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Abstract. Threshold implementations have emerged as one of the most
popular masking countermeasures for hardware implementations of cryp-
tographic primitives. In this work, we first provide a generic construction
for d+1 TI sharing which achieves the minimal number of output shares
for any n-input Boolean function of degree t = n − 1 and for any d.
Secondly, we demonstrate the applicability of our results on a first-order
and second-order d + 1 low-latency PRINCE implementation.
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1 Introduction

Historically, the field of lightweight cryptography focused on algorithm designs
occupying smallest possible silicon area. Small area results in low power con-
sumption, another equally important optimization target. However, hitting these
two targets degrades performance of lightweight cryptographic primitives, and
for most online applications, they frequently do not meet the requirements. Only
a handful of designs consider latency among their main design goals. PRINCE [6]
and Midori [1] are two prominent examples.

Vulnerability to physical attacks, e.g. side-channel analysis (SCA) is a threat
faced by the field of (lightweight) cryptography since its creation, with signifi-
cant effort being invested in SCA resistant implementation design. To resist an
adversary that has access up to d wires in a circuit [11] the secret value has to
be shared into at least d + 1 random shares using a masking technique, such as
Boolean masking.

Circumventing a masked implementation requires attackers to recover the
secret information from several shares, i.e. they need to employ a d-th order
higher-order attack at least. These attacks are harder to mount due to their sus-
ceptibility to measurement noise. Higher-order SCA protection incurs penalties
in silicon area, execution time, power consumption and the amount of random
bits required for secure execution. Additional cost comes from the increasing
number of shares required. The number of output shares grows exponentially
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with the algebraic degree of the function, the number of nonlinear terms the
function has, and the security order that needs to be achieved.

Secure cryptographic circuit design becomes significantly harder once the
requirements have to be met for latency, energy consumption, silicon area or
power. In the context of this paper, and as stated in [12], we consider latency as
the total time needed to execute a single cryptographic operation. Minimizing
latency can be achieved by increasing the frequency the circuit can operate on
or by reducing clock cycle count of the operation. Hence, one design outperforms
another with regards to latency if the product of the number of clock cycles and
the minimal clock period is smaller in that design.

In [14], the authors provide the first example in the literature where latency
and SCA protection are considered as the main design goal. Their results indi-
cate that this is a significantly more difficult problem than designing a coun-
termeasure by optimizing area or the amount of randomness, which are the
typical design criteria addressed by the scientific community. Therefore, design-
ing side-channel countermeasures for low-latency or low-energy implementations
is considered to be an important open problem. The authors of [8] introduced a
generalized concept for low-latency masking that is supposed to be applicable to
any implementation and protection order, however they have applied their con-
cept to designs which are not low-latency and therefore it is difficult to compare
their approach. We have to stress that the goal to achieve minimal latency is not
equivalent to get only execution within less cycles, since at the same time the
complexity of the circuit grows resulting in longer critical path. In other words
one gets a design which can be executed in less cycles but also with lower max
frequency. It has been pointed out in [13] that the generalized concept has to
use another re-sharing technique, since the original one has a flaw for d > 2.

Threshold Implementations (TI) [15] is a provably secure masking scheme
specifically designed to counter side-channel leakage caused by the presence of
glitches in hardware. Later the approach of TI was extended to counter higher-
order (uni-variate) attacks [3]. The theory suggests the usage of at least td + 1
number of input shares in order to make a Boolean function with algebraic degree
t secure against a d-th order side-channel attack. That is the reason why these
TI schemes are often referred to as a td + 1 TI. Consolidated Masking Scheme
(CMS) [17] reduced the required number of input shares needed to resist a d-th
order attack to d + 1, regardless of the algebraic degree of the shared function.
Recall that this is theoretically the lowest bound on the number of input shares
with respect to the order of security d. After that, many schemes using d + 1
shares such as Domain Oriented Masking (DOM) and Unified Masking Approach
(UMA) emerged [9,10], where the essential differences among them is in the
way the refreshing of the output shares is performed. Since the security against
glitches of all these schemes (CMS, DOM, UMA, etc.) relies on the TI principles,
these are also referred as d + 1 TI.

While the established theory of TI guarantees that the number of input shares
linearly grows with the order of protection d, it does not provide efficient means
to keep the exponential explosion of the number of output shares under control.
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The state-of-the-art is a lower bound of (d + 1)t given in [17], while in [3] the
authors described a method to obtain a TI-sharing with

(
td+1

t

)
output shares.

The latter work also notes that the number of output shares can sometimes be
reduced by using more than td+1 input shares. Aside from a formula for the lower
bound in [17], there was not much other work of applying d + 1 TI to functions
with higher degree than 2. The only exception is the AES implementations by [19,
20] where d + 1 TI is applied to the inversion of GF (24), which is a function of
algebraic degree 3. However, even for this particular case, the first attempt [20]
resulted in sharing with minimal number of output shares but it did not satisfy
the non-completeness property of TI. Only in the follow-up publication [19] the
sharing was correct and minimal. It has to be noted that for the particular case
of cubic function, it is fairly easy to find the minimal first-order sharing of 8
output shares by exhaustive trial and error approach.

