Finite Difference Scheme for Special System of Partial Differential Equations

A. V. Kim and N. A. Andryushechkina

Abstract The paper establishes conditions of existence and uniqueness of the bounded solution of a special system of linear partial differential equations of the first order. The system arises in the problem of a finite difference scheme of finding an approximate solution is elaborated.

Keywords First order linear partial differential equation \cdot Numerical ethods \cdot Finite difference scheme

1 Problem Statement

Further E^n is the Euclidean space of vectors x , (*T* denotes the transposition) with the norm $||x||$; *Z* is the set of integers; *Zⁿ* is the *n*-dimensional Cartesian product. We consider a problem of numerical solving of finding on $[0, T] \times E^n$ of a system of partial differential equations

$$
\frac{\partial l^{(k)(t,x)}}{\partial t} + \sum_{i=1}^{n} f^{(i)}(t,x) \frac{\partial l^{(k)(t,x)}}{\partial x} + \sum_{i=1}^{n} g_k^{(i)}(t,x) l^{(i)}(t,x) = q^{(k)}(t,x), \quad k = \overline{1,n}.
$$
\n(1)

With initial conditions

$$
l^{(k)}(0, x) = r^{(k)}, \quad k = \overline{1, n}.
$$
 (2)

Further we assume that the following hypotheses be fulfilled.

A. V. Kim (\boxtimes)

N. A. Andryushechkina Ural State Agrarian University, 42 Karla Libknekhta Street, Ekaterinburg 620075, Russia

N.N. Krasovskii Institute of Mathematics and Mechanics, 16 S. Kovalevskaya Str., Ekaterinburg 620990, Russia e-mail: avkim@imm.uran.ru

[©] Springer Nature Switzerland AG 2020

S. Pinelas et al. (eds.), *Mathematical Analysis With Applications*, Springer Proceedings in Mathematics & Statistics 318, https://doi.org/10.1007/978-3-030-42176-2_9

Assumption 1 *The problem [\(1\)](#page-0-0)–[\(2\)](#page-0-1)* has continuous differentiable on $[0, T] \times E^n$ *solution* $l(t, x)$ $(l^{(1)}(t, x), \ldots, l^{(n)}(t, x))$ *such that partial derivatives* $\frac{\partial^2 l^{(k)}(t, x)}{\partial t^2}$ *and* $\frac{\partial^2 l^{(k)}(t,x)}{\partial x_i^2}$, $i = 1, \ldots, n, k = 1, \ldots, n$ are continuous and bounded on $[0, T] \times E^n$. *Also we assume existence of constants F, G such that*

$$
|| f(t, x) || \le F(t, x) \in [0, T];
$$
\n(3)

$$
g_k(t, x) \le G(t, x) \in [0, T] \times E^n, \quad k = \overline{1, n}.
$$
 (4)

2 Finite Difference Scheme: Approximation, Stability, Convergence

Let $\alpha = (\alpha_1, \ldots, \alpha_n) \in E^n$; \bar{e}_k be the unite vector of the axis $0x_k$ and $\tau = T/M$ (*M* is a natural). Denote $t_{\nu} = \nu \tau$; $\nu = 0, \ldots, M$; $x^{\alpha} = \alpha_1 h \bar{e_1}, \ldots, \alpha_n h \bar{e_n}$; $f_{\nu, \alpha} =$ $f(t_{\nu}, x^{\alpha}).$

In the region $[0, T] \times E^n$ we construct grids $\Omega_h^0 = (0, x^{\alpha}) : \alpha \in Z^n, \Omega_h^{\nu} =$ $(t_{\nu}, x^{\alpha}) : \nu = 0, \ldots, M; \Omega_{h}^{'} = \{(t_{\nu}, x^{\alpha}) : \nu = 1, \ldots, M; \alpha \in \mathbb{Z}^{n}\}.$

For grid functions $u_{\nu,\alpha} = (u_{\nu,\alpha}^{(1)}, \dots, u_{\nu,\alpha}^{(n)})$ defined on grids Ω_h^{ν} and Ω_h^{\prime} we use the corresponding norms

$$
u_{\nu,\alpha}=\sup\Omega_h||u_{\nu,\alpha}||, u_{\nu,\alpha}=\sup\Omega_h'||u_{\nu,\alpha}||.
$$

Let $n_{\nu,\alpha}^+ = j \in 1, \ldots, n : f_{\nu,\alpha}^{(j)} > 0, n_{\nu,\alpha}^- = j \in 1, \ldots, n : f_{\nu,\alpha}^{(j)} \leq 0.$

The difference numerical scheme corresponding to the problem (1) – (2) we construct in the following way.

