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Abstract. True Random Number Generators (TRNGs) are one of the
most crucial components in the design and use of cryptographic pro-
tocols and communication. Predictability of such random numbers are
catastrophic and can lead to the complete collapse of security, as all
the mathematical proofs are based on the entropy of the source which
generates these bit patterns. The randomness in the TRNGs is hugely
attributed to the inherent noise of the system, which is often derived
from hardware subsystems operating in an ambiguous manner. How-
ever, most of these solutions need an add-on device to provide these
randomness sources, which can lead to not only latency issues but also
can be a potential target of adversaries by probing such an interface. In
this paper, we address to alleviate these issues by proposing an in-situ
TRNG construction, which depends on the functioning of the underlying
hardware architecture. These functions are observed via the Hardware
Performance Counters (HPCs) and are shown to exhibit high-quality
randomness in the least significant bit positions. We provide extensive
experiments to research on the choice of the HPCs, and their ability to
pass the standard NIST and AIS 20/31 Tests. We also analyze a possible
scenario where an adversary tries to interfere with the HPC values and
show its effect on the TRNG output with respect to the NIST and AIS
20/31 Tests. Additionally, to alleviate the delay caused for accessing the
HPC events and increase the throughput of the random-source, we also
propose a methodology to cascade the random numbers from the HPC
values with a secured hash function.

Keywords: True Random Number Generator · Hardware
Performance Counters · Cryptographic post-processing

1 Introduction

Random Numbers Generators (RNGs) form the backbone in the development of
almost all of the devices requiring secure communication, device authentication,
or data encryption. Applications of such devices include Smart Cards, RFID
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tags, and IoT devices. The unpredictability of random numbers is a crucial com-
ponent in parameter and key generation for both symmetric and asymmetric
cryptography, generation of random masks for padding data, generating session
keys between communicating parties and several other secured applications. The
RNGs rely on inherent chaos and unpredictability of various physical factors
from the environment or hardware components to provide the much-needed ran-
domness, which signifies that infinitely long history of previous random numbers
provides no advantage over deciding or predicting the future random occurrences.

True Random Number Generators (TRNGs) derive its randomness from
physical factors in the environment, and thus when implemented in hardware,
the randomness is extracted from the physical parameters such as gate delay.
Fault in design and fabrication procedure of TRNG results in insufficient entropy
(randomness) or improper functioning of the TRNG. Depending on the type of
randomness source and the post-processing involved, there have been quite a
large number of TRNG designs in the literature. A popular TRNG based on
Thermal Noise was first introduced by Intel [14] and recently can be found
in [10,19]. The most commonly used entropy source for both FPGA and ASIC
TRNG’s is metastability, which can be found in [12,20]. Timing jitter in elec-
tronic systems was also considered as TRNG source in [11,26]. However, along
with the design challenges involved in designing these TRNGs, an equally com-
plex task is to develop test strategies for TRNGs. Owing to the fact that most
tests are statistical and can only evaluate the statistical quality of the generated
numbers and not their entropy, modern methods for certification of TRNGs
involve a carefully chosen bag of tests. These tests mainly include: (1) NIST
standard tests [22], which aims at estimating the min-entropy, i.e., evaluating
the information content of the most likely outcome, and (2) AIS 20/31 Tests [15]
proposed by the German Federal Office for Information Security, which estimates
Shannon entropy, targeted at evaluating the average information content of the
random variable associated with the random source.

Furthermore, the TRNGs which are often implemented using external hard-
ware are susceptible to physical attacks. In [16] attackers inject periodic signals
to the power supply in order to destroy the randomness of the Ring Oscillators
(ROs) by reducing the entropy of the generated keystream. In [7], the adver-
saries used strong magnetic fields to tamper the randomness generated by 50
ROs. In other instances, usage of power, clock glitches, and other techniques
of physical attacks have threatened the deployment of TRNGs. Though there
exist methods of on-the-fly testing of TRNGs which can be effective during such
attacks [21,27], it would be desirable to develop TRNG sources which are avail-
able to a program without resorting to an external component. The TRNG
should derive its randomness from the underlying hardware artifacts which
are available in the computer architecture and which exhibit its randomness
owing to the various processes which execute on them. Such an in-situ TRNG
design would also make physical attacks more challenging, as compared to when
the TRNG is an add-on hardware device which the adversary can target more
effectively.
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Fig. 1. Generic structure of the proposed True Random Number Generator (TRNG)
circuit

