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Abstract The paper establishes conditions of existence and uniqueness of the
bounded solution of a special system of linear partial differential equations of the
first order. The system arises in the problem of a finite difference scheme of finding
an approximate solution is elaborated.
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1 Problem Statement

Further En is the Euclidean space of vectors x , (T denotes the transposition) with
the norm ‖x‖; Z is the set of integers; Zn is the n-dimensional Cartesian product.
We consider a problem of numerical solving of finding on [0, T ] × En of a system
of partial differential equations

∂l(k)(t,x)

∂t
+

n∑

i=1

f (i)(t, x)
∂l(k)(t,x)

∂x
+

n∑

i=1

g(i)
k (t, x)l(i)(t, x) = q(k)(t, x), k = 1, n.

(1)
With initial conditions

l(k)(0, x) = r (k), k = 1, n. (2)

Further we assume that the following hypotheses be fulfilled.
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Assumption 1 The problem (1)–(2) has continuous differentiable on [0, T ] × En

solution l(t, x)
(
l(1)(t, x), . . . , l(n)(t, x)

)
such that partial derivatives ∂2l(k)(t,x)

∂t2 and
∂2l(k)(t,x)

∂xi
2 , i = 1, . . . , n, k = 1, . . . , n are continuous and bounded on [0, T ] × En.

Also we assume existence of constants F, G such that

‖ f (t, x)‖ ≤ F(t, x) ∈ [0, T ]; (3)

gk(t, x) ≤ G(t, x) ∈ [0, T ] × En, k = 1, n. (4)

2 Finite Difference Scheme: Approximation, Stability,
Convergence

Let α = (α1, . . . ,αn) ∈ En; ēk be the unite vector of the axis 0xk and τ = T/M
(M is a natural). Denote tν = ντ ; ν = 0, . . . , M ; xα = α1hē1, . . . ,αnhēn; fν,α =
f (tν, xα).
In the region [0, T ] × En we construct grids Ω0

h = (0, xα) : α ∈ Zn,Ων
h =

(tν, xα) : ν = 0, . . . , M ; Ω
′
h = {(tν, xα) : ν = 1, . . . , M;α ∈ Zn} .

For grid functions uν,α = (
u(1)

ν,α, . . . , u(n)
ν,α

)
defined on grids Ων

h and Ω
′
h we use

the corresponding norms

uν,α = supΩh‖uν,α‖, uν,α = supΩ
′
h‖uν,α‖.

Let n+
ν,α = j ∈ 1, . . . , n : f ( j)

ν,α > 0, n−
ν,α = j ∈ 1, . . . , n : f ( j)

ν,α ≤ 0.
The difference numerical scheme corresponding to the problem (1)–(2) we con-

struct in the following way.
On the grid Ω

′
h :

u(k)
ν,α − u(k)

(ν−1),α

τ
+

∑

i∈n+
ν,α

f (i)
(ν−1),α

u(k)

(ν−1),α − u(k)

(ν−1),α−ēl

h
+

+
∑

i∈n−
ν,α

f (i)
(ν−1),α

u(k)

(ν−1),α − u(k)

(ν−1),α

h
+

n∑

i=1

g(i)
k,(ν=1),αu(i)

(ν−1),α = q(k)

(ν−1),α, k = 1, n.

(5)
On the grid Ω0

h :

u(k)
0,α = r (k)

α , k = 1, n. (6)
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From (5)

u(k)
ν,α =

(
1 − τ

h

n∑

i=1

∣∣∣ f (i)
ν−1,α

∣∣∣

)
u(k)

ν−1,α+

+ τ

h

∑

i∈n+
ν−1,α

f (i)
ν−1,α × u(k)

ν−1,α−ēl
− τ

h

∑

i∈n−
ν−1,α

f (i)
ν−1,α × u(k)

ν−1,α+ēl
.