On the grid Ω_h :

$$
\frac{u_{\nu,\alpha}^{(k)} - u_{(\nu-1),\alpha}^{(k)}}{\tau} + \sum_{i \in n_{\nu,\alpha}^+} f_{(\nu-1),\alpha}^{(i)} \frac{u_{(\nu-1),\alpha}^{(k)} - u_{(\nu-1),\alpha-\bar{e}_l}^{(k)}}{h} + \sum_{i \in n_{\nu,\alpha}^-} f_{(\nu-1),\alpha}^{(i)} \frac{u_{(\nu-1),\alpha}^{(k)} - u_{(\nu-1),\alpha}^{(k)}}{h} + \sum_{i=1}^n g_{k,(\nu-1),\alpha}^{(i)} u_{(\nu-1),\alpha}^{(i)} = q_{(\nu-1),\alpha}^{(k)}, \quad k = \overline{1,n}.
$$
\n(5)

On the grid Ω_h^0 :

$$
u_{0,\alpha}^{(k)} = r_{\alpha}^{(k)}, \quad k = \overline{1, n}.
$$
 (6)

From [\(5\)](#page-1-0)

$$
u_{\nu,\alpha}^{(k)} = \left(1 - \frac{\tau}{h} \sum_{i=1}^{n} \left| f_{\nu-1,\alpha}^{(i)} \right| \right) u_{\nu-1,\alpha}^{(k)} + \frac{\tau}{h} \sum_{i \in n_{\nu-1,\alpha}^+} f_{\nu-1,\alpha}^{(i)} \times u_{\nu-1,\alpha-\bar{e}_l}^{(k)} - \frac{\tau}{h} \sum_{i \in n_{\nu-1,\alpha}^-} f_{\nu-1,\alpha}^{(i)} \times u_{\nu-1,\alpha+\bar{e}_l}^{(k)}.
$$

Solving the Eq. [\(5\)](#page-1-0) with respect to $u_{\nu,\alpha}$ obtain

$$
u_{\nu,\alpha} = \left(1 - \frac{\tau}{h} \sum_{i=1}^{n} f_{\nu-1,\alpha}^{(i)}\right) f_{\nu-1,\alpha}^{(k)} + \frac{\tau}{h} \sum_{i \in n} f_{\nu-1,\alpha}^{(i)} \times u_{\nu-1,\alpha-\bar{e}_i}^{(k)} - \frac{\tau}{h} + \frac{\tau}{h} \sum_{i \in n_{\nu-1,\alpha}} f_{\nu-1,\alpha}^{(i)} \times u_{\nu-1,\alpha+\bar{e}_i}^{(k)} - \tau \sum_{i=1}^{n} g_{k,\nu-1,\alpha}^{(i)} u_{\nu-1,\alpha}^{(i)} + \tau q_{\nu-1,\alpha}^{(k)}, k = \overline{1,n}
$$
\n(7)

Because $u_{0,\alpha}^{(k)}$ are known from the initial condition [\(6\)](#page-1-1) then by the formula [\(7\)](#page-2-0) one can calculate layer by layer at first $u_{1,\alpha}, \alpha \in Z_n$, then $u_{2\alpha}, \alpha \in Z_n$, and so on.

Let us estimate the approximation order which the scheme $(5)-(6)$ $(5)-(6)$ $(5)-(6)$ approximates the problem (1) – (2) . Due to the Assumption [1](#page-0-2) according to the Taylor series we have

$$
\frac{l^{(k)}(t_{\nu}, x^{\alpha}) - l^{(k)}(t_{\nu-1}, x^{\alpha})}{\tau} = \frac{\partial l^{(k)}(t_{\nu-1}, x^{\alpha})}{\partial t} + \frac{\tau}{2} \frac{\partial^{2}l^{(k)}(t_{\nu}, x^{\alpha})}{\partial t^{2}}
$$
(8)

$$
\frac{l^{(k)}(t_{\nu-1}, x^{\alpha}) - l^{(k)}(t_{\nu-1}, x^{\alpha} - h\bar{e}_{l})}{h} = \frac{\partial l^{(k)}(t_{\nu-1}, x^{\alpha})}{\partial x_{i}}
$$

$$
-\frac{h}{2}\frac{\partial^2 l^{(k)}(t_\nu-1,\xi^{k,\nu,\alpha})}{\partial x_i^2}, \quad i=\overline{1,n},\tag{9}
$$

$$
\frac{h}{2} \frac{\partial^2 l^{(k)}(t_\nu - 1, \eta_i^{k, \nu, \alpha})}{\partial x_i^2}, \quad i = \overline{1, n}
$$
\n(10)

where

$$
t_{\nu} \leq \xi_{\nu,\alpha}^{k} \leq t_{\nu,x^{\alpha}-h\bar{e}_l} \leq \xi_i^{k,\nu,\alpha} \leq x^{\alpha}, \quad x^{\alpha} \leq \eta_i^{k,\nu,\alpha} \leq x^{\alpha} + h\bar{e}_l. \tag{11}
$$

