l‘)

Check for
updates

FELICS-AEAD: Benchmarking
of Lightweight Authenticated Encryption
Algorithms

Luan Cardoso dos Santos®™), Johann Grofschidl, and Alex Biryukov

CSC and SnT, University of Luxembourg,
6, Avenue de la Fonte, 4364 Esch-sur-Alzette, Luxembourg
luan.cardoso, johann.groszschaedl,alex.biryukov;Quni.lu
J g Y

Abstract. Cryptographic algorithms that can simultaneously provide
both encryption and authentication play an increasingly important role
in modern security architectures and protocols (e.g. TLS v1.3). Dozens
of authenticated encryption systems have been designed in the past five
years, which has initiated a large body of research in cryptanalysis. The
interest in authenticated encryption has further risen after the National
Institute of Standards and Technology (NIST) announced an initiative
to standardize “lightweight” authenticated ciphers and hash functions
that are suitable for resource-constrained devices. However, while there
already exist some cryptanalytic results on these recent designs, little is
known about their performance, especially when they are executed on
small 8, 16, and 32-bit microcontrollers. In this paper, we introduce an
open-source benchmarking tool suite for a fair and consistent evaluation
of Authenticated Encryption with Associated Data (AEAD) algorithms
written in C or assembly language for 8-bit AVR, 16-bit MSP430, and
32-bit ARM Cortex-M3 platforms. The tool suite is an extension of the
FELICS benchmarking framework and provides a new AEAD-specific
low-level API that allows users to collect very fine-grained and detailed
results for execution time, RAM consumption, and binary code size in a
highly automated fashion. FELICS-AEAD comes with two pre-defined
evaluation scenarios, which were developed to resemble security-critical
operations commonly carried out by real IoT applications to ensure the
benchmarks are meaningful in practice. We tested the AEAD tool suite
using five authenticated encryption algorithms, namely AES-GCM and
the CAESAR candidates ACORN, ASCON, Ketje-Jr, and NORX, and
present some preliminary results.

Keywords: Internet of Things - Lightweight cryptography -
Authenticated Encryption - Application Program Interface -
Evaluation scenario

1 Introduction

An Authenticated Encryption (AE) algorithm can be loosely defined as a sym-
metric cryptographic algorithm that is capable to (simultaneously) assure the

© Springer Nature Switzerland AG 2020
S. Belald and T. Giineysu (Eds.): CARDIS 2019, LNCS 11833, pp. 216-233, 2020.
https://doi.org/10.1007/978-3-030-42068-0_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-42068-0_13&domain=pdf
https://doi.org/10.1007/978-3-030-42068-0_13

FELICS-AEAD: Benchmarking of Lightweight Authenticated Encryption 217

confidentiality and authenticity of data [3,11]. A special form of AE, known as
Authenticated Encryption with Associated Data (AEAD), allows a part of the
data to remain unencrypted, while still all data gets authenticated. The notion
of AEAD was first formalized by Rogaway [14] in 2002 and has applications in
such areas as network packet encryption where the header (which contains the
destination address) needs to be readable by routers, but should nonetheless be
authenticated and integrity-protected. An AEAD algorithm takes a quadruple
of the form (M, A, K, N) as input and outputs a tuple (C,T), where M is the
message to be encrypted and authenticated, A is the associated data that gets
authenticated only (but not encrypted), K is the secret key, N is a nonce, C' is
the ciphertext, and T is an authentication tag. Conversely, the decryption uses
(C,A,K,N,T) as input and outputs the original message M if T is valid, or an
error symbol | otherwise. The two essential security goals an AEAD algorithm
has to achieve are confidentiality and authenticity; a mathematically rigorous
definition of both was given by Rogaway [14]. Informally, confidentiality means
that a passive adversary with access to C' and T should not be able to deduce
any information about M, except of its length. Authenticity generally refers to
the ability to thwart forgery attacks, which means an active adversary should
have a very low success probability when attempting to fabricate a (C,T)-tuple
that the decrypting party will verify as authentic.

Initially, AEAD schemes were created by combining a block cipher in some
mode of operation with a Message Authentication Code (MAC) algorithm. A
clear disadvantage of this approach is the necessity of having two different primi-
tives and requiring two passes over the message. Modern constructions use a dif-
ferent approach, where a single algorithm is able to deliver authenticated encryp-
tion, with a single pass over the message. In recent years, the cryptographic com-
munity has shown great interest in AEAD because of the CAESAR competition
and the NIST call for lightweight primitives. CAESAR (short for Competition
for Authenticated Encryption: Security, Applicability, and Robustness) is an
already finished competition whose objective was to select a portfolio of AEAD
algorithms. It followed the spirit of previous cryptographic competitions, such
as the one that yielded the now omnipresent block cipher AES. In 2018, the
NIST officially announced the initiation of a process to solicit, evaluate, and
standardize lightweight cryptographic algorithms—mnamely AEAD schemes and
hash functions—that are suitable for constrained environments where the cur-
rent standards can not provide acceptable performance. The motivation behind
this initiative is the emergence of more and more application domains where
constrained devices are interconnected to form the so-called Internet of Things
(IoT). Security and privacy are extremely important in the IoT, but cannot
always be provided by the currently standardized cryptosystems. This is because
the severe constraints under which present (and future) IoT devices are expected
to operate were not anticipated 20-25 years ago when many of the current NIST
standards (e.g. AES, SHA-2) were designed.

