
Proximity Full-Text Searches
of Frequently Occurring Words
with a Response Time Guarantee

A. B. Veretennikov

Abstract Full-text search engines are important tools for information retrieval. In
a proximity full-text search, a document is relevant if it contains query terms near
each other, especially if the query terms are frequently occurring words. For each
word in the text, we use additional indexes to store information about nearby words
at distances from the given word of less than or equal to MaxDistance, which is a
parameter. A search algorithm for the casewhen the query consists of high-frequently
occurring words is discussed. In addition, we present results of experiments with dif-
ferent values of MaxDistance to evaluate the search speed dependence on the value
of MaxDistance. These results show that the average time of the query execution
with our indexes is 94.7–45.9 times (depending on the value of MaxDistance)
less than that with standard inverted files when queries that contain high-frequently
occurring words are evaluated.

Keywords Full-text search · Search engines · Inverted indexes ·
Additional indexes · Proximity search · Term proximity · Information retrieval

1 Introduction

A search query consists of several words. The search result is a list of documents
containing these words. In [10], we discussed a methodology for high-performance
proximity full-text searches and a search algorithm. In this paper, we present an
optimization of this algorithm and the results of the experiments in dependence on
its primary parameter.

A. B. Veretennikov (B)
Ural Federal University, Lenina 51, 620083 Yekaterinburg, Russia

Chair of Calculation Mathematics and Computer Science, INSM, Yekaterinburg, Russia
e-mail: alexander@veretennikov.ru

© Springer Nature Switzerland AG 2020
S. Pinelas et al. (eds.), Mathematical Analysis With Applications,
Springer Proceedings in Mathematics & Statistics 318,
https://doi.org/10.1007/978-3-030-42176-2_37

377

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-42176-2_37&domain=pdf
mailto:alexander@veretennikov.ru
https://doi.org/10.1007/978-3-030-42176-2_37


378 A. B. Veretennikov

In modern full-text search approaches, it is important for a document to con-
tain search query words near each other to be relevant in the context of the query,
especially if the query contains frequently occurring words. The impact of the term-
proximity is integrated into modern information retrieval models [3, 7, 8, 19].

Words appear in texts at different frequencies. The typical word frequency distri-
bution is described by Zipf’s law [20]. An example of words occurrence distribution
is shown in Fig. 1. The horizontal axis represents different words in decreasing order
of their occurrence in texts. On the vertical axis, we plot the number of occurrences
of each word.

Inverted files or indexes [9, 21] are commonly used for full-text search data
structures. With ordinary inverted indexes, for each word in the indexed document,
we store in the index the record (I D, P), where I D is the identifier of the document
and P is the position of the word in the document (for example, an ordinal number
of the word). For proximity full-text searches, we need to store (I D, P) record for
all occurrences of any word in the indexed document. These (I D, P) records are
called “postings”. In this case, the query search time is proportional to the number
of occurrences of the queried words in the indexed documents. Consequently, it is
common for search systems to evaluate queries that contain frequently occurring
words (such as “a”, “are”, “war” and “who”) much more slowly (see Fig. 1) than
queries that contain less frequently occurring, ordinary words (such as “promising”
and “glorious”).

To address this performance problem and to satisfy the demands of the users, we
use additional indexes [10–16].

It is important to evaluate any query with a response time guarantee. A full-text
search query that we can consider to be a “simple inquiry” should produce a response
within two seconds [6]; otherwise, the continuity of thinking can be interrupted,
which will affect the performance of the user.

Fig. 1 Example of a word
frequency distribution



Proximity Full-Text Searches of Frequently Occurring Words … 379

1.1 Word Type and Lemmatization

In [11], we defined three types of words.
Stop words: Examples include “and”, “at”, “or”, “not”, “yes”, “who”, “to”, and

“be”. In a stop-words approach, these words are excluded from consideration, but we
do not do so. In our approach, we include information about all words in the indexes.
We cannot exclude a word from the search because a high-frequently occurring word
can have a specific meaning in the context of a specific query [10, 17]; therefore,
excluding some words from consideration can induce search quality degradation or
unpredictable effects [17]. Let us consider the query example “who are you who”.
The Who are an English rock band, and “Who are You” is one of their songs. There-
fore, the word “Who” has a specific meaning in the context of this query.