Our Contribution: In this paper we first introduce a method for optimizing
Threshold Implementations. In particular, we provide a constructive solution
for d + 1 TI that achieves the optimal number of output shares for any n-
input Boolean function of degree t = n − 1 for any security order d. Using
this construction we demonstrate how to reduce the latency to achieve faster
TI-protected implementation of PRINCE. Third, we also show the most energy
efficient round-based first-order secure implementation of PRINCE using d + 1
TI sharing.

Finally, we would like to point out that the method of minimizing the number
of output shares is of general interest since it can equally well be applied to any
cryptographic implementation and any design optimisation criteria.

2 Preliminaries

The elements of the finite field Fn
2 are represented with small letters. Subscripts

are used to specify each bit of an element or each coordinate function of a vecto-
rial Boolean function, for example x = (x1, · · · , xn), where xi ∈ F2. Subscripts
are used to represent shares of one-bit variables. The reader should be able to
distinguish from the context if the text is referring to specific bits of unshared
variable or specific shares of a variable. Next we denote Hamming weight, con-
catenation, cyclic right shift, right shift, composition, multiplication and addition
with wt(.), ||,≫,�, ◦, . and + respectively. We will use Algebraic Normal Form
representations of Boolean functions and will refer to the algebraic degree of
such Boolean function.

Two permutations S and S′ are affine equivalent if and only if there exists
two affine permutations C and D satisfying S′ = C ◦S ◦D. We refer to C as the
output and D as the input transformation. Last the TI sharing which is designed
to protect against the d-th order attack we will simply refer to as the d-th order
TI.
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2.1 Threshold Implementations

The most important property that ensures security of TI even in the presence of
glitches is non-completeness. The d-th order non-completeness property requires
any combination of up to d component functions to be independent of at least
one input share. When cascading multiple nonlinear functions, the 1-st order
sharing must also satisfy the uniformity : namely a sharing is uniform if and only
if the sharing of the output preserves the distribution of the unshared output.
In other words, for a given unmasked value, all possible combinations of output
shares representing that value are equally likely to happen. For higher-order
sharing and to achieve uniformity one can always apply refreshing of the output
shares.

Given the shares x1, . . . , xn a (first- and second-order) refreshing can be
realized by mapping (x1, . . . , xn) to (y1, . . . , yn) using n random values r1, . . . , rn
as follows:

y1 = x1 + r1 + rn yi = xi + ri−1 + ri, i ∈ {2, . . . , n} (1)

This refreshing scheme is called ring re-masking. An improvement regarding the
number of random bits used when multiplication gate is shared has been achieved
in [10] where the amount of randomness required is halved compared to CMS.
In [9], the authors have shown that the amount of randomness for sharing a
multiplication gate can be further reduced to one third, although this comes
at the significant performance cost. Since our goal is to build low-latency side-
channel secure implementations, we do not take the approach of UMA. Instead,
we choose CMS/DOM for d + 1 TI designs In this paper we will interchangeably
use terms mask refreshing and re-masking.

In order to prevent glitch propagation when cascading nonlinear functions, TI
requires register(s) to be placed between the nonlinear operations. Otherwise,
the non-completeness property may be violated and the leakage of the secret
internal state is likely to be manifested.

When sharing a nonlinear function the number of output shares is typically
larger than the number of input shares. This is likely to occur when applying
td + 1 TI and it always occurs when applying d + 1 TI. In order to minimize
the number of output shares we need to refresh and recombine (compress) some
shares by adding several of them together. To prevent glitches from revealing
unmasked values, decreasing the number of shares can only be done after storing
these output shares into a register. The output shares that are going to be
recombined together still need to be carefully chosen such that they do not
reveal any unmasked value.

While using d + 1 TI the relation between the input shares needs to obey
a stronger requirement, namely shared input variables need to be independent
[17]. This can be achieved in various ways - for example by refreshing some of
the inputs or by using a technique proposed in [10].
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2.2 Minimizing Implementation Overheads Using S-box
Decomposition

Similar to other side channel countermeasures, the area overhead of applying TI
increases polynomially with respect to the security order and exponentially with
respect to the algebraic degree of the function we are trying to protect. To keep
the large overheads caused by exponential dependency under control, designers
often use decomposition of the higher degree functions into several lower degree
functions. This approach has originally been demonstrated in [16] where the
authors implemented a TI-protected PRESENT block cipher [5] by decomposing
its cubic S-box into two simpler quadratic S-boxes. Finally, decomposition of all
cubic 4-bit S-boxes into chains of smaller quadratic S-boxes was given in [4],
which eventually enables compact, side-channel secure implementations.

Although a decomposition of nonlinear functions into several simpler func-
tions of smaller algebraic degree is the proper approach to use for area reduction
of the TI-protected implementations, its side-effect is the increased latency of
the S-box evaluation and hence the entire implementation. Recall that the TI
requires registers to be placed between the nonlinear operations in order to pre-
vent the glitch propagation, which in turn increases the latency. We will not use
this approach since our goal is to achieve low-latency.