218 L. Cardoso dos Santos et al.

Motivation and Research Needs. In response to NIST’s call for proposals for
lightweight AEAD algorithms and hash functions, a total of 57 candidates were
submitted by March 29, 2019. These candidates are currently evaluated in an
open process taking various criteria into account, which include besides security
(i.e. resistance against known cryptanalytic attacks) also practical aspects like
performance and resource requirements (e.g. silicon area, memory footprint, code
size) when implemented in hardware and software [13]. The NIST anticipates
an initial (i.e. first-round) evaluation period of about six months to filter out
candidates with obvious weaknesses and narrow the candidate pool for a more
careful study and analysis in a second round. In total, the NIST estimates a
duration of two to four years until the publication of a first draft standard and
emphasizes that “the success of the lightweight crypto standardization process
relies on the efforts of the researchers from the cryptographic community that
provide security, implementation, and performance analysis of the candidates”!.
Most papers introducing a new AEAD algorithm report some kind of results
of some kind of performance evaluation on some kind of platform using some
kind of implementation. Unfortunately, these results are usually not suitable
for a comparison of the efficiency of two or more algorithms since it is not
easily possible to take differences in the characteristics of the target platforms
or differences in the simulation/measurement conditions into account. There is a
need for a way to compare performance figures for many algorithms consistently
and fairly so that designers and implementers of IoT applications can make better
decisions regarding which algorithm is the most suitable one under a given set
of efficiency requirements and resource constraints.

In the course of the CAESAR competition, the eBACS framework [4] was
used for the bechmarking of the submitted AEAD algorithms. However, the orig-
inal eBACS tools only support 64-bit Intel/AMD processors and high-end ARM
models, mostly from the Cortex-A series, whereas many IoT devices are equipped
with low-end microcontrollers, e.g. 8-bit AVR ATmega, 16-bit TT MSP430, or
32-bit ARM Cortex-M. These microcontrollers are optimized for small silicon
area and low power consumption, which means they have totally different char-
acteristics than their 64-bit counterparts. These differences manifest not only in
the word size, but also the instruction set, the size of the register file, the latency
of individual instructions, the degree of instruction-level parallelism, and many
other aspects. For example, 64-bit Intel or ARM processors have a register space
of 128 bytes (or even more when taking vector registers into account), whereas
the MSP430 platform (which lies at the opposite end of the spectrum) provides
24 bytes altogether. Furthermore, most 8 and 16-bit microcontrollers can only
execute shifts or rotations at a rate of one bit per cycle, whereas more powerful
processors are capable to perform n-bit shifts/rotations in a single cycle. For
all these reasons, benchmarking results generated with eBACS are of little use
when it comes to the evaluation of AEAD algorithms on microcontrollers.

! See https://csrc.nist.gov/projects/lightweight-cryptography /round- 1-candidates

(accessed 2019-07-15).

https://csrc.nist.gov/projects/lightweight-cryptography/round-1-candidates

FELICS-AEAD: Benchmarking of Lightweight Authenticated Encryption 219

Aims and Contributions of This Paper. The present paper addresses the
research needs identified above and puts forward a proposal for the benchmark-
ing of lightweight AEAD algorithms. Our proposal aims to answer two basic
questions that generally arise in the context of software benchmarking of crypto-
graphic algorithms. The first question relates to the Application Program Inter-
face (API) that implementations of a candidate algorithms have to follow to
ensure a fair and consistent evaluation. We will argue in Subsect. 2.2 that, for
the purpose of benchmarking, it makes sense to use a low-level API sense since it
allows one to obtain more fine-grained results compared to a high-level API con-
sisting of just the functions encrypt and decrypt. Furthermore, we introduce an
API containing seven low-level functions, which we consider well suited for the
benchmarking of AEAD algorithms. The second issue concerns the question of
how to measure the execution time and other metrics of interest, which includes
aspects like the length of the message M and the length of the associated data
A. More concretely, how should the length-ratio of M and A be to get mean-
ingful results? We will try to answer these questions in Subsect. 2.1 through the
definition of so-called evaluation scenarios that aim to mimic security-related
operations commonly carried out by “real” IoT devices. More concretely, these
scenarios are inspired by the need for AEAD operations in two networking pro-
tocols with relevance for the IoT, namely IEEE 802.15.4 (the most common
PHY /MAC-layer protocol for low-rate wireless networks) and IPv6.

We implemented both the low-level API for AEAD and the evaluation
scenarios in the form of an extension to the well-known and widely-used
FELICS (Fair Evaluation of Lightweight Cryptographic Systems) framework [7].
FELICS was originally created to support the collection benchmarking results
for (lightweight) block ciphers on three embedded platforms: 8-bit AVR, 16-bit
MSP430, and 32-bit ARM Cortex-M3. The full source code of FELICS is avail-
able under GPLv3 to increase the transparency and reproducibility of bench-
marking results. Besides execution time, FELICS is also capable to determine
the binary size and RAM footprint on the three currently supported platforms.
The framework is modular, built on well documented and free compilers and
tools, which allows easy extension of functionality and integration of new micro-
controller platforms and evaluation scenarios. We tested the extended FELICS
toolsuite using optimized C implementations of five AEAD algorithms (namely
AES-GCM, ACORN, ASCON, Ketje-Jr, and NORX) that adhere to our low-
level API. These tests confirm that FELICS-AEAD works properly and is able
to collect large amounts of benchmarking results in an efficient and highly-
automated fashion. An analysis of the collected benchmarking results for these
five algorithms allows us to draw some conclusions about how basic design deci-
sions like the organization of the “state” (i.e. whether the state is processed at
a granularity of 32-bit words or 64-bit words) affect the performance on small
microcontrollers.

220 L. Cardoso dos Santos et al.

2 The FELICS Framework and Its AEAD Extension

FELICS — Fair Evaluation of Lightweight Cryptographic Systems — is a free
and open source framework that assesses the efficiency of C and assembly imple-
mentations of lightweight cryptographic primitives on embedded devices. Fol-
lowing a modular design philosophy, the framework can easily be extended to
accommodate new metrics, evaluation scenarios, and devices. FELICS is the
core of an effort to increase the transparency in the analysis of lightweight algo-
rithms’ performances and aims to facilitate a fair comparison of a large number of
candidates. Figure 1 gives an overview of the structure and main components of
the FELICS framework.

2.1 Overview of Modules

FELICS is written in C, but also includes Bash and Python scripts. The frame-
work was designed to work on Linux and allows the benchmarking of C and
assembly implementations of cryptographic primitives that follow a set of pre-
defined requirements. C was chosen because of its continuing popularity in the
IoT and the fact that most reference implementations are written in this lan-
guage. Furthermore, C code is highly portable, which is an important asset
since there is no single dominating platform in the IoT. However, FELICS also
supports the benchmarking of platform specific Assembler implementations to
eliminate the impact of the compiler’s ability (or inability) for code optimiza-
tion. Hand-crafted Assembler code can take architecture-specific optimizations
into account and has the potential to significantly outperform compiled C code.