Frequently usedwords: Thesewords are frequently encountered but conveymean-
ing. These words always need to be included in the index.

Ordinary words: This category contains all other words.
We employ a morphological analyzer for lemmatization. For each word in the

dictionary, the analyzer provides a list of numbers of lemmas (i.e., basic or canonical
forms). For a word out of the dictionary its lemma is the same as the word itself.

We define three types of lemmas: stop lemmas, frequently used lemmas and ordi-
nary lemmas. We sort all lemmas in decreasing order of their occurrence frequency
in the texts. This sorted list we call the FL-list. The number of a lemma in the FL-list
is called its FL-number. Let the FL-number of a lemma w be denoted by FL(w).

The first SWCount most frequently occurring lemmas are stop lemmas.
The second FUCount most frequently occurring lemmas are frequently used

lemmas.
All other lemmas are ordinary. SWCount and FUCount are the parameters.
We use SWCount = 700 and FUCount = 2100 in the experiments presented.
If an ordinary lemma q occurs in the text so rarely that FL(q) is irrelevant, then

we can say that FL(q) =∼. We denote by “∼” some large number.
Let us consider the following text, with the identifier I D1: “All was fresh around

them, familiar and yet new, tinged with the beauty ”. This is an excerpt from Arthur
Conan Doyle’s novel “Beyond the City”.

After lemmatization: [all] [be] [fresh] [around] [they] [familiar] [and] [yet] [new]
[ting, tinge] [with] [the] [beauty].

With FL-numbers: [all: 60] [be: 21] [fresh: 2667] [around: 2177] [they: 134]
[familiar: ∼] [and: 28] [yet: 632] [new: 376] [ting: ∼, tinge: ∼] [with: 40] [the: 10]
[beauty: ∼].

Stop lemmas: “all”, “be”, “they”, “and”, “yet”, “new”, “with”, “the”.
Frequently used lemmas: “fresh”, “around”.
Ordinary lemmas: “ting”, “tinge”, “beauty”, “familiar”.
In this example we can see that some words have several lemmas. The word

“tinged” has two lemmas, namely, “ting” and “tinge”. Another example is the word
“mine” that has two lemmas, namely, “mine” and “my”, with FL-numbers of 2482
for “mine” and 264 for “my”.



380 A. B. Veretennikov

1.2 Query Type

Let us define the following query types.

(QT 1) All lemmas of the query are stop lemmas.
(QT 2) All lemmas of the query are frequently used lemmas.
(QT 3) All lemmas of the query are ordinary lemmas.
(QT 4) The query contains frequently used and ordinary lemmas; there are no stop

lemmas in the query.
(QT 5) The query contains stop lemmas. The query also contains frequently used

and/or ordinary lemmas.

We presented the results of experiments [10] while showing that the average query
execution timewith our additional indexeswas94.7 times less than that requiredwhen
using ordinary inverted files, when QT 1 queries are evaluated. The experimental
query set contained 975 QT 1 queries, and each was performed three times. The total
search time with ordinary inverted indexes was 8h 59min. The total search time with
our additional indexes was 6min 24s.

Let MaxDistance be a parameter that can take a value of 5 or 7 or even more.
In [10], we presented the results of experiments with MaxDistance = 5.

Before, in [13], we had presented the results of experiments showing that the aver-
age number of postings per query with our additional indexes was 51.5 times less
than that required when using ordinary inverted files, when queries with QT 2–QT 5
types are evaluated (the QT 1 type is excluded). MaxDistance = 5. The experi-
mental query set contained 5955 QT 2–QT 5 queries.