In this paper, we analyze and propose an in-situ design for TRNG based
on the randomness derived from various hardware activities as observed in the
underlying computer architecture. These hardware activities (like instruction-
counts, CPU-cycles, etc.) are observed through Hardware Performance Counters
(HPCs) allowing detailed, low-level measurement of different process behavior
executed in CPUs. HPCs provide valuable information about program execution,
which were extensively used in the literature to attack strong cryptographic algo-
rithms [3,9] and also used to detect the execution of malicious programs [1,2,5].
The information provided by HPCs are also used to identify vulnerabilities which
aid reverse engineering of proprietary software [4]. However, modern processor
vendors do not make any guarantee about determinism of these hardware activ-
ities (or HPC events) [25]. We analyze the source of non-determinism exhibited
by these HPC events and aim to utilize this non-determinism in designing our
TRNG module. We observe that the least significant bits of these HPC events
display high-quality randomness and high entropy. We also propose a hybrid
model coupled with a secure hash implementation in order to cope up with the
latency in accessing the HPC events and thus to increase the throughput of the
TRNG design where required.

Contribution

The major highlights of the paper in context to the general structure of a TRNG
(as illustrated in Fig. 1) are explained in details as follows:

– We propose a TRNG derived from computer architecture, which thrives on
the randomness observed through the architectural events from the underly-
ing hardware. The HPC counters, which monitors these architectural events,
exhibits inherent non-determinism in their implementation [25] and are also
affected due to a vast number of processes running on a processor core in a
fixed quantum of time. HPC event counters provide a cumulative count to
these architectural events and thus proposed to be a high source of entropy.

– It was also observed that the randomness was highest in the Least Significant
bits (LSBs) for the observed values from these counters. The entropy reduces
as we consider the bits more towards the Most Significant Bit (MSBs).
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– These event counter statistics over the monitored application along with the
background noise can only be observed at periodic intervals, which could
create a bottleneck in terms of throughput. Thus, in order to increase the
throughput of the overall random number generation, we pair the proposed
TRNG with a secured hash implementation using the Keccak algorithm.

In the next section, we present a brief discussion on HPCs, which is the prim-
itive tool to extract the randomness exhibited by the architectural component.

2 Preliminaries on Hardware Performance Counters

Hardware Performance Counters (HPCs) are special purpose registers present
in most of the modern-day microprocessors which store the hardware related
activities during the execution of a program. The HPCs provide detailed, low-
level hardware utilization statistics to advance user modules and are thus very
useful in code optimization and process tuning operations. The HPCs typically
count the number of occurrences of various hardware events such as number of
instructions executed, number of bus-cycles consumed, number of CPU-cycles
consumed, different operations related to the cache memory, branch mispredic-
tion operations and many more events related to the architectural activities of
a system. There are a wide variety of events that can be measured with HPCs,
and the event availability varies considerably among CPUs and vendors. A full
list of available events can be found in various vendor’s architectural manuals.
As these events are immensely useful in computer architectural design and opti-
mizations, these were available to users having user-level privileges. However,
various researchers developed security implications of such user-level accesses to
these counter values for the cryptographic implementations, which led the secu-
rity engineers to push the HPCs to higher privilege scale and thus the counters
can only be accessed in modern systems with administrative privileges. It has
already been shown in [25] that the HPC values obtained by monitoring a pro-
cess are not deterministic in nature. In the next section, we analyze the reason
behind the inherent non-determinism exhibited by the HPC events, which is the
primary motivation behind the proposed TRNG design.