FELICS FRAMEWORK
Block Ciphers Module Steam Ciphers Module AEAD Ciphers Module
| |
Scenario 1 Source Scenario 1 Source Scenario 1(abc) Source
Scenario 2 Code Scenario 2 Code Scenario 2(abc) Code
Core Module
AVR ARM
| | | | |
Execution Ram ‘ Code Size Execution ‘ Ram ‘ Code Size ‘
time time
MSP
= | - ‘ Scripts F%'\i"pﬁ';rd‘ Fo'(\:"i Srfgiam FOM AEAD
xz;:elon Ram ‘ Code Size P

Fig. 1. Modular structure of the FELICS benchmarking framework.

FELICS-AEAD: Benchmarking of Lightweight Authenticated Encryption 221

Core Module. The Core module, as the name implies, is the main part of
the framework, and provides the tools necessary to collect the metrics for each
of the supported devices. This module aims to facilitate the integration of new
target devices and new metrics. Collection of metrics can be done individually
or in batch mode. Beyond metrics collection, the Core also defines modules to
debug and evaluate ciphers in a PC, mainly to aid in the implementation and
integration process of new ciphers by the framework’s users. A Python script
for processing the generated CSV files and to assemble a ranking of candidates
based on a so-called Figure-Of-Merit (FOM) is also present (see [8] for details).

Authenticated Encryption Module. This module allows the evaluation of
lightweight AEAD ciphers. To allow the framework to extract the metrics, each
cipher’s implementation must follow the defined API.

A template for implementation, as well as implementations of identity
ciphers, are provided with the module and can be used as a guide to help new
users to integrate new implementations. The complete rules and step-by-step
integration guide for cipher implementations can be found in the README file in
the example cipher.

The framework supports cipher evaluation based on scenarios. Scenarios
implement common real-world use cases, with practical relevance for IoT, with
the main objective of generating realistic benchmark results that are meaningful
in the real world. The current scenarios in the AEAD module of FELICS are
divided into three main groups:

— Debug and verification Scenario: Also called Scenario 0, is mainly used
for debugging purposes. It operates over a single block of input and allows
the implementers to check their implementations on known test vectors.

— IEEE 802.15.4 Scenarios: These scenarios are based on the security needs
of data communication in wireless sensor networks and other IoT applica-
tions using the IEEE 802.15.4 MAC/PHY-layer protocol. The maximum
frame size of IEEE 802.15.4 is 127 bytes; the length of the header depends
on various factors, such as the format of the source and destination addresses,
but can not exceed 25 bytes. This leaves (at least) 102 bytes as frame pay-
load. IEEE 802.15.4 supports three kinds of security services, namely (i)
“Encryption Only” with AES in counter mode, (ii) “Authentication Only”
with AES-CBC-MAC producing a MAC of either 32, 64, or 128 bits, and (iii)
“Authenticated Encryption” using AES-CCM with the same MAC lengths.
e Scenario la: Encryption of 102 bytes of data.

e Scenario 1b: Authentication of 86 bytes of payload and 25 bytes of
header. This scenario assumes that 16 bytes of payload are reserved to
write the authentication tag.

e Scenario 1lc: Authenticated encryption of 86 bytes of payload and 25
bytes of header (which is authenticated but not encrypted). As with Sce-
nario 1b, the authentication tag has a length of 16 bytes.

— IPv6 Scenarios: These scenarios are based on the use cases of IPv6 frames,
as defined in RFC 2460. The MTU of IPv6 is at least 1280 bytes and the

222 L. Cardoso dos Santos et al.

header has a fixed length of 40 bytes. Based on experiments with the Network

Simulator NS-3, we found that the following message and associated data

lengths serve as good representatives for real-world scenarios.

e Scenario 2a: Encryption of 1240 bytes of data.

e Scenario 2b: Authentication of 1224 bytes of payload and 40 bytes of
header.

e Scenario 2c: Authenticated encryption of 1224 bytes of payload and 40
bytes of header.

The IEEE 802.15.4 and IPv6 scenarios differ not only in the amount of data
to be protected (127 bytes vs 1280 bytes), but also in the relation of data-length
of AD-length. In the former case, the AD/D ratio is 0.29, whereas in the latter
case the AD-length is negligible in relation to the D-length.

2.2 API for Authenticated Encryption

The FELICS API aims to offer a generic and well-specified interface for the
most common operations performed by an AEAD algorithm. Different from
other frameworks, the FELICS API is composed of seven low-level functions.
While this may introduce difficulties for certain implementation techniques (e.g.
bitslicing), the low-level APT gives the framework more flexibility and allows one
to obtain more fine-grained benchmarking results. Such fine-grained results can
be useful, for example, when one wants to analyze why a given AEAD algorithm
is more or less efficient and its competitors. Our seven functions are described
below and their prototypes are given in Listing 1.

— Initialize: This function receives as parameters pointers to the algorithm’s
state, key, and nonce, and should execute the cipher’s initialization proce-
dures.

— ProcessAssocData: This function receives as parameters a pointer to the
state, a byte stream of associated data, as well as its length.

— ProcessPlaintext: This function receives as parameters a pointer to the
state, a byte stream of data, as well as the length of plaintext and ciphertext.
The ciphertext should overwrite the plaintext.

— ProcessCiphertext: This function receives as parameters a pointer to the
state, a byte stream of data, as well as the length of plaintext and ciphertext.
The plaintext should overwrite the ciphertext.

— Finalize: This function receives as parameters pointers to the state and
key, and executes the finalization steps on the internal state, preparing it for
the authentication tag generation.

— GenerateTag: This functions receives as parameters a pointer to the internal
state and the authentication tag and should write the appropriate informa-
tion on the authentication tag.

— VerifyTag: This function received two pointers to authentication tags, and
compare both. Returns (int) (1) if the tags match, and (int) (0) otherwise.