2.3 A Note on Latency and Energy Efficiency

As already mentioned, most of the effort the scientific community has spent on
designing secure implementations has been focused on reducing area overheads.
Another important metric that had been given lots of attention is the amount
of randomness used in protected implementations. While both of these metrics
are important, performance and energy consumption of secure implementations
have been unjustly treated as less significant. It has been widely accepted that
performance is the metric to sacrifice in order to achieve the lowest possible
gate count. Contrary to this view, most of the practical applications nowadays
require (very) fast execution and it is often latency of the actual implementation
that matters rather than the throughput. Energy consumption is another equally
important metric and, unlike power consumption, it cannot be well controlled
by keeping the area low while sacrificing performance. Optimizing for energy
consumption is in fact one of the most difficult optimization problems in (secure)
circuit design since the perfect balance between the circuit power consumption
and its execution speed needs to be hit.

The absolute latency is directly proportional to the number of clock cycles
a certain operation takes to execute. At the same time, the absolute latency is
inversely proportional to the clock frequency the system is running at. While the
clock frequency is determined by taking into account multiple factors from the
whole system, most important of which is the overall power/energy consump-
tion, the number of clock cycles a certain algorithm takes to execute is under
full control of the designer. Especially when considering embedded devices, the
tendency is to keep the clock frequency as low as we can while still meeting the
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performance requirements. That is the reason why minimizing the number of
clock cycles of a certain algorithm is the most important strategy when it comes
to minimizing the overall latency of that algorithm.

Although the majority of results available in public literature deal with area-
efficient hardware architectures, there are still a few notable examples where
the latency reduction has been the main target. In [14], the authors particularly
explore the extreme case of a single clock cycle side-channel secure implemen-
tations of PRINCE and Midori. Moreover, they conclude that designing a low-
latency side-channel secure implementation of cryptographic primitives remains
an open problem.

3 Finding an Efficient Sharing

To find a d + 1 sharing for a quadratic vectorial Boolean function is straight-
forward and especially easy for the functions that have a simple ANF e. g., a
quadratic function with a single second degree term. However, finding an effi-
cient sharing for a vectorial Boolean function of higher algebraic degree with
several high degree terms may not be evident, requiring increasingly more effort
to find the minimal number of the output shares.

Minimizing the number of output shares becomes even harder the higher
the security order d is. In this section we propose methods to deal with this
complexity and we describe an optimal solution for the d + 1 sharing for any
security order d.

To achieve d-th order security using d + 1 sharing for a single term of degree
t, i.e. a product of t variables, one gets exactly (d + 1)t shares for the product
[17].

For non-completeness, in the d + 1 TI sharing each output share should
contain only one share per input variable. In other words if in an output share
there are two shares of an input variable then the d-th order non-completeness
will be violated. We can see this in the d + 1 sharing of Eq. (3), the first output
share only has one input share of x, y and z: x0, y0 and z0, respectively. All
other output shares in Eq. (3) adhere to this rule as well.

Therefore, to ensure non-completeness it is enough to have only one share of
each input variable present in any given output share. We will assume that the
independence of input shares is always satisfied.

Correctness is achieved by verifying that each monomial of a shared term
(product) in the unshared function f must be present in one of the output
shares.

Consider again the function xy + z. One possible first-order d + 1 sharing of
it is given in Eq. (2).
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(x, y, z)
(0, 0, 0) o1 = x0y0 + z0

(0, 1, ∗) o2 = x0y1

(1, 0, ∗) o3 = x1y0

(1, 1, 1) o4 = x1y1 + z1 (2)

Shorter representation of the sharing is shown within the brackets in Eq. (2).
Each output share is a row of a table, and each column represents the shares of
different input variable. Entry in row i and column j is the allowed input share
of j-th input variable for i-th output share.

Columns are representing the variables x, y and z respectively. The asterisk
values indicate that we do not care about what input share of z is there, since
the sharing of linear term z is ensured by combining rows 1 and 4 of the table.
This also shows that the table representation of the sharing does not uniquely
determine the exact formula for each output share, and there is certain freedom
in determining where we can insert the input shares.

For example, we can use the table of Eq. (2) to share function x+ y +xy + z.
There are two options for terms x0 and x1, rows 1 and 2, and rows 3 and 4,
respectively. Similarly, y0 can be in either shares 1 or 3, y1 can be in share 2 or
4.

Non-completeness and correctness can be easily argued from the table repre-
sentation. Since for every table row, each column entry in the table can represent
only one input share of that column’s variable, non-completeness is automati-
cally satisfied. For row 3 of the table in Eq. (2) by fixing the entries representing
x to 1 and y to 0 we ensure that only x1 and y0 can occur in that output
sharing. Hence, there is no way that x0 or y1 can be a part of that particular
output share, which is the only way to violate non-completeness in d+1 sharing.
Correctness of the table can be verified by checking correctness for every mono-
mial in unshared function f individually. If the combined columns representing
variables of the monomial contain all possible combinations of share indexes,
sharing is correct, since all terms of shared product for each monomial can be
present in the output sharing. Following example from Eq. (2), for monomial xy
we see that all four combinations {(0, 0), (0, 1), (1, 0), (1, 1)} are present in two
columns representing variables x and y, allowing all the terms of shared product
xy = (x0 +x1)(y0 +y1) = x0y0 +x0y1 +x1y0 +x1y1 to be present in at least one
output share. The same holds for z = z0 + z1 as both combination {(0), (1)} are
present in output table of Eq. (2). Also, the number of rows in correct sharing
table is lower-bounded by the (d + 1)t, when the degree of the function is t.

