψw

2 (ψ1 (s1, . . . , sk))

= θ

1 − θ1s1 − . . .− θksk
e
−λ

(
1− θ

(1−θ1s1−...−θksk)
)
.

(15)

The expected values of (Nw
1 , . . . , N

w
k ) ∼ WMVPA

(1)
II (λ, θ1, . . . , θk) are

E
(
Nw
i

) = θi (1+λ)
θ

and E
(
Nw
i N

w
j

)
= θiθj (λ+1)2+θiθj (2λ+1)

θ2 , where i = 1, . . . , k,
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j = 1, . . . , k, i �= j . The variances are V ar
(
Nw
i

) = (θ+2θi )θiλ+(θ+θi )θi
θ2

and the covariance and correlation are Cov
(
Nw
i ,N

w
j

)
= (2λ+1)θiθj

θ2 and

Corr(Nw
i ,N

w
j ) = (2λ+ 1) ×

√
θiθj

[(θ+2θi )λ+(θ+θi )][(θ+2θj )λ+(θ+θj )] .

Theorem 4 The pmf of (Nw
1 , . . . , N

w
k ) ∼ WMVPA

(1)
II (λ, θ1, . . . , θk) is

f w (n1, . . . , nk) = θ
(n1 + · · · + nk)!

n1! · · · nk! θ
n1
1 · · · θnkk

× L0
n1+···+nk (−λθ) e−λ(1−θ), n1, . . . , nk = 0, 1, . . . ,

where Lαn (x) is the generalized Laguerre polynomial of degree n.

Proof Similar to Theorem 3, if we let x = −λθ and zi = θisi for i = 1, . . . , k, and
using results (A1), (A2), (A3), and (A5) from the Appendix, we can write the pgf
in (15) as

ψNw
1 ,...,N

w
k
(s1, . . . , sk)

= θ

(1 − z1 − · · · − zk)
e

(
x(z1+···+zk)
z1+···+zk−1

)
e−λ(1−θ)

= θ

∞∑
n1=0

L0
n1
(x) (z1 + · · · + zk)

n1 e−λ(1−θ)

= θ

∞∑
n1=n2

∞∑
n2=n3

· · ·
∞∑

nk=0

(
n1

n2

)
· · ·

(
nk−1

nk

)
L0
n1
(x) z

n1−n2
1 · · · znk−1−nk

k−1 z
nk
k e

−λ(1−θ)

= θ

∞∑
n1=0

∞∑
n2=0

· · ·
∞∑

nk=0

(
n1 + n2 + · · · + nk

n2 + · · · + nk

)
· · ·

(
nk−1 + nk

nk

)

× L0
n1+n2+···+nk (x) z

n1
1 · · · znkk e−λ(1−θ)

= θ

∞∑
n1=0

· · ·
∞∑

nk=0

(n1 + · · · + nk)!
n1! · · · nk! L0

n1+···+nk (x) z
n1
1 · · · znkk e−λ(1−θ)

=
∞∑

n1=0

· · ·
∞∑

nk=0

[
θ
(n1 + · · · + nk)!

n1! · · · nk! θ
n1
1 · · · θnkk L0

n1+···+nk (x) e
−λ(1−θ)

]
s
n1
1 · · · snkk
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and

ψNw
1 ,...,N

w
k
(s1, . . . , sk) =

∞∑
n1=0

· · ·
∞∑

nk=0

P
(
Nw

1 = n1, . . . , N
w
k = nk

)
s
n1
1 · · · snkk .

Therefore it follows that for n1, . . . , nk = 0, 1, . . . the pmf is

f w (n1, . . . , nk) = θ
(n1 + · · · + nk)!

n1! · · · nk! θ
n1
1 · · · θnkk L0

n1+···+nk (−λθ) e−λ(1−θ). (16)

��
Remark 3.3 Using (A6) in the Appendix, it can be shown that the expression in (16)
is equivalent to

f (n1, . . . , nk) = (n1 + · · · + nk)!
n1! · · · nk! θ

n1
1 · · · θnkk

×
n1+···+nk∑
m=1

(
n1 + · · · + nk − 1

m− 1

)
(λθ)m

m! f (0, . . . , 0) .

4 Weighted Type II Bivariate Pólya-Aeppli
Distribution Case II

Let X = (X1, X2) have a bivariate geometric distribution with a pgf given by

ψ1 (s1, s2) = θ

1 − θ1s1 − θ2s2
, (17)

where 0 < θ1, θ2 < 1 and θ = 1 − θ1 − θ2 �= 0. Let Yw be the weighted version of
Y ∼ Poi(λ) with a non-negative weight function w(y) = 1

y+1 , y = 0, 1, . . . ,. The
pgf of Yw is

ψw
2 (s) =

e−λ(
1 − e−λ

)
(
esλ − 1

)
s

. (18)

Define
(
Nw

1 , N
w
2

)
as Nw

1 = ∑Yw

i=1 X1i and Nw
2 = ∑Yw

j=1 X2j . The joint distribution
of
(
Nw

1 , N
w
2

)
is then said to be a weighted Type II bivariate Pólya-Aeppli distribu-

tion Case II, denoted as (Nw
1 , N

w
2 ) ∼ WBivPA

(2)
II (λ, θ1, θ2). From (17) and (18)

the pgf of the distribution follows as

ψNw
1 ,N

w
2
(s1, s2) = ψw

2 (ψ1 (s1, s2))

= e−λ(
1 − e−λ

) (1 − θ1s1 − θ2s2)

θ

(
e

λθ
1−θ1s1−θ2s2 − 1

)
.

(19)
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The expected values of (Nw
1 , N

w
2 ) ∼ WBivPA

(2)
II (λ, θ1, θ2) are E

(
Nw

1

) =(
λ−1+e−λ)θ1

(1−e−λ)θ , E
(
Nw

2

) =
(
λ−1+e−λ)θ2

(1−e−λ)θ and E
(
Nw

1 N
w
2

) = λ2θ1θ2
(1−e−λ)θ2 . The vari-

ances are V ar
(
Nw

1

) =
(
λ−1+e−λ)(1−e−λ)(1−θ2)θ1−

(
λ−1+e−λ)λθ2

1 +
(
1−e−λ)λ2θ2

1

(1−e−λ)2
θ2

and

V ar
(
Nw

2

) = (
λ−1+e−λ)(1−e−λ)(1−θ1)θ2−

(
λ−1+e−λ)λθ2

2 +
(
1−e−λ)λ2θ2

2

(1−e−λ)2
θ2

. The covariance is

Cov
(
Nw

1 , N
w
2

) = λ2θ1θ2
(
1−e−λ)−(λ−1+e−λ)2

θ1θ2

(1−e−λ)2
θ2

. The correlation can be calculated

using these results. As λ tends toward infinity, the correlation will tend towards the
following limit

lim
λ→∞Corr(Nw

1 , N
w
2 ) = 2

√
θ1θ2

(1 + θ1 − θ2) (1 + θ2 − θ1)

which is the same as (4), the correlation for (N1, N2) ∼ BivPAII (λ, θ1, θ2). The
expression for the Fisher index of (Nw

1 , N
w
2 ) ∼ WBivPA

(2)
II (λ, θ1, θ2) can be

calculated using (5) and will be studied graphically in Sect. 5 for different values
of the parameters. It can be shown that as λ tends towards infinity, FI2(N

w
1 , N

w
2 )

will tend towards the following limit

lim
λ→∞FI2(N

w
1 , N

w
2 ) = FI2(N1, N2) (20)

where FI2(N1, N2) is the Fisher Index of (N1, N2) ∼ BivPAII (λ, θ1, θ2) given
in (6).

4.1 Joint Probability Mass Function

Theorem 5 The pmf of (Nw
1 , N

w
2 ) ∼ WBivPA

(2)
II (λ, θ1, θ2) is

f w (0, 0) = e−λ(
1 − e−λ

)
(
eλθ − 1

)
θ

f w (1, 0) = e−λ(
1 − e−λ

) θ1

θ

[
(λθ − 1) eλθ + 1

]

f w (0, 1) = e−λ(
1 − e−λ

) θ2

θ

[
(λθ − 1) eλθ + 1

]

f w (i, j) = λ2θe−λ(1−θ)(
1 − e−λ

)
(i + j) (i + j − 1)

(
i + j

j

)
θi1θ

j

2L
2
i+j−2 (−λθ) ,

i, j = 0, 1, . . . , (i, j) �= (0, 0) , (i, j) �= (1, 0) , (i, j) �= (0, 1) .

(21)
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where Lαn (x) is the generalized Laguerre polynomial of degree n.

Proof For the initial value we know that f w (0, 0) = ψNw
1 ,N

w
2
(0, 0) and it follows

from the pgf in (19) that

f w (0, 0) = e−λ(
1 − e−λ

)
(
eλθ − 1

)
θ

.

In order to calculate f w (1, 0), we can rewrite the pgf in (19) as

ψNw
1 ,N

w
2
(s1, s2) = e−λ(

1 − e−λ
) ∞∑
k=1

λkθk−1

k! (1 − θ1s1 − θ2s2)
k−1

.

It then follows from the above and (A4) in the Appendix that

ψ
(1,0)
Nw

1 ,N
w
2
(s1, s2) =

∂ψNw
1 ,N

w
2
(s1, s2)

∂s1
= e−λ(

1 − e−λ
) ∞∑
k=1

θ1 (k − 1) λkθk−1

k! (1 − θ1s1 − θ2s2)
k

and

f w (1, 0) = ψ
(1,0)
Nw

1 ,N
w
2
(s1, s2)

∣∣∣
s1=0,s2=0

= e−λ(
1 − e−λ

) ∞∑
k=1

θ1 (k − 1) λkθk−1

k!

= e−λ(
1 − e−λ

) θ1

θ

[
(λθ − 1) eλθ + 1

]
.

The result for f w (0, 1) follows similarly. The result for f w (1, 1) is calculated as

ψ
(1,1)
Nw

1 ,N
w
2
(s1, s2) =

∂2ψNw
1 ,N

w
2
(s1, s2)

∂s1∂s2
= e−λ(

1 − e−λ
) ∞∑
k=2

θ1θ2k (k − 1) λkθk−1

k! (1 − θ1s1 − θ2s2)
k+1

and

f w (1, 1) = ψ
(1,1)
Nw

1 ,N
w
2
(s1, s2)

∣∣∣
s1=0,s2=0

= e−λ(
1 − e−λ

) ∞∑
k=2

θ1θ2λ
kθk−1

(k − 2)!

= e−λ(1−θ)(
1 − e−λ

)θ1θ2λ
2θ.
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If we let x = −λθ and z1 = θ1s1 and z2 = θ2s2, then we can write the pgf in (19) as

ψNw
1 ,N

w
2
(s1, s2) =

∞∑
i=0

∞∑
j=0

P
(
Nw

1 = i, Nw
2 = j

)
si1s

j

2

= (1 − z1 − z2)

θ
(
1 − e−λ

) [
e−λ(1−θ)e

(
x(z1+z2)
z1+z2−1

)
− e−λ

]
.

Finding the second derivative of ψNw
1 ,N

w
2
(s1, s2) with respect to z1 and using results

(A1), (A2), (A3), and (A5) from the Appendix, we see that

∂2ψNw
1 ,N

w
2
(s1, s2)

∂z2
1

= λ2θe−λ(1−θ)(
1 − e−λ

)
(1 − z1 − z2)

3 e

(
x(z1+z2)
z1+z2−1

)

= λ2θe−λ(1−θ)(
1 − e−λ

) ∞∑
i=0

L2
i (x) (z1 + z2)

i

= λ2θe−λ(1−θ)(
1 − e−λ

) ∞∑
i=0

i∑
j=0

(
i

j

)
L2
i (x) z

i−j
1 z

j

2

= λ2θe−λ(1−θ)(
1 − e−λ

) ∞∑
j=0

∞∑
i=j

(
i

j

)
L2
i (x) z

i−j
1 z

j

2

= λ2θe−λ(1−θ)(
1 − e−λ

) ∞∑
j=0

∞∑
i=0

(
i + j

j

)
L2
i+j (x) zi1z

j

2

= λ2θe−λ(1−θ)(
1 − e−λ

) ∞∑
i=2

∞∑
j=0

(
i + j − 2

j

)
L2
i+j−2 (x) z

i−2
1 z

j

2

Additionally from the definition of a pgf

∂2ψNw
1 ,N

w
2
(s1, s2)

∂z2
1

=
∞∑
i=2

∞∑
j=0

i (i − 1)
P
(
Nw

1 = i, Nw
2 = j

)
θi1θ

j

2

zi−2
1 z

j

2 .

The result follows for i = 2, 3, . . . and j = 0, 1, . . ., by setting

λ2θe−λ(1−θ)(
1 − e−λ

) (
i + j − 2

j

)
L2
i+j−2 (x) = i (i − 1)

P
(
Nw

1 = i, Nw
2 = j

)
θi1θ

j

2

.

The result for i = 0, 1, . . ., and j = 2, 3, . . . follows similarly by finding the second
derivative of ψNw

1 ,N
w
2
(s1, s2) with respect to z2. ��
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Remark 4.1 Using (A6) in the Appendix, it can be shown that the last expression in
(21) is equivalent to

f w (i, j) = e−λ(1−θ)(
1 − e−λ

) ( i + j

j

)
θi1θ

j

2

i+j∑
m=2

(
i + j − 2
m− 2

)
λmθm−1

m! .

4.2 Marginal and Conditional Distributions

As in Sect. 3.2, we will only give the results for the marginal and conditional
distributions and conditional expected value here.

If (Nw
1 , N

w
2 ) ∼ WBivPA

(2)
II (λ, θ1, θ2), then the marginal pmf for Nw

1 is given
by

P
(
Nw

1 = 0
) = e−λ(

1 − e−λ
) 1

(1 − ρ1)

(
eλ(1−ρ1) − 1

)

P
(
Nw

1 = 1
) = e−λ(

1 − e−λ
) ρ1

(1 − ρ1)

[
(λ (1 − ρ1)− 1) eλ(1−ρ1) + 1

]

P
(
Nw

1 = i
) = e−λρ1(

1 − e−λ
) λ2 (1 − ρ1) ρ

i
1

i (i − 1)
L2
i−2 (−λ (1 − ρ1)) i = 2, 3, . . .

where Lαn (x) is the generalized Laguerre polynomial of degree n. The marginal pmf
of Nw

2 follows similarly. The conditional pgf of Nw
2 given Nw

1 is

ψNw
2 |(Nw

1 =0) (s2) =
(

1 − θ2s2

1 − θ2

)
e

(
− λθ

1−θ2
)(

1− 1−θ2
1−θ2s2

)

ψNw
2 |(Nw

1 =1) (s2) =
∑∞

m=2
λmθm

m!
(m−1)

(1−θ2s2)
m∑∞

m=2
λmθm

m!
(m−1)
(1−θ2)

m

ψNw
2 |(Nw

1 =i) (s2) =
(

1 − θ2

1 − θ2s2

)i−1

∑∞
m=2

(
m+ i − 2
m− 2

)
λmθm

m!
1

(1−θ2s2)
m

∑∞
m=2

(
m+ i − 2
m− 2

)
λmθm

m!
1

(1−θ2)
m

i = 2, 3, . . .

The conditional pgf ofNw
1 given Nw

2 follows similarly and the conditional expected

value of Nw
2 given Nw

1 is
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E
[
Nw

2 |Nw
1 = 0

] = θ2

(1 − θ2)

(
λ− 1 − λθ1

1 − θ2

)

E
[
Nw

2 |Nw
1 = 1

] = θ2

(1 − θ2)

∑∞
m=2

λmθm

m!
m(m−1)
(1−θ2)

m∑∞
m=2

λmθm

m!
(m−1)
(1−θ2)

m

E
[
Nw

2 |Nw
1 = i

] = θ2

(1 − θ2)

⎡
⎢⎢⎢⎣(i − 1)+

∑∞
m=2 m

(
m+ i − 2
m− 2

)
λmθm

m!
1

(1−θ2)
m

∑∞
m=2

(
m+ i − 2
m− 2

)
λmθm

m!
1

(1−θ2)
m

⎤
⎥⎥⎥⎦

i = 2, 3, . . .

The conditional expected value of Nw
1 given Nw

2 follows similarly.

4.3 Method of Moments Estimates

In order to calculate the method of moments parameter estimates for (Nw
1 , N

w
2 ) ∼

WBivPA
(2)
II (λ, θ1, θ2), we denote the joint moments of the random variables Nw

1
and Nw

2 by

μ
′
r,s = E

(
N
w(r)
1 , N

w(s)
2

)
r, s = 0, 1, 2, . . . ,

where μ
′
1,0 = E

(
Nw

1

) =
(
λ−1+e−λ)θ1

(1−e−λ)θ , μ
′
0,1 = E

(
Nw

2

) =
(
λ−1+e−λ)θ2

(1−e−λ)θ and μ
′
1,1 =

E
(
Nw

1 , N
w
2

) = λ2θ1θ2
(1−e−λ)θ2 are the population moments. Equating the first sample

moments X̄w and Ȳ w to the population moments, the moment estimates for the
parameters θ1 and θ2 are

θ̂1 =
(

λ

(1−e−λ) − 1
)
X̄w(

λ

(1−e−λ) + X̄w − 1
) (

λ

(1−e−λ) + Ȳ w − 1
)
− X̄wȲ w

θ̂2 =
(

λ

(1−e−λ) − 1
)
Ȳ w(

λ

(1−e−λ) + X̄w − 1
) (

λ

(1−e−λ) + Ȳ w − 1
)
− X̄wȲ w

.

To find the moment estimate for λ, we equate the mixed sample moment mw
1,1 to the

population moment μ
′
1,1, which gives
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mw
1,1 = λ2θ̂1θ̂2(

1 − e−λ
)
θ̂2

λ̂ =
(

1 − e−λ̂
)√

mw
1,1√

mw
1,1 −

√(
1 − e−λ̂

)
X̄wȲ w

.

(22)

An explicit expression for the estimator of λ is not available, therefore the estimate
of λ is obtained iteratively using the Newton Rhapson method where

λ̂i+1 = λ̂i −
f
(
λ̂i

)
f

′
(
λ̂i

) (23)

From (22) we find that

λ̂2
(

1 − e−λ̂
)
X̄wȲ w(

λ̂− 1 + e−λ̂
)2 −mw

1,1 = 0,

therefore

f
(
λ̂
)
=
λ̂2
(

1 − e−λ̂
)
X̄wȲ w(

λ̂− 1 + e−λ̂
)2 −mw

1,1,

f
′ (
λ̂
)
=

2λ̂
(

1 − e−λ̂
)
X̄wȲ w + λ̂2e−λ̂X̄wȲ w − 2λ̂2

(
1 − e−λ̂

)2
X̄wȲ w(

λ̂− 1 + e−λ̂
)2 .

(24)

Therefore from (23) and (24) the recursion formula is

λ̂i+1 = λ̂i −
λ̂i

2
(

1 − e−λ̂i
)
X̄wȲ w −mw

1,1

(
λ̂i − 1 + e−λ̂i

)2

2λ̂i
(

1 − e−λ̂i
)
X̄wȲ w + λ̂i

2
e−λ̂i X̄wȲ w − 2λ̂i

2
(

1 − e−λ̂i
)2
X̄wȲ w

where i = 0, 1, . . . , and choosing the moment estimate for λ from the Type II
bivariate Pólya-Aeppli distribution as a starting value for λ̂i , and selecting a stopping
value such that λ̂i+j − λ̂i+j−1 < ε, where j = 0, 1, . . . , and ε = 0.001 as the
stopping value.
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4.4 Multivariate Extension

The weighted Type II bivariate Pólya-Aeppli distribution Case II can naturally be
extended to the multivariate case and we will give the newly proposed results of this
distribution here.

Let X = (X1, . . . , Xk) have a multivariate geometric distribution with pgf

ψ1 (s1, . . . , sk) = θ

1 − θ1s1 − . . .− θksk
,

where 0 < θ1, . . . , θk < 1, θ = 1 − θ1 − . . . − θk �= 0 and Yw is the
weighted version of Y ∼ Poi(λ), a non-negative weight function w(y) = 1

y+1

and pgf given by (18). Define
(
Nw

1 , . . . , N
w
k

)
as Nw

i =
Yw∑
mi=1

Ximi for i =

1, . . . , k. The joint distribution of
(
Nw

1 , . . . , N
w
k

)
is then said to be a weighted

Type II multivariate Pólya-Aeppli distribution Case II, denoted as (Nw
1 , . . . , N

w
k ) ∼

WMVPA
(2)
II (λ, θ1, . . . , θk). Extending the pgf in (19), the pgf of the distribution is

ψNw
1 ,N

w
2
(s1, s2) = ψw

2 (ψ1 (s1, s2))

= e−λ(
1 − e−λ

) (1 − θ1s1 − . . .− θksk)

θ

(
e

λθ
1−θ1s1−...−θksk − 1

)
.
(25)

The expected values of (Nw
1 , . . . , N

w
k ) ∼ WMVPA

(2)
II (λ, θ1, . . . , θk) are

E
(
Nw
i

) =
(
λ−1+e−λ)θi
(1−e−λ)θ and E

(
Nw
i N

w
j

)
= λ2θiθj

(1−e−λ)θ2 , where i = 1, . . . , k, j =
1, . . . , k, i �= j . The variances are V ar

(
Nw
i

) =(
λ−1+e−λ)(1−e−λ)(θ+θi )θi−(λ−1+e−λ)λθ2

i +
(
1−e−λ)λ2θ2

i

(1−e−λ)2
θ2

and the covariance is

Cov
(
Nw
i ,N

w
j

)
=

(
λ−1+e−λ)θiθj+λθiθj

θ2 . The correlation can be calculated using

these results.

Theorem 6 The pmf of (Nw
1 , . . . , N

w
k ) ∼ WMVPA

(2)
II (λ, θ1, . . . , θk) is

f w (0, . . . , 0) = e−λ(
1 − e−λ

)
(
eλθ − 1

)
θ

f w (0, . . . , 1) = e−λ(
1 − e−λ

) θk
θ

[
(λθ − 1) eλθ + 1

]

f w (n1, . . . , nk)=λ2θe−λ(1−θ)(
1−e−λ) (n1+ · · ·+nk − 2)!

n1! · · · nk! θ
n1
1 · · · θnkk L2

n1+···+nk−2 (−λθ) ,

n1, . . . , nk = 0, 1, . . . , (n1, . . . , nk) �= (0, . . . , 0) ,

(n1, . . . , nk) �= (0, . . . , 1)
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where Lαn (x) is the generalized Laguerre polynomial of degree n.

Proof Similar to the bivariate case, for the initial value we know that
f w (0, . . . , 0) = ψNw

1 ,...,N
w
k
(0, . . . , 0), so it follows from the pgf in (25) that

f w (0, . . . , 0) = e−λ(
1 − e−λ

)
(
eλθ − 1

)
θ

.

In order to calculate f w (0, . . . , 1), we can rewrite the pgf in (25) as

ψNw
1 ,...,N

w
k
(s1, . . . , sk)

= e−λ(
1 − e−λ

) (1 − θ1s1 − · · · − θksk)

θ

[ ∞∑
i=0

(
λθ

1 − θ1s1 − · · · − θksk

)i 1

i! − 1

]

= e−λ(
1 − e−λ

) ∞∑
i=1

λiθ i−1

i! (1 − θ1s1 − · · · − θksk)
i−1 .

Then if k = 1, 2, . . . , it follows from (A4) in the Appendix, that

ψ
(0,...,1)
Nw

1 ,...,N
w
k
(s1, . . . , sk) =

∂ψNw
1 ,...,N

w
k
(s1, . . . , sk)

∂sk

= e−λ(
1 − e−λ

) ∞∑
i=1

θk (i − 1) λiθ i−1

i! (1 − θ1s1 − · · · − θksk)
i

and

f w (0, . . . , 1) = ψ
(0,...,1)
Nw

1 ,...,N
w
k
(s1, . . . , sk)

∣∣∣
s1=0,...,sk=0

= e−λ(
1 − e−λ

) ∞∑
i=1

θk (i − 1) λiθ i−1

i!

= e−λ(
1 − e−λ

) θk
θ

[ ∞∑
i=1

λiθ i

(i − 1)! −
∞∑
i=1

λiθ i

i!

]

= e−λ(
1 − e−λ

) θk
θ

[ ∞∑
i=0

λi+1θi+1

i! −
∞∑
i=0

λiθ i

i! + 1

]

= e−λ(
1 − e−λ

) θk
θ

[
(λθ − 1)

∞∑
i=0

λiθ i

i! + 1

]

= e−λ(
1 − e−λ

) θk
θ

[
(λθ − 1) eλθ + 1

]
.
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If we let x = −λθ and z1 = θ1s1 and zk = θksk , then the pgf in (25) can be
expressed as

ψNw
1 ,...,N

w
k
(s1, . . . , sk) =

∞∑
n1=0

· · ·
∞∑

nk=0

P
(
Nw

1 = n1, . . . , N
w
k = nk

)
s
n1
1 · · · snk

k

= (1 − θ1s1 − · · · − θksk)

θ
(
1 − e−λ

)
[
e
−λ

(
1− θ

1−θ1s1−···−θksk
)
− e−λ

]

= (1 − θ1s1 − · · · − θksk)

θ
(
1 − e−λ

)
[
e
−λ

(
1−θ+θ− θ

1−θ1s1−···−θksk
)
− e−λ

]

= (1 − z1 − · · · − zk)

θ
(
1 − e−λ

)
[
e−λ(1−θ)e

(
x(z1+···+zk)
z1+···+zk−1

)
− e−λ

]
.

Finding the second derivative of ψNw
1 ,...,N

w
k
(s1, . . . , sk) with respect to z1 and using

results (A1), (A2), (A3), and (A5) from the Appendix, it follows that

∂2ψNw
1 ,...,N

w
k
(s1, . . . , sk)

∂z2
1

= λ2θe−λ(1−θ)(
1 − e−λ

)
(1 − z1 − · · · − zk)

3 e

(
x(z1+···+zk )
z1+···+zk−1

)

= λ2θe−λ(1−θ)(
1 − e−λ

) ∞∑
n1=0

L2
n1
(x) (z1 + · · · + zk)

n1

=λ2θe−λ(1−θ)(
1−e−λ)

∞∑
n1=n2

∞∑
n2=n3

· · ·
∞∑

nk=0

(
n1

n2

)
· · ·

(
nk−1

nk

)
L2
n1
(x) z

n1−n2
1 · · · znk−1−nk

k−1 z
nk
k

= λ2θe−λ(1−θ)(
1 − e−λ

) ∞∑
n1=0

∞∑
n2=0

· · ·
∞∑

nk=0

(
n1 + n2 + · · · + nk

n2 + · · · + nk

)
· · ·

(
nk−1 + nk

nk

)

× L2
n1+n2+···+nk (x) z

n1
1 · · · znkk

=
∞∑

n1=0

· · ·
∞∑

nk=0

[
λ2θe−λ(1−θ)(

1 − e−λ
) (n1 + · · · + nk)!

n1! · · · nk ! L2
n1+···+nk (x)

]
z
n1
1 · · · znkk

=
∞∑

n1=2

· · ·
∞∑

nk=0

[
λ2θe−λ(1−θ)(

1 − e−λ
) (n1 + · · · + nk − 2)!

(n1 − 2)! · · · nk ! L2
n1+···+nk−2 (x)

]
z
n1−2
1 · · · znkk
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and additionally it can be shown that

∂2ψNw
1 ,...,N

w
k
(s1, . . . , sk)

∂z2
1

=
∞∑

n1=2

· · ·
∞∑

nk=0

n1 (n1 − 1)

× P
(
Nw

1 = n1, . . . , N
w
k = nk

)
θ
n1
1 . . . θ

nk
k

z
n1−2
1 · · · znkk .

When using (A4) in the Appendix, we can see that

ψ
(1,...,1)
Nw

1 ,...,N
w
k
(s1, . . . , sk) =

∂kψNw
1 ,...,N

w
k
(s1, . . . , sk)

∂s1 · · · ∂sk

= e−λ(
1 − e−λ

) ∞∑
i=2

θ1 · · · θk (i + k − 2) · · · (i − 1) λiθ i−1

i! (1 − θ1s1 − · · · − θksk)
i+(k+1)−2

and

f w (1, . . . , 1) = ψ
(1,...,1)
Nw

1 ,...,N
w
k
(s1, . . . , sk)

∣∣∣
s1=0,...,sk=0

= e−λ(
1 − e−λ

) ∞∑
i=2

θ1 · · · θk (i + k − 2) · · · (i − 1) λiθ i−1

i!

= e−λ(
1 − e−λ

)θ1 · · · θk
∞∑
i=0

(i + k) · · · (i + 3) λi+2θi+1

i!

= e−λ(
1 − e−λ

)k!θ1 · · · θk
(

k∑
m=2

(
k − 2
m− 2

)
λmθm−1

m!

) ∞∑
i=0

λiθ i

i!

= e−λ(1−θ)(
1 − e−λ

)k!θ1 · · · θk
k∑

m=2

(
k − 2
m− 2

)
λmθm−1

m! .

Similar results can be derived by differentiating with respect to zi for i = 2, . . . , k.
Therefore it follows that for n1, . . . , nk = 0, 1, . . ., (n1, . . . , nk) �= (0, . . . , 0),
(n1, . . . , nk) �= (0, . . . , 1) the pmf is

f w (n1, . . . , nk) = λ2θe−λ(1−θ)(
1 − e−λ

) (n1 + · · · + nk − 2)!
n1! · · · nk! θ

n1
1 · · · θnkk

× L2
n1+···+nk−2 (−λθ)

(26)

��
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Remark 4.3 Using (A6) in the Appendix, it can be shown that the expression in (26)
is equivalent to

f w (n1, . . . , nk) = e−λ(1−θ)(
1 − e−λ

) (n1 + · · · + nk)!
n1! · · · nk! θ

n1
1 · · · θnkk

×
n1+···+nk∑
m=2

(
n1 + · · · + nk − 2

m− 2

)
λmθm−1

m! .

5 Simulation Study

5.1 Comparison of Fisher Indexes of Dispersion and Properties

In this subsection the Type II and weighted Type II bivariate Pólya-Aeppli Case I and
Case II distributions are graphically studied with the purpose of investigating and
comparing the effect of a change in the parameters of the distributions on the Fisher
indexes of dispersion. In all cases the theoretical results derived in this chapter are
used to create the graphs.

The graphs in Figs. 1 and 2 depict the Fisher indexes of dispersion of the three
bivariate distributions. In both graphs we use λ = 2, θ1 = 0.3 and θ2 = 0.2 as
reference parameters and vary only one of the parameters, while keeping all others
constant. We observe how the Fisher indexes of dispersion change for varying values
of θ1 in Fig. 1, and λ in Fig. 2.
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theta2 = 0.2

Fig. 1 Fisher indexes of the Type II bivariate Pólya-Aeppli distribution and weighted Type II
bivariate Pólya-Aeppli Case I and Case II distributions with parameters λ = 2, θ2 = 0.2
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Fig. 2 Fisher indexes of the Type II bivariate Pólya-Aeppli distribution and weighted Type II
bivariate Pólya-Aeppli Case I and Case II distributions with parameters θ1 = 0.3, θ2 = 0.2

Table 1 Properties of the Type II bivariate Pólya-Aeppli and weighted Type II bivariate Pólya-
Aeppli Case I and Case II distributions (reference parameters: λ = 2, θ1 = 0.3, θ2 = 0.2)

E
(
N
(w)
1

)
E
(
N
(w)
2

)
V ar

(
N
(w)
1

)
V ar

(
N
(w)
2

)
(N1, N2) ∼ BivPAII (λ, θ1, θ2) 1.2 0.8 2.64 1.44

(Nw
1 , N

w
2 ) ∼ WBivPA

(1)
II (λ, θ1, θ2) 1.8 1.2 3.6 2

(Nw
1 , N

w
2 ) ∼ WBivPA

(2)
II (λ, θ1, θ2) 0.79 0.53 1.83 1

For increasing values of θ1, the Fisher indexes of dispersion of all the distribu-
tions follow an upward trend. Increasing values of θ2 will have similar effects on the
dispersion of the distributions.

For increasing values of λ, the Type II bivariate Pólya-Aeppli distribution has
a constant Fisher index of dispersion as can be seen in (13). The dispersion of the
weighted Type II Case I distribution follows an upward trend, whilst the weighted
Type II Case II distribution initially has a slight upward trend before sloping
gradually downwards. From (13) and (20) the Fisher indexes of both weighted
bivariate distributions approaches the Fisher index of the Type II bivariate Pólya-
Aeppli distribution as λ becomes very large.

The weighted Type II bivariate Pólya-Aeppli Case I and Case II distributions
are respectively under and over-dispersed with respect to the Type II bivariate
Pólya-Aeppli distribution, except in the case of very large values of λ, for which
all distributions tend towards equi-dispersion. Table 1 gives the expected values
and variances of the random variables for the three Type II bivariate Pólya-Aeppli
distributions with the same parameters λ = 2, θ1 = 0.3 and θ2 = 0.2.

Compared to the Type II bivariate Pólya-Aeppli distribution, the weighted Case
I distribution is shifted towards larger values of both random variables and the
variances for both variables are also larger. Conversely both random variables of
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the weighted Case II distribution is shifted towards smaller values and has smaller
variances, compared to the Type II bivariate distribution.

From the Fisher indexes in Figs. 1 and 2 and the marginal properties of the
variables it follows that the weighted Case I and Case II distributions will fit
some data better than the Type II bivariate distribution. This is studied in the next
subsection.

5.2 Success Rates of Moment Estimates

The success rate of an estimator is the proportion of samples for which an estimate
can be calculated. For example, for the Type II bivariate Pólya-Aeppli distribution

the moment estimate of λ is λ̂ = 2X̄Ȳ

m1,1 − X̄Ȳ
. If the sample covariance is

negative, λ̂ will be negative and the parameters cannot be estimated.
Tables 2 and 3 give the average percentage success rates of the moment estimates

for sample sizes s = 50 and s = 100 and parameter values of λ = 2, 8 and θ1, θ2 =
0.1, 0.2, 0.3, 0.4. The success rates are calculated by simulating 100 samples each
of size s from each of the three bivariate distributions and calculating the percentage
of samples for which the moment estimates could be calculated.

From these tables it follows that for a larger sample and larger values of all the
parameters, better success rates are observed.

5.3 Comparison of Moment Estimates

In Sect. 5.3 the mean, bias and MSE of the method of moments estimates are
compared for the Type II bivariate Pólya-Aeppli and weighted Type II bivariate
Pólya-Aeppli Case I and Case II distributions. Samples of sizes 100, 200 and 500
were simulated from these distributions, all with parameters λ = 8, θ1 = 0.4,
θ2 = 0.4, see Algorithm 1.

Algorithm 1
(1) Simulate a dataset from the Type II bivariate Pólya-Aeppli distribution

(λ = 8, θ1 = 0.4, θ2 = 0.4) and calculate the moment estimates
(
λ̂, θ̂1, θ̂2

)
.

(2) Simulate 1000 samples from the BivPAII (λ̂, θ̂1, θ̂2) distribution and calculate the moment
estimates, (λ∗, θ∗1 , θ∗2 ) for each sample.
(3) The quantile bootstrap estimates are then used to find the 95% confidence intervals for the
parameters.
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From Sect. 5.2 these parameter values consistently give a 100% success rate for
method of moments estimation. The results for the estimates of the three bivariate
distributions are given in Tables 4, 5, and 6.

Although the moment estimates for all distributions are asymptotically unbiased,
the weighted Type II bivariate Pólya-Aeppli distribution Case II consistently
provides parameter estimates with the smallest bias and MSE.

Table 4 The Type II bivariate Pólya-Aeppli distribution method of moments estimates

Sample size λ (mean, bias, MSE) θ1 (mean, bias, MSE) θ2 (mean, bias, MSE)

100 (8.349, 0.349, 2.298) (0.397,−0.003, 0.000) (0.396,−0.004, 0.000)

200 (8.141, 0.141, 0.959) (0.399,−0.001, 0.000) (0.399,−0.001, 0.000)

500 (8.066, 0.066, 0.389) (0.399,−0.001, 0.000) (0.399,−0.001, 0.000)

Table 5 The weighted Type II bivariate Pólya-Aeppli distribution Case I method of moments
estimates

Sample size λ (mean, bias, MSE) θ1 (mean, bias, MSE) θ2 (mean, bias, MSE)

100 (8.414, 0.414, 3.131) (0.397,−0.003, 0.000) (0.396,−0.004, 0.0003)

200 (8.236, 0.236, 1.464) (0.398,−0.002, 0.000) (0.398,−0.002, 0.000)

500 (8.082, 0.082, 0.585) (0.399,−0.001, 0.000) (0.399,−0.001, 0.000)

Table 6 The weighted Type II bivariate Pólya-Aeppli distribution Case II method of moments
estimates

Sample size λ (mean, bias, MSE) θ1 (mean, bias, MSE) θ2 (mean, bias, MSE)

100 (8.243, 0.243, 1.421) (0.398,−0.002, 0.000) (0.397,−0.003, 0.000)

200 (8.093, 0.093, 0.645) (0.399,−0.001, 0.000) (0.399,−0.001, 0.000)

500 (8.031, 0.031, 0.261) (0.400,−0.000, 0.000) (0.400,−0.000, 0.000)

5.4 Confidence Intervals

Subsequently the bootstrap confidence intervals are constructed for the estimates of
the parameters in Sect. 5.3. This is done using the parametric bootstrap approach
as follows: This process is repeated for the two weighted versions of the Type II
bivariate Pólya-Aeppli distribution and the results are given in Tables 7, 8, and 9.

Of the three bivariate distributions considered, the weighted Type II bivariate
Pólya-Aeppli distribution Case II consistently provides the narrowest confidence
intervals for all sample sizes.
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Table 7 Type II bivariate Pólya-Aeppli distribution

Coverage probability Average width of CI

Sample size λ θ1 θ2 λ θ1 θ2

100 0.945 0.943 0.941 5.970 0.063 0.063

200 0.948 0.948 0.948 3.980 0.044 0.044

500 0.961 0.943 0.953 2.444 0.027 0.027

Table 8 Weighted Type II bivariate Pólya-Aeppli distribution Case I

Coverage probability Average width of CI

Sample size λ θ1 θ2 λ θ1 θ2

100 0.937 0.938 0.939 7.159 0.066 0.066

200 0.937 0.927 0.930 4.776 0.045 0.045

500 0.942 0.953 0.942 2.923 0.028 0.028

Table 9 Weighted Type II bivariate Pólya-Aeppli distribution Case II

Coverage probability Average width of CI

Sample size λ θ1 θ2 λ θ1 θ2

100 0.948 0.947 0.946 4.781 0.060 0.060

200 0.952 0.953 0.958 3.214 0.042 0.042

500 0.950 0.960 0.949 1.982 0.026 0.026

Table 10 Observed frequencies of accidents of 122 railway men during two time periods

0 1 2 3 4 5 6 7 Total

0 21 14 8 1 0 0 0 0 44

1 17 12 8 3 1 0 0 1 42

2 6 9 2 2 2 0 0 0 21

3 1 1 3 3 1 0 0 0 9

4 1 3 0 0 0 0 0 0 4

5 0 0 0 2 0 0 0 0 2

Total 46 39 21 11 4 0 0 1 122

5.5 Illustrative Example

Table 10 gives the dataset of frequencies of accidents by 122 railway men during two
periods (Hamdan 1972). In this subsection the performance of the different models
is shown using this dataset. The three bivariate distributions considered thus far, are
fitted to the data, and the method of moments parameter estimates are computed for
each of the distributions.

Due to the small expected frequencies in some cells, the observed and expected
frequencies for the different distributions are given in a 3 × 3 contingency table
of combined cells in Table 11. Table 12 gives the method of moments estimates
together with the chi-square goodness of fit test statistic and the p-values for the test.
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Table 11 Observed and
expected frequencies of
accidents of 122 railway men
during two time periods

0 1 2+ Total

0 Observed 21 14 9 44

Type II 23.57 14.18 9.46 47.21

Case I 23.36 14.30 9.48 47.14

Case II 23.72 14.09 9.46 47.27

1 Observed 17 12 13 42

Type II 14.18 12.34 11.37 37.89

Case I 14.30 12.38 11.34 38.02

Case II 14.09 12.30 11.40 37.79

2+ Observed 8 13 15 36

Type II 9.47 11.37 16.06 36.90

Case I 9.48 11.34 16.02 36.84

Case II 9.46 11.40 16.08 36.94

Total Observed 46 39 37 122

Type II 47.22 37.89 36.89 122

Case I 47.14 38.02 36.84 122

Case II 47.27 37.79 36.94 122

Table 12 Method of moments estimates, χ2 test statistics and p-values

λ θ1 θ2 χ2 p-value

Type II bivariate Pólya-Aeppli distribution 6.135 0.134 0.134 1.640 0.896

Weighted Type II bivariate Pólya-Aeppli
distribution Case I

4.586 0.143 0.143 1.572 0.905

Weighted Type II bivariate Pólya-Aeppli
distribution Case II

7.582 0.127 0.127 1.693 0.890

Although all three distributions provide a good fit, the weighted Case I distribution
has a slightly better fit.

5.6 Simulated Example

In this subsection a comparison of the fit of the three bivariate distributions is done
by making use of a dataset simulated from a weighted Type II bivariate Pólya-
Aeppli distribution Case II with parameters λ = 3, θ1 = θ2 = 0.3. Method
of moments estimates were calculated for the distributions and the observed and
expected frequencies are given in a contingency table in Table 13.

The parameter estimates, chi-square goodness of fit test statistics and correspond-
ing p-values are given in Table 14. In this case the weighted Type II bivariate
Pólya-Aeppli distribution Case II is the only distribution that provides a good fit
at a 0.05 significance level.

Remark All simulations, figures and results in this section were obtained using
RStudio (2016).
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Table 13 Observed frequencies of simulated data and expected frequencies for different distribu-
tions fitted to the data

0 1 2 3 4+ Total

0 Observed 323 65 29 12 11 440

Type II 291.39 76.79 32.78 13.55 8.98 423.49

Case I 248.66 95.97 36.89 14.12 8.69 404.33

Case II 296.59 74.62 32.24 13.45 9.01 425.91

1 Observed 64 51 38 24 11 188

Type II 74.12 63.28 39.24 21.09 19.08 216.81

Case I 92.63 71.20 40.90 20.81 17.88 243.42

Case II 72.02 62.23 38.95 21.10 19.24 213.54

2 Observed 25 33 33 19 22 132

Type II 30.54 37.87 30.54 20.12 24.05 143.12

Case I 34.36 39.48 30.13 19.11 22.17 145.25

Case II 30.03 37.60 30.55 20.24 24.31 142.73

3 Observed 14 18 26 17 31 106

Type II 12.18 19.65 19.42 15.11 23.38 89.74

Case I 12.70 19.39 18.45 14.00 21.48 86.02

Case II 12.10 19.66 19.53 15.25 23.66 90.20

4+ Observed 5 18 33 32 46 134

Type II 7.63 16.70 21.67 21.68 59.16 126.84

Case I 7.39 15.65 19.97 19.90 58.07 120.98

Case II 7.65 16.83 21.90 21.94 59.30 127.62

Total Observed 431 185 159 104 121 1000

Type II 415.86 214.29 143.65 91.55 134.65 1000

Case I 395.74 241.69 146.34 87.94 128.29 1000

Case II 418.39 210.94 143.17 91.98 135.52 1000

Table 14 Method of moments estimates, χ2 test statistics and p-values

λ θ1 θ2 χ2 p-value

Type II bivariate PA distribution 2.126 0.285 0.295 36.124 0.021

Weighted Type II bivariate PA distribution Case I 0.322 0.339 0.351 84.313 <0.0001

Weighted Type II bivariate PA distribution Case II 3.243 0.272 0.281 32.56 7 0.051

6 Summary and Conclusion

In this chapter we introduced and studied two new distributions, the weighted Type
II bivariate Pólya-Aeppli distribution under two different weight functions and also
extended both distributions to the multivariate case. In addition we proposed a
greatly simplified methodology for obtaining the probability mass function of the
Type II bivariate Pólya-Aeppli distribution and used this in the derivation of the
results for the weighted distributions.
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For the two new distributions, we observed that the weighted Type II bivariate
Pólya-Aeppli distribution Case I is under-dispersed with respect to the Type II
bivariate Pólya-Aeppli distribution, while the weighted Type II bivariate Pólya-
Aeppli distribution Case II is over-dispersed with respect to the Type II bivariate
Pólya-Aeppli distribution. These new bivariate distributions can therefore be fitted
to count-valued data that displays this dispersion. The examples discussed in this
chapter illustrate how the weighted distributions provide a better fit to the data.

Using method of moments estimates, the Type II bivariate Pólya-Aeppli dis-
tribution Case II consistently provides parameter estimates with the smallest bias
and MSE and with the narrowest confidence intervals compared to the other two
bivariate distributions.

All of this implies that the weighted Type II bivariate Pólya-Aeppli distributions
Case I and Case II provides models of greatly increased flexibility not only with
respect to the Type II bivariate Pólya-Aeppli distribution but also the bivariate
Poisson distribution.

Appendix

The following well known mathematical results are used throughout this chapter
and referred to within the relevant sections.

∞∑
k=0

(
k + β

k

)
zk = 1

(1 − z)β+1
(A1)

∞∑
i=0

∞∑
k=i

ai.k =
∞∑
k=0

k∑
i=0

ai.k (A2)

∞∑
i=0

∞∑
k=0

ai.k =
∞∑
k=0

∞∑
i=0

ai.k (A3)

Probability Generating Function

The probability generating function of a discrete random variable as discussed in
Kocherlakota and Kocherlakota (1992) is unique and has a one to one relationship
for a given probability mass function. One way in which the probability mass
function can be obtained from the probability generating function is by using the
fact that the probability generating function can be differentiated with respect to s1
and s2 any number of times and evaluated at (0, 0). Consequently we have
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f (x, y) = 1

x!y!
∂x+yψ (s1, s2)

∂sx1 ∂s
y

2

∣∣∣∣∣
s1=0,s2=0

. (A4)

Additionally we can express the expected values of X and Y as

E
(
Xr, Y s

) = ∂r+sψ (s1, s2)

∂sr1∂s
s
2

∣∣∣∣
s1=1,s2=1

r, s = 0, 1, 2, . . .

Laguerre Polynomials

Laguerre and associated Laguerre polynomials, discussed in Bayin (2013) are used
throughout this chapter to simplify the calculation of the probability mass functions
of the various distributions and weighted distributions. The generating function of
the associated Laguerre polynomials is

1

(1 − z)α+1 e

(
xz
z−1

)
=

∞∑
m=0

Lαm (x) z
m (A5)

and the final form of the associated Laguerre polynomials is

Lαn (x) =
n∑

m=0

(−1)m
(
n+ α

n−m

)
xm

m! , (A6)

where α ≥ 0. The associated Laguerre polynomial reduces to the Laguerre
polynomial for α = 0.

Remark Detailed derivations of all the mathematical results given in this chapter
can be obtained from the first author.
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Constructing Multivariate Distributions
via the Dirichlet Generator

Mohammad Arashi, Andriëtte Bekker, Daniel de Waal, and Seite Makgai

Abstract There exist several endeavours proposing a new family of extended
distributions using the beta-generating technique. This is a well-known mechanism
in developing flexible distributions, by embedding the cumulative distribution
function (cdf) of a baseline distribution within the beta distribution that acts as a
generator. Univariate beta-generated distributions offer many fruitful and tractable
properties, and have applications in hydrology, biology and environmental sciences
amongst other fields. In the univariate cases, this extension works well, however,
for multivariate cases the beta distribution generator delivers complex expressions.
In this chapter the proposed extension from the univariate to the multivariate
domain addresses the need of flexible multivariate distributions that can model
a wide range of multivariate data. This new family of multivariate distributions,
whose marginals are beta-generated distributed, is constructed with the function
H(x1, . . . , xp) = F

(
G1(x1),G2(x2), . . . ,Gp(xp)

)
, where Gi(xi) are the cdfs of

the gamma (baseline) distribution and F(·) as the cdf of the Dirichlet distribution.
Hence as a main example, a general model having the support [0, 1]p (for p
variates), using the Dirichlet as the generator, is developed together with some
distributional properties, such as the moment generating function. The proposed
Dirichlet-generated distributions can be applied to compositional data. The param-
eters of the model are estimated by using the maximum likelihood method. The
effectiveness and prominence of the proposed family is illustrated through analyzing
simulated as well as two real datasets. A new model testing technique is introduced
to evaluate the performance of the multivariate models.
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1 Introduction

In many of the problems of interest to scientists, data consists of proportions
and thus are subject to non-negativity and unit-sum constraints. Examples of
such data can be found when analyzing rock compositions, household budgets,
pollution components to name a few. Datasets such as these are known as com-
positional datasets and arise naturally in a great variety of disciplines such as
biology, medicine, chemistry, economics, psychology, environmetrics, psychology
and many others. The most widely studied distribution on the simplex is the
Dirichlet distribution (Balakrishnan and Nevzorov 2003). Various generalizations
of the Dirichlet distribution are proposed in literature, for example see Connor
and Mosimann (1969), Barndorff and Jorgensen (1991), Ehlers (2011), Thomas
and Jacob (2006), Epaillard and Bouguila (2019) and Favaro et al. (2011). For
an extensive review see Ng et al. (2011) and Kotz et al. (2000). In particular, the
Liouville distribution has been widely studied (see Gupta et al. (1997)). Specifically,
a flexible Dirichlet was proposed by Ongaro and Migliorati (2013), by extending
the basis of gamma independent random variables which generates the Dirichlet
distribution. The Dirichlet prior is widely used in estimating discrete distributions
and functionals of discrete distributions, and in fact the Dirichlet distribution is the
conjugate prior of the categorical distribution and multinomial distribution.

In this chapter we propose a general multivariate construction methodology using
the Dirichlet probability density function (pdf) as the generator. This Dirichlet-
generated class serves as good alternatives to the Dirichlet and generalized Dirichlet
distributions for the statistical representation of specific proportional data. This class
is an evolution from the univariate framework describes below into a multivariate
setting:

H(x) =
∫ G(x)

0
f (y)dy, (1)

with pdf

h(x) = f (G(x)) g(x), (2)

where G(·) is a continuous cumulative distribution function (cdf) and f (·) is the pdf
of a random variable with support [0, 1]. By introducing extra parameters in f (·)
and G(·) the resulting distribution provides greater flexibility in adapting modality
and skewness. Eugene et al. (2002) was the first to introduce the family of beta-
generated normal distribution with f (y) = yα−1(1 − y)β−1/B (α, β) as the pdf of
the well-known beta distribution, whereB (α, β) = � (α) � (β) /� (α + β) denotes

the classical beta function and � (α) =
∞∫

0

vα−1e−vdv is the gamma function defined

for all α > 0. The resulting cdf and pdf are respectively
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H(x) = 1

B(α, β)

∫ G(x)

0
yα−1(1 − y)β−1dy (3)

and

h(x) = 1

B(α, β)
g(x)Gα−1(x)[1 −G(x)]β−1, (4)

where α > 0, β > 0, and g(·) and G(·) are the pdf and cdf respectively. The beta
distribution f (·) is referred to as the generator and G(·) as the baseline distribution.
Another development of (4) is based on the ith order statistic in a random sample
of n from a distribution G(·) with pdf {n!/[(i − 1)!(n− i)!]} g(x)Gi−1(x)[1 −
G(x)]n−1 where (Jones 2004) extended the pdf of the ith order statistic by allowing
a = i and b = n + 1 − i which is the pdf in (4). Note that the relation
X = G−1(F (·)) with F(·) being a beta-distributed random variable, can be used
to simulate X values. It is clear that special choices of the baseline model G(·)
yield specific models generated by the classic beta distribution. In recent years,
several scholars have shown great interest in defining new generalized classes of
univariate continuous distributions by using this “mother technique” (see (1)) to
generate new models. The interested reader is referred to Elgarhy et al. (2016) (and
the references therein), Makgai et al. (2017), Alexander et a. (2012), Barreto et al.
(2010), Nadarajah and Kotz (2006), Zografos and Balakrishnan (2009), Mameli
(2015) and Nassar et al. (2019) for related studies, amongst others.

Mimicking the same construction methodology (1), three classes of extended
bivariate distributions with the beta as generator, can be obtained as follows:

• Builder 1:

H(x1, x2) = 1

B(α, β)

∫ G(x1)G(x2)

0
yα−1(1 − y)β−1dy (5)

• Builder 2:

H(x1, x2) = 1

B(α, β)

∫ G1(x1)G2(x2)

0
yα−1(1 − y)β−1dy (6)

• Builder 3:

H(x1, x2) = 1

B(α, β)

∫ G∗(x1,x2)

0
yα−1(1 − y)β−1dy (7)

whereGi(·), i = 1, 2, can be any cdf of a baseline univariate distrbution andG∗(·, ·)
is the cdf of the baseline bivariate distribution, α > 0, β > 0.

From Builder 1, the pdf has the form

h(x1, x2) = 1

B(α, β)
Gα−1(x1)G

α−1(x2)[1 −G(x1)]β−1[1 −G(x2)]β−1 (8)

× [g(x1)G(x2)+G(x1)g(x2)],



162 M. Arashi et al.

where g(·) is the pdf relative to the cdf G(·). In this case only one cdf contributes
as baseline to develop the bivariate distribution and is a special case of Builders
2 and 3. The advantage of Builder 1 compared to Builder 2, is that it has fewer
number of parameters. Makgai et al. (2019) proposed Builder 3 and studied the
properties and dependence structure of the class formed along with multivariate
beta-generated distribution. Samanthi and Sepanski (2019) employed copulas to
construct a bivariate extension of beta-generated distributions.

From completely a different viewpoint, Sarabia et al. (2014) formed a bivariate
distribution (see also Ristić et al. (2018)), using the (Olkin and Liu 2003) beta pdf
as generator:

h(x1, x2) = 1

B(α, β, γ )
g1(x1)g2(x2) (9)

× Gα−1
1 (x1)G

β−1
2 (x2)[1 −G1(x1)]β+γ−1[1 −G2(x2)]α+γ−1

[1 −G1(x1)G2(x2)]α+β+γ .

However, the purpose of this study is not to study Builders 1–3, but to propose
a general multivariate construction methodology using the Dirichlet pdf as the
generator, with the baseline as the product of independent cdfs. This range of
baseline distributions can be the exponential, Weibull, gamma, Fréchet, etc. Suppose
that G(·) belongs to the Pareto class, then H(·) is referred to as the Dirichlet-
Pareto distribution function. The introduction of the Dirichlet distribution as the
generating distribution F(·), creates the opportunity to apply a wide range of
multivariate distributions. In this context, Sect. 2 provides the basic elements of
the construction, that will be described in Sect. 3, with specific emphasis on the
Dirichlet-Gamma distribution. In Sect. 4 some properties of the newly proposed
multivariate distribution are discussed. To illustrate the effectiveness of the latter
model, the well-known Dirichlet distribution is compared to the Dirichlet-Gamma
distribution via a simulation studies and an analysis of real datasets using different
measures. Finally, some conclusions are given in Sect. 5.

2 Ingredients

In this section, the basic notation and definitions (ingredients) underlying the
construction that will described in Sect. 3, are recalled. A random vector Y =
(Y1, . . . , Yp) ∈ Rp is said to have Dirichlet distribution (or standard Dirichlet) with
parameters α = (α1, · · · , αp;αp+1) for αi > 0, i = 1, . . . , p + 1, p ≥ 2., if the
pdf is given by

f (y) = � (α+)
�(α1) · · ·�(αp+1)

y
α1−1
1 · · · yαp−1

p

(
1 −

p∑
i=1

yi

)αp+1−1

,
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where yi > 0, i = 1, . . . , p,
∑p

i=1 yi < 1, use α+ = ∑p+1
i=1 αi.

For convenience, denote Yp+1 = 1 − ∑p

i=1 Yi,Y
′ = (Y1, . . . , Yp;Yp+1) =

(Y ;Yp+1) and write the above Dirichlet distribution as Y ∼ Dir(α), or simply
Y

′ ∼ Dir(α) with the understanding that Y ∈ �p and Y
′ ∈ Sp+1 where

�p =
{
(y1, . . . , yp) ∈ Rp :

p∑
i=1

yi < 1, yi > 0, i = 1, . . . , p

}
,

Sp+1 =
⎧⎨
⎩(y1, . . . , yp+1) ∈ Rp+1 :

p+1∑
i=1

yi = 1, yi > 0, i = 1, . . . , p + 1

⎫⎬
⎭ .

For any α with αi > 0, i = 1, . . . , p + 1 and yp+1 = 1 −∑p

i=1 yi, the Dirichlet
integral is:

∫
�p

p+1∏
i=1

y
αi−1
i d y =

∫
· · ·

∫
�p

p+1∏
i=1

y
αi−1
i dy1 · · · dyp = B (α) =

∏p+1
i=1 �(αi)

�(α+)
.

(10)

De Groot (1970) and Kotz et al. (2000) provide detailed discussions on the
properties of the Dirichlet distribution.

Assume the baseline distributions to be Gamma(θi, βi), i = 1, . . . , p, with cdfs

Gi(xi) = 1

θ
βi
i �(βi)

∫ xi

0
e
− t
θi tβi−1dt, θi, βi > 0, i = 1, · · · , p, (11)

for this chapter. The gamma distribution, which belongs to the exponential class, is
a flexible distribution model with shape parameter β, that may offer a good fit to
some sets of data.

3 Recipe

The construction methodology for the proposed model is as follows:

• Builder 4:

H(x1, . . . , xp)=
∫ G1(x1)

0
· · ·

∫ Gp(xp)

0

1

B(α)
y
α1−1
1 · · · yαp−1

p

(
1−

p∑
i=1

yi

)αp+1−1

dy

(12)
where Gi(·), i = 1, . . . , p, can be any cdf.

Let the joint pdf of Gi(·), i = 1, . . . , p, be the Dirichlet pdf given by
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f (G1, . . . ,Gp)

= 1

B(α)
G
α1−1
1 (x1) . . . G

αp+1−1
p+1 (xp+1), 0 < Gi (·) < 1,

∑p+1
i=1 Gi = 1

= 1

B(α)
G
α1−1
1 (x1) . . . G

αp−1
p (xp)

(
1−∑p

i=1 Gi(xi)
)αp+1−1

, 0 <
∑p

i=1 Gi(xi) < 1,

(13)

i.e. the Dirichlet combines the marginals Gi(·), i = 1, . . . , p, with parameters α =
(α1, · · · , αp;αp+1) for αi > 0, i = 1, . . . , p + 1.

Then, according to (1), the joint generated distribution, namely the Dirichlet-
Gamma (DG) has pdf

h(x) = 1

B(α)

(
1 −

p∑
i=1

Gi(xi)

)αp+1−1 p∏
i=1

gi(xi)G
αi−1
i (xi), (14)

for Rp, 0 <
∑p

i=1 Gi(xi) < 1 and the parameters αi, θi, βi ,i = 1, · · · , p, are
restricted to take those values for which (14) is non-negative, enote (14) as X ∼
DG(α, θ, β).

Then, the marginal pdf of Xi , i = 1, . . . , p, has the form

hi(xi) = 1

B(αi, α+ − αi)
gi(xi)G

αi−1
i (xi) (1 −Gi(xi))

α+−αi−1 , (15)

this is useful for determining the moments of Xi , i = 1, . . . , p,.
Although the baseline cdf ’s Gi(·) could be presented by several distributions

in this chapter, the case where gi(·) is the pdf Gamma(θi, βi), i = 1, · · · , p is
considered.

4 Properties

Firstly an expression for the product moments will be derived, followed by
the moment generating function (mgf) of the DG(α, θ, β) distribution. For this
purpose, the following lemma is derived.

Lemma 1

I(ζ ) =
∫

· · ·
∫
�p

p∏
i=1

u
αi−1
i

(
1 −

p∑
i=1

ui

)ζ
du (16)

where u = (u1, . . . , up). Then
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I(ζ ) =
p−1∏
i=1

B

⎛
⎝αi, p∑

j=i+1

αj + ζ + 1

⎞
⎠B

(
αp, ζ + 1

)
. (17)

Proof

I(ζ ) = ∫
�p

∏p

i=1 u
αi−1
i

(
1 −∑p

i=1 ui
)ζ ∏p

i=1 dui

= ∫
�p

u
α1−1
1

∏p

i=2 u
αi−1
i (1 − u1)

ζ

×
(

1 −∑p

i=1
ui

1−u1

)ζ ∏p

i=1 dui.

Now apply the transformation vi = ui
1−u1

, for i = 2, · · · , p, with J (u2, · · · , up →
v2, · · · , vp) = (1 − u1)

p−1 to obtain

u2 = v2(1 − u1),

p∏
i=2

u
αi−1
i = (1 − u1)

∑p
i=2 αi−(p−1)

p∏
i=2

v
αi−1
i .

Hence this results in

I(ζ ) =
∫ 1

0
u
α1−1
1 (1 − u1)

ζ+∑p
i=2 αi du1

×
∫

�p−1

p∏
i=2

v
αi−1
i

(
1 −

p∑
i=2

vi

)ζ p∏
i=2

dvi

= B

(
α1,

p∑
i=2

αi + ζ + 1

)

×
∫

�p−1
v
α2−1
2

p∏
i=3

v
αi−1
i (1 − v2)

ζ

(
1 −

p∑
i=3

vi

1 − v2

)ζ p∏
i=2

dvi.

At this stage making the transformation wi = vi
1−v2

once more, for i = 3, · · · , p,

with Jacobian equal to (1 − v2)
p−2, it follows that

I(ζ ) = B

(
α1,

p∑
i=2

αi + ζ + 1

)
B

(
α2,

p∑
i=3

αi + ζ + 1

)

×
∫

�p−2

p∏
i=3

w
αi−1
i

(
1 −

p∑
i=3

wi

)ζ p∏
i=3

dwi.

Continuing this procedure, finally yields (17). ��
The following result for the product moment is stated, assuming the pdf (14),

holds.
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Theorem 1 Let ni , i = 1, . . . , np are positive integer values. Then, the product
moments of X ∼ DG(α, θ, β) admit the following explicit form

E = E

[
p∏
i=1

X
ni
i

]
=
(

p∏
i=1

θ
ni
i �(ni + βi)

�(βi)

)

×
⎛
⎝p−1∏
i=1

B

⎛
⎝αi, p∑

j=i+1

αj + αp+1 − 1

p
+ 1

⎞
⎠
⎞
⎠B

(
αp,

αp+1 − 1

p
+ 1

)
.

Proof From (14), for X = (X1, . . . , Xp), it follows that

E =
∫

Rp
,
∑p

j=1 Gj (xj )<1

1

B(α)

∏p

i=1 x
ni
i

(
1 −∑p

j=1 Gj (xj )
)αp+1−1

×∏p

j=1 gj (xj )G
αj−1
j (xj )dx

= 1

B(α)

∫
Rp

,
∑p

j=1 Gj (xj )<1

∏p

i=1

θ
ni
i �(ni+βi)
�(βi)

G
αi−1
i (xi )

(
1−∑p

i=1 Gi(xi)
) (αp+1−1)

p

× 1

θ
ni+βi
i �(ni + βi)

e
− xi

θi x
ni+βi−1
i dx

= E

{∏p

i=1

θ
ni
i �(ni + βi)

�(βi)
G
αi−1
i (Vi)

(
1 −∑p

i=1 Gi(Vi)
) (αp+1−1)

p

}

where Vi ∼ Gamma(θi, ni + βi). Using the fact that Gi(Vi) ≡ Ui ∼ U(0, 1), it
follows that

E = ∏p

i=1

θ
ni
i �(ni + βi)

�(βi)
E

{∏p

i=1 U
αi−1
i

(
1 −∑p

i=1 Ui
) (αp+1−1)

p

}

= ∏p

i=1

θ
ni
i �(ni + βi)

�(βi)

∫
�p

∏p

i=1 u
αi−1
i

(
1 −∑p

i=1 ui
) (αp+1−1)

p du.

The theorem is completed by applying the Lemma for I
(
αp+1−1

p

)
.
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Theorem 2 The moment generating function (mgf) of X ∼ DG(α, θ, β) is
given by

MX(t) = 1

B(α)

∞∑
m=0

1

m!
∑

n1+n2+···+np=m

m!
n1!n2! · · · np!

p∏
i=1

(ti)
ni

×
(

p∏
i=1

θ
ni
i �(ni + βi)

�(βi)

)
p−1∏
i=1

B

⎛
⎝αi, p∑

j=i+1

αj + αp+1 − 1

p
+ 1

⎞
⎠

B

(
αp,

αp+1 − 1

p
+ 1

)

where, t = (t1, . . . , tp), x = (x1, . . . , xp) θ = (θ1, · · · , θp) and β = (β1, · · · , βp).
Proof It follows that

MX(t) = E
[
etX

�]
=

∫
Rp

,
∑p

j=1 Gj (xj )<1

etx
�
h(x)dx

=
∫

Rp
,
∑p

j=1 Gj (xj )<1

∑∞
m=0

1
m! (tx�)mh(x)dx

=
∫

Rp
,
∑p

j=1 Gj (xj )<1

∑∞
m=0

1
m!
∑
n1+n2+···+np=m

m!
n1!n2!···np !

∏p
i=1(tixi )

ni h(x)dx

= 1
B(α)

∑∞
m=0

1
m!
∑
n1+n2+···+np=m

m!
n1!n2!···np !

∏p
i=1(ti )

niE
[∏p

i=1 X
ni
i

]

where � denotes transpose of vector.
The result follows by Theorem 1.

5 The Proof of the Pudding Is. . .

The basic construction of the DG(α, θ, β) model entails embedding the cdf of
a gamma distribution within the pdf of the Dirichlet distribution, that acts as a
generator. The exact generation procedure for the Dirichlet-Gamma random variates
is given as Algorithm 1 follows:



168 M. Arashi et al.

Algorithm 1
Step 1: Generate independent gamma random variables W1,W2, . . . ,Wp+1

where Wi ∼ Gamma (αi, 1) for αi > 0, i = 1, 2, . . . , p + 1;
Step 2: Set Yi = Wi

p∑
j=1

Wj

for i = 1, 2, . . . , p;

Step 3: Return (Y1, Y2, . . . , Yp) and let (Y1, Y2, · · · , Yp) ≡ (G1 (x1) ,G2 (x2) , . . . ,Gp

(
xp
)
)

with
∑p

i=1 Gi(xi) < 1, where Gi (xi) is the cdf of the gamma distribution;

Step 4: Set Xi = G−1
i (yi ) for i = 1, 2, . . . , p;

Step 5: Return (X1, X2, · · · , Xp) where X ∼ DG(α, θ, β) for
parameters αi, θj , βj > 0, i = 1, 2, . . . , p + 1; j = 1, 2, . . . , p.

5.1 Model Presentation

In Figs. 1, 2, 3, 4, 5, and 6, various pdfs and contour plots of (14) for different values
of (α, θ, β) are provided. A 1000 simulated Dirichlet-Gamma values accompany
the graphs.

5.2 Simulation Study 1

Suppose N vector observations X1, . . . ,XN of dimension (p − 1) × 1 are drawn
independently and identically from the DG(α, θ, β) distribution. Therefore, the
log-likelihood of ψ = (α, θ, β) based on the observed data {Xi}Ni=1 from (14)
is

l (ψ) =
N∑
i=1

logh(x;ψ).

The above simulation Algorithm 1 is used to generate samples of size 100, 500
and 1000. Using 1000 trials for each group of fixed parameters, 1000 ML estimates
of the model parameters (using the optim procedure in R software) is obtained.

To investigate the estimation accuracies, calculate the mean, bias and mean
square error (MSE), defined as

Bias = 1

1000

1000∑
k=1

ψ̂k − ψtrue and MSE = 1

1000

1000∑
k=1

(
ψ̂k − ψtrue

)2
,

are calculated, where ψ̂k denotes the ML estimate of ψtrue (a specific parameter) at
the kth replication. The detailed numerical results are reported in Tables 1, 2, and 3.
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Table 1 Results for n = 100 and ψ = (α1, α2, α3, β1, β2, θ1, θ2) = (2, 2, 3, 1.5, 2.8, 1.1, 1.2)

n = 100 α̂1 α̂2 α̂3 β̂1 β̂2 θ̂1 θ̂2

Mean 2.158 2.123 2.861 1.604 2.975 1.222 1.307

Bias 0.158 0.123 −0.139 0.104 0.175 0.122 0.107

MSE 0.861 0.711 0.688 0.297 0.723 0.144 0.137

CP asymptotic CI 0.945 0.943 0.961 0.949 0.946 0.927 0.945

CP bootstrapped CI 0.967 0.964 0.966 0.965 0.971 0.965 0.968

Length of asymptotic CI 3.585 3.273 3.206 2.098 3.263 1.406 1.391

Length of bootstrapped CI 2.876 2.604 5.897 2.839 4.894 1.975 1.762

Table 2 Results for n = 500 and ψ = (α1, α2, α3, β1, β2, θ1, θ2) = (2, 2, 3, 1.5, 2.8, 1.1, 1.2)

n = 500 α̂1 α̂2 α̂3 β̂1 β̂2 θ̂1 θ̂2

Mean 2.018 2.025 2.928 1.535 2.851 1.138 1.234

Bias 0.018 0.025 −0.072 0.035 0.051 0.038 0.034

MSE 0.182 0.161 0.111 0.054 0.156 0.028 0.027

CP asymptotic CI 0.946 0.939 0.948 0.950 0.938 0.940 0.937

CP bootstrapped CI 0.974 0.974 0.975 0.975 0.975 0.975 0.974

Length of asymptotic CI 1.670 1.571 1.278 0.903 1.537 0.635 0.627

Length of bootstrapped CI 2.124 1.951 2.848 1.478 2.755 1.207 1.341

Table 3 Results for n = 1000 and ψ = (α1, α2, α3, β1, β2, θ1, θ2) = (2, 2, 3, 1.5, 2.8, 1.1, 1.2)

n = 1000 α̂1 α̂2 α̂3 β̂1 β̂2 θ̂1 θ̂2

Mean 1.999 2.005 2.963 1.526 2.837 1.125 1.224

Bias −0.001 0.005 −0.038 0.026 0.037 0.025 0.024

MSE 0.099 0.082 0.059 0.032 0.083 0.016 0.015

CP asymptotic CI 0.946 0.944 0.942 0.937 0.938 0.927 0.935

CP bootstrapped CI 0.975 0.975 0.975 0.975 0.975 0.975 0.975

Length of asymptotic CI 1.237 1.125 0.941 0.690 1.118 0.488 0.478

Length of bootstrapped CI 2.010 2.020 2.847 1.456 2.754 1.237 1.270

For a large sample size the asymptotic distribution of the ML estimates can be
used to construct asymptotic confidence intervals. The asymptotic distribution of
the ML estimate of ψ is

ψ̂ − ψ√
V ar

(
ψ̂
) ∼ N (0, 1) .

Confidence intervals (CI) for the model parameters by implementing the para-
metric bootstrap method are also provided. Tables 1, 2, and 3 reflect also the
coverage probabilities (CP) and average lengths of the intervals based on these two
methods.
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It can be observed that the bias and MSE of the DG (α, θ, β) distribution tend
to decrease toward zero by increasing sample size (n), showing empirically the
consistency of the ML estimates. The MSE of the estimates of β̂ is higher than
θ̂ , as one would expect from the shape parameter of the gamma baselines. As the
sample size changes from 100 to 1000, the average length of confidence intervals
do decrease.

5.3 Simulation Study 2

A model testing technique, referred to in this chapter as the empirical estimator of
the cdf of a multivariate distribution, is proposed in analysing the performances of
the two competing models, namely the Dirichlet (D) and Dirichlet-Gamma (DG).
The technique compares the empirical cdfs of the observed and simulated datasets.
The following steps (Algorithm 2) are taken in order to assess the competence of
the models.

The advantage of this technique, is that one can also use the empirical cdfs
to rank the simulated data. Ranking data makes it possible to calculate more
accurate distances between the observed data points and the simulated points.
Figure 7 illustrates an observed dataset (in black) and simulated points from the
simulated artificial datasets Dirichlet (in blue) and the Dirichlet-Gamma (in red).
The challenge lies in choosing the correct simulated point to calculate the distances.
The solution that is proposed in this chapter is to rank the simulated data from

Fig. 7 Observed data versus the simulated data from Dirichlet and Dirichlet-Gamma models
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Algorithm 2
Step 1: From the observed dataset xn×p , calculate the empirical cdf

F̂ (x) = P
(
X1 ≤ x1, X2 ≤ x2, · · · , Xp ≤ xp

) = 1
n

p∑
i=1

I (xi ≤ x),

where I (·) is the indicator function;

Step 2: Obtain the parameter estimates for the two competing models, D and DG
distributions and simulate artificial datasets;

x∗D =
(
x∗1 , x∗2 , · · · , x∗p

)
and x∗DG =

(
x∗1 , x∗2 , · · · , x∗p

)
of sizes d > n.

Step 3: Calculate the empirical cdfs for each simulated artificial dataset

F̂ (x∗) = P
(
X∗

1 ≤ x1, X
∗
2 ≤ x2, · · · , X∗

p ≤ xp

)
= 1

d

p∑
i=1

I
(
x∗i ≤ x

)
;

Step 4: Repeat step 2–3 m times, and for each simulation, compute Kolmogorov-Smirnov (KS)
distances between the empirical cdf (as computed in step 1) and the empirical cdfs of
the competing models (as computed in step 3) where KS measure is defined in this case

as KS = max
∣∣∣F̂ (x∗)− F̂ (x)

∣∣∣
Step 5: Compute the average KS distances over the m simulated artificial datasets;

Step 6: Compare the KS distances of the DG to the KS distance of the D in terms of the ratio
KSofDG
KSofD .

the two competing models according to their calculated empirical cdfs respectively.
The distances (as shown with the arrows) between the observed (in black) and
the simulated data points can be more accurately calculated based on the quantile
positions.

In this chapter for the implementation of this technique, the focus is on the ratio
of the KS distances between the two competing models. To test this model testing
technique, generate a “observed” dataset from a Dirichlet distribution and analyse
the performance of the Dirichlet-Gamma through the steps. Since the KS distances
vary from simulation to simulation, samples of sizes d = 100, 1000, 10,000 are
generated from the obtained parameter estimates for Dirichlet and Dirichlet-Gamma
from the observed, where KS distances are calculated for each simulated dataset
group.

1. Generate an artificial dataset from the Dirichlet distribution with parameters
(α1, α2, α3) = (2, 2, 3) and assume it as the observed data;

2. Using this observed dataset, obtain parameter estimates for the Dirichlet and
Dirichlet-Gamma distributions;

3. From the obtained parameter estimates simulate datasets of sizes d =
100, 1000, 10,000. Calculate the empirical cdfs for each simulation, as seen
in step 3 of Algorithm 2;
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4. Calculate the KS distances between the empirical cdf and the cdfs of the two
competing models, for each group;

5. Repeat steps (3–4) a 100 times and compute the average KS distance for the two
models.

6. Represent the KS distance of the Dirichlet-Gamma and Dirichlet as a ratio
KSofDG
KSofD

for each simulated group of d = 100, 1000, 10,000.

It is observed in Fig. 8 that the Dirichlet-Gamma distribution is flexible enough to
model Dirichlet distributed variables. The KS distance of the Dirichlet-Gamma is
seen to be smaller for all simulated groups.

5.4 Simulation Study 3

A further simulation study is carried out to illustrate the flexibility of the Dirichlet-
Gamma when outliers are present within a dataset. Suppose that two non-Dirichlet
artificial compositional datasets, where outliers are present, are generated, using
Algorithm 3.

Algorithm 3
Step 1: Generate n random variates Wi~Weibull (ki , λi) for i = 1, 2, 3.

Step 2: Define random variables Y = (Y1, Y2, Y3), where Yi = Wi

3∑
i=1

Wi

, i = 1, 2, 3.

and generate artificial dataset y = (y1, y2, y3)

Fig. 8 Performance of the Dirichlet-Gamma on a generated “observed” Dirichlet dataset
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Fig. 9 Contour plots of simulated Gamma and Dirichlet-Gamma datasets on a non-Dirichlet
artificial dataset 1

Fig. 10 Contour plots of simulated Gamma and Dirichlet-Gamma datasets on a non-Dirichlet
artificial dataset 2

The construction of random variables Y1, Y2, Y3 yields a compositional dataset
with a negative correlation. The initial values for the Dirichlet and Dirichlet-Gamma
used in the R package optim are obtained through a grid search. Figures 9 and 10
illustrates the flexibility of the Dirichlet-Gamma over ousstliers.
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5.5 Real Data Analysis

To investigate the performance of the Dirichlet-Gamma distribution with respect to
the Dirichlet distribution, different goodness-of-fit measures will be used to evaluate
the models as candidates for the different datasets, namely the Q-Q plot, the Akaike
information criterion (AIC, Akaike (1998)) and the Bayesian information criterion
(BIC, Schwarz (1978)), with the last 2 measures defined as

AIC = 2m− 2lmax and BIC = m logN − 2lmax,

where m is the number of free parameters and lmax is the maximized log-likelihood
value. Models with lower values of AIC and BIC are considered more preferable.

5.5.1 EXAMPLE 1-Pekin Ducklings Dataset

As first illustration, the Serum-protein data of white Pekin ducklings are considered
(see Mosimann (1962)). To illustrate the performance of the Dirichlet-Gamma
model with respect to extreme outlying observations, observation 20 of the dataset
was perturbated. The blood serum proportions (pre-albumin, albumin and globulin)
in 3-week-old Pekin ducklings were reported with correlation matrix:⎡

⎣ 1 −0.108 −0.557
−0.108 1 −0.766
−0.557 −0.766 1

⎤
⎦ .

Using randomly chosen initial parameter values (α1, α2, α3) = (6.856, 2.392, 1)
and (α1, α2, α3, β1, θ1, β2, θ2) = (2.016, 2.757, 3.318, 0.559, 0.826, 1.569, 1.876)
to obtain the ML estimates of the Dirichlet and Dirichlet-Gamma respectively with
the optim package in R. The simulated Dirichlet and Dirichlet-gamma random
variates are obtained using the ML estimates. Figure 11 shows the Q-Q plots on
distances to origin of observed and Dirichlet simulated data.

Fig. 11 Q-Q plots on distances to origin of observed and Dirichlet and Dirichlet-Gamma
simulated data
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Fig. 12 Scatter plots and contour plots of the observed data versus the simulated data

Table 4 Parameter estimates and the performance summary for the Pekin duckling dataset

ML estimates

Model α̂1 α̂2 α̂3 β̂1 β̂2 θ̂1 θ̂2 ll AIC BIC

Dirichlet 4.786 28.798 30.653 n/a n/a n/a n/a −79.797 165.594 169.0015

DG 2.173 2.466 13.998 0.971 1.383 6.711 8.537 −63.205 140.409 148.358

Figure 12 shows the observed data (black dots) versus simulated data from the
Dirichlet distribution (blue dots), accompanied by a contour plot. It is clear that
the Dirichlet distribution does not cover all the data points well. Similarly, the red
dots show the simulated Dirichlet–Gamma values with a contour plot (second row
on Fig. 12). The results presented in Fig. 12, illustrates that the Dirichlet-Gamma
distribution provides a dataset closer to the observed data compared to the Dirichlet
distribution. The Dirichlet-Gamma covers the outlier while the Dirichlet model
could not detect it. Table 4 shows a summary of the ML fittings (note Log-likelihood
is indicated as ll in the tables).

Using the model testing technique as described by Algorithm 2, it is observed
that the KS distance is smaller in the case of the proposed Dirichlet-Gamma model
versus the Dirichlet model (see Fig. 13).
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Fig. 13 Performance of Dirichlet–Gamma: Gamma based on the empirical estimator of the cdf of
a multivariate distribution

Fig. 14 Q-Q plots on distances to origin of observed and Dirichlet and Dirichlet-Gamma
simulated data

5.5.2 EXAMPLE 2-White Cells Dataset

Three kind of white cells (granulocytes, lymphocytes, monocytes) found in 30
blood samples are recorded in this dataset. The inputs result in 30 pairs of 3-part
compositions of the white cells, where each portion was determined through time-
consuming microscopic and automatic image analysis. The correlation matrix is
given as

⎡
⎣ 1 −0.832 −0.405
−0.832 1 −0.170
−0.405 −0.170 1

⎤
⎦ .

The Dirichlet and the Dirichlet-Gamma distributions are tested to see if they are
suitable contenders of this dataset. Using randomly chosen initial parameter values
(α1, α2, α3) = (1, 1, 1) and (α1, α2, α3, β1, θ1, β2, θ2) = (2, 3, 7, 1, 1.5, 0.5, 1) in
this case. The Q-Q plots, scatter plots and contour plots are presented in Figs. 14
and 15, together with the summary of the results (see Table 5) when fitting the
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Fig. 15 Scatter plots and contour plots of the observed data versus the simulated data

Table 5 Parameter estimates and the performance summary for the white cells dataset

ML estimates

Model α̂1 α̂2 α̂3 β̂1 β̂2 θ̂1 θ̂2 ll AIC BIC

Dirichlet 3.208 1.455 0.593 n/a n/a n/a n/a −51.410 108.820 113.023

DG 25.389 4.370 1.142 0.199 0.479 0.483 0.065 −30.155 74.310 84.118

Dirichlet and the Dirichlet-Gamma to this dataset. It is observed that the Dirichlet-
Gamma outperforms the Dirichlet model.

6 Conclusion

This chapter’s broader target was to show that the “mother technique” (see 3)
can still generate novel progeny. A unique contribution is made by introducing
a constructive methodology for families of multivariate distributions through the
modelH(x) = F(G(x))with x a vector;G(x) a vector of independent Gamma cdfs
referred to as baseline distributions and F a multivariate pdf such as the Dirichlet
with negative correlations between variables. Simulation studies and two real life
cases are investigated to illustrate the value added of this construction, using several
performance measures. A new model testing technique based on the empirical
estimator of the cdf, is introduced to evaluate the performance of multivariate
models. It flows naturally that instead of the gamma baseline distributions any
other family of distributions could be used, similarly a more general structure for
the generator could be the Dirichlet-hyper-geometric function type I distribution
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(Nagar et al. 2009). To accommodate for positive correlation structure in the data,
the authors consider the Dirichlet type III distribution (see Ehlers (2011)) or the
Liouville distribution of the second kind (Gupta et al. (1997), Bouguila (2011)) in
a follow-up paper. Note that, in contrast with the Dirichlet and like the generalized
Dirichlet, the covariance can be positive or negative. The builder would be of the
form:

• Builder 5:

H(x1, . . . , xp) =
∫ G1(x1)

0
· · ·

∫ Gp(xp)

0
C

p∏
i=1

y
αi−1
i q

(
p∑
i=1

yi

)
dy

where Gi(·), i = 1, . . . , p, can be any cdf, C the normalizing constant of the pdf
of the generator and q(·) a measurable positive real valued function defined on

the interval (0, 1) such that

1∫
0

q (τ) τ s−1dτ exists for all s > 0.

This new approach to construct multivariate distributions expands the body of
knowledge within the distribution theory domain.
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Code with comments for this chapter is available from the corresponding author.
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Evaluating Risk Measures Using
the Normal Mean-Variance
Birnbaum-Saunders Distribution
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Abstract Despite the widespread use and attractive properties of the normal and
Student’s t distributions for modeling financial risks, it is widely believed that the
normal-inverse Gaussian, skew-normal and skew-t distributions can be promising
alternatives for describing the asymmetric features of asset returns. In this article,
we propose a new benchmark model for quantifying the risk of financial assets
based on the normal mean-variance Birnbaum-Saunders (NMVBS) distribution.
The theoretical formulae of some popular risk measures based on the NMVBS
distribution are exactly derived. Numerical evaluation of risks of some selected
stock market returns reveals that the proposed method may outperform some
existing approaches.
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1 Introduction

The fat tails and skewed features are often present in economic and financial
data streams such as the employment rates, stock asset returns, and so on. Some
asymmetric distributions have been recently exploited and found to be effective in
describing the skewness and fatness of the tails embodied in these kinds of data. For
example, Vernic (2006) studied the skew-normal (SN; Azzalini (1985)) distribution
as an alternative to the classical normal one for modeling insurance risks. Eling
(2012, 2014) empirically identified the SN and skew-t (ST; Azzalini and Capitaino
(2003)) as promising benchmark models for analyzing the actuarial loss and asset
returns of insurance companies. Lee and McLachlan (2013) presented several finite
mixtures of asymmetric distributions in providing more accurate forecast of value
at risk (VaR) estimation. Adcock et al. (2015) highlighted the usefulness, flexibility
and tractability of the SN distribution in the areas of finance and actuarial science.
Shushi (2017) derived the general forms of risk measures under the family of skew-
elliptical distributions. Barndorff-Nielsen (1997) introduced another class of skewed
and heavy-tailed distributions, namely the generalized hyperbolic (GH) distribution,
which includes the normal, Student’s t , hyperbolic, variance gamma (VG), normal
inverse Gaussian (NIG), and generalized hyperbolic skew-t (GHST) distributions,
to name just a few, as special cases.

McNeil et al. (2005) defined the GH distribution as a normal mean-variance
(NMV) mixture representation, where the mixing variable has a generalized inverse
Gaussian (GIG) distribution (Good 1953). Recently, the GH family of distributions
have been considered to be a good platform for adequately modeling financial
risks. Aas and Haff (2006) demonstrated the superiority of the NIG and GHST
distributions in modeling skew financial data. Hu and Kercheval (2007) studied the
VaR for a portfolio of assets based on the advantage of the GH distributions that are
closed under linear transformation. Konlack Socgnia and Wilcox (2014) discussed
the calibrations of the GH distribution and its subclasses (Hyperbolic, VG, NIG and
GHST) for the daily log-returns of seven of the most liquid mining stocks listed on
the Johannesburg Stocks Exchange. The authors found that the GH distribution can
provide a slightly better fit of these data as compared to four subclass competitors,
but not all estimated GH parameters are statistically significant due to a non-
identifiability problem.

As a parsimonious variant of the GH distribution, Pourmousa et al. (2015)
proposed the normal mean-variance Birnbaum-Saunders (NMVBS) distribution,
defined as the NMV mixture where the mixing variable has a Birnbaum-Saunders
(BS) distribution. Unlike the GH distribution which suffers from non-identifiability
problems, the NMVBS distribution has several desirable properties such as the
assurance of identifiability and of having closed-form expressions for all parameter
estimators under the expectation maximization (EM) based estimation. As also
demonstrated by Pourmousa et al. (2015), the NMVBS model may offer a better
fit than other skew distributions for some benchmark datasets. The superiority of
the NMVBS distribution is largely attributable to the fact that it takes wider ranges
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of skewness and kurtosis as compared with the ST and skew-t-normal (Ho et al.
2012; Lin et al. 2014) distributions, see Table 1 of Naderi et al. (2017).

A risk measure, which is taken by a single value for the degree of overall
uncertainty associated with the random variable representing the risk at hand, can be
thought of as a function mapping a payoff distribution to the real line. VaR is one of
the most widely employed measures to characterize the downside risk of a financial
investment. Given at a confidence level, VaR can be viewed as the minimum loss
expected on a portfolio of assets over a certain period of time. Another commonly
employed risk measure with coherence property (Artzner et al. 1999) is the so-called
tail value at risk (TVaR). It can be interpreted as the mean of the worst losses given
the loss will exceed a particular value, obtained as the quantile of a risk random
variable. The aim of this article is to derive the closed-form expressions of VaR and
TVaR as well as related measures for the NMVBS random risks and investigate its
practical applications in evaluating financial losses.

The rest of the article is structured as follows. Section 2 briefly outlines some
main properties of the NMVBS distribution such as the moment generating function
and the closure property with respect to the affine transformation. In Sect. 3, we
provide analytical formulae for some important risk measures under the assumption
of the NMVBS distribution for capital assets. Section 4 illustrates the prominence
of the NMVBS distribution in estimating financial risks for stock returns in
four selected international equity markets and results are compared with several
alternative models. Section 5 concludes with several remarks and possible directions
for future research.

2 The Normal Mean-Variance Birnbaum-Saunders
Distribution

For the sake of completeness, we review the NMV and GIG distributions firstly.
Following McNeil et al. (2005), a d-dimensional random vector X is said to have
the NMV distribution if it can be stochastically expressed as

X = μ +Wλ +W 1/2Z, (1)

where both μ and λ ∈ R
d , Z is distributed as the multivariate normal distribution

with zero mean vector and covariance matrix Σ , and W is a non-negative random
variable with the distribution function H(·; θ) and independent of Z. Under this
parameterization, the GH family of distributions are closed under conditioning,
marginalization and affine transformations.

If the mixing variable W in (1) is chosen to has a GIG distribution, denoted by
W ∼ GIG(κ, χ,ψ), with probability density function (pdf)



190 M. Naderi et al.

fGIG(w; κ, χ,ψ) =
(
ψ

χ

)κ/2
wκ−1

2Kκ(
√
ψχ)

exp

{−1

2

(
w−1χ + wψ

)}
, w > 0,

where Ka(·) denotes the modified Bessel function of the third kind with order a,
then the random vector X follows the GH distribution. The pdf of a d-dimensional
random vector X is given by

fGHd
(x;μ,λ,Σ, κ, χ,ψ) = C

Kd/2−κ
{√

(ψ + λ�Σ−1λ)(χ + δ(x;μ,Σ))
}

{√
(ψ + λ�Σ−1λ)(χ + δ(x;μ,Σ))

}d/2−κ

× exp
{
(x − μ)�Σ−1λ

}
,

where C = (ψ/χ)
κ
2 (ψ + λ�Σ−1λ)d/2−κ(2π)−d/2|Σ |−1/2/Kκ(

√
ψχ) is the

normalizing constant and δ(x;μ,Σ) = (x − μ)�Σ−1(x − μ) is the squared
Mahalanobis distance between x and μ.

A non-negative random variable W is said to follow the BS distribution (Birn-
baum and Saunders 1969), denoted by W ∼ BS(α, β), if its cumulative distribution
function (cdf) is

F(w;α, β) = Φ

[
1

α

{√
w

β
−
√
β

w

}]
, w > 0, α > 0, β > 0,

where Φ(·) is the cdf of the standard normal distribution, and α and β are the shape
and scale parameters, respectively. The BS distribution is positively skewed and is
related to the normal model through the following stochastic representation:

W = β

4

{
αZ +

√
(αZ)2 + 4

}2
,

where Z ∼ N(0, 1). Following Desmond (1986), the BS distribution can be written
as a mixture of two equally weighted GIG distributions. Therefore, the pdf of W
takes the form of

fBS(w;α, β) = 1

2
fGIG

(
w; 1

2
,
β

α2
,

1

βα2

)
+1

2
fGIG

(
w; −1

2
,
β

α2
,

1

βα2

)
. (2)

Proposition 1 IfW ∼ BS(α, β), the moment generating function (mgf) ofW is

MW(t) = 1

2

(
1√

1 − 2α2βt
+ 1

)
exp

{
1 −√

1 − 2α2βt

α2

}
. (3)

Proof From (2), we can obtain the mgf of W as
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MW(t) = 1

2

(
MW1(t)+MW2(t)

)

= 1

2

{(
1 − 2α2βt

)1/4K0.5(α
−2
√

1 − 2α2βt)

K0.5(α−2)

+(1 − 2α2βt
)−1/4K−0.5(α

−2
√

1 − 2α2βt)

K−0.5(α−2)

}
,

where MW1(t) and MW2(t) are the mgfs of W1 ∼ GIG(0.5, β/α2, 1/(βα2)) and
W2 ∼ GIG(−0.5, β/α2, 1/(βα2)), respectively. Making use the relations of Bessel
function Kκ(x) = K−κ(x) and K0.5(x) = √

π/2x−0.5 exp{−x}, it completes the
proof. ��

The multivariate NMVBS distribution introduced by Pourmousa et al. (2015) is
emerged by setting W ∼ BS(α, 1) in (1), denoted by X ∼ NMVBSd(μ,λ,Σ, α).
When d = 1, we write X ∼ NMVBS(μ, λ, σ 2, α) for the univariate case. By
Proposition 3.2 of Pourmousa et al. (2015), the cdf of the NMVBS distribution can
be expressed by a mixture of two GH cdfs:

FX(x;μ,λ,Σ, α) = 1

2
FGHd

(
x;μ,λ,Σ, 0.5, α−2, α−2

)

+1

2
FGHd

(
x;μ,λ,Σ,−0.5, α−2, α−2

)
. (4)

It follows from Pourmousa et al. (2015) that the multivariate NMVBS distribution
is closed under affine transformations. Forming a portfolio of dependent risks
X ∼ NMVBSd(μ, λ,Σ, α), it is easy to show that the weighted sum Z = π�X

is distributed as NMVBS(π�μ,π�λ,π�Σπ , α). That is, all portfolios share the
same asymmetry parameter α. Once we have estimated the NMVBS density, the
marginal distribution of a linear portfolio is automatically obtained. Consequently,
we establish the following theorem, which is useful to drive several important
measures with the underlying NMVBS risks.

Theorem 1 The mgf of X ∼ NMVBS(μ, λ, σ 2, α) is

MX(t) = 1

2

(
1√

1−2tλα2−t2α2σ 2
+1

)
exp

{
α−2(1−√1−2tλα2−t2α2σ 2

)+tμ} .
Proof From (1), we can obtain the mgf of X straightforwardly

MX(t) = E
{
E(X|W)

}
= E

[
exp

{
tμ+ tλW + W

2
t2σ 2

}]

= exp{tμ}MW

(
tλ+ 1

2
t2σ 2

)
.