FELICS-AEAD: Benchmarking of Lightweight Authenticated Encryption 223

Listing 1. Function prototypes of the low-level AEAD API.

void Initialize(uint8_t *state, const uint8_t *key ,
const uint8_t *nonce);

void ProcessAssocData(uint8_t *state, uint8_t *assocData,
size_t assocDatalen);

void ProcessPlaintext(uint8_t *state, uint8_t *message,
size_t messagelen);

void ProcessCiphertext(uint8_t *state, uint8_t *message,
size_t messagelen);

void Finalize(uint8_t *state, uint8_t *key);

void GenerateTag(uint8_t *state, uint8_t *tag);

int VerifyTag(uint8_t *state, uint8_t *tag);

NIST specified a high-level API consisting of two functions (namely
aead encrypt and aead decrypt), which submitters of AEAD candidates had
to follow when they developed the (mandatory) reference implementation and
an (optional) optimized implementation. While such a high-level API is con-
venient for software developers using AEAD algorithms, it is not necessarily a
good choice for collecting benchmarking results, especially in Scenario 0. This is
probably best explained taking the block-cipher benchmarks from [9] as exam-
ple. Similar to AEAD, one can benchmark block ciphers using either a high-level
or a low-level API. The former consists of generic functions for encrypting/de-
crypting of an arbitrary amount of data using a specified mode operation. On
the other hand, the low-level API consists of two functions for each encryption
and decryption, one to encrypt/decrypt a single block, and one to perform the
encrytion/decryption key schedule. In order to minimize the overall development
effort, the high-level functions can simply be implemented as wrappers over the
low-level functions. However, using the low-level API for benchmarking in Sce-
nario 0 makes certain properties of ciphers more apparent than the high-level
API. For example, RC5 is extremely fast, but has a very costly key schedule,
which becomes immediately evident with benchmarking results obtained with
the low-level API. Therefore, RC5 is unattractive for scenarios where the amount
of data to be encrypted or decrypted is small. This information is not so directly
obvious when benchmarking results are generated with the high-level API.

2.3 Target Devices and Evaluation Metrics

For this framework, three widely used microcontrollers were chosen as repre-
sentatives of the most used 8, 16, and 32-bit platforms used in the IoT. These
microcontrollers have been optimized for small area and low power consumption.
Their main characteristics are summarized in Table 1 and a brief description of
each will follow on the next paragraphs.

The AVR ATMega 128 is a microcontroller manufactured by Atmel, fea-
turing 32 8-bit registers (RO-R31) with single clock access time. Six of those

224 L. Cardoso dos Santos et al.

Table 1. Key characteristics of the target microcontrollers.

Characteristic | AVR MSP ARM

CPU 8-bit RISC | 16-bit RISC | 32-bit RISC
Frequency 16 MHz 8 MHz 84 MHz
Registers 32 16 21
Architecture Harvard Von Neumann | Havard
Flash 128 KB 48 KB 512KB
SRAM 4KB 10KB 96 KB
Supply voltage | 4.6-5.5V |1.8-3.6V 1.6-3.6V

registers can also be used as 16-bit indirect address pointers for data space. The
instructions are executed within a two-stage, single-level pipeline, with most of
its 133 instructions requiring a single cycle to execute. AVR, processors are based
on a modified Harvard architecture, where program and data are stored in sepa-
rate physical memory regions in different physical addresses. Regarding memory,
the ATmegal28 comes with 128 KB Flash amd 4 KB SRAM.

The MSP430F1611 microcontroller is a RISC CPU produced by Texas
Instruments. It follows a Von Neumann architecture, and features 16 registers,
with 12 being general purpose. Operations over registers take one clock cycle,
while the other instructions depend on its format and addressing mode used.
Memory wise, the MSP430 has one shared address space for special function
registers, peripherals, RAM and FLASH. It has 48 KB of Flash and 10KB of
SRAM. Typical applications include medical devices and smart meters.

The 32-bit Atmel SAM3XS8 Cortex M3 is a RISC CPU that executes the
Thumb-2 instruction set. This processor has a three-level pipeline and 13 general-
purpose registers. It features 512 KB of Flash and 96 KB of SRAM divided into
two banks of 64 KB and 32 KB. The Cortex-M3 is specially designed to achieve
high performance in power-sensitive embedded applications, such as microcon-
trollers, automotive and industrial controllers, wireless networking, and others.
This processor runs at a maximum frequency of 84 MHz.

For cipher evaluation, three metrics are used: Execution time, RAM usage,
and code size. These metrics were chosen because they outline the main charac-
teristics of the implementations. Secondary metrics, such as energy consumption
were not included mainly due to being closely related to the basic metrics.

Execution time consists in measuring the number of cycles necessary to exe-
cute a given operation. This metric is extracted by using either a cycle-accurate
simulator a development board. Extraction of cycle-counter uses AVRORA [15]
for the AVR processor, and MSPDebug [2] for MSP. Extraction of cycle counter on
ARM is done via the automatic insertion of code to read ARM’s system time reg-
isters. One important detail regarding ARM’s measurements is that there may
exist variations in the extracted numbers, due to different instructions being
generated at compilation time and memory alignment of test data.

FELICS-AEAD: Benchmarking of Lightweight Authenticated Encryption 225

RAM consumption is a combination of stack and data requirements. The
stack consumption describes the maximum amount of RAM used to store local
variables and return addresses after interruptions and system calls. The data
requirement represents the static RAM usage and is given by the size of the
constants stored in the device’s RAM. Static RAM consumption is measured
using the GNU size tool. The stack consumption is measured using a gdb client
and the target simulator or development board.

Code size is measured in bytes and quantifies the amount of storage an
operation or evaluation scenario occupies in the non-volatile memory of the
target device. It is measured using the GNU size tool on the appropriate object
files. To obtain the overall code size, the framework simply sums the size of the
text and data sections, which contain, respectively, the executable instructions
generated by the compiler and the static variables that are initialized with a
non-zero value.