Now, consider a function xy + xz + yz. One possible first-order d + 1 sharing
and its table is given in Eq. (3). Columns represent x, y, and z, respectively.
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(0, 0, 0) o1 = x0y0 + x0z0 + y0z0

(0, 1, 1) o2 = x0y1 + x0z1 + y1z1

(1, 0, 0) o3 = x1y0 + x1z0

(1, 1, 1) o4 = x1y1 + x1z1

(∗, 0, 1) o5 = y0z1

(∗, 1, 0) o6 = y1z0 (3)

The table has 6 rows representing different output shares, which is larger than
theoretically minimal 4 shares. Sharing given by Eq. (3) is also very easily
obtained when we try to derive it by hand. Naive approach is to start by sharing
xy into four shares. Next, we try to incorporate xz into these four shares by
setting all indexes of z to be equal to y. The problem arises when we try to add
sharing of yz. In the existing four output shares we have z and y have same
indexes, thus we are required to add two more shares for terms y0z1 and y1z0.

Further on, we will show that for any function with n input variables of
degree t = n − 1 it is possible to have a d + 1 sharing with minimal (d + 1)t

shares.

Definition 1. Table with n columns representing output sharing of a function of
degree t with n input variables is referred to as a Dn-table. The number of rows
of the table is the number of output shares for a given sharing. If the output
sharing is correct then Dn-table is t-degree correct Dn-table. t-degree correct
Dn-table with minimal numbers of rows is called an optimal Dn-table. Optimal
Dn-table that has (d + 1)t rows is called ideal Dn-table, denoted Dn

t -table.

For t = n ideal Dn
n-table is just a table that contain all different (d + 1)t

indexes of input variables in the terms of shared product that occur when sharing
a function of degree t. We can also consider each row of a Dn-table as an ordered
tuple of size n. i-th value in a such tuple represents the i-th input variable,
and it’s value is the allowed input share of that variable in the output share
represented by the tuple. All tuple entries have values from the set {0, . . . , d}.

Definition 2. Dt-table D1 is t-subtable of Dn-table D2 for given t columns if
D2 reduced to these t columns is equal to D1.

We have shown with the sharing in Eq. (2) how one can check the correctness
of the table. Now we generalize this by showing how to check if a given Dn-
table can be used for sharing of any function of degree t. It is sufficient to check
correctness only for the terms of degree t, since if a product of t variables can
be shared with a number of output shares, any product of a subset of these t
variables can also be shared using the same output shares.

It is easy to see that a Dn-table D can be used to share any function of degree
t if and only if for any combination of t columns, Dt-table formed by chosen t
columns contains all possible (d+1)t ordered tuples of size t. In, other words, t-
subtable of D for any t columns is t-degree correct Dt-table. This comes from the
fact that Dt-table that contains all possible (d + 1)t ordered t-tuples represents
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Table 1. D3-table and its 3 2-subtables.

xyz xy xz yz

000 00 00 00

011 01 01 11

100 10 10 00

111 11 11 11

001 00 01 01

110 11 10 10

a correct sharing for functions of degree t. If this is true for any combination of t
columns of D we can correctly share any combination of products of size t from
n input variables.

An example is given in Table 1 where D3-table on the left can be used for
first-order sharing of any function of degree 2 since all 3 D2-tables obtained from
it have all 4 possible ordered 2-tuples (0, 0), (0, 1), (1, 0) and (1, 1) as at least one
of its rows. Next we show how one can construct ideal Dn-table for any function
for given n, d and t = n−1. To recap, we first build a (d+1)t×n table D, where
every row is a tuple of indexes (in a single row no variable index is allowed to
be missing and, naturally, no variable index is duplicated) and t-subtable of D
for any t columns is a t-degree correct Dt-table. Since t = n − 1 we can consider
t-subtable generation as one column removal from D. Such a Dn-table D is then
equivalent to a sharing which fulfills the correctness and the non-completeness
properties of TI. Constructing an ideal Dn

n-table is trivial by enumerating all
ordered index n-tuples. The number of rows in it is (d + 1)n.

Showing that a particular Dn-table with (d + 1)n−1 rows is a Dn
n−1-table

becomes equivalent to proving that removal of any single column (restriction to
n−1 columns or, equivalently, variables) from the Dn-table yields a Dn−1

n−1-table.
Alternatively, any (n − 1)-subtable of Dn

n−1-table is a Dn−1
n−1-table.

Here we will show how to build the Dn
t -table for the case when t = n − 1.

For any given Dn
n−1-table and security order d we will prove the existence of

other d Dn
n−1-tables such that no n-tuple exists in more than one table. In

other words, no two tables contain rows that are equal. We call such d + 1
Dn

n−1-tables conjugate tables, and the sharings produced from them conjugate
sharings. Having all rows different implies that these d + 1 Dn

n−1-tables cover
(d + 1)(d + 1)n−1 = (d + 1)n index n-tuples, i.e. all possible index n-tuples.
Therefore, these d + 1 Dn

n−1-tables together form a Dn
n-table.