In [13], we also presented the results of experiments showing that the average
number of postings per query with our additional indexes was 263 times less than
that required when using ordinary inverted files, when queries with QT 1–QT 5 types
are evaluated and when the QT 1 type search is limited by an exact search (that is, for
a QT 1 query, we find only documents that contain all query words near each other
and without other words between, but the query words can be in any order in the
indexed document). MaxDistance = 5. This limitation we had overcome in [10,
16] by introducing a new type of additional index (three-component key index) for
the QT 1 queries. The experimental query set contained 4500 queries, where 330 are
QT 1 queries and 462 are QT 2–QT 4 queries.

In this paper, in a continuation of [10], we present the results of experiments
for QT 1 queries when MaxDistance = 5, 7 and 9. With these results, we can
evaluate the search speed with three-component key indexes dependent on the value
of MaxDistance.

We use different additional indexes depending of the type of the query [10].

(QT 1) Three-component key ( f, s, t) indexes.
(QT 2) Two-component key (w, v) indexes.
(QT 3) Ordinary indexes, skipping NSW (near stop words) records [10].
(QT 4) Ordinary indexes with skippingNSW records [10] and two-component key

indexes.



Proximity Full-Text Searches of Frequently Occurring Words … 381

(QT 5) Ordinary indexes with NSW records and two-component key indexes. For
each frequently used or ordinary lemma in each document, a record (I D,
P , NSW record) is included in the ordinary index. I D is the ordinal number
of the document. P is the corresponding word’s ordinal number within the
document. The NSW record contains information about all stop lemmas
occurring near position P (at a distance ≤ MaxDistance). This informa-
tion is efficiently encoded [11–13] and allows to take into account any stop
lemmas that occurring near P . The postings for a lemma in the ordinary
index can be stored in two data streams: the first contains (I D, P) records,
and the second contains NSW records. In this case, we can skip NSW
records when they are not required.

2 The Search Algorithm

2.1 The Search Algorithm General Structure

Our search algorithm is described in Fig. 2 and in Table 1.
Let us consider the following query: “who are you who”.
Let us consider the phase 3 in more detail. We evaluate the sub queries in the

loop. We select a non-processed sub query. If no such sub query exists, then all sub
queries are processed and we go to the next phase. Otherwise, we evaluate the sub
query and go to the start of the loop.

Fig. 2 UML diagram of the
query evaluation procedure



382 A. B. Veretennikov

Table 1 The search algorithm general structure

Phase Result of the phase

1. Lemmatization The query after lemmatization
[who: 293] [are: 268, be: 21] [you: 47] [who: 293]

2. Building sub query list (if required
by the query type)

Q1: [who: 293] [are: 268], [you: 47] [who: 293]
Q2: [who: 293] [be: 21], [you: 47] [who: 293]

3. Evaluation of the sub queries Results of Q1
Results of Q2

4. Combining results Combined result set sorted according to relevancy

Results of a sub query are the list of records (I D, P, E, R). I D is the identifier
of the document. P is the position of the start of the fragment of text within the
document that contains the query. E is the position of the end of the fragment of
text within the document that contains the query. R is the relevance of the record
(Table1).

In [10], we defined several query types depending on the types of lemmas they
contain and different search algorithms for these query types. In this paper, we
consider sub queries that consist only of stop lemmas.

2.2 Evaluation of a Sub Query that Consists only of Stop
Lemmas

To evaluate a sub query that consists only of stop lemmas, three-component key
indexes are used.

The expanded ( f, s, t) index or three-component key index [10] is the list of
occurrences of the lemma f for which lemmas s and t both occur in the text at
distances less than or equal to MaxDistance from f .

For the sub query Q1, we can use the (you, are, who) and (you, who, who) indexes.
The algorithm for the index selection is described in [10].

For each selected index, we need to create the iterator.
The iterator object for the key ( f, s, t) is used to read the posting list of the ( f, s, t)

key from the start to the end.
The iterator object I T has the method I T .Next , which reads the next record from

the posting list.
The iterator object I T has the property I T .Value that contains the current record

(I D, P). Consequently, I T .Value.I D is the I D of the document containing the
key, and I T .Value.P is the position of the key in the document.

