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Abstract. In a series of recent articles (from 2011 to 2017), Schindler
et al. show that exponent/scalar blinding is not as effective a counter-
measure as expected against side-channel attacks targeting RSA modu-
lar exponentiation and ECC scalar multiplication. Precisely, these works
demonstrate that if an attacker is able to retrieve many randomizations
of the same secret, this secret can be fully recovered even when a sig-
nificative proportion of the blinded secret bits are erroneous. With a
focus on ECC, this paper improves the best results of Schindler et al.
in the specific case of structured-order elliptic curves. Our results show
that larger blinding material and higher error rates can be successfully
handled by an attacker in practice. This study also opens new directions
in this line of work by the proposal of a three-steps attack process that
isolates the attack critical path (in terms of complexity and success rate)
and hence eases the development of future solutions.

1 Introduction

Nowadays, all modern tamper-resistant implementations of public-key algo-
rithms embed relatively cheap, yet very strong countermeasures based on various
randomization strategies. As a consequence, single-trace horizontal attacks have
gained more and more attention from the side-channel community.

Single trace horizontal attacks apply to both elliptic curve scalar multiplica-
tion and modular exponentiation (RSA). Implemented in a supervised or non-
supervised setup, they provide the attacker with a randomized, or blinded scalar
(resp. exponent) from the observation of a single scalar multiplication or expo-
nentiation. Although these attacks do not yield the original scalar (resp. expo-
nent), the disclosure of a blinded value may allow an attacker to counterfeit
digital signatures or impersonate any party in a key exchange protocol.

This ultimate attack thus renders scalar (resp. exponent) randomization use-
less. However, it requires a very high signal-to-noise ratio to be successful in prac-
tice. Many recent publications claim successful single trace horizontal attacks
on secure RSA or ECC [2,7–11,16,18]. These attacks do not usually recover
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the whole blinded value. The missing bits are eventually recovered using brute-
force. Therefore, the number of incorrect bits must remain relatively small for
the attack to be successful. In single-trace horizontal attacks, this number of
incorrect bits is dictated by the so-called bit error rate of the attack.

In this work, we consider the case where brute-forcing the incorrect bits is
impracticable. We focus on ECC scalar multiplication on so-called structured-
order elliptic curves (very common in Elliptic Curves Cryptography). We assume
that the attacker can observe several scalar multiplications with the same long-
term secret scalar but each execution uses fresh randoms for scalar blinding. A
typical example of such a context occurs in the public key generation of ECC
cryptosystems. The attacker requests from a device many generations of the
public key corresponding to the private key securely stored inside the device. We
will also assume that the scalar randomization is done following [4] by adding
to the secret scalar a random multiple of the elliptic curve order.

The first paper in the literature to tackle this problem is the seminal work
of Schindler and Itoh [12] which exhibits a very efficient attack (in terms of
number of traces and computational effort) when small blinding factors r are
used. Over the past five years, this result was improved [13], applied to specific
elliptic curves [5,14] and to RSA with CRT [15]. In the present paper, we expand
this line of results by suggesting several improvements that make it possible to
recover scalars blinded with large random factors (>32 bits), and high bit error
rates (>10%).

1.1 Preliminaries and Notations

In the following, we consider an elliptic curve defined over the finite field Fp,
with p a K-bit prime (typically K = 256). E denotes the order of the curve and
d is the secret scalar, target of the attack. Both E and d can be represented
on K bits. The term msb (resp. lsb) will be used to shorten most (resp. least)
significant bits.

For each scalar multiplication, the scalar d is blinded by adding a random
multiple of the group order, i.e. d� = d + r� × E, where r� is an R-bit random
value. The blinded scalar d� is then represented on K + R bits.

The attaker observes N scalar multiplications. These N side-channel obser-
vations, called traces, are denoted {T�}�<N

1.
For each trace T�, the attacker’s horizontal side-channel attack outputs a

noisy blinded scalar, denoted d̃�. For all bit index i < K + R, it is assumed
that the probability εb for bit d̃�[i] to be erroneous, called bit error rate, is
independent of both � and i. Depending on the context (supervised or non-
supervised horizontal attacks) εb is considered known or unknown to the attacker.

1 A more formal notation would be {T�}�∈Z;0��<N .
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1.2 Overall Attack Process

Our attack context is the gathering of three independent steps. Our contributions
are solely related to the second step and, for completeness, we briefly describe
the whole attack process below.