3 Non-determinism of HPCs and Motivation

All Linux based systems with kernel version 2.6.31 and above have a utility
named perf, which can be used to access and read the HPC registers through
the perf event system call. The perf utility provides a simple command line
interface to observe the detailed, low-level hardware based event counter values
during the execution of a process. A user can monitor desired events for the entire
duration of the execution or can observe them periodically with a fixed interval of
time. The command to observe the values of a monitored event (<event name>)
with a fixed interval (<interval duration>) of time during the execution of an
executable (<executable name>) is given as follows:
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Fig. 2. Variation of the HPC events (a) instructions and (b) cpu-cycles monitored
over an infinite loop on different time intervals

perf stat -e <event name> -I <interval duration> <executable name>

In all of our experiments, we took a C code snippet which does noth-
ing but loops infinitely, over which we observed various event counts such
as instructions, bus-cycles, cpu-cycles, cache-misses, branch-misses
and many more. As an example, we observed two performance counter events
instruction and cpu-cycles over the executable of infinite loop with 10 ms1

interval of time and the corresponding observations are shown in Fig. 2. In an
ideal case, the HPC events instruction and cpu-cycles should report con-
stant values over the duration of time, as the executable is doing nothing except
looping infinitely. But, it can be observed from Fig. 2 that the number of instruc-
tions and the number of CPU cycles is not constant over time, which shows the
significant amount of non-determinism exhibited by these performance counters.

Measuring exact event counts using HPCs can be difficult because of sev-
eral external sources of variation such as program layout [18,24], multiprocessor
variation [6], operating system interaction [17], measurement overhead [29], and
hardware implementation details [23,24]. As discussed in [25], after carefully
avoiding these sources of variation as much as possible, it was found that inter-
nal hardware interrupt is the potential source that leads to non-deterministic
behaviour. Most of the HPC events get incremented an extra time for every
hardware interrupt that occurs in the system. Hence, if an event is affected by
hardware interrupts, then it cannot be a deterministic event, as it is impossi-
ble to predict in advance when these interrupts will happen. There are several
types of interrupts affecting these HPC events such as Local Timer Interrupts
(LOC), IRQ Work Interrupts (IWI), Rescheduling Interrupts (RES), Function
Call Interrupts (CAL), and TLB Shootdowns (TLB). The effect of these inter-
rupts can be monitored efficiently using /proc/interrupts, which also includes
additional interrupt counts that happen outside of process context, adding extra
assistance to the non-determinism of HPC events.

In order to validate this, we again monitored the events instructions and
cpu-cycles as before and along with that we also measured the total number
1 We selected 10 ms as it is the lowest interval of time that the perf tool supports,

and thus corresponds to the highest supported frequency.
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Fig. 3. Effect of hardware interrupts on the HPC events (a) instructions and (b)
cpu-cycles monitored over an infinite loop on different time instances

of interrupts received per second using the Linux mpstat command which uses
/proc/interrupts as a subroutine. We performed the experimentation on a
per-core approach using the Linux taskset command. We present the effect
of these hardware interrupts on both the HPC events in Fig. 3. We can easily
observe from both the figures that whenever there is a surge in the number
of interrupts, the counts of the events also increases validating the association
between hardware interrupts and HPC events.

HPCs are registers dedicated to each core of a processor. Apart from being
affected by the hardware interrupts, these event counts are also affected by the
execution of various processes which are running in the background. The Oper-
ating System entirely administrates the execution of all the processes on the
actual hardware of the architectural components, which are extremely complex
to model as it is mostly dominated by the effect of speculative executions, out-of-
order execution, interrupts, instruction prefetching and many more optimization
techniques. Most of the modern processors are multicore, and an innumerable
number of processes can get executed concurrently on each of these processor
cores. The HPCs measure the event counts for all the events for all those pro-
cesses which are concurrently running on the same processor core along with
their fine-grained context switches. Thus if these HPCs are monitored for a per-
core based approach, the counters are not only affected by the event counts
from the operations in the monitored process but also from the all other pro-
cesses which are running concurrently to the monitored application. Hence the
background processes also have a significant impact on the event count of the
target process, which is being monitored. In the next section, we propose an
efficient construction of TRNG using the statistics obtained from these HPCs.

4 Randomness Extraction Using HPCs

In this section, we briefly discuss about the selection of appropriate architectural
events to design the TRNG and the methodology to extract the randomness from
such events. In the previous section, we have seen that the performance counter
values range between a particular interval with low deviation from the mean,
which makes the most significant bits of the observed values to be highly pre-
dictable. On the other hand, the noise component in these performance counter
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Fig. 4. Entropy of each LSBs for HPC event (a) instructions, and (b) cpu-cycles

values is very high if we consider only the least significant bits. The analysis of
selecting the LSBs is elaborated next.