For two postings A = (A.I D, A.P) and B = (B.I D, B.P), we define that A <

B when one of the following conditions is met: A.I D < B.I D or; (A.I D = B.I D
and A.P < B.P).



Proximity Full-Text Searches of Frequently Occurring Words … 383

Fig. 3 UML diagram of the stop lemma only sub query evaluation procedure

The records (I D, P) are stored in the posting list for the given key in increasing
order.

The evaluation of the sub query that consists only of stop lemmas [10] is shown
accordingly in Fig. 3. Broadly speaking, the evaluation of the sub query is a two level
process that is incorporated into the loop (steps 3.1 and 3.2).

2.3 The Optimized Equal i ze Procedure

2.3.1 Implementation of Equal i ze with Two Binary Heaps

We can implement Equali zewith two binary heaps [18]. Let Max I T be the iterator
with a maximum value of Value.I D. Let MinI T be the iterator with a minimum
value of Value.I D. If Max I T .Value.I D = MinI T .Value.I D, then all iterators
have an equal value of Value.I D.

Abinary heap is an array of elements H . For any elements A and B, the comparison
operation A < B is defined. This array is indexed from 1.

The binary heap property: for any index i , H [i] ≤ H [i × 2] and H [i] ≤ H [i ×
2 + 1].



384 A. B. Veretennikov

2.3.2 Binary Heap Operations

The binary heap provides the following operations.
I nsert (E): adds a new element E to the heap with a computational complexity

O(log n), where n is the count of elements in H .
GetMin: returns the minimum element with a computational complexity O(1)

(returns the first element of the array, i.e., top of the heap).
Update(i): updates the position of the element with index i with a computational

complexity O(log n). We will create H as an array of pointers to the iterator objects.
Let us consider an example. For any two elements A and B in H , we define the
operation A < B as A.Value.I D < B.Value.I D. Let I T be an element in H .
When I T .Next is executed, the value of I T .Value is changed, and the position of
I T in H must be updated.

We include in any iterator object two additional fields, namely, MinIndex and
Max Index .

We create two heaps, namely, MinHeap and MaxHeap.
For MinHeap, the operation A < B is defined as A.Value.I D < B.Value.I D.
ForMaxHeap, the operation A < B is defined as A.Value.I D > B.Value.I D.
MinHeap.GetMin returns the pointer to an iterator object with the minimum

value of Value.I D.
MaxHeap.GetMin returns the pointer to an iterator object with the maximum

value of Value.I D.
In the code for the I nsert and Update operations for MinHeap we update the

MinIndex field for any iterator object if its position is changed in the heap’s array.
For any iterator I T , the value of I T .MinIndex is always equals to the position of
I T ’s pointer in the MinHeap’s array.

In the code for the I nsert and Update operations for MaxHeap we update the
Max Index field for any iterator object if its position is changed in the heap’s array.
For any iterator I T , the value of I T .Max Index is always equals to the position of
I T ’s pointer in the MaxHeap’s array.

An example of MinHeap and MaxHeap with three iterators is shown in Fig. 4.
Iterator I T 1 has Value.I D = 3, iterator I T 2 has Value.I D = 10 and iterator

I T 3 has Value.I D = 5.
The MinHeap array has three cells, and the MaxHeap array has three cells.
The MinHeap and MaxHeap arrays contain pointers to the I T 1, I T 2 and I T 3

iterator objects (i.e., the addresses of these objects). To compare two elements of
the MinHeap array, we need to obtain two corresponding iterator objects by their
addresses and compare their Value.I D fields.

The pointer to the iterator with the minimum value of Value.I D, namely, I T 1,
is located in the first cell of the MinHeap array. The pointer to the iterator with
the maximum value of Value.I D, namely, I T 2, is located in the first cell of the
MaxHeap array.