Step 1: The attacker acquires N traces corresponding to N independent scalar
multiplications and performs a horizontal attack for each of them. The output of
this first step is a set of noisy blinded scalars {d̃�}�<N together with a bit error
rate εb. In the supervised setting2 (see e.g. [1,2,18]) the attacker possesses a
good estimation of the bit error rate εb. Given εb the attacker knows beforehand
the number of acquisitions N that must be performed to have good chance of
success. In the more general unsupervised setting (see e.g. [7–11,16]), the access
to a training device is not possible. The attacker acquires as many traces as
possible and induces a maximal value for εb that can be handled through the
attack. In both cases, this first step provides the attacker with N noisy blinded
scalars together with a gross value for εb.

Step 2: From each noisy blinded scalar d̃�, the attacker guesses the blinding
factor r� or discards the corresponding data from the attack process. The output
of this filtering step is a subset {d̃�}�∈J along with guessed blinding factors
{r�}�∈J for some J ⊂ (Z∩ [0, N − 1]). All r� do not have to be correct but some
of them must be correctly guessed.

Step 3: The last step of the attack recovers the secret scalar d from {d̃�}�∈J

and {r�}�∈J . A powerfull vertical side-channel attack can be mounted on the
remaining traces. Such an attack is described in [5].

1.3 Paper Organization and Contributions

This work focuses on improvements in Step 2 in the specific case of elliptic curves
whose order is close to a power of 2. Section 2 describes the previous works,
namely the best known attack in this setting [14]. Our strategy and results are
presented in Sect. 3. Our simulations show significant increases in the success
rates for blinding factors up to R = K/2 compared to [14].

2 Previous Works

In [14], Schindler and Wiemers study elliptic curves with order of the form
E = 2K ±E0, where E0 is close to 2K/2. This case is pretty common in cryptog-
raphy when the base field is defined using a pseudo-Mersenne prime for efficiency
reasons. Most of the EC standards are of this form, e.g. SEC2 curves [17], NIST
curves [6].

2 A learning phase is conducted prior to the attack on a similar device where scalar
multiplication inputs and randoms can be chosen, e.g. a template building or a
deep-learning training phase.
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2.1 A Divide and Conquer Algorithm

Schindler and Wiemers observe that the problem of solving the N noisy blinded
scalars can be done using a divide and conquer algorithm. This observation leads
to a much more robust decoding algorithm than in the general case. Indeed, a
blinded scalar d� with blinding factor r� can be written as follows:

d� = r� × E + d

= r� × (2K ± E0) + d

= r� × 2K + (d ± r� × E0)

Hence, if d ± r� ×E0 is smaller than 2K , then the R msb of d� are exactly the R
bits of r�. As a side remark, if r� ×E0 is smaller than d, then the most significant
bits of d are not correctly masked (see e.g. [3]).

Now, for a given window size w, if (d ± r� × E0) < 2K , then d� mod 2w and⌊
d�/2K

⌋
mod 2w only involve the known w lsb of E and the unknown w lsb of

d and r�. From this observation, Schindler and Wiemers (see [14]) propose an
efficient algorithm to recover the secret d that comprises two phases:

– Phase 1: find the R lsb of d as well as the most likely values of the blinding
factor r� for each noisy blinded scalar d̃�.

– Phase 2: select the values r� that are the most likely to be correct and recover
the full secret scalar d.

Phase 2 corresponds to step 3 of our overall attack scheme described in
Sect. 1.2 and, as observed by the authors of [14], is not the critical path of the
attack. In other words, if Phase 1 is successful (i.e. the R lsb of d are correctly
found) then Phase 2 will results in recovering the full value of d with high
probability.

2.2 Schindler and Wiemers’ Phase 1 Algorithm

It is described in [14, Algorithm 4] along with several empirical improvments
discussed in the next sections. The algorithm processes iteratively over a small
sliding window of size w (typically w is 8 or 10). Each iteration consists of two
main steps recalled in Algorithms 1 and 2 respectively.

