
Sonia Belaïd
Tim Güneysu (Eds.)

LN
CS

 1
18

33

18th International Conference, CARDIS 2019
Prague, Czech Republic, November 11–13, 2019
Revised Selected Papers

Smart Card Research
and Advanced Applications

Lecture Notes in Computer Science 11833

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Sonia Belaïd • Tim Güneysu (Eds.)

Smart Card Research
and Advanced Applications
18th International Conference, CARDIS 2019
Prague, Czech Republic, November 11–13, 2019
Revised Selected Papers

123

Editors
Sonia Belaïd
CryptoExperts
Paris, France

Tim Güneysu
Ruhr-Universität Bochum
Bochum, Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-42067-3 ISBN 978-3-030-42068-0 (eBook)
https://doi.org/10.1007/978-3-030-42068-0

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-3293-4989
https://doi.org/10.1007/978-3-030-42068-0

Preface

These proceedings contain the papers selected for presentation at the 18th International
Conference on Smart Card Research and Advanced Applications (CARDIS 2019), held
in Prague, Czech Republic, during November 11–13, 2019. The conference was
organized by the Faculty of Information Technology of the Czech Technical University
in Prague, Czech Republic.

CARDIS provides a space for security experts from industry and academia to
exchange ideas on security of smart cards and related applications. Those objects have
been part of our daily life for years: banking and SIM cards, electronic passports, etc.
But the world is constantly changing; a secure element, such as smart cards, is now
being implemented in many cases, for example as a hardware root of trust for larger
systems. As such, smartcard security and core ingredients such as applied cryptography
is a key enabler for the security of the entire system. At the same time, and with the
growing use of smartcard technology, the attack surface is increasing, from physical
attacks to logical attacks, from local attacks to remote attacks, and more recently
combined attacks. It is more important than ever that we understand how smart cards
and related systems, can be secured.

This year, CARDIS received 31 papers from a large number of international coun-
tries. Each paper was reviewed by three independent reviewers. The selection of
15 papers to fill the technical program was accomplished based on 142 written reviews.
This task was performed by the 31 members of the Program Committee with the help of
28 external reviewers. The technical program also featured two invited talks. The first
invited speaker, Peter Schwabe (Radboud University in Nijmegen, The Netherlands),
presented “Post-quantum crypto on ARM Cortex-M” and the second speaker, Gilles
Barthe (Max-Planck Institute in Bochum, Germany, and IMDEA Software Institute,
Spain), presented “Formal Verification of Side-Channel Resistance.” We would like to
thank the general chair, Martin Novotný, for the great venue and smooth operation of the
conference.

We would also like to thank the Program Committee and the external reviewers for
their thorough work, which enabled the technical program to be of high quality, as well
as the Steering Committee for giving us the opportunity to serve as program chairs at
such a prestigious conference. The financial support of all the sponsors was highly
appreciated and greatly facilitated the organization of the conference. We would like to
thank the sponsors Thales, Infineon, Rambus, PQSHIELD, NewAE, Riscure NAGRA
and FortifyIQ, CryptoExperts, ima, and KAOS for their support and collaboration.
Furthermore, we would like to thank the authors who submitted their work to CARDIS
2019, without whom the conference would not have been possible.

January 2020 Sonia Belaïd
Tim Güneysu

Organization

Program Committee

Josep Balasch Katholieke Universiteit Leuven, Belgium
Alessandro Barenghi Politecnico di Milano, Italy
Sonia Belaïd CryptoExperts, France
Begül Bilgin Cryptography Research, USA
Thomas De Cnudde Katholieke Universiteit Leuven, Belgium
Elke De Mulder Cryptography Research, USA
Thomas Eisenbarth WPI, USA
Junfeng Fan Open Security Research, The Netherlands
Jean-Bernard Fischer NagraVision, Switzerland
Domenic Forte University of Florida, USA
Dahmun Goudarzi PQShield, UK
Daniel Gruss Institute for Applied Information Processing

and Communications, Graz University
of Technology, Austria

Tim Güneysu Ruhr-Universität Bochum and DFKI, Germany
Annelie Heuser CNRS, IRISA, France
Kerstin Lemke-Rust Bonn-Rhein-Sieg University of Applied Sciences,

Germany
Roel Maes Intrinsic ID, USA
Amir Moradi Ruhr-Universität Bochum, Germany
Debdeep Mukhopadhyay IIT Kharagpur, India
Colin O’Flynn NewAE Technology Inc., Canada
Axel Poschmann xen1thLabs, UAE
Emmanuel Prouff ANSSI, France
Thomas Pöppelmann Infineon Technologies AG, Germany
Francesco Regazzoni ALaRI – USI, Switzerland
Thomas Roche NinjaLab, France
Kazuo Sakiyama The University of Electro-Communications, Japan
Erkay Savas Sabanci University, Turkey
Tobias Schneider NXP Semiconductors, The Netherlands
Peter Schwabe Radboud University, The Netherlands
Carolyn Whitnall University of Bristol, UK
Yuval Yarom The University of Adelaide and Data61/CSIRO,

Australia
Rina Zeitoun IDEMIA, France

Additional Reviewers

Andreeva, Elena
Barbu, Guillaume
Bermudo Mera, Jose Maria
Bouffard, Guillaume
Bronchain, Olivier
Cao, Yang
Costa Massolino, Pedro Maat
Cuong, Bien
De Meyer, Lauren
Fritzmann, Tim
Fritzsch, Clemens
Giner, Lukas
Gonzalez, Ruben
Hara-Azumi, Yuko

Kannwischer, Matthias
Kavun, Elif Bilge
Li, Yang
Maniatakos, Mihalis
Pelletier, Hervé
Rebeiro, Chester
Richter, Bastian
Saha, Sayandeep
Seker, Okan
Tunstall, Mike
Villegas, Karine
Wood, Tim
Yao, Yuan

viii Organization

Contents

System-on-a-Chip Security

In-situ Extraction of Randomness from Computer Architecture Through
Hardware Performance Counters . 3

Manaar Alam, Astikey Singh, Sarani Bhattacharya, Kuheli Pratihar,
and Debdeep Mukhopadhyay

Optimized Threshold Implementations: Minimizing the Latency
of Secure Cryptographic Accelerators . 20

Dušan Božilov, Miroslav Knežević, and Ventzislav Nikov

Breaking the Lightweight Secure PUF: Understanding the Relation
of Input Transformations and Machine Learning Resistance 40

Nils Wisiol, Georg T. Becker, Marian Margraf, Tudor A. A. Soroceanu,
Johannes Tobisch, and Benjamin Zengin

Post-Quantum Cryptography

Improving Speed of Dilithium’s Signing Procedure 57
Prasanna Ravi, Sourav Sen Gupta, Anupam Chattopadhyay,
and Shivam Bhasin

An Efficient and Provable Masked Implementation of qTESLA 74
François Gérard and Mélissa Rossi

Side-Channel Analysis

Side-Channel Attacks on Blinded Scalar Multiplications Revisited. 95
Thomas Roche, Laurent Imbert, and Victor Lomné

Remote Side-Channel Attacks on Heterogeneous SoC 109
Joseph Gravellier, Jean-Max Dutertre, Yannick Teglia,
Philippe Loubet Moundi, and Francis Olivier

Optimal Collision Side-Channel Attacks. 126
Cezary Glowacz and Vincent Grosso

Microarchitectural Attacks

A Bit-Level Approach to Side Channel Based Disassembling 143
Valence Cristiani, Maxime Lecomte, and Thomas Hiscock

CCCiCC: A Cross-Core Cache-Independent Covert Channel on AMD
Family 15h CPUs . 159

Carl-Daniel Hailfinger, Kerstin Lemke-Rust, and Christof Paar

Design Considerations for EM Pulse Fault Injection 176
Arthur Beckers, Masahiro Kinugawa, Yuichi Hayashi,
Daisuke Fujimoto, Josep Balasch, Benedikt Gierlichs,
and Ingrid Verbauwhede

Cryptographic Primitives

Lightweight MACs from Universal Hash Functions. 195
Sébastien Duval and Gaëtan Leurent

FELICS-AEAD: Benchmarking of Lightweight Authenticated
Encryption Algorithms. 216

Luan Cardoso dos Santos, Johann Großschädl, and Alex Biryukov

Advances in Side-Channel Analysis

A Comparison of v2-Test and Mutual Information as Distinguisher
for Side-Channel Analysis . 237

Bastian Richter, David Knichel, and Amir Moradi

Key Enumeration from the Adversarial Viewpoint: When to Stop
Measuring and Start Enumerating? . 252

Melissa Azouaoui, Romain Poussier, François-Xavier Standaert,
and Vincent Verneuil

Author Index . 269

x Contents

System-on-a-Chip Security

In-situ Extraction of Randomness
from Computer Architecture Through

Hardware Performance Counters

Manaar Alam(B), Astikey Singh, Sarani Bhattacharya, Kuheli Pratihar,
and Debdeep Mukhopadhyay

Indian Institute of Technology Kharagpur, Kharagpur, India
alam.manaar@gmail.com, astikey070@gmail.com, tinni1989@gmail.com,

its.kuheli96@gmail.com, debdeep.mukhopadhyay@gmail.com

Abstract. True Random Number Generators (TRNGs) are one of the
most crucial components in the design and use of cryptographic pro-
tocols and communication. Predictability of such random numbers are
catastrophic and can lead to the complete collapse of security, as all
the mathematical proofs are based on the entropy of the source which
generates these bit patterns. The randomness in the TRNGs is hugely
attributed to the inherent noise of the system, which is often derived
from hardware subsystems operating in an ambiguous manner. How-
ever, most of these solutions need an add-on device to provide these
randomness sources, which can lead to not only latency issues but also
can be a potential target of adversaries by probing such an interface. In
this paper, we address to alleviate these issues by proposing an in-situ
TRNG construction, which depends on the functioning of the underlying
hardware architecture. These functions are observed via the Hardware
Performance Counters (HPCs) and are shown to exhibit high-quality
randomness in the least significant bit positions. We provide extensive
experiments to research on the choice of the HPCs, and their ability to
pass the standard NIST and AIS 20/31 Tests. We also analyze a possible
scenario where an adversary tries to interfere with the HPC values and
show its effect on the TRNG output with respect to the NIST and AIS
20/31 Tests. Additionally, to alleviate the delay caused for accessing the
HPC events and increase the throughput of the random-source, we also
propose a methodology to cascade the random numbers from the HPC
values with a secured hash function.

Keywords: True Random Number Generator · Hardware
Performance Counters · Cryptographic post-processing

1 Introduction

Random Numbers Generators (RNGs) form the backbone in the development of
almost all of the devices requiring secure communication, device authentication,
or data encryption. Applications of such devices include Smart Cards, RFID
c© Springer Nature Switzerland AG 2020
S. Beläıd and T. Güneysu (Eds.): CARDIS 2019, LNCS 11833, pp. 3–19, 2020.
https://doi.org/10.1007/978-3-030-42068-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-42068-0_1&domain=pdf
https://doi.org/10.1007/978-3-030-42068-0_1

4 M. Alam et al.

tags, and IoT devices. The unpredictability of random numbers is a crucial com-
ponent in parameter and key generation for both symmetric and asymmetric
cryptography, generation of random masks for padding data, generating session
keys between communicating parties and several other secured applications. The
RNGs rely on inherent chaos and unpredictability of various physical factors
from the environment or hardware components to provide the much-needed ran-
domness, which signifies that infinitely long history of previous random numbers
provides no advantage over deciding or predicting the future random occurrences.

True Random Number Generators (TRNGs) derive its randomness from
physical factors in the environment, and thus when implemented in hardware,
the randomness is extracted from the physical parameters such as gate delay.
Fault in design and fabrication procedure of TRNG results in insufficient entropy
(randomness) or improper functioning of the TRNG. Depending on the type of
randomness source and the post-processing involved, there have been quite a
large number of TRNG designs in the literature. A popular TRNG based on
Thermal Noise was first introduced by Intel [14] and recently can be found
in [10,19]. The most commonly used entropy source for both FPGA and ASIC
TRNG’s is metastability, which can be found in [12,20]. Timing jitter in elec-
tronic systems was also considered as TRNG source in [11,26]. However, along
with the design challenges involved in designing these TRNGs, an equally com-
plex task is to develop test strategies for TRNGs. Owing to the fact that most
tests are statistical and can only evaluate the statistical quality of the generated
numbers and not their entropy, modern methods for certification of TRNGs
involve a carefully chosen bag of tests. These tests mainly include: (1) NIST
standard tests [22], which aims at estimating the min-entropy, i.e., evaluating
the information content of the most likely outcome, and (2) AIS 20/31 Tests [15]
proposed by the German Federal Office for Information Security, which estimates
Shannon entropy, targeted at evaluating the average information content of the
random variable associated with the random source.

Furthermore, the TRNGs which are often implemented using external hard-
ware are susceptible to physical attacks. In [16] attackers inject periodic signals
to the power supply in order to destroy the randomness of the Ring Oscillators
(ROs) by reducing the entropy of the generated keystream. In [7], the adver-
saries used strong magnetic fields to tamper the randomness generated by 50
ROs. In other instances, usage of power, clock glitches, and other techniques
of physical attacks have threatened the deployment of TRNGs. Though there
exist methods of on-the-fly testing of TRNGs which can be effective during such
attacks [21,27], it would be desirable to develop TRNG sources which are avail-
able to a program without resorting to an external component. The TRNG
should derive its randomness from the underlying hardware artifacts which
are available in the computer architecture and which exhibit its randomness
owing to the various processes which execute on them. Such an in-situ TRNG
design would also make physical attacks more challenging, as compared to when
the TRNG is an add-on hardware device which the adversary can target more
effectively.

In-situ Extraction of Randomness from Computer Architecture 5

Digital Noise Source

Entropy ExtractorRandomness Source Cryptographic Post-Processing

Raw Random
Numbers

Alarms

Internel Random
Numbers

Online Tests

Post-Processing
Module

Hardware
Performance
Counters

Hardware
Architecture

Fig. 1. Generic structure of the proposed True Random Number Generator (TRNG)
circuit

In this paper, we analyze and propose an in-situ design for TRNG based
on the randomness derived from various hardware activities as observed in the
underlying computer architecture. These hardware activities (like instruction-
counts, CPU-cycles, etc.) are observed through Hardware Performance Counters
(HPCs) allowing detailed, low-level measurement of different process behavior
executed in CPUs. HPCs provide valuable information about program execution,
which were extensively used in the literature to attack strong cryptographic algo-
rithms [3,9] and also used to detect the execution of malicious programs [1,2,5].
The information provided by HPCs are also used to identify vulnerabilities which
aid reverse engineering of proprietary software [4]. However, modern processor
vendors do not make any guarantee about determinism of these hardware activ-
ities (or HPC events) [25]. We analyze the source of non-determinism exhibited
by these HPC events and aim to utilize this non-determinism in designing our
TRNG module. We observe that the least significant bits of these HPC events
display high-quality randomness and high entropy. We also propose a hybrid
model coupled with a secure hash implementation in order to cope up with the
latency in accessing the HPC events and thus to increase the throughput of the
TRNG design where required.

Contribution

The major highlights of the paper in context to the general structure of a TRNG
(as illustrated in Fig. 1) are explained in details as follows:

– We propose a TRNG derived from computer architecture, which thrives on
the randomness observed through the architectural events from the underly-
ing hardware. The HPC counters, which monitors these architectural events,
exhibits inherent non-determinism in their implementation [25] and are also
affected due to a vast number of processes running on a processor core in a
fixed quantum of time. HPC event counters provide a cumulative count to
these architectural events and thus proposed to be a high source of entropy.

– It was also observed that the randomness was highest in the Least Significant
bits (LSBs) for the observed values from these counters. The entropy reduces
as we consider the bits more towards the Most Significant Bit (MSBs).

6 M. Alam et al.

– These event counter statistics over the monitored application along with the
background noise can only be observed at periodic intervals, which could
create a bottleneck in terms of throughput. Thus, in order to increase the
throughput of the overall random number generation, we pair the proposed
TRNG with a secured hash implementation using the Keccak algorithm.

In the next section, we present a brief discussion on HPCs, which is the prim-
itive tool to extract the randomness exhibited by the architectural component.

2 Preliminaries on Hardware Performance Counters

Hardware Performance Counters (HPCs) are special purpose registers present
in most of the modern-day microprocessors which store the hardware related
activities during the execution of a program. The HPCs provide detailed, low-
level hardware utilization statistics to advance user modules and are thus very
useful in code optimization and process tuning operations. The HPCs typically
count the number of occurrences of various hardware events such as number of
instructions executed, number of bus-cycles consumed, number of CPU-cycles
consumed, different operations related to the cache memory, branch mispredic-
tion operations and many more events related to the architectural activities of
a system. There are a wide variety of events that can be measured with HPCs,
and the event availability varies considerably among CPUs and vendors. A full
list of available events can be found in various vendor’s architectural manuals.
As these events are immensely useful in computer architectural design and opti-
mizations, these were available to users having user-level privileges. However,
various researchers developed security implications of such user-level accesses to
these counter values for the cryptographic implementations, which led the secu-
rity engineers to push the HPCs to higher privilege scale and thus the counters
can only be accessed in modern systems with administrative privileges. It has
already been shown in [25] that the HPC values obtained by monitoring a pro-
cess are not deterministic in nature. In the next section, we analyze the reason
behind the inherent non-determinism exhibited by the HPC events, which is the
primary motivation behind the proposed TRNG design.

3 Non-determinism of HPCs and Motivation

All Linux based systems with kernel version 2.6.31 and above have a utility
named perf, which can be used to access and read the HPC registers through
the perf event system call. The perf utility provides a simple command line
interface to observe the detailed, low-level hardware based event counter values
during the execution of a process. A user can monitor desired events for the entire
duration of the execution or can observe them periodically with a fixed interval of
time. The command to observe the values of a monitored event (<event name>)
with a fixed interval (<interval duration>) of time during the execution of an
executable (<executable name>) is given as follows:

In-situ Extraction of Randomness from Computer Architecture 7

0 100 200

3.45

3.5

3.55
·107

Time Interval (10ms)

#
ins

tru
cti

on
s

Mean Value

(a)

0 100 200
3.45

3.5

3.55
·107

Time Interval (10ms)

#
cp

u-
cy
cle

s

Mean Value

(b)

Fig. 2. Variation of the HPC events (a) instructions and (b) cpu-cycles monitored
over an infinite loop on different time intervals

perf stat -e <event name> -I <interval duration> <executable name>

In all of our experiments, we took a C code snippet which does noth-
ing but loops infinitely, over which we observed various event counts such
as instructions, bus-cycles, cpu-cycles, cache-misses, branch-misses
and many more. As an example, we observed two performance counter events
instruction and cpu-cycles over the executable of infinite loop with 10 ms1

interval of time and the corresponding observations are shown in Fig. 2. In an
ideal case, the HPC events instruction and cpu-cycles should report con-
stant values over the duration of time, as the executable is doing nothing except
looping infinitely. But, it can be observed from Fig. 2 that the number of instruc-
tions and the number of CPU cycles is not constant over time, which shows the
significant amount of non-determinism exhibited by these performance counters.

Measuring exact event counts using HPCs can be difficult because of sev-
eral external sources of variation such as program layout [18,24], multiprocessor
variation [6], operating system interaction [17], measurement overhead [29], and
hardware implementation details [23,24]. As discussed in [25], after carefully
avoiding these sources of variation as much as possible, it was found that inter-
nal hardware interrupt is the potential source that leads to non-deterministic
behaviour. Most of the HPC events get incremented an extra time for every
hardware interrupt that occurs in the system. Hence, if an event is affected by
hardware interrupts, then it cannot be a deterministic event, as it is impossi-
ble to predict in advance when these interrupts will happen. There are several
types of interrupts affecting these HPC events such as Local Timer Interrupts
(LOC), IRQ Work Interrupts (IWI), Rescheduling Interrupts (RES), Function
Call Interrupts (CAL), and TLB Shootdowns (TLB). The effect of these inter-
rupts can be monitored efficiently using /proc/interrupts, which also includes
additional interrupt counts that happen outside of process context, adding extra
assistance to the non-determinism of HPC events.

In order to validate this, we again monitored the events instructions and
cpu-cycles as before and along with that we also measured the total number
1 We selected 10ms as it is the lowest interval of time that the perf tool supports,

and thus corresponds to the highest supported frequency.

8 M. Alam et al.

0 3 7 11 15 19 23 27 31 35 39
250

260

270

Time (sec)

#
In
ter

ru
pt
s

1.48

1.5

1.52
·109

#
In
str

uc
tio

ns
Interrupts
Instructions

(a)

0 3 7 11 15 19 23 27 31 35 39
250

260

270

Time (sec)

#
In
ter

ru
pt
s

4

4.05

4.1
·109

#
Cy

cle
s

Interrupts
Cycles

(b)

Fig. 3. Effect of hardware interrupts on the HPC events (a) instructions and (b)
cpu-cycles monitored over an infinite loop on different time instances

of interrupts received per second using the Linux mpstat command which uses
/proc/interrupts as a subroutine. We performed the experimentation on a
per-core approach using the Linux taskset command. We present the effect
of these hardware interrupts on both the HPC events in Fig. 3. We can easily
observe from both the figures that whenever there is a surge in the number
of interrupts, the counts of the events also increases validating the association
between hardware interrupts and HPC events.

HPCs are registers dedicated to each core of a processor. Apart from being
affected by the hardware interrupts, these event counts are also affected by the
execution of various processes which are running in the background. The Oper-
ating System entirely administrates the execution of all the processes on the
actual hardware of the architectural components, which are extremely complex
to model as it is mostly dominated by the effect of speculative executions, out-of-
order execution, interrupts, instruction prefetching and many more optimization
techniques. Most of the modern processors are multicore, and an innumerable
number of processes can get executed concurrently on each of these processor
cores. The HPCs measure the event counts for all the events for all those pro-
cesses which are concurrently running on the same processor core along with
their fine-grained context switches. Thus if these HPCs are monitored for a per-
core based approach, the counters are not only affected by the event counts
from the operations in the monitored process but also from the all other pro-
cesses which are running concurrently to the monitored application. Hence the
background processes also have a significant impact on the event count of the
target process, which is being monitored. In the next section, we propose an
efficient construction of TRNG using the statistics obtained from these HPCs.

4 Randomness Extraction Using HPCs

In this section, we briefly discuss about the selection of appropriate architectural
events to design the TRNG and the methodology to extract the randomness from
such events. In the previous section, we have seen that the performance counter
values range between a particular interval with low deviation from the mean,
which makes the most significant bits of the observed values to be highly pre-
dictable. On the other hand, the noise component in these performance counter

In-situ Extraction of Randomness from Computer Architecture 9

0 2 4 6 8 10 12 14 16 18 20 22
0

0.2

0.4

0.6

0.8

1

Least Significant Bits

En
tro

py

(a)

0 2 4 6 8 10 12 14 16 18 20 22
0

0.2

0.4

0.6

0.8

1

Least Significant Bits

En
tro

py

(b)

Fig. 4. Entropy of each LSBs for HPC event (a) instructions, and (b) cpu-cycles

values is very high if we consider only the least significant bits. The analysis of
selecting the LSBs is elaborated next.

4.1 Selection of the Least Significant Bits

In the previous section, we claimed that the performance counter events which
are observed over a straightforward executable exhibit a high source of entropy
as they inherently possess a considerable amount of noise which is entirely
contributed by the unpredictable hardware interrupts in the system and var-
ious processes running in the background. It should be further noted that the
entropy of each bit position would not be the same for the binary sequences
converted directly from the monitored values. The entropy is highest with the
LSB, which can be considered as the most random bit output while the MSB
is highly predictable. In support of our claim, we observed 500, 000 instances of
the performance counter events instructions and cpu-cycles, and calculated
the entropy for each bit position. Figure 4 shows entropy values of all the bit
positions for both the events. We can observe from the figures that the LSBs
have the highest entropy, and as we move towards the MSBs, the entropy gets
reduced. Hence, instead of considering the observed HPC value, we transform the
data into binary sequences and consider the last 92 bits for our further analysis.

4.2 Selection of HPC Events Using Yao’s Next-Bit Test

In all of our experiments, we considered the sampling interval time as 10 ms.
Hence, the perf tool will generate data points for any HPC event after each
10 ms time interval. Let us consider last n LSB bits of a single instance of data
as the source of randomness. At any time instant t, we considered the sequence
of bits S(n, t) =

(
bt0, b

t
1, · · · , btn−2, b

t
n−1

)
derived directly from the value obtained

by perf tool for each HPC events. Our conjecture to consider an HPC event as
a source of TRNG is based on the idea that there will be no bias in predicting
a bit, even if we know the previous values. In order to determine the bias in
observation, we provide Yao’s next-bit test [28], which we discuss as follows.

2 We empirically selected last 9 least significant bits for our experimental setup as for
most of the events the last 9 bits provide highest entropy values.

10 M. Alam et al.

Table 1. Next-bit test for different HPC events for m = 4

Known bits Estimated value of P̂r[bt4 = 0] Value of δ

Hardware performance counter events Hardware performance counter events

instructions cpu-cycles cache-misses branches instructions cpu-cycles cache-misses branches

0000 0.499362 0.499119 0.483038 0.511926 0.000638 0.000881 0.016962 0.011926

0001 0.500616 0.498508 0.510286 0.5 0.000616 0.001492 0.010286 0

0010 0.50388 0.499933 0.61523 0.473591 0.00388 0.000067 0.11523 0.026409

0011 0.503006 0.501612 0.538575 0.472271 0.003006 0.001612 0.038575 0.027729

0100 0.497589 0.500212 0.465892 0.494755 0.002411 0.000212 0.034108 0.005245

0101 0.501385 0.503288 0.499264 0.489194 0.001385 0.003288 0.000736 0.010806

0110 0.497944 0.499307 0.49388 0.480069 0.002056 0.000693 0.00612 0.019931

0111 0.497515 0.498644 0.545499 0.529411 0.002485 0.001356 0.045499 0.029411

1000 0.501878 0.497065 0.532874 0.480286 0.001878 0.002935 0.032874 0.019714

1001 0.509205 0.500564 0.325212 0.473333 0.009205 0.000564 0.174788 0.026667

1010 0.503668 0.498804 0.588985 0.507633 0.003668 0.001196 0.088985 0.007633

1011 0.500938 0.500415 0.345577 0.476785 0.000938 0.000415 0.154423 0.023215

1100 0.49932 0.504391 0.681509 0.483871 0.00068 0.004391 0.181509 0.016129

1101 0.499705 0.499179 0.578446 0.470919 0.000295 0.000821 0.078446 0.029081

1110 0.502052 0.501125 0.357142 0.477891 0.002052 0.001125 0.142858 0.022109

1111 0.500587 0.497146 0.437479 0.481415 0.000587 0.002854 0.062521 0.018585

Average δ 0.002236 0.001493 0.073995 0.018411

Table 2. Experimental setups for validation of the proposed claim

Processor Linux version

AMD A10-8700P Radeon R6 Ubuntu with Kernel 4.13.0-36

Intel Core i7-7567U Ubuntu with Kernel 4.15.0-33

Suppose we know first m-bits of the n possible bits for any sequence S(n, t),
i.e., the sequence S(m, t) is already given (where m < n). Now, according to
Yao’s Next-bit test, we say that the sequence S(n, t) has no bias if probability
of the (m + 1)th bit being zero is 0.5 ± δ (i.e., Pr[btm = 0] = 0.5 ± δ), given the
knowledge of S(m, t), when δ is negligible (with respect to the security parame-
ter). There are 2m possibilities for S(m, t), and we perform the test for all such
possibilities. In order to estimate the Pr[btm = 0], we consider N such sequences
by observing an HPC event at N successive interval of time. Let the sequence
S(m, t) occurs at T times out of N possibilities. We now count the occurrences of
bim = 0 and bim = 1 as C0 and C1 respectively, where i = 1, 2, · · · , T . We define the
estimated probabilities as P̂r[btm = 0] = C0

T and P̂r[btm = 1] = 1 − P̂r[btm = 0].
Without loss of generality we first consider the case of m = 4, i.e., first 4 bits
of the binary sequence is known. There are 24 possibilities of S(m, t), which are
shown in Known Bits column of Table 1. We observed N = 500, 000 values
for the events instructions, cpu-cycles, cache-misses, and branches and
estimated the probability P̂r[bt4 = 0] as discussed previously. The estimated
probability values for all the events and for all the combination of Known
Bits and the corresponding values of δ (as mentioned previously) are shown
in Table 1. The first cell in Table 1 contains the value 0.499362, which signifies

In-situ Extraction of Randomness from Computer Architecture 11

that for the event instructions if we known that the first 4 bits are 0000, then
the estimated probability that the next bit will be 0 is 0.499362. We can also
observe from the table that the corresponding value of δ is 0.000638. It is clear
from the table that all the combinations have probabilities close to 0.5 for the
events instructions and cpu-cycles. The corresponding values of δ are also
negligible. In case of events cache-misses and branches the probability values
are highly biased for some combinations with high value of δ and are shown with
bold faces. The average values of δ for all the sequences corresponding to each
of the performance counter events are also shown in Table 1 and justifiably these
values are higher for the events cache-misses and branches. Similar results are
observed for other values of m. Hence, we conclude after this analysis that the
events instructions and cpu-cycles can act as better candidate for source of
randomness while we discard the other two events cache-misses and branches
in our further analysis. In the next section, we validate our conclusion through
an extensive set of results with the help of NIST and AIS 20/31 Test suite.

5 Experimental Validation

In this section, we first provide results on TRNG output obtained from the raw
HPC events followed by the results on the TRNG output in the presence of a
strong adversarial perturbation.

5.1 Results on TRNG Output Obtained from HPC Events

All the experiments are conducted on two different processors as listed in Table 2,
where the access to HPC events is available to users with administrative priv-
ilege. There exists a diverse set of HPC events which can be accessed via the
perf utility. We considered some of the primitive events such as instructions,
cpu-cycles, bus-cycles, cache-misses, branches etc., as the obtained val-
ues for each of these events are high compared to the other events. The perf
statistics are recorded after every time interval of 10 ms for an executable which
runs infinitely over time. The idea behind the selection of events which showed
high values compared to the lower ones is because the ones reporting very high
values can be expected to produce decent randomness in the Least Significant
Bits. On the contrary, events which show low values as output are intuitively
more predictable compared to the earlier case.

The NIST Test suite is observed to work the best for the events instructions
and cpu-cycles in all the setups as mentioned in Table 2. The perf statistic is
recorded for more than 15 hours of execution time, which resulted in altogether
10 sets, each set having more than 5.5×107 performance counter values. For each
set, we selected the last 9 bits from the LSB of each observation and appended
one after another to generate a consolidated binary string. We applied the NIST
Test suite on this consolidated binary sequence. We furnish our results from the
NIST suite for both Intel and AMD processors in Table 3. We can observe from
the table that both the events instructions and cpu-cycles pass all the 15

12 M. Alam et al.

Table 3. NIST test results on TRNG output for different HPC events on two different
processors

NIST test Intel AMD

instructions cpu-cycles cache-misses instructions cpu-cycles cache-misses

Frequency PASS PASS FAIL PASS PASS FAIL

BlockFrequency PASS PASS FAIL PASS PASS FAIL

CumulativeSums PASS PASS FAIL PASS PASS FAIL

Runs PASS PASS FAIL PASS PASS FAIL

LongestRun PASS PASS FAIL PASS PASS FAIL

Rank PASS PASS PASS PASS PASS FAIL

FFT PASS PASS PASS PASS PASS FAIL

NonOverlappingTemplate PASS PASS FAIL PASS PASS FAIL

OverlappingTemplate PASS PASS PASS PASS PASS FAIL

Universal PASS PASS FAIL PASS PASS FAIL

ApproximateEntropy PASS PASS FAIL PASS PASS FAIL

RandomExcursions PASS PASS FAIL PASS PASS FAIL

RandomExcursionsVariant PASS PASS FAIL PASS PASS FAIL

Serial PASS PASS PASS PASS PASS FAIL

LinearComplexity PASS PASS PASS PASS PASS FAIL

tests under the NIST Test suite. We perform the same experimentation on each
of the 10 sets and obtain similar results for all the sets. Table 3 also shows the
NIST Test results for the HPC event cache-misses on both the processors. We
can observe that most of the tests under the NIST Test suite fails for this event,
which aligns with the results shown in Table 1.

In order to further analyze the TRNG property of the events instructions
and cpu-cycles, we applied the AIS 20/31 Test procedures on the consolidated
binary output string as obtained before. The results of the tests for both Intel
and AMD processors are shown in Table 4. We can observe from the table that
all the tests under Procedure A and Procedure B of AIS 20/31 Test suite pass for
both the events instructions and cpu-cycles. The details of the parameters
mentioned under Procedure B can be found in the AIS 20/31 Test Manual.
Hence, with the outcomes of these two test suites, we conclude that the HPC
events which are affected by various hardware interrupt and the background
noises can be effectively used to design a TRNG module.

5.2 Perturbation in TRNG Output in Presence of an Adversary

In the previous subsections, we tested the sources of entropy through normal
process execution framework in a multi-core processor setup, where we show that
the inherent chaos of the various process execution and the unpredictability of
hardware interrupts have an extensive impact on the HPC values. We claim with
suitable results that the values obtained from HPCs qualify for a pure computer
architecture based TRNG. But we are also interested in understanding the effect
on the HPCs in the presence of a powerful adversary.

Let us consider a server setup, where there are multiple users logged into the
same server, and all of the users are having administrative privileges. Thus all of

In-situ Extraction of Randomness from Computer Architecture 13

Table 4. AIS 20/31 test results on TRNG output for different HPC events on two
different processors

AIS 20/31 test
Intel AMD

instructions cpu-cycles instructions cpu-cycles

Procedure A

T0 PASS PASS PASS PASS

T1 PASS PASS PASS PASS

T2 PASS PASS PASS PASS

T3 PASS PASS PASS PASS

T4 PASS PASS PASS PASS

T5 PASS PASS PASS PASS

Procedure B

T6

PASS

d = 0.001990 < 0.025

s = 0.001080 < 0.02

PASS

d = 0.001760 < 0.025

s = 0.000970 < 0.02

PASS

d = 0.001640 < 0.025

s = 0.001120 < 0.02

PASS

d = 0.001790 < 0.025

s = 0.000560 < 0.02

T7

PASS

s1 = 0.008000 < 15.13

s2 = 0.050002 < 15.13

PASS

s1 = 0.079000 < 15.13

s2 = 0.047869 < 15.13

PASS

s1 = 0.010000 < 15.13

s2 = 0.049847 < 15.13

PASS

s1 = 0.047000 < 15.13

s2 = 0.069748 < 15.13

T8
PASS

s = 8.109696 > 7.976

PASS

s = 10.479683 > 7.976

PASS

s = 8.214734 > 7.976

PASS

s = 9.975684 > 7.976

these users can observe perf statistics over executables which run on processor
cores shared across various user processes. Hence it is feasible for an adver-
sary running on the same processor core as the TRNG module to modify these
HPC values in regular time intervals. We performed several experiments where
the adversary process runs on the same processor core as the target core and
uses asynchronous perf ioctl system calls to set the value of the HPC event
instructions to zero periodically. This manipulation by the adversary hampers
the instruction counts observed over a synchronous measurement procedure to a
great extent. The range of the instruction counts varied widely when a concur-
rent adversary module refreshed the instruction counts, which is also expected
if the adversary wishes to modify the counter values instead of resetting it. Any
modification to the counter values by a powerful adversary does have an impact
in changing the overall values of the instruction counts but does not have any
impact on the entropy of the least significant bits of the counter values. The
reason behind it is that of the inherent chaos of a large number of concurrent
process executions and optimization constructs of the Operating System and
their effect on the underlying computer architecture modules. Hence, a powerful
adversary needs to not only model the chaos exhibited by the background con-
current processes but also needs to have complete control of hardware interrupts
appearing in the system, both of which is assumed to be a challenging task to
execute. Without loss of generality, we tested the TRNG sequences generated
by the HPC event instructions on the Intel processor in the presence of this
adversary with both NIST and AIS 20/31 Test suites. The results are furnished
in Table 5, which shows that all the tests under both of these test suites pass with
the modified TRNG sequence. In the next section, we discuss a hybrid TRNG

14 M. Alam et al.

Table 5. NIST and AIS 20/31 test results on TRNG output for the HPC event
instructions on Intel processor after adversarial modification

NIST test AIS 20/31 tests

Frequency PASS Procedure A

BlockFrequency PASS T0 PASS

CumulativeSums PASS T1 PASS

Runs PASS T2 PASS

LongestRun PASS T3 PASS

Rank PASS T4 PASS

FFT PASS T5 PASS

NonOverlappingTemplate PASS Procedure B

OverlappingTemplate PASS T6 PASS

Universal PASS d = 0.003479 < 0.025

ApproximateEntropy PASS s = 0.002547 < 0.02

RandomExcursions PASS T7 PASS

RandomExcursionsVariant PASS s1 = 0.008429 < 15.13

Serial PASS s2 = 0.094531 < 15.13

LinearComplexity PASS T8 PASS

s = 8.047369 > 7.976

construction using a secure hash implementation for enhancing the throughput
of the design to cope up with the latency in accessing HPC events.

6 Hybrid Construction to Enhance Throughput

In this section, we describe an efficient generation of random bit string through
a secured hash implementation using Keccak algorithm [8] followed by its vali-
dation as TRNG using NIST and AIS 20/31 Test suites. The design is simple yet
effective in context to generating a high-speed sequence of random numbers. In
the previous section, we elaborate on how True Random Numbers were obtained
from the Hardware Performance Counter values. The proposed design only con-
siders last 9 bits from the LSB of each cumulative sample of event count for
a periodic interval of 10 ms. This latency of 10 ms of the generation of 9 ran-
dom bits is inappropriate when compared to real-life random number generation
requirements. Thus we bridge the gap with a hybrid model which uses a shift
register, the Keccak algorithm, and a control block by considering the random
bits obtained from HPCs as input. If an application asks for a random number
within the interval of 10 ms, the hybrid model uses its deterministic algorithm
to generate a more extensive number of random bits using the previous inputs.

In-situ Extraction of Randomness from Computer Architecture 15

After 10ms:
1. SR TRNG � 9
2. 9 random bits are added to SR TRNG

3. Count = 0

Request for
New Random
Number

Raw Random
Numbers

Internal Random Numbers

SR TRNG[Count:Count+63]

512-bit Output

64-bit Input

Count++

Count = 0

Keccak Algorithm

Count

Control Block
SR TRNG

71 63 2 1 0

Fig. 5. Hybrid Construction for generating internal random numbers

6.1 Cryptographic Post-processing of the TRNG Output

The hybrid TRNG construction as shown in Fig. 5, takes the output of the
true random number sequence obtained from the HPC events as its input and
generates a sequence of more number of bits using a shift register (SR TRNG),
a Control Block, and Keccak (or SHA-3) Algorithm. The hybrid construction
works with two operational modes as follows:

1. Initialization: The HPC based TRNG construction generates 9 random bits
in every 10 ms interval. The hybrid construction waits for the first 80 ms after
the start of the system. The shift register SR TRNG, which is of length 72 bits,
is filled from the LSB to MSB after each 10 ms in such a way that after first
80 ms the register SR TRNG is filled with 72 bits of a random string. In this
mode a register Count is also set to 0.

2. Generation: If a user needs a true random number from the system, it
requests the Control Block to generate it. The Control Block then takes the
64-bit string SR TRNG[Count:Count+63] and produces a 512-bit string using
SHA-3 algorithm and provides these bits as an output to the request. The
Control Block then increments the value of Count register by 1. After 10 ms
the register SR TRNG is right shifted by 9 bits, 9 random bits obtained from
the new HPC value after the 10 ms are added to the shift register, and the
register Count is again reset to 0.

Any user can obtain a maximum of 9 ∗ 512 = 4608 bits of a random string
within the latency of 10 ms. Hence the maximum throughput of the hybrid design
is 46, 080 bits per second (or 45 Kbps). It is evident that the throughput of
the hybrid design is directly proportional to the length of the shift register
SR TRNG, which can be tuned to support different kinds of applications with
varying requirements of throughput.