Figure of Merit. Due to space limitations, normally only a subset of data can
be correctly shown in publications. To aid in the classifications of the evaluated
ciphers, FELICS introduces the Figure-of-Merit (FOM), that can be used to rank
the analyzed ciphers. For each implementation ¢ and platform d, a performance
indicator p;, that aggregates the metrics from M = {execution time, RAM
consumption, code size} as

Pid = Z wm#
meM i\Vi,d,m
where v; g, is the value of the metric m for the implementation ¢ on the platform
p; and w,, is the relative weight for the metric m, with w,, = 1 by default for
all platforms. Then, for each cipher and the selected set of best implementations
TAVR, tmsp, and i4rp (one for each platform) the FOM is calculated as the
average performance indicator across the three platforms:

FOM(iav R, imsp,iarm) = Piavr +p”ésp T Piann

3 Analyzed AEAD Algorithms

In this section, we briefly describe the ciphers implemented in FELICS, as an
example and initial work for the framework. These ciphers were chosen for their
relevance in the context of IoT and lightweight cryptography, as well for being
part of an ongoing effort of standardizing AEAD schemes.

ACORN. Acorn is an AEAD scheme created by Hongjun Wu, and finalist of
the CAESAR competition. It features a stream-cipher-like construction based
on six concatenated linear feedback shift registers. The cipher’s design benefits
lightweight hardware implementations since the processing can be done in a
bitwise fashion [17].

226 L. Cardoso dos Santos et al.

Table 2. Parameters of the evaluated ciphers, in bits.

Cipher Block | Key | Nonce | State | Tag
NORX 384 128 | 128 512 | 128
ACORN 1 128 | 128 293 | 128
Ketje-Jr 16 | 128 | 48 200 | 128
ASCON 64 128 | 128 320 | 128
AES-GCM | 128 128 | 96 1824 | 128

AES-GCM. The Galois/Counter mode is a mode of operation for 128-bit block
ciphers, widely used together with the AES block cipher for its efficiency and
performance. GCM is used in MACSec Ethernet Security, IEEE 802.11ad wire-
less protocols, Fibre Channel security protocols, and is also included in the NSA
Suite B Cryptography, as well as various other software [12].

ASCON. Ascon is a family of AEAD ciphers, finalist of the CAESAR compe-
tition. It was designed by Christoph Dobraunig et al. in 2014. The main goal of
ASCON is to achieve a very low memory footprint, both in hardware and soft-
ware implementations, and still provide an adequate combination of security,
speed, and size, with focus on the last. ASCON is based on the Sponge Design,
being similar to SpongeWrap and MonkeyDuplex constructions [10].

Ketje. Ketje is a family of four AEAD algorithms, aimed to memory-
constrained devices and that strongly relies on nonce uniqueness for security.
It was designed by Guido Bertoni et al. and is a third-round candidate of the
CAESAR competition. Ketje is based on a reduced round version of Keccak,
over a MonkeyDuplex and MonkeyWrap constructions [5].

NORX. NORX is a family of AEAD ciphers created by Jean-Philippe Aumas-
son et al. in 2014. NORX supports associated data both as header and trailer.
The algorithm also supports arbitrary parallelism in the payload processing step
and is optimized for hardware and software implementations, with a specially
SIMD friendly construction. NORX is based on ChaCha’s permutation, with the
integer addition replaced by an ARX approximation, which —according to the
designers— allows simplified cryptanalysis and improves hardware efficiency [1].

4 Preliminary Results

Using the FELICS extension for authenticated encryption described in Sect. 2,
we benchmarked optimized C implementations of the five AEAD algorithms on
three platforms and for two evaluation scenarios plus Scenario 0, which is mainly

FELICS-AEAD: Benchmarking of Lightweight Authenticated Encryption 227

Table 3. Results for Scenario 1 (IEEE 802.15.4). For each platform and each cipher,
the best implementation results are reported. The code size and memory consumption
are specified for the whole scenario (and not just the AEAD algorithm alone), which
includes the 127-byte IEEE 802.15.4 frame to be encrypted and/or authenticated. The
smaller the Figure-of-merit, the better is the implementation of a cipher.

Cipher AVR MSP ARM FOM
Size | Mem Time |Size |[Mem |Time Size | Mem | Time
NORX Sla 4702|214 1356403992 |214 66738 (1474|214 17227| 4.3
S1b|3936 | 223 90728 | 3482|223 53035|1148 223 10089 | 4.0
Slc 5028|207 124062 4216|207 75727|1634|207 16685, 4.5
ASCON |S1a|3734|190 |519420|5656 190 599643 1712|190 80316| 9.4
S1b 3734|199 340671 5656|199 395564 1712|199 52958| 8.9
Slc 3734|183 534908 5656|183 619523 1712|183 83118| 9.4
Ketje-Jr |Sla|5156 /165 |290446 (6248|165 346867 3564 | 165 138867| 9.4
S1b|5156|174 211749 /6248|174 254923 3564|174 99490| 9.8
Slc 5156|158 311949 6248|158 3727203564 | 158 148381 | 9.7
ACORN |Sla|3292|191 |337818|3170|191 4569721954 |191 191869 |10.0
S1b 3292|200 408914 3170|200 551501 1954|200 236235|15.7
Slc 3292|184 464381 /3170|184 626192 /1954|184 267168 |12.5
AES-GCM |Sla |6578 374 |889573|6798|374 |2137251 /6096|374 |1086449|41.5
S1b 5944|383 447505 /6782|383 |1150450|6028|383 565606 | 34.0
Slc |6578|367 9751846798 367 |2369572 /6096|367 |119707344.6

for debugging and verification. Table2 summarizes the main characteristics of
the specific variants of the AEAD algorithms we implemented.