Finally, the desired result can be obtained by substituting tλ+ 1
2 t

2σ 2 in (3). ��
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3 Risk Measure for NMVBS Distribution

The risk evaluation is an important task for investors who hold varying amounts of
the risky asset in their portfolios. Thus the risk measures and their theories play
a critical role in estimating financial losses. Among the several purposes of the
risk measure, the most important ones in practice are determination of risk capital
and capital adequacy, management tool and insurance premiums (McNeil et al.
2005). Toward this end, the most modern measures of the risk in a portfolio rely on
statistical methods. By Theorem 1, we can calculate different risk measures under
the assumption that the asset returns are distributed as NMVBS distributions. The
risk measures considered here include the probability of shortfall (PS), probability
of outperformance (PO), target shortfall (TS), and a tail value at risk (TVaR), which
is the commonly used risk measure and can be treated as a special case of the TS
measure. Furthermore, we drive the Esscher premium and the entropic measures of
the risks for the NMVBS distribution.

Let E
[
xq − X

]n
+ be the n-th order lower partial moment of the random variable

X with respect to the xq ∈ R. More specifically,

E
[
xq −X

]n
+ =

∫ xq

−∞
(xq − x)nfX(x; θ) dx,

where xq is a target separating gains and losses, and fX(·; θ) is the pdf of X
parameterized with θ . The reference point xq can be specified as a fixed target, e.g.,
a given income poverty line which applies to all households equally, or as a moving
target, i.e., the target is not fixed but depends on the household-specific distribution
of the random variable (Brogan and Stidham 2008). The explicit formulae for
evaluating the PS and PO for the univariate NMVBS random variable are collected
in the following proposition.

Proposition 2 Let X ∼ NMVBS(μ, λ, σ 2, α). The probability of X that falls
short or outperforms a target level xp can be obtained, respectively, by

PS(xq, μ, λ, σ
2, α) = E

[
xq −X

]0
+ = FX(zq;β, α),

and

PO(xq, μ, λ, σ
2, α) = 1 − E

[
xq −X

]0
+ = 1 − FX(zq;β, α),

where zq = (xq − μ)/σ , β = λ/σ , and FX(zq;β, α) is the standardized cdf of the
NMVBS distribution, namely FX(zq;β, α) = FX(zq; 0, β, 1, α).

Proof The proof is straightforward and hence is omitted. ��
Note that there are no closed expressions for the PS and PO of the NMVBS random
variable. From (4), the cdf of the NMVBS distribution is a mixture of two GH cdfs.
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Therefore, the two risks can be easily evaluated by implementing ghyp R package
(Breymann and Luthi 2009).

The TS risk measure is defined as the first-order lower partial moment with
respect to the threshold xq ∈ R. The next theorem provides a way of calculating
the TS when X has the NMVBS distribution.

Theorem 2 Let X ∼ NMVBS(μ, λ, σ 2, α). The TS of X takes the form of

T SX(xq, μ, λ, σ
2, α) = xqPS(xq, μ, λ, σ

2, α)− EW
[
(μ+Wλ)Φ(zq;Wβ,W)

]
+σ

2

{
fGH

(
zq;β, 0.5, α−2, α−2)+ ( α−2 + zq

α−2 + β2

)

×fGH
(
zq;β,−0.5, α−2, α−2)},

where zq = xq−μ
σ

, fGH
(
zq;β, κ, χ,ψ

) = fGH
(
zq; 0, β, 1, κ, χ,ψ

)
and W ∼

BS(α, 1).

Proof The TS of random variable X is defined as

T S(xq, μ, λ, σ
2, α) = E

[
xq −X

]1
+

=
∫ xq

−∞
(xq − x)fX(x;μ, λ, σ 2, α) dx

= xqPS(xq, μ, λ, σ
2, α)−

∫ xq

−∞
xfX(x;μ, λ, σ 2, α) dx.

By (1), the above integral can be rearranged as

∫ xq

−∞
xfX(x;μ, λ, σ 2, α) dx

=
∫ xq

−∞

∫ ∞

0
xφ(x;μ+ wλ,wσ 2)fBS(w;α, 1) dwdx

=
∫ ∞

0

∫ xq

−∞
x − μ− wλ√

wσ
φ

(
x − μ− wλ√

wσ

)
fBS(w;α, 1) dxdw

+
∫ ∞

0

∫ xq

−∞
μ+ wλ√

wσ
φ

(
x − μ− wλ√

wσ

)
fBS(w;α, 1) dxdw

=
∫ ∞

0

(
f1(xq)+ f2(xq)

)
fBS(w;α, 1) dw,

where
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f1(xq) =
∫ xq

−∞
x − μ− wλ

σ
√
w

φ

(
x − μ− wλ

σ
√
w

)
dx = −√

wσφ(zq;wβ,w),

and

f2(xq) =
∫ xq

−∞
μ+ wλ√

wσ
φ

(
x − μ− wλ√

wσ

)
dx = (

μ+ wλ
)
Φ(zq;wβ,w).

Therefore, we have∫ xq

−∞
xfX(x;μ, λ, σ 2, α) dx

= EW
[
(μ+Wλ)Φ(zq;Wβ,W)

]− ∫ ∞

0

√
wσφ(zq;wβ,w)fBS(w;α, 1)dw.

Finally, we complete the proof by noting that

∫ ∞

0

√
wσφ(zq;wβ,w)fBS(w;α, 1)dw

= 1

2

∫ ∞

0
wσφ(zq;wβ,w)

{
fGIG

(
w; 1

2
,

1

α2
,

1

α2

)
+fGIG

(
w; −1

2
,

1

α2
,

1

α2

)}
dw,

= 1

2
σ
( α−2 + zq

α−2 + β2

)
fGH

(
zq;β,−0.5, α−2, α−2)+ 1

2
σfGH

(
zq;β, 0.5, α−2, α−2).

��
The VaR is a widely employed measure of downside risk in capital markets.

Given a confidence level q ∈ (0, 1), the VaR is defined as the smallest x0 ∈ R

satisfying

V aRq(X) = − inf{x | FX(x) ≥ 1 − q}. (5)

Hence, VaR can be interpreted as the maximum loss of a portfolio X = πTY ,
which should not be exceeded at a given confidence level, where π ∈ R

d denotes
the asset weights with the constraint

∑d
i=1 πi = 1, and Y denotes the returns.

However, VaR is often criticized for lack of coherence properties because it is
sensitive to the shape of the tail of the loss distribution. As an alternative, TVaR
is a coherent risk measure that fulfills the properties of monotonicity, sub-additivity,
homogeneity, and translational invariance and can be viewed as the expected worse.
More precisely, TVaR gives the expected amount of extreme loss under a given
risk. Given a confidence level q ∈ (0, 1), the TVaR is defined as T V aR(X) =
−E[X|X ≤ −V aRq(X)

]
, where V aRq(X) is the possible loss obtained by the

(1 − q)th percentile of X as defined in (5).
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We characterize the well-known tail conditional expectation, namely the TVaR
measure, in Theorem 3.

Theorem 3 The TVaR measure of X ∼ NMVBS(μ, λ, σ 2, α) is

T V aR(X) = −1

1 − q
EW

[
(μ+Wλ)Φ(zq;Wβ,W)

]

+ σ

2(1 − q)

(
fGH

(
zq;β, 0.5, α−2, α−2)+ ( α−2 + zq

α−2 + β2

)

×fGH
(
zq;β,−0.5, α−2, α−2)),

whereW ∼ BS(α, 1) and zq = −(μ+ V aRq(X))/σ .

Proof By definition of the TVaR, we have

T V aR(X) = −1

1 − q

∫ −V aRq(X)

−∞
xfX(x;μ, λ, σ 2, α) dx

= 1

1 − q

(
T SX(−V aRq(X), μ, λ, σ 2, α)

+V aRq(X)PS(−V aRq(X), μ, λ, σ 2, α)
)
,

��
which completes the proof.

Let π ∈ R
d be a vector of asset weights satisfying

∑d
i=1 πi = 1. Considering

the returns on a portfolio X ∼ NMVBSd(μ,λ,Σ, α), it can be verified that

T V aR(π�X) = −E[π�X|π�X ≤ −V aRq(π�X)
]

= −
d∑
i=1

E
[
πiXi |π�X ≤ −V aRq(π�X)

]
. (6)

The decomposition in (6) indicates that the TVaR of a portfolio is the sum of
individual risk contributions of each asset in case where the relative portfolio
loss exceeds V aRq(π�X). Subsequently, we have Theorem 4 which is useful in
applications for evaluating portfolio risks. The following lemma is required to verify
the result in Theorem 4.

Lemma 1 Let

[
Z1

Z2

]
∼ N2

([
0
0

]
,

[
1 ρ

ρ 1

])
. Then E(Z1 | Z2 < a) = φ(a)

Φ(a)
ρ.
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Theorem 4 Let[
X1

X2

]
∼ NMVBS2

([
μ1

μ2

]
,

[
λ1

λ2

]
,

[
σ 2

1 σ12

σ21 σ 2
2

]
, α

)
.

It follows that

E(X1|X2 < s) = μ1 + λ1A
∗ + σ12

σ2
B∗,

where

A∗ = 1

2FX(s;μ2, λ2, σ
2
2 , α)

(
K1.5(α

−2)

K0.5(α−2)
FGH (s;μ2, λ2, σ

2
2 , 1.5, α−2, α−2)

+FGH (s;μ2, λ2, σ
2
2 , 0.5, α−2, α−2)

)
,

and

B∗ = 1

2FX(s;μ2, λ2, σ
2
2 , α)

(
K1(α

−2)

K0.5(α−2)
fGH (s;μ2, λ2, σ

2
2 , 1, α−2, α−2)

+ K0(α
−2)

K0.5(α−2)
fGH (s;μ2, λ2, σ

2
2 , 0, α−2, α−2)

)
.

Proof Suppose that W ∼ BS(α, 1) and

[
Z1

Z2

]
∼ N2

([
0
0

]
,

[
1 ρ

ρ 1

])
. We have

[
X1

X2

]
d=
[
μ1 + λ1W +√

Wσ1Z1

μ2 + λ2W +√
Wσ2Z2

]
.

Let the random vector U be distributed as[
U1

U2

]
d=
[
μ1 + λ1W +√

Wσ1Z1

W

] ∣∣∣∣ (μ2 + λ2W +√
Wσ2Z2 < s).

It follows immediately that

U1 | (U2 = u2)
d= (μ1 + λ1u2 +√

u2σ1Z1)
∣∣ (μ2 + λ2u2 +√

u2σ2Z2 < s)

d= μ1 + λ1u2 +√
u2σ1

(
Z1

∣∣ Z2 <
s − μ2 − λ2u2√

u2σ2

)
.

By Lemma 1, we can obtain
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E(U1|U2 = u2) = μ1 + λ1u2 +√
u2

σ12φ

(
s − μ2 − λ2u2√

u2σ2

)

σ2Φ

(
s − μ2 − λ2u2√

u2σ2

) .

Besides, the pdf of U2 can be calculated as

fU2(u2) = fBS(u2;α, 1)Φ

(
s − μ2 − λ2u2√

u2σ2

)/
FX(s;μ2, λ2, σ

2
2 , α).

Using the law of iterative expectations leads to

E(U1) = μ1 + λ1A
∗ + σ12

σ2
B∗,

where

A∗ =E(U2)= 1

FX(s;μ2, λ2, σ
2
2 , α)

∫ ∞

0
u2fBS(u2;α, 1)Φ

(
s − μ2−λ2u2√

u2σ2

)
du2,

and

B∗ = E

⎡
⎢⎢⎣√U2

φ

(
s − μ2 − λ2U2√

U2σ2

)

Φ

(
s − μ2 − λ2U2√

U2σ2

)
⎤
⎥⎥⎦

= 1

FX(s;μ2, λ2, σ
2
2 , α)

∫ ∞

0

√
u2fBS(u2;α, 1)φ

(
s − μ2 − λ2u2√

u2σ2

)
du2.

��
This completes the proof.

The Esscher premium principle (Bühlmann 1980), which is a widely used
measure in actuarial sciences, minimizes the expected loss using the loss function
L(x, P ) = ehx(x − P)2, where the loading factor h > 0 is a parameter reflecting
the measure of risk aversion. By the Bayesian decision theory, the Esscher premium
principle of X can be calculated as

πh(X) = E
[
XehX

]
E
[
ehX

] = ∂

∂h
lnMX(h), h > 0. (7)

Notice that (7) enjoys some desirable properties such as non-negative safety loading,
namely πh(X) ≥ E(X), meaning that an insurance premium requires to charge at
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least the expected payout of the risk X. Meanwhile, πh(X) is an increasing function
of h for any risk X and fulfills the absence of rip-off condition, that is, it never
exceeds the maximum value of X. Other properties related to the Esscher premium
principle can refer to Goovaerts et al. (1984).

As an alternative to the VaR and TVaR risk measures, we derive the entropic
risk measure which depends on the risk aversion of the user through the exponential
utility function. For a random variable X, the entropic risk measure with the risk
aversion parameter υ > 0 takes the form of

ρent (X) = 1

υ
lnE(exp{−υX}) = 1

υ
lnMX(−υ).

The entropic risk measure is difficult to use in practice due to the difficulty of
quantifying the risk aversion for an individual, but it is still theoretically interesting.
See Föllmer and Knispel (2011) for further technical details.

The follow theorem provides the formulae of Esscher premium principle and
entropic risk measure for a portfolio of NMVBS risks.

Theorem 5 Suppose that X ∼ NMVBS(μ, λ, σ 2, α). The Esscher premium
principle and entropic risk measures of X are given by

πh(X) =μ+ 1

δ(h, θ)

(
λ+hσ 2+ α2λ+hα2σ 2

δ2(h, θ)
(
1+δ−1(h, θ)

)
)
, h ∈ (0,−λ/σ 2+B),

ρent (X)= − μ+ 1

υ

(
−ln 2+ ln

(
1+ 1

δ(−υ, θ)

)
+α−2

(
1−δ(−υ, θ)

))
,

υ ∈ (0, λ/σ 2 + B),

respectively, where δ(h, θ) = √
1 − 2hλα2 − h2α2σ 2 andB = √

α2λ2 + σ 2/(ασ 2).

Proof As a direct consequence of Theorem 1, we have

lnMX(h) = − ln 2 + ln
(
δ−1(h, θ)+ 1

)+ α−2(1 − δ(h, θ))+ hμ. (8)

The first partial derivative of lnMX(h) given in (8) with respect to h yields the
Esscher premium principle, obtained as

πh(X) = μ+ 1

δ(h, θ)

{
λ+ hσ 2 + α2λ+ hα2σ 2

δ2(h, θ)
(
1 + δ−1(h, θ)

)
}
.

��
To avoid getting imaginary number for δ(h, θ), the necessary condition is 1 −
2hλα2 − h2α2σ 2 ≥ 0 which implies h ∈ (−λ/σ 2 ± B). On the other hand,
since h > 0 and B > λ/σ 2, we have h ∈ (0,−λ/σ 2 + B) if λ ≥ 0, and
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h ∈ (0, |λ|/σ 2 + B) if λ < 0. As a result, πh(X) is well defined whenever
h ∈ (0,−λ/σ 2 +B). Similarly, the entropic risk measure can be written in terms of
(8) by replacing h with −υ.

4 Application to Stock Market Returns

4.1 Data and Descriptive Statistics

We apply our methods to four series of daily returns from international stock
markets, including S&P 500, DOW and NASDAQ 100 in the U.S. and CAC40 in
France. These data were extracted from Yahoo Finance with the period starting from
1st January 2010 and ending 31 December 2016. We consider the daily log returns
in percentage, i.e., rt = 100 × log(Pt/Pt−1), where Pt is the adjusted closing price
of an asset on day t .

Table 1 summarizes basic descriptive statistics of log-returns of the four indices,
including the number of observations (n), mean, standard deviation (St.Dev),
minimum (min), maximum (max), skewness (γX), kurtosis (κX), 99% VaR and 99%
TVaR. To test for normality, the Jarque-Bera test statistic (Jarque and Bera 1987) and
the corresponding P -value for each asset are also listed in Table 1.

The results depicted in Table 1 reveal that the considered indices exhibit
relatively high risk, if we take the standard deviation as a measure of risk, and
somewhat high empirical VaR and TVaR values. The values of γX and κX show that
these indices are skewed to the left and have fat tails. According to Fig. 1, which
presents histograms and Q–Q plots for each index, and the Jarque-Bera test statistic
along with extremely low P -values, none of the indices are normally distributed.
These characteristics motive us to consider the skewed distributions which can take
both skewness and kurtosis of the data into account and are expected to gain more
appropriate statistical inference.

4.2 Model Comparison

We fit the NMVBS distribution described in Sect. 2 as a benchmark model to
these log-returns data. The EM algorithm (Dempster et al. 1977) for estimating the
NMVBS parameters is sketched in Appendix. For the sake of comparison, we also
consider the fitting of normal, SN, ST and NIG distributions. We perform the R
package sn (Azzalini 2004) to estimate SN and ST distributions, and the R package
ghyp (Breymann and Luthi 2009) for the NIG distribution.

To select the most adequate model, we adopt the Akaike information criterion
(AIC; Akaike (1927)) and the Bayesian information criterion (BIC; Schwarz
(1978)), defined as −2�max + mCn, where �max is the maximized log-likelihood
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Fig. 1 Histogram overlaid with normal density and Q −Q plots for four log-return market price
indices

value and m represents the number of parameters. Note that the penalty term Cn
is equal to 2 for AIC and log(n) for BIC. The model having the smallest AIC or
BIC value is claimed to provide the best fit. Model comparison results displayed in
Table 2 indicate that the NMVBS distribution provides the best fitting performance
as it attains the lowest AIC and BIC scores. Meanwhile, the normal distribution
has the worst performance, reinforcing the behavior of non-normality of these log-
returns.

To assess the goodness-of-fit of these fitted distributions, we apply the
Kolmogorov-Smirnov (K-S) test (Smirnov 1948) as a tool of discovering whether
the theoretical distributions fit the empirical data well. Table 3 summarizes the K-S
test statistics along with their corresponding P -values for the five fitted distributions.
A smaller value of K-S statistic indicates a closer fit to the model with the underlying
distributional assumption. With the K-S test, the null hypotheses of using the normal
and SN distributions are rejected due to extremely small P -values. It is also shown



202 M. Naderi et al.

Table 2 Comparison of ML fitting results on four log-return market price indices

Model

Data Criteria Normal SN ST NIG NMVBS

S&P500 �max −2462.761 −2447.080 −2315.566 −2307.350 −2305.505

AIC 4929.522 4900.160 4639.132 4622.699 4619.010

BIC 4940.469 4916.581 4661.027 4644.594 4640.905

CAC40 �max −3086.225 −3079.929 −2989.059 −2986.098 −2986.025

AIC 6176.450 6165.857 5986.118 5980.196 5980.051

BIC 6187.429 6182.325 6008.075 6002.154 6002.008

DOW �max −2271.372 −2257.953 −2136.145 −2127.071 −2124.445

AIC 4546.745 4521.907 4280.290 4262.141 4256.890

BIC 4557.693 4538.329 4302.187 4284.038 4278.787

NASDAQ 100 �max −2659.751 −2646.800 −2554.406 −2547.823 −2546.799

AIC 5323.502 5299.600 5116.813 5103.645 5101.598

BIC 5334.451 5316.023 5138.710 5125.542 5123.495

Table 3 Results of Kolmogorov-Smirnov test on four log-return market price indices

S&P 500 CAC40 DOW NASDAQ 100

Model KS P -value KS P -value KS P -value KS P -value

Normal 0.084 0.000 0.059 0.000 0.088 0.000 0.076 0.000

SN 0.076 0.000 0.053 0.000 0.078 0.000 0.066 0.000

ST 0.021 0.429 0.013 0.907 0.028 0.111 0.022 0.359

NIG 0.016 0.746 0.008 0.999 0.023 0.311 0.016 0.733

NMVBS 0.015 0.814 0.011 0.985 0.020 0.463 0.015 0.835

that the NMVBS distribution tends to give the closest fit to all indices except that
the NIG distribution outperforms slightly for CAC40. Again, this recommends that
the NMVBS distribution can be a more promising tool for modeling asset returns
than using other existing ones.

4.3 Performance on the VaR and TVaR Assessment

We now turn our attention to compare the accuracy of predicted VaR and TVaR
values based on the fitted normal, SN, ST, NIG and NMVBS models. Because not all
of the risk measures for some of the skew distributions have closed-form formulae,
we generate Monte Carlo samples of size one million to evaluate VaR and TVaR.
Recall that the VaR is the 1 − q quantile of the simulated loss samples, whereas
TVaR is the mean loss and thus is greater than VaR.

Table 4 presents the predicted VaR and TVaR under 95 and 99% confidence levels
for the log-returns of four indices based on the five fitted models. It is evidently
seen that the NMVBS distribution provides a closer prediction of the empirical
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Table 4 Comparison of estimated 99 and 95% VaR and TVaR of log-return market price indices
based on various models

Model

Data q Empirical Normal SN ST NIG NMVBS

S&P500 VaR 99% 2.8695 2.3378 2.3860 2.9765 2.9538 2.8643

95% 1.6005 1.5722 1.6265 1.4948 1.5472 1.5539

TVaR 99% 3.7581 2.5692 2.7735 4.6325 3.9736 3.7305

95% 2.3917 1.9810 2.0924 2.5225 2.4330 2.3706

CAC40 VaR 99% 3.7010 3.1473 3.2892 3.8571 3.8726 3.8302

95% 2.2784 2.2218 2.2743 2.1513 2.2035 2.2037

TVaR 99% 4.8077 3.6062 3.8057 5.4128 5.0237 4.8968

95% 3.2243 2.7887 2.8976 3.2819 3.2515 3.2194

DOW VaR 99% 2.4021 2.0018 2.1168 2.5808 2.5714 2.5323

95% 1.4396 1.4029 1.4440 1.3139 1.3644 1.3808

TVaR 99% 3.3172 2.2991 2.4627 3.9710 3.4499 3.2915

95% 2.1101 1.7700 1.8568 2.1894 2.1266 2.0991

NASDAQ 100 VaR 99% 3.1353 2.4921 2.6518 3.2416 3.2246 3.1622

95% 1.7319 1.7460 1.8040 1.7050 1.7497 1.7446

TVaR 99% 3.9356 2.8628 3.0870 4.7597 4.2695 4.0938

95% 2.6278 2.2035 2.3244 2.7398 2.6776 2.6289

VaR and TVaR values in most cases. Figure 2 shows the empirical VaR and TVaR
along with their predicted values obtained from each fitted model with confidence
levels ranging between 90 and 99.5%. Looking at the figure, both NMVBS and NIG
models predict the VaR and TVaR much better than normal, SN and ST models. To
further assess the accuracy of prediction, we calculate the mean absolute relative
error (MARE), defined as

MARE = 1

nq

nq∑
i=1

∣∣∣∣M − M̂

M

∣∣∣∣,
where nq represents the number of chosen confidence levels, and M and M̂ are the
empirical and predicted risk measures, respectively. It can be observed from Table 5
that the NMVBS model has less amount of MARE, indicating that the proposed
model outperforms the other approaches in empirical estimation of VaR and TVaR.

To evaluate the in-sample performance of VaR models, we consider the exceed-
ing ratio (ER) introduced by Choi and Min (2011). Let n be the sample size and υ
the number of violations of VaR in the actual data. The ER is defined as the ratio
of the estimated number of violations divided by the expected number of violations,
namely ER = υ/(qn). The ER ratio examines how well the model estimates the
VaR. If ER is greater than one, then it indicates the underlying model under-forecasts
the VaR. Conversely, an ER value less than one implies an over-forecasting of the
VaR. Table 6 shows the ER values estimated under three considered confidence
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Fig. 2 Plots of VaR (left panel) and TVaR (right panel) as a function of confidence levels (q) for
four log-return market price indices
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Table 5 Comparison of estimation accuracy of VaR and TVaR in terms of MARE (%)

Normal SN ST NIG NMVBS

Data VaR TVaR VaR TVaR VaR TVaR VaR TVaR VaR TVaR

S&P500 8.300 18.349 7.790 13.792 6.039 8.176 3.616 2.245 2.682 0.927

CAC40 7.711 14.386 6.851 11.045 3.665 3.690 2.286 1.398 2.347 0.920

DOW 9.610 17.597 8.358 13.452 5.748 5.924 3.234 1.529 2.459 1.529

NASDAQ 100 7.694 17.072 7.092 12.343 4.944 6.787 3.191 2.750 3.153 1.335

Table 6 Exceeding ratio of various models on estimating VaR of four market price indices

Data q Normal SN ST NIG NMVBS

S&P500 99% 2.158 1.874 0.852 0.909 1.022

97.5% 1.363 1.181 1.113 0.977 1.045

95% 1.045 0.977 1.158 1.068 1.056

CAC40 99% 1.901 1.733 0.838 0.838 0.838

97.5% 1.364 1.229 1.051 0.939 0.939

95% 1.090 1.017 1.140 1.107 1.107

DOW 99% 2.100 1.873 0.738 0.738 0.795

97.5% 1.226 1.203 1.112 1.044 1.044

95% 1.101 1.000 1.215 1.169 1.158

NASDAQ 100 99% 2.497 1.703 0.851 0.851 0.908

97.5% 1.385 1.271 1.180 1.067 1.089

95% 0.999 0.931 1.056 0.999 0.999

levels. The results suggest that both normal and SN models tend to under-forecast
the VaR in most cases. Further, it is evident that the NMVBS distribution can provide
competitive or even much more accurate prediction of VaR as compared with the
other four distributions.

5 Conclusion

We have proposed a novel tool using the NMVBS distribution for describing
financial data and derived some important risk measures in general forms based on
its tractable properties. We have also shown that liner combinations of multivariate
NMVBS distribution is a univariate NMVBS distribution. This tractable property is
useful especially when dealing with portfolio returns formed from weighted sum
of different risky assets. In addition, a computational feasible EM algorithm is
developed to estimate unknown parameters of the NMVBS distributions. Numerical
results reveal that the NMVBS distribution is preferable over other competing
distributions for modeling asset returns and a portfolio of risks.

The investigation of risk measures under finite mixtures of skew distributions
has received increasing attention, see, for example, Vernic (2006); Bernardi (2013)
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and Shushi (2017). However, there is relatively few studies to testify the practical
facilities of these approaches with financial data up-to now. Therefore, it is of
interest to study risk measures under a finite mixture formulation of NMVBS
distributions and compare its performance theoretically and empirically to some
existing competitors.
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Appendix: ML Estimation for the NMVBS Distribution via
the EM Algorithm

Let X = (X1, . . . ,Xn) be a random sample from a population having the NMVBS
distribution with parameters θ = (μ,Σ,λ, α). From (1), the NMVBS distribution
admits a convenient hierarchical representation:

Xi | (W = wi) ∼ N(μ + λwi,Σwi), Wi ∼ BS(α, 1). (A.1)

By Bayes’ Theorem, it suffices to show that

f (wi | xi ) = p(xi )fGIG (wi; 0, χ(xi; θ), ψ(θ))+ (1 − p(xi ))fGIG

(w;−1, χ(xi; θ), ψ(θ)) ,

where

p(xi ) = fGH
(
xi;μ,λ,Σ, 0.5, α−2, α−2

)
fGH

(
xi;μ,λ,Σ, 0.5, α−2, α−2

)+ fGH
(
xi;μ,λ,Σ,−0.5, α−2, α−2

) ,
χ(xi; θ) = (xi−μ)�Σ(xi−μ)+α−2,ψ(θ) = λ�Σλ+α−2, and fGIG(·; κ, χ,ψ)
is the pdf of GIG(κ, χ,ψ). Consequently, we have

E
[
Wr
i

∣∣Xi = xi
] = (

χ(xi; θ)
ψ(θ)

)r/2{
p(xi )R(0,r)

(√
ψ(θ)χ(xi; θ)

)

+(1 − p(xi ))R(−1,r)

(√
ψ(θ)χ(xi , θ)

)}
, (A.2)

where r can be any positive or negative integers.
Using (A.1), the log-likelihood function of θ for the complete data x =

(x1, . . . , xn) and W = (W1, . . . ,Wn), omitting additive constants, is
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�c(θ | x,W ) = −n logα−n

2
log |Σ |−

n∑
i=1

{
(Wi − 1)2

2α2Wi

+ (xi − μ)�Σ−1(xi − μ)

2Wi

+Wi

2
λ�Σ−1λ − (xi − μ)�Σ−1λ

}
. (A.3)

On the kth iteration of the E-step, we compute the expected value of (A.3)

conditioning on the current parameter estimates θ̂
(k) = (μ̂

(k)
, Σ̂

(k)
, λ̂

(k)
, α̂(k)) and

the observed data x, called the Q-function:

Q(θ | θ̂
(k)
) = E[�c(θ | x,W ) | x, θ̂

(k)]. (A.4)

Evaluation of (A.4) needs to calculate the following two conditional expectations

ŵ
(k)
i = E(Wi | xi , θ̂

(k)
) and t̂

(k)
i = E(W−1

i | xi , θ̂
(k)
)

whose solution are obtained by using (A.2). The resulting Q-function is

Q(θ | θ̂
(k)
) = −n logα − n

2
log Σ − 1

2

n∑
i=1

{
ŝ
(k)
i

α2
+ (xi − μ)�Σ−1(xi − μ)t̂

(k)
i

+ŵ(k)
i λ�Σ−1λ − 2(xi − μ)�Σ−1λ

}
, (A.5)

where ŝ(k)i = ŵ
(k)
i + t̂

(k)
i − 2.

In the M-step, we maximize (A.5) with respect to each entry of θ , leading to the
following closed-form estimators:

μ̂
(k+1) =

∑n
i=1 xi t̂

(k)
i − nλ̂

(k+1)

∑n
i=1 t̂

(k)
i

, α̂(k+1) =
√∑n

i=1 ŝ
(k)
i

n
,

λ̂
(k+1) =

∑n
i=1 t̂

(k)
i

∑n
i=1 xi − n

∑n
i=1 xi t̂

(k)
i∑n

i=1 t̂
(k)
i

∑n
i=1 ŵ

(k)
i − n2

,

and

Σ̂
(k+1) = 1

n

[ n∑
j=1

t̂
(k)
i (xi − μ(k+1))(xi − μ(k+1))� + λ̂

(k+1)
λ̂
�(k+1)

n∑
i=1

ŵ
(k)
i

]

−λ̂
(k+1)

(x̄ − μ(k+1))� − (x̄ − μ(k+1))λ̂
�(k+1)
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= 1

n

[ n∑
j=1

t̂
(k)
i (xi − μ(k+1))(xi − μ(k+1))� − λ̂

(k+1)
λ̂
�(k+1)

n∑
i=1

ŵ
(k)
i

]
,

where the last equality in Σ̂
(k+1)

is obtained by utilizing n(x̄ − μ(k+1)) =
λ̂
(k+1)∑n

i=1 ŵ
(k)
i .
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On the Distribution of Linear
Combinations of Chi-Square Random
Variables

Carlos A. Coelho

Abstract The distribution of linear combinations of independent chi-square ran-
dom variables is intimately related with the distribution of quadratic forms in
normal random variables. As such, this distribution has been studied by many
authors. However, there is still some room left for improvement, since while some
simpler approximations do not yield sufficiently good results, other approximations
which show a better performance are sometimes too complicated to be implemented
in practical terms. In this paper the exact distribution of linear combinations of
independent chi-square random variables is obtained, for some particular cases,
in closed finite highly manageable forms, while for more general cases near-exact
approximations are obtained, which are able to yield very manageable and well-
performing approximations. Numerical studies compare the performance of these
near-exact distributions with other existing approximations and distributions and
show how sharp are the approximations provided by these near-exact distributions.
A useful subproduct that is obtained is closed form expressions for the distribution
of quadratic forms and for some instances of ratios of quadratic forms, useful in
ANOVA and other linear or mixed-linear models where heterocedasticity is present or
assumed. Solutions for the problem of the distribution of the statistic associated with
the Behrens–Fisher problem are then in turn obtained as a much useful subproduct
of the distribution of ratios of quadratic forms. Modules programmed in Mathe-
matica�, MAXIMA and R for the implementation of the distributions developed are
made available at the site https://sites.google.com/site/lincombchisquares.
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1 Introduction

The distribution of linear combinations of independent chi-square r.v.’s (random
variables) has been addressed by a large number of authors and it has been obtained
under a number of different forms.

This distribution is of interest not only given its relation with the distribution
of quadratic forms in normal r.v.’s but also because it appears associated with the
distribution of a number of statistics. Indeed in many cases it appears associated
with the distribution of quadratic forms in normal r.v.’s, as it is for example the case
of the works by Robbins (1948), Robbins and Pitman (1949), Box (1954), Ruben
(1960, Sect. 7), Imhof (1961), Ruben (1962), Baldesari (1967), Kotz et al. (1967a,b),
Johnson and Kotz (1968), Shah (1970), Solomon and Stephens (1977), Bock (1984),
Bock and Solomon (1987), Morin-Wahhab (1988), Mathai and Provost (1992),
Baksalary et al. (1994), Provost and Rudiuk (1996), and Lu (2006), to mention
only a few, namely some of the former and some recent authors. In what concerns
its relation with the distribution of statistics of interest, Chernoff and Lehmann
(1954) show that the distribution of the common chi-square goodness-of-fit statistic,
when maximum likelihood estimates based on the original data are used, is better
approximated by the distribution of a linear combination of independent chi-square
r.v.’s, all of them but one with one degree-of-freedom, and Durbin et al. (1975) show
that the distribution of the Cramer-von Mises goodness-of-fit statistic may be written
as that of an infinite linear combination of independent chi-square r.v.’s also all with
one degree-of-freedom (d.f.). Ruben (1960, Sect. 7) refers cases where statistics of
interest may have the distribution of linear combinations of independent chi-square
r.v.’s with an even number of d.f.’s, and Alvo et al. (1982) show that the asymptotic
distribution of the Kendall tau is the same as the distribution of a linear combination
of two independent chi-square r.v.’s.

Robbins (1948) obtains the distribution of a linear combination of independent
chi-square r.v.’s, all with one d.f., under the form of an infinite power series with
a rate parameter that is equal to the geometric mean of the coefficients associated
with the chi-square r.v.’s. Embedded in this series are some multinomial coefficients,
which as the order of the terms increase get more and more complicated to be
computed, but the author develops a recurrence relation which allows for a simpler
computation. However, a power series will always need many more terms to
converge than a series involving exponentials, as the ones that involve chi-square or
Gamma densities. As such, the author also obtains the same distribution in the form
of an infinite mixture of chi-square distributions. But one other problem that may
arise is when some of the coefficients in the linear combination are equal, leading
to chi-square r.v.’s with more than just one d.f., in which situation the author calls
for the use of limits on the expressions used to define the weights in the mixture
distribution. However, this may be a not completely straightforward and easy job,
mainly when several of the coefficients in the linear combination are equal to other
coefficients, leading to the existence of several chi-square r.v.’s with more than one
d.f.. Robbins and Pitman (1949) obtain a somewhat similar representation where
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the geometric mean of the coefficients is now replaced just by their minimum and
where the weights in the mixture are to be obtained through the solution of a product
identity, which solution may be not so simple for terms of larger order in the mixture.
Ruben (1962) suggests the use of a similar mixture of Gamma distributions but with
an arbitrary scale parameter, without giving explicit formulation for the weights.

Box (1954, Sect. 2, Thm. 2.4) obtains an interesting expression for the distribu-
tion of the linear combination of independent chi-square r.v.’s for the case when
all these have an even number of d.f.’s. This distribution has close relations with
the GIG (Generalized Integer Gamma) distribution (Coelho 1998) proposed in
Sect. 2 for the same situation, but opposite to the GIG distribution, which has all
the involved coefficients specified by their algebraic expressions, Box leaves some
of the coefficients in the distribution to be obtained from derivatives of a function
which involves the coefficients in the linear combination and the d.f.’s of the chi-
square r.v.’s. It happens that for larger values of the d.f.’s these derivatives may be
not completely so easy to obtain, and a general expression for them is not easy
to spot, although they are indeed intimately related with the cj,k coefficients in
the probability density function (p.d.f.) and in the cumulative distribution function
(c.d.f.) of the GIG distribution (see e.g. Appendix 1).

Imhof (1961) refers in Sect. 2 of his paper this same case and also presents a finite
closed form solution but he remarks not being able to establish a complete identity
between his result and the one presented by Box (1954), although there is a clear
similitude between the two solutions. While Box used the partial fraction technique,
Imhof bases his result on the inversion of the characteristic function (c.f.). However,
once again, the weights in the final mixture are to be obtained from successive
derivatives of a function that involves the coefficients in the linear combination
and the d.f.’s of the chi-square r.v.’s and which present the same problem as the
ones in the mixture obtained by Box (1954), since, as remarked by the author “with
increasing vk’s [the number of d.f.’s], the labour of computing the corresponding
derivatives . . . rapidly becomes considerable. The numerical method of the next
section is then often easier to apply”. Indeed then in Sect. 3 Imhof resorts to the
numerical inversion of the c.f., based on Gil-Pelaez (1951) inversion formula. This
is indeed a framework which we do not intend to engage into the present paper
but which was pursued further by several authors, among which we may point out
Davies (1980) and Lu (2006) who also use Gil-Pelaez (1951) inversion formula.

Kotz et al. (1967a), address, as other authors do, the case where all chi-square
r.v.’s in the linear combination have just one only d.f., this because of the relation
of this distribution with that of quadratic forms, and obtain in Sect. 3 expansions of
the distribution of linear combinations of independent chi-square r.v.’s in terms of
power series and series based on Laguerre polynomials which end up being infinite
mixtures of chi-square distributions. These latter ones are indeed quite close to the
series representation later obtained by Moschopoulos (1985) for the distribution
of a linear combination of Gamma r.v.’s. Actually we will use Moschopoulos
(1985) mixture distribution as a benchmark for comparison with the near-exact
approximations developed in Sect. 4 of our paper, given its accuracy, the good
convergence properties of the series and also its ease of implementation, given the
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fact that the weights in the mixture and all other coefficients involved are explicitly
given by algebraic expressions. While Kotz et al. (1967a) address the central case,
Kotz et al. (1967b) address the non-central case, being the case that we will restrict
our attention in the present paper to the case of linear combinations of central chi-
square r.v.’s, which will allow for the obtention of simpler expressions, with closed
forms for some particular cases.

Shah (1970) centers his attention on the distribution of matrix quadratic forms
and obtains their distributions in the form of infinite series of zonal polynomials.
Solomon and Stephens (1977) approximate the distribution of quadratic forms
and that of a linear combination of independent chi-squares by a Pearson curve
that matches the first four moments and by the distribution of a single chi-square
multiplied by a constant, matching the first three exact moments of the quadratic
form or linear combination of chi-squares, but these may indeed give only quite
rough approximations. Bock (1984) expresses the distribution of quadratic forms
in terms of the distributions of linear combinations of other quadratic forms and
linear combinations of independent chi-square r.v.’s, but in Sect. 3 she deals with
the distribution of a linear combination of only two independent chi-square r.v.’s, for
which she proposes an expression involving the Kummer confluent hypergeometric
function, and finds a finite sum representation when at least one of the two chi-
square r.v.’s has an even number of d.f.’s, but this representation involves Dawson’s
integral. In Sect. 4 she addresses the distribution of a linear combination of chi-
squares where all but one of the chi-squares have just 1 d.f.

Bock and Solomon (1987) obtain the distribution of a linear combination of
only two independent chi-square r.v.’s in several forms, most of them involving
modified Bessel functions and the distribution function of a linear combination of
two independent chi-square r.v.’s, both with 1 d.f., which has then to be dealt with.
Mathai and Provost (1992) provide several forms for the distribution of quadratic
forms and as such also for the distribution of linear combinations of independent
chi-square r.v.’s, in Chap. 4 of their book, in terms of power series and Laguerre
polynomial series expansions, as well as in terms of chi-square distributions. For
this latter case, although the authors refer that their result is similar to the one
obtained by Ruben (1962), all coefficients in the expansion and the weights in the
final mixture representation are given explicit expressions. It happens that since a
chi-square r.v. multiplied by any constant is indeed a Gamma r.v., there is an intimate
relation between the result obtained by Mathai and Provost and the result obtained
by Moschopoulos (1985) for the linear combination of Gamma r.v.’s, which given
our approach followed in Sect. 4, gives us, as already remarked, a more adequate
and express benchmark for our work.

Provost and Rudiuk (1996) address the general case of the distribution of the
difference of two linear combinations of independent chi-square r.v.’s, and express
it in terms of a series of Whittaker functions. This distribution may indeed appear as
a particular case of the distribution of linear combinations of independent chi-square
r.v.’s when the coefficients in the linear combination have different signs, and it is
addressed in Sect. 3 of the present paper, where a finite closed form is given for this
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distribution for the case where all chi-square r.v.’s involved have an even number of
d.f.’s.

In fact, besides the literature that addresses the distribution of linear combinations
of independent chi-square r.v.’s in the domain of the distribution of quadratic
forms, there is also a host of other authors who along the years have addressed
the distribution of linear combinations of independent chi-square r.v.’s just by
itself, as it is the case for example of Fleiss (1971) who obtained the distribution
of a linear combination of chi-square r.v.’s in the form of a number of nested
integrals. However, this form is not too adequate for implementation, since all
the integrals, in equal number to the chi-square r.v.’s in the linear combination,
have to be numerically solved. Davis (1977) uses a differential equation approach
that gives a power series distribution which matches that of Robbins (1948) when
all coefficients in the linear combination are positive. Moschopoulos and Canada
(1984) obtained an infinite Gamma series, with intimate relations with the more
embracing result in Moschopoulos (1985) on the distribution of a linear combination
of independent Gamma r.v.’s. To address the non-central case, Castaño-Martínez
and López-Blázquez (2005) use series expansions involving Laguerre polynomials,
while more recently Ha and Provost (2013) use a linear combination of Laguerre
polynomials together with a moment matching technique.

Gabler and Wolff (1987) approximate the distribution of a linear combination
of chi-squares by a combination of a distribution function of a unique scaled chi-
square and that of a finite mixture of scaled Gamma distributions. Other simple
approximations for the distribution of a linear combination of independent chi-
square r.v.’s by a single chi-square distribution, eventually with a non-integer
number of d.f.’s, that is, actually by a Gamma distribution, are the ones by
Satterthwaite (1941) and Welch (1947).

Other references to works on the distribution of linear combinations of indepen-
dent chi-square r.v.’s, previous to 1994, may be found in Sect. 18.8 of Johnson et al.
(1994).

Since indeed all linear combinations of independent chi-square r.v.’s are either
sums or linear combinations of independent Gamma r.v.’s, also all the vast liter-
ature on the distribution of linear combinations or sums of independent Gamma
r.v.’s is of interest. To mention only a few of those we feel as more important
references, Mathai (1982) obtains this distribution as a finite sum but involving
zonal polynomials or hypergeometric functions, while Moschopoulos (1985), as
already mentioned, obtains it as an infinite mixture of Gamma distributions with
rate parameters equal to the sum of the original rate parameters plus the index
of the mixture, running from zero to infinity, and with a scale parameter that is
the minimum of the scale parameters of the original Gamma r.v.’s in the linear
combination. Also, as already mentioned, due to its good convergence properties
(that is, the need for much lesser terms to obtain a good approximation to the
exact distribution, then other series representations) and ease of implementation,
since all parameters, coefficients and weights in the mixture are fully specified,
this distribution will be used as a benchmark in Sect. 4 to be compared with the
performance of the near-exact approximations there developed. Provost (1988)
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obtains the distribution of a linear combination of independent Gamma r.v.’s in terms
of integrals and Whittaker functions, while the same author in a 1989 paper (Provost
1989) obtains the distribution of the sum of independent Gamma r.v.’s as an infinite
series, with some relations with the series obtained by Moschopoulos (1985), but
with the common scale parameter of the Gamma distributions in the mixture as
the geometric or harmonic means of the original scale parameters, instead of its
minimum (see Sect. 4 of the present paper).

It is the aim of the present contribution to lend some new results and to sharpen
some existing ones giving them a more workable form, which will surely be useful
in applications and that may also be used to establish new results concerning the
distribution of ratios of linear combinations of chi-squares and the distribution of the
Behrens–Fisher statistic. Finite closed forms are provided for both the probability
density and cumulative distribution functions of some cases of linear combinations
of chi-square r.v.’s, being provided sharp approximations for the other cases. As a
by-product we also obtain a form to build near-exact distributions for sums or linear
combinations of independent Gamma r.v.’s.

Intentionally, only the central case is addressed, in order to be able to provide
simpler results, including some simple finite closed form results, and to keep the
contribution within an acceptable length.

In precise terms, we will address the problem of obtaining explicit manageable
expressions for both the p.d.f. and the c.d.f. of the distribution of a r.v.

Z =
p∑
j=1

wj Yj (1)

where Yj ∼ χ2
kj
(j = 1, . . . , p), form a set of p independent r.v.’s and where wj

(j = 1, . . . , p) are real weights. We will consider a number of cases of interest
where punctually some restrictions may be placed on the weights wj or on the d.f.’s
kj in order to be able to obtain simpler results.

In Sect. 2 we will consider the case where allwj are positive and all or all but one
of the kj are even. In Sect. 3 we will consider the case where all kj are even and the
wj are real, and in Sect. 4 we will address the case where all wj are positive and the
d.f.’s kj are left to be either even or odd. Then in Sect. 5 the distribution of ratios of
linear combinations of chi-squares is addressed, which is intimately related with the
distribution of statistics used in ANOVA and other models when heterocedasticity
is present and in Sect. 6 is addressed the distribution of the statistic associated with
the Behrens–Fisher problem, obtained as a by-product of the results in Sect. 5. In
Sect. 7 are presented some examples of situations where the distributions developed
in Sects. 2–5 arise and in Sect. 8 some conclusions are drawn.
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2 The Case of Positive wj with at Most One Odd kj

Let us first address the case where allwj are positive and all Yj have an even number
of d.f.’s, and let us denote by X ∼ Γ (r, λ) the fact that the r.v. X has a Gamma
distribution with shape parameter r and rate parameter λ, that is, a r.v. with p.d.f.

fX(x) =
λr

Γ (r)
e−λx xr−1 (r, λ > 0; x > 0) .

Then we have, for j = 1, . . . , p,

Yj ∼ Γ

(
kj

2
,

1

2

)
�⇒ Zj = wjYj ∼ Γ

(
kj

2
,

1

2wj

)
(2)

where all kj /2 are integers. In this case Z in (1) is thus a sum of p independent
Gamma r.v.’s, all with integer shape parameters, and as such its distribution
is a GIG distribution, with shape parameters k1/2, . . . , kp/2, rate parameters
1/(2w1), . . . , 1/(2wp) and depth p, this in case all 1/(2wj) are different (see
Appendix 1 and Coelho (1998) for details on the GIG distribution, its p.d.f. and
c.d.f.).

In case some of the wj ’s are equal, without any loss of generality, since the
order of the r.v.’s Yj in the sum in (1) is irrelevant, let us assume these are the ones
indexed 1, . . . , g(≤ p) and let us call w the common value of these g wj ’s. Then

all we have to do is to first add these g Gamma r.v.’s to obtain a Γ
(∑g

j=1
kj
2 ,

1
2w

)
,

then yielding for Z a GIG distribution of depth p − g + 1, with rate parameters∑g

j=1
kj
2 ,

kg+1
2 , . . . ,

kp
2 and shape parameters 1

2w ,
1

2wg+1
, . . . , 1

2wp
. Of course, rate

parameters may also be equal by ‘sectors’. Then the above reasoning should be
adequately adapted.

Assuming the case where all wj are different and using the notation in Appendix
1 for the GIG p.d.f and c.d.f., the p.d.f. and c.d.f. of Z are written as

fZ(z) = f GIG

(
z
∣∣ {kj /2}j=1:p; {1/(2wj)}j=1:p;p

)
, (z > 0)

and

FZ(z) = FGIG

(
z
∣∣ {kj /2}j=1:p; {1/(2wj)}j=1:p;p

)
, (z > 0) .

In case among the p r.v.’s Yj only one of them has an odd number of d.f.’s, then
only one of the Zj r.v.’s in (2) has a Gamma distribution with a non-integer shape
parameter, and the distribution ofZ will be what we call a GNIG (Generalized Near-
Integer Gamma) distribution (see Appendix 1 and Coelho (2004) for details on this
distribution, its p.d.f. and c.d.f.). In case all wj are different, without any loss of
generality, since as already stated, the ordering of the r.v.’s Yj in (1) is irrelevant, let



218 C. A. Coelho

the r.v. Yj with an odd number of d.f.’s be indexed as Yp. Then Z will have a GNIG
distribution of depth p, with p.d.f. and c.d.f. which, using the notation in Appendix
1, may be respectively written as

f GNIG

(
z

∣∣∣ k1

2
, . . . ,

kp−1

2
; kp

2
; 1

2w1
, . . . ,

1

2wp−1
; 1

2wp
;p
)

and

F GNIG

(
z

∣∣∣ k1

2
, . . . ,

kp−1

2
; kp

2
; 1

2w1
, . . . ,

1

2wp−1
; 1

2wp
;p
)
.

In case some of the wj are equal, say g of them, then the depth of the GNIG
distribution will be equal to p − g + 1, being the case that the adjustment will be
done in a similar way to that described above for the case of all even kj .

The Mathematica� modules to implement the GIG and the GNIG distributions
are available at https://sites.google.com/site/nearexactdistributions, with the mod-
ules for the GIG distribution also available in Sect. 2.7 of Coelho and Mexia (2010)
and in Appendix 4.A of Coelho and Arnold (2019). The MAXIMA and R modules
for the GIG distribution are also available at this book supplementary material site,
at https://sites.google.com/site/meijerfoxfiniteforms.

3 The Case Where All kj Are Even But the wj May be Both
Positive and Negative

Let us suppose that all chi-square r.v.’s Yj in (1) have an even number of d.f.’s but
some of the wj are positive and some are negative. Without any loss of generality,
since, as already mentioned, the order of the Yj r.v.’s in (1) is irrelevant, let us
consider that the wj that are positive are the ones for j = 1, . . . , p1(< p), the
others being negative. Let also p2 = p − p1. Then let us consider the r.v.’s

Z∗
1 =

p1∑
j=1

wjYj and Z∗
2 =

p∑
j=p1+1

−wjYj .

Since all kj (j = 1, . . . , p) are even, both Z∗
1 and Z∗

2 have GIG distributions, which
assuming that all wj are different will have respectively depths p1 and p2. Then we
haveZ = Z∗

1−Z∗
2 , whereZ∗

1 andZ∗
2 are two independent GIG r.v.’s. Thus, the r.v.Z

will have in this case what Coelho and Mexia (2010) call a DGIG (Difference of two
GIG) distribution, with p.d.f. (see Appendix 2 for details on the DGIG distribution
and the expressions for its p.d.f. and c.d.f.)

https://sites.google.com/site/nearexactdistributions
https://sites.google.com/site/meijerfoxfiniteforms


The Distribution of Linear Combinations of Chi-Squares 219

fZ(z)= f DGIG

(
z

∣∣∣{ kj2 }j=1:p1
;
{
kj
2

}
j=p1+1:p;

{
1

2wj

}
j=1:p1

;
{

1
2wj

}
j=p1+1:p ;p1, p2

)
,

and c.d.f.

FZ(z)=F DGIG

(
z

∣∣∣{kj2 }j=1:p1
;
{
kj
2

}
j=p1+1:p;

{
1

2wj

}
j=1:p1

;
{

1
2wj

}
j=p1+1:p ;p1, p2

)
,

with z ∈ R.
A caution note is here in place: as mentioned in Coelho and Mexia (2010), it is

in this reference where the correct expressions for the p.d.f. and c.d.f. of the DGIG
distribution are to be found, since the ones in Coelho and Mexia (2007) suffer from
some typos in their writings.

In case some of the wj for j = 1, . . . , p1, or some of the wj for j = p1 +
1, . . . , p are equal, then adjustments similar to the ones indicated in Sect. 2 should
be made.

Mathematica� modules to implement the DGIG distribution are available in
Sect. 2.7 of Coelho and Mexia (2010). MAXIMA and R modules are also available
from the author or at https://sites.google.com/site/lincombchisquares.

4 The Case Where All wj Are Positive and the kj Are Both
Even and Odd or All Odd

Let us take

�j =
⌊
kj

2

⌋
and �∗j = kj

2
− �j (j = 1, . . . , p) (3)

respectively as the integer and non-integer parts of kj /2 (j = 1, . . . , p), and let

Z∗
j ∼ Γ

(
�j ,

1

2wj

)
and Z∗∗

j ∼ Γ

(
�∗j ,

1

2wj

)
, j = 1, . . . , p

be, for a given j , two independent r.v.’s, where Z∗∗
j vanishes if �∗j = 0 and Z∗

j

vanishes if kj = 1. Then we have

Zj = Z∗
j + Z∗∗

j .

Furthermore, let

https://sites.google.com/site/lincombchisquares
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Z∗ =
p∑
j=1

Z∗
j and Z∗∗ =

p∑
j=1

Z∗∗
j . (4)

Then we have

Z = Z∗ + Z∗∗ ,

where Z∗ and Z∗∗ are two independent r.v.’s, and where, in case all wj (j =
1, . . . , p) are different, Z∗ has a GIG distribution of depth p, with shape parameters
�j and rate parameters 1/(2wj), or a smaller depth, in case some of thewj are equal,
in which case a similar approach to the one described in Sect. 2 has to be taken.

In order to obtain a near-exact distribution for Z we will leave Z∗ untouched
and we will approximate the distribution of Z∗∗ by a finite mixture of say m∗ + 1
Gamma distributions, all with the same rate parameter λ, which may be obtained in
a number of different ways, which will be discussed next. The shape parameters in
this mixture will be equal to the sum of the shape parameters of the p r.v.’s Z∗∗

j , to
which we add 0, 1, . . . , m∗.

We will be able to explain better and more precisely which will be the shape
parameters of the distributions in this mixture and how the weights in this mixture
will be determined if we consider the characteristic function (c.f.) of Z∗∗, which is

ΦZ∗∗(t) =
p∏
j=1

(
1

2wj

)�∗j ( 1

2wj
− it

)−�∗j
, (5)

where it is clear that if some �∗j is zero, then the corresponding r.v. vanishes, being
its contribution for the product in (5) equal to 1.

Since the c.f. in (5) is the c.f. of a sum of independent Γ (�∗j , 1/(2wj)) r.v.’s
and since from the results in Moschopoulos (1985) it is possible to show that this
distribution is also the distribution of an infinite mixture of Gamma distributions
with shape parameters r + k (k = 0, 1, . . . ), where

r =
p∑
j=1

�∗j , (6)

we will approximate the c.f. in (5) by the c.f.

Φ∗(t) =
m∗∑
k=0

πkλ
r+k (λ− it)−(r+k) , (7)

which is the c.f. of a mixture with m∗ + 1 components which are Γ (r + k, λ)

distributions, for k = 0, 1, . . . , m∗, where r is given by (6) and where, as already
mentioned, λ may be determined in a few different ways, which will be addressed
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and discussed next. The weights πk (k = 0, . . . , m∗) in (6) will be determined in
such a way that the first m∗ non-central moments of the distributions corresponding
to ΦZ∗∗(t) and Φ∗(t) are the same, that is, πk for k = 0, . . . , m∗ − 1 will be
determined as the solutions of the system of m∗ equations

∂h

∂th
ΦZ∗∗(t)

∣∣∣∣
t=0

= ∂h

∂th
Φ∗(t)

∣∣∣∣
t=0

, h = 1, . . . , m∗, (8)

taking then πm∗ = 1 −∑m∗−1
k=0 πk .

This approach will give as near-exact c.f. for Z the c.f.

Φ∗
Z(t) = ΦZ∗(t)Φ∗(t)

=
⎧⎨
⎩

p∏
j=1

(
1

2wj

)�j ( 1

2wj
− it

)−�j
⎫⎬
⎭︸ ︷︷ ︸

ΦZ∗ (t)

m∗∑
k=0

πkλ
r+k (λ− it)−(r+k)

︸ ︷︷ ︸
Φ∗(t)

=
m∗∑
k=0

πk

⎧⎨
⎩

p∏
j=1

(
1

2wj

)�j ( 1

2wj
− it

)−�j
⎫⎬
⎭ λr+k (λ− it)−(r+k)

(9)

which yields as near-exact distributions for Z mixtures with m∗ + 1 components,
each of which is either a GIG or a GNIG distribution of depth p + 1, according to
the case of r being integer or not (we may note that it may happen quite often
r to be an integer since �∗j is either zero, if kj is even, or 1/2, if kj is odd),
with shape parameters �1, . . . , �p, r + k (k = 0, . . . , m∗) and rate parameters
1/(2w1), . . . , 1/(2wp), λ, and weights πk (k = 0, . . . , m∗ + 1). That is, from (9),
the near-exact p.d.f.’s and c.d.f.’s of Z will be respectively written as

f ∗
Z(z) =

m∗∑
k=0

πk f
GNIG

(
z

∣∣∣�1, . . . , �p; r + k; 1

2w1
, . . . ,

1

2wp
; λ;p + 1

)

and

F ∗
Z(z) =

m∗∑
k=0

πk F
GNIG

(
z

∣∣∣�1, . . . , �p; r + k; 1

2w1
, . . . ,

1

2wp
; λ;p + 1

)
,

using the notation in Appendix 1 for the GNIG p.d.f. and c.d.f., and where the GNIG
p.d.f. and c.d.f. are to be replaced by the GIG p.d.f. and c.d.f. in case r in (6) is an
integer.

In implementing this near-exact approximation, the c.f. of Z∗, ΦZ∗(t), which
will be kept unchanged, is a ‘major’ part of the whole c.f. of Z, ΦZ(t), in case all
kj are larger than 1, while the c.f. of Z∗∗, ΦZ∗∗(t), is a ‘smaller’ part, since in this
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case we have∫ +∞

−∞
|ΦZ(t)−ΦZ∗(t)| dt <

∫ +∞

−∞
|ΦZ(t)−ΦZ∗∗(t)| dt .

The distribution of Z∗∗ is that of a sum of independent Gamma r.v.’s with possi-
bly different rate parameters and non-integer, that is, half-integer, shape parameters.
Such a distribution was obtained by several authors as an infinite mixture of Gamma
distributions, as it is the case of Moschopoulos (1985), who obtained it in the form of
an infinite mixture of Gamma distributions all with the same rate parameter, which
is the maximum of the rate parameters of the Gamma distributions involved in the
sum, and shape parameters r + k (k = 0, 1, . . . ) for r in (6).

As such, the approach followed in approximating ΦZ∗∗(t) by Φ∗(t) follows
similar lines, to which was added what may be seen as a somewhat heuristic
approach, by turning the infinite mixture into a finite mixture, which is then rendered
extremely close to the exact distribution through the way its weights are determined.

Concerning the determination of the rate parameter λ in (7), several strategies
may be taken, among which we will address the following ones:

(i) maxj∈{1,...,p} 1
2wj

(ii) minj∈{1,...,p} 1
2wj

(iii) arithmetic mean of the 1
2wj

(j = 1, . . . , p)

(iv) harmonic mean of the 1
2wj

(j = 1, . . . , p)

(v) geometric mean of the 1
2wj

(j = 1, . . . , p)

(vi) the rate parameter λ in Φ̃(t) = λr(λ− it)−r , where
(10)

∂h

∂th
ΦZ∗∗(t)

∣∣∣∣
t=0

= ∂h

∂th
Φ̃(t)

∣∣∣∣
t=0

, h = 1, 2

(vii) the rate parameter λ in Φ̃(t) = θλr1(λ−it)−r1 + (1−θ)λr2(λ−it)−r2 ,
where

∂h

∂th
ΦZ∗∗(t)

∣∣∣∣
t=0

= ∂h

∂th
Φ̃(t)

∣∣∣∣
t=0

, h = 1, . . . , 4 .

These choices for λ will be denoted respectively by (i) ‘Max’, (ii) ‘Min’, (iii) ‘A’,
(iv) ‘H’, (v) ‘G’, (vi) ‘2m’ and (vii) ‘4m’ in the Tables that appear in Sect. 4.1.

The choice in (i) is based on the paper by Moschopoulos (1985), where we should
note that the author uses in the notation of the p.d.f. of the Gamma distribution a
scale parameter instead of a rate parameter, so that his βj are the reciprocals of
our rate parameters 1/(2wj). The choice in (ii) is made to show that in some cases
this choice works better than the choice in (i). The choice in (iii), which as we will
see shortly ahead works quite often better than the two previous ones, is inspired
in the well-known fact that if all wj are equal, say to a common value w, then
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the distribution of Z∗∗ (and actually the distribution of Z∗ and of Z) will be just
a Gamma distribution with a rate parameter equal to 1/(2w). So, we may think
about taking the arithmetic average of the rate parameters 1/(2wj) in case they are
different. However, the choice in (iv) may be a better one, given the fact that the
c.f. of Z∗∗, as shown in (5) is indeed a product, and it is in this product that we are
kind of ‘replacing’ the set of p rate parameters 1/(2wj) by just a single parameter,
making then most sense to take the harmonic mean of the original parameters,
instead of the arithmetic mean. The choice in (v) is made to see how the choice of
the geometric mean compares with the harmonic mean and also say to ‘complete’
the set of the most common means. The choice in (vi) is a simplification of the
choice in (vii), which is known to the author to provide generally very good results.

As we will see, options (iv), (v), (vi) and (vii) give the best results, in many
situations just with slight differences among them. In these cases, options (iv) or
(v) will be the preferred ones given their computational simplicity, compared with
options (vi) and (vii). However, also option (i) may give very good results in some
particular situations.

We may note that in case all kj are equal to 1, then all �j will be equal to zero
and in this case Z∗ vanishes and the procedure developed will then provide a quite
sharp asymptotic distribution for Z, rather than a near-exact one.

Modules programmed in Mathematica� to implement these near-exact distribu-
tions are available at https://sites.google.com/site/lincombchisquares.

4.1 On the Behavior of the Near-Exact Distributions for the
Several Different Choices of λ in (10)

To assess the quality of the approximation provided by different near-exact distribu-
tions we use the measure

Δ = 1

2π

∫ +∞

−∞

∣∣∣∣ΦZ(t)−Φ∗
Z(t)

t

∣∣∣∣ dt (11)

where

ΦZ(t) =
p∏
j=1

(
1

2wj

)kj /2 ( 1

2wj
− it

)−kj /2

= ΦZ∗(t)ΦZ∗∗(t)

is the exact c.f. of Z and Φ∗
Z(t) is the near-exact c.f. of Z in (9).

The measure Δ, as defined in (11), is a sharp upper-bound on the difference
between the exact and the near-exact c.d.f.’s, since we may write

Δ ≥ max
z>0

∣∣FZ(z)− F ∗
Z(z)

∣∣ , (12)

where FZ(z) and F ∗
Z(z) represent respectively the exact and the near-exact c.d.f.’s

of Z. Actually, both in (11) as well as in (12) one may use respectively Φ∗
Z(t) and

https://sites.google.com/site/lincombchisquares
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F ∗
Z(z) as the c.f. and the c.d.f. for any approximate distribution of Z as for example

an asymptotic or a truncated distribution. This is exactly what we will do next when
comparing the performance of the near-exact distributions with truncations of the
infinite mixture obtained by Moschopoulos (1985).

To illustrate the behavior of the seven possible different choices for λ suggested
in (10) we have chosen to use ten different scenarios, the first eight of which all deal
with a set of p = 5 independent chi-square r.v.’s Yj . In the first four scenarios the
chi-square r.v’s have kj = {2, 7, 16, 17, 19} d.f.’s, and then we study four different
choices for the coefficients wj (j = 1, . . . , 5). These four scenarios illustrate the
following situations:

I scenario with values of wj = {2.3, 3.4, 5.6, 7.8, 8.9}, that is, larger than 1 and
which increase with increasing values for the d.f.’s

II scenario with values of wj = {0.11, 0.13, 0.18, 0.29, 0.43} smaller than 1 and
which increase with increasing values for the d.f.’s

III scenario with values of wj = {8.9, 7.8, 5.6, 3.4, 2.3} larger than 1 and which
decrease with increasing values for the d.f.’s

IV scenario with values of wj = {0.43, 0.29, 0.18, 0.13, 0.11} smaller than 1 and
which decrease with increasing values for the d.f.’s.

For scenarios V–VIII we use respectively exactly the same wj that are used for
scenarios I–IV, with the difference that now the p = 5 independent chi-square r.v.’s
Yj have kj = {12, 17, 26, 27, 29} d.f.’s, that is, each one of them has ten more d.f.’s
than in scenarios I–IV.

Then for scenarios IX and X we use four chi-square r.v.’s, respectively with kj =
{3, 1, 2, 2} and kj = {9, 3, 6, 6} d.f.’s, in both cases with wj = {2/5, 1/2, 1, 9}, in
order to not only consider situations where the wj take a wide range of values but
also where they take values both smaller and larger than 1.

For each of the ten above scenarios the measure Δ in (11) was computed for
the Moschopoulos (1985) distribution with truncations at 100, 150 and 200 terms
and for the near-exact distributions with the seven different choices for λ in (10)
(denoted by the descriptors listed right after (10)), for values of m∗ = 10, m∗ = 15
and m∗ = 20, that is, for near-exact distributions that match m∗ = 10, 15 or 20 of
the exact moments of Z. The values for the measure Δ in (11) are shown in Tables
1, 2, and 3 and we will analyze the results for each scenario individually.

Our intent is to compare the near-exact distributions that match 10, 15 and
20 exact moments respectively with the Moschopoulos (1985) series distribution
truncated to 100, 150 and 200 terms.

From Table 1 we may see that for Scenario I the Moschopoulos (1985) series
truncated at 100 terms does have a very poor performance, with a quite large
value of Δ, and that the Moschopoulos series distribution truncated at 150 terms is
overpowered by all the near-exact distributions that match 15 exact moments, while
the truncated series with 200 terms only beats the near-exact distribution that uses
λ as the maximum of the rate parameters 1/(2wj), with the near-exact distribution
that uses λ defined as in (vii) in (10) showing the best performance among all near-
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Table 1 Values of the measure Δ in (11) for scenarios I–IV, for truncations of the Moschopoulos
(1985) series distribution with 100, 150 and 200 terms (respectively the columns marked withm∗ =
10, m∗ = 15 and m∗ = 20), denoted by ‘Mosc’, and for the near-exact distributions with λ defined
by the seven choices in (10), denoted by the descriptors indicated right after (10) in Sect. 4, for linear
combinations of p = 5 independent chi-square r.v.’s with kj = {2, 7, 16, 17, 19} d.f.’s and with
coefficients wj = {2.3, 3.4, 5.6, 7.8, 8.9} for Scenario I, wj = {0.11, 0.13, 0.18, 0.29, 0.43} for
Scenario II, wj = {8.9, 7.8, 5.6, 3.4, 2.3} for Scenario III and wj = {0.43, 0.29, 0.18, 0.13, 0.11}
for Scenario IV

Scenario I

m∗ = 10 m∗ = 15 m∗ = 20

Mosc 2.61×10−1 4.43×10−5 1.02×10−9

Max 2.04×10−6 4.39×10−7 3.58×10−7

Min 7.67×10−9 4.65×10−11 4.77×10−13

A 1.04×10−8 1.34×10−10 4.30×10−12

H 1.25×10−10 1.92×10−13 6.31×10−16

G 1.36×10−9 6.45×10−12 7.06×10−14

2m 4.62×10−10 1.11×10−12 4.85×10−15

4m 2.48×10−11 2.37×10−14 4.05×10−17

Scenario II

m∗ = 10 m∗ = 15 m∗ = 20

Mosc 1.19×10−2 3.71×10−7 2.81×10−12

Max 5.52×10−6 2.60×10−6 4.35×10−6

Min 1.05×10−7 1.60×10−9 3.93×10−11

A 1.62×10−7 1.05×10−8 1.71×10−9

H 6.60×10−9 8.11×10−11 2.16×10−12

G 4.22×10−8 1.34×10−9 9.94×10−11

2m 3.15×10−9 1.63×10−11 1.48×10−13

4m 1.31×10−10 4.49×10−13 1.28×10−15

Scenario III

m∗ = 10 m∗ = 15 m∗ = 20

Mosc 9.57×10−7 4.96×10−13 1.76×10−19

Max 8.33×10−6 4.44×10−6 6.73×10−6

Min 2.63×10−6 8.38×10−8 3.92×10−9

A 7.19×10−9 8.63×10−11 2.00×10−12

H 5.19×10−9 2.55×10−11 2.15×10−13

G 3.17×10−10 2.81×10−12 3.95×10−15

2m 8.12×10−9 4.58×10−11 4.42×10−13

4m 2.17×10−9 1.58×10−11 2.00×10−13

Scenario IV

m∗ = 10 m∗ = 15 m∗ = 20

Mosc 8.97×10−10 3.44×10−16 1.32×10−22

Max 1.13×10−6 1.80×10−7 6.87×10−8

Min 1.84×10−5 8.80×10−7 5.57×10−8

A 1.06×10−9 4.90×10−12 4.13×10−14

H 3.34×10−9 9.63×10−12 4.60×10−14

G 1.70×10−10 2.91×10−13 3.88×10−16

2m 8.79×10−10 1.62×10−12 5.07×10−15

4m 1.17×10−9 5.59×10−12 4.93×10−14

exact distributions, and the one that uses λ as the harmonic mean of the 1/(2wj)
coming second.

For Scenario II the distributions have a somewhat similar behavior as it happens
for Scenario I, with all near-exact distributions that match 10 exact moments
outperforming Moschopoulos series truncated at 100 terms and all but the one
with λ defined as the maximum of the 1/(2wj) showing better performances than
the Moschopoulos series truncated at 150 terms. However, only the near-exact
distributions that use λ defined as in (vii), (vi) and (iv) in (10) are able to outperform
the Moschopoulos series truncated at 200 terms. In all cases it is the near-exact
distribution λ given by (vii) in (10) that has the best performance followed by the
one with λ given by (vi) in (10) and by the one that uses λ as the harmonic mean of
the 1/(2wj), with the one that uses λ as the geometric mean of the 1/(2wj) coming
in fourth place for the near-exact distributions that match 10 or 15 exact moments,
but being beatten by the one that uses λ as the minimum of the 1/(2wj) when we
consider the near-exact distributions that match 20 exact moments.
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In Scenario III while all near-exact distributions that match 10 exact moments,
except the ones that use λ as the maximum or the minimum of the 1/(2wj), beat
the Moschopoulos series truncated at 100 terms, which already exhibits a much
good performance, none of the near-exact distributions that match 15 exact moments
is able to beat the Moschopoulos series truncated at 150 terms, neither none of
the near-exact distributions that match 20 exact moments is able to outperform the
Moschopoulos series truncated at 200 terms, although the near-exact distributions
that match 20 exact moments and use λ given by (v), (vii), (iv) and (vi) in (10) beat
the Moschopoulos series distribution truncated at 150 terms, with performances in
that order, with the near-exact distribution with λ given by the geometric mean of
the rate parameters 1/(2wj) displaying the best behavior.

In Scenario IV, among the near-exact distributions that match 10 exact moments,
only the one that uses λ as the geometric mean of the 1/(2wj) is able to outperform
the Moschopoulos series truncated at 100 terms. Indeed for this scenario the
Moschopoulos series distribution displays an extraordinary good performance, with
none of the near-exact distributions that match 15 or even 20 exact moments being
able to beat the Moschopoulos series distribution truncated to 150 terms. Anyway,
among the near-exact distributions it is the one that uses λ as the geometric mean of
the rate parameters 1/(2wj), that shows the best performance, followed by the one
that uses λ given by (vi) in (10), leaving the one that uses λ given by (vii) in (10)
with the third place among those that match 10 or 15 exact moments or the fourth
place among those that match 20 exact moments, where the third place is taken by
the near-exact distribution that uses λ given by the harmonic mean of the 1/(2wj),
which takes fourth place among the near-exact distributions that match 10 or 15
exact moments.

In the overall, for Scenarios I–IV, we may see that the Moschopoulos distribution
shows very good performances for cases where the products wjkj (j = 1, . . . , p)
show a more balanced sequence of values, preferably with smaller values, that is,
for Scenarios III and IV, where the wj are inversely proportional to the kj , while the
near-exact distributions show clear advantages in the opposite situations, that is, in
situations where the values of wjkj (j = 1, . . . , p) are more unbalanced, which are
the situations in Scenarios I and II, where the wj have values proportional to the kj .

Of course that since the numerical computation of the exact moments of Z is
rather simple and the numerical solution of the system of equations in (8) is quite
simple and quick, since it is a linear system of equations, we may always easily
extend the value of m∗ in (7) and (8), that is, the number of exact moments that
the near-exact distributions match, in order to obtain a better fitting distribution.
In this way we may always be able to beat the performance of any Moschopoulos
series distribution truncation. For example if in Scenario IV we take the near-exact
distribution with λ defined as the geometric mean of the 1/(2wj) that matches 35
exact moments, we would obtain for this distribution a value of the measure Δ

equal to 2, 51×10−23, this way beating the performance of the Moschopoulos series
distribution truncated to 200 terms.

For Scenarios V–VIII, where the only change from Scenarios I–IV is in the d.f.’s
of the chi-square r.v.’s involved, which now have ten more d.f.’s each, we may see,
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Table 2 Values of the measure Δ in (11) for scenarios V–VIII, for truncations of the Moschopoulos
(1985) series distribution with 100, 150 and 200 terms (respectively the columns marked with m∗ =
10, m∗ = 15 and m∗ = 20), denoted by ‘Mosc’, and for the near-exact distributions with λ defined
by the seven choices in (10), denoted by the descriptors indicated right after (10) in Sect. 4, for linear
combinations of p = 5 independent chi-square r.v.’s with kj = {12, 17, 26, 27, 29} d.f.’s and with
coefficients wj = {2.3, 3.4, 5.6, 7.8, 8.9} for Scenario V, wj = {0.11, 0.13, 0.18, 0.29, 0.43} for
Scenario VI, wj = {8.9, 7.8, 5.6, 3.4, 2.3} for Scenario VII and wj = {0.43, 0.29, 0.18, 0.13, 0.11}
for Scenario VIII

Scenario V

m∗ = 10 m∗ = 15 m∗ = 20

Mosc 1.39×101 1.35×10−1 6.90×10−5

Max 8.92×10−8 3.42×10−9 4.23×10−10

Min 8.56×10−10 2.39×10−12 1.22×10−14

A 6.35×10−10 2.26×10−12 2.08×10−14

H 9.35×10−12 4.81×10−15 5.67×10−18

G 9.21×10−11 1.34×10−13 4.72×10−16

2m 4.32×10−11 4.27×10−14 8.33×10−17

4m 2.00×10−12 7.10×10−16 4.87×10−19

Scenario VI

m∗ = 10 m∗ = 15 m∗ = 20

Mosc 1.93×100 1.35×10−3 8.96×10−8

Max 2.41×10−7 2.09×10−8 5.87×10−9

Min 1.35×10−8 1.03×10−10 1.39×10−12

A 9.50×10−9 1.62×10−10 7.34×10−12

H 4.74×10−10 1.89×10−12 1.76×10−14

G 2.71×10−9 2.50×10−11 5.78×10−13

2m 3.08×10−10 6.78×10−13 2.89×10−15

4m 1.02×10−11 1.42×10−14 1.62×10−17

Scenario VII

m∗ = 10 m∗ = 15 m∗ = 20

Mosc 2.72×10−1 2.89×10−5 3.63×10−10

Max 4.86×10−8 2.35×10−9 3.56×10−10

Min 1.03×10−7 1.24×10−9 2.55×10−11

A 9.20×10−11 2.09×10−13 1.11×10−15

H 8.72×10−11 1.04×10−13 2.60×10−16

G 3.40×10−12 8.99×10−15 3.22×10−18

2m 1.43×10−10 2.03×10−13 5.92×10−16

4m 3.06×10−11 4.48×10−14 1.38×10−16

Scenario VIII

m∗ = 10 m∗ = 15 m∗ = 20

Mosc 1.27×10−3 1.02×10−8 2.72×10−14

Max 5.26×10−9 9.16×10−11 4.65×10−12

Min 8.01×10−7 1.63×10−8 5.05×10−10

A 9.90×10−12 8.62×10−15 1.72×10−17

H 4.25×10−11 2.99×10−14 4.30×10−17

G 1.62×10−12 6.35×10−16 2.09×10−19

2m 9.88×10−12 4.15×10−15 3.66×10−18

4m 1.08×10−11 9.73×10−15 2.02×10−17

from Table 2, that the performance of the truncations of the Moschopoulos series
distribution has worsened quite much, with the truncations with 100 terms even
displaying for Scenarios V and VI values of the measure Δ which do not make
sense, since these values are supposed to lie between zero and 1. Going in the
opposite direction, all near-exact distributions show sharp improvements in the Δ
values, when compared with the corresponding distributions in Scenarios I–IV.

We may see that now for Scenario V all near-exact distributions that match
10 exact moments even show a better performance than the Moschopoulos series
truncated at 200 terms, a situation that is almost repeated for Scenario VI, with the
only exception being the near-exact distribution with λ given by the maximum of the
1/(2wj) and that matches 10 exact moments, which shows a less good performance
than the Moschopoulos series truncated at 200 terms, but still showing a better
performance than the Moschopoulos series truncated at 150 terms.
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For Scenario VII only the near-exact distributions with λ given either by the
maximum or the minimum of the 1/(2wj), which match 10 or 15 exact moments
are not able to beat the Moschopoulos series truncated at 200 terms, but with
all near-exact distributions that match 10, 15 or 20 exact moments outperforming
respectively the Moschopoulos series expansions with 100, 150 or 200 terms.

Even for Scenario VIII, which among the four Scenarios V–VIII is the most
favorable one for the Moschopoulos series expansion, all near-exact distributions
that match 10 exact moments are able to outperform the Moschopoulos series
expansions with 100 terms, and among those that match 15 exact moments, only
the near-exact distribution with λ defined as the minimum of the 1/(2wj) is not
able to outperform the Moschopoulos series truncated at 150 terms. Also, among
the near-exact distributions that match 20 exact moments, only those with λ defined
by either the maximum or the minimum of the 1/(2wj) are not able to outperform
the Moschopoulos series distribution truncated at 200 terms.

For Scenarios V–VIII the behavior of the near-exact distributions for the different
choices of λ in (10) is similar in their interrelations to the ones described for
Scenarios I–IV. For Scenarios I and V, the near-exact distributions ranking 1–4 in
their performance are, in this order, the ones with λ given by (vii), (iv), (vi) and (v)
in (10), while for Scenarios II and VI the near-exact distributions ranking 1–3 are
the ones with λ given by (vii), (vi) and (iv) in (10), with a swap between the ones
with λ given by (ii) and (v) for fourth and fifth place. Also for Scenarios III and VII
the near-exact distributions ranking 1–5 in their performance are the same, being,
in this order, the ones with λ given by (v), (vii), (iv), (vi) and (iii) in (10). Only for
Scenarios IV and VIII there is a swap between the near-exact distributions with λ
given by (iii) and (iv) in (10), for third and fifth performance places, but with the
ones with λ given by (v), (vi) and (vii) in (10) keeping the first, second and fourth
performance places. For these two scenarios there is a somewhat strange inversion
in the performance of the near-exact distributions with λ given by (vii) and (vi) in
(10), with this last one showing a better performance.

From the values in Table 3 we may see how truncations of the Moschopoulos
distribution, actually as most other approximations and series distributions, have
severe trouble handling the situations in scenarios IX and X and also how when the
numbers of d.f.’s increase the situation becomes even worse.

By contrast, the near-exact distributions, namely those with λ defined as the
maximum or the average of the 1/(2wj) or those which use λ defined by (vi) or
(vii) in (10) give extremely sharp approximations, and, as expected, even increase
their performance when the kj , that is, the number of d.f.’s, increase.

For these situations depicted in scenarios IX and X we would certainly choose to
use λ defined as the maximum of the 1/(2wj) or given by (vi) in (10).
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Table 3 Values of the measure Δ in (11) for scenarios IX–X, for truncations of the Moschopoulos
(1985) series distribution with 100, 150 and 200 terms (respectively the columns marked with m∗ =
10, m∗ = 15 and m∗ = 20), denoted by ‘Mosc’, and for the near-exact distributions with λ defined
by the seven choices in (10), denoted by the descriptors indicated right after (10) in Sect. 4, for
linear combinations of p = 4 independent chi-square r.v.’s respectively with kj = {3, 1, 2, 2} and
kj = {9, 3, 6, 6} d.f.’s and with coefficients wj = {2/5, 1/2, 1, 9} for both scenarios

Scenario IX

m∗ = 10 m∗ = 15 m∗ = 20

Mosc 3.92×10−1 4.04×10−2 4.16×10−3

Max 3.76×10−12 1.35×10−15 6.43×10−19

Min 4.92×10−2 2.92×10−2 1.85×10−2

A 2.39×10−8 1.61×10−10 1.38×10−12

H 2.00×10−3 5.45×10−4 1.66×10−4

G 1.18×10−5 6.60×10−7 4.45×10−8

2m 1.72×10−15 1.95×10−20 2.58×10−25

4m 1.24×10−15 1.58×10−20 1.94×10−25

Scenario X

m∗ = 10 m∗ = 15 m∗ = 20

Mosc 6.58×100 1.35×100 2.31×10−1

Max 1.94×10−16 1.36×10−20 2.04×10−24

Min 4.91×10−3 2.08×10−3 1.02×10−3

A 9.33×10−12 1.98×10−14 7.30×10−17

H 2.60×10−5 4.00×10−6 8.01×10−7

G 1.99×10−8 4.64×10−10 1.63×10−11

2m 1.36×10−19 3.48×10−25 1.56×10−30

4m 9.89×10−20 2.70×10−25 1.11×10−30

4.2 A Note on Computation Times and the Use of the GNIG
p.d.f. and c.d.f.

We may note that although the general expressions for the p.d.f. and the c.d.f. of the
GNIG distribution involve the Kummer confluent hypergeometric function

1F1(a, b; z) =
∞∑
i=0

Γ (a + i)

Γ (a)

Γ (b)

Γ (b + i)

1

zi
,

which is nowadays possible to compute precisely and efficiently with most symbolic
softwares as it is for example the case of Mathematica� and also MAXIMA, in our
case it is possible to use an even more efficient and convenient representation for
these functions since their arguments a and b will always be half-integers. As such
we may use the fact that for any odd integer k we may write

1F1

(
k

2
,
k

2
+ 1, z

)
= k ez

2(k+1)/2 (−z)k/2

⎛
⎜⎝
⎧⎪⎨
⎪⎩

k−1
2∏

j=1

(2j − 1)

⎫⎪⎬
⎪⎭ e−z

√
π Erf

(√−z)

−
k−1

2∑
j=1

(−z) 2j−1
2 2j

⎧⎪⎨
⎪⎩
k−3

2 −j∏
�=0

2

(
k − 1

2
− �

)
− 1

⎫⎪⎬
⎪⎭
⎞
⎟⎠

(13)
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where

Erf(z) = 2√
π

∫ z

0
e−t2 dt

is the error function. This expression is computationally very convenient since most
softwares can nowadays compute this error function very efficiently and then we
may use the fact that

1F1(a, a,−z) = e−z

together with expression 13.4.2 in Slater (1972), which, for j = 1, 2, . . . , in our
case may be written as

1F1
(
k
2 ,

k
2 + j + 1, z

) = − 1
z

(
k

2j + 1
) { (

k
2 + j − 1

)
1F1

(
k
2 ,

k
2 + j − 1, z

)
+ (

1 − k
2 − j − z

)
1F1

(
k
2 ,

k
2 + j, z

) }
,

to compute iteratively all Kummer confluent hypergeometric functions that appear
in the expressions for the p.d.f. and the c.d.f. of the GNIG distributions used.

5 The Distribution of Some Instances of Ratios of Two
Independent Linear Combinations of Independent
Chi-Squares

The distribution of ratios of two independent linear combinations of independent
chi-squares appears mostly as the distribution of ratios of independent quadratic
forms in multivariate normal variates, each one of which has the distribution of a
linear combination of independent chi-squares. In turn these ratios have since long
been associated with tests in Analysis of Variance models where different variances
are assumed for the populations associated with the different levels of the factor or
factors (Box 1954; Welch 1947; Satterthwaite 1941). Based on the results obtained
in Sects. 2 and 4 it is possible to obtain the exact distribution of a ratio of two
independent linear combinations of independent chi-squares in one situation and an
asymptotic distribution for another situation.

First of all we need to recognize that actually the GIG distribution may be seen
as a mixture of Gamma distributions, all with integer shape parameters, since we
may write the p.d.f. of the GIG distribution in (28) as
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fZ(z) = K

p∑
j=1

rj∑
k=1

cj,k e
−λj z zk−1

=
p∑
j=1

rj∑
k=1

Kcj,kΓ (k)

λkj︸ ︷︷ ︸
pj,k

λkj

Γ (k)
e−λj zzk−1

︸ ︷︷ ︸
p.d.f. of a Γ (k,λj ) dist.

=
p∑
j=1

rj∑
k=1

pj,k
λkj

Γ (k)
e−λj zzk−1

(14)

which is the p.d.f. of a mixture of
∑p

j=1 rj distributions Γ (k, λj ), with weights

pj,k = Kcj,kΓ (k)/λ
k
j (j = 1, . . . , p; k = 1, . . . , rj ).

Second of all, we may note that if X ∼ Γ (r1, λ1) and Y ∼ Γ (r2, λ2) are two
independent r.v.’s, then the r.v. W = X/Y has p.d.f.

fW (w) =
kr1

B(r1, r2)
(1 + kw)−r1−r2wr1−1 (w > 0) (15)

and c.d.f.

FW(w) =
kr1

B(r1, r2)

wr1

r1
2F1(r1 + r2, r1; r1 + 1;−kw)

= BR

(
r1, r2; kw

kw + 1

)
(w > 0) ,

(16)

where k = λ1/λ2, B( · , · ) is the common Beta function, 2F1( · , · ; · ) is the
Gauss hypergeometric function and BR( · , · ; z) is the regularized incomplete Beta
function, with

BR(r1, r2; z) = 1

B(r1, r2)

∫ z

0
xr1−1(1 − x)r2−1 dx .

Then, we have two important cases where it is possible to obtain closed
form expressions for the p.d.f. and c.d.f. of the ratio of two independent linear
combinations of independent chi-squares.

Let us suppose that

Z1 =
p1∑
j=1

wjYj and Z2 =
p2∑
�=1

w∗
�Y

∗
� (17)

are two independent linear combinations of independent chi-squares, where

Yj ∼ χ2
kj

and Y ∗
� ∼ χ2

k∗�
j = 1, . . . , p1; � = 1, . . . , p2

where all of kj (j = 1, . . . , p1) and k∗� (� = 1, . . . , p2) are even integers.
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Then the exact distribution of both Z1 and Z2 are GIG distributions, which in
case all wj (j = 1, . . . , p1) and also all w∗

� (� = 1, . . . , p2) are different, will have
respectively depths p1 and p2. But then, from the mixture representation of the GIG
distribution we may see that in this case the exact distribution of

V = Z1/Z2

will be a double mixture of ratios of independent Gamma distributed r.v.’s, which,
from (15), will have, for v > 0, p.d.f.

fV (v) =
p1∑
j=1

p2∑
�=1

kj /2∑
h=1

k∗� /2∑
i=1

pj,h p
∗
�,i

(
w∗
�

wj

)h
B(h, i)

(
1 + w∗

�

wj
v

)−h−i
v h−1 (18)

and from (16), c.d.f.

FV (v) =
p1∑
j=1

p2∑
�=1

kj /2∑
h=1

k∗� /2∑
i=1

pj,h p
∗
�,i BR

⎛
⎝h, i,

w∗
�

wj
v

w∗
�

wj
v + 1

⎞
⎠ (19)

where, from (14) and from (29),

pj,h =
⎧⎨
⎩

p1∏
j=1

(
1

2wj

)kj /2
⎫⎬
⎭ cj,h Γ (h)(

1
2wj

)h , j = 1, . . . , p1;h = 1, . . . , kj /2

and

p∗
�,i =

{
p2∏
�=1

(
1

2w∗
�

)k∗� /2
}
c�,i Γ (i)(

1
2w∗

�

)i , � = 1, . . . , p2; i = 1, . . . , k∗� /2 , (20)

for cj,h and c�,i defined according to (30)–(32) in Appendix 1.
One other situation of interest, as we will see in Sect. 6, is when Z1 in (17) is a

linear combination of independent chi-squares, all with one d.f. In this case, if we
take the approach described in Sect. 4, all the parameters �j in (3) will be equal to
zero and the r.v. Z∗ in (4) vanishes, while ΦZ∗∗( · ), the c.f. to be asymptotically
approximated, will be the whole c.f. of Z1. Thus, in this case we will obtain for
Z1 not a near-exact distribution but simply an asymptotic distribution, as noted
in Sect. 4. This asymptotic distribution, which will correspond to the c.f. Φ∗( · )
in (7) will then be a mixture of m∗ + 1 independent Γ (r + k, λ) distributions
(k = 0, . . . , m∗), where r = p1/2 and λ is to be computed according to one of
the strategies in (10).
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Then, if the exact distribution of Z2 remains being the one in (17), with all k∗�
even, based on this asymptotic distribution for Z1, the asymptotic distribution of
V = Z1/Z2 will have p.d.f.

fV (v) =
m∗∑
j=0

p2∑
�=1

k∗� /2∑
i=1

πj p
∗
�,i

(2λw∗
� )
r+j

B(r + j, i)

(
1 + 2λw∗

�v
)−r−j−i

vr+j−1 (21)

and c.d.f.

FV (v) =
m∗∑
j=0

p2∑
�=1

k∗� /2∑
i=1

πj p
∗
�,i BR

(
r + j, i; 2λw∗

�v

1 + 2λw∗
�v

)
, (22)

for v > 0.
We may note that the part of the incomplete Beta function in both regularized

incomplete Beta functions in (19) and (22), given the fact that the second argument
is an integer, may be written as a finite sum, that is, in both cases we may write, for
any a > 0 and any z > 0,

BR(a, i; z) = 1

B(a, i)

i−1∑
j=0

(−1)j

a + j

(
i−1

j

)
za+j .

6 The Distribution of the Behrens–Fisher Statistic

In this section we will address the distribution of the statistic used to test the equality
of the expected values of two Normal r.v.’s, when their variances are assumed
to be different. This testing problem is commonly known as the Behrens–Fisher
problem (Behrens 1929; Fisher 1939), and we will call “Behrens–Fisher statistic"
the associated test statistic.

We will consider this statistic to be the statistic V = QB/(QW/(n1 + n2 − 2))
where n1 and n2 are the sample sizes respectively for the samples of the first and
second populations, that is, of X1 ∼ N(μ1, σ

2
1 ) and X2 ∼ N(μ2, σ

2
2 ), and where

QB and QW are respectively the between and within sums of squares in Sect. 7 of
Box (1954), for the case k = 2.

This statistic V may be seen as the square of the T statistic for the Behrens–
Fisher problem. From Sect. 7 of Box (1954), QB is distributed as w1χ

2
1 , with

w1 = (n2σ
2
1 + n1σ

2
2 )/(n1 + n2) , (23)

which is the non-null eigenvalue of the matrix VM on page 298 of Box (1954),
where
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V =
[
σ 2

1 /n1 0

0 σ 2
2 /n2

]
and M =

⎡
⎣n1 − n2

1
n1+n2

− n1n2
n1+n2

− n1n2
n1+n2

n2 − n2
2

n1+n2

⎤
⎦ ,

that is, QB∼Γ (1/2, λ), with λ=1/(2w1), while QW is distributed as σ 2
1 Y1 + σ 2

2 Y2

where Y1 and Y2 are two independent r.v.’s, with Y1 ∼ χ2
n1−1 and Y2 ∼ χ2

n2−1.

The population variances, σ 2
1 and σ 2

2 , in case they are not known, will appear as
nuisance parameters in the distribution of V . In this case they may be replaced by
their estimates (preferably the maximum likelihood or the common centered ones).

If one uses the statistic V to carry out the test, one will basically be testing the
null hypothesis H0 : μ1 = μ2 versus the alternative hypothesis H1 : μ �= μ2,
rejecting H0 if the computed value of V exceeds the α-quantile of V . However, one
may take the square root of the computed value of V affected by the sign ofX1−X2
(where X1 and X2 represent the sample means of the samples from X1 and X2) to
carry out a one-sided test, where then the quantile to be used in order to carry out
an α level test will be the square root of the 1-α quantile of V affected by the same
sign. Alternatively, if one wants to take a p-value approach, this means that, taking
FV ( · ) as the c.d.f. of V and v as the computed value of V , while one would use
1−FV (v) as the p-value for the two-sided test, one would have to use (1−FV (v))/2
as the p-value for the one-sided test.