6.2 Results on TRNG Output Obtained from Hybrid Construction

The TRNG output obtained from the HPC event values are used as input to the
hybrid construction. As discussed previously, after every 10 ms the shift register

16 M. Alam et al.

Table 6. NIST and AIS 20/31 test results on
TRNG output for the HPC event instructions
on Intel processor obtained from the hybrid con-
struction

NIST test AIS 20/31 tests

Frequency PASS Procedure A

BlockFrequency PASS T0 PASS

CumulativeSums PASS T1 PASS

Runs PASS T2 PASS

LongestRun PASS T3 PASS

Rank PASS T4 PASS

FFT PASS T5 PASS

NonOverlappingTemplate PASS Procedure B

OverlappingTemplate PASS T6 PASS

Universal PASS d = 0.004060 < 0.025

ApproximateEntropy PASS s = 0.005410 < 0.02

RandomExcursions PASS T7 PASS

RandomExcursionsVariant PASS s1 = 0.499285 < 15.13

Serial PASS s2 = 0.612501 < 15.13

LinearComplexity PASS T8 PASS

s = 8.107012 > 7.976

Table 7. NIST test results on the
output of Linux /dev/urandom on
both Intel and AMD Processors

NIST test Intel AMD

Frequency FAIL FAIL

BlockFrequency FAIL FAIL

CumulativeSums FAIL FAIL

Runs FAIL FAIL

LongestRun FAIL FAIL

Rank FAIL FAIL

FFT FAIL FAIL

NonOverlappingTemplate FAIL FAIL

OverlappingTemplate FAIL FAIL

Universal FAIL FAIL

ApproximateEntropy FAIL FAIL

RandomExcursions FAIL FAIL

RandomExcursionsVariant FAIL FAIL

Serial FAIL FAIL

LinearComplexity PASS PASS

SR TRNG holding the recent history of random bits from the TRNG is right shifted
by 9 bits to accommodate fresh random bits. In an interval of 10 ms, we obtain
the upper bound of 4608 bits of random binary string which requires only 72
bits of extra storage. The storage will be marginally higher for higher throughput
design. We also take the output from the hybrid construction and run both the
NIST and AIS 20/31 Tests on the sequences. Without loss of generality, results
for the event instructions on the Intel processor are furnished in Table 6, which
shows that the sequences pass all the tests under both the test suites.

7 Discussion

In this paper, we proposed a TRNG construction using the values obtained
from the HPC events through the Linux based tool perf. However, all the Linux
based systems have special character files /dev/urandom providing an interface
to the kernel’s random number generator, which gathers environmental noise
from device drivers and other sources into an entropy pool. However, several
weaknesses of such random number generation with a detailed cryptographic
analysis is shown in [13]. In order to stress the weakness, we collected “random”
data using /dev/urandom and applied NIST Test suite on the output. The result
of the tests on both Intel and ARM processors are shown in Table 7. We can easily
observe that apart from the LinearComplexity test under the NIST Test suite
the dataset fails to qualify for all other tests. Since the dataset did not qualify
the NIST Test suite, we did not provide any results on AIS 20/31 Test to show
its weakness further. The objective of this discussion is to stress on the fact that

In-situ Extraction of Randomness from Computer Architecture 17

the proposed approach can be used as a TRNG source in modern Linux based
systems as an alternative to apparently weaker random number generator using
/dev/urandom.

8 Conclusion

In this paper, we showed that components of architecture infuse a huge level of
randomness because of the Operating System optimization constructs and unpre-
dictability of different hardware interrupts, which gets manifested through the
Hardware Performance Counters. These counters digitize the randomness of the
architectural constructs and various experimental results using standard NIST,
and AIS 20/31 Test suites show that these counters can indeed be considered as
a TRNG source. We have also shown that the proposed TRNG construction is
robust and fault tolerant in the presence of a powerful adversary. The proposed
TRNG module has a latency of 10 ms because of the time to access HPC events.
Thus to enhance the throughput of the design, we combine the TRNG module
with a simple yet effective Keccak hash implementation and a shift register to
design a hybrid module which also qualifies NIST and AIS 20/31 Tests.

Acknowledgement. The authors thankfully acknowledge the Defence Research
& Development Organisation (DRDO) for funding the project through JCBCAT,
Kolkata, India.

References

1. Alam, M., Bhattacharya, S., Dutta, S., Sinha, S., Mukhopadhyay, D., Chattopad-
hyay, A.: RATAFIA: ransomware analysis using time and frequency informed
autoencoders. In: 2019 IEEE International Symposium on Hardware Oriented
Security and Trust (HOST), pp. 218–227 (2019)

2. Alam, M., Bhattacharya, S., Mukhopadhyay, D., Bhattacharya, S.: Performance
counters to rescue: a machine learning based safeguard against micro-architectural
side-channel-attacks. IACR Cryptology ePrint Archive 2017, 564 (2017)

3. Alam, M., Bhattacharya, S., Sinha, S., Rebeiro, C., Mukhopadhyay, D.: IPA:
an instruction profiling-based micro-architectural side-channel attack on block
ciphers. J. Hardw. Syst. Secur. 3(1), 26–44 (2019)

4. Alam, M., Mukhopadhyay, D.: How secure are deep learning algorithms from side-
channel based reverse engineering? In: Proceedings of the 56th Annual Design
Automation Conference 2019, p. 226. ACM (2019)

5. Alam, M., Mukhopadhyay, D., Kadiyala, S.P., Lam, S.K., Srikanthan, T.: Side-
channel assisted malware classifier with gradient descent correction for embedded
platforms. In: PROOFS@ CHES, pp. 1–15 (2018)

6. Alameldeen, A.R., Wood, D.A.: Variability in architectural simulations of multi-
threaded workloads. In: 2003 Proceedings of the Ninth International Symposium on
High-Performance Computer Architecture, HPCA-9 2003, pp. 7–18. IEEE (2003)

7. Bayon, P., et al.: Contactless electromagnetic active attack on ring oscillator based
true random number generator. In: Schindler, W., Huss, S.A. (eds.) COSADE
2012. LNCS, vol. 7275, pp. 151–166. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29912-4 12

https://doi.org/10.1007/978-3-642-29912-4_12
https://doi.org/10.1007/978-3-642-29912-4_12

18 M. Alam et al.

8. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak. In: Johansson, T.,
Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 313–314. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 19

9. Bhattacharya, S., Mukhopadhyay, D.: Who watches the watchmen?: utilizing per-
formance monitors for compromising keys of RSA on Intel platforms. In: Güneysu,
T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 248–266. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-48324-4 13

10. Chen, W., et al.: A 1.04 µW truly random number generator for Gen2 RFID tag.
In: 2009 IEEE Asian Solid-State Circuits Conference, pp. 117–120. IEEE (2009)

11. Cherkaoui, A., Fischer, V., Fesquet, L., Aubert, A.: A very high speed true random
number generator with entropy assessment. In: Bertoni, G., Coron, J.S. (eds.)
CHES 2013. LNCS, vol. 8086, pp. 179–196. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-40349-1 11

12. Güneysu, T.: True random number generation in block memories of reconfigurable
devices. In: 2010 International Conference on Field-Programmable Technology, pp.
200–207. IEEE (2010)

13. Gutterman, Z., Pinkas, B., Reinman, T.: Analysis of the Linux random number
generator. In: 2006 IEEE Symposium on Security and Privacy (S&P 2006), pp.
15–pp. IEEE (2006)

14. Jun, B., Kocher, P.: The Intel random number generator. White Paper, vol. 27,
pp. 1–8. Cryptography Research Inc. (1999)

15. Killmann, W., Schindler, W.: A proposal for: functionality classes for random num-
ber generators. Ser. BDI, Bonn (2011)

16. Markettos, A.T., Moore, S.W.: The frequency injection attack on ring-oscillator-
based true random number generators. In: Clavier, C., Gaj, K. (eds.) CHES 2009.
LNCS, vol. 5747, pp. 317–331. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-04138-9 23

17. Mc Guire, N., Okech, P., Schiesser, G.: Analysis of inherent randomness of the
Linux kernel. In: Proceedings of the 11th Real-Time Linux Workshop. Citeseer
(2009)

18. Mytkowicz, T., Diwan, A., Hauswirth, M., Sweeney, P.F.: Producing wrong data
without doing anything obviously wrong!. ACM SIGARCH Comput. Archit. News
37(1), 265–276 (2009)

19. Petrie, C.S., Connelly, J.A.: A noise-based IC random number generator for appli-
cations in cryptography. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl.
47(5), 615–621 (2000)

20. Robson, S., Leung, B., Gong, G.: Truly random number generator based on a ring
oscillator utilizing last passage time. IEEE Trans. Circuits Syst. II Express Briefs
61(12), 937–941 (2014)

21. Rožić, V., Yang, B., Mentens, N., Verbauwhede, I.: Canary numbers: design for
light-weight online testability of true random number generators. In: NIST RBG
Workshop, Gaithersburg, MD, USA, vol. 386, p. 2016 (2016). Cryptology ePrint
Archive, Technical report

22. Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E.: A statistical test suite
for random and pseudorandom number generators for cryptographic applications.
Technical report, Booz-Allen and Hamilton Inc., Mclean, VA (2001)

23. Weaver, V.M.: Using dynamic binary instrumentation to create faster, validated,
multi-core simulations. Ph.D. thesis, Cornell University (2010)

24. Weaver, V.M., McKee, S.A.: Can hardware performance counters be trusted? In:
2008 IEEE International Symposium on Workload Characterization, pp. 141–150.
IEEE (2008)

https://doi.org/10.1007/978-3-642-38348-9_19
https://doi.org/10.1007/978-3-662-48324-4_13
https://doi.org/10.1007/978-3-642-40349-1_11
https://doi.org/10.1007/978-3-642-40349-1_11
https://doi.org/10.1007/978-3-642-04138-9_23
https://doi.org/10.1007/978-3-642-04138-9_23

In-situ Extraction of Randomness from Computer Architecture 19

25. Weaver, V.M., Terpstra, D., Moore, S.: Non-determinism and overcount on modern
hardware performance counter implementations. In: 2013 IEEE International Sym-
posium on Performance Analysis of Systems and Software (ISPASS), pp. 215–224.
IEEE (2013)

26. Yang, B., Rožic, V., Grujic, M., Mentens, N., Verbauwhede, I.: ES-TRNG: a high-
throughput, low-area true random number generator based on edge sampling.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018, 267–292 (2018)

27. Yang, B., Rožić, V., Mentens, N., Dehaene, W., Verbauwhede, I.: TOTAL: TRNG
on-the-fly testing for attack detection using lightweight hardware. In: Proceedings
of the 2016 Conference on Design, Automation & Test in Europe, pp. 127–132.
EDA Consortium (2016)

28. Yao, A.C.: Theory and application of trapdoor functions. In: 23rd Annual Sympo-
sium on Foundations of Computer Science (SFCS 1982), pp. 80–91. IEEE (1982)

29. Zaparanuks, D., Jovic, M., Hauswirth, M.: Accuracy of performance counter mea-
surements. In: 2009 IEEE International Symposium on Performance Analysis of
Systems and Software, pp. 23–32. IEEE (2009)

Optimized Threshold Implementations:
Minimizing the Latency of Secure

Cryptographic Accelerators

Dušan Božilov1,2(B), Miroslav Knežević1, and Ventzislav Nikov1

1 NXP Semiconductors, Leuven, Belgium
2 COSIC KU Leuven and imec, Leuven, Belgium

dusan.bozilov@esat.kuleuven.be

Abstract. Threshold implementations have emerged as one of the most
popular masking countermeasures for hardware implementations of cryp-
tographic primitives. In this work, we first provide a generic construction
for d+1 TI sharing which achieves the minimal number of output shares
for any n-input Boolean function of degree t = n − 1 and for any d.
Secondly, we demonstrate the applicability of our results on a first-order
and second-order d + 1 low-latency PRINCE implementation.

Keywords: Threshold implementations · PRINCE · SCA · Masking

1 Introduction

Historically, the field of lightweight cryptography focused on algorithm designs
occupying smallest possible silicon area. Small area results in low power con-
sumption, another equally important optimization target. However, hitting these
two targets degrades performance of lightweight cryptographic primitives, and
for most online applications, they frequently do not meet the requirements. Only
a handful of designs consider latency among their main design goals. PRINCE [6]
and Midori [1] are two prominent examples.

Vulnerability to physical attacks, e.g. side-channel analysis (SCA) is a threat
faced by the field of (lightweight) cryptography since its creation, with signifi-
cant effort being invested in SCA resistant implementation design. To resist an
adversary that has access up to d wires in a circuit [11] the secret value has to
be shared into at least d + 1 random shares using a masking technique, such as
Boolean masking.

Circumventing a masked implementation requires attackers to recover the
secret information from several shares, i.e. they need to employ a d-th order
higher-order attack at least. These attacks are harder to mount due to their sus-
ceptibility to measurement noise. Higher-order SCA protection incurs penalties
in silicon area, execution time, power consumption and the amount of random
bits required for secure execution. Additional cost comes from the increasing
number of shares required. The number of output shares grows exponentially
c© Springer Nature Switzerland AG 2020
S. Beläıd and T. Güneysu (Eds.): CARDIS 2019, LNCS 11833, pp. 20–39, 2020.
https://doi.org/10.1007/978-3-030-42068-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-42068-0_2&domain=pdf
https://doi.org/10.1007/978-3-030-42068-0_2

Optimized Threshold Implementations 21

with the algebraic degree of the function, the number of nonlinear terms the
function has, and the security order that needs to be achieved.

Secure cryptographic circuit design becomes significantly harder once the
requirements have to be met for latency, energy consumption, silicon area or
power. In the context of this paper, and as stated in [12], we consider latency as
the total time needed to execute a single cryptographic operation. Minimizing
latency can be achieved by increasing the frequency the circuit can operate on
or by reducing clock cycle count of the operation. Hence, one design outperforms
another with regards to latency if the product of the number of clock cycles and
the minimal clock period is smaller in that design.

In [14], the authors provide the first example in the literature where latency
and SCA protection are considered as the main design goal. Their results indi-
cate that this is a significantly more difficult problem than designing a coun-
termeasure by optimizing area or the amount of randomness, which are the
typical design criteria addressed by the scientific community. Therefore, design-
ing side-channel countermeasures for low-latency or low-energy implementations
is considered to be an important open problem. The authors of [8] introduced a
generalized concept for low-latency masking that is supposed to be applicable to
any implementation and protection order, however they have applied their con-
cept to designs which are not low-latency and therefore it is difficult to compare
their approach. We have to stress that the goal to achieve minimal latency is not
equivalent to get only execution within less cycles, since at the same time the
complexity of the circuit grows resulting in longer critical path. In other words
one gets a design which can be executed in less cycles but also with lower max
frequency. It has been pointed out in [13] that the generalized concept has to
use another re-sharing technique, since the original one has a flaw for d > 2.

Threshold Implementations (TI) [15] is a provably secure masking scheme
specifically designed to counter side-channel leakage caused by the presence of
glitches in hardware. Later the approach of TI was extended to counter higher-
order (uni-variate) attacks [3]. The theory suggests the usage of at least td + 1
number of input shares in order to make a Boolean function with algebraic degree
t secure against a d-th order side-channel attack. That is the reason why these
TI schemes are often referred to as a td + 1 TI. Consolidated Masking Scheme
(CMS) [17] reduced the required number of input shares needed to resist a d-th
order attack to d + 1, regardless of the algebraic degree of the shared function.
Recall that this is theoretically the lowest bound on the number of input shares
with respect to the order of security d. After that, many schemes using d + 1
shares such as Domain Oriented Masking (DOM) and Unified Masking Approach
(UMA) emerged [9,10], where the essential differences among them is in the
way the refreshing of the output shares is performed. Since the security against
glitches of all these schemes (CMS, DOM, UMA, etc.) relies on the TI principles,
these are also referred as d + 1 TI.

While the established theory of TI guarantees that the number of input shares
linearly grows with the order of protection d, it does not provide efficient means
to keep the exponential explosion of the number of output shares under control.

22 D. Božilov et al.

The state-of-the-art is a lower bound of (d + 1)t given in [17], while in [3] the
authors described a method to obtain a TI-sharing with

(
td+1

t

)
output shares.

The latter work also notes that the number of output shares can sometimes be
reduced by using more than td+1 input shares. Aside from a formula for the lower
bound in [17], there was not much other work of applying d + 1 TI to functions
with higher degree than 2. The only exception is the AES implementations by [19,
20] where d + 1 TI is applied to the inversion of GF (24), which is a function of
algebraic degree 3. However, even for this particular case, the first attempt [20]
resulted in sharing with minimal number of output shares but it did not satisfy
the non-completeness property of TI. Only in the follow-up publication [19] the
sharing was correct and minimal. It has to be noted that for the particular case
of cubic function, it is fairly easy to find the minimal first-order sharing of 8
output shares by exhaustive trial and error approach.

Our Contribution: In this paper we first introduce a method for optimizing
Threshold Implementations. In particular, we provide a constructive solution
for d + 1 TI that achieves the optimal number of output shares for any n-
input Boolean function of degree t = n − 1 for any security order d. Using
this construction we demonstrate how to reduce the latency to achieve faster
TI-protected implementation of PRINCE. Third, we also show the most energy
efficient round-based first-order secure implementation of PRINCE using d + 1
TI sharing.

Finally, we would like to point out that the method of minimizing the number
of output shares is of general interest since it can equally well be applied to any
cryptographic implementation and any design optimisation criteria.

2 Preliminaries

The elements of the finite field Fn
2 are represented with small letters. Subscripts

are used to specify each bit of an element or each coordinate function of a vecto-
rial Boolean function, for example x = (x1, · · · , xn), where xi ∈ F2. Subscripts
are used to represent shares of one-bit variables. The reader should be able to
distinguish from the context if the text is referring to specific bits of unshared
variable or specific shares of a variable. Next we denote Hamming weight, con-
catenation, cyclic right shift, right shift, composition, multiplication and addition
with wt(.), ||,≫,�, ◦, . and + respectively. We will use Algebraic Normal Form
representations of Boolean functions and will refer to the algebraic degree of
such Boolean function.

Two permutations S and S′ are affine equivalent if and only if there exists
two affine permutations C and D satisfying S′ = C ◦S ◦D. We refer to C as the
output and D as the input transformation. Last the TI sharing which is designed
to protect against the d-th order attack we will simply refer to as the d-th order
TI.

Optimized Threshold Implementations 23

2.1 Threshold Implementations

The most important property that ensures security of TI even in the presence of
glitches is non-completeness. The d-th order non-completeness property requires
any combination of up to d component functions to be independent of at least
one input share. When cascading multiple nonlinear functions, the 1-st order
sharing must also satisfy the uniformity : namely a sharing is uniform if and only
if the sharing of the output preserves the distribution of the unshared output.
In other words, for a given unmasked value, all possible combinations of output
shares representing that value are equally likely to happen. For higher-order
sharing and to achieve uniformity one can always apply refreshing of the output
shares.

Given the shares x1, . . . , xn a (first- and second-order) refreshing can be
realized by mapping (x1, . . . , xn) to (y1, . . . , yn) using n random values r1, . . . , rn
as follows:

y1 = x1 + r1 + rn yi = xi + ri−1 + ri, i ∈ {2, . . . , n} (1)

This refreshing scheme is called ring re-masking. An improvement regarding the
number of random bits used when multiplication gate is shared has been achieved
in [10] where the amount of randomness required is halved compared to CMS.
In [9], the authors have shown that the amount of randomness for sharing a
multiplication gate can be further reduced to one third, although this comes
at the significant performance cost. Since our goal is to build low-latency side-
channel secure implementations, we do not take the approach of UMA. Instead,
we choose CMS/DOM for d + 1 TI designs In this paper we will interchangeably
use terms mask refreshing and re-masking.

In order to prevent glitch propagation when cascading nonlinear functions, TI
requires register(s) to be placed between the nonlinear operations. Otherwise,
the non-completeness property may be violated and the leakage of the secret
internal state is likely to be manifested.

When sharing a nonlinear function the number of output shares is typically
larger than the number of input shares. This is likely to occur when applying
td + 1 TI and it always occurs when applying d + 1 TI. In order to minimize
the number of output shares we need to refresh and recombine (compress) some
shares by adding several of them together. To prevent glitches from revealing
unmasked values, decreasing the number of shares can only be done after storing
these output shares into a register. The output shares that are going to be
recombined together still need to be carefully chosen such that they do not
reveal any unmasked value.

While using d + 1 TI the relation between the input shares needs to obey
a stronger requirement, namely shared input variables need to be independent
[17]. This can be achieved in various ways - for example by refreshing some of
the inputs or by using a technique proposed in [10].

24 D. Božilov et al.

2.2 Minimizing Implementation Overheads Using S-box
Decomposition

Similar to other side channel countermeasures, the area overhead of applying TI
increases polynomially with respect to the security order and exponentially with
respect to the algebraic degree of the function we are trying to protect. To keep
the large overheads caused by exponential dependency under control, designers
often use decomposition of the higher degree functions into several lower degree
functions. This approach has originally been demonstrated in [16] where the
authors implemented a TI-protected PRESENT block cipher [5] by decomposing
its cubic S-box into two simpler quadratic S-boxes. Finally, decomposition of all
cubic 4-bit S-boxes into chains of smaller quadratic S-boxes was given in [4],
which eventually enables compact, side-channel secure implementations.

Although a decomposition of nonlinear functions into several simpler func-
tions of smaller algebraic degree is the proper approach to use for area reduction
of the TI-protected implementations, its side-effect is the increased latency of
the S-box evaluation and hence the entire implementation. Recall that the TI
requires registers to be placed between the nonlinear operations in order to pre-
vent the glitch propagation, which in turn increases the latency. We will not use
this approach since our goal is to achieve low-latency.

2.3 A Note on Latency and Energy Efficiency

As already mentioned, most of the effort the scientific community has spent on
designing secure implementations has been focused on reducing area overheads.
Another important metric that had been given lots of attention is the amount
of randomness used in protected implementations. While both of these metrics
are important, performance and energy consumption of secure implementations
have been unjustly treated as less significant. It has been widely accepted that
performance is the metric to sacrifice in order to achieve the lowest possible
gate count. Contrary to this view, most of the practical applications nowadays
require (very) fast execution and it is often latency of the actual implementation
that matters rather than the throughput. Energy consumption is another equally
important metric and, unlike power consumption, it cannot be well controlled
by keeping the area low while sacrificing performance. Optimizing for energy
consumption is in fact one of the most difficult optimization problems in (secure)
circuit design since the perfect balance between the circuit power consumption
and its execution speed needs to be hit.

The absolute latency is directly proportional to the number of clock cycles
a certain operation takes to execute. At the same time, the absolute latency is
inversely proportional to the clock frequency the system is running at. While the
clock frequency is determined by taking into account multiple factors from the
whole system, most important of which is the overall power/energy consump-
tion, the number of clock cycles a certain algorithm takes to execute is under
full control of the designer. Especially when considering embedded devices, the
tendency is to keep the clock frequency as low as we can while still meeting the

Optimized Threshold Implementations 25

performance requirements. That is the reason why minimizing the number of
clock cycles of a certain algorithm is the most important strategy when it comes
to minimizing the overall latency of that algorithm.

Although the majority of results available in public literature deal with area-
efficient hardware architectures, there are still a few notable examples where
the latency reduction has been the main target. In [14], the authors particularly
explore the extreme case of a single clock cycle side-channel secure implemen-
tations of PRINCE and Midori. Moreover, they conclude that designing a low-
latency side-channel secure implementation of cryptographic primitives remains
an open problem.

3 Finding an Efficient Sharing

To find a d + 1 sharing for a quadratic vectorial Boolean function is straight-
forward and especially easy for the functions that have a simple ANF e. g., a
quadratic function with a single second degree term. However, finding an effi-
cient sharing for a vectorial Boolean function of higher algebraic degree with
several high degree terms may not be evident, requiring increasingly more effort
to find the minimal number of the output shares.

Minimizing the number of output shares becomes even harder the higher
the security order d is. In this section we propose methods to deal with this
complexity and we describe an optimal solution for the d + 1 sharing for any
security order d.

To achieve d-th order security using d + 1 sharing for a single term of degree
t, i.e. a product of t variables, one gets exactly (d + 1)t shares for the product
[17].

For non-completeness, in the d + 1 TI sharing each output share should
contain only one share per input variable. In other words if in an output share
there are two shares of an input variable then the d-th order non-completeness
will be violated. We can see this in the d + 1 sharing of Eq. (3), the first output
share only has one input share of x, y and z: x0, y0 and z0, respectively. All
other output shares in Eq. (3) adhere to this rule as well.

Therefore, to ensure non-completeness it is enough to have only one share of
each input variable present in any given output share. We will assume that the
independence of input shares is always satisfied.

Correctness is achieved by verifying that each monomial of a shared term
(product) in the unshared function f must be present in one of the output
shares.

Consider again the function xy + z. One possible first-order d + 1 sharing of
it is given in Eq. (2).

26 D. Božilov et al.

(x, y, z)
(0, 0, 0) o1 = x0y0 + z0

(0, 1, ∗) o2 = x0y1

(1, 0, ∗) o3 = x1y0

(1, 1, 1) o4 = x1y1 + z1 (2)

Shorter representation of the sharing is shown within the brackets in Eq. (2).
Each output share is a row of a table, and each column represents the shares of
different input variable. Entry in row i and column j is the allowed input share
of j-th input variable for i-th output share.

Columns are representing the variables x, y and z respectively. The asterisk
values indicate that we do not care about what input share of z is there, since
the sharing of linear term z is ensured by combining rows 1 and 4 of the table.
This also shows that the table representation of the sharing does not uniquely
determine the exact formula for each output share, and there is certain freedom
in determining where we can insert the input shares.

For example, we can use the table of Eq. (2) to share function x+ y +xy + z.
There are two options for terms x0 and x1, rows 1 and 2, and rows 3 and 4,
respectively. Similarly, y0 can be in either shares 1 or 3, y1 can be in share 2 or
4.

Non-completeness and correctness can be easily argued from the table repre-
sentation. Since for every table row, each column entry in the table can represent
only one input share of that column’s variable, non-completeness is automati-
cally satisfied. For row 3 of the table in Eq. (2) by fixing the entries representing
x to 1 and y to 0 we ensure that only x1 and y0 can occur in that output
sharing. Hence, there is no way that x0 or y1 can be a part of that particular
output share, which is the only way to violate non-completeness in d+1 sharing.
Correctness of the table can be verified by checking correctness for every mono-
mial in unshared function f individually. If the combined columns representing
variables of the monomial contain all possible combinations of share indexes,
sharing is correct, since all terms of shared product for each monomial can be
present in the output sharing. Following example from Eq. (2), for monomial xy
we see that all four combinations {(0, 0), (0, 1), (1, 0), (1, 1)} are present in two
columns representing variables x and y, allowing all the terms of shared product
xy = (x0 +x1)(y0 +y1) = x0y0 +x0y1 +x1y0 +x1y1 to be present in at least one
output share. The same holds for z = z0 + z1 as both combination {(0), (1)} are
present in output table of Eq. (2). Also, the number of rows in correct sharing
table is lower-bounded by the (d + 1)t, when the degree of the function is t.

Now, consider a function xy + xz + yz. One possible first-order d + 1 sharing
and its table is given in Eq. (3). Columns represent x, y, and z, respectively.

Optimized Threshold Implementations 27

(0, 0, 0) o1 = x0y0 + x0z0 + y0z0

(0, 1, 1) o2 = x0y1 + x0z1 + y1z1

(1, 0, 0) o3 = x1y0 + x1z0

(1, 1, 1) o4 = x1y1 + x1z1

(∗, 0, 1) o5 = y0z1

(∗, 1, 0) o6 = y1z0 (3)

The table has 6 rows representing different output shares, which is larger than
theoretically minimal 4 shares. Sharing given by Eq. (3) is also very easily
obtained when we try to derive it by hand. Naive approach is to start by sharing
xy into four shares. Next, we try to incorporate xz into these four shares by
setting all indexes of z to be equal to y. The problem arises when we try to add
sharing of yz. In the existing four output shares we have z and y have same
indexes, thus we are required to add two more shares for terms y0z1 and y1z0.

Further on, we will show that for any function with n input variables of
degree t = n − 1 it is possible to have a d + 1 sharing with minimal (d + 1)t

shares.

Definition 1. Table with n columns representing output sharing of a function of
degree t with n input variables is referred to as a Dn-table. The number of rows
of the table is the number of output shares for a given sharing. If the output
sharing is correct then Dn-table is t-degree correct Dn-table. t-degree correct
Dn-table with minimal numbers of rows is called an optimal Dn-table. Optimal
Dn-table that has (d + 1)t rows is called ideal Dn-table, denoted Dn

t -table.

For t = n ideal Dn
n-table is just a table that contain all different (d + 1)t

indexes of input variables in the terms of shared product that occur when sharing
a function of degree t. We can also consider each row of a Dn-table as an ordered
tuple of size n. i-th value in a such tuple represents the i-th input variable,
and it’s value is the allowed input share of that variable in the output share
represented by the tuple. All tuple entries have values from the set {0, . . . , d}.

Definition 2. Dt-table D1 is t-subtable of Dn-table D2 for given t columns if
D2 reduced to these t columns is equal to D1.

We have shown with the sharing in Eq. (2) how one can check the correctness
of the table. Now we generalize this by showing how to check if a given Dn-
table can be used for sharing of any function of degree t. It is sufficient to check
correctness only for the terms of degree t, since if a product of t variables can
be shared with a number of output shares, any product of a subset of these t
variables can also be shared using the same output shares.

It is easy to see that a Dn-table D can be used to share any function of degree
t if and only if for any combination of t columns, Dt-table formed by chosen t
columns contains all possible (d+1)t ordered tuples of size t. In, other words, t-
subtable of D for any t columns is t-degree correct Dt-table. This comes from the
fact that Dt-table that contains all possible (d + 1)t ordered t-tuples represents

28 D. Božilov et al.

Table 1. D3-table and its 3 2-subtables.

xyz xy xz yz

000 00 00 00

011 01 01 11

100 10 10 00

111 11 11 11

001 00 01 01

110 11 10 10

a correct sharing for functions of degree t. If this is true for any combination of t
columns of D we can correctly share any combination of products of size t from
n input variables.

An example is given in Table 1 where D3-table on the left can be used for
first-order sharing of any function of degree 2 since all 3 D2-tables obtained from
it have all 4 possible ordered 2-tuples (0, 0), (0, 1), (1, 0) and (1, 1) as at least one
of its rows. Next we show how one can construct ideal Dn-table for any function
for given n, d and t = n−1. To recap, we first build a (d+1)t×n table D, where
every row is a tuple of indexes (in a single row no variable index is allowed to
be missing and, naturally, no variable index is duplicated) and t-subtable of D
for any t columns is a t-degree correct Dt-table. Since t = n − 1 we can consider
t-subtable generation as one column removal from D. Such a Dn-table D is then
equivalent to a sharing which fulfills the correctness and the non-completeness
properties of TI. Constructing an ideal Dn

n-table is trivial by enumerating all
ordered index n-tuples. The number of rows in it is (d + 1)n.

Showing that a particular Dn-table with (d + 1)n−1 rows is a Dn
n−1-table

becomes equivalent to proving that removal of any single column (restriction to
n−1 columns or, equivalently, variables) from the Dn-table yields a Dn−1

n−1-table.
Alternatively, any (n − 1)-subtable of Dn

n−1-table is a Dn−1
n−1-table.

Here we will show how to build the Dn
t -table for the case when t = n − 1.

For any given Dn
n−1-table and security order d we will prove the existence of

other d Dn
n−1-tables such that no n-tuple exists in more than one table. In

other words, no two tables contain rows that are equal. We call such d + 1
Dn

n−1-tables conjugate tables, and the sharings produced from them conjugate
sharings. Having all rows different implies that these d + 1 Dn

n−1-tables cover
(d + 1)(d + 1)n−1 = (d + 1)n index n-tuples, i.e. all possible index n-tuples.
Therefore, these d + 1 Dn

n−1-tables together form a Dn
n-table.

We build the d+1 conjugate Dn
n−1-tables inductively. For a given d we build

d + 1 conjugate D2
1-tables, then assuming d + 1 conjugate Dn

n−1-tables exist we
construct d + 1 conjugate Dn+1

n -tables.
The initial step is simple: D2

1 has two columns (for the variables x and y) and
in each row i (enumerated from 0 to d) of each conjugate table j (enumerated
from 0 to d) we set the value in the first column to be i, and the value of the
second column to be (i + j) mod (d + 1), hence obtaining the (d + 1) conjugate

Optimized Threshold Implementations 29

Fig. 1. Algorithm for optimal d + 1 sharing

Fig. 2. Generating conjugate D3
2-tables from D2

1-tables.

D-tables with d + 1 rows. Indeed, both columns of any of the constructed D2
1-

tables contain all values between 0 and d, so by removing either column we
always obtain a correct D1

1-table. Also, this construction ensures that second
column never has the same index value in one row for different tables, therefore
no two rows for different tables are the same, ensuring that formed tables are
indeed conjugate.

Induction step - assume we have d + 1 conjugate Dn
n−1-tables. Using them

we are now going to build d + 1 conjugate Dn+1
n -tables as described in Fig. 1.

The example of the iterative step from Algorithm 1 is given in Fig. 2.

Lemma 1. Given d + 1 conjugate Dn
n−1-tables the algorithm described in Fig. 1

constructs d + 1 conjugate Dn+1
n -tables.

Proof. First, let us show that the constructed d + 1 Dn+1
n -tables are conjugate,

i.e. there is no (n + 1)-tuple which belongs to more than one of them. Let us
assume there exists an (n + 1)-tuple which belongs to two Dn+1

n -tables. This
implies the existence of an n-tuple which belongs to two of the initial d + 1
Dn

n−1-tables, contradicting the fact that these initial tables are conjugate.
Finally, any restriction to a particular set of columns has to have all the

combinations of index n-tuples, i.e. the correctness property. In fact, it is suf-
ficient to prove that any set of n columns in any of the new conjugate tables
contains all possible n-tuples. Indeed, if we remove the last column in any of the

30 D. Božilov et al.

so constructed tables we get the union of the original d+1 Dn
n−1-tables forming

one Dn
n-table. By definition Dn

n-table satisfies this property. Lastly, we are left
with the other case of removing one of the first n columns, which results in a
table of dimensions (d + 1)n × n. If we prove there are no duplicates among the
(d + 1)n tuples within this table, all combinations will be the table, making it
again a Dn

n-table. Consider two n-tuples. If they are equal their last indexes are
also equal. By Algorithm 1 design, equality of the last indexes (these are in the
(n+1)-st column) implies that the two (n−1)-tuples belong to one of the start-
ing conjugate Dn

n−1-tables, i.e. they can’t be in different conjugate Dn
n−1-tables.

However, for the (n − 1)-tuples which belong to one of the starting Dn
n−1-tables

by assumption is known that there are no duplications and hence the considered
two (n − 1)-tuples cannot be equal. ��
Theorem 1. Any of the constructed conjugate Dn

n−1-tables by algorithm in
Fig. 1 provides optimal sharing for given n, d and t = n − 1.

Proof. The algorithm is applied inductively for the number of variables from 2
till n. Since one Dn

n−1-table contains exactly (d + 1)n−1 rows, we conclude it is
optimal because this is the theoretical lower bound for the number of output
shares for the case t = n − 1. ��

Recall that aside from a formula for the lower bound in [17], there was not
much other work of applying d + 1 TI to functions with higher degree than 2
with the only exception: the AES implementations by [19,20] where d+1 TI was
applied to the inversion of GF (24), which function has algebraic degree 3. When
we tried to obtain by hand d + 1 TI for PRINCE S-box of algebraic degree 3 we
only managed to find output sharing for the most significant bit of the S-box
with 12 and 44 output shares, for the first-order and the second-order d + 1 TI
prior to the discovery of the Algorithm 1. Optimal solution is 8 and 27 output
shares for these two cases, respectively, which is easily found using approach
described here.

Another benefit of using algorithmic solution is it can easily be automated
using a computer, removing the possibility of human error that is likely to occur,
the more complex the ANF becomes.

It is well known that a balanced Boolean function of n variables has a degree
at most n−1. Therefore all n×n S-boxes which are permutations have a degree
of at most n − 1. Indeed nearly all bijective S-boxes used in symmetric ciphers
are chosen to have a maximum degree of n−1. In particular, inversion in the field
is always has maximum degree of n−1, most notable example of its usage being
AES S-box. In the particular case of AES inversion, applying the algorithm
shown here will produce the minimal number of shares, which is 128. This is
however too large for any practical application.

Most notable exception where low-degree function is used is Keccak’s [2] χ-
function which is a 5 × 5 S-box of degree 2. A sharing with 8 shares can be
easily found for χ by hand while a conjugate D5-table will have 16 entries which
corresponds to the optimal sharing for degree 4. Hence, the method presented in
this section is not optimal when the degree of the function is lower than n − 1.

Optimized Threshold Implementations 31

Fig. 3. PRINCE cipher.

Therefore, finding the optimal sharing for functions with a degree lower than
n − 1 remains an open problem.

4 Hardware Implementation

As a proof of concept we apply the optimal d + 1 TI to PRINCE [6], a block
cipher designed for low-latency hardware implementations. PRINCE block size is
64 bits, with a 128-bit key, used to derived 3 64-bit internally used keys k0, k

′
0 and

k1. Figure 3 shows the internal structure of the cipher consisting of 12 rounds.
PRINCE round consists of 4-bit S-box operation, linear layer realized as

matrix multiplication, and round constant addition. The S-box look-up table
is S(x) = [B,F, 3, 2, A,C, 9, 1, 6, 7, 8, 0, E, 5,D, 4]. The algebraic degree of the
S-box is 3, and S-box is affine equivalent to its inverse S−1 = Aio ◦ S ◦ Aio. The
Aio look-up table is Aio(x) = [5, 7, 6, 4, F,D,C,E, 1, 3, 2, 0, B, 9, 8, A].

To implement the first-order secure masking of PRINCE S-box, with d = 1,
we use the algorithm described in Sect. 3 to obtain a conjugate D4

3-table. This
table represents an optimal solution for 2 input shares with 8 output shares for
each input/output bit of the S-box. Recall that the PRINCE S-box is a 4×4-bit
S-box and that it has a degree 3.

The optimal sharing is given below in Eq. (4) as conjugate D4
3-table. The

exact sharing for four bits of PRINCE S-box is given with Eqs. (5), (6), (7)
and (8), respectively.