In Algorithm 1, the call to EvaluateProbability(r̂�, d̂�, d̃�, i, w, εb) computes
the probability of observing d̃� knowing the error rate εb and the two w-
bit words r̂� and d̂� which correspond respectively to the two w-bit words⌊
d̃�/2K+i−1

⌋
mod 2w and

⌊
d̃�/2i−1

⌋
mod 2w. Hence, we have:

EvaluateProbability(r̂�, d̂�, d̃�, i, w, εb) = εh
b (1 − εb)2w−h,

where

h = HammingDistance(r̂�,
⌊
d̃�/2K+i−1

⌋
mod 2w) +

HammingDistance(d̂�,
⌊
d̃�/2i−1

⌋
mod 2w)
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Parameter : Iteration i
Parameter : Window size w, bit error rate εb

Input : {d̃�}�<N : N noisy scalars
Input : {r̃�}�<N : i − 1 lsb of the recovered blinding factors

Input : d mod 2i−1: i − 1 lsb of the recovered scalar
Output : d∗: best guess for d mod 2w+i−1

1 P ← float 1D array of size 2w initialized with zeros;
2 // For each possible value of the next w bits of the secret scalar;

3 for d̂ ← 0 to 2w − 1 do
4 // Prediction of the w + i − 1 lsb of the scalar knowing the first i − 1 bits;

5 d̄ ← d̂ × 2i−1 + d mod 2i−1;
6 // For each noisy blinded scalar;
7 for � ← 0 to N − 1 do
8 // For each possible value of the next w bits of the random r�;
9 for r̂� ← 0 to 2w − 1 do

10 r̄� ← r̂� × 2i−1 + r̃�;
11 // Predict w + i − 1 lsb of d�;

12 d̄� ← (r̄� × E + d̄) mod 2w+i−1;

13 // Define d̂�, the w msb of d̄�;

14 d̂� ← ⌊
d̄�/2i−1⌋

;

15 // Compute the probability of observing d̃�, knowing d̂ blinded by r̂�;

16 p ← EvaluateProbability(r̂�, d̂�, d̃�, i, w, εb);

17 P [d̂] ← P [d̂] + p;

18 d∗ ← argmax(P ) × 2i−1 + (d mod 2i−1);
Return : d∗

Algorithm 1. Phase 1, Step 1 of [14, Algorithm 4]

After R iterations of Algorithms 1 and 2 the output is d mod 2R if everything
went correctly. As stated above, this is the most critical phase in Schindler and
Wiemers’s algorithm. They propose two empirical approaches to improve both
its efficiency and effectiveness. We will briefly present them in the next section.
However, since these improvements are based on hand-picked thresholds by the
authors of [14] without clear explanations on how to choose these limits (we
are assuming that these thresholds must be adjusted in a case-by-case man-
ner) we will not take them into account in our study. Nevertheless, since the
improvements presented here can be applied on the core algorithms, the empir-
ical improvements can always be added above them. We then focus on the low
level algorithms and leave for future work the addition and study of these extra
improvments.

2.3 Empirical Improvements

The first improvement is added to Algorithm2 to increase the effectivness of the
attack. Concretely, the authors add an estimation of the correctness of r̄�. When
this estimation of correctness goes below a certain threshold, the corresponding
noisy blinded scalar d̃� is removed from the process. The question of how to
choose the threshold is not discussed in [14] but several values are proposed
depending on the bit error rate εb and the iteration number i.

The second improvement is dedicated to efficiency. The algorithm cost is
dominated by Step 1 (Algorithm1), its complexity being O(22wN). The authors
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Parameter : Iteration i
Parameter : Window size w, bit error rate εb

Input : {d̃�}�<N : N noisy scalars
Input : {r̃�}�<N : i − 1 lsb of the recovered blinding factors
Input : d∗: w + i − 1 lsb of the recovered scalar from Step 1
Output : d mod 2i

Output : {r̃�}�<N : i lsb of the recovered blinding factors

1 // For each noisy blinded scalar;
2 for � ← 0 to N − 1 do
3 P ← float 1D array of size 2 initialized with zeros;
4 // For each possible value of the next w bits of the random r�;
5 for r̂� ← 0 to 2w do
6 r̄� ← r̂� × 2i−1 + r̃�;
7 // Predict w + i − 1 lsb of d�;

8 d̄� ← (r̄� × E + d∗) mod 2w+i−1;

9 // Define d̂�, the w msb of d̄�;

10 d̂� ← ⌊
d̄�/2i−1⌋

;

11 // Compute the probability of observing d̃�, knowing d∗ blinded by r̂�;

12 p ← EvaluateProbability(r̂�, d̂�, d̃�, i, w, εb);
13 P [r̂� mod 2] ← P [r̂� mod 2] + p;

14 r̃� ← argmax(P ) × 2i−1 + r̃�;

15 d∗ ← d∗ mod 2i;
Return : d∗, {r̃�}�<N

Algorithm 2. Phase 1, Step 2 of [14, Algorithm 4]

propose to reduce the number of treated noisy blinded scalars in this step and
apply the second step to all noisy blinded scalars. The idea is that, if costly, Step
1 is more robust than Step 2 and therefore does not need all the N noisy blinded
scalars to correctly guess d mod 2w+i−1. The authors propose, again without
justification, hand-picked numbers of noisy blinded scalars to be used in Step 1
for various bit error rates εb and iteration numbers i.