4.1 Selection of the Least Significant Bits

In the previous section, we claimed that the performance counter events which
are observed over a straightforward executable exhibit a high source of entropy
as they inherently possess a considerable amount of noise which is entirely
contributed by the unpredictable hardware interrupts in the system and var-
ious processes running in the background. It should be further noted that the
entropy of each bit position would not be the same for the binary sequences
converted directly from the monitored values. The entropy is highest with the
LSB, which can be considered as the most random bit output while the MSB
is highly predictable. In support of our claim, we observed 500, 000 instances of
the performance counter events instructions and cpu-cycles, and calculated
the entropy for each bit position. Figure 4 shows entropy values of all the bit
positions for both the events. We can observe from the figures that the LSBs
have the highest entropy, and as we move towards the MSBs, the entropy gets
reduced. Hence, instead of considering the observed HPC value, we transform the
data into binary sequences and consider the last 92 bits for our further analysis.

4.2 Selection of HPC Events Using Yao’s Next-Bit Test

In all of our experiments, we considered the sampling interval time as 10 ms.
Hence, the perf tool will generate data points for any HPC event after each
10 ms time interval. Let us consider last n LSB bits of a single instance of data
as the source of randomness. At any time instant t, we considered the sequence
of bits S(n, t) =

(
bt0, b

t
1, · · · , btn−2, b

t
n−1

)
derived directly from the value obtained

by perf tool for each HPC events. Our conjecture to consider an HPC event as
a source of TRNG is based on the idea that there will be no bias in predicting
a bit, even if we know the previous values. In order to determine the bias in
observation, we provide Yao’s next-bit test [28], which we discuss as follows.

2 We empirically selected last 9 least significant bits for our experimental setup as for
most of the events the last 9 bits provide highest entropy values.
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Table 1. Next-bit test for different HPC events for m = 4

Known bits Estimated value of P̂r[bt4 = 0] Value of δ

Hardware performance counter events Hardware performance counter events

instructions cpu-cycles cache-misses branches instructions cpu-cycles cache-misses branches

0000 0.499362 0.499119 0.483038 0.511926 0.000638 0.000881 0.016962 0.011926

0001 0.500616 0.498508 0.510286 0.5 0.000616 0.001492 0.010286 0

0010 0.50388 0.499933 0.61523 0.473591 0.00388 0.000067 0.11523 0.026409

0011 0.503006 0.501612 0.538575 0.472271 0.003006 0.001612 0.038575 0.027729

0100 0.497589 0.500212 0.465892 0.494755 0.002411 0.000212 0.034108 0.005245

0101 0.501385 0.503288 0.499264 0.489194 0.001385 0.003288 0.000736 0.010806

0110 0.497944 0.499307 0.49388 0.480069 0.002056 0.000693 0.00612 0.019931

0111 0.497515 0.498644 0.545499 0.529411 0.002485 0.001356 0.045499 0.029411

1000 0.501878 0.497065 0.532874 0.480286 0.001878 0.002935 0.032874 0.019714

1001 0.509205 0.500564 0.325212 0.473333 0.009205 0.000564 0.174788 0.026667

1010 0.503668 0.498804 0.588985 0.507633 0.003668 0.001196 0.088985 0.007633

1011 0.500938 0.500415 0.345577 0.476785 0.000938 0.000415 0.154423 0.023215

1100 0.49932 0.504391 0.681509 0.483871 0.00068 0.004391 0.181509 0.016129

1101 0.499705 0.499179 0.578446 0.470919 0.000295 0.000821 0.078446 0.029081

1110 0.502052 0.501125 0.357142 0.477891 0.002052 0.001125 0.142858 0.022109

1111 0.500587 0.497146 0.437479 0.481415 0.000587 0.002854 0.062521 0.018585

Average δ 0.002236 0.001493 0.073995 0.018411

Table 2. Experimental setups for validation of the proposed claim

Processor Linux version

AMD A10-8700P Radeon R6 Ubuntu with Kernel 4.13.0-36

Intel Core i7-7567U Ubuntu with Kernel 4.15.0-33

Suppose we know first m-bits of the n possible bits for any sequence S(n, t),
i.e., the sequence S(m, t) is already given (where m < n). Now, according to
Yao’s Next-bit test, we say that the sequence S(n, t) has no bias if probability
of the (m + 1)th bit being zero is 0.5 ± δ (i.e., Pr[btm = 0] = 0.5 ± δ), given the
knowledge of S(m, t), when δ is negligible (with respect to the security parame-
ter). There are 2m possibilities for S(m, t), and we perform the test for all such
possibilities. In order to estimate the Pr[btm = 0], we consider N such sequences
by observing an HPC event at N successive interval of time. Let the sequence
S(m, t) occurs at T times out of N possibilities. We now count the occurrences of
bim = 0 and bim = 1 as C0 and C1 respectively, where i = 1, 2, · · · , T . We define the
estimated probabilities as P̂r[btm = 0] = C0