6.1 The Case of Both n1 and n2 Odd

In case n1 and n2 are both odd, the exact p.d.f. and c.d.f. of V may be obtained
respectively either from (18) and (19) or from (21) and (22), since in this case the
exact distribution of QW is a GIG distribution of depth 2, with r1 = (n1 − 1)/2,
r2 = (n2 − 1)/2, λ1 = (n1 + n2 − 2)/(2σ 2

1 ) and λ2 = (n1 + n2 − 2)/(2σ 2
2 ). Let

us then take (21) and (22) as the basis for the expressions of the p.d.f. and c.d.f. of
V . Then, the exact p.d.f. of V = QB/(QW/(n1 + n2 − 2)) is given by (21) with
m∗ = 0, π0 = 1, p2 = 2, k∗1 = n1 − 1, k∗2 = n2 − 1, r = 1/2, λ = 1/(2w1),
w∗

1 = σ 2
1 /(n1 + n2 − 2) and w∗

2 = σ 2
2 /(n1 + n2 − 2), that is, it will be given by

fV (v) =
2∑

�=1

(n�−1)/2∑
i=1

p∗
�,i

σ 2
�

n1+n2
n2σ

2
1 +n1σ

2
2

B
(

1
2 , i

)
(

1 + σ 2
�

(n1 + n2) v

n2σ
2
1 + n1σ

2
2

)− 1
2−i

v−1/2

and the exact c.d.f. by

FV (v) =
2∑

�=1

(n�−1)/2∑
i=1

p∗
�,i BR

(
1

2
, i; σ 2

� v (n1 + n2)

n2σ
2
1 + n1σ

2
2 + σ 2

� v(n1 + n2)

)
,

where the p∗
�,i (� = 1, 2; i = 1, . . . , (n� − 1)/2) are given by (20).



The Distribution of Linear Combinations of Chi-Squares 235

6.2 The Case of Either n1 or n2 Odd and the Other One Even

In this case the distribution of QW is a GNIG distribution of depth 2 with
parameters, which if, without any loss of generality, we assume n1 to be odd and n2
even, will be r1 = (n1 − 1)/2, r2 = (n2 − 1)/2, λ1 = (n1 + n2 − 2)/(2σ 2

1 ) and
λ2 = (n1 + n2 − 2)/(2σ 2

2 ).
It happens that in this case, where the GIG part of the GNIG distribution has only

depth 1, that is, is formed only by a single integer Gamma r.v., the coefficients cj,k ,
which would only be c1,k , are all null except c1,r1 , a fact that is easily verified from
(30)–(32) in Appendix 1. Furthermore, in this case we have c1,r1 = 1/(r1 − 1)!,
which simplifies the expression for the p.d.f. of QW to (see (33) in Appendix 1)

fQW
(q) = Ke−λ1q

1

Γ (r1 + r2)
qr1+r2−1

1F1(r2, r2 + r1,−(λ2 − λ1)q) , (24)

for K = λ
r1
1 λ

r2
2 , with r1, r2, λ1 and λ2 as defined above.

Using then the series expansion of the Kummer confluent hypergeometric
function, we are able to write the distribution of QW as an infinite mixture of
Gamma distributions, since we may write

fQW
(q) =

∞∑
i=0

K
Γ (r2 + i)

Γ (r2) Γ (r2 + r1 + i)

(λ1 − λ2)
i

i! qr1+r2+i−1 e−λ1q

=
∞∑
i=0

K
Γ (r2 + i)

Γ (r2) λ
r1+r2+i
1

(λ1 − λ2)
i

i!︸ ︷︷ ︸
pi

λ
r1+r2+i
1

Γ (r1 + r2 + i)
e−λ1q qr1+r2+i−1

︸ ︷︷ ︸
p.d.f. of Γ (r1+r2+i,λ1)

,

which is the p.d.f. of an infinite mixture of Γ (r1 + r2 + i, λ1) distributions, with
weights pi (i = 0, 1, . . . ).

Thus, since QB ∼ Γ (1/2, λ) with λ = 1/(2w1), for w1 given by (23), the exact
distribution of V is that of an infinite mixture of ratios of Γ (1/2, λ) and Γ (r1+r2+
i, λ1) distributions, with weights pi (i = 0, 1, . . . ), with p.d.f.

fV (v) =
∞∑
i=0

K
Γ (r2+i)
Γ (r2)

λ1/2

B
(

1
2 , r1+r2+i

) (λ1−λ2)
i

i!
(

1

λ1+λv
)r1+r2+1/2+i

v−1/2

= K

(
λ

v

)1/2 ( 1

λ1 + λv

)r1+r2+1/2 1

B
(

1
2 , r1 + r2

)

×
∞∑
i=0

Γ (r2 + i)

Γ (r2)

Γ (r1 + r2)

Γ (r1 + r2 + i)

Γ (r1 + r2 + 1/2 + i)

Γ (r1 + r2 + 1/2)

(
λ1 − λ2

λ1 + λv

)i 1

i!
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= K

(
λ

v

)1/2 ( 1

λ1 + λv

)r1+r2+1/2 1

B
(

1
2 , r1 + r2

)

×2F1

(
r2, r1 + r2 + 1

2
; r1 + r2; λ1 − λ2

λ1 + λv

)

and c.d.f.

FV (v) = K

∞∑
i=0

Γ (r2 + i)

Γ (r2) λ
r1+r2+i
1

(λ1 − λ2)
i

i! BR

(
1

2
, r1 + r2 + i; λv

λ1 + λv

)

where the infinite summation for the c.d.f. may usually be cut short to just a few
dozen terms and is nowadays easy to compute in a precise manner using any
available symbolic software.

6.3 The Case of Both n1 and n2 Even

In this case there are indeed two strategies we may follow. We may use the near-
exact approach in Sect. 4 to obtain a near-exact distribution for QW , which would
then be a mixture of m∗ + 1 GIG distributions of depth 3, with shape parameters
(n1 − 2)/2, (n2 − 2)/2 and 1 + k (k = 0, . . . , m∗) and rate parameters λ1 =
(n1 +n2 −2)/(2σ 2

1 ), λ2 = (n1 +n2 −2)/(2σ 2
2 ) and λ given by one of the strategies

in (10). Since each of these GIG distributions may then be seen as a finite mixture of
Gamma distributions, a near-exact type of distribution for V would then be obtained
as a double finite mixture of ratios of Gamma r.v.’s. But, we may take a different
approach, in order to obtain the exact p.d.f. and c.d.f. of V in this case. Indeed, if we
pay heed to the expression for the p.d.f. of QW in (24), we may see that it remains
valid even if r1 is not an integer. As such even when both n1 and n2 are even, the
p.d.f. of QW remains given by (24). As such, all the results about the distribution of
V obtained in the previous subsection remain valid for the case where n1 and n2 are
both even.

7 Some Examples for the Distributions Mentioned in
Sects. 2–5

In this section we will use a number of times the result in the following Theorem
on the distribution of quadratic forms on Normal r.v.’s from Box (1954).
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Theorem (Box, 1954, Thm. 2.1) If X ∼ Np(0,Σ) and Q = X′MX, whereM is a
p×p symmetric matrix with rank(M) = r ≤ p, then

Q
d≡

r∑
j=1

μj Yj

where Yj ∼ χ2
1 are independent r.v.’s and μj (j = 1, . . . , r) are the non-null

eigenvalues of ΣM .

7.1 An Example of a Linear Combination of Chi-Squares with
a GIG Distribution

Let us take Example 1 from Ha and Provost (2013). In this example the authors
consider an approximation to the distribution of a quadratic formQ = X′MX where
X ∼ N6(0, I6) andM is a 6×6 positive-definite matrix with eigenvalues μ∗

1 = μ∗
2 =

1, μ∗
3 = μ∗

4 = 2.5 and μ∗
5 = μ∗

6 = 9. Since in this case we have only three different
eigenvalues, each one with a multiplicity of 2, the distribution of the quadratic form
Q is that of

3∑
j=1

μj Yj

where μ1 = 1, μ2 = 2.5 and μ3 = 9 and Yj ∼ χ2
2 (j = 1, 2, 3).

As such, the exact distribution of Q is obtained right away from the result in
Sect. 2 as a GIG distribution of depth 3, with p = 3, r1 = r2 = r3 = 1, λ1 = 1/2,
λ2 = 1/(2× 5

2 ) = 1/5 and λ3 = 1/(2×9) = 1/18. The coefficients cj,k are in this
case very easy to compute, even by hand, and they are

c1,1 = 15
2 , c2,1 = − 300

13 , c3,1 = 405
26 ,

so that the exact p.d.f. of Q is

fQ(z) =
(

1

2
×1

2
× 1

18

)[
15

2
e−z/2 − 300

13
e−z/5 + 405

26
e−z/18

]

and its c.d.f.

FQ(z) = 1 −
(

1

2
×1

2
× 1

18

)[
15

2
×2×e−z/2 − 300

13
×5×e−z/5 + 405

26
×18×e−z/18

]
.

Quantiles for any GIG distribution may be readily and very quickly obtained
using the Mathematica� module at https://sites.google.com/site/lincombchisquares.

https://sites.google.com/site/lincombchisquares
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This module uses some faster modules for the implementation of the p.d.f. and c.d.f.
of the GIG distribution which are available in Appendix 4.A of Chapter 4 of Coelho
and Arnold (2019). The exact quantiles computed from this distribution confirm the
exact quantiles in Table 1 of Ha and Provost (2013).

7.2 An Example of a Linear Combination of Chi-Squares with
a GNIG Distribution

Let us consider a simple case where X ∼ N7(0,Σ) with

Σ = 1

12

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

44 −16 −16 0 0 0 0
−16 44 −16 0 0 0 0
−16 −16 44 0 0 0 0

0 0 0 45 −9 −3 −21
0 0 0 −9 45 −21 −3
0 0 0 −3 −21 45 −9
0 0 0 −21 −3 −9 45

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and where we are interested in the distribution of the quadratic form Q = X′MX,
with

M = 1

12

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

8 2 2 0 0 0 0
2 8 2 0 0 0 0
2 2 8 0 0 0 0
0 0 0 18 −9 −3 6
0 0 0 −9 18 6 −3
0 0 0 −3 6 18 −9
0 0 0 6 −3 −9 18

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Since the eigenvalues of ΣM are μ∗
1 = μ∗

2 = 1, μ∗
3 = μ∗

4 = μ∗
5 = 5/2 and

μ∗
6 = μ∗

7 = 9, the exact distribution of Q is the same as that of

3∑
j=1

μj Yj

where μ1 = 1, μ2 = 9, μ3 = 5/2 and Y1 ∼ χ2
2 , Y2 ∼ χ2

2 and Y3 ∼ χ2
3 . As

such, from Sect. 2, the exact distribution of Q is a GNIG distribution of depth 3,
with, using the notation in Appendix 1, r1 = r2 = 1 and r3 = 3/2 and λ1 = 1/2,
λ2 = 1/18 and λ3 = 1/5, which makes the cj,k (j = 1, 2; k = 1) parameters to be
very easy to compute, with
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c1,1 = −9

4
, c2,1 = 9

4
.

Thus, the quadratic form Q has p.d.f.

fQ(z) =
1

2×18

(
1

5

)3/2
z3/2

Γ (5/2)

[
−e− 1

2 z
9

4
1F1

(
3

2
,

5

2
,

3

10
z

)

+e− 1
18 z

9

4
1F1

(
3

2
,

5

2
,−13

90
z

)]
,

which using (13), that for our case may assume the form,

1F1

(
3
2 ,

5
2 , z

)
= 3

4

(
(−z)−3/2√π Erf

(√−z)+ 2 ez 1
z

)
, (25)

may be written as

fQ(z) =
1

80

(
1

5

)1/2
[
−e− 1

2 z

(
− 3

10

)−3/2

Erf

(√
− 3

10
z

)

+e− 1
18 z

(
13

90

)−3/2

Erf

(√
13

90
z

)
− 800

39
√
π
e−

1
5 z z1/2

]

and c.d.f.

FQ(z) =
(

1
5

)3/2
z3/2

Γ (5/2)

{
1F1

(
3

2
,

5

2
,−1

5
z

)
− 1

2

1

18

9

4

[
−2 e−

1
2 z1F1

(
3

2
,

5

2
,

3

10
z

)

+18 e−
1
18 z1F1

(
3

2
,

5

2
,−13

90
z

)]}
,

which, using (25), may be written as

FQ(z) = Erf

(√
z

5

)
− 1

8

[
−e− 1

2 z

(
−3

2

)−3/2

Erf

(√
−3z

10

)

+e− 1
18 z

(
13

18

)−3/2

Erf

(√
13z

90

)]
+ 60

√
5

234
√
π
e−

1
5 zz1/2 .
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7.3 An Example of a Linear Combination of Chi-Squares with
a DGIG Distribution

To build a simple example where a quadratic form in Normal variables has a DGIG
distribution we consider X ∼ N6(0,Σ) and the quadratic form Q = X′MX where

Σ = 1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

7 −1 −3 −1 0 0
−1 7 −1 −3 0 0
−3 −1 7 −1 0 0
−1 −3 −1 7 0 0

0 0 0 0 4 −2
0 0 0 0 −2 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and M = 1

4

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−1 4 −3 4 0 0
4 −1 4 −3 0 0

−3 4 −1 4 0 0
4 −3 4 −1 0 0
0 0 0 0 −4 8
0 0 0 0 8 −4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

Then the eigenvalues of ΣM are μ∗
1 = μ∗

2 = 1, μ∗
3 = μ∗

4 = 5/2 and μ∗
5 =

μ∗
6 = −9. As such, in this case, from Theorem 2.1 in Box (1954), restated at the

beginning of the present section, the quadratic form Q has the same distribution as
Z1 − Z2, where Z1 and Z2 are independent, with

Z1 = Y1 + 5

2
Y2 and Z2 = 9Y3

where Y1, Y2 and Y3 are all chi-squares with 2 d.f.’s, so that the exact distribution of
Q is a DGIG distribution with p1 = 2 and p2 = 1, and with r1 = r2 = 1, s1 = 1,
λ1 = 1/2, λ2 = 1/5 and ν1 = 1/18. It is then easy to compute

c1,1 = −10

3
, c2,1 = 10

3
, d1,1 = 1

and obtain the p.d.f. of Q given by

fQ(z) =

⎧⎪⎪⎨
⎪⎪⎩

1
180

(
− 10

3
1

1
2+ 1

18
e− 1

2 z + 10
3

1
1
5+ 1

18
e− 1

5 z

)
1

180

(
− 10

3
1

1
2+ 1

18
e

1
18 z + 10

3
1

1
5+ 1

18
e

1
18 z

) =

⎧⎪⎨
⎪⎩

1
180

(
−6 e− 1

2 z + 300
23 e− 1

5 z
)
, z≥0

9
230 e

1
18 z , z≤0

and c.d.f.

FQ(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − 1
180

(
− 10

3
1

1
2+ 1

18

e
− 1

2 z

1/2 + 10
3

1
1
5+ 1

18

e
− 1

5 z

1/5

)
, z ≥ 0

18
180 e

1
18 z

(
− 10

3
1

1
2+ 1

18
+ 10

3
1

1
5+ 1

18

)
, z ≤ 0

=

⎧⎪⎨
⎪⎩

1 − 1
180

(
−12 e− 1

2 z + 1500
23 e− 1

5 z
)
, z ≥ 0

81
115 e

1
18 z , z ≤ 0 .
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Fig. 1 Plots of the p.d.f. and c.d.f. of the DGIG distribution of Q

The plots of the above p.d.f. and c.d.f. are displayed in Fig. 1.

7.4 An Example of a Linear Combination of Chi-Squares with
a Near-Exact Distribution Which Is a Mixture of GIG
Distributions

Let now X ∼ N8(0,Σ) and Q = X′MX where

Σ = 1

10

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

11 −5 −5 9 0 0 0 0
−5 11 9 −5 0 0 0 0
−5 9 11 −5 0 0 0 0

9 −5 −5 11 0 0 0 0
0 0 0 0 16 9 −4 −1
0 0 0 0 9 16 −1 −4
0 0 0 0 −4 −1 16 9
0 0 0 0 −1 −4 9 16

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, M = 1

24

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

8 −2 −2 0 0 0 0 0
−2 8 0 −2 0 0 0 0
−2 0 8 −2 0 0 0 0

0 −2 −2 8 0 0 0 0
0 0 0 0 5 2 −2 −3
0 0 0 0 2 5 −3 −2
0 0 0 0 −2 −3 5 2
0 0 0 0 −3 −2 2 5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Then, the eigenvalues of ΣM are μ∗
1 = μ∗

2 = μ∗
3 = 2/5, μ∗

4 = 1/2, μ∗
5 = μ∗

6 =
1, μ∗

7 = μ∗
8 = 9, so that the distribution of Q is that of

4∑
j=1

μjYj

where μ1 = 2/5, μ2 = 1/2, μ3 = 1, μ4 = 9 and

Y1 ∼ χ2
3 , Y2 ∼ χ2

1 , Y3 ∼ χ2
2 , Y4 ∼ χ2

2

are four independent r.v.’s.
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As such, we will have, from Sect. 4, the distribution of Q as that of

Z∗ + Z∗∗

where

Z∗ = Y ∗
1 + μ3Y

∗
3 + μ4Y

∗
4 and Z∗∗ = μ1Y

∗∗
1 + μ2Y

∗∗
2

where Y ∗
1 , Y ∗

3 and Y ∗
4 are all χ2

2 r.v.’s and Y ∗∗
1 and Y ∗∗

2 are both χ2
1 r.v.’s, and where

the r.v.’s Y ∗
2 , Y ∗∗

3 and Y ∗∗
4 vanished.

As such, the exact distribution of Z∗ is a GIG distribution of depth 3 with shape
parameters �1 = �2 = �3 = 1 and rate parameters λ1 = 5/4, λ2 = 1/2 and
λ3 = 1/18, and we will approximate the distribution of Z∗∗ by a finite mixture of
m∗ + 1 Γ (r + k, λ) distributions, for k = 0, . . . , m∗, r = ∑2

j=1 �
∗
j = 1

2 + 1
2 = 1

and λ given by one of the choices in (10). Since the case we are dealing with is
exactly the one in scenario IX in Sect. 4.1, we know that good choices for λ are the
maximum of λ1, λ2 and λ3, that is, λ = 5/4, or the value obtained from (vi) in (10),
which rounded to 6 decimal places is 1.097561.

Hence, the near-exact distribution obtained for Q is a mixture of m∗ + 1 GIG
distributions, which, if our choice is to use the value 1.097561 for λ, will have depth
4, with shape parameters r1 = r2 = r3 = 1 and r4 = 1 + k (k = 0, . . . , m∗) and
rate parameters λ1 = 5/4, λ2 = 1/2, λ3 = 1/18 and λ4 = 1.097561, yielding for
Z a p.d.f. which may be written as

fQ(z) =
m∗∑
k=0

πk f
GIG

(
z

∣∣∣{1, 1, 1, 1 + k}; {5/4, 1/2, 1/18, 1.097561}; 4
)
.

If our choice is to use λ = 5/4, the mixture components will be GIG distributions
of depth 3, with shape parameters r1 = 2 + k, r2 = r3 = 1 and rate parameters
λ1 = 5/4, λ2 = 1/2, λ3 = 1/18, yielding for Z a p.d.f. which may be written as

fQ(z) =
m∗∑
k=0

πk f
GIG

(
z

∣∣∣{2 + k, 1, 1}; {5/4, 1/2, 1/18}; 3
)
.

The weights πk (k = 0, . . . , m∗ − 1) are then computed through the solution of
the system of equations in (8), taking then πm∗ = 1 −∑m∗−1

k=0 πk .
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7.5 An Example for the Distribution of Ratios of Linear
Combinations of Chi-Squares

We take here the example in Sect. 7 of Box (1954) of a one-way ANOVA model “in
which the observations are normally distributed but the variances differ from group
to group” and we will show how using the results obtained we will be able to obtain
near-exact distributions for the test statistic (which is the ratio of the between and
the within sums of squares, each of which is both a quadratic form in Normal r.v.’s
and a linear combination of independent chi-squares), and how these near-exact
distributions will exactly reproduce the exact probabilities presented by Box (1954)
in his paper.

Box (1954) states that the between groups sum of squares, QB , has, under the
null hypothesis of equality of the k group means, the same distribution as that of

k−1∑
�=1

μ�Y�

where Y� ∼ χ2
1 are k − 1 independent r.v.’s and μ� are the non-null eigenvalues of

the matrix ΣM , where

Σ = diag
(
σ 2
� /n�, � = 1, . . . , k

)

is the variance-covariance matrix of the observations, where σ 2
� is the variance in

the �-th group and n� the sample size in that group (� = 1, . . . , k), and

M = diag (n�, � = 1, . . . , k)− 1

N
[n1, n2, . . . , nk] [n1, n2, . . . , nk]′

where N = ∑k
�=1 n�, so that

ΣM = diag(σ 2
� )−

1

N
M∗

where M∗ has its �j -th element equal to σ 2
� nj (� = 1, . . . , k; j = 1, . . . , k).

Box (1954) also states that the within groups sum of squares, QW is distributed
as

k∑
�=1

σ 2
� Y

∗
�

where Y ∗
� are k independent χ2

n�−1 r.v.’s.
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We will use example (4) in Table 4 of Box (1954), where k = 3, σ 2
1 = 1, σ 2

2 = 2,
σ 2

3 = 3 and n1 = 7, n2 = 5, n3 = 3, to illustrate how using a near-exact type of
distribution we will be able to obtain the exact probabilities reported in that Table.

The exact distribution of QW is in this case a GIG distribution of depth 3, with
shape parameters r1 = (n1−1)/2 = 3, r2 = (n2−1)/2 = 2, r3 = (n3−1)/2= 1 and
rate parameters λ1 = 1/(2σ 2

1 )= 1/2, λ2 = 1/(2σ 2
2 )= 1/4 and λ3 = 1/(2σ 2

3 )= 1/6,
from which it is quite simple to compute

c1,1 =−3888 , c1,2 =−528 , c1,3 =−24 , c2,1 = 0 , c2,2 =−768 , c3,1 = 3888 ,
(26)

which may also be easily computed using module Makec, available in the refer-
ences and web-pages referenced at the end of Sect. 2.

For QB , since the two chi-square r.v.’s involved have only 1 d.f., we obtain from
Sect. 4, for m∗ = 4 (an arbitrary choice, which we are sure to be good enough
to assure the computation of tail probabilities with great accuracy), an asymptotic
distribution as a mixture of five Γ (1 + k, λ) distributions, for k = 0, . . . , 4 and
λ = 15/64, taken as the harmonic mean of λ1 = 1/(2μ1) = 15

2

/
(32 + √

79)
and λ2 = 1/(2μ1) = 15

2

/
(32 − √

79), where μ1 = 1
15 (32 + √

79) and μ2 =
1
15 (32−√

79) are the eigenvalues of the matrixΣM . The weights πk (k = 0, . . . , 4),
rounded to 4 decimal places are

π0 = 1.0408 , π1 = −0.0861 , π2 = 0.0520 , π3 = −0.0089
and π4 = 1 − (π0 + π1 + π2 + π3) = 0.0022 .

(27)

The asymptotic p.d.f. and c.d.f. of QB/QW are thus given respectively by (21)
and (22) with λ = 15/64,m∗ = 4, πj (j = 0, . . . , 4) given by (27), k∗1 = 6, k∗2 = 4,
k∗3 = 2, w∗

1 = 1, w∗
2 = 2 and w∗

3 = 3, with p∗
�,i given by (20) with the c�,i given by

(26), for � = 1, 2, 3 and i = 1, . . . , k∗� /2.
The plots of this p.d.f. and c.d.f. are displayed in Fig. 2.
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Fig. 2 Plots of the asymptotic p.d.f. and c.d.f. of QB/QW for example (4) in Table 4 of Box
(1954)
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Then, since d.f.(QB )= k − 1 = 2 and d.f.(QW )= N − k = 12 and the 0.95
quantile of an F2,12 distribution, rounded to 6 decimal places is equal to 3.885294,
the probability that the ratio of quadratic forms V = QB/QW exceeds the 0.95
quantile of the F2,12 distribution is (rounded to 6 decimal places)

1 − FV

(
1

6
×3.885296

)
= 0.092514

which exactly matches the exact probability reported by Box (1954) of 0.0925,
thus showing the usefulness of this approach in obtaining distributions which have
quite simple forms and that lie very close to the exact distribution. We should
note that we need to multiply the quantile of the F2,12 distribution by 1/6 because
the relation that may be established with the F distribution is indeed that of the
distribution of the statistic QB

d.f.(QB)

/
QW

d.f.(QW )
, where as stated above, d.f.(QB) = 2

and d.f.(QW) = 12 so that we have to multiplyQB/QW by 12/2 = 6, or divide the
quantile of the F2,12 distribution by 6 in order that the relation may be established.

In Fig. 3 is shown the Mathematica� implementation of this c.d.f., together with
the result obtained.

Using a similar procedure, all exact probabilities in Table 4 of Box (1954) may
be easily computed and confirmed, with the only remark that the exact probability
for example (5) in that Table should rather be 3.25 and not 4.03.

Fig. 3 Mathematica� commands used to implement the c.d.f. of the ratio of quadratic forms
QB/QW and to compute the probability reported in Table 4 of Box (1954)
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8 Conclusions

Closed form expressions, with all parameters in the distributions with express
algebraic expressions, and as such easy to implement with any symbolic software,
are provided for the distribution of the linear combination of independent chi-square
r.v.’s for the cases where all the chi-square r.v.’s involved have an even number of
d.f.’s, both in the case that all coefficients in the linear combination are positive as
well as in the case that some are positive and some negative.

Also for the case where all but one of the chi-square r.v.’s have an even number
of d.f.’s and all the coefficients in the linear combination are positive, closed form
representations are given for both the p.d.f. and the c.d.f. of the distribution of linear
combinations of independent chi-square r.v.’s.

For the cases where the d.f.’s of the chi-square r.v.’s in the linear combination
may be either even or odd, sharp near-exact approximations, based on mixtures of
sums of independent Gamma r.v.’s, all or all but one of them, with integer shape
parameters, and thus with closed form expressions for the distribution of their sums.
In these cases one may have a choice to make in terms of the common rate parameter
to be used for those Gamma r.v.’s. Numerical studies show that in general the best
choices are: (i) for cases where the values wjkj (where the wj are the coefficients in
the linear combination of the chi-square r.v.’s and the kj their d.f.’s—see (1)) display
an unbalanced set of values, the harmonic mean of the 1/(2wj) or the definition of
λ as in (vii) in (10), while (ii) for cases where the wjkj display a quite balanced
set of values, the geometric mean of the 1/(2wj) is the best choice and (iii) for
cases where the wj exhibit values both above and below 1, the choices of λ as the
maximum of the 1/(2wj) or given by (vi) or (vii) in (10). In any case the choice of
defining λ as in (vii) of (10) always leads to quite good behaviors, which in cases it
is not the best choice, will anyway give very good results.

The exact and near-exact distributions obtained may then be used to obtain exact
or asymptotic distributions for ratios of linear combinations of chi-squares and
thus also for ratios of quadratic forms, some of which are important statistics in
many ANOVA and other statistical models under heterocedasticity. Moreover, these
distributions also allowed us to obtain the exact distribution of the Behrens–Fisher
statistic.
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Appendix 1: Notation and Expressions for the p.d.f. and c.d.f.
of the GIG and GNIG Distributions

Let Zj ∼ Γ (rj , λj ) (j = 1, . . . , p) be a set of p independent r.v.’s and consider the
r.v.

Z =
p∑
j=1

Zj .

In case all the rj ∈ N, the distribution of Z is what we call a GIG (Generalized
Integer Gamma) distribution (Coelho 1998). If all the λj are different, Z has a GIG
distribution of depth p, with shape parameters rj and rate parameters λj , with p.d.f.

fZ(z) = f GIG

(
z
∣∣ {rj }j=1:p; {λj }j=1:p;p

)
= K

p∑
j=1

Pj (z) e
−λj z , (z > 0)

(28)
and c.d.f.

FZ(z) = FGIG

(
z
∣∣ {rj }j=1:p; {λj }j=1:p;p

)
= 1 −K

p∑
j=1

P ∗
j (z) e

−λj z , (z > 0)

where

K =
p∏
j=1

λ
rj
j , Pj (z) =

rj∑
k=1

cj,k z
k−1 (29)

and

P ∗
j (z) =

rj∑
k=1

cj,k(k − 1)!
k−1∑
i=0

zi

i! λk−ij

,

with

cj,rj = 1

(rj − 1)!
p∏
i=1
i �=j

(λi − λj )
−ri , j = 1, . . . , p , (30)

and, for k = 1, . . . , rj − 1 and j = 1, . . . , p,
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cj,rj−k = 1

k

k∑
i=1

(rj − k + i − 1)!
(rj − k − 1)! R(i, j, p)cj,rj−(k−i) , (31)

where

R(i, j, p) =
p∑
k=1
k �=j

rk(λj − λk)
−i (i = 1, . . . , rj − 1) . (32)

In case some of the λj assume the same value as other λj ’s, the distribution
of Z still is a GIG distribution, but in this case with a reduced depth. In this
more general case, let {λ�; � = 1, . . . , g(≤ p)} be the set of different λj ’s and let
{r�; � = 1, . . . , g(≤ p)} be the set of the corresponding shape parameters, with r�
being the sum of all rj (j ∈ {1, . . . , p}) which correspond to the λj assuming
the value λ�. In this case Z will have a GIG distribution of depth g, with shape
parameters r� and rate parameters λ� (� = 1, . . . , g).

If all r.v.’s have Gamma distributions with different rate parameters λj and Zp
has a Gamma distribution with a non-integer shape parameter rp, then we will say
that the r.v. Z has a GNIG (Generalized Near-Integer Gamma) distribution of depth
p. The probability density and cumulative distribution functions of Z are, for z > 0,
respectively given by Coelho (2004)

f GNIG( z | r1, . . . , rp−1; rp; λ1, . . . , λp−1; λp;p)

= K

p−1∑
j=1

e−λj z
rj∑
k=1

{
cj,k

Γ (k)

Γ (k+rp)z
k+rp−1

1F1(rp, k+rp,−(λp−λj )z)
}
,

(33)
and

FGNIG(z | r1, . . . , rp−1; rp; λ1, . . . , λp−1; λp;p)= λ
rp
p zrp

Γ (rp+1)
1F1(rp, rp+1,−λpz)

−K
p−1∑
j=1

e−λj z
rj∑
k=1

c∗j,k
k−1∑
i=0

zrp+iλij
Γ (rp+1+i) 1F1(rp, rp+1+i,−(λp−λj )z) ,

with K = ∏p

j=1 λ
rj
j and c∗j,k = cj,kΓ (k)

λkj
and where 1F1(a, b, z) represents the

Kummer confluent hypergeometric function.



The Distribution of Linear Combinations of Chi-Squares 249

Appendix 2: Notation and Expressions for the p.d.f. and c.d.f.
of the DGIG Distribution

Let,

Z∗
1 ∼ GIG(rj , λj ; j = 1, . . . , p1) , and Z∗

2 ∼ GIG(s�, ν�; � = 1, . . . , p2) ,

be two independent r.v.’s and let

Z = Z∗
1 − Z∗

2 .

Then Z has what we call a DGIG (Difference of two GIG) distribution, whose
p.d.f. and c.d.f are given by Coelho and Mexia (2010, Sect. 2.5, Thm. 2.1).

Taking

K1 =
p1∏
j=1

λ
rj
j and K2 =

p2∏
�=1

ν
s�
� ,

and taking cj,k defined in a similar manner to cj,k in (30)–(32), with p replaced by
p1 and d�,h defined in a corresponding manner, with p replaced by p2, λj (j =
1, . . . , p) replaced by ν� (� = 1, . . . , p2) and rj (j = 1, . . . , p) replaced by s�
(� = 1, . . . , p2), the p.d.f. of Z is given by

fZ(z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
K1K2

p1∑
j=1

P ∗∗
1j (z) e

−λj z z ≥ 0

K1K2

p2∑
�=1

P ∗∗
2� (z) e

ν� z z ≤ 0

where

P ∗∗
1j (z) =

r1j∑
k=1

cj,k

p2∑
�=1

r2�∑
h=1

d�,h

k−1∑
i=0

(
k−1

i

)
zk−1−i (h+ i − 1)!

(λj + ν�)h+i

and

P ∗∗
2� (z) =

r2�∑
h=1

d�,h

p1∑
j=1

r1j∑
k=1

cj,k

h−1∑
i=0

(
h−1

i

)
(−z)h−1−i (k + i − 1)!

(λj + ν�)k+i

and the c.d.f. by
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FZ(z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 −K1K2

p1∑
j=1

P ∗∗∗
1j (z) e−λj z z ≥ 0

K1K2

p2∑
�=1

P ∗∗∗
2� (z) eν� z z ≤ 0

with

P ∗∗∗
1j (z)=

r1j∑
k=1

cj,k

p2∑
�=1

r2l∑
h=1

d�,h

k−1∑
i=0

(
k−1

i

)
(h+ i − 1)!
(λj + ν�)h+i

k−1−i∑
t=0

(k − 1 − i)!
t !

zt

λk−i−tj

and

P ∗∗∗
2� (z)=

r2�∑
h=1

d�,h

p1∑
j=1

r1j∑
k=1

cj,k

h−1∑
i=0

(
h−1

i

)
(k+ i−1)!
(λj + ν�)k+i

h−1−i∑
t=0

(h− 1 − i)!
t !

(−z)t
νh−i−t�

.

As a short notation for the p.d.f. and c.d.f. of the r.v. Z we will use

fZ(z)= f DGIG

(
z
∣∣{rj }j=1:p1; {s�}�=1:p2; {λj }j=1:p1; {ν�}�=1:p2;p1, p2

)
, (z ∈ R)

and

FZ(z)=FDGIG

(
z
∣∣ {rj }j=1:p1; {s�}�=1:p2; {λj }j=1:p1; {ν�}�=1:p2;p1, p2

)
, (z ∈ R).
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Conjugate Bayesian Regression Models
for Massive Geostatistical Data Sets

Sudipto Banerjee

Abstract Geographic Information Systems and related technologies are routinely
used to construct massive amounts of spatially oriented data. This, in turn, has gener-
ated substantial interest among statisticians for modelling and analysing large spatial
datasets. Scalable spatial process models have been found especially attractive due
to their richness and flexibility and, particularly so in the Bayesian paradigm, due
to their presence in hierarchical model settings. A substantial amount of research
articles focus upon innovative theory and more complex model development, but
limited attention has been accorded to approaches for easily implementable scalable
hierarchical models for the practising scientist or spatial analyst. This article outlines
how point-referenced spatial process models can be cast within the framework of
conjugate Bayesian linear regression that can rapidly deliver inference on spatial
processes. The approach directly samples from the exact joint posterior distribution
of regression parameters, the latent process and the predictive random variables, and
can be easily implemented on statistical programming environments such as R.

1 Introduction

The modelling and analysis for spatial and spatial-temporal data have witnessed
an explosion of interest stemming from computerized Geographic Information Sys-
tems (GIS) and accompanying technologies. Bayesian hierarchical spatiotemporal
process models have become widely deployed statistical tools for researchers to
better understand the complex nature of spatial and temporal variability; see, for
example, the books by Schabenberger and Gotway (2004), Gelfand et al. (2010),
Cressie and Wikle (2011), and Banerjee et al. (2014) for a variety of methods and
applications. Technological advances in diverse scientific disciplines have produced
massive spatially and temporally indexed databases on a variety of health outcomes
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and risk factors that are accessible to public health researchers, administrators, and
policy-makers. This “data deluge” poses new challenges and critical barriers in data
analysis for the next generation of biostatisticians and spatial data analysts.

Several methods and approaches, both classical and Bayesian, have been devel-
oped and evaluated to address the needs of spatial analysts encountering massive
spatial datasets and increasingly complex scientific questions. There is already a
substantial literature on modelling and analysing massive spatial datasets and a
comprehensive review is beyond the scope of this article; see, e.g., Banerjee (2017)
for a focused review on a couple of popular Bayesian approaches and Heaton et al.
(2019) for a comparative evaluation for contemporary statistical methods for large
spatial data. Here, I will provide develop how elementary conjugate Bayesian linear
regression models can be exploited to provide a quick Bayesian analysis of massive
spatial datasets. These approaches can be described as model-based solutions for
very large spatial datasets that can be executed on modest computing environments.

2 Bayesian Modelling for Point-Referenced Data

Point-referenced spatial data are referenced by locations with coordinates (latitude-
longitude, Easting-Northing etc.) and are customarily modelled using a random
field. This random field is an uncountable set of random spatial surfaces, say
{w(�) : � ∈ L}, defined over a domain of interest L. This uncountable set is
modelled using a stochastic process which ensures the existence of a well-defined
probability law for any finite collection of random variables from the underlying
random field. Furthermore, the process models the spatial association among the
random variables as a function of the locations, typically of the distance between
pairs of locations.

For example, in spatial modelling L is often assumed to be a subset of
points in the Euclidean space �d (usually d = 2 or 3) or, perhaps, a set of
geographic coordinates over a sphere or ellipsoid. Such processes are specified with
a covariance function Kθ(�, �

′) that gives the covariance between w(�) and w(�′)
for any two points � and �′ in L. For any finite collection U = {�1, �2, . . . , �n} in
L, the covariance matrix for w(�i)’s over U is the n × n matrix Kθ whose (i, j)-
th entry is the covariance Kθ(�i, �j ). Covariance functions cannot be any function
and need to ensure positive-definiteness of the resulting covariance matrix for any
finite sample of locations in the domain. A rich literature exists on characterizations
for covariance functions, their different properties and their impact on subsequent
inference; see, e.g., any of the aforementioned books on spatial statistics. For any
two finite subsets A and B of L, we will let Kθ(A,B) be the matrix whose (i, j)-th
entry is the covariance function Kθ(·, ·) evaluated between the i-th location in A
and the j -th location in B. In particular, we denote the n × n spatial covariance
matrix Kθ(L,L) simply by Kθ .

A geostatistical setting customarily assumes a response or dependent variable
y(�) observed at a generic point � along with a p × 1 vector of spatially referenced
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predictors x(�). Model-based geostatistical data analysis customarily envisions a
spatial regression model,

y(�) = x�(�)β + w(�)+ ε(�) , (1)

where β is the p × 1 vector of slopes, and the residual from the regression is the
sum of a spatial process, w(�) ∼ GP(0,Kθ (·, ·)) capturing spatial dependence, and
an independent process, ε(�), modelling measurement error or fine scale variation
attributed to disturbances at distances smaller than the minimum observed inter-site
distance. A Bayesian spatial model can now be constructed from (1) as

p(θ,w, β, τ | y) ∝ p(θ, β, τ )×N(w | 0,Kθ )×N(y |Xβ + w,Dτ ) , (2)

where y = (y(�1), y(�2), . . . , y(�n))
� is the n × 1 vector of observed outcomes,

X is the n × p matrix (we assume p < n) of regressors with i-th row x�(�i)
and the noise covariance matrix D(τ) represents measurement error or micro-scale
variation and depends upon a set of variance parameters τ . A common specification
is Dτ = τ 2In, where τ 2 is called the “nugget.” The hierarchy is completed by
assigning prior distributions to β, θ and τ .

The primary computational bottleneck emerges from the size ofKθ in computing
(2). Since θ is unknown, each iteration of the model fitting algorithm will involve
decomposing or factorising Kθ , which typically requires ∼n3 floating point opera-
tions (flops). Memory requirements are of the order ∼n2. These become prohibitive
for large values of nwhenKθ has no exploitable structure. For Gaussian likelihoods,
one can integrate out the random effects w from (2) and work with the posterior

p(θ, β, τ | y) ∝ p(θ, β, τ )×N(y |Xβ,Kθ +Dτ ) , (3)

This reduces the parameter space to {τ 2, θ, β}, but one still needs to work with
Kθ + Dτ , which is still n × n. These settings are referred to as “big-n” or “high-
dimensional” problems in geostatistics and are widely encountered in environmental
sciences today.

3 Conjugate Bayesian Linear Geostatistical Model

A conjugate Bayesian linear regression model is written as

y |β, σ 2 ∼ N(Xβ, σ 2Vy) ; β | σ 2 ∼ N(β |μβ, σ 2Vβ) ; σ 2 ∼ IG(aσ , bσ ) ,

(4)

where y is an n× 1 vector of observations of the dependent variable, X is an n× p

matrix (assumed to be of rank p) of independent variables (covariates or predictors)
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and its first column is usually taken to be the intercept, Vy is a fixed (i.e., known)
n × n positive definite matrix, μβ , Vβ , aσ and bσ are assumed to be fixed hyper-
parameters specifying the prior distributions on the regression slopes β and the scale
σ 2. This model is easily tractable and the posterior distribution is

p(β, σ 2 | y) = IG(σ 2 | a∗σ , b∗σ )︸ ︷︷ ︸
p(σ 2 | y)

×N(β |Mm,σ 2M)︸ ︷︷ ︸
p(β | σ 2,y)

, (5)

where a∗σ = aσ + n/2, b∗σ = bσ + (1/2)
{
μ�
β V

−1
β μβ + y�V −1

y y −m�Mm
}

,

M−1 = V −1
β + X�V −1

y X and m = V −1
β μβ + X�V −1

y y. Sampling from the joint

posterior distribution of {β, σ 2} is achieved by first sampling σ 2 ∼ IG(a∗σ , b∗σ )
and then sampling β ∼ N(Mm, σ 2M) for each sampled σ 2. This yields marginal
posterior samples from p(β | y), which is a non-central multivariate t distribution
but we do not need to work with its complicated density function. See Gelman et al.
(2013) for further details on the conjugate Bayesian linear regression model and
sampling from its posterior.

We will adapt (4) to accommodate (2) or (3). Let us first consider (3) with
the customary specification Dτ = τ 2I and let Kθ = σ 2R(φ), where R(φ) is a
correlation matrix whose entries are given by a correlation function ρ(φ; �i, �j ).
Thus, θ = {σ 2, φ}, where σ 2 is the spatial variance component and φ is a spatial
decay parameter controlling the rate at which the spatial correlation decays with
separation between points. A simple example is ρ(φ; �i, �j ) = exp(−φ‖�i − �j‖),
although much richer choices are available (Banerjee et al. 2014, see, e.g., Ch 3 in).
Therefore, we can write Kθ = σ 2Vy , where Vy = R(φ) + δ2I and δ2 = τ 2/σ 2 is
the ratio between the “noise” variance and “spatial” variance. If we assume that φ
and δ2 are fixed and that the prior on {β, σ 2} are as in (4), then we have reduced (3)
to (4) and direct sampling from its posterior is easily achieved as described below
(5). We will return to the issue of fixing {φ, δ2} shortly.

Let us turn to accommodating (2) within (4), which would include directly
sampling the spatial random effects w from their marginal posterior p(w | y). Here,
it is instructive to write the joint distribution of y and w in (2) as a linear model,

⎡
⎣ y

μβ

0

⎤
⎦

︸ ︷︷ ︸
=
⎡
⎣ X In

Ip O

O In

⎤
⎦

︸ ︷︷ ︸
[
β

w

]
︸ ︷︷ ︸ +

⎡
⎣η1

η2

η3

⎤
⎦

︸ ︷︷ ︸
,

y∗ = X∗ γ + η

, (6)

where η ∼ N(0, σ 2Vy∗) and Vy∗ =
⎡
⎣δ2In O O

O Vβ O

O O R(φ)

⎤
⎦. If we assume that δ2 and φ

are fixed at known values, then Vy∗ is fixed. Under this parametrisation, we have a
conjugate Bayesian linear regression model y∗ = X∗γ + η, where γ has a flat prior
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and σ 2 ∼ IG(aσ , bσ ). Thus,

p(γ, σ 2 | y) = IG(σ 2 | a∗σ , b∗σ )︸ ︷︷ ︸
p(σ 2 | y)

×N(β |M∗m∗, σ 2M∗)︸ ︷︷ ︸
p(γ | σ 2,y)

, (7)

where a∗σ = aσ + (2n + p)/2, b∗σ = bσ + (1/2)
{
y�∗ V −1

y∗ y∗ −m�∗ M∗m∗
}

,

M−1∗ = X�∗ V −1
y∗ X∗ and m∗ = X�∗ V −1

y∗ y∗. Note that the posterior mean of γ is

given by γ̂ = Mm =
(
X�∗ V −1

y∗ X∗
)−1

X�∗ V −1
y∗ y∗, which is the generalized least

squares estimate obtained from the augmented linear system in (6). Sampling from
the posterior proceeds analogous to that described below (5).

From the preceding account we see that fixing the spatial range decay parameter
φ and the noise-to-spatial variance ratio δ2 casts the Bayesian geostatistical model
into a conjugate framework that will allow inference on {β,w, σ 2}. Note that mul-
tiplying the posterior samples of σ 2 by the fixed quantity δ2 fetches us the posterior
samples of τ 2. Therefore, the uncertainty quantification is entirely lost only for
the spatial range parameter φ and partially for one of the variance components
due to fixing their ratio. This, however, provides the computational advantage that
inference can be carried out without resorting to expensive iterative algorithms such
as Markov chain Monte Carlo that require several iterations before sampling from
the posterior distribution. This computational benefit becomes especially relevant
when handling massive spatial data. Furthermore, fixing the values of δ2 and φ

is not entirely unreasonable given that the identifiability of these parameters from
the data are known to be problematic and thwarts posterior learning in any case.
Nevertheless, the inference will depend upon these fixed parameters so we discuss
a practical approach to fix φ and δ2 at reasonable values.

One simple approach to setting values for φ and δ2 is by conducting some simple
spatial exploratory data analysis using the “variogram”. The variogram for a zero-
centred spatial process w(�) is defined as

E[w(�+ h)− w(�)]2 = var {w (�+ h)− w (�)} = 2γ (h) , (8)

which is meaningful only if the above expression depends solely on h and,
whereupon, γ (h) is called the “semivariogram”. If the process w(�) is weakly
stationary in the sense that the covariance between w(�) and w(�′) is a function
only of the separation h = �′ − �, then a simple calculation reveals that γ (h) =
Kθ(0) − Kθ(h), where Kθ(�, �

′) = Kθ(�
′ − �) = K(h). The variogram is usually

computed for the observations y(�) or for the residuals from a linear model to
ascertain the presence of spatial structure underlying the data after adjusting for
explanatory variables.

Several practical algorithms exist for empirically calculating the variogram
(or semivariogram) from observations by approximating (8) using finite sample
moments. Many of these methods for variograms are now offered in user-friendly R
packages hosted by the Comprehensive R Archive Network (CRAN) (https://cran.

https://cran.r-project.org
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Fig. 1 Variogram of the
residuals from non-spatial
regression indicates strong
spatial pattern

r-project.org). As one example, Finley et al. (2019) investigate the impact of tree
cover and occurrence of forest fires on forest height. They first fit an ordinary linear
regression of the form yFH = β0 + β1xtree + β2xfire + ε and then compute a
variogram for the residuals from the ordinary linear regression.

Figure 1 depicts the variogram, which helps glean from three process parameters.
The lower horizontal line represents the “nugget” or the micro-scale variation
captured by the measurement error variance component τ 2. The top horizontal line
represents the “sill” (or ceiling) which is the total variation captured by σ 2 + τ 2.
Therefore, the difference between the two horizontal lines is called the “partial
sill” and is captured by σ 2. Finally, the vertical line represents the distance beyond
which the variogram flattens or the covariance tends to zero. One can provide
“eye-ball” estimates for these quantities and, in particular, fix the values of φ and
δ2 = τ 2/σ 2. Fixing these values from the variogram yields the desired highly
accessible conjugate framework and the models can be estimated without resorting
to Markov chain Monte Carlo (MCMC) as described earlier.

4 Bayesian Modelling for Massive Spatial Data

Conjugate models can be estimated by sampling directly from their joint posterior
density and, therefore, completely obviates problems associated with MCMC
convergence. This is a major computational benefit. However, the challenges in
analysing massive spatial data do not quite end here. When the number of spatial
locations providing measurements are in the order of millions as in Finley et al.
(2019), then the matrices Kθ , Vy or Vy∗ that we encountered earlier in different
model parametrisations will be too massive to be efficiently loaded on to the
machine’s CPU, let alone be computed with. This precludes efficient likelihood
computations and has led several researchers to propose models specifically adapted

https://cran.r-project.org
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for spatial analysis. We briefly present adaptations of (6) using two different classes
of models for massive spatial data: (1) low-rank process models and (2) nearest-
neighbour Gaussian process models.

In low rank models, the spatial process is approximated asw(�) ≈ b�θ (�)z, where
bθ (�) is an r × 1 vector of r basis functions, each evaluated at �, and z is an r × 1
vector of coefficients. This means that the n×1 spatial effect w in (2) is replaced by
Bθz, where Bθ is the n× r matrix whose i-th row is b�θ (�i). Dimension reduction is
achieved by fixing r to be much smaller than n so that we only deal with r random
effects instead of n. The framework in (6) can be easily adapted to this situation as
below:

⎡
⎣ y

μβ

0

⎤
⎦

︸ ︷︷ ︸
=
⎡
⎣ X Bθ

Ip O

O Ir

⎤
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︸ ︷︷ ︸
[
β

z

]
︸︷︷︸ +

⎡
⎣η1

η2

η3

⎤
⎦

︸ ︷︷ ︸
,

y∗ = X∗ γ + η

, (9)

where η ∼ N(0, σ 2Vy∗) and Vy∗ =
⎡
⎣δ2In O O

O Vβ O

O O Vz

⎤
⎦ is (n + p + r) × (n + p + r)

and fixed, and Vz is now r × r instead of the n × n matrix R(φ) in (6). Benefits
accrue in terms of storage and the number of floating point operations (flops) when
conducting the exact conjugate Bayesian analysis for this model. Note that the
marginal density p(y∗ | γ, θ, τ ) corresponds to the linear model y∗ = X∗γ̂ + η,
where γ̂ is the generalized least square estimate of γ obtained by solving the linear
system X�∗ V −1

y∗ X∗γ = X�∗ V −1
y∗ y∗. Computational benefits accrue from the block

diagonal structure of Vy∗ . To be precise, let V 1/2
z and V 1/2

β be matrix square roots

of Vz and Vβ , respectively. For example, V 1/2
β and V 1/2

z can be the triangular (upper
or lower) Cholesky factor of the r × r matrices Vβ and Vz, respectively. Then,
the corresponding Cholesky factor of Vy∗ is given by the block diagonal matrix

V
1/2
y∗ =

⎡
⎢⎣
δIn O O

O V
1/2
β O

O O V
1/2
z

⎤
⎥⎦. Once we obtain the square root V 1/2

y∗ , we can make

the transformations ỹ∗ = V
−1/2
y∗ y∗ and X̃∗ = V

−1/2
y∗ X∗, where V −1/2

y∗ is cheaply

obtained from V
1/2
y∗ because it inverts only a triangular matrix. Now the posterior

mean γ̂ can be obtained using ordinary least squares from the model ỹ∗ = X̃∗γ̂+e∗,
where e∗ ∼ N(0, In+p+r ). Banerjee (2017) provides a more detailed discussion
on hierarchical low-rank models, biases they induce and how bias-adjustments and
improvements can be made.

Low-rank models continue to be popular choices for analysing spatial data. The
cost for fitting low-rank models typically decrease from O(n3) to O(nr2 + r3) ≈
O(nr2) flops since n >> r . However, when n is large, empirical investigations sug-
gest that r must be fairly large to adequately approximate the original process and
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Fig. 2 Comparing estimates of a simulated random field using a full-rank Gaussian Process (Full
GP) and a Gaussian Predictive process (PPGP) with 64 knots. The oversmoothing by the low-rank
model is evident. (a) True w. (b) Full GP. (c) PPGP 64 knots

the nr2 flops become exorbitant. Furthermore, low-rank models can perform poorly
depending upon the smoothness of the underlying process or when neighbouring
observations are strongly correlated and the spatial signal dominates the noise.

As an example, consider part of the simulation experiment presented in Datta
et al. (2016a), where a spatial random field was generated over a unit square
using a Gaussian process with fixed spatial process parameters over a set of 2500
locations. We then fit a full Gaussian process model and a particular low-rank
model called the predictive process model (Banerjee et al. 2008) with 64 knots.
Figure 2 presents the results. While the estimated random field from the full
Gaussian process is almost indistinguishable from the true random field, the surface
obtained from the predictive process with 64 locations substantially oversmooths.
This oversmoothing can be mitigated by using a larger number of knots, but this
adds to the computational burden.

Figure 2 serves to reinforce findings that low-rank models may be limited in
their ability to produce accurate representation of the underlying process at massive
scales. They will need a considerably larger number of basis functions to capture
the features of the process and will require substantial computational resources for
emulating results from a full GP. As the demands for analysing large spatial datasets
increase from the order of ∼104 to ∼106 locations, low-rank models may struggle
to deliver acceptable inference. In this regard, enhancements such as the multi-
resolution predictive process approximations (Katzfuss 2017) are highly promising.

An alternative to low-rank models is to develop full rank models that can exploit
sparsity. Here, too, there are different options. One approach draws on the concept
of sparse precision matrices. There are numerous specifications but the one that
is effective, scalable and easy to compute is based upon modelling the Cholesky
decomposition of the precision matrix of w in a sparse manner.

Writing N(w | 0, σ 2Rφ) as p(w1)
∏n
i=2 p(wi |w1, w2, . . . , wi−1) is equivalent

to the following set of linear models,

w1 = 0+η1 and wi = ai1w1 +ai2w2 + · · · +ai,i−1wi−1 +ηi for i = 2, . . . , n,
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or, more compactly, simply w = Aw+ η, where A is n× n strictly lower-triangular
with elements aij = 0 whenever j ≥ i and η ∼ N(0,D) and D is diagonal with
diagonal entries d11 = var{w1} and dii = var{wi |wj : j < i} for i = 2, . . . , n.
From the structure of A it is evident that I − A is unit lower-triangular, hence
nonsingular, and Rφ = (I − A)−1D(I − A)−�.

We now introduce sparsity in R−1
φ = (I − A)�D(I − A) by letting aij = 0

whenever j ≥ i (since A is strictly lower-triangular) and also whenever �j is not
among the m nearest neighbours of �i , where m is fixed by the user to be a small
number. It turns out that a very effective approximation emerges by recognising
that the lower-triangular elements of A are precisely the coefficients of a linear
combination of w(�j )’s equating to the conditional expectation E[w(�i) | {w(�j ) :
j < i}]. Thus, the m × 1 vector ãi of non-zero entries in the i-th row of A are
obtained by solving them×m linear system R̃φ,Ni ,Ni ãi = Rφ,Ni,i , where R̃φ,Ni ,Ni is
them×m principal submatrix extracted fromRφ corresponding to them neighbours
of i (indexed by elements of a neighbour set Ni) and Rφ,Ni,i is the m × 1 vector
extracted by choosing the m indices in Ni from the i-th column of Rφ . Once ãi
is obtained, the i-th diagonal entry of D is obtained as dii = Rφ[i, i] − ã�i Rφ,Ni ,i .
These computations need to be carried out for each i = 2, . . . , n (note that for i = 1,
d11 = σ 2 and a11 = 0), but m can be kept very small (say 5 or 10 even if n 107) so
that the expense is O(nm3) and still feasible. The details can be found in Banerjee
(2017). This notion is familiar in Gaussian Graphical models and have been used by
Vecchia (1988) and, more recently, by Datta et al. (2016a) and Finley et al. (2019)
to tackle massive amounts of spatial locations.

The framework in (6) now assumes the form
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=
⎡
⎣ X In

Ip O

O D−1/2(I − A)

⎤
⎦

︸ ︷︷ ︸
[
β

w

]
︸ ︷︷ ︸ +

⎡
⎣η1

η2

η3

⎤
⎦

︸ ︷︷ ︸
,

y∗ = X∗ γ + η

, (10)

where η ∼ N(0, σ 2Vy∗) and Vy∗ =
⎡
⎣δ2In O O

O Vβ O

O O In

⎤
⎦ is (2n + p) × (2n + p) and

fixed with much greater sparsity. While this approach can also be subsumed into the
framework of (6), its efficient implementation on standard computing architectures
needs careful consideration and involves solving a large linear system with (n +
p) × (n + p) coefficient matrix X�∗ X∗. This matrix is large, but is sparse because
of sparsity in (I − A)�D−1(I − A). Since (I − A) has at most m + 1 nonzero
entries in each row, an upper bound of nonzero entries in (I − A) is n(m+ 1) and,
therefore, the upper bound in (I −A)�D−1(I −A) is n(m+ 1)2. This sparsity can
be exploited by sparse linear solvers such as conjugate gradient methods that can be
implemented on modest computing environments.
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Sampling from the joint posterior distribution p(γ, σ 2 | y∗) is achieved in the
following manner. First, the least-squares estimate γ̂ is obtained using a sparse least-
square solver using a preconditioned conjugate gradient algorithm. Subsequently,
σ 2 is sampled from its marginal posterior density IG(a∗, b∗), where a∗ = aσ +n/2
and b∗ = bσ + (1/2)(y∗ −X∗ ˆgamma)�(y∗ −X∗γ̂ ), and then for each sampled σ 2,

γ is sampled from N

(
γ̂ , σ 2

(
X�∗ V −1

y∗ X∗
)−1

)
. Details on such implementations

can be found in a recent article by.

5 Spatial Prediction

Let L̃ = {�̃1, �̃2, . . . , �̃ñ} be a set of ñ locations where we wish to predict the
outcome y(�). Let Ỹ be an ñ × 1 vector with i-th element Ỹ (�̃i ) and let w̃ be the
ñ × 1 vector with elements w(�̃i). The predictive model augments p(θ,w, β, τ, y)
to

p(θ, τ, β,w, y, w̃, Ỹ ) = p(θ, τ, β)× p(w | θ)× p(y |β,w, τ)
× p(w̃ |w, θ)× p(Ỹ |β, w̃, τ ) . (11)

The factorisation in (11) implies that Ỹ and w are conditionally independent of each
other given w̃ and β. Predictive inference for spatial data evaluates the posterior
predictive distribution p(Ỹ , w̃ | y). This is the joint posterior distribution for the
outcomes and the spatial effects at locations in L̃. This distribution is easily derived
from (11) as

p(Ỹ , w̃, β,w, θ, τ | y) ∝ p(β,w, θ, τ | y)× p(w̃ |w, θ)× p(Ỹ |β, w̃, τ ) .
(12)

Sampling from (12) is achieved by first sampling {β,w, θ, τ } from the posterior
distribution p(β,w, θτ | y). For each drawn sample, we make one draw of the ñ×1
vector w̃ from p(w̃ |w, θ) and then, using this sampled w̃, we make one draw
of Ỹ from p(Ỹ |β, w̃, τ ). The resulting samples of w̃ and Ỹ will be draws from
the desired posterior predictive distribution p(w̃, Ỹ | y). This delivers inference on
both the latent spatial random effect w̃ and the outcome Ỹ at arbitrary locations
since L can be any finite collection of samples. Summarizing these distributions
by computing their sample means, standard errors, and the 2.5-th and 97.5-th
quantiles (to produce a 95% credible interval) yields point estimates with associated
uncertainty quantification.

It is instructive to see how the entire inference for Gaussian outcomes can be
cast into an augmented linear regression model. The predictive model for Ỹ can be
written as a spatial regression
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Ỹ = X̃β + w̃ + ε̃ ; w̃ = Cw + ω , (13)

where X̃ is the ñ × p matrix of predictors observed at locations in L̃ and ε̃ ∼
N(0, D̃τ ), where ε̃ is the ñ× 1 vector with elements ε(�̃i). The second equation in
(13) expresses the relationship between the spatial effects w̃ across the unobserved
locations in L̃ and the spatial effects across the observed locations in L. Since there
is one underlying random field over the entire domain, the covariance function for
the random field specifies the ñ × n coefficient matrix C. In particular, if w ∼
N(0,Kθ ), then C = Kθ(L̃,L)K−1

θ and ω ∼ N(0, Fθ ), where Fθ = Kθ(L̃, L̃) −
Kθ(L̃,L)K−1

θ Kθ (L, L̃). The model for the data and the predictions is combined
into ⎡
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If locations where predictions are sought are fixed by study design, then fitting
(14) using the Bayesian conjugate framework can be beneficial. On the other
hand, one can first estimate {β,w, σ 2} and store samples from their posterior
distribution. Then, for any arbitrary set of points in L̃, for each stored sample of
the parameters we draw one sample of w̃ ∼ N(Cw,Fθ ) followed by one draw of
Ỹ ∼ N(X̃β + w̃, D̃τ ). The resulting {w̃, Ỹ } will be the desired posterior predictive
samples for the latent spatial process and the unobserved outcomes.

6 An Example

We present a synopsis of the analysis by Zhang et al. (2019) of a spatial dataset
from NASA comprising sea surface temperature observations over 2,827,252 spatial
locations of which approximately 90% (2,544,527) were used for model fitting and
the rest were withheld for cross-validatory predictive assessment. Details of the
dataset can be found in http://modis-atmos.gsfc.nasa.gov/index.html and details on
the analysis can be found in Zhang et al. (2019). The salient feature of the analysis

http://modis-atmos.gsfc.nasa.gov/index.html
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Fig. 3 Posterior predictive maps of sea-surface temperature and latent spatial effects. The land is
colored by gray, locations in the ocean without observations are colored by yellow. (a) Posterior
predictive map of sea-surface temperature. (b) Posterior predictive map of latent spatial effects

is that a conjugate Bayesian framework for the NNGP model as in (10) was able to
deliver full inference including the estimation of the spatial latent effects in about
2387 s. Sampling from the posterior distribution was achieved using direct sampling
as described below (10). Since this algorithm is fast and exact, it was run over a grid
of values of {δ2, φ}. For each such value, a posterior predictive assessment over the
cross-validatory hold-out set was carried out and the value of {δ2, φ} producing the
least root mean square prediction error (RMSPE) was selected as optimal inputs.
Figure 3 presents the posterior predictive maps of (a) the response and (b) the latent
spatial effects from the conjugate model.

7 Concluding Remarks

This short article has demonstrated how the familiar theory of conjugate Bayesian
linear regression models can be adapted to spatial models and used effectively to
analyse massive spatial datasets without requiring MCMC algorithms. The article
has attempted to provide some insight into constructing highly scalable Bayesian
hierarchical models for very large spatial datasets using low-rank and sparsity-
inducing processes. Such models are increasingly being employed to answer
complex scientific questions and analyse massive spatiotemporal datasets in the
natural and environmental sciences. Exploratory data analysis tools such as the
variogram can be used to fix the spatial decay parameter and the ratio between the
spatial and non-spatial variance components. An alternative is a cross-validatory
approach, where a grid of values of the process parameters is used and a fast
and exact conjugate Bayesian analysis is performed for each of the values on the
grid. The inference from the optimal value of the process parameters based upon
RMSPE over hold-out locations is then presented. While these approaches may
produce slightly shrunk credible and prediction intervals due to the effect of fixing
a parameter, the effect is seen to be moderate in practical spatial analysis and the
approach could form a useful tool for quick spatial analysis within the Bayesian
paradigm for massive spatial datasets.
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Using Improved Robust Estimators
to Semiparametric Model with High
Dimensional Data

Mahdi Roozbeh, Nor Aishah Hamzah, and Nur Anisah Mohamed

Abstract In classical regression analysis, the ordinary least-squares estimation
is the best estimation if the essential assumptions are satisfied. However, if the
data does not satisfy some of these assumptions, then results can be misleading.
Especially, outliers violate the assumption of normally distributed residuals in the
least-squares regression. Robust regression is a modern technique for analyzing
data that are contaminated with outliers. The standard setup is to assume that the
given samples are derived from a nice distribution, but that an adversary as the
power to arbitrary corrupt a constant fraction of the observed data. With advances in
technologies, most data problems carry structures such as the number of covariates
(p) may exceed the sample size (n), as in the case with high dimensional dataset.
Due to some limitations in high dimensional problems, the classical approaches
may no longer be useful. One of the alternative approaches commonly used in the
ridge estimator introduced by Hoerl and Kennard (Technometrics 12:55–67, 1970).
The robust ridge regression provides a solution for the high dimensional dataset
with outliers. To be more specific, when prior information (in the form of non-
sample information) is available about the vector parameter, the estimation can be
improved. This information, known as uncertain prior information or restriction,
is useful in the estimation procedure, especially, when the information based on
the sample data may be limited. The information may be due to (a) a fact known
from theoretical or experimental considerations, (b) a hypothesis that need to be
tested or, (c) an artificially imposed condition to reduce or eliminate redundancy in
the description of the model. On the other hand, in some experimental cases, it is
not certain whether this prior information hold. The consequence of incorporating
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non-sample information depends on the quality or reliability of the information
introduced in the estimation process. This uncertain prior information, in the form
of hypotheses, can be used in two different ways: (a) a preliminary test estimation
procedure, and (b) the Stein-type shrinkage estimation. We consider robust ridge
estimation in semiparametric high dimensional data and propose a preliminary test,
Stein-type and positive-rule Stein-type robust estimators. For these estimators, a real
data example is considered to illustrate the efficiency of the estimators.

1 Introduction

Many data problems that we have today carry structures where the number of
covariates, p, exceed the sample size n, i.e., p > n. In such a setting, a huge
amount of work has been pursued in addressing prediction of a new response
variable, estimation of an underlying parameter vector and variable selection (see
Hastie et al. 2009 and Bühlmann and van de Geer 2011). In a nutshell, we consider
ridge regression estimation in sparse semiparametric models in which the condition
p > n, that is, when classical analysis is no longer valid.

Let (y1, x1, t1), · · · , (yn, xn, tn) be observations that follow the semiparametric
regression model (SRM)

yi = x�
i β + f (ti)+ εi, i = 1, . . . , n (1.1)

where x�
i = (xi1, xi2, . . . , xip) is p-dimensional vector of observed covariates

or explanatory variables, β = (β1, β2, . . . , βp)
� is a p-dimensional vector of

unknown parameters, the ti’s are known and non-random in some bounded domain
D ⊂ R, f (ti) is an unknown smooth function and εi’s are independent and
identically distributed random errors with zero mean and variance σ 2, which
are independent of (xi , ti ). Semiparametric regression models are more flexible
than standard linear models since they have a parametric and a nonparametric
component. They can be a suitable choice when one suspects that the response y
linearly depends on x, but nonlinearly related to t .

Estimations and applications of the model (1.1) can be found in the monograph
of Härdle et al. (2000).

The theory of linear models is well established for traditional setting p < n. With
modern technologies, however, especially in many biological, medical, social, and
economic studies, p is equal or greater than n, thus making valid statistical inference
a great challenge. In the case of p < n, there is a rich literature on model estimation.
However, classical statistical methods cannot be used for estimating parameters of
the model (1.1) when p > n, because they would overfit the data, besides severe
identifiability issues. A way out of the ill-posedness of estimation in model (1.1)
is given by assuming a sparse structure where only a few of the components of β

are “important” or “non-zero”. Estimation of a full parametric regression model in
the case of p > n and statistical inference has started about a decade ago. See,
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for example, Zhang and Huang (2008), Fan and Lv (2010), Shao and Deng (2012),
Bühlmann (2013), Bühlmann et al. (2014) for some references.

Now, consider a semiparametric regression model in the presence of mul-
ticollinearity. The existence of multicollinearity may lead to wider confidence
intervals for the individual parameters or linear combination of the parameters and
may produce estimates with wrong signs. For our purpose we only employ the ridge
regression concept due to Hoerl and Kennard (1970), to combat multicollinearity.
There are many related research works adopting ridge regression methodology
to overcome the multicollinearity problem. For a few recent researches in full-
parametric and semiparametric regression models, see Saleh (2006), Akdenïz and
Tabakan (2009), Akdenïz Duran et al. (2012), Roozbeh and Arashi (2013), Amini
and Roozbeh (2015), Arashi and Valizadeh (2015), Roozbeh (2015), Ghapani et al.
(2018), and Wu and Yang (2016). In this article, it can be shown that high-
dimensional semiparametric regression models can be analyzed under some levels
of sparsity with the aid of ridge regression estimation. The other alternative methods
to combat multicollinearity problem can be found in Amini and Roozbeh (2016),
Roozbeh and Arashi (2016), Babaie-Kafaki and Roozbeh (2017), Roozbeh (2018),
Akdeniz and Roozbeh (2019) and Roozbeh et al. (2020).

The restricted models are widely applicable to the problem of general hypothesis
testing, especially the generalized likelihood ratio (GLR) tests in regression models.
Defined a restricted LASSO estimator and configured three classes of LASSO type
estimators to fulfill both variable selection and restricted estimation in regression
model. Akdenïz and Tabakan (2009) and Akdeniz et al. (2015) developed the
restricted ridge and Liu estimators in semiparametric regression models. The
problem of restricted ridge partial residual estimation in a semiparametric regression
model with correlated errors is studied by Amini and Roozbeh (2015) who
used generalized cross-validation (GCV) criteria for optimal bandwidth and ridge
parameter selection in model (1.1) simultaneously.

Besides multicollinearity, outliers (data points that deviate from the major bulk
of the data) are another common problem in regression analysis. Robust regression
methods are used to overcome the effects of outliers (such as inflated sum of squares,
bias or distortion of estimation, distortion of p-values, etc.). In this article, we
only consider the least trimmed squares semiparametric regression estimators for
semiparametric regression model. It is well-known that the ordinary least-squares
estimator is sensitive to outliers. Examples of recent researches in full-parametric
regression include the studies made by Nguyen and Welsch (2010), Roozbeh and
Babaie-Kafaki (2016), Roozbeh (2016), and Roozbeh and Arashi (2017).

The basic measure of the robustness of an estimator is its breakdown point, that
is, the fraction (up to 50%) of outlying data points that can corrupt the estimator
arbitrarily. The study of efficient algorithms for robust statistical estimators has been
an active area of research in computational geometry. Many researchers cited the
work of Rousseeuws on least median of squares (LMS) estimator which is defined
to be the hyperplane that minimizes the median squared residual (for example, see
Rousseeuw 1984). Although the vast majority of works on robust linear estimation
in the field of computational geometry has been devoted to the study of the least
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median squares (LMS) estimator, it has been observed by Rousseeuw and Leroy
(1987) that LMS is not the estimator of choice from the perspective of statistical
properties. They argued that a better choice is the least trimmed squares (LTS).
The breakdown point of LTS and LMS are the same. Like the LMS, the LTS
estimator is a robust estimator with a 50%-breakdown point which means that the
estimator is insensitive to the contamination made by outliers, provided that the
outliers constitute less than 50% of the data set. However, the LTS has a number of
advantages in contrast to LMS. The LTS objective function is smoother than that of
LMS. LTS has better statistical efficiency because it is asymptotically normal (see
Rousseeuw 1984) and converges faster than LMS. Rousseeuw and van Driessen
(2006) recommended that, for these reasons, LTS is more suitable as a starting
point for two-step robust estimators such as the MM-estimator (see Yohai 1987)
and generalized M-estimators (see Simpson et al. 1992).

This chapter is organized as follows: Sect. 2 contains the classical estimators
of restricted semiparametric regression model based on kernel approach for low-
dimensional case p < n. The sparse multicollinear semiparametric regression
model and its estimation together with asymptotic distributions under some regu-
larity conditions are considered in Sect. 3. In Sect. 4, we propose some improved
shrinkage estimators in a sparse multicollinear restricted semiparametric regression
model, while their asymptotic biases and risks are derived in Sect. 5. We review
the least trimmed squares estimators in restricted semiparametric regression model
in Sect. 6 and then, propose a new robust estimator in restricted semiparametric
regression model for high-dimensional data set in Sect. 7. Performances of proposed
robust shrinkage estimators are evaluated through a real data example in Sect. 8.

2 The Classical Estimators

Consider the following semiparametric regression model

y = Xβ + f (t)+ ε, (2.1)

where y = (y1, . . . , yn)
�, X = (x1, . . . , xn)

� is an n × p matrix, f (t) =
(f (t1), . . . , f (tn))

� and ε = (ε1, . . . , εn)
�.

We assume that in general, ε is a vector of disturbances, with a multivariate
normal distribution, Nn(0, σ 2V ), where V is a symmetric, positive definite known
matrix and σ 2 is an unknown parameter.

To estimate the parameters of model (2.1), we begin with the removal of the the
non-parametric effect. Assuming β to be known, a natural nonparametric estimator
of f (.) is f̂ (t) = k(t)(y − Xβ), with k(t) = (Kωn(t, t1), . . . , Kωn(t, tn)), where
Kωn(.) is a kernel function of order m with bandwidth parameter ωn. For the exis-
tence of f̂ (t,β) at the optimal convergence rate n−4/5, in semiparametric regression
models with probability one, we need some conditions on kernel function. See
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Müller (2000) for more details. Replacing f (t) by f̂ (t) in (2.1), the model can
be written as

ỹ = X̃β + ε, (2.2)

where ỹ = (
In − K

)
y, X̃ = (

In − K
)
X and K is the smoother matrix with i, j th

component Kωn(ti , tj ).
We can estimate the linear parameter β in (2.1) under the assumption cov(ε) =

σ 2V , by minimizing the generalized sum of squared errors

SS(ωn,β) = (̃y − X̃β)�V −1(̃y − X̃β). (2.3)

The unique minimizer of (2.3) is the partially generalized least squares estimator
(PGLSE) given by

β̂PG(ωn) = argminβ SS(ωn,β) = C−1(ωn)X̃
�
V −1ỹ−1, C(ωn) = X̃

�
V −1X̃.

(2.4)

Motivated by Fallahpour et al. (2012), we partition the regression parameter β as
β = (β�

1 ,β
�
2 )

�, where the subvector β i has dimension pi , i = 1, 2 and p1 + p2 =
p. Thus the underlying model has form

ỹ = X̃1β1 + X̃2β2 + ε, (2.5)

where X̃ is partitioned according to (X̃1, X̃2) in such a way that X̃i is a n × pi
submatrix, i = 1, 2. With respect to this partitioning, the PGLSEs of β1 and β2 are
respectively given by

β̂PG1(ωn) = S−1
1 (ωn)X̃

�
1 �−1

2 (ωn)̃y, S1(ωn) = X̃
�
1 �−1

2 (ωn)X̃1

β̂PG2(ωn) = S−1
2 (ωn)X̃

�
2 �−1

1 (ωn)̃y, S2(ωn) = X̃
�
2 �−1

1 (ωn)X̃2 (2.6)

where

�−1
i (ωn) = V −1 − V −1X̃i (X̃

�
i V −1X̃i )

−1X̃
�
i V −1, i = 1, 2. (2.7)

The sparse model is defined when Ho : β2 = 0 is true. In this paper, we refer the
restricted semiparametric regression model (RSRM) to the sparse model.

For the RSRM, the partially generalized restricted least squares estimator
(PGRLSE) takes the form of

β̂PGR1(ωn) = C−1
1 (ωn)X̃

�
1 V −1ỹ, C1(ωn) = X̃

�
1 V −1X̃1. (2.8)

According to Saleh (2006), the PGRLSE performs better than PGLSE when model
is sparse. However, the former estimator performs poorly as β2 deviates from
the origin. The following result provides the relation between the submodel and
fullmodel estimators of β1.
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Proposition 2.1 Under the assumptions in Eqs. (2.6) and (7.2), we have

β̂PG1(ωn) = β̂PGR1(ωn)− C−1
1 (ωn)X̃

�
1 V −1X̃2β̂PG2(ωn).

3 Sparse Semiparametric Regression Model

Under situations in which the matrix C(ωn) is ill-conditioned due to linear
relationship among the covariates of X̃ matrix (as in multicollinearity) or the
number of independent variables (p) is larger than the sample size (n), the proposed
estimators in the previous section are not applicable, because, we always find a
linear combination of the columns in X̃ which is exactly equal to one other column.
Mathematically, the design matrix is not full rank, rank(X̃) ≤ min(n, p) < p for
p > n, and one may write X̃β = X̃(β + ζ ) for every ζ in the null space of X̃.
Therefore, without further assumptions, it is impossible to infer or estimate β from
data. We note that this issue is closely related to the classical setting with p < n but
with rank(X̃) < p (due to linear dependence among covariables) or ill-conditioned
design leading to difficulties with respect to identifiability. We note, however, that
for prediction or estimation of X̃β (that is the underlying semiparametric regression
surface), identifiability of the parameters is not necessarily needed. From a practical
point of view, high empirical correlations among two or a few other covariables lead
to unstable results for estimating β or for pursuing variable selection. To overcome
this problem, we follow Roozbeh (2015) and obtain the restricted ridge estimator
by minimizing the sum of squared partial residuals with a spherical restriction and
a linear restriction β2 = 0, i.e., the RSRM is transformed into an optimal problem
with two restrictions:

min
β

(̃y − X̃β)�V −1(̃y − X̃β) subject to β�β ≤ φ2 and β2 = 0.

The resulting estimator is partially generalized restricted ridge estimator (PGRRE),
given by

β̂PGR1(ωn, kn) = C−1
1 (ωn, kn)X̃

�
1 V −1ỹ

=
(
Ip1 + kn(X̃

�
1 V −1X̃1)

−1
)−1

β̂PGR1(ωn)

= T 1(ωn, kn)β̂PGR1(ωn),

T 1(ωn, kn) =
(
Ip1 + kn(X̃

�
1 V −1X̃1)

−1
)−1

, (3.1)

where kn ≥ 0 is the ridge parameter as a function of sample size n and C1(ωn, kn) =
X̃

�
1 V −1X̃1 + knIp1 .
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In a similar manner shown previously, the partially generalized unrestricted ridge
estimators (PGUREs) of β1 and β2 respectively have forms

β̂PG1(ωn, kn) = S−1
1 (ωn, kn)X̃

�
1 �−1

2 (ωn, kn)̃y

=
(
Ip1 + kn(X̃

�
1 �−1

2 (ωn, kn)X̃1)
−1
)−1

β̂PG1(ωn)

= R1(ωn, kn)β̂PG1(ωn),

R1(ωn, kn) =
(
Ip1 + kn(X̃

�
1 �−1

2 (ωn, kn)X̃1)
−1
)−1
, (3.2)

β̂PG2(ωn,kn) = S−1
2 (ωn, kn)X̃

�
2 �−1

1 (ωn, kn)̃y

=
(
Ip2 + kn(X̃

�
2 �−1

1 (ωn, kn)X̃2)
−1
)−1

β̂PG2(ωn)

= R2(ωn, kn)β̂PG2(ωn),

R2(ωn, kn) =
(
Ip2 + kn(X̃

�
2 �−1

1 (ωn, kn)X̃2)
−1
)−1
, (3.3)

where S1(ωn, kn) = X̃
�
1 �−1

2 (ωn, kn)X̃1 + knIp1 , S2(ωn, kn) = X̃
�
2 �−1

1 (ωn, kn)

X̃2 + knIp2 and

�−1
i (ωn, kn) = V −1 − V −1X̃i (X̃

�
i V −1X̃i + knIpi )

−1X̃
�
i V −1, i = 1, 2.

(3.4)
Similar to Proposition 2.1, we have the following result without proof.

Proposition 3.1 The partially generalized restricted and unrestricted ridge estima-
tors of β1 have the following relation

β̂PG1(ωn, kn) = β̂PGR1(ωn, kn)− C−1
1 (ωn, kn)X̃

�
1 V −1X̃2β̂PG2(ωn, kn).

Up to this point, we supposed that the null hypothesis Ho : β2 = 0 is true;
however, it must be tested that one can incorporate the PGURE in practice. For
this purpose, following Saleh (2006) and Yuzbashi and Ahmed (2015), we use the
following test statistic for testing the sparsity hypothesis Ho

£n(ωn, kn) = β̂
�
PG2(ωn, kn)S2(ωn, kn)β̂PG2(ωn, kn)

(n− p1)s2(ωn, kn)
, (3.5)

where,

s2(ωn, kn) = 1

n− p1

(̃
y−X̃1β̂PG1(ωn, kn)

)�
V −1(̃y−X̃1β̂PG1(ωn, kn)

)
. (3.6)
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Later, it will be shown that the test statistic £n(ωn, kn) has an asymptotic chi-square
distribution with p2 degrees of freedom. To this end, we need to take the following
assumptions as regularity conditions:

(A1) max1≤i≤n x̃�
i

(
X̃

�
V −1X̃ + knIp

)−1
x̃i = o(n), where x̃�

i is the ith row of

X̃.
(A2) kn

n
→ ko as n → ∞,

(A3) Let

An = X̃
�
V −1X̃ + knIp

=
(

X̃
�
1

X̃
�
2

)
V −1(X̃1 X̃2)+ knIp

=
(

X̃
�
1 V −1X̃1 X̃

�
1 V −1X̃2

X̃
�
2 V −1X̃1 X̃

�
2 V −1X̃2

)
+ kn

(
Ip1 0p1×p2

0p2×p1 Ip2

)

=
(

An11 An12

An21 An22

)
.

Then, there exists a positive definite matrix A such that

1

n
An → A =

(
A11 A12

A21 A22

)
, as n → ∞.

(A4) X̃
�
2 V −1X̃2 + knIp2 = o(

√
n).

(A5) x̃�
i x̃j = o(

√
n), i, j = 1, . . . , n.

Note that by (A2), (A4) and (A5), one can directly conclude that �−1
2 (ωn, kn) →

V −1 as n → ∞.
The following result is a direct conclusion of Theorem 2 of Knight and Fu (2000).

Proposition 3.2 Let β̂PG(ωn, kn)=(X̃�
V −1X̃+knIp)−1X̃

�
V −1ỹ. Then, under

the regularity conditions (A1)–(A3),
√
n
(
β̂PG(ωn, kn)−β

) D→ Np

(−koA−1β,

σ 2A−1).
According to Saleh (2006), the test statistic diverges as n → ∞, under any

fixed alternatives Aξ : β2 = ξ . To overcome this difficulty, we consider the local
alternatives

K(n) : β2 = β2(n) = n−
1
2 ξ , (3.7)

where ξ = (ξ1, . . . , ξp2)
T ∈ R

p2 is a fixed vector.
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For notational convenience, let

− koA
−1β = μ = (μ�

1 ,μ
�
2 )

�,

δ = A−1
11 A12ξ ,

μ11.2 = μ1 − A12A
−1
22

(
(β2 − ξ)− μ2

)
,

γ = μ11.2 + δ,

A22.1 = A22 − A21A
−1
11 A12,

B = A21A
−2
11 A12A

−1
22.1. (3.8)

In the following, similar to approaches by Saleh (2006) and Yuzbashi and Ahmed
(2015), some asymptotic distributional results involving the proposed estimators are
given.

Lemma 3.1 Under the regularity conditions (A1)–(A3) and local alternatives
{K(n)}
(i) V

(1)
(n) =

√
n
(
β̂PG1(ωn, kn)− β1

) D→ Np1(−μ11.2, σ
2A−1

11.2)

(ii) V
(2)
(n) =

√
n
(
β̂PGR1(ωn, kn)− β1

) D→ Np1(−γ , σ 2A−1
11 )

(iii) V
(3)
(n) =

√
n
(
β̂PGR1(ωn, kn)− β̂PG1(ωn, kn)

) D→ Np1(−γ+μ11.2, σ
2(A−1

11 −
A−1

11.2))

where A11.2 = A11 − A12A
−1
22 A21.

The following result is a direct conclusion of Proposition 3.2 and Lemma 3.1.

Theorem 3.1 Under the regularity conditions (A1)–(A3) and local alternatives
{K(n)}, £n is asymptotically distributed according to a non-central chi-square
distribution with p2 degrees of freedom and non-centrality parameter 1

2$
∗, where

$∗ = 1

σ 2 ξ�A22.1ξ , A22.1 = A22 − A21A
−1
11 A12.

4 Shrinkage Estimation Methodologies

In many practical situations, along with the model one may suspect that β belongs
to the sub-space defined by β2 = 0. In such situation one combines the estimate
of β and the test-statistic to obtain improved estimators of β. First, we consider the
preliminary test partially generalized restricted ridge estimator (PTPGRRE) defined
by
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β̂
PT

PGR1(ωn, kn) = β̂PGR1(ωn, kn)+
[
1 − I (£n(ωn, kn) ≤ χ2

p2
(α))

]
(
β̂PG1(ωn, kn)− β̂PGR1(ωn, kn)

)
= T 1(ωn, kn)β̂GR1(ωn)+

[
1 − I (£n(ωn, kn) ≤ χ2

p2
(α))

]
×(R1(ωn, kn)β̂PG1(ωn)− T 1(ωn, kn)β̂PGR1(ωn)

)
(4.1)

where χ2
p2
(α) is the upper α-level critical value (0 < α < 1) from the central

chi-square distribution and I (A) is the indicator function of the set A.
The PTPGRRE has the disadvantage that it depends on α, the level of signifi-

cance, and also it yields the extreme results, namely β̂GR1(k) and β̂G1(k) depending
on the outcome of the test. Later, we will discuss in detail of the Stein-type partially
generalized restricted ridge estimator (SPGRRE) defined by

β̂
S

PGR1(ωn, kn) = β̂PGR1(ωn, kn)+ (1 − d£−1
n (ωn, kn))(

β̂PG1(ωn, kn)− β̂PGR1(ωn, kn)
)

= T 1(ωn, kn)β̂PGR1(ωn)+ (1 − d£−1
n (ωn, kn))

×(R1(ωn, kn)β̂PG1(ωn)− T 1(ωn, kn)β̂PGR1(ωn)
)

(4.2)

where d = p2 − 2 > 0. The SPGRRE has the disadvantage that it has strange
behavior for small values of £n. Also, the shrinkage factor (1 − d£−1

n ) becomes
negative for £n < d. Hence, we consider the positive-rule Stein-type partially
generalized restricted ridge estimator (PRSPGRRE) defined by

β̂
S+
PGR1(ωn, kn) = β̂

S

PGR1(ωn, kn)− (1 − d£−1
n (ωn, kn))I (£n(ωn, kn) ≤ d)

×(β̂PG1(ωn, kn)− β̂PGR1(ωn, kn)
)
. (4.3)

Shrinkage estimators has been considered by Arashi and Tabatabaey (2009),
Arashi et al. (2010), Arashi (2012), Arashi et al. (2012), Arashi et al. (2014)
and extended to semiparametric partially linear regression models by Arashi and
Roozbeh (2019).

5 Asymptotic Properties of Shrinkage Estimators

In this section, we provide the expressions for the asymptotic distributional bias
(ADB) and quadratic risk (ADQR) of the estimators. Suppose for any estimator β∗
of β, the asymptotic cumulative distribution function (c.d.f) under K(n), exists and
has form
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Gp(x) = lim
n→∞PK(n)

(√
n(β∗ − β) ≤ x

)
.

Then, the ADB of β∗ is evaluated by

ADB(β∗) = lim
n→∞E

(√
n(β∗ − β)

) = ∫
xdGp(x),

Let

M(β∗) =
∫

xxT dGp(x) = lim
n→∞E

(
n(β∗ − β)(β∗ − β)�

)
.

Then, the ADQR of β∗ is defined as

ADQR(β∗) = tr
(
M(β∗)

) = lim
n→∞E

(
n(β∗ − β)�(β∗ − β)

)
.

The proofs of the following theorems can be derived parallel to that of Roozbeh
(2015) with utilities in Saleh (2006) and the fact that R1(ωn, kn) → T 1(ωn, kn) as
n → ∞.

Theorem 5.1 Under the foregoing regularity conditions and local alternatives
{K(n)}, the ADB of the estimators are given by

ADB
(
β̂PG1(ωn, kn)

) = −μ11.2

ADB
(
β̂PGR1(ωn, kn)

) = ADB
(
β̂PG1(ωn, kn)

)−T 1(ωn, kn)δ

ADB
(
β̂
PT

PGR1(ωn, kn)
)
= ADB

(
β̂PG1(ωn, kn)

)−T 1(ωn, kn)δHp2+2(d,$
∗)

ADB
(
β̂
S

PGR1(ωn, kn)
)
= ADB

(
β̂PG1(ωn, kn)

)− dT 1(ωn, kn)δE
(
χ−2
p2+2($

∗)
)

ADB
(
β̂
S+
PGR1(ωn, kn)

)
= ADB

(
β̂
S

PGR1(ωn, kn)
)
−T 1(ωn, kn)δ

×
[
Hp2+2(d,$

∗)−dE
(
χ−2
p2+2($

∗)I
(
χ2
p2+2($

∗)≤d
))]

,

where Hν(·;$2) denotes the c.d.f. of the χ2-distribution with ν degree of freedom
(d.f.) and non centrality parameter $2/2.

Theorem 5.2 Under the foregoing regularity conditions and local alternatives
{K(n)}, the ADQR of the estimators are given by

ADQR
(
β̂PG1(ωn, kn)

) = σ 2 tr
(
T 1(ωn, kn)A

−1
11.2T 1(ωn, kn)

)+ μ�
11.2μ11.2

ADQR
(
β̂PGR1(ωn, kn)

) = ADQR
(
β̂PG1(ωn, kn)

)+ δ�T 2
1(ωn, kn)δ

+2δ�T 1(ωn, kn)μ11.2−σ 2 tr
(
T 1(ωn, kn)BT 1(ωn, kn)

)
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ADQR
(
β̂
PT

PGR1(ωn, kn)
)
= ADQR

(
β̂PG1(ωn, kn)

)+ δ�T 2
1(ωn, kn)

δ
(
2Hp2+2(d,$

∗)−Hp2+4(d,$
∗)
)

+2δ�T 1(ωn, kn)μ11.2Hp2+2(d,$
∗)

−σ 2 tr
(
T 1(ωn, kn)BT 1(ωn, kn)

)
Hp2+2(d,$

∗)

ADQR
(
β̂
S

PGR1(ωn, kn)
)
= ADQR

(
β̂PG1(ωn, kn)

)+ 2δ�T 1(ωn, kn)μ11.2

E
(
χ−2
q+2($

∗)
)

−dσ 2 tr
(
T 1(ωn, kn)BT 1(ωn, kn)

){
E
(
χ−4
q+2($

∗)
)

+
[

1 − δ�T 2
1(ωn, kn)δ

2σ 2$∗ tr(T 1(ωn, kn)BT 1(ωn, kn))

]

(2$∗)E
(
χ−4
q+4($

∗)
)}
,

ADQR
(
β̂
S+
PGR1(ωn, kn)

)
= ADQR

(
β̂
S

PGR1(kn)
)
− σ 2 tr(T 1(ωn, kn)BT 1(ωn, kn))

×E
[(

1 − dχ−2
p2+2($

∗)
)2
I
(
χ2
p2+2($

∗) ≤ d
)]

+δ�T 2
1(ωn, kn)δE

[(
1 − dχ−2

p2+4($
∗)
)2

I

(
χ2
p2+4($

∗) ≤ d

)]

−2δ�T 2
1(ωn, kn)δE

[(
dχ−2

p2+2($
∗)− 1

)
I

(
χ2
p2+2($

∗) ≤ d

)]

−2δ�T 1(ωn, kn)μ11.2E

[(
χ−2
p2+2($

∗)− 1

)
I

(
χ2
p2+2($

∗) ≤ d

)]
.

6 Robust Approach

We have mentioned that outliers can strongly corrupt the least-squares fit due to
their dominant effect on the objective function. The LTS approach attempts to solve
this problem by minimizing the sum of the smallest h squared residuals rather than
the complete sum of squares. Here, h is a threshold such that the ratio α = (n−h)/n
represents the percentage of the outlying observations.
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Let zi be the indicator whether observation i is a good observation or not.
Consider the LTS problem in RSRM as follows:

min
β,z

ψ(β, z) = (̃y − X̃β)�V −1/2ZV −1/2(̃y − X̃β)

s.t. β2 = 0,

e�z = h,

zi ∈ {0, 1}, i = 1, . . . , n, (6.1)

where Z is the diagonal matrix with diagonal elements z = (z1, . . . , zn)
� and e =

(1, . . . , 1)�n×1. The resulting estimator is the robust partially generalized restricted
least squares estimator (RPGRLSE), which is given by

β̂
LT S

PGR1(ωn, z) = C1(ωn, z)
−1X̃

�
V −1/2ZV −1/2ỹ, (6.2)

where C1(ωn, z) = X̃
�
V −1/2ZV −1/2X̃. With respect to the partitioning (2.5), the

RPGLSEs of β1 and β2 are respectively given by

β̂
LT S

PG1(ωn, z) = S−1
1 (ωn, z)X̃

�
1 �−1

2 (ωn, z)̃y, S1(ωn, z) = X̃
�
1 �−1

2 (ωn, z)X̃1

β̂
LT S

PG2(ωn) = S−1
2 (ωn, z)X̃

�
2 �−1

1 (ωn, z)̃y, S2(ωn, z) = X̃
�
2 �−1

1 (ωn, z)X̃2

(6.3)

where

�−1
i (ωn, z) = V −1/2ZV −1/2

−V −1/2ZV −1/2X̃i (X̃
�
i V −1/2ZV −1/2X̃i )

−1X̃
�
i V −1/2ZV −1/2,

i = 1, 2. (6.4)

7 Robust Shrinkage Estimator for High-Dimensional Data
with Outliers

As stated earlier, under situations in which the matrix C(ωn, z) is ill-conditioned or
the number of independent variables (p) is larger than sample size (n), the proposed
estimators in previous sections are no longer applicable and it is impossible to infer
or estimate β from data. In these situations, we will use robust shrinkage estimators
based on the LTS approach. Following Arashi and Roozbeh (2019), the optimization
problem is:
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min
β,z

ψ(β, z) = (̃y − X̃β)�V −1/2ZV −1/2(̃y − X̃β)+ k(β�β − φ2)

s.t. β2 = 0,

e�z = h,

zi ∈ {0, 1}, i = 1, . . . , n. (7.1)

The resulting estimator is a robust partially generalized restricted ridge estimator
(RPGRRE), given by

β̂
LT S

PGR1(ωn, z, kn) = C(ωn, kn, z)
−1X̃

�
V −1/2ZV −1/2ỹ, (7.2)

where C(ωn, kn, z) = C(ωn, z)+ knIp1 .
By direct computations, the robust partially generalized unrestricted ridge esti-

mators (RPGUREs) of β1 and β2 respectively have forms

β̂
LT S

PG1(ωn, kn, z)= (X̃
�
1 �−1

2 (ωn, kn, z)X̃1+knIp1)
−1X̃

�
1 �−1

2 (ωn, kn, z)̃y

=
(
Ip1+kn(X̃�

1 �−1
2 (ωn, kn, z)X̃1)

−1
)−1

β̂PG1(ωn, z) (7.3)

β̂
LT S

PG2(ωn, kn, z) = (X̃
�
2 �−1

1 (ωn, kn, z)X̃2 + knIp2)
−1X̃

�
2 �−1

1 (ωn, kn, z)̃y

=
(
Ip2 + kn(X̃

�
2 �−1

1 (ωn, z, kn)X̃2)
−1
)−1

β̂PG2(ωn, z), (7.4)

where

�−1
i (ωn, kn, z)=V −1/2ZV −1/2−V −1/2ZV −1/2X̃i (X̃

�
i V −1/2ZV −1/2

X̃i+knIpi )−1

×X̃
�
i V −1/2ZV −1/2, i = 1, 2. (7.5)

Now, suppose s2(ωn, kn, z) denotes the estimated value of σ 2 based on

β̂
LT S

PG1(ωn, kn, z). Let g(.) and G(.) be the density function and cumulative
distribution function of (σ 2V )−1/2ε, respectively. According to Roozbeh and
Arashi (2017), it can be verified that

s2(ωn, kn, z)= 1

h

(̃
y−X̃β̂

LT S

PG1(ωn, kn, z)
)�

V −1/2ZV −1/2(̃y − X̃β̂
LT S

PG1(ωn, kn, z)
)

→P σ 2 κu

1 − α
,

where uα = G−1(1 − α/2) be the (1 − α/2) upper quantile of g(.) and
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κu =
∫ uα

−uα
z2dG(z).