The above improvements were not tested in this paper. However, one can
easily see that they can be applied pretty much similarly to our algorithms with
adjusted thresholds.

2.4 Some Results

It is shown in [14] that Algorithms 1 and 2 allow to correct noisy blinded scalars
with large values of R, typically � 64 and large error rates 0.1 � εb � 0.15.
This result is very important since before [14], a value of R = 64 was considered
perfectly safe from a side-channel point of view.

One crucial parameter of these algorithms is the choice of the window size
w since the robustness of the procedure increases with w. However, since the
algorithm complexity is dominated by O(22wN), w cannot be very large either.
Figure 1 provides simulation results of Algorithms 1 and 2 effectivness for various
values of w. It gives the average number of bits of d guessed correctly before a
wrong bit appears, as a function of the number of traces N . These simulations
were done with K = 256, R = 64 and εb = 0.15 for curve secp-256-k1 [17] (aka
the Bitcoin’s curve).
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Fig. 1. Simulations for K = 256, R = 64, εb = 0.15 on curve secp-256-k1.

In Fig. 1, we represent mean values over 50 executions of the algorithms.
Standard deviations to the average results are illustrated by error bars. These
simulations are extremely time consuming as w increases. This is why some
results are missing for w > 7. This is probably why the simulation results in [14]
are scattered over a few parameters. We believe that Fig. 1 provides a com-
plementary point of view on the efficiency of the correction algorithm of [14]3.
Notably, it is interesting to remark that the impact of the window size is not
regular and that window sizes ranging from 3 to 6 produce similar success rates.

We will see in next Section how the algorithms can be improved in both
efficiency and effectivness.

3 Improved Algorithms

3.1 First Observations

As remarked earlier (and in [14]) w cannot be too small for the algorithm to
work. The reason is that the probability estimation (from the call to Evalu-
ateProbability() in Algorithm1) improves as w increases. As a matter of fact,
the EvaluateProbability() procedure estimates the probability of observing the
noisy blinded scalar d̃� knowing two w-bit word predictions on two separate w-bit
sections of d̃�. Therefore, if w is too small this estimation is not good enough to
distinguish good predictions from wrong ones (Fig. 1 illustrates this behaviour).

3 Without the empirical improvements discussed in Sect. 2.3.
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Our proposal will nevertheless reduce w to its minimum (w = 1) and cope
with the above mentioned issue by calling EvaluateProbability() (step 12 of
Algorithm 1 and step 12 of Algorithm 2) over the two (w + i − 1)-bit words r̄�

and d̄� instead of the two w-bit words r̂� and d̂�.
However, doing this directly has a desastrous effect. On the first iteration of

Algorithm 1, many r̃� are actually wrongly estimated (even if they were the best
candidates selected in Algorithm 2) and they remain wrong for the rest of the
execution until the end. However, the original implementation deals naturally
with them because future probability estimations with future w-bit predictions
on these wrong r̃� quickly decrease to give these wrong starts lower and lower
weights in the computation of the best candidate for the bits of d. If we apply
our first proposal directly, these wrong starts will keep their high probability
estimations for more iterations (since we now involve their successful past in
the computation). These wrong starts will then create more chance to choose a
wrong candidate for the guessed bit of d. We propose here to solve this problem
by loosening the selection procedure of the r̃�.

3.2 Keeping a List of the Blinding Factors Best Candidates

In a nutshell, the idea is to modify Algorithms 1 and 2 such that instead of
working on a single value r̄� (for each � < N) which is updated bit-by-bit at
each iteration (step 14 of Algorithm2), the algorithms will keep a pool of good
estimates for r̃�. Intuitively, if the list of potential candidates is large enough, it
will contain the correct value of r̄� for the current iteration. We will see that small
list sizes are enough to match and exceed the original algorithm effectiveness.