(x, y, z, w) (1, 0, 1, 0) (0, 1, 0, 1)
(1, 1, 0, 0) (0, 0, 1, 1) (1, 0, 0, 1)
(0, 1, 1, 0) (1, 1, 1, 1) (0, 0, 0, 0) (4)

As an example consider the first coordinate functions of PRINCE. For the first
bit we have o1 = 1 + zw + y + yz + wzy + x + xw + xy with optimal sharing:

32 D. Božilov et al.

o11 = 1 + z0w0 + y0 + y0z0 + w0z0y0 + x0 + x0w0 + x0y0

o12 = w0z0y1 + x1y1

o13 = z1w0 + y1z1 + w0z1y1

o14 = w0z1y0 + x1w0

o15 = z1w1 + y0z1 + w1z1y0 + x0w1

o16 = w1z1y1

o17 = z0w1 + y1 + y1z0 + w1z0y1 + x0y1

o18 = w1z0y0 + x1 + x1w1 + x1y0 (5)

Continuing for the second bit’s algebraic function o2 = 1+yw+yz+xz+yzw+xyz
optimal sharing is:

o21 = 1 + y0w0 + y0z0 + x0z0 + y0z0w0 + x0y0z0

o22 = y1z0w0 + x1y1z0

o23 = y1w0 + y1z1 + y1z1w0 + x0y1z1

o24 = x1z1 + y0z1w0 + x1y0z1

o25 = y0w1 + y0z1 + x0z1 + y0z1w1 + x0y0z1

o26 = y1z1w1 + x1y1z1

o27 = y1w1 + y1z0 + y1z0w1 + x0y1z0

o28 = x1z0 + y0z0w1 + x1y0z0 (6)

Optimal sharing for the third bit with algebraic function o3 = w + x + zw +
xw + xz + xzw + xyz is:

o31 = w0 + x0 + z0w0 + x0w0 + x0z0 + x0z0w0 + x0y0z0

o32 = x1z0w0 + x1y1z0

o33 = z1w0 + x0z1w0 + x0y1z1

o34 = x1w0 + x1z1 + x1z1w0 + x1y0z1

o35 = w1 + z1w1 + x0w1 + x0z1 + x0z1w1 + x0y0z1

o36 = x1z1w1 + x1y1z1

o37 = z0w1 + x0z0w1 + x0y1z0

o38 = x1 + x1w1 + x1z1 + x1z0w1 + x1y0z0 (7)

Finally, for the fourth bit of PRINCE S-box and its function o4 = 1 + z + x +
yz + xy + yzw + xzw + xyw optimal sharing is given with:

Optimized Threshold Implementations 33

o41 = 1 + z0 + x0 + y0z0 + x0y0 + y0z0w0 + x0z0w0 + x0y0w0

o42 = x1y1 + y1z0w0 + x1z0w0 + x1y1w0

o43 = y1z1 + y1z1w0 + x0z1w0 + x0y1w0

o44 = y0z1w0 + x1z1w0 + x1y0w0

o45 = z1 + y0z1 + y0z1w1 + x0z1w1 + x0y0w1

o46 = y1z1w1 + x1z1w1 + x1y1w1

o47 = y1z0 + x0y1 + y1z0w1 + x0z0w1 + x0y1w1

o48 = x1 + x1y0 + y0z0w1 + x1z0w1 + x1y0w1 (8)

The sharing of the cubic terms is unique while multiple options exist for the
sharings of the lower degree terms and that is why one needs to avoid repetitions.

The resharing of the first-order secure implementation is performed accord-
ing to the DOM [10] rules, in which complementary domains are remasked using
the same randomness, with no remasking for output shares containing only one
domain. It can be noticed from Eq. 4 that output shares o1, o2, o3, o4 have com-
plementary domains of shares o6, o5, o8, o7, respectively. If we consider 8 output
shares of 4-bit length, remasking is given with Eq. 9, where oi, roi are S-box out-
puts output before and after remasking, and ri are random 4-bit values, requir-
ing 12 random bits. Recombination is achieved by adding shares ro1, ro2, ro3, ro4
into one, and ro5, ro6, ro7, ro8 into another recombined share.

ro1 = o1 ro2 = o2 + r1 ro3 = o3 + r2 ro4 = o4 + r3

ro5 = o5 + r1 ro6 = o6 ro7 = o7 + r3 ro8 = o8 + r2 (9)

If we inspect the PRINCE round structure we can further reduce the first-
order randomness requirement. The mixing layer consists of matrices M , M ′

or M−1, while M can be derived from M ′ using nibble shuffling SR, i.e. M =
SR ◦M ′. The 64×64 involution matrix M ′ independently affects 16-bit parts of
its input, and can be viewed as 4 independent 16×16 matrices (M0,M1,M1,M0).
PRINCE state composed of 16 nibbles enumerated from 0 to 15 can be separated
into 4 groups: (0, 1, 2, 3), (4, 5, 6, 7), (8, 9, 10, 11) and (12, 13, 14, 15). Randomness
for the S-boxes can be reused between groups, as the nibble shuffling

SR : (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15) → (0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12, 1, 6, 11)

SR
−1

: (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15) → (0, 13, 10, 7, 4, 1, 14, 11, 8, 5, 2, 15, 12, 9, 6, 3)

together with M ′ operation does not cause mixing of the S-box outputs obtained
using the same randomness. Additionally, assuming probing model case, the
first-order attacker can observe one share out of two at a given cycle, disallowing
him to exploit the reuse of randomness. Hence, this structure in round-based
implementation reduces the amount of randomness by a factor of four.

The second-order implementation of the PRINCE S-box is again obtained
using algorithm explained in Sect. 3. It provides a sharing with 3 input shares

34 D. Božilov et al.

Fig. 4. Protected PRINCE round based architecture with one cycle per round execu-
tion.

and 27 output shares. The second order D4
3-table is given in Eq. 10. Due to space

requirements we omit the exact sharing, but a correct sharing can be derived
from Eq. 10. For the second-order implementation ring-resharing technique is
used, requiring 27 random bits per S-box output bit, or 108 random bits per
S-box.

(x, y, z, w) (0, 0, 1, 1) (0, 0, 2, 2) (2, 0, 2, 1) (2, 0, 0, 2)
(1, 1, 0, 0) (1, 1, 1, 1) (1, 1, 2, 2) (0, 2, 0, 1) (0, 2, 1, 2)
(2, 2, 0, 0) (2, 2, 1, 1) (2, 2, 2, 2) (1, 0, 0, 1) (1, 0, 1, 2)
(0, 1, 1, 0) (0, 1, 2, 1) (0, 1, 0, 2) (2, 1, 0, 1) (2, 1, 1, 2)
(1, 2, 1, 0) (1, 2, 2, 1) (1, 2, 0, 2) (2, 0, 1, 0) (0, 2, 2, 0)
(1, 0, 2, 0) (2, 1, 2, 0) (0, 0, 0, 0)

(10)

Hardware architecture of two d + 1 TI PRINCE implementations without
S-box decomposition is shown in Fig. 4. Control for the two implementations
is exactly the same, while datapath only differs in the numbers of shares that
are used. First-order implementation has 2 shares throughout, except for the
S-box output, that has 8 shares, recombined back to two after the register stage.
Second-order implementation has 3 shares, with S-box output having 27 shares.

Optimized Threshold Implementations 35

Table 2. Area/power/energy/randomness/latency/max frequency comparison

PRINCE Area

@10MHz

(GE)

Power

@10MHz

(uW)

Energy

@10MHz

(pJ)

Rand/Cycle

(bits)

Clock #

(cycle)

fmax

(MHz)

Latency

@ fmax

(ns)

Unprotected 3589 59 71 0 12 393 30.5

[14] 1st (td + 1)

with S-box decomp.

9484 66 264 0 40 432 92.6

1st (d + 1) w/o

S-box decomp.

11596 100 241 48 24 376 63.8

2nd (d + 1) w/o

S-box decomp.

32444 374 898 1728 24 385 62.4

Fig. 5. Example power trace waveform used to perform the t-test on first-order
PRINCE.

4.1 Synthesis Results and Side-Channel Evaluation

We have synthesized our designs as well as the previously existing TI PRINCE
implementation [14] using TSMC 90 nm library using the typical case of +25 ◦C.
Synthesis tool is Cadence Encounter RTL Compiler version 14.20-s034. Produc-
ing the smallest possible implementation was achieved by setting the frequency
well below the critical path, at 10 MHz. The power consumption at 10 MHz is
averaged from 100 random inputs simulations of a back-annotated post-synthesis
netlist, obtained using Cadence Incisive Enterprise Simulator version 15.10.006.
Energy is given for one encryption operation, assuming average power consump-
tion. Table 2 shows area, power and energy consumption, the number of random
bits required per clock cycle and maximum frequency for 3 hardware imple-
mentations, one given by Moradi [14], and two that newly proposed ones. The
authors of [14] provided us with their implementations, allowing for a fair com-
parison of three designs using the same compiler and library, as the synthesis
results for design presented in [14] differ from the original paper.

At the maximum frequency, our first-order design surpasses previous state
of the art by reducing latency by almost a third. The energy consumption of
our first-order at the frequency of 10 MHz is lower by almost 10%. On the other
hand, the implementation from [14] beats our version with respect to area, power
consumption, maximal running frequency and randomness required. Potentially,
it also can achieve higher throughput, with small modifications to the finite
state machine, so it processes three messages at once. Given that our goal was
to minimize implementation latency and energy, these results are not surprising.

36 D. Božilov et al.

Fig. 6. Leakage detection test results on first-order PRINCE. PRNG off (left) and
PRNG on (right). First- (top) and second- (bottom) order t-test results.

We first provide evaluation of the first-order PRINCE without S-box decom-
position using optimal d + 1 sharing which design was programmed onto a Xil-
inx Spartan-6 FPGA. The platform used is a Sakura-G board. The design is
separated into two FPGAs to minimize the noise: one performs the PRINCE
encryption and second FPGA handles the I/O and the start signal. Our core
runs at 3.072 MHz while the sampling rate is 500 million samples per second.
The power waveform is given in Fig. 5.

We apply a non-specific leakage detection test [7] on the input plaintext
following the standard methodology [18], and resulting t-test graphs are shown
in the Fig. 6. First, we turn PRNG off to verify validity of the setup and leakage
is detected with 1 million traces. The left hand side in Fig. 6 demonstrates a
strong first-order leakage during the loading of the plaintext and the key. This
can be attributed to one share of both the key and the plaintext being equal to
the unshared value, while the other share is zero. Another strong peak is during
the first S-box execution as there is still high correlation to the input. Leakage
is present in later rounds as well due to lack of additional randomness, although
it becomes smaller. Second-order leakage can also be observed when the masks
are off. When PRNG is on no first-order leakage is detected after 100 million
traces, while second-order leakage is observed as expected.

Due to size and randomness needed, the second-order design did not fit
onto the same FPGA board. Instead, the design is tested against simulated
power traces. We measured the estimated power consumption by running a
post-synthesis simulation with back-annotated netlist. Input-to-output timing
delays and current consumption of every gate in the netlist were taken into
account and modeled as specified by the technology liberty timing file. In our
simulations, one clock cycle is represented with 50 sample points and we cover
first seven rounds of the execution. One million traces have been obtained with
PRNG switched on, and two thousand traces with PRNG off. Simulated traces
are perfectly aligned, they do not contain any measurement noise, and numerical

Optimized Threshold Implementations 37

Fig. 7. Leakage detection test results on second-order PRINCE. PRNG off (left) and
PRNG on (right). First, second and third-order (top - middle - down) t-test results.

noise of the samples is minimized by having a precision of 32-bit floating point
representation compared to 8-bit obtained from the FPGA setup.

The second-order implementation t-test results are shown in Fig. 7. We notice
that with PRNG off, leakage occurs in all orders with only two thousand traces.
With PRNG on, the design is leakage free in first and second-order, while several
points leak in the third order. More precisely, third order leakage occurs during
writing of the S-Box output to the register every other cycles.

5 Conclusion and Outlook

In this paper we provided an algorithm which produces a d + 1 TI sharing
with the optimal (minimum) number of output shares for any n-input Boolean
function of degree t = n − 1 and for any security order d. We highlight that this
contribution is of general interest since the method of minimizing the number of
output shares can be applied to any cryptographic design.

Second, we reported, evaluated and compared hardware figures for our pro-
posed TI-protected round-based version of PRINCE cipher, with the previous
state of the art. The comparison showed that our designs have more than 30 %
lower latency compared to the architecture presented in [14] while the energy
consumption is lower by about 10 %. It should, however, be noted that the design
presented in [14] still has the highest power efficiency reported in the literature.

We would like to summarize that the generic algorithm for achieving minimal
number of output shares is necessary, but not sufficient condition when design-
ing for low-latency and low-energy applications. Applying TI on higher degree
functions reduces the total clock count, in effect reducing latency and energy
consumed during one operation. However, due to increased circuit complexity it
increases the area and the critical path of the design, which have negative impact
on energy consumption and latency, respectively. A circuit designer should take

38 D. Božilov et al.

all these parameters into consideration, since the optimal design choice heavily
depends on the algorithm in question, alongside the constraints imposed upon
the design. In the case of PRINCE block cipher, our work shows that for achiev-
ing low-latency it is more efficient not to perform S-box decomposition.

As discussed in [14], designing a low-latency side-channel protection in gen-
eral, and for PRINCE block cipher in particular, has been identified as an open
problem. In this work we have shown the fastest and the most energy efficient
round based first-order secure implementation of PRINCE using d+1 TI sharing.

Acknowledgements. We would like to thank Amir Moradi and Tobias Schneider for
providing us with HDL code of PRINCE TI presented in [14]. Also we would like to
thank the reviewers for helping us to improve the paper.

References

1. Banik, S., et al.: Midori: a block cipher for low energy. In: Iwata, T., Cheon, J.H.
(eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 411–436. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-48800-3 17

2. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: The Keccak reference, January
2011. http://keccak.noekeon.org/

3. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Higher-order threshold
implementations. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol.
8874, pp. 326–343. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-45608-8 18

4. Bilgin, B., Nikova, S., Nikov, V., Rijmen, V., Stütz, G.: Threshold implementations
of all 3 × 3 and 4 × 4 S-boxes. In: Prouff, E., Schaumont, P. (eds.) CHES 2012.
LNCS, vol. 7428, pp. 76–91. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-33027-8 5

5. Bogdanov, A., et al.: PRESENT: an ultra-lightweight block cipher. In: Paillier,
P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2 31

6. Borghoff, J., et al.: PRINCE – a low-latency block cipher for pervasive computing
applications. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp.
208–225. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-
4 14

7. Cooper, J., DeMulder, E., Goodwill, G., Jaffe, J., Kenworthy, G., Rohatgi, P.: Test
Vector Leakage Assessment (TVLA) methodology in practice. In: International
Cryptographic Module Conference (2013)

8. Groß, H., Iusupov, R., Bloem, R.: Generic low-latency masking in hardware. IACR
Trans. Cryptogr. Hardw. Embed. Syst.-TCHES 2, 1–21 (2018)

9. Gross, H., Mangard, S.: Reconciling d + 1 masking in hardware and software.
In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 115–136.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4 6

10. Groß, H., Mangard, S., Korak, T.: Domain-oriented masking: compact masked
hardware implementations with arbitrary protection order. In: Proceedings of the
ACM Workshop on Theory of Implementation Security, TIS@CCS 2016, Vienna,
Austria, p. 3, October 2016

https://doi.org/10.1007/978-3-662-48800-3_17
http://keccak.noekeon.org/
https://doi.org/10.1007/978-3-662-45608-8_18
https://doi.org/10.1007/978-3-662-45608-8_18
https://doi.org/10.1007/978-3-642-33027-8_5
https://doi.org/10.1007/978-3-642-33027-8_5
https://doi.org/10.1007/978-3-540-74735-2_31
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/978-3-319-66787-4_6

Optimized Threshold Implementations 39

11. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 27

12. Knežević, M., Nikov, V., Rombouts, P.: Low-latency encryption – is “Lightweight
= Light + Wait”? In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol.
7428, pp. 426–446. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-33027-8 25

13. Moos, T., Moradi, A., Schneider, T., Standaert, F.X.: Glitch-resistant masking
revisited - or why proofs in the robust probing model are needed. IACR Trans.
Cryptogr. Hardw. Embed. Syst.-TCHES 2, 256–292 (2019)

14. Moradi, A., Schneider, T.: Side-channel analysis protection and low-latency in
action. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp.
517–547. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-
6 19

15. Nikova, S., Rechberger, C., Rijmen, V.: Threshold Implementations against side-
channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006.
LNCS, vol. 4307, pp. 529–545. Springer, Heidelberg (2006). https://doi.org/10.
1007/11935308 38

16. Poschmann, A., Moradi, A., Khoo, K., Lim, C.W., Wang, H., Ling, S.: Side-channel
resistant crypto for less than 2,300 GE. J. Cryptol. 24(2), 322–345 (2011). https://
doi.org/10.1007/s00145-010-9086-6

17. Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.: Consolidating
masking schemes. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS,
vol. 9215, pp. 764–783. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-47989-6 37

18. Reparaz, O., Gierlichs, B., Verbauwhede, I.: Fast leakage assessment. In: Fischer,
W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 387–399. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66787-4 19

19. Ueno, R., Homma, N., Aoki, T.: A systematic design of tamper-resistant Galois-
field arithmetic circuits based on threshold implementation with (d + 1) input
shares. In: 2017 IEEE 47th International Symposium on Multiple-Valued Logic
(ISMVL), pp. 136–141 (2017)

20. Ueno, R., Homma, N., Aoki, T.: Toward more efficient DPA-resistant AES
hardware architecture based on threshold implementation. In: Guilley, S. (ed.)
COSADE 2017. LNCS, vol. 10348, pp. 50–64. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-64647-3 4

https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-642-33027-8_25
https://doi.org/10.1007/978-3-642-33027-8_25
https://doi.org/10.1007/978-3-662-53887-6_19
https://doi.org/10.1007/978-3-662-53887-6_19
https://doi.org/10.1007/11935308_38
https://doi.org/10.1007/11935308_38
https://doi.org/10.1007/s00145-010-9086-6
https://doi.org/10.1007/s00145-010-9086-6
https://doi.org/10.1007/978-3-662-47989-6_37
https://doi.org/10.1007/978-3-662-47989-6_37
https://doi.org/10.1007/978-3-319-66787-4_19
https://doi.org/10.1007/978-3-319-64647-3_4
https://doi.org/10.1007/978-3-319-64647-3_4

Breaking the Lightweight Secure PUF:
Understanding the Relation of Input

Transformations and Machine Learning
Resistance

Nils Wisiol1,3(B) , Georg T. Becker2, Marian Margraf3,
Tudor A. A. Soroceanu3, Johannes Tobisch4, and Benjamin Zengin5

1 Chair for Security in Telecommunications of Technische Universität Berlin,
Berlin, Germany

nils.wisiol@tu-berlin.de
2 Digital Society Institute at the ESMT Berlin, Berlin, Germany

georg.becker@esmt.org
3 Institute of Computer Science of Freie Universität Berlin, Berlin, Germany

{nils.wisiol,marian.margraf,tudor.soroceanu}@fu-berlin.de
4 Horst Görtz Institute for IT-Security at Ruhr-Universität Bochum,

Bochum, Germany
johannes.tobisch@ruhr-uni-bochum.de

5 Fraunhofer Institute for Applied and Integrated Security at Berlin, Berlin, Germany
benjamin.zengin@aisec.fraunhofer.de

Abstract. Physical Unclonable Functions (PUFs) and, in particular,
strong PUFs such as the XOR Arbiter PUF have gained much research
interest as an authentication mechanism for embedded systems. One of
the biggest problems of strong PUFs is their vulnerability to so called
machine learning attacks. In this paper, we take a closer look at one
aspect of machine learning attacks that has not yet gained the needed
attention: the generation of the sub-challenges in XOR Arbiter PUFs fed
to the individual Arbiter PUFs. Specifically, we look at one of the most
popular ways to generate sub-challenges based on a combination of per-
mutations and XORs as it has been described for the “Lightweight Secure
PUF”. Previous research suggested that using such a sub-challenge gen-
eration increases the machine learning resistance significantly.

Our contribution in the field of sub-challenge generation is three-
fold: First, drastically improving attack results by Rührmair et al., we
describe a novel attack that can break the Lightweight Secure PUF in
time roughly equivalent to an XOR Arbiter PUF without transformation
of the challenge input. Second, we give a mathematical model that gives
insight into the weakness of the Lightweight Secure PUF and provides a
way to study generation of sub-challenges in general. Third, we propose
a new, efficient, and cost-effective way for sub-challenge generation that
mitigates the attack strategy we used and outperforms the Lightweight
Secure PUF in both machine learning resistance and resource overhead.

Georg T. Becker is being supported by Rheinmetall.

c© Springer Nature Switzerland AG 2020
S. Beläıd and T. Güneysu (Eds.): CARDIS 2019, LNCS 11833, pp. 40–54, 2020.
https://doi.org/10.1007/978-3-030-42068-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-42068-0_3&domain=pdf
http://orcid.org/0000-0003-2606-614X
https://doi.org/10.1007/978-3-030-42068-0_3

Breaking Lightweight Secure PUF 41

1 Introduction

Physical Unclonable Functions (PUFs) have gained much research attention
since their invention in 2002. PUFs use the intrinsic process variations of each
chip to build an unclonable function that is device specific. PUFs with an expo-
nential challenge space, often denoted as Strong PUFs, are particularly well
suited for lightweight authentication scenarios. The most prominent PUF with
an exponential challenge space is the XOR Arbiter PUF [5,16]. Using strong
PUFs in a challenge-and-response protocol remains challenging due to machine
learning attacks [10]. In these attacks, challenge-and-response pairs are collected
and machine learning algorithms are used to approximate the PUF using a soft-
ware model. While these attacks are very efficient small XOR Arbiter PUFs,
the machine learning complexity increases exponentially with the number of
XORs [10,11,18]. However, Becker [1] showed how reliability information can be
used for a machine learning attack with only a linear increase complexity.

To determine the number of allowed authentications before a design is known
to be insecure, it is crucial to fully understand the machine learning resistance of
the underlying PUF construction. In this paper, we will take a closer look at an
aspect that has not yet gained the required attention: the input transformation
generating the sub-challenges. Rührmair et al. [10] have shown that attacking
an XOR Arbiter PUF in which each arbiter chain has the same challenge is
easier than attacking one in which each arbiter chain gets a different challenge.
This was later verified by other researchers [18]. The results of [10] are based
on the input transformation by Majzoobi et al. [7] for their Lightweight PUF of
2008, which has gained some research attention [8,9,23]. Yet, in how far such
transformations are actually optimal to counter current state-of-the-art machine
learning attacks has not been studied.

1.1 Main Contribution

In this paper we perform a thorough analysis of the impact of input transforma-
tions on state-of-the-art machine learning attacks. Our analysis shows that one
has to carefully choose the input transformation to achieve the desired machine
learning resistance. In particular, on first sight the often cited Lightweight input
transformation from Majzoobi et al. [7] seems to be close to the case of ran-
dom sub-challenges. (In Sect. 3.1, we argue random sub-challenges are hardest
to learn.) However, we show that by using this input transformation the logistic
regression (LR) learner has a significant probability to converge to a local min-
imum, providing only a partially accurate model of the XOR Arbiter PUF. We
show in a novel attack how these local minima can be exploited to efficiently
model PUFs based on the Lightweight input transformation. We furthermore
discuss the reasons for these local minima and subsequently present an easy-to-
implement input transformation that achieves a modeling resistance comparable
to the optimal solution based on random sub-challenges.

42 N. Wisiol et al.

2 Background

2.1 Machine Learning Attacks on PUFs

It was already shown in 2004 by Lim [6] that Arbiter PUFs can be modeled using
the linear delay model. Subsequently, the XOR Arbiter PUF and Lightweight
Secure Arbiter PUF were proposed to increase the machine learning resistance
by increasing the non-linearity of the PUF model. In 2010, Rührmair et al.
[10] provided an extensive study of the machine learning resistance of the XOR
Arbiter PUFs. On the one hand, their result showed that these constructions can
be modeled quite efficiently for reasonably sized PUFs. On the other hand, they
showed that the modeling complexity grows exponentially with the number of
XORs. Their results also indicated that Lightweight Secure PUFs require more
time and information to be modeled, compared to XOR Arbiter PUFs of the
same size.

Side-channel attacks on XOR Arbiter PUFs and variants have also been
extensively studied, ranging from power consumption [2,12] to reliability [4] and
optical emissions [17]. It is worth noting that the reliability side-channel attack
does not require the attacker to have physical access to the device or tamper with
it. At the same time, it has been shown to scale linearly in the number of XORs
of the given XOR Arbiter PUF [1]. To counter reliability-based machine learning
attacks, protocols can be used in which part of the challenge is generated by the
PUF device so that the attacker cannot collect responses for the same challenge
multiple times to determine the reliability [22], or by removing unreliability of
responses [20].

There have also been proposals of novel strong PUFs designs to avoid the
modeling by the linear delay model, such as the Bistable Ring PUF [3] which can
be implemented on FPGAs. However, it is still vulnerable to machine learning
attacks [14].

2.2 Notation

Throughout this paper, we will use natural numbers n, k. Unless specified other-
wise, lowercase Latin variables represent vectors, with their elements referenced
by a subscript index; lowercase Greek letters and f will represent functions. Note
that we also use subscript indices to refer to elements of vectors that are function
values, e.g. σ(c)i for the i-th entry of σ(c) ∈ V n for a function σ and vector space
V n. For two vectors v, w ∈ V n, we define 〈v, w〉 =

∑n
i=1 viwi to be the inner

product of v and w. Lists of vectors v(i) will often be denoted as (v(1), ..., v(k)),
i.e., vectors of that list are referred to by the superscript index. We denote bits
as −1, 1 rather than 0, 1, where −1 is True. Note that the XOR operation is
hence represented by the product of two bits. We define sgnx to be the sign of
any real number x, and define sgn(0) = 1 arbitrarily. Unless otherwise specified,
probabilities are taken uniformly random for independent bits.

Breaking Lightweight Secure PUF 43

2.3 Modeling XOR Arbiter PUFs

Figure 1a depicts a 2-XOR Arbiter PUF that consists of two individual Arbiter
PUFs with their response XORed. Each Arbiter PUF consists of n delay stages
consisting of 2-input multiplexers through which two signals are propagated. The
multiplexers interchange the two signals depending on the applied challenge and
an arbiter at the end measures if a signal arrives first at the top or bottom line
to determine the response bit. The delays of the individual Arbiter PUFs are
additive, i.e., the final delay difference between the two signals is the sum of the
delay difference of the individual stages. A challenge bit ci = −1 swaps the two
signals and can be modeled by multiplying the delay difference δ(i) at stage i
with minus one. This way a recursive formula can be constructed to model the
delay difference δ(i) at the i-th stage, δ(i) = δ(i − 1, c) · ci + si(ci) where si(ci)
is the delay difference introduced at stage i for challenge ci. The sign of the
final delay difference δ(n) at stage n then defines the response bit. The above
recursive formula can be simplified into a linear threshold function [6]. We follow
the same approach as other researchers (e.g., [10]) and model an n-bit k-XOR
Arbiter PUFs based on a product of linear threshold functions (LTF) given by

f(c) =
k∏

l=1

sgn
〈
w(l), x(l)

〉
= sgn

k∏

l=1

〈
w(l), x(l)

〉
, (1)

where the weight vectors w(1), ..., w(k) ∈ R
n+1 model the physical properties of

the k arbiter chains (derived from s), and x(1), ..., x(k) ∈ {−1, 1}n+1 are the
feature vectors for the given master-challenge c ∈ {−1, 1}n. The feature vectors
x(l) can be computed from the k sub-challenges c(l) given to the individual arbiter
chains using the function ATT : {−1, 1}n → {−1, 1}n+1, x(l) = ATT(c(l))

x
(l)
i =

n∏

j=i

c
(l)
j for 1 ≤ i ≤ n (2)

and x
(l)
n+1 = 1. In analogy to LTF, we call ATT the arbiter threshold transform.

3 Input Transformations: Classic vs. Random

When XOR Arbiter PUFs were proposed by Suh and Devadas [16], the first step
was to provide all arbiter chains with the same challenge (here called classic
design). Subsequently, Majzoobi et al. [7] proposed to modify the challenge before
feeding it into the individual arbiter chains, to let the PUF fulfill the strict
avalanche criterion. Although initially designed to harden XOR Arbiter PUFs
against chosen-challenge attacks, it became clear that the design twist also has
an impact on the passive (that is, non-adaptive) regression attack introduced
by Sölter [15] and Rührmair et al. [10]. In this work, we generalize the idea of
transforming challenges for each arbiter chain and call it input transformation.
To shed some light on how machine learning hardness can be increased using

44 N. Wisiol et al.

Fig. 1. (a) Schematic representation of an XOR Arbiter PUF with k = 2. After the
challenge is set up, a rising edge is applied on the left-hand side, with the arbiters at the
end of each chain (gray rectangles) measuring if the top line or bottom line shows the
signal first, the result is xored. Duing this process, the n·k challenge bits c(l) ∈ {−1, 1}n,
1 ≤ l ≤ k decide at each stage (white rectangles), if the signal paths are crossed or not.
The parity of result bits output as f(c). (b) Generation of sub-challenges c(l) ∈ {−1, 1}n

and feature-vectors x(l) ∈ {−1, 1}n+1 from the master-challenge c ∈ {−1, 1}n using
functions τ (l) : {−1, 1}n → {−1, 1}n and ATT : {−1, 1}n → {−1, 1}n+1. Note that we
abbreviate ATT(τ (l)(c)) = σ(l)(c) for all master-challenges c, where σ : {−1, 1}n →
{−1, 1}n+1.

an input transformation, we studied the impact of input transformations on the
success rate of logistic regression attacks.1

We use the linear model introduced in the background section for model-
ing the XOR Arbiter PUFs and assume that the sub-challenges c(l) can be
computed from a single master-challenge c ∈ {−1, 1}n. We call a list of func-
tions (τ (1), ..., τ (k)) with τ (l) : {−1, 1}n → {−1, 1}n that transform the master-
challenge c into sub-challenges τ (l)(c) = c(l) the sub-challenge generators.

We take the classic design as an example for our notation. As all arbiter
chains are fed the master-challenge, we have τ (1) = · · · = τ (k) = id. Hence, we
can compute any feature vectors x(l) directly from the master-challenge given,

x(l) = ATT(τ (l)(c)) = ATT(c) = (c1c2 · · · cn, c2 · · · cn, ..., cn, 1).

It is crucial to distinguish sub-challenges c(i) from feature vectors x(i). Sub-
challenges represent the bits that are physically fed into the arbiter chains,
whereas features vectors are used to enable a modeling of arbiter chains as linear
threshold function (LTF) as given in (1).

For our analysis, the feature vector structure for a given input transforma-
tion is crucial. We hence abbreviate the value ATT(τ (l)(c)) to σ(l)(c) and for-
mally define input transformation to be the list of functions (σ(1), ..., σ(k)) that

1 Attack and analysis implementation can be found at https://github.com/nils-wisiol/
pypuf/.

https://github.com/nils-wisiol/pypuf/
https://github.com/nils-wisiol/pypuf/

Breaking Lightweight Secure PUF 45

transforms the master-challenge into the feature vectors. Figure 1b summarizes
our notation.

Applying our notation to the model given in (1), the model for an XOR
Arbiter PUF with input transformation (σ(1), ..., σ(k)) is given by

f(c) = sgn
k∏

l=1

〈
w(l), σ(l)(c)

〉
(3)

where σ(1) = · · · = σ(k). We have for all master-challenges c that ATT(τ (i)(c)) =
x(i) = σ(i)(c).

3.1 Pseudorandom Input Transformation

We demonstrate the influence of input transformations on the learning hardness
of logistic regression attacks in Fig. 2. To contrast the classic design, where all
arbiter chains receive the same challenge, we implemented a simulation of XOR
Arbiter PUFs with pseudorandom sub-challenge generators, where all arbiter
chains receive an individual pseudorandom challenge chosen by seeding the gen-
erator with the master-challenge and the index of the sub-challenge. For our
implementation, we used the standard Python pseudorandom generator based
on the Mersenne Twister. Assuming security of the pseudorandom generator, we
can guarantee that the sub-challenges are chosen indistinguishable from truely
random sub-challenges and feature vectors (for all polynomially time-bounded
observers, i.e. including the machine learning attacker).

By the absence of any observable correlation, the pseudorandom input trans-
formation is, while not being a reasonable real-world design choice, an extremal

Fig. 2. Success rate of logistic regression attacks on simulated XOR Arbiter PUFs with
64-bit arbiter chains and four arbiter chains each, based on at least 250 samples per data
point shown. Accuracies better than 70% are considered success, but we only observe
accuracies around 50% and 99%. Four different designs are shown: of the four arbiter
chains in each instance, an input transform is used that transforms zero, one, two, and
three challenges pseudorandomly, keeping the remaining challenges unmodified.

46 N. Wisiol et al.

example among all input transformations. As elaborated in Sect. 4, the absence
of correlation results in a decrease of the number of minima in the logistic regres-
sion attack.

The empirical results match this rationale: Fig. 2 shows that, compared to
the classic design, the required size of the training set to achieve a high success
rate increases substantially. Figure 2 also shows designs in which only a subset of
arbiter chains receive pseudorandom challenges, whereas the others receive the
same unmodified challenge. For those designs, the required size of the training set
is, as could be expected, in between the pure classic and the pure pseudorandom
case.

3.2 Local Minima

Logistic regression uses gradient descent over a function f defined by the pro-
vided training set to conduct the modeling attack. The algorithm’s ability to find
a “good” minimum depends, among other parameters, on the algorithm’s ran-
dom initialization. Empirical results obtained by repeatedly attacking the same
XOR Arbiter PUF show that the probability to guess successful initializations
significantly changes with the input transformation in use (Fig. 4).

Whenever an input transformation of an XOR Arbiter PUF sends the same
challenge to several arbiter chains, this will be reflected in function f as symme-
try. Using the classic input transformation, the attacker has at least k! equally
good minima2 to choose from. This idea of f ’s symmetry can be generalized to
the case where properties of the input transformation allow permutations of the
original weights to approximate the XOR Arbiter PUF with mediocre accuracy,

Fig. 3. Accuracy distribution for learning attempts on randomly chosen simulated
64-bit 4-XOR Lightweight Secure PUFs. Using the Logistic Regression Attack, many
learning attempts end with an intermediate result, while all other input transformations
studied in this work do not show such accuracies. It can be seen that using our new
correlation attack, the resulting model accuracy is increased significantly over the plain
LR attack.

2 Strictly speaking, all models will have an infinite amount of local minima, as all
weights in the model can be modified by a small value or scaled by a positive scalar
without affecting the model’s behavior. To fix above argument we can argue that
additional symmetry causes the gradient descent to remain at a local minima with
higher probability.

Breaking Lightweight Secure PUF 47

as we will show in Sect. 4.2. The approximating permutations can be observed as
local minima in the logistic regression attack. On the contrary, using pseudoran-
dom transformations, we can reduce the symmetries of f down to the minimum,
hence increasing machine learning hardness and avoiding any intermediate solu-
tions.

4 Input Transformations: Lightweight Secure

The Lightweight Secure PUF design was introduced by Majzoobi et al. [7] in
2008 before Rührmair et al. [10] published their machine-learning attacks. The
design proposes an input transformation presented in two steps.

First, for the generation of the l-th sub-challenge, the master-challenge is
rotated by l bits, here denoted by d(l). Second, the sub-challenge c(l) will mostly
be computed by xoring bits pairwise, such that it consists of three parts with
length n/2, 1, and n/2 − 1, respectively.

More specifically, we have
(
c
(l)
1 , ..., c

(l)
n/2

)
=

(
d
(l)
1 d

(l)
2 , d

(l)
3 d

(l)
4 , ... , d

(l)
n−1d

(l)
n

)
,

(
c
(l)
n/2+1

)
=

(
d
(l)
1

)
,

(
c
(l)
n/2+2, ..., c

(l)
n

)
=

(
d
(l)
2 d

(l)
3 , d

(l)
4 d

(l)
5 , ... , d

(l)
n−2d

(l)
n−1

)
.

(4)

In this section, we will refer to the sub-challenges with τ (1)(c), ..., τ (k)(c) and to
the feature vectors they induce with σ(1)(c), ..., σ(k)(c).

The transformation is chosen such that the Strict Avalanche Criterion is
(almost) satisfied [7], i.e., a single bit flip in the master challenge will result in
bit flips in about 50% of the elements of each feature vector for each arbiter
chain. If 50% of the feature vector bits flip, then the PUF output also flips with
probability 50%.

In this work, we will not consider weaker versions of the Lightweight Secure
PUF with multiple output bits.

4.1 Feature Vector Correlation

In a typical machine learning attack on an XOR Arbiter PUF, we expect that a
call of the LR algorithm either yields a near optimal model that has a predictive
accuracy of around 99% or yields a model that performs poorly in prediction,
barely exceeding an accuracy of 50%, i.e., random guessing. Interestingly, this
is not the case for the Lightweight PUF, as can be observed in Fig. 3. We found
that the machine learning algorithm yielded models that performed clearly better
than random guessing but did not achieve the desired accuracy of around 99%.

In empirical results, we found that weight vectors of the intermediate solu-
tions consisted mostly of a permutation of the weight values of the original PUF
model. In fact, by permuting the individual weight vectors of the arbiter chains

48 N. Wisiol et al.

and rotating them for certain but distinct amounts, a close approximation of
the original weight vectors could be constructed. Furthermore, we learned, that
if weight vector w(a) was at position b it was rotated by π, then if w(b) was at
position a it was rotated by π−1.

To give a theoretical basis to our attack, we formalize this observation by
examining the impact of swapping and rotating two different weight vectors. Let
w(1), ..., w(k) be the weight vectors of a Lightweight Secure XOR Arbiter PUF.
Our observations suggest that this PUF can be approximated when weight vec-
tors are swapped and shifted in a characteristic way. We call the weight vectors
to be swapped w and v and the corresponding input transformation functions
λ and μ. Note that this argument uses feature vectors, not sub-challenges. Con-
sider the relevant part of the product in the XOR Arbiter PUF model (cf. (3)
and (4)):

〈w, λ(c)〉 · 〈v, μ(c)〉 =
∑

i,j

wi · vj · λ(c)i · μ(c)j

In the following, we compare this to the model where the weight vectors v and
w are swapped and rotated by π and π−1, respectively. That is, we replace w by
π−1(v) and replace v by π(w):

〈
π−1(v), λ(c)

〉 · 〈π(w), μ(c)〉 =
∑

i,j

π(w)i · π−1(v)j · μ(c)i · λ(c)j

=
∑

i,j

wi · vj · π−1(μ(c))i · π(λ(c))j (re-numbering i,j)

To prove that the latter is an approximation of the original model, we studied
the relationship of π−1(μ(c))i ·π(λ(c))j and λ(c)i ·μ(c)j and found that for most
pairs i, j, we have equality with significant probability for a uniformly random
master-challenge c. The higher this probability, the better is the approximation
of the original model by the swapped and rotated version.

The correlation of the Lightweight Secure input transformation σ(1), ..., σ(6)

can be measured by

1
(n + 1)2

n+1∑

i=1

n+1∑

j=1

Pr
c

[
λ(c)i · μ(c)j = π−1(μ(c))i · π(λ(c))j

]
, (5)

where c is chosen uniformly at random. For each pair, there is exactly one rota-
tion π which produces a significant correlation, cf Table 1.

For example, consider the 64-bit 4-XOR Lightweight Secure PUF, where we
write (σ(1), σ(2), σ(3), σ(4)) for the input transformation and denote σ(1) as λ
and σ(2) as μ. If we rotate the first feature vector λ(c) by 32, say π(λ(c)), and
the second feature vector μ(c) by the inverse of 33 positions to the right, say
π−1(μ(c)), then we have high correlation as defined by (5).

As we can see, the correlation of the feature vectors leads to the fact that
an approximation of the original model can be constructed by swapping two

Breaking Lightweight Secure PUF 49

weight vectors and rotating them accordingly. Using this concept iteratively,
any permutation of the weight vectors can be achieved.

Our empirical results in Fig. 3 suggest that those partial solutions also gener-
ate local minima to which the regression algorithm converges. The combination
of the information on the local minimum along with the correlation as outlined
above can be used to stage an attack on the input transformation by Maj-
zoobi et al. This must be considered a key weakness of the Lightweight Secure
transformation, as our empirical attack results show.

The cause for this symmetry lies in the definition of the input transformation
and in the fact that results are xored. There is a clear pattern and essentially
every pair of PUFs can be exchanged by a rotated version, although the corre-
lation decreases the further the PUF positions are apart from each other.

Table 1. Overview of correlations for a 64-bit 6-XOR Lightweight Secure Arbiter
PUF. As an example, the feature vectors of the first and second arbiter chain show a
correlation of 0.98 as defined in (5) with a rotation by 32 and 33 positions, respectively.
Hence, the corresponding weight vectors can be swapped if they are rotated accordingly
without significant change in the model accuracy.

1 2 3 4 5 6

1 -/- 32/0.98 64/0.97 31/0.95 63/0.94 30/0.92

2 33/0.98 -/- 32/0.98 64/0.97 31/0.95 63/0.94

3 1/0.97 33/0.98 -/- 32/0.99 64/0.97 31/0.95

4 34/0.95 1/0.97 33/0.99 -/- 32/0.98 64/0.97

5 2/0.94 34/0.95 1/0.97 33/0.98 -/- 32/0.98

6 35/0.92 2/0.94 34/0.95 1/0.97 33/0.98 -/-

4.2 Improved Attack

As seen in the previous section, the LR machine learning attack on the
Lightweight Secure PUF often leads to local minima that model the PUF behav-
ior only with a limited accuracy. In this section, we show how a local minimum
can be used to find a high-accuracy model.