Following Roozbeh and Arashi (2017) and Arashi and Roozbeh (2019), the robust
test statistic for testing the null-hypothesis Ho : β2 = 0 is given by

£n(ωn, kn, z) = lα

s2(ωn, kn, z)

(
β̂
LT S�
PG2 (ωn, kn, z)S2(ωn, kn, z)β̂

LT S

PG2(ωn, kn, z)
)
,

(7.6)

where S2(ωn, kn, z) = X̃
�
2 �−1

1 (ωn, kn, z)X̃2+knIp2 , lα = (1 − α − 2uαg(uα))2 /(1−
α) and £n(ωn, kn, z) has an asymptotic chi-square distribution with p2 degree of
freedom under the null-hypothesis.

In continuation, we introduce the robust preliminary test partially generalized
restricted ridge estimator (RPTPGRRE) defined by

β̂
LT S−PT
PGR1 (ωn, kn, z) = β̂

LT S

PGR1(ωn, kn, z)+
[
1 − I (£n(ωn, kn, z) ≤ χ2

p2
(α))

]
×(β̂LT SPG1(ωn, kn, z)− β̂

LT S

PGR1(ωn, kn, z)
)
. (7.7)

We next consider the robust Stein-type partially generalized restricted ridge estima-
tor (RSPGRRE) defined by

β̂
LT S−S
PGR1 (ωn, kn, z) = β̂

LT S

PGR1(ωn, kn, z)+ (1 − d£−1
n (ωn, kn, z))

×(β̂LT SPG1(ωn, kn, z)− β̂
LT S

PGR1(ωn, kn, z)
)
. (7.8)

Finally, due to some drawbacks of RSPGRRE as stated earlier, we introduce
the robust positive-rule Stein-type partially generalized restricted ridge estimator
(RPRSPGRRE) defined by

β̂
LT S−S+
PGR1 (ωn, kn, z)= β̂

LT S−S
PGR1 (ωn, kn, z)−(1−d£−1

n (ωn, kn, z))I (£n(ωn, kn, z)≤d)
×(β̂LT SPG1(ωn, kn, z)− β̂

LT S−S
PGR1 (ωn, kn, z)

)
. (7.9)

8 Application

In this section, we demonstrate the application of the proposed method to the
riboflavin production data set (see e.g., Bühlmann et al. 2014).

To illustrate the usefulness of the suggested strategies for high-dimensional data
in the semiparametric regression model, we consider the data set on riboflavin
(vitamin B2) production in Bacillus subtilis, which can be found in R package
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Fig. 1 The diagram of
cross–validation curve (the
red dotted line), and upper
and lower standard deviation
curves along the sequence
{λn}
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“hdi”. This data consist of a logarithm of the riboflavin production rate as the
response variable along with p = 4088 covariates measuring the logarithm of the
expression level of 4088 genes for n = 71 patients. We use the least absolute
shrinkage and selection operator (LASSO) approach for extracting the effective
genes in riboflavin production rate. Based on 100-fold cross validation, the LASSO
shrinks 4047 parameters to zero with remaining p1 = 41 significant explanatory
variables. As shown in Fig. 1, the best value of the LASSO parameter (λn) which
minimizes the cross–validation criterion is achieved at 0.0364.

Since the primary aim of this study is to improve the prediction accuracy in
genome regression model, we further focus on the visualization of the data. Apart
from the high-dimensional nature of this data, we detected outliers. As a first step to
data visualization, we employ diagnostic plots to identify data that are ‘inconsistent’
with the main bulk of the data sets. We label an observations as ‘outlier’ if the
absolute standardized residual for the point is larger than 2; observations 27, 31, 33,
and 71 are outliers as shown in Fig. 2. The presence of these outliers will inevitably
affect the parameter estimation in the model. Thus, the need to develop an efficient
robust estimation strategy is necessary.

The bivariate boxplot may be useful in indicating the distributional properties of
the data and in identifying possible outliers. The bivariate boxplot, as displayed in
Fig. 3, is a two-dimensional analogue of the boxplot for univariate data proposed
by Goldberg and Iglewicz (1992). This boxplot is based on calculating the robust
measures of location, scale, and correlation; it consists essentially a pair of
concentric ellipses, the inner ellipse includes 50% of the data and other (called
the fence) of which delineates potentially influential outliers. In addition, resistant
regression lines of both response (y) on predictor (X) and vice versa are shown; the
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Fig. 2 Diagnostic plots for the riboflavin production data set
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Fig. 3 Bivariate boxplot of the riboflavin production data set for effective genes
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intersection provides the bivariate location estimator and the acute angle between
the regression lines gives a measure of correlation where small angle indicates a
large absolute value of correlations. Figure 3 showed that the data contains some
outliers.

To detect the nonparametric part of the model, we calculate

s2
i (ωn, z) =

1

h

(̃
y −X1[,−i]β̂LT SPG1(ωn, z)

)�
V −1/2ZV −1/2

(̃
y −X1[,−i]β̂LT SPG1(ωn, kn, z)

)
, i = 1, . . . , 41,

where X1[,−i] is obtained by deleting the ith column of matrix X1. Among
all 41 remained genes, “DNAJ_at” had minimum s2

i (ωn, z) value and so this
can be considered as a nonparametric part. We also use the added-variable plots
to identify the parametric and nonparametric components of the model. Added-
variable plots enable us to visually assess the effect of each predictor, having
adjusted for the effects of the other predictors. By looking at added-variable plot
(Fig. 4), we consider “DNAJ_at” as a nonparametric part. As it can be seen from
this figure, the nonlinear relation between “DNAJ_at” and the response variable
seems to have a better fit than linear relation after removing the effects of other
predictors, and so, the specification of the sparse semiparametric regression model
can be written as

y = X1β1 + X2β2 + f (t)+ ε, t = DNAJ_at (8.1)

where p1 = 40 and p2 = 4047.

Fig. 4 Added-variable plot
of explanatory variables
DNAJ_at vs. dependent
variable, linear fit (red solid
line) and kernel fit (blue
dashed line)
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For estimating the nonparametric part of the model, f (t), we use

Wωn(tj ) =
1

nωn
K
( t − tj

ωn

)
= 1

nωn
.

1√
2π

exp
{
− (ti − tj )

2

2ω2
n

}
,

which is Priestley and Chao’s weight with the Gaussian kernel. We apply the robust
cross-validation (R.C.V.) method to select the optimal bandwidth ωn and kn, which
minimizes the following R.C.V. function

R.C.V .(ωn, kn) = 1

h

(
ỹ(−i)−X̃

(−i)
β̂
(−i)

(ωn, kn)
)�

Z
(
ỹ(−i)−X̃

(−i)
β̂
(−i)

(ωn, kn)
)
,

where β̂
(−i)

obtain by replacing X̃ and ỹ with X̃
(−i) =

(
x̃
(−i)
jk

)
, 1 ≤ k ≤ n,

1 ≤ j ≤ p, ỹ(−i) =
(
ỹ
(−i)
1 , . . . , ỹ

(−i)
n

)
, x̃(−i)sk = xsk −∑n

j �=i Wnj (ti)xsj , ỹ(−i)k =
yk −∑n

j �=i Wnj (ti)yj .
All computations were conducted using the statistical package R. Table 1 shows

a summary of the results. In this table, the SSE and R2 respectively are the
residual sum of squares and coefficient of determination of the model, i.e., SSE =∑n

i=1 zi(yi − ŷi )
2, ŷi = x�

i β̂ + f̂ (ti), and R2 = 1 − SSE/Syy . The RPGRRE
and RPRSPGRRE are the best estimators with the relatively smallest SSE and
largest R2 values. For estimation of nonparametric effect, at first we estimated the
parametric effects by one of the proposed methods and then, a local polynomial
approach was applied to fit yi − x�

i β̂ on ti , i = 1, . . . , n (Fig. 5). As displayed in

Table 1 Evaluation of proposed robust estimators for the riboflavin production data

Method RPGURE RPGRRE RSPGRRE RPRSPGRRE

SSE 11.8548 1.1783 2.4741 1.1755

R2 0.5215 0.9524 0.9001 0.9526

Fig. 5 Fitted curves of
nonparametric part of
model (8.1)
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Fig. 5, because of sparsity of the model, RPGURE has been completely corrupted
and led to bad fit. The RPGRRE and RPRSPGRRE resulted in the same fits. The
results of Table 1 also confirm this findings.

9 Summary and Conclusions

In this paper, under sparsity assumption on some elements of β, we proposed a
robust partially generalized restricted ridge estimator in a semiparametric regression
model when the errors were dependent. We introduced the robust Stein-type
partially generalized restricted ridge estimator and its positive-rule after deriving
the robust test statistic for testing the sparsity of the model and its asymptotic distri-
bution for application in the high-dimensional data set. Finally, a real data example
analyzed to compare the performance of the proposed estimators numerically. In the
real example study, as it can be seen from Fig. 4, the nonlinear relation between the
dependent variable and DNAJ_at can be detected and so, the pure parametric model
does not fit to the data and semiparametric regression model fits more significantly.
Further, from Table 1 and Fig. 5, it can be deduced that RPGRRE and RPRSPGRRE
are quite efficient in the sense that they have significant values of goodness of fit.
Moreover, because of the sparsity of the data, RPGURE was the worst estimator for
the parametric part in this examples.
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Optimal Allocation for Extreme Value
Regression Under Time Censoring

Ping Shing Chan, Hon Yiu So, Hon Keung Tony Ng, and Wei Gao

Abstract In this paper, we discuss the optimal allocation problem in a multi-level
accelerated life testing experiment under time (Type-I) censoring when an extreme-
value regression model is used for statistical analysis. We derive the expected Fisher
information and the asymptotic variance-covariance matrix of the maximum like-
lihood estimators. Three optimality criteria are considered and the corresponding
optimal allocations are determined. Under Type-I censoring, because the optimal
allocations are depending on the model parameters, the sensitivity of the optimal
allocations due to mis-specification of the model parameters is studied. A numerical
example is used to illustrate the methodologies developed in this paper.

1 Introduction

Optimal design of regression experiments has long been studied in the literature,
for example, Elfving (1952), Gaylor and Sweeny (1965), Fedorov (1972), Silvey
(1980). It is one of the important problems in statistical and engineering sciences
because a well designed experiment not only reduces the cost of the experiment
but also improves the efficiency of the statistical inference. For results in optimal
design of linear regression models with complete data and extensive developments
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in this area, one may refer to Silvey (1980), Box and Draper (1987), Seber and Wild
(1989), Atkinson and Donev (1992), Liski et al. (2002) and a concise introduction by
O’Brien and Funk (2003). For multi-stress levels extreme value regression model,
Nelson and Kielpinski (1976) and Nelson and Meeker (1978) noted that the optimal
allocation in the complete sample situation uses only the highest and the lowest
stress levels for their optimality criteria using intuitive arguments. Ng et al. (2007)
established this result in a formal manner by providing a mathematical proof of
the results. Besides the multi-stress levels regression models, optimal designs of
accelerated life tests under different statistical models have also been studied, see,
for example, Bai and Chung (1991, 1992), Bai and Kim (1993) and Monroe et al.
(2010). For a comprehensive review and bibliography on accelerated test plans, one
may refer to Nelson (2005a,b).

In industrial and clinical experiments, there are many situations in which
units (or subjects) are lost or removed from the experiment before failure. The
experimenter may not always obtain complete information on failure times for all
experimental units. Data obtained from such experiments is called censored data.
Censoring can be unintentional due to accidental breakage or an individual under
study drops out, or it can be intentional in which the removal of units or subjects is
pre-planned. Common reasons for pre-planned censoring are saving the total time
on test and saving the cost associated with failure of the units. Nevertheless, this
kind of incomplete data will reduce the efficiency of statistical inference compared
to complete data.

Two types of censoring, namely Type-I censoring and Type-II censoring, are
commonly used in industrial experiments. For Type-I censoring, the life-testing
experiment is planned to be terminated at a pre-fixed time T . Then, only the
failures until time T will be observed. The incomplete data obtained from such
an experiment will be referred to as a Type-I censored sample or time-censored
sample. Note that the number of failures observed in a Type-I censored experiment
is random but the total experimental time is fixed. For Type-II censoring, the life-
testing experiment is planned to be terminated as soon as the r-th (where r is
pre-fixed) failure is observed. Then, only the first r failures out of n units under test
will be observed. The incomplete data obtained from such a restrained experiment
will be referred to as a Type-II censored sample. Note that in this case, in contrast to
Type-I censoring, the number of failures observed is fixed (viz., r) while the duration
of the experiment is random. For a concise review of censoring methodology, one
may refer to Ng (2010). In the context of optimal design of regression experiments,
Ka et al. (2011) further discussed the optimal allocation problem in the multi-
level stress testing with extreme-value regression model under Type-II censored
experiments. Due to the complexity of the Fisher information matrix in presence
of censoring, the optimal allocations are determined numerically and asymptotic
optimal allocations are also studied in Ka et al. (2011). However, the optimal
allocation problem in the multi-level stress testing with extreme-value regression
model under Type-I censored experiments has not been formally studied. Although
similar approaches used in Ka et al. (2011) for Type-II censored experiments can
be adopted to solve the optimal allocation problem under Type-I censoring with
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suitable modification, the problem is more complicated and the modifications are
not straightforward because the numbers of observed failures at different stress
levels are random variables with distributions depending on the model parameters.
Therefore, it is important to develop methodology to obtain optimal allocation and
to investigate the sensitivity of the allocations due to the mis-specification of the
parameters.

In this paper, we discuss the optimal allocation problem in a multi-level
accelerated life testing experiment under Type-I censoring when an extreme-value
regression model is used for statistical analysis. In Sect. 2, we introduce the statisti-
cal model and the set-up of the optimal allocation problem. The Fisher information
and asymptotic variance-covariance matrices of the maximum likelihood estimators
(MLEs) are then derived in Sect. 3. Three optimal criteria considered in this paper
are also presented in this section. Then, in Sect. 4, the sensitivity of the optimal
allocations due to mis-specification of the model parameters is studied. A numerical
example given by McCool (1980) is used to illustrate the sensitivity analysis in
Sect. 5. Finally, some concluding remarks are given in Sect. 6.

2 Model and Maximum Likelihood Estimation

Consider the following life-testing experiment: suppose we have N items available
for the test at k ordered stress level, say x1 < x2 < · · · < xk , we assign ni items
for testing at stress level xi (i = 1, 2, . . . , k) with

∑k
i=1 ni = N . We further

fix the duration of experiment to be tc, i.e., only failures occur before time tc are
observed and items which not yet failed at tc will be treated as right-censored at tc.
As discussed in the previous section, this experimental scheme is known as Type-I
censoring or time-censoring scheme.

We further assume that the lifetimes of items under testing are Weibull distributed
with a scale parameter depending on the stress level xi . That is, the lifetime of item,
T , under stress level xi have probability density function (p.d.f.)

fT (t;α(xi), δ) = δ

α(xi)

(
t

α(xi)

)δ−1

exp

[
−
(

t

α(xi)

)δ]
, t > 0,

where α(xi) > 0 is the scale parameter and δ > 0 is the shape parameter. Upon
making a logarithmic transformation on T , Y = ln T follows the extreme-value
(Gumbel Type-I) distribution with p.d.f.

fY (y;μ(xi), σ )= 1

σ
exp

[(
y−μ(xi)

σ

)
− exp

(
y−μ(xi)

σ

)]
, −∞ < y < ∞, (1)

where μ(xi) = lnα(xi) and σ = 1/δ. We can then write Y in a location-scale
form as
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Y = μ(xi)+ σZ, (2)

where Z has a standard extreme-value distribution with p.d.f.

fZ(z) = exp (z− exp (z)) , −∞ < z < ∞. (3)

A simple functional form for μ(x) in (2) is the linear form given by

μ(xi) = ν0 + ν1xi,

where ν0 and ν1 are the regression parameters.
Since the duration of experiment is fixed to be tc, the number of observed failures

at each stress level is a random variable. We denote the number of observed failures
at stress level xi byRi and the ordered log-lifetimes by Y1:ni < Y2:ni < · · · < YRi :ni ,
i = 1, 2, . . . , k. The corresponding observed values of Ri and Yj :ni are denoted
by ri and yj :ni , j = 1, 2, . . . , ri , respectively. Note that Ri is a binomial random
variable with sample size ni and probability of successes FY (t∗c ;μ(xi), σ ), where
t∗c = log(tc) and FY is the cumulative distribution function (c.d.f.) of Y . Then, given
the observed values of ri and yj :ni , i = 1, 2, . . . , k, j = 1, 2, . . . , ni , the likelihood
function is given by

L(ν0, ν1, σ ) =
k∏
i=1

ni !
(ni − ri)!

×
⎧⎨
⎩

ri∏
j=1

1

σ
exp

[
yj :ni − ν0 − ν1xi

σ
− exp

(
yj :ni − ν0 − ν1xi

σ

)]

×
{

exp

[
−exp

(
t∗c − ν0 − ν1xi

σ

)]}ni−ri }
(4)

and the log-likelihood function is given by

logL (ν0, ν1, σ ) = constant −
k∑
i=1

ri logσ

+
k∑
i=1

ri∑
j=1

[
yj :ni − ν0 − ν1xi

σ
− exp

(
yj :ni − ν0 − ν1xi

σ

)]

−
k∑
i=1

(ni − ri)exp

(
t∗c − ν0 − ν1xi

σ

)
. (5)
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With zj :ni = (yj :ni −ν0 −ν1xi)/σ and t∗i = (t∗c −ν0 −ν1xi)/σ , the score functions
can be written as

∂ logL

∂ν0
= − 1

σ

k∑
i=1

⎧⎨
⎩

ri∑
j=1

[
1 − exp

(
zj :ni

)]− (ni − ri)exp
(
t∗i
)⎫⎬⎭ , (6)

∂ logL

∂ν1
= − 1

σ

k∑
i=1

⎧⎨
⎩xi

⎡
⎣ ri∑
j=1

[1 − exp
(
zj :ni

)] − (ni − ri)exp
(
t∗i
)⎤⎦
⎫⎬
⎭ , (7)

∂ logL

∂σ
= − 1

σ

k∑
i=1

⎧⎨
⎩ri−(ni − ri)t

∗
i exp

(
t∗i
)+ ri∑

j=1

zj :ni
[
1 −exp

(
zj :ni

)]⎫⎬⎭ . (8)

The MLEs ν̂0, ν̂1 and σ̂ of ν0, ν1 and σ can be obtained by solving simultane-
ously the equations ∂ logL/∂ν0 = 0, ∂ logL/∂ν1 = 0 and ∂ logL/∂σ = 0.
Since these equations cannot be solved analytically, numerical methods such as
Newton-Raphson or some other iterative procedures must be employed. There are
computational algorithms available in some commonly used statistical packages
such as R (R Core Team 2019) and SAS (SAS Institute Inc. 2008) to obtain the
MLEs.

3 Expected Fisher Information

The asymptotic variances and covariances of the MLE ν̂0, ν̂1 and σ̂ can be obtained
by inverting the expected Fisher information matrix

I(ν0, ν1, σ ) = −E

⎡
⎢⎢⎢⎣

∂2 logL
∂ν2

0

∂2 logL
∂ν0∂ν1

∂2 logL
∂ν0∂σ

∂2 logL
∂ν0∂ν1

∂2 logL
∂ν2

1

∂2 logL
∂ν1∂σ

∂2 logL
∂ν0∂σ

∂2 logL
∂ν1∂σ

∂2 logL
∂σ 2

⎤
⎥⎥⎥⎦ , (9)

where

−∂2 logL

∂ν2
0

= 1

σ 2

k∑
i=1

⎧⎨
⎩

ri∑
j=1

exp
(
zj :ni

)+ (ni − ri) exp(t∗i )

⎫⎬
⎭ ,

−∂2 logL

∂ν2
1

= 1

σ 2

k∑
i=1

⎧⎨
⎩x2

i

⎡
⎣ ri∑
j=1

exp
(
zj :ni

)+ (ni − ri) exp(t∗i )

⎤
⎦
⎫⎬
⎭ ,
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−∂2 logL

∂σ 2
= 1

σ 2

k∑
i=1

{ ri∑
j=1

[
z2
j :ni exp(zj :ni )+ zj :ni exp(zj :ni )− zj :ni

]

+(ni − ri)

[
T ∗
i exp

(
t∗i
)+ t∗2

i exp
(
t∗i
) ]}

,

−∂2 logL

∂ν0∂ν1
= 1

σ 2

k∑
i=1

{
xi

[ ni∑
j=1

exp(zj :ni )+ (ni − ri) exp(t∗i )
]}
,

−∂2 logL

∂ν0∂σ
= 1

σ 2

k∑
i=1

{ ri∑
j=1

zj :ni exp(zj :ni )+ (ni − ri)T
∗
i exp(t∗i )

}
,

−∂2 logL

∂ν1∂σ
= 1

σ 2

k∑
i=1

{
xi

[ ri∑
j=1

zj :ni exp(zj :ni )+ (ni − ri)t
∗
i exp(t∗i )

]}
.

Note that Paul and Thiagarajah (1996) also derived asymptotic variances and
covariances of the MLEs of the parameters in a extreme value regression model
with type-I censoring. Here, in order to compute the expected Fisher information
in (9), we apply the double expectations formula

E[g(Ri, Zj :ni )] = ERi

{
EZj :ni [g(Ri, Zj :ni )|Ri]

}
,

where g is a function and ERi and EZj :ni are the expectations taken with respect
to Ri and Zj :ni , respectively. To compute the expectation EZ(Zj :ni ), we apply a
modification of the theorem given by Arnold et al. (1992) as follows.

Theorem 1 Suppose that X1, X2, . . . , Xn is a random sample from an absolute
continuous population with c.d.f. F(·) and p.d.f. f (·) and let X1:n < X2:n < · · · <
Xn:n denote the order statistics obtained from this sample. Then, the conditional
distribution of Xi:n given that Xr:n ≤ t < Xr+1:n for 0 ≤ i ≤ r , is same as the
distribution of the i-th order statistic in a sample of size r from a population with
density function f (·)/F (t) which is the left-truncated distribution of f (·) at t .
Proof See Appendix.

Using the result presented in Theorem 1, we have

EZ

⎛
⎝ ri∑
j=1

Zj :ni

⎞
⎠ = riEZ(Z|Z < t∗i ) = ri

G1(t
∗
i )

F1(t
∗
i )
,
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EZ

⎛
⎝ ri∑
j=1

exp(Zj :ni )

⎞
⎠ = riEZ(e

Z|Z < t∗i ) = ri
F2(t

∗
i )

F1(t
∗
i )
,

EZ

⎛
⎝ ri∑
j=1

Zj :ni exp(Zj :ni )

⎞
⎠ = riEZ(Ze

Z|Z < t∗i ) = ri
G2(t

∗
i )

F1(t
∗
i )
,

EZ

⎛
⎝ ri∑
j=1

Z2
j :ni exp(Zj :ni )

⎞
⎠ = riEZ(Z

2eZ|Z < t∗i ) = ri
H2(t

∗
i )

F1(t
∗
i )
,

where

Fκ(t) =
∫ t

−∞
eκx−ex

Γ (κ)
dx, Gκ(t) =

∫ t

−∞
xeκx−ex

Γ (κ)
dx, Hκ(t) =

∫ t

−∞
x2eκx−ex

Γ (κ)
dx.

Furthermore, the expected value of the number of failures at stress level xi , Ri , is

ERi (Ri) = niF1(t
∗
i ). (10)

Therefore, the entries of expected Fisher information matrix can be expressed as

E

(
−∂2 logL

∂ν2
0

)
= N

σ 2

k∑
i=1

qipi, E

(
−∂2 logL

∂ν2
1

)
= N

σ 2

k∑
i=1

x2
i qipi,

E

(
−∂2 logL

∂σ 2

)
= N

σ 2

k∑
i=1

eipi, E

(
−∂2 logL

∂ν0∂ν1

)
= N

σ 2

k∑
i=1

xiqipi,

E

(
−∂2 logL

∂ν0∂σ

)
= N

σ 2

k∑
i=1

dipi, E

(
−∂2 logL

∂ν1∂σ

)
= N

σ 2

k∑
i=1

xidipi,

where

pi = ni

N
, qi = F1(t

∗
i ), di = G1(t

∗
i )+F1(t

∗
i ), and ei = H1(t

∗
i )+2G1(t

∗
i )+F1(t

∗
i ).

For given values of N , tc and (x1, x2, . . . , xk), the problem of finding the optimal
allocation (n1, n2, . . . , nk) can be expressed as finding the optimal values of
(p1, p2, . . . , pk) with

∑k
i=1 pi = 1. Since there is no close form solution for

the optimization problem involving the above expected Fisher information matrix,
the optimal allocation under different optimality criteria related to the expected
Fisher information matrix can be determined numerically by direct search method.
Computer program written in R (R Core Team 2019) is used to compute the
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expected Fisher information and variance-covariance matrices as well as obtaining
the optimal allocations. The program is available from the authors upon request.

Suppose that we are interested in the estimation of the model parameters
(ν0, ν1, σ ), the following three different optimality criteria can be considered:

[C1] Maximization of the determinant of the Fisher information matrix:
This is known as D-optimality, wherein the determinant of the Fisher
information matrix is maximized, which results in minimum volume for the
Wald-type joint confidence region for the model parameter (ν0, ν1, σ ).

[C2] Minimization the asymptotic variance of ν̂1:
In many situations, the slope parameter ν1 is more important since it links the
mean lifetimes and the stress levels. Therefore, the precision of the estimator
of ν1 is desired. This is known as V -optimality.

[C3] Minimization of the trace of the asymptotic variance-covariance matrix (I−1)

of the MLEs:
This criterion is known as A-optimality, which minimizes the sum of the
variances of the parameter estimates and provides an overall measures of
variability from the marginal variabilities.

4 Sensitivity Analysis

Since the expected Fisher information matrix depends on the model parameters
ν0, ν1 and σ , the optimal allocation also depends on these parameter values. In
other words, one has to specify the values of parameters ν0, ν1 and σ in order to
obtain an optimal allocation. In practice, these values are usually provided based on
prior knowledge of the parameters or opinions from experts. Mis-specification of
these parameter values may lead to a different optimal allocation which affect the
efficiency of statistical inference from the experiment. Therefore, it is important to
ensure that the optimal allocation obtained from the proposed method is robust to
the uncertainty of parameters. Sensitivity analysis is used here to study the influence
of mis-specification of the model parameters to the effectiveness of the statistical
inference based on the optimal allocation. This provides important information to
the practitioners to ensure small to modest mis-specifications in model parameters
will not result in unacceptable changes in the precision of estimation.

In order to study the sensitivity of the optimal allocation, we define the relative
efficiency of a set of parameter values θ∗ compared to the set of true parameter
values θ0 based on the optimal criteria [C1], [C2] and [C3], respectively, as

RED(θ
∗) = det[I(θ0)] corresponding to the optimal allocation based on θ∗

det[I(θ0)] corresponding to the optimal allocation based on θ0
,

REV(θ
∗) = var(ν̂1) corresponding to the optimal allocation based on θ0

var(ν̂1) corresponding to the optimal allocation based on θ∗ ,
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and REA(θ
∗) = tr([I−1(θ0)]) corresponding to the optimal allocation based on θ0

tr([I−1(θ0)]) corresponding to the optimal allocation based on θ∗ .

Here, the experimental duration tc is assumed to be fixed. The closer the values of
RED(θ

∗), REV(θ
∗), REA(θ

∗) to 1, the less sensitive the optimal allocation to the
mis-specification of the model parameters.

Beside studying the effect of the mis-specification of the model parameters to
the objective functions, we also consider the effect of the experimental duration
tc to the objective functions. This provides valuable insights on the effect of
experiential durations and hence the cost of the experiment induced by the time
spent on the experiment to the effectiveness of statistical inference. We define the
relative efficiency of the experiment with duration tc compared to experiments with
complete sample (i.e., tc → +∞) based on the optimal criteria [C1], [C2] and [C3],
respectively, as

RE∗
D(tc) =

det[I(θ0)] when the experiment stopped at tc
det[I(θ0)] based on complete sample

,

RE∗
V(tc) =

var(ν̂1) based on complete sample

var(ν̂1) when the experiment stopped at tc
,

and RE∗
A(tc) =

tr([I−1(θ0)]) based on complete sample

tr([I−1(θ0)]) when the experiment stopped at tc
.

Note that the values of the objective functions for complete sample in the above def-
initions can be obtained by using the formulae provided in Ng et al. (2007). Once
again, the closer the values of RE∗

D(tc), RE∗
V(tc) and RE∗

A(tc) to 1, the less sensitive
the optimal allocation to the experimental time.

Since the results of sensitivity analysis are depending on many factors such as the
number of stress levels k, the stress levels (x1, x2, . . . , xk) and the true parameter
values of ν0, ν1 and σ , therefore, we choose to use an numerical example in
the following section to illustrate the idea of the sensitivity analysis and provide
recommendations.

5 Numerical Illustrations

McCool (1980) presented the failure times for hardened steel specimens in a rolling
contact fatigue test; 10 independent observations were taken at each of four values
of contact stress. He assumed that at stress level s, failure times follow a Weibull
distribution with a scale parameter α related to s by a power law relationship α =
csq , where c and q are constants, and with a shape parameter δ independent of s.
For our purpose, suppose that the experiment was terminated at time tc = 4. The
observations are presented in Table 1.
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Table 1 The data of McCool (1980) if censored at tc = 4.0

Stress (106 psi) Ordered failure times

0.87 1.67, 2.20, 2.51, 3.00, 3.90, 4.00+, 4.00+, 4.00+, 4.00+, 4.00+

0.99 0.80, 1.00, 1.37, 2.25, 2.95, 3.70, 4.00+, 4.00+, 4.00+, 4.00+

1.09 0.012, 0.18, 0.20, 0.24, 0.26, 0.32, 0.32, 0.42, 0.44, 0.88

1.18 0.073, 0.098, 0.117, 0.135, 0.175, 0.262, 0.270, 0.350, 0.386, 0.456

+ right-censored

Table 2 Model parameter
values considered in the
sensitivity analysis

Model Low Mid-point High

coefficient − 0 +
ν0 0.531 0.664 0.800

ν1 −10.322 −12.903 −15.484

σ 0.654 0.818 0.982

Table 3 Optimal allocations based on θ∗ and its relative efficiency compared to θ0, where the
values of ν0, ν1 and σ (−, 0 and +) are presented in Table 2

Setting v0 v1 σ [C1] RED(θ) [C2] REV(θ) [C3] REA(θ)

0 0 0 0 (0,19,0,21) 1.0000 (12,11,0,17) 1.0000 (12,11,0,17) 1.0000

1 − − − ((1,18,0,21) 0.9864 (19,4,0,17) 0.9620 (19,4,0,17) 0.9585

2 − − + (12,5,0,23) 0.7321 (23,0,0,17) 0.8962 (23,0,0,17) 0.8907

3 − + − (0,19,0,21) 1.0000 (0,20,0,20) 0.9335 (0,20,0,20) 0.9361

4 − + + (0,19,0,21) 1.0000 (12,11,0,17) 1.0000 (11,12,0,17) 0.9999

5 + − − (0,19,0,21) 1.0000 (12,11,0,17) 1.0000 (12,11,0,17) 1.0000

6 + − + (9,8,0,23) 0.8129 (23,0,0,17) 0.8962 (23,0,0,17) 0.8907

7 + + − (0,18,0,22) 0.9994 (0,21,0,19) 0.9342 (0,21,0,19) 0.9375

8 + + + (0,18,0,22) 0.9994 (5,17,0,18) 0.9760 (4,18,0,18) 0.9713

Based on the Type-I censored sample presented in Table 1, the MLEs of the
parameters ν0, ν1 and σ are ν̂0 = 0.664, ν̂1 = −12.903 and σ̂ = 0.818. To plan
a future experiment with the same stress levels (x1, x2, x3, x4) = (ln 0.87, ln 0.99,
ln 1.09, ln 1.18), N = 40 and tc = 4, suppose these MLEs are used as hypothesized
values. Following Monroe et al. (2010) wherein they suggested the true values of
the model parameters deviate no more than 20% from the hypothesized values, the
minimum and maximum values for each parameter estimate are computed as 20%
deviations from these estimates and they are presented in Table 2. Specifically, in
Table 2, the “Low −” value is the estimate multiply by 0.8 and the “High +” value
is the estimate multiply by 1.2.

The relative efficiency of a set of parameter values θ∗ compared to the set of true
parameter values θ0 = (0.664,−12.903, 0.818) based on the optimal criteria [C1],
[C2] and [C3] are presented in Table 3.

From Table 3, we observe that the optimal allocation based on V -optimality and
A-optimality are relatively insensitive to the deviations in the parameter values
because all the relative efficiencies are greater than 89%. However, the optimal
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allocation based on D-optimality is relatively sensitive to the deviations of the
parameter values, especially on the parameter σ . For instance, in Table 3, Settings
2 and 6 give relative efficiencies RED(θ) = 73.21% and 81.29%, respectively. This
suggests that if one wants to avoid substantial loss in the efficiency of estimation
when D-optimality is considered, extra effort is required to increase the accuracy in
specifying the parameter σ during the design stage.

To study the effect of the duration tc in this numerical example, the plots of the
RE∗

D(tc), RE∗
V(tc) and RE∗

A(tc) versus tc are presented in Fig. 1. It is not a surprise
to see that the relative efficiencies increase towards 1 as the duration tc increases.
The rate of change of the relative efficiencies among these three optimal criteria are
similar.

To further study the sensitivity of the optimal allocations against different param-
eter settings, we use the same parameter values as before but changing the stress
levels (x1, x2, x3, x4). Three different sets of log stress levels are considered:

1. (x1, x2, x3, x4) = (−0.200, − 0.100, − 0.046, 0.083);
2. (x1, x2, x3, x4) = (−0.081, − 0.052, − 0.021, 0.083);
3. (x1, x2, x3, x4) = (−0.005, 0.006, 0.020, 0.083).

These three settings of stress levels are selected to make the expected proportions
of observed failures to be 0.1, 0.5 and 0.9, respectively, which can reflect different
levels of censoring (heavy, moderate and light). To compute the relative efficiencies
RED(θ

∗), REV(θ
∗) and REA(θ

∗), we keep two of the three parameters fixed at
the hypothetical true values and change the remaining one. Plots of the relatively
efficiencies versus the parameter being varies are presented in Figs. 2, 3, and 4.

To observe the effect of the intercept parameter ν0, we can focus on the plots
in the first column of Figs. 2, 3, and 4. From Fig. 2, we can observe that the
optimal allocations are not sensitive to the intercept parameter for the D-optimality
regardless to the proportions of censoring. Similar conclusions can be drawn for
the other two optimal criteria by looking at the plots in the first column of Figs. 3
and 4. To study the effect of the slope parameter ν1, we can focus on the plots
in the second column of Figs. 2, 3, and 4. We observe that the optimal allocations
are quite sensitive to the slope parameter. The sensitivity of the optimal allocations
also depends on the proportion of censoring whereas the smaller the censoring
proportions, the less sensitive are the optimal allocations. The effect of σ is similar
to the slope parameter. It can be explained as follows. Both slope parameter and
σ determine the relationship between the stress levels xi and the proportions of
observing failure and these proportions play major role on the determination of
optimal allocations.

6 Concluding Remarks

In this paper, we provide a framework on obtaining the optimal allocations in
a multi-level accelerated life testing experiment under time censoring when an
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Fig. 1 Relative efficiencies RE∗
D(tc), RE

∗
V (tc) and RE∗

A(tc) versus censoring time tc
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Fig. 2 Relative efficiencies RED(θ
∗) for the three different settings

extreme-value regression model is used for statistical analysis. The expected Fisher
information and asymptotic variance-covariance matrices for the MLEs are derived.
Three different commonly used optimal criteria are considered and computer
programs to obtain the optimal allocation for each criterion are developed and made
available. Due to the optimal allocations are inevitably depending on the model
parameters, we study the sensitivity of optimal allocation on the model parameters
as well as the censoring proportions. These sensitivity analyses provide important
information and guidelines to practitioners on how much resources are needed to
obtain crucial preliminary information on the parameter values. These results will
be useful in avoiding serious lost in precision due to mis-specification of parameter
values in practice.
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Fig. 3 Relative efficiencies REV(θ
∗) for the three different settings

Appendix: Proof of Theorem 1

Suppose that X1, X2, . . . , Xn is a random sample from an absolute continuous
population with c.d.f. F(·) and p.d.f. f (·) and let X1:n < X2:n < · · · < Xn:n
denote the order statistics obtained from this sample. The joint probability density
function of Xi:n, Xr:n and Xr+1:n is

fi,r,r+1:n(xi, xr , xr+1) = n!
(i − 1)!(r − i − 1)!(n− r − 1)!f (xi)f (xr)f (xr+1)

×[F(xi)]i−1[F(xr)− F(xi)]r−i−1[1 − F(xi)]n−r−1,

xi < xr < xr+1.
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Fig. 4 Relative efficiencies REA(θ
∗) for the three different settings

Note that the probability that Xr:n < t < Xr+1:n is equivalent to the probability that
exactly r out of n observations are less than t , i.e.,

Pr(Xr:n < t < Xr+1:n) = n!
r!(n− r)! [F(t)]

r [1 − F(t)]n−r .

Hence, given Xr:n < t < Xr+1:n, the probability density function of Xi:n can be
obtained as

fi:n(xi |xr:n < t < xr+1:n) =
∫∞
t

∫ t
xi
fi,r,r+1:n(xi, xr , xr+1)dxrdxr+1

Pr(Xr:n < t < Xr+1:n)
.
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Since we have

∫ ∞

t

f (xr+1)[1 − F(xr+1)]n−r−1dxr+1 =
∫ 1−F(t)

0
un−r−1du

= [1 − F(t)]n−r
(n− r)

and
∫ t

xi

f (xr+1)[F(xr)− F(xi)]r−i−1dxr =
∫ F(t)−F(xi)

0
ur−i−1du

= [F(t)− F(xi)]r−i
(r − i)

,

then we can write∫ ∞

t

∫ t

xi

fi,r,r+1:n(xi, xr , xr+1)dxrdxr+1

= n!
(i − 1)!(r − i)!(n− r)!f (xi)[F(xi)]

i−1[F(t)− F(xi)]r−i .

Therefore, the conditional distribution of Xi:n given that Xr:n ≤ t < Xr+1:n for
0 ≤ i ≤ r , is

fi:n(xi |xr:n < t < xr+1:n)

= r!
(r − i)!(i − 1)!

f (xi)[F(xi)]i−1[F(t)− F(xi)]n−i
[F(t)]r

= r!
(r − i)!(i − 1)!

[
f (xi)

F (t)

] [
F(xi)

F (t)

]i−1 [
1 − F(xi)

F (t)

]n−i
,

for xi < t , which is the distribution of the i-th order statistic in a sample of size r
from a population with left-truncated distribution f (·)/F (t).
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Spatial Interpolation of Extreme PM1
Values Using Copulas

Alfred Stein, Fakhereh Alidoost, and Vera van Zoest

Abstract Air quality is a common cause for respiratory health problems. It shows
high temporal and spatial variability within urban areas and currently sensors are
installed to monitor air quality. The objective of this paper is to investigate its spatial
variability during peak hours. Spatial statistical methods are based upon copula
theory, integrating distributions from different pollutants and at different locations.
In this paper attention focused on PM1 as one of the neglected components of air
quality so far. Using observations from the Netherlands, we compared two hours:
the first hour of the New Year, and an hour with a high traffic congestion. We
investigated the size of the sensor network by analyzing observations from a city
with 35 sensors with a city with four sensors and a city with one sensor. In the
absence of an environmental standard for PM1, the paper defined a threshold related
to existing thresholds of PM2.5 and PM10. Results showed the adequacy of the
large network, generating a varying pattern during the high peak hour, whereas
in cities with less sensors both the spatial spread and possibly large values are
missed. In particular the first hour of the New Year showed large concentrations
and high probabilities that a threshold was exceeded, whereas the second peak hour
showed values well below the threshold. We conclude that the mapping of PM1
concentrations can well be done by copula interpolation. Using one or three sensors
may save expenses, but this is at the cost of missing extreme values as well as spatial
patterns. Both are potentially important for public health measures.
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1 Introduction

There is an increasing concern about air quality. It is affected by heavy traffic,
industrial activities, wood burning in hearths and incidental activities like firework,
to name a few. Also, concerns exist on the effects of air quality on—in particular—
respiratory health. In order to obtain a better quantitative understanding, extensive
monitoring networks have been set up that measure the air quality at a high
frequency. The idea behind such networks is that they not only help to measure
local air quality, but also that they can cover the city as a whole. Moreover, with
repeated observations, it becomes possible as well to monitor air quality during
the day, between days in the weeks and over longer periods of times. Despite the
sometimes large number of sensors, however, measurements are essentially point
data and spatial interpolation is required to make a complete spatial coverage. In
this paper we focus on assessing the air quality in situations of a low air quality.

Air quality has been studied extensively (Arslan et al. 2010; Khodarahmi et al.
2015; Zwozdziak et al. 2016; Van Zoest et al. 2018, 2019). Typical constituents
that are monitored are particulate matters (PM2.5 and PM10), NO2 and ozone,
whereas in the network that we use in our study also attention is given on PM1 and
ultrafine particles. In our recent work, attention has been given to the occurrence of
outliers, to calibration and validation of the sensors and to spatial interpolation. For
interpolation, increasing attention is given on copulas. They allow one to combine
observations of a relatively low quality with related observations that are more
abundant. They are essentially based upon distribution functions. The theory around
copulas has been developed by Sklar (1973), and subsequent studies were done by
Gräler and Bárdossy and Li (2008). Recently, several studies focusing on weather
data have been carried out as well (Alidoost et al. 2018). In this paper we aim to
pay attention to a few issues that were somewhat less represented so far. We will
consider the number of sensors within a city, making a comparison between three
cities: one city with an extensive network of 35 sensors, one city with four sensors
and one city with one sensor. Short term economic considerations often aim to take
as low a number of sensors as possible for financial reasons, whereas the amount
of information thus obtained is limited. We will further consider two rather extreme
situations in this paper: d1, the one single hour between 12 am and 1 am on New
Year’s morning when the use of fireworks is abundant in the three studied cities
and d2, the one single hour between 7:30 and 8:30 am, in the early morning rush
hour with intense traffic. We will consider the issue of time, where we use the 10 min
values and compare them with aggregate values over a full hour. Finally, we consider
the probabilities of exceeding threshold values set as national standards.

The objective of this paper is to predict high air quality values. We focus on
PM1 as one of the least known constituents in air quality. Research questions to
address are: is the number of sensors adequate to obtain good insight into the
high concentrations during peak hour; can we make probability maps of pollution
levels exceeding an environmental threshold; and can registered covariates be used
successfully for mapping PM1 concentrations.
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2 Methodology

2.1 Copulas

In this study we consider copulas as an interpolator. A copula is a joint distribution
function, developed in the nineteen seventies, when it was shown that a copula
assigns each pair of variables to their joint probability (Sklar 1973). The definition
of copulas is without indication about the underlying process, and hence any
joint distribution can be written in terms of a copula. The family distribution of
copula can be different from the family of distributions of the pair of variables.
For example, the two variables can each follow a Gaussian distribution, but their
joint distribution (the copula) can be a non-Gaussian function. From the copula
families reported in the literature (Joe 1993; Nelsen 2003; Demarta and McNeil
2005; Manner 2007), we selected the Gaussian, Student’s t, Clayton, Gumbel and
Frank families because other families lead to computational limitations (Gräler
2014). The definition of copula can also be extended to higher dimensions including
several random variables in space. They allow us to include related variables and
observations at nearby locations efficiently. To describe it, we focus on data that
are collected at k locations s1, . . . ,sk, where si is expressed in terms of the x and
y coordinates. We ignore the z coordinate as in this study the sensors are collected
at approximately the same height, as well as the time coordinate as the sensors
were not moved. We consider a location s0 where a prediction is to be made, for
example the node of a fine-mazed grid. The data in this study concern particulate
matter concentrations, denoted by PM1(s). As a basic assumption to apply copulas,
we take that the marginal cumulative distribution function F1 of PM1(.) is identical
at the locations {si}i = 1, . . . ,k.

We consider a copula that relates the distribution at s0 with its distributions at the
k nearest neighbors. The conditional expectation of this multivariate distribution is
used as the optimal predictor, minimizing mean squared prediction error (Cressie
1993). The prediction value at location s0 equals:

ˆPM1,mean (s0) =
1∫
0

F−1
1 (u) · ck+1 (u|u1, . . . , uk) du (1)

where ck + 1 is the conditional density.

ck+1 (u0|u1, . . . , uk) = ck+1 (u0, u1, . . . , uk)

ck (u1, . . . , uk)
ui, i ε [0, k] . (2)

The expression u denotes rank of the variable PM1(.) evaluated in the observation
points, e.g. ui = j if PM1(si) is the jth largest among the k observations. As in
Alidoost et al. (2018), we will use the empirical marginal probability ui at location

si defined using the rank-order-transformation ui = rank(PM1(si ))
N+1 , where N denotes
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the total number of observations. Such an empirical marginal distribution avoids
using any theoretical marginal distributions that might affect the estimation of
copula parameter. Kernel density estimation then allows us to obtain a continuous
approximation of the marginal distribution F under the assumption of stationarity.
Note that the empirical probabilities are limited to observations and therefore, the
interpolation methods are unable to predict extreme values outside the range of the
observations.

We will now turn to the use of covariates where we condition the distribution of
PM1 on related variables Y and Z. To do so, we need the conditional copula C of the
predictand on the two covariates. The conditional copula is obtained as:

pi = C
(
U ≤ ui |V = vi,W = wi

)
. (3)

The conditional probability pi is used as the probability of nearest neighbour i
for copula in (1) and the final form of the predictor equals:

ˆPM1,mean =
∫ 1

0
F−1

1 (u) · c (U |U = p1, . . . , U = pn, V = v0,W = w0) du.

(4)

In this way, the collocated covariates at the nearest neighbour i.e. vi and wi are
incorporated into the predictor. This predictor is called mixed copula interpolator. A
similar ranking transformation as is also applied to yi and zi.

In our study, the spatial copula interpolator including covariates addresses one
variable PM1(s0) and one or two covariates PM2.5(s0) and PM10(s0). The aim is
to predict ˆPM1 (s0) with a finite sample of PM. Samples of PM2.5 and PM10 are
available at neighboring locations and are more abundant than those on X. The
conditional copula density function in this specific setting then equals.

c (U |U = u1, . . . , U = un, V = v0,W = w0) ,

where v0 = F2.5 (PMx (s0)) , w0 = F10 (PMx (s0)) , (5)

with the subscript 0 denoting an unvisited location, and F2.5 and F10 are the marginal
distribution functions of the covariates. By conditioning on PM2.5 and PM10, the
collocated covariates at s0, i.e. v0 and w0 are incorporated into the predictor. The
conditional distribution can be extended to higher dimensions for including more
than two covariates.

We evaluated the results using the mean absolute error (MAE), the mean absolute
relative error (MARE), and the root mean squared error (RMSE). A leave-2-out
cross validation is carried out using 50 runs.
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2.2 Risk Maps

Of a specific concern for health and management aspects is the exceedance of
environmental thresholds. A high probability of exceeding such a threshold value
may indicate that health standards are not met and that for example windows have
to be closed or traffic has to be reduced in intensity and speed. At present there
are no official limit values for PM1, and this leads to a vicious circle: there are
no regular monitoring networks for PM1 because there are no threshold values,
hence no thresholds can be made because the limit values for health effects are
unknown and hence the limit values for health effects are unknown because there
are no regular monitoring networks. Our sensor networks can be helpful to assess
these health effects. We propose to set a threshold value as the ratio between
concentrations of PM1 and PM2.5 in Eindhoven, and then base a threshold on this
ratio with the threshold of PM2.5. The World Health Organization (WHO 2006)
reported a guideline threshold of 25 μg m−3 for PM2.5 (daily mean). In addition,
a threshold can be set on European law, we use the ratio with PM10, for which
the daily threshold value is 50 μg m−3 (European Parliament and Council of the
European Union 2008).

2.3 Data Description

The data were collected from the monitoring network in Eindhoven including the
nearby village of Waalre, containing 35 air boxes that measure air quality at a
10 min interval. We considered two time stamps with reportedly high observations:
d1: 0:00–01:00 on 01 Jan. 2017, i.e. New Year’s eve, d2: 7:30–8:30 on 20 Nov.
2017, a day with very high traffic density. On d1, data from only 26 stations were
received, whereas on d2 data from 31 stations were received. These 10-min data
are point measurements within a 10 min interval. The air quality sensor network
in Eindhoven (Fig. 1) was established by the AiREAS civil initiative in November
2013 and has continuously been operated since (Close 2016). The airboxes contain
an array of sensors measuring particulate matter (PM), temperature and relative
humidity (RH). Some airboxes also measure ozone (O3), nitrogen dioxide (NO2)
or both. The focus of this study is on PM1, which is measured in all airboxes. The
airboxes are attached to lighting poles for power supply. The airboxes send data to
a server every 10 min using a GPRS connection.

In addition to the sensors in the city of Eindhoven, the network has also been
extended towards two cities in the same province: four sensors in the city of Breda
and one sensor in the city of Helmond. On both d1 and d2 only three sensors in Breda
provided data, albeit these were different sets of three. One of the aims of the paper
is to consider the spatial representation of the information. The results included
below will largely follow our analysis for d1, whereas that for d2 is included in the
Appendix.
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Fig. 1 Locations of the airboxes and conventional monitors in the city of Eindhoven (left) and
position of the four boxes with relatively large values (right)

3 Results

3.1 Distribution of the Data

Considering the data in Table 1, we notice that the 10-min observations are around
20 μg m−3. Peak values up to 33 μg m−3 occur, throughout the hour. One hour
observations of variables are obtained by the average of the observations at each
location. The mean (standard deviation) of PM1 are equal to 19.61 (4.97) for d1
and 5.04 (0.87) for d2. The marginal distribution of PM1 is obtained by kernel
density estimation, assumed to be the same throughout the city. Figure 2 shows
the probability distributions of the PM1 data. We note that the PM1 values for the
whole city display a smooth curve, ranging from 10 to slightly above 30 μg m−3.
We notice that in the city of Breda where only three spatial observations it is still
possible to make a probability density curve. They showed different values, with
the maximum at about 2/3 of the 26 sensors in Eindhoven. Although this situation
could happen, the cities are within the same province and there is little reason to
assume that the population is behaving differently and that hence different values
are justifiable. The potential presence of any high, threatening value is absent in
the curve. For the city of Helmond, with only one observation even the fitting of a
distribution curve is impossible. We conclude from the density curves, that with 26
sensors a proper distribution can be fitted, but that using only three observations is
likely to underestimate the risk.
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Table 1 Descriptive statistics, predictions using the mixed copula interpolator and prediction
evaluations on the observed locations

Observation Prediction Observation Prediction

t10 MAE – 3.27 t50 MAE – 3.00
MARE – 19.67 MARE – 15.59
RMSE – 4.10 RMSE – 3.59
Corr 1.00 0.64 Corr 1.00 0.80
Min 9.00 5.98 Min 12.00 14.06
Mean 18.04 18.05 Mean 20.58 22.09
Max 25.00 26.07 Max 33.00 36.41

t20 MAE – 2.92 t60 MAE – 4.43
MARE – 18.09 MARE – 24.76
RMSE – 4.34 RMSE – 5.59
Corr 1.00 0.76 Corr 1.00 0.40
Min 7.00 10.46 Min 13.00 13.57
Mean 19.31 20.73 Mean 20.04 21.09
Max 29.00 30.22 Max 32.00 35.68

t30 MAE – 2.22 Hour average MAE – 2.53
MARE – 10.94 MARE – 13.05
RMSE – 3.27 RMSE – 3.42
Corr 1.00 0.80 Corr 1.00 0.77
Min 10.00 11.13 Min 10.50 12.25
Mean 20.19 19.62 Mean 19.69 20.13
Max 31.00 29.72 Max 30.00 30.08

t40 MAE – 2.59
MARE – 14.49
RMSE – 3.40
Corr 1.00 0.82
Min 12.00 11.51
Mean 21.27 20.35
Max 32.00 30.90

All data are expressed in μg m−3. Time intervals are denoted as t10: 0:00–0:10, t20: 0:10–0:20,
t30: 0:20–0:30, t40: 0:30–0:40, t50: 0:40–0:50 and t60: 0:50–1:00, on the 1st of January 2017

As a small related study, we considered four locations with relatively high
observations. When considering those, we note that obviously low values are
underrepresented, but that the extreme values on the upper side are present. Clearly,
they show a different pattern as compared to the three stations in Breda. For the
single observation in the city of Helmond we only observe that the value 26 μg m−3

occurs five times and 21 μg m−3 once. These values are on the low side, as
compared to the Eindhoven data, but that may be due to the specific position of
the sensor, and therefore they can not lead to any representative spatial conclusion.
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Fig. 3 PM1 concentrations and their maps at intervals of 10 min after midnight, 1st January, 2018.
Right are the concentrations, left are the maps

3.2 Spatial Patterns and Maps

Next, we interpolated the PM1 data for Eindhoven for each of the six time intervals.
Spatial correlations for three (946 m, 2157 m, 3465 m) and five spatial lags (561 m,
1352 m, 2110 m, 3028 m, 3855 m) are very weak (not shown). Figure 3 shows the
observations (right) and the interpolated maps (left). The interpolated maps were the
result of applying the mixed copula interpolation method including two covariates
PM2.5 and PM10. Correlations of PM1 with PM2.5 and PM10 are equal to 0.53 and
0.01 on d1 and to 0.94 and 0.65 on d2, respectively. The PM10 and PM2.5 maps (not
shown) were thus used as covariates. The grid size of the maps is 500 m.

The maps show a clear pattern of high and low concentrations. These concentra-
tions reach their peak in the southern part of the city earlier than in the northern part
of the city. This could be caused by the prevailing wind direction. We notice that
the high observations in the south are not really supported by observations as they
occur as an extrapolation both at t20 and at t30. The high observations in the north
are supported by a single observation point. At the earlier moments this is largely
smoothed by the neighboring values with lower observations, but at t40 till t60 there
clearly is a spatial peak in the concentrations. It may very well be that this subarea
within the city has a much larger firework activity than the other parts of the city.

3.3 Towards Health Effects

We next considered the full hour data, taken as the average of the 10 min data,
resulting in Fig. 4. Similar as for the 10 min data, the interpolated PM1 data
for d1 was supported by the two covariates PM2.5 and PM10 using the mixed
copula interpolation method. The PM2.5 and PM10 maps are the results of copula
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Fig. 4 Map of the average concentration between midnight and 1 am, on January 1stm 2018. Right
are the concentrations, left is the map

interpolation method (not shown). The spatial resolution of the map is 500 m. The
high values on the western side of the city are supported by less data and should be
interpreted with care.

The three evaluation criteria are listed in Table 1. Because of the weak spatial
correlations, non-spatial dependencies dominate spatial dependencies and methods
including covariates performed better. The RMSE value is largest at t60, which
indicates that at that moment of the night the predictive quality of the interpolator
becomes less reliable. This may be caused by prevailing weather conditions that
result in a more scattered type of concentrations. It may, for instance, be very well
the case that the single peak value in the northern part of the city is the cause.

3.4 Risk Maps

We finally produced risk maps, where in the absence of European or World Health
Organization (WHO) standards we proceeded as follows taking both the WHO
guideline threshold of 25 μg m−3 for PM2.5 and the threshold based on European
law, equal to 50 μg m−3 for PM10. We found the average PM1 of the PM1 data
in Eindhoven equal 6.08, the average PM2.5 of PM2.5 equal to 8.56 μg m−3

and the average PM10 of PM10 equal to 15.12 μg m−3, taken as daily values
for all the data in 2015. The WHO PM2.5-based threshold value then equals
6.08/8.56 × 25 = 17.8 μg m−3, whereas the EU PM10-based threshold equals
6.08/15.12 × 50 = 20 μg m−3. Both thresholds are an approximation only, where
the first one seems to be more reliable because it takes more account of the smaller
particles in PM2.5 that have greater health effects than PM10. For PM1, the health
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Fig. 5 Risk maps for Eindhoven on d1, in (a) for the WHO based threshold of 17.8, and in (b)
for the EU based threshold equal to 20. The risk maps are produced using: hourly averages of
interpolated maps (the left images), hourly averages of observed values (the right images)

effects are even greater than PM2.5, and more of those small particles fit into
1 μg m−3. The risk maps are shown in Fig. 5.

We notice from these maps that the area for exceeding the threshold WHO-based
is larger than that of exceeding the EU based threshold, as the latter has a higher
value and hence will less likely be exceeded. These maps have to be treated with
care, as both thresholds consider daily averages, whereas we have hourly data. In
that sense, it is difficult to base any policy measures on these maps.

3.5 A Comparison Between the Two Different Dates

Tables 2 and 3 show the results for the two different dates. Table 2 that displays
leave-2-out cross validation shows substantially lower values at d2 than at d1. We
interpret this that the firework related high PM1 concentrations shows higher values



320 A. Stein et al.

Table 2 The average of the three evaluation criteria obtained by 50 runs of the leave-2-out
cross validation using observations in Eindhoven only, excluding Waalre, Breda and Helmond.
Predictions are the results of applying the spatial copula interpolator including covariates

d1 MAE MARE (%) RMSE d2 MAE MARE (%) RMSE

1: no covariate 4.37 22.31 5.11 0.47 10.07 0.51
2: with PM10 4.42 22.85 5.10 0.46 9.53 0.52
3: with PM2.5 4.26 22.13 4.65 0.26 5.36 0.29
4: with PM10 and PM2.5 3.68 18.95 4.02 0.26 5.24 0.28

Table 3 The three evaluation criteria, the minimum, maximum, mean and correlations of observa-
tions and predictions using observations in Eindhoven only, excluding Waalre, Breda and Helmond.
Predictions are the results of applying the spatial copula interpolator including covariates

Interpolators on d1 MAE MARE (%) RMSE Correlation Minimum Mean Maximum

1: no covariate 3.36 18.30 4.10 0.72 16.99 19.40 21.42
2: with PM10 3.47 18.94 4.21 0.63 16.96 19.41 21.71
3: with PM2.5 3.00 16.62 3.88 0.62 14.83 19.86 27.40
4: with PM10 and PM2.5 1.64 8.65 2.18 0.90 13.67 20.15 28.89
Observations – – – – 10.50 19.61 30.00
Interpolators on d2
1: no covariate 0.71 13.88 0.93 0.11 3.99 5.06 6.33
2: with PM10 0.53 10.23 0.74 0.51 4.25 5.02 6.70
3: with PM2.5 0.29 5.36 0.39 0.90 3.83 5.00 6.86
4: with PM10 and PM2.5 0.24 4.51 0.35 0.92 3.79 5.01 7.08
Observations – – – – 4.00 5.04 8.00

and more spatial variation than traffic induced PM1 concentrations. We further note
that for d1 inclusion of PM2.5 as a covariate results in reduction of the RMSE
values, whereas inclusion of both the covariates PM10 and PM2.5 results in a further
reduction. This is not surprising, as PM1 covers a larger fraction of PM2.5 than
of PM10 and hence has a higher correlation. Therefore the PM1 map has a higher
similarity with the PM2.5 map than with the PM10 map leading to a larger reduction
in the RMSE values.

Table 3 shows the similarities and dissimilarities between the observations and
predictions. Of interest is that at d2 the values are more difficult to predict, resulting
in lower correlations than at d1. However, including PM2.5 as covariate results
in a large improvement, with the correlation increasing to 0.90 (with only PM2.5
as a covariate) and 0.92 (with PM2.5 and PM10 as covariates). As argued earlier,
inclusion of PM10 is not very effective to increase the interpolation precision.

A further spatial analysis showed that the fireworks d1 created some local
hotspots with peaking PM10 concentrations. PM1, although elevated throughout
the whole city, did not show these local peaks. The extremes in PM10 led to the
low correlation with PM1 and also influence the usability of PM10 as a covariate.
The predictions are the results of applying the spatial copula interpolator including
covariates (Fig. 6).
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Fig. 6 Observations and predictions of PM1 with copulas using different covariates

4 Discussion

We note that firework related air quality has a much higher PM1 value than a
day with a heavy traffic density. Apparently, the particulate matter generated by
constituents of the firework resulted in higher PM1 values. This is based on one day
only, and weather conditions at that particular moment may have a large influence.
It would be fair to make a comparison with another new year’s early morning
to see whether this effect is incidental or structural. Also important is that the
concentrations are still relatively low at a day with a high traffic density. This applies
for the city of Eindhoven, with its very specific traffic conditions, geographical
position and population size.

Assessing health effects from the above study is still a challenge. We obtained
10 min data, and we analyzed air quality with the 10 min data and the average one
hour data. One may question whether the average is the correct value, or that in fact
we should sum the observations to obtain a total burden. In epidemiological studies
the average is generally used, and it is so far still unclear how exactly particulate
matter behaves within the respiratory system of the human body. We know that
smaller particles penetrate deeper into the human lungs and cardiovascular system,
but quantifications of exposure-response functions for PM1 are limited. Related is
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the lack of a definition of an environmental threshold for PM1. Here we approached
a value as described before. We realize though that in terms of health effects, the
PM1/PM2.5 ratio might be a little on the high side, but that seems to be a point for
discussion. PM1 monitoring networks are needed to assess health effects and set
more appropriate thresholds.

The study paid some attention to the dataset that should be collected for being
able to make spatially explicit statements. We note that with one observation as
in the city of Helmand not much can be done: there is an observation, even every
10 min, but its spatial representativeness is highly erroneous. The observation is
not likely to be representative for any other location in the city. For instance, in the
Eindhoven area a distinction is already made between urban background sensors
and urban traffic sensors. Even that simple distinction cannot be made with a single
sensor. A similar conclusion should be drawn from the four stations in Breda. Of
some interest here is the comparison with the four sensors in Eindhoven with high
values: those values cannot be reproduced by observations of the four stations in
Breda. The chance of obtaining with more than 3 observations is higher, but it still
does not give certainty. More research is needed to optimize the number and the
allocation of air quality sensors within a medium sized city.

5 Conclusions

This study focusing on PM1 air quality within a city in the Netherlands leads to
the following conclusions. It displays several steps to relate air quality with its
spatio-temporal variability towards health issues. A standard has been defined and
its exceedance probabilities have been obtained on two peak hours. This gives a
clear direction to relate health with geographical variability.

Copula-based interpolators can adequately be used to spatially predict PM1.
The case study shows that inclusion of PM2.5 as a covariate was most successful,
being highest correlated with PM1. Replacing PM2.5 by PM10, or adding PM10 as
a covariate did not lead to better results. In terms of the number of sensors, it is
inadequate to try and measure air quality with a low number of sensors. Although
it is difficult to say what the optimal number should be, it appears that with the
network in the city of Eindhoven equaling 26 sensors a pattern of PM1 air quality
can be observed that potentially could be used for urban management. Finally, we
conclude that there is a strong need to also have standardized threshold values for
PM1. In this study we successfully established two thresholds that corresponded
well with each other. Those thresholds were exceeded in a large part of the city
on the first hour of the New Year, but not during an hour of heavy traffic density.
However, a single widely accepted standard is to be preferred.

Data and Software
The data that were used for this research are available at the site http://data.
aireas.com/csv/. Software is available upon request from the second author:
f.alidoost@utwente.nl.

http://data.aireas.com/csv/
http://data.aireas.com/csv/
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An Analysis of the Data on November 20th, 2017, Between
7:30 and 8:30 am. This Time Step Is Reportedly a Moment
with a High Traffic Density (Figs. 7, 8, 9, 10, 11, 12
and Table 4)

CDF by kernel density estimationHistogram and PDF by kernel density estimation
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Fig. 7 Probability distribution function (PDF) and cumulative distribution function (CDF) on
2017 11 20. (a) the Eindhoven data, (b) four locations with relatively large values, (c) the city of
Breda (three observations), (d) the city of Helmond (one observation) and (e) all data
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Fig. 8 Probability distribution function (PDF) and cumulative distribution function (CDF). (a)
the Eindhoven data, (b) four locations with relatively large values, (c) the city of Breda (three
observations), (d) the city of Helmond (one observation) and (e) all data
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Fig. 9 Four locations in the
city with relatively high
values. Note that these
lcations are different from the
ones at January 1st.

Fig. 10 Interpolated PM1 data for the six time steps: 7:40, 7:50, 8:00, 8:10, 8:20 and 8:30 am.
The predictions are the results of applying the mixed copula interpolator
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Fig. 11 Interpolated hourly PM1 data taken as the average concentrations over the six time steps
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Table. 4 Descriptive statistics for the six different time steps and for the hourly data

Observation Prediction Observation Prediction

1 MAE 0.00 0.70 5 MAE 0.00 0.39
MARE 0.00 15.60 MARE 0.00 8.28
RMSE 0.00 1.08 RMSE 0.00 0.58
Corr 1.00 0.56 Corr 1.00 0.77
Min 2.00 3.76 Min 2.00 1.62
Mean 4.84 4.99 Mean 4.84 4.68
Max 8.00 8.25 Max 6.00 6.20

2 MAE 0.00 0.84 6 MAE 0.00 0.42
MARE 0.00 17.50 MARE 0.00 9.95
RMSE 0.00 1.18 RMSE 0.00 0.57
Corr 1.00 0.49 Corr 1.00 0.75
Min 2.00 3.53 Min 2.00 3.36
Mean 5.06 4.94 Mean 4.77 4.91
Max 10.00 6.32 Max 6.00 6.58

3 MAE 0.00 0.52 Hourly data MAE 0.00 0.42
MARE 0.00 8.99 MARE 0.00 9.79
RMSE 0.00 1.03 RMSE 0.00 0.62
Corr 1.00 0.77 Corr 1.00 0.80
Min 1.00 1.01 Min 1.67 2.97
Mean 5.06 4.95 Mean 4.93 4.87
Max 11.00 8.94 Max 8.00 6.62

4 MAE 0.00 0.71
MARE 0.00 21.25
RMSE 0.00 1.06
Corr 1.00 0.55
Min 1.00 0.75
Mean 5.00 4.72
Max 8.00 6.10
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A Scale Mixture Approach to
t-Distributed Mixture Regression

Frans Kanfer and Sollie Millard

Abstract Mixture of linear regressions frequently assume Gaussian distributions
for the mixture components. Data from many applications follows leptokurtic and
platykurtic shapes. The use of scale mixtures of distributions from the exponential
family (SME) of distributions is considered due to its ability to provide more
flexibility in the tail behaviour of a distribution. The t-distribution is identified
as a member of the SME. This chapter considers robust mixture of regressions
with errors from SME distributions, specifically the t-distribution. The technique
is illustrated using generated data and an application on managed health care data is
given. In the application, different behavioural claim segments are identified using
the estimated mixture regression model facilitating better claims differentiation
strategies.

1 Introduction

Mixture of linear regressions are frequently assumed to have components from
Gaussian distributions (Yao et al. 2014). There is, however, evidence that in many
applications the Gaussian assumption is not appropriate. Data typically show lep-
tokurtic and platykurtic shapes. An alternative choice to the Gaussian distribution is
to use scale mixtures of distributions in the exponential family (EF) due to its ability
to provide more flexibility in tail behaviour in modelling real world phenomena
(Choy and Chan 2008). The Pearson Type VII distribution, Johnson et al. (2005), is
a more general class of distributions of which t-distribution is a special case. It was
proposed by Seneta (2004) to use the variance gamma distribution in modelling
financial and insurance data. This distribution has similar tail behaviour to that
of the t-distribution. Scale mixtures have been studied extensively and are used
widely in many statistical applications. These include Zeller et al. (2016) who
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developed an EM type algorithm to model mixture of scale mixtures of skewed
normal distributions and the paper by Choy and Chan (2008) on the use of scale
mixtures in statistical modelling. Mixture of linear mixed models is considered by
Bai et al. (2016) where the random effects follow a multivariate t-distribution.

This chapter specifically considers the concept of robust mixture of regressions
with errors from scale mixtures exponential family distributions (SME). This is done
by first describing typical business problems in Sect. 2, followed by the theoretical
framework of SME distributions, in Sect. 3 and mixture of scale mixtures of
Gaussian distributions in Sect. 4. A special case of a mixture of a scale mixture of a
Gaussian and gamma distribution, resulting in a mixture of t-distributed regressions
is derived in Sect. 6. In Sect. 7, the suggested approach is illustrated on generated
data and in Sect. 8 an application on managed health care data is given.

2 The Business Problem

Regression modelling and clustering frequently form part of data analytics in
business to address contemporary problems. In insurance there is almost without
exception the need to understand the behaviour of customers in different market
segments (Jiang and Tanner 1999). This is frequently done by first clustering the data
and then to estimate appropriate regression models for each of the identified clusters.
Mixture of regression models give the researcher the ability to simultaneously
identify different market segments or clusters based on the specific phenomena
relating the response and explanatory variables in each cluster. It is also common to
find outliers in the response variable, therefore the necessity to also consider robust
mixture of regressions, Yao et al. (2014).

3 SME Distributions

Often mixture models are based on Gaussian distributions and are therefore sensitive
to heavy-tailed errors (Bai et al. 2012). As noted in Sect. 1, scale mixtures play an
important role in statistical modelling. In such cases, developing robust mixture
models based on distributions different to the Gaussian are of interest.

In this chapter mixture models based on scale mixtures in the EF are considered.
It is shown that the t-distribution is a special case of the SME. Mixture of regressions
with t-distributed errors are considered due to its robustness properties.

Definition 1 Scale mixture of exponential family distributions (SME).
The variable Y has a SME if its PDF can be expressed as

f (y|η, φ, ν) =
∫ ∞

0
h(y, k(u)φ)exp

(
ηT T (y)− A(η)

k(u)φ

)
q(u|ν)du

= SME(y|η, φ, ν)
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where k(u) is a positive function of u and q(.|ν) is a PDF defined on R+ with
parameter ν. We refer to k(u) as the mixing parameter and q(.|ν) as the mixing
density of the SME, respectively.

The family of SME distributions includes many distributions. The t-distribution
is a member since it is a scale mixture of a Gaussian distribution and a gamma
distribution.

Proposition 1 The class of scale mixtures of Gaussian distributions (SMG) is a
subset of the SME family.

Proof From Definition 1, setting η = μ, T (y) = y, φ = σ 2, and h(y, k(u)φ) =
exp(

y2

k(u)σ 2 )√
2π k(u)σ

, we then have

f (y|μ, σ 2, ν) =
∫ ∞

0

1√
2π

√
k(u) σ

exp

(
−1

2

(
y − μ√
k(u)σ

)2
)
q(u|ν)du

=
∫ ∞

0
N(y|μ, k(u)σ 2)q(u|ν)du

= SMG(y|μ, σ 2, ν)

which is the PDF of SMG distributions according to Andrews and Mallows (1974).
��

Proposition 2 The Student t-distribution is a member of the SME.

Proof From Definition 1 using Proposition 1, taking k(u) = 1
u

and q(u|ν) to be the
PDF of a GAMMA(ν2 ,

ν
2 ) distribution, it follows from the SMG that

f (y|μ, σ 2, ν) =
∫ ∞

0
N

(
y|μ, σ

2

u

)
�
(
u|ν

2
,
ν

2

)
du

= t (y|μ, σ 2, ν) (1)

which is the PDF of a t-distribution with ν degrees of freedom, location parameter
μ and scale parameter σ , see Choy and Chan (2008) for more detail. ��
Remark 1 Let Z ∼ N(0, 1) and the PDF of U be q(u|ν). Then

X = μ+ Zσ
√
k(U)
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follows aN(μ, σ 2k(U)) distribution. The variableX is the constantμ contaminated
with a zero mean Gaussian with random variance σ 2k(U). The joint PDF of X and
U therefore is

fXU(x, u|μ, σ 2, ν) = N(x|μ, σ 2k(u))q(u|ν).

4 Mixture of SMG

The PDF of a random variable Y , from a mixture distribution with component
density function SMG(μk, σ

2
k , νk) for k = 1, . . . , K , is

f (y|θ) = �K
k=1πkSMG(y|μk, σ 2

k , νk),

where θ = (π ,μ, σ 2) = (π1, . . . , πK,μ1, . . . , μK, σ
2
1 , . . . , σ

2
K) and ν =

(ν1, . . . , νK).
The log-likelihood function for a random sample y1, . . . , yn of Y is

l(θ |y) =
n∑
i=1

log

(
K∑
k=1

πkSMG(yi |μk, σ 2
k , νk)

)
.

Let Z = (zik) with

zik =
{

0 if observation i is not from component k
1 if observation i is from component k

for i = 1, . . . , n and k = 1, . . . , K . Including these unobserved observations into
the likelihood function, the complete data log-likelihood is

lz(θ |y) =
n∑
i=1

K∑
k=1

zik log
(
πkSMG(yi |μk, σ 2

k , νk)
)
.

Introducing additional missing data, u = (ui, . . . , un) with PDF of ui |zik ∼
qk(ui |νk), the complete data log-likelihood is

lc(θ |y) =
n∑
i=1

K∑
k=1

zik log
(
πkN(yi |μk, k(ui) σ 2

k )qk(ui |νk)
)

(2)
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using Remark 1. The expression lc(θ |y) in (2), can be partitioned as follows

lc(θ |y) =
n∑
i=1

K∑
k=1

ziklogπk

+
n∑
i=1

K∑
k=1

ziklogqk(ui |νk)

+
n∑
i=1

K∑
k=1

ziklogN(yi |μk, k(ui)σ 2
k )

=
n∑
i=1

K∑
k=1

ziklogπk

+
n∑
i=1

K∑
k=1

ziklogqk(ui |νk)

+
n∑
i=1

K∑
k=1

zik

[
−1

2
log(2π)− 1

2
log σ 2

k − 1

2
log(k(ui))− 1

2

(yi − μk)
2

k(ui)σ
2
k

]
,

(3)

where θ = (π1, . . . , πK,μ1, . . . , μK, σ
2
1 , . . . , σ

2
K, ν1, . . . , νK).

The t-distribution plays an important role in robust analysis. Since the t-
distribution is a special case of the SMG, we present a mixture of t-distributions
in Sect. 5 and mixture of regression models using t-distributions in Sect. 6.

5 Mixture of t-Distributions

The t-distribution is a member of SMG, see Proposition 2, hence a member of SME.
A random variable Y follows a mixture of t-distributions if

fY (y|θ) =
K∑
k=1

πkt (y|μk, σ 2
k , νk)

=
K∑
k=1

∫ ∞

0
N

(
y|μk, σ

2
k

u

)
�
(
u|νk

2
,
νk

2

)
,

with component mixing density a GAMMA(
νk
2 ,

νk
2 ) and mixing parameter k(u) =

1
u

. The complete data log-likelihood function, following (3), is
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lc(θ |y,Z) =
n∑
i=1

K∑
k=1

ziklogπk

+
n∑
i=1

K∑
k=1

zik

[
−log �(νk

2
)+ νk

2
log(

νk

2
)+ (

νk

2
− 1) log (ui)− νk

2
ui

]

+
n∑
i=1

K∑
k=1

zik

[
−1

2
log(2π)− 1

2
log σ 2

k + 1

2
log(ui)− ui

2

(
yi − μk

σk

)2
]
.

(4)

Proposition 3 If R has a GAMMA(α, β) distribution then

E(log R) = ψ(α)− logβ,

where ψ(.) is the digamma function given by

ψ(α) = �′(α)
�(α)

.

Proof For the proof see Peel and McLachlan (2000). ��
Using the EM algorithm to calculate the ML estimates requires taking the

expectation over the latent variables in the E-Step and performing maximisation
for the M-Step.

E-Step
Taking conditional expectations over the latent variables in (4) requires the calcula-
tion of

Eθ (Zik|yi) = γik,

Eθ (Ui |yi, zik) = uik, and

Eθ log(Ui |yi, zik) = lik.

It follows that

γik = πkt (yi |μk, σ 2
k, νk)∑K

j=1 πj t (yi |μj , σ 2
j , νj )

, (5)

uik = νk + 1

νk +
(
yi−μk
σk

)2 (6)

since Ui |yi, zik ∼ GAMMA

(
1
2 (νk + 1), 1

2

[
νk +

(
yi−μk
σk

)2
])

.
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Using the distribution of Ui |yi, zik and Proposition 3, we get

lik = ψ(
νk + 1

2
)− log

[
1

2

(
νk +

(
yi − μk

σk

)2
)]

.

Substituting the conditional expectations into (4) yields

Q(θ) = Qπ (θ)+Qν(θ)+Qμ,σ 2(θ), (7)

where

Qπ (θ) =
n∑
i=1

K∑
k=1

γik log(πk),

Qν(θ) =
n∑
i=1

K∑
k=1

γik

[
−log

(
�
(νk

2

))
+ νk

2
log

(νk
2

)

+
(νk

2
− 1

)
lik − νk

2
uik

]
and

Qμ,σ 2(θ) =
n∑
i=1

K∑
k=1

γik

[
−1

2
log 2π − 1

2
log σ 2

k + 1

2
lik

+uik

2

(
yi − μk

σk

)2
]
. (8)

M-Step
Obtaining updates for the parameters π , ν, μ and σ 2 for the next iteration step
requires maximisation of (7), which is equivalent to the maximisation of the three
terms separately.

Maximising Qπ (θ) under the current parameter estimate, θ , and the constraint∑K
k=1 πk = 1, results in the closed form solution

πk =
∑n

i=1 γik

n

for the update of πk .
Differentiating (8) with respect to μk and setting equal to 0 yields

∂

∂μk
Qμ,σ 2(θ) =

n∑
i=1

γikuik(yi − μk) = 0.
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Hence, we obtain

μk =
∑n

i=1 γikuikyi∑n
i=1 γikuik

.

The updated μk therefore is the weighted sample mean.
Similarly, the update rule for σ 2

k is obtained by differentiating (8) with respect to
σ 2
k and setting equal to 0, yielding

n∑
i=1

γik
1

σ 2
k

−
n∑
i=1

γikuik

(
(yi − μk)

σ 2
k

)2

= 0.

After some algebra we have

σ 2
k =

n∑
i=1

γikuik(yi − μk)
2

nk
(9)

with nk = ∑n
i=1 γik , the effective number of observations in component k.

Replacing the denominator in (9) with
∑n

i=1 γikuik can lead to faster conver-
gence, see Kent et al. (1994).

Two approaches can be followed in determining the updated value of νk:

1. Estimating νk outside the EM algorithm, using a profile likelihood, which has
the effect that Qν(.) will not play a role in optimising Q(θ), (7). The EM
algorithm for mixture of t-distributions with a common and fixed ν are given
in Algorithm 1. This algorithm can be applied to a grid of values of ν to assist in
making an optimal selection for ν.

2. Alternatively Qν(.) can be maximised, taking the partial derivative with respect
to νk , as in Peel and McLachlan (2000), iteratively solving for νk in the M step
to obtain an update rule. Algorithm 2 gives the EM algorithm for this case.

6 Mixture of Regressions with t-Distributed Errors

Consider the mixture of K , with k = 1, . . . , K , regressions model:

Y =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xT β1 + ε1, with probability π1

xT β2 + ε2, with probability π2
...

xT βK + εK, with probability πK

(10)
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Algorithm 1 EM algorithm for a mixture of t-distributions with common and fixed
degrees of freedom

1. Choose initial values θold = (π ,μ, σ 2) for a given value of ν.
2. E-Step: Calculate the responsibilities and additional weights

γ newik = πkt (yi |μoldk , σ 2old
k , ν)

�K
j=1π

old
j t (yi |μoldj , σ 2old

j , ν)
, and

unewik = ν + 1

ν +
(
yi−μoldk
σ oldk

)2 .

3. M-Step: Calculate the updated parameter values

πnewk =
∑n

i=1 γ
new
ik

n
,

μnewk =
∑n

i=1 γ
new
ik unewik yi∑n

i=1 γ
new
ik unewik

, and

σ 2 new
k =

n∑
i=1

γ newik unewik (yi − μnewk )2

nnewk

for nnewk = ∑n
i=1 γ

new
ik .

4. Set θold = θnew .
5. Repeat (2) to (4) until convergence.

where Y is the response variable, x is a p-dimensional vector of explanatory
variables including the intercept term, βk a p-dimensional vector of regression
coefficients of the kth component, πk the mixing probabilities 0 < πk < 1,∑K

k=1 πk = 1 and εk random errors.
Select a t-distribution with ν degrees of freedom and scale parameter σ for εk .

The PDF of component k, using (1), is

fk(y − xT βk|x,βk, ν, σ ) = tk(εk|x,βk, ν, σ )

= �(ν+1
2 )σ−1

(πν)1/2�(ν2 )
{

1 + ε2

σ 2ν

} 1
2 (ν+1)

. (11)
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Algorithm 2 EM algorithm for a mixture of t-distributions with νk degrees of
freedom

1. Choose initial values θold = (π ,μ, σ 2, ν).
2. E-Step

a. Calculate the responsibilities, γik , and additional weights, uik as in Algorithm 1.
b. Calculate

lik = ψ(
νk + 1

2
)− log

[
1

2

(
νk +

(
yi − μk

σk

)2
)]

.

3. M-Step

a. Calculate the updated mixing probabilities, component location parameters and variances
using the M-Step in Algorithm 1, and

b. the update of νk is obtained by solving

{
−ψ

(
1

2
νk

)
+ 1 + log

(
1

2
νk

)
+ 1

nnewk

n∑
i=1

γ newik

(
lnewik − unewik

)

+ψ
(
νoldk + 1

2

)
− log

(
νoldk + 1

2

)}
= 0.

4. Set θold = θnew .
5. Repeat (2) and (4) until convergence.

Assuming ν to be known, the log-likelihood is

l(θ |X, y) =
n∑
i=1

log

{
K∑
k=1

πktk(yi − xTi βk)|xi ,βk, ν, σ
}

with θ = (π1, . . . , πK,β1, . . . ,βK, σ).
Let Z = (zik) with

zik =
{

0 if observation i is not from component k
1 if observation i is from component k
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for i = 1, . . . , n and k = 1, . . . , K . The complete data log-likelihood is

lc(θ |X, y,Z) =
n∑
i=1

K∑
k=1

ziklogπk

{
tk(yi − xTi βk|zik, xi ,βk, ν, σ )

}

=
n∑
i=1

K∑
k=1

ziklogπk

+
n∑
i=1

K∑
k=1

zik

[
−log �(ν

2
)+ ν

2
log(

ν

2
)+ (

ν

2
− 1) log (ui)− ν

2
ui

]

+
n∑
i=1

K∑
k=1

zik

⎡
⎣−1

2
log(2π)−1

2
log σ 2

k+
1

2
log(ui)−ui

2

(
yi−xTi βk

σk

)2
⎤
⎦

(12)

which is maximised using the EM algorithm.
The EM algorithm for mixture of t-distributed regressions is similar to Algo-

rithm 1.

E-Step
Determining the responsibilities from expression (5) and the additional weights
from (6), setting νk = ν with ν known,

γik = πkt (yi − xTi βk|xi ,βk, σ 2
k, ν)∑K

j=1 πj t (yi − xTi βk|xi ,βj σ 2
j , ν)

, and

uik = ν + 1

ν +
(
yi−xTi βk

σk

)2 .

Replacing the missing data with these expected values in the complete data log-
likelihood (12), discarding terms not involving parameters, yields

Q(θ) = Qπ (θ)+Qμ,σ 2(θ),
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where

Qπ (θ) =
n∑
i=1

K∑
k=1

γik log(πk)and

Qβ,σ 2(θ) =
n∑
i=1

K∑
k=1

γik

⎡
⎣−1

2
log σ 2

k + uik

2

(
yi − xTi βk

σk

)2
⎤
⎦ .

M-Step
Updates for the parameter, θ , is obtained by partial differentiation of Qβ,σ 2(θ) and
Qπ (θ)with respect to πk,βk and σ k respectively, setting the resultant equal to zero,
yields the following update rules. For πk the update rule is

πk =
n∑
i=1

γik/n,

and the update rule for βk is

βk =
(

n∑
i=1

xix
T
i γik × uik

)−1 ( n∑
i=1

xiyiγik × uik

)

= (XTW kX)
−1(XTW ky)

where Wk is a diagonal matrix with diagonal elements (γik × uik) and updates for
σk are obtained using

σk =
(∑n

i=1 γik × uik(yi − xTi βk)
2

nk

)1/2

with nk = ∑n
i=1 γik .

The EM algorithm for a mixture of regressions using t-distributed errors is
summarised in Algorithm 3.

6.1 Choice of the Degrees of Freedom for the Component
t-Distribution

In the previous section the degrees of freedom, ν, was assumed to be known. The
degrees of freedom, ν, can be chosen using an adaptive process based on maximising
the profile likelihood for ν. The profile log-likelihood for ν is defined as
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Algorithm 3 EM estimation for a mixture of regressions with t-distributed errors

1. Choose initial values θold = (π1, . . . , πK,β
old
1 , . . .βoldK , σ old1 , . . . , σ oldK ).

2. E-Step: Calculate the responsibilities and additional weights

γ newik = E(zik |X, y, θold ),= πoldk f (yi − xTi β
old
k ; σold , νk)∑K

l=1 π
old
l f (yi − xTi β

old
l ; σold , νl)

where f (ε; σ, ν) is as defined in (11), and

unewik = E(ui |X, y, θold , zik = 1) = ν + 1

ν + {
(yi − xTi βk)/σ

old
}2 .

3. M-Step: update the parameter values

πnewk =
n∑
i=1

γ newik /n,

βnewk = (XT W kX)
−1(XT W ky)

where W k is a diagonal matrix with diagonal elements
(
γ newik × unewik

)
.

σnewk =
{∑n

i=1 γ
new
ik × unewik (yi − xTi β

new
k )2

nk

}1/2

.

4. Set θold = θnew .
5. Repeat the (2) and (4) until convergence.

l(ν) = max
θ

n∑
i=1

log

K∑
k=1

{
πkf (yi − xTi βk)|σν

}
. (13)

The profile log-likelihood, l(ν), is evaluated using a grid of appropriate values of
ν and the value of ν maximising (13) is chosen.

7 Example of a Mixture of t-Distributed Regressions

Consider the mixture regression model

yi =
{

xTi β1 + εi1 with probability π1

xTi β2 + εi2 with probability π2
(14)
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Fig. 1 Mixture of
t-distributed regressions
model, observed data in the
upper pane and the estimated
mixture of regressions model
in the bottom pane
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Table 1 MLEs for the 2
component mixture of
t-distributed regressions
model

Component 1 Component 2

Parameter k = 1 k = 2

β1k 159.940 221.350

β2k 3.000 -1.613

πk 0.684 0.316

σk 2.461 2.784

ν 5

BIC 4097.100

with random errors εik each from a t-distribution with ν = 5 degrees of freedom,

scale parameter σ = 3, β1 =
(

160
3

)
,β2 =

(
220

−1.5

)
,π =

(
0.67
0.33

)
and εik ∼

t (5).
A random sample of n = 750 from this mixture regression model (14) is

presented in the top pane of Fig. 1.
The MLEs, using Algorithm 3, are given in Table 1.
The fitted model, shown in the bottom panel of Fig. 1, which represents the

generative model well. Comparing the BIC of models with ν = 3, 4, 5 and 6
respectively confirms the choice of ν = 5.
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8 Health Care Claims Modelling

Predictive modelling is increasingly used in modelling and forecasting of health
care costs in the managed health care sector (Powers et al. 2005). In a recent
survey (Tomar and Agarwal 2013), the popularity of machine and statistical learning
techniques, in health care, is highlighted. These models are utilised, among other, to
identify and manage high risk participants and health care service providers.

Total claims cost is modelled as a function of the other variables in Table 2.
A mixture regression model approach is used to determine the impact of these
explanatory variables on the total cost and also to determine if there are groups
of medical insurance companies in which the impacts differ, hence profiling the
companies. Differences between the impacts identified through the component
models are usually very insightful and are used for managerial and governance
purposes.

In this application, also considered by Millard (2018), we use a mixture of
regressions model with t-distributed errors for the modelling of medical insurance
data. The data consists of aggregated claims from 375 medical insurance companies,
for a specific year.

8.1 Observed Data

Table 2 gives a description of the variables used.
Figure 2 gives a scatter plot matrix for the standardised variables in Table 2

indicating substantial correlation between the response variable claims and the
explanatory variables female_ratio, age, pens_ratio and depen_ratio.

Table 2 Variables considered in modelling claims data

Variable Description

Claims Total claims cost (response variable)

Beneficiaries Number of beneficiaries

Age Average age of members

Pens_Ratio Ratio of pensioners to the total number of members

Female_Ratio Ratio of female beneficiaries to the total number of members

Depen_Ratio Average dependency ratio per policy

All variables are measured on the continuous scale
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r = –0.22
p = <0.05

r = –0.23
p = 0.66

r = –0.13
p = <0.05

r = –0.69
p = <0.05

r = –0.15
p = <0.05

r = 0.76
p = <0.05

r = 0.33
p = <0.05

r = 0.037
p = 0.47

r = –0.067
p = 0.19

r = 0.36
p = <0.05

Age

r = –0.45
p = <0.05

r = 0.95
p = <0.05

r = 0.45
p = <0.05

r = –0.44
p = <0.05

Depen_ratio

Pens_ratio

Female_ratio

Beneficiaries
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Fig. 2 Association between all variable pairs are visualised in the upper triangle with the
corresponding correlations in the lower triangle. Variable names are given on the diagonal

8.2 Modelling

The mixture of t-distributions regression model, (10), is fitted for K = 1, 2, 3, 4
with different choices of ν = 2, 3, . . . , 7, with results in Table 3. This table also
includes a mixture of Gaussian regressions model. Model selection is based on BIC
also used as a measure of relative goodness of fit.

From Table 3 it can be seen that the mixture regression model with t-distributed
errors with 4 degrees of freedom, t (4), yields a better fit than the model based on
Gaussian error terms, with a BIC = 616.2. Various t-distributed mixture regression
models were fitted, with the three component model with 4 degrees of freedom
resulting in the lowest value of BIC. It is also apparent that there are clearly
different structures in the component regression models, Fig. 3. The figure shows
different components in the observed data with respect to the relationship with the
explanatory variables. The top panes show the relationship between the response,
claims and the explanatory variables age and pens_ratio with an overlay of the
estimated component regression models. From this different behaviour of medical
insurance providers, with respect to these explanatory variables, is observed. The
bottom panes show a similar, but less clear, situation with respect to the variables
depen_ratio, female_ratio and beneficiaries.

The estimated mixture regression model enables the researcher to better under-
stand the phenomena and to identify possible drivers of behaviour. The model can
also be used to manage the claims process originating from different insurance
companies as well as the detection of fraudulent claims.
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Table 3 Estimated three component mixture regression results, mixture of t-distributions regres-
sion compared to mixture of Gaussian distributions regression

t (4) Gaussian

Component Variable/Effect Parameter estimate Parameter estimate

1 Intercept −0.576 −0.523

1 Beneficiaries 0.016 0.034

1 Age 0.322 0.370

1 Pens_ratio −0.109 −0.197

1 Female_Ratio 0.204 0.238

1 Depen_ratio 0.015 0.045

2 Intercept −0.085 0.039

2 Beneficiaries 0.107 0.011

2 Age 0.717 0.940

2 Pens_ratio 0.099 −0.145

2 Female_Ratio 0.096 0.137

2 Depen_ratio 0.119 0.174

3 Intercept 0.396 0.378

3 Beneficiaries −0.011 0.042

3 Age 1.012 1.295

3 Pens_ratio 0.213 −0.058

3 Female_Ratio 0.108 0.164

3 Depen_ratio 0.112 0.047

1 Scale/Var 0.041 0.096

2 Scale/Var 0.039 0.165

3 Scale/Var 0.079 0.093

1 Mixing probability 0.254 0.293

2 Mixing probability 0.331 0.402

3 Mixing probability 0.415 0.305

BIC 616.2 632.0

9 Discussion

In this chapter SME’s are introduced and the t-distribution is identified as a special
case. Mixture of regressions with errors from a scale mixture of exponential family
distributions were considered, focused on mixture of t-distributed regression mod-
els. The mixture regression model addresses the component impact of explanatory
variables. Latent behavioural segments are also identified, differentiating between
subgroups therefore enhancing the understanding of the underlying phenomena.
The t-distribution mixture of regressions model also allows for heavier tails, hence
addressing the impact of outliers.