Proximity Full-Text Searches of Frequently Occurring Words … 385

Fig. 4 Example of MinHeap and MaxHeap with three iterators

2.3.3 Details of the Insert Operation

For example, in the following code fragment we define the I nsert (I T ) operation
for MinHeap. Let MinHeap.Count be the current count of elements in the binary
heap MinHeap.

Let MinHeap.Heap be the array with length MinHeap.MaxCount , indexed
from 1, MinHeap.MaxCount > MinHeap.Count .

(1) MinHeap.Count = MinHeap.Count + 1.
(2) MinHeap.Heap[MinHeap.Count] = I T .
(3) I T .MinIndex = MinHeap.Count .
(4) i = MinHeap.Count .
(5) While i > 1 and MinHeap.Heap[i].Value.I D <

MinHeap.Heap[i/2].Value.I D, perform steps 5.a–5.e.

(a) T = MinHeap.Heap[i], Q = MinHeap.Heap[i/2],
(b) MinHeap.Heap[i/2] = T ,MinHeap.Heap[i] = Q (swapping T and its

parent element).
(c) T .MinIndex = i/2 (updating MinIndex for T ).
(d) Q.MinIndex = i (updating MinIndex for Q).
(e) Assignment: i = i/2.

The updating of the Max Index field in MaxHeap is performed in a similar way.
We also need to update MinIndex and Max Index fields in Update operation.



386 A. B. Veretennikov

2.3.4 Implementation of Equal i ze

We can implement Equali ze in the following way.
For any iterator I T , we include I T (its pointer) in MinHeap and MaxHeap

using MinHeap.I nsert (I T ) and MaxHeap.I nsert (I T ).
Next, in the loop, we perform the following.

(1) IfMinHeap.GetMin().Value.I D=MaxHeap.GetMin().Value.I D= I D,
then exit from the procedure (for any iterator I T we have I T .Value.I D = I D).

(2) Select I T = MinHeap.GetMin().
(3) Execute I T .Next .
(4) If no more postings in I T , then exit from Equali ze and from the search.
(5) Execute MinHeap.Update(I T .MinIndex).
(6) Execute MaxHeap.Update(I T .Max Index).
(7) Go to step 1.

The Equali ze procedure is shown in Fig. 5.

Fig. 5 UML diagram of the Equalize procedure



Proximity Full-Text Searches of Frequently Occurring Words … 387

This implementation of Equali ze is more effective and scalable than the basic
implementation from [10] because all operations in the internal loop have a compu-
tational complexity O(log n), where n is the number of iterators.

3 Search Experiments

3.1 Search Experiment Environment

In addition to the optimized search algorithm, we discuss the results of search exper-
iments with different values of MaxDistance.

All search experiments were conducted using a collection of texts from [10]. The
total size of the text collection is 71.5 GB. The text collection consists of 195 000
documents of plain text, fiction and magazine articles.

MaxDistance = 5, 7 or 9. SWCount = 700, FUCount = 2100.
The search experiments were conducted using the experimental methodology

from [10].
We used the following computational resources:
CPU: Intel(R) Core(TM) i7 CPU 920 @ 2.67 GHz. HDD: 7200 RPM. RAM: 24

GB.
OS: Microsoft Windows 2008 R2 Enterprise.
We created the following indexes.
I dx1: ordinary inverted filewithout any improvements such asNSW records [10].
I dx2: our indexes, including the ordinary inverted index with NSW records and

the (w, v) and ( f, s, t) indexes, with MaxDistance = 5.
I dx3: our indexes, including the ordinary inverted index with NSW records and

the (w, v) and ( f, s, t) indexes, with MaxDistance = 7.
I dx4: our indexes, including the ordinary inverted index with NSW records and

the (w, v) and ( f, s, t) indexes, with MaxDistance = 9.
Queries performed: 975, all queries consisted only of stop lemmas. The query set

was selected as in [10]. All searches were performed in a single program thread. We
searched all queries from the query set with different types of indexes to estimate
the performance gain of our indexes.