If the logistic regression attack has found a model with an intermediate accu-
racy in the range of 65%–98%, we assume that the initialization values for the
attack lead to a swapped and rotated version of the high-accuracy version of the
weights. Instead of restarting the machine learning algorithm with new initial-
izations until we find a high-accuracy solution and hence the correct ordering,
the correlation attack tries to generate the correct ordering of the weights. To
that end, we first generate the rotated weights for each possible permutation of
the weight vectors in a brute-force manner and check their accuracy on a vali-
dation set. As a second step, the 2k most accurate rotated weights are used to
restart the logistic regression attack and refine the weights.

50 N. Wisiol et al.

Table 2. Expected time until the first success for attacks on classic XOR Arbiter
PUF, Lightweight Secure XOR Arbiter PUF, and Permutation-Based XOR Arbiter
PUF. An accuracy of at least 98% is considered success, all entries are based on 1000
samples. Runs with no success are marked with an asterisk (*). We acknowledge the
HPC service of Freie Universität Berlin. Source code available at https://github.com/
nils-wisiol/pypuf.

n k # CRPs LR on classic LR on LW secure Correlation attack
on LW secure

LR on
permutation-
based

64 4 12,000 0m 33s 10m 11s 0m 58s 24m 50s

64 4 30,000 0m 31s 3m 57s 0m 44s 4m 45s

64 5 300,000 7m 03s 3h 03m 11m 07s 13h 59m

64 6 1,000,000 42m 30s 8 days 1h 42m (96h 00m)∗

64 7 2,000,000 75h 07m (20 days)∗ 8 days (16 days)∗

128 4 1,000,000 20m 31s 2h 53m 51m 23s 58m 38s

128 5 2,000,000 1h 35m 35h 20m 3h 17m (16 days)∗

Although the first step has run time O(k! ·nk ·V) with validation set size V ,
this procedure can outperform the simple restarting of the LR attack (Table 2)
for practical values of k, as 10! = 3 628 800. Furthermore, the restarted logistic
regression algorithm can use a much lower bound on the maximum number of
iterations, discarding low-accuracy solutions rapidly. To achieve fast run times,
we used a small validation set for the k! accuracy computations. We empirically
found that rotations with high initial accuracy have a higher chance to yield a
high-accuracy solution, hence the ordering by initial accuracy helps speed up the
attack.

More specifically, we examined the ranking of the permutation that resulted
in the highest accuracy solution for 1000 instances of 64-bit 6 XOR Lightweight
Secure PUFs. In most cases, the best permutation was within the first 10 can-
didates.

In Table 2 we have compared the expected time until first result with accuracy
better than 98%, computed as the quotient of mean attack time and success
probability, for attacking the classic XOR Arbiter PUF and the classic and
improved attack on the Lightweight Secure Arbiter PUF. It can be seen that the
Lightweight Secure PUF can be learned with much higher accuracy in less time
than previously believed, with the security in some instances reduced to what the
classic XOR Arbiter PUF provides. In contrast, the XOR Arbiter PUF with the
permutation-based input transformation defined in Sect. 5 is considerably harder
to attack and does not posses the attack surface we used in the correlation-based
attack, i.e. does not show intermediate results when attacked with the Logistic
Regression attack.

https://github.com/nils-wisiol/pypuf
https://github.com/nils-wisiol/pypuf

Breaking Lightweight Secure PUF 51

5 Solution

The previous sections show that input transformations have an impact on the
machine learning resistance. When using the same challenges for all arbiter
chains as done in the classic XOR Arbiter PUF, there are multiple equivalent
solutions as the order of the weight vectors (w(1), ..., w(k)) does not matter.
Using pseudorandom sub-challenges ensures that only one order is valid and
hence reduces the number of global minima in the gradient descent of the LR
attack. However, it should be noted that this comes with quite some overhead
in terms of area as well as power/energy since at least k · n registers are needed
to store the pseudo random bits together with some logic to generate them.
For example, Yu et al. [22] use a 256 bit LFSR to feed the four arbiter chains
in the used 64-Stages 4-XOR Arbiter PUF. The area overhead of their 4-XOR
Arbiter PUF is given by Yu et al.as 1024 Gate Equivalents (GE). The size of
the LFSR is not provided in [22], but assuming 4.5 GE for a flip-flop, the size
of a 256 stage LFSR is comparable to that of the PUF circuitry3. Implement-
ing a cryptographically secure pseudorandom generator will consume even more
resources.

In the Lockdown Protocol [22] the LSFR is an essential part of the authen-
tication protocol and hence needed anyways. But for other designs, especially if
larger PUF instances are used with 128 stages, a more efficient input transfor-
mation is advised as the overhead is not negligible. However, our analysis of the
Lightweight Secure PUF shows that this input transformation suffers a signif-
icant weakness and must be considered insecure. The fact that feature vectors
correlate in a certain way simplifies the machine learning attack to the point
where no relevant advantage over the classic XOR Arbiter PUF is achieved.

Fig. 4. Success rate of logistic regression attacks on simulated XOR Arbiter PUFs with
64-bit arbiter chains and four arbiter chains each; accuracies above 70% are considered
as a success.

3 Although the Gate Equivalents for a PUF circuit can be a bit misleading as PUFs
need special isolated routing compared to conventional digital circuits such as LFSRs.

52 N. Wisiol et al.

5.1 Permutation-Based Input Transformations

We propose an input transformation that is actually even more lightweight than
the Lightweight Secure PUF solution but does not show any indication of local
minima. The idea is to use k different, fix-point-free permutations π1, . . . , πk as
sub-challenge generators4. We hence obtain the sub-challenges c(l) = πl(c). As
this input transformation can be implemented in wiring, no additional gate is
used in the PUF design. A permutation of the challenges does not result in a
permutation of the feature vectors due to the nature of the ATT. To be more pre-
cise, the multiplications in (2) ensure that if the challenge vectors are permuted,
different bits are being multiplied. Therefore pairs of feature vectors do not show
significant correlation according to (5) even if they are permuted. We call this
family of input transformations the permutation-based input transformations.

We empirically confirmed that this approach does not show any of the local
minima we observed for the Lightweight Secure PUF. The machine learning
resistance was instead comparable to the results of pseudorandom inputs (Fig. 4),
which represent and upper bound on input transformation quality as argued in
Sect. 3. Without observing local minima or correlations, the attack described in
Sect. 4.2 cannot be applied.

Additionally, this input transformation comes at nearly zero resource
overhead. Compared to using a pseudorandom input transformation, the
permutation-based transformation is more efficient in terms of area and power
and is also more efficient than the input transformation proposed for the
Lightweight Secure PUF.

6 Conclusion

In this paper we revisited the topic of input transformations for Arbiter PUFs,
which were introduced to make XOR Arbiter PUFs more resilient against
machine learning attacks. We showed that the Lightweight Secure PUF can
in fact be learned with much higher success rate than previously believed. With
the same training set size, we were able to achieve attack results comparable to
attacking the classic XOR Arbiter PUF. This refutes the assumption that the
Lightweight Secure PUF provides significantly better security than the classic
XOR Arbiter PUF.

The main reason for this is that the input transformation of the Lightweight
Secure PUF produces local minima which can be learned via machine learn-
ing algorithms. Our research shows that the input transformation can play an
important role when determining the machine learning resistance of a PUF con-
struct. In particular, one needs to ensure that the input transformation does
not result in local minima that can be exploited using our two-stage machine

4 Additionally, we chose the permutations such that no pair always shows the same
value on the same output coordinate. The (up to seven) permutations of our 64-
bit experiments can be obtained in Python with [numpy.random.RandomState(s).

permutation(64) for s in [2989, 2992, 3038, 3084, 3457, 6200, 7089]].

Breaking Lightweight Secure PUF 53

learning attack. Based on these findings we presented an alternative input trans-
formation using fix-point-free permutations. Our results show that PUFs using
this input transformation are nearly as hard to learn as pseudorandom inputs,
which we argue is the most resilient input transformation in regards to machine
learning attacks. The proposed design has a very low hardware-overhead as it
simply consists of a fixed routing of challenge bits to the individual arbiter chains
and does not feature any obvious feature vector correlations that could be used
to launch an improved attack.

Finally, it should be noted that while our results focus on XOR Arbiter
PUF, the results can be generalized to other constructs such as the multiplexer
PUF [13] or PUF constructs not based on Arbiter PUFs such as an XOR Bistable
Ring PUF [21] or XOR Voltage PUFs [19].

References

1. Becker, G.T.: The gap between promise and reality: on the insecurity of XOR
arbiter PUFs. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol.
9293, pp. 535–555. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48324-4 27

2. Becker, G.T., Kumar, R., et al.: Active and passive side-channel attacks on delay
based PUF designs. IACR Cryptology ePrint Archive 2014, 287 (2014)

3. Chen, Q., Csaba, G., Lugli, P., Schlichtmann, U., Rührmair, U.: The bistable ring
PUF: a new architecture for strong physical unclonable functions. In: 2011 IEEE
International Symposium on Hardware-Oriented Security and Trust (HOST), pp.
134–141. IEEE (2011)

4. Delvaux, J., Verbauwhede, I.: Side channel modeling attacks on 65nm arbiter
PUFs exploiting CMOS device noise. In: 2013 IEEE International Symposium on
Hardware-Oriented Security and Trust (HOST), pp. 137–142. IEEE (2013)

5. Gassend, B., Clarke, D., Van Dijk, M., Devadas, S.: Silicon physical random func-
tions. In: Proceedings of the 9th ACM Conference on Computer and Communica-
tions Security (CCS), pp. 148–160. ACM (2002)

6. Lim, D.: Extracting secret keys from integrated circuits. Department Electrical
Engineering Computer Science, Massachusetts Institute Technology, Cambridge
(2004)

7. Majzoobi, M., Koushanfar, F., Potkonjak, M.: Lightweight secure PUFs. In:
IEEE/ACM International Conference on Computer-Aided Design (ICCAD 2008),
pp. 670–673. IEEE (2008)

8. Nguyen, P.H., Sahoo, D.P., Chakraborty, R.S., Mukhopadhyay, D.: Security analy-
sis of arbiter PUF and its lightweight compositions under predictability test. ACM
Trans. Des. Autom. Electron. Syst. (TODAES) 22(2), 20 (2017)

9. Rostami, M., Majzoobi, M., Koushanfar, F., Wallach, D.S., Devadas, S.: Robust
and reverse-engineering resilient PUF authentication and key-exchange by sub-
string matching. IEEE Trans. Emerg. Topics Comput. 2(1), 37–49 (2014)

10. Rührmair, U., Sehnke, F., Sölter, J., Dror, G., Devadas, S., Schmidhuber, J.: Mod-
eling attacks on physical unclonable functions. In: Proceedings of the 17th ACM
Conference on Computer and Communications Security (CCS), pp. 237–249. ACM
(2010)

https://doi.org/10.1007/978-3-662-48324-4_27
https://doi.org/10.1007/978-3-662-48324-4_27

54 N. Wisiol et al.

11. Rührmair, U., et al.: PUF modeling attacks on simulated and silicon data. IEEE
Trans. Inf. Forensics Secur. 8(11), 1876–1891 (2013)

12. Rührmair, U., et al.: Efficient power and timing side channels for physical unclon-
able functions. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp.
476–492. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44709-
3 26

13. Sahoo, D.P., Mukhopadhyay, D., Chakraborty, R.S., Nguyen, P.H.: A multiplexer-
based arbiter PUF composition with enhanced reliability and security. IEEE Trans.
Comput. 67(3), 403–417 (2018)

14. Schuster, D., Hesselbarth, R.: Evaluation of bistable ring PUFs using single layer
neural networks. In: Holz, T., Ioannidis, S. (eds.) Trust 2014. LNCS, vol. 8564, pp.
101–109. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08593-7 7

15. Sölter, J.: Cryptanalysis of electrical PUFs via machine learning algorithms. M.Sc.
thesis, Technische Universität München (2009)

16. Suh, G.E., Devadas, S.: Physical unclonable functions for device authentication
and secret key generation. In: Proceedings of the 44th Annual Design Automation
Conference (DAC), pp. 9–14. ACM (2007)

17. Tajik, S., et al.: Physical characterization of arbiter PUFs. In: Batina, L., Robshaw,
M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 493–509. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44709-3 27

18. Tobisch, J., Becker, G.T.: On the scaling of machine learning attacks on PUFs with
application to noise bifurcation. In: Mangard, S., Schaumont, P. (eds.) RFIDSec
2015. LNCS, vol. 9440, pp. 17–31. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-24837-0 2

19. Vijayakumar, A., Patil, V.C., Prado, C.B., Kundu, S.: Machine learning resistant
strong PUF: possible or a pipe dream? In: 2016 IEEE International Symposium
on Hardware Oriented Security and Trust (HOST), pp. 19–24. IEEE (2016)

20. Wisiol, N., Margraf, M.: Why attackers lose: design and security analysis of arbi-
trarily large XOR arbiter PUFs. J. Cryptogr. Eng. 9(3), 221–230 (2019). https://
doi.org/10.1007/s13389-019-00204-8

21. Xu, X., Rührmair, U., Holcomb, D.E., Burleson, W.: Security evaluation and
enhancement of bistable ring PUFs. In: Mangard, S., Schaumont, P. (eds.) RFID-
Sec 2015. LNCS, vol. 9440, pp. 3–16. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-24837-0 1

22. Yu, M.D., Hiller, M., Delvaux, J., Sowell, R., Devadas, S., Verbauwhede, I.: A
lockdown technique to prevent machine learning on PUFs for lightweight authen-
tication. IEEE Trans. Multi-Scale Comput. Syst. 2(3), 146–159 (2016)

23. Yu, M.D., Verbauwhede, I., Devadas, S., M’Räıhi, D.: A noise bifurcation archi-
tecture for linear additive physical functions. In: IEEE International Symposium
on Hardware-Oriented Security and Trust (HOST), pp. 124–129. IEEE (2014)

https://doi.org/10.1007/978-3-662-44709-3_26
https://doi.org/10.1007/978-3-662-44709-3_26
https://doi.org/10.1007/978-3-319-08593-7_7
https://doi.org/10.1007/978-3-662-44709-3_27
https://doi.org/10.1007/978-3-319-24837-0_2
https://doi.org/10.1007/978-3-319-24837-0_2
https://doi.org/10.1007/s13389-019-00204-8
https://doi.org/10.1007/s13389-019-00204-8
https://doi.org/10.1007/978-3-319-24837-0_1
https://doi.org/10.1007/978-3-319-24837-0_1

Post-Quantum Cryptography

Improving Speed of Dilithium’s Signing
Procedure

Prasanna Ravi1,2(B), Sourav Sen Gupta2, Anupam Chattopadhyay1,2,
and Shivam Bhasin1

1 Temasek Laboratories, Nanyang Technological University, Singapore, Singapore
{prasanna.ravi,anupam,sbhasin}@ntu.edu.sg

2 School of Computer Science and Engineering, Nanyang Technological University,
Singapore, Singapore

sg.sourav@ntu.edu.sg

Abstract. Dilithium is a round 2 candidate for digital signature
schemes in NIST initiative for post-quantum cryptographic schemes.
Since Dilithium is built upon the “Fiat Shamir with Aborts” framework,
its signing procedure performs rejection sampling of its signatures to
ensure they do not leak information about the secret key. Thus, the
signing procedure is iterative in nature with a number of rejected itera-
tions, which serve as unnecessary overheads hampering its overall perfor-
mance. As a first contribution, we propose an optimization that reduces
the computations in the rejected iterations through early-evaluation of
the conditional checks. This allows to perform an early detection of the
rejection condition and reject a given iteration as early as possible. We
also incorporate a number of standard optimizations such as unrolling
and inlining to further improve the speed of the signing procedure. We
incorporate and evaluate our optimizations over the software implemen-
tation of Dilithium on both the Intel Core i5-4460 and ARM Cortex-M4
CPUs. As a second contribution, we identify opportunities to present a
more refined evaluation of Dilithium’s signing procedure in several sce-
narios where pre-computations can be carried out. We also evaluate the
performance of our optimizations and the memory requirements for the
pre-computed intermediates in the considered scenarios. We could yield
speed-ups in the range of 6% upto 35% , considering all the aforemen-
tioned scenarios, thus presenting the fastest software implementation of
Dilithium till date.

Keywords: Dilithium · Early evaluation · pqm4 · Digital signatures ·
Lattice-based cryptography · Post-quantum cryptography

1 Introduction

It has been known for quite sometime that modern public-key cryptography that
is being used today, is not secure against attacks by large-scale quantum com-
puters [13]. With continued advances in the field of quantum computing [3], it
c© Springer Nature Switzerland AG 2020
S. Beläıd and T. Güneysu (Eds.): CARDIS 2019, LNCS 11833, pp. 57–73, 2020.
https://doi.org/10.1007/978-3-030-42068-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-42068-0_4&domain=pdf
https://doi.org/10.1007/978-3-030-42068-0_4

58 P. Ravi et al.

will probably not be long before we have the world’s first large scale quantum
computer, that can break modern day public-key cryptography. This prompted
NIST to initiate a standardization process for public-key cryptographic schemes
(public-key encryption, digital signatures, and key establishment schemes) that
are secure against quantum computers [11]. NIST received 69 valid submissions
for the first round of the standardization process. After intense scrutiny by NIST
and based on public feedback, NIST selected 26 algorithms (17 public-key encryp-
tion and 9 digital signature schemes) for the second round out of the 69 valid
submissions from the first round of the standardization process. The Dilithium
lattice-based signature scheme, part of the CRYSTALS (Cryptographic Suite for
Algebraic Lattices) package is one of the leading second-round candidates for dig-
ital signatures [8]. Dilithium offers both good security and efficiency guarantees
with its security based on the efficient Module-Learning With Errors (MLWE)
problem. Thus, most if not all computations in Dilithium involve operations
over polynomials in a structured cyclotomic ring that allows use of the efficient
Number Theoretic Transform (NTT) for polynomial multiplication.

However, one of the main features of Dilithium is that it is built upon the
well-known Fiat-Shamir with Aborts framework [7]. The signing procedure per-
forms rejection sampling of certain intermediate variables through a number of
conditional checks. This is done to ensure that the generated signatures do not
leak the distribution of the secret key. Thus, the signing procedure is iterative
in nature and goes through a number of rejected iterations until it outputs a
valid signature. For example, the signing procedure for recommended param-
eter sets of Dilithium has an average repetition rate of 6.6 [8] and hence the
computations performed in all except the last iteration (5.6 iterations) are just
un-necessary overheads. Thus, the repetition rate severely hampers the perfor-
mance of Dilithium’s signing procedure.

As a first contribution, we propose an optimization to perform early-
evaluation of the conditional checks, so as to perform optimal number of compu-
tations to reject an iteration. Our high-level optimizations simply involve reor-
ganization of computations within each iteration and hence can be adopted to
speed-up both SW and HW implementations. Moreover, our optimizations could
also be applicable to other lattice-based schemes built upon a similar framework.
We also further enhance the performance of the signing procedure through tech-
niques such as unrolling and inlining optimizations. The proposed optimizations
do not create any secret key related timing dependency. We also identified oppor-
tunities to refine the approach to evaluate the signing performance of Dilithium
in certain realistic scenarios where pre-computations are possible. We mainly
consider two scenarios - (1) pre-computed intermediates in case of static public-
private key pairs and (2) partitioning the signing procedure in case of the random-
ized variant of Dilithium. Thus as a second contribution, we perform a detailed
evaluation of the performance improvements and the memory requirements for
the above mentioned scenarios. We present results for the optimized signing pro-
cedure for different scenarios on both the Intel(R) Core(TM) i5-4460 CPU and
observe speed-ups of upto 31% across all updated parameter sets of Dilithium.

Improving Speed of Dilithium’s Signing Procedure 59

We also present the fastest software results for Dilithium on the ARM Cortex-
M4F by optimizing the open-source implementation of Dilithium available in the
open source pqm4 library and observe speed-ups in the range of 6% upto 35% ,
thus demonstrating the portability of our optimizations across implementation
platforms.

2 Preliminaries

Notation: Elements in the integer ring Zq are denoted by regular font letters viz.

a, b ∈ Zq, where q is a prime. We denote x
$← X to denote sampling x uniformly

in random from set X. We denote the polynomial ring Zq[X]/〈Xn+1〉 as Rq. For
an element a ∈ Rq, we define ‖a‖∞ = max

0≤i≤n−1
|a(i) (mod q)|. For a given η ∈ N,

define Sη = {a ∈ Rq | ‖a‖∞ ≤ η}. Multiplication of two polynomials a,b ∈ Rq

is denoted as a · b or ab ∈ Rq. Matrices and vectors of polynomials in Rq are
referred to as modules and are denoted using bold letters viz. a ∈ Rk×l

q ,b ∈ Rl
q.

Each polynomial element of module b ∈ Rl
q is denoted as b[i] for i ∈ [0, l − 1].

Lattice-Based Cryptography: The security of most efficient lattice-based
cryptographic schemes are based on the hardness of two average case-hard prob-
lems known as the Ring-Learning With Errors problem (RLWE) [9] and the
Ring-Short Integer Solutions problem (RSIS) [10]. Both these problems reduce
to corresponding worst-case instances of hard problems over ideal lattices. For
a public key (a, t) ∈ (Rq, Rq), an RLWE attacker is asked to solve for polyno-
mials s1, s2 ∈ Sη with η � q such that t = a · s1 + s2. Given m uniformly
random elements a[i] ∈ Rq for i ∈ [0,m − 1], an MSIS attacker is required to
solve for a short non-zero vector z = (z[0], z[1], . . . , z[m − 1]) ∈ Sm

η such that∑m
i a[i] · z[i] = 0 ∈ Rq.
The RLWE and RSIS problems generalize to the corresponding Module-LWE

(MLWE) and Module-SIS (MSIS) problems respectively, where computations
are performed over matrices and vectors of polynomials in the space Rk×�

q =
Z

k×�
q [X]/(Xn + 1) for k, � > 1 (as opposed to Rq for their ring variants). The

generalized module version of the LWE and SIS problems also provide better
security guarantees compared to their corresponding ring variants. A change
in security of a scheme based on MLWE or MSIS only requires to alter the
module dimensions k, � while keeping the underlying operating ring fixed. Thus,
change in security can be easily achieved through very minimal changes in the
underlying implementation.

2.1 Dilithium

The security of Dilithium is based on the MLWE and MSIS problems. While
the property of indistinguishability of the public key comes from the MLWE
problem, security against existential forgery under the quantum random oracle
model is based on MSIS hardness assumption [8]. Based on how the ephemeral

60 P. Ravi et al.

nonce in the signing procedure is generated, Dilithium comes in two variants
(i.e) deterministic or probabilistic.

In the following discussion, we discuss the details of the Dilithium signature
scheme with more focus on its signing procedure [8]. The signature scheme is
based on the “Fiat-Shamir with Aborts” framework [7] while the scheme itself
derives from the lattice-based signature scheme proposed by Bai and Galbraith
[2]. The scheme operates over the base ring Rq with n, q = (256, 8380417) while
offering flexibility with the module parameters (k, �) allowing to operate over
varying dimensions (k × �) in four different security levels henceforth referred
to as Dilithium1 (Weak), Dilithium2 (Medium), Dilithium3 (Recommended) and
Dilithium4 (Very High).

Algorithm 1. Dilithium Signature scheme
1 Procedure Sign(sk, M)

2 A ∈ Rk×�
q := ExpandA(ρ)

3 μ = CRH(tr‖M)
4 κ = 0, (z,h) = ⊥
5 ρ′ ∈ {0, 1}384 := CRH(K‖μ)(or ρ′ ← {0, 1}384 for randomized signing)
6 while (z,h) = ⊥ do

7 y ∈ S�
γ1−1 := ExpandMask(ρ′‖κ)

8 w = A · y
9 (w1,w0) = Dq(w, 2γ2)

10 c ∈ B60 = H(μ‖w1)
11 z = y + c · s1
12 (r1, r0) := Dq(w − c · s2, 2γ2)
13 if ‖z‖∞ ≥ γ1 − β or ‖r0‖∞ ≥ γ2 − β or r1 �= w1 then
14 (z,h) = ⊥
15 else
16 h = MHq(−c · t0,w − c · s2 + c · t0, 2γ2)
17 if ‖c · t0‖∞ ≥ γ2 or wt(h) > ω then
18 (z,h) = ⊥
19 end
20 κ = κ + 1

21 end
22 return σ = (z,h, c)

Key Generation: The main operation of the key generation procedure is to
generate the MLWE instance that forms the public-private key pair (pk, sk) of
Dilithium. An LWE instance t = a · s1 + s2 is created where a ∈ Rk×�

q is the
public parameter while the secret and error modules s1 ∈ R�

q and s2 ∈ Rk
q are

small modules sampled from S�
η and Sk

η respectively. The LWE instance is not
directly output as the public key but is decomposed into t0, t1 such that t0
consists of the d lower order bits of all coefficients of t while t1 consists of its

Improving Speed of Dilithium’s Signing Procedure 61

remaining higher order bits. Subsequently, t1 is published as part of the public
key pk while t0 along with s1, s2 form part of the secret key sk.

Signing: Refer to Algorithm 1 for the signing procedure of Dilithium. The sign-
ing procedure is iterative in nature (While loop from Line 6 to 21 of Sign in
Algorithm 1) with a number of conditional checks (Line 13 and 17) and it exits
with a valid signature only when all the conditional checks are successfully passed.
Moreover, these selective rejections in the signing procedure together ensure both
security and 100% correctness of the signature scheme.

The most important component of the signing procedure (apart from the
secret key) is the ephemeral nonce y ∈ R�

q. Knowledge of a single value of y or
reuse of y for different messages leads to a trivial break of the signature scheme.
Moreover, the method of generation of the ephemeral nonce y also determines the
deterministic nature of the signature scheme. In deterministic Dilithium, y ∈ R�

q

is deterministically generated using the ExpandMask function which takes as
inputs, the message μ to be signed, a random secret key component K ∈ {0, 1}256
and the iteration count k (Line 5 and 7). But, in case of probabilistic Dilithium,
y is randomly generated using the same ExpandMask function but with inputs,
ρ′ and the iteration count k where ρ′ is sampled randomly from {0, 1}384 (Line
5).

Once y is sampled, the product w = a · y ∈ Rk
q is computed and further

decomposed into w1 and w0 such that w = w1 · 2γ2 + w0. Further, a sparse
challenge polynomial c (only 60 non-zero coefficients in either ±1) is generated
by hashing together the message, ephemeral nonce and public key information.
Using c and y, the signer generates the primary signature component z as z =
s1c+y. Finally, a hint vector h ∈ Rk

q with coefficients in {0, 1} is generated and
is also published along with z, c as the signature. This hint vector h is actually
used by the verifier along with the signature to recover the value of w1 which is
used to verify the authenticity of the challenge polynomial c. We do not discuss
the verification procedure and the reader is referred to [8] for more details.

3 Early Evaluation Optimization

Referring to the Sign procedure in Algorithm 1, we provide the following ter-
minologies for the various conditional/rejection checks. It is important to note
that all these checks have to be passed together in a single iteration, in order to
output a valid signature.

• ‖z‖∞ ≤ γ1 − β: Chk Norm(z) (Line 13 of Sign in Algorithm1)
• ‖r0‖∞ ≤ γ2 − β: Chk Norm(r0) (Line 13)
• ‖ct0‖∞ ≤ γ2: Chk Norm(ct0) (Line 17)
• wt(h) < w: Chk Weight(h) (Line 17)
• r1 	= w1 (Line 13)

We make a couple of observations about implementation of the rejection
checks in the reference implementation of Dilithium submitted to the NIST stan-
dardization process [8]. For reference, we consider the same code snippet in Fig. 1

62 P. Ravi et al.

which contains operations corresponding to the computation of z followed by its
corresponding rejection check Chk Norm(z)1.

• Observation-1: Out of the five rejection checks, the three rejection checks
Chk Norm(z), Chk Norm(r0) and Chk Norm(ct0) contribute to more than 99%
of the rejections in the signing procedure. They are all infinity norm checks
(Chk Norm) over modules with multiple polynomials.

Fig. 1. C-Code snippet corresponding to computation of z according to the reference
implementation in static single assignment form

Infinity norm checks are necessary conditions and computed one coefficient at
a time. Considering Chk Norm(z), all individual polynomials z[i] for i ∈ {0, L−1}
of z are supposed to pass the check, for the complete module z to be considered
valid. Hence, an iteration can be immediately rejected upon detecting a viola-
tion in any of the polynomials of z. Lets assume a case where the first polyno-
mial of z[0] violates Chk Norm(z). Though the violation can be detected just by
computing the first polynomial z[0], analysis of the reference implementation of
Dilithium revealed that all polynomials of z are computed before the conditional
check over the whole module of z is performed. If z[0] can be computed indepen-
dently and checked immediately, then one can immediately reject the iteration
saving the un-necessary computations of z[1], . . . , z[L − 1]. The same applies to
the other two Chk Norm conditions over r0 and ct0 in the signing procedure.

Hence, we alternately propose to compute and check z one polynomial at a
time (instead of one module at a time in the reference implementation). Only
if the check over a particular polynomial z[i] is passed, the next polynomial
z[i+1] is computed, else the iteration is rejected immediately. We also make the
following observation.

• Observation-2: The module z is computed over a series of computations
(z1 → z2 → z3 → z) with each computation (poly pointwise invmontgomery,

1 The code snippet shown in Fig. 1 is in its static single assignment form. In the static
single assignment code, the result of an operation is always written to a new variable.
In the original implementation, all of zi for i = {0, . . . , 3} refer to a single variable
z. The single assignment form is used for better illustration of our idea.

Improving Speed of Dilithium’s Signing Procedure 63

poly invntt montgomery, polyvecl add and polyvecl freeze) operating over the
entire module. But, all these computations preceding the rejection check can
also independently operate over single polynomials and do not have any depen-
dency over other polynomials in the same module.

This enables us to chain these computations corresponding to single polyno-
mials and compute z one polynomial at a time. The same technique can also be
applied to the computation of r0 and ct0 pertaining to the two other rejection
checks (though the computations involved are slightly different). For a better
illustration, the compute chain of z corresponding to the original implementa-
tion can be depicted as in Eq. 1 as follows:

(z1[0] → z1[1] → . . . → z1[L − 1]) → (z2[0] → z2[1] → . . . → z2[L − 1]) → . . .

(z3[0] → z3[1] → . . . → z3[L − 1]) → (z[0] → z[1] → . . . → z[L − 1]) (1)

From Eq. 1, we can see that a particular computation is performed over every
polynomial in the module before starting the next computation. But our opti-
mized technique computes z according to the compute chain as depicted in Eq. 2:

(z1[0] → z2[0] → z3[0] → z[0]) → (z1[1] → z2[1] → z3[1] → z[1]) → . . .

(z1[2] → z2[2] → z3[2] → z[2]) → . . . →
(z1[L − 1] → z2[L − 1] → z3[L − 1] → z[L − 1]) (2)

In fact, the above compute chain is not always fully computed and is halted
at the earliest possible instance as every polynomial (z[0], . . . , z[L − 1]) is imme-
diately checked after it is computed. This is in contrast to the reference imple-
mentation where the compute chain is always fully computed before the whole of
z is checked. Going one step further, we also observe that the set of consecutive
computations including the rejection check (i.e) (polyvecl add, polyvecl freeze and
polyvecl chknorm) are actually point-wise operations which operate over single
coefficients. Thus, it is possible to combine these consecutive operations into a
single composite operation, thus bringing our optimization from the polynomial
level down to the coefficient level. Refer to Fig. 2 for the code-snippet of the opti-
mized computation of z, wherein computations are performed one polynomial at
a time. Furthermore, the identified consecutive point-wise operations are fur-
ther fused into a single function (poly add freeze chk norm) which computes and
immediately checks each coefficient before moving onto the next. These optimiza-
tions also directly apply to the other rejection checks involving r0 and ct0. We
will henceforth refer to it as the Early-Eval optimization throughout the paper.
Since it mainly works to remove un-necessary computations, we can clearly see
that it will benefit serial implementations much more than parallel implementa-
tions. While we expect to observe maximum speed-up for serial implementations
(HW/SW) which iterate over computations corresponding to one polynomial at
a time, we would only observe negligible/no speed-up in embarrassingly parallel
HW implementations which parallelize computations corresponding to all poly-
nomials of the module.

64 P. Ravi et al.

Fig. 2. C-Code snippet of computation of z improved using our Early-Eval optimiza-
tion

3.1 Note on Timing Attacks

Any given iteration of our signing procedure in our optimized implementation
is immediately rejected as soon as a coefficient that violates a conditional check
is computed. Thus, any adversary with access to the timing side-channel may
potentially derive information about the position of the coefficient which resulted
in rejection. However, the probability of a given coefficient violating the bound is
independent of the secret key and thus knowledge of the position of the coefficient
that resulted in rejection does not leak any exploitable information about the
secret key. Thus, to the best of our knowledge, our Early-Eval optimization does
not bring in any additional exploitable timing vulnerabilities.

3.2 Additional Optimizations

While implementing the proposed optimization on the public code of pqm4
library, we observed some potential scope for further optimizations. Though
these optimizations might be intuitively known and not necessarily novel, we
included these optimizations to test the limits of speed-up that can be achieved.
We observed that the reference implementation of Dilithium consists of a large
number of functions which operate over single coefficients. These functions were
implemented in separate files and were compiled into separate object files and
hence the compiler couldn’t inline them automatically. With these computations
spanning over multiple polynomials each of degree 256, the overhead from just
function calls (branch to and from the functions) in these point-wise functions are
significant. Hence, we resorted to manually inlining all the point-wise functions
used in the implementation. Though inlining doesn’t result in very elegant code,
it avoids the un-necessary overhead from branching to and from the function for
every coefficient.

We also incorporated another standard optimization of unrolling the loops
in all the small functions that computed over single coefficients. We limited the
unroll factor to 8 for all such loops within these functions so as to maintain the
readability and simplicity of the code. We henceforth refer to these optimiza-
tions as the Impl-Level optimizations throughout the paper. It is important to

Improving Speed of Dilithium’s Signing Procedure 65

note that the Impl-Level optimizations are applied to all point-wise/coefficient-
wise operations within the Dilithium signature scheme, while our Early-Eval
optimizations only apply to the few operations preceding the conditional checks
within the signing procedure. Though the Impl-level optimizations speed up all
the three procedures of Dilithium (KeyGen, Sign and Verify), we limit our focus
only to the performance improvements of its signing procedure.

4 Experimental Results

In this section, we perform an experimental evaluation of our optimizations
over the Dilithium’s signing operation on two software platforms (1) Intel Core
i5 CPU and (2) ARM Cortex-M4 MCU. Our optimizations were incorporated
over the updated reference implementation of Dilithium submitted to the second
round of the ongoing NIST standardization process. It is possible to indepen-
dently employ both the Early-Eval and Impl-Level optimizations and thus we
present two different optimized implementations of the signing operation (Refer
Table 1). While the proposed Opt-1 variant demonstrates the speed-up only due
to the Early-Eval optimization, the Opt-2 variant demonstrates the speed-up
from the combination of both the Early-Eval and Impl-Level optimizations.

Table 1. Different variants of Dilithium’s signing procedure based on the employed
optimizations

Variant Optimization used

Ref None

Opt-1 Early-Eval

Opt-2 Early-Eval & Impl-Level

4.1 A Refined Evaluation Approach

While experimenting with the implementation of Dilithium’s signing procedure,
we found that it can be further refined when considering its practical usage in
certain realistic scenarios. The main factor we consider is the cryptoperiod of
the public-private key pair. According to the NIST SP 800-57 Part-1 document
on “Recommendation for Key Management”, “a cryptoperiod is the time span
during which a specific key is authorized for use by legitimate entities, or the
keys for a given system will remain in effect.” NIST dedicates a complete section
on cryptoperiods and details on the various risk factors, consequence factors and
recommendations that allows one to decide the cryptoperiod for the various keys
used in any secure application. The reader is referred to Section 5.3 of the SP
800-57 document [4] for more in-depth details.

66 P. Ravi et al.

4.1.1 Precomputing Operations over the Static Public-Private
Key Pair

NIST recommends that a private signature key can have a cryptoperiod of about
1–3 years at the signer’s side while the public signature key used for verification
could be valid for several years depending on the key size [4]. Though these
are mere recommendations from NIST and not strict guidelines, considering
the complexity of repeatedly refreshing key-pairs from the perspective of a key-
management system, one can expect most secure applications to work with static
public-private key pairs with relatively long cryptoperiods. We observed a num-
ber of operations within Dilithium’s signing procedure which operate over the
static public-private key pair. But, in situations where public-private key pairs
are static, these operations can simply be computed once and have its results
reused to avoid unnecessary overheads from performing redundant computations.

To be specific, operations such as expanding a seed into the public param-
eter A, unpacking the secret key sk into its individual components and NTT
operations over the secret key components s1, s2, t0 are redundant if the public-
private key pairs are static2. Thus, we consider the following two scenarios for
evaluation based on the cryptoperiod of the public-private key pair. We denote:

– Scenario-1: All operations are computed online assuming ephemeral public-
private key pairs.

– Scenario-2: Certain operations are pre-computed offline assuming static public-
private key pairs with very long cryptoperiods.

4.1.2 Partitioning the Signing Procedure
Considering the randomized variant of Dilithium’s signing procedure, we observe
that some more operations within the signing procedure can be computed offline,
independent of the message to be signed. In particular, operations such as sam-
pling y using ExpandMask (Line 7 of Sign in Algorithm1) and computation of
w0 and w1 (Lines 8 & 9) can be computed offline. If we also assume static public-
private key pair, it is possible to split the signing procedure into offline and online
phases. Such partitioning techniques can significantly speed-up the signing pro-
cedure in real-time applications with main focus on low-latency times. In such
scenarios, computations in lines 2, 7, 8 and 9 of Sign procedure in Algorithm1
can be performed offline assuming that the device has a large enough buffer to
store all the intermediates. The remaining operations can be computed online
upon knowledge of the message to be signed. In fact, Aysu et al. in [1] utilized
the same partitioning technique in their high-performance and low-latency HW-
SW co-designed implementation of the GLP lattice-based signature scheme [5].
A similar idea of partitioning was also suggested by Pöppelmann et al. in [12]
to improve the speed of the BLISS lattice-based signature scheme. We denote:

2 The authors of Dilithium also note that the above operations can be pre-computed
and stored to “slightly” speed up the signing operation, but do not present any
performance evaluation or the memory requirements due to the same (Refer Sec. 3.1
of [8]).

Improving Speed of Dilithium’s Signing Procedure 67

– Scenario-3: Considering the randomized variant of Dilithium, we assume all
message independent operations along with operations over the static public-
private secret key to be computed offline. Thus, we only evaluate the perfor-
mance of online phase of the signing procedure.

4.2 Results on the Intel Core i5-4460 CPU

We first present results of our optimized implementations of Dilithium’s signing
procedure on the Intel Core i5-4460 CPU 3.20 GHz, compiled with gcc-4.2.1 with-
out modifying the compiler flags set for the reference implementation. We use
the average computational run-times of the signing procedure as our evaluation
metric, which was obtained across 106 runs of the signing procedure. We tested
two versions of Dilithium (i.e) (1) Dilithium-SHA that uses SHAKE from the
SHA3 family as an XOF and (2) Dilithium-AES that uses AES-256 in counter
mode as an XOF, across all parameter sets of Dilithium. Refer Tables 2 and 3 for
a comparative performance evaluation of our optimized implementations (Opt-1
and Opt-2) against the reference implementation, in all the three identified sce-
narios (in terms of number of clock cycles). While we use the randomized variant
of Dilithium for evaluation in Scenario-3 as stated earlier, we use the determinis-
tic variant with the same secret key and message inputs for a direct comparative
evaluation in Scenario-1 and Scenario-2.

Table 2. Comparative performance evaluation of the optimized Opt-1 implementation
variant against the reference implementation of Dilithium’s signing procedure on the
Intel Core i5-4460 CPU. The results are reported in units of million (106) clock
cycles.