It is of interest to also consider the identifiability of the mixture of scale mixtures
approach. This should be addressed in more depth in future work.
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Fig. 3 Components from the estimated mixture of t-distributions regression model. The top panes
give the observed data and predicted values against age and pens_ratio respectively. The lower
panes give the observed data against depen_ratio, female_ratio and beneficiaries. Colours of
the observed data give the component to which an observation belongs. The roughness in the
component predictions is due to the marginal views presented
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On Improving the Performance
of Logistic Regression Analysis Via
Extreme Ranking

Hani M. Samawi

Abstract Logistic regression models for dichotomous or ordinal dependent vari-
ables is one of the generalized linear models. They have been frequently applied in
several fields. In this chapter, we present more efficient and powerful performance
of the logistic regression models analysis when a modified extreme ranked set
sampling (modified ERSS) or moving extreme ranked set sampling (MERSS) are
used and further improving the performance when a modified Double extreme
ranked set sampling (modified DERSS) is used. We propose that ranking could
be performed based on an available and easy to rank auxiliary variable which
is associated with the response variable. Analytically and through simulations,
we showed the superiority performance of the logistics regression analysis when
modified ERSS, MERSS, and DERSS are used compared with using the simple
random sample (SRS). For illustration purposes of the procedures developed, we
use a real dataset from 2011/12 National Survey of Children’s Health (NSCH).

1 Introduction

The logistic regression model is one of the important statistical approaches for
analyzing categorical response variables. Logistic regression models have less
restricted assumptions than that for ordinary regression models. In particular, the
analysis of logistic regression model does not require the normally distributed
assumption of the dependent variable or the assumption of the homogeneity of the
errors term variance. On the other hand, there are some restrictions on the logistic
regression implementation in practice. For example, some of the restrictions are
the specification error, multicollinearity, and zero cells and complete separation
(Menard 1995). Logistic models are practical in various areas and can be easily
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interpreted in terms of odds ratio or conditional odds ratio for certain risk factor. One
of logistic regression model features is, it can be used to find the risk factors among
various potential predictors of disease in medical and epidemiological research
(Steinmann et al. 2007).

When the response variable is dichotomous, it could follow an extremely
unbalanced distribution, when one category is scarce as compared to the other.
Consequently, the logistic regression model could suffer from serious limitations
when a population has such an imbalance in the probability of outcomes. In this
case, logistic regression will be severely underpowered with the presence of rare
and potentially underestimated events (see, King and Zeng 2001). Thus it is difficult
to predict rare events with the standard application of logistic regression. In the
literature, there are some attempts to address this issue by using some alternative
sampling strategies. For example, over-sampling (i.e., increasing the number of units
in the minority class) and under-sampling (i.e., decreasing the number of units in
the majority class were commonly used procedure (Maalouf and Trafalis 2011).
However, these two methods result in biased estimates of the model parameters.
Therefore, to address the shortcoming, it is necessary to seek sampling strategies
that are cost-effective, powerful and efficient for the inference of the logistic models
without using the sampling methods as mentioned above or use large sample size.

Data collection is an essential process for all statistical procedures. There are
many sampling schemes in the literature. The most assumed common sampling
scheme is the simple random sampling (SRS). In some situations, SRS provides
a non-representative sample to the target population. A possible solution to address
the issue mentioned above is to use a cost-effective and more structural approach.
Ranked set sampling (RSS) and its variations are important candidates to draw a
more cost-effective and structural sample. RSS was proposed by McIntyre (1952).

For balanced RSS, first, randomly draw m sets each contains m subjects from
a specific population. Within each set, of size m, rank subjects visually or by non-
costly means. The subject ranked lowest is chosen for actual quantification from the
first set. The subject ranked second lowest is measured from the second. Repeated
the process until the subject with the maximum rank is measured from the mth set.
It was first proposed by Lynne Stokes (1977) that RSS may be used to collect data
in some vital field. She proposed to use easy to rank auxiliary variable which is
correlated with the variable of interest. However, the amount of improvement in the
precision of using RSS estimator depends on the strength of the correlation between
the available auxiliary variable and the variable of interest see Chen et al. (2005).

RSS considered for regression models in the attempt to improve their perfor-
mance (see Samawi and Ababneh 2001; Samawi and Abu-Dayyeh 2002; Samawi
and Al-Saleh 2002; Samawi and Al-Saleh 2004; Twidwell 2000; Murff and Sager
2006; Chen and Wang 2004; Özdemir and Esin 2007). Our recent investigation
revealed no improvement in the model parameters’ estimation, odds ratios and
the power of testing some hypotheses for the logistic regression models. There is
still a need for more efficient sampling schemes to improve the performance of
the logistic regression analysis. Samawi et al. (1996) introduced a variety of the
extreme ranked set sample (ERSS) for the population mean estimation. Al-Odat and
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Al-Saleh (2001) introduced a modification to ERSS and called it moving extreme
ranked set sampling (MERSS). Samawi et al. (2017) utilized MERSS to improve the
performance of logistic regression analysis and showed a significant improvement
in the performance of the model inference. In addition, double extreme ranked set
sampling (DERSS) is introduced by Samawi (2002). The purpose of this chapter is
to propose using a modify vision of DERSS and ERSS as well as MERSS which
proposed Samawi et al. (2017) to improve the performance of the logistic regression.
The modifications of ERSS and DERSS is as follows:

A modification of ERSS procedure:

1. From the target population, draw randomly m sets each contains m subjects.
2. Rank subjects within each set with respect to the characteristic, such as an

available concomitant (auxiliary) variable;
3. Measure the maximum (minimum) from each set.

This complete one cycle. If a larger sample size is needed, the entire cycle can be
repeated (Step 1–3), r times to obtain a sample of larger size, n= rm. This modified
ERSS is denoted by ERSSmax (ERSSmin).

As an extension to the modified ERSS, the modified DERSS is as follows:

1. Draw randomly m ERSSmax (ERSSmin) samples of size m each as described
above without quantification to the sampling units.

2. Repeat steps 2 and 3 above.

This complete one cycle. If a larger sample size is needed, the entire cycle can be
repeated (Step 1–3), r times to obtain a sample of larger size, n= rm. This modified
DERSS is denoted by DERSSmax (DERSSmin).

Another modification of RSS, namely Moving Extreme Ranked Set Sampling
(MERSS), was introduced by Al-Odat and Al-Saleh (2001). The MERSS procedure
can be implemented as follows:

1. Select m simple random samples of size 1, 2, 3,..., m, respectively;
2. Order the elements in each sample with respect to the characteristic of interest

simply by visual inspection or some other means not requiring the actual
measurement;

3. Accurately measure the maximum (or minimum) ordered observation from each
set.

The entire cycle can be repeated (Steps 1–3), if necessary, r times to obtain a
sample of larger size, n = rm. This sampling scheme is known as MERSSmax (or
MERSSmin). Samawi and Al-Saleh (2013) implemented these two types of MERSS
to provide valid and more efficient estimates of the odds ratio. Moreover, Samawi
et al. (2018a), Samawi et al. (2018b), Samawi et al. (2017) and Linder et al. (2018)
implemented ERSS and/or MERSS to improve the performance of Cox model, AFT
model, logistic model, and Poisson regression model respectively.

This chapter presents the implementation of ERSSmax (ERSSmin), MERSSmax
(MERSSmax) and DERSSmax (DERSSmin) to improve the performance of the
logistic regression models analysis compared to SRS. We are interesting in using
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the modified, MERSS, ERSS and DERSS when ranking is performed based on
one of the available auxiliary variables (Z) which are correlated with the variable
of interest. Modified, DERSS, MERSS, and ERSS procedures only identified the
maximum (or minimum) from each set for quantification. Thus these schemes can
be easily implemented for large m.

We suggest to use ERSSmin, MERSSmin, and DERSSmin when Z is positively
correlated with the response variable. In case of negative correlation, we recommend
to use ERSSmax, MERSSmax, and DERSSmax. In this chapter, we are presenting
the cases for ERSSmin, MERSSmin, and DERSSmin. The other cases are similar, so
we discuss in the simulation study. Therefore, in Sect. 2 we discussed the logistic
regression analysis and the resulting properties when DERSSmin is used. The other
sampling schemes are similar and will be discussed in the simulation studies. The
simulation study is provided in Sect. 3 in order to compare the performance of
logistic regression models analysis based on DERSSmin, MERSSmin, ERSSmin, and
SRS schemes. The proposed methods are illustrated using children health behavior
from (NSCH 2011) data in Sect. 4. In Sect. 5, we provide the final remarks.

1.1 Sample Notation and Some Basic Results

For the k-th cycle, let Z1
11k,Z1

12k, . . . ,Z1
1mk,Z1

21k,Z1
22k, . . . ,Z1

2mk; . . . ;Z1
m1k,Z1

m2k,

. . . ,Z1
mmk;Zm11k, Z

m
12k, . . . , Z

m
1mk, Z

m
21k, Z

m
22k, . . . , Z

m
2mk; . . . ; Zmm1k, Z

m
m2k, . . . ,

Zmmmk; k = 1, 2, ..., r, be the m independent sets each with sample size m2. Note
that Zlijk is the j-th sample unit in the i-th row (sample) of the k-th set. Assume that

each element Zlijkin the sample has a p.d.f. fZ(z) and a distribution function FZ(z)
(absolutely continuous). For selecting ERSSmin and DERSSmin, after ranking the
sample units within each sample in each set (visually or by any not costly way), we
obtain:⎡

⎢⎢⎢⎣
Z1

1(1)k, Z
1
1(2)k, . . . , Z

1
1(m)k

Z1
2(1)k, Z

1
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1
2(m)k

. . . . . . . . . . . .

Z1
m(1)k, Z

1
m(2)k, . . . , Z

1
m(m)k

⎤
⎥⎥⎥⎦ , . . . ,

⎡
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1(m)k

Zm2(1)k, Z
m
2(2)k, . . . , Z

m
2(m)k

. . . . . . . . . . . .
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k = 1, 2, ..., r. Thus the first stage will yield m ERSSmin samples:

A1k =
{
Z1

1(1)k, Z
1
2(1)k, . . . , Z

1
m(1)k

}
. . . ,

A2k =
{
Z2

1(1)k, Z
2
2(1)k, . . . , Z

2
m(1)k

}
.
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Amk =
{
Zm1(1)k, Z

m
2(1)k, . . . , Z

m
m(1)k

}
Now let V1(1)k = min (A1k), V2(1)k = min

(A2k), ...., Vm(1)k = min (Amk) Then V1(1)k, V2(1)k, . . . , Vm(1)k k = 1, 2, ...,
r, denotes DERSSmin. For DERSSmax is similar but selecting the maximum
instead of the minimum. It is easy to show that the p.d.f of the smallest and the
largest order statistics are i.i.d. sample of size m with p.d.f fZ(z) are respectively
given by: fZ(1)(z) = m(1 − FZ(z))m − 1fZ(z) andfZ(m)(z) = m(FZ(z))m − 1fZ(z)Also,
let Vi(1)khave p.d.f g(1)(z)and c.d.f G(1)(z) andVi(m)khave p.d.f g(m)(z)and c.d.f
G(m)(z)where i = 1,2, . . . ,m and k = 1, 2, ..., r. Clearly, V1(1)k, V2(1)k, . . . ,
Vm(1)k, k = 1, 2, ..., r, are independent and identically distributed. Using the above
description of DERSSmin (DERSSmax), we have the following results:

1. GV(1) (z) = 1 − [
1 − FZ(1) (z)

]m = 1 − [1 − FZ(z)]m
2

2. gV(1) (z) = mfZ(1) (z)
[
1 − FZ(1) (z)

]m−1 = m2fZ(z) [1 − FZ(z)]m
2−1

3. GV(m)(z) = [FZ(z)]m
2

4. gV(m) (z) = m2fZ(z) [FZ(z)]m
2−1

Next, we will present the derivation of the logistic regression when DERSSmin is
used. The derivation for the other sampling schemes ERSSmin and MERSSmin are
similar and will be discussed in the simulation.

2 Logistic Regression Analysis for DERSSmin

Using similar notation and definition of the logistic regression model as in Samawi
et al. (2017) we have

π (x; z) = P (Y = 1|x; z) = exp
(
β0 + β1x1 + · · · + βpxp + δz

)
1 + exp

(
β0 + β1x1 + · · · + βpxp + δz

) , (1)

where Y is a binary response variable with two distinct outcomes as 1 (success) and
0 (failure), which can be viewed as a Bernoulli random variable with the probability
of success π andδis the slope of Z. For some explanatory variables,X1, X2, . . . , Xp,
which have a certain association with the response variable Y. Assume the auxiliary
variable, denoted by Z, having a strong association with Y to be used in selecting
the modified ERSS and DERSS. We assume Z to be an easy-to-rank visually or with
little cost. Using the logit link, we can write (1) as

Log

(
π (x; z)

1 − π (x; z)
)

= β0 + β1x1 + · · · + βpxp + δz, (2)

where the n binary responses are treated as independent Bernoulli random variables.
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We denotewi = (xi0xi1, . . . , xip, zi)
′
as the vector containing the measurements on

p explanatory variables and one auxiliary variable for the ith setting, where i= 1, 2,
. . . , L. For the model properties and fitting process see Agresti (2002).

Here, we investigate the improvement of the logistic regression model analyses
under DERSSmin sampling scheme. The ranking of selecting a DERSSmin is
assumed to be performed based on an easy-to-rank auxiliary variable Z associated
with the response variable. We denoteV1(1)k, V2(1)k, . . . , Vm(1)k, k = 1, 2, ..., r as
the measurements acquired from a DERSSmin of sizen = r. m. Therefore, we can
assume that the judgment on the ranking is perfect ranking. However, if there was
some ranking error our method still valid and perform at least as good as SRS.
Let Vi(1)k denotes as the minimum order statistic for an ERSSmin of size m from
FZ(.). Then we select the subjects based on these double minimum ranked auxiliary
variable Z.

Meanwhile, the vector wi[1]k = (xik0xi[1]k1, . . . , xi[1]p, zi(1)k)
′
, i = 1, 2, . . . , m;

k = 1, 2, . . . , r represents the observations on the p explanatory variables and one
auxiliary variable obtained from the sampled unit in the kth cycle of the ith set.
Furthermore, assume xik0to be 1. Therefore, under DERSSmin we have

π
(
wi[1]k

) = exp

(
p∑
h=0

βhxi[1]kh + δvi(1)k

)

1 + exp

(
p∑
h=0

βhxi[1]kh + δvi(1)k

) . (3)

Clearly, Yi[1]k is a binary response with the probability of success denoted by
π (wi[1]k). Now,{Yi[1]k, i = 1, 2, . . . ,m; k = 1, 2, .., r} can be viewed as independent
Bernoulli random variables withE(Yi[1]k) = π (wi[1]k). Therefore, as in Samawi et al.
(2017), the likelihood function is given by

l (β) =
m∏
i=1

r∏
k=1

π
(
wi[1]k

)yi[1]k
[
1 − π

(
wi[1]k

)]1−yi[1]k

=
[
m∏
i=1

r∏
k=1

[
1 − π

(
wi[1]k

)]] [
exp

{
r∑
i=1

m∑
j=1

yi[1]k log
(

π(wi[1]k)
1−π(wi[1]k)

)}]
.

(4)

Taking the natural logarithm of the log likelihood in (4) we get

dL

dβc
=
(

m∑
i=1

r∑
k=1

yi[1]kxi[1]kc

)
−

m∑
i=1

r∑
k=1

xi[1]kc

⎛
⎜⎜⎜⎝

exp

(
p∑
h=0

βhxi[1]kh+δvi(1)k
)

1+ exp

(
p∑
h=0

βhxi[1]kh+δvi(1)k
)
⎞
⎟⎟⎟⎠ .

(5)

Then the MLE can be obtained by solving the following normal equation,
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(
m∑
i=1

r∑
k=1

yi[1]kxi[1]kc

)
−

m∑
i=1

r∑
k=1

π̂i[1]kxi[1]kc = 0. (7)

These equations could be solved iteratively using the Newton-Raphson method
(See, Agresti 2002). For a detailed discussion about the existent and uniqueness
of MLE see Agresti (2002), Lehmann and Casella (1998), Albert and Anderson
1984 and Rashid and Shifa (2009). They also showed that MLE ofβs are consistent
estimators and have an asymptotic normal distribution.

Let W[R] denote the n × (p + 2) matrix of {wi[1]kh} values for matrix notations.
As in Samawi et al. (2017), we can write (7) as

W′
[R]y[R] = W′

[R]Ê[R],

and Êi[1]k = π̂i[1]k. Then the variance-covariance matrix can be estimated as the
inverse of the information matrix. The Fisher’s information matrix can be obtained
as

d2L

dβcdβd
= −

m∑
i=1

r∑
k=1

⎛
⎜⎜⎜⎝
xi[1]kcxi[1]kd exp

(
p∑
h=0

βhxi[1]kh + δvi(1)k

)
[

1 + exp

(
p∑
h=0

βhxi[1]kh + δvi(1)k

)]2

⎞
⎟⎟⎟⎠

= −
m∑
i=1

r∑
k=1

xi[1]kcxi[1]kdπi[1]k
(
1 − πi[1]k

)
.

(8)

Note that (8) is free of {yi[1]k}. This implies that the observed and the expected
second derivatives are the same in term ofyi[1]k. Then the variance-covariance matrix
can be calculated as:

Ĉov
(
β̂[R]

)
= {

W′
[R]Diag

[
π̂i[1]k

(
1 − π̂i[1]k

)]
W[R]

}−1
. (9)

Additionally, I (β)DERSSmin
= −EZi[1]

(
∂2L(β)

∂β′∂β

)
(p+2)x(p+2)

,represents the

Fisher’s information matrix.
Consequently, to make an inference aboutβ j, we need to calculate the Fisher’s

information with respect toβ j in order to study the performance of our proposed
procedure. Note that, Fisher’s information can be used as a measure of the parameter
estimator precision as well. Now assume that the auxiliary variable Z is random.
To show that the Fisher’s information of estimating βusing DERSS is larger than
using ERSS and SRS, thus we need to show that I

(
βj
)
DERSSmin

≥ I
(
βj
)
ERSSmin

≥
I
(
βj
)
SRS

. Similarly, we can show thatI
(
βj
)
MERSSmin

≥ I
(
βj
)
SRS

. For the jth

covariate, we can derive IDERSSmin

(
βj
)
as
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IDERSSmin

(
βj
) = −EV(1)

(
∂2L(β)

∂β2
j

)
= EV(1)

⎡
⎢⎢⎣ m∑
i=1

r∑
k=1

⎛
⎜⎜⎝

x2
i[1]kj exp

(
p∑
h=0

βhxi[1]kh+δVi(1)k
)

[
1+exp

(
p∑
h=0

βhxi[1]kh+δVi(1)k
)]2

⎞
⎟⎟⎠
⎤
⎥⎥⎦

= EV(1)

[
m∑
i=1

r∑
k=1

x2
i[1]kj

(
π
(
xi[1]kj , Vi(1)k

)
(1 − π( xi[1]kj , Vi(1)k

))]
.

(10)

Let the ranking variable Z follows a continuous distributionFZ(z), with a density
functionfZ(z).Forδ > 0, we have taken the minimum judgment ranking, from each
set of size m. However, from the above derivation in Sect. 1.1, the density function
of V[1]is given by fV(1) (v) = mfZ(1) (v)

(
1 − FZ(1) (v)

)m−1. Then from (10),

I
(
βj
)
DERSSmin

= −EV[1]

(
∂2L (β)

∂β2
j

)

=
m∑
i=1

r∑
k=1

x2
i[1]kj

∫
v

(
π
(
x1[1]kj , vi[1]k

)
(1 − π( x1[1]kj , vi[1]k

))

mfZ(1) (v)
(
1 − FZ(1) (v)

)m−1
dv.

(11)

Since we assume thatδ > 0, then (π (x1[1]kj, vi(1)k)(1 − π (x1[1]kj, vi(1)k)) is a
decreasing function of v for fixedxik0xi[1]k1 . . . xi[1]kp, andvi[1]k > 0 (this restriction

can be achieved by shifting v to be positive). In addition, m
(
1 − FZ(1) (z)

)m−1is a
decreasing function of z. Therefore, by See and Chen (2008), we have

Since
∫
v

mfZ(1) (v)
(

1 − FZ(1) (v)
)m−1

dv = 1,

then I
(
βj
)
DERSSmin

≥
m∑
i=1

r∑
k=1

x2
i[1]kj

∫
v

((
π
(
x1[1]kj , vi[1]k

)
(1 − π( x1[1]kj , vi[1]k

)))

fZ(1) (v)dv = IERSSmin

(
βj
) ≥ ISRS

(
βj
)
.

(12)

We can achieve the last inequality in a similar way as in Samawi et al. (2017).
Likewise, we can demonstrate that the inequality in (12) holds when the association
between Y and Z is negative.
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3 Simulation Studies and Results

To assess the performance of the logistic regression analyses based on using
DERSSmin compared with ERSSmin, MERSSmin, and SRS, we conducted simula-
tion studies to get some insight. The simulation studies are designed to estimate
the power of testing the hypothesis of no association between the response
variable and a predictor. We have separate simulation studies one for continuous
predictors and one for a dichotomous predictor. Also, for both continuous and
dichotomous predictors, using the simulation studies, we estimated the MSE, the
confidence intervals and the coverage probabilities of the conditional odds ratio. In
the simulation, we consider some association levels between the risk factors and
the auxiliary covariate (i.e.,β1=0.0, 0.2, 0.5, 1.0). In this study we provide only
simulation results for (m = 30, r = 20) and (m = 50, r = 10).The simulation results
were based on 5000 replication for each combination of set sizes parameters setting.

The results of the simulation for continuous predictors are provided in Tables 1,
2, and 3, while the simulation results for dichotomous predictors are provided in
Tables 4, 5, and 6. In Tables 1 and 4, we estimate the empirical powers, while in
Tables 2 and 5, we report the conditional odds ratio estimates, their MSEs, and the
relative efficiencies{
RE1 = MSE(ERSS)

MSE(DERSS)
, RE2 = MSE(SRS)

MSE(DERSS)
, RE3 = MSE(SRS)

MSE(ERSS)

}
.

Table 1 Estimation of the power of testing Ho : β2 = 0 vs Ha : β2 �= 0 adjusting for the
auxiliary variable (Z) in the model (continuous risk factor)

m= 30
and
r= 20

m = 50 and
r = 10

β1 β2 Power of
the test
using
DERSSmin

Power of
the test
using
ERSSmin

Power of
the test
using SRS

Power of
the test
using
DERSSmin

Power of
the test
using
ERSSmin

Power of
the test
using SRS

0.2 0.0 0.0434 0.0492 0.0512 0.0480 0.0460 0.0530
0.2 0.1 0.1110 0.0982 0.0804 0.0964 0.0846 0.0788
0.2 0.3 0.5782 0.4908 0.3614 0.5236 0.4312 0.3002
0.2 0.5 0.9552 0.9066 0.7584 0.9372 0.8686 0.6918
0.5 0.0 0.0510 0.0414 0.0488 0.0462 0.0518 0.0520
0.5 0.1 0.1634 0.1250 0.0812 0.1506 0.1172 0.0744
0.5 0.3 0.8498 0.6834 0.3614 0.8098 0.6456 0.3154
0.5 0.5 0.9986 0.9862 0.8038 0.9968 0.9756 0.7138
1.0 0.0 0.0468 0.0430 0.0532 0.0466 0.0506 0.0474
1.0 0.1 0.2216 0.1900 0.0962 0.1844 0.1720 0.0846
1.0 0.3 0.9372 0.8922 0.4394 0.8790 0.8638 0.3680
1.0 0.5 1.0000 0.9998 0.8598 0.9992 0.9992 0.7882
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Table 2 Odds ratio (OR) estimation and their MSE (continuous risk factor)

m = 30 and r = 20 Relative efficiency
DERSSmin ERSSmin SRS

β1 OR Estimate MSE Estimate MSE Estimate MSE RE1 RE2 RE3

0.0 1.000 1.009 0.023 1.013 0.028 1.021 0.042 1.223 1.837 1.502
0.0 1.105 1.118 0.028 1.122 0.035 1.127 0.051 1.240 1.786 1.440
0.0 1.350 1.368 0.038 1.372 0.048 1.385 0.079 1.260 2.060 1.635
0.0 1.649 1.672 0.059 1.678 0.073 1.689 0.112 1.223 1.879 1.536
0.5 1.000 1.006 0.011 1.008 0.016 1.014 0.039 1.408 3.385 2.404
0.5 1.105 1.112 0.014 1.115 0.021 1.127 0.047 1.508 3.451 2.289
0.5 1.350 1.358 0.020 1.360 0.029 1.371 0.070 1.472 3.552 2.413
0.5 1.649 1.670 0.031 1.671 0.045 1.689 0.097 1.432 3.087 2.155
1.0 1.000 1.002 0.007 1.006 0.009 1.012 0.033 1.268 4.657 3.673
1.0 1.105 1.111 0.009 1.112 0.011 1.129 0.041 1.295 4.743 3.662
1.0 1.350 1.358 0.015 1.359 0.017 1.383 0.060 1.177 4.094 3.479
1.0 1.649 1.666 0.025 1.664 0.027 1.697 0.093 1.107 3.747 3.386
m = 50 and r = 10

0.0 1.000 1.012 0.026 1.015 0.033 1.028 0.054 1.256 2.054 1.635
0.0 1.105 1.120 0.032 1.121 0.039 1.133 0.066 1.217 2.045 1.680
0.0 1.350 1.372 0.044 1.374 0.058 1.386 0.094 1.307 2.109 1.614
0.0 1.649 1.683 0.067 1.686 0.088 1.704 0.142 1.306 2.116 1.620
0.5 1.000 1.004 0.012 1.009 0.019 1.016 0.047 1.564 3.876 2.479
0.5 1.105 1.111 0.015 1.114 0.024 1.127 0.057 1.557 3.762 2.416
0.5 1.350 1.364 0.023 1.368 0.034 1.386 0.090 1.484 3.971 2.675
0.5 1.649 1.668 0.035 1.681 0.052 1.696 0.130 1.479 3.732 2.523
1.0 1.000 1.005 0.009 1.006 0.010 1.022 0.038 1.137 4.245 3.734
1.0 1.105 1.112 0.011 1.111 0.013 1.130 0.049 1.111 4.367 3.932
1.0 1.350 1.361 0.018 1.360 0.019 1.378 0.071 1.047 3.878 3.703
1.0 1.649 1.666 0.031 1.671 0.031 1.696 0.111 1.000 3.575 3.577

Finally, the estimation of the 95% confidence intervals of the odds ratios and
their coverage probabilities are provided in Tables 3 and 6.

From our simulation studies, it is clear that the modified DERSS outperform
the ERSS and SRS in terms of empirical power, MSEs, and confidence interval
coverage probabilities in case of continuous or dichotomous predictors (see Tables
1, 2, 3, 4, 5, 6, respectively.) We notice that the power of the test and the efficiency
of estimating the odds ratio increases as the set size (m) increase in all presented
cases.

From Samawi et al. (2017) we extracted the following tables for comparison
purposes with DERSS and ERSS.

From Tables 7, 8, and 9, we can observe that DERSS outperform ERSS and
MERSS for a given set size and cycle size. However, all proposed sampling
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Table 3 95% confidence interval of the odds ratio (OR) (continuous risk factor)

m = 30 and r = 20
DERSSmin ERSSmin SRS

β1 OR Lower Upper Coverage % Lower Upper Coverage % Lower Upper Coverage %
0.0 1.000 0.755 1.348 0.957 0.736 1.396 0.951 0.696 1.498 0.949
0.0 1.105 0.840 1.488 0.951 0.817 1.541 0.946 0.769 1.653 0.953
0.0 1.350 1.035 1.809 0.953 1.006 1.872 0.951 0.948 2.028 0.949
0.0 1.649 1.273 2.198 0.948 1.238 2.277 0.948 1.161 2.461 0.948
0.5 1.000 0.821 1.233 0.949 0.787 1.292 0.959 0.701 1.468 0.951
0.5 1.105 0.909 1.361 0.947 0.872 1.426 0.946 0.780 1.632 0.953
0.5 1.350 1.111 1.661 0.952 1.066 1.736 0.952 0.952 1.978 0.955
0.5 1.649 1.361 2.050 0.955 1.309 2.132 0.948 1.176 2.429 0.954
1.0 1.000 0.850 1.182 0.953 0.837 1.209 0.957 0.724 1.417 0.947
1.0 1.105 0.941 1.312 0.955 0.926 1.337 0.950 0.808 1.581 0.944
1.0 1.350 1.144 1.612 0.948 1.127 1.637 0.946 0.989 1.934 0.951
1.0 1.649 1.390 1.997 0.949 1.372 2.019 0.952 1.213 2.374 0.950
m = 50 and r = 10
0.0 1.000 0.742 1.381 0.952 0.719 1.435 0.954 0.675 1.568 0.947
0.0 1.105 0.825 1.522 0.950 0.796 1.579 0.947 0.744 1.727 0.945
0.0 1.350 1.019 1.850 0.955 0.984 1.921 0.955 0.914 2.106 0.949
0.0 1.649 1.257 2.256 0.950 1.214 2.343 0.949 1.128 2.577 0.949
0.5 1.000 0.810 1.244 0.954 0.776 1.311 0.948 0.677 1.527 0.948
0.5 1.105 0.898 1.374 0.949 0.859 1.445 0.947 0.751 1.695 0.950
0.5 1.350 1.103 1.688 0.949 1.057 1.771 0.951 0.926 2.076 0.950
0.5 1.649 1.342 2.073 0.951 1.298 2.179 0.950 1.137 2.534 0.956
1.0 1.000 0.835 1.209 0.953 0.829 1.221 0.949 0.707 1.478 0.953
1.0 1.105 0.923 1.340 0.948 0.915 1.349 0.950 0.782 1.635 0.944
1.0 1.350 1.122 1.652 0.953 1.116 1.657 0.950 0.954 1.992 0.953
1.0 1.649 1.359 2.044 0.951 1.360 2.053 0.956 1.172 2.458 0.951

schemes, ERSS, DERSS and MERSS outperform SRS for estimation and testing
hypotheses.

4 Application Using NSCH 2011 Data

To illustrate the proposed method we used the data obtained from 2011 the National
Survey of Children’s Health (NSCH) conducted every two years by the Center
for Disease Control’s (CDC) Division of Adolescent and School Health (Statistics,
11/29/2011, 10/30/2013, http://www.cdc.gov/nchs/slaits/nsch.htm). To demonstrate
the methodology, we focused on children aged between 11 and 17 with a total
sample size of 41,323 children. We treated the survey data as a population and
randomly selected three samples, namely DERSSmin (with m = 20, r = 30, and

http://www.cdc.gov/nchs/slaits/nsch.htm


Table 4 Estimation of the power of testing Ho : β2 = 0 vs Ha : β2 �= 0 adjusting for the auxiliary
variable (Z) in the model (dichotomous risk factor)

m = 30 and r = 20 m = 50 and
r = 10

β1 β2 Power of
the test
using
DERSSmin

Power of
the test
using
ERSSmin

Power of
the test
using SRS

Power of
the test
using
DERSSmin

Power of
the test
using
ERSSmin

Power of
the test
using SRS

0.2 0.0 0.0436 0.0510 0.0416 0.0464 0.0510 0.0392
0.2 0.1 0.0624 0.0652 0.0524 0.0600 0.0546 0.0490
0.2 0.3 0.1486 0.1344 0.1028 0.1344 0.1212 0.0982
0.2 0.5 0.3266 0.2806 0.2028 0.2726 0.2242 0.1816
0.5 0.0 0.0488 0.0442 0.0430 0.0486 0.0462 0.0410
0.5 0.1 0.0704 0.0656 0.0576 0.0718 0.0658 0.0470
0.5 0.3 0.2930 0.1950 0.1140 0.2566 0.1808 0.1098
0.5 0.5 0.6102 0.4366 0.2288 0.5708 0.4128 0.1924
1.0 0.0 0.0516 0.0510 0.0418 0.0500 0.0466 0.0442
1.0 0.1 0.0880 0.0836 0.0598 0.0854 0.0772 0.0638
1.0 0.3 0.4390 0.3394 0.1388 0.3780 0.3170 0.1142
1.0 0.5 0.8528 0.7198 0.2558 0.7780 0.6862 0.2314

Table 5 Odds ratio (OR) estimation and their MSE (dichotomous risk factor)

m = 30 and r = 20 Relative efficiency
DERSSmin ERSSmin SRS

β1 OR Estimate MSE Estimate MSE Estimate MSE RE1 RE2 RE3

0.0 1.000 1.051 0.107 1.068 0.144 1.073 0.212 1.346 1.985 1.475
0.0 1.105 1.164 0.144 1.188 0.187 1.195 0.289 1.299 2.010 1.547
0.0 1.350 1.436 0.243 1.459 0.330 1.482 0.503 1.360 2.074 1.526
0.0 1.649 1.781 0.494 1.808 0.622 1.862 0.952 1.261 1.929 1.530
0.5 1.000 1.020 0.046 1.035 0.069 1.057 0.183 1.490 3.968 2.663
0.5 1.105 1.131 0.057 1.146 0.092 1.183 0.259 1.599 4.501 2.815
0.5 1.350 1.395 0.100 1.407 0.157 1.485 0.475 1.576 4.758 3.020
0.5 1.649 1.707 0.164 1.727 0.268 1.853 0.868 1.636 5.305 3.243
1.0 1.000 1.012 0.030 1.019 0.038 1.057 0.136 1.240 4.485 3.618
1.0 1.105 1.117 0.036 1.127 0.046 1.177 0.194 1.302 5.427 4.168
1.0 1.350 1.375 0.055 1.373 0.075 1.453 0.329 1.370 5.994 4.375
1.0 1.649 1.682 0.083 1.691 0.122 1.773 0.524 1.470 6.313 4.293
m = 50 and r = 10
0.0 1.000 1.053 0.128 1.073 0.168 1.089 0.286 1.316 2.234 1.698
0.0 1.105 1.184 0.187 1.181 0.210 1.229 0.438 1.124 2.342 2.085
0.0 1.350 1.450 0.308 1.480 0.389 1.517 0.737 1.263 2.390 1.892
0.0 1.649 1.788 0.571 1.819 0.812 1.939 1.698 1.422 2.972 2.091
0.5 1.000 1.024 0.053 1.037 0.082 1.073 0.233 1.562 4.421 2.830
0.5 1.105 1.138 0.069 1.156 0.107 1.218 0.333 1.569 4.867 3.102
0.5 1.350 1.389 0.108 1.406 0.179 1.531 0.760 1.666 7.061 4.239
0.5 1.649 1.710 0.180 1.755 0.315 1.886 1.193 1.752 6.639 3.790
1.0 1.000 1.015 0.037 1.023 0.042 1.081 0.195 1.112 5.223 4.695
1.0 1.105 1.124 0.046 1.123 0.050 1.194 0.258 1.091 5.612 5.144
1.0 1.350 1.381 0.069 1.378 0.077 1.472 0.409 1.126 5.957 5.291
1.0 1.649 1.682 0.103 1.694 0.124 1.836 0.951 1.207 9.255 7.665
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Table 6 95% confidence interval of the odds ratio (OR) (dichotomous risk factor)

m = 30 and r = 20
DERSSmin ERSSmin SRS

β1 OR Lower Upper Coverage % Lower Upper Coverage % Lower Upper Coverage %
0.0 1.000 0.588 1.881 0.956 0.562 2.033 0.949 0.493 2.353 0.958
0.0 1.105 0.641 2.120 0.948 0.615 2.299 0.950 0.539 2.672 0.955
0.0 1.350 0.764 2.705 0.955 0.727 2.942 0.953 0.639 3.464 0.958
0.0 1.649 0.908 3.509 0.953 0.859 3.835 0.959 0.759 4.637 0.963
0.5 1.000 0.680 1.530 0.951 0.632 1.696 0.956 0.500 2.245 0.957
0.5 1.105 0.748 1.708 0.958 0.693 1.899 0.953 0.550 2.557 0.957
0.5 1.350 0.908 2.142 0.951 0.830 2.387 0.951 0.663 3.353 0.952
0.5 1.649 1.091 2.672 0.947 0.992 3.011 0.950 0.788 4.407 0.957
1.0 1.000 0.729 1.405 0.948 0.707 1.468 0.949 0.539 2.076 0.958
1.0 1.105 0.805 1.551 0.950 0.779 1.630 0.951 0.592 2.347 0.954
1.0 1.350 0.991 1.909 0.950 0.940 2.006 0.945 0.708 2.994 0.955
1.0 1.649 1.209 2.339 0.946 1.145 2.499 0.952 0.834 3.787 0.958
m = 50 and r = 10
0.0 1.000 0.562 1.976 0.954 0.536 2.156 0.949 0.462 2.594 0.961
0.0 1.105 0.622 2.263 0.950 0.580 2.413 0.954 0.509 3.016 0.957
0.0 1.350 0.734 2.879 0.954 0.696 3.167 0.960 0.598 3.919 0.951
0.0 1.649 0.863 3.734 0.956 0.813 4.115 0.955 0.713 5.465 0.958
0.5 1.000 0.668 1.571 0.951 0.615 1.748 0.954 0.471 2.462 0.959
0.5 1.105 0.736 1.759 0.945 0.678 1.970 0.948 0.524 2.854 0.960
0.5 1.350 0.885 2.181 0.953 0.805 2.458 0.950 0.626 3.807 0.950
0.5 1.649 1.068 2.740 0.953 0.975 3.162 0.955 0.730 4.985 0.956
1.0 1.000 0.702 1.466 0.950 0.696 1.504 0.953 0.515 2.277 0.956
1.0 1.105 0.779 1.621 0.951 0.761 1.657 0.953 0.560 2.556 0.950
1.0 1.350 0.960 1.987 0.948 0.927 2.049 0.954 0.667 3.265 0.957
1.0 1.649 1.170 2.419 0.948 1.127 2.548 0.953 0.795 4.298 0.954

n = 600), ERSSmin (with m= 20, r = 30, and n= 600) and SRS (n= 600). As birth
weight is a good indicator for teenage obesity, we used standardized birthweight
as our ranking variable. In addition to this,we tested for association of obesity
(BMI > 30) as a binary response variable with age and gender as covariates. We
repeated this process of 1000 times to evaluate the bias and MSEs in estimating
coefficients for age and gender.

Based on full data (N = 41,323), the coefficients for age and sex are reported in
Table 10. These estimates can be treated as a true parameter for comparison purpose.
Table 10 represents the bias and MSEs for parameter estimation for age and sex on
children’s obesity status. From Table 10, we can conclude that DERSSmin, ERSSmin
and SRS provide a close approximation to the population parameters; however,
MSEs for DERSSmin is smaller than both ERSSmin and SRS.
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Table 7 Estimation of the power of testing Ho : β2 = 0 vs Ha : β2 �= 0 adjusting for the auxiliary
variable (Z) in the model (continuous risk factor)

m = 5 and r = 100 m = 30 and
r = 20

m = 50 and
r = 10

ρ β2 Power of
the test
using
MERSSmin

Power of
the test
using SRS

Power of
the test
using
MERSSmin

Power of
the test
using SRS

Power of
the test
using
MERSSmin

Power of
the test
using SRS

0.0 0.0 0.0482 0.0478 0.0570 0.0446 0.0520 0.0504
0.0 0.1 0.1726 0.1610 0.2270 0.1914 0.1986 0.1604
0.0 0.3 0.8730 0.8400 0.9428 0.8892 0.9006 0.8290
0.0 0.5 0.9994 0.9990 0.9998 0.9992 0.9998 0.9974
0.3 0.0 0.0474 0.0494 0.0516 0.0488 0.0494 0.0462
0.3 0.1 0.1624 0.1452 0.2086 0.1702 0.1838 0.1556
0.3 0.3 0.8478 0.7884 0.9160 0.8620 0.8694 0.7918
0.3 0.5 0.9964 0.9964 1.0000 0.9992 0.9988 0.9946
0.5 0.0 0.0526 0.0496 0.0496 0.0496 0.0432 0.0532
0.5 0.1 0.1476 0.1238 0.1772 0.1648 0.1576 0.1338
0.5 0.3 0.7662 0.7122 0.8622 0.7936 0.8038 0.7028
0.5 0.5 0.9926 0.9842 0.9994 0.9952 0.9956 0.9870
0.8 0.0 0.0540 0.0488 0.0552 0.0414 0.0512 0.0502
0.8 0.1 0.1002 0.0928 0.1044 0.0968 0.0860 0.0900
0.8 0.3 0.4670 0.4062 0.5550 0.4674 0.4802 0.3998
0.8 0.5 0.8660 0.8188 0.9228 0.8706 0.8664 0.8088

From Samawi et al. (2017)

Table 8 Odds ratio (OR) estimation and their MSE (continuous risk factor)

m = 30 and r = 20 m = 50 and r = 10
MERSSmin SRS MERSSmin SRS

ρ OR Estimate MSE Estimate MSE Estimate MSE Estimate MSE
0.0 1.0000 1.0040 0.0074 1.0070 0.0089 1.0030 0.0089 1.0030 0.0112
0.0 1.1050 1.1130 0.0088 1.1130 0.0115 1.1120 0.0107 1.1110 0.0138
0.0 1.3500 1.3570 0.0143 1.3600 0.0179 1.3610 0.0174 1.3660 0.0220
0.0 1.6490 1.6660 0.0242 1.6650 0.0274 1.6640 0.0284 1.6600 0.0339
0.3 1.0000 1.0050 0.0081 1.0080 0.0100 1.0040 0.0095 1.0050 0.0118
0.3 1.1050 1.1110 0.0102 1.1110 0.0120 1.1120 0.0116 1.1160 0.0151
0.3 1.3500 1.3560 0.0156 1.3620 0.0195 1.3630 0.0195 1.3630 0.0236
0.3 1.6490 1.6620 0.0253 1.6700 0.0317 1.6670 0.0312 1.6680 0.0384
0.5 1.0000 1.0050 0.0099 1.0090 0.0120 1.0070 0.0113 1.0060 0.0147
0.5 1.1050 1.1120 0.0123 1.1190 0.0158 1.1140 0.0141 1.1140 0.0185
0.5 1.3500 1.3580 0.0188 1.3650 0.0236 1.3670 0.0234 1.3630 0.0281
0.5 1.6490 1.6660 0.0317 1.6700 0.0388 1.6700 0.0397 1.6740 0.0450
0.8 1.0000 1.0090 0.0211 1.0090 0.0242 1.0140 0.0300 1.0150 0.0312
0.8 1.1050 1.1140 0.0255 1.1190 0.0327 1.1170 0.0300 1.1280 0.0401
0.8 1.3500 1.3630 0.0405 1.3700 0.0501 1.3710 0.0491 1.3760 0.0626
0.8 1.6490 1.6800 0.0678 1.6810 0.0803 1.6850 0.0844 1.6850 0.0942

From Samawi et al. (2017)
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Table 9 95% confidence interval of the odds ratio (OR) (continuous risk factor)

m = 30 and r = 20 m = 50 and r = 10
MERSSmin SRS MERSSmin SRS

ρ OR Lower Upper Lower Upper Lower Upper Lower Upper
0.0 1.0000 0.8516 1.1834 0.8369 1.2093 0.8383 1.2004 0.8196 1.2280
0.0 1.1050 0.9430 1.3124 0.9252 1.3386 0.9286 1.3322 0.9071 1.3608
0.0 1.3500 1.1449 1.6083 1.1265 1.6429 1.1302 1.6388 1.1100 1.6797
0.0 1.6490 1.3930 1.9923 1.3682 2.0255 1.3687 2.0232 1.3389 2.0586
0.3 1.0000 0.8458 1.1942 0.8301 1.2226 0.8320 1.2124 0.8134 1.2424
0.3 1.1050 0.9344 1.3210 0.9154 1.3483 0.9207 1.3441 0.9020 1.3803
0.3 1.3500 1.1352 1.6204 1.1168 1.6608 1.1211 1.6562 1.0967 1.6952
0.3 1.6490 1.3787 2.0040 1.3589 2.0532 1.3570 2.0471 1.3301 2.0922
0.5 1.0000 0.8314 1.2157 0.7968 1.2474 0.8183 1.2389 0.7968 1.2702
0.5 1.1050 0.9189 1.3454 0.9036 1.3863 0.9042 1.3719 0.8813 1.4091
0.5 1.3500 1.1168 1.6519 1.0968 1.6986 1.1024 1.6961 1.0723 1.7330
0.5 1.6490 2.0467 0.9498 1.3311 2.0949 1.3307 2.0971 1.3052 2.1482
0.8 1.0000 0.7675 1.3279 0.7426 1.3714 0.7519 1.3681 0.7246 1.4213
0.8 1.1050 0.8460 1.4663 0.8218 1.5237 0.8265 1.5094 0.8041 1.5837
0.8 1.3500 1.0279 1.8081 1.0001 1.8759 1.0037 1.8733 0.9737 1.9438
0.8 1.6490 1.2477 2.2570 1.2164 2.3258 1.2106 2.3473 1.1806 2.4049

From Samawi et al. (2017)

Table 10 Parameters estimation for covariates age and gender on children’s obesity status
(N = 41,323)

Covariates True parameter DERSSmin ERSSmin SRS
Bias MSEs Bias MSEs Bias MSEs

Intercept 1.4643 −0.0118 0.2877 −0.0198 0.3879 −0.0221 0.4524
Age −0.1289 −0.0025 0.0010 0.0011 0.0017 0.00171 0.0019
Gender −0.4197 0.0022 0.0234 0.0065 0.0318 −0.0022 0.0350

5 Final Remarks

Whenever it is possible, in many statistical studies for different areas of applications,
it essential to obtain a cost-effective and more structural samples. In the literature,
we found that RSS and its variations are promising sampling schemes which
provide more powerful and more efficient performance in statistical procedures.
Through our investigations, we found that the modified ERSS, MERSS and DERSS,
presented in this chapter, provide a more efficient performance of the logistic
regression analyses compared with SRS. We suggested that the ranking process
for selecting the study subjects could be based on an easy-to-rank and available
auxiliary variable known to be associated with the variable of the response variable.
We showed theoretically and through our simulation studies that using the modified
ERSS, MERSS and DERSS, provide more efficient MLEs of the logistic models’
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parameters with larger Fisher’s information compared with SRS. Our simulation
results showed that, for continuous risk factors, the power of the test increases as
the set size m increase. Besides, for the logistic regression analyses, the modified
DERSS outperform using the modified MERSS, ERSS and SRS.
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Applications of Spatial Statistics
in Poverty Alleviation in China

Yong Ge, Shan Hu, and Mengxiao Liu

Abstract China is the most populous country in the world, especially a large
number of impoverished people concentrated in rural area. The uneven distribution
of impoverished people in China has made it necessary to investigate its spatial
patterns and driving forces. In this chapter, several methods of spatial statistics that
have been employed to poverty issues analysis were reviewed. These methods were
mainly used to investigate the driving forces, spatial patterns, and spatial temporal
changes of poverty. Three case studies of China were then conducted to provide the
detail illustrations of the application of the methods.

1 Background

Poverty is a common challenge that accompanies the progress of human society.
The first goal of the sustainable development goals (SDGs) proposed by the United
Nations is to end poverty in all its forms everywhere by 2030 (United Nations
2015a). China, a developing country with a large rural poor population, has made
great efforts to improve development in poor areas over the past decades and has
seen tremendous improvements (Information Office of the State Council 2011).
Despite this great achievement, there are some issues such as poverty-returning
phenomenon, developmental contradiction between economy and ecology, and
regional development disparities that also need to be addressed (Wang et al. 2014).
In addition, the distribution of the impoverished people in China is uneven, which
makes it necessary to investigate spatial patterns and driving forces to better support
effective poverty reduction measures.
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1.1 Poverty in China: Responses, Achievements, and Problems

China has made great efforts to reduce the rural poor population over the past
decades. Various policies and measures have been implemented with positive
results. Despite this, China still faces several challenges in poverty alleviation.

Since the reform and opening up in 1978, China has entered a critical period
of urbanization and industrialization, leading to fast economic development, a
considerable increase in living standards, and an unprecedented decline in poverty
(Wang et al. 2014). China has made numerous efforts to accelerate development
in poverty-stricken areas. Specifically, it has implemented the Seven-Year Priority
Poverty Reduction Program (1994–2000), Outline for Poverty Reduction and Devel-
opment of China’s Rural Areas (2001–2010), Outline for Development-Oriented
Poverty Reduction for China’s Rural Areas (2011–2020), and Targeted Poverty
Reduction Strategy (2013) (Zuo 2016; The State Council 2011). These policies and
programs have significantly promoted development in poverty-stricken areas and
helped thousands of people out of poverty.

Benefitting from various measures, China became the first developing country
in the world to achieve the poverty reduction target set by the Millennium
Development Goals of halving the proportion of people whose income is less than
$1.25 per day. Owing to China’s progress, the extreme poverty rate in eastern
Asia has dropped from 61% in 1990 to only 4% in 2015 (United Nations 2015b).
Based on the current national poverty line, CNY 2300 per capita annual net
income, the poverty headcount ratio in China has fallen from 97.5% in 1978 to
1.7% in 2018 (Department of Household Surveys, National Bureau of Statistics
of China 2018; National Bureau of Statistics 2019). On top of that, housing,
education, transportation, and medical care have all seen significant improvements.
In particular, the implementation of the Entire-Village Advancement, which covers
basic farmland, drinking water, roads, social undertakings, and other aspects that
affect impoverished villages, has significantly improved the living standard in rural
areas (Li et al. 2016; Zhou et al. 2018; Liu et al. 2018).

Owing to a poor economic foundation and restriction of natural environment
conditions, central and western China are still developing slowly, and regional
disparities, especially rural–urban disparities, are increasing (Dollar 2007). At the
end of 2018, there were 16.60 million people living below the national poverty line
(Li et al. 2016). Moreover, a number of people who returned to poverty started
to appear, owing to such factors as disasters, illness, disability, and school costs
(Zhou et al. 2018). Meanwhile, a strong connection between poverty-stricken areas
and ecologically protected areas has led to a contradiction between a balanced
development of socioeconomic and ecological conditions (Ouyang et al. 2016; Xu
et al. 2017). Regional development disparities and inequality has also put pressure
on China’s poverty reduction efforts.
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1.2 Spatial Characteristics of Poverty in China

China’s poverty-stricken areas are mainly concentrated in central and western
China, most of which are hilly and mountain areas.

The distribution of poverty-stricken areas in China has an obvious spatial
agglomeration feature. Liu et al. (2017) found that impoverished people mainly
concentrate in the remote deep mountain areas, border areas, and minority areas
of central and western China, and they gradually gather towards the southwestern
region. After the promulgation of the Outline for Development-Oriented Poverty
Reduction for China’s Rural Area (2011–2020) in 2011, the Chinese government
identified 14 poverty-stricken areas as the main battleground for the new round of
poverty reduction and development efforts. Figure 1 shows that poverty-stricken
areas are mainly located in Western and Central China. The 14 poverty-stricken
areas contain 680 counties and cover approximately one third of China, with
mountainous and hilly areas accounting for 86.8% of the land (Zuo 2016).

Fig. 1 Fourteen continuously poverty-stricken areas and their poverty headcount ratio in 2013 and
2017, respectively
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The uneven distribution of China’s rural poor population has made it necessary
to explore the spatial pattern and their main causes. The geography of poverty
has been developing rapidly in China since the vigorous carrying out of poverty
reduction actions. A large number of spatial statistical methods were employed to
explore geographical distribution patterns (Liu et al. 2017; Chen and Ge 2015),
causes of poverty (Ren et al. 2017), geographical identification of poverty (Liu and
Xu 2016), spatial-temporal changes of poverty (Li et al. 2015), poverty alleviation
effectiveness assessment (Ge et al. 2017), and relationships between poverty and
geographical elements (Okwia et al. 2007). The spatial temporal patterns and driving
forces of poverty are revealed by spatial analysis and poverty mapping, which can
support effective policies for poverty reduction and sustainable development in
poverty-stricken areas.

2 Applications of Spatial Statistical Methods on Poverty

Evidences from various theoreticasl analysis of poverty have shown that poverty has
spatial attributes (Bird 2019; Jalan and Ravallion 1997). Spatial statistical methods
provide diverse tools for geographical poverty identification, spatial disparities
analysis, and spatial-temporal analysis.

2.1 Datasets

Poverty headcount ratio is the percentage of people living below the poverty line.
The poverty headcount ratio is usually used as a response variable in poverty
related spatial statistical analysis. The potential explanatory variables were selected
from the aspects of income, education, healthcare, housing, and infrastructure for
a region. Meanwhile, the spatially referenced environmental indicators such as
topography, land cover and land use, access to public services were also selected
as potential explanatory variables.

Poverty was initially treated as an economic phenomenon and was usually
measured by the amount of money a person had to meet certain basic needs (Sen
1976; Atkinson 1987). Amartya Sen put forward the concept of capability poverty
in his book Development as Freedom (Sen 2001). This revolutionary leap helped
many researchers understand poverty from different perspectives. Now, poverty is
identified as a multidimensional phenomenon that includes various elements, such
as economic shortage, social exclusion, and vulnerability (Alkire and Foster 2011;
Satya and Chakravarty 2006). Based on these varying perspectives of understanding
poverty, there are also multiple ways to measure poverty. From measuring just
income to including other factors such as health, education, and social services,
the measurement of poverty has gradually extended to appraise the sustainable
livelihoods of the poor population (Alkire and Fang 2018). Income poverty, the
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Table 1 Part of the county level socioeconomic data this chapter used

County
name

Poverty
headcount
ratio (%)

Teachers per
10,000 persons
(per-
sons/10,000)

Number of beds utilized in
health care institutions per
10,000 persons
(persons/10,000)

Disposable
income of rural
household
(CNY)

Kangding 12.10 111.27 91.88 6554.17
Luding 16.30 107.21 30.76 5772.54
Danba 15.44 114.32 36.79 6356.66
Jiulong 14.84 93.56 29.84 7004.28
Yajiang 18.65 86.96 27.00 5374.37
Daofu 19.89 76.59 30.35 5047.35
Luhuo 19.86 97.92 41.36 4989.93
Ganzi 20.85 86.60 41.50 5161.84
Xinlong 19.70 88.28 23.05 5022.94
Dege 23.52 72.57 15.00 4884.12

human development index (HDI), and the multidimensional poverty index (MPI)
are all widely used to measure global poverty (Wang 2012).

Income poverty is the most widely used tool to measure poverty. The World
Bank built bridges to global poverty measurement. The $1.90 per day is the new
international poverty line determined by the World Bank in 2015 (The World Bank
2018). The current national poverty line in China is CNY 2300 per capita annual net
income (Department of Household Surveys, National Bureau of Statistics of China
2018). The population living below the poverty line are identified as impoverished
people. The poverty headcount ratio is the proportion of the impoverished people to
the total population. In this chapter, the poverty headcount ratio is used as a response
variable. Table 1 provides part of the poverty headcount ratio at the county level of
China in 2013.

The HDI and MPI are looks beyond the income to measure poverty. HDI
is a summary measure of average achievement in three dimensions of human
development for a country: a long and healthy life, being knowledgeable, and
have a decent standard of living (UNDP 2010). While MPI emphasizes multiple
deprivations at the household and individual level in health, education and standard
of living. The specific indicators of MPI include nutrition, child mortality, years of
schooling, school attendance, cooking fuel, sanitation, drinking water, electricity,
housing, and assets (Alkire and Foster 2011). These widely recognized literatures
provide the basis for indicators selection. In this chapter, we selected county-
level indicators from the aspects of regional economic, infrastructure, housing,
healthcare, education, and medical care, as shown in Table 2.

Evidences from poverty mapping of China shows that the distribution of poverty
is not homogenous (Zhang et al. 2014). From the perspective of geography, the
heterogeneities are largely caused by the disparities in geographical conditions
such as resource endowment, ecological environment, access to public services, and
regional culture and polices (Zhou and Liu 2019). Existing researches have shown
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Table 2 Lists of the socioeconomic indicators

Contents Indicators

Education Teachers per 10,000 persons (persons/10,000)
Ratio of expenditure on science and education to GDP (%)

Health care Medical technical personnel in health care institutions per 10,000 persons
(persons/10,000)
Number of beds utilized in health care institutions per 10,000 persons
(persons/10,000)

Living standard Engel’s coefficient (%)
Infrastructure Popularization rate of tap water (%)

Ratio of administrative villages that can be reached by road (%)
Housing Per-capita living space (m2 per capita)
Medical care New Rural Co-operative Medical System participants as a proportion of total

population (%)
Income Disposable income of rural household (CNY)

Table 3 Lists of the
environmental indicators

contents Indicators

Environmental Mean elevation
Standard deviation of elevation
Mean slope
Standard deviation of slope
Proportion of cropland
Proportion of forest
Proportion of grassland
Proportion of built-up land
Road density (km/km2)

that topography, elevation, slope, land use types are all closely related to poverty
(Zhou and Liu 2019; Cheng et al. 2018; Watmough et al. 2019). This chapter has
also selected few Geographical Information System-based indicators as explanatory
variables to investigate the relationship between environmental factors and poverty,
as shown in Table 3.

The sources of socioeconomic data mainly included: (1) the socioeconomic data
from 2010 to 2016 in Ganzi collected from the statistical yearbook of Ganzi Tibetan
Autonomous Prefecture (2011–2017) and the statistical bulletins of the national
economic and social development from 2010 to 2016 in Ganzi Tibetan Autonomous
Prefecture; (2) The impoverished population data in 2013 were provided by the State
Council Leading Group Office of Poverty Alleviation and Development.

The sources of Geographical Information System-based data mainly included:
(1) Elevation data was obtained from ASTER GDEM (Advanced Spaceborne
Thermal Emission and Reflection Radiometer Global Digital Elevation Model) with
resolution of 30 × 30 m., which was downloaded from Geospatial Data Cloud Web
(http://www.gscloud.cn/). (2) Slope data were extracted from the DEM. (3) The land

http://www.gscloud.cn/
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cover and land use was collected from China’s Land-Use/cover Datasets (CLUDs),
which are provided by Resources and Environmental Data CloudPlatform(resdc.cn)
with the spatial resolution of 1 × 1 km. (4) Road data was obtained from National
Catalogue Service For Geographic Information with the scale of 1:250000.

2.2 Causes of Poverty

Identifying the determinants of poverty is crucial for making effective poverty
reduction policies in a region. This part introduces three widely employed spatial
statistic methods for causes of poverty analysis: Geographical detector, Spatial
regression, and Geographically Weighted Regression.

The geographical detector was developed by Wang et al. (2010), and was first
applied in public health risk assessment. The core concept of the geographic detector
is based on the assumption that if an explanatory variable has an important effect on
the response variable, then the spatial distribution of the explanatory variable and
response variable will be similar (Wang et al. 2010, 2016). All the results are based
on the geographical detector q-statistic, which is defined as:

q = 1 − SSW

SST
(2-1)

SSW =
∑L

h=1
Nhσ

2
h SST = Nσ 2 (2-2)

h(1, 2 . . .L) is the strata of the explanatory variable (X) or response variable (Y). N
and σ 2 are the number of units and the variance of Y in the study area, respectively.
Nh and σ 2

h are the number of units and the variance of Y in stratum h, respectively.
SSW and SST are the within sum of squares and total sum of squares, respectively.
The value of the q-statistic is within [0,1]. When response variable Y is stratified
by Y itself, then the larger the q value, the more obvious the spatial stratified
heterogeneity of Y. When Y is stratified by X, a larger q value indicates that X
could explain more of Y, especially when q = 1 indicates that Y is completely
determined by X (Wang et al. 2016). Based on the geographical detector, Liu and
Li (2017) investigated the spatial heterogeneity mechanism of poverty in Fuping
County, China. They denoted the poverty headcount ratio at village level as the
response variable, and chose slope, elevation, per capita cropland, and distance to
the town as the explanatory variables.

Classic ordinary least squares (OLS) regression assumes that the observations
of explanatory variables are independent from each other and always in a normal
distribution, as well as the error term (Anselin 2002; Anselin and Rey 1991).
Therefore, if there is spatial autocorrelation in the data, the assumptions are violated.
The regression models that take spatial autocorrelation into consideration are called
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spatial regression models. Spatial autocorrelation can be detected by the global and
local autocorrelation model, including Geary’s C, G statistic, Moran’s I index, and
the local indicator of spatial association (LISA) (Anselin 1995; Getis 1994). The
spatial regression model includes two main variations: the spatial lag model and the
spatial error model. Spatial-lag model applies to a situation in which the response
variable in one region is affected by the response variable in nearby regions; Spatial
error model applies to a situation in which the error for the model in one region
is correlated with the error terms in its neighboring regions (Anselin 2001; Paul
Elhorst 2014). Paul O. Okwia et al. (2007) employed the spatial regression model
to investigate how and which spatial factors are related to poverty and how much
of the variation in poverty incidence can be explained by environmental factors in
rural Kenya.

Spatial lag model : yi = λ
∑
j �=i

wij yj + βXj + εj (2-3)

Spatial error model : yi = βXj + λ
∑
j �=i

wij yj εj + εj (2-4)

yi is the response variable for region i; λ is the spatial autoregressive coeffi-
cient; wij is the spatial weight reflecting the proximity of i and j; yj is the response
variable for region j; β is a vector of coefficients; Xj is a matrix of explanatory
variables; εj is the error term (Paul Elhorst 2014).

Geographically weighted regression (GWR) was proposed by Fotheringham et
al., which allowed the relationships to vary over space (Fotheringham et al. 2002).
GWR is a local version of spatial regression that runs a regression for each location
instead of a single regression model for the whole study area (Zhang et al. 2011; Tu
and Xia 2008). GWR is also popular in the spatial modeling of poverty for providing
a method to assess the degree to which the relationship between the potential
determinants and the poverty rate varies across space. Steven Deller employed GWR
to analyze the spatial variation in the role of tourism and recreation in changing
poverty rates (Deller 2010).

yi = β0 (ui, vi)+ β1 (ui, vi) x1i · · · + βn (ui, vi) xni + εi (2-5)

yi is the response variable for location i; β i are to be estimated at location i whose
coordinates are given by the vector (ui, vi). The regression model is calibrated for
a location by combing all other available data points to which weights are applied
according to a continuous distance–decay function. The decay function could be
fixed (commonly the Gaussian function is adopted) or adaptive. The shape of the
function, defined by the adaptive bandwidth, may vary depending on the density of
data points in the immediate neighborhood of the regression point (Fotheringham et
al. 2015).
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2.3 Spatial Pattern of Poverty

The spatial patterns can be recognized as cluster, randomness, dispersed, and uni-
formity. Understanding the spatial patterns of poverty areas and poverty populations
can help uncover the causes of poverty and effectively implement poverty reduction
measurements.

The multi-distance spatial cluster based on Ripley’s K is a method that can
analyze spatial patterns of point data (Ripley 1977). It summarizes the objects
clustering or objects dispersion over a range of distances, which can be used to
investigate how the clustering or dispersion of objects changes from distances.
Therefore, the starting distance and distance increment are needed for a multi-
distance spatial cluster analysis. It calculates the average number of neighboring
objects associated with each object in a given distance.

K̂(d) = A

n2

∑n

i=1

∑n

j �=iwij I
(
dij < d

)
. (2-6)

L̂(d) = √
K(d)/π − d (2-7)

A is the area of observed points; n is the number of points; wij is an edge-correction
term to remove the bias; I(dij < d) is an indicator function that takes the value 1 when
distance dij between point i and j is less than d. L̂0(d) is compared with expected
value L̂e(d) for a random sample of points from a complete spatial randomness
pattern. If L̂0(d) − L̂e(d) > 0, the pattern of observed points at a distance scale d
is cluster. IfL̂0(d)− L̂e(d) < 0, the pattern is dispersed. If L̂0(d)− L̂e(d) = 0, the
pattern is randomness.

The average nearest neighbor (ANN) ratio measures the distance between each
object’s centroid and its nearest neighbor’s centroid location first, and then it
averages all the nearest neighbor distances (Ebdon 1985). If the average nearest
neighbor distance is less than the average for a hypothetical random distribution,
the distribution of the objects is recognized as clustering. Conversely, if the average
nearest distance is greater than the average for a hypothetical random distribution,
the distribution of the objects is recognized as dispersed. Then, the average nearest
neighbor ratio is calculated by the observed average distance and divided by the
expected average distance. If the value of the average nearest neighbor ratio is
less than 1, then it indicates a clustering pattern, while greater than 1 indicates a
dispersed pattern.

ANN = D0

De

(2-8)

D0 = n−1
n∑
i=1

di (2-9)
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De = 0.5(n/A)−0.5 (2-10)

D0 is the mean distance between each observed point and its nearest neighbor;De

is the expected mean distance from the points given in complete spatial randomness
pattern; di is the distance between point i and its nearest neighbor; A is the area of
observed points; n is the number of points.

Chen and Ge (2015) employed the multi-distance spatial cluster method to ana-
lyze the spatial pattern variation characteristics of 191,537 administrative villages in
the 14 poverty-stricken areas of China. Meanwhile, they estimated the spatial pattern
of villages in each county by using the average nearest neighbor ratio. The spatial
pattern of the villages within each county is shown in Fig. 2. They found that village-
clustered counties are the Tibet area and Tibetan ethnic areas in Sichuan, Yunnan,
Gansu, and Qinghai provinces. Meanwhile, with the increase of distance, different

Fig. 2 Point pattern of villages within each county in the 14 poverty-stricken areas of China
(Source: Yuehong Chen, Yong Ge. Spatial point pattern analysis on the villages in China’s poverty-
stricken areas. Procedia Environment Sciences 27(2015) 98–105)
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poverty-stricken areas presented different distribution characteristics. Some areas
showed spatial aggregation with distance, while others showed a pattern from
aggregation to dispersion.

LISA is also used to investigate the spatial pattern of poverty areas or poor
populations. The local Moran’s I was used to obtain cluster maps of local indicators
of spatial association that included statistically significant clusters of high values
(high–high), clusters of low values (low–low), outliers in which a high value is
surrounded primarily by low values (high–low), and outliers in which a low value is
surrounded by high values (low–high) (Anselin 1995). Various researches use LISA
to obtain the spatial pattern of the poverty rate, MPI index, and other comprehensive
assessment indices at a county or village level.

Ii =
∑n

i=1
∑n

j=1Wij × (xi − x)
(
xj − x

)
1
n
(xi − x)2

(2-11)

Ii is the local Moran’s I for region i, xi is the attribute of region i,x is the mean of
the corresponding attribute, wij is the spatial weight between counties i and j, and n
is the total number of regions.

2.4 Spatial-Temporal Analysis of Poverty

Poverty is changing in number and region. The proportion of people living on
less than $1.25 per day globally fell from 36% in 1990 to 12% in 2015. While
this achievement has been experienced in south Asia and Latin America, the
sub-Saharan Africa region still lags behind (United Nations 2015b). Under the
background of an unprecedented execution of poverty reduction policies, China’s
poverty-stricken areas are experiencing great changes. It is necessary to analyze the
spatial-temporal change of the distribution of poor populations, causes of poverty,
and economic-social-ecological conditions in China’s poverty-stricken areas.

The most widely used and easiest way to explore the spatial-temporal change
of poverty is to map the evaluation value of different times and compare them.
However, if the observed time period is long and we want to investigate the
continuous time series change pattern, then it will be time consuming and missing
some information. Therefore, methods that can capture the change trajectories and
spatial pattern is needed. The Bayesian hierarchical model (BHM) is used in the
space-time analysis of burglary risk and incidence of poverty (Li et al. 2014; Sparks
and Campbell 2013). Bayesian inferences combine the data with additional prior
information to obtain more stable results. BHM considers the spatial and temporal
correlation through prior information. BHM can quantitatively estimate the overall
spatial distribution pattern, overall change trend, and local change trend in the
spatial-temporal process (Haining 1990). It can also be employed to analyze the
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Fig. 3 (a) Estimates from model: common spatial component (posterior medians of exp(Si); (b)
Estimate from model: local trends’ departure from overall trend (Source: Yong Ge, Yue Yuan, Shan
Hu, Zhoupeng Ren, Yijin Wu. Space–time variability analysis of poverty alleviation performance
in China’s poverty-stricken areas. Spatial Statistic 21(2017) 460–474)

spatial-temporal change of poverty. Corey Sparks and Joey (2014) employed BHM
to model and estimate the poverty rate in the United States at the county level. Ge
et al. (2017) used BHM to assess the poverty reduction performance of China’s
poverty-stricken areas; they found a stable spatial pattern of higher effectiveness of
poverty reduction in eastern China and lower in the western region, as shown in
Fig. 3a. Meanwhile, for capturing spatial-temporal changes, the increasing trend of
poverty reduction effectiveness presents a pattern of “high in the center, low in the
east-west,” Fig. 3b, and the most poverty-stricken counties’ development of poverty
reduction effectiveness are consistent with the overall trend.

3 Case Studies for China

Based on the spatial statistical methods described in Sect.2, this part conducted
three case studies in China. In the first case, we analysis the spatial pattern of
poverty headcount ratio of China’s poverty-stricken areas by using LISA. The
second case employed the GWR to explore the spatial nonstationary of the effect
of geographic factors over the space in Hubei province of China. The third case
first evaluate the living standard in Ganzi Tibetan Autonomous Prefecture from the
aspects of housing, infrastructure, medical care, social security, and education based
on the entropy weighting method and gray rational analysis. Then, the Bayesian
hierarchical model wad used to investigate the spatial-temporal changes of evaluated
living standard index of each county in Ganzi from 2010 to 2016.
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Fig. 4 The poverty headcount ratio of poverty-stricken counties in 2013

3.1 Spatial Pattern of Poverty Headcount Ratio

As it shows that in Fig. 1, China has identified 14 poverty-stricken areas as the
new battleground of poverty reduction and development. Here we chose 13 of them,
except Tibet area as it lacks county-level data, 601 counties in total to investigate
the spatial pattern of poverty headcount ration in 2013. Figure 4 mapped the poverty
headcount ration of poverty-stricken counties in 2013.

Local indicators of spatial association (LISA) was calculated by using the GeoDa
software. Figure 5 shows the cluster maps of poverty headcount ratio for poverty-
stricken areas. The counties that have high poverty rate mainly concentrated in South
area of Xinjiang, most area of which is desert and Gobi. While the counties that have
low poverty rate mainly located in Dabie area and South area of Great Khingan
Great, both of which are national major grain producing areas.
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Fig. 5 Cluster maps for poverty headcount ratio in poverty-stricken areas

3.2 Spatial Correlation Analysis: Case Study of Hubei
Province in China

Hubei province located in central China. The central and southern Hubei mainly
belongs to Jianghan Plain while the western and the peripheries are mountain areas.
G∗
i was adopted to investigate the local spatial autocorrelation in Hubei province.

The results shown in Fig. 6 suggested that a high-high cluster of Hubei province
appeared in the west of Hubei province while a low-low cluster appeared in the
surrounding areas of the capital city Wuhan. Poverty headcount ratio in Hubei
province showed an obvious spatial pattern.

Some potential geographic factors contributing to poverty having available data
and a narrow relevance were proposed as explanatory variables in this case. A total
of 11 indicators were selected as the explanatory variables for the spatial regression
analysis. The detailed description of the explanatory variables is presented in
Table 3. The environment dimension includes topography and land resources. The



Applications of Spatial Statistics in Poverty Alleviation in China 381

Incidence
Not significant (69)
High (19)
Low (15)

Fig. 6 Cluster map of poverty headcount ratio of Hubei province in 2013

elevation and slope are the most commonly used factors to describe the local terrain.
The mean value and standard deviation of elevation and slope were adopted to
describe the average level and dispersion degree of altitude and slope. Road density
was chosen to indicate the overall transportation convenience and capacity in the
region. Cropland is vital to the rural households for agriculture is the main mode
of production in rural China. Furthermore, GDP per capita was selected to reflect
the economic development and economic activity from statistic year book of Hubei
province.

The correlation matrix of the correlation analysis suggests multicollinearity
between variables with larger correlation coefficients. The step regression model
was further employed to wipe out the collinearity problem between variables. Based
on the results of step regression model, the variables mean elevation, GDP per capita
and proportion of cropland were recognized for they made the most significant
contribution to the regression model and are independent of each other. These three
variables were entered into GWR model. The estimated results in the GWR models
showed that the adjusted R2 of the model with the three variables is 0.71, which
is higher than the value of 0.68 determined by the OLS model. The local R2 and
explanatory variable coefficient of the variables in the GWR model were shown in
Fig. 7.

The distribution of local R2 values presented great spatial variation, which
implies the explanatory ability of the GWR model varies with county. Meanwhile,
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Fig. 7 Local R2 and the three explanatory variable coefficients in GWR (CP means proportion of
cropland in the total area of a region; ME means mean elevation)

the spatial distribution of each explanatory variable coefficients is similar but present
different influence over space. Specifically, the mean elevation has a positive impact
on the regional poverty, while GDP per capita and crop proportion have a negative
impact, although the extent of this positive effect varies spatially. In addition, the
spatial distribution of local R2 values and the coefficients of explanatory variables
followed a similar characteristic of stratification that generally increased from east
to west, implying the strength of the explanatory ability of the GWR model increases
gradually from east to west.

3.3 Spatial-Temporal Analysis: Case Study of an Alpine Area
in China

Ganzi Tibetan Autonomous Prefecture is a high poverty, alpine, ethnic, and ecolog-
ically protected area. This area plays an important role both in national ecological
security and national harmony. Here we want to evaluate the living standard in
Ganzi from the aspects of housing, infrastructure, medical care, social security,
and education. Ten indicators were chosen to measure the living standard of Ganzi.
Based on the collected socioeconomic data from Ganzi during the period of 2010–
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2016, combined with the entropy weighting method and gray rational analysis, we
evaluated the living standard in Ganzi from 2010 to 2016. Then, the spatial-temporal
changes of evaluated living standard index of each county in Ganzi were investigated
by using the Bayesian hierarchical model.

3.3.1 Study Area

Ganzi Tibetan Autonomous Prefecture, located in the plateau region of western
Sichuan Province, which belongs to the Tibetan ethnic areas of Sichuan, Yunnan,
Gansu, and Qinghai (Fig. 1). Ganzi, with 18 counties, is the largest Tibetan area in
Sichuan Province and covers approximately 153 thousand km2. The highest altitude
is 7556 m and the lowest is 1000 m. According to its geographical location, Ganzi
was officially divided into three regions, northern, southern, and eastern Ganzi.
Northern Ganzi has a higher altitude and harsher natural environment than the other
two regions. Consequently, the socioeconomic conditions in northern Ganzi is quite
lower than in eastern and southern Ganzi.

The high altitude leads to backward transportation and communication condi-
tions in Ganzi. Furthermore, Ganzi is an ethnic minority area where Tibetan is
dominant, accounting for 78.46% of the total population. Factors such as ideology,
language barrier, and education level restrict poverty reduction and development.
Moreover, Ganzi is located near the upper Yangtze river, which is also a water
conservation area and plateau ecological barrier. Ganzi plays an important role both
in national ecological security and national harmony. As an alpine area, ethnic area,
and ecologically protected area, Ganzi faces serious challenges in poverty reduction
and development. At the end of 2017, the poverty rate of Ganzi was 8.65%, the
location of Ganzi is shown in Fig. 8.

3.3.2 Evaluation of Living Standard in Ganzi

The living standard evaluation includes ten indicators, as shown in Table 2. The
chosen indicator categories were housing situation, infrastructure of rural village,
medical care, social security, and education. Per capita living space was selected
to reflect the housing situation. The population rate of tap water usage and the
number of administrative villages that could be reached by road were used to
measure the infrastructure. Medical technical personnel in health care institutions
per 10,000 persons and the number of beds utilized in health care institutions per
10,000 persons were chosen to illustrate the medical care. New Rural Co-operative
Medical System participants as a proportion of the total population was selected to
represent the level of social security. The number of teachers per 10,000 persons and
the ratio of expenditure on science and education to GDP indicated the education
situation. The disposable income of rural households was chosen to reflect the
income standard. Engel’s coefficient was used to reflect the overall living condition
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Fig. 8 Location of Ganzi Tibetan autonomous prefecture

in poor areas. Moreover, Engel’s coefficient is a negative indicator in our evaluation
index system, because the greater the value of Engel’s coefficient means the poorer
the living standard of people.

The entropy weighting method was employed to define the weights for each
evaluation indicator. After that, the Grey relational analysis was used to integrate
various indicators into a comprehensive evaluation value to better assess the living
standard in Ganzi from 2010 to 2016. Shannon’s entropy is widely used to determine
weights, which is an objective method and determines weights only by data
(Shannon 1984; Lotfi and Fallahnejad 2010). Here we used the entropy weighting
method to determine the weights of each index. Gray system theory is proposed by
Deng (1989). Grey relational analysis uses the order of Grey relational degrees to
judge the strength or order of correlation between indicators and is widely applied
for various evaluations (Tan and Deng 1995).

Supposing that there are m(m = 18) counties with n(n = 10) evaluated indicators,
then the index system can be defined as:



Applications of Spatial Statistics in Poverty Alleviation in China 385

X =
⎡
⎢⎣
x11 . . . x1n
...

. . .
...

xm1 · · · xmn

⎤
⎥⎦ (3-1)

A standardization method was adopted to transform different value scales of
indicator j into common measurable units by using:

y.j = x.j − min
(
x.j

)
max

(
x,j
)− min

(
x.j

) (3-2)

The information entropy of indicator j can be obtained by:

Ej = − ln (n)−1
n∑
i=1

ρij ln ρij (3-3)

ρij = yij /

n∑
i=1

yij (3-4)

Let lim
ρij→0

ρij ln ρij = 0, the weight of j can be obtained by:

wj = 1 − Ej

n−∑
Ej

(j = 1, 2, . . . , n) (3-5)

Then, gray rational analysis was employed to obtain the evaluation index of living
standard. First, we needed to normalize each indicator. For positive indicator j:

cij =
{

1, xij > Sj
xij
Sj
, xij ≤ Sj

(3-6)

For positive indicator j:

cij =
{

1, xij ≤ Sj
xij
Sj
, xij > Sj

(3-7)

where Sj is the reference value for indicator j,as shown in Table 4. The normalized
indicator matrixC = [ci1, ci2· · · cin]. Based on gray system theory, a standardization
process is implemented on the normalized matrix to get the referential vector of
indicators asc∗ = [

c∗1, c∗2 · · · c∗n
]
. Then, the relational coefficient of indicator j for

county i can be calculated by:
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Table 4 Evaluation index framework of living standard in Ganzi

Project Indicators Reference value

Assessment of living
standard in Ganzi
Tibetan autonomous
prefecture

Teachers per 10,000 personsa 100

Medical technical personnel in health care
institutions per 10,000 personsa

60

Number of beds utilized in health care institutions
per 10,000 personsa

50

Engel’s coefficient (%)a 40
Popularization rate of tap water (%)a 100
Ratio of administrative villages that can be reached
by road (%)a

100

Per-capita living space (m2 per capita)a 30
New Rural Co-operative Medical System
participants as a proportion of total population (%)

100

Ratio of expenditure on science and education to
GDP (%)a

6

Disposable income of rural household (yuan)b 8000
aNational standard
bLocal standard

ξij =
min
i

max
j

∣∣∣c∗j − cij

∣∣∣+ ∂max
i

min
j

∣∣∣c∗j − cij

∣∣∣∣∣∣c∗j − cij

∣∣∣+ ∂max
i

max
j

∣∣∣c∗j − cij

∣∣∣ (3-8)

where ∂ε(0,∞) is a predefined coefficient, set to 0.5. Finally, the evaluated living
standard values can be calculated by:

Ri =
n∑

j=1

wj ∗ ξij (3-9)

Then the evaluation values were divided into five levels and labeled I to V to
indicate the living standard in Ganzi from low to high, for each year.

The living standard in Ganzi improved remarkably, with an average growth rate
of 24.72% from 2010 to 2016. As seen in Fig. 9, all the living standard evaluation
indicators increased from 2010 to 2016. The disposable income of rural households
was the major contributor to social condition growth, which was about 2.5 times
higher in 2016 than it was in 2010. The housing, medical care, and educational
conditions in Ganzi all saw significant improvement. The continuous improvement
of social conditions from 2010 to 2016 in Ganzi can also be observed in Fig. 10.
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Fig. 9 Growth rate of evaluation indicators from 2010 to 2016 in Ganzi

2010 2011 2012 2013

2014 2015 2016

Living standard

< 0.65

0.65–0.70

0.70–0.80
0.80–0.90
> 0.90

Fig. 10 Living standard evaluation index, categorized in five levels from 2010 to 2016 for Ganzi

The living standard also presented a regional difference, with higher living standard
in eastern and southern Ganzi, and lower living standard in the northern region.
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3.3.3 Spatial-Temporal Changes of Living Standard in Ganzi

The Bayesian hierarchical model was employed to explore the spatial-temporal
pattern of the living standard in Ganzi from 2010 to 2016.The Bayesian hierarchical
model was implemented using a statistical software named Open BUGS (Bayesian
Inference Using Gibbs Sampling).

Based on the obtained living standard evaluation values, we investigated the
spatial-temporal change pattern of the living standard in Ganzi. We denoted
that yit represents the evaluation value of ith (i = 1, 2 . . . 18) county at
tth(t = − 3,−2,−1, 0, 1, 2, 3) year.

yit ∼ Normal
(
μit , σ

2
)

(3-10)

Thus, the μit can be modeled as:

log (μit ) = α + Si + b0t + vt + b1i t + εit (3-11)

where α is the intercept term and assigned to follow a prior distribution of uniform
distribution. Si is the spatial term that describes the stable spatial pattern across
the whole study area during the study period. b0t + vt describe the overall time
trend pattern of the whole study area. b1it allows each county to have its own
change trend. εit captures the additional variability in the data not explained by
other model components. Prior distributions are needed to assigned for model
parameters. The prior distributions of Si and b1it are determined by the Besag York
Mollie (BYM) model (Besag et al. 1991). In order to enhance the random effect of
spatial structure in BYM, the conditional autoregressive (CAR) prior with a spatial
adjacency matrix were employed at the same time (Li et al. 2014). The uniform
distribution is assigned to b0 and α. In addition, vt is modeled as vt˜N (0, σ 2

v ),
and εit is modeled as εit˜N (σ 2

ε ). Both models were implemented using statistical
software named OpenBUGS, which is specially designed for Bayesian analysis.
Through Gibbs sampling and Metropolis algorithm, it could sample from complete
conditional probability distribution and form MCMC chains, and finally estimating
the parameters of the model through iteration (Lunn et al. 2000).

The obtained posterior median exp(Si) indicates the stable spatial component of
the living standard from 2010 to 2016. The posterior of exp(Si) measured the living
standard in ith county relative to the overall mean condition of the whole study
area over the study period. The posterior median of exp(Si) more than 1 indicated a
higher level than the overall condition, while less than 1 indicated a lower level than
the overall condition. Figure 11a maps the posterior median of exp(Si). There were
10 counties that had a higher level of living standard than the overall living standard
in Ganzi, while 8 counties had a lower level of living standard. Luding County
obtained the highest value of the posterior median of exp(Si) and Shiqu County
obtained the lowest value. Furthermore, the distribution of the posterior median of
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Fig. 11 (a) The obtained posterior medians of (exp(Si)) for living standard in each county of Ganzi
(b) The deviations of the local trend to the overall trend (b1i) of living standard in each county of
Ganzi

exp(Si) presents an obvious regional disparity, with a high value concentrated in the
eastern and southern regions and a low value concentrated in the northern region.

The obtained posterior median of b1i measures the deviations of the local trend
to the overall trend. A negative value of the posterior median of b1i indicates that
the speed of change of the evaluation index of ith county is slower than the overall
change in Ganzi from 2010 to 2016. Conversely, a positive value of the posterior
median of b1i indicates that the speed of change of the evaluation index of ith county
is more rapid than the overall change. Figure 11b maps the values of the posterior
median of b1i. Although the evaluation value of the living standard is quite low in
northern Ganzi, such as Dege County and Ganzi County, they had more rapidly
increased speed than the overall increase. Likewise, Luding County and Kangding
County, located in eastern Ganzi, had the highest levels of living standard, but had
a slower increase speed than the overall increase.

The obtained posterior median of exp(b0 + vt) measures the overall temporal
change trend of living standard in Ganzi from 2010 to 2016. Figure 12 plots the
posterior median of exp(b0 + vt) from 2010 to 2016. In Fig. 12, the living standard
was continuously increasing from 2010 to 2016.
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Fig. 12 The temporal overall changing trend (exp(b0t + v)) of living standard in Ganzi from 2010
to 2016
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Novel Bayesian Adaptive Designs
and Their Applications in Cancer
Clinical Trials

Ruitao Lin and J. Jack Lee

Abstract Clinical trial is a prescribed learning process for identifying safe and
effective treatments. In recent years, rapid advancements in cancer biology,
immunology, genomics, and treatment development have demanded innovative
methods to identify better therapies for the most appropriate population in a timely,
efficient, accurate, and cost-effective way. In this chapter, we will first illustrate the
concept of Bayesian update and Bayesian inference, which is a superior alternative
to the traditional frequentist approach. Bayesian methods take the “learn as we
go” approach, making them innately suitable for clinical trials. Then, we will give
an overview of Bayesian adaptive designs in the areas of adaptive dose finding,
posterior probability and predictive probability calculation, outcome adaptive
randomization, multi-endpoint phase II design, multi-arm, multi-stage platform
design, hierarchical modeling, etc. In particular, a new class of model-assisted
designs will be introduced, which combine the transparency and simplicity of
conventional algorithm-based designs with the superiority and rigorousness of
model-based designs. These designs enjoy superior performance comparable to
more complicated, model-based designs, though they are also capable of simplicity
similar to conventional designs. Examples of the Bayesian optimal interval (BOIN),
the keyboard, the time-to-event BOIN (TITE-BOIN), the BOIN combination, and
the Bayesian Optimal Phase 2 (BOP2) designs will be discussed. Real applications,
including BATTLE trial in lung cancer, I-SPY 2 trial in breast cancer, and GBM
AGILE in glioblastoma, will be given. The chapter will also introduce software
tools, including downloadable programs and online Shiny applications for the
design and conduct of clinical trials. Bayesian adaptive clinical trial designs increase
study efficiency, allow more flexible trial conduct, and treat a greater number of
patients with more effective treatments in the trial. They also possess desirable
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frequentist properties. Useful software tools can be found at: https://biostatistics.
mdanderson.org/SoftwareDownload/ and https://trialdesign.org/.

1 Introduction

Clinical trial is a prescribed learning process for identifying safe and effective treat-
ments (Berry 2006; Friedman et al. 2010; Piantadosi 2017). Since the launch of the
first randomized controlled trial in 1946 (the streptomycin trial for curing pulmonary
tuberculosis), clinical trials have been the bedrock of medical advancement and the
development of new drugs (Bhatt 2010). Carefully designed and implemented trials
provide sound evidence of the toxicity and efficacy of the treatments evaluated.
Through rigorous pre-clinical and clinical drug development processes, new treat-
ments are evaluated and compared with the standard of care. Safe and efficacious
drugs are approved eventually. The traditional drug development process, however,
is time-consuming and extremely expensive. In a recent estimate, the total cost
for successfully developing a new drug reaches $3 billion dollars (Avorn 2015).
Furthermore, rapid advancements in biology, immunology, genomics, and treatment
development demand innovative methods to identify better therapies for the most
appropriate population in a timely, efficient, accurate, and cost-effective way. In
this chapter, we propose to apply Bayesian adaptive designs to address these issues.
We use cancer drug development as a platform. However, many of the methods
discussed can be readily applied to other disease settings.

2 Statistical Inference: Frequentist Versus Bayesian
Frameworks

Through clinical trials, we collect data to inform the parameter of interest, θ , such
as the treatment effect or the side effect of a new therapy. In general, there are two
major schools of statistical inference: frequentist and Bayesian. In the frequentist
framework, the data collected through the trial are considered to be random and
the parameter θ is assumed to be fixed, yet unknown. Thus, frequentist makes
inferences on θ by evaluating the likelihood function Pr (Data � θ ). For example,
if a parametric form is assumed for Pr(Data � θ ), the standard maximum likelihood
estimation can be performed to estimate and infer the unknown parameter θ . On the
other hand, the Bayesian paradigm assumes that data are fixed, because they have
been observed and the unknown parameter θ is random. By modeling θ as a random
variable with some prespecified probability distribution, Bayesian inference is made
through the posterior probability function Pr(θ � Data), which can be computed
using the famous Bayes theorem: Pr(θ �Data) ∝ Pr (θ ) Pr (Data � θ ). Here, Pr(θ )
is the prior probability function of θ , which characterizes all available information
before conducting the trial. Although being philosophically different, they provide

https://biostatistics.mdanderson.org/SoftwareDownload/
https://biostatistics.mdanderson.org/SoftwareDownload/
https://trialdesign.org/
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complementary perspectives and tools in clinical trials (Berger 2010; Lee and Chu
2012).

Bayesian inference universally follows three steps: (1) Elicit the prior distribution
of the unknown parameter. The prior distribution generally can be determined based
on historical or external trials, expert opinions, and plausible initial inference.
In addition, the prior distribution can be either informative or non-informative,
depending on the specific features of the trial. (2) Obtain the likelihood function
based on the data collected during the study. (3) Synthesize the prior information and
the observed data likelihood into a posterior distribution of the parameter of interest.
When the posterior distribution is in the same probability distribution family as the
prior distribution, the prior is called a conjugate prior. The conjugate prior gives
a closed-form expression for the posterior, which makes the posterior computation
more convenient. On the other hand, when the posterior distribution Pr(θ � Data)
does not have a standard distributional form, inference on θ can be made by drawing
posterior samples of θ from Pr(θ � Data) via Markov Chain Monte Carlo (MCMC)
algorithms. MCMC algorithms, together with ever-increasing computation power,
greatly assist the development of Bayesian statistics.

During a study, the Bayesian method updates the prior to form the posterior
distribution coherently and continuously based on the accumulating data. In other
words, the Bayesian inference has an adaptive “learn-as-we-go” nature, which
provides an ideal framework for adaptive clinical trials. In addition, when there are
subsequent studies, the posterior distribution obtained from the current study can be
naturally transitioned to the prior distribution for future studies. This additionally
demonstrates the adaptive learning feature of the Bayesian method.

Compared to the frequentist approach, some unique strengths of Bayesian
methods in clinical trials are highlighted as follows (Lee and Chu 2012): (1) the
Bayesian approach directly models the parameter of interest using a probability
distribution, which leads to a more intuitive and easier-to-interpret answer to the
scientific question at hand. (2) The Bayesian inference is a continuous learning
process; as long as there are new data/information, they can be naturally synthesized
in the posterior inference. This feature greatly facilitates more frequent monitoring
and decision making in adaptive clinical trials, without compromising performance
and implementation. (3) Prior or external information can be accounted for in
Bayesian methods. This makes the inference more efficient, and would, in turn,
save the required sample size, reduce trial cost, and accelerate drug development.
(4) The distribution of future outcomes can be predicted based on the current
data, which renders more flexibility in adaptively treating future patients. (5) The
Bayesian inference naturally accommodates hierarchical modelling, which makes
borrowing information across different treatments or disease subtypes possible. (6)
The Bayesian approach can formally incorporate the “gain/loss” utility, assisting
informed decision making in a complex setting of balancing efficacy/toxicity,
cost/benefit, and pros/cons in general. Optimal decisions can be obtained by
maximizing the gain or minimizing the loss.
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3 Overview and Features of Bayesian Adaptive Designs

Traditional clinical trials are usually conducted in a static way, such that many
elements (e.g., sample size, treatment assignment, enrolled population) are fixed
in advance, and the interim data observed during a trial are rarely used to guide the
subsequent course of the study. Static trials are simple, easy to implement, and result
in statistically valid inference. However, the restriction of flexibility under static
designs may be overly conservative, leading to efficiency loss. For example, clinical
observations collected during the midcourse of a phase II cancer trial may indicate
that the considered treatment is futile. Since static trials rarely terminate early based
on interim data, they result in slow and unnecessarily costly drug development (Lee
and Berry 2016).

Nowadays, adaptive designs are increasingly being adopted in cancer trials, due
to the dynamic nature that allows for adaptations of the trial conduct according
to the interim trial data. An adaptive design is formally defined as a trial design
that enables pre-specified, well-defined modifications during trial conduct on the
basis of observed data. The main purpose of the adaptive design is to provide the
investigator the flexibility to identify the best clinical benefit of the treatment in real
time and then use that information to guide further treatment of patients or treatment
selection without undermining scientific validity, efficiency, and safety (Mahajan
and Gupta 2010). In general, an adaptive design may allow for adaptive estimation
of treatment effect, adaptive dose escalation/de-escalation, early stopping of the trial
for toxicity/efficacy or futility, dropping or adding new treatment arms, using a
seamless phase transition, adjusting an adaptive randomization scheme based on
patient response or covariates, subgroup enrichment, sample size re-estimation,
biomarker-guided treatment allocation, etc. (Chow and Chang 2008; Zang and Lee
2014).