Query length: from 3 to 5 words.
Studies by Spink et al. [5] have shown that queries with lengths greater than 5 are

very rare. In [5], query logs of a search system were analyzed, and it was established
that queries with a length of 6 represent approximately 1% of all queries and fewer
than 4% of all queries had more than 6 terms.



388 A. B. Veretennikov

3.2 Search Experiments

Average query times:
I dx1: 31.27 s, I dx2: 0.33 s, I dx3: 0.45 s, I dx4: 0.68 s.
Average data read sizes per query:
I dx1: 745 MB, I dx2: 8.45 MB, I dx3: 13.32 MB, I dx4: 23,89 MB.
Average number of postings per query:
I dx1: 193 million, I dx2: 765 thousands, I dx3: 1.251 million, I dx4: 1.841

million.
We improved the query processing time by a factor of 94.7 with I dx2, by a factor

of 69.4 with I dx3, and by a factor of 45.9 with I dx4 (see Fig. 6).
The left-hand bar shows the average query execution time with the standard

inverted indexes. The subsequent bars show the average query execution time with
our indexes with MaxDistance = 5, 7 and 9. Our bars are much smaller than the
left-hand bar because our searches are very quick.

We improved the data read size by a factor of 88 with I dx2, by a factor of 55.9
with I dx3, and by a factor of 31.1 with I dx4 (see Fig. 7).

We present the differences in the average query execution time for I dx2, I dx3
and I dx4 in Fig. 8 to analyze how the average query execution time depends on the
value of MaxDistance (see Fig. 8).

Let us consider Fig. 8. The left-hand bar shows the average query execution time
with MaxDistance = 5, and the subsequent bars with MaxDistance = 7 and 9.

The search with I dx3 was slower than that with I dx2 by a factor of 1.36, and the
search with I dx4 was slower than that with I dx2 by a factor of 2.06.

We present the differences in the average data read size per query for I dx2, I dx3
and I dx4 in Fig. 9 to analyze how the average data read size depends on the value
of MaxDistance (see Fig. 9).

Fig. 6 Average query
execution times for I dx1,
I dx2, I dx3, and I dx4
(seconds)

Fig. 7 Average data read
sizes per query for I dx1,
I dx2, I dx3, and I dx4 (MB)



Proximity Full-Text Searches of Frequently Occurring Words … 389

Fig. 8 Average query
execution times for I dx2,
I dx3, and I dx4 (seconds)

Fig. 9 Average data read
size per query for I dx2,
I dx3, and I dx4 (MB)

Let us consider Fig. 9. The left-hand bar shows the average data read size per
query with MaxDistance = 5, and the subsequent bars with MaxDistance = 7
and 9.

We needed to read from the disk when searching with I dx3 more than with I dx2
by a factor of 1.57. We needed to read from the disk when searching with I dx4 more
than with I dx2 by a factor of 2.82.

4 Conclusion and Future Work

A query that contains high-frequently occurring words induces performance prob-
lems. These problems are usually solved by the following approaches.

(1) Vertical and/or horizontal increases in the computing resources and the paral-
lelization of the query execution.

(2) Stop words approach.
(3) Early termination approaches [1, 4].
(4) Next-word and partial phrase auxiliary indexes for an exact phrase search

[2, 17].

The stop words approach leads to search quality degradation [10] because in some
queries a high frequently occurring word can have a specific meaning [10, 17], and
skipping such a word could lead to the omission of important search results.

Early termination approaches have trouble integrating proximity into the rele-
vance [10].

Next-word and partial phrase indexes work only for exact phrase searches.



390 A. B. Veretennikov

Our approach allows us to solve performance problems without increasing com-
puting resources, and we can process any word in the query and perform arbitrary
queries; these are our advantages.

In this paper, we have introduced an optimized method for full-text searches in
comparison with [10].

In this paper, we investigated searches with queries that contain only stop lemmas.
Other query types are studied in [13].

We studied the dependence of the query execution time on the value of the param-
eter MaxDistance.