Scheme Cycles (×106)

Scenario-1 Scenario-2 Scenario-3

Ref Opt-1 Imp. (%) Ref Opt-1 Imp. (%) Ref Opt-1 Imp. (%)

Dilithium1-SHA 0.904 0.833 7.8 0.778 0.715 8.08 0.365 0.303 16.88

Dilithium2-SHA 1.621 1.461 9.88 1.378 1.246 9.57 0.598 0.457 23.5

Dilithium3-SHA 2.359 2.153 8.69 2.042 1.838 10.0 0.812 0.598 26.2

Dilithium4-SHA 2.183 2.035 6.77 1.731 1.586 8.38 0.694 0.548 20.95

Dilithium1-AES 1.156 1.094 5.33 0.910 0.863 5.21 0.365 0.303 17.01

Dilithium2-AES 2.110 1.973 6.919 1.663 1.526 8.23 0.589 0.457 22.4

Dilithium3-AES 3.175 2.969 6.498 2.460 2.258 8.17 0.814 0.597 26.5

Dilithium4-AES 3.174 2.970 6.414 2.459 2.258 8.18 0.817 0.600 26.5

We first compare the runtimes of the reference implementations of the signing
procedure in the three identified scenarios. Comparing Scenario-1 and Scenario-
2, we observe a difference of about 13–14% in runtime for Dilithium-SHA and
20–21% for Dilithium-AES, which corresponds to the time spent on perform-
ing redundant operations over the static public-private key pair. When compar-
ing Scenario-1 and Scenario-3, we observe a large difference of about 60% for

68 P. Ravi et al.

Dilithium-SHA and 71–72% for Dilithium-AES, which shows that a significant
amount of time within each iteration is spent in sampling the ephemeral nonce
y using XOF functions either through Keccak permutations in case of Dilithium-
SHA and AES-256 in counter mode in case of Dilithium-AES. This difference
also arises from computation of associated variables w1 and w0 in each iteration,
but is very small when compared to the time taken from sampling y.

We now perform a performance comparison of our optimized implementa-
tions against the reference implementations on the Intel i5-CPU, individually
based on the different identified scenarios (Refer Tables 2 and 3). Considering
Scenario-1, where all operations are done online, we observe a speed-up of about
6.7–9.8% and 5.3–6.9% for the Opt-1 implementation of Dilithium-SHA and
Dilithium-AES respectively. But, our proposed Opt-2 variant which is addition-
ally padded with Impl-Level optimizations yields a much higher speed-up of 17–
21% for Dilithium-SHA and 13.5–15.7% for Dilithium-AES in Scenario-1. Con-
sidering Scenario-2, where the operations over the static public-private key pair
are pre-computed, we observe improved speed-ups of about 8–10% and 5.2–8.1%
for the Opt-1 implementation of Dilithium-SHA and Dilithium-AES respectively.
But, our Opt-2 implementation shows an improved speed-up of about 20–23%
for Dilithium-SHA and 16–20% for Dilithium-AES in Scenario-2. The improved
speed-up in Scenario-2 is mainly observed due to removal of the overheads due
to operations over the static public-private key pair in all the compared imple-
mentations (Ref, Opt-1, Opt-2).

Table 3. Comparative performance evaluation of the optimized implementation Opt-2
against the reference implementation of Dilithium’s signing procedure on the Intel(R)
Core(TM) i5-4460 CPU. The results are reported in units of million (106) clock
cycles.

Scheme Cycles (×106)

Scenario-1 Scenario-2 Scenario-3

Ref Opt-2 Imp. (%) Ref Opt-2 Imp. (%) Ref Opt-2 Imp. (%)

Dilithium1-SHA 0.904 0.742 17.8 0.778 0.617 20.07 0.365 0.280 23.2

Dilithium2-SHA 1.621 1.281 20.9 1.378 1.069 22.4 0.598 0.424 29.1

Dilithium3-SHA 2.359 1.86 21.1 2.042 1.545 24.3 0.812 0.557 31.38

Dilithium4-SHA 2.183 1.771 18.85 1.731 1.320 23.7 0.694 0.505 27.2

Dilithium1-AES 1.156 0.999 13.55 0.910 0.758 16.6 0.365 0.281 23.04

Dilithium2-AES 2.110 1.79 15.15 1.663 1.341 19.3 0.589 0.426 27.59

Dilithium3-AES 3.175 2.676 15.72 2.460 1.966 20.0 0.814 0.557 31.53

Dilithium4-AES 3.174 2.677 15.65 2.459 1.966 20.0 0.817 0.557 31.7

Considering Scenario-3, where we only evaluate the online phase of the sign-
ing procedure, we observe much higher speed-ups of about 16.9–23.5% and
17.0–26.5% for the Opt-1 implementation of Dilithium-SHA and Dilithium-
AES respectively. But, the more optimized Opt-2 implementation yields signif-
icant speed-ups of about 23.2–31.4% and 23.0–31.7% for Dilithium-SHA and

Improving Speed of Dilithium’s Signing Procedure 69

Dilithium-AES respectively in Scenario-3. The best speed-ups were observed in
Scenario-3 because all the operations in the online phase of the signing proce-
dure are enhanced by our optimizations. This is unlike Scenario-1 and Scenario-2,
where the major computational time of the signing procedure was dominated by
the XOF functions which are unaffected by either of our optimizations.

4.3 Results on the ARM Cortex-M4

In the following, we present results of our optimized implementations on the
ARM Cortex-M4 MCU. We port our optimizations onto the publicly available
implementation of Dilithium taken from the pqm4 library [6], a benchmark-
ing and testing framework for PQC schemes on the ARM Cortex-M4 family of
microcontrollers. Our implementations were compiled with arm-none-eabi-gcc-
7.2.1 with compiler flags -O3 -mthumb -mcpu=cortex-m4 -mfloat-abi=hard
-mfpu=fpv4-sp-d16 and run on the STM32F4DISCOVERY board (DUT) hous-
ing the STM32F407, ARM Cortex-M4 microcontroller. Since we observe similar
if not better speed-ups for both our Opt-1 and Opt-2 implementation variants on
the ARM Cortex-M4 MCU when compared to the Intel CPU, we only provide
detailed evaluation of our fastest Opt-2 implementation in Table 4. These results
were obtained across 10k runs of the signing procedure of Dilithium-SHA across
all parameter sets. However, for the sake of completeness, we provide results for
our Opt-1 variant on the recommended parameter set of Dilithium, Dilithium-3.
Considering Scenario-1 for our Opt-2 variant, we observe speed-ups of about 18–
20% while for Scenario-2 we observe increased speed-ups in the range of 21–24%
across all parameter sets of Dilithium. As for Scenario-3, we observe a significant
speed-up of about 29–35%, thus clearly demonstrating the portability and appli-
cability of our optimization techniques across different implementation platforms.
Please refer Table 5 for the code-size of our optimized implementation variants.
While there is negligible increase in code-size (0.5%) for our Opt-1 variant, we
observe an increased overhead of about 17.6% for our Opt-2 variant, that can be
mainly attributed due to the unrolling optimizations.

Table 4. Performance evaluation of the reference, Opt-1 and Opt-2 implementation of
Dilithium’s signing procedure on the ARM Cortex-M4 MCU. The results are reported
in units of million (106) clock cycles.

Scheme Cycles (×106)

Scenario-1 Scenario-2 Scenario-3

Ref Opt-1 Imp. (%) Ref Opt-1 Imp. (%) Ref Opt-1 Imp. (%)

Dilithium3-SHA 8.907 8.332 6.45 7.292 6.78 7.01 2.239 1.716 23.35

Ref Opt-2 Imp. (%) Ref Opt-2 Imp. (%) Ref Opt-2 Imp. (%)

Dilithium1-SHA 3.033 2.482 18.16 2.493 1.950 21.76 1.016 0.721 29.08

Dilithium2-SHA 5.761 4.632 19.59 4.752 3.640 23.41 1.630 1.085 33.42

Dilithium3-SHA 8.907 7.085 20.45 7.292 5.495 24.64 2.237 1.449 35.21

Dilithium4-SHA 8.648 7.061 18.34 6.283 4.733 24.67 1.916 1.274 33.49

70 P. Ravi et al.

Table 5. Comparison of code-size of the different implementation variants of Dilithium.
The size of actual code, constant data and the global variables are separately tabulated
as text, data and bss respectively. All the numbers are reported in bytes.

Variant text data bss Total Overhead (%)

Ref 29696 12 8 29716 –

Opt-1 29864 12 8 29884 0.56

Opt-2 34912 12 8 34932 17.6

4.4 Memory Requirements for Scenario-2 and Scenario-3

Though we observe increased speed-ups for Scenario-2 and Scenario-3, it does
come at the cost of requiring to precompute and store certain intermediate values,
which consequently requires allocation of additional memory for storage. Hence,
we analyze the memory requirements in both scenarios for all parameter sets
of Dilithium. Considering Scenario-2, it is required to buffer the modules A,
NTT(s1), NTT(s2) and NTT(t0). All the coefficients of these modules occupy
23 bits and hence there are two possible ways to store them. We can either
completely use 32 bits (4 bytes) to store each coefficient (wasting 9 bits for each)
or we can efficiently use a compact bit-packing strategy to efficiently store the
same intermediates. Readers are referred to Section 5.2 of [8] for the description
of the bit-packing strategy used in Dilithium’s reference implementation.

In case of Scenario-3, calculation of the memory requirement is a bit more
involved, as it is required to additionally pre-compute and store the ephemeral
nonce y,w0 and w1 for every iteration. Since the number of iterations required to
generate a signature is not known a priori, we perform an analysis of the number
of repetitions observed over 107 runs of the signing procedure. Refer Fig. 3 for
the cumulative distribution plot of the percentage of signatures passed against
the minimum number of iterations to be pre-computed, for all parameter sets of
Dilithium3. We empirically calculated the minimum number of iterations to be
pre-computed so as to pass signatures according to three different success rates:
90%, 95% and 99%. Refer Table 6 for these empirically calculated minimum
iteration counts for the aforementioned success rates. Based on these numbers,
we also calculated the additional memory requirements for storage of y,w0 and
w1 required for implementations in Scenario-3.

Refer Table 6 for the total memory requirements for implementations in
Scenario-2 and Scenario-3 for varying success rates across all parameter sets of
Dilithium. We present the memory requirement results for both the packed and
unpacked cases. As expected, memory requirements for the packed intermedi-
ates are much lesser compared to the unpacked intermediates. But, this comes
at the expense of additional performance overhead of unpacking all the stored
intermediates.

3 By precomputed iterations, we do not mean computation of the complete iterations,
but only computation of y,w0 and w1 corresponding to those iterations.

Improving Speed of Dilithium’s Signing Procedure 71

Table 6. Memory requirements for implementations in Scenario-2 and Scenario-3 for
all parameter sets of Dilithium. Both the packed and un-packed cases are considered.
Memory requirements are reported in Kilobytes. Please note that Scenario-2 and
Scenario-3 are abbreviated as Scen-2 and Scen-3 respectively.

Schemea Minimum no. of iterations No Packing (KB) Packing (KB)

90% 95% 99% Scen-2 Scen-3 Scen-2 Scen-3

90% 95% 99% 90% 95% 99%

Dilithium1 9 12 18 14 86 110 158 10.1 35.9 44.6 61.8

Dilithium2 13 16 25 23 166 199 309 16.3 68.9 81.0 117.3

Dilithium3 15 19 29 34 244 300 440 24.4 102.3 123.0 174.9

Dilithium4 9 12 18 47 200 251 353 33.8 90.8 109.9 148.0
a The reported numbers remain the same irrespective of the utilized XOF function
(AES or SHA-3).

Fig. 3. Cumulative distribution plot of the percentage of signatures passed against the
minimum number of iterations to be pre-computed. Please note that the curves for
Dilithium1 and Dilithium4 are overlapping one-another.

It is natural to see that the memory requirements increase with increasingly
secure parameter sets (i.e) from Dilithium1 to Dilithium4 due to the increase in
the module’s dimensions. We can clearly see that the memory requirements for
Scenario-2 are much lower (14–47 KB for the packed case and 10–34 KB for the
unpacked case) compared to Scenario-3 with much higher memory requirements
numbering in the hundreds of KBs. The main reason being that the memory
requirements for Scenario-2 only depend on the module dimensions, but memory
requirements for Scenario-3 mainly depend on the repetition rate of the parame-
ter set. This is also evident from the Table 6 that Dilithium-4 with higher mod-
ule dimensions (k, � = 6, 5) but with a lower average repetition rate of 4.3 has
reduced memory requirements in Scenario-3 compared to Dilithium-3 (k, � = 5, 4)
with a higher average repetition rate of 6.6.

72 P. Ravi et al.

5 Conclusion

In this paper, we have presented an algorithmic optimization on Dilithium’s
signing procedure which reduces the computations done in the rejected itera-
tions through early-evaluation of the conditional checks. We also incorporate
a couple of standard optimization techniques such as inlining and unrolling to
further improve upon the speed of the signing procedure. We also evaluate our
optimizations in three different scenarios based on the possibility of performing
pre-computations. We perform detailed evaluation of the performance of our
optimizations and the memory requirements in the afore mentioned scenarios
on the Intel Core i5-4460 CPU and the ARM Cortex-M4F MCU and reported
speed-ups in the range of 6% upto 35% , thus demonstrating the effectiveness of
our proposed optimizations.

Acknowledgment. The authors acknowledge the support from the Singapore
National Research Foundation (“SOCure” grant NRF2018NCR-NCR002-0001 – www.
green-ic.org/socure). This work is also partially supported by NRF TUM CREATE
grant.

References

1. Aysu, A., Yuce, B., Schaumont, P.: The future of real-time security: latency-
optimized lattice-based digital signatures. ACM Trans. Embedded Comput. Syst.
(TECS) 14(3), 43 (2015)

2. Bai, S., Galbraith, S.D.: An improved compression technique for signatures based
on learning with errors. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp.
28–47. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04852-9 2

3. Barends, R., et al.: Superconducting quantum circuits at the surface code threshold
for fault tolerance. Nature 508(7497), 500–503 (2014)

4. Barker, E., Barker, W., Burr, W., Polk, W., Smid, M.: Recommendation for key
management part 1: general (revision 3). NIST Spec. Publ. 800(57), 1–147 (2012)

5. Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical lattice-based cryptogra-
phy: a signature scheme for embedded systems. In: Prouff, E., Schaumont, P. (eds.)
CHES 2012. LNCS, vol. 7428, pp. 530–547. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-33027-8 31

6. Kannwischer, M.J., Rijneveld, J., Schwabe, P., Stoffelen, K.: PQM4: Post-quantum
crypto library for the ARM Cortex-M4. https://github.com/mupq/pqm4

7. Lyubashevsky, V.: Fiat-Shamir with aborts: applications to lattice and factoring-
based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
598–616. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-
7 35

8. Lyubashevsky, V., et al.: CRYSTALS-Dilithium. Technical report, National Insti-
tute of Standards and Technology (2017). https://csrc.nist.gov/Projects/Post-
Quantum-Cryptography/Round-2-Submissions

9. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. J. ACM 60(6), 43 (2013)

10. Micciancio, D.: Generalized compact knapsacks, cyclic lattices, and efficient one-
way functions. Comput. Complex. 16(4), 365–411 (2007)

www.green-ic.org/socure
www.green-ic.org/socure
https://doi.org/10.1007/978-3-319-04852-9_2
https://doi.org/10.1007/978-3-642-33027-8_31
https://doi.org/10.1007/978-3-642-33027-8_31
https://github.com/mupq/pqm4
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions

Improving Speed of Dilithium’s Signing Procedure 73

11. NIST: Post-Quantum Crypto Project (2016). http://csrc.nist.gov/groups/ST/
post-quantum-crypto/

12. Pöppelmann, T., Ducas, L., Güneysu, T.: Enhanced lattice-based signatures on
reconfigurable hardware. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS,
vol. 8731, pp. 353–370. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44709-3 20

13. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and fac-
toring. In: 1994 Proceedings of the 35th Annual Symposium on Foundations of
Computer Science, pp. 124–134. IEEE (1994)

http://csrc.nist.gov/groups/ST/post-quantum-crypto/
http://csrc.nist.gov/groups/ST/post-quantum-crypto/
https://doi.org/10.1007/978-3-662-44709-3_20
https://doi.org/10.1007/978-3-662-44709-3_20

An Efficient and Provable Masked
Implementation of qTESLA

François Gérard1(B) and Mélissa Rossi2,3,4

1 Université libre de Bruxelles, Brussels, Belgium
fragerar@ulb.ac.be

2 École normale supérieure, CNRS,
PSL University, Paris, France
3 Thales, Gennevilliers, France

4 Inria, Paris, France
melissa.rossi@ens.fr

Abstract. Now that the NIST’s post-quantum cryptography competi-
tion has entered in its second phase, the time has come to focus more
closely on practical aspects of the candidates. While efficient implemen-
tations of the proposed schemes are somewhat included in the submission
packages, certain issues like the threat of side-channel attacks are often
lightly touched upon by the authors. Hence, the community is encour-
aged by the NIST to join the war effort to treat those peripheral, but
nonetheless crucial, topics. In this paper, we study the lattice-based sig-
nature scheme qTESLA in the context of the masking countermeasure.
Continuing a line of research opened by Barthe et al. at Eurocrypt 2018
with the masking of the GLP signature scheme, we extend and modify
their work to mask qTESLA. Based on the work of Migliore et al. in ACNS
2019, we slightly modify the parameters to improve the masked perfor-
mance while keeping the same security. The masking can be done at any
order and specialized gadgets are used to get maximal efficiency at order
1. We implemented our countermeasure in the original code of the sub-
mission and performed tests at different orders to assess the feasibility
of our technique.

Keywords: Lattice based signatures · Side-channels · Masking

1 Introduction

Following NIST’s call for proposals a few years ago, the practical aspects of
post-quantum cryptography have lately been studied more closely in the scien-
tific literature. Many researchers tried to optimize parameters of cryptosystems
to achieve reasonable practicality while still resisting state-of-the-art cryptanal-
ysis. Once the design phase was over, a lot of implementations flourished on
various platforms, proving that those cryptosystems can hope to achieve some-
thing useful outside of academia. Nevertheless, everyone is now well aware that

c© Springer Nature Switzerland AG 2020
S. Beläıd and T. Güneysu (Eds.): CARDIS 2019, LNCS 11833, pp. 74–91, 2020.
https://doi.org/10.1007/978-3-030-42068-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-42068-0_5&domain=pdf
https://doi.org/10.1007/978-3-030-42068-0_5

An Efficient and Provable Masked Implementation of qTESLA 75

having a fast and correct implementation of some functionality is seldom suf-
ficient to get a secure system. In practice, side-channel attacks should not be
overlooked and the capability of a cryptosystem to be easily protected against
this kind of threats may be a strong argument to decide what will be the reigning
algorithm in a post-quantum world.

In this work, we focus on applying the masking countermeasure to qTESLA [1],
a Fiat-Shamir lattice-based signature derived from the original work of Lyuba-
shevsky [22]. This signature is, with Dilithium [14], one of the most recent itera-
tion of this line of research and a candidate for the NIST’s competition. In 2018,
Barthe et al. [3] described and implemented a proof of concept for a masked
version of an ancestor of Dilithium/qTESLA called GLP [18]. Their goal was to
prove that it is possible to mask the signature procedure at any order. This
work led to a concrete masked implementation of Dilithium with experimental
leakage tests [23]. In the latter, Migliore et al. noticed that replacing the prime
modulus by a power of two allows to obtain a considerably more efficient masked
scheme, by a factor of 7.3 to 9 for the most timeconsuming masking operations.
Our work is in the same spirit. Similarly, we slightly modify the signature and
parameters to ease the addition of the countermeasure while keeping the original
security. In addition, we provide a detailed proof of masking for the whole signa-
ture process taking public outputs into account. Indeed, similarly to the masking
of GLP in [3], several elements of qTESLA may be securely unmasked, like, for
example, the number of rejections. Besides, we propose an implementation for
which we have focused on performance and reusability. Our masked signature
implementation still keeps the property of being compatible with the original
verifying procedure of qTESLA and has been directly implemented within the
code of the submission. Even if we target high order masking, we also imple-
mented specialized gadgets for order 1 masking to provide a lightweight version
of the masking scheme with reasonable performance fitting nicely on embedded
systems. We finally provide extensive performance data and show that the cost
of provable masking can be reasonable at least for small orders. Our code is
publicly available at https://github.com/fragerar/Masked qTESLA.

Parameter Sets Removal. While this paper was under peer review, the heuris-
tic parameter sets on which our experiments are based were removed by the
qTESLA team. We emphasis that the parameters we use were not broken but are
not part of the standardization process anymore. Furthermore, our theoretical
work is somewhat oblivious to the underlying parameter set used to instanciate
the signature and the code can be adapted to implement the provably-secure
sets as well.

2 Preliminaries

2.1 Notations

For any integers q, n and Zq = Z/qZ, we denote by Rq the ring Zq[X]/(Xn +1).
Polynomials are written with bold lower case, e.g. y ∈ Rq. Note that, in our

https://github.com/fragerar/Masked_qTESLA

76 F. Gérard and M. Rossi

study, we do not need to introduce a notation for vectors of polynomials. Let B
be an integer, we write Rq,[B] to denote the subset of polynomials in Rq with
coefficients in [−B,B]. The usual norm operators are extended to polynomials by
interpreting them as a vector of their coefficients. For a polynomial v =

∑n−1
i=0 vi ·

xi, ||v||1 =
∑n−1

i=0 |vi| and ||v||∞ = maxi|vi|. For a modulus q and an integer x,
we write x mod q to denote the unique integer xcn ∈ [0, . . . , q − 1] such that
xcn ≡ x (mod q). We call this integer the canonical representative of x modulo
q. We also write x mod±q to denote the unique integer xct ∈ (−q/2, . . . , q/2]
(where the lower bound is included if q is odd) such that xct ≡ x (mod q). We
call this integer the centered representative of x modulo q. For integers w, d, the
function [·]L : Z → Z, w �→ w mod±2d denotes the signed extraction of the d last
bits of w. We use this function to define [·]M : Z → Z, w �→ (w mod±q−[w]L)/2d.
Those two functions are extended to polynomials by applying them separately
on each coefficient.

2.2 Masking

Side channel attacks are a family of cryptanalytic attacks where the adversary
is able access several physical parameters of the device running the algorithm.
These physical attacks include, for instance, cache attacks, simple and correla-
tion electromagnetic analysis or fault injections. Modelling and protecting the
information leaked though physical parameters has been an important research
challenge since the original attack warning in [20].

The probing model or ISW model from its inventors [19] is the most stud-
ied leakage model. It has been introduced in order to theoretically define the
vulnerability of implementations exposed to side-channel attacks. In a nutshell,
a cryptographic implementation is N -probing secure iff any set of at most N
intermediate variables is statisctically independent of the secrets. This model
can be applied to practical leakages with the reduction established in [13] and
tightened in [17]. The masking countermeasure performs computations on secret-
shared data. It is the most deployed countermeasure in this landscape. Basically,
each input secret x is split into N + 1 variables (xi)0≤i≤N referred to as shares.
N of them are generated uniformly at random whereas the last one is com-
puted such that their combination reveals the secret value x. The integer N is
called masking order and represents the security level of an implementation with
respect to side channels. Let us introduce two types of additive combination in
the following definition.

Definition 1 (Arithmetic and Boolean Masking). A sensitive value x is
shared with mod q arithmetic masking if it is split into N + 1 shares (xi)0≤i≤N

such that

x = x0 + · · · + xN (mod q). (Arithmetic masking mod q)

It is shared with Boolean masking if it is split into N + 1 shares (xi)0≤i≤N such
that

x = x0 ⊕ · · · ⊕ xN . (Boolean masking)

An Efficient and Provable Masked Implementation of qTESLA 77

For lattice-based cryptography where most operations are linear for mod q
addition, arithmetic masking seems the best choice. However, for certain opera-
tions like the randomness generation and comparisons, Boolean masking is bet-
ter fit. Fortunately, some conversions exist [3,9,11] and allow to switch from one
masking to another.

Proofs by Composition. To achieve N -probing security, Barthe et al. for-
mally defined two security properties in [4], namely non-interference and strong
non-interference, which (1) ease the security proofs for small gadgets (see Defi-
nition 2), and (2) allows to securely combine secure gadgets together.

Definition 2. A (u, v)-gadget is a probabilistic algorithm that takes as inputs u
shared values, and returns distributions over v-tuples of shared values.

Definition 3. A gadget is N -non-interfering (N -NI) iff any set of at most N
observations can be perfectly simulated from at most N shares of each input.

Definition 4. A gadget is N -strong non-interfering (N -SNI) iff any set of at
most N observations whose Nint observations on the internal data and Nout

observations on the outputs can be perfectly simulated from at most Nint shares
of each input.

It is easy to check that N -SNI implies N -NI which implies N -probing security.
The strong non-interference only appears in the proofs for subgadgets inside the
signature and key generation algorithm. An additional notion was introduced
in [3] to reason on the security of lattice-based schemes in which some interme-
diate variables may be revealed to the adversary.

Definition 5. A gadget with public outputs X is N -non-interfering with public
outputs (N -NIo) iff every set of at most N intermediate variables can be perfectly
simulated with the public outputs and at most N shares of each input.

Table 1. Parameters for qTESLA-I and qTESLA-III

Parameters qTESLA-I qTESLA-III Description

n 512 1024 Dimension of the ring

q 4 205 569 ≈ 222 8 404 993 ≈ 223 Modulus

σ 22.93 10.2 Standard deviation

h 30 48 Nonzero entries of c

E 1586 1147 Rejection parameter

S 1586 1233 Rejection parameter

B 220 − 1 221 − 1 Bound for y

d 21 22 Bits dropped in [·]M

78 F. Gérard and M. Rossi

2.3 The qTESLA Signature

Let us now describe qTESLA [1], a (family of) lattice-based signature based on
the RLWE problem and round 2 candidate for the NIST’s post-quantum com-
petition. The signature stems from several iterations of improvements over the
original scheme of Lyubashevsky [22]. It is in fact a concrete instantiation of the
scheme of Bai and Galbraith [2] over ideal lattices. Its direct contender in the
competition is Dilithium [14] which is also based on this same idea of having a
lattice variant of Schnorr signature. The security of Dilithium rely on problems
over module lattices instead of ideal lattices, in the hope of increasing security
by reducing algebraic structure, at the cost of a slight performance penalty.

To avoid overloading the paper, we will not describe in details all the sub-
routines and subtleties of qTESLA and sometimes simplify some aspects of the
signature not required to understand our work.

Parameters
We store in Table 1 the set of selected parameters that are relevant for the rest
of the paper. For the sake of practicability, we focus on the heuristic version
of qTESLA in this work. More specifically, we implement our countermeasure in
qTESLA-I and qTESLA-III even though the techniques we used are not specific
to any parameter set.

Scheme
The key generation and signature procedures are formally recalled in Algo-
rithms 1 and 2. They are similar to the corresponding ones in other Fiat-Shamir
lattice-based signatures. We redirect the interested reader to [1] or the NIST
submission [5] for a detailed description. In the following, PRF is a pseudoran-
dom function, GenA generates a uniformly random polynomial, GaussSampler
samples a polynomial according to a Gaussian distribution, CheckS and CheckE
verifies that a secret polynomial does not have too large coefficients, ySampler
samples a uniformly random polynomial y ∈ Rq,[B], H is a collision resistant
hash function and Enc encodes a bitstring into a sparse polynomial c ∈ Rq,[1]

with ||c||1 = h.

3 Masked qTESLA

3.1 Masking-Friendly Design

In the process of masking qTESLA, we decided to make slight modifications in the
signing procedure in order to facilitate masking. The idea is that some design
elements providing small efficiency gains may be really hard to carry on to
the masked version and actually do even more harm than good. Our two main
modifications are the modulus which is chosen as the closest power of two of the
original parameter set and the removal of the PRF to generate the polynomial y.

Power of Two Modulus. Modular arithmetic is one of the core component of
plenty of cryptographic schemes. While, in general, it is reasonably fast for any

An Efficient and Provable Masked Implementation of qTESLA 79

Algorithm 1. qTESLA key generation
Result: sk = (s, e, seeda, seedy),
pk = (seeda, t)

1: counter ← 1
2: pre-seed

r←− {0, 1}κ

3: seeds,e,a,y ← PRF(pre-seed)
4: a ← GenA(seeda)
5: do
6: s ← GaussSampler(seeds,counter)
7: counter ← counter + 1
8: while (CheckS(s) �= 0)
9: do

10: e ← GaussSampler(seede,counter)
11: counter ← counter + 1
12: while (CheckE(e) �= 0)
13: t ← a · s + e mod q
14: sk ← (s, e, seeda, seedy)
15: pk ← (seeda, t)
16: return sk, pk

Algorithm 2. qTESLA sign
Data: sk = (s, e, seeda, seedy)
Result: Σ = (z, c)

1: counter ← 1
2: r

r←− {0, 1}κ

3: rand ← PRF(seedy, r,H(m))
4: y ← ySampler(rand, counter)
5: a ← GenA(seeda)
6: v ← a · y mod±q
7: c ← Enc(H([v]M , m))
8: z ← y + s · c
9: if z �∈ Rq,[B−S] then

10: counter ← counter + 1
11: goto 4
12: end if
13: w ← v − e · c mod±q
14: if ||[w]L||∞ ≥ 2d−1 − E
15: or ||w||∞ ≥ �q/2� − E then
16: counter ← counter + 1
17: goto 4
18: end if
19: return (z, c)

modulus (but not necessarily straightforward to do in constant time), modular
arithmetic in masked form is very inefficient and it is often one of the bottle-
necks in terms of running time. In [3], a gadget SecAddModp is defined to add two
integers in boolean masked form modulo p. The idea is to naively perform the
addition over the integers and to subtract p if the value is larger than p. While
this works completely fine, the computational overhead is large in practice and
avoiding those reductions would drastically enhance execution time. The ideal
case is to work over Z2n . In this case, almost no reductions are needed through-
out the execution of the algorithm and, when needed, can be simply performed
by applying a mask on boolean shares. The reason why working with a power of
two modulus is not the standard way to instanciate lattice-based cryptography is
that it removes the possibility to use the number theoretic transform (NTT) to
perform efficient polynomial multiplication in O(n log n). Instead, multiplication
of polynomial has to be computed using the Karatsuba/Toom-Cook algorithm
which is slower for parameters used in state-of-the-art algorithms. Nevertheless,
in our case, not having to use the heavy SecAddModp gadget largely overshad-
ows the penalty of switching from NTT to Karatsuba. Since modulus for both
parameter sets were already close to a power of two, we rounded to the closest
one, i.e. 222 for qTESLA-I and 223 for qTESLA-III. This modification does not
change the security of the scheme. Indeed, security-wise, for the heuristic version

80 F. Gérard and M. Rossi

of the scheme that we study, we need a q such that q > 4B1 and the correspond-
ing decisional LWE instance is still hard. Yet, the form of q does not impact
the hardness of the problem as shown in [21] and, since q was already extremely
close to a power of two for both parameters sets, the practical bit hardness of
the corresponding instance is not sensibly changed.

Removal of the PRF. It is well known that in Schnorr-like signatures, a dev-
astating attack is possible if the adversary gets two different signatures using
the same y. Indeed, they can simply compute the secret s = z−z′

c−c′ . While such
a situation is very unlikely due to the large size of y, a technique to create a
deterministic version of the signature was introduced in [24]. The idea is to com-
pute y as PRF(secret seed,m) such that each message will have a different value
for y unless a collision is found in PRF. This modification acts as a protection
against very weak entropy sources but is not necessary to the security of the sig-
nature and was not present in ancestors of qTESLA. Unfortunately, adding this
determinism also enabled some side-channel attacks [8,25]. Hence, the authors
of qTESLA decided to take the middle ground by keeping the deterministic design
but also seeding the oracle with a fresh random value r2.

While those small safety measures certainly make sense if they do not incur
a significant performance penalty, we decided to drop it and simply sample y
at random at the beginning of the signing procedure. The reason is twofold.
First, keeping deterministic generation of y implied masking the hash function
evaluation itself which is really inefficient if not needed and would unnecessarily
complicate the masking scheme. Second, implementing a masking countermea-
sure is, in general, making the hypothesis that a reasonable source of randomness
(or at least not weak to the point of having a nonce reuse on something as large
as y) is available to generate shares and thus can be also used for the signature
itself.

3.2 Existing Gadgets

First, let us describe gadgets already existing in the literature. Since they are not
part of our contribution, we decided to only recall their functionalities without
formally describing them.

– SecAnd: Computes the logical and between two values given in boolean masked
form, output also in boolean masked form. Order 1 algorithm: [12]. Order n
algorithm [3].

– SecAdd: Computes the arithmetic add between two values given in boolean
masked form, output also in boolean masked form. Order 1 algorithm: [12].
Order n algorithm [3].

– SecArithBoolModq: Converts a value in arithmetic masked form to a value
in boolean masked form. Order 1 algorithm: [16]. Order n: [11]. We slightly

1 The other condition on q in the parameters table of the submission is to enable the
NTT.

2 Note that the fault attacks is still possible in case of failure of the RNG picking r.

An Efficient and Provable Masked Implementation of qTESLA 81

Algorithm 3. Absolute Value - AbsVal
Data: A boolean masking (xi)0≤i≤N of some integer x and an integer k
Result: A boolean masking (|x|i)0≤i≤N corresponding to the absolute value of
x mod±2k

1: (maski)0≤i≤N ← ((xi)0≤i≤N << (RADIX − k)) >> (RADIX − 1))
2: (x′

i)0≤i≤N ← Refresh((xi)0≤i≤N)
3: (xi)0≤i≤N ← SecAdd((x′

i)0≤i≤N , (maski)0≤i≤N))
4: (|x|i)0≤i≤N ← ((xi)0≤i≤N ⊕ (maski)0≤i≤N) ∧ (2k − 1)

modify it to an algorithm denoted GenSecArithBoolModq taking into account
non power of two number of shares.

– SecBoolArith: Converts a value in boolean masked form to a value in arith-
metic masked form. Order 1 algorithm: [16]. Order n algorithm: [9]. This
gadget does not explicitly appear in the following but is used inside DataGen.

– DataGen: Takes as input an integer B and outputs a polynomial y ∈ Rq,[B]

in arithmetic masked form. Uses the boolean to arithmetic conversion.
– FullXor: Merges shares of a value in boolean masked form and output the

unmasked value.
– FullAdd: Merges shares of a value in arithmetic masked form and output the

unmasked value.
– Refresh: Refreshes a boolean sharing using fresh randomness [19]. We use its

N -SNI version, sometimes denoted FullRefresh ([10] Algorithm 4), which is
made of a succession of N + 1 linear refresh operations.

3.3 New Gadgets

To comply with the specifications of qTESLA, our signature scheme includes new
components to be masked that were not covered or different than in [3,23]. In
all the following, RADIX refers to the size of the integer datatype used to store
the shares.

Absolute Value (Algorithm 3): The three checks during the signing procedure
are: z �∈ Rq,[B−S], ||[w]L||∞ ≥ 2d−1 − E and ||w||∞ ≥ 	q/2
 − E. They all
involve going through individual coefficients (or their low bits) of a polynomial
and checking a bound on their absolute value. In the first version of our work, we
were actually making two comparisons on each signed coefficients before realizing
that it was actually less intensive to explicitly compute the absolute value and
do only one comparison. The gadget takes as input any integer x masked in
boolean form and outputs |x mod±2k|. Since computers are performing two’s
complement arithmetic, the absolute value of x can be computed as follows:

1. m ← x � RADIX − 1
2. |x| ← (x + m) ⊕ m

82 F. Gérard and M. Rossi

Algorithm 4. Masked rounding - MaskedRound

Data: An arithmetic masking (ai)0≤i≤N of some integer a
Result: An integer r corresponding to the modular rounding of a

1: (MINUS Q HALFi)0≤i≤N ← (−q/2 − 1, 0, ..., 0)
2: (CONSTi)0≤i≤N ← (2d−1 − 1, 0, ..., 0)
3: (a′

i)0≤i≤N ← GenSecArithBoolModq(ai)0≤i≤N

4: (bi)0≤i≤N ← SecAdd((a′
i)0≤i≤N , (MINUS Q HALFi)0≤i≤N)

5: b0 = ¬b0
6: (bi)0≤i≤N ← ((bi)0≤i≤N >> RADIX − 1) << log2 q
7: (a′

i)0≤i≤N ← (a′
i)0≤i≤N ⊕ (bi)0≤i≤N

8: (a′
i)0≤i≤N ← SecAdd((a′

i)0≤i≤N , (CONSTi)0≤i≤N)
9: (a′

i)0≤i≤N ← (a′
i)0≤i≤N >> d

10: return t := FullXor((a′
i)0≤i≤N)

As we work on signed integers, one can note that the � in the first step is an
arithmetic shift and actually writes the sign bit in the whole register. If x is
negative then m = −1 (all ones in the register) and if x is positive then m = 0.
The gadget AbsVal is using the same technique to compute |x mod±2k|. The
small difference is that the sign bit is in position k instead of position RADIX.
This is why line 1 is moving the sign bit (modulo 2k) in first position before
extending it to the whole register to compute the mask.

Masked Rounding (Algorithm 4): In [2], a compression technique was intro-
duced to reduce the size of the signature. It implies rounding coefficients of a
polynomial. Revealing the polynomial before rounding would allow an adver-
sary to get extra information on secret values and thus, this operation has to
be done on the masked polynomial. Recall that the operation to compute is
[v]M = (v mod±q − [v]L)/2d.

The first step is to compute the centered representative of v, i.e. subtract q
from v if v > q/2. Taking advantage of our power of two modulus, this operation
would be really easy to do if the centered representative was defined as the
integer congruent to v in the range [−q/2, q/2) since it would be equivalent to
copying the qth bit of v in the most significant part, which can be performed
with simple shift operations on shares. Unfortunately, the rounding function of
qTESLA works with representatives in (−q/2, q/2]. As we wanted compatibility
with the original scheme, we decided to stick with their design. Nevertheless,
we were still able to exploit our power of two modulus. Indeed, in this context,
switching from positive to negative representative modulo q is merely setting all
the high bits to one. Hence, we subtract q/2 + 1 from v, extract the sign bit b
and copy ¬b to all the high bits of v.

The second step is the computation of (v − [v]L)/2d. We used a small trick
here. Subtracting the centered representative modulo 2d is actually equivalent
to the application of a rounding to the closest multiple of 2d with ties rounded
down. Hence we first computed v + 2d−1 − 1 and dropped the d least significant
bits. This is analogous to computing 	x = 	x + 0.499 . . .
 to find the closest
integer to a real value.