3.3 Algorithms Improvements in Detail

Algorithms 3 and 4 describe in detail the full improvements. Concretely, the
modifications compared to Algorithms 1 and 2 are threefold:

– the window size w is forced to its minimum (w = 1) and then does not appear
in the algorithm anymore.

– the list of recovered blinding factors at iteration i, i.e. {r̃�}�<N where the
r̃� are defined over i − 1 bits, is replaced by a 2D array (denoted Lr4) of
N × L best candidates for each r̃�. This array is updated at each iteration of
Algorithm 4. Note that during the first iterations (i � log2(L)), all possible
candidates are kept until the list is full.

– the probability estimation is done over t msb of r̄� and d̄� instead of the w
msb in Algorithm 1. Note that if t � R, then all the bits of r̄� and d̄� are
considered in the probability estimation at each iteration.

4 The array Lr must be initialized to an integer array of dimension N × L with all
cells initialized to −1 but the first column (Lr[i][0] for all i < N) which must be
initialized to 0.
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Together, the last two changes aim at decreasing the value of w to its minimum
and therefore reduce the algorithm complexity without damaging too much the
algorithm success rate. The overall complexity of steps 1 and 2 becomes then
O(N × L). (More precisely, Step 1 runs 4 × N × L loop iterations.)

Parameter : Iteration i
Parameter : Bit error rate εb

Parameter : Max list size L for the candidate lists of r̃�

Parameter : Window size t: this size defines the number of msb to select for probability
estimations

Input : {d̃�}�<N : N noisy scalars
Input : Lr array of dimension N × L containing, for each � < N , the L best

candidates r̃�

Input : d mod 2i−1: i − 1 lsb of the recovered scalar
Output : d mod 2i

1 P ← float 1D array of size 2 initialized with zeros;
2 // For each possible value of the next bit of the secret scalar;

3 for d̂ ← 0 to 1 do
4 // Prediction of the i lsb of the scalar knowing the first i − 1 bits;

5 d̄ ← d̂ × 2i−1 + d mod 2i−1;
6 // For each noisy blinded scalar;
7 for � ← 0 to N − 1 do
8 // For each possible value of the next bit of the random r�;
9 for r̂� ← 0 to 1 do

10 // For each r̃� in the list Lr[l];
11 for s ← 0 to L − 1 do
12 r̃� ← Lr[l][s];
13 if r̃� == −1 then
14 // go to next r̂� value;
15 Break;

16 r̄� ← r̂� × 2i−1 + r̃�;
17 // Predict w + i − 1 lsb of d�;

18 d̄� ← (r̄� × E + d̄) mod 2i;

19 // Define dt
�, the t msb of d̄�;

20 dt
� ←

⌊
d̄�/2max(0,i−t)

⌋
;

21 // Define rt
�, the t msb of r̄�;

22 rt
� ←

⌊
r̄�/2max(0,i−t)

⌋
;

23 // Compute the probability of observing d̃�, knowing d̂ blinded by rt
�;

24 p ← EvaluateProbability(rt
�, dt

�, d̃�, max(0, i − t), min(t, i), εb);

25 P [d̂] ← P [d̂] + p;

26 d∗ ← argmax(P ) × 2i−1 + d mod 2i−1;
Return : d∗

Algorithm 3. Improved Algorithm Step 1

3.4 Simulation Results and Comparisons

We conducted simulations in order to evaluate and compare the new algorithms
to the original proposition of [14]. As in Fig. 1, the results give the average (over
50 tentatives) number of bits of d guessed correctly before a wrong bit appears,
as a function of the number of traces N used for the attack. This number of
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Parameter : Iteration i
Parameter : Bit error rate εb

Parameter : Max list size L for the candidate lists of r̃�

Input : Lr array of dimension N × L containing, for each � < N , the L best
candidates r̃� on i − 1 bits

Input : d∗: i lsb of the recovered scalar from Step 1
Output : Updated Lr array with best candidates r̃� on i bits

1 // For each noisy blinded scalar;
2 for � ← 0 to N − 1 do
3 lr ← number of loaded elements in Lr[l] (lr � L);
4 // Create temporary list Lr� of size 2lr;
5 Lr� ← integer 1D array of size 2lr;
6 P ← float 1D array of size 2lr initialized with zeros;
7 // For each r̃� in the list Lr[l];
8 for s ← 0 to lr − 1 do
9 r̃� ← Lr[l][s];