From [\(6\)](#page-1-1) follows that the initial condition [\(2\)](#page-0-1) is approximated at Ω_h^0 exactly. Then due to (9) – (11) the residual between (1) and (5) on the solution $l(t, x)$ is equal to

$$
\delta_{t,h}^{(k)} = \frac{\tau}{2} \frac{\partial^2 l^{(k)} \left(\xi_{\nu,\alpha}^{(k)}, x^{\alpha} \right)}{\partial t^2} - \frac{h}{2} \sum_{i \in n_{\nu-1,\alpha}}^{\dagger} f_{\nu-1,\alpha}^{(i)} \frac{\partial^2 l^{(k)} \left(t_{\nu-1,\alpha} \xi_{\nu,\alpha}^{(k)}, x_{\alpha} \right)}{\partial t^2} \n+ \frac{h}{2} \sum_{i \in n_{\nu-1,\alpha}}^{\dagger} f_{\nu-1,\alpha}^{(i)} \frac{\partial^2 l^{(k)} \left(t_{\nu-1,\alpha} \eta_i^{(k,\nu,\alpha)} \right)}{\partial x_i^2}, \quad k = \overline{1,n}
$$

Due to the Assumption [1](#page-0-2) the estimation $\|\delta\| \leq c \times (\tau + h)$, $c = const$ is valid from which follows the following proposition.

Theorem 1 *If the Assumption [1](#page-0-2) is valid then the difference scheme [\(5\)](#page-1-0)–[\(6\)](#page-1-1) approximates the problem* (1) – (2) *on its solution* $l(t, x)$ *with the first order with respect to* τ *and h.*

Let us show the stability of the difference scheme (5) – (6) . It will be sufficiently for its convergence, because the initial condition [\(2\)](#page-0-1) is approximated exactly on Ω_h^0 .

Formula (7) shows the solvability of the difference problem (5) – (6) . Let us obtain estimation of the solution of [\(5\)](#page-1-0) corresponding to the zero initial conditions

$$
u_{0,\alpha}^{(k)} = 0, \quad k = \overline{1, n}.
$$
 (12)

If

$$
0 < \frac{\tau}{h} \le \frac{1}{nF},\tag{13}
$$

then from (3) , (4) , (7) follows

$$
\sup_{\alpha} \|u_{\nu,\alpha}\| \le (1+\tau G n) \sup_{\alpha} \|u_{\nu-1,\alpha}\| + \tau \|q_{\nu,\alpha}\|_h^2.
$$

Then taking into account [\(12\)](#page-3-0), obtain

$$
\sup_{\nu,\alpha} \|u_{\nu,\alpha}\| \le \frac{T}{M} \|q_{\nu,\alpha}\|_{h}^{'} \left(1 + \frac{TGn}{M}\right)^{M} \times \times \left[\frac{1}{(1 + \tau G M)^{M}} + \frac{1}{(1 + \tau G M)^{M-1}} + \dots + \frac{1}{1 + \tau G M}\right].
$$
 (14)

Taking into account that $(1 + \frac{TG_n}{M})^M$ tends to e^{TG_n} as $M \to \infty$ and therefore is bounded, then from [\(14\)](#page-3-1) follows that the solution $u_{\nu,\alpha}$ of the problem [\(5\)](#page-1-0), [\(12\)](#page-3-0) satisfies the estimation $||u_{\nu,\alpha}||_h \le L ||q_{\nu,\alpha}||_h$, $L = const$. This proves the following proposition.

Theorem 2 *If conditions* [\(3\)](#page-1-2), [\(4\)](#page-1-3) *and* [\(8\)](#page-2-3) *are fulfilled then the scheme* [\(5\)](#page-1-0)–[\(6\)](#page-1-1) *is stable with respect to the right-hand side. From the stability and the approximation of the difference scheme follows its convergence.*

Theorem 3 *Let the Assumption [1](#page-0-2) and conditions [\(3\)](#page-1-2), [\(4\)](#page-1-3) and [\(8\)](#page-2-3) be fulfilled then the solution of the difference scheme [\(5\)](#page-1-0)–[\(6\)](#page-1-1) converges to the solution of the problem [\(1\)](#page-0-0)* $-(2)$ $-(2)$ *with the first order by* τ *and h.*

Acknowledgements The research was supported by the Russian Foundation for Basic Research (project no. 17-01-00636).

Reference

1. Kim., A.V., Andryushechkina, N.A.: Real-time modeling of a system state during the process of more precise estimation of the initial position