An Efficient and Provable Masked Implementation of qTESLA 83

Algorithm 5. Masked well-rounded - MaskedWR

Data: Integer a ∈ Zq in arithmetic masked form (ai)0≤i≤N

Result: A boolean masking r of (‖a‖ ≤ q/2 − E) ∧ (‖[a]L‖ ≤ 2d−1 − E)

1: (SUP Qi)0≤i≤N ← (−q/2 + E, 0, ..., 0)
2: (SUP Di)0≤i≤N ← (−2d−1 + E, 0, ..., 0)
3: (a′

i)0≤i≤N ← GenSecArithBoolModq(ai)0≤i≤N

4: (xi)0≤i≤N ← AbsVal((a′
i)0≤i≤N , log2 q)

5: (xi)0≤i≤N ← SecAdd((xi)0≤i≤N , (SUP Qi)0≤i≤N))
6: (bi)0≤i≤N ← (xi)0≤i≤N >> (RADIX − 1)
7: (a′

i)0≤i≤N ← Refresh((a′
i)0≤i≤N)

8: (a′
i)0≤i≤N ← (a′

i)0≤i≤N ∧ 2d − 1
9: (yi)0≤i≤N ← AbsVal((a′

i)0≤i≤N , d)
10: (yi)0≤i≤N ← SecAdd((yi)0≤i≤N , (SUP Di)0≤i≤N))
11: (b′

i)0≤i≤N ← (yi)0≤i≤N >> (RADIX − 1)
12: (bi)0≤i≤N ← SecAnd((bi)0≤i≤N , (b′

i)0≤i≤N)
13: return r := FullXor((bi)0≤i≤N)

Algorithm 6. Rejection Sampling - MaskedRS

Data: A value a to check, in arithmetic masked form (ai)0≤i≤N

Result: 1 if |a| ≤ B − S else 0

1: (SUPi)0≤i≤N ← (−B + S − 1, 0, ..., 0)
2: (a′

i)0≤i≤N ← GenSecArithBoolModq((ai)0≤i≤N)
3: (xi)0≤i≤N ← AbsVal((a′

i)0≤i≤N , log2 q)
4: (xi)0≤i≤N ← SecAdd((xi)0≤i≤N , (SUPi)0≤i≤N)
5: (bi)0≤i≤N ← ((xi)0≤i≤N >> RADIX − 1)
6: return rs := FullXor((bi)0≤i≤N)

Masked Well-Rounded (Algorithm 5): Unlike GLP, the signature scheme
can fail to verify and may have to be restarted even if the rejection sampling
test has been successful. This results from the fact that the signature acts as a
proof of knowledge only on the s part of the secret key and not on the error e.
Nonetheless, thanks to rounding, the verifier will be able to feed correct input to
the hash function if the commitment is so called ‘well-rounded’. Since not well-
rounded signatures would leak information on the secret key, this verification
has to be performed in masked form.

The MaskedWR gadget has to perform the two checks ||[w]L||∞ < 2d−1 −
E and ||w||∞ < 	q/2
 − E. While the cost of this rather simple operation is
negligible compared to polynomial multiplication in the unprotected signature,
this test is fairly expensive in masked form. Indeed, it requires four comparisons
in addition to the extraction of the low bits of w.

After trying the four comparisons method, we realized that the best strategy
was actually to compute both absolute values with the AbsVal gadget. While
comparisons only require one SecAdd and one shift, which is less than AbsVal,
the cost of all SecAnd operations between the results of those comparisons makes
our approach of computing the absolute value slightly better.

84 F. Gérard and M. Rossi

Rejection Sampling (Algorithm 6): The rejection sampling procedure con-
sists in ensuring that the absolute value of all coefficients of a polynomial z
are smaller than a bound B. In [3], a gadget verifying that the centered rep-
resentative of a masked integer is greater than −B was applied to both z and
−z. In [23], a less computationally intensive approach was taken: their rejection
sampling gadget takes as input an arithmetic masking of a coefficient a ∈ Zq

identified by its canonical representative and check directly that either a − B is
negative or a − q + B is positive. This can be easily done using precomputed
constants (−B −1, 0, ..., 0) and (−q +B, 0, ..., 0). Our approach is similar but we
use instead the same technique as in the MaskedWR algorithm, that is to first
compute the absolute value of a and perform the masked test ||a|| ≤ B. This
saves the need for a masked operation to aggregate both tests.

Algorithm 7. Masked signature
Data: message m, secret key sk = ((si)0≤i≤N , (ei)0≤i≤N), seed sd
Result: Signature (zunmasked, c)

1: Let t be a byte array of size n
2: a ← GenA(sd)
3: (yi)0≤i≤N ← DataGen(B)
4: for i = 0, . . . , N do
5: vi ← a · yi

6: end for
7: u ← FullRound((vi)0≤i≤N)
8: c ← Encode(H(u, m))
9: for i = 0, . . . , N do

10: zi ← yi + si · c
11: end for
12: if rs := FullRS((zi)0≤i≤N) = 0 then
13: goto 3
14: end if
15: for i = 0, . . . , N do
16: wi ← vi − ei · c
17: end for
18: if r := FullWR((wi)0≤i≤N) = 0 then
19: goto 3
20: end if
21: zunmasked ← FullAdd((zi)0≤i≤N)
22: return (zunmasked, c)

3.4 Masked Scheme

In all signature schemes, two algorithms can leak the secret key through side
channels: the key generation algorithm and the signing algorithm.

Masked Sign: The masked signature can be found in Algorithm7. It uses the
gadgets described in Sect. 3.3: the gadgets FullRS, FullWR and FullRound denote

An Efficient and Provable Masked Implementation of qTESLA 85

the extension of MaskedRS, MaskedWR and MaskedRound to all coefficients j ∈
[0, n − 1] of their input polynomial. Beside the removal of the PRF for y, its
structure follows closely the unmasked version of the signature.

Masked Key Generation: As the number of signature queries per private
key can be high (up to 264 as required by the NIST competition), whereas
the key generation algorithm is typically only executed once per private key,
the vulnerability of the key generation to side channel attacks is therefore less
critical. We nevertheless masked the key generation algorithm using a CDT
sampling. The detailed gadgets and proofs can be found in the full version of
our paper [15]. The final algorithm is pretty inefficient because many comparisons
are needed.

4 Proof of Masking

We first list in Table 2 all the known gadgets and new gadgets introduced
together with their security properties. The techniques for proving the secu-
rity properties are similar to the proof of Theorem6. They can be found in the
full version of our paper [15].

Table 2. Security properties of the known and new gadgets.

Existing gadgets New gadgets (proofs in [15])

Name Property Reference Name Property

SecAnd N -NI [3,12] GenSecArithBoolModq N -NI

SecAdd N -NI [3,12] AbsVal N -NI

SecArithBoolModq N -SNI [11,16] MaskedRound N -NIo

SecBoolArith N -NI [11,16] FullRound N -NIo

FullXor N -NIo [3] MaskedWR N -NIo

FullAdd N -NIo [3] FullWR N -NIo

DataGen N -NIo [3] MaskedRS N -NIo

MultAdd N -NI [3], denoted H1 FullRS N -NIo

Refresh N -SNI [19]

4.1 Main Masking Theorem

In the following, we introduce a theorem that proves the N -NIo property of our
masked signature algorithm. For simplicity and without losing generality, the
theorem only considers one iteration for the signature: the signing algorithm
outputs ⊥ if one of the tests in Steps 13 or 19 in Algorithm7 has failed. We also
assume the security properties of Table 2. We denote by

(
r(j)

)
0≤j<n

,
(
rs(j)

)
0≤j<n

and
(
u(j)

)
0≤j<n

the outputs of FullRS, FullWR and FullRound (the values for each
coefficient j ∈ [0, n − 1]).

86 F. Gérard and M. Rossi

Theorem 6. Each iteration of the masked signature in Algorithm7 is N -NIo
secure with public outputs3

{(
r(j)

)

0≤j<n
,
(
rs(j)

)

0≤j<n
,
(
u(j)

)

0≤j<n

}

(and the signature if returned).

Fig. 1. Masked signature structure (The white (resp. blue, red) gadgets are proved
N -NI (resp. N -NIo, unmasked)). The non sensitive element sd is ommited for clarity.
(Color figure online)

Proof. The overall gadget decomposition of the signature is in Fig. 1.

Gadgets. The gadget ×a multiplies each share of the polynomial y by the
public value a. By linearity, it is N -NI. The gadget FullRound denotes the
extension of the MaskedRound to all coefficients of v and is N -NIo. The gad-
get MultAdd takes (yi)0≤i≤N , (si)0≤i≤N and c (resp. (vi)0≤i≤N , (ei)0≤i≤N and
c) and computes (zi)0≤i≤N = (yi)0≤i≤N − c · (si)0≤i≤N (resp. (wi)0≤i≤N =
(vi)0≤i≤N−c(ei)0≤i≤N). The gadget End simply outputs (FullAdd((zi)0≤i≤N), c)
if rs and r are true; and ⊥ otherwise. By the N -NIo security of FullAdd, this
gadget is also N -NIo secure.

Thus, all the subgadgets involved are either N -NI secure, N -SNI secure, N -
NIo secure or they do not manipulate sensitive data (see Table 2 for the recap.
We prove that the final composition of all gadgets is N -NIo. We assume that an
attacker has access to δ ≤ N observations. Our goal is to prove that all these δ
observations can be perfectly simulated with at most δ shares of (si)0≤i≤N and
(ei)0≤i≤N and the knowledge of the outputs.
In the following, we consider the following distribution of the attacker’s δ obser-
vations:
3 Here too, the number of iterations of the gadget DG is ommited as a public output.

An Efficient and Provable Masked Implementation of qTESLA 87

– δ1 observed during the computations of DG that produces shares of (yi)0≤i≤N ,
– δ2 observed during the computations of the gadget ×a that produces the

shares of (vi)0≤i≤N ,
– δ3 observed during the computations of FullRound,
– δ4 observed during the computations of the upper MultAdd gadget that pro-

duces (zi)0≤i≤N ,
– δ5 observed during the computations of the lower MultAdd gadget that pro-

duces (wi)0≤i≤N ,
– δ6 observed during the FullRS,
– δ7 observed during the FullWR,
– δ8 observed during the End.

Some observations may be done on the unmasked gadgets (GenA, Hash and Enc)
but their amount will not matter during the proof. Finally, we have

∑8
i=1 δi ≤ δ.

We build the proof from right to left. The gadgets End, FullRS, FullRound
and FullWR are N -NIo secure with the output (z, c) or ⊥ (resp.

(
rs(j)

)
0≤j<n

,
(
u(j)

)
0≤j<n

,
(
r(j)

)
0≤j<n

). As a consequence, all the observations from their call
can be perfectly simulated with at most δ8 (resp. δ6, δ7) shares of z (resp. z, w).
For the upper MultAdd gadget, there are at most δ8 + δ6 observations on the
outputs and δ4 local observations. The total is still lower than δ and thus they
can be simulated with at most δ4 + δ6 + δ8 ≤ δ shares of y and s.

Concerning the lower MultAdd gadget, there are at most δ7 observations on
w and δ5 made locally. Thus they can be simulated with at most δ5 + δ7 ≤ δ
shares of v and e.

The gadget FullRound is N -NIo so all the observations from its call can be
simulated with at most δ3 shares of v. Thus, there are δ3 + δ5 + δ7 observations
on the output of gadget ×a. And then, they can be simulated with at most
δ3 + δ5 + δ7 + δ2 shares of y. Summing up all the observations of y gives (δ3 +
δ5 + δ7 + δ2) + (δ4 + δ6 + δ8) ≤ δ. This allows to conclude the proof by applying
the N -NIo security of DG. All the observations on the algorithm can be perfectly
simulated with at most δ4 + δ6 + δ8 ≤ δ shares of s, δ5 + δ7 ≤ δ shares of e and
the knowledge of the public outputs. ��

4.2 EUF-CMA Security in the N-probing Model

We recall the EUF-CMA security in the N -probing model. For the complete
game description, we refer to [3].

Definition 7. A signature scheme is EUF-CMA-secure in the N -probing model
if any PPT adversary has a negligible probability to forge a signature after a
polynomial number of queries to a leaky signature oracle. By leaky signature
oracle, we mean that the signature oracle will (1) update the shares of the secret
key with a refresh algorithm (2) output a signature together with the leakage of
the signature computation.

88 F. Gérard and M. Rossi

Definition 8. We denote by (r, rs, u)-qTESLA a variant of qTESLA where all the
values {(

r(j)
)

0≤j<n
,
(
rs(j)

)

0≤j<n
,
(
u(j)

)

0≤j<n

}

are outputted for each iteration during the signing algorithm.

Theorem 6 allows to reduce the EUF-CMA security in the N -probing model
of our masked qTESLA signature at order N to the EUF-CMA security of
(r, rs, u)-qTESLA. The security of (r, rs, u)-qTESLA is actually not fully sup-
ported by the security proof of qTESLA because the adversary is not sup-
posed to see these values for the failed attempts of signing. However, based
on the work of [3], we can prove that, under some computational assump-
tions, outputting

(
u(j)

)
0≤j<n

for each iteration does not affect the security.
We redirect the reader to [3] for further discussions on this issue. The values{(

r(j)
)
0≤j<n

,
(
rs(j)

)
0≤j<n

}
correspond to the conditions of rejection, and more

precisely, the positions of the coefficients of the polynomials that do not pass the
rejections. Such a knowledge do not impact the security of the scheme because
the rejection probability does not depend on the position of the coefficients
(Table 3).

5 Practical Aspects

Our masking scheme has been implemented inside the reference code of qTESLA
available on the repository of their project [26]. We performed benchmarks for
the two parameters sets qTESLA-I and qTESLA-III on a desktop computer with
and without the random number generator activated (in gadgets). The reason
why we decided to switch off the RNG4 is to show how masking schemes of this
magnitude are sensitive to the speed at which the device is capable of retrieving
randomness. We also tested the smaller parameter set at order 1 on a Cortex-M4
microcontroller to see how it performs on a device more realistically vulnerable
to side-channel attacks. We speculate that the scaling difference between the
microcontroller and the computer is due to the fact that architectural differences
matter less for the masking code than for the base signature code.

Our tests with the randomness enabled were performed using xoshiro128**
[6], a really fast PRNG that has been recently used to speed-up public parameters
generation in a lattice-based cryptosystem [7]. One looking for real life applica-
tion of our technique and believing that masking needs strong randomness would
maybe want to use a cryptographically secure PRNG instead. Another option
could be to expand a seed with the already available cSHAKE function but as we
will see in the sequel, it might be pretty expensive as the number of random
bytes required grows very fast with the number of shares.

The results for all individual gadgets, both parameters sets as well as number
of calls to the random number generator lead to interesting considerations. We

4 To switch the RNG off, we just set the rand uint32() function to return 0.

An Efficient and Provable Masked Implementation of qTESLA 89

refer to the full version of our paper [15] for more details. Our general conclusion
of all these tests is that beside our much needed design change, the performances
are largely dictated by the randomness generation speed and that the bottleneck
gadget is the arithmetic to boolean conversion.

Table 3. Median speed of masked signature in clock cycles over 10000 executions for
qTESLA-I on Intel Core i7-6700HQ running at 2.60 GHz

Masking order Unmasked Order 1 Order 2 Order 3 Order 4 Order 5

qTESLA-I (RNG off) 645 673 2 394 085 7 000 117 9 219 826 16 577 823 24 375 359

qTESLA-I (RNG on) 671 169 2 504 204 13 878 830 24 582 943 39 967 191 59 551 027

qTESLA-I (RNG on) Scaling 1 ×4 ×21 ×37 ×60 ×89

Table 4. Median speed of masked signature in clock cycles over 1000 executions for
qTESLA-I on cortex-M4 microcontroller

Masking order Unmasked Order 1

qTESLA-I CortexM4 11 304 025 23 519 583

As noted in [23], the power of two modulus allows to get a reasonable penalty
factor for low masking orders. Without such a modification, the scheme would
have been way slower. Besides, our implementation seems to outperform the
masked implementation of Dilithium as given in [23]. The timing of our order 1
masking for qTESLA-I is around 1.3 ms, and our order 2 is around 7.1 ms. This
result comes with no surprise because the unmasked version of qTESLA already
outperformed Dilithium. However, we do not know if our optimizations on the
gadgets could lead to a better performance for a masked Dilithium (Table 4).

Acknowledgements. We thank Sonia Beläıd for interesting insights about the mask-
ing proofs. We acknowledge the support of the French Programme d’Investissement
d’Avenir under national project RISQ P14158. This work is also partially supported
by the European Union’s H2020 Programme under PROMETHEUS project (grant
780701). This research has been partially funded by ANRT under the programs CIFRE
N 2016/1583.

References

1. Alkim, E., et al.: The lattice-based digital signature scheme qTESLA. Cryptology
ePrint archive, report 2019/085 (2019). https://eprint.iacr.org/2019/085

2. Bai, S., Galbraith, S.D.: An improved compression technique for signatures based
on learning with errors. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp.
28–47. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04852-9 2

3. Barthe, G., et al.: Masking the GLP lattice-based signature scheme at any order.
In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp.
354–384. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8 12

https://eprint.iacr.org/2019/085
https://doi.org/10.1007/978-3-319-04852-9_2
https://doi.org/10.1007/978-3-319-78375-8_12

90 F. Gérard and M. Rossi

4. Barthe, G., et al.: Strong non-interference and type-directed higher-order masking.
In: Weippl, E.R., et al. (ed.) ACM CCS 2016, pp. 116–129. ACM Press, October
2016

5. Bindel, N., et al.: qTESLA. Technical report, National Institute of Standards and
Technology (2017). https://csrc.nist.gov/projects/post-quantum-cryptography/
round-1-submissions

6. Blackman, D., Vigna, S.: Scrambled linear pseudorandom number generators. In:
CoRR abs/1805.01407 (2018). arXiv:1805.01407

7. Bos, J.W., et al.: Fly, you fool! Faster Frodo for the ARM Cortex-M4. Cryptology
ePrint archive, report 2018/1116 (2018). https://eprint.iacr.org/2018/1116

8. Bruinderink, L.G., Pessl, P.: Differential fault attacks on deterministic lattice signa-
tures. IACR Trans. Cryptograph. Hardw. Embedded Syst. 2018(3), 21–43 (2018).
https://tches.iacr.org/index.php/TCHES/article/view/7267

9. Coron, J.-S.: High-order conversion from boolean to arithmetic masking. Cryptol-
ogy ePrint archive, report 2017/252 (2017). http://eprint.iacr.org/2017/252

10. Coron, J.-S.: Higher order masking of look-up tables. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 441–458. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-55220-5 25

11. Coron, J.-S., Großschädl, J., Vadnala, P.K.: Secure conversion between boolean
and arithmetic masking of any order. In: Batina, L., Robshaw, M. (eds.) CHES
2014. LNCS, vol. 8731, pp. 188–205. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-44709-3 11

12. Coron, J.-S., Großschädl, J., Tibouchi, M., Vadnala, P.K.: Conversion from arith-
metic to boolean masking with logarithmic complexity. In: Leander, G. (ed.) FSE
2015. LNCS, vol. 9054, pp. 130–149. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-48116-5 7

13. Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from probing attacks
to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 423–440. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-55220-5 24

14. Ducas, L., et al.: CRYSTALS-Dilithium: a lattice-based digital signature scheme.
IACR Trans. Ctyptograph. Hardw. Embedded Syst. 2018(1), 238–268 (2018).
https://tches.iacr.org/index.php/TCHES/article/view/839

15. Gérard, F., Rossi, M.: An efficient and provable masked implementation of
qTESLA. Cryptology ePrint archive, report 2019/606 (2019). https://eprint.iacr.
org/2019/606

16. Goubin, L.: A sound method for switching between boolean and arithmetic mask-
ing. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
3–15. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44709-1 2

17. Goudarzi, D., et al.: Unifying leakage models on a Rényi Day. Cryptology ePrint
archive, report 2019/138 (2019). https://eprint.iacr.org/2019/138

18. Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical lattice-based cryptog-
raphy: a signature scheme for embedded systems. In: Prouff, E., Schaumont, P.
(eds.) CHES 2012. LNCS, vol. 7428, pp. 530–547. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33027-8 31

19. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 27

20. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
http://arxiv.org/abs/1805.01407
https://eprint.iacr.org/2018/1116
https://tches.iacr.org/index.php/TCHES/article/view/7267
http://eprint.iacr.org/2017/252
https://doi.org/10.1007/978-3-642-55220-5_25
https://doi.org/10.1007/978-3-662-44709-3_11
https://doi.org/10.1007/978-3-662-44709-3_11
https://doi.org/10.1007/978-3-662-48116-5_7
https://doi.org/10.1007/978-3-662-48116-5_7
https://doi.org/10.1007/978-3-642-55220-5_24
https://doi.org/10.1007/978-3-642-55220-5_24
https://tches.iacr.org/index.php/TCHES/article/view/839
https://eprint.iacr.org/2019/606
https://eprint.iacr.org/2019/606
https://doi.org/10.1007/3-540-44709-1_2
https://eprint.iacr.org/2019/138
https://doi.org/10.1007/978-3-642-33027-8_31
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/3-540-68697-5_9

An Efficient and Provable Masked Implementation of qTESLA 91

21. Langlois, A., Stehlé, D.: Hardness of decision (R)LWE for any modulus. Cryptology
ePrint archive, report 2012/091 (2012). http://eprint.iacr.org/2012/091

22. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 43

23. Migliore, V., et al.: Masking Dilithium: efficient implementation and side-channel
evaluation. Cryptology ePrint archive, report 2019/394 (2019). https://eprint.iacr.
org/2019/394

24. M’Räıhi, D., Naccache, D., Pointcheval, D., Vaudenay, S.: Computational alterna-
tives to random number generators. In: Tavares, S., Meijer, H. (eds.) SAC 1998.
LNCS, vol. 1556, pp. 72–80. Springer, Heidelberg (1999). https://doi.org/10.1007/
3-540-48892-8 6

25. Poddebniak, D., et al.: Attacking deterministic signature schemes using fault
attacks. Cryptology ePrint archive, report 2017/1014 (2017). http://eprint.iacr.
org/2017/1014

26. qTESLA team. https://qtesla.org/

http://eprint.iacr.org/2012/091
https://doi.org/10.1007/978-3-642-29011-4_43
https://eprint.iacr.org/2019/394
https://eprint.iacr.org/2019/394
https://doi.org/10.1007/3-540-48892-8_6
https://doi.org/10.1007/3-540-48892-8_6
http://eprint.iacr.org/2017/1014
http://eprint.iacr.org/2017/1014
https://qtesla.org/

Side-Channel Analysis

Side-Channel Attacks on Blinded Scalar
Multiplications Revisited

Thomas Roche1(B), Laurent Imbert2, and Victor Lomné1

1 NinjaLab, Montpellier, France
thomas@ninjalab.io
2 LIRMM, CNRS,

University of Montpellier, Montpellier, France
https://ninjalab.io

Abstract. In a series of recent articles (from 2011 to 2017), Schindler
et al. show that exponent/scalar blinding is not as effective a counter-
measure as expected against side-channel attacks targeting RSA modu-
lar exponentiation and ECC scalar multiplication. Precisely, these works
demonstrate that if an attacker is able to retrieve many randomizations
of the same secret, this secret can be fully recovered even when a sig-
nificative proportion of the blinded secret bits are erroneous. With a
focus on ECC, this paper improves the best results of Schindler et al.
in the specific case of structured-order elliptic curves. Our results show
that larger blinding material and higher error rates can be successfully
handled by an attacker in practice. This study also opens new directions
in this line of work by the proposal of a three-steps attack process that
isolates the attack critical path (in terms of complexity and success rate)
and hence eases the development of future solutions.

1 Introduction

Nowadays, all modern tamper-resistant implementations of public-key algo-
rithms embed relatively cheap, yet very strong countermeasures based on various
randomization strategies. As a consequence, single-trace horizontal attacks have
gained more and more attention from the side-channel community.

Single trace horizontal attacks apply to both elliptic curve scalar multiplica-
tion and modular exponentiation (RSA). Implemented in a supervised or non-
supervised setup, they provide the attacker with a randomized, or blinded scalar
(resp. exponent) from the observation of a single scalar multiplication or expo-
nentiation. Although these attacks do not yield the original scalar (resp. expo-
nent), the disclosure of a blinded value may allow an attacker to counterfeit
digital signatures or impersonate any party in a key exchange protocol.

This ultimate attack thus renders scalar (resp. exponent) randomization use-
less. However, it requires a very high signal-to-noise ratio to be successful in prac-
tice. Many recent publications claim successful single trace horizontal attacks
on secure RSA or ECC [2,7–11,16,18]. These attacks do not usually recover

c© Springer Nature Switzerland AG 2020
S. Beläıd and T. Güneysu (Eds.): CARDIS 2019, LNCS 11833, pp. 95–108, 2020.
https://doi.org/10.1007/978-3-030-42068-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-42068-0_6&domain=pdf
https://doi.org/10.1007/978-3-030-42068-0_6

96 T. Roche et al.

the whole blinded value. The missing bits are eventually recovered using brute-
force. Therefore, the number of incorrect bits must remain relatively small for
the attack to be successful. In single-trace horizontal attacks, this number of
incorrect bits is dictated by the so-called bit error rate of the attack.

In this work, we consider the case where brute-forcing the incorrect bits is
impracticable. We focus on ECC scalar multiplication on so-called structured-
order elliptic curves (very common in Elliptic Curves Cryptography). We assume
that the attacker can observe several scalar multiplications with the same long-
term secret scalar but each execution uses fresh randoms for scalar blinding. A
typical example of such a context occurs in the public key generation of ECC
cryptosystems. The attacker requests from a device many generations of the
public key corresponding to the private key securely stored inside the device. We
will also assume that the scalar randomization is done following [4] by adding
to the secret scalar a random multiple of the elliptic curve order.

The first paper in the literature to tackle this problem is the seminal work
of Schindler and Itoh [12] which exhibits a very efficient attack (in terms of
number of traces and computational effort) when small blinding factors r are
used. Over the past five years, this result was improved [13], applied to specific
elliptic curves [5,14] and to RSA with CRT [15]. In the present paper, we expand
this line of results by suggesting several improvements that make it possible to
recover scalars blinded with large random factors (>32 bits), and high bit error
rates (>10%).

1.1 Preliminaries and Notations

In the following, we consider an elliptic curve defined over the finite field Fp,
with p a K-bit prime (typically K = 256). E denotes the order of the curve and
d is the secret scalar, target of the attack. Both E and d can be represented
on K bits. The term msb (resp. lsb) will be used to shorten most (resp. least)
significant bits.

For each scalar multiplication, the scalar d is blinded by adding a random
multiple of the group order, i.e. d� = d + r� × E, where r� is an R-bit random
value. The blinded scalar d� is then represented on K + R bits.

The attaker observes N scalar multiplications. These N side-channel obser-
vations, called traces, are denoted {T�}�<N

1.
For each trace T�, the attacker’s horizontal side-channel attack outputs a

noisy blinded scalar, denoted d̃�. For all bit index i < K + R, it is assumed
that the probability εb for bit d̃�[i] to be erroneous, called bit error rate, is
independent of both � and i. Depending on the context (supervised or non-
supervised horizontal attacks) εb is considered known or unknown to the attacker.

1 A more formal notation would be {T�}�∈Z;0��<N .

Side-Channel Attacks on Blinded Scalar Multiplications Revisited 97

1.2 Overall Attack Process

Our attack context is the gathering of three independent steps. Our contributions
are solely related to the second step and, for completeness, we briefly describe
the whole attack process below.

Step 1: The attacker acquires N traces corresponding to N independent scalar
multiplications and performs a horizontal attack for each of them. The output of
this first step is a set of noisy blinded scalars {d̃�}�<N together with a bit error
rate εb. In the supervised setting2 (see e.g. [1,2,18]) the attacker possesses a
good estimation of the bit error rate εb. Given εb the attacker knows beforehand
the number of acquisitions N that must be performed to have good chance of
success. In the more general unsupervised setting (see e.g. [7–11,16]), the access
to a training device is not possible. The attacker acquires as many traces as
possible and induces a maximal value for εb that can be handled through the
attack. In both cases, this first step provides the attacker with N noisy blinded
scalars together with a gross value for εb.

Step 2: From each noisy blinded scalar d̃�, the attacker guesses the blinding
factor r� or discards the corresponding data from the attack process. The output
of this filtering step is a subset {d̃�}�∈J along with guessed blinding factors
{r�}�∈J for some J ⊂ (Z∩ [0, N − 1]). All r� do not have to be correct but some
of them must be correctly guessed.

Step 3: The last step of the attack recovers the secret scalar d from {d̃�}�∈J

and {r�}�∈J . A powerfull vertical side-channel attack can be mounted on the
remaining traces. Such an attack is described in [5].

1.3 Paper Organization and Contributions

This work focuses on improvements in Step 2 in the specific case of elliptic curves
whose order is close to a power of 2. Section 2 describes the previous works,
namely the best known attack in this setting [14]. Our strategy and results are
presented in Sect. 3. Our simulations show significant increases in the success
rates for blinding factors up to R = K/2 compared to [14].

2 Previous Works

In [14], Schindler and Wiemers study elliptic curves with order of the form
E = 2K ±E0, where E0 is close to 2K/2. This case is pretty common in cryptog-
raphy when the base field is defined using a pseudo-Mersenne prime for efficiency
reasons. Most of the EC standards are of this form, e.g. SEC2 curves [17], NIST
curves [6].

2 A learning phase is conducted prior to the attack on a similar device where scalar
multiplication inputs and randoms can be chosen, e.g. a template building or a
deep-learning training phase.

98 T. Roche et al.

2.1 A Divide and Conquer Algorithm

Schindler and Wiemers observe that the problem of solving the N noisy blinded
scalars can be done using a divide and conquer algorithm. This observation leads
to a much more robust decoding algorithm than in the general case. Indeed, a
blinded scalar d� with blinding factor r� can be written as follows:

d� = r� × E + d

= r� × (2K ± E0) + d

= r� × 2K + (d ± r� × E0)

Hence, if d ± r� ×E0 is smaller than 2K , then the R msb of d� are exactly the R
bits of r�. As a side remark, if r� ×E0 is smaller than d, then the most significant
bits of d are not correctly masked (see e.g. [3]).

Now, for a given window size w, if (d ± r� × E0) < 2K , then d� mod 2w and⌊
d�/2K

⌋
mod 2w only involve the known w lsb of E and the unknown w lsb of

d and r�. From this observation, Schindler and Wiemers (see [14]) propose an
efficient algorithm to recover the secret d that comprises two phases:

– Phase 1: find the R lsb of d as well as the most likely values of the blinding
factor r� for each noisy blinded scalar d̃�.

– Phase 2: select the values r� that are the most likely to be correct and recover
the full secret scalar d.

Phase 2 corresponds to step 3 of our overall attack scheme described in
Sect. 1.2 and, as observed by the authors of [14], is not the critical path of the
attack. In other words, if Phase 1 is successful (i.e. the R lsb of d are correctly
found) then Phase 2 will results in recovering the full value of d with high
probability.

2.2 Schindler and Wiemers’ Phase 1 Algorithm

It is described in [14, Algorithm 4] along with several empirical improvments
discussed in the next sections. The algorithm processes iteratively over a small
sliding window of size w (typically w is 8 or 10). Each iteration consists of two
main steps recalled in Algorithms 1 and 2 respectively.

In Algorithm 1, the call to EvaluateProbability(r̂�, d̂�, d̃�, i, w, εb) computes
the probability of observing d̃� knowing the error rate εb and the two w-
bit words r̂� and d̂� which correspond respectively to the two w-bit words⌊
d̃�/2K+i−1

⌋
mod 2w and

⌊
d̃�/2i−1

⌋
mod 2w. Hence, we have:

EvaluateProbability(r̂�, d̂�, d̃�, i, w, εb) = εh
b (1 − εb)2w−h,

where

h = HammingDistance(r̂�,
⌊
d̃�/2K+i−1

⌋
mod 2w) +

HammingDistance(d̂�,
⌊
d̃�/2i−1

⌋
mod 2w)

Side-Channel Attacks on Blinded Scalar Multiplications Revisited 99

Parameter : Iteration i
Parameter : Window size w, bit error rate εb

Input : {d̃�}�<N : N noisy scalars
Input : {r̃�}�<N : i − 1 lsb of the recovered blinding factors

Input : d mod 2i−1: i − 1 lsb of the recovered scalar
Output : d∗: best guess for d mod 2w+i−1

1 P ← float 1D array of size 2w initialized with zeros;
2 // For each possible value of the next w bits of the secret scalar;

3 for d̂ ← 0 to 2w − 1 do
4 // Prediction of the w + i − 1 lsb of the scalar knowing the first i − 1 bits;

5 d̄ ← d̂ × 2i−1 + d mod 2i−1;
6 // For each noisy blinded scalar;
7 for � ← 0 to N − 1 do
8 // For each possible value of the next w bits of the random r�;
9 for r̂� ← 0 to 2w − 1 do

10 r̄� ← r̂� × 2i−1 + r̃�;
11 // Predict w + i − 1 lsb of d�;

12 d̄� ← (r̄� × E + d̄) mod 2w+i−1;

13 // Define d̂�, the w msb of d̄�;

14 d̂� ← ⌊
d̄�/2i−1⌋

;

15 // Compute the probability of observing d̃�, knowing d̂ blinded by r̂�;

16 p ← EvaluateProbability(r̂�, d̂�, d̃�, i, w, εb);

17 P [d̂] ← P [d̂] + p;

18 d∗ ← argmax(P) × 2i−1 + (d mod 2i−1);
Return : d∗

Algorithm 1. Phase 1, Step 1 of [14, Algorithm 4]

After R iterations of Algorithms 1 and 2 the output is d mod 2R if everything
went correctly. As stated above, this is the most critical phase in Schindler and
Wiemers’s algorithm. They propose two empirical approaches to improve both
its efficiency and effectiveness. We will briefly present them in the next section.
However, since these improvements are based on hand-picked thresholds by the
authors of [14] without clear explanations on how to choose these limits (we
are assuming that these thresholds must be adjusted in a case-by-case man-
ner) we will not take them into account in our study. Nevertheless, since the
improvements presented here can be applied on the core algorithms, the empir-
ical improvements can always be added above them. We then focus on the low
level algorithms and leave for future work the addition and study of these extra
improvments.

2.3 Empirical Improvements

The first improvement is added to Algorithm2 to increase the effectivness of the
attack. Concretely, the authors add an estimation of the correctness of r̄�. When
this estimation of correctness goes below a certain threshold, the corresponding
noisy blinded scalar d̃� is removed from the process. The question of how to
choose the threshold is not discussed in [14] but several values are proposed
depending on the bit error rate εb and the iteration number i.

The second improvement is dedicated to efficiency. The algorithm cost is
dominated by Step 1 (Algorithm1), its complexity being O(22wN). The authors

100 T. Roche et al.

Parameter : Iteration i
Parameter : Window size w, bit error rate εb

Input : {d̃�}�<N : N noisy scalars
Input : {r̃�}�<N : i − 1 lsb of the recovered blinding factors
Input : d∗: w + i − 1 lsb of the recovered scalar from Step 1
Output : d mod 2i

Output : {r̃�}�<N : i lsb of the recovered blinding factors

1 // For each noisy blinded scalar;
2 for � ← 0 to N − 1 do
3 P ← float 1D array of size 2 initialized with zeros;
4 // For each possible value of the next w bits of the random r�;
5 for r̂� ← 0 to 2w do
6 r̄� ← r̂� × 2i−1 + r̃�;
7 // Predict w + i − 1 lsb of d�;

8 d̄� ← (r̄� × E + d∗) mod 2w+i−1;

9 // Define d̂�, the w msb of d̄�;

10 d̂� ← ⌊
d̄�/2i−1⌋

;

11 // Compute the probability of observing d̃�, knowing d∗ blinded by r̂�;

12 p ← EvaluateProbability(r̂�, d̂�, d̃�, i, w, εb);
13 P [r̂� mod 2] ← P [r̂� mod 2] + p;

14 r̃� ← argmax(P) × 2i−1 + r̃�;

15 d∗ ← d∗ mod 2i;
Return : d∗, {r̃�}�<N

Algorithm 2. Phase 1, Step 2 of [14, Algorithm 4]

propose to reduce the number of treated noisy blinded scalars in this step and
apply the second step to all noisy blinded scalars. The idea is that, if costly, Step
1 is more robust than Step 2 and therefore does not need all the N noisy blinded
scalars to correctly guess d mod 2w+i−1. The authors propose, again without
justification, hand-picked numbers of noisy blinded scalars to be used in Step 1
for various bit error rates εb and iteration numbers i.

The above improvements were not tested in this paper. However, one can
easily see that they can be applied pretty much similarly to our algorithms with
adjusted thresholds.

2.4 Some Results

It is shown in [14] that Algorithms 1 and 2 allow to correct noisy blinded scalars
with large values of R, typically � 64 and large error rates 0.1 � εb � 0.15.
This result is very important since before [14], a value of R = 64 was considered
perfectly safe from a side-channel point of view.

One crucial parameter of these algorithms is the choice of the window size
w since the robustness of the procedure increases with w. However, since the
algorithm complexity is dominated by O(22wN), w cannot be very large either.
Figure 1 provides simulation results of Algorithms 1 and 2 effectivness for various
values of w. It gives the average number of bits of d guessed correctly before a
wrong bit appears, as a function of the number of traces N . These simulations
were done with K = 256, R = 64 and εb = 0.15 for curve secp-256-k1 [17] (aka
the Bitcoin’s curve).

Side-Channel Attacks on Blinded Scalar Multiplications Revisited 101

Fig. 1. Simulations for K = 256, R = 64, εb = 0.15 on curve secp-256-k1.

In Fig. 1, we represent mean values over 50 executions of the algorithms.
Standard deviations to the average results are illustrated by error bars. These
simulations are extremely time consuming as w increases. This is why some
results are missing for w > 7. This is probably why the simulation results in [14]
are scattered over a few parameters. We believe that Fig. 1 provides a com-
plementary point of view on the efficiency of the correction algorithm of [14]3.
Notably, it is interesting to remark that the impact of the window size is not
regular and that window sizes ranging from 3 to 6 produce similar success rates.

We will see in next Section how the algorithms can be improved in both
efficiency and effectivness.

3 Improved Algorithms

3.1 First Observations

As remarked earlier (and in [14]) w cannot be too small for the algorithm to
work. The reason is that the probability estimation (from the call to Evalu-
ateProbability() in Algorithm1) improves as w increases. As a matter of fact,
the EvaluateProbability() procedure estimates the probability of observing the
noisy blinded scalar d̃� knowing two w-bit word predictions on two separate w-bit
sections of d̃�. Therefore, if w is too small this estimation is not good enough to
distinguish good predictions from wrong ones (Fig. 1 illustrates this behaviour).

3 Without the empirical improvements discussed in Sect. 2.3.

102 T. Roche et al.

Our proposal will nevertheless reduce w to its minimum (w = 1) and cope
with the above mentioned issue by calling EvaluateProbability() (step 12 of
Algorithm 1 and step 12 of Algorithm 2) over the two (w + i − 1)-bit words r̄�

and d̄� instead of the two w-bit words r̂� and d̂�.
However, doing this directly has a desastrous effect. On the first iteration of

Algorithm 1, many r̃� are actually wrongly estimated (even if they were the best
candidates selected in Algorithm 2) and they remain wrong for the rest of the
execution until the end. However, the original implementation deals naturally
with them because future probability estimations with future w-bit predictions
on these wrong r̃� quickly decrease to give these wrong starts lower and lower
weights in the computation of the best candidate for the bits of d. If we apply
our first proposal directly, these wrong starts will keep their high probability
estimations for more iterations (since we now involve their successful past in
the computation). These wrong starts will then create more chance to choose a
wrong candidate for the guessed bit of d. We propose here to solve this problem
by loosening the selection procedure of the r̃�.

3.2 Keeping a List of the Blinding Factors Best Candidates

In a nutshell, the idea is to modify Algorithms 1 and 2 such that instead of
working on a single value r̄� (for each � < N) which is updated bit-by-bit at
each iteration (step 14 of Algorithm2), the algorithms will keep a pool of good
estimates for r̃�. Intuitively, if the list of potential candidates is large enough, it
will contain the correct value of r̄� for the current iteration. We will see that small
list sizes are enough to match and exceed the original algorithm effectiveness.

3.3 Algorithms Improvements in Detail

Algorithms 3 and 4 describe in detail the full improvements. Concretely, the
modifications compared to Algorithms 1 and 2 are threefold:

– the window size w is forced to its minimum (w = 1) and then does not appear
in the algorithm anymore.

– the list of recovered blinding factors at iteration i, i.e. {r̃�}�<N where the
r̃� are defined over i − 1 bits, is replaced by a 2D array (denoted Lr4) of
N × L best candidates for each r̃�. This array is updated at each iteration of
Algorithm 4. Note that during the first iterations (i � log2(L)), all possible
candidates are kept until the list is full.

– the probability estimation is done over t msb of r̄� and d̄� instead of the w
msb in Algorithm 1. Note that if t � R, then all the bits of r̄� and d̄� are
considered in the probability estimation at each iteration.

4 The array Lr must be initialized to an integer array of dimension N × L with all
cells initialized to −1 but the first column (Lr[i][0] for all i < N) which must be
initialized to 0.