T and P̂r[btm = 1] = 1 − P̂r[btm = 0].
Without loss of generality we first consider the case of m = 4, i.e., first 4 bits
of the binary sequence is known. There are 24 possibilities of S(m, t), which are
shown in Known Bits column of Table 1. We observed N = 500, 000 values
for the events instructions, cpu-cycles, cache-misses, and branches and
estimated the probability P̂r[bt4 = 0] as discussed previously. The estimated
probability values for all the events and for all the combination of Known
Bits and the corresponding values of δ (as mentioned previously) are shown
in Table 1. The first cell in Table 1 contains the value 0.499362, which signifies
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that for the event instructions if we known that the first 4 bits are 0000, then
the estimated probability that the next bit will be 0 is 0.499362. We can also
observe from the table that the corresponding value of δ is 0.000638. It is clear
from the table that all the combinations have probabilities close to 0.5 for the
events instructions and cpu-cycles. The corresponding values of δ are also
negligible. In case of events cache-misses and branches the probability values
are highly biased for some combinations with high value of δ and are shown with
bold faces. The average values of δ for all the sequences corresponding to each
of the performance counter events are also shown in Table 1 and justifiably these
values are higher for the events cache-misses and branches. Similar results are
observed for other values of m. Hence, we conclude after this analysis that the
events instructions and cpu-cycles can act as better candidate for source of
randomness while we discard the other two events cache-misses and branches
in our further analysis. In the next section, we validate our conclusion through
an extensive set of results with the help of NIST and AIS 20/31 Test suite.

5 Experimental Validation

In this section, we first provide results on TRNG output obtained from the raw
HPC events followed by the results on the TRNG output in the presence of a
strong adversarial perturbation.

5.1 Results on TRNG Output Obtained from HPC Events

All the experiments are conducted on two different processors as listed in Table 2,
where the access to HPC events is available to users with administrative priv-
ilege. There exists a diverse set of HPC events which can be accessed via the
perf utility. We considered some of the primitive events such as instructions,
cpu-cycles, bus-cycles, cache-misses, branches etc., as the obtained val-
ues for each of these events are high compared to the other events. The perf
statistics are recorded after every time interval of 10 ms for an executable which
runs infinitely over time. The idea behind the selection of events which showed
high values compared to the lower ones is because the ones reporting very high
values can be expected to produce decent randomness in the Least Significant
Bits. On the contrary, events which show low values as output are intuitively
more predictable compared to the earlier case.

The NIST Test suite is observed to work the best for the events instructions
and cpu-cycles in all the setups as mentioned in Table 2. The perf statistic is
recorded for more than 15 hours of execution time, which resulted in altogether
10 sets, each set having more than 5.5×107 performance counter values. For each
set, we selected the last 9 bits from the LSB of each observation and appended
one after another to generate a consolidated binary string. We applied the NIST
Test suite on this consolidated binary sequence. We furnish our results from the
NIST suite for both Intel and AMD processors in Table 3. We can observe from
the table that both the events instructions and cpu-cycles pass all the 15
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Table 3. NIST test results on TRNG output for different HPC events on two different
processors