We build the d+1 conjugate Dn
n−1-tables inductively. For a given d we build

d + 1 conjugate D2
1-tables, then assuming d + 1 conjugate Dn

n−1-tables exist we
construct d + 1 conjugate Dn+1

n -tables.
The initial step is simple: D2

1 has two columns (for the variables x and y) and
in each row i (enumerated from 0 to d) of each conjugate table j (enumerated
from 0 to d) we set the value in the first column to be i, and the value of the
second column to be (i + j) mod (d + 1), hence obtaining the (d + 1) conjugate
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Fig. 1. Algorithm for optimal d + 1 sharing

Fig. 2. Generating conjugate D3
2-tables from D2

1-tables.

D-tables with d + 1 rows. Indeed, both columns of any of the constructed D2
1-

tables contain all values between 0 and d, so by removing either column we
always obtain a correct D1

1-table. Also, this construction ensures that second
column never has the same index value in one row for different tables, therefore
no two rows for different tables are the same, ensuring that formed tables are
indeed conjugate.

Induction step - assume we have d + 1 conjugate Dn
n−1-tables. Using them

we are now going to build d + 1 conjugate Dn+1
n -tables as described in Fig. 1.

The example of the iterative step from Algorithm 1 is given in Fig. 2.

Lemma 1. Given d + 1 conjugate Dn
n−1-tables the algorithm described in Fig. 1

constructs d + 1 conjugate Dn+1
n -tables.

Proof. First, let us show that the constructed d + 1 Dn+1
n -tables are conjugate,

i.e. there is no (n + 1)-tuple which belongs to more than one of them. Let us
assume there exists an (n + 1)-tuple which belongs to two Dn+1

n -tables. This
implies the existence of an n-tuple which belongs to two of the initial d + 1
Dn

n−1-tables, contradicting the fact that these initial tables are conjugate.
Finally, any restriction to a particular set of columns has to have all the

combinations of index n-tuples, i.e. the correctness property. In fact, it is suf-
ficient to prove that any set of n columns in any of the new conjugate tables
contains all possible n-tuples. Indeed, if we remove the last column in any of the
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so constructed tables we get the union of the original d+1 Dn
n−1-tables forming

one Dn
n-table. By definition Dn

n-table satisfies this property. Lastly, we are left
with the other case of removing one of the first n columns, which results in a
table of dimensions (d + 1)n × n. If we prove there are no duplicates among the
(d + 1)n tuples within this table, all combinations will be the table, making it
again a Dn

n-table. Consider two n-tuples. If they are equal their last indexes are
also equal. By Algorithm 1 design, equality of the last indexes (these are in the
(n+1)-st column) implies that the two (n−1)-tuples belong to one of the start-
ing conjugate Dn

n−1-tables, i.e. they can’t be in different conjugate Dn
n−1-tables.

However, for the (n − 1)-tuples which belong to one of the starting Dn
n−1-tables

by assumption is known that there are no duplications and hence the considered
two (n − 1)-tuples cannot be equal. ��
Theorem 1. Any of the constructed conjugate Dn

n−1-tables by algorithm in
Fig. 1 provides optimal sharing for given n, d and t = n − 1.

Proof. The algorithm is applied inductively for the number of variables from 2
till n. Since one Dn

n−1-table contains exactly (d + 1)n−1 rows, we conclude it is
optimal because this is the theoretical lower bound for the number of output
shares for the case t = n − 1. ��

Recall that aside from a formula for the lower bound in [17], there was not
much other work of applying d + 1 TI to functions with higher degree than 2
with the only exception: the AES implementations by [19,20] where d+1 TI was
applied to the inversion of GF (24), which function has algebraic degree 3. When
we tried to obtain by hand d + 1 TI for PRINCE S-box of algebraic degree 3 we
only managed to find output sharing for the most significant bit of the S-box
with 12 and 44 output shares, for the first-order and the second-order d + 1 TI
prior to the discovery of the Algorithm 1. Optimal solution is 8 and 27 output
shares for these two cases, respectively, which is easily found using approach
described here.

Another benefit of using algorithmic solution is it can easily be automated
using a computer, removing the possibility of human error that is likely to occur,
the more complex the ANF becomes.

It is well known that a balanced Boolean function of n variables has a degree
at most n−1. Therefore all n×n S-boxes which are permutations have a degree
of at most n − 1. Indeed nearly all bijective S-boxes used in symmetric ciphers
are chosen to have a maximum degree of n−1. In particular, inversion in the field
is always has maximum degree of n−1, most notable example of its usage being
AES S-box. In the particular case of AES inversion, applying the algorithm
shown here will produce the minimal number of shares, which is 128. This is
however too large for any practical application.

Most notable exception where low-degree function is used is Keccak’s [2] χ-
function which is a 5 × 5 S-box of degree 2. A sharing with 8 shares can be
easily found for χ by hand while a conjugate D5-table will have 16 entries which
corresponds to the optimal sharing for degree 4. Hence, the method presented in
this section is not optimal when the degree of the function is lower than n − 1.
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Fig. 3. PRINCE cipher.