Side-Channel Attacks on Blinded Scalar Multiplications Revisited 103

Together, the last two changes aim at decreasing the value of w to its minimum
and therefore reduce the algorithm complexity without damaging too much the
algorithm success rate. The overall complexity of steps 1 and 2 becomes then
O(N × L). (More precisely, Step 1 runs 4 × N × L loop iterations.)

Parameter : Iteration i
Parameter : Bit error rate εb

Parameter : Max list size L for the candidate lists of r̃�

Parameter : Window size t: this size defines the number of msb to select for probability
estimations

Input : {d̃�}�<N : N noisy scalars
Input : Lr array of dimension N × L containing, for each � < N , the L best

candidates r̃�

Input : d mod 2i−1: i − 1 lsb of the recovered scalar
Output : d mod 2i

1 P ← float 1D array of size 2 initialized with zeros;
2 // For each possible value of the next bit of the secret scalar;

3 for d̂ ← 0 to 1 do
4 // Prediction of the i lsb of the scalar knowing the first i − 1 bits;

5 d̄ ← d̂ × 2i−1 + d mod 2i−1;
6 // For each noisy blinded scalar;
7 for � ← 0 to N − 1 do
8 // For each possible value of the next bit of the random r�;
9 for r̂� ← 0 to 1 do

10 // For each r̃� in the list Lr[l];
11 for s ← 0 to L − 1 do
12 r̃� ← Lr[l][s];
13 if r̃� == −1 then
14 // go to next r̂� value;
15 Break;

16 r̄� ← r̂� × 2i−1 + r̃�;
17 // Predict w + i − 1 lsb of d�;

18 d̄� ← (r̄� × E + d̄) mod 2i;

19 // Define dt
�, the t msb of d̄�;

20 dt
� ←

⌊
d̄�/2max(0,i−t)

⌋
;

21 // Define rt
�, the t msb of r̄�;

22 rt
� ←

⌊
r̄�/2max(0,i−t)

⌋
;

23 // Compute the probability of observing d̃�, knowing d̂ blinded by rt
�;

24 p ← EvaluateProbability(rt
�, dt

�, d̃�, max(0, i − t), min(t, i), εb);

25 P [d̂] ← P [d̂] + p;

26 d∗ ← argmax(P) × 2i−1 + d mod 2i−1;
Return : d∗

Algorithm 3. Improved Algorithm Step 1

3.4 Simulation Results and Comparisons

We conducted simulations in order to evaluate and compare the new algorithms
to the original proposition of [14]. As in Fig. 1, the results give the average (over
50 tentatives) number of bits of d guessed correctly before a wrong bit appears,
as a function of the number of traces N used for the attack. This number of

104 T. Roche et al.

Parameter : Iteration i
Parameter : Bit error rate εb

Parameter : Max list size L for the candidate lists of r̃�

Input : Lr array of dimension N × L containing, for each � < N , the L best
candidates r̃� on i − 1 bits

Input : d∗: i lsb of the recovered scalar from Step 1
Output : Updated Lr array with best candidates r̃� on i bits

1 // For each noisy blinded scalar;
2 for � ← 0 to N − 1 do
3 lr ← number of loaded elements in Lr[l] (lr � L);
4 // Create temporary list Lr� of size 2lr;
5 Lr� ← integer 1D array of size 2lr;
6 P ← float 1D array of size 2lr initialized with zeros;
7 // For each r̃� in the list Lr[l];
8 for s ← 0 to lr − 1 do
9 r̃� ← Lr[l][s];

10 // Add the two possible values of the next bit of the blinding factor r� to
the temporary list;

11 Lr�[s] ← r̃�;

12 Lr�[s + lr] ← 2i−1 + r̃�;

13 if 2lr � L then
14 // If Lr� is small enough, keep all r̃� candidates;
15 Lr[l][0 · · · 2lr − 1] ← Lr�;

16 else
17 // For each r̃� in the list Lr�;
18 for s ← 0 to 2lr − 1 do
19 r̄� ← Lr�[s];
20 // Predict i lsb of d�;

21 d̄� ← (r̄� × E + d∗) mod 2i;

22 // Compute the probability of observing d̃�, knowing d∗ blinded by r̄�;

23 p ← EvaluateProbability(r̄�, d̄�, d̃�, 0, i, εb);
24 P [s] ← p;

25 Lr[l] ← best L candidates in Lr� from their probability estimations P ;

Return : Lr

Algorithm 4. Improved Algorithm Step 2

correct bits are majored by R since the algorithms studied here stop when the
R lsb of d are found. Apart from R and K, various parameters have an impact
on the efficiency and the effectivness of the algorithms, notably:

L: the maximum size of the best candidate pool for the blinding factors r̃� for
each noisy blinded scalar. We recall here that the complexity of Algorithms 3
and 4 increase linearly with L;

w: the window size, only the original algorithms are affected by w, the com-
plexity of Algorithms 1 and 2 increase exponentially with w;

t: the number of bits involved in the probability estimation of r̄� and d̄� with
respect to d̃�.

Our first simulations are conducted to find the best empirical value for t. Once
t is chosen, we will focus on the parameter L and its impact on the effectiveness
(compared to the original algorithm when w changes).

Recall that t has no impact on the computational cost of the algorithms, so
it can be chosen freely. Figure 2 displays simulation results for the new algorithm

Side-Channel Attacks on Blinded Scalar Multiplications Revisited 105

with the parameter t taking its values in {6, 8, 10, 16, 24, R}5 and small values for
L. It appears that t = 16 provides better results than greater or smaller values
of t in our setup (K = 256, R = 64).

Fig. 2. Simulation results K = 256, R = 64, εb = 0.15.

Figure 3 compares the original algorithm for various values of w to the new
algorithm (with t = 16) for various values of L. From these results, we have
equivalent effectivness between the original algorithm with w = 7 and the new
algorithm with L = 4. However, the new algorithm is 210 times more efficient
than the original algorithm for these parameters. The gap of efficiency seems to
increase with w and L since, for another pair of results (w = 8 for the original
algorithm and L = 8 for the new algorithm) the multiplicative factor between
both algorithm complexity is doubled (211) whereas the new algorithm clearly
outperforms the original one. Finally, let us also remark that the new algorithm
with L > 16 reaches the limit of 64-bit correctly recovered on average (i.e. a
100% success rate since 64 is the maximum number of recovered bits) in less
than 10000 traces. We recall that these algorithms must reach the end with
correct 64-bit lsb of d (since in our simulation we choose R = 64) for the overall
attack to be successful.

Finally, Fig. 4 provides simulation results for R = 64, 96, 120 for the new
algorithm (t = 16, L = 32) and two different bit-error-rate (εb = 0.15 and
εb = 0.13). These results show, in accordance with original results from [14], that
when elliptic curves with structured-order are used, R must be chosen strictly
larger K/2 in practice for an effective side-channel countermeasure.

5 For t = R, at iteration i, all bits of r̄� and d̄� are considered for probability estimation,
this version is labeled “Full”.

106 T. Roche et al.

Fig. 3. Simulation results K = 256, R = 64, εb = 0.15.

Fig. 4. Simulation K = 256, L = 32, t = 16.

4 Conclusion and Future Work

In this paper we exhibited algorithms to recover a secret scalar from many noisy
blinded scalars (e.g. outputs of horizontal side-channel attacks over blinded
scalar multiplications) when blinding factors are large and bit error rate is
larger than 10%. Our propositions, in the specific case of structured-order elliptic
curves, outperform the best known algorithms for these parameters.

Apart from a series of articles from Schindler et al. works on this topic are
rather scarse in the literature. This is however a very important aspect of prac-
tical side-channel analysis over public-key cryptography and we believe there

Side-Channel Attacks on Blinded Scalar Multiplications Revisited 107

are still room for improvements. Another interesting avenue for future work is
to formulate theoretic bounds on the attacker capability to recover the secret
scalar given a set of noisy blinded scalars.

Acknowledgments. The authors would like to thank Cyril Bouvier and Bruno
Grenet from the ECO group at LIRMM (https://www.lirmm.fr/eco/) for their fruitful
suggestions and assistance with the cluster MESO@LR (https://meso-lr.umontpellier.
fr/).

References

1. Bauer, A., Jaulmes, E., Prouff, E., Wild, J.: Horizontal and vertical side-channel
attacks against secure RSA implementations. In: Dawson, E. (ed.) CT-RSA 2013.
LNCS, vol. 7779, pp. 1–17. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-36095-4 1

2. Carbone, M., et al.: Deep learning to evaluate secure RSA implementations.
IACR Trans. Cryptograph. Hardw. Embed. Syst. 2019(2), 132–161 (2019).
https://doi.org/10.13154/tches.v2019.i2.132-161

3. Ciet, M., Joye, M.: (Virtually) free randomization techniques for elliptic curve
cryptography. In: Qing, S., Gollmann, D., Zhou, J. (eds.) ICICS 2003. LNCS,
vol. 2836, pp. 348–359. Springer, Heidelberg (2003). https://doi.org/10.1007/978-
3-540-39927-8 32

4. Coron, J.-S.: Resistance against differential power analysis for elliptic curve cryp-
tosystems. In: Kocc, cC.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp.
292–302. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48059-5 25

5. Feix, B., Roussellet, M., Venelli, A.: Side-channel analysis on blinded regular
scalar multiplications. In: Meier, W., Mukhopadhyay, D. (eds.) INDOCRYPT 2014.
LNCS, vol. 8885, pp. 3–20. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-13039-2 1

6. FIPS PUB 186–3: Digital Signature Standard. National Institute of Standards and
Technology, March 2006. Draft

7. Heyszl, J., Ibing, A., Mangard, S., De Santis, F., Sigl, G.: Clustering algorithms
for non-profiled single-execution attacks on exponentiations. In: Francillon, A.,
Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 79–93. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-08302-5 6

8. Järvinen, K., Balasch, J.: Single-trace side-channel attacks on scalar multiplications
with precomputations. In: Lemke-Rust, K., Tunstall, M. (eds.) CARDIS 2016.
LNCS, vol. 10146, pp. 137–155. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-54669-8 9

9. Nascimento, E., Chmielewski, �L.: Applying horizontal clustering side-channel
attacks on embedded ECC implementations. In: Eisenbarth, T., Teglia, Y. (eds.)
CARDIS 2017. LNCS, vol. 10728, pp. 213–231. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-75208-2 13

10. Nascimento, E., Chmielewski, �L., Oswald, D., Schwabe, P.: Attacking embedded
ECC implementations through cmov side channels. In: Avanzi, R., Heys, H. (eds.)
SAC 2016. LNCS, vol. 10532, pp. 99–119. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-69453-5 6

https://www.lirmm.fr/eco/
https://meso-lr.umontpellier.fr/
https://meso-lr.umontpellier.fr/
https://doi.org/10.1007/978-3-642-36095-4_1
https://doi.org/10.1007/978-3-642-36095-4_1
https://doi.org/10.13154/tches.v2019.i2.132-161
https://doi.org/10.1007/978-3-540-39927-8_32
https://doi.org/10.1007/978-3-540-39927-8_32
https://doi.org/10.1007/3-540-48059-5_25
https://doi.org/10.1007/978-3-319-13039-2_1
https://doi.org/10.1007/978-3-319-13039-2_1
https://doi.org/10.1007/978-3-319-08302-5_6
https://doi.org/10.1007/978-3-319-54669-8_9
https://doi.org/10.1007/978-3-319-54669-8_9
https://doi.org/10.1007/978-3-319-75208-2_13
https://doi.org/10.1007/978-3-319-75208-2_13
https://doi.org/10.1007/978-3-319-69453-5_6
https://doi.org/10.1007/978-3-319-69453-5_6

108 T. Roche et al.

11. Perin, G., Imbert, L., Torres, L., Maurine, P.: Attacking randomized exponen-
tiations using unsupervised learning. In: Prouff, E. (ed.) COSADE 2014. LNCS,
vol. 8622, pp. 144–160. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10175-0 11

12. Schindler, W., Itoh, K.: Exponent blinding does not always lift (partial) spa resis-
tance to higher-level security. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS,
vol. 6715, pp. 73–90. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-21554-4 5

13. Schindler, W., Wiemers, A.: Power attacks in the presence of exponent blinding.
J. Cryptograph. Eng. 4(4), 213–236 (2014). https://doi.org/10.1007/s13389-014-
0081-y

14. Schindler, W., Wiemers, A.: Efficient Side-Channel Attacks on Scalar Blinding on
Elliptic Curves with Special Structure. In: NIST Workshop on ECC Standards
(2015)

15. Schindler, W., Wiemers, A.: Generic power attacks on RSA with CRT and expo-
nent blinding: new results. J. Cryptograph. Eng. 7(4), 255–272 (2017). https://
doi.org/10.1007/s13389-016-0146-1

16. Specht, R., Heyszl, J., Kleinsteuber, M., Sigl, G.: Improving Non-profiled attacks
on exponentiations based on clustering and extracting leakage from multi-channel
high-resolution EM measurements. In: Mangard, S., Poschmann, A.Y. (eds.)
COSADE 2014. LNCS, vol. 9064, pp. 3–19. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21476-4 1

17. Standards for Efficient Cryptography Group (SECG): SEC 2: recommended ellip-
tic curve domain parameters. Certicom Research (2000). http://www.secg.org/
collateral/sec2 final.pdf

18. Weissbart, L., Picek, S., Batina, L.: One trace is all it takes: machine learning-
based side-channel attack on EdDSA. Cryptology ePrint archive, report 2019/358
(2019). https://eprint.iacr.org/2019/358

https://doi.org/10.1007/978-3-319-10175-0_11
https://doi.org/10.1007/978-3-319-10175-0_11
https://doi.org/10.1007/978-3-642-21554-4_5
https://doi.org/10.1007/978-3-642-21554-4_5
https://doi.org/10.1007/s13389-014-0081-y
https://doi.org/10.1007/s13389-014-0081-y
https://doi.org/10.1007/s13389-016-0146-1
https://doi.org/10.1007/s13389-016-0146-1
https://doi.org/10.1007/978-3-319-21476-4_1
https://doi.org/10.1007/978-3-319-21476-4_1
http://www.secg.org/collateral/sec2_final.pdf
http://www.secg.org/collateral/sec2_final.pdf
https://eprint.iacr.org/2019/358

Remote Side-Channel Attacks
on Heterogeneous SoC

Joseph Gravellier1,2(B) , Jean-Max Dutertre1 , Yannick Teglia2,
Philippe Loubet Moundi2, and Francis Olivier2

1 Mines Saint-Etienne, CEA-Tech, Centre CMP, 13541 Gardanne, France
{joseph.gravellier,jean-max.dutertre}@emse.fr

2 Thales, 13600 La Ciotat, France
{joseph.gravellier,yannick.teglia,philippe.moundi,

francis.olivier}@thalesgroup.com

Abstract. Thanks to their performance and flexibility, FPGAs are
increasingly adopted for hardware acceleration on various platforms such
as system on chip and cloud datacenters. Their use for commercial and
industrial purposes raises concern about potential hardware security
threats. By getting access to the FPGA fabric, an attacker could imple-
ment malicious logic to perform remote hardware attacks. Recently, sev-
eral papers demonstrated that FPGA can be used to eavesdrop or disturb
the activity of resources located within and outside the chip. In a com-
plex SoC that contains a processor and a FPGA within the same die,
we experimentally demonstrate that FPGA-based voltage sensors can
eavesdrop computations running on the CPU and that advanced side-
channel attacks can be conducted remotely to retrieve the secret key of
a symmetric crypto-algorithm.

Keywords: SoC · Remote attacks · FPGA · Time-to-digital
converter · Voltage sensing · Side-channel attacks

1 Introduction

Traditionally, hardware attacks are conducted in specialized laboratory using
specific heavy and expensive equipment such as oscilloscopes, probes and lasers.
For these reasons, they are considered as local attacks which require direct access
to the target for the attacker. Nowadays, getting a physical access to a target
seems trivial, but not necessarily in the future. The multiplication of cloud ser-
vices, the decentralization of computing resources and the proliferation of con-
nected devices will progressively isolate the physical device from the user and
bring a distance between the potential attacker and the victim device. Lately, the
challenge behind these new constraints associated with the ever-growing com-
plexity of system-on-chips (SoC) gave rise to a new kind of hardware attacks.

Remote hardware attacks leverage hardware vulnerabilities of distant targets
to perform fault attack injection or side-channel analysis. Also known as soft-
ware induced hardware attacks, they take advantage of several weaknesses such
c© Springer Nature Switzerland AG 2020
S. Beläıd and T. Güneysu (Eds.): CARDIS 2019, LNCS 11833, pp. 109–125, 2020.
https://doi.org/10.1007/978-3-030-42068-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-42068-0_7&domain=pdf
http://orcid.org/0000-0002-0212-4694
http://orcid.org/0000-0002-2251-7815
https://doi.org/10.1007/978-3-030-42068-0_7

110 J. Gravellier et al.

as the combination of software & hardware reconfiguration on critical resources
(Clkscrew [1]), the vulnerabilities of peripherals such as memories (Rowhammer
[2]) or the micro-architectural CPU optimizations (Spectre & Meltdown [3,4] and
more recently Foreshadow [5]). The trend around remote attacks relies on three
main points: feasibility, robustness and scalability. Firstly, contrary to tra-
ditional hardware attacks, no expensive or specific equipment is required and a
simple network connection with the target can be enough to perform the attack.
Secondly, these attacks take advantage of hardware resources that are inherent
to the target chip. This means that the vulnerability cannot be completely fixed
or patched without redesigning the entire hardware resource, involving at least
years of development. Finally, another asset of the remote hardware attack is its
ability to be scaled up and launched on billions of connected devices simultane-
ously.

This work focuses on FPGA and its recent adoption in SoCs and cloud dat-
acenters [6,7]. The presence of FPGA within connected devices and also in the
cloud raises concerns about the potential associated security threats. Indeed,
the FPGA provides enough flexibility and performance to replicate a complete
hardware attack bench. Through the access to reconfigurable logic, an attacker
can implement sensors to eavesdrop side-channel leakage induced by surrounding
logic blocks and infer secret keys [8]. Glitch injectors can also be instantiated
within the fabric to disturb surrounding computations [9]. The implementation
of multi-user cloud FPGA was discussed in [10] and could act as a huge secu-
rity backdoor if a malicious tenant starts to eavesdrop or disturb other users
computations. Denial-of-service, bitstream decryption fault attack [11], crypto-
algorithms side-channel [8] are some examples of threats. This paper focuses on a
specific application of FGPA-based side-channel attacks. Using a heterogeneous
SoC that consists in a FPGA and a CPU implemented on the same die, we carry
on the work started by [12] which consists in eavesdropping CPU computation
using FPGA-based voltage sensors. Our contributions are detailed below:

– The in-depth study and improvement of FPGA-based voltage sensors perfor-
mances for side-channel purpose.

– The first FPGA-based side-channel attack conducted on symmetric crypto-
algorithms running on the CPU core of a SoC: Tiny AES + OpenSSL AES.

– The evaluation and comparison of FPGA-based sensors with a traditional
electromagnetic side-channel setup.

This paper presents an FPGA-based side-channel attack on a SoC CPU core.
An iterative work is conducted from the reproduction of the actual state-of-
the-art through the attack of a hardware AES to the first successful attack of
a software AES. Section 2 provides the background about FPGA side-channel
and the adopted threat model. Section 3 describes the global side-channel setup.
Sections 4 and 5 are dedicated to the side-channel experiments conducted both
on hardware and software AES. Then, Sect. 6 provides EM side-channel results
conducted on the same targets for comparison purpose and discuss feasibility and
countermeasures of FPGA-based side-channel attacks. Finally, Sect. 7 concludes
this work.

Remote Side-Channel Attacks on Heterogeneous SoC 111

2 Background

2.1 Power Side-Channel Attacks

Power side-channel attacks make use of the transistors switching activity leakage
through voltage variations to collect information about the processes running
inside a target device. Thanks to a correlation between the leakage and the data
processed, a side-channel attack can be performed to retrieve cryptographic keys
and secrets from a target without tampering it. By analysing power traces, an
attacker can visually speculate on the different instructions performed by the
device using Simple Power Analysis (SPA [13]). Advanced side-channel methods
such as differential power analysis (DPA [14]) or correlation power analysis (CPA
[15]) allow an attacker to infer the secret keys of cryptographic processes by
correlating guessed leakage hypotheses with a set of experimental traces.

2.2 FPGA-Based Voltage Sensors

On-chip voltage fluctuations can be measured externally with an oscilloscope
by connecting a shunt resistor to the power supply pads. Sometimes, though,
they need to be measured internally by the chip itself to ensure good operating
conditions or detect fault attacks. Analog solutions such as Analog-to-digital
converters (ADC) can be used to directly measure internal voltage fluctuations.
However, for the sake of area economy and cost saving, on-chip sensing solutions
are generally based on digital circuits easier to implement and accurate enough to
detect fine-grained voltage fluctuations. These sensors monitor propagation delay
which is the time required for a signal to propagate through a logic gate [16].
This delay fluctuates with the power supply level and can be digitally estimated.
Ring-oscillator based sensors [17] and Time-digital converters (TDC) [18] are the
two major solutions adopted for low-cost delay monitoring. Moreover, they can
easily be implemented within a FPGA fabric using available logic.

2.3 Threat Model

Our threat model addresses all the connected devices that incorporate hardware
acceleration based on FPGA logic: from reconfigurable resources in cloud data
centers to SoCs deployed for industrial and commercial purposes. In this con-
text, we consider the potential implementation of malicious FPGA-based volt-
age sensors through cloud FPGA rental, untrusted IP insertion or access to the
bitstream reconfiguration of unsecured chips. Using these sensors, an attacker
could eavesdrop side-channel leakage induced by surrounding computations. In
a cloud scenario, a malicious user could target the side-channel leakage of cryp-
tographic computations conducted by other users. In SoC context, these sensors
can be implemented to eavesdrop the side-channel leakage induced by the SoC
surrounding logic blocks such as CPU cores or secure elements. The following
work targets heterogeneous SoCs that provide both CPU and FPGA logic blocks
within the same die. Our goal is to assess the feasibility of FPGA-based side-
channel attacks on software crypto-algorithms running within the SoC CPU.

112 J. Gravellier et al.

Fig. 1. Overview of FPGA-based Power Side-Channel Exploits

2.4 Related Works

Several works studying these threats were previously conducted. Although being
all based on FPGA sensors they introduce three different scenarios as illustrated
in Fig. 1.

(1) Intra-FPGA Attack: Remote side-channel attacks on FPGAs were intro-
duced in 2018 [8]. The adversary model consists in a FPGA fabric shared
among multiple users. Each user is protected from the others by logical isola-
tion. Despite this protection, a malicious user can implement voltage sensors
in his rented logic to monitor voltage fluctuations induced by surrounding
computations. Assuming this model, the adversary is able to perform a
CPA attack against a victim AES hardware module. A second exploit uses
RO-based sensors to perform intra-chip SPA against a RSA hardware
module [12].

(2) Inter-Chip Attack: The Inter-Chip Side-channel Attack illustrated in
Fig. 1b goes a step further by proving that an untrusted chip on a PCB
can sense voltage variations induced by other chips through the power dis-
tribution network. In this exploit, an adversary FPGA is able to perform
a CPA attack against an AES module and a SPA attack against a RSA
module running on another FPGA fabric [19].

(3) Heterogeneous Chip Attack: Xilinx Zynq technology integrates a dual
core ARM processor and a FPGA fabric within the same SoC. In [12],
malicious ROs were implemented in the FPGA fabric to perform a SPA
against a naive square and multiply RSA algorithm running on a linux OS
inside the ARM CPU core as shown in Fig. 1c.

3 Presentation of the Side-Channel Setup

3.1 Side-Channel Sensors

TDC-based sensor converts propagation delay variations induced by power sup-
ply fluctuations into digital information. Thanks to a low-cost design and a
fine-grained resolution it is commonly adopted as on-chip temperature or volt-
age sensor: for operating control of the chip [20] as well as glitch attack detec-
tion [21]. More recently, with the rise of FPGA cloud services, some researchers

Remote Side-Channel Attacks on Heterogeneous SoC 113

Fig. 2. Functional schematic of a TDC-based sensor. The Hamming Weight of the
delay line provides an image of the actual on-chip voltage level.

started to use it to perform power side-channel attacks [8,19]. As it offers the
best trade-off between achievable resolution, accuracy and sampling frequency
[18,21], TDC is adopted for the experiments. As illustrated in Fig. 2, the TDC
contains three main logic blocks:

– An init delay block whose propagation delay depends of the chip internal
voltage.

– A delay line made of n elementary delay elements (with an individual prop-
agation delay t) that allows fine measurement of propagation delay fluctua-
tions.

– A register that captures and stores the delay line state.

A clock signal, denoted clk, is connected to the TDC init delay block input
and delayed to form a δclk signal. The phase shift between clk and δclk signals
fluctuates with the voltage variations. The init delay is calibrated in order to
have the δclk edge inside the delay line when its state is captured by the TDC
register. Then, the Hamming Weight of the stored value is computed and deliv-
ers an image of the actual voltage level inside the chip (as a thermometer code).
Figure 2 illustrates the impact of voltage fluctuations on the sampled value. A
voltage rise reduces the propagation delay of the init block. Therefore, the δclk
rising edge travels faster and manages to pass more elements in the delay line.
Therefore, more “1” are sampled and the Hamming Weight of the TDC regis-
ter increases. A voltage drop induces the opposite behaviour by increasing the
propagation delay and thus, the number of “0”. To enable fine-grained voltage
sensing, the propagation delay t of the logic primitives constituting the chain
needs to be as small as possible. However, a small propagation delay involves a
long delay line to avoid saturation of the TDC. Therefore, there is a trade-off
between quantum resolution, voltage range and area consumption. We based our
experiments on an existing version of the TDC based on FPGA resources [18].
Figure 10 in appendix illustrates the schematic view of the TDC-based sensor
instance designed for the experiments.

114 J. Gravellier et al.

Fig. 3. Xilinx Zynq experimental side-channel setup

3.2 Side-Channel Targets

Previous work concerned with attacks on software used simple, self-written pub-
lic key algorithms [12]. We propose to go a step further, by proving that freely-
available (and actually deployed) symmetric crypto-algorithms are also vulnera-
ble to FPGA-based side-channel attacks. By taking advantage of the high accu-
racy and performances provided by the TDC, we aim to conduct CPA attacks
against AES software implementations.

This work targets one hardware AES and two software AES implementations.
Each one of them implements distinct characteristics and enriches the global
study. The first experiment targets a hardware AES module implemented within
the FPGA fabric. The aim of this attack is the evaluation of the intrinsic device
leakage and the optimization and calibration of our sensors (note that this attack
was already conducted by [8]). The second and third experiments are conducted
on Tiny AES [22] (8-bit data-path) and OpenSSL AES [23] (32-bit data-path).
Experiments 2 and 3 represent the novelty of this publication.

3.3 Xilinx Zynq Experimental Setup

The entire side-channel setup is based on a Xilinx Zynq 7000 heterogeneous SoC
that implements both FPGA (Xilinx Artix-7) and CPU (ARM Cortex-A9) on
the same die. Figure 3 represents our experimental setup which is organized as
follows: the Artix-7 FPGA fabric embeds 8 TDC-based sensors set to provide
a sampling rate of 200 MS/s per sensor and all the logic required to store the
acquired data (FIFOs). The use of several TDCs increases the voltage fluctuation
coverage area and the granularity of the overall side-channel setup. However,
TDCs multiplication is limited by the voltage noise resulting from their own
activity. 8 TDCs is the best trade-off found for our experiments.

The fabric also integrates a custom hardware AES-128 module implemented
for experiment purposes. The dual-core Cortex-A9 CPU is cadenced at 667 MHz
and runs a bare-metal C program that implements both Tiny and OpenSSL AES.
From the attacker point of view, the side-channel traces are exported through

Remote Side-Channel Attacks on Heterogeneous SoC 115

UART for upcoming CPA computations. (Note that in a practical scenario, CPA
computation could be launched directly inside the target to reduce the amount of
exported data).

4 FPGA-Based Attack on Hardware AES

An hardware AES module is instantiated within the FPGA fabric as a prelim-
inary test for our sensors. The attacked module has a 128-bit size for both the
message and the key and encrypts data in 10 clock cycles (+1 additional cycle
for the export). Figure 4 illustrates the hardware AES power consumption mea-
sured using the 8 TDCs of our test setup (their output values are added and
averaged).

Side-Channel Attack: Each round transformation of the AES module ends up
with the updating of a 128-bit register that temporarily stores the round state.
The synchronous update of 128 flip-flops induces a strong leakage clearly visible
in Fig. 4. The CPA selection function is taken as the Hamming Distance between
the 9th and 10th round register values and a 8-bit assumption is made on the
last round key (last round attack [24]). Because the data-path is 128-bit wide,
the prediction suffers a 120-bit noise that might yield errors. 10,000 AES leakage
traces are acquired using TDCs and a CPA side-channel attack is conducted. The
usage of large set of traces progressively extracts the leakage out of the noise
variance. After 4,483 traces on average, the right guess shows up. Despite the
attack success, the number of traces required to retrieve the AES secret key can
be significantly reduced through the calibration of the TDCs. Two side-channel
setup optimizations are presented in the following paragraphs, their effect on
CPA results is illustrated in Table 1.

Placement Optimization: The impact of the sensor distance from the target was
already discussed in [8]. We implement it here as a preliminary side-channel
optimization. Close and far setups are instantiated as depicted in Fig. 5. In the
far setup (used for the previous attack), the TDCs are 80 slices distant from the
AES, while in the close setup, the logical distance between them is 6 slices.

Fig. 4. Averaged power supply fluctuation resulting from 100 hardware AES encryp-
tions. AES frequency: 10 MHz - TDCs sampling rate: 200 MS/s.

116 J. Gravellier et al.

Fig. 5. Logical distance between sensors and target algorithm.

The noise induced by the logic placed between the AES and the sensors alters
the valuable side-channel leakage. Reducing the distance between the sensors and
the target should improve the CPA results. As illustrated in Table 1, by adopting
the close setup, the number of traces required to perform the attack drops from
4,483 to 3,440.

Init Delay Optimization: Init delay of the TDC represented in Fig. 2 (and more
specifically in Fig. 10 in appendix) can be dynamically configured using coarse
and fine tuning. The attacker programs the dedicated logic (MUX) to modify the
number of logic elements forming the path, and consequently the delay duration.
The δclk edge propagation speed gets impacted by all the voltage fluctuation
that occurs as it travels through the init delay, yielding thereby an averaging
effect. This effect naturally smooths the sampled values and thus acts as a high-
frequency noise filter. However, depending on its duration, it can deteriorate the
accuracy of the sensor.

Through the implementation of 4 delay paths having different lengths, we are
looking forward to finding the best averaging trade-off for our device. The init
delay is increased of a half clk period per path. In practical terms, the init path
size (logic elements) is progressively increased until the propagation of the δclk
edge fills a half of the delay line with “1”. When it is the case, a half clk period
of delay has been added. This operation is repeated 1, 2 or 3 times depending
on the chosen delay duration.

Table 1. TDC optimizations and their impact on the number of traces required to
infer an AES key byte (averaged on its 16 bytes).

TDC calibration Average number of traces Optimization factor

No 4,483 /

Placement 3,440 1,30

Init + Placement 1,381 3,25

Remote Side-Channel Attacks on Heterogeneous SoC 117

Experimentally, the side-channel attack results are progressively enhanced
with the init delay path size, until it reaches 1.5 times the clk period. Then, it
finally decreases for the last setup. As highlighted in Table 1, CPA results are
significantly improved by the init calibration, the number of traces required to
infer the secret key drops from 3,440 to 1,381 traces. Altogether, placement and
init delay calibration divides by 3,25 the number of traces required to infer the
AES secret key. This optimization is substantial for the following attacks that
require a significantly larger number of side-channel traces.

5 FPGA-Based Attack on Software AES

In this section, side-channel attacks are conducted against freely available AES
software implementations. The optimal setup for the attacks relies on 8 TDCs
placed vertically along the left border of the fabric. According to the Zynq imple-
mented design, this placement makes sense as it bring TDCs closer to the pro-
cessing system (i.e CPU). While this paper focuses on the CPU side-channel
attack feasibility, the identification of the best TDC positions and shapes need
to be further investigated in future works.

5.1 Experiment 1: 8-Bit Tiny AES

The first target adopted for CPU experiments is the Tiny AES implementation
available on github [22]. This small 8-bit data path AES computes each AES
subfunction sequentially and processes data from the less to the most significant
byte. Our experiment focuses on the AES-128 encryption, plaintexts are ran-
domly generated and collected through UART. To make sure that the AES runs
at the CPU max frequency (667 MHz), we measured the number of clock cycles
elapsed during the encryption using ARM performance counters: around 26,000
clock cycles are required (39µs). Figure 6 illustrates a full Tiny AES encryption
acquired using TDCs at a sampling rate of 200 MS/s. The first 9 rounds of the
AES can be easily distinguished thanks to the variation of power consumption

Fig. 6. Averaged power supply fluctuation resulting from 100 Tiny AES encryptions.
TDC sampling rate is 200 MS/s per sensor.

118 J. Gravellier et al.

between 8-bit AES subfunctions ByteSub, ShiftRow and AddRoundKey and the
32-bit MixColumn subfunction. The last AES round differs from the others as
it doesn’t use the MixColumn subfunction.

Side-Channel Attack: The side-channel leakage resulting from 8-bit AES compu-
tations has a low impact on the overall chip voltage fluctuations. The encryption
measurement only covers 5 TDC quantization levels amongst the 32 possible and
is thus more vulnerable to the low-frequency noise induced by the surrounding
peripherals (eg: voltage regulator module 500 KHz) and physical effects (eg: tem-
perature variations). To enhance the signal-to-noise ratio and reduce the number
of traces required for the attack, we need to apply high-pass filtering on each
side-channel trace. After preliminary filtering, the CPA can be conducted. The
selection function chosen for the CPA is the standard Hamming Weight model
of the first round ByteSub output: HW [Sbox[k ⊕ m]]. The attack is a success,
an average of 111,000 traces are required to infer a secret AES key byte. Despite
a significant increase of the number of traces required for the attack, TDCs are
still accurate enough to perform CPA against software algorithms running on
our target. The side-channel performance deterioration can be explained by the
greater logical distance between the FPGA-based sensors and the CPU logic and
the sensibility limitation of the TDC-based sensors.

5.2 Experiment 2: 32-Bit OpenSSL AES

The OpenSSL library [23] implements a wide range of cryptographic algorithms
massively used for secure channels over computer networks. In this work, we
focus on the OpenSSL AES-128 that implements a 32-bit tabulated version of
the AES [25]. This variant merges Mixcolumn and ByteSub subfunctions into
4 look-ups tables known as T-tables (256 × 32-bit). The round transformation
of each input byte is directly loaded from the T-tables and thus speeds up the
computation. OpenSSL cadenced at 667 MHz encrypts 128-bit of data in 2,9µs
- 13.5 faster than the Tiny AES. Figure 7 illustrates the power consumption
induced by OpenSSL AES encryption.

Fig. 7. Averaged power supply fluctuation resulting from 100 OpenSSL AES encryp-
tions. TDC sampling rate is 200 MS/s per sensor.

Remote Side-Channel Attacks on Heterogeneous SoC 119

Fig. 8. Correlation rate over the time obtained for the good guess of each OpenSSL
key byte. The 32-bit implementation can be recognized by observing the byte order.
(Each color represent a 32-bit word) (Color figure online)

OPENSSL1: 8-bit Selection Function. The first round model HW [Sbox[k ⊕ m]]
previously used for the Tiny AES attack works fairly well even against OpenSSL
tabulated AES. According to the definition of the 4 T-tables described in [25],
each table output consists in a 32-bit word T [ki ⊕ mi] in which the natural Sbox
value relative to the input byte ki ⊕ mi has been multiplied by the MixColumn
coefficients. For each table the natural 8-bit value of the Sbox appears twice in
the word because two of the Mixcolumn coefficients equal one. Therefore, 16-bit
of the 32-bit output word will leak according to the Sbox model. Using such a
selection function, 130,000 traces are necessary for the attack to succeed.

OPENSSL2: 32-bit Selection Function. The first round model can be used to
perform reverse engineering. Contrary to classic 8-bit AES which computes each
AES byte from the less significant byte to the most significant, tabulated 32-bit
AES computes each key byte according to the ShiftRow order. This order can
be perceived in temporal CPA results. Figure 8 illustrates the timing correlation
obtained for each right guess of the 16 AES key bytes. The byte order follows
the ShiftRow order and betrays the presence of a tabulated AES. Thanks to
this information, an attacker can slightly improve the CPA model by making
a full 32-bit prediction. Instead of targeting the Hamming Weight of the Sbox
output, the attacker adds the T-table in his selection function: HW [Tt(k ⊕ m)].
The expected benefit is a slightly better correlation and a quicker hypotheses
distinguishing. Experimentally, the average number of traces required to perform
the attack drops to 87,000 which is 1.5 time less than the Sbox model.

This section experimentally demonstrates that FPGA-based sensors are suit-
able for side-channel attacks against software symmetrical algorithms. Accord-
ing to the selection function adopted for the experiments the number of traces
required to infer the secret key fluctuates from 87,000 to 127,000. No significant
distinction exists between the 8-bit Tiny AES and 32-bit OpenSSL AES attacks
as they both leaks accordingly to the Sbox model. The attack of side-channel
resistant crypto-algorithms could be considered in future works to further eval-
uate the potential and limitations of FPGA-based sensors.

120 J. Gravellier et al.

Fig. 9. On the left, a XRAY picture of the Zynq BGA package, the die is contained
within the rectangle. On the right, the side-channel setup based on a langer EM probe.

6 EM Results and Discussion

To evaluate the pertinence of side-channel analysis that can be performed
remotely by our TDC sensors, we challenge these results regarding classical
local side-channel attacks. This section presents a performance comparison with
a traditional EM side-channel setup and discusses about FPGA-based attacks
feasibility and associated countermeasures.

6.1 Electromagnetic Side-Channel Attack

Figure 9b illustrates the EM setup that consists in a Langer near field microprobe
connected to an oscilloscope with a 5 GS/s sampling rate and a 12-bit resolution.
The probe position can be controlled using a X, Y, Z table. The signal is first
amplified by a low noise amplifier (LNA), then connected to the oscilloscope. A
XRAY picture of the ZYNQ7000 depicted in Fig. 9a was taken to check the die
structure. Two hot-spots are represented, the first one offers the best contrast
and visualisation of the hardware AES side-channel leakage, while the second one
gives the best results for software AES algorithms. The electromagnetic leakage
of the first round of each attacked AES is leveraged to trigger the oscilloscope.
The captured samples are then extracted and used to perform a correlation
electromagnetic analysis (CEMA).

CEMA is conducted against each AES studied in this work. Table 2 gathers all
the results obtained with both TDCs and EM setups. Although these setups are

Table 2. Averaged number of traces required to retrieve a key byte on various AES
implementations for EM and TDC side-channel setups

Setup HAES Tiny AES OpenSSL 1 OpenSSL 2

EM 1,021 52,438 106,225 88,412

TDC 1,381 111,758 127,558 87,422

Remote Side-Channel Attacks on Heterogeneous SoC 121

not based on the same physical effect, it makes sense to compare FPGA-based
sensors performance. According to Table 2, the hardware AES and OpenSSL
AES attacks based on TDCs require roughly as many side-channel traces than
EM. This means that with only 32 quantization levels and a 200 MS/s sampling
rate, TDCs provide similar results to a high performance oscilloscope. Naturally,
this must be interpreted with caution as TDCs were previously calibrated and
optimized for this specific device and attack scenario. Moreover, a significant
difference between EM and TDCs still appears when it comes to the Tiny AES
attack. As mentioned before, this has to do with the surrounding noise and the
sensibility limitation of the TDCs.

This experiment aimed to demonstrate that through the calibration and opti-
mization of our sensors, we are able to provide similar results to traditional side-
channel setups. Finally, this further proves the extent of the remote hardware
attack threat.