NIST test Intel AMD

instructions cpu-cycles cache-misses instructions cpu-cycles cache-misses

Frequency PASS PASS FAIL PASS PASS FAIL

BlockFrequency PASS PASS FAIL PASS PASS FAIL

CumulativeSums PASS PASS FAIL PASS PASS FAIL

Runs PASS PASS FAIL PASS PASS FAIL

LongestRun PASS PASS FAIL PASS PASS FAIL

Rank PASS PASS PASS PASS PASS FAIL

FFT PASS PASS PASS PASS PASS FAIL

NonOverlappingTemplate PASS PASS FAIL PASS PASS FAIL

OverlappingTemplate PASS PASS PASS PASS PASS FAIL

Universal PASS PASS FAIL PASS PASS FAIL

ApproximateEntropy PASS PASS FAIL PASS PASS FAIL

RandomExcursions PASS PASS FAIL PASS PASS FAIL

RandomExcursionsVariant PASS PASS FAIL PASS PASS FAIL

Serial PASS PASS PASS PASS PASS FAIL

LinearComplexity PASS PASS PASS PASS PASS FAIL

tests under the NIST Test suite. We perform the same experimentation on each
of the 10 sets and obtain similar results for all the sets. Table 3 also shows the
NIST Test results for the HPC event cache-misses on both the processors. We
can observe that most of the tests under the NIST Test suite fails for this event,
which aligns with the results shown in Table 1.

In order to further analyze the TRNG property of the events instructions
and cpu-cycles, we applied the AIS 20/31 Test procedures on the consolidated
binary output string as obtained before. The results of the tests for both Intel
and AMD processors are shown in Table 4. We can observe from the table that
all the tests under Procedure A and Procedure B of AIS 20/31 Test suite pass for
both the events instructions and cpu-cycles. The details of the parameters
mentioned under Procedure B can be found in the AIS 20/31 Test Manual.
Hence, with the outcomes of these two test suites, we conclude that the HPC
events which are affected by various hardware interrupt and the background
noises can be effectively used to design a TRNG module.

5.2 Perturbation in TRNG Output in Presence of an Adversary

In the previous subsections, we tested the sources of entropy through normal
process execution framework in a multi-core processor setup, where we show that
the inherent chaos of the various process execution and the unpredictability of
hardware interrupts have an extensive impact on the HPC values. We claim with
suitable results that the values obtained from HPCs qualify for a pure computer
architecture based TRNG. But we are also interested in understanding the effect
on the HPCs in the presence of a powerful adversary.

Let us consider a server setup, where there are multiple users logged into the
same server, and all of the users are having administrative privileges. Thus all of
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Table 4. AIS 20/31 test results on TRNG output for different HPC events on two
different processors

AIS 20/31 test
Intel AMD

instructions cpu-cycles instructions cpu-cycles

Procedure A

T0 PASS PASS PASS PASS

T1 PASS PASS PASS PASS

T2 PASS PASS PASS PASS

T3 PASS PASS PASS PASS

T4 PASS PASS PASS PASS

T5 PASS PASS PASS PASS

Procedure B

T6

PASS

d = 0.001990 < 0.025

s = 0.001080 < 0.02

PASS

d = 0.001760 < 0.025

s = 0.000970 < 0.02

PASS

d = 0.001640 < 0.025

s = 0.001120 < 0.02

PASS

d = 0.001790 < 0.025

s = 0.000560 < 0.02

T7

PASS

s1 = 0.008000 < 15.13

s2 = 0.050002 < 15.13

PASS

s1 = 0.079000 < 15.13

s2 = 0.047869 < 15.13

PASS

s1 = 0.010000 < 15.13

s2 = 0.049847 < 15.13

PASS

s1 = 0.047000 < 15.13

s2 = 0.069748 < 15.13

T8
PASS

s = 8.109696 > 7.976

PASS

s = 10.479683 > 7.976

PASS

s = 8.214734 > 7.976

PASS

s = 9.975684 > 7.976

these users can observe perf statistics over executables which run on processor
cores shared across various user processes. Hence it is feasible for an adver-
sary running on the same processor core as the TRNG module to modify these
HPC values in regular time intervals. We performed several experiments where
the adversary process runs on the same processor core as the target core and
uses asynchronous perf ioctl system calls to set the value of the HPC event
instructions to zero periodically. This manipulation by the adversary hampers
the instruction counts observed over a synchronous measurement procedure to a
great extent. The range of the instruction counts varied widely when a concur-
rent adversary module refreshed the instruction counts, which is also expected
if the adversary wishes to modify the counter values instead of resetting it. Any
modification to the counter values by a powerful adversary does have an impact
in changing the overall values of the instruction counts but does not have any
impact on the entropy of the least significant bits of the counter values. The
reason behind it is that of the inherent chaos of a large number of concurrent
process executions and optimization constructs of the Operating System and
their effect on the underlying computer architecture modules. Hence, a powerful
adversary needs to not only model the chaos exhibited by the background con-
current processes but also needs to have complete control of hardware interrupts
appearing in the system, both of which is assumed to be a challenging task to
execute. Without loss of generality, we tested the TRNG sequences generated
by the HPC event instructions on the Intel processor in the presence of this
adversary with both NIST and AIS 20/31 Test suites. The results are furnished
in Table 5, which shows that all the tests under both of these test suites pass with
the modified TRNG sequence. In the next section, we discuss a hybrid TRNG
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Table 5. NIST and AIS 20/31 test results on TRNG output for the HPC event
instructions on Intel processor after adversarial modification