While adaptive trial designs can be developed under either frequentist or
Bayesian paradigms, the Bayesian method provides a naturally ideal framework due
to the “learn-as-we-go” characteristics and a consistent probability-based inferential
framework. In this section, we will describe several important features of Bayesian
adaptive designs.

3.1 Bayesian Outcome Adaptive Randomization

Randomized clinical trials are the gold standard for comparing the differential
effects of various treatments. To ensure an objective comparison, patient allocation
should be random or unpredictable, balancing out both known and unknown
prognostic factors and potential confounders. Based on study objectives, random-
ization takes various forms, such as equal randomization, random permuted block,
covariate-adaptive randomization, Pocock-Simon dynamic allocation, response or
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outcome adaptive randomization, and covariate-adjusted response adaptive random-
ization (Hu and Rosenberger 2006). Different schemes may also have different
frequentist or Bayesian approaches to perform randomization. The focus of this
section is outcome adaptive randomization (OAR), which allows alteration of
allocation probabilities as the trial proceeds so that the probability for a patient
to be assigned to a better performing treatment increases. There are many popular
frequentist OAR procedures, such as the play-the-winner rule (Rosenberger 1999)
and the optimal OAR (Rosenberger et al. 2001). Bayesian OAR procedures provide
additional flexibility by incorporating prior information, as well as the estimation
variability in determining randomization probabilities (Thall and Wathen 2007).

Consider a two-arm clinical trial with binary responses, and denote p1 and p2 as
the response rates of the two treatments, respectively. Based on the interim data (D)
that are accumulated in the trial, it is feasible to obtain the posterior probability that
treatment 1 has a higher response rate than treatment 2, which is given by

λ = Pr (p1 > p2 | D) .

The simplest model for the above Bayesian inference is the Beta-Binomial
model, which assigns independent Beta prior distributions for the binomial prob-
abilities p1 and p2, respectively. Due to conjugacy, the posterior distribution of p1
(or p2) is still a Beta distribution, and the quantity λ can be easily computed.

Under the Bayesian framework, a new patient is assigned to treatment 1 with
probability

π (λ, γ ) = λγ

λγ + (1 − λ)γ
.

Here, γ ∈ [0,∞] is a tuning parameter that controls the degree of randomization
imbalance: when γ = 0, it reduces to an equal randomization procedure with the
randomization probability being 0.5, regardless of the value of λ; when γ = ∞, it
corresponds to the play-the-winner rule. The selection of γ depends on the needs,
as well as the setting of the trial. Usually, a larger value of γ is preferred when
the efficacy difference between treatments is large, such that individual ethics can
be enhanced. More sophisticatedly, the tuning parameter can be a function of the
sample size to reflect the inference uncertainty. Thall and Wathen (2007) suggested
γ = n/(2N), where n is the interim sample size and N is the total sample size
planned for the trial. At the beginning of the trial, the uncertainty of the treatment
effect is large due to the sparsity of the data, so γ is close to zero, which is
nearly the equal randomization. As the trial proceeds with more data accumulated,
the randomization skews more towards the better performing treatment. Note that,
by comparing the posterior distributions p1 and p2, λ automatically accounts for
both the point and variance estimates of the treatment response rates. Therefore,
compared to the frequentist approach, the Bayesian randomization probability not
only considers the prior information, but also takes into account the inference
variability of the treatment effect. Due to its flexibility and satisfactory performance,
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the Bayesian randomization procedure has been applied to many applications. For
example, Yin et al. (2012) proposed a Bayesian phase II randomized clinical trial
design using Bayesian adaptive randomization and predictive probability. Wathen
and Thall (2017) applied Bayesian adaptive randomization to multi-armed trials.
Ventz et al. (2017) developed a basket trial design based on Bayesian OAR.

3.2 Bayesian Posterior Probability

Interim analysis is essential in adaptive trials, such that the trial can be adaptively
and timely modified based on the data gathered by the time of interim analysis. For
example, in phase I dose-finding trials, interim analysis is performed to decide on
dose escalation, de-escalation, or to stay at the same dose for the next cohort of
patients (O’Quigley et al. 1990); in phase II two-stage trials, “go/no-go” decisions
can be made in the middle of the trial (Simon 1989); in phase III confirmatory
trials, interim analysis can effectively adjust the sample size of the trial (Proschan
and Hunsberger 1995) or even can modify the patient inclusion criteria (Simon and
Simon 2017). For Bayesian adaptive designs, it is natural to perform the interim
analysis based on the Bayesian posterior probability.

For illustration, consider a single-arm phase II trial to assess the therapeutic
effect of the new treatment. Let pS and pE denote the response rates of the standard
and experimental drugs, respectively. During the trial, the data D are observed and
the posterior probability that the experimental drug has a higher response rate than
the standard drug, i.e., Pr(pE > pS + δ�D), is updated continuously, where δ is the
improvement margin of the response rate of the experimental drug over that of the
standard drug. As the trial proceeds, “go/no-go” decisions can be made adaptively
based on the posterior probability (Thall and Simon 1994): if Pr(pE > pS + δ�D)
is very large, say, greater than a prespecified upper probability cutoff θU , then the
trial can be terminated early, as the experimental drug is likely to be promising; on
the other hand, if the posterior probability is very small, say, smaller than a lower
probability cutoff θL, then the trial can be terminated early for futility; otherwise,
there is not adequate information to deliver any conclusion, so the trial continues to
collect more data.

The “go/no-go” decision rules of the above monitoring procedure, based on
Bayesian posterior probability, is easy to understand and implement. The entire
procedure can be carefully calibrated by adjusting the probability cutoffs θU and
θL to control the type I or type II error rates. In the case of binary endpoints, the
Beta distribution can serve as a convenient prior distribution for the response rate. It
is also easy to elicit the hyper-parameters of the Beta distribution based on the prior
information. Generalization of this Bayesian monitoring procedure can be found in
Thall et al. (1995), Heitjan (1997), Thall et al. (2003), and Zhou et al. (2017), among
others.
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3.3 Bayesian Predictive Probability

In phase II clinical trials, Bayesian predictive probability can serve as a good
alternative tool to the posterior probability in interim decision making. Given the
observed data D, the predictive distribution of the number of responses among the
total sample size N can be obtained. In general, the Bayesian predictive probability
procedure continuously calculates the probability of rejecting the null hypothesis (a
positive conclusion), if the current trial continues to the maximum planned sample
size given the interim data (Lee and Liu 2008).

Similarly to the posterior probability monitoring, the “go/no-go decisions based
on the predictive probability monitoring also can be made by comparing the
predictive probability with prespecified upper and lower probability cutoffs. How-
ever, unlike the posterior probability monitoring, which only considers the interim
observed data, the predictive probability monitoring mimics the decision-making
process of claiming the drug promising or non-promising by projecting the result
to the end of the trial. Hence, not only the interim observed data, but also the
future unobserved data make a difference in interim decision making. The predictive
probability calculation is more elaborate, but still as easy to implement as posterior
probability monitoring. Both approaches are more adaptable than traditional multi-
stage designs. Predictive probability monitoring is conceptually appealing because
it takes into account the uncertainty of future data, and it is based on a consistent
inferential framework. It is also flexible in allowing for continuous monitoring and
can be generated to more complex trial settings, such as randomized phase II trials
(Yin et al. 2012), trials with time-to-event endpoints (Yin et al. 2018), and platform
trials (Hobbs et al. 2018).

3.4 Bayesian Adaptive Trials at the University of Texas MD
Anderson Cancer Center

Due to the appealing strengths of Bayesian adaptive designs in clinical trials, they
are being increasingly used in real trials at The University of Texas MD Anderson
Cancer Center. Biswas et al. (2009) identified 964 MD Anderson Cancer Center
trials registered in the institutional protocol system between 2000 and early 2005.
In an update to this data, Tidwell et al. (2019) recently reviewed 1020 trials that
were submitted between January 2009 and December 2013. Table 1 presents the
trial features and whether Bayesian methods were used. Of the 964 trials between
2000 and early 2005, approximately 20% (195/964) used Bayesian designs and
analyses. This percentage increased to 28% (283/1020) for the period from 2009
to 2013. Among the trials conducted solely at MD Anderson Cancer Center,
the percentage of Bayesian trials was much larger, approximately 30% (169/570)
and 56% (189/335) for the two time periods, respectively. This also indicates an
expansion of use of Bayesian trial methods within the institution, implying that
statisticians and clinical investigators are favoring the Bayesian approach. Figure 1
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Table 1 Protocol features by Bayesian status (two time periods: 2000 to early 2005 and January
2009 to December 2013)

Bayesian
Yes No

Protocol feature N (%) N (%) All N (%)

2000 to early 2005 (Biswas et al.2009)
All 195 (20%) 769 (80%) 964 (100%)
Year

<2001 20 (16%) 104 (84%) 124 (13%)
2001 22 (19%) 96 (81%) 118 (12%)
2002 34 (29%) 84 (71%) 118 (12%)
2003 62 (26%) 172 (74%) 234 (24%)
2004 50 (17%) 246 (83%) 296 (31%)
2005 (partial) 7 (7%) 65 (93%) 74 (8%)

Site

MD Anderson only 169 (30%) 401 (70%) 570 (59%)
Multi center 26 (20%) 368 (80%) 394 (41%)

2009–2013 (Tidwell et al.2019)
All 283 (28%) 737 (72%) 1020 (100%)
Year

2009 57 (27%) 155 (73%) 212 (21%)
2010 57 (26%) 162 (74%) 219 (21%)
2011 57 (28%) 146 (72%) 203 (20%)
2012 52 (28%) 132 (72%) 184 (18%)
2013 60 (30%) 142 (70%) 202 (20%)

Site

MD Anderson only 189 (56%) 146 (44%) 335 (33%)
Multi center 94 (14%) 582 (86%) 676 (66%)
Other sites only 0 (0%) 9 (100%) 9 (1%)

depicts the development phases of the trials for the two time periods. It shows that
the Bayesian approach was frequently adopted in early phase trials, such as phase I,
phase I-II, and phase II trials. This is because early phase trials have smaller sample
sizes, yet multiple interim looks; the Bayesian approach usually is more flexible
than the frequentist method in terms of borrowing prior information and making
multiple sequential decisions. In addition, the regulatory considerations for early
phase trials are less stringent than late phase III trials. Therefore, implementation of
Bayesian trials is more acceptable. Early phase trials also do not require rigorous
type I/II error controls.
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4 Adaptive Designs for Dose Finding

Phase I clinical trials are the first step of testing a new treatment in human beings to
examine safety of the new agent and understand its tolerance. The primary objective
of phase I clinical trials is to identify the maximum tolerated dose (MTD), which is
defined as the dose level that has the dose-limiting toxicity (DLT) probability closest
to the target toxicity rate. In general, phase I clinical trial designs can be classified
into algorithm-based designs, model-based designs, and model-assisted designs
(Zhou et al. 2018b). Algorithm-based designs, mostly the 3 + 3 design, conduct the
phase I trial based on a predefined, yet simple dose-escalation/de-escalation rule.
Due to its simplicity and transparency, the 3 + 3 design is dominant in practice,
regardless of its poor characteristics. Model-based designs, such as the well-known
continual reassessment method (CRM), adopt statistical models for informative
decision making by using all available information (O’Quigley et al. 1990). The
model-based designs usually improve the performance of MTD identification over
the algorithm-based designs; however, the application of model-based designs has
been limited in practice, due to computational complexity and a seemingly “black-
box” decision-making style. In addition, the model-based designs may not be robust
to model misspecification. Model-assisted designs have emerged as an attractive
approach for phase I clinical trials, as they combine the simplicity of algorithm-
based designs with the superior performance of model-based designs. The novel
model-assisted designs use a model for efficient decision making like model-based
designs, while their dose-finding rules can be pre-calculated and tabulated before a
trial starts as with algorithm-based designs (Zhou et al. 2018a, b). Typical examples
include the Bayesian optimal interval (BOIN) design (Liu and Yuan 2015), the
keyboard design (Yan et al. 2017), and the modified probability interval (mTPI)
design (Ji et al. 2010), among others (Lin and Yin 2018; Lin and Yuan 2019).

In this section, we will review some Bayesian adaptive dose-finding designs,
including one model-based design (i.e., the CRM) and one model-assisted design
(i.e., the BOIN design). We will also introduce some extensions of these designs
in the situation of more complicated phase I dose-finding trials, such as drug-
combination trials and trials with delayed toxicity.

4.1 Continual Reassessment Method

In phase I trials, several dose levels of the new drug are specified by the clinicians
for investigation. Suppose that J dose levels are considered, and let pj denote the
probability of DLT at dose level j = 1, . . . , J. A key assumption for phase I trials is
that the dose—toxicity relationship is monotonically increasing (i.e., p1 < · · · < pJ).
Given a target toxicity probability φ, the MTD j∗ is the dose level that satisfies the
following condition:
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j∗ = argmin
j=1,...,J

| pj − φ | .

To identify the MTD from J dose levels, the CRM assumes a working dose—
toxicity model, such as the hyperbolic tangent, one-parameter logistic regression, or
the power model (O’Quigley et al. 1990). For example, the power model is defined
as:

pj = π
exp(α)
j ,

where π1 < · · · < πJ is the set of J prespecified toxicity probabilities (known as
the skeleton of the power model), and α is the unknown parameter. Suppose that nj
patients have been treated at dose level j, and yj patients have experienced the DLT.
Then the likelihood function is a standard Binomial likelihood as follows,

L (D|α) ∝
∏J

(j=1)

{
π

exp(α)
j

}yj {
1 − π

exp(α)
j

}nj−yj
.

Given a prior distribution f (α), the posterior distribution of α can be derived
based on the Bayes theorem:

f (α | D) ∝ f (α)L (D | α) .

Due to the flexibility of Bayesian approaches, various inferences can be made
based on the posterior distribution. For example, in addition to f (α�D), it is also
possible to obtain the posterior distribution of pj, as well as the posterior mean p̂j .
In particular, the CRM uses p̂j to determine the dose escalation or de-escalation:
if the current dose level is lower than the dose level that has the posterior mean p̂j
closest to φ, then the next dose is escalated to level j + 1; if the current dose level is
higher than the dose level that has p̂j closest to φ, then the next dose is de-escalated
to level j − 1; otherwise, the next dose stays at the current dose level.

In the standard CRM, the one-parameter power model is adopted. This is because
the sample size of phase I studies is typically small, and the one-parameter model is
convenient to accommodate the dose-toxicity relationships. In some cases, one can
also use more complicated models, such as the two-parameter logistic regression
model. However, it has been shown that the one-parameter power model is sufficient
to result in satisfactory performance in many settings, while increasing model
dimensionality may lead to erratic behaviors (Iasonos et al. 2016). To improve the
robustness of the CRM, Bayesian model averaging CRM has also been proposed
(Yin and Yuan 2009b).

The decision-making process behind the CRM is a typical example of Bayesian
adaptive designs. In other words, the observations made during the trial are used
for decision making and affect the subsequent course of the trial. Since the CRM
uses all available data in the trial for determining subsequent dose assignments, it
performs uniformly better than the conventional 3 + 3 design in terms of MTD
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identification. As such, more patients are treated at doses closer to the MTD. But
caution is warranted when implementing the CRM. Due to its model-based nature,
the CRM tends to be sensitive to model misspecification (e.g., the specification
of the model skeleton or the prior distribution), and it sometimes risks patients to
overdoses (Neuenschwander et al. 2008). To avoid overdose allocation and ensure
robust performance, modification has been suggested, including starting at the
lowest dose level and not skipping the untested doses in dose escalation, enrolling
more than one patient at a dose, and having at least one patient completed one cycle
before enrolling additional patients in a new dose, among others (Goodman et al.
1995). In addition, extensive preliminary simulation is warranted to calibrate the
design parameters under various scenarios.

The CRM can be extended to dose finding in more complex settings. A key
assumption behind the CRM is that the toxicity outcome can be quickly observed
before dose escalation or de-escalation decisions can be made. However, the
toxicity evaluation sometimes may take longer than the patient accrual, especially
in radiation oncology and immunotherapy trials. As a result, the toxicity outcomes
of some previously treated patients may be still pending by the arrival of the new
patients. To avoid potential trial delay, Cheung and Chappell (2000) developed a
time-to-event CRM by weighting each patient by his/her follow-up proportion. As
a result, when the patient has finished toxicity evaluation, the weight equals to
one; otherwise, the weight is a fraction of one to reflect the amount of information
currently available for this patient.

Drug-combination therapy provides an effective way to obtain synergistic treat-
ment effects and overcome resistance of monotherapy. Drug-combination trials are
more complicated than single-agent trials, due to the higher dimensionality of the
dose searching space and the incomplete order between the combined doses (Riviere
et al. 2015). Most of the model-based drug-combination designs (Braun and Wang
2010; Thall et al. 2003; Yin and Yuan 2009a) adopt similar dose-finding strategies
as the CRM in phase I trials with combined drugs. In general, a particular model is
needed to quantify the dose—toxicity relationship, then the model estimate would
be continuously updated for dose-assignment decisions based on the accumulating
data. Since the model for the dose—toxicity relationship in drug-combination trials
requires more parameters, the need to calibrate the model-based drug-combination
designs is much greater than the standard CRM.

One limitation of the CRM is that it only considers the toxicity data, while
neglecting the efficacy information in decision making. In some situations, however,
the MTD may not be biologically optimal in terms of toxicity—efficacy tradeoffs,
especially when the dose—efficacy curves may have plateaued or taken on an
inverted-U shape. To obtain an optimal biological dose, it is more desirable to
account for both toxicity and efficacy in the trial. This setting corresponds to a so-
called seamless phase I/II trial (Thall and Cook 2004). Readers may refer to Zang et
al. (2014), Zang and Lee (2017), and Yuan et al. (2017) for a comprehensive review
of Bayesian adaptive designs for phase I/II clinical trials.
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Fig. 2 The flowchart of the Bayesian optimal interval (BOIN) design

4.2 Bayesian Optimal Interval Design

Unlike the CRM, which uses a parametric model to quantify the dose-toxicity
relationship and makes decisions based on data across all dose levels, the BOIN
design models only “local” data observed at the current dose, typically using a
binomial model, to guide dose assignments (Liu and Yuan 2015). In particular,
the dose escalation/de-escalation decisions of BOIN are made by comparing the
observed toxicity rate p̂j = yj /nj at the current dose level j with respect to the
dose escalation and de-escalation boundaries λe and λd, respectively. Suppose j is
the current dose level, the dose-finding rule of BOIN can be described as follows
(see also Fig. 2):

• If p̂j ≤ λe, then the dose for the next cohort of patients is escalated to level j+ 1.
• If p̂ ≥ λd , then the dose for the next cohort of patients is de-escalated to level

j − 1.
• Otherwise, if λe < p̂j < λd or the next assignment is outside of the prespecified

dose range, then the next cohort is treated at the same dose level j.
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The BOIN design determines the pair of λe and λd by formulating the dose-
finding problem in a Bayesian decision-making framework. Specifically, for each
dose level j, the BOIN design considers the following hypotheses,

H0j : pj = φ,H1j : pj = φ1,H2j : pj = φ2,

where φ1 < φ < φ2 are design parameters that should be prespecified. Here, H0j
indicates that the current level j is a desirable dose; H1j indicates that level j is sub-
therapeutic, such that dose escalation is warranted; and H2j indicates that level j is an
overdose, such that dose de-escalation is needed. Suppose that the prior probabilities
for the three hypotheses are π0, π1, and π2, respectively. By minimizing the
probability of incorrect decisions of dose escalation and de-escalation, the optimal
values of λe and λd are given by

λe =
log

(
1−φ1
1−φ

)
+ n−1

j log
(
π1
π0

)
log

{
φ(1−φ1)
φ1(1−φ)

} , λd =
log

(
1−φ
1−φ2

)
+ n−1

j log
(
π0
π2

)
log

{
φ2(1−φ)
φ(1−φ2)

} .

In general, the prior information on the hypotheses is limited in most phase I
trials. Therefore, we can use the non-informative prior π0 = π1 = π2 = 1/3, which
further simplifies the above optimal boundary formulae. Moreover, when the non-
informative prior is used, the Bayes factors are equivalent to the likelihood ratio test,
which is uniformly most powerful. In other words, BOIN also enjoys the optimality
from the frequentist viewpoint. As a default, Liu and Yuan (2015) recommended
φ1 = 0.6φ and φ2 = 1.4φ for general use. The design parameters φ1 and φ2 can
also be prespeficied to reflect a particular requirement of the trial at hand.

The BOIN design enjoys many advantages similar to the 3 + 3 design, as its dose-
finding decisions can be tabulated before a trial starts. Table 2 shows the default dose
escalation and de-escalation boundaries of the BOIN design. For example, given the
target toxicity rate φ = 0.30, the corresponding dose escalation boundary λe = 0.236
and the de-escalation boundary λd = 0.358. Suppose that the observed toxicity rate
at the current dose level p̂j = 0.40, since p̂j > λd , dose de-escalation is needed;
similarly, if p̂j = 0.15, then dose escalation is needed.

For illustration, we consider a trial with a target toxicity rate of 0.3. Six dose
levels are considered, a total of 24 patients with three patients in a cohort are planned
for the trial. Based on the target toxicity rate φ = 0.3, the dose escalation and de-

Table 2 Dose escalation and de-escalation boundaries of the BOIN design based on the default
setting φ1 = 0.6φ and φ2 = 1.4φ

Target toxicity rate φ
Boundaries 0.15 0.20 0.25 0.30 0.35 0.40

λe (escalation) 0.118 0.157 0.197 0.236 0.276 0.316
λd (de-escalation) 0.179 0.238 0.298 0.358 0.419 0.479
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Fig. 3 A trial example based on the BOIN design with a target toxicity probability φ = 0.30. The
left panel shows the sequence of dose assignments, where a circle indicates one patient without
DLT and a dot indicates one patient with DLT. The right panel presents the final estimate of the
toxicity probabilities for the four dose levels. Dotted horizontal lines indicate the dose escalation
and de-escalation boundaries of the BOIN design

escalation boundaries of the BOIN design are given in Table 2. The dose-assignment
decisions through the trial are displayed in Fig. 3. According to the dose-finding
rule, the trial starts by treating the first cohort of patients at the lowest dose level.
Since the estimated toxicity rate at dose level 1 is 1/3, this leads to the dose retaining
decision for cohort 2. None of the patients in cohort 2 has experienced the DLT,
hence, dose escalation is made by treating cohort 3 at dose level 2. Figure 3 (left
panel) shows the path of the dose assignments for the subsequent cohorts, from
which we can see that the BOIN design can search the MTD adaptively and treat
most of the patients at the right dose level. After the trial completes, the estimate of
the toxicity rate for each dose level is given in the right panel of Fig. 3. Since dose
level 3 has an observed rate of 1/3, which is closest to φ among all six dose levels,
it is selected as the MTD.

Modelling the “local data” observed at the current dose level renders BOIN
enumerating all possible decisions before the trial begins. The decision rules in
Table 2 makes the BOIN design transparent and easy to implement. A potential
concern for BOIN is whether using only “local data” at the current dose, while
ignoring the data observed from other doses, causes efficiency loss in MTD
identification and patient treatment. To answer this question, extensive simulation
studies have been conducted by comparing the performance of BOIN with that
of a design that uses more data in decision making (Lin and Yuan 2019; Zhou
et al. 2018a). It has been shown that the BOIN design is as efficient as model-
based designs in terms of finding MTD, while the implementation of BOIN is much
easier (Zhou et al. 2018a). One explanation is that the dose escalation/de-escalation
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determined by the observed data has the ordered relationship embedded. Although
the data from other dose levels are not used directly, their contribution is made
indirectly by incorporating the history leading to the current dose level.

Since the decision of BOIN solely depends on data from the current dose level,
it avoids complicated modelling and model fitting. Upon completion of the trial, the
dose—toxicity curve can be constructed by connecting the probability of toxicity
estimates at each dose level by applying isotonic regression. The point estimate and
the 95% credible interval estimation of the toxicity rate at each dose level are shown
in the right panel of Fig. 3.

Note that the Keyboard design (Yan et al. 2017) is another model-assisted Phase
I design that yields similar performance to BOIN. The original modified probability
interval (mTPI) design has flaws and errors, which have been corrected in the mTPI-
2 design (Guo et al. 2017). This updated design is essentially the same as the
keyboard design.

Another advantage of BOIN is that its dose escalation and de-escalation rules can
be directly used for drug-combination trials (hereafter referred to as Comb-BOIN).
The only issue with this is that when a dose escalation (or de-escalation) decision
is made in a drug-combination trial with drug A and drug B, there are more than
one option to choose from: we can escalate (de-escalate) either the dose of drug A
or the dose of drug B. Lin and Yin (2017a) proposed an adaptive rule to select the
dose when dose escalation/de-escalation is needed. Specifically, suppose the current
dose level is (u, v) which is the combined dose of uth level of drug A and vth level of
drug B. Define an admissible dose escalation set AE = {(u+ 1, v), (u, v+ 1)} and an
admissible dose de-escalation set AD = {(u− 1, v), (u, v− 1)}. When dose escalation
is needed, the dose combination that belongs to AE and has the highest value of
Pr(puv ∈ (λe, λd) � Duv) is selected; and when de-escalation is needed, the dose
combination that belongs to AD and has the highest value of Pr(puv ∈ (λe, λd) � Duv)
is selected. Here, puv denotes the toxicity probability of dose combination (u, v), and
Duv is the observed data at that dose. Despite being simple, the BOIN combination
design yields excellent performance comparable to and often superior to more
complicated model-based designs (Lin and Yin 2017a).

The BOIN design can be also generated as a time-to-event BOIN (TITE- BOIN),
which addresses the issue of late-onset toxicity (Yuan et al. 2018). TITE-BOIN
works by predicting the unobserved, pending DLT outcome using the follow-up
time of the patient whose toxicity profile is still unavailable. Then the toxicity rate
at the current dose level can be estimated in real time by using the observed and
the predicted DLT data. Therefore, the dose-finding rule of BOIN is still applicable
in a seamless way when a new patient is accrued, avoiding potential trial delays.
The TITE-BOIN design inherently possesses the features of BOIN, such that its
decision rule can be completely pre-tabulated. Numerical study shows that TITE-
BOIN yields superior performance comparable to that of model-based designs (e.g.,
TITE-CRM (Cheung and Chappell 2000)), and outperforms the rolling six design
(Skolnik et al. 2008) with substantially higher accuracy to identify the MTD and
allocate more patients to the MTD (Yuan et al. 2018).
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Due to its attractive features and good performance, the extension of BOIN
has been studied in various settings. Zhang and Yuan (2016) proposed a waterfall
BOIN design to identify the maximum tolerated dose contour in phase I drug-
combination trials. Lin and Yin (2017b) and Takeda et al. (2018) generalized
BOIN by considering efficacy and toxicity simultaneously. Lin (2018) considered a
multiple toxicity constraint for BOIN.

The software for the BOIN design is available in three forms, including a
graphical user interface based Windows desktop program (including BOIN, TITE-
BOIN, and Comb-BOIN), which is freely available from the MD Anderson
Software Download Kiosk https://biostatistics.mdanderson.org/SoftwareDownload/
SingleSoftware/Index/99, Shiny online apps (including BOIN, TITE-BOIN, and
Comb-BOIN) freely available at http://trialdesign.org, and an R package “BOIN”
(including BOIN, Comb-BOIN, and waterfall BOIN for drug combination studies)
available from the CRAN website. For users who are not familiar with R, the
Windows desktop program is a good option. It has an intuitive graphical user
interface and the function to automatically generate the protocol template for the
trial (see Fig. 4).

5 Adaptive Designs for Multiple Outcomes

Traditional phase II trial studies usually adopt a binary efficacy endpoint to screen
out inefficacious treatments (Simon 1989). However, with the advent of novel
molecular targeted agents and immunotherapy, using a single endpoint sometimes
may be insufficient to characterize the treatment effect of a new drug. As a result,
phase II trials have become much more complicated with multiple endpoints, such
as the ordinal endpoint or co-primary efficacy and toxicity endpoints. The Bayesian
Optimal Phase 2 (BOP2) design provides a simple, flexible, and efficient tool to
allow for multiple interim looks and handle different endpoints under a unified
framework (Zhou et al. 2017).

To illustrate the main idea of the BOP2 design, we consider a phase II trial with
co-primary efficacy and toxicity endpoints. In this trial, the objective response (OR)
rate is considered as the efficacy endpoint and the DLT rate is considered as the
toxicity endpoint. The trial jointly monitors the efficacy and toxicity, such that the
treatment will be deemed as futile if the ORR is too low, say, less than φOR, or
the treatment is overly toxic if the DLT rate is unacceptably large, say, greater than
φDLT .

Statistically speaking, different forms of clinical endpoints can be unified and
represented using a single multinomial random variable Y with K distinct categories
that represent all possible values (Zhou et al. 2017). In the aforementioned example,
Y = (Y1,Y2,Y3, Y4) has four categories with 1 = (OR, DLT), 2 = (OR, no DLT),
3 = (no OR, DLT), and 4 = (no OR, no DLT). Let (p1, p2, p3, p4) be the probability

https://biostatistics.mdanderson.org/SoftwareDownload/SingleSoftware/Index/99
https://biostatistics.mdanderson.org/SoftwareDownload/SingleSoftware/Index/99
http://trialdesign.org
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Fig. 4 The user interface of the BOIN software available from https://biostatistics.mdanderson.
org/SoftwareDownload/SingleSoftware/Index/99

vector associated with the four categories of Y. By this way, the OR rate is p1 + p2,
and the DLT rate is p1 + p3. For additional examples and the relationship between
the multimodal variable Y and the original multiple endpoints, see Zhou et al.
(2017).

The BOP2 design assumes that Y follows a Dirichlet-Multinomial model:

Y | p1, p2, p3, p4 ∼ Multinomial (p1, p2, p3, p4) ,

https://biostatistics.mdanderson.org/SoftwareDownload/SingleSoftware/Index/99
https://biostatistics.mdanderson.org/SoftwareDownload/SingleSoftware/Index/99
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(p1, p2, p3, p4) ∼ Dirichlet (α1, α2, α3, α4) ,

where (α1,α2,α3,α4) are prespecified hyperparameters. Compared to the approach
of considering and modelling each OR or DLT independently, this approach
naturally accounts for the correlation between different endpoints. Given the interim
data Dn collected from n patients, the posterior distribution of (p1, p2, p3, p4) � Dn

follows a Dirichlet distribution. It also can be shown that the marginal posterior
distribution of ORR or DLT is a standard Beta distribution.

At each interim, BOP2 uses the following Bayesian stopping criteria to make
“go/no-go” decisions:

If Pr(OR rate < φOR�Dn) > Cn or Pr(DLT rate > φDLT �Dn) > Cn, stop the trial;
otherwise continue the trial.

Here, the posterior probability Pr(OR rate < φOR�Dn) measures how likely it is
that the true OR rate is futile, Pr(DLT rate > φDLT �Dn) measures the likelihood that
the true DLT rate is overly toxic, and Cn is an adaptive probability cutoff, depending
on the interim sample size n, such that the stopping criteria are lenient with sparse
data at the beginning of the trial and become increasingly stricter as the trial moves
forward. This Bayesian rule says that if the interim data suggest that the treatment is
unlikely to reach the minimal efficacy requirement or exceed the maximum toxicity
threshold, then we stop the trial early for futility or toxicity.

Zhou et al. (2017) proposed a functional form for the probability cutoff Cn, such
that Cn can be adaptively adjusted based on the amount of information observed
thus far. In fact, Cn can be calibrated using simulation studies to ensure a desirable
performance. This calibration procedure mimics the numerical searching in Simon’s
two-stage design (Simon 1989). First, a null hypothesis and an alternative hypoth-
esis that define the joint response probabilities should be specified. Second, grid
searching is performed to identify all possible values of Cn that lead to a desirable
level of type I error rate. Last, an optimal Cn that maximizes the statistical power can
be selected from the set collected in the previous step. This calibration procedure
is commonly used for most Bayesian adaptive designs to evaluate the frequentist
operating characteristics (Zhang et al. 2019).

The BOP2 design is particularly flexible in number of multiple endpoints and
multiple interim looks. A potential challenge with Bayesian adaptive designs that
deal with such trials with multiple endpoints and interim looks is the complexity
of design implementation. If the implementation of the design is difficult, it may
decrease use in practice. However, one prominent advantage of the BOP2 design
is that, thanks to the simple Dirichlet-Multinomial model, one can enumerate the
stopping boundaries of BOP2 prior to the start of the trial. This greatly simplifies
the implementation and increases trial transparency.

The BOP2 design can be easily implemented using the online R shiny app,
which is freely available at www.trialdesign.org. Users can use the shiny app to
calculate the decision boundaries of BOP2 by inputting the design parameters,
conduct simulation studies based on various scenarios, and obtain the trial protocol
template. As an illustration, we consider a trial with co-primary efficacy and toxicity

http://www.trialdesign.org


414 R. Lin and J. J. Lee

endpoint. Suppose that φOR = 0.45 and φDLT = 0.30, and the maximum sample size
is 40. We plan to make “go/no-go” decisions when the number of treated patients
reaches 10, 15, 20, 25, 30, 35, and 40. Suppose that the type I error rate is 0.1, the
null hypothesis is Pr(OR) = 0.45, Pr(DLT) = 0.3, Pr(OR & DLT) = 0.15, and the
alternative hypothesis is H1: Pr(OR) = 0.60, Pr(DLT) = 0.2, Pr(OR & DLT) = 0.18.
The decision boundaries of BOP2 calculated using the shiny app are provided in
Fig. 5. We also provide two trial examples in Fig. 5, with the “go/no-go” regions
highlighted in both panels (a) and (b). In panel (a), the “go/no-go” boundary has
never been crossed; as a result, we conclude that the treatment is acceptable. On the
other hand, in panel (b), the number of DLT exceeds the “go/no-go” boundary when
30 patients have been treated. As a result, we terminate the trial early and conclude
that the treatment is overly toxic.

One limitation of the BOP2 design is that it can only deal with those outcomes
that can be quickly available after the treatment of patients. Some agents, such as
immunotherapy, may need a longer time (e.g., several months) to show treatment
effects, compared to the accrual rate of new patients. Standard practice under such
a situation may need to suspend the accrual to wait for the availability of the
interim data, which may prolong the trial duration and delay the treatment of new
patients. Built upon the basis of BOP2, the time-to-event Bayesian optimal phase
(TOP) II design was proposed to make real-time “go/no-go” interim decisions in the
presence of late-onset responses by using all available data, including the observed
responses and patients’ follow-up times (Lin et al. 2019). The TOP design inherits
the transparency and the simplicity of BOP2, such that that its “go/no-go” decision
rules can be tabulated and included in the protocol prior to the conduct of the trial.
The software to implement the TOP design is also available at www.trialdesign.org.

6 Adaptive Designs for Multi-Arm, Multi-Stage Platform
Trials

The drug development process is costly and time consuming. Nowadays, for
complex diseases such as cancer, many new agents and many more combination
therapies need to be evaluated as biological knowledge advances with lightning
speed. Traditional clinical trials are straightforward and investigate the treatments
one-at-a-time in a sequential manner; such an approach suffers from several
deficiencies, especially in the era of precision medicine. In general, the success rate
for such “one-treatment-at-a-time” drug development is particularly low (DiMasi et
al. 2013). As shown in Fig. 6, traditional two-arm sequential designs have several
discrete phases. In each discrete phase, an experimental treatment is compared with
the standard-of-care control, leading to many patients being allocated to the control
arm. This approach only considers a single, specific scientific question at each
discrete phase, which can barely touch the complicated cancer system (Berry 2015).
Furthermore, “white space” is formed in between each discrete phase, because

http://www.trialdesign.org
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Fig. 5 Illustration of the BOP2 design based on two trial examples. Interim analyses are performed
when the number of treated patients reaches 10, 15, 20, 25, 30, and 35, and a final analysis is
performed when the maximum sample size of 40 is reached. If the number of responses crosses
the “go/no-go” boundary, we stop the trial for futility or toxicity and conclude that the treatment is
unacceptable. Otherwise, we continue the trial. If the null hypothesis is rejected at the final analysis,
we conclude the treatment is acceptable. The null and alternative hypotheses are specified as H0:
Pr(OR) = 0.45, Pr(DLT) = 0.3, Pr(OR & DLT) = 0.15 vs. H1: Pr(OR) = 0.60, Pr(DLT) = 0.2,
Pr(OR & DLT) = 0.18. The line with triangle points corresponds to the number of observed
responses



416 R. Lin and J. J. Lee

Fig. 6 Sequential two-arm design versus multi-arm platform design in randomized phase II trials.
Each shape denotes a study arm. The sequential two-arm design has five independent randomized
subtrials, with each subtrial including a control arm. The multi-arm platform design is a master
protocol study with only one control arm included. The horizontal axis indicates the calendar time,
and the vertical axis indicates the enrollment. The enrollment increases with the time for the active
arms

each discrete phase needs to go through the review and approval process. This
approach not only wastes time and resources between phases, it also adds the entire
drug development process timeframe. The subsequent nature of discrete phases
additionally hinders information borrowing across different phases, and thus can
potentially result in efficiency loss (Hobbs et al. 2018).

Viewing the drug development process as a whole system, the multi-arm multi-
stage (MAMS) platform trial design provides an effective way to efficiently evaluate
modern treatments (Saville and Berry 2016). As shown in Fig. 6, the MAMS
platform design is a broad class of randomized trials that includes a single control
arm and screens multiple agents simultaneously. During the trial, the MAMS
platform design can sequentially graduate a promising treatment for efficacy or drop
the inefficacious agent for futility. Meanwhile, new treatments also can be adaptively
added into the ongoing comparative study for investigation. The MAMS platform
design has many other prominent features that differ from the traditional two-arm
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sequential designs, such as controlling the family-wise type I error rate with multiple
testing procedures to reduce false positives, using outcome adaptive randomization
to assign more patients to a better treatment arm, etc. For overviews of the MAMS
platform design, see Lee and Chu (2012), Wason and Jaki (2012), Wason et al.
(2016), and Howard et al. (2018).

Although some frequentist MAMS platform designs have been proposed (Lee
et al. 2019; Wason and Jaki 2012), the Bayesian paradigm provides a natural
framework to accommodate the aforementioned adaptive features. Hobbs et al.
(2018) proposed a MAMS platform design using Bayesian predictive probability
(hereafter referred to as the PP-MAMS design). In particular, a simple Beta-
Binomial model is adopted to derive the posterior distribution of the response
probability. Denote π j as the probability of response for arm j, j = 0, 1, . . . , J
with j = 0 indicating the control arm and J as the total number of the experimental
arms. Based on the beta prior distribution, π j ∼ Beta(αj,β j), αj, β j > 0, the posterior
for π j after observing rj responses from nj patients is still a beta distribution, given
by

πj | rj ∼ Beta
(
αj + rj , βj + nj − rj

)
.

Under the Bayesian paradigm, we declare the drug is efficacious, if the following
decision criteria are satisfied:

Pr
(
πj > π0 + δ | r0, rj

)
> θ,

where δ > 0 determines the extent to which an improvement is deemed as clinically
meaningful, and θ ∈ (0, 1) is the posterior probability cutoff that governs the amount
of “evidence” required to conclude success.

The predictive probability monitoring under the PP-MAMS design bases the
decisions not only on the currently observed data, but also on the future data for
incoming patients. In particular, let Rj denote the unobserved number of responses
from up to Nmax patients, i.e., the maximum sample size for each arm. Given
the current observations (r0, rj), the predictive probability that the trial ultimately
demonstrates improvement for treatment j over the control is

λ (r0, r1) = ER0,R1

[
I
{
Pr
(
πj > π0 + δ | R0, Rj

)
> θ

} | r0, rj
]

=
Nmax−n0∑
u=0

Nmax−nj∑
v=0

I
{
Pr
(
πj > π0 + δ | r0 + u, rj + v

)
> θ

}×
Pr (R0 = r0 + u | r0)Pr

(
Rj = rj + v | rj

)
.

Where I{·} represents the indicator function, and Pr(Rj = rj + v � rj) is the predictive
probability distribution of Rj. The “go/no-go” decision for each treatment arm j can
be expressed as follows:
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• If λ(r0, r1) < φ, then drop treatment arm j from the study for futility.
• If λ(r0, r1) ≥ φ, then continue to randomize patients to treatment arm j.

Here, φ is the prespecified probability cutoff, which can be calibrated to satisfy
the type I/II error constraints. The sequential monitoring based on the predictive
probability not only accounts for uncertainty amongst observed data, but also
variability for outcomes yet to be observed in the trial. This enhances the robustness
of the design, especially when the sample sizes between two arms are imbalanced.

Besides the key elements introduced above, the PP-MAMS design is very
flexible and can be generated to accommodate various features, such as adding new
treatment arms at random entry times—including adaptive randomization schemes
to allocate more patients to a better treatment arm—among others. For further
readings on the performance of the PP-MAMS design, which is better than two-
arm sequential trials, see Hobbs et al. (2018).

7 Examples of Bayesian Adaptive Trials

In this section, we discuss three recently conducted prototypical examples that
adopted Bayesian adaptive designs: the Biomarker-based approaches of targeted
therapy for lung cancer elimination (BATTLE) trial, the investigation of serial
studies to predict your therapeutic response with imaging and molecular analysis
2 (I-SPY 2) trial, and the adaptive global innovative learning environment for
glioblastoma (GBM AGILE) trial. Each of these examples shows the feasibility of
the Bayesian approach in recent cancer trials.

7.1 BATTLE Trials

The BATTLE project consists of one umbrella protocol and adaptive randomized
phase II studies with four biomarker-based targeted therapies in patients with
advanced non-small cell lung cancer (NSCLC) (Kim et al. 2011; Zhou et al.
2008). Four types of biomarker classes assessed in the trial were EGFR muta-
tion/amplification, KRAS and BRAF mutation, VEGF and VEGFR expressions,
and Cyclin D1/RXR expressions. In general, the four binary biomarkers can lead to
24 = 16 different biomarker combinations, but the BATTLE trial used an alternative
criteria to classify the patients into five marker groups (See Fig. 7). The four targeted
therapies were erlotinib, sorafenib, vandetanib, and the combination of erlotinib and
bexarotene, with each treatment being more efficacious in certain marker groups
that match the agent’s action mechanism. The primary endpoint was defined as the
eight-week disease control rate, which was the percentage of patients who had no
disease progression at 8 weeks after randomization. Figure 7 presents the schema of
the BATTLE trial. The goal of the BATTLE design was to examine the efficacy of
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Fig. 7 The schema of the BATTLE trial

molecular targeted therapies in advanced NSCLC patients using the biomarker data,
and to identify potential predictive biomarker profiles.

The Bayesian approach was applied to the BATTLE trial, where a hierarchical
model was built to characterize the disease control rate for each targeted agent
by marker subgroups. Such a hierarchical model facilitates use of data from
prior studies, as well as allows for information borrowing across marker groups
within and across treatments. Since patients with different biomarker profiles may
respond differentially to different targeted therapies, a Bayesian OAR procedure
was implemented, such that more patients in each marker group were more likely to
be assigned to the better performing treatment. The BATTLE design used Bayesian
posterior probability to continuously monitor the trial. In particular, if the posterior
probability of obtaining a target disease control rate in a certain treatment by some
marker subgroup was particularly small, then the treatment was suspended for that
marker group. At the completion of the trial, Bayesian posterior probability was also
used to identify the effective treatment for each subgroup.

In the BATTLE trial, a total of 341 patients were enrolled from November 2006
to October 2009. Among the 341 patients, 255 eligible patients were randomized
under the proposed OAR scheme. The overall 8-week disease control rate was 46%,
and the marginal disease control rates were 34%, 58%, 33%, and 50% for erlotinib,
sorafenib, vandetanib, and the combination of erlotinib and bexarotene, respectively.
In particular, the trial showed that sorafenib has a higher disease control rate in
patients in the KRAS/BRAF marker group, and therefore most of the KRAS/BRAF
patients were assigned to the sorafenib arm.
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The BATTLE trial has demonstrated the success of the application of the
Bayesian adaptive approach to real trials. Both clinicians and patients were enthu-
siastic to participate in the study (Liu and Lee 2015). The BATTLE design required
that the biomarkers and marker groups be pre-determined before the trial. As
a result, the ongoing trial data could not validate biomarker selection, possibly
ignoring some important biomarkers during the pre-determination process. This
poses a major limitation of the BATTLE design. To remedy this problem, the
BATTLE-2 design was proposed as a two-stage adaptive randomized trial design
(Gu et al. 2016; Papadimitrakopoulou et al. 2016). The first stage was treated as a
training step, where several potential prognostic and predictive markers are selected
and adaptive randomization was used to randomize patients to the treatment. At
the end of the first stage, a variable selection procedure was performed to identify
relevant biomarkers via adaptive LASSO. In the second stage, refined adaptive
randomization based on the markers selected in the first stage was to be applied
to treat patients. Therefore, treatment effects, marker effects, and their interactions
were to be estimated and tested using data acquired from both stages in the
BATTLE-2 design.

7.2 I-SPY 2 Trial

The ISPY-2 trial is an on-going phase II, multicenter, adaptively randomized,
platform trial to evaluate multiple experimental agents in combination with standard
neoadjuvant chemotherapy in patients with high-risk neoadjuvant breast cancer
(Barker et al. 2009; Carey and Winer 2016; Park et al. 2016; Rugo et al. 2016).
This is a multi-arm trial with a common control group with a standard neoadjuvant
therapy. The trial is planned to screen 12 different experimental drugs, with
the primary endpoint being the pathological complete response at the time of
surgery. The primary goal of the ISPY-2 trial is to facilitate the rapid and efficient
identification of promising agents and biomarker profiles that are likely to succeed
in subsequent phase III trials.

In the ISPY-2 trial, patients are classified into eight prospectively defined disease
subtypes based on three biomarkers (i.e., hormone receptor status, human epidermal
growth factor receptor two status, and risk level as assessed with the 70-gene
assay) assessed at baseline. In each subtype, 20% of the patients are assigned to
the standard control therapy. Bayesian adaptive randomization is used to assign
the remaining 80% to the available experimental regimens in proportion to each
regimens’ current posterior probability of being the most effective therapy for that
subtype. Bayesian monitoring is used to evaluate the efficacy of the experimental
regimens continuously. Specifically, a treatment graduates to a subsequent phase III
trial when the Bayesian predictive probability of success in a traditional 300-patient
randomized phase III trial against the standard treatment is high; say, greater than
0.85.
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A prominent feature of the ISPY-2 trial is that it will graduate a successful
regimen, drop an unsuccessful regimen, and add a newly available regimen during
the trial, rather than having to initiate a new protocol. This will save a considerable
amount of time and accelerate the whole process of drug development. To date, the
ISPY-2 trial has successfully identified two treatment combinations with higher rates
of pathological complete response than standard therapy alone, warranting further
phase III trials (Park et al. 2016; Rugo et al. 2016)

7.3 GBM AGILE Trial

GBM AGILE is a novel, multi-arm, seamless Phase II/III response adaptive random-
ization platform trial designed to evaluate multiple therapies in newly diagnosed
and recurrent glioblastoma (Alexander et al. 2018). The trial uses overall survival as
the primary endpoint, with the goal to screen effective treatment and biomarker
pairs for glioblastoma. GBM AGILE is composed of two stages under a single
master protocol, allowing multiple drugs or drug combinations from different phar-
maceutical companies to be evaluated simultaneously. In the first stage, Bayesian
adaptive randomization is used to identify effective drugs within disease subtype.
The randomization probabilities to the treatments within subtypes are proportional
to the Bayesian posterior probabilities of prolonging overall survival longer than
the control. Highly promising treatments will seamlessly graduate to the second
stage, which is a phase III, equally randomized, confirmatory trial in the identified
population. If some treatment cannot transit to the confirmatory stage, the relevant
data collected in the first screening stage are still valuable to refine biomarker
hypotheses and inform better decision making for trials outside of GBM AGILE
(Alexander et al. 2018). Like the ISPY-2 trial, GBM AGILE also allows for adding
therapeutic arms with biomarkers to the trial over time, which can substantially
reduce cost and shorten the drug development process.

8 Discussions

Bayesian adaptive approaches hold great promise for improving the flexibility and
efficiency of clinical trials. Successful implementations of Bayesian methods have
already been demonstrated in a wide range of clinical trial applications. However,
there are several challenges and practical concerns in using Bayesian adaptive trial
designs.

Prior specification is critical to the performance of Bayesian inference. Especially
in early-phase trials when the sample size is typically small, different prior distribu-
tions may lead to varied interim decisions or final conclusions (Yin and Lin 2015). In
addition, the consequence of using a subjective prior is like a double-edged sword.
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If the subjective prior is consistent with the current data, proper use would increase
the trial efficiency and render earlier decision making. In contrast, improper use of
the subjective prior may be subject to biased inference and incorrect conclusions.
Hence, the choice of prior distribution should be carefully made according to the
clinical setting, the question at hand, expert knowledge, and sufficient simulation
studies.

Over recent decades, the robustness of Bayesian adaptive designs has been
largely ignored. Most Bayesian methods use sophisticated parametric probability
distributions to model the parameter of interest. For example, the logistic regression
model is usually considered to quantify the relationship between the toxicity and
dose levels in dose-finding designs (Neuenschwander et al. 2008), and exponential
distribution is used to model the time-to-event data in phase II designs (Yin et al.
2018). Because of the parametric assumption, the Bayesian adaptive methods tend to
be sensitive to model misspecifications. When the model is correctly specified, there
is efficiency gain in decision making and inference. On the other hand, inefficient
decisions or biased inferences are expected if the model is misspecified. When the
sample size is small such as in early-phase trials, the performance of Bayesian
adaptive designs to the model specifications can be particularly sensitive (Neuen-
schwander et al. 2008). Therefore, it is desirable to develop a design that yields
robust performance across various underlying scenarios. Common approaches to
robustify Bayesian adaptive designs include using nonparametric or flexible models
(Liu and Johnson 2016; Liu and Yuan 2015), borrowing strength from ensemble
approaches (Lin and Yin 2016; Yin and Yuan 2009b), or calibrating the model
parameters based on extensive simulation studies (Yuan et al. 2017).

In practice, the adoption of novel Bayesian adaptive designs to improve the
efficiency and success rate of trials is in urgent need (Biswas et al. 2009; Chevret
2012; Rogatko et al. 2007). Mainly due to their simplicity, poorly performing con-
ventional designs are still dominantly used. A major barrier preventing translation
in practice is that most Bayesian adaptive designs require complicated statistical
modeling and intensive computation, making them difficult to understand and
requiring expensive infrastructure to implement (Yuan et al. 2019). Efforts to
increase the use of Bayesian adaptive designs among statisticians and clinicians
should be made. Statisticians can develop well-performing, yet easy-to-implement
approaches that can satisfactorily balance the simplicity-versus-performance trade-
off (Yuan et al. 2019). To this end, model-assist designs show great promise in
taking the best of two worlds: having the superior performance as with model-
based designs, while preserving the simplicity in study conduct as with rule-based
designs. When superiority meets simplicity, these model-assisted designs fit the
new KISS principle: Keep It Simple and Smart (Yuan et al. 2019). More collabo-
rations and educational activities between statisticians and clinicians should be still
stressed.

Software applications can help disseminate and transfer the knowledge of
applying novel Bayesian designs in clinical trials. The software online sites at MD
Anderson Cancer Center (https://biostatistics.mdanderson.org/softwareonline/ and
https://trialdesign.org) provide more than 80 freely available software programs

https://biostatistics.mdanderson.org/softwareonline/
https://trialdesign.org
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for clinical trial design and analysis. This has led to more than 21,000 downloads
between 2004 and 2019. Nonetheless, statisticians should be aware of the lack of
available software packages for most existing Bayesian adaptive methods. Sustained
efforts are always needed to develop and keep updated the user-friendly software
and to educate clinical trialists on how to implement it.

Adaptive designs play an important role in clinical trials. To accelerate drug
development, umbrella trials, basket trials, enrichment trials, and platform trials are
more and more popular nowadays. In era of precision medicine, the new features
of targeted agents and immunotherapies complicate the design and conduct of
clinical trials, and the need for novel trial methods is ever increasing (Nass et al.
2018). Bayesian methods provide a flexible and coherent framework to address trial
complexity, and an efficient learning process to study the treatments. Teamwork
is required, such that statisticians work closely with clinicians, researchers, and
personnel from pharmaceutical companies and regulatory agencies to develop better
trials using more intelligent approaches, such as Bayesian methods, and implement
them in the fight against cancer.
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Abstract Computational topologists recently developed a method, called persistent
homology to analyze data presented in terms of similarity or dissimilarity. Indeed,
persistent homology studies the evolution of topological features in terms of a single
index, and is able to capture higher order features beyond the usual clustering
techniques. There are three descriptive statistics of persistent homology, namely
barcode, persistence diagram and more recently, persistence landscape. Persistence
landscape is useful for statistical inference as it belongs to a space of p−integrable
functions, a separable Banach space. We apply tools in both computational topology
and statistics to DNA sequences taken from Clostridioides difficile infected patients
treated with an experimental fecal microbiota transplantation. Our statistical and
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topological data analysis are able to detect interesting patterns among patients and
donors. It also provides visualization of DNA sequences in the form of clusters and
loops.

1 Introduction

Topological data analysis has become a formidable technique for analyzing high-
dimensional data, especially when the purpose is for classification and discrim-
ination. Methodological advancement has been rampant along with applications
to medical or scientific data, see for example Nicolau et al. (2011), Heo et al.
(2012) and more recently (Kovacev-Nikolic et al. 2016). In this paper we propose
making use of computational topological techniques to analyze gut microbiome
data at the basic DNA sequence level based on data collected from sequencing
the 16S rRNA gene. We are particularly interested in seeing changes in patient
gut microbiome for a certain hypervirulent infectious disease following a radical
experimental procedure that is gaining widespread attention and usage in medicine.

Clostridioides (formerly Clostridium) difficile (C. difficile) infection (CDI) is the
most frequent cause of healthcare-associated infections and its rates are growing in
the community (Kelly and LaMont 2008; Loo et al. 2005). One of the major risk
factors for developing CDI is through antibiotics. The healthy and diverse bacteria
which reside within the colon are the major defense against the growth of C. difficile.
Antibiotics kill these bacteria and allow C. difficile to multiply, produce toxins and
cause disease. The current standard of care for this infection are the antibiotics:
metronidazole, vancomycin and more recently, fidaxomicin. The efficacy of these
antibiotics is limited as vancomycin and metronidazole also suppress the growth
of anaerobic bacteria such as Bacteriodes fragilis group which protect against
proliferation of C. difficile. The efficacy of the recent narrower spectrum fidaxomicin
is still under investigation although the initial data shows promise, Louie et al.
(2011). The persistent disruption of healthy colonic flora may in part explain the
reason for recurrences following a course of treatment with these antibiotics.

An alternative to antibiotic therapy for CDI, in particular for recurrent and
refractory diseases, is to infuse healthy gut bacteria directly into the colon of
infected patients to combat C. difficile by a procedure known as fecal microbiota
transplantation (FMT). FMT is a process in which a healthy donor’s stool is infused
into an affected patient. This can be performed using a colonoscope, nasogastric
tube, enema, or more recently, in capsulized pill form, Khanna et al. (2016).
FMT serves to reconstitute the altered colonic flora, in contrast to treatment with
antibiotic(s), which can further disrupt the establishment of key microbes essential
in preventing recurrent CDI. The literature reveals a cumulative clinical success rate
of over 90% in confirmed recurrent CDI cases (Gough et al. 2011).

There has been a growing interest into the microbiome of CDI patients (Deth-
lefsen et al. 2008; Manges et al. 2010; Vincent et al. 2013; Petrof et al. 2013;
Schubert et al. 2014) especially those involved with FMTs (Shahinas et al. 2012;
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Van Nood et al. 2013; Hamilton et al. 2013; Song et al. 2013; Weingarden et al.
2014; Seekatz et al. 2014). In case of the latter, there are differences in: the route
of administration with all forms covered; different donor selection criteria, some
used family members, some used a pool of donors; different sample sizes; and
different sequencing procedures and equipment. Despite these differences, there
seems to be two fundamental points of agreement across all studies. The first is
that CDI patients have low diversity in their microbiome, and that after receiving
an FMT(s), their diversity was increased. The second fundamental agreement is that
CDI patients who were treated with FMT undergo changes in their microbiome that
at least initially have similarities to that of their donors. This paper provides further
reinforcing evidence to support these two fundamental points in the framework of
FMT delivered by enema, with a small exclusive donor pool. The novelty comes
from using computational topological techniques to demonstrate this.

We now summarize the paper. In Sect. 2 we explain the details of the clinical
data. In Sect. 3 we provide topological preliminaries where we go over the Vietoris-
Rips complex, and three topological descriptors: barcodes, persistence diagrams,
and persistence landscapes. In the following Sect. 4, we apply these techniques and
demonstrate the added value of the topological approach at the basic DNA sequence
level. We complete our article in Sect. 5 with a summary of the key findings.

2 CDI FMT and 16S rRNA Data

From Lee et al. (2014), 19 patients had stool samples available for sequencing their
16S rRNA gene prior to treatment, pre-FMT, followed by a post treatment, post-
FMT. The full details are described in Pinder (2013).

The gender of the patients was 63% female. The average age (to the time of
their first FMT) was 77.11 with a standard deviation of 9.54 years, range 49–92
years. In-hospital patients accounted for 53% while the total peripheral white blood
count (×109/L) had a median of 14.63 with an inter-quartile range of 7.9–16.5.
Three patients had temperature greater than 38 ◦C, and 11 patients experienced
abdominal pain. Approximately half (53%) of the patients were on proton-pump
inhibitors. Eight patients were refractory to treatment with metronidazole and four
patients were refractory to vancomycin. These four patients were also refractory to
metronidazole. No patients were on fidaxomicin as it had not been commercially
available at that time, Lee et al. (2014). The patient characteristics are provided in
Table 1.

Predisposing conditions that may have resulted in CDI were: cellulitis,
extreme fatigue, respiratory tract infections, septicemia, surgery and open wounds,
and urinary tract infections. Some conditions were unknown. The majority of
patients received the following antibiotics prior to contracting CDI: amoxicillin,
azithromycin, cefazolin, cefprozil, cephalexin, ciprofloxacin, clindamycin,
clarithromycin, cloxacillin, levofloxacin, moxifloxacin and nitrofurantoin. Some
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Table 1 Patient
demographics and pre-FMT
conditions

Covariate

Age–years

Mean ± Standard Deviation 77.11 ± 9.54

Range 49–92

White Blood Count–×109 per litre

Median 14.63

Inter-quartile range 7.9–16.5

Female–count(%) 12 (63%)

In-hospital–count(%) 10 (53%)

Fever–count(%) 3 (16%)

Abdominal Pain–count(%) 11 (58%)

Proton pump inhibitor–count(%) 10 (53%)

Refractory to Metronidazole(%) 8 (42%)

Refractory to Vancomycin(%) 4 (21%)

Table 2 Pre-FMT treatment
for CDI

Standard of care treatment

Metronidazole(%) 17 (90%)

Metronidazole–days

Mean ± Standard deviation 23.74± 16.51

Range 01–70

Vancomycin(%) 18 (95%)

Vancomycin–days

Mean ± Standard deviation 32.58± 20.94

Range 7–86

Vancomycin taper(%) 6 (32%)

Vancomycin taper–days

Mean ± Standard deviation 37.58± 93.86

Range 38–390

Metronidazole-Vancomycin(%) 3 (16%)

Metronidazole vancomycin–days

Mean ± Standard deviation 5.21± 18.55

Range 2–80

patients claimed no prior antibiotics used. In an interesting paper, the affects of
ciprofloxacin was studied Dethlefsen et al. (2008) using 16S rRNA deep sequencing.

The patients all had varying pre-FMT regimens to treat their CDI. All had
undergone multiple rounds of traditional antibiotic therapy with metronidazole
and/or vancomycin before being administered an FMT. Seventeen received at least
one course of metronidazole monotherapy, 18 received vancomycin monotherapy,
6 received vancomycin taper, and 3 received concomitant metronidazole and
vancomycin therapy. Patients generally received two courses of metronidazole
followed by multiple courses of vancomycin before receiving FMT(s). The number
of days every patient received each therapy are summarized by their means and
standard deviations and reported below in Table 2.
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Each patient had two stool samples sequenced, one representing a pre-FMT
sequence, and one representing a post-FMT sequence. We attempted to sequence
each patient prior to them receiving any FMT which for the most part occurred,
except for one patient who failed their first FMT and their stool sample sequenced
was taken right after that event but prior to their next FMT. This patient had multiple
FMT failures, hence we took that stool sample as the pre-FMT sequence. We also
took a stool sample following each patient’s pre-FMT sample with at least one FMT
in between. For the most part, the latter occurred following their last FMT which
was the case if the patient resolved their CDI, but if they did not, then the post-FMT
sequence was not necessarily their last. We would also like to make clear that 4+-
FMT means that a patient had at least four treatments but could have had more. We
indicate such as ‘4+’ to be consistent with our clinical paper, Lee et al. (2014).

The breakdown of the data is presented in Table 3 with the above qualifications.
All patients received a single treatment, 1-FMT and 9 of them clinically resolved
their CDI. All who failed the first treatment went on to receive a second treatment.
Of the remaining patients who received 2-FMT, 2 resolved, while the remaining
went on to receive a third treatment. There were 2 successes, and 1 failure, meaning
they did not go on to receive additional treatments. Of the remaining patients
who went on to 4+-FMT, 1 resolved, 1 resolved with antibiotics used in between
treatments, and there were 3 failures.

There were several patients who received antibiotics in between FMTs as
described in our previous report (Lee et al. 2014). In addition four healthy volunteers
served as donors and were screened for transmissible pathogens and this was
outlined in an earlier report (Kassam et al. 2012). The donors took no antibiotics
for 6 months prior to stool donation. Seven donor samples taken at various times
were sequenced.

All C. difficile infections were confirmed by in-hospital real-time polymerase
chain reaction (PCR) testing for the toxin B gene. This study sequenced the forward
V3-V5 region of the 16S rRNA gene from 19 CDI patients who were treated with
FMT(s). A pre-FMT, a corresponding post-FMT, and 7 samples from four donors,
corresponding altogether to 45 fecal samples were sequenced. All sequencing was
performed on the 454 Life Sciences, GS Junior Titanium Series. The Qiagen
Stool Extraction Kit from (Omega BIO-TEK, Norcross, Georgia) was used to
extract the DNA from the fecal samples following the ‘stool DNA protocol for
pathogen detection’. Subsequent DNA amplification was done using PCR forward

Table 3 Clinical resolution
of CDI following FMT(s)

FMT Resolution Resolution* Failures Total

1 9 – 0 9

2 2 – 0 2

3 2 – 1 3

4+ 1 1 3 5

– 14 1 4 19

Patients who received antibiotics in-between FMTs are
marked with an asterisk
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and reverse primers. One round of DNA amplicon purification was performed
using the QIAquick PCR Purification Kit (Qiagen, Valencia, CA) followed by two
rounds of purification using Agencourt AMPure XP beads (Beckman Coulter Inc.,
Mississauga, ON).

We examined 19 pairs of pre-FMT and post-FMT patients, as well as donors,
selected from the 94 CDI patients treated by the fourth author over the period
2008–12, Lee et al. (2014). The selection was not random and was chosen based
on availability of stool samples as well as costs. Furthermore, there were 4 FMT
failures. It was perhaps through the failures that we learned the most. The failed
FMT cases were ultimately resolved with antibiotics even though some patients
were refractory to metronidazle and/or vancomycin beforehand. Indeed FMT acted
as a ‘gut primer’ for antibiotics to fulfill it’s role in clearing recurrent and refractory
CDI. This phenomenon of failed FMT patients resolved with antibiotics afterwards
has been observed in our work, Lee et al. (2014), as well as others, see for example
Rubin et al. (2013). The data comes from the clinical work of the fourth author who
is a practising physician. Some of this data was also examined in Rush et al. (2016).

Table 4 below, provides some descriptive statistics about the total and unique
number of DNA sequences found in the 45 samples. Note that it is impossible to
ensure that we have an approximately equal number of sequences in each sample
(Li et al. 2008).

Consider DNA sequences λ and μ. Let x be the number of point dissimilarities
between DNA bases in λ and μ, and let xλ and xμ be the number of DNA bases in λ
and μ, respectively. Let xO be the number of places where one sequence contains a
DNA base and the other an O, a gap. Let yλ and yμ be the number of gaps in λ and
μ, respectively. Let z be the length of the alignment sequences; we can assume they
are equal otherwise we choose the smaller. The various dissimilarity metrics are the
following.

The one-gap distance dO is defined by

dO(λ, μ) = x + min{yλ, yμ}
min{xλ + yλ, xμ + yμ} .

It treats a string of O’s flanked by any DNA bases in one sequence and the
corresponding region in the other as one mismatch.

The no-gap distance dN is defined by

dN(λ, μ) = x

min{xλ, xμ} .

Table 4 Descriptive statistics for unique (total) number of DNA sequences of pre-FMT and post-
FMT samples

Min Max Mean Median S.D.

Pre-FMT 147 (3230) 879 (15,140) 428.89 (9534.9) 364 (9777 ) 217.26 (3545.9)

Post-FMT 185 (2294) 1114 (28,566) 486.42 (11,308.11) 460 (10,570) 230.57 (6642.6)
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It ignores gaps in a sequence and the corresponding region in the other sequence.
The each-gap distance dE is defined by

dE(λ, μ) = x + xO

z
.

It treats every DNA base-placeholder pair as a mismatch.
These measures produce distance matrices, which are symmetric and contain

zeros on the diagonal. For this and most studies, the metric of interest is the one-gap
metric, Rush et al. (2012). As an example, suppose there are two DNA sequences
with the following base pair orientation: ATGCATGCATGC and ACGC--CATCC.
Here there are two mismatches and one gap. The distance is calculated as the number
of mismatches divided by length of the shorter sequence. The length of the shorter
sequence is 10 base pairs, since the gap is considered a single position. Hence
distance is 0.3, Rush et al. (2012). We can use the other definitions of distance,
but the definition provided is the one most commonly used. In addition, the results
do not vary significantly. Most of the DNA sequences found in the samples appear
several times, and hence the distance between them will be zero as they are identical.
For this reason, the unique DNA sequences are taken.

Table 4 shows the minimum number of unique sequences is 147. DNA sequenc-
ing does not provide exact results, hence as the number of sequences in a sample
increases, some mutations inevitably occur and these are recorded as unique
sequences (Rush et al. 2012). In other words, as the total number of sequences
increase, the number of unique sequences is also inflated. For this reason, it is
necessary to subsample from the number of unique sequences. The smallest number
of unique sequences is 147, hence a weighted subsample of size 147 is taken from
the number of unique sequences for our research. The pairwise distance between
the 147 sequences is calculated in each of the 45 samples using the one-gap metric.
Thus the data used for the primary analysis are the 147 × 147 distance matrices for
each of the 45 patients and donors. The exact details are provided in Petrov (2014).

3 Some Topological Preliminaries

Persistent homology is a branch of computational topology that has been pop-
ularized by Edelsbrunner et al. (2002) and Zomorodian and Carlsson (2005).
Several researchers have shown that persistent homology works well on detecting
topological and geometrical features in high dimensional data, see Edelsbrunner
and Harer (2008) and Nicolau et al. (2011), for example. Let us suppose that we
have points on a manifold whose dimension is not necessarily known. Topology
studies the connectivity of these points. Each point is replaced by a disk (ball)
with radius ε centered at each point. If the disks overlap, connect those center
points with edges. As the radius increases, more points will be connected and so
the number of connected components will decrease. This is analogous to clustering
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analysis in statistics. The connected components (clusters) are considered as 0-
degree topological features. The number of connected components is denoted as
the 0-th Betti number, β0. Connecting the points with edges will also create
simplices (convex hull of a geometrically independent set of points) and produce
topological features in higher dimensions. The low dimensional simplices are well
known; a vertex (0-degree simplex), an edge (1-degree simplex), a triangle (2-degree
simplex), and a tetrahedron (3-degree simplex). A loop is also called a 1-degree
topological feature and a void is a 2-degree topological feature. The k−th Betti
number βk counts the number of k−degree topological features (k−dimensional
‘holes’).

Persistent homology studies the history of topological features as the parameter ε
increases. It records the time at which a topological feature appears and disappears.
The birth, death, and survival time of features are recorded as a barcode (Collins
et al. 2004). A true feature in the data lives over a long time while noise is short
lived. We illustrate a fundamental idea of persistent homology in Fig. 1 with 40
randomly selected points from a double annulus. The loops in the middle of each
annulus are prominent 1-degree features and their intervals in the barcode shows
their persistence.

Clusters come in different shapes, see a few synthetic examples in Fig. 2. Clusters
are homogeneous subgroups where the meaning of homogeneity is dependent on the
types of similarity measure. In the double annulus, Fig. 1, if we consider geodesic
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Fig. 1 Forty points are sampled randomly from a double annulus with inner circle radius 1 and
outer circle radius 2. Forty components (top left) yield β0 = 40 at ε = 0; nineteen (top middle)
connected components, that is, β0 = 19 at ε = 0.5; top right β0 = 5 at ε = 1.0; the two most
persistent loops (bottom left and middle) in the middle of the double annulus that are born at about
ε = 1.5 die around ε = 2.4 showing two ‘true’ persistent loops. The long (0,∞) bar in β0 (bottom
right) barcode indicates the one persistent component while two longer bars in β1 barcode indicate
two loops
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Fig. 2 Synthetic examples of clusters in different forms. From ‘blobs’-intuitively familiar clusters,
to curves, ‘leaves’, and Swiss roll

Fig. 3 Top: random points are generated to mimic concentric rings analysed in Ben-Hur et al.
(2001). The three long intervals in the barcode shows three persistent loops. The three persistent
loops are drawn which correspond to three clusters in Ben-Hur et al. (2001). Bottom: point clouds
of numeric number 8 with noise. β1-barcode indicates two persistent signals. Two possible clusters
are detected as two loops, that is, 1-degree topological feature

distance between points, those points are connected to form simplices (edges and
triangles). All the edges and triangles together form a band which is homotopy
equivalent to a circle (1-degree topological feature). The authors in Ben-Hur et al.
(2001) applied support vector clustering to concentric rings and were able to detect
three rings as clusters. In Fig. 3, we generate similar concentric rings as in Ben-
Hur et al. (2001). Persistent homology analysis shows three persistent loops which
correspond to three clusters in Ben-Hur et al. (2001). Consider another example,
where points are randomly sampled from the number 8 with noise, see Fig. 3.
What are the clusters in this data? If one thinks of ‘blobs’ as clusters, there are
several patches made up with a few points. However, each loop, 1-degree topological
feature, is represented as the set of points which are close in the sense of the shortest
path distance.

To study the connectivity of a space, the space need not be represented as a
point cloud. All we need to know is how close the points are in a space where they
live. Thus point clouds or matrices of (dis-)similarity measurements among other
data forms are input data for analysis of persistent homology. A good reference for
algebraic topology and persistent homology is Edelsbrunner and Harer (2010).
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3.1 Vietoris-Rips Complex and Topological Descriptors

We will further explain Fig. 1 and then introduce three topological descriptors,
barcode, persistence diagram (Edelsbrunner et al. 2002) and persistence land-
scape (Bubenik 2015). A collection of point cloud data in a metric space is converted
to a combinatorial graph whose edges are determined by closeness between the
points. While a graph captures connectivity and clustering of data, it ignores higher
dimensional features. This idea of graph can be extended to a simplicial complex,
which is a collection of simplices.

Suppose there is a finite set of points {vi}n1 in R
d and (dis-)similarity measure

is denoted as d(vi, vj ). A k−simplex is a set of all points x ∈ R
d such that

x = ∑k
i=1, aivi , where

∑
ai = 1, ai ≥ 0. It is easy to picture low dimensional

simplices; a 0-simplex a vertex, a 1-simplex an edge joining two vertices, a 2-
simplex a triangle, a 3-simplex a tetrahedron. The Vietoris-Rips complex Vε is
a set of simplices whose vertices have pairwise distance within d(vi, vj ) ≤ ε.

Algebraic topology adds group structure onto the complex, Hk(Vε), called the
k−th homology group. For coefficients in a field, Hk(Vε) is a vector space, whose
basis consist of linearly independent k−dimensional cycles that are not boundaries.
The k−th Betti number βk , is the rank of Hk(Vε) and counts the number of
k−dimensional holes of a simplicial complex.

At each fixed ε, the homology group Hk(Vε) can be calculated, but com-
putational topologists think of persistence. The simplicial complexes grow as ε
increases, that is, Vε ⊆ Vε∗, for ε ≤ ε∗, this inclusion induces a linear map,
Hk(Vε) → Hk(Vε∗). This allows us to examine the filtration of homology. The
evolution of the simplicial complexes over increasing values of ε can be completely
tracked using barcodes or persistence diagrams. Barcode is the multiset of intervals
(ε′, ε′′), where ε′ and ε′′ indicate birth and death time of a topological feature.
Alternatively, the birth and death times can be represented by a point (ε′, ε′′) in
R

2. The collection of these points in R
2 is a persistence diagram (see Fig. 5).

The Vietoris-Rips complex and its evolution are demonstrated with random points
selected from a double annulus, see Fig. 1.

In a simple summary, the point cloud data are transformed to barcodes or
persistence diagrams in each dimension. Is it possible to calculate means and
variances of barcodes or persistence diagrams? It is well known that the Fréchet
mean of barcode (persistence diagram) is not unique. Many researchers have
advanced this research area (Fasy et al. 2013; Mileyko et al. 2011). Bubenik
(2015) introduced a third topological descriptor, persistence landscape. Given an
interval (b, d), with b ≤ d, define a function leading to an isosceles triangle,
f(b,d) : R → R, f(b,d) = min(t − b, d − t)+, where u+ = max(u, 0). The
persistence landscape corresponds to a multiset of intervals {(bi, di) : bi ≤ di}
and to a set of functions, {λ(k, t) : N × R → R} where: λ(k, t) is the k−th largest
value of {f(bi ,di )}. See an illustration in Fig. 4.
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Fig. 4 (Left) Three intervals in a barcode. (Middle) Isosceles triangles of intervals. (Right)
Persistence landscape

3.2 Statistical Inference with Persistence Landscape

On N × R, the product of the counting measure on N and the Lebesgue measure
on R are used. The persistence landscape, λ(k, t) : N × R → R, is bounded and
nonzero on a bounded domain. Hence persistence landscape belongs to Lp(N×R),
with a metric induced by p-integrable functions and hence is a separable Banach
space (Bubenik 2015). Bubenik also showed that when p ≥ 2, with finite
first and second moments, persistence landscape satisfies a Strong Law of Large
Numbers (SLLN) and a Central Limit Theorem (CLT). Suppose %1, . . . , %n are
the random variables corresponding to persistence landscapes. The vector space
structure of Lp(N×R) induces the mean landscape as the pointwise mean, λ̄(k, t) =
1
n

∑n
i=1 λi(k, t).

On p-integrable space, Lp(N × R), where p ≥ 2 and under the assumption of
finite first and second moments, for any continuous linear functional f , the random
variable f (λ(k, t)) also satisfies SLLN and CLT (Ledoux and Talagrand 2002).
There are many choices of f , but the integration of λ might be a natural choice,
f (λ(k, t)) = ∑

k

∫
R
λ(k, t) dt. It has a good interpretation; the values of f are an

enclosed total area of all curves λ(k, t). Choice of f might depend on data, see
other choices in Bubenik (2015). With the integration as a functional choice, we are
ready to set hypotheses. Let Y1 = f (λ1(k, t)) and Y2 = f (λ2(k, t)) be random
variables for groups 1 and 2. We let μ1 and μ2 be corresponding population means.
The hypothesis of interest is

H0 : μ1 − μ2 = 0 vs. Ha : μ1 − μ2 �= 0. (1)

We also consider the similarity measure between persistence landscapes as well
as between persistence diagrams. The measure between persistence landscape is
defined as the p-norm of difference. Suppose there are two samples that have
landscapes denoted as λ1(k, t) and λ2(k, t). Then the Lp-norm is defined in (2).
This compares pairwise the area under the contours between λ1(k, t) and λ2(k, t)
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||λ1 − λ2||p =
(∑

k

∫
R

|λ1(k, t)− λ2(k, t)|p
)1/p

. (2)

For our data, we will calculate the persistence landscape distance using both L1
and L2 norm in (2). Wasserstein distance (see Edelsbrunner and Harer 2010, for
example) is a popular measure of dissimilarity between persistence diagrams. All
the results based on persistence landscape (p = 1, 2) and Wasserstein distance
are similar and so all our statistics and presentations are based on L2 norm in the
following sections.

4 Topological Data Analysis

The computation of the Vietoris-Rips complex, which is computationally intensive,
is carried out using the phom package in R (Tausz 2011). The scale of the computing
required the resources of the Westgrid computer network. All 45 samples had
barcodes in degrees zero and one. However in degree two, only 12 of the pre-FMT
samples and 15 of the post-FMT samples have intervals in barcode. Persistence
diagram makes visual pairwise comparisons easier than barcode. Figure 5 shows
the corresponding persistence diagrams of patient 10 before and after the FMT
treatment. Similar results were obtained from other patients and are reported in
Petrov (2014). At first glance there does not appear to be anything interesting but
there are some general trends. We observe that the degree 0 persistence diagram for
the pre-FMT samples have components that die a lot sooner than those in the post-
FMT samples. Similarly, the birth and death times of these loops are shorter for the
pre-FMT samples than for the post-FMT samples. These observations may indicate
that there could be a true difference in the topological structure in degrees zero and
one between the two groups. On the other hand, many of the intervals in degree one
are very short, thus what we observe may be noise rather than signal.

Unlike barcode or persistence diagrams, we can calculate means and variances
of persistence landscapes. Figure 6, shows the average persistence landscapes of
pre-FMT and post-FMT samples in degree 0 and 1. The trend in average persistence
landscapes is the same as in persistence diagrams or barcodes, that is, the post-FMT
samples have slightly longer intervals than the pre-FMT in degree 0 and 1. Similar
type of results can be obtained using area under the curve (AUC) and is reported in
Martinez et al. (2019).

Quadratic discriminant analysis (QDA) was performed on the β0- and β1-Isomap
embedded coordinates, see Fig. 7. Three groups are well separated on the plane of
both degree 0 and 1. It is interesting to see that the donors are grouped on one side
and pre-FMT patients on the other side, and post-FMT patients between the two.
This is in complete agreement with what clinicians believe is happening and it is
frequently reported that patients gut microbiome take on the characteristics of the
donor microbiome following an FMT, see Shahinas et al. (2012), Weingarden et al.
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Fig. 5 Persistence diagrams for patient 10 before (in blue) and after (in red) FMT in (a) degrees
zero and (b) one. Note that the triangles in (a) have birth at time zero but are moved slightly for
visual purposes

Fig. 6 Average persistence landscapes for pre-FMT and post-FMT patients in degrees zero and
one. In degree zero, the post-FMT group has a denser grouping of contours, which means that
there are more clusters than in the post-FMT samples. In degree one, the pre-FMT group has three
persistent loops on average and the post-FMT sample has two. However, the post-FMT sample
loops are more persistent than the pre-FMT samples. We note that the vertical scales in the plots in
degree 0 and 1 are different. (a) Pre-FMT-degree 0. (b) Post-FMT-degree 0. (c) Pre-FMT-degree 1.
(d) Post-FMT-degree 1

(2014) and Khanna et al. (2016). A description of QDA can be found in any standard
multivariate analysis text, for example, Johnson and Wichern (2007).

It would have been very interesting to compare the matched donor and the patient
after FMT, but this information was not recorded during this study, Lee et al. (2014).
The classification in R

2 of degree 0 in Fig. 7 show patients 7, 16 and 19 post-FMT,
become much like the donors, particularly donors 2 and 3. Patients 9 and 15 post-
FMT did not appear to change much from their pre-FMT. The classification in R

2 of
degree 1 in Fig. 7 show a few post-FMT patients (7, 10, 15) are close to the donors
after FMT while most post-FMT patients remain similar to pre-FMT. Following Lee
et al. (2014), a clinical trial comparing the efficacy of frozen versus fresh FMT has
been completed, see Lee et al. (2016). Here stool samples were collected at pre-
FMT, followed by day-10, week-5, week-13 following a patients last FMT along
with the exact donor stool sample pairing. Sequencing of this data is currently
underway.
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Fig. 7 Classification in two-dimensional space. Three groups are well separated in R
2 for both

degree 0 and 1. The canonical functions for both β0- and β1- Isomap discriminate pre-FMT patients
and donors on each quadrant while post-FMT patients are located between the two. (Left) Patients
7, 16 and 19 post-FMT are classified as donors, possibly indicating their donors might be 2 and 3.
Patients 9 and 15 do not appear ‘improved’ after FMT as they are classified as the group of patients
before the treatment. Patients 7, 16 and 19 are not only similar to donors but also further away then
their pre-FMT position. This may indicate they have improved the most after the treatment. (Right)
In terms of loops in DNA sequences, a cluster of post-FMT patients are similar to the group of
post-FMT treated patients. Donor 7 could be the donor for patient 10

We recall that our ‘raw’ data was the dissimilarity matrix between 147 unique
DNA sequences per subject so that there is a total of forty five 147 × 147 matrices.
For each matrix, we construct a Vietoris-Rips complex, then calculate persistence
landscapes which enables us to perform statistical inference. Hypothesis test (1)
was carried out to compare pre-FMT and post-FMT samples. The p−values of the
paired t−tests are 0.0064, 0.0083 and 0.2591 in degree 0, 1, and 2, respectively.
Since all of the analysis above is based on the 147 sequences randomly chosen from
those patients whose number of DNA sequences are bigger than 147, we repeated
this analysis 10 times with independent 147 DNA samples. The test statistics and
p−values for 10 runs are similar showing consistency of the result regardless of
which 147 DNA sequences were applied.

Hypothesis tests show significant difference of topological features in degree
0 and 1 between patients before and after FMT treatment. For degree 0, this
implies that the number of clusters and their persistence on DNA sequences in pre-
FMT samples are different from those in post-FMT samples. For degree 1, this
implies that the number of loops (cycles) and their persistence in DNA sequences
in pre-FMT samples are different from those post-FMT samples. We present DNA
sequences as points cloud in R

3 and observe patterns of clustering and loops in DNA
sequences in the following section.
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4.1 Clusters and Loops in DNA Sequences

Applying the dimension reduction methods, Isomap and multidimensional scaling
(MDS), to the dissimilarity measure between DNA sequences, we project the DNA
sequences to R

3 and obtain embedded coordinates. Scree plots appear to indicate
embedding dimension of the DNA sequences is 3. The residual variance in MDS
was much higher than for Isomap, hence the figures based on Isomap are presented
below.

Figure 8 shows the Isomap embedded coordinates for donor 3, post-FMT patient
7 and pre-FMT/post-FMT patient 19. From the Fig. 8, it can be seen that donor 3
and post-FMT patient 7 have a similar spread among the sequences and there are 2–
3 distinct clusters. We have also noticed that donor 2 and post-FMT patient 18 also
have similar structures. The donors generally have a wider spread, which would
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Fig. 8 Plots (a) and (b): 147 DNA sequences donor 3 and post-FMT patient 7 on Isomap
embedded coordinates. Both samples have roughly the same number of clusters. In general, donors
and patients that were close in R

2 in Fig. 7 had similar number of clusters. Plots (c) and (d):
147 DNA sequences of pre-FMT and post-FMT of patient 19 on Isomap embedded coordinates.
There are several clusters in both pre-FMT/post-FMT patient 19. The number of clusters in DNA
sequences of post-FMT patient 19 is higher, but there are many clusters formed by a single DNA
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indicate more diverse DNA sequences and hence a healthier gut microbiome. For
the number of clusters, there are higher number of clusters in post-FMT samples,
however some clusters contain only one DNA sequence and are more spread out.
For example, there are about 5 groups in pre-FMT patient 19; many clusters with
fewer number of DNA sequences in each cluster in post-FMT patient 19. Ignoring
the clusters with singletons, we observe two large clusters in post-FMT patient 19.
This information was shown in Fig. 8 as well as on the barcode and the persistence
diagram. The two clusters in post-FMT patient 19 can be seen in the barcode
diagram as the two points that have the highest ‘death’ time. The spread of clusters in
pre-FMT patient 19 are shown as the bars that have the earlier birth and earlier death
times (figures are not shown here). This trend is visible in other samples and may
explain the small p−value for testing the difference in area under the persistence
landscapes which was calculated in Sect. 4.

5 Conclusions

We illustrated how topological data analysis can be applied to similarity measures of
DNA sequences. DNA sequence data was analyzed using three summary statistics
of persistent homology; namely, barcodes, persistence diagrams and persistence
landscapes. The main objective was to see if there are any differences in the
topological feature of DNA sequences in the gut microbiome of CDI patients before
and after FMT treatment.

From visual inspection of barcodes and persistence diagrams it was seen that the
components in dimensions zero and one died sooner in the pre-FMT samples than in
the post-FMT samples. Persistence landscapes were able to present this difference
more formally, showing that there was a difference in the average area under the
persistence landscapes for pre-FMT and post samples. Alternative interpretation of
this was that there was a difference in the number and size of clusters in dimension
zero, and the number and size of loops in dimension one. The post-FMT samples
had more clusters than the pre-FMT samples, whereas there was no visually obvious
difference in the size of the loops, but the loops were bigger for the post samples.

We performed discriminant analysis on β0, β1-Isomap embedded coordinates.
The classification on two dimensional space for both degree 0 and 1 show good
separation among three groups. For degree 0, the first two discriminant function
separates pre-FMT patients and donors, and post-FMT patients sit between the two.
For degree 1, the first two discriminant function separates pre-FMT and post-FMT
patients and donors are between the two.

The major drawback of this analysis is that information about individual
sequences is lost. This project looked at the topological structure created by
the sequences but no details were provided about the individual sequences. As
the microbiological technology and methods improve it may be interesting to
incorporate this information. Also of interest would be meaningful identification
of bacterial species. Studies of the 16S rRNA gene only measure presence of the
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species, but do not say anything about their functionality. For the latter one has to
turn to the metabolome which is currently under investigation with the patients in
Lee et al. (2016).

Acknowledgements We are grateful to all of the donors, families and patients who took part in
this study. We also appreciate the clinical and research staffs at St Joseph’s Healthcare Hamilton
where the clinical work had been performed. The corresponding author would also like to thank
the participants of the SAMSI Working Group “Nonlinear Low-dimensional Structures in High-
dimensions for Biological Data” which was part of the 2013–14 SAMSI LDHD Program. Much
of the discussions were centred on the work presented.

We also thank Violeta Kovacev-Nikolic for her help with matlab code and Fig. 1; Professor
Patrick Schloss for his help using mothur; and Yi Zhou for his help with Figs. 2 and 3.
Computations in this research were largely enabled by resources provided by WestGrid and
Compute Canada.

Funding support was provided by: CANSII CRT; CIHR 413548-2012; McIntyre Memorial
Fund; Michael Smith Foundation Health Research Grant; NSERC DG 293180, 46204; NSF DMS-
1127914; and, PSI Foundation Health Research Grant 2013, 2017. The study and permission
protocol was approved by the Hamilton Integrated Research Ethics Board #12-3683, the University
of Guelph Research Ethics Board 12AU013 and the University of Alberta, Health Ethics approval
Pro00047221.

Appendix: Clinical and Microbiome Data

Description of the data:

sex Female
age Years to the first treatment
inst hospitalized at the first treatment
fever Above 38 ◦C
abd Abdominal pain
wbc White blood count
ppi Proton pump inhibitor
res1 Resolution 1-FMT
res2 Resolution 2-FMT
d1 Days between 1-FMT and 2-FMT
res3 Resolution 3-FMT
d2 Days between 2-FMT and 3-FMT
res4 Resolution 4-FMT
d3 Days between 3-FMT and 4-FMT
nft Number of FMTs
res Resolution
pre-fmt Number of days prior to first FMT sequenced
post-fmt Number of days past last FMT sequenced
rmet Refractory to metronidazle
met Metronidazle
durm Duration of metronidazle
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rvan Refractory to vancomycin
van Vancomyin
durv Duration of vancomycin
vata Vancomycin taper
durvt Duration of vancomycin taper
meva Metronidazle vancomycin concomitantly
dmeva Duration of metronidazle vancomycin concomitantly
abx Antiobiotics in between FMTs

The phylum count data:

b’s The pre-FMT sample
a’s The post-FMT sample
1 Firmicutes
2 Proteobacteria
3 Bacteroidetes
4 Actinobacteria
5 Unclassified(92);unclassified(92);unclassified(92);unclassified(92);unclassi-

fied(92);
6 Synergistetes
7 Fusobacteria
8 Verrucomicrobia
9 Tenericutes
10 Acidobacteria
11 Spirochaetes
12 Deinococcus-Thermus

Data-1

CSV spreadsheets: 19_patients.csv; 7_donors.csv.

Data-2

Pavel thesis (contains codes and sequence data):
https://drive.google.com/drive/folders/1ooBJYOpwW8OStPo3An-l-shkR62lzxXT
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Simultaneous Variable Selection
and Estimation in Generalized
Semiparametric Mixed Effects Modeling
of Longitudinal Data

Mozghan Taavoni and Mohammad Arashi

Abstract Longitudinal data frequently arises in biological, medical and epidemio-
logical studies, and the main characteristic of it is that repeated measurements from
the same subjects are correlated over time. This chapter considers the problem of
simultaneous variable selection and estimation in the generalized semiparametric
mixed effects model (GSMM) for longitudinal data. The GSMM is a natural
extension of the semiparametric mixed effects model where accommodates response
variables that follow distributions other than the normal, presents an arbitrary
nonparametric smooth function to model the complicated time trend and account
for the within subject correlation using the random effects. When a large number of
variables are available in the data, it is of critical importance to select the best subset
of variables in order to develop an informative yet parsimonious model. The chal-
lenge in analyzing longitudinal data when responses are non-normal is the difficulty
to specify the full likelihood function. A standard approach to deal with this is to
use the generalized estimating equations (GEE). We propose a penalization type of
GEE while using regression spline to approximation the nonparametric component.
This approach apply the penalty functions such as SCAD to the estimating equation
objective function in order to simultaneously estimate parameters and select the
important variables. The proposed penalized estimation technique involves the
specification of the posterior distribution of the random effects, which cannot be
evaluated in closed form. However, it is possible to approximate this posterior
distribution by producing random draws from the distribution using a Metropolis
algorithm, which does not require the specification of the posterior distribution.
Moreover, we discuss how to select the regularization parameters and the model
selection procedure for assessing the fits of candidate models is also addressed. For
practical implementation, we adopt an appropriate iterative algorithm to select the
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significant variables and estimate the nonzero coefficient functions. Performance of
the proposed penalization technique is analyzed through a simulation study along
with the analysis of HIV data.

1 Introduction

In biological, medical, and epidemiological studies, we frequently involve lon-
gitudinal data and the main characteristic of it is that repeated measurements
from the same subjects are correlated over time. Linear mixed effects models
(LMM) proposed by Laird and Ware (1982) is popularly applied, using random
component which takes care the correlation among observations from the same
subject. Motivated by beeing restrictive LMM to the linear relationship between
the response and the covariates, especially when the variety of response over time
is in a complicated manner and it is difficult to model its time trend using a simple
parametric function, Zeger and Diggle (1994) introduced the partially linear mixed
models (PLMM) which have received increasing attention in recent years to analyze
longitudinal data, because of most flexibility by including nonparametric function
and also conserning within subject correlation. Earlier developments of PLMM can
be found in Zhang (2004), Li and Zhu (2010) and Sinha and Sattar (2015).

In many research areas, longitudinal data are commonly encountered from
repeated categorical or non-normal data, such as binomial or poisson type responses.
An approach that can be applied in such situations is to use the generalized
linear model (GLM, McCullagh and Nelder (1989)). The challenge in analyzing
longitudinal data when responses are non-normal is that it is difficult to specify
the full likelihood function. This motivated (Liang and Zeger 1986) to develop
an approach called generalized estimating equation (GEE) which is a multivariate
analogue of the quasi-likelihood. Generalized linear mixed effects model (GLMM)
was proposed by Fitzmaurice et al. (2004), which accommodates response variables
that follow distributions other than the normal one and contains random effects
in the linear predictor, is a useful extension of the GLM and has also become
a very popular method to analyze longitudinal data. To eliminate the limitation
of the GLMM for modeling non linear time trend, a generalized partially linear
mixed model (GPLMM), a natural extension of the GLMM, is widely used to
analyze longitudinal data by incorporating the within subject correlation using
random effects and an arbitrary smooth function to model the time effect. Further
developments along this line in the framework of the GPLMM can be found in Fan
et al. (2007), Qin and Zhu (2007), Qin and Zhu (2009), Liang (2009) and Kurum
et al. (2016) to mention afew.