The FELICS framework allows ranking all these implementations according
to their execution time, RAM footprint, or code size in any scenario on any
platform. Table 3 summarizes the results of Scenario 1, which is inspired by the
need for security in the IEEE 802.15.4 protocol. This scenario actually consists
of three sub-scenarios with different operations and slightly different lengths of
the data to be encrypted and/or authenticated. However, all three sub-scenarios
have in common that the amount of data is relatively small, namely between 86
and 102 bytes, due to the 127-byte MTU — maximum transmission unit — of the
TEEE 802.15.4 protocol. If associated data is processed, its length is roughly one
fourth of the data-length. Concretely, in Sub-scenario la (“encryption only”),
102 bytes of data are encrypted, whereas in Sub-scenario 1b (“authentication
only”) the size of the data is 86 bytes and the size of the associated data is 25
bytes. Finally, in Scenario lc (“authenticated encryption”) 86 bytes of data are
encrypted and 86 + 25 = 111 bytes are authenticated. NORX is the clear winner
in all three sub-scenarios, followed by ASCON and Ketje-Jr, which perform very
similar in all three sub-scenarios. However, the FOM score of the latter two
algorithms is more than twice higher than that of NORX.

228 L. Cardoso dos Santos et al.

Table 4. Results for Scenario 2 (IPv6). For each platform and each cipher, the best
implementation results are reported. The code size and memory consumption are spec-
ified for the whole scenario (and not just the AEAD algorithm alone), which includes
the 1280-byte IPv6 packet to be encrypted and/or authenticated. The smaller the
Figure-of-merit, the better is the implementation of a cipher.

Cipher AVR MSP ARM FOM
Size | Mem | Time Size | Mem | Time Size | Mem | Time
NORX S2a 4702|1376 | 800313 |3992|1376 501290 1474|1376 109933 | 4.1
S2b|3936 1376 | 424601 | 3482|1376 246263 1148|1376 46113 3.7
S2c 5028|1376 | 814467 (4216|1376 508728 /1634|1376 111361 | 4.2
ASCON |S2a 3292|1353 |1811457|3170|1353 | 2454962 1954|1353 | 1013715| 8.5
S2b 3292|1353 | 1136110 (3170|1353 | 1541295|1954 | 1353 644411 /10.5
S2c 132921353 | 1916720 3170|1353 | 2595469 1954|1353 | 1077068 8.7
Ketje-Jr |S2a|5156|1327 |3026956 6248|1327 | 3623707 |3564 1327 | 1481660 |12.6
S2b | 5156|1327 | 1527941 6248|1327 | 1860262 |3564 | 1327 751536 13.3
S2c 5156|1327 | 3007966 | 6248|1327 | 3601416 | 3564|1327 | 1471405 12.5
ACORN |S2a 3734|1352 |6174633 5656|1352 | 7109127 1712|1352 947367 13.9
S2b 3734|1352 | 3146041 | 5656|1352 | 3619665 |1712|1352 479574 14.2
S2c 3734|1352 |6112583 5656|1352 | 7039689 |1712|1352 938358 13.6
AES-GCM |S2a |6578| 1536 |9807655 6798|1536 | 23748153 |6096 | 1536 | 12036393 |64.4
S2b 5944|1536 | 3526008 6782|1536 | 9531538 6028 | 1536 | 4564667 | 54.2
S2c¢ |6578 1536 | 9812008 | 6798|1536 | 23796554 | 6096 | 1536 | 12050336 | 63.6

Finally, Table 4 shows the results of Scenario 2, which deals with security for
the IPv6 protocol. This scenario is again split into three sub-scenarios, similar
to the sub-scenarios in the context of IEEE 802.15.4 described above. However,
the amount of data to be encrypted is much larger, around 1200 bytes, while the
amount of associated data is relatively small; more concretely, the ratio between
data and associated data is roughly 30:1. Again, NORX is the clear winner in
all three sub-scenarios, followed by ASCON and Ketje-Jr. However, compared
to the IEEE 802.15.4 scenarios, the difference between ASCON and Ketje-Jr is
much bigger. Similar to before, the FOM score of NORX is significantly better
than that of the runner-up ASCON.

It is interesting to observe that NORX is in both scenarios speed-wise much
better than the other candidates. NORX outperforms its CAESAR, competitors
by a factor of at least two; in some extreme cases, NORX is even five times
faster than the second-best algorithm. This significant difference begs for more
analysis and raises the question of what design decisions make an AEAD algo-
rithm efficient (or inefficient) on small microcontroller platforms. However, this
question is difficult to answer since the efficiency of AEAD designs depends on
many different factors, some of which are architecture-independent, i.e. affect
the performance on 8, 16, 32, and 64-bit platforms similarly, whereas others are
architecture-dependent in the sense that they impact the performance across

FELICS-AEAD: Benchmarking of Lightweight Authenticated Encryption 229

platforms differently. An example of the latter is the organization of the state,
i.e. whether the state is processed at a granularity of 32-bit words or 64-bit
words. The benchmarked version of NORX processes the state in 32-bit words,
whereas ASCON, ACORN, and Ketje-Jr operate on 64-bit words. Organizing the
state in 64-bit quantities is the natural choice for designs aiming at high perfor-
mance on Intel/AMD and 64-bit ARM processors as it allows one to exploit the
full word-size of these processors, but may lead to suboptimal performance on
smaller microcontroller platforms, which is due to three reasons.

First, C compilers for 8-bit AVR and 16-bit MSP microcontrollers (e.g.
mspgcc) are, in general, not very good at handling 64-bit words (i.e. operands
of type uint64_t). We assume this is because outside cryptography there are
very few application domains where a programmer really needs a 64-bit integer
on an 8 or 16-bit microcontroller. NORX128 uses 32-bit words, which seems to
make it much easier for a C compiler to generate efficient code than for the other
CAESAR candidates that process 64-bit words. The second reason is the small
register space of 8 and 16-bit microcontrollers. For example, the MSP430 archi-
tecture comes with only twelve 16-bit general-purpose registers, which means it
would theoretically be possible to hold three 64-bit words in the register file.
However, in practice, this is not the case since always one or two registers are
needed for temporary results and often also one register has to be set to 0.
Therefore, it can be expected that no more than two 64-bit words can be kept in
registers at any time, but it may be possible to accommodate five 32-bit words
when the cipher’s state is organized in 32-bit words. Finally, the third reason
why 64-bit words can entail suboptimal performance is ARM-specific and relates
to the fact that one of the two operands of an arithmetic/logical instruction is
fed through a barrel-shifter before it enters the ALU, which means shifts and
rotations can be executed “for free” together with other instructions. However,
on a 32-bit ARM microcontroller, shifts and rotations are only free for 32-bit
operands, but not for 64-bit quantities.