10 // Add the two possible values of the next bit of the blinding factor r� to
the temporary list;

11 Lr�[s] ← r̃�;

12 Lr�[s + lr] ← 2i−1 + r̃�;

13 if 2lr � L then
14 // If Lr� is small enough, keep all r̃� candidates;
15 Lr[l][0 · · · 2lr − 1] ← Lr�;

16 else
17 // For each r̃� in the list Lr�;
18 for s ← 0 to 2lr − 1 do
19 r̄� ← Lr�[s];
20 // Predict i lsb of d�;

21 d̄� ← (r̄� × E + d∗) mod 2i;

22 // Compute the probability of observing d̃�, knowing d∗ blinded by r̄�;

23 p ← EvaluateProbability(r̄�, d̄�, d̃�, 0, i, εb);
24 P [s] ← p;

25 Lr[l] ← best L candidates in Lr� from their probability estimations P ;

Return : Lr

Algorithm 4. Improved Algorithm Step 2

correct bits are majored by R since the algorithms studied here stop when the
R lsb of d are found. Apart from R and K, various parameters have an impact
on the efficiency and the effectivness of the algorithms, notably:

L: the maximum size of the best candidate pool for the blinding factors r̃� for
each noisy blinded scalar. We recall here that the complexity of Algorithms 3
and 4 increase linearly with L;

w: the window size, only the original algorithms are affected by w, the com-
plexity of Algorithms 1 and 2 increase exponentially with w;

t: the number of bits involved in the probability estimation of r̄� and d̄� with
respect to d̃�.

Our first simulations are conducted to find the best empirical value for t. Once
t is chosen, we will focus on the parameter L and its impact on the effectiveness
(compared to the original algorithm when w changes).

Recall that t has no impact on the computational cost of the algorithms, so
it can be chosen freely. Figure 2 displays simulation results for the new algorithm
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with the parameter t taking its values in {6, 8, 10, 16, 24, R}5 and small values for
L. It appears that t = 16 provides better results than greater or smaller values
of t in our setup (K = 256, R = 64).

Fig. 2. Simulation results K = 256, R = 64, εb = 0.15.

Figure 3 compares the original algorithm for various values of w to the new
algorithm (with t = 16) for various values of L. From these results, we have
equivalent effectivness between the original algorithm with w = 7 and the new
algorithm with L = 4. However, the new algorithm is 210 times more efficient
than the original algorithm for these parameters. The gap of efficiency seems to
increase with w and L since, for another pair of results (w = 8 for the original
algorithm and L = 8 for the new algorithm) the multiplicative factor between
both algorithm complexity is doubled (211) whereas the new algorithm clearly
outperforms the original one. Finally, let us also remark that the new algorithm
with L > 16 reaches the limit of 64-bit correctly recovered on average (i.e. a
100% success rate since 64 is the maximum number of recovered bits) in less
than 10000 traces. We recall that these algorithms must reach the end with
correct 64-bit lsb of d (since in our simulation we choose R = 64) for the overall
attack to be successful.

Finally, Fig. 4 provides simulation results for R = 64, 96, 120 for the new
algorithm (t = 16, L = 32) and two different bit-error-rate (εb = 0.15 and
εb = 0.13). These results show, in accordance with original results from [14], that
when elliptic curves with structured-order are used, R must be chosen strictly
larger K/2 in practice for an effective side-channel countermeasure.

5 For t = R, at iteration i, all bits of r̄� and d̄� are considered for probability estimation,
this version is labeled “Full”.
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Fig. 3. Simulation results K = 256, R = 64, εb = 0.15.

Fig. 4. Simulation K = 256, L = 32, t = 16.

4 Conclusion and Future Work

In this paper we exhibited algorithms to recover a secret scalar from many noisy
blinded scalars (e.g. outputs of horizontal side-channel attacks over blinded
scalar multiplications) when blinding factors are large and bit error rate is
larger than 10%. Our propositions, in the specific case of structured-order elliptic
curves, outperform the best known algorithms for these parameters.

Apart from a series of articles from Schindler et al. works on this topic are
rather scarse in the literature. This is however a very important aspect of prac-
tical side-channel analysis over public-key cryptography and we believe there
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are still room for improvements. Another interesting avenue for future work is
to formulate theoretic bounds on the attacker capability to recover the secret
scalar given a set of noisy blinded scalars.
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