Solving the Eq. (5) with respect to uν,α obtain

uν,α =
(
1 − τ

h

n∑

i=1

f (i)
ν−1,α

)
f (k)
ν−1,α + τ

h

∑

i∈n

f (i)
ν−1,α × u(k)

ν−1,α−ēl
− τ

h
+

+ τ

h

∑

i∈nν−1,α

f (i)
ν−1,α × u(k)

ν−1,α+ēl
− τ

n∑

i=1

g(i)
k,ν−1,αu(i)

ν−1,α + τq(k)
ν−1,α, k = 1, n

(7)
Because u(k)

0,α are known from the initial condition (6) then by the formula (7) one
can calculate layer by layer at first u1,α,α ∈ Zn , then u2α,α ∈ Zn , and so on.

Let us estimate the approximation order which the scheme (5)–(6) approximates
the problem (1)–(2). Due to the Assumption 1 according to the Taylor series we have

l(k)(tν, xα) − l(k)(tν−1, xα)

τ
= ∂l(k)(tν−1, xα)

∂t
+ τ

2

∂2l(k)(tν, xα)

∂t2
(8)

l(k)(tν−1, xα) − l(k)(tν−1, xα − hēl)

h
= ∂l(k)(tν−1, xα)

∂xi
−

− h

2

∂2l(k)(tν − 1, ξk,ν,α)

∂xi
2

, i = 1, n, (9)

h

2

∂2l(k)(tν − 1, ηk,ν,α
i )

∂xi
2

, i = 1, n (10)

where
tν ≤ ξk

ν,α ≤ tν,xα−hēl ≤ ξk,ν,α
i ≤ xα, xα ≤ ηk,ν,α

i ≤ xα + hēl . (11)

From (6) follows that the initial condition (2) is approximated atΩ0
h exactly. Then

due to (9)–(11) the residual between (1) and (5) on the solution l(t, x) is equal to

δ(k)
t,h = τ

2

∂2l(k)
(
ξ(k)
ν,α, xα

)

∂t2
− h

2

+∑

i∈nν−1,α

f (i)
ν−1,α

∂2l(k)
(
tν−1,αξ(k)

ν,α, xα

)

∂t2

+ h

2

−∑

i∈nν−1,α

f (i)
ν−1,α

∂2l(k)
(

tν−1,αη(k,ν,α)
i

)

∂x2
i

, k = 1, n
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Due to the Assumption 1 the estimation ‖δ‖ ≤ c × (τ + h), c = const is valid
from which follows the following proposition.

Theorem 1 If the Assumption 1 is valid then the difference scheme (5)–(6) approx-
imates the problem (1)–(2) on its solution l(t, x) with the first order with respect to
τ and h.

Let us show the stability of the difference scheme (5)–(6). It will be sufficiently
for its convergence, because the initial condition (2) is approximated exactly on Ω0

h .
Formula (7) shows the solvability of the difference problem (5)–(6). Let us obtain

estimation of the solution of (5) corresponding to the zero initial conditions

u(k)
0,α = 0, k = 1, n. (12)

If

0 <
τ

h
≤ 1

nF
, (13)

then from (3), (4), (7) follows

sup
α

‖uν,α‖ ≤ (1 + τGn) sup
α

‖uν−1,α‖ + τ‖qν,α‖′
h .

Then taking into account (12), obtain

sup
ν,α

‖uν,α‖ ≤ T

M
‖qν,α‖′

h

(
1 + T Gn

M

)M

×

×
[

1

(1 + τG M)M
+ 1

(1 + τG M)M−1
+ · · · + 1

1 + τG M

]
. (14)

Taking into account that (1 + T Gn
M )M tends to eT Gn as M → ∞ and therefore

is bounded, then from (14) follows that the solution uν,α of the problem (5), (12)
satisfies the estimation

∥∥uν,α

∥∥
h ≤ L

∥∥qν,α

∥∥
h , L = const. This proves the following

proposition.

Theorem 2 If conditions (3), (4) and (8) are fulfilled then the scheme (5)–(6) is
stable with respect to the right-hand side. From the stability and the approximation
of the difference scheme follows its convergence.

Theorem 3 Let the Assumption 1 and conditions (3), (4) and (8) be fulfilled then
the solution of the difference scheme (5)–(6) converges to the solution of the problem
(1)–(2) with the first order by τ and h.
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