5 Comparison with Other Benchmarking Tools

Besides FELICS, there exist a few other tools for the benchmarking of cryp-
tographic algorithms, of which eBACS and XXBX are the most closely related
ones. eBACS (short for ECRYPT Benchmarking of Cryptographic Systems) was
developed during the ECRYPT II project to evaluate the performance of crypto-
graphic algorithms on Intel/AMD processors and high-end ARM models capable
to run Linux (e.g. the Cortex-A series). It features modules for measuring the per-
formance of public-key cryptosystems (called eBATS), stream ciphers (eBASC),
hash functions (eBASH), and authenticated encryption algorithms (eBAEAD).
Those modules operate all under a common framework called SUPERCOP (Sys-
tem for Unified Performance Evaluation Related to Cryptographic Operations
and Primitives) that allows benchmarking of C, C++ and assembly implemen-
tations. It comes with a large collection of implementations of cryptographic
algorithms and automatically compiles source code using different compilers and

230 L. Cardoso dos Santos et al.

compiler options. The execution time is extracted via a cycle counter (accessed
through assembler code) for many different lengths of input data. Since execu-
tion time is the only metric measured by this framework, implementations are
optimized solely for speed.

The eXternal Benchmarking eXtension [16] is an extension for the SUPER-
COP framework developed with the objective of benchmarking hash functions
on different microcontrollers in the context of the SHA-3 competition. XBX was
the first project to measure, in a unified manner, the performance of crypto-
graphic primitives built for different devices using the same evaluation method-
ology. In support for the now finished CAESAR competition, XBX was extended
for AEAD algorithms and the ability to measure power consumption. However,
apart from a 1-page summary of this so-called XXBX extension [6] (published
in 2017), we are not of aware any further papers describing concrete details of
its inner working, which indicates that XXBX is still under development.

Low-Level API. eBACS (and also XXBX) require AEAD implementations
to follow a simple high-level API consisting of just two basic functions, namely
aead_encrypt and aead_decrypt. This simplicity ensures that the API is easy to
use (and hard to misuse), even for inexperienced software developers, but yields
very coarse-grained results when applied to benchmarking. FELICS-AEAD, on
the other hand, defines a low-level API comprising the seven functions specified
in Listing 1. This low-level API offers a high degree of flexibility and allows for
easy implementation of different kinds of security services, including the high-
level functions of eBACS, for which nothing more than simple wrappers are
needed. Consequently, adhering to the low-level API does not introduce more
development effort than the high-level functions of eBACS. However, the low-
level API enables a more fine-grained evaluation of AEAD algorithms since not
only their overall execution times can be compared but also the times needed
for initialization, encrypting/decrypting the data, processing the associated data,
and generating/verifying the authentication tag. All these timings are valuable
for algorithm designers when trying to analyze why a given AEAD algorithm
is faster or slower than others. The fine-grained benchmarking results obtained
with the low-level API may also be useful when one has to find the most suit-
able AEAD algorithm (out of a pool of candidates) for the encryption and/or
authentication of a certain amount of data and associated data, respectively.

Evaluation Scenarios. eBACS measures the execution time of AEAD algo-
rithms for combinations of data lengths and associated data lengths ranging from
0 to 2048 bytes in steps of one byte. These more than four million combinations
have to be multiplied by the number of compiler options (i.e. optimization lev-
els), which makes the collection of benchmarking results extremely computation-
intensive and costly, especially when a large number of AEAD implementations
have to be evaluated. The target platforms of eBACS (Intel/AMD and high-
end ARM processors) are powerful enough to execute such a workload in an
acceptable time, but this is not the case for resource-constrained 8 and 16-bit

FELICS-AEAD: Benchmarking of Lightweight Authenticated Encryption 231

microcontrollers that can only be accessed via a debug probe and have to be pro-
grammed separately for each implementation. Using cycle-accurate instruction-
set simulators is also not a solution since most of them lack a stable way of
scripting to automate the verification of test vectors and the recording of cycle
counts. These issues were the main reason to introduce the two evaluation sce-
narios (and six sub-scenarios) described in Subsect. 2.1. Namely, by defining very
specific use cases that resemble real-world security services in the IoT, FELICS-
AEAD becomes capable to evaluate a large number of implementations in a
reasonable amount of time. The two scenarios are intended to have very dif-
ferent characteristics and requirements for AEAD algorithms. For example, the
amount of data in Scenario 1 is relatively small and the length of the associated
data is roughly a quarter of the data length. On the other hand, the amount of
data in Scenario 2 is much higher, but the associated data amounts to only a
small fraction of the data-length.

Figure-of-Merit. eBACS measures only the execution time of AEAD imple-
mentations, which makes it relatively easy to rank candidates by e.g. comparing
their average throughput in cycles/byte. In contrast, FELICS-AEAD determines
not only the execution time but also the memory footprint and code size of an
implementation on each of the three supported platforms. This is reasonable
since both RAM and ROM (resp. flash) are usually scarce resources in the IoT.
However, taking three different metrics for each AEAD implementation into
account makes a comparison of the benchmarking results relatively difficult,
which is why FELICS allows the user to define a Figure-of-Merit (FOM) that
combines execution time, RAM footprint, and code size into a single number.
The FOM metric can use different weight factors for the three metrics, but by
default, they have equal weight and, consequently, the execution time is consid-
ered to be equally important as RAM footprint and code size.