Therefore, finding the optimal sharing for functions with a degree lower than
n − 1 remains an open problem.

4 Hardware Implementation

As a proof of concept we apply the optimal d + 1 TI to PRINCE [6], a block
cipher designed for low-latency hardware implementations. PRINCE block size is
64 bits, with a 128-bit key, used to derived 3 64-bit internally used keys k0, k

′
0 and

k1. Figure 3 shows the internal structure of the cipher consisting of 12 rounds.
PRINCE round consists of 4-bit S-box operation, linear layer realized as

matrix multiplication, and round constant addition. The S-box look-up table
is S(x) = [B,F, 3, 2, A,C, 9, 1, 6, 7, 8, 0, E, 5,D, 4]. The algebraic degree of the
S-box is 3, and S-box is affine equivalent to its inverse S−1 = Aio ◦ S ◦ Aio. The
Aio look-up table is Aio(x) = [5, 7, 6, 4, F,D,C,E, 1, 3, 2, 0, B, 9, 8, A].

To implement the first-order secure masking of PRINCE S-box, with d = 1,
we use the algorithm described in Sect. 3 to obtain a conjugate D4

3-table. This
table represents an optimal solution for 2 input shares with 8 output shares for
each input/output bit of the S-box. Recall that the PRINCE S-box is a 4×4-bit
S-box and that it has a degree 3.

The optimal sharing is given below in Eq. (4) as conjugate D4
3-table. The

exact sharing for four bits of PRINCE S-box is given with Eqs. (5), (6), (7)
and (8), respectively.

(x, y, z, w) (1, 0, 1, 0) (0, 1, 0, 1)
(1, 1, 0, 0) (0, 0, 1, 1) (1, 0, 0, 1)
(0, 1, 1, 0) (1, 1, 1, 1) (0, 0, 0, 0) (4)

As an example consider the first coordinate functions of PRINCE. For the first
bit we have o1 = 1 + zw + y + yz + wzy + x + xw + xy with optimal sharing:
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o11 = 1 + z0w0 + y0 + y0z0 + w0z0y0 + x0 + x0w0 + x0y0

o12 = w0z0y1 + x1y1

o13 = z1w0 + y1z1 + w0z1y1

o14 = w0z1y0 + x1w0

o15 = z1w1 + y0z1 + w1z1y0 + x0w1

o16 = w1z1y1

o17 = z0w1 + y1 + y1z0 + w1z0y1 + x0y1

o18 = w1z0y0 + x1 + x1w1 + x1y0 (5)

Continuing for the second bit’s algebraic function o2 = 1+yw+yz+xz+yzw+xyz
optimal sharing is:

o21 = 1 + y0w0 + y0z0 + x0z0 + y0z0w0 + x0y0z0

o22 = y1z0w0 + x1y1z0

o23 = y1w0 + y1z1 + y1z1w0 + x0y1z1

o24 = x1z1 + y0z1w0 + x1y0z1

o25 = y0w1 + y0z1 + x0z1 + y0z1w1 + x0y0z1

o26 = y1z1w1 + x1y1z1

o27 = y1w1 + y1z0 + y1z0w1 + x0y1z0

o28 = x1z0 + y0z0w1 + x1y0z0 (6)

Optimal sharing for the third bit with algebraic function o3 = w + x + zw +
xw + xz + xzw + xyz is:

o31 = w0 + x0 + z0w0 + x0w0 + x0z0 + x0z0w0 + x0y0z0

o32 = x1z0w0 + x1y1z0

o33 = z1w0 + x0z1w0 + x0y1z1

o34 = x1w0 + x1z1 + x1z1w0 + x1y0z1

o35 = w1 + z1w1 + x0w1 + x0z1 + x0z1w1 + x0y0z1

o36 = x1z1w1 + x1y1z1

o37 = z0w1 + x0z0w1 + x0y1z0

o38 = x1 + x1w1 + x1z1 + x1z0w1 + x1y0z0 (7)

Finally, for the fourth bit of PRINCE S-box and its function o4 = 1 + z + x +
yz + xy + yzw + xzw + xyw optimal sharing is given with:
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o41 = 1 + z0 + x0 + y0z0 + x0y0 + y0z0w0 + x0z0w0 + x0y0w0

o42 = x1y1 + y1z0w0 + x1z0w0 + x1y1w0

o43 = y1z1 + y1z1w0 + x0z1w0 + x0y1w0

o44 = y0z1w0 + x1z1w0 + x1y0w0

o45 = z1 + y0z1 + y0z1w1 + x0z1w1 + x0y0w1

o46 = y1z1w1 + x1z1w1 + x1y1w1

o47 = y1z0 + x0y1 + y1z0w1 + x0z0w1 + x0y1w1

o48 = x1 + x1y0 + y0z0w1 + x1z0w1 + x1y0w1 (8)

The sharing of the cubic terms is unique while multiple options exist for the
sharings of the lower degree terms and that is why one needs to avoid repetitions.