When a large number of variables are available in the data, it is of critical
importance to select the best subset of variables in order to develop an informative
yet parsimonious model. There is a large body of variable selection methods for
cross-sectional data. For example, Frank and Friedman (1993) considered the Lq
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penalty, which yields the bridge Regression. Tibshirani (1996) proposed the least
absolute shrinkage and selection operator (LASSO), which can be viewed as a
solution to the penalized least squares with the L1 penalty. Zou (2006) further
developed the adaptive Lasso to fulfill oracle properties. Through combining both
ridge (L2) and lasso (L1) penalty together, Zou and Hastie (2005) proposed the
Elastic-net, which also has the sparsity property, to solve the collinearity problems.
Fan and Li (2001) proposed the smoothly clipped absolute diviation (SCAD)
penalty method and proved the SCAD estimators enjoy the oracle properties.
All these variable selection procedures are based on penalized estimation using
penalty functions, which have a singularity at zero. Consequently, these estimation
procedures require convex optimization, which incurs a computational burden. To
overcome this problem, Ueki (2009) developed a new variable selection procedure
called the smooth-threshold estimating equations that can automatically eliminate
irrelevant parameters by setting them as zero. In addition, the resulting estimator
enjoys the oracle property in the sense (Fan and Li 2001) suggested. Bondell et al.
(2010) proposed simultaneous selection of the fixed and random factors using a
penalized joint log likelihood for the LMM. Ni et al. (2010) proposed a double-
penalized likelihood approach for simultaneous model selection and estimation for
PLMM. Ma et al. (2013) applied proper penalty functions in additive partially linear
models.

In contrast to extensive attention on model selection for Gaussian longitudinal
data, research on model selection for non-Gaussian longitudinal data in the frame-
work of GLM remains largely unexplored. To do variable selection, Pan (2001)
developed a quasi-likelihood information criterion (QIC) which is analogous to
AIC; Cantoni et al. (2005) generalized Mallow’s Cp criterion; and Wang and Qu
(2009) proposed a BIC criterion based on the quadratic inference function. These
are best subset type model selection procedures which become computationally
intensive when number of parameters is moderately large. Regarding regularization
methods for longitudinal data, Fu (2003) proposed a generalization of the bridge
and Lasso penalties to GEE models. Xu et al. (2012) proposed a weighted least-
squares (WLS) type function to study the longitudinal GLMs with a diverging
number of parameters. Dziak (2006) generalized the Lasso and SCAD methods to
the longitudinal GLMs and studied the pn consistency, the asymptotic normality,
and the oracle property of the penalized GEE estimator in the chapter “Multivariate
Order Statistics Induced by Ordering Linear Combinations of Components of
Multivariate Elliptical Random Vectors” of his Ph.D Thesis. Wang et al. (2012)
proposed the SCAD-penalized GEE for analyzing longitudinal data with high-
dimensional covariates. The SCAD-penalized selection procedures were illustrated
in Xue et al. (2010) for generalized additive models with correlated data. To the best
of our knowledge, variable selection problem is not attended in the GPLMM.

Here, we consider the GPLMM with longitudinal data by allowing for non-
Gaussian data and nonlinear link functions. We develop simultaneous variable
selection and estimation procedures in the framework of maximum likelihood esti-
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mation based on the penalized estimating equation approach via B-spline regression
to estimate the nonparametric components. We apply the penalty functions to the
estimating equation objective function such that the proposed procedure can simul-
taneously estimate parameters and select the important variables. The proposed
penelaized estimation involves the specification of the posterior distribution of the
random effects, which cannot be evaluated in a closed form, and we use a Metropolis
algorithm, which does not require the specification of the posterior distribution. We
obtain consistency and asymptotic normality of the resulting estimators. To estimate
the parameters, a computationally flexible iterative algorithm is developed.

The plan of this chapter is as follows. Section 2, formulates the model, discusses
the approximation of the nonparametric function using splines and considers
the estimation under the GEE framework. Section 3 discusses how to select
the regularization parameters and the model selection procedure for assessing the
fits of candidate models is also addressed. Moreover, asymptotic properties of
the estimators and a Monte Carlo Newton–Raphson algorithm to implement the
procedures is given. Section 4 includes model assessments via simulations and data
analysis. Some concluding remarks are given in Sect. 5. The proofs of the main
results are given in the Appendix.

2 Generalized PLMM

Consider a longitudinal study with n subjects and ni observations over time for the
ith subject (i = 1, . . . , n). Let ui be a q× 1 vector of random effects corresponding
to the ith subject, and yij be an observation of the ith subject measured at time
tij for i = 1, . . . , n and j = 1, . . . , ni . Suppose that yi1, . . . , yini given ui are
conditionally independent and each yij |ui is distributed as an exponential family
distribution whose probability density function is given by

p(yij |ui ,βn, φ) = exp
[
φ−1{yij θij − b(θij )} + c(yij , φ)

]
, (1)

where φ is a scale parameter, c(., .) is a function only depending on yij and φ, and
θij is the (scalar) canonical parameter. The conditional expectations and variances
of yij given ui are given by μij = E(yij |ui ) = b.(θij ) and νij = var(yij |ui ) =
φb..(θij ), respectively, where b.(θ) = ∂b(θ)

∂θ
and b..(θ) = ∂2b(θ)

∂θ2 . In this chapter, we
assume that the conditional mean μij satisfies

g(μij ) � ηij = X�
ijβn + Z�

ijui + f (tij ), i = 1, . . . , n; j = 1, . . . , ni, (2)

where g(.) is a known monotonic link function, X�
ij is a pn×1 vector of explanatory

variables, βn is a pn × 1 vector of unknown parameters of the fixed effects, Z�
ij is

a q × 1 vector of explanatory variables relating to the random effects, f (.) is an
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unknown smooth function which is continuous and twice differentiable function on
some finite interval. The dimension of the covariates pn is allowed to depend on
the number of subjects n. To complete the specification, assume that the random
effects u = {u1, . . . ,uq} independently follow the same distribution, depending on
parameters � as

ui ∼ pui (ui |�). (3)

The model defined in Eqs. (1)–(3) is referred to as generalized semiparametric
mixed model (GPLMM).

2.1 Smoothing Spline Approximation

Following the most literature such as He et al. (2005) and Qin and Zhu (2009), the
unspecified smooth function can be approximated sufficiently well by the following
polynomial spline

f (tij ) = α0 + α1tij + . . .+ αdt
d
ij +

Ln∑
l=1

α(d+1)+l(tij − t
(l)
i )d+ = B(tij )

�αn,

where d is the degree of the polynomial component, Ln is the number of interior
knots (which rate of Ln will be specified in Sect. 3.3., t (l)i is referred as knots

of the ith subject, B(tij ) =
(

1, tij , . . . , tdij ,
(
tij − t

(1)
i

)d
+, . . . ,

(
tij − t

(Ln)
i

)d
+
)

is

a hn × 1 vector of basis functions, hn is the number of basis functions used
to approximate f (tij ), hn = d + 1 + Ln , (a)+ = max(0, a), and αn =
(α0, . . . , αd, αd+1, . . . , αd+1+Ln)� is the spline coefficients vector of dimention
h. Regression splines have some desirable properties in approximating a smooth
function. It often provides good approximations with a small number of knots. The
spline approach also treats a nonparametric function as a linear function with the
basis functions as pseudo design variables, and thus this linearizes our regression
model (2) so that our regression problem becomes

g(μij ) � ηij = X�
ijβn + Z�

ijui + B(tij )αn, i = 1, . . . , n; j = 1, . . . , ni . (4)

For convenience, model (4) can take the form

g(μij ) � ηij = D�
ij θn + Z�

ijui , i = 1, . . . , n; j = 1, . . . , ni,

where Dij = (
X�
ij ,Bj (t i )

�)� being a (pn + hn) × 1 design matrix combining
the fixed-effects and spline-effects design matrices for the j th outcome of the ith
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subject, and θn = (β�
n ,α

�
n )

� is a (pn + hn) × 1 combined regression parameters
vector that must be estimated.

According to the linearization of the GPLMM (2) using spline approach, any
computational algorithm developed for the GMM can be used for the GSMM. We
now formulate the linearization of GPLMM in the seamless form

p(yij |ui , θn, φ) = exp
[
φ−1{yij θij − b(θij )} + c(yij , φ)

]
, (5)

ui ∼ fu(ui |�),
μij = E(yij |ui ),

g(μij ) � ηij = D�
ij θn + Z�

ijui , i = 1, . . . , n; j = 1, . . . , ni,

2.2 Estimation Procedure

For linearization of GPLMM defined in (5), the classical likelihood function can be
defined as

L(θn,�, φ) =
n∏
i=1

∫
pyi |ui (yi |ui , θn, φ)pui (ui |�)dui (6)

where yi = (yi1, . . . , yini )
� and

pyi |ui (yi |ui , θn, φ) =
ni∏
j=1

p(yij |ui , θn, φ).

For the maximum likelihood (ML) estimates of the parameters θn, φ and �,
one can maximize this likelihood function by using suitable numerical techniques.
The EM algorithm is an attractive method to obtain the ML estimates, in presence
of incomplete data, which avoids explicit calculation of the observed data log-
likelihood. To set up the EM algorithm we consider the random effects, ui , to be
the missing data. The complete data, is then (yi ,ui) and the complete data log-
likelihood is given by

�(θn,�, φ) =
n∑
i=1

lnpyi |ui (yi |ui , θn, φ)+
n∑
i=1

lnpui (ui |�). (7)

Considering ui to be the missing has an advantage that in the M-step, maximization
can be accomplished with respect to the parameters θn and φ only in the first
term of (7). Thus, the M-step with respect to θn and φ uses only the GLM part
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of the likelihood function. Hence, the procedure is similar to a standard GLM
computation assuming ui is known. Therefore, maximizing with respect to �, in the
second term, can be handled by the maximum likelihood using the distribution of
pui (ui |�) after replacing sufficient statistics with the conditional expected values.
The EM algorithm is a standard technique for LMM, but GLMs are usually fit with a
Newton–Raphson or scoring algorithm. Number of numerical methods are available
in the literature (McCulloch 1997). It thus makes sense to develop a simulation
analogous to the Newton–Raphsona approach for fitting the GPLMM. Using this
separation as in (7), the ML equations for θn and � take the following forms

E
[∂lnpyij |ui (yij |ui , θn)

∂θn
|yij

]
= 0,

E
[∂lnpui (ui |�)

∂�
|yij

]
= 0.

The ML estimates of θn and � can be obtained by solving the preceding equa-
tions numerically. McCulloch (1997) developed a Monte Carlo Newton–Raphson
(MCNR) algorithm for solving these estimating equations, and obtained approxi-
mate ML estimates of the parameters for the GMM. Motivated by his work and
combining it with the GEE of Liang and Zeger (1986), the optimal estimating
equation for θn is given by

Eu|y
[
n−1

n∑
i=1

∂μi (θn,ui )

∂θ�
n

V −1
i (θn,ui )

(
yi − μi (θn,ui )

)] = 0, (8)

where μi (θn,ui ) = (μi1, . . . , μini )
� and V i (θn,ui ) is the covariance matrix

of yi |ui . In real applications the true intracluster covariance structure is often
unknown. The GEE procedure adopts a working covariance matrix, which
is specified through a working correlation matrix R(ρ) : V i (θn,ui ) =
A

1
2
i (θn,ui )R(ρ)A

1
2
i (θn,ui ), where ρ is a finite dimensional parameter and

Ai (θn,ui ) = diag(νi1, . . . , νini ). Some commonly used working correlation
structures include independence, autocorrelation (AR)-1, equally correlated (also
called compound symmetry), or unstructured correlation, among others. For a
given working correlation structure, ρ can be estimated using the residual-based
method of moments. With the estimated working correlation matrix R̂ ≡ R(̂ρ), the
estimating equations in (8) reduces to

Eu|y
[
n−1

n∑
i=1

D�
i A

1
2
i (θn,ui )R̂

−1
A

− 1
2

i (θn,ui )
(
yi − μi (θn,ui )

)] = 0, (9)

where Di = (D�
i1, . . . ,D

�
ini
)�. We formally define the estimator as the solution θ̂n

of the above estimating equations. For ease of exposition, we assume φ = 1 and
ni = m < ∞ in the rest of the article. Extension of the methodology to the cases of
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unequal ni is straightforward. We vary the dimension of Ai and replace R̂ by R̂i ,
which is the ni ×ni matrix using the specified working correlation structure and the
corresponding initial parameter ρ estimator.

3 Regularization in the GPLMM

In order to select important covariate variables and estimate them simultaneously,
the log-likelihood (8) is expanded to include the penalty term

∑pn
k=1 pλn(|βnk|)

which yields the following penalized log-likelihood

�p(βn,αn,D, φ) =
n∑
i=1

lnpyi |ui (yi |ui , θn)+
n∑
i=1

pui (ui |�)− n

pn∑
k=1

pλn(|βnk|),

(10)

where pλ(|βnk|) is any penalty function and λn is a tuning parameter that determines
the amount of shrinkage. Since the coefficients θn depends to the first and third terms
of (10), we propose the penalized estimating equation

Un(θn) = Sn(θn)− qλn(|βn|)sign(βn),

where

Sn(θn) = Eu|y
[ n∑
i=1

D�
i A

1
2
i (θn,ui )R̂

−1
A

− 1
2

i (θn,ui )
(
yi − μi (θn,ui )

)]
,

with qλn(|βn|) = (
qλn(|βn1|), . . . , qλn(|βnpn |)

)� is a pn × 1 vector of penalty

functions, sign(βn) = (
sign(βn1), . . . , sign(βnpn)

)� with sign(a) = I (a > 0) −
I (a < 0) and qλn(|βnk|) = p

′
λn
(|βnk|).

Note that we assume the non parametric part contains significant contribution in
the model and the proposed penalized estimating equation has been defined to shrink
small components of coefficient βn to zero not αn. Thus the method performing
variable selection for fixed effects, produces estimators of the nonzero components
and the nonparametric component.

Among all penalty functions, the smoothing clipped absolute deviation (SCAD)
penalty proposed by Fan and Li (2001) can be used to retain the good features of
both subset selection and ridge regression, for producing sparse solutions, and to
ensure continuity of the selected models. Therefore, we will use the SCAD penalty
in our simulation and application studies. The SCAD penalty function is defined by
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qλn(|βn|)=p
′
λn
(|βn|)=λn

{
I (|βn| ≤ λn)+ (aλn − |βn|)+

(a − 1)λn
I (|βn| > λn)

}
; a > 2,

where the notation (.)+ stands for the positive part of (.).
Our proposed estimator for θn is the solution of Un(θn) = 0. Because Un(θn)

has discontinuous points, an exact solution to Un(θn) = 0 may not exist. We
formally define the estimator θ̂n to be an approximate solution, i.e., Un(̂θn) = o(an)

for a sequence an → 0. Alternatively, since the penalty function is singular at
the origin, it is challenging to obtain the estimator of θn by solving Un(θn) = 0.
Following Fan and Li (2001) we locally approximate the penalty function by
a quadratic function. In the neighbourhoods of the true parameter values βn0k ,
|βn0k| > 0, the derivative of the penalty function is well approximated by

qλn(|βnk|)sign(βnk) ≈
qλn(|βn0k|)

|βn0k| βnk.

With the local quadratic approximation, we apply the Newton–Raphson method to
solve Un(̂θn) = o(an), and get the following updating formula

θ̂
(m+1)
n =θ̂

(m)

n +
{
H n(̂θ

(m)

n )+nEn(̂θ
(m)

n )
}−1 ×

{
Sn(̂θ

(m)

n )+nEn(̂θ
(m)

n )̂θ
(m)

n

}
, (11)

where

H n(̂θ
(m)

n ) = Eu|y
[ n∑
i=1

D�
i A

1
2
i (θn,ui )R̂

−1
A

1
2
i (θn,ui )Di

]
,

‘En(̂θ
(m)

n ) = diag
{qλn(|βn1|)
ε + |βn1| , . . . ,

qλn(|βnpn |)
ε + |βnpn |

, 0hn
}
,

for a small numbers e.g. ε = 10−6. Here, 0hn denotes a zero vector of dimension hn.
Note that, in general, the expectations in (11) cannot be computed in a closed

form as the conditional distribution of ui |yi involves the marginal distribution of yi ,
which is not easy to be computed explicitly. Similar to McCulloch (1997), here, we
use an alternative method that produces random observations from the conditional
distribution of ui |yi by using a Metropolis algorithm where the specification of the
density of yi is not required.

In the Metropolis algorithm, pu is chosen as the candidate distribution from
which potential new draws are made; then we specify the acceptance function that
provides the probability of accepting the new value (as opposed to retaining the
previous value). In the forthcoming section we outline the computational procedure
used for sample generation.
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3.1 MCNR Algorithm

Let U denote the previous draw from the conditional distribution of U |y, and gener-
ate a new value u∗k for the j th component of U∗ = (u1, . . . , uk−1, u

∗
k, uk+1, . . . , unq)

by using the candidate distribution pu, accept U∗ as the new value with probability

αk(U ,U∗) = min
{

1,
pu|y(U∗|y, θn,D)pu(U |D)

pu|y(U |y, θn,D)pu(U
∗|D)

}
. (12)

otherwise, reject it and retain the previous value U . The second term in brace in (11)
can be simplified to

pu|y(U∗|y, θn,D)pu(U |D)

pu|y(U |y, θn,D)pu(U
∗|D)

= py|u(y|U∗, θn)
fy|u(y|U , θn)

=
∏n
i=1 pyi |u(yi |U∗, θn)∏n
i=1 fyi |u(yi |U , θn)

.

Note that, the calculation of the acceptance function αk(U ,U∗) here involves only
the specification of the conditional distribution of y|u which can be computed in a
closed form.

Algorithm 1 describes the Metropolis step into the Newton–Raphson iterative
equation (11) for the Monte Carlo estimates of expected values.

3.2 Choice of Regularization Parameters

To implement the proposed method, several parameters need to be chosen appro-
priately. One needs to choose the knot sequence in the polynomial spline approx-
imation, λn and a in the SCAD penalty function. It is important that the number
of distinct knots h, must increase with the sample size n. On the other hand,
too many knots would increase the variance of our estimators. Therefore, the
number of knots must be properly chosen to balance the bias and variance. For
computational convenience, we use equally spaced knots with the number of interior
knots Ln ≈ n1/(2r+1). A similar strategy for knot selection can also be found in
He et al. (2002), Qin and Zhu (2007) and Sinha and Sattar (2015). To reduce the
computational burden, we follow Fan and Li (2001) and set a = 3.7. Finally we
need to choose λn.

First of all, define a fine grid of different values for the tuning parameter,
0 ≤ λ1 ≤ . . . ≤ λL ≤ ∞. Next, the optimal tuning parameter is determined using
one of the following techniques and finally, the whole data set is fitted again using
the proposed method with λopt to obtain the final estimates the parameters of model.
Selection criteria that have been used extensively include cross validation (CV),
generalized cross-validation (GCV) and information criterion such as Akaike’s
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Algorithm 1 Monte Carlo Newton–Raphson (MCNR) algorithm

step 1. Set mk = 0. Choose initial values θ0
n and �0.

step 2. GenerateN observations U (1), . . . ,U (N) from the distribution pu|y(u|y, θ (mk)
n ,�(mk))

using the Metropolis algorithm. Use these observations to find the Monte Carlo estimates of
the expectations. Specially,

a) Compute θ (mk+1)
n from the expression

θ (mk+1)
n = θ (mk)

n +
{ 1

N

N∑
k=1

[
H n

(̂
θ
(mk)

n ,U (k)
)]+ nEn(β̂

(mk)

n )
}−1

×
{ 1

N

N∑
k=1

[
Sn(̂θ

(mk)

n ,U (k))
]
− nEn(β̂

(mk)

n )β̂
(mk)

n

}
,

where

H n

(̂
θ
(mk)

n ,U (k)
) =

n∑
i=1

D�
i A

1
2
i (θ

(mk)
n , U

(k)
i )R̂

−1
A

1
2
i (θ

(mk)
n , U

(k)
i )Di ,

Sn
(̂
θ
(mk)

n ,U (k)
) =

n∑
i=1

D�
i A

1
2
i (θ

(mk)
n , U

(k)
i )R̂

−1
A

− 1
2

i (θ (mk)
n , U

(k)
i )

(
yi − μi (θ

(mk)
n , U

(k)
i )

)
.

b) Compute �(mk+1) by maximizing

1

N

N∑
k=1

lnfu(U
(k)|�).

c) Set mk = mk + 1.

step 3. Go to step 2 until convergence is achieved. Choose θ (mk+1)
n and �(mk+1) to be the

MCNR estimates of θn and �.

information criterion (AIC, Akaike 1973) and Bayesian information criterion (BIC,
Schwarz 1978). Due to the lack of joint likelihood in the generalized model, to select
the tuning parameter λn we use generalized cross validation (GCV) suggested by
Fan and Li (2001) as defined by

GCVλn = RSS(λn)/n

(1 − d(λn)/n)2
,

where

RSS(λn) = 1

N

N∑
k=1

[ n∑
i=1

(
yi − μi (̂θn, U

(k)
i )

)�
W−1

i

(
yi − μi (̂θn, U

(k)
i )

)]
(13)
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is the residual sum of squares, and

d(λn) = tr
[{ 1

N

N∑
k=1

[
H n

(̂
θn,U

(k)
)]+ nEn(̂θn)

}−1 ×
{ 1

N

N∑
k=1

[
H n

(̂
θn,U

(k)
)]}]

is the effective number of parameters. Then, λopt is the minimizer of the GCVλn .
Note that W i in (13) is an ni × ni covariance matrix of yi , that can be computed

as W i = Eu|y
(

var(yi |ui )
)
+ varu|y

(
E(yi |ui )

)
, where

Eu|y
(

var(yi |ui )
)
= Eu|y

(
V i (̂θn,ui )

)
= 1

N

N∑
k=1

[
V i (̂θn, U

(k)
i )

]
,

varu|y
(

E(yi |ui )
)
= varu|y

(
μi (̂θn,ui )

)

= Eu|y
(
μi (̂θn,ui )

)2 − E2
u|y
(
μi (̂θn,ui ))

= 1

N

N∑
k=1

[
μi (̂θn, U

(k)
i )

]2 −
[

1

N

N∑
k=1

[
μi (̂θn, U

(k)
i )

]]2

.

3.3 Asymptotic Properties

In this section, we study the asymptotic properties of the estimator β̂ under the
proposed penalized estimating equations. Consider the framework where the true
value of β0 is partitioned as β0 = (β�

01,β
�
02)

� and the corresponding design
matrix into Xi = (

Xi(1),Xi(2)
)
. In our study, the true regression coefficients are

θn0 = (β�
01,β

�
02,α

�
0 )

�, where α0 is an hn-dimensional vector depending on f0.
For technical convenience let θ0 = (θ�

01, θ
�
02)

� where θ01 = (β�
01,α

�
0 )

� is
(s = s∗ + hn)-dimensional vector of true values that the elements are all nonzero
and θ02 = β02 = 0. Here, s∗ is the dimention of θ01 and assume that only a small
number of covariates contribute to the response i.e. ∫∗ = {1 ≤ j ≤ p;βj �= 0}
has cordiality |s| = s∗ < p. Consequently, estimated values and the design

matrix is re-partitioned as θ̂n = (̂θ
�
n1, θ̂

�
n2)

�, and Di = (
D�
i(1),D

�
i(2)

)� which

θ̂n1 = (β̂
�
n1, α̂

�
n )

�, Di(1) =
(
X�
i(1),B(t i )

�)�, θ̂n2 = β̂n2 and Di(2) = Xi(2).
Meanwhile, If Eq. (9) has multiple solutions, only a sequence of consistent

estimator θ̂n is considered. A sequence θ̂n is said to be a consistent sequence, if
β̂n − βn0 → 0 and sup

t
|B�(t )̂αn − f0(t)| → 0 in probability as n → ∞.

The following regularity conditions are required for the main results.
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(A.1) ni is a bounded sequence of positive integers, and the distinct values of
tij form a quasi-uniform sequence that grows dense on [0, 1], and the kth
derivative of f 0(t i ) is bounded for some k ≥ 2;

(A.2) The unknown parameter βn belongs to a compact subset B ⊆ Rp, the true
parameter value βn0 lies in the interior of B;

(A.3) There exist two positive constants, b1 and b2, such that

b2 ≤ λmin

(
n−1

n∑
i=1

X�
i Xi

)
≤ λmax

(
n−1

n∑
i=1

X�
i Xi

)
≤ b3,

where λmin(resp. λmax) denotes the minimum (resp. maximum) eigenvalue
of a matrix;

(A.4) The common true correlation matrix R0 has eigenvalues bounded away
from zero and +∞; the estimated working correlation matrix R satisfies

‖R̂−1 −R
−1‖ = Op(n

−1/2), where R is a constant positive definite matrix
with eigenvalues bounded away from zero and +∞; we do not require R to
be the true correlation matrix R0;

(A.5) Let εi (θn,ui ) = (
εi1(θn,ui ), . . . , εini (θn,ui )

)� = A
−1/2
i (θn,ui )

(
Y i −

μi (θn,ui )
)
. There exists a finite constant M1 > 0 such that

E(‖εi (θn0,ui )‖2+δ) ≤ M1, for all i and some δ > 0; and there exist

positive constants M2 and M3 such that E
[
exp

(
M2|εij (θn0,ui )|

)∣∣Xi

]
≤

M3, uniformly in i = 1, . . . , n, j = 1, . . . , m;
(A.6) Let Bn = {θn : ‖θn − θn0‖ ≤ $

√
pn/n, then μ.(D�

ij θn), 1 ≤ i ≤ n,

1 ≤ j ≤ m, are uniformly bounded away from 0 and ∞ on Bn; μ..(D�
ij θn)

and μ(3)(D�
ij θn), 1 ≤ i ≤ n, 1 ≤ j ≤ m, are uniformly bounded by a finite

positive constant M2 on Bn;
(A.7) Assuming min1≤k≤sn |θn0k|/λn → ∞ as n → ∞ and λn → 0, (log n)2 =

o(nλ2
n), (log n)6 = o(n2λ2

n) and (log n)8 = o(n2λ4
n).

Under (A.1), the total sample size n is of the same order as the number of
subjects m and there exists only local dependence in the sample. The smoothness
condition on f0 given by (A.1) determines the rate of convergence of the spline
estimate f̂ (t) = B(t)�α̂n. When m = 1 (i.e., each subject has only one
observation), condition (A.3) is also popularly adopted in the literature on regression
for independent data. Condition (A.4) is a similar assumption in the Liang and Zeger
(1986), assumes that the estimator of the working correlation matrix parameter τ̂

satisfies
√
n(̂τ−τ 0) = Op(1) for some τ 0. Note that when a nonparametric moment

estimator is used for the working correlation matrix, we have R = R0. The first part
of condition (A.5) is similar to the condition in Lemma 2 of Xie and Yang (2003)
and condition (Ñδ) in Balan and Schiopu-Kratina (2005); the second part is satisfied
for Gaussian distribution, sub-Gaussian distribution, and Poisson distribution, etc.
Condition (A.6) requires μ(k)ij (D

�
ij θn), which denotes the kth derivative of μ(k)ij (t)

evaluated at D�
ij θn, to be uniformly bounded when θn is in a local neighborhood
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around θn0, k = 1, 2, 3. This condition is generally satisfied for the GEE. For
example, when the marginal model follows a Poisson distribution, μ(t) = exp(t);
thus μ(k)ij (D

�
ij θn) = exp(D�

ij θn), k = 1, 2, 3, are uniformly bounded around θn0
on Bn.

Now, consider the following estimating equation

Sn(θ) = Eu|y
[ n∑
i=1

D�
i A

1
2
i (θ,ui )R

−1
A

− 1
2

i (θ ,ui )
(
yi − μi (θ ,ui )

)]
.

Let Mn(θn) to be the covariance matrix of Sn(θ), then

Mn(θ) = Eu|y
[ n∑
i=1

D�
i A

1
2
i (θ ,ui )R

−1
R0R

−1
A

1
2
i (θ,ui )Di

]
.

By the following Lemma 1, we approximate f0(t) by B(t)α0; then have

ηij (θ0) = g
(
μij (θ0)

) = X�
ijβ0 + B(tij )α0 + Z�

ijui , θ0 = (β�
0 ,α

�
0 )

�
(pn+N)×1

Lemma 1 Under condition (A.1), there exists a constant C such that

sup
t∈[0,1]

|f0(t)− B(t)α0| ≤ CL−r
n ,

where α0 is a N -dimensional vector depending on f0.

The proof of this lemma follows readily from Theorem 12.7 of Schumaker (1981).
The following theorem shows under the regularity conditions, all the covariates

with zero coefficients can be detected simultaneously with probability tending to
1, and the estimators of all the non-zero coefficients are asymptotically normally
distributed.

Theorem 1 (Oracle Properties) Assume conditions (A.1)–(A.7), if the number of
knots Ln = Op(n

1/(2r+1)), then ∀ξn ∈ Rp such that ‖ξn‖ = 1, we have

(Sparsity) P (β̂n2 = 0) → 1

(Asymptoticnormality) ξ�
n M

∗−1/2

n (βn0)H
∗
n(βn0)(β̂n1 − βn01)

D→ N(0, 1)

where

M
∗
n = Eu|y

[ n∑
i=1

X∗�
i A

1
2
i (θn,ui )R

−1
R0R

−1
A

1
2
i (θn,ui )X

∗
i

]
, X∗

i=(I − P )Xi

P = B(B��B)−1B��, �=diag{�i}, �i=Eu|y
[
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1
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i (θn,ui )R
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A
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i (θn,ui )

]
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∗
n = Eu|y

[ n∑
i=1

X∗�
i A

1
2
i (θn,ui )R

−1
A

1
2
i (θn,ui )X

∗
i

]
.
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Theorem 1 is often referred to as the oracle properties of variable selection,
that is, the procedure estimates the true zero coefficient as zero with probability
approaching one and estimates the nonzero coefficients as efficiently as if the true
model is known in advance.

From Algorithm 1, we obtain the following sandwich formula to estimate the
asymptotic covariance matrix of θ̂n:

Cov(̂θn) ≈ [H n(̂θn,ui )+ nEn(̂θn)]−1Mn(̂θn,ui )[H n(̂θn,ui )+ nEn(̂θn,ui )]−1,

where H n and En are defined in Sect. 3, and

Mn(̂θn,ui )=
n∑
i=1

D�
i A

1/2
i (̂θn,ui )R̂

−1[
εi (̂θn,ui )ε

�
i (̂θn,ui )

]
R̂

−1
A

1/2
i (̂θn,ui )D

�
i .

4 Numerical Studies

In this section, we consider some simulation studies to investigate the performance
of the proposed penalized estimating equations. We also apply our proposed method
to analyze a real longitudinal data set.

4.1 Simulation Studies

We conduct simulations to evaluate the performance of the proposed penalized
GPLMM (P-GPLMM) procedure for both normal and poisson responses. Through-
out our simulation study, the dimensionality of the parametric component is taken as
pn = [4.5n1/4], where [a] stands for the largest integer no larger than a, where three
sample size n = 50, 100 and 150 were considered. The predictor dimension pn is
diverging but the dimension of the true model is fixed to be 3. For each setup in the
simulations, we generate 100 data sets and apply the iterative algorithm in Sect. 3
to estimate parameters. We select the tuning parameter λn in the SCAD penalty
function using a GCV criterion. Performance of the proposed P-GPLMM procedure
compared with the unpenalized GPLMM and the penalized GLMM (P-GLMM),
where each simulated data set was fitted under these three methods.

For evaluating estimation accuracy, we report the empirical mean square error

(MSE), defined as
∑100

k=1 ‖β̂kn−βn0‖/100 where β̂
k

n is the estimator of βn0 obtained
using the k-th generated data set. The performance of variable selection is checked
by (C, I ), where “C” is the mean over all 100 simulations of zero coefficients which
are correctly estimated by zero and “I” is the mean over all 100 simulations of
nonzero coefficients which are incorrectly estimated by zero. To present a more
comprehensive picture, we also use other criteria for variable selection performance
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evaluation. “Under-fit” corresponds to the proportion of excluding any true nonzero
coefficients. Similarly, we report the proportion of selecting the exact subset model
as “Correct-fit” and the proportion of including all three important variables plus
some noise variables as “Over-fit”.

Example 1

The underlying model is the random intercept Poisson model so that the nonlinear
function is set to a sinusoidal function;

yij |bi ∼ Pois(μij ), i = 1, . . . , n, j = 1, . . . , ni,

ηij = log(μij ) = ∑p

k=1 x
(k)
ij βk + sin(2πtij )+ bi,

where i = 1, . . . , n, and j = 1, . . . , ni , and the number of observations per
subjects is assumed to be fixed at ni = 5. The true regression coefficient are
β = (−1,−1, 2, 0, . . . , 0) with the mutually independent covariates X�

ij =
(x
(1)
ij , . . . , x

(p)
ij ) drawn independently from the uniform distribution on (−1, 1). The

measurement time points tij are also drawn from the uniform distribution on (0, 1).
The random effect process bi is taken to be a Gaussian process with mean 0 and
variance σ 2 = 0.25.

The results of Table 1 summarize the estimation accuracy and model selection
properties of the competitive models for three different values of sample size. In
terms of estimation accuracy the penalized GPLMM procedure performs closely

Table 1 Simulation results for the Poisson response: comparison of the P-GPLMM, GPLMM,
and P-GLMM with sample sizes n = 50, 100, and 150

n = 50, p = 11

Method MSE C(8) I(0) Under-fit Correct-fit Over-fit

GPLMM 0.116 0.09 0.00 0.00 0.00 1.00

P-GLMM 0.060 6.54 0.00 0.00 0.13 0.87

P-GPLMM 0.052 7.59 0.00 0.00 0.64 0.36

n = 100, p = 14

Method MSE C(11) I(0) Under-fit Correct-fit Over-fit

GPLMM 0.072 0.16 0.00 0.00 0.00 1.00

P-GLMM 0.041 10.52 0.00 0.00 0.61 0.39

P-GPLMM 0.036 10.70 0.00 0.00 0.77 0.23

n = 150, p = 15

Method MSE C(12) I(0) Under-fit Correct-fit Over-fit

GPLMM 0.060 0.26 0.00 0.00 0.00 1.00

P-GLMM 0.044 11.25 0.00 0.00 0.42 0.58

P-GPLMM 0.045 11.87 0.00 0.00 0.87 0.13
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Table 2 Simulation results
for the Poisson response:
performance of the
P-GPLMM with sample sizes
n = 50, 100, and 150

β1 β2 β3

n = 50, p = 11 Bias 0.047 0.096 0.069

SD1 0.092 0.085 0.113

SD2 0.097 0.094 0.097

CP 0.96 0.95 0.92

n = 100, p = 14 Bias 0.076 0.103 0.053

SD1 0.071 0.067 0.084

SD2 0.072 0.067 0.078

CP 0.96 0.95 0.96

n = 150, p = 15 Bias 0.101 0.124 0.099

SD1 0.060 0.059 0.070

SD2 0.052 0.059 0.059

CP 0.97 0.96 0.95

Bias absolute value of the empirical bias; SD1
estimated standard deviation using the sandwich
variance estimator; SD2 sample standard deviation;
CP the empirical coverage probability of the 95%
confidence interval

to the penalized GLMM, whereas our proposed approach gives smallest MSE,
and consistently outperforms its penalized GLMM counterpart. In terms of model
selection we observe that the unpenalized GPLMM generally does not lead to
a sparse model. Furthermore, the penalized GPLMM and the penalized GLMM
successfully selects all covariates with nonzero coefficients (i.e., “I” rates are zero),
but it is obvious that the proposed approach has slightly stronger sparsity (i.e., a
fairly higher number of Cs) than the penalized GLMM. For the P-GPLMM, the
probability of identifying the exact underlying model is about 80% and this rate
grows by increasing the sample size, confirming the good asymptotic properties of
the penalized estimators.

To further investigate the performance of the proposed method, Table 2 reports
its bias, the estimated standard deviation (calculated from the sandwich variance
formula), the empirical standard deviation, and the empirical coverage probability
of 95% confidence interval for estimating β1, β2, and β3. The estimated standard
deviation is close to the empirical standard deviation, and the empirical coverage
probability is close to 95%. These results all together demonstrate the good
performance of the sandwich variance formula.

These observations suggest that considering partial part is important to modify
the estimation accuracy and model selection when the growth curves of the data
exhibit a nonlinear fashion over time, especially in a complicated manner. On the
other hand, the P-GPLMM allows us to make systematic inference on all model
parameters by representing a partially model as a modified penalized GLMM.

For proposed method, the estimated baseline function f (t) is also evaluated
through visualization. We plot and compare the estimated f (t) and pointwise biases,
for two sample size n = 50 and 100 when the number of parameters (pn) are set to
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Fig. 1 Plots for estimated f (t) in the pn < n and pn >> n cases (n=50) based on 100 samples.
Plots top-left and top-right show the averaged fit and pointwise bias; plot bottom-left shows the
standard deviation; and plot bottom-right plots the averaged coverage probability rates for 95%
confidence intervals

−0.50

−0.25

0.00

0.25

0.50

0.00 0.25 0.50 0.75 1.00
time

es
tim

at
ed

 f(
t)

True curve

(n,p)=(100,14)

(n,p)=(100,500)

−1.0

−0.5

0.0

0.5

1.0

0.00 0.25 0.50 0.75 1.00
time

Bi
as

 in
 e

st
im

at
ed

 f(
t)

(n,p)=(100,14)

(n,p)=(100,500)

0.10

0.15

0.20

0.25

0.00 0.25 0.50 0.75 1.00
time

SD
 o

f e
st

im
at

ed
 f(

t)

(n,p)=(100,14)

(n,p)=(100,500)

0.900

0.925

0.950

0.975

1.000

0.00 0.25 0.50 0.75 1.00
time

Es
tim

at
ed

 9
5%

 c
ov

er
ag

e 
pr

ob
ab

ilit
y

(n,p)=(100,14)

(n,p)=(100,500)

Fig. 2 Plots for estimated f (t) in the pn < n and pn >> n cases (n=100) based on 100 samples.
Plots top-left and top-right show the averaged fit and pointwise bias; plot bottom-left shows the
standard deviation; and plot bottom-right plots the averaged coverage probability rates for 95%
confidence intervals

be a small value and a relatively large. We also plot the pointwise standard deviations
(calculated from the sandvich variance formula), and coverage probability of 95%
confidence intervals. Figure 1 shows that when the pn is small value, our approach
yields smaller overall biases and standard deviations in comparing with the large pn.
Also, it can be seen that the empirical coverage probability for f (t) is close to 95%
for two cases. Figure 2 depicts the results for n = 100. As shown, larger sample size
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modified the biases and the differences between two cases. Nevertheless, the case
of small value of pn has smaller standard deviation.

Example 2

The normal responses are generated from the model

yij =
p∑
k=1

x
(k)
ij βk + sin(2πtij )+ bi + εij ,

where the random errors (εi1, . . . , εini )
� are generated from the multivariate

normal distribution with standard marginals (mean 0, variance 1) and β =
(2, 1, 0.5, 0, . . . , 0). The other components of the model are generated the same
as in Example 1. Note that Example 2 is more challenging than Example 1 because
of inclusion the small signal (β3 = 0.5) in the nonzero coefficients.

The results for estimation accuracy and model selection properties of the normal
response summarized in Table 3. We observe that the penalized method significantly
improves the estimation accuracy of the unpenalized one. In terms of model
selection, we observe that the unpenalized method does not lead to a sparse model.
The P-GPLMM has small MSE, high C rate, and low I rate for variable selection
in comparison to the P-GLMM. We also observe that the P-GLMM has higher
chance (I = 0.12) to miss the small signal (β3 = 0.5) in contrast to P-GPLMM
(I = 0.08). In addition, estimation accuracy and model selection properties of

Table 3 Simulation results for the normal response: comparison of the P-GPLMM, GPLMM,
and P-GLMM with sample sizes n = 50, 100, and 150

n = 50, p = 11

Method MSE C(8) I(0) Under-fit Correct-fit Over-fit

GPLMM 0.508 0.01 0.00 0.00 0.00 1.00

P-GLMM 0.219 7.77 0.40 0.12 0.49 0.39

P-GPLMM 0.202 7.84 0.35 0.10 0.55 0.35

n = 100, p = 14

Method MSE C(11) I(0) Under-fit Correct-fit Over-fit

GPLMM 0.339 0.01 0.00 0.00 0.00 1.00

P-GLMM 0.109 10.80 0.12 0.12 0.70 0.18

P-GPLMM 0.106 10.83 0.08 0.08 0.76 0.16

n = 150, p = 15

Method MSE C(12) I(0) Under-fit Correct-fit Over-fit

GPLMM 0.251 0.02 0.00 0.00 0.00 1.00

P-GLMM 0.087 11.93 0.12 0.12 0.82 0.06

P-GPLMM 0.079 11.93 0.08 0.08 0.84 0.07
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Table 4 Simulation results
for the normal response:
performance of the
P-GPLMM with sample sizes
n = 50, 100, and 150

β1 β2 β3

n = 50, p = 11 Bias 0.014 0.022 0.181

SD1 0.171 0.198 0.124

SD2 0.175 0.222 0.258

CP 0.95 0.96 0.97

n = 100, p = 14 Bias 0.027 0.035 0.096

SD1 0.126 0.145 0.100

SD2 0.120 0.167 0.212

CP 0.95 0.98 0.98

n = 150, p = 15 Bias 0.006 0.002 0.143

SD1 0.107 0.119 0.076

SD2 0.114 0.142 0.174

CP 0.94 0.97 0.96

Bias absolute value of the empirical bias; SD1
estimated standard deviation using the sandwich
variance estimator; SD2 sample standard deviation;
CP the empirical coverage probability of the 95%
confidence interval

all competitive models improve by increasing the sample size. Tables 2, 3, and 4
report the bias, estimated standard deviation (calculated from the sandwich variance
formula), empirical standard deviation, and empirical coverage probability of 95%
confidence interval for estimating βi , i = 1, 2, 3, when the P-GPLMM procedure
is applied. The empirical coverage probabilities are close to 95%, the estimated
standard deviation is also close to the empirical standard deviation for β1 and β2, and
the estimated standard deviation is smaller in comparison to the empirical standard
deviation, for the small coefficient β3.

4.2 CD4 Data Analysis

In this section, to illustrate our method, we consider the longitudinal CD4 cell count
data among HIV seroconverters. This dataset contains 2376 observations of CD4
cell counts on 369 men infected with the HIV virus; see Zeger and Diggle (1994)
for a detailed description of this dataset. Figure 3 (top-left) displays the trajectories
of 369 men for exploring the evolution of CD4 cell counts.

The first objective of this analysis is to characterize the population average time
course of CD4 decay while accounting for the following additional predictor vari-
ables including AGE, SMOKE (smoking status measured by packs of cigarettes),
DRUG (yes, 1; no, 0), SEXP (number of sex partners), DEPRESSION as measured
by the CESD scale (larger values indicate increased depressive symptoms) and
YEAR (the effect of time since seroconversion). Since there seems to exist a
positive correlation among responses from the same patient, we need to incorporate
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Fig. 3 Plots for estimated f (t) for AIDS data based on P-GSMM. Plot top-left shows the
trajectories plot for CD4 data. Observed evolution (in gray) of CD4 cell counts for 369 men against
time (in YEAR). Solid (in thick blue) line show the smoothed mean profile of men. Plot top-right
shows the estimated baseline function f (t) (in thick blue) in the selected model of P-GSMM and
the 95% confidence interval (dashed line) corresponding to the robust confidence interval. Plots
bottom-left and bottom-right respectively, show the standard deviation and coverage probability
rates for 95% confidence intervals based on empirical variance and sandwich formula

a correlation structure into the estimation scheme. Zeger and Diggle (1994) found
that the compound symmetry covariance matrix fitted the data reasonably well. This
data analyzed by many authors, e.g. Wang et al. (2005); Huang et al. (2007); Ma
et al. (2013), among all. Their analyses was conducted on square root transformed
CD4 numbers whose distribution is more nearly Gaussian. In our analysis, we fit
our proposed GPLMM to the data, without considering any transformation on the
CD4 data, by adopting the Poisson regression. To take advantage of flexibility of the
partially linear model, we let YEAR be modeled in a nonparametric fashion. It is of
interest to examine whether there are any interaction effects between the parametric
covariates, so we included all these interactions in the parametric part. We further
applied the proposed approach to select significant variables. We used the SCAD
penalty, with the tuning parameter λ = 0.45. To compare the performance of our
proposed method (P-GPLMM) with other two existing alternatives, the unpenalized
GPLMM, and the penalized GLMM (P-GLMM), we use the standard error (SE).
To best identify a model supported by the data, we adopt the Akaike information
criterion (AIC; Akaike 1973) and the Bayesian information criterion (BIC; Schwarz
1978). They are defined as

AIC = 2m− 2�max, BIC = m log n− 2�max, (14)

where �max is the maximized log-likelihood value, m is the number of free
parameters in the model. Table 5 presents the summary of the results including
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Table 5 Summary of parameter estimates along with standard errors (in parentheses) for the three
fitted models, for the CD4 data

GPLMM P-GLMM P-GPLMM

Variables β̂(SE) β̂(SE) β̂(SE)

AGE 0.073 (0.039) −0.092 (0.051) 0 (0)

SMOKE 0.188 (0.179) 0.888 (0.192) 0.079 (0.045)

DRUG 0.130 (0.143) 6.068(0.125) 0.142 (0.074)

SEXP −0.049 (0.031) 0.672 (0.030) 0.017 (0.012)

CESD −0.001 (0.011) 0 (0) 0 (0)

AGE ∗ SMOKE 0.002 (0.014) 0.014 (0.004) 0 (0)

AGE ∗DRUG −0.034 (0.024) 0.032 (0.035) 0 (0)

AGE ∗ SEXP −0.009 (0.003) 0 (0) 0 (0)

AGE ∗ CESD 0.001 (0.002) 0 (0) 0 (0)

SMOKE ∗DRUG 0.009 (0.054) −0.584 (0.150) −0.014 (0.038)

SMOKE ∗ SEXP −0.010 (0.012) −0.034 (0.010) 0 (0)

SMOKE ∗ CESD −0.006 (0.009) 0 (0) 0 (0)

DRUG ∗ SEXP −0.025 (0.019) −0.598 (0.041) −0.022 (0.012)

DRUG ∗ CESD 0.006 (0.006) 0 (0) 0 (0)

SEXP ∗ CESD 0.001 (0.003) 0 (0) 0 (0)

�max 8,463,007 7,529,158 8,624,429

AIC −16,925,983 −15,058,286 −17,248,827

BIC −16,925,924 −15,058,228 −17,248,769

the values of standard errors, together with �max, AIC, and BIC for the three named
models.

Judging from Table 5, the P-GPLMM exhibits smaller standard errors com-
pared to the GPLMM and P-GLMM, nevertheless this difference is not dramatic.
Meanwhile, the values of AIC, BIC of our proposed model are smaller than those
for the other two competing models, revealing that the P-GPLMM can provide
better fit. By the P-GPLMM, SMOKE, DRUGS, SEXP, SOMKE ∗ DRUG and
DRUG ∗ SEXP are identified as significant covariates. Note that when P-GLMM
is used, AGE ∗ SMOKE, AGE ∗ DRUG, and SMOKE ∗ SEXP may also
be significant. We also find some interactions among covariates which may be
ignored according to Wang et al. (2005) and Huang et al. (2007). The nonparametric
curve estimate using the P-GPLMM estimators is plotted in Fig. 3 for YEAR.
The Results for nonparametric curve estimates using the P-GSMM estimators are
plotted in Fig. 3 for YEAR. It shows the estimated nonparametric function f (t), its
95% pointwise confidence bands, standard deviation, and 95% coverage probability
given by the empirical and sandwich formula variance. We can see that the baseline
function f (t) has decreasing effect as time passing. Therefore, one can see that it
is more reasonable to put it as a nonparametric component. We notice the disparity
between the empirical and the sandwich formula standard deviation in the boundary
positions and the sandwich formula standard deviations are smaller in which case
the coverage probability recede from 95%.
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5 Concluding Remarks

In general, when the number of covariates is large, identifying the exact underlying
model is a challenging task, in particular when some of the nonzero signals are
relatively weak. Here, we have developed a general methodology for simultane-
ously selecting variables and estimating the unknown components in the partially
linear mixed effects model for non-normal longitudinal data. We approximate
the nonparametric components using polynomial B-spline smoothing, propose a
penalized estimating equation approach to do variable selection, and estimate
both parametric and nonparametric components in the framework of maximum
likelihood estimation. We apply the penalty functions to the estimating equation
objective function such that the proposed procedure can simultaneously estimate
parameters and select important variables. The procedure involves specification
of the posterior distribution of the random effects, which cannot be evaluated
in a closed form, and we use a Metropolis algorithm, which does not require
the specification of the posterior distribution. To implement the procedure in
practice, we designed a computationally flexible iterative algorithm. We further
investigated the asymptotic normality of the resulting estimators. To investigate
the performance of newly proposed approach, we analyzed and compared with the
unpenalized generalized partially linear mixed effects model and penalized linear
mixed effects model through a simulation study and CD4 data analysis. Obtained
results demonstrated that the proposal works well, and can estimate the nonzero
coefficients efficiently.

For the computation of the generalized linear mixed models, we constructed
a Monte Carlo version of the EM algorithm, where we proposed a Monte Carlo
Newton–Raphson algorithm. Another popular method to maximize GLMMs is the
quasi likelihood (QL), which has been suggested by Breslow and Clayton (1993),
Breslow and Lin (1995), and Lin and Breslow (1996). For future work, one can
employ QL method and compare the performance of this approach with our utilized
method. We also refer to Sutradhar (2010) and Sutradhar et al. (2008) for further
studies. Another possible future direction is that our work can be extended to the
case where the nonparametric components are regularized in an additive model; see
Xue (2009) for details.

Appendix: Proof of the Main Result

We write Sn(θ) = (
Sn1(θ), . . . , Snp(θn)

)�, where Snk(θn) = e�k Sn(θ), and ek
is a p dimensional basis vector with the kth element being one and all the other
elements being zero, 1 ≤ k ≤ p. we also use Dnk(θn) = − ∂

∂θ�
n

Snk(θn) and we

have Dnk(θn) = Hnk(θn)+ Enk(θn)+Gnk(θn) where Hnk , Enk and Gnk denotes
the kth element of H n, En and Gn and defined similarly to Snk . In the following, we
first present some useful lemmas. The proofs are similar to those in Wang (2011).
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To facilitate the Taylor expansion of the estimating function Sn(θn), we also use
Dn(θn) = ∂

∂θ�
n

Sn(θn) to approximate the negative gradient function Dn(θn) =
∂

∂θ�
n

Sn(θn).

Lemma 2

Dn(θn) = H n(θn)+ En(θn)+ Gn(θn), (15)

where

Hn(θn) = −n−1Eu|y
[ n∑
i=1

D�
i A

1
2
i
(θn,ui )R

−1
A

1
2
i
(θn,ui )Di

]
,

En(θn) = −(2n)−1Eu|y
[ n∑
i=1

D�
i A

1
2
i
(θn,ui )R

−1
A

−3
2
i
(θn,ui )Ci (θn,ui )F i (θn,ui )Di

]
,

Gn(θn) = (2n)−1Eu|y
[ n∑
i=1

D�
i A

1
2
i
(θn,ui )F i (θn,ui )J i (θn,ui )Di

]
,

with

Ci (θn,ui ) = diag
(
yi1 − μi1(θn,ui ), . . . , yim − μim(θn,ui )

)
,

F i (θn,ui ) = diag
(
μ..(D�

i1θn + Z�
i1ui ), . . . ,μ

..(D�
imθn + Z�

imui )
)
,

J i (θn,ui ) = diag
(
R

−1
i A

1
2
i (θn,ui )

(
yi − μi (θn,ui )

))
,

In above, for a = (a1, . . . , ani )
�, diag(a1, . . . , am) and diag(a) both denote an

m×m diagonal matrix with diagonal entries (a1, . . . , am).

Lemma 3 Assume conditions (A2)–(A7), then ∀$ > 0, for bn ∈ Rp, we have

sup
‖θn−θn0‖≤$√

pn/n

sup
‖bn‖=1

∣∣∣b�
n

[
Dn(θn)− Dn(θn)

]
bn

∣∣∣ = Op(
√
n).

Remark 1 The matrix Dn(θn)− Dn(θn) is symmetric. The above lemma immedi-
ately implies that

sup
‖θn−θn0‖≤$√

pn/n

∣∣∣λmin
[
Dn(θn)− Dn(θn)

]∣∣∣ = Op(
√
n),

sup
‖θn−θn0‖≤$√

pn/n

∣∣∣λmax
[
Dn(θn)− Dn(θn)

]∣∣∣ = Op(
√
n).
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Furthermore, we can use the leading term H n(θn) in (15) to approximate
the negative gradient function Dn(θn). This result is given by Lemma 4 below.
Lemma 5 further establishes an equicontinuity result for H n(θn).

Lemma 4 Assume conditions (A2)–(A7), then ∀$ > 0, for bn ∈ Rp, we have

sup
‖θn−θn0‖≤$√

pn/n

sup
‖bn‖=1

∣∣∣b�
n

[
Dn(θn)− H n(θn)

]
bn

∣∣∣ = Op(
√
n).

Lemma 5 Assume conditions (A2)–(A7), then ∀$ > 0, for bn ∈ Rp, we have

sup
‖θn−θn0‖≤$√

pn/n

sup
‖bn‖=1

∣∣∣b�
n

[
H n(θn)− H n(θn0)

]
bn

∣∣∣ = Op(
√
n).

The asymptotic distribution of the proposed penalized estimator θ̂n is closely related
to that of the ideal estimating function Sn(θn0). When appropriately normalized,
Sn(θn0) has an asymptotic normal distribution, as shown by the following lemma.

Lemma 6 Assume conditions (A1)–(A7), then ∀ξn ∈ Rp such that ‖ξn‖ = 1, we
have

ξ�
n M

− 1
2

n (θn0)Sn(θn0)
D→ N(0, 1).

Proof of Theorem 1

Proof of Sparsity We first show that the estimator θ̂n must possesses the sparsity
property θ̂n2 = 0. To prove that the optimality is obtained at θ̂n2 = 0, it suffices to
show that with probability tending to 1, as n → ∞, for any θ̂n1 satisfying ‖̂θn1 −
θ̂n10‖ = Op(

√
1/n), and ‖̂θn2‖ ≤ C(

√
1/n), Unk(θ) have different signs for βk ∈(− C(

√
1/n), C(

√
1/n)

)
, for k = s + 1, . . . , p. Note that

Unk(θ) = Snk(̂θ)+ nqλn(|βk|)sign(βk),

where Snk(̂θ) denotes the kth element of Sn(̂θ). From Snk(̂θ) = Op(
√

1/n), we
obtain

Unk(θ) = nλn

{qλn(|βk|)
λn

sign(βk)+Op(
√

1/n)
}
.

It is easy to see that the sign of βk completely determines the sign of Unk(θ). Hence,
the desired result is obtained.

Proof of Asymptotic Normality First we show that ξ�
n M

− 1
2

n (θn0)H n(θn0)(̂θn1 −
θn01)

D→ N(0, 1). We have

ξ�
n M

− 1
2

n (θn0)Sn(θn0) = ξ�
n M

− 1
2

n (θn0)H n(θn0)(θ̂n − θn0)
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+ ξ�
n M

− 1
2

n (θn0)[Dn(θ
∗
n)− H n(θn0)](θ̂n − θn0)

+ ξ�
n M

− 1
2

n (θn0)[Sn(θn0)− Sn(θn0)].

By Lemma 6, ξ�
n M

− 1
2

n (θn0)Sn(θn0)
D→ N(0, 1). Therefore, to prove the theorem,

it is sufficient to verify that ∀$ > 0,

sup
‖θn−θn0‖≤$√

pn/n

|ξ�
n M

− 1
2

n (θn0)[Dn(θn)− H n(θn0)](θ̂n − θn0)| = op(1) (16)

and

|ξ�
n M

− 1
2

n (θn0)[Sn(θn0)− Sn(θn0)]| = op(1). (17)

Then, the final result follows by some matrix algebra. We prove (17) first. Note that

[
ξ�
n M

− 1
2

n (θn0)[Sn(θn0)− Sn(θn0)]
]2

= ξ�
n M

−1/2
n (θn0)[Sn(θn0)− Sn(θn0)][Sn(θn0)− Sn(θn0)]�M

− 1
2

n ξn

≤ λmax
(
M

−1
n (θn0)

)
λmax

([Sn(θn0)− Sn(θn0)][Sn(θn0)− Sn(θn0)]�
)

≤ ‖Sn(θn0)− Sn(θn0)‖2

λmin
(
Mn(θn0)

)
≤ ‖Sn(θn0)− Sn(θn0)‖2

Cλmin
(∑n

i=1 X�
i Xi

) = Op(1/n) = op(1).

Then, (17) follows using the fact that λmin
(
Mn(θn0)

) ≥ Cλmin
(∑n

i=1 X�
i Xi

)
.

Next, we prove (16). We have

sup
‖θn−θn0‖≤$√

1/n
|ξ�
n M

− 1
2

n (θn0)[Dn(θn)− H n(θn0)](θ̂n − θn0)|

≤ sup
‖θn−θn0‖≤$√

1/n
|ξ�
n M

− 1
2

n (θn0)[Dn(θn)− Dn(θn)](θ̂n − θn0)|

+ sup
‖θn−θn0‖≤$√

1/n
|ξ�
n M

− 1
2

n (θn0)[Dn(θn)− H n(θn)](θ̂n − θn0)|

+ sup
‖θn−θn0‖≤$√

1/n
|ξ�
n M

− 1
2

n (θn0)[H n(θn)− H n(θn0)](θ̂n − θn0)|

= In1 + In2 + In3.
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By the Cauchy–Schwarz inequality and Remark 1, we have In1 = op(1). By the
same argument and Lemmas 4 and 5, we also have In2 = op(1) and In3 = op(1).
This proves (16).
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Variable Selection of Interval-Censored
Failure Time Data

Qiwei Wu, Hui Zhao, and Jianguo Sun

Abstract Variable selection is a commonly asked question in statistical analysis
and has been extensively discussed under many contexts. In particular, many authors
have investigated the problem under the survival analysis context. However, most of
the existing methods for failure time data only deal with right-censored data and in
this chapter, we will discuss the problem for regression analysis of interval-censored
data, a more general type of failure time data, under the proportional hazards model.
For covariate selection and estimation of covariate effects, a penalized estimation
procedure is developed with the use of some commonly used penalized functions
and the sieve approach. The simulation study suggests that it seems to work well for
practical situations. In addition, an illustrative example is provided.

1 Introduction

Variable selection is a commonly asked question in statistical analysis and has
been extensively discussed under many contexts (Dicker et al. 2013; Fan and Li
2001; Tibshirani 1996; Zou 2006). In particular, many authors have investigated
the problem under the survival analysis context (Cai et al. 2009; Fan and Li 2002;
Huang and Ma 2010; Martinussen and Scheike 2009). However, most of the existing
methods for failure time data only deal with right-censored data and in practice,
one may often face interval-censored data, a more general type of failure time data
(Sun 2006; Sun et al. 2015). By interval-censored data, we usually mean that the
failure time of interest is known or observed only to belong to an interval instead
of being observed exactly. It is easy to see that among others, most of medical
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follow-up studies such as clinical trials will yield such data and interval-censored
data include right-censored as a special case. In the following, we will consider
regression analysis of interval-censored data with the focus on covariate selection.

There exist many methods for variable selection, especially under the context
of linear regression, such as forward selection, backward selection and best subset
selection. Among them, the penalized estimation procedure, which optimizes an
objective function with a penalty function, has recently become increasingly popular
and in particular, many penalty functions have been proposed. For example, one of
the early work was given by Tibshirani (1996), who proposed the least absolute
shrinkage and selection operator (LASSO) penalty for linear regression models,
and Fan and Li (2001) developed the smoothly-clipped absolute deviation (SCAD)
penalty. Also Zou (2006) generalized the LASSO penalty to the adaptive LASSO
(ALASSO) penalty, and Lv and Fan (2009) and Dicker et al. (2013) proposed
the smooth integration of counting and absolute deviation (SICA) penalty and the
seamless-L0 (SELO) penalty, respectively.

For covariate selection with failure time data, it is natural to generalize the
methods discussed above, especially the penalized estimation procedures, once
given a regression model. On the other hand, it is well-known that this is quite
challenging or not straightforward due to the special structures of failure time data
caused by censoring as well as truncation, the basic feature of the data. Among
others, one of the most commonly used regression models for failure time data
is the proportional hazards (PH) model and several authors have discussed the
development of penalized estimation procedures for regression analysis of right-
censored data under the model. For example, Tibshirani (1997), Fan and Li (2002)
and Zhang and Lu (2007) discussed the generalizations of the LASSO, SCAD and
ALASSO penalty-based procedures to the PH model situation, respectively, and
more recently, Shi et al. (2014) extended the SICA penalty-based procedure.

In addition, some methods have also been proposed in the literature for covariate
selection of right-censored failure time data under other regression models including
the additive hazards model (Martinussen and Scheike 2009; Lin and Lv 2013) and
the accelerated failure time model (Cai et al. 2009; Huang and Ma 2010). Two
procedures have also actually been developed for the covariate selection of interval-
censored failure time data under the PH model in Scolas et al. (2016) and Wu and
Cook (2015). However, both procedures are parametric methods and in particular,
Wu and Cook assumed that the baseline hazard function is a piecewise constant
function. Also there is no theoretical justification given for both procedures. Note
that for regression analysis of right-censored data with the PH model, a partial
likelihood function is available (Kalbfleisch and Prentice 2002), which is free of the
baseline hazard function and is the base for all of the existing penalized estimation
procedures as it can be regarded as a parametric objective function. Also one
main difference between right-censored data and interval-censored data is that the
latter has a much more complex data structure and as one consequence, no partial
likelihood function or a parametric objective function is available any more. In other
words, one has to deal with both regression parameters and the baseline hazard
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function together. In the following, we will develop a sieve penalized estimation
procedure for interval-censored data under the PH model.

The remainder of the chapter is organized as follows. First we will begin in
Sect. 2 with introducing some notation and assumptions that will be used throughout
the chapter as well as describing the model and the resulting likelihood function. The
proposed sieve penalized estimation approach will be presented in Sect. 3 and in
the method, Bernstein polynomials will be employed to approximate the unknown
baseline cumulative hazard function. For the implementation of the procedure, a
coordinate decent algorithm will be described and it is faster and can be easily
implemented than the EM algorithm given in Wu and Cook (2015). In addition,
the proposed method can be applied with various penalty functions. Section 4
presents some results obtained from an extensive simulation study conducted for
the assessment of the proposed method and suggest that it seems to work well for
practical situations. An illustrative example is provided in Sects. 5 and 6 concludes
with some discussion and remarks.

2 Notation, Assumptions and Likelihood Function

Consider a failure time study with T denoting the failure time of interest and
suppose that there exists a p-dimensional vector of covariates denoted by X

¯
. For

the covariate effect, we will assume that T follows the PH model given by

λ(t;X
¯
) = λ0 (t) exp{β

¯
′X
¯
} ,

where λ0(t) denotes an unknown baseline hazard function and β
¯

is a vector of
regression parameters. In the following, it will be supposed that the main goal is
about inference on β

¯
with the focus on covariate selection.

For inference, we will assume that one only observes interval-censored failure
time data given by { (Li < Ti ≤ Ri,X

¯ i
) , i = 1, . . . , n} from n independent

subjects, where (Li, Ri] denotes the interval within which the failure time Ti
belongs to. It is apparent that it will reduce to right-censored data if Li = Ri or
Ri = ∞ for all i. In the following, we will assume that the mechanism generating
the censoring intervals (Li, Ri]’s is independent of the Ti’s given covariates or non-
informative (Sun 2006). Then the likelihood function has the form

L(β
¯
,Λ0) =

n∏
i=1

{
exp

(
−Λ0(Li) e

β
¯
′X
¯

)
− exp

(
−Λ0(Ri) e

β
¯
′X
¯

)}
, (1)

where Λ0(t) = ∫ t
0 λ0(s)ds denotes the baseline cumulative hazard function. Note

that the likelihood function above involves an infinite-dimensional function Λ0 and
this usually makes its maximization complicated and difficult. To address this,
a sieve approach is commonly employed to approximate Λ0 by some smooth
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functions (Huang and Rossini 1997; Ma et al. 2015; Zhou et al. 2017). In the
following, by following Zhou et al. (2017), we will use the Bernstein polynomial
approximation.

More specifically, let Θ = {
(β

¯
,Λ0) ∈ B ⊗M

}
denote the parameter space

of (β
¯
,Λ0), where B = {

β
¯
∈ Rp, ‖β

¯
‖ ≤ M

}
with M being a positive constant,

and M is the collection of all bounded and continuous nondecreasing, nonnegative
functions over the interval [c, u]. Here c and u are usually taken to be min(Li) and
max(Ri), respectively. Also define the sieve space Θn = {

(β
¯
,Λ0n) ∈ B ⊗Mn

}
,

where

Mn=
⎧⎨
⎩Λ0n(t)=

m∑
k=0

φkBk(t,m, c, u) :
∑

0≤k≤m
|φk|≤Mn, 0 ≤ lφ0 ≤ φ1 ≤ . . . ≤ φm

⎫⎬
⎭

with Bk(t,m, c, u) denoting the Bernstein basis polynomial defined as

Bk(t,m, c, u) =
(
m

k

)(
t − c

u− c

)k (
1 − t − c

u− c

)m−k
, k = 0, 1, . . . , m .

In the above Mn is a positive constant and m = o(nv), denoting the degree of
Bernstein polynomials, for some v ∈ (0, 1). More discussion about m will be given
below.

Note that by focusing on the sieve space Θn, the likelihood function given in (1)
becomes

L(β
¯
, φ′

ks) =
n∏
i=1

{
exp

(
−Λ0n(Li) e

β
¯
′X
¯

)
− exp

(
−Λ0n(Ri) e

β
¯
′X
¯

)}
. (2)

Hence the use of Bernstein polynomials turns an estimation problem about both
finite-dimensional and infinite-dimensional parameters into a problem that involves
only finite-dimensional parameters with the constraint 0 ≤ φ0 ≤ φ1 ≤ . . . ≤ φm.
Note that this constraint can be easily removed by the reparameterization φ0 = eα0

and φk = ∑k
i=0 e

αi , 1 ≤ k ≤ m. In other words, instead of L(β
¯
, φ′

ks) given in (2),
we can focus on the likelihood function L(β

¯
, α′

ks), and in the next section, we will
discuss the estimation of these parameters with the focus on covariate selection.

3 Sieve Penalized Estimation

Let β
¯
= (β1, . . . , βp)

′ and α
¯
= (α0, . . . , αm)

′. To estimate β
¯

and α
¯
, we propose to

use the sieve penalized maximum likelihood estimator (β̂
¯ n
, Λ̂0n) = (β̂

¯
, α̂

¯
) defined

as the values of β
¯

and α
¯

that maximize the sieve penalized log likelihood function
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Qn(β
¯
, α

¯
) = log

{
L(β

¯
, α′

ks)
} − n

p∑
j=1

pλ(βj )

=
n∑
i=1

log

{
exp

(
−Λ0n(Li) e

β
¯
′X
¯ i
)

− exp

(
−Λ0n(Ri) e

β
¯
′X
¯ i
)}

− n

p∑
j=1

pλ(βj ) .

In the above, pλ denotes a penalty function that depends on a tuning parameter
λ > 0 and in the following, we will consider several commonly discussed penalty
functions.

In particular, we will discuss the LASSO and ALASSO penalty functions with
the latter defined as pλ(βj ) = λwj |βj |, where wj is a weight for βj . By following
the suggestion of Zou (2006), in the following, we will set the weights as wj =
1/|β̃j |, where β̃j is the sieve maximum likelihood estimator of βj based on the
likelihood function L(β

¯
, α

¯
). The above function pλ(βj ) will reduce to the LASSO

penalty function with wj = 1 for all j . Another penalty function to be investigated
is the SCAD penalty function that has the form

pλ(βj ) =

⎧⎪⎨
⎪⎩
λ |βj | , |βj | ≤ λ ,

−(β2
j − 2a|βj | + λ2)/ [2(a − 1)] , λ < |βj | ≤ aλ ,

(a + 1) λ2/2 , |βj | ≥ aλ ,

where the constant a is set to be 3.7 to follow the suggestion of Fan and Li (2001).
In addition, we will study the SICA and SELO penalty functions. The former is
defined as

pλ(βj ) = λ
(τ + 1) |βj |
|βj | + τ

with τ > 0 being a shape parameter, while the latter has the form

pλ(βj ) = λ

log(2)
log

( |βj |
|βj | + γ

+ 1

)

with γ > 0 being another tuning parameter besides λ. In the numerical studies
below, we will set τ = γ = 0.01 (Dicker et al. 2013).

To maximize the sieve penalized log likelihood function Qn(β
¯
, α

¯
), we propose

a two-step procedure that estimates β
¯

and α
¯

alternatively. In particular, we will use
the Nelder-Mead simplex algorithm to update the estimators of α

¯
given the current

estimators of β
¯

and then update the estimators of β
¯

by employing the coordinate
decent algorithm while fixing α

¯
(Fu 1998; Daubechies et al. 2004). The specific

steps can be described as follows.
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Step 1. Choose the initial values of β
¯

and α
¯Step 2. Given the current estimate of β

¯
, update the estimate of α

¯
by using the

Nelder-Mead simplex algorithm.
Step 3. Given the current estimate of α

¯
, update the estimate of β

¯
by using the

coordinate decent algorithm, and in particular, update each element of β
¯

by
maximizing Qn(β

¯
, α

¯
) while holding the other elements of β

¯
fixed.

Step 4. Repeat steps 2 and 3 until convergence.

Note that the coordinate decent algorithm described above is essentially to conduct
univariate maximization for each element of β

¯
vector repeatedly, and for each

univariate maximization, one can use the golden-section search algorithm (Kiefer
1953). To check the convergency, a common way is to compare the summation
of the absolute differences between the current and updated estimates of each
component of both β

¯
and α

¯
. For the covariate selection, at the convergence, we

will set the estimates of the components of β
¯

whose absolute values are less than a
pre-specified threshold to be zero (Wang et al. 2007). For the numerical study below,
we implement the Nelder-Mead simplex algorithm by using the R function optim
and employ the R function optimize for the implementation of the golden-section
search algorithm. Zeros are used as the initial values of β

¯
and α

¯
and our numerical

study suggests that it works well under various scenarios.
To implement the sieve penalized estimation procedure described above, it is

apparent that we need to choose the tuning parameter λ as well as the degree m
of Bernstein polynomials. For this, we propose to use the C-fold cross-validation.
Specifically, let C be an integer and suppose that the observed data can be divided
into C non-overlapping parts with approximately the same size. Also let logLc

denote the observed log likelihood function based on the cth part of the whole data

set and β̂
¯

−c
and α̂

¯
−c the proposed sieve penalized estimates of β

¯
and α

¯
, respectively,

obtained based on the whole data without the cth part. For given λ and m, the cross-
validation statistic can be defined as

CV (λ,m) =
C∑
c=1

logLc(α̂
¯
−c
, β̂

¯

−c
) ,

and one can choose the values of λ and m that maximize CV (λ,m). Note that other
criteria can also be used to select the optimal λ and m, including AIC and BIC. We
have briefly compared the performance between cross-validation and BIC and found
that the latter is more aggressive and tended to choose a larger λ value that results
in excluding more variables. AIC was not investigated since it does not include the
sample size into consideration compared with BIC. In practice, one may perform
grid search over possible ranges of λ and m and furthermore, may fix m to be the
closest integer to n0.25 to focus on the selection of λ.
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4 A Simulation Study

An extensive simulation study was conducted to assess the performance of the
sieve penalized estimation procedure proposed in the previous sessions. In the
study, we considered several set-ups for covariates including p = 8 and p =
100 and generated covariates from either the normal distribution or Bernoulli
distribution. For the true failure time, we assumed that the Ti’s followed the Weibull

distribution with the hazard function λ(t |X
¯ i
;β

¯
) = k η (ηt)k−1 e

X
¯
T

i β
¯ with k = 1

and η = − log(0.05). To generate censoring intervals, we first generated the total
number of examination time points for each subject from the zero-truncated Poisson
distribution with mean μ, and given the number of examination time points, the
examination times were generated from the uniform distribution over (0, 1). Then
for subject i, the observed interval end points Li and Ri were defined to be the
largest examination time point before the true Ti and the smallest examination time
point after Ti , respectively. The results given below are based on n = 100 or 500
with 100 replications.

Table 1 presents the results on the selection of the covariates with n = 100, β
¯ 0

=
(0.8, 0, 0, 1, 0, 0, 0.6, 0)′, μ = 10 or 20, and X

¯
following the normal distribution

with mean 0 and the correlation ρ|j1−j2| between the two components Xj1 and Xj2

of X
¯

with ρ = 0.5. In the table, the MMSE and SD represent the median and the
standard deviation of the MSE, respectively, given by (β̂

¯
− β

¯ 0
)T Σ(β̂

¯
− β

¯ 0
) among

100 data sets, whereΣ denotes the covariance matrix of the covariates. The quantity
TP denotes the averaged number of the correctly selected covariates whose true
coefficients are not 0, and FP the averaged number of incorrectly selected covariates
whose true coefficients are 0. Here we considered all five penalty functions, LASSO,
ALASSO, SCAD, SICA and SELO, described above, set m = 3, the closest integer
to n0.25, and used the 5-fold cross-validation for the selection of λ based on the grid
search. For comparison, we also investigated the method given in Wu and Cook
(2015), referred to as WC method in the table, by the using the program provided
in their paper. Note that their method assumed that the baseline hazard function is a
piecewise constant function and the program only considered LASSO and ALASSO
penalty functions with the four piecewise constant function.

One can see from Table 1 that the proposed method seems to perform well no
matter which penalty function was used, especially in terms of the quantity TP,
the measure of true positive selection. Based on the quantity FP, the measure of
false positive selection, the method with ALASSO and SICA appears to give better
selection results but there was no major difference among each other. Also the
proposed method seems to give a little better and stable results than the WC method
but again there was no significant difference. However, the study here did show
that the proposed method converged much faster than the WC method as mentioned
above. Table 2 gives the results on the selection of covariates with n = 500 and
p = 100, and here we set the first and last five components of the true β

¯
being 0.5

and the remaining components equal to zero. All other set-ups were the same as with
Table 1 except that we took m = 5, again the closest integer to n0.25. It is apparent
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Table 1 Results on the covariate selection with n = 100 and p = 8

Penalty Method MMSE (SD) TP FP

μ = 10

LASSO WC method 0.1633 (0.1043) 3 1.5

Proposed method 0.1547 (0.1008) 3 1.5

ALASSO WC method 0.09511 (0.1576) 2.91 0.41

Proposed method 0.06644 (0.09131) 2.95 0.07

SCAD Proposed method 0.1049 (0.1559) 2.97 0.12

SICA Proposed method 0.08234 (0.1278) 2.9 0.08

SELO Proposed method 0.08246 (0.1125) 2.94 0.09

μ = 20

LASSO WC method 0.1297 (0.09371) 3 1.63

Proposed method 0.1288 (0.09323) 3 1.64

ALASSO WC method 0.08182 (0.1601) 2.91 0.46

Proposed method 0.06674 (0.1223) 2.97 0.09

SCAD Proposed method 0.07405 (0.1363) 2.98 0.14

SICA Proposed method 0.06286 (0.1295) 2.95 0.09

SELO Proposed method 0.06214 (0.1253) 2.96 0.11

Table 2 Results on the covariate selection with n = 500 and p = 100

Penalty Method MMSE (SD) TP FP

μ = 10

LASSO WC method 0.2679 (0.1783) 10 18.24

Proposed method 0.3994 (0.1821) 10 11.29

ALASSO WC method 0.05492 (0.05759) 10 0.12

Proposed method 0.1322 (0.08613) 10 0

SCAD Proposed method 0.06888 (0.1132) 9.93 0.58

SICA Proposed method 0.05553 (0.05829) 9.94 0.13

SELO Proposed method 0.06017 (0.06966) 9.94 0.06

μ = 20

LASSO WC method 0.3118 (0.1059) 10 12.32

Proposed method 0.3969 (0.1549) 10 9.72

ALASSO WC method 0.05013 (0.04084) 10 0.09

Proposed method 0.2234 (0.09529) 10 0.01

SCAD Proposed method 0.06459 (0.1553) 9.93 0.35

SICA Proposed method 0.05217 (0.05733) 9.98 0.03

SELO Proposed method 0.05161 (0.05445) 9.98 0.04

that these results gave similar conclusions to those seen in Table 1 except that the
proposed method with ALASSO, SCAD, SICA and SELO penalty functions seems
to give much better performance than that with LASSO penalty function in terms of
the FP.
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Table 3 Results on the covariate selection with n = 100, p = 8 and different types of covariates

Penalty Method MMSE (SD) TP FP

μ = 10

LASSO WC method 0.4309 (0.3941) 2.71 1.41

Proposed method 0.4299 (0.3419) 2.7 2.13

ALASSO WC method 0.4507 (0.4667) 2.52 0.68

Proposed method 0.4301 (0.3476) 2.55 0.67

SCAD Proposed method 0.4289 (0.5244) 2.39 0.52

SICA Proposed method 0.4456 (0.4505) 2.51 0.45

SELO Proposed method 0.4241 (0.5046) 2.55 0.59

μ = 20

LASSO WC method 0.4073 (0.3237) 2.8 1.38

Proposed method 0.3948 (0.3285) 2.75 2.05

ALASSO WC method 0.4076 (0.4018) 2.53 0.55

Proposed method 0.3914 (0.3306) 2.59 0.54

SCAD Proposed method 0.4055 (0.4431) 2.41 0.54

SICA Proposed method 0.3839 (0.3874) 2.51 0.33

SELO Proposed method 0.3826 (0.3915) 2.56 0.42

Note that in the above set-ups, all of covariates were assumed to be continuous
and we also investigated the situation where some of covariates are discrete. Table 3
presents some results on the selection of covariates similarly obtained as in Table 1
except that here only the first three covariates were generated as above. The other
five covariates were assumed to take values 0 and 1 with E(Xi) = 0.2 and the
correlation ρ|j1−j2| among them with ρ = 0.5. The different types of covariates
were supposed to be independent and all other set-ups were the same as in Table 1.
They again indicate that the proposed method gave reasonable performance for the
covariate selection and also gave similar conclusions as above in terms of different
penalty functions and the comparison of the proposed method to that given by Wu
and Cook (2015).

5 An Application

In this section, we will apply the methodology proposed in the previous sections
to a set of interval-censored failure time data collected during the 2003 Nigeria
Demographic and Health Survey on the childhood mortality in Nigeria (Kneib
2006). In the study, the children’s survival information was obtained by interviewing
their mothers and for the children who died within the first 2 months of birth, the
survival times were collected exactly in days. However, for other survival times,
they were all interval-censored. One goal of interest for the study is to determine
or find the factors that had significant influence on the survival times or children’s
mortality. The factors of interest include the mother’s age and body mass index
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when giving birth, whether the baby was delivered in a hospital, the gender of the
baby, whether mother received higher education, and whether the family lived in
urban. In the following, we will focus on the data from the 5730 children with
survival information and complete information about the factors above. The left-,
interval- and right-censoring rates, based on the 5730 children, are 2%, 10% and
88%, respectively.

For the analysis, let T denote the survival time of the child and define X1 and
X2 to be the mother’s age (AGE) and body mass index (BMI) when giving birth,
respectively, X3 = 1 if the baby was delivered in a hospital and 0 otherwise
(Hospital), X4 = 1 if the baby is male and 0 otherwise (Gender), X5 = 1 if the
mother received a higher education and 0 otherwise (Education), and X6 = 1 if
the family lived in a urban area and 0 otherwise (Urban). Note that the first two
covariates are continuous and the other are binary. For the analysis below, the first
two were standardized. Table 4 gives the analysis results obtained by the proposed
estimation procedure with the use of the penalty functions discussed above. Here
we considered 100 candidate values for the grid search of λ and several values for
m based on the 5-fold cross-validation. The table includes the estimated covariate
effects and the estimated standard errors (SD) withm = 12 and 16. For comparison,
we also obtained and include in the table the results given by the WC method with
the four piecewise constant hazard function and the LASSO and ALASSO penalty
functions.

One can see from Table 4 that both the proposed and WC methods with all
penalty functions except LASSO selected the covariates Hospital, Education and
Urban and suggested that the AGE, BMI and Gender were not related to the survival
time of interest. As suggested by others and seen in the simulation study, the method
with the LASSO penalty tends to have a higher false positive rate and to select more
unimportant covariates than the other penalty functions. Furthermore, all procedures
indicated that the covariates Hospital, Education and Urban had significant effects
on the survival time and that the children would have higher mortality risk if the
baby was not delivered in a hospital, the child’s mother did not receive higher
education, or the child’s family was not living in urban area. In addition, the
results are consistent with different m values and between the proposed and WC
method.

6 Discussion and Conclusion Remarks

This chapter discussed the covariate selection problem when one faces interval-
censored failure time data arising from the proportional hazards model and for it,
a sieve penalized estimation procedure was developed. In the method, Bernstein
polynomials were employed to approximate the unknown cumulative baseline
hazard function and the method allows the use of various commonly used penalty
functions. For the implementation of the proposed method, an iterative algorithm
was presented with the use of the Nelder-Mead simplex algorithm and the coordinate
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decent algorithm as well as the cross-validation for the selection of the tuning
parameter. In addition, the simulation study indicated that it works well for practical
situations.

As mentioned above, several methods have been given in the literature for
the problem discussed here when one observes right-censored failure time data,
a special case of interval-censored data. However, it is not straightforward to
generalize these to interval-censored data as the data structure for the latter is much
more complicated than that for the former. Although two procedures have been
developed for interval-censored data in the literature, they are fully parametric. It
is also worth pointing out that the algorithm given here is also much faster and more
efficient than the penalized EM algorithm developed in Wu and Cook (2015). This is
partly because we directly maximized the penalized log-likelihood function, while
they calculated the conditional expectation of the penalized log-likelihood function
and maximized the penalized conditional expectation iteratively.

Throughout the whole chapter, it is assumed that the sample size n is larger than
the number of covariates p. It is apparent that there exist situations when p is larger
than n, such as in genetic or biomarker studies where there may exist hundreds of
thousands genes or biomarkers. Although some literature has been developed for
variable selection for high-dimensional right-censored data, it is quite difficult to
directly generalize these methods to interval-censored data as mentioned above. In
other words, more research is clearly needed to achieve variable selection for high-
dimensional interval-censored data.
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Flexible Modeling of Frailty Effects
in Clustered Survival Data

Samuel Manda

Abstract Survival data that have a multivariate structure occur in many health
sciences including biomedical research, epidemiology studies and, clinical trials. In
most cases, an analysis of multivariate survival data deals with association structures
among survival times within same subjects or clusters. Under the conditional
(frailty) model approach, the baseline survival functions are modified using mixed
effects that incorporates cluster-specific random effects. This approach can be
routinely applied and implemented in several statistical software packages with
tools to handle analyses of clustered survival data. The random cluster terms are
typically assumed to be independently and identically distributed from a known
parametric distribution. However, in most practical application, the random effects
may change over time, and the assumed parametric random effect distribution could
be incorrect. In such cases, nonparametric forms could be used instead. In this
chapter, we develop and apply two approaches that assume (a) time dependent ran-
dom effects and (b) nonparametric random effect distribution. For both approaches,
full Bayesian inference using the Gibbs sampler algorithm is used for computing
posterior parameter for the mixing distribution and regression coefficients. The
proposed methodological approaches are demonstrated using real data sets.

1 Introduction

Modeling and analysis of clustered survival data complicate the estimation proce-
dures since independence between the survival times can no longer be assumed.
It has been proven that ignoring clustering effects when an analysis of such data
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is undertaken could lead to biased estimates of both fixed effect and variance
parameters (Heckman and Singer 1984; Pickles and Crouchley 1995; Ha et al.
2001). Random effects models and marginal models are the two most common
approaches to modeling clustered survival data. Marginal models focus on the
population average of the marginal distributions of multivariate failure times, and
the correlation is treated as a nuisance parameter to reduce the dependence of the
marginal models on the specification of the unobservable correlation structure of
clustered survival data. Parameters are often estimated using generalized estimating
equations and the corresponding variance-covariance estimators are corrected prop-
erly to account for the possible dependence structure. An excellent overview, with
examples, of the marginal approach is discussed in Lin (1994).

On the other hand, random effects models explicitly formulate the underlying
dependence in the survival data using random effects. They provide insights into the
relationship among related failure times. Conditional on the cluster-specific random
effects, the failure times are assumed to be independent. A more general framework
for incorporating random effects within a proportional hazards model is given
in Sargent (1998) and Vaida and Xu (2000). Random effect survival models are
commonly referred to as shared frailty models because observations within a cluster
share the same cluster-specific effects (Clayton 1991). The nomenclature of frailty
effect survival data has its roots from seminal work on univariate survival analyses
developed by Vaupel et al. (1979). The frailty effect is taken to collectively represent
unknown and unmeasured factors, which affect the cluster-specific baseline risk.
The frailty effects can be nested at several clustering levels (Sastry 1997; Bolstad
and Manda 2001).

Most of the methodological and analytical developments in the context of frailty
models have been based on assuming that the random effects are independent and
time-invariant. Within parametric Bayesian hierarchical models (see, for example,
Gilks et al. 1996), the usual set-up uses first stage modeling in the observed
outcomes. The second stage involves an exchangeable prior distribution on the
unobservables (the random frailties), which parameterize the distribution for the
observables. However, for some diseases, there may be an increase in the patient’s
frailty, especially after the first failure event. In such cases, there is need to
accommodate the effect of past infection patterns as well as the possibility of time-
dependent frailty, for example in recurrent event data. This first part is usually
accomplished by a monitoring risk variable, which is introduced as a fixed effect
covariate. This measures the effect of the deterministic time-dependent component
of frailty which can be modeled by the number of prior episodes as in Lin (1994)
and Lindsey (1995), or by the total time from study entry as in McGilchrist and Yau
(1996) and Yau and McGilchrist (1998). A positive coefficient corresponding to a
monitoring risk variable would imply that the rate of infection increases once a first
infection has occurred and might indicate serial dependence in the patient’s frailty.
Alternatively, time-dependent frailty could be modelled using an autoregressive
process prior. A simple model uses a stochastic AR(1) prior for the subject (cluster)-
specific frailty and residual maximum likelihood estimation procedures have been
used (Yau and McGilchrist 1998).
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Perhaps a more restrictive assumption is on the parametric model for the frailty
effects. For computational convenience, in many applications, the random frailty
effects are usually assumed to be independent and identically distributed from a dis-
tribution of some known parametric family; in particular, under multiplicative frailty
effects, the frailty distribution is from gamma or lognormal families. In practice,
information about the distribution of the random effects is often unavailable, and
this might lead to poor parameter estimates when the distribution is mis-specified
(Walker and Mallick 1997). Furthermore, estimates of covariate effects may show
changes in both sign and magnitude depending on the form of frailty distribution
(Laird 1978; Heckman and Singer 1984). To reduce the impact of distributional
assumptions on the parameter estimates, finite mixture models for frailty effects
have been studied (Laird 1978; Heckman and Singer 1984; Guo and Rodriguez
1992; Congdon 1994). A more flexible approach uses nonparametric modelling of
frailty effect terms, though this is not used widely in practice (Walker and Mallick
1997; Zhang and Steele 2004; Naskar 2008). Furthermore, asymptotic unbiasedness
for estimates of frailty variance depend on the form of the frailty distribution
(Ferreira and Garcia 2001). Thus, it is not correct to always assume that the random
frailty effects are constant over the study period nor that they arise from a known
parametric distribution with its restrictive unimodality and shape. It is important to
choose the distribution of the frailty effects to be more flexible in order to account
for arbitrary multimodality and unpredictable skewness types (Walker and Mallick
1997). These possibilities can be addressed when the frailty effects distribution is
drawn from a large class of distributions. Such a large class could be formed by
using nonparametric approaches to model the frailty effect distribution.

In this chapter, we develop methodologies for the analysis of clustered survival
where frailty random terms are modelled as time-dependent and nonparametrically.
For time-dependent random frailty effect, both the deterministic monitoring risk
and stochastic AR(1) model are developed. For the nonparametric frailty model, a
Dirichlet process prior is employed (Ferguson 1973). In both frailty effects construc-
tions, parameters are estimated within full Bayesian framework by implementing
the Gibbs sampling algorithm in WinBUGS, a statistical software package for
Bayesian inference (Spiegelhalter et al. 2004). Both methodologies are applied to
example data, and comparisons are made to the constant frailty model using the
deviance information criteria (DIC) (Spiegelhalter et al. 2002). Further details on
the methods described here could be found in Manda and Meyer (2005) and Manda
(2011). We develop the methodology for the nonparametric frailty model. In Sect. 2,
we describe the standard conditional survival model and possible extensions. The
Dirichlet process prior for nonparametric modelling of the unknown distribution of
the frailty effects is presented in Sect. 3, which also describes two constructions
of the process: the Polya urn scheme and the stick-breaking construction. We also
describe how the model can be computed using the Gibbs sampler. The child
survival data and the resulting parameter estimates are given in Sect. 4. Section 5
presents the proposed time-dependent frailty model for recurrent event analysis,
and in Sect. 5.1, we apply the proposed methodology to a data set from Fleming and
Harrington (1991) on patients suffering from chronic granulomatous disease. The
proposed methodologies are discussed in Sect. 6.
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2 Conditional Frailty Survival Model

2.1 Basic Model and Notation

Following Andersen and Gill (1982) (see also Clayton (1991) and Nielsen et al.
(1992)), the basic proportional hazards model is formulated using counting process
methodology. A counting processN(t) t ≥ 0, is a stochastic process withN(0) = 0.
The sample path of N(t) is increasing, piecewise constant, with jumps of size 1 and
right-continuous. Additionally, a stochastic process Y (t) is defined to indicate alive
and under observation at time t .

We extend the counting process methodology to account for clustered events
data. The methodology could easily be adopted to work with recurrent-times
data. Let J be the number of clusters and each has Kj subjects. For subject
jk (j = 1, . . . , J ; k = 1, . . . , Kj ), a process Njk(t) is observed, which is
a cumulative count of observed events experienced by the subject by time t . In
addition, a process Yjk(t), which indicates whether the subject was at risk for
the event at time t is also observed. We also measure a possibly time-varying p-
dimensional vector of covariates, xjk(t). Thus, for the (jk)th subject the observed
data are D = {Njk(t), Yjk(t), xjk(t); t ≥ 0}, and are assumed independent. Let
dNjk(t) be the increment of Njk(t) over an infinitesimal interval [t, t + dt); i.e.
dNjk(t) = dNjk[(t + dt)−] − dNjk(t

−); (t− is time just before t). For right-
censored survival data, the change dNjk takes a value 1 if an event occurred at time
t or 0, otherwise. Suppose Ft− is the available data just before time t . Then

E[dNjk(t)|Ft−] = P(dNjk(t) = 1|Ft−) = Yjk(t)hjk(t)dt

is the mean increase in Njk(t) over the short interval [t, t + dt), where hjk(t)

is hazard function for subject jk. The process Ijk(t) = Yjk(t)hjk(t) is called the
intensity process of the counting process. The effect of the covariates on the intensity
function for subject jk at time t is given by the Cox proportional covariate effects
function (Cox 1972)

Ijk(t |λ0, β, xjk(t), wj ) = Yjk(t)λ0(t)wj e
βT xjk(t) (1)

where β is a p-dimensional parameter vector of regression coefficients; wj is the
cluster-specific unobserved frailty, which captures the risk of the unobserved or
unmeasured risk variables; and λ0(t) is the baseline intensity, which is unspecified
and to be modelled nonparametrically. In the present study, the frailty effect wj is
assumed time-invariant, but this can be relaxed in certain situations (Manda and
Meyer 2005). Under non-informative censoring, the (conditional) likelihood of the
observed data D is proportional to
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J∏
j=1

Kj∏
k=1

∏
t≥0

(Ijk(t |λ0(t), β, xjk(t), wj ))
dNjk(t)e−Ijk(t |λ0(t),β,xjk(t),wj )dt . (2)

This is just a Poisson likelihood taking the increments dNjk(t) as inde-
pendent Poisson random variables with means Ijk(t |λ0, β, xjk(t), wj )dt =
Yjk(t)wj exp(βT xjk(t))d%0(t), where d%0(t) is the increment in the integrated
baseline hazard function in interval [t, t+dt). We conveniently model the increment
d%0(t) by a gamma d%0(t) ∼ gamma(cdH0(t), c) prior, where H0(t) is a known
non-decreasing positive function representing the prior mean of the integrated
baseline hazard function and c is the confidence attached to this mean (Kalbfleisch
1978; Clayton 1991). Mixtures of beta or triangular distributions could also be used
to nonparametrically model the baseline hazard function (Perron and Mengersen
2001), but this is not done here.

2.2 Prior on the Frailty Distribution

In a nonparametric Bayesian hierarchical structure, prior uncertainty is at the level
of the frailty distribution function F (Green and Richardson 2001). One such
prior is the Dirichlet process, which models nonparametrically the distribution
function F as a random variable. The use of the Dirichlet process prior to model
a general distribution function arises from the work of Ferguson (1973). However,
the resulting flexibility comes with higher cost due to increased computational
complexity of the analysis. A number of algorithms have been proposed recently
for fitting nonparametric hierarchical Bayesian models using Dirichlet process
mixtures; namely Gibbs sampling, sequential imputations and predictive recursions.
In a comparative analysis of these three algorithms using an example from multiple
binary sequences, Quintana and Newton (2000) found the Gibbs sampler, though
computational intensive, was more reliable. It is the algorithm of choice for studies
involving the Dirichlet process mixture to model random effects distributions in
linear models (Kleinman and Ibrahim 1998) and in multiple binary sequences
(Quintana and Newton 2000).