The results of the search experiments with MaxDistance = 5, 7, and 9 are pre-
sented. We also proved that a three-component key index can be created with a rela-
tively large value of MaxDistance = 9 to allow the effective execution of queries
with a length of up to 9 (larger queries need to be divided into parts).

We have presented the results of experiments showing that, when queries contain
only stop lemmas, the average time of the query execution with our indexes is 94.7–
45.9 times less (with a value of MaxDistance from 5 to 9) than that required when
using ordinary inverted indexes.

When we discuss our indexes, we have shown that with an increase in the value of
MaxDistance from 5 to 7, the average query execution time increases 1.36 times.
We have shown that with an increase in MaxDistance from 5 to 9, the average
query execution time increases 2.06 times. The increase in MaxDistance has a
significant impact when we are searching queries that contain only stop lemmas with
three component key indexes, but it is still much faster than a searchwith the standard
inverted indexes (improved by a factor of 45.9 for MaxDistance = 9).

In the future, it will be interesting to investigate other types of queries in more
detail and to optimize index creation algorithms for larger values of MaxDistance.

Acknowledgements The work was supported by Act 211 Government of the Russian Federation,
contract no. 02.A03.21.0006.

References

1. Anh, V.N., deKretser, O.,Moffat, A.: Vector-Space rankingwith effective early termination. In:
SIGIR2001Proceedings of the 24thAnnual InternationalACMSIGIRConference onResearch
and Development in Information Retrieval, New Orleans, Louisiana, USA, pp. 35–42 (2001).
https://doi.org/10.1145/383952.383957

2. Bahle,D.,Williams,H.E., Zobel, J.: Efficient phrase queryingwith an auxiliary index. In: SIGIR
2002 Proceedings of the 25th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, Tampere, Finland, pp. 215–221 (2002). https://doi.org/
10.1145/564376.564415

3. Buttcher, S., Clarke, C., Lushman, B.: Term proximity scoring for ad-hoc retrieval on very
large text collections. In: SIGIR 2006 Proceedings of the 29th Annual International ACM
SIGIRConference onResearch andDevelopment in InformationRetrieval, pp. 621–622 (2006).
https://doi.org/10.1145/1148170.1148285

https://doi.org/10.1145/383952.383957
https://doi.org/10.1145/564376.564415
https://doi.org/10.1145/564376.564415
https://doi.org/10.1145/1148170.1148285


Proximity Full-Text Searches of Frequently Occurring Words … 391

4. Garcia, S., Williams, H.E., Cannane, A.: Access-Ordered indexes. In: ACSC 2004 Proceedings
of the 27th Australasian Conference on Computer Science, Dunedin, New Zealand, pp. 7–14
(2004)

5. Jansen, B.J., Spink, A., Saracevic, T.: Real life, real users and real needs: a study and analysis
of user queries on the Web. Inf. Process. Manag. 36(2), 207–227 (2000). https://doi.org/10.
1016/S0306-4573(99)00056-4

6. Miller, R.B.: Response time in man-computer conversational transactions. AFIPS Fall Joint
Computer Conference, San Francisco, California 33, 267–277 (1968). https://doi.org/10.1145/
1476589.1476628

7. Rasolofo, Y., Savoy, J.: Term proximity scoring for keyword-based retrieval systems. In: Euro-
pean Conference on Information Retrieval (ECIR) 2003: Advances in Information Retrieval,
pp. 207–218 (2003). https://doi.org/10.1007/3-540-36618-0_15

8. Schenkel, R., Broschart, A., Hwang, S., Theobald, M., Weikum, G.: Efficient text proximity
search. In: String Processing and Information Retrieval, 14th International Symposium, SPIRE
2007. Lecture Notes in Computer Science, vol. 4726, Santiago de Chile, Oct 29–31, pp. 287–
299. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75530-2_26