The resharing of the first-order secure implementation is performed accord-
ing to the DOM [10] rules, in which complementary domains are remasked using
the same randomness, with no remasking for output shares containing only one
domain. It can be noticed from Eq. 4 that output shares o1, o2, o3, o4 have com-
plementary domains of shares o6, o5, o8, o7, respectively. If we consider 8 output
shares of 4-bit length, remasking is given with Eq. 9, where oi, roi are S-box out-
puts output before and after remasking, and ri are random 4-bit values, requir-
ing 12 random bits. Recombination is achieved by adding shares ro1, ro2, ro3, ro4
into one, and ro5, ro6, ro7, ro8 into another recombined share.

ro1 = o1 ro2 = o2 + r1 ro3 = o3 + r2 ro4 = o4 + r3

ro5 = o5 + r1 ro6 = o6 ro7 = o7 + r3 ro8 = o8 + r2 (9)

If we inspect the PRINCE round structure we can further reduce the first-
order randomness requirement. The mixing layer consists of matrices M , M ′

or M−1, while M can be derived from M ′ using nibble shuffling SR, i.e. M =
SR ◦M ′. The 64×64 involution matrix M ′ independently affects 16-bit parts of
its input, and can be viewed as 4 independent 16×16 matrices (M0,M1,M1,M0).
PRINCE state composed of 16 nibbles enumerated from 0 to 15 can be separated
into 4 groups: (0, 1, 2, 3), (4, 5, 6, 7), (8, 9, 10, 11) and (12, 13, 14, 15). Randomness
for the S-boxes can be reused between groups, as the nibble shuffling

SR : (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15) → (0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12, 1, 6, 11)

SR
−1

: (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15) → (0, 13, 10, 7, 4, 1, 14, 11, 8, 5, 2, 15, 12, 9, 6, 3)

together with M ′ operation does not cause mixing of the S-box outputs obtained
using the same randomness. Additionally, assuming probing model case, the
first-order attacker can observe one share out of two at a given cycle, disallowing
him to exploit the reuse of randomness. Hence, this structure in round-based
implementation reduces the amount of randomness by a factor of four.

The second-order implementation of the PRINCE S-box is again obtained
using algorithm explained in Sect. 3. It provides a sharing with 3 input shares
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Fig. 4. Protected PRINCE round based architecture with one cycle per round execu-
tion.

and 27 output shares. The second order D4
3-table is given in Eq. 10. Due to space

requirements we omit the exact sharing, but a correct sharing can be derived
from Eq. 10. For the second-order implementation ring-resharing technique is
used, requiring 27 random bits per S-box output bit, or 108 random bits per
S-box.

(x, y, z, w) (0, 0, 1, 1) (0, 0, 2, 2) (2, 0, 2, 1) (2, 0, 0, 2)
(1, 1, 0, 0) (1, 1, 1, 1) (1, 1, 2, 2) (0, 2, 0, 1) (0, 2, 1, 2)
(2, 2, 0, 0) (2, 2, 1, 1) (2, 2, 2, 2) (1, 0, 0, 1) (1, 0, 1, 2)
(0, 1, 1, 0) (0, 1, 2, 1) (0, 1, 0, 2) (2, 1, 0, 1) (2, 1, 1, 2)
(1, 2, 1, 0) (1, 2, 2, 1) (1, 2, 0, 2) (2, 0, 1, 0) (0, 2, 2, 0)
(1, 0, 2, 0) (2, 1, 2, 0) (0, 0, 0, 0)

(10)

Hardware architecture of two d + 1 TI PRINCE implementations without
S-box decomposition is shown in Fig. 4. Control for the two implementations
is exactly the same, while datapath only differs in the numbers of shares that
are used. First-order implementation has 2 shares throughout, except for the
S-box output, that has 8 shares, recombined back to two after the register stage.
Second-order implementation has 3 shares, with S-box output having 27 shares.
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Table 2. Area/power/energy/randomness/latency/max frequency comparison

PRINCE Area

@10MHz

(GE)

Power

@10MHz

(uW)

Energy

@10MHz

(pJ)

Rand/Cycle

(bits)

Clock #

(cycle)

fmax

(MHz)

Latency

@ fmax

(ns)

Unprotected 3589 59 71 0 12 393 30.5

[14] 1st (td + 1)

with S-box decomp.

9484 66 264 0 40 432 92.6

1st (d + 1) w/o

S-box decomp.

11596 100 241 48 24 376 63.8

2nd (d + 1) w/o

S-box decomp.

32444 374 898 1728 24 385 62.4

Fig. 5. Example power trace waveform used to perform the t-test on first-order
PRINCE.

4.1 Synthesis Results and Side-Channel Evaluation

We have synthesized our designs as well as the previously existing TI PRINCE
implementation [14] using TSMC 90 nm library using the typical case of +25 ◦C.
Synthesis tool is Cadence Encounter RTL Compiler version 14.20-s034. Produc-
ing the smallest possible implementation was achieved by setting the frequency
well below the critical path, at 10 MHz. The power consumption at 10 MHz is
averaged from 100 random inputs simulations of a back-annotated post-synthesis
netlist, obtained using Cadence Incisive Enterprise Simulator version 15.10.006.
Energy is given for one encryption operation, assuming average power consump-
tion. Table 2 shows area, power and energy consumption, the number of random
bits required per clock cycle and maximum frequency for 3 hardware imple-
mentations, one given by Moradi [14], and two that newly proposed ones. The
authors of [14] provided us with their implementations, allowing for a fair com-
parison of three designs using the same compiler and library, as the synthesis
results for design presented in [14] differ from the original paper.