The Dirichlet process has previously been successfully used by Escobar (1994)
and Maceachern (1994) to estimate a vector of normal means. Recently, Dubson
(2009) introduced many interesting applications of Bayesian nonparametric priors
for inference in biomedical problems. A number of examples provide motivation
for non-parametric Bayes methods in bio-statistical applications. These ideas have
been expanded upon by (Muller and Quintana 2009) focussing more on inference for
clustering. Naskar et al. (2005) and Naskar (2008) suggest Monte Carlo Conditional
Expected Maximisation (EM), a hybrid algorithm to analyse HIV infection times in
a cohort of females and recurrent infections in kidney patients, respectively, using a
Dirichlet process mixing of frailty effects.
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3 Nonparametric Dirichlet Frailty Process Frailty Model

3.1 Dirichlet Process Prior

Parametric Bayesian hierarchical modelling uses first stage modelling in the
observed outcomes dN11(t), dN12(t), . . ., dNJKJ

(t); t ≥ 0, and the second stage
uses an assumed exchangeable prior, F , usually a gamma or lognormal distribution,
on the unobservable w1, w2, . . . , wJ . Thus, we have

Stage 1 : Ijk(t |λ0, β, xjk(t), wj ) = Yjk(t)λ0wje
βT xjk(t)

Stage 2 : wj ∼ F

A stage where F is allowed to be an unknown random variable is added. Thus, we
have

Stage 3 : F ∼ DP(M0, F0(γ ))

where DP(M0, F0(.)) is a Dirichlet process (DP) prior on the distribution function
F . The DP prior has two parameters: the function F0(.), which is one’s prior
best guess for F , and the scalar M0, which measures the strength of our prior
belief on how well F0 approximates F . The Dirichlet process prior for distribution
function F stems from the work of Ferguson (1973). The property of the process
is that for any finite partition (A1, . . . , Aq) on the real line R+, the random
vector of prior probabilities (F (A1), . . . , F (Aq)) has a Dirichlet distribution with
parameter vector (M0F0(A1), . . . ,M0F0(Aq)). Using the moments of the Dirichlet
distribution, the DP has prior mean M0F0(0, .]/M0F0(0,∞) = F0(.) and variance
[M2

0 (1 − F0(.))F0(.)]/(M0 + 1).
A number of useful constructive characterisations of the Dirichlet process (DP)

have been proposed in the literature. For instance, Sethuraman (1994) (see also
Ishwaran and James (2001)), proposed that the unknown distribution F could be
represented as

F ∼
N∑
j=1

πjδwj (3)

a random probability measure with N components; (w1, w2, . . . , wN) are
independent and identically distributed random variables with a distribution F0;
(π1, π2, . . . , πN) are random weights independent of (w1, w2, . . . , wN) . The
random weights are chosen using a stick-breaking construction

π1 = V1 and πj = (1 − V1)(1 − V2) · · · (1 − Vj−1)Vj ; j = 2, . . . , N (4)
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where Vj ’s are independent Beta (1, M0) random variables. It is necessary to set
VN = 1 to ensure that

∑N
j=1 πj = 1. In this paper, we use another important

characterisatisation of the DP mixture model: the Polya urn and Gibbs sampling
inference.

3.2 Polya Urn Sampling Scheme

The Dirichlet process is not very useful for sampling purposes. Blackwell and
Macqueen (1973) presented the process as being generated by a Polya urn scheme.
In this scheme, w1 is drawn from F0 and then the j th subsequent cluster effect wj
is drawn from this mixture distribution:

p(wj |w1, . . . , wj−1) =
mj∑
k=1

m∗
k,j

M0 + j − 1
δw∗

k,j
+ M0

M0 + j − 1
F0(.)

where δw∗
k,j

is a degenerate distribution giving mass 1 to the point w∗
k,j ; (w∗

1,j . . . ,

w∗
mj ,j

) are unique set of values in (w1, . . . , wj−1) with frequency (m∗
1,j , . . . ,

m∗
mj ,j

); i.e. m∗
1,j + . . . + m∗

mj ,j
= j − 1. Thus, if M0 is very large compared

to J , little weight is given to previous samples of wj , implying that the Dirichlet
process leads to a full parametric modelling of the random frailty effects by F0. On
the other hand, if M0 is small, then the process leads to draws from the previous
sampled frailty effect.

Polya urn scheme essentially generates samples of wj from a finite mixture
distribution where the components of the mixture are all prior draws {w1, . . . , wj−1}
andw1 ∼ F0 with probabilities described in the Polya urn scheme above. Polya urn
sampling is a special case of what is known as a Chinese Restaurant Process (CRP),
a distribution on partitions obtained from a process where J customers sit down in
a Chinese restaurant with an infinite number of tables (Teh et al. 2005). The basic
process specifies that the first customer sits at the first table, then the j th subsequent
customer wj sits at table w∗

k,j , with probability proportional to the number m∗
k,j of

customers already seated at the table, otherwise the customer sits at a new table with
probability proportional to M0

Using this representation of the Dirichlet model, the joint prior distribution of
w = (w1, . . . , wJ ) is given by

p(w) =
J∏
j=1

∑j−1
l=1 δw∗

l
+M0f0(wj )

M0 + j − 1
(5)

where δb is a degenerate distribution giving mass 1 to the point b, and f0(b) =
dF0(b).
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The Polya urn sampling results in a discrete distribution for a continuous frailty
effect by partitioning the J clusters into latent sub-clusters whose members have
identical values of w distinct from members in other sub-clusters. The number of
latent sub-clusters depends on the parameter value M0 and the number of the frailty
terms (Escobar 1994). This inherent property of partitioning a continuous sample
space into discrete clusters, has often led to the Dirichlet process being criticized as
selecting a discrete distribution for an otherwise continuous random variable.

3.3 Posterior Distribution Using Polya Urn Scheme

The marginal and joint posterior distributions of the model parameters given the data
are obtained from the product of the data likelihood (2); the priors for %0 , β, w and
the hyperprior for γ . To overcome this computational difficulty, the Gibbs sampler
(Tierney 1994), a Markov Chain Monte Carlo (MCMC) method, is used to obtain
a sample from the required posterior distribution. The Gibbs sampler algorithm
generates samples from the joint posterior distribution by iteratively sampling from
the conditional posterior distribution of each parameter, given the most recent values
of the other parameters. Let π(.|.) denote the conditional posterior distribution of
interest, %0(−t) and w−j be the vectors %0 and w, excluding the element t and j
respectively.

The conditional of wj : From Theorem 1 in Escobar (1994), conditional on the
other w and the data, wj has the following mixture distribution:

π(wj |β,w−j , N(t), Y (t)) (6)

∝
∑
l �=j L(Nj (t), Yj (t)|%0, β,wl)δwl + M0g0(wj |γ )L(Nj (t), Yj (t)|%0, β,wj )

M0
∫
L(Nj (t), Yj (t)|%0, β,wj )f0(wj |γ )dwj + ∑

l �=j L(Nj (t), Yj (t)|%0, β,wl)

where L(Nj (t), Yj (t)|%0, β,wj ) is the sampling distribution of the data in the j th
cluster. We note that

π(wj |%0, β, γ,Nj (t), Yj (t))= f0(wj |γ )L(Nj (t), Nj (t)|%0, β,wj )/π(Nj (t), Yj (t))

where π(Nj (t), Yj (t)) is the marginal density of (Nj (t), Yj (t)) which, typically,
is evaluated by numerical integration. This can be costly when the number J of
clusters is large. In order to ease the computational burden, the base measure F0 is
selected to be conjugate to the likelihood of the data. We chose F0 to be a gamma
distribution with mean 1 and variance σ 2 = 1/γ . The marginal distribution of the
cluster-specific observed data (Nj (t), Yj (t)) when wj has the gamma f0 prior is

π(Nj (t), Yj (t)) ∝
∫ Kj∏

k=1

∏
t≥0

[
(wjd%0(t)e

βT xj (t))dNj (t)e−Yj (t)wie
βT xj (t)d%0(t)

]

w
γ−1
j e−γwj dwj
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= �(γ +Dj)

(γ +Hj)
γ+Dj

∏
t≥0

(d%0(t)e
βT xj (t))dNj (t) (7)

where Dj and Hj = ∑
t Yj (t) exp(βT xj (t))d%0(t) are the total number of events

and integrated hazard function for cluster j , respectively. Substituting (5) into (4),
we have a two-component mixture for the posterior distribution of wj , which is
drawn in the following manner. Using probability proportional to

Ki∏
k=1

∏
t≥0

(wid%0(t)e
βT xik(t))dNik(t) exp(−Yik(t)wieβT xik(t)d%0(t))

the selection is made from δwi , which means that wj = wi ; and with probability
proportional to M0π(Nj (t), Yj (t)) we select wj from its full conditional posterior
distribution π(wj |%0, β, γ,Nj (t), Yj (t)), which is given by

π(wj |%0, β, γ,Nj (t), Yj (t)) ∝ F0(wj |γ )L(Nj (t), Yj (t)|%0, β,wj )

= (γ +Hj)
γ+Dj

�(γ +Dj)
w
γ+Dj−1
j e−(γ+Hj )wj

a gamma(γ + Dj, γ + Hj) distribution. This is a mixture of point masses and
a gamma distribution. This process draws a new frailty term for cluster j more
often from the sampled effects wl, l �= j if the observed likelihood for the cluster
conditional on the wl’s are relatively large; otherwise the draw is made from its
conditional gamma distribution.

The conditional distribution of d%0(t) is

π(d%0(t)|%0−t , β,w,N(t), Y (t)) ∝ d%0(t)
cdH0(t)+dN+(t)−1e−(c+R+(t |β,wi))d%0(t)

where dN+(t) = ∑J
j

∑Kj

k dNjk(t) and R+(t |β,wi) = ∑J
j

∑Kj

k Yjk(t)wj

exp(βT xjk(t)). This conditional is the gamma(cdH0(t)+dN+(t), c+R+(t |β,wi))
distribution, and will be sampled directly.

The conditional posterior distribution of β is

π(β|%0, w, γ,N(t), Y (t)) ∝ π(β)

J∏
j=1

Kj∏
k=1

∏
t≥0

wj(e
βT xjk(t))dNjk(t)

exp(−Yjk(t)wj eβT xjk(t)d%0(t))

(8)

where π(β) is a prior density for β, commonly assumed to be the multivariate
normal distribution with mean zero and the covariance matrix having zero off-
diagonal terms. This conditional does not simplify to any known standard density.
The vector β can readily be sampled using a Metropolis-Hastings step with a
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multivariate Gaussian density centred at the last draw (Tierney 1994). That is, at
iteration m, a candidate β∗ is generated from N(βm−1,Dβ), and with probability

min

{
π(β∗|%0, w, γ,N(t), Y (t))

π(β(m−1)|%0, β,w, γ,N(t), Y (t))
, 1

}

the draw β(m) is set to β∗, otherwise β(m) = β(m−1). The covariance matrix Dβ

may be tuned to allow for an acceptance rate of around 50%.
We model the hyperparameter γ by a hyperprior gamma distribution with known

shape κ1 and scale κ2. Its conditional distribution uses the J ′ ≤ J distinct values
w∗ = (w∗

1, . . . , w
∗
J ′), which are regarded as a random sample from F0 (Quintana

and Newton 2000). Subjects sharing a common parameter value in w∗ have a
common distribution and thus are in the same group. The conditional posterior
density of γ is

π(γ |β,w∗, N(t), Y (t)) ∝ γ κ1−1e−κ2γ
γ J

′γ

(�(γ ))J
′

J ′∏
j=1

(w∗
j )
γ−1e

−γ ∑J ′
j=1 w

∗
j (9)

∝ γ J
′γ+κ1−1

(�(γ ))J
′ e

−γ (sumj−logprodj+κ2)

where sumj = ∑J ′
j=1 w

∗
j is the sum of the distinct frailty values, and prodj =∏J ′

j=1 w
∗
j is their product. This conditional does not simplify to any standard

distribution, thus requiring a non-standard method of sampling from it.

4 Application of the Model

4.1 Data

The example data concerns child survival collected in the 2000 Malawi Demo-
graphic and Health Survey. The data are hierarchically clustered in 559 enumeration
areas (EAs); these form our community clustering units. We concentrate on all of
the 11,926 births in the 5 years preceding the survey. The distribution of the number
of births per community had a mean of 21 and median of 20 with an interquartile
range of 16–26. The minimum and maximum number of births per community was 5
and 68, respectively. Infant and under-five mortality rates per 1000 live births were
estimated to be 104 and 189, respectively (NSO 2001). These rates are still very
high when compared to those around the world (56 and 82, respectively) (Bolstad
and Manda 2001). We considered some standard explanatory variables used in the
analysis of child mortality in sub-Saharan countries (Manda 1999). The distributions
of the predictor variables are presented in Table 1.
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Table 1 Descriptive
statistics of explanatory
variables used in the analysis

Variable Frequency Percent

Gender of child

Male 5951 49.9

Female 5975 51.1

Preceding birth interval

First birth 2924 24.5

<24 months 1514 12.7

24–36 months 3569 29.9

>36 months 3919 32.9

Maternal education

No education 3547 29.7

Primary 7213 63.0

Secondary and higher 866 7.3

Residence

Urban 2084 17.5

Rural 9842 82.5

Region

Northern 1936 16.2

Central 4394 36.8

Southern 5596 46.9

Total 11,926 100.0

Mean Median

Birth order 3.4 3.0

Maternal age 25.8 24.3

4.2 Implementation and Results

In a previous analysis of childhood mortality using the 1992 Malawi Demographic
Health Survey data, Manda (1999) found that the rate of death for children under
five years was 0.0055 deaths per birth per month. Thus, we set the mean cumulative
increment in the baseline child death rate as dH0(t) = 0.0055 dt , where dt

denoted a one-month interval. Our prior confidence in the mean hazard function
is reflected by assigning c = 0.1, which is weakly informative. We adopt a vague
proper gamma (1, 0.1) prior for the precision of the community frailty effect γ . This
implies that apriori the community-specific frailty wj has variance 1/10 = 0.1,
which we thought to be reasonable as the differences in risk are likely to be minimal
because we have adjusted for some important community-level factors: region and
type of residence. We do not have sufficient prior information on the prior precision
and concentration parameter M0, so we assigned it a gamma (0.001, 0.001) prior
implying a mean of 1, but with reasonable coverage across its space.

The computation of the parameter estimates was run in WinBUGS software
(Spiegelhalter et al. 2004). For each model considered, three parallel Gibbs sampler
chains from independent starting positions were ran for 50,000 iterations. All fixed
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effects and covariance parameters were monitored for convergence. Trace plots of
sample values of each of these parameters showed that they were converging to the
same distribution. We formally assessed convergence of the three chains using the
German-Rubin reduction factor, and it stabilised to 1.0 by 2000 iterations. However,
for posterior inference, we used a combined sample of the last 30,000 iterations.
Using the posterior samples of the parameters, we calculated 50% (median) and
(2.5% 97.5%) (95% CI) percentiles for posterior summaries. We also performed
limited model selection using the Bayesian Information Criterion (BIC). BIC is
defined as BIC = −2 ∗ log likelihood + P log g, where P is the number of
unknown parameters in the model and g is the sample size. A better fitting model has
a smaller BIC value. The parametric gamma and the nonparametric model had BIC
values of 13,657.68 and 11,797.96, respectively, showing that the nonparametric
approach to frailty was a better fitting model for the data.

Posterior summaries are presented in Table 2 for both the gamma frailty model
and the Dirichlet process frailty model. For the fixed effects, the results are presented
on the logarithm scale where no risk is represented by 0. The estimates of the fixed

Table 2 Posterior median and 95% credibility interval (CI) of the parameters for the Malawi child
survival data

The parametric frailty The nonparametric frailty

Parameter Median 95% CI Median 95% CI

Male child (0: No, 1: Yes) 0.095 −0.008, 0.200 0.091 −0.008, 0.186

Birth order −0.025 −0.112, 0.066 −0.027 −0.133, 0.073

Birth order2 0.003 −0.006, 0.010 0.002 −0.006, 0.010

Preceding birth interval

<2 years 0 –, – –, –

2–3 years −0.383 −0.528, −0.243 −0.381 −0.522, −0.252

>2 years −0.404 −0.555, −0.254 −0.406 −0.570, −0.254

Maternal age

(Age-26)/10 0.009 −0.154, 0.174 0.019 −0.154, 0.189

((Age-26)/10)2 0.123 0.018, 0.230 0.117 0.006, 0.227

Maternal education

Secondary+ (0: No, 1: Yes) −0.197 −0.472, 0.060 −0.206 −0.465, 0.052

Region of residence

Northern region 0 –, –

Central region −0.101 −0.275, 0.077 −0.106 −0.278, 0.079

Southern region 0.014 −0.155, 0.184 0.013 −0.152, 0.190

Rural residence (0: No, 1: Yes) 0.305 0.142, 0.479 0.295 0.127, 0.457

Frailty effects

No of risk classes 21 3, 79

Variance of sub-risk frailties 0.073 0.026, 0.379

DP precision (M0) 4.172 0.454, 33.83

Variance of frailty effects 0.056 0.027, 0.101
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effects are largely the same between a fully parametric and a nonparametric model.
Based on the 95% CI, not all of the fixed effects are significant; however, the median
estimated effects of the modelled covariates support the findings in previous studies
on child mortality in sub-Saharan Africa and other less developed countries (Sastry
1997; Manda 1999). A male child has slightly higher risk of death. Birth order has
a decreasing risk effect. A long preceding birth interval greatly reduces the risk of
death for the index child. The coefficient of the quadratic part of the age of the
mother indicates a child born to a younger or older mother has higher risk. Maternal
education is clearly an important factor: higher educational level is a surrogate for
many positive economic and social factors. Living in rural areas has an increased
risk. Region of residence is a risk factor, though not greatly pronounced.

The nonparametric Dirichlet mixing process has identified 21 classes into which
the 559 communities can be separated according to their childhood mortality risk.
The distinct latent risk values have a posterior median variance of 0.073, slightly
larger than the variance of the frailty effects under the full parametric gamma frailty.
The precision of the DP process has a median of 4, well below the total number of
communities, indicating that distribution of the community effects is more likely
multimodal and nonparametric.

5 Time Dependent Frailty

We have seen that in Sect. 3, stage 2 could be modelled conveniently, using a
gamma distribution with mean one and unknown variance. However, apart from
being restrictive, the gamma distribution has some undesirable properties in that
it is not symmetric or scale-invariant; a property which ensures that the inference
does not depend on the measuring units (Vaida and Xu 2000). We have shown how
this frailty effect could be modeled nonparametrically. In here, we still use stage
2 modeling as in Sect. 3, where some flexibility is imposed on the random frailty
effects by assuming it is time-dependent. Thus, the notation for subject frailty effect
is slightly changed to depend on t . Thus, in the following, wi(t) is assumed to follow
a first-order autocorrelated AR(1) process prior:

wi(t)|wi(t−1) = φwi(t−1) + ei(t); i = 1, . . . , I, t ≥ 0 (10)

where wi(0) ∼ Normal(0, σ 2
w) and ei(t) are i.i.d random variables having a

Normal(0, σ 2
w) distribution. The parameter φ is constrained to lie between -1 and

1 and it measures the degree of serial correlation in the subject-specific frailty. The
prior density of the frailty vector w = (w1(t), . . . , wI (t)) is given by

p(w|φ, σ 2
w) ∝

I∏
i=1

c∏
t≥0

(σ 2
W)

−1/2 exp

(
− 1

2σ 2
w

(wi(t) − φwi(t−1))
2
)
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5.1 Example Data

The example data is taken from Fleming and Harrington (1991) and it describes a
double-blinded placebo controlled randomised trial of gamma interferon (γ -IFN)
in chronic granulomatous disease (CGD). The disease is a group of rare inherited
disorders of the immune function, characterized by recurrent pyogenic infections.
These infections result from the failure to generate microbicidal oxygen metabolites,
within the phagocytes, to kill ingested micro-organisms. The disease usually
presents early in life and may lead to death in childhood. There is evidence that
gamma interferon is an important macrophage activating factor which could restore
superoxide anion production and bacterial killing by phagocytes in CGD patients.
A total of 128 patients were followed for about a year and 203 infections/censorings
were observed, with the number of infections per patient ranging from 1 to 8. Of the
65 patients on placebo, 30 had at least one infection, but only 14 of the 63 patients
on gamma interferon treatment had more than one infection. This resulted in 56 and
20 infections amongst the placebo and gamma interferon groups respectively.

The original data set is shown by treatment group in Table 3. The use of
corticosteroid on entry is not sufficiently varied in the data (a very small proportion
of the subjects were using it), hence it is not used in the present analysis. These data
have previously been analysed using gap-times between infections and total times
using the number of preceding events and a shared frailty model. In our analysis,
we also use the logarithm of the number of previous infections plus 1 (labelled as
PEvents (t)) as the deterministic time-dependent component of frailty. Its parameter
ω measures the effect of past infections on the risk of the current infection. We used
5-day intervals for each patient, resulting in 88 such intervals.

Table 3 Baseline characteristics according to treatment group

Baseline characteristic Placebo Gamma interferon

No. of patients 65 63

Pattern of inheritance

(0: autosomal recessive, 1: X-linked) 41 (63.1%) 45 (71.4%)

Age (in years)a 14.98 (9.64) 14.29 (10.12)

Height (in cm)a 140.55 (34.10) 139.57 (27.24)

Weight (in kg)a 42.30 (24.32) 38.76 (19.92)

Corticosteroid use (0: No, 1: Yes) 2 (3.1%) 1 (1.6%)

Prophylactic antibiotic use (0: No, 1: Yes) 55 (84.6%) 56 (88.9%)

Gender (0: male, 1: female) 12 (18.5%) 12 (19.1%)

Hospital region (0: USA, 1: Europe) 22 (33.8%) 17 (27.0%)
aMean with standard deviation (SD) in parenthesis
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5.2 Prior Specification and Model Comparison

In running the Gibbs sampling algorithm, the prior specifications were as follows:
For both the baseline and fixed effect parameters, σ 2

0 was set to 1000, resulting in a
normal distribution which is very uninformative. In specifying noninformativeness
for the frailty variance σ 2

W , the hyperparameters κ0 and ω0 of the inverse-gamma
prior are usually set to very low values, typically 0.001 is used in the WinBUGS
software. However, κ0 and ω0 values near 0 can result in an improper posterior
density. Moreover, when the true frailty variance is near 0, inferences become
sensitive to choices of κ0 and ω0 (Gelman 2004). For numerical stability, we chose
σ 2
W ∼ inverse-gamma(1, 1). In specifying a Beta(ξ0, ϕ0) prior for ξ , the values of
ξ0 and ϕ0 were set at 3 and 2. This centres ξ at 0.6 (and φ at 0.2), but is flat far away
from this value.

We considered a number of competing models for these data and compared them
using the Deviance Information Criterion (DIC) developed by Spiegelhalter et al.
(2002). The DIC is defined as DIC = D̄ + pD where D̄ is the posterior mean
of the deviance (measures model fit) and pD is the effective number of parameters
in the model (measures model complexity). The parameter pD is calculated using
pD = D̄ − D(ψ̄), where D(ψ̄) is the deviance evaluated at the posterior mean
of the unknown parameters. The DIC is particularly useful in situations involving
complex hierarchical models in which the number of parameters used is not known.
It is a generalisation of the Akaike Information Criterion (AIC) and works on similar
principles. The models we compared were:

• Model 1: ηi(t) = βT Xi(t) + ωPEvents(t). This model allows for differences
in the infection times that only depend on the measured risk variables including
a deterministic time-dependent component of frailty; it does not allow for the
random frailty component.

• Model 2: ηi(t) = βT Xi(t) + ωPEvents(t) + Wi . This model allows for
differences depending on the covariates as well as the random frailty component
for each patient. However, it assumes that the patient random frailty is constant
over time. Thus, Wi can be considered as the frailty on entry for the ith patient
and it does not change with time.

• Model 3: ηi(t) = βT Xi(t) + ωPEvents(t) + Wi(t). Rather than assuming
a constant model for the random subject frailty effect, Model 3 uses a time-
dependent random frailty. This became our main model, which we suggest is
better at explaining all the variation in the data.

For each model, the Gibbs sampler was run for 100,000 iterations and using trace
plots of sample values, we found very rapid convergence for the baseline and
fixed effect parameters, but a longer burn-in was required for the convergence of
variance and correlation parameters. The first 50,000 iterations were discarded and
the remaining 50,000 samples were used for posterior inference. The estimates of
DIC and pD for the three competing models are presented in Table 4. It should be
noted that the use of DIC is not meant to show a true model, but rather to compare
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Table 4 DIC parameters for
model selection

Model I D̄ D(ψ̄) pD DIC

Model I 812.00 803.04 8.96 821.33

Model II 783.24 750.14 33.10 816.74

Model III 724.74 651.11 73.62 798.36

different sets of models. Model choice is based on a combination of model fit,
complexity and the substantive importance of the model. Starting with the fixed
effect Model 1, the effective number of parameters pD is 8.96, nearly equal to the
correct number of parameters which is 10 (8 fixed effects, a longitudinal parameter
and a constant baseline hazard). This model does not offer any meaningful insights
into the variation in the data above that given by the observed covariates. Thus,
we are motivated to consider random effects models, which are Models 2 and 3.
For Models 2 and 3, the estimates of pD are roughly 33 and 74 respectively. The
number of unknown is 139 and 11,266 for Models 2 and 3, respectively. Thus, even
though the number of unknown parameters in Model 3 is about 80 times larger
than that in Model 2, its effective number of parameters is just a little over twice as
large. This suggest that Model 3 is still quite sparse. Furthermore, it has the lowest
goodness-of-fit as measured by D̄. The effectiveness of Model 3 is further supported
by its lowest DIC value, indicating that this model is best in terms of overall model
choice criterion that combines goodness-of-fit with a penalty for complexity. In
these circumstances, we prefer Model 3, as it is more effective and explains the
variation in the data better.

5.3 Results

The posterior estimates from Model 1 are given in columns two and three in
Table 5. The posterior distribution of the treatment effect has mean −0.875 and
standard deviation (SD 0.276), showing that the (γ -IFN) treatment has the effect
to reduce substantially the rate of infection in CGD patients. Other covariates
that have an effect on the rate of infection include pattern of inheritance, age,
the use of prophylactic at study entry, gender and hospital region. Height and
weight were not significantly related to rate of infection. The results also show
that the risk of recurrent infection significantly increases as the number of previous
infections increases (mean 0.712 and SD 0.225). For comparison, the treatment
and the longitudinal effects in Lindsey (1995), without controlling for the other
covariates, were estimated at −0.830 (SD 0.270) and 1.109 (SD 0.227), respectively,
using maximum likelihood estimation. When we left out the number of previous
infections, the effect of treatment increases to −1.088; the same was also observed
in Lindsey (1995) where it changed to −1.052. Thus, the effect of treatment is
partially diminished by the inclusion of the number of previous infections.
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Table 5 Posterior estimates of parameters using the Gibbs sampling

Model 1 Model 2 Model 3

Parameter Mean SD Mean SD Mean SD

γ -IFN −0.875 0.276 −1.065 0.353 −0.889 0.283

Inheritance −0.458 0.297 −0.542 0.393 −0.466 0.308

Age −0.063 0.034 −0.073 0.045 −0.063 0.035

Height 0.004 0.010 0.008 0.015 0.005 0.011

Weight 0.001 0.016 0.005 0.022 0.009 0.017

Prophylactic −0.541 0.323 −0.726 0.466 −0.561 0.336

Sex −0.507 0.400 −0.536 0.520 −0.507 0.412

Hospital region −0.553 0.312 −0.658 0.400 −0.556 0.319

ω 0.712 0.225 0.146 0.330 0.699 0.247

σ 2
W – – 0.788 0.459 0.879 0.507

φ – – – – 0.313 0.278

Next, we consider Model 2 which compares to analyses in McGilchrist and Yau
(1996), Yau and McGilchrist (1998) and Vaida and Xu (2000) using (restricted)
maximum likelihood estimation on inter-event times and the EM algorithm on
the Cox model, respectively. The results are presented in columns four and five
of Table 5. The posterior estimates of the risk variables are fairly close to those
obtained under Model 1, except that the effect of the longitudinal parameter ω
is now much reduced and no longer significant. Similar results were found in
Vaida and Xu (2000), where the effect of the number of previous infections was
reduced to a non-significant result when the random frailty term was included in
the analysis. The variance of patient frailty effect is estimated with a posterior
mean 0.788 and SD 0.459 and is significant. In comparison, the estimates of the
frailty variance were 0.237 (SD 0.211) and 0.593 (SD 0.316) under ML and REML
methods, respectively, in McGilchrist and Yau (1996) when the number of the
previous infections was adjusted for, and 0.743 (SD 0.340) in Yau and McGilchrist
(1998) without controlling for the number of previous infections. It appears that the
number of previous infections explains most of the variation in the patient’s frailty
effects. However, we argue for the inclusion of both deterministic time-dependent
and random components of frailty as they control for order and common dependence
in recurrent-event times. Moreover, using a random frailty effect will also account
for the effects of the missing covariates.

Finally, we examine the results from Model 3 and these are given in the last two
columns of Table 5. Posterior means and SDs of the risk variables are in general
agreement with those obtained in Models 1 and 2. The frailty correlation parameter
φ is estimated with a posterior mean 0.313 and SD 0.278, indicating the presence of
a positive serial correlation between the recurrent event times, but not sufficiently
significant. The variance of frailty has posterior mean 0.879 and SD 0.507, showing
that, apart from the serial dependence, the recurrent event times within a subject
share a common frailty effect that partially summarizes the dependence within the
subject.
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The general criticism of using a normal model for the subject random effects is
its susceptibility to outliers. Thus, we considered three other comparable models
for the subject random effects: double exponential, logistic and td distributions
for sensitivity analyses on the parameter estimates. Using a small d, say 4, the
t4 distribution can also be used as a robust alternative model for the subject
random effects. We fitted each alternative model as in Model 3 with the same prior
specification for β and the variance parameters. The fixed effects were essentially
the same as those in Table 5. For instance the effect of treatment was estimated
with posterior mean −0.909, −0.894 and −0.883 with SD 0.296, 0.284 and 0.281,
respectively, for the double exponential, logistic and t4 models. There was a slight
sensitivity to the frailty variance estimate with mean and SD values 0.255 (0.093),
0.418 (0.112) and 0.349 (0.122) respectively. However, the overall conclusions that
the frailty variance is significant is the same for the models and in general this
application is insensitive and robust.

Our analyses yield posterior means and SDs of fixed effect parameters that are
lower than those obtained by Yau and McGilchrist (1998) using either ML or REML
estimation. However, we obtain an estimate of the frailty variance, which is larger
than the ML estimate (0.200, SD 0.480), but similar to the REML estimate (0.735,
SD 0.526). The Bayesian estimate of the correlation parameter is also lower than
both the ML (0.729, SD 0.671) and REML (0.605, SD 0.325) estimates. It should
be noted that they used total time since the first failure to define a deterministic
time-dependent frailty, in addition to using inter-event times in their models, so
these differences might be due to the modelling strategy of recurrent event times
and the deterministic time-varying component of frailty.

6 Discussion

This chapter has introduced two flexible approaches to dealing with associations
between survival times in a conditional model for the analysis of multivariate
survival data. The two approaches were demonstrated using real data sets. Firstly,
we assumed that frailty effect could be modelled nonparametrically using a Dirichlet
process prior, which specifies prior uncertainty for random frailty effects at the
level of the distribution function; this offers infinite alternatives. This could have
practical benefits in many applications, where, often, the concern is grouping units
into strata of various degrees of risk. In our analysis of the child survival data, the
nonparametric approach allowed us to categorize the sample of the communities
into 21 classes of risk of childhood mortality. Understanding that communities can
be classified according to their risk of childhood mortality provides useful guidance
on the effective use of resources for childhood survival and preventive interventions.
The identified 21 sub-classes of risk could be administratively convenient and
manageable for child health intervention programs.

We note that the model could be extended to have the covariate link function
unspecified and modelled nonparametrically, for instance, by a mixture of beta or
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triangular distributions (Perron and Mengersen 2001). Such an extension would
make the proportional hazards model fully nonparametric in all parts of the model.
A similar model involving minimal distributional assumptions on fixed and frailty
effects was presented in Zhang and Steele (2004). However, implementation of such
models would be computationally more complex and intensive, especially when
there are many short intervals for the counting process.

For the data example, the estimates of the fixed effects and 95% confidence
intervals were similar under both frailty model assumptions; thus substantive
conclusions are not affected by whether or not we use a nonparametric form for
the frailty effects. The fact that a seemingly more complex model produces similar
results to those under a simpler model is irrelevant when we consider that there is
no reason aprior to believe that a gamma shape is adequate for the distribution of
the random frailties (Dubson 2009). A parametric gamma model would have been
unable to model frailty adequately if the distribution of the frailties had arbitrary
shapes and if there were interactions between the observed and the unobserved
predictors. Thus, a nonparametric frailty model validates the parametric gamma
model in this application.

In the second approach, we have shown that a model encompassing dependence
through a time-varying longitudinal parameter with complex structure, that accounts
for both intra-subject and order correlation, provides a better fit than other traditional
models of dependence. It has also been shown for these data that only the
deterministic time component of frailty is important. In the more complex models,
using an AR(1) frailty model, the correlation and the random component show high
positive dependence and variation, respectively, though with minimal significance
since these estimates are marginally larger than their standard deviations. Despite
this, we are satisfied that a model has been presented for consideration in the
analysis of similar data structures, whether binary or count data.
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Partitioned GMM Marginal Model
for Time Dependent Covariates:
Applications to Survey Data

Elsa Vazquez Arreola and Jeffrey R. Wilson

Abstract Addressing correlated observations in longitudinal studies is crucial as
extra variation is crucial. In addition, there are usually time-dependent covariates
that will affect the responses differently at different times. To estimate the regression
coefficients for the time-dependent covariates in such cases require estimation
methods other than maximum likelihood. In particular, GMM method is particularly
useful. However, most GMM method are applied to combine all valid moment
conditions to produce an averaged regression parameter estimate for each covariate.
These methods usually assumed that the effect of each covariate on the response is
constant at all measured periods. This assumption is not necessarily optimal. In this
chapter, we depart from such assumption and instead use a Partitioned GMM model.
This model allows one to provide regression coefficents for the data, reflecting
effects at different periods. These extra regression coefficients are obtained using a
partitioning of the moment conditions as they pertain to the different relationship
based on the period. The Partitioned marginal GMM method exhibits benefits
over previously proposed models with improved insight into the non-constant
relationships realized. We demonstrate this fit using the %PartitionedGMM macro
in SAS to survey data obtained from national studies.

1 Introduction

In a simple regression course, one was often exposed to the analysis of cross-
sectional data. In that case, there is a response vector Y of length n representing
the outcomes from n different units (sampling units). In addition, there is one
predictor represented by the data matrix X of dimension n × 2 corresponding to
the n sampling units and β vector of the two coefficients, the constant and the slope.
The regression model is Y = Xβ + ε where β = (β0,β1)

′
is a two-dimensional
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vector with β0 denoting the constant and β1 denoting slope, and ε is a vector of
unexplained variation of dimension n.In this case, we examined how X impact Y.
We estimate β based on the normal equations such that b = (X

′
X)−1X

′
Y is an

unbiased estimator of β. This also follows from the method of moment based on

the product of X
′
and the residual

(
Y − Ŷ

)
, where Ŷ is the predicted value, is zero.

These are orthogonal vectors such that E
[
X′
(

Y − Ŷ
)]

= 0.

It is common in many fields, such as health and health related research, to observe
subjects repeatedly measured over time. For example, in the Chinese Longitudinal
Healthy Longevity Survey, there are four waves, with the first wave of data
obtained in 1998. Such longitudinal studies have improved efficiency of estimates,
as compared to cross-sectional, though the process of obtaining estimates are more
involved. In addition, the longitudinal survey data provide accurate predictions
of individual outcomes, as it pools the information, despite the creation of some
complications in the statistical analysis. However, in longitudinal studies, there are
opportunities for some potential interesting questions beyond what are asked in
cross sectional data setting. A diagrammatical display with one predictor in X and
one response in Y over four time-periods provides a demonstration, Fig. 1. In Fig.
1, we see different color lines representing a different relation between X and Y.

We know that when the covariate X and the response Y are in the same period the
moments are always valid and can be used to obtain estimates of the corresponding
regression coefficient. However, for the periods, other than cross-sectional ones,
we must verify the moments are valid. Thus, in our example, we have four times of
repeated measurement on X and Y. There are 4 + 3 + 2 + 1 = 10 different situations
(check the arrows in Fig. 1) to address relationships. Of these ten situations, we
know that four of them provide valid moment conditions that can be used to obtain
the estimates. In particular, they are the ones corresponding to cross sectional
periods. In that case, we have (X1,Y1), (X2, Y2), (X3,Y3), (X4,Y4). However for one
period lag we have (X1, Y2), (X2, Y3), (X3,Y4); for two-period lag we have (X1,Y3),

Fig. 1 Relationships
between X and Y over time
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(X2,Y4),; and for three-period lag we have (X1,Y4). We need to determine which of
these periods (3 + 2 + 1) i.e. other than cross sectional (horizontal lines), are valid
to utilize to obtain regression coefficient estimates.

The correlation between repeated response measurements and covariates in
longitudinal studies has been addressed using marginal models (models the mean
response as a function of covariates), as in generalized estimating equations (GEE)
(Zeger and Liang 1986). However, when there are longitudinal data with time-
dependent covariates, Pepe and Anderson (1994) showed that the GEE approach is
valid and provides consistent estimates only if the independent working correlation
matrix is utilized. However, the GEE approach uses all of the cases (ten in our
example) whether they are valid or not valid moment conditions.

Lai and Small (2007), Lalonde et al. (2014), Chen and Westgate 2017, Guerra
et al. 2012, Zhou et al. 2014 among others have proposed generalized method of
moments (GMM) models to address data with time-dependent covariates (Hansen
1982). These approaches present different methods of identifying valid moment
conditions to be used in the estimation process. Despite this attempt to identify
moments, these models do not distinguish the strength and type of the association
between the responses and the covariates at different measured periods. Instead,
these approaches combine all associations (all lines, Fig. 1) to provide one
regression parameter estimate for each covariate. Thus, any varying strength of the
association due to the covariate is masked.

In this chapter, we concentrate on the use of a Partitioned GMM model for time-
dependent covariates. This method utilizes a partitioning of the moment conditions
to distinguish between the varying relations for a covariate on the responses at
different measured periods (Irimata et al. 2019). The approach presents a lower
diagonal data matrix that allows the strength of the impact of the covariate to
be measured. It represents a configuration of the original data matrix. Thus, we
provide a model with additional regression coefficients rather than using a linear
combination of the associations, which masks the true relation. These multiple
regression coefficients provide a complete description of the relationship between
the covariates and the response. It avoids the opportunity of averaging positive and
negative, or strong and weak relationships into one value. In Sect. 2, we review
some existing methods for longitudinal data, with an emphasis on GMM models.
In Sect. 3, we outline the Partitioned GMM framework by revisiting Irimata et al.
(2019). We give a step-by-step approach of the macro presented by Irimata and
Wilson (2018). In Sect. 4, we demonstrate with survey data with applications to
Chinese Longitudinal Healthy Longevity Survey, and Continuity and Change in
Contraceptive Use study.
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2 Marginal Regression Modeling with Time-Dependent
Covariates

Marginal models with time-dependent covariates have addressed the challenges
presented with the extra correlation (Guerra et al. 2012; Selig et al. 2012). Zhou et al.
(2014) introduced a method using the modified quadratic inference function. Chen
and Westgate (2017) provided a new GMM approach, which utilized a modified
weight matrix based on linear shrinkage. However, most of these methods have
the effect of each predictor on the response viewed as constant across periods of
measurement. Müller and Stadtmuller (2005) introduced a generalized functional
linear regression model where the predictor is a random function, which relied on
dimension reduction using orthogonal expansion.

2.1 GMMModels with Covariate Classification

Let us denote the response yit from subject i at time t, with marginal distribution to
follow a generalized linear model, with J different covariates xit. = (xit1, . . . , xitJ).
Assume that the observations yis and ykt are independent when i �= k but not
necessarily when subject i = k and s �= t. Thus, observations from different subjects
are assumed independent, while observations from the same subject are not. Lai and
Small (2007) used a marginal model for longitudinal continuous data with GMM to
account for the time-dependent covariates. In obtaining estimates of the regression
coefficients, Lai and Small (2007) made use of the moment conditions such that

E

[
∂μis (β)

∂βj
{yit − μit (β)}

]
= 0 (1)

for appropriately chosen s, t, and j, where μit(β) = E[{yit| xit.}] denotes the
expectation of yit based on the vector of covariate values xit. associated with the
vector of parameters β in the systematic component that describes the mean of the
distribution of yit. Their relation (1) is used to obtain valid moment conditions to be
used in obtaining regression parameter estimates. However, the method combines
the strength and direction of the relation between the response and the covariate.
Such an assumption ignores differential effects as time progresses and provides an
average estimate.

2.2 GMMModels with Ungrouped Moment Conditions

As an alternative to the grouping of moments based on covariate type, Lalonde et
al. (2014) introduced a method to test the validity of each moment separately. In
their approach to identify valid moments, they relied on a bivariate correlation to
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determine the corresponding moment condition. All moments when the predictor
and response are observed in the same time-period, s = t are valid. We address the
remaining T(T − 1)/2 moment conditions individually for validity. The moment
condition (1) is considered valid when ρxt ,es = 0, that is when the correlation
between the residual observed at time s, denoted by es, and the covariate observed
at time t, denoted by xt where s �= t was zero. However, similar to the method of Lai
and Small (2007), they grouped the valid moments to obtain an estimate of a single
regression coefficient to represent the overall effect of a given covariate.

3 Partitioned Coefficients with Time-Dependent Covariates

We fit a Partitioned GMM for time-dependent covariates model. First, we identify
the valid moment based on methods developed by Lalonde et al. (2014). However,
instead of grouping all valid moment conditions to obtain an average effect of the
covariate on the response, we partition the moment conditions and separate out the
effects of the covariates on the responses across time. This partitioning, based on the
lag between the covariate and the response, results in extra regression parameters
for each covariate. It provides an insight into each of the period and any varying
relationships inherent to longitudinal data.

3.1 Partitioned GMM Model

The Partitioned GMM model presents a relationship between the outcomes observed
at time t, Yt and the jth covariate observed at time s, Xjs for s ≤ t. For each
time-dependent covariate Xj measured at times 1, 2, . . . , T; for subject i and the
jthcovariate, the data matrix is reconfigured as a lower triangular matrix,

Xij =

⎡
⎢⎢⎢⎣

1 Xij1 0 . . . 0
1 Xij2 Xij1 . . . 0
...

...
... . . .

...

1 XiJT Xij(T−1) . . . Xij1

⎤
⎥⎥⎥⎦ =

[
1 X[0]

ij X[1]
ij . . . X[T−1]

ij

]

where the superscript denotes the difference, t − s in time-periods between the
response time t and the covariate time s. Thus, the model,

g (μit ) = β0 + βttj X
[0]
ij + β

[1]
j X

[1]
ij + β

[2]
j X

[2]
ij · · · + β

[T−1]
j X

[T−1]
ij (2)

depends on the regression coefficients βj =
(
β0, β

tt
j , β

[1]
j , β

[2]
j , . . . , β

[T−1]
j

)
. The

coefficient βttj denotes the effect of the covariate Xjt on the response Yt during the
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tth period, or in other words when the covariate and the outcome are observed in the
same time-period. When s < t we denote the lagged effect of the covariate Xjs on the

response Yt by the coefficientsβ[1]
j , β

[2]
j , . . . , β

[T−1]
j . These additional coefficients

allow the identification of the effect of the covariate on the response at different
times in point. It avoids having to assume that the association is the same in strength
and direction at different times. In particular, the coefficient β[1]

j denotes the effect of
Xjs on Yt across a one time-period lag. Thus, each of the J time-dependent covariates
yield a maximum of T partitions of β j. Thus, for a model with J time-dependent
covariates, the data matrix X will have a maximum dimension of N by (J × T) + 1,
and β is a vector of maximum length (J × T) + 1.

However, the use of additional regression parameters produces reliable estimates
when the number of clusters are large in comparison to the number of time-periods.
This approach is similar to the use of parameter estimates in GEE models with
correlated data and using the unstructured working correlation matrix. At times,
they may not converge when the size of each cluster is large relative to the number of
clusters. In such cases, certain working correlation structures may produce estimates
(Stoner et al. 2010).

3.2 Partitioned GMM Estimates

Consider yit for i = 1, . . . , N; to be an independent and identically distributed
random variable with mean μit at time t such that E(yit) = μit = μit(β0) and let β0
denote the vector of regression parameters. These beta regression coefficients are
estimated based on the methods of Irimata et al. (2019) and laid out in Appendix.

Logistic Regression Model: In the case of the logistic regression model, the mean
is

μit
(
β0
) = exp (xit.β)

1 + exp (xit.β)
,

so, the valid elements in the function gi each take the form:

∂μis
(
β0
)

∂β
[k]
j

[
yit − μit

(
β0
)] = xisjμis

(
β0
) [

1 − μis
(
β0
)] [

yit − μit
(
β0
)]
.

Thus, for the asymptotic variance, in the case of logistic regression, each Nv x 1
vector ∂gi(β)

∂β
[k]
l

in the matrix

∂gi (β)

∂β
=
[
∂gi(β)

∂β
[1]
j

, . . . ,
∂gi(β)

∂β
[T−1]
j

]

is obtained as
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∂

{[
∂μis (β)

∂β
[k]
j

]
[yit − μit (β)]

}
∂β

[m]
l

= xisjμis (β) [1 − μis (β)] {xisl [1 − 2μis (β)]

[yit − μit (β)] − xitjμit (β) [1 − μit (β)]
}
,

where j = 1, . . . , J, l = 1, . . . J, k = 1, . . . , T − 1 and m = 1, . . . , T − 1.
Normal distribution model: Similarly, for the normal error model, the moment

conditions in gi take the form

∂μis
(
β0
)

∂β
[k]
j

[
yit − μit

(
β0
)] = xisj

[
yit − μit

(
β0
)]
,

for the valid moment conditions. The asymptotic variance is computed using the
Nv × J matrix

∂gi (β)

∂β
=
[
∂gi(β)

∂β
[1]
j

, . . . ,
∂gi(β)

∂β
[T−1]
j

]
,

where each of the Nv × 1 vectors ∂gi(β)

∂β
[k]
j

is computed as

∂

{[
∂μis (β)

∂β
[k]
j

]
[yit − μit (β)]

}
∂β

[m]
l

= −xisj xisl ,

for j = 1, . . . , J, l = 1, . . . J, k = 1, . . . , T − 1 and m = 1, . . . , T − 1. We
demonstrate the fit of these models and the estimates using the SAS macro.

3.3 SAS Macro for Partitioned GMM Model

The %partitionedGMM SAS macro (Irimata and Wilson 2018) allows the fit of a
model for longitudinal binary and continuous outcomes. This macro first tests for
valid moment conditions. It uses the valid moments to outline the partitioned data
matrices for time-dependent covariates. Then, it fits the model with the new data
matrix using a GMM model. It provides regression parameter estimates, along with
their standard errors and associated p-values. We outline the steps in this macro to
allow the reader to follow the process. The complete code for this macro is located
at https://github.com/kirimata/Partitioned-GMM. However, the user needs to attend
to the following code to fit a partitioned GMM model:

%partitionedGMM(file=, timeVar=, outVar=, predVarTD=, idVar=,
alpha=0.05, predVarTI=, distr=bin, optim=NLPNRA, MC=LWY);

https://github.com/kirimata/Partitioned-GMM
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There are ten arguments that users must specify when using this macro to fit a
partitioned GMM model (Irimata and Wilson 2018). The file argument contains the
name of the dataset to use. It can be a SAS dataset or a SAS file. The timeVar
argument calls for the name of the variable listing the time points. The outVar
argument calls for the name of the outcome or response variable. The predVarTD
argument calls for all time-dependent covariates in the model. The idVar argument
calls for the variable with subject’s ID. The alpha argument calls for the level
of significance for the correlation test to determine the valid moment, Lalonde et
al. (2014). The predVarTI argument calls for the names of any time-independent
covariates in the model; if none exists, the argument is blank. The distr argument
is either binary if outcome is dichotomous or normal if outcome is continuous. The
optim argument identifies a nonlinear optimization method to fit their model. The
MC argument calls for selecting the method to test for valid moment conditions. The
options are LWY for correlation test (Lalonde et al. 2014) and LS for hypothesis
tests (Lai and Small 2007).

4 Numerical Examples

4.1 Contraceptive Use Data

The 2012–2014 Continuity and Change in Contraceptive Use study was originally
collected by the Guttmacher Center for Population Research Innovation and Dis-
semination (Jones 2018). It assessed the contraceptive use in the United States
for women aged 18–39. These data were obtained from a nationally representative
probability sample through online surveys, every 6 months starting in 2012 in four
waves. A sample of these data are given in Table 1. The columns are identified as

Caseid Age HHEAD HHSIZE HHINC Wave Income 100–299 PL Income greater 299 PL

Col1 Col2 Col3 Col4 Col5 Col6 Col7 Col8

Some_college Other_insurance No_insurance Ever_married Hispanic Black USE_BC

Col9 Col10 Col11 Col12 Col13 Col14 Col15

We fit a partitioned GMM marginal logistic regression model with time depen-
dent covariates to the 2012–2014 Continuity and Change in Contraceptive Use
Study data. We wish to understand the relationship between women’s sociodemo-
graphic characteristics and their use of contraceptive methods. This analysis used
the first three waves as the fourth wave had incomplete information on some of the
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Table 1 Sample of survey data continuity and change in contraceptive use

Col1 Col2 Col3 Col4 Col5 Col6 Col7 Col8 Col9 Col10 Col11 Col12 Col13 Col14 Col15

81 36 1 4 15 1 0 1 1 0 0 1 0 0 1
81 36 1 4 15 2 0 1 1 0 0 1 0 0 1
81 36 1 4 15 3 0 1 1 0 0 1 0 0 1
83 27 1 3 11 1 1 0 1 0 0 1 0 0 0
83 27 1 3 11 2 1 0 1 0 0 1 0 0 0
83 27 1 3 11 3 1 0 1 0 0 1 0 0 0
84 19 0 5 16 1 0 1 1 0 0 0 0 0 1
84 19 0 5 16 2 0 1 1 0 0 0 0 0 1
84 19 0 5 16 3 0 1 1 0 0 0 0 0 1
85 34 1 2 12 1 0 1 1 0 0 1 1 0 1
85 34 1 2 12 2 0 1 1 0 0 1 1 0 0
85 34 1 2 12 3 0 1 1 0 0 1 1 0 1
86 24 1 3 19 1 0 1 1 0 0 0 0 0 0
86 24 1 3 19 2 0 1 1 0 0 0 0 0 0
86 24 1 3 19 3 0 1 1 0 0 1 0 0 0

time-dependent covariates. The binary outcome is use of any contraceptive (pill,
patch, ring, IUD, shot, implant) or none of above during the last 30 days. The
time-independent covariate is race (black, Hispanic, white). The time-dependent
covariates are income (100–299 poverty level, >299 poverty level vs <100 poverty
level), marital status (ever been married vs never been married), household head
status (yes vs no), insurance type (non-private insurance, no insurance vs private
insurance) and education (high school diploma or GED or less vs at least some
college). We created dummy variables for each categorical time-dependent covariate
to be used in the %partitionedGMM macro.

We made use of 5028 observations from 1676 participants. First, we tested and
identified for valid moment conditions between outcomes and lagged covariates
using individual correlation tests (Lalonde et al. 2014). We considered four seg-
ments: cross sectional (immediate effect), one lag period (delayed effect), two-lag
period (further delayed effect), and three lag period (furthermost delayed effect).
The following code was used to fit the model.

%partitionedGMM (file = birth_control, timeVar = wave, outVar = use_bc,

predVarTD = hhead hhsize income2 income3 some_college other_insurance

no_insurance ever_married, idVar = caseid, alpha = 0.05,predVarTI =
hispanic black age,distr = bin, optim = NLPNRA,MC = LWY) ;

We found that race and age had a significant impact on the use of contraceptive
methods, ((ORblack = 0.616, p = 0.002) and (ORage = 0.931, p < 0.0001)). Head
of household status, household size, or income had no effect on contraceptive use.
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Table 2 Partitioned GMM model results for contraceptive use

Covariate OR OR 95% CI P-value

Hispanic 0.842 0.635 1.117 0.233
Black 0.616 0.455 0.835 0.002
Age 0.931 0.913 0.949 0.000
Head of household 1.047 0.824 1.329 0.709
Lag-1 head of household 0.936 0.772 1.134 0.498
Lag-2 head of household 1.002 0.844 1.189 0.982
Household size 1.004 0.936 1.077 0.910
Lag-1 household size 1.037 0.982 1.095 0.190
Lag-2 household size 0.954 0.907 1.003 0.063
Income 100%–299% PL 0.804 0.592 1.093 0.164
Lag-1 income 100%–299% PL 1.067 0.931 1.224 0.352
Lag-2 income 100%–299% PL 1.112 0.893 1.385 0.344
Income >299% PL 1.171 0.815 1.682 0.393
Lag-1 income >299% PL 0.854 0.671 1.085 0.196
Lag-2 income >299% PL 1.113 0.867 1.428 0.401
Some college 0.976 0.727 1.311 0.873
Lag-1 some college 1.321 1.033 1.690 0.026
Lag-2 some college 0.836 0.663 1.055 0.132
Other insurance 1.052 0.807 1.371 0.706
Lag-1 other insurance 0.699 0.518 0.944 0.019
No insurance 0.483 0.372 0.627 0.000
Lag-1 no insurance 0.868 0.655 1.150 0.323
Ever married 0.755 0.620 0.919 0.005
Lag-1 ever married 0.852 0.723 1.005 0.057
Lag-2 ever married 0.839 0.720 0.977 0.024

There was neither immediate, delayed nor later delayed effect on contraceptive use,
Table 2. Education showed no immediate effect but after some time it showed some
significant delay effect, (ORlag1 − some collge = 1.321, p = 0.026) on the use of con-
traceptive methods. Having no insurance had an immediate effect while those who
had non-private insurance had a delayed effect on the use of contraceptive meth-
ods ((ORlag1 − nonprivate insurance = 0.699, p = 0.019) and (ORNo insurance = 0.483,
p < 0.0001)). Marital status had an immediate effect and a further delayed
effect on the use of contraceptive methods. Those who been married were less
likely to use contraceptive methods((ORever married = 0.755, p = 0.005) and
(ORlag − 2 ever married = 0.839, p = 0.024)). Contraceptive use shows less likely
to be used by blacks, younger women, little education, and no insurance.

A graphical representation of the impact of the time-varying socioeconomic
factors on contraceptive use is provided in Fig. 2. Figure 1 contains odds ratio
estimates with its 95% confidence intervals for these effects. It shows a relation
of the effects of these socioeconomic factors on contraceptive use at the different
periods.
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Fig. 2 Partitioned GMM model estimates for contraceptive use (OR and 95% confidence inter-
vals)

4.2 Chinese Longitudinal Healthy Longevity Survey Data

The Chinese Longitudinal Healthy Longevity survey was designed to collect infor-
mation on the elderly. The data obtained were used to identify social, behavioral,
environmental and biological risk factors that affect healthy longevity and mortality
in the oldest group of the population (Xiao et al. 2019). The dataset consisted of
people aged 80 years or older, and resided in 22 of 31 provinces in China. The
data were obtained four waves collected in 1998, 2000, 2002 and 2005. We fit a
partitioned GMM logistic regression model with time-dependent covariates fit to
identify the risk factors affecting diverse aspects of healthy longevity. A sample of
the data is given in Table 3. In Table 3, Col1 denotes the ID; Col2 denotes wave, Col3
denotes “own decision”, Col4 denotes “vegetables”, Col5 denotes “dressing”, Col6
denotes “visual difficulty”, Col7 denotes “false teeth”, Col8 denotes “interviewer-
rated health”, Col9 denotes “male”, Col10 denotes “physical check”.

We fit a partitioned GMM logistic regression model to the Chinese Longitudinal
Healthy Longevity Study data to understand how determinants of healthy longevity
affect participants’ health and participants’ ability to attend a physical check.
There were initially 9093 individuals, but at each wave, the number of individuals
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Table 3 Sample of survey data Chinese longitudinal healthy longevity survey

Col1 Col2 Col3 Col4 Col5 Col6 Col7 Col8 Col9 Col10

12,003,398 1 1 0 1 0 1 1 1 1
12,003,398 2 1 1 1 0 1 1 1 1
12,003,398 3 1 1 1 1 1 1 1 1
12,003,398 4 1 1 1 1 1 1 1 1
12,003,798 1 1 1 1 0 0 1 0 1
12,003,798 2 1 1 1 0 1 1 0 1
12,003,798 3 1 0 1 0 0 1 0 0
12,003,798 4 1 0 1 0 0 1 0 1
12,009,398 1 1 1 1 0 1 1 0 1
12,009,398 2 1 1 1 0 1 1 0 1
12,009,398 3 1 1 1 0 1 1 0 1
12,009,398 4 1 1 1 0 1 1 0 1
12,009,498 1 1 1 1 0 1 1 0 1
12,009,498 2 1 1 1 0 1 1 0 1
12,009,498 3 1 1 1 0 1 1 0 1
12,009,498 4 1 1 1 1 0 1 0 1
12,009,798 1 1 1 1 0 0 1 0 1
12,009,798 2 1 1 1 0 0 1 0 1
12,009,798 3 1 1 1 0 0 1 0 1

decreased due to either death or the inability to follow up. There were 1052
individuals remaining in the fourth wave. Of these only 732 individuals were
interviewed in all four waves.

The variables of interest are binary with “whether interviewer considered
participants’ health good or very good (interviewer-rated health)” and “whether par-
ticipants were able to attend for a physical check (physical check)”. The interviewer
rated health is rated on perception of participant’s based on “surprisingly healthy”
and “relatively healthy” versus “moderately ill” and “very ill”. The interviewer rated
whether participants were able to attend a physical check with a binary measure.

The binary time dependent covariates are: able to make their own decisions
(own decision), whether they consumed vegetables frequently (vegetables), whether
they were able to dress without assistance (dressing), whether they had any visual
difficulty (visual difficulty) and whether they had false teeth (false teeth). Gender is
a time-independent covariate. We used the method due to Lalonde et al. (2014) on
individual correlation test to determine valid moment conditions for each of the lags
present due to time-dependent covariates had for each outcome.

4.2.1 Interviewer Rated Health

A partitioned GMM model found that gender did not have a significant effect
on interviewer rating of health (Table 4). We found that individuals’ ability
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Table 4 Partitioned GMM
model results for
interviewer-rated health

Covariate OR OR 95% CI p-value
Male 0.992 0.695 1.415 0.964

Own decision 1.965 1.359 2.841 0.000
Lag −1 own decision 1.594 1.022 2.486 0.040
Lag-2 own decision 1.012 0.542 1.890 0.969
Lag-3 own decision 0.635 0.292 1.382 0.252
Vegetables 0.833 0.434 1.597 0.582
Lag-1 vegetables 0.286 0.143 0.575 0.000
Lag-2 vegetables 1.066 0.585 1.940 0.835
Lag-3 vegetables 0.657 0.234 1.842 0.424
Dressing 4.784 6.366 15.037 0.000
Lag-1 dressing 0.560 0.253 1.242 0.154
Lag-2 dressing 0.558 0.241 1.293 0.174
Lag-3 dressing 2.320 0.800 6.728 0.121
Visual difficulty 0.344 0.241 0.491 0.000
Lag-1 visual difficulty 1.330 0.791 2.237 0.283
Lag-2 visual difficulty 0.695 0.411 1.173 0.173
Lag-3 visual difficulty 0.616 0.346 1.095 0.099
False teeth 0.968 0.565 1.657 0.905
Lag-1 false teeth 1.285 0.740 2.229 0.373
Lag-2 false teeth 1.038 0.571 1.888 0.902

to make their own decisions had an immediate significant impact (cross
sectional) on interviewers’ health rating, (ORown decision = 1.965, p < 0.0001).
Frequently consuming vegetables had no immediate effect, though there was
some significant delayed effect, (ORlag1 − vegetables = 0.286, p = < 0.0001).
The ability to dress oneself had an immediate effect on interviewer heath rating,
(ORdressing = 4.784, p < 0.0001). Individual’s visual difficulty had immediate
effect, (ORvisual difficulty = 0.344, p < 0.0001). The model suggests that participants’
ability to make their own decisions and ability to dress oneself had a significant
positive immediate impact on interviewer rated health. While having visual
difficulty and vegetables had a significant negative immediate and delayed impact,
respectively, on interviewer rated health.

Figure 3 presents the odds ratio estimates for the regression covariates with its
confidence intervals for the impact of the time-dependent covariates on interviewer
rated health at different periods. Figure 3 shows that the effects of the time-
dependent covariates on interviewer rated health over different periods (Zeng et al.
2019).

4.2.2 Physical Check

We fit a partitioned GMM logistic regression model to determine what affected
individuals’ ability to complete a physical check, Table 5. Gender did not
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Fig. 3 Partitioned GMM model for interviewer-rated health in CLHLS (OR and 95% confidence
intervals)

have a significant impact on participants’ ability to complete a physical
check. We found that individuals’ ability to make their own decisions had an
immediate significant impact (cross sectional) on interviewer’s physical check,
(ORown decision = 1.539, p = 0.013). Frequently consuming vegetables had
immediate effect, (ORvegetables = 2.033, p < 0.0001). The ability to dress oneself
had an immediate effect on interviewees’ ability to complete a physical check,
(ORdressing = 3.734, p < 0.0001). Individuals having visual difficulties had
immediate effect, (ORvisual difficulty = 0.293, p < 0.0001). The model suggests that
participants’ ability to make their own decisions, frequent vegetable consumption
and ability to dress oneself had a significant positive impact on interviewer’s view
on completing a physical check. While having visual difficulty had a significant
negative impact on interviewer’s rating of completing physical check.

Figure 4 contains odds ratio estimates as well as their 95% confidence intervals
for the impact of the time-dependent covariates on individuals’ ability to complete
a physical check. Figure 4 shows the relation from one period to the next.
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Table 5 Partitioned GMM
model results for physical
check

Covariate OR OR 95% CI P-value
Male 1.258 0.896 1.767 0.185

Own decision 1.539 1.095 2.163 0.013
Lag-1 own decision 0.731 0.396 1.349 0.316
Lag-2 own decision 0.930 0.435 1.988 0.851
Lag-3 own decision 1.451 0.812 2.591 0.209
Vegetables 2.033 1.473 2.805 0.000
Lag-1 vegetables 0.616 0.362 1.047 0.073
Lag-2 vegetables 0.792 0.439 1.431 0.440
Lag-3 vegetables 0.880 0.417 1.857 0.737
Dressing 3.734 4.119 9.637 0.000
Lag-1 dressing 0.771 0.430 1.383 0.383
Lag-2 dressing 1.610 0.792 3.270 0.188
Lag-3 dressing 1.128 0.527 2.412 0.756
Visual difficulty 0.293 0.216 0.398 0.000
Lag-1 visual difficulty 0.667 0.468 0.950 0.025
Lag-2 visual difficulty 1.128 0.504 2.527 0.769
Lag-3 visual difficulty 0.960 0.403 2.285 0.926
False teeth 1.337 0.814 2.195 0.252
Lag-1 false teeth 1.436 0.881 2.340 0.147
Lag-2 false teeth 1.254 0.622 2.528 0.527
Lag-3 false teeth 0.985 0.430 2.259 0.972

5 Discussion and Conclusions

Models are usually simpler in explanation when the observations are independent.
However, when there are time-dependent covariates the explanation is usually
complicated, as one has to decipher the cross sectional effects as opposed to effects
identified due to lags. Measuring the sampling units repeatedly induces correlation
among covariates that impact the efficiency of the estimates through the variance.

The fact that the longitudinal data have responses and covariates measure at
different times, it is important to include valid moments in the computation of
the regression coefficients. Including moments that are not valid or excluding valid
moments are detrimental to the regression coefficients. The validity of the moment
conditions is identified using the Lalonde et al. (2014) approach. However, if these
valid moments are combined to obtain a single regression coefficient, then the true
relationships may be distorted. Combining valid moments from different responses
in one time-period with covariates in a different time-period mask the true relation
and provide an average relation.

The partitioned and non-partitioned methods are utilizing different sets of
information as they are using different sets of moment conditions. The non-
partitioned models use an averaging of all information from the moments between
the covariate and the response to produce a cross-sectional estimate. They assume
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Fig. 4 Partitioned GMM model for ability to complete physical check in CLHLS (OR and 95%
confidence intervals)

that the relationship between each covariate and the response remains the same over
time.

The Partitioned GMM models separate the cross-sectional data and the lagged
at different periods. The grouping of moment conditions force results in different
periods in the estimation of each regression parameter to provide information
pertaining to certain relationship.

Lai and Small (2007), Lalonde et al. (2014), and Zhou et al. (2014), among
others, have presented models that do not distinguish between the cross-sectional
and the lagged relationships but rather present an overall effect of the covariate on
the responses. On the other hand, fitting a Partitioned GMM approach to data with a
large number of time-periods may suffer from convergence issues. This limitation is
similar to the restrictions for GEE models with an unstructured working correlations
matrix. Overall, the Partitioned GMM provides a complete description of the effects
of time-dependent covariates on outcomes.
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Appendix

Let Tj be the T × T matrix, identifying moment conditions, which are valid for
the jth covariate. Thus, elements in Tj take on the value of one when there is
valid moment condition (1) and takes a value of zero when the moment is not
valid for the jth covariate. The 1

2T (T − 1) moments related to cases when s > t
are set to zero. The elements in Tj are partitioned into up to T separate T × T
matrices denoted by Tjk for k = 1, . . . , T − 1. The information for the T moment
conditions when s = t, occurring when the response and the covariate are observed
in the same time-period, are contained in Tj0, an identity matrix. Information for
the moment conditions occurring when the response is observed one time-period
after the covariate, t − s = 1 are contained in the matrix Tj1.Each of the remaining
matrices Tjk are created similarly. Let Tvjk be the reshaped 1 x T2 vector of the
elements in Tjk. Concatenate the row vectors for all covariates and lagged effects
to form the matrix Tshape, which is of maximum dimension (J × T) × T2. Let Nv

be the number of ones in Tshape, or equivalently the total number of valid moment
conditions, Irimata et al. (2019). Thus, the fitted model to (3.1) is

μit (β) = β0 + βttj X
[0]
ij +

T−1∑
k=1

β
[k]
j X

[k]
ij

∣∣∣∣∣
valid moments

where gi be an Nv x 1 vector composed of the values of all valid moment conditions
for subject i, computed at the initial value β0. Each element in gi is calculated as
∂μis(β0)
∂β

[k]
j

[
yit − μit

(
β0
)]

such that the corresponding element in Tjk takes value 1

for k = 1, . . . , T − 1. Let Gn be the Nv x 1 vector consisting the sample average of
all valid moment conditions, such that

1

N

N∑
i=1

gi = 1

N

N∑
i=1

∂μis
(
β0
)

∂β
[k]
j

[
yit − μit

(
β0
)]
.

The optimal weight matrix Wn is computed as
(

1
N

∑N
i=1gigT

i

)−1
, which is of

dimension Nv × Nv. Then, the GMM regression estimator is

β̂GMM = argmin
β0

Gn
(
β0
)T Wn

(
β0
)

Gn
(
β0
)
,

which is the argument minimizing the quadratic objective function. The asymptotic
variance of the estimator β̂GMM is

[(
1

N

∑N

i=1

∂gi (β)

∂β

)T

Wn (β)

(
1

N

∑N

i=1

∂gi (β)

∂β

)]−1

,

evaluated atβ = β̂GMM.
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A Family of Generalized
Rayleigh-Exponential-Weibull
Distribution and Its Application to
Modeling the Progressively Type-I
Interval Censored Data

(Din) Ding-Geng Chen and Yuhlong Lio

Abstract A family of three-parameter generalized Rayleigh-exponential-Weibull
distribution (GREW), which unifies the families of two-parameter generalized
Rayleigh distributions, two-parameter generalized exponential distributions, and
two-parameter Weibull distributions, is considered to model the distribution of
lifetimes for an example of 112 patients with plasma cell myeloma. A series of
simulation studies are conducted to evaluate the three-parameter GREW modeling
performance based on the type-I interval censored data similar to the data structure
from these 112 patients. Parameter estimation, hypothesis testing, and model
selection using the three-parameter GREW for these 112 patients are discussed.

1 The Generalized Rayleigh-Exponential-Weibull
Distribution

The two-parameter generalized Rayleigh (GR) distribution, which is also known as
the Burr type-X distribution, has probability density function (PDF) and cumulative
distribution function (CDF) respectively given as follows,

f (t, θ) = 2α/λ2t
(

1 − e−(t/λ)2
)α−1

e−(t/λ)2 (1.1)

D.-G. Chen (�)
Department of Statistics, University of Pretoria, Pretoria, South Africa
e-mail: din.chen@up.ac.za

Y. Lio
Department of Mathematical Sciences, University of South Dakota, Vermilion, SD, USA

© Springer Nature Switzerland AG 2020
A. Bekker et al. (eds.), Computational and Methodological Statistics and
Biostatistics, Emerging Topics in Statistics and Biostatistics,
https://doi.org/10.1007/978-3-030-42196-0_23

529

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-42196-0_23&domain=pdf
mailto:din.chen@up.ac.za
https://doi.org/10.1007/978-3-030-42196-0_23


530 D.-G. Chen and Y. Lio

and

F(t, θ) =
(

1 − e−(t/λ)2
)α
, (1.2)

where θ = (α, λ) are the two parameters with α > 0 as the shape parameter and λ >
0 as the scale parameter. When α = 1, the GR distribution defined above reduces
to the conventional Rayleigh distribution. The GR distribution has been studied by
many authors as seen in Sartawi and Abu-Salih (1991), Johnson et al. (1995), Jaheen
(1995, 1996), Ahmad et al. (1997), Raqab (1998), Surles and Padgett (1998, 2001,
2004), Raqab and Kundu (2003), Kundu and Raqab (2005), and Lio et al. (2011).
Similar to the generalized exponential distribution and Weibull distribution, the GR
distribution has a closed form of CDF (1.2) and is very popular for dealing with
censored data. Raqab and Kundu (2003) and Kundu and Raqab (2005) extensively
discussed this distribution and compare it to other distributions.

On the other hand, the two-parameter generalized exponential (GE) distribution
has PDF and CDF respectively given as follows,

f (t, θ) = α/λ
(

1 − e−(t/λ)
)α−1

e−t/λ (1.3)

and

F(t, θ) =
(

1 − e−(t/λ)
)α
, (1.4)

where θ = (α, λ) are the two parameters with α > 0 as the shape parameter
and λ > 0 as the scale parameter. When α = 1, the GE distribution defined
above reduces to the conventional exponential distribution. The GE distribution was
introduced by Mudholkar and Srivastava (1993) as an alternative to the commonly
used gamma and Weibull distributions. Since then, the GE distribution has been
studied by many authors, for example, in Gupta and Kundu (1999, 2001a, 2001b,
2002, 2003, 2007), Raqab and Ahsanullah (2001), Zheng (2002), Jaheen (2004),
Raqab and Madi (2005), Sarhan (2007), and Chen and Lio (2010).

Another commonly used distribution is the two-parameter general Weibull (GW)
distribution which has PDF and CDF respectively given as follows,

f (t, θ) = β/λ(t/λ)β−1e−(t/λ)β (1.5)

and

F(t, θ) = 1 − e−(t/λ)β , (1.6)

where θ = (β, λ) are the two parameters with β > 0 as the shape parameter and
λ > 0 as the scale parameter. Numerous research on lifetime modeling related
to Weibull distribution has been conducted by, for example, Padgett and Sengupta
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(1996), Nichols and Padgett (2006), Ng and Wang (2009) and Lio et al. (2012).
When β = 1, the general Weibull distribution is reduced to conventional exponential
distribution.

Unifying these three families of two-parameter distributions, a three-parameter
generalized Rayleigh-exponential-Weibull (GREW) distribution is presented in this
paper with the PDF and CDF given respectively as follows:

f (t, θ) = αβ/λβ(t/λ)β−1e−(t/λ)β (1 − e−(t/λ)β )α−1, (1.7)

F(t, θ) =
(

1 − e−(t/λ)β
)α

(1.8)

where θ = (α, β, λ), α > 0 and β > 0 are the two shape parameters, and λ > 0
is the scale parameter. The GREW distribution is equivalent to the exponentiated
Weibull distribution which was proposed by Mudholkar and Srivastava (1993) and
also used by Mudholkar et al. (1995, 1996) except that the coefficient, λβ , for tβ

has been replaced by a new parameter for the exponentiated Weibull distribution.
We continue to investigate the three-parameter GREW distribution that has many
distributions as the special cases. When β = 2, the GREW distribution reduces
to the GR distribution. When α = 1 and β = 2, the GREW distribution reduces
to Rayleigh distribution reported by Archer (1967). When β = 1, the GREW
distribution reduces to the GE distribution mentioned above. When α = 1, the
GREW distribution reduces to the conventional two-parameter Weibull distribution
described above. Furthermore, the GREW distribution reduces to conventional
exponential distribution if α = 1 and β = 1.

The rest of this chapter is organized as follows. Section 2 introduces the max-
imum likelihood estimators of the GREW distribution based on the progressively
type-I interval censoring as well as the associated hypothesis testing. Section 3 gives
the simulation results. Section 4 presents the application of the methods provided
to discuss the modeling procedure for these 112 patients’ lifetimes under the three-
parameter GREW distribution family, and conclusions are given in Sect. 5.

2 Statistical Inferences Based on Progressively Type-I
Interval Data

It is very often that participants under medical study, or, objects under lifetime
test in industry, are lost or withdrawn before failure, or the lifetime is only known
within an interval. Hence, the obtained sample is called a censored sample (or an
incomplete sample). The most common censoring schemes are type-I censoring,
type-II censoring, and progressively censoring. When the lifetime test ends at a
pre-scheduled time, the lifetime test is known as the type-I censoring. For type-
II censoring, the lifetime test ends whenever the number of lifetimes is reached.
In both type-I and type-II censoring schemes, the tested subjects are allowed to
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be withdrawn only at the end of lifetime testing. In the progressively censoring
scheme, the tested subjects are allowed to be withdrawn at some other time before
the end of the lifetime test. This is documented comprehensively in Balakrishnan
and Aggarwala (2000), which showed progressively censoring combining with type-
I or type-II and applications.

This paper focuses on progressively type-I interval censored data. To be consis-
tent, the notations in Chen and Lio (2010) are continued. Suppose that there are n
items to start the lifetime test (or n participants in medical studies) simultaneously
at time t0 = 0 and under inspection at m pre-specified times t1 < t2 < . . . < tm
where tm is the time to end the experiment. As progressively type-I interval censored
experiment at the ith time of inspection (i.e., ti), we record the number of failures
Xi within the interval of (ti−1, ti] and randomly remove Ri subjects from the life
testing. Therefore, the number of surviving subject Yi is a random variable. As
an example, given pre-specified percentage values, p1, . . . , pm−1 and pm = 1,
for withdrawing at t1 < t2 < . . . < tm, the Ri can be calculated as  piyi"
at each inspection time ti where i = 1, 2, . . . , m. Therefore, a progressively
type-I interval censored sample can be generated as {Xi,Ri, ti}, i = 1, 2, . . . , m,
where sample size n = ∑m

i=1(Xi + Ri). If Ri = 0, i = 1, 2, . . . , m − 1,
then the progressively type-I interval censored sample is a type-I interval censored
sample as X1, X2, · · · , Xm,Xm+1 = Rm.

2.1 Maximum Likelihood Estimation

Generally, let a progressively type-I interval censored sample, {Xi,Ri, ti}, i =
1, 2, . . . , m, of size n, be obtained from a general continuous lifetime distribution
with CDF, F(t, θ), the general likelihood function can be constructed as follows,

L(θ) ∝
m∏
i=1

[F(ti, θ)− F(ti−1, θ)]
Xi [1 − F(ti)]

Ri . (2.1)

This general likelihood function in Eq. (2.1) can be used to estimate parameters
from the distributions of GR, GE, GW, and GREW and perform associated statistical
inferences.

Specifically to GREW defined by Eq. (1.7), the likelihood function can be
specified to be:

L(θ) ∝
m∏
i=1

[(
1 − e−(ti /λ)β

)α −
(

1 − e−(ti−1/λ)
β
)α]Xi [

1 −
(

1 − e−(ti /λ)β
)α]Ri

(2.2)

where t0 = 0 and 0 < ti is for i = 1, 2, . . . , m. It can be seen easily that if R1 =
R2 = · · · = Rm−1 = 0, the likelihood functions (2.2) reduces to the corresponding
likelihood function for the conventional type-I interval censoring. By setting the
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derivatives of the log likelihood function, log(L(θ)), with respect to α, β and λ

respectively equal to zero, the system of likelihood equations is established. It is
obvious that the closed form of solution to this system of likelihood equations cannot
be derived. Therefore, the maximum likelihood estimates (MLEs) of α, β and λ will
be obtained by searching the solution through an iterative numerical method. In this
paper, We make use of the typical numerical Newton-Raphson algorithm to obtain
the estimates of θ iteratively as follows until its convergence:

θ(k+1) = θ(k) −
[
H
(
θ(k)

)]−1
D
(
θ(k)

)
(2.3)

where k indicates the kth iteration, H
(
θ(k)

)
is the 3 × 3 Hessian matrix constructed

by the second derivatives of negative log-likelihood function −logL to θ evaluated
at the (k)th iteration θ(k), and D

(
θ(k)

)
is the 3 × 1 gradient vector constructed by

the first derivatives of −logL to θ evaluated at the (k)th iteration θ(k). Budhiraja
et al. (2017) had proved in their Theorem 1 that the MLE, θ̂ , from Eq. (2.3) were
consistent and asymptotically normally distributed based on progressively type-I
interval censored data under appropriate regularity conditions.

2.2 Hypothesis Testing

With the theorem from Budhiraja et al. (2017), we can establish the process of
hypothesis testing based on the joint asymptotic normal distribution of MLE, θ̂ . The
null hypothesis can be H0 : θ = θ0 vs., the alternative hypothesis of Ha : θ �= θ0.
This hypothesis testing can also be used for model selection.

Specifically, if

• the null hypothesis of H0 : β = 2 is not rejected, the GREW distribution would
be the GR distribution;

• the null hypothesis of H0 : α = 1 and β = 2 is not rejected, the GREW
distribution would be the classical Rayleigh distribution;

• the null hypothesis of H0 : β = 1 is not rejected, the GREW distribution would
be the GE distribution;

• the null hypothesis of H0 : α = 1 and β = 1 is not rejected, the GREW
distribution would be the exponential distribution;

• the null hypothesis of H0 : α = 1 is not rejected, the GREW distribution would
be the Weibull distribution.

We illustrate the hypothesis testing by using the real data set regarding the 112
patients with plasma cell myeloma that was reported by Carbone et al. (1967) except
the examination time schedule converted in terms of year.
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3 Simulation Study

The purpose for simulation study is to investigate the convergence behavior of the
proposed MLE estimation for GREW. To be prudent in generalizing distributions
with multiple parameters, we are particularly interested in investigating whether
there is any parameter confounding in estimation of the parameters uniquely for
GREW as we observed in Chen and Lio (2009). In Chen and Lio (2009), we
observed that there is the issue of parameter confounding when using the extended
three-parameter generalized Gamma distribution to model the progressively type-II
censored data. In dealing with the parameter confounding, a new re-parametrization
has to be proposed to reformulate the generalized Gamma distribution to sustain the
numerical stability in the search algorithm for the maximum likelihood estimation.

The simulation is conducted in R language (R Development Core Team 2006),
which is a non-commercial, open source software package for statistical computing
and graphics that was originally developed by Ihaka and Gentleman (1996). The R
code can be obtained from the authors upon request.

3.1 Simulation Algorithm

The data generation is based on the algorithm proposed in Aggarwala (2001) which
is a very general algorithm to simulate progressively type-I interval-censored data
for any distributions. For example, the algorithm was used by Ng and Wang (2009)
for Weibull distribution, Chen and Lio (2010) for GE distribution, and Lio et al.
(2011) for GR distribution.

Given an initial sample of size n putting on life testing at time 0, the pre-specified
inspection time schedules, 0 < t1 < t2 < · · · < tm, and the percentages of
withdrawn pi, i = 1, 2, · · · ,m − 1 and pm = 1.0, the algorithm to generate
a progressively type-I interval censored data, (Xi, Ri, ti), i = 1, · · · ,m, from
the GREW distribution which has distribution function (1.8) can be addressed as
follows: let t−1 < 0 = t0, X0 = 0, R0 = 0 and

∑0
j=1(Xj + Rj ) = 0. Then for

i = 1, 2, · · · ,m,

Xi | Xi−1, · · · , X0, Ri−1, · · · , R0

∼ rBinom

⎡
⎣n−

i−1∑
j=1

(Xj + Rj ),
F (ti , θ)− F(ti−1, θ)

1 −∑i−1
j=1[F(tj , θ)− F(tj−1, θ)]

⎤
⎦ . (3.1)

and

Ri =
⎢⎢⎢⎣pi ×

⎛
⎝n−

i−1∑
j=1

(Xj + Rj )−Xi

⎞
⎠
⎥⎥⎥⎦ . (3.2)
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With GREW distribution function in (1.8), the above equations can be more
specifically presented as

Xi | Xi−1, · · · , X0, Ri−1, · · · , R0

= rBinom

⎡
⎢⎣n− i−1∑

j=1

(Xj+Rj ),
(

1−e−(ti/λ)β
)α −

(
1 − e−(ti−1/λ)

β
)α

1 − (
1 − e−(ti−1/λ)

β
)α

⎤
⎥⎦ (3.3)

and

Ri =
⎢⎢⎢⎣pi ×

⎛
⎝n−

i−1∑
j=1

(Xj + Rj )−Xi

⎞
⎠
⎥⎥⎥⎦ (3.4)

where  x" returns the largest integer not greater than the argument x and 0 = t0 <

t1 < . . . < tm < ∞ are pre-scheduled times. Since pm = 1, Rm = n−∑m−1
i=1 (Xi+

Ri)−Xm in (3.4). Notice that if p1 = · · · = pm−1 = 0, then R1 = · · · = Rm−1 = 0
and hence X1, · · · , Xm,Xm+1 = Rm is a simulated sample from the conventional
type-I interval censoring.

3.2 Simulation Schemes and Cases

For simplicity, we consider the simulation setups parallel to the real data, given
in Sect. 4, for the m = 9 pre-specified inspection times in terms of year,
t1 = 5.5/12, t2 = 10.5/12, t3 = 15.5/12, t4 = 20.5/12, t5 = 25.5/12, t6 =
30.5/12, t7 = 40.5/12, t8 = 50.5/12, and t9 = 60.5/12 which is the time
to terminate the experiment. The simulation study also considered the same
progressively type-I interval censoring schemes as the ones from Aggarwala (2001),
Ng and Wang (2009), Chen and Lio (2010), and Lio et al. (2011). For simplicity, we
report the simulation results for two progressively interval censoring schemes since
the results are very similar. The two schemes are restated as follows:

• P(1) = (0, 0, 0, 0, 0, 0, 0, 0, 1)
• P(2) = (0.25, 0, 0, 0, 0, 0, 0, 0, 1)

which are the last two schemes considered in Aggarwala (2001), Ng and Wang
(2009), Chen and Lio (2010), and Lio et al. (2011). The censoring scheme P(1) is
the conventional type-I interval censoring where no removals prior to the experiment
termination and the censoring in P(2) only occurs at the left-most and the right-most.
To compare the performance, we consider two cases of parameter combinations
of GREW distribution. Case 1 is the GREW distribution with parameters θ =
(α, β, λ) = (1, 1, 1) where all the GREW, GE and GW distributions are the same
and all are reduced to the simplest exponential distribution with distribution function
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as F(t, θ) = 1−e−t . However, in Case 1, the GR distribution has F(t, θ) = 1−e−t2
which would be different from these three distributions. Case 2 is the GREW
distribution with parameters θ = (α, β, λ) = (1, 2, 2) where all the GREW, GR
and GW distributions are the same with the CDF as F(t, θ) = 1 − e−(t/2)2 .
However, in Case 2, the GE distribution is the same as an exponential distribution
with distribution function F(t, θ) = 1−e−(t/2) which would be different from these
three distributions.

3.3 Simulation Results

Monte-Carlo simulation is conducted with 10,000 runs to report the average value of
the 10,000 estimated parameters of θ = (α, β, λ), their variance and mean squared
error (MSE) for the two cases and two schemes which is summarized in Table 1.

For Case 1 as seen from Table 1, the parameters of θ = (α, β, λ) in GREW
distribution are estimated consistently and robustly with no biases, small variances
and MSEs for both schemes. This pattern is the same for GE and GW distributions
since all of these three families of distributions reduced to the simplest exponential
distribution in Case 1. In this case, however, the GR distribution becomes F(t, θ) =
1 − e−t2 which is different from these three distributions. This is why the estimated

Table 1 Summary of Monte-Carlo simulations for Case 1: α = β = λ = 1

Scheme Distribution Parameter True Estimate Variance MSE

1 GREW α 1 1.0056 0.0089 0.0090

β 1 1.0012 0.0021 0.0021

λ 1 1.0005 0.0061 0.0061

GR α 1 0.3048 0.0001 0.4833

λ 1 2.1887 0.0009 1.4140

GE α 1 1.0004 0.0004 0.0004

λ 1 0.9984 0.0017 0.0017

GW β 1 1.0003 0.0001 0.0001

λ 1 0.9991 0.0010 0.0010

2 GREW α 1 1.0006 0.0113 0.0113

β 1 1.0022 0.0027 0.0027

λ 1 1.0017 0.0079 0.0079

GR α 1 0.3082 0.0000 0.4787

λ 1 2.1855 0.0012 1.4065

GE α 1 1.0006 0.0004 0.0004

λ 1 0.9990 0.0011 0.0011

GW β 1 1.0003 0.0001 0.0001

λ 1 0.9991 0.0010 0.0010

Note that the bias is not reported in the table since it can be implied by the “Estimate-True”
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Fig. 1 Monte-Carlo sampling distributions for all parameters for GREW, GR, GE and GW
distributions under Scheme 1 for Case 1

parameters of α̂ and λ̂ in Table 1 are quite different from the true values of α = 1
and λ = 1. However, the variances are still small, thus indicating consistency.

Figure 1 graphically summarizes all these observations. The left three figures
are the sampling distributions for GREW distribution with the thick lines in the
middle indicating the true parameters of α = β = λ = 1. It can be seen that the
three parameters from GREW distribution are unbiased estimated. This is the same
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Table 2 Summary of Monte-Carlo simulations for Case 2: α = 1 and β = λ = 2

Scheme Distribution Parameter True Estimate Variance MSE

1 GREW α 1 1.0016 0.0027 0.0027

β 2 2.0014 0.0036 0.0036

λ 2 1.9998 0.0022 0.0022

GR α 1 1.0004 0.0002 0.0002

λ 2 1.9999 0.0002 0.0002

GE α 1 3.7152 0.0049 7.3771

λ 2 0.8870 0.0001 1.2388

GW β 2 2.0004 0.0003 0.0003

λ 2 2.0001 0.0001 0.0001

2 GREW α 1 1.0008 0.0031 0.0031

β 2 2.0028 0.0045 0.0046

λ 2 2.0006 0.0026 0.0026

GR α 1 1.0003 0.0002 0.0002

λ 2 2.0000 0.0002 0.0002

GE α 1 3.5951 0.0052 6.7400

λ 2 0.8962 0.0002 1.2186

GW β 2 2.0003 0.0003 0.0003

λ 2 2.0001 0.0001 0.0001

for the GE distribution (the two figures at the right side at the second row) and GW
distribution (the two figures at the right at the bottom row). The GR distribution is
different as seen from the two figures at the top row since this distribution is totally
different from the rest of the three distributions.

Similarly, for Case 2 as seen from Table 2, the parameters of θ = (α, β, λ) in
GREW distribution are estimated consistently with no biases, small variances and
MSEs for both schemes. This pattern is the same for GR and GW distributions
since for Case 2, all of these three families of distributions reduced to a special
GR distribution with distribution function of F(t, θ) = 1 − e−(t/2)2 . In this case,
however, the GE distribution becomes F(t, θ) = 1− e−(t/2) which is different from
these three distributions. This is why the estimated parameters of α̂ and λ̂ in Table 2
are quite different from the true values of α = 1 and λ = 2. However, the variances
are still small indicating consistency. Similarly Fig. 2 graphically summarizes all
these observations in Table 2.

Based on this simulation study, we can conclude that there is no parameter
confounding from the three-parameter GREW distribution which extends the three
families of two-parameter distributions of GR, GE and GW.
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Fig. 2 Monte-Carlo sampling distributions for all parameters for GREW, GR, GE and GW
distributions under Scheme 1 for Case 2

4 Analyzing the Plasma Cell Myeloma Data

The summary survival information for the 112 patients with plasma cell myeloma
treated at the National Cancer Institute can be found in Carbone et al. (1967) and
are given as follows: initially 112 patients were admitted for examination at initial
time, labeled as t0 = 0. The number of risks are 93, 76, 55, 45, 34, 25, 10, 3 and
the numbers of withdrawals are 1, 1, 3, 0, 0, 1, 2, 3, 2 at inspection times t1 =
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Table 3 Summary of
Maximum likelihood
estimation and KS statistic

Distribution α̂ β̂ λ̂ −logL KS

GR 0.475 NA 2.932 231.006 0.171

GE 1.432 NA 1.459 230.470 0.162

GW NA 1.230 1.924 230.340 0.157

GREW 0.979 1.245 1.952 230.339 0.157

5.5/12, t2 = 10.5/12, t3 = 15.5/12, t4 = 20.5/12, t5 = 25.5/12, t6 = 30.5/12,
t7 = 40.5/12, t8 = 50.5/12, respectively. These withdrawn patients are known to
have survived at the right end of each time interval, but without further follow-up.
Moreover, The number of deaths, Xi, i = 1, 2, 3, · · · , 9, can be easily calculated to
be X = (18, 16, 18, 10, 11, 8, 13, 4, 1) from the numbers at risks and the numbers
of withdrawals.

This progressively type-I interval censored data set was used by many papers to
investigate different distributions, such as Lawless (1982), Ng and Wang (2009),
Chen and Lio (2010), Lio et al. (2011). With this data, the parameter estimates,
the associated values of the negative log-likelihood function and the Kolmogorov-
Smirnov (KS) statistic are summarized in Table 3. It can be seen from this table
that the values of negative log-likelihood function decrease from 231.006, 230.470,
230.340 to 230.339 and the KS statistic decrease from 0.171, 0.162, 0.157 to 0.157,
respectively, for GR, GE, GW and GREW distributions. This results extend the
results in Lio et al. (2011) to include the results of GREW and indicate that the
model fit from GREW is the best among the four families of distributions.

Furthermore, in reviewing Table 3, the results from the GREW are very close
to the results in the GW distribution due to the parameter estimate of α̂ = 0.979.
This estimate is very close to 1 indicating that the GW distribution may be a simpler
choice for this data. To validate this observation, we perform hypothesis testing on
H0, α = 1 vs. Ha : α �= 1. For GREW distribution, the estimated standard errors
using hessian matrix from MLE are 0.697, 0.522 and 0.966, respectively for θ =
(α, β, λ). Therefore, the z-statistic to test the above null hypothesis can be calculated
as z = (0.979 − 1)/0.697 = −0.030 and the associated p-value is 0.976 which
indicates that the α parameter in GREW is not statistically significantly different
from 1 and the null hypothesis can not be rejected. In this case, the simpler Weibull
distribution is sufficiently enough for this data. The same hypothesis testing to GR
and GE can yield the p-values of 0.148 and 0.639, respectively, for GR and GE
distributions.

The data analysis is done with R and the interested readers can request the data
and R code from the authors.
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5 Conclusions

In this paper, a three-parameter family of GREW distribution, which unified the
three two-parameter families of GR, GE and the GW distributions is proposed to
model the lifetime distribution using the progressively type-I interval censored data
obtained from the 112 patients with plasma cell myeloma. The parameter estimation
and the associated hypothesis testing can be done from the theory of likelihood
estimation. Simulation studies indicate that parameter estimations from MLE are
well-behaved and consistent. The real data analysis using the progressively type-I
interval censored data obtained from the 112 patients with plasma cell myeloma also
indicates that this new family of GREW distribution can unify the three commonly
used distribution families of GR, GE, and GW distributions.

We would like to mention that the GREW distribution in this paper is, in fact, a
special distribution of the four-parameter generalized modified Weibull distribution

proposed by Carrasco et al. (2008) where F(t, θ) =
(

1 − e

(
−α′tγ ′exp(λ′t)

))β ′

in

their original parametrization. We can re-parameterize this distribution as F(t, θ) =(
1 − e−(t/λ)βexp(γ t)

)α
with additional parameter γ in θ = (α, β, γ, λ) where

α = β ′, β = γ ′, λ = (
1/α′)1/β ′

and γ = λ′. The extra term exp(γ t) is
introduced in Carrasco et al. (2008) and therefore, if γ = 0, the generalized
modified Weibull distribution would be the GREW distribution. Carrasco et al.
(2008) only applied generalized modified Weibull distribution to complete data
which is different from the progressively Type-1 censored data. We will further
investigate this four-parameter distribution to progressively censored Type-I data.
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