9. Tomasic, A., Garcia-Molina, H., Shoens, K.: Incremental updates of inverted lists for text
document retrieval. In: SIGMOD ’94 Proceedings of the 1994 ACM SIGMOD International
Conference on Management of Data, Minneapolis, Minnesota, 24–27 May 1994, pp. 289–300
(1994). https://doi.org/10.1145/191839.191896

10. Veretennikov, A.B.: Proximity full-text search with response time guarantee by means of three
component keys. Bulletin of the South Ural State University. Series: Computational Mathe-
matics and Software Engineering, 7(1), 60–77 (2018). In Russian. https://doi.org/10.14529/
cmse180105

11. Veretennikov, A.B.: About phrases search in full-text index. Control Syst. Inf. Tech. 48(2.1),
125–130 (2012). In Russian

12. Veretennikov, A.B.: Using additional indexes for fast full-text searching phrases that contains
frequently used words. Control Syst. Inf. Technol. 52(2), 61–66 (2013). In Russian

13. Veretennikov, A.B.: Efficient full-text search by means of additional indexes of frequently used
words. Control Syst. Inf. Technol. 66(4), 52–60 (2016). In Russian

14. Veretennikov,A.B.: Creating additional indexes for fast full-text searching phrases that contains
frequently used words. Control Syst. Inf. Technol. 63(1), 27–33 (2016). In Russian

15. Veretennikov, A.B.: About a structure of easy updatable full-text indexes. In: Proceedings of
the 48th International Youth School-Conference “Modern Problems in Mathematics and its
Applications”, CEUR-WS, 1894, pp. 30–41 (2017). In Russian

16. Veretennikov, A.B.: Efficient full-text proximity search by means of three component keys.
Control Syst. Inf. Technol. 69(3), 25–32 (2017). In Russian

17. Williams, H.E., Zobel, J., Bahle, D.: Fast phrase querying with combined indexes. ACMTrans.
Inf. Syst. (TOIS) 22(4), 573–594 (2004). https://doi.org/10.1145/1028099.1028102

18. Williams, J.W.J.: Algorithm 232—Heapsort. Commun. ACM 7(6), 347–348 (1964)
19. Yan, H., Shi, S., Zhang, F., Suel, T., Wen, J.-R.: Efficient term proximity search with term-pair

indexes. In: CIKM2010Proceedings of the 19thACMInternational Conference on Information
and Knowledge Management, Toronto, ON, Canada, pp. 1229–1238 (2010). https://doi.org/
10.1145/1871437.1871593

20. Zipf, G.: Relative frequency as a determinant of phonetic change. Harv. Stud. Class. Philol.
40, 1–95 (1929). https://doi.org/10.2307/408772

21. Zobel, J., Moffat, A.: Inverted files for text search engines. ACM Comput. Surv. 38(2) (2006).
Article 6. https://doi.org/10.1145/1132956.1132959

https://doi.org/10.1016/S0306-4573(99)00056-4
https://doi.org/10.1016/S0306-4573(99)00056-4
https://doi.org/10.1145/1476589.1476628
https://doi.org/10.1145/1476589.1476628
https://doi.org/10.1007/3-540-36618-0_15
https://doi.org/10.1007/978-3-540-75530-2_26
https://doi.org/10.1145/191839.191896
https://doi.org/10.14529/cmse180105
https://doi.org/10.14529/cmse180105
https://doi.org/10.1145/1028099.1028102
https://doi.org/10.1145/1871437.1871593
https://doi.org/10.1145/1871437.1871593
https://doi.org/10.2307/408772
https://doi.org/10.1145/1132956.1132959

	 Proximity Full-Text Searches  of Frequently Occurring Words with a Response Time Guarantee
	1 Introduction
	1.1 Word Type and Lemmatization
	1.2 Query Type

	2 The Search Algorithm
	2.1 The Search Algorithm General Structure
	2.2 Evaluation of a Sub Query that Consists only of Stop Lemmas
	2.3 The Optimized Equalize Procedure

	3 Search Experiments
	3.1 Search Experiment Environment
	3.2 Search Experiments

	4 Conclusion and Future Work
	References