NIST test AIS 20/31 tests

Frequency PASS Procedure A

BlockFrequency PASS T0 PASS

CumulativeSums PASS T1 PASS

Runs PASS T2 PASS

LongestRun PASS T3 PASS

Rank PASS T4 PASS

FFT PASS T5 PASS

NonOverlappingTemplate PASS Procedure B

OverlappingTemplate PASS T6 PASS

Universal PASS d = 0.003479 < 0.025

ApproximateEntropy PASS s = 0.002547 < 0.02

RandomExcursions PASS T7 PASS

RandomExcursionsVariant PASS s1 = 0.008429 < 15.13

Serial PASS s2 = 0.094531 < 15.13

LinearComplexity PASS T8 PASS

s = 8.047369 > 7.976

construction using a secure hash implementation for enhancing the throughput
of the design to cope up with the latency in accessing HPC events.

6 Hybrid Construction to Enhance Throughput

In this section, we describe an efficient generation of random bit string through
a secured hash implementation using Keccak algorithm [8] followed by its vali-
dation as TRNG using NIST and AIS 20/31 Test suites. The design is simple yet
effective in context to generating a high-speed sequence of random numbers. In
the previous section, we elaborate on how True Random Numbers were obtained
from the Hardware Performance Counter values. The proposed design only con-
siders last 9 bits from the LSB of each cumulative sample of event count for
a periodic interval of 10 ms. This latency of 10 ms of the generation of 9 ran-
dom bits is inappropriate when compared to real-life random number generation
requirements. Thus we bridge the gap with a hybrid model which uses a shift
register, the Keccak algorithm, and a control block by considering the random
bits obtained from HPCs as input. If an application asks for a random number
within the interval of 10 ms, the hybrid model uses its deterministic algorithm
to generate a more extensive number of random bits using the previous inputs.
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After 10ms:
1. SR TRNG � 9
2. 9 random bits are added to SR TRNG

3. Count = 0

Request for
New Random
Number

Raw Random
Numbers

Internal Random Numbers

SR TRNG[Count:Count+63]

512-bit Output

64-bit Input

Count++

Count = 0

Keccak Algorithm

Count

Control Block
SR TRNG

71 63 2 1 0

Fig. 5. Hybrid Construction for generating internal random numbers

6.1 Cryptographic Post-processing of the TRNG Output

The hybrid TRNG construction as shown in Fig. 5, takes the output of the
true random number sequence obtained from the HPC events as its input and
generates a sequence of more number of bits using a shift register (SR TRNG),
a Control Block, and Keccak (or SHA-3) Algorithm. The hybrid construction
works with two operational modes as follows:

1. Initialization: The HPC based TRNG construction generates 9 random bits
in every 10 ms interval. The hybrid construction waits for the first 80 ms after
the start of the system. The shift register SR TRNG, which is of length 72 bits,
is filled from the LSB to MSB after each 10 ms in such a way that after first
80 ms the register SR TRNG is filled with 72 bits of a random string. In this
mode a register Count is also set to 0.

2. Generation: If a user needs a true random number from the system, it
requests the Control Block to generate it. The Control Block then takes the
64-bit string SR TRNG[Count:Count+63] and produces a 512-bit string using
SHA-3 algorithm and provides these bits as an output to the request. The
Control Block then increments the value of Count register by 1. After 10 ms
the register SR TRNG is right shifted by 9 bits, 9 random bits obtained from
the new HPC value after the 10 ms are added to the shift register, and the
register Count is again reset to 0.