At the maximum frequency, our first-order design surpasses previous state
of the art by reducing latency by almost a third. The energy consumption of
our first-order at the frequency of 10 MHz is lower by almost 10%. On the other
hand, the implementation from [14] beats our version with respect to area, power
consumption, maximal running frequency and randomness required. Potentially,
it also can achieve higher throughput, with small modifications to the finite
state machine, so it processes three messages at once. Given that our goal was
to minimize implementation latency and energy, these results are not surprising.
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Fig. 6. Leakage detection test results on first-order PRINCE. PRNG off (left) and
PRNG on (right). First- (top) and second- (bottom) order t-test results.

We first provide evaluation of the first-order PRINCE without S-box decom-
position using optimal d + 1 sharing which design was programmed onto a Xil-
inx Spartan-6 FPGA. The platform used is a Sakura-G board. The design is
separated into two FPGAs to minimize the noise: one performs the PRINCE
encryption and second FPGA handles the I/O and the start signal. Our core
runs at 3.072 MHz while the sampling rate is 500 million samples per second.
The power waveform is given in Fig. 5.

We apply a non-specific leakage detection test [7] on the input plaintext
following the standard methodology [18], and resulting t-test graphs are shown
in the Fig. 6. First, we turn PRNG off to verify validity of the setup and leakage
is detected with 1 million traces. The left hand side in Fig. 6 demonstrates a
strong first-order leakage during the loading of the plaintext and the key. This
can be attributed to one share of both the key and the plaintext being equal to
the unshared value, while the other share is zero. Another strong peak is during
the first S-box execution as there is still high correlation to the input. Leakage
is present in later rounds as well due to lack of additional randomness, although
it becomes smaller. Second-order leakage can also be observed when the masks
are off. When PRNG is on no first-order leakage is detected after 100 million
traces, while second-order leakage is observed as expected.

Due to size and randomness needed, the second-order design did not fit
onto the same FPGA board. Instead, the design is tested against simulated
power traces. We measured the estimated power consumption by running a
post-synthesis simulation with back-annotated netlist. Input-to-output timing
delays and current consumption of every gate in the netlist were taken into
account and modeled as specified by the technology liberty timing file. In our
simulations, one clock cycle is represented with 50 sample points and we cover
first seven rounds of the execution. One million traces have been obtained with
PRNG switched on, and two thousand traces with PRNG off. Simulated traces
are perfectly aligned, they do not contain any measurement noise, and numerical
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Fig. 7. Leakage detection test results on second-order PRINCE. PRNG off (left) and
PRNG on (right). First, second and third-order (top - middle - down) t-test results.

noise of the samples is minimized by having a precision of 32-bit floating point
representation compared to 8-bit obtained from the FPGA setup.

The second-order implementation t-test results are shown in Fig. 7. We notice
that with PRNG off, leakage occurs in all orders with only two thousand traces.
With PRNG on, the design is leakage free in first and second-order, while several
points leak in the third order. More precisely, third order leakage occurs during
writing of the S-Box output to the register every other cycles.

5 Conclusion and Outlook

In this paper we provided an algorithm which produces a d + 1 TI sharing
with the optimal (minimum) number of output shares for any n-input Boolean
function of degree t = n − 1 and for any security order d. We highlight that this
contribution is of general interest since the method of minimizing the number of
output shares can be applied to any cryptographic design.

Second, we reported, evaluated and compared hardware figures for our pro-
posed TI-protected round-based version of PRINCE cipher, with the previous
state of the art. The comparison showed that our designs have more than 30 %
lower latency compared to the architecture presented in [14] while the energy
consumption is lower by about 10 %. It should, however, be noted that the design
presented in [14] still has the highest power efficiency reported in the literature.

We would like to summarize that the generic algorithm for achieving minimal
number of output shares is necessary, but not sufficient condition when design-
ing for low-latency and low-energy applications. Applying TI on higher degree
functions reduces the total clock count, in effect reducing latency and energy
consumed during one operation. However, due to increased circuit complexity it
increases the area and the critical path of the design, which have negative impact
on energy consumption and latency, respectively. A circuit designer should take
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all these parameters into consideration, since the optimal design choice heavily
depends on the algorithm in question, alongside the constraints imposed upon
the design. In the case of PRINCE block cipher, our work shows that for achiev-
ing low-latency it is more efficient not to perform S-box decomposition.

As discussed in [14], designing a low-latency side-channel protection in gen-
eral, and for PRINCE block cipher in particular, has been identified as an open
problem. In this work we have shown the fastest and the most energy efficient
round based first-order secure implementation of PRINCE using d+1 TI sharing.

Acknowledgements. We would like to thank Amir Moradi and Tobias Schneider for
providing us with HDL code of PRINCE TI presented in [14]. Also we would like to
thank the reviewers for helping us to improve the paper.
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