6 Conclusions and Final Remarks

In this paper, we introduced an extension to FELICS, a free and open-source
benchmarking framework for the evaluation of AEAD algorithms. The main
motivation behind this development is to give the designers of AEAD algorithms
a fair, comprehensive and consistent way of evaluating their algorithms in the
context of lightweight embedded devices, as well as a consistent way of comparing
performance metrics between different algorithms. More specifically, this paper
provided three contributions: (i) an API that allows a fine-grained evaluation
of algorithms, while still maintaining design flexibility for the designers; (ii) a
series of real-world based evaluations scenarios, allowing a fair comparison of
algorithms based on their predicted future use; and (iii) preliminary results with
a small set of well-known AEAD algorithms that demonstrate the framework’s
practical value. Thanks to its modular design, FELICS is very flexible and can be
extended to support new metrics, new scenarios, and new devices. Furthermore,
new implementations of AEAD algorithms can easily be added to the framework.

232 L. Cardoso dos Santos et al.

With that in mind, we encourage the cryptographic community to contribute
optimized C and Assembler implementations of AEAD candidates submitted
to the NIST lightweight crypto project and support in this way the fair and
transparent evaluation of AEAD algorithms.

Acknowledgements. We would like to thank Daniel Dinu, Yann Le Corre, and Virat
Shejwalkar for directly and indirectly helping with the development of this work. Luan
Cardoso dos Santos is supported by the Luxembourg National Research Fund through
grant PRIDE15/10621687/SPsquared.

References

1. Aumasson, J.-P.; Jovanovic, P., Neves, S.: NORX: parallel and scalable AEAD.
In: Kutytowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8713, pp. 19-36.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11212-1_2

2. Beer, D.: MSPDebug: Debugging Tool for MSP430 MCUs (2015). http://
mspdebug.sourceforge.net

3. Bellare, M., Rogaway, P.: Encode-then-encipher encryption: how to exploit nonces
or redundancy in plaintexts for efficient cryptography. In: Okamoto, T. (ed.)
ASTACRYPT 2000. LNCS, vol. 1976, pp. 317-330. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44448-3_24

4. Bernstein, D.J., Lange, T.: eBACS: ECRYPT Benchmarking of Cryptographic
Systems (2009). http://bench.cr.yp.to

5. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., Van Keer, R.: CAESAR
submission: Ketje v2 (2016)

6. Carter, M.R., Velagala, R.R., Pham, J., Kaps, J.P.: eXtended eXternal Benchmark-
ing eXtension (XXBX). In: IEEE International Symposium on Hardware Oriented
Security and Trust (HOST 2018) (2018)

7. CryptoLUX Team: FELICS: Fair Evaluation of Lightweight Cryptographic Sys-
tems (2016). http://www.cryptolux.org/index.php/FELICS

8. Dinu, D., Biryukov, A., Grofischadl, J., Khovratovich, D., Corre, Y., Perrin, L.:
FELICS-fair evaluation of lightweight cryptographic systems. In: NIST Workshop
on Lightweight Cryptography, vol. 128 (2015)

9. Dinu, D., Le Corre, Y., Khovratovich, D., Perrin, L., Grofschadl, J., Biryukov,
A.: Triathlon of lightweight block ciphers for the Internet of Things. Cryptology
ePrint Archive, Report 2015/209 (2015). https://eprint.iacr.org/2015/209

10. Dobraunig, C., Eichlseder, M., Mendel, F., Schlaffer, M.: Ascon v1, submission to
the CAESAR competition. CAESAR First Round Submission, March 2014

11. Katz, J., Yung, M.: Unforgeable encryption and chosen ciphertext secure modes of
operation. In: Goos, G., Hartmanis, J., van Leeuwen, J., Schneier, B. (eds.) FSE
2000. LNCS, vol. 1978, pp. 284-299. Springer, Heidelberg (2001). https://doi.org/
10.1007/3-540-44706-7-20

12. McGrew, D., Viega, J.: The Galois/counter mode of operation (GCM). Submission
to NIST Modes of Operation Process, vol. 20 (2004)

13. National Institute of Standards and Technology (NIST): Submission requirements
and evaluation criteria for the lightweight cryptography standardization process.
Technical report (2018). http://csrc.nist.gov/CSRC/media/Projects/Lightweight-
Cryptography/documents/final-lwc-submission-requirements-august2018.pdf

https://doi.org/10.1007/978-3-319-11212-1_2
http://mspdebug.sourceforge.net
http://mspdebug.sourceforge.net
https://doi.org/10.1007/3-540-44448-3_24
http://bench.cr.yp.to
http://www.cryptolux.org/index.php/FELICS
https://eprint.iacr.org/2015/209
https://doi.org/10.1007/3-540-44706-7_20
https://doi.org/10.1007/3-540-44706-7_20
http://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
http://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf

14.

15.

16.

17.

FELICS-AEAD: Benchmarking of Lightweight Authenticated Encryption 233

Rogaway, P.: Authenticated-encryption with associated-data. In: Atluri, V. (ed.)
Proceedings of the 9th ACM Conference on Computer and Communications Secu-
rity (CCS 2002), pp. 98-107. ACM Press, New York (2002)

Titzer, B.L., Lee, D.K., Palsberg, J.: Avrora: scalable sensor network simulation
with precise timing. In: 2005 Fourth International Symposium on Information Pro-
cessing in Sensor Networks (IPSN 2005), pp. 477-482. IEEE (2005)
Wenzel-Benner, C., Graf, J.: XBX: eXternal Benchmarking eXtension for the
SUPERCOP crypto benchmarking framework. In: Mangard, S., Standaert, F.-X.
(eds.) CHES 2010. LNCS, vol. 6225, pp. 294-305. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15031-9_20

Wu, H.: ACORN: a lightweight authenticated cipher (v3). Candidate for the CAE-
SAR Competition (2016). https://competitions.cr.yp.to/round3/acornv3.pdf

https://doi.org/10.1007/978-3-642-15031-9_20
https://competitions.cr.yp.to/round3/acornv3.pdf

	FELICS-AEAD: Benchmarking of Lightweight Authenticated Encryption Algorithms
	1 Introduction
	2 The FELICS Framework and Its AEAD Extension
	2.1 Overview of Modules
	2.2 API for Authenticated Encryption
	2.3 Target Devices and Evaluation Metrics

	3 Analyzed AEAD Algorithms
	4 Preliminary Results
	5 Comparison with Other Benchmarking Tools
	6 Conclusions and Final Remarks
	References