Any user can obtain a maximum of 9 ∗ 512 = 4608 bits of a random string
within the latency of 10 ms. Hence the maximum throughput of the hybrid design
is 46, 080 bits per second (or 45 Kbps). It is evident that the throughput of
the hybrid design is directly proportional to the length of the shift register
SR TRNG, which can be tuned to support different kinds of applications with
varying requirements of throughput.

6.2 Results on TRNG Output Obtained from Hybrid Construction

The TRNG output obtained from the HPC event values are used as input to the
hybrid construction. As discussed previously, after every 10 ms the shift register
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Table 6. NIST and AIS 20/31 test results on
TRNG output for the HPC event instructions
on Intel processor obtained from the hybrid con-
struction

NIST test AIS 20/31 tests

Frequency PASS Procedure A

BlockFrequency PASS T0 PASS

CumulativeSums PASS T1 PASS

Runs PASS T2 PASS

LongestRun PASS T3 PASS

Rank PASS T4 PASS

FFT PASS T5 PASS

NonOverlappingTemplate PASS Procedure B

OverlappingTemplate PASS T6 PASS

Universal PASS d = 0.004060 < 0.025

ApproximateEntropy PASS s = 0.005410 < 0.02

RandomExcursions PASS T7 PASS

RandomExcursionsVariant PASS s1 = 0.499285 < 15.13

Serial PASS s2 = 0.612501 < 15.13

LinearComplexity PASS T8 PASS

s = 8.107012 > 7.976

Table 7. NIST test results on the
output of Linux /dev/urandom on
both Intel and AMD Processors

NIST test Intel AMD

Frequency FAIL FAIL

BlockFrequency FAIL FAIL

CumulativeSums FAIL FAIL

Runs FAIL FAIL

LongestRun FAIL FAIL

Rank FAIL FAIL

FFT FAIL FAIL

NonOverlappingTemplate FAIL FAIL

OverlappingTemplate FAIL FAIL

Universal FAIL FAIL

ApproximateEntropy FAIL FAIL

RandomExcursions FAIL FAIL

RandomExcursionsVariant FAIL FAIL

Serial FAIL FAIL

LinearComplexity PASS PASS

SR TRNG holding the recent history of random bits from the TRNG is right shifted
by 9 bits to accommodate fresh random bits. In an interval of 10 ms, we obtain
the upper bound of 4608 bits of random binary string which requires only 72
bits of extra storage. The storage will be marginally higher for higher throughput
design. We also take the output from the hybrid construction and run both the
NIST and AIS 20/31 Tests on the sequences. Without loss of generality, results
for the event instructions on the Intel processor are furnished in Table 6, which
shows that the sequences pass all the tests under both the test suites.

7 Discussion

In this paper, we proposed a TRNG construction using the values obtained
from the HPC events through the Linux based tool perf. However, all the Linux
based systems have special character files /dev/urandom providing an interface
to the kernel’s random number generator, which gathers environmental noise
from device drivers and other sources into an entropy pool. However, several
weaknesses of such random number generation with a detailed cryptographic
analysis is shown in [13]. In order to stress the weakness, we collected “random”
data using /dev/urandom and applied NIST Test suite on the output. The result
of the tests on both Intel and ARM processors are shown in Table 7. We can easily
observe that apart from the LinearComplexity test under the NIST Test suite
the dataset fails to qualify for all other tests. Since the dataset did not qualify
the NIST Test suite, we did not provide any results on AIS 20/31 Test to show
its weakness further. The objective of this discussion is to stress on the fact that
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the proposed approach can be used as a TRNG source in modern Linux based
systems as an alternative to apparently weaker random number generator using
/dev/urandom.

8 Conclusion

In this paper, we showed that components of architecture infuse a huge level of
randomness because of the Operating System optimization constructs and unpre-
dictability of different hardware interrupts, which gets manifested through the
Hardware Performance Counters. These counters digitize the randomness of the
architectural constructs and various experimental results using standard NIST,
and AIS 20/31 Test suites show that these counters can indeed be considered as
a TRNG source. We have also shown that the proposed TRNG construction is
robust and fault tolerant in the presence of a powerful adversary. The proposed
TRNG module has a latency of 10 ms because of the time to access HPC events.
Thus to enhance the throughput of the design, we combine the TRNG module
with a simple yet effective Keccak hash implementation and a shift register to
design a hybrid module which also qualifies NIST and AIS 20/31 Tests.
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