6.2 Attack Feasibility

The feasibility of FPGA-based attack on a practical scenario substantially relies
on the security level provided by the target. Three major requirements need to
be met to make it possible:

(1) Medium: The side-channel attacks conducted in this paper require the
implementation of voltage sensors within a victim FPGA fabric. This can
be done in cloud datacenters through the rental of reconfigurable logic, by
the insertion of malicious trojan within untrusted FPGA IPs or through the
direct reconfiguration of unsecured FPGA chips.

(2) Data knowledge: Side-channel attacks conducted against secret key algo-
rithms such as AES require the knowledge of victim plaintexts or cipher-
texts. Depending on the use case, accessing this information can be chal-
lenging for the attacker especially because each trace acquired using TDCs
must match with the exact plain/cipher text used for the encryption. The
feasibility is related to the opportunity for the attacker to trigger victim
encryption and to retrieve plain or cipher texts.

(3) Synchronisation: Victim side-channel leakage needs to be dynamically
detected by the sensor logic to facilitate the attack. A trigger mechanism
can be implemented within the TDC to start the data storage when a large
voltage undershoot occurs. However, this trigger mechanism cannot be fully
reliable and sometimes get disturbed by surrounding noise induced by tem-
perature variations or peripherals computations. Depending on the overall
noise level, the attack complexity can soar. To facilitate the attack, a local
clone of the targeted device can be used to adjust and calibrate the side-
channel setup towards the actual remote exploit.

122 J. Gravellier et al.

6.3 Countermeasures

The threat behind FPGA-based hardware attack has already been taken into
account by cloud providers who assure that, for the sake of security and integrity,
their FPGA resources are not shared between multiple users. However, although
this protection mitigates intra-FPGA attacks, FPGA sensors can still eavesdrop
computations that occur in other chips connected to the same power supply
even in presence of decoupling capacitors [19]. To mitigate the threat once for
all, an independent power supply should then be provided for each FPGA chip.
Protecting SoCs that implement both FPGA and CPU within the same die
should be more complex. The dissociation of the power sources would require
the creation of two independent power distribution networks and thus increase
the overall design cost. Designers should be aware of the side-channel threat
and should consider it even when the device is not physically accessible by the
attacker. An efficient way to prevent a crypto-algorithm from being remotely
attacked is the usage of the usual side-channel countermeasures as for instance
shuffling, masking, random delays or jitter.

7 Conclusion

With the massive adoption of FPGA hardware acceleration in connected systems
such as SoC and cloud data centers, the eventuality of remote FPGA-based hard-
ware attacks become more and more realistic. In this work, we demonstrated that
FPGA logic instantiated within a complex SoC can be leveraged to monitor volt-
age fluctuations of the surrounding logic blocks and in particular that of a CPU.
We conducted three experiments from the side-channel attack of a hardware AES
instantiated within the FPGA logic to the attack of two software AES running
on the CPU core. The first experiment was carried out on the hardware AES
module. It allowed us to calibrate several parameters to improve side-channel
results (init delay, position, filtering, etc.). Then we performed the first FPGA-
based side-channel attacks on software AES (Tiny AES and OpenSSL AES).
The side-channel leakage induced by CPU core being much weaker, the attack
required a substantial increase of the number of side-channel to infer the encryp-
tion key. To evaluate the performances of our sensors, we conducted the same
attack using a EM traditional setup and obtained comparable results to those
achieved with TDC-based sensors. This attests the extend of the threat that
unsecured FPGA SoC constitute. Finally, care must be taken when designing
SoC to ensure that hardware resources cannot be maliciously used as hardware
attack means.

Remote Side-Channel Attacks on Heterogeneous SoC 123

8 Appendix

Fig. 10. Logic schematic and implemented design of one TDC-based sensor instance.
Each dotted rectangle in the logic schematic represents 1 slice (26 in total). The delay
line provides 32 quantization levels and a sampling rate of 200 MS/s per sensor.

124 J. Gravellier et al.

References

1. Tang, A., Sethumadhavan, S., Stolfo, S.: CLKSCREW: exposing the perils of
security-oblivious energy management. In: 26th USENIX Security Symposium
(2017)

2. Kim, Y., et al.: Flipping bits in memory without accessing them. ACM SIGARCH
42(3), 361–372 (2014)

3. Kocher, P., et al.: Spectre attacks: exploiting speculative execution, January 2018
4. Lipp, M., et al.: Meltdown. CoRR, abs/1801.0, January 2018
5. Van Bulck, J., et al.: FORESHADOW: extracting the keys to the intel SGX

kingdom with transient out-of-order execution. In: USENIX Security Symposium
(2018)

6. Pellerin, D.: FPGA accelerated computing using AWS F1 instances (2017)
7. Alibaba Cloud ECS: Deep Dive into Alibaba Cloud F3 FPGA as a Service Instances

(2018)
8. Schellenberg, F., Gnad, D.R.E., Moradi, A., Tahoori, M.B.: An inside job: remote

power analysis attacks on FPGAs. In: Design, Automation & Test in Europe Con-
ference & Exhibition. IEEE (2018)

9. Krautter, J., Gnad, D.R.E., Tahoori, M.B.: FPGAhammer : remote voltage fault
attacks on shared FPGAs, suitable for DFA on AES. IACR Trans. Cryptograph.
Hardware Embed. Syst. 14, 44–68 (2018)

10. Chen, F., et al.: Enabling FPGAs in the cloud. In: ACM Computing Frontiers
(2014)

11. Gnad, D.R.E., Oboril, F., Tahoori, M.B.: Voltage drop-based fault attacks on
FPGAs using valid bitstreams. In: 2017 27th International Conference on Field
Programmable Logic and Applications, FPL 2017 (2017)

12. Zhao, M., Suh, G.E.: FPGA-based remote power side-channel attacks. In: IEEE
Symposium on Security and Privacy (2018)

13. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: CRYPTO 1996 (1996)

14. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

15. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5 2

16. Dutertre, J.-M., Robisson, B., Tria, A., Zussa, L.: Investigation of timing con-
straints violation as a fault injection means. In: Design of Circuits and Integrated
Systems (2012)

17. Zick, K.M., Hayes, J.P.: Low-cost sensing with ring oscillator arrays for health-
ier reconfigurable systems. ACM Trans. Reconfigurable Technol. Syst. 5(1), 1–26
(2012)

18. Gnad, D.R.E., Oboril, F., Kiamehr, S., Tahoori, M.B.: An experimental evaluation
and analysis of transient voltage fluctuations in FPGAs. IEEE Trans. Very Large
Scale Integr. Syst. 26(10), 1817–1830 (2018)

19. Schellenberg, F., Gnad, D.R.E., Moradi, A., Tahoori, M.B.: Remote inter-chip
power analysis side-channel attacks at board-level. In: Proceedings of the Interna-
tional Conference on Computer-Aided Design (2018)

20. Ueno, M., Hashimoto, M., Onoye, T.: Real-time on-chip supply voltage sensor and
its application to trace-based timing error localization. In: International On-Line
Testing Symposium (IOLTS). IEEE, July 2015

https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-540-28632-5_2

Remote Side-Channel Attacks on Heterogeneous SoC 125

21. Zick, K.M., Srivastav, M., Zhang, W., French, M.: Sensing nanosecond-scale voltage
attacks and natural transients in FPGAs. In: ACM/SIGDA (2013)

22. Kokke: Tiny AES in C (2018)
23. OpenSSL: OpenSSL AES (2002)
24. Mestiri, H., Benhadjyoussef, N., Machhout, M., Tourki, R.: A comparative study

of power consumption models for CPA attack. Int. J. Comput. Netw. Inf. Secur.
5(3), 25 (2013)

25. Daemen, J., Rijmen, V.: The Rijndael Block Cipher (1999)

Optimal Collision Side-Channel Attacks

Cezary Glowacz1 and Vincent Grosso2(B)

1 Telekom Security, Bonn, Germany
cezary.glowacz@t-systems.com

2 CNRS/Laboratoire Hubert Curien, Université de Lyon, Lyon, France
vincent.grosso@univ-st-etienne.fr

Abstract. Collision side-channel attacks are effective attacks against
cryptographic implementations, however, optimality and efficiency of col-
lision side-channel attacks is an open question. In this paper, we show
that collision side-channel attacks can be derived using maximum likeli-
hood principle when the distribution of the values of the leakage function
is known. This allows us to exhibit the optimal collision side-channel
attack and its efficient computation. Finally, we can compute an upper
bound for the success rate of the optimal post-processing strategy, and
we show that our method and the optimal strategy have success rates
close to each other. Attackers can benefit from our method as we present
an efficient collision side-channel attack. Evaluators can benefit from our
method as we present a tight upper bound for the success rate of the
optimal strategy.

1 Introduction

Since the late 90’s and the first side-channel attacks by Kocher, various tech-
niques of side-channel attacks have been proposed in the literature. Side-channel
attacks are attacks against cryptographic implementations, the goal of such
attacks is to link a physical property (e.g. power consumption, electromagnetic
radiation) of the device to some secret information used in the implementation.

The optimal manner to exploit side-channel leakages is known in general [13].
It requires knowledge of the leakage function (estimated through profiling), then
the maximum likelihood distinguisher is applied. However, the profiling step is
not always possible, in some context like banking the attacker may not have
access to an open device. Moreover, estimation of the leakage function can be a
hard task [6] and model errors can be made. For these settings where profiling
is difficult or impossible, it is interesting to look at optimal non-profiled attacks.

Among non-profiled attacks, collision attacks [12] are efficient side-channel
attacks. The idea of collision side-channel attacks is that the same code process-
ing the same data should have the same impact on monitored physical properties.
This allows the attacker to detect when two sensitive values are equal. From this
equality, the attacker extracts a relation between two different subkeys. Repeat-
ing this strategy for different couples of subkeys she ends with a system of
equations that involve all subkeys with a degree of freedom of 1. Thus the set
c© Springer Nature Switzerland AG 2020
S. Beläıd and T. Güneysu (Eds.): CARDIS 2019, LNCS 11833, pp. 126–140, 2020.
https://doi.org/10.1007/978-3-030-42068-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-42068-0_8&domain=pdf
https://doi.org/10.1007/978-3-030-42068-0_8

Optimal Collision Side-Channel Attacks 127

of potential keys is reduced to a set of computationally enumerable candidates.
In a noisy leakage scenario, detecting collisions may be not directly possible. To
improve the success rate of collision side-channel attacks, Bogdanov introduces
a collision attack across different executions of the AES and uses Euclidean dis-
tance as a score [1]. In [2] Bogdanov suggests using binary and ternary voting
to improve the detection method. Moradi et al. suggest using the Pearson cor-
relation coefficient to detect a collision with averaging to remove a part of the
measurement noise [10]. Thus every trace can be exploited for the attack. In [4]
Bruneau et al. derive a collision attack from stochastic side-channel attacks.
They show that the scalar product score is more adapted to multi-collisions.
However, they did not give any computationally efficient manner to maximize
the score for the full key.

Once the scores of each collision between two subkeys are computed the
attacker needs to select an independent collision relation to recover the key.
Moreover, due to noise in measurements, some equations might be incorrect.
Thus performing a key recovery attack can be tricky. Several algorithms have
been proposed in the literature in order to extract information from the result
of collision side-channel attacks. The proposed methods are based on heuristics,
e.g. LDPC decoding for the solution of Gérard and Standaert [7] or branch-
and-bound for the solution of Wiemers and Klein [14]. While both approaches
improve the success rate of the collision attack the status of the optimality of
these methods is not known, thus leaving space for potentially more efficient
exploitation of side-channel collision attacks.

Having an efficient attack is interesting for attackers and evaluation labs.
Security labs are also interested in computing security margins independent of
the adversarial strategy. Thus finding the adversarial best strategy is important
and computing a bound for its success rate is essential for a fair evaluation.
Due to the dependence among the relations in collision side-channel attacks
formulating the best strategy and evaluation of security margins were an open
problem.

Our Contributions. We derive optimal collision side-channel attacks when the
attacker knows the distribution of the leakage function values, and the attacker
has a balanced set-up of traces. Bruneau et al. [4] use other hypotheses: same
leakage function ϕ and a white Gaussian noise with the same variance for each of
the measurements. Bogdanov and Moradi et al. solutions are based on statistical
tools and are not derived using the maximum likelihood principle. From our
derivation of collision attacks using the maximum likelihood principle we extract
an evaluation of the distinguisher in an efficient manner. We show that the
success rate of this manner is in practice close to that of the optimal evaluation
of the distinguisher (the optimal evaluation is computationally unfeasible). This
is achieved thanks to bounding the success rate of the optimal evaluation of
the distinguishers. To the best of our knowledge, it is the first time an upper
bound for the first order success rate of optimal collision side-channel attacks
is exhibited. We compare our method to existing techniques and show that our
method achieved better performance than previous methods, and that its success

128 C. Glowacz and V. Grosso

rate is close to the upper bound of the success rate of optimal collision side-
channel attack. We use the maximum likelihood principle for the score derivation.
The experimental results show that our method for maximization of the sum of
the scores is close in term of success rate to the optimal strategy (bounded
thanks to the upper bound). In our case, we measure the optimality in terms
of achieving the same success rate as the optimal strategy (using the exact ML
distinguisher derived according to the knowledge of the probability distribution
of the leakage function values).

2 Background and Model Notations

2.1 Collision Side-Channel Attacks

Collision side-channel attacks were invented to exploit the similarity between
leakages of similar computations over similar data values. Collision side-channel
attacks do not require profiling of the leakage or a hypothesis of the leak-
age model. This is one of the main differences between collision side-channel
attacks and other side-channel attacks such as template attacks [5] or correla-
tion attacks [3]. Collision side-channel attacks have been introduced as attacks
against block cipher implementations in [12].

As collision attacks aim at detecting repeated code execution with the same
data we target in this paper block cipher implementations that reuse the same
instance of the S-box, like in several reference implementations of Present or of
AES. We denote by n the input size of the S-box (e.g. n = 8 for AES). We
denote by L the number of S-box calls in one round (e.g. L = 16 for AES-128).

For all l ∈ {1, . . . , L} we denote by k∗(l) the l-th secret key byte and by k(l)

any possible l-th key byte hypothesis. We denote by k = (k(1), . . . , k(L)) the full
key. The l-th byte of the plaintext corresponding to the q-th query is denoted by
t
(l)
q and the associated leakage is denoted by x

(l)
q . x(.) is the matrix with q − th

row corresponding to the L-variate leakage x
(1)
q , ..., x

(L)
q .

We assume an identical, but unknown, leakage model for all l ∈ {1, . . . , L}.
I.e.

x(l)
q = ϕ(t(l)q ⊕ k∗(l)) + N,

where the noise N is independent among l and q and ϕ is a deterministic leakage
function.

The goal of collision side-channel attacks is to find links among the different
key bytes k(l). The main idea is to detect when ϕ(t(l1)q1 ⊕k∗(l1)) = ϕ(t(l2)q2 ⊕k∗(l2))
for l1, l2 ∈ {1, . . . , L}, l1 �= l2 and some know plaintext byte t

(l1)
q1 , t

(l2)
q2 .

In this paper, we consider only the case where we have a number of mea-
surements that is a multiple of 2n, and for each S-box calculation, we have
observed the same number of traces for each value of the plaintext. This bal-
anced setup allows to remove the bias of the plaintext distribution and it can be
easily implemented using shuffling of batches. Hence, after performing averaging

Optimal Collision Side-Channel Attacks 129

over the traces x
(l)
q with the same plaintext values x(.) becomes a matrix of real

numbers of dimension 2n × L, where the i-th row corresponds to the leakage of
the plaintext i − 1.

In the rest of the paper we consider leakage functions that are partially
unknown, i.e. the leakage function values are random variables and follow some
plausible probability distribution. Without knowing this distribution, we cannot
figure out an optimal distinguisher using maximum likelihood principle. For the
experiment part, we also consider a more classical case where the leakage function
is the Hamming weight.

2.2 Stochastic and Correlation Enhanced Collision Attacks

Bruneau et al. combine flavours of collision and of stochastic side-channel attacks
[4]. Contrary to previous formulations, Bruneau et al. derive the attack rather
than inventing it. The derivation is based on maximizing the likelihood function
stated for the full key, given the measured leakages under the assumption of
the same leakage function ϕ for each of the executions of the S-box and of
the Gaussian noise having the mean 0 and the same variance for each of the
measurements.

Stochastic differential side-channel attacks [11] were introduced in order to
optimize the efficiency of DPA. The key idea of stochastic DPA is to approximate
the leakage function ϕ within a suitable vector subspace with a relatively “small”
basis to be efficient.

To use a stochastic approach in the collision context Bruneau et al. consider
the unknown leakage function ϕ as an additional part of the secret. Thus the
optimization problem, i.e. maximizing the likelihood function, is not only on
the key value k, but also on the leakage function. The stochastic approach for
the representation of the leakage function ϕ can be shown to be equivalent to
replacing the leakage function values in the likelihood function by their estimates
calculated for each key k as the arithmetic mean over l of the measured leakages
x
(l)

q⊕k(l) . Using these estimates maximizes the likelihood function values,1 as it
is also the case when using the stochastic approach utilizing the full basis for
the representation of the leakage function ϕ. Finally, Bruneau et al. obtain the
following distinguisher:

Dsto.coll = argmax
k∈(Fn

2)
L

∑

u∈Fn
2

(∑L
l=1

∑
q=1...Q|tq⊕k(l)=u x

(l)
q

)2

∑L
l=1

∑
q=1...Q|tq⊕k(l)=u 1

.

As the distinguisher is computed over L key bytes, the formula can be max-
imized over all keys only for small values L (e.g. up to 5).
1 To see this we rewrite the Dopt from the Eq. (2) [4] in the balanced setup as

Dopt = argmax
k ∈(Fn

2)L

2n−1∑

q=0

⎛

⎝−
(

ϕ(t
(l)
q) − 1

L

L∑

l=1

x
(l)

q⊕k(l)

)2

+
2

L2

L∑

l1=1

L∑

l2=l1+1

x
(l1)

q⊕k(l1) × x
(l2)

q⊕k(l2)

⎞

⎠ .

.

130 C. Glowacz and V. Grosso

When the data set is balanced and averaging of traces is performed we
can rewrite the distinguisher as a sum of scalar products between rows of the
matrix x(.) (re-indexed by the key). As a matter of fact, we have ∀u ∈ Fn

2 ,∀l ∈
{1, . . . , L}∑

q=0...2n−1|q⊕k(l)=u 1 = L, thus:

Dsto.coll.bal = argmax
k∈(Fn

2)
L

∑

u∈Fn
2

⎛

⎜⎜⎝
L∑

l=1

∑

q=0...2n−1

q⊕k(l)=u

x(l)
q

⎞

⎟⎟⎠

2

= argmax
k∈(Fn

2)
L

∑

u∈Fn
2

(
L∑

l=1

x
(l)

u⊕k(l)

)2

= argmax
k∈(Fn

2)
L

∑

u∈Fn
2

L∑

l=1

(
x
(l)

u⊕k(l)

)2

+ 2
L∑

l1=1

L∑

l2=l1+1

(
x
(l1)

u⊕k(l1) × x
(l2)

u⊕k(l2)

)

= argmax
k∈(Fn

2)
L

∑

u∈Fn
2

L∑

l1=1

L∑

l2=l1+1

(
x
(l1)

u⊕k(l1) × x
(l2)

u⊕k(l2)

)
,

since
∑

u∈Fn
2

∑L
l=1

(
x
(l)

u⊕k(l)

)2

is constant for every key.
We can notice that ∀i ∈ Fn

2 ,

∑

u∈Fn
2

L∑

l=1

L∑

l2=l1+1

(
x
(l1)

u⊕k(l1) × x
(l2)

u⊕k(l2)

)

=
∑

u∈Fn
2

L∑

l=1

L∑

l2=l1+1

(
x
(l1)

u⊕k(l1)⊕i
× x

(l2)

u⊕k(l2)⊕i

)
,

thus the keys are equivalent up to a byte i xor on every key byte, i.e.
(
k(1), . . . , k(L)

)
∼

(
k(1) ⊕ i, . . . , k(L) ⊕ i

)
.

Moradi et al. proposed correlation-enhanced collision attack in [10]. They average
traces to reduce the impact of randomness (noise in measurement). Then, they
use the correlation between every two rows of the matrix x(.) and for every
re-indexing of the coefficients due to the differential value of any two sub-keys.
To recover the full differential of the sub-keys of the key ad hoc solutions were
proposed. E.g. extract a system of independent equations [10], perform a branch-
and-bound on the sum of correlation coefficients [14], or use an adapted decoding
technique [7].

None of these techniques based on correlation enhanced collision attack
address the optimality of the approach, leaving the question about it open.

Optimal Collision Side-Channel Attacks 131

Actually, for any two key bytes we can link scalar product and correlation
coefficient as:

ρk(l1),k(l2)

(
x(l1), x(l2)

)

=
2n

2n−1∑
i=0

x
(l1)

i⊕k(l2) × x
(l2)

i⊕k(l2) −
2n−1∑
i=0

x
(l1)
i

2n−1∑
i=0

x
(l2)
i

√

2n
2n−1∑
i=0

(
x
(l1)
i

)2

−
(

2n−1∑
i=0

x
(l1)
i

)2
√

2n
2n−1∑
i=0

(
x
(l2)
i

)2

−
(

2n−1∑
i=0

x
(l2)
i

)2
.

It can be seen from the above formula that for the balanced setup the couple
k(l1), k(l2) that maximizes the correlation coefficient is the same that maximizes
the scalar product. However, maximizing the sum of correlation coefficients or
of scalar products might not give the same relation between key bytes. The
reason for this is a statistical fluctuations of the factors used as weights (see the
denominator in the above formula) when going from the sum of scalar products
to the sum of correlation coefficients.

3 Optimal Distinguishers for Random Leakage Functions

With reference to the Eq. (4) [4] and to the previously introduced notations the
maximum likelihood (ML) distinguisher can be written as:

Dopt = argmax
k∈(Fn

2)
L

2n−1∏

q=0

L∏

l=1

fσ2

(
x(l)

q − ϕ
(
t(l)q ⊕ k(l)

))
,

where fσ2 denotes Gaussian distribution with the mean value 0 and the standard
deviation σ. Bruneau et al. maximize Dopt also over the leakage function values.
This approach is not sufficient for obtaining a provably optimal, i.e. one that
maximizes the likelihood of the key given the measured leakage, distinguisher
for the key. However, in some practical situations the attacker might have some
a priori knowledge about the leakage function and using it she may try to derive
an optimal distinguisher, e.g. by considering each of the leakage function values
ϕ(x) as random variables with some guessed distribution. Using such distin-
guisher maximizes the average success probability when repeating attacks while
each time the leakage function values are selected according to the assumed
distribution. In particular it is also expected that the attack succeeds on some
actual leakage function with higher success probability than in a case of using
the distinguisher Dsto.coll. This can be explained by the fact that the actual
leakage function might be a kind of a typical leakage function with respect to
the assumed distribution of the leakage function values and with respect to the
success probability of the derived distinguisher.

We verified in case of two 8 bit wide S-boxes the higher success rate of 0.90
when using the distinguisher derived (see below) using the knowledge of the
distribution of leakage function values as compared to the success rate of 0.50

132 C. Glowacz and V. Grosso

when using the Dsto.coll.bal distinguisher. The following describes the used distri-
bution. Each leakage function ϕ is created randomly according to the following
rule: for each u ∈ {0, . . . , 255} assign to ϕ(u) a value v selected randomly from
a distribution given by the following histogram:

Hex =
{(

0,
246
256

)
,

(
1,

1
256

)
,

(
2,

2
256

)
,

(
3,

3
256

)
,

(
4,

4
256

)}
,

where (v, p) means that the value v has the probability p of being selected. The
higher success rate was also verified for some fixed leakage functions with values
drawn from that distribution. Note that the example is given only to show that
the Dsto.coll.bal or equivalently Dsto.coll distinguisher might be not optimal given
additional knowledge of the distribution of the leakage function values, and thus
to motivate further investigations. No other claims are made at that point.

The optimal distinguisher derived under known distribution p of leakage func-
tion values ϕ is given by:2 (Any constant mask which is applied to each S-box
and which does not change the distribution p has no effect on the distinguisher
Dopt.fun.p).

Dopt.fun.p = argmax
k∈(Fn

2)
L

2n−1∏

q=0

∫ (
L∏

l=1

fσ2

(
x
(l)

q⊕k(l) − ϕ
))

dp(ϕ),

where
∫

α(ϕ)dp(ϕ) means the expectation value of α(ϕ) given the distribution
density dp(ϕ) of the leakage function values.

In the example above the integral was just a sum over the values v ∈
{0, . . . , 4} and dp(v) was set to the probability of the occurrence of each of
the value v.

Of special practical interest is the case of Hamming weight leakages. Even
without knowing the exact leakage model, it is reasonable in many situations to
assume a Hamming weight leakage, and therefore the distribution of the leakage
function values is binomial, e.g. it is given by the following histogram:

Hbin.4 =
{(

0,
1
16

)
,

(
m,

4
16

)
,

(
m × 2,

6
16

)
,

(
m × 3,

4
16

)
,

(
m × 4,

1
16

)}
,

in case of a 4 bit wide S-box, where the m is a parameter of the distribution.
While it is straightforward to write an exact formula for the optimal distin-

guisher Dopt.fun.binomial in that case, the parameters m of the leakage and the

2 The derivation is based on the following equation with statistically independent K
and φ

P (K = k|X = x) =
∑

ϕ

P (X = x|(K = k, φ = ϕ)) × P (K = k) × P (φ = ϕ)

P (X = x)
.

Without knowing the distribution P (φ) of the leakage function values we cannot
figure out an optimal distinguisher using the maximum likelihood principle.

Optimal Collision Side-Channel Attacks 133

standard deviation σ of the noise are still unknown. However, later on we will use
such distinguisher derived with known values of m and σ as a benchmark when
comparing the success rate of the related Dopt.fun.gauss distinguisher derived
for leakage function values distributed according to Gaussian distribution. We
expect similar success rates for both Dopt.fun.binomial and Dopt.fun.gauss because
Gaussian distribution is an approximation of the binomial distribution.

The integration in the formula for Dopt.fun.p can be performed with the
standard deviation σ of the noise and dp taken as a density of Gaussian distri-
bution with the mean mϕ and the standard deviation σϕ. In addition to knowing
that the leakage function values are drawn from a Gaussian distribution we also
require a balanced set-up of traces.

The result in that case is

Dopt.fun.gauss

= argmax
k∈(Fn

2)
L

2n−1∏

q=0

(∫ (
L∏

l=1

fσ2(x(l)

q⊕k(l) − ϕ)

)
× fσ2

ϕ
(ϕ − mϕ)dϕ

)

= argmax
k∈(Fn

2)
L

2n−1∏

q=0

⎛

⎝e

(σ2
ϕ×∑L

l=1 x
(l)

q⊕k(l)+σ2×mϕ)2

2×σ2×σ2
ϕ×(σ2+L×σ2

ϕ)
− m2

ϕ

2×σ2
ϕ

−
∑L

l=1(x
(l)

q⊕k(l))
2

2×σ2

×
∫

e
− σ2+L×σ2

ϕ

2×σ2×σ2
ϕ

×(ϕ−
σ2

ϕ×∑L
l=1 x

(l)

q⊕k(l)+σ2×mϕ

σ2+L×σ2
ϕ

)2

dϕ

⎞

⎠

= argmax
k∈(Fn

2)
L

2n−1∑

q=0

(
σ2

ϕ ×
L∑

l=1

x
(l)

q⊕k(l) + σ2 × mϕ

)2

= argmax
k∈(Fn

2)
L

2n−1∑

q=0

L∑

l1=1

L∑

l2=l1+1

(
x
(l1)

q⊕k(l1) × x
(l2)

q⊕k(l2)

)
.

Remarkably, this special result is independent of the parameters, i.e. of the
standard deviation σ of the noise, of the mean mϕ and of the standard deviation
σϕ of the leakage function values. It also shows the optimality in terms of max-
imum likelihood of the Dsto.coll.bal distinguisher in case of Gaussian distributed
leakage function values.

4 Optimal Evaluation of Distinguishers

The Dopt.fun.p distinguishers require to maximize over all k ∈ (Fn
2)L. Unfortu-

nately, the triple sum has no structure (local maximum does not lead to global
maximum), and to find the k maximizing the sums all cases need to be com-
puted. Thus the optimal solution to recover the key using an optimal collision
side-channel attack requires to compute all of the 2(n−1)L (e.g. 2120 in the case

134 C. Glowacz and V. Grosso

of AES-128) values.3 We present here an algorithm that aims to find the maxi-
mizing k using random space exploration by looking only at a small number of
candidate keys k.

4.1 Random Space Exploration

The random space exploration algorithm is described in Algorithm 1.4

The algorithm returns a key candidate that maximizes the sum of scalar
products over the small set of key candidates we explore. Hence, the algorithm
tries to find the maximizing key k of the Dopt.fun.gauss distinguisher. We note
that the term

∑s−1
j=1 s(lj , ls, δ⊕k(lj)) in step 14: results in matching the leakage of

S-box ls with a kind of template given by the sum of the leakages of the S-boxes
l1 to l(s−1). If the guess for the keys k(l1) to k(ls−1) is correct, that template
converges for larger values of s to the true leakage function value and the chance
to recover the correct key ks increases with greater s. Actually this observation
could already have been the starting point for designing the algorithm. Another
design idea was based on the observation, that when having a set of different
pairs of S-boxes there is a good chance to have one pair for which the correct
key can be found. This pair then results in a better template for matching the
leakage of the third S-box, and so on.

The cost of the proposed algorithm is modest in terms of memory, we just
need to store the maximum key. In terms of time, the algorithm is also efficient
and it has a running time O(L × 2n × max tries).

We also use a modified version of the Algorithm 1 for the evaluation of the
Dopt.fun.binomial distinguisher, i.e. for finding its maximizing key k. First, the
algorithm receives as input the full matrix x(.), and the modification consists
also of replacing in line 9:

Sum = maxδ (s(l1, l2, δ))

3 The minus 1 comes from the equivalence of the keys when xor-ing any fixed value
with each subkey.

4 The random space exploration algorithm can be seen as a repeated execution of the
Wiemers’ and Klein’s algorithm variant 1 with W = 1, the details of the algorithm
are given in [14]. While the algorithm of Wiemers and Klein was designed for entropy
reduction of collision attacks, the target of the random space exploration algorithm
was to enable the investigation of the limits of success rates for collision attacks. To
sum up, the differences between the Wiemers’ and Klein’s algorithm and the random
space exploration algorithm are:

– the repetition of the execution of variant 1 with W = 1 instead of one run with
W > 1,

– randomized order of S-boxes on each run instead of the fixed order,
– the output of only one candidate instead of a list of W > 1 candidates,
– the use of Dopt.fun.gauss distinguisher instead of a sum of correlation coefficients.

.

Optimal Collision Side-Channel Attacks 135

Algorithm 1. Random space exploration

1: Input: The
L(L − 1)

2
lists of 2n scalar products s(l1, l2, δ) =

∑2n−1
q=0 x

(l1)
q × x

(l2)
q⊕δ

2: Output: A key candidate k

3: Notation:
$← means we pick a value in the set on the right randomly following a

uniform distribution
4: Max = −∞
5: for 1 ≤ try ≤ max tries do

6: l1
$← {1, . . . , L}

7: ktmp(l1) = 0

8: l2
$← {1, . . . , L}\{l1}

9: Sum = maxδ(s(l1, l2, δ))
10: ktmp(l2) = argmaxδ(s(l1, l2, δ))
11: for 3 ≤ s ≤ L do

12: ls
$← {1, . . . , L}\{l1, . . . , ls−1}

13: for 0 ≤ δ ≤ 2n do
14: Current(δ) = Sum +

∑s−1
j=1 s(lj , ls, δ ⊕ ktmp(lj))

15: end for
16: Sum = maxδ(Current(δ))
17: ktmp(ls) = argmaxδ(Current(δ))
18: end for
19: if Sum > Max then
20: k = ktmp
21: Max = Sum
22: end if
23: end for
24: return k

by

Sum = maxδ

(
2n−1∑

q=1

log

(∫
fσ2

(
x
(l1)

q⊕k(l1) − ϕ
)

× fσ2

(
x
(l2)
q⊕δ − ϕ

)
dp(ϕ)

))

and in line 14:

Current(δ) = Sum +
s−1∑

j=1

s
(
lj , ls, δ ⊕ k(lj)

)

by

Current(δ) =
2n−1∑

q=1

log

⎛

⎝
∫

fσ2

(
x
(ls)
q⊕δ − ϕ

)
×

s−1∏

j=1

fσ2

(
x
(lj)

q⊕k(lj) − ϕ
)

dp(ϕ)

⎞

⎠ ,

where
∫

α(ϕ)dp(ϕ) means the expectation value of α(ϕ) given the distribution
density p(ϕ) of the variable ϕ. Here the distribution density p(ϕ) is the binomial
distribution of the n-bit Hamming weights and the integral is effectively a sum
(see also Sect. 3).

136 C. Glowacz and V. Grosso

4.2 Upper Bound for the Success Rate

Interestingly, in an evaluation setup the random space exploration can also be
used to find an upper bound for the success rate of the optimal exploration, i.e.
the one that recovers the key by computing the maximum of the distinguisher
over all 2(n−1)L key candidates. As a matter of fact, in the evaluation setup the
correct key k∗ is known, thus the score

Sk∗ =
∑

u∈Fn
2

L∑

l=1

L∑

l2=l1+1

(
x
(l1)

u⊕k∗(l1) × x
(l2)

u⊕k∗(l2)

)

is also known. According to the Max value (see line 21:, Algorithm 1) which we
find in random space after reaching line 23: we have two cases:

1. Sk∗ < Max, in that case, we know that the optimal exploration, and our
random space exploration, will fail. They both output a candidate key that
has a higher score than the actual key.

2. Sk∗ ≥ Max, in that case, the optimal exploration might find the right key.

Thus, in the evaluation setup, we can count the number of times the case 2
happens and this way obtain an upper bound for the success rate of the optimal
exploration. This upper bound can be computed with almost no overhead, we
just need to additionally return the value Max in Algorithm 1. To the best of
our knowledge, it is the first time an upper bound for the first-order success rate
of optimal collision side-channel attack can be computed.

The value of the parameter max tries (see line 5:, Algorithm 1) of the attack
plays a role in the attack phase and also in the evaluation step. Higher values
of max tries result in higher success rates of the attack and in lower calculated
upper bound values.

We will also calculate the upper bound for the success rate of the modi-
fied Algorithm 1 for the evaluation of the Dopt.fun.binomial distinguisher using a
method similar to the method described above.

5 Simulation Results

We present the upper bounds for success rates of collision side-channel attacks,
and we compare our method to these upper bounds and to the previous methods
in terms of success rate. We choose to evaluate the method using simulation to
highlight the differences between the methods without being blurred by slight
modifications of the leakage function according to key byte used [7]. For collision
side-channel attacks we compare:

– our method presented in Algorithm 1 (labelled ‘Prop.’) using the distinguisher
Dopt.fun.gauss (labelled ‘scalar’) and using the Dopt.fun.binomial distinguisher
(labelled ‘binomial’) with max tries = 128 (labelled ‘128 tries’) and with
max tries = 213 (labelled ‘213 tries’), and upper bounds (denoted ‘UB’) com-
puted along the success rates;

Optimal Collision Side-Channel Attacks 137

– variant 1 of Wiemers’ and Klein’s algorithm [14] (labelled ‘Wiemers’) with
W = 1285 and using the sum of correlation coefficients (labelled ‘corre.’) and
its modification using the sum of scalar products (labelled ‘scalar’). Among
all solutions in B16 we kept only the maximum to have only one solution to
test as for the other solutions;6

– Gérard’s and Standaert’s solution [7] (labelled ‘Best Gérard’) with normalized
correlation, we use six loops of message passing, that is greater that two times
the graph’s diameter.7

For a reference, we also plot template attacks (labelled ‘Template’), which in
case of the simulation are optimal profiled attacks.

We consider attacks on 16 key bytes, i.e. L = 16 and n = 8, similar to the
AES case. We assume that the attacker has an access to a balanced set of traces.
She observes each plaintext byte the same number of times, thanks to averaging
she can just use 28 plaintexts per S-box. We utilize the balanced setup, and
instead of varying the number of traces, we increase or decrease the variance of
the white Gaussian noise in our simulations.

For the leakage function we consider two cases. The first case is the setting
corresponding to derivation in Sect. 3, i.e. the distribution of the leakage function
values is 8 bit binomial (labelled ‘rand. leak’)8. As the second case we consider
Hamming weight (HW) leakage of the output of the AES S-box (labelled ‘HW
leak’).

We compute all success rates based on 2500 experiments. This results in a
value of standard deviation of estimated success rates less then 0.01.

In Fig. 1, we plot results for the proposed method given in Algorithm 1 using
the distinguishers Dopt.fun.gauss and Dopt.fun.binomial and for the previous meth-
ods applied to the same set of data. We can make several observations from the
figure.

– For success rates greater than 0.90 the upper bound and the success rate of the
Algorithm 1 are close to each other for small value of max tries, i.e. 128. For
example, with σ2 = 11 and random leakage function values, the success rates
are 0.9064 for the upper bound and 0.8956 for Algorithm 1 when using the

5 Algorithm 1 with max tries = 128 and the variant 1 of Wiemers’ and Klein’s algo-
rithm with W = 128 visit almost the same number of nodes of the search tree/trees.
These settings allow meaningful performance comparison of the two algorithms.

6 In our experiments using only the highest ranked solution or testing of all solutions
has a small impact on the success rate of the method.

7 In our experiments this setting provides the highest success rate compared to the
other methods described in the paper of Gérard and Standaert, i.e. Euclidean
distance vs. correlation coefficient and normalization vs. Bayesian extension. The
Bayesian extension is a boost for score combination, but its derivation uses Fisher
transform that is an asymptotic tool. Thus, the Bayesian extension can be counter-
productive for attacks which use a small number of traces like 28.

8 In more details, for each experiment we draw a new leakage function ϕ randomly
according to the following rule: for each u ∈ {0, ..., 255} assign to ϕ(u) a value
selected randomly according to the binomial distribution of 8-bit Hamming weights.

138 C. Glowacz and V. Grosso

Fig. 1. Upper bounds and success rates of different techniques.

Dopt.fun.binomial distinguisher, and the success rates are 0.9068 for the upper
bound and 0.8924 for Algorithm 1 when using the Dopt.fun.gauss distinguisher.
In the same scenario for Gérard’s and Standaert’s solution the success rate
is 0.6832, and for Wiemers’ and Klein’s solution the success rates are: 0.7284
using the sum of correlation coefficients and 0.7292 using the sum of scalar
products.9,10

– For larger values of the parameter max tries, i.e. 213, the distance between
the upper bound and the success rate is small for all noise levels. In our
experiments performed using the Dopt.fun.gauss distinguisher and Algorithm 1
we obtained a maximum distance of 0.0088 between the upper bound and the
actual success rate for σ2 = 18.

– The use of the distinguisher Dopt.fun.gauss instead of the optimal distinguisher
Dopt.fun.binomial has only a very small impact on the upper bound and on the
success rate of the collision side-channel attacks performed using Algorithm 1.

– The Hamming weight of the output of the AES S-box seems to lead only to
a bit higher success rates than the average success rate over random leakage

9 When testing all elements in B16 we obtain respectively success rates 0.7808 and
0.7824.

10 Wiemers and Klein give in [14] an approximate lower bound value of 1.2 for τ = b−a
σc

for the variant 2 of their algorithm in the special case of the remaining entropy
value of 0. This bound is also valid when the distinguisher Dopt.fun.gauss is used.
We calculated the means a and b and the variance σ2

c of the scalar products
cl1,l2(k

(l1), k(l2)) =
∑255

q=0(x
(l1)
q⊕k(l1) × x

(l2)
q⊕k(l2)) for AES-128, Hamming weight leak-

age and noise variance σ2. Using δ = k(l1) ⊕ k(l2), a(δ) ∈ [3978, 4192] for all δ �= 0,
b = a(0) = 4608, σ2

c = σ2(2b + 256σ2), and τ = 1.2 we obtained for the variance
σ2 values from 10.2 for a = 4192 to 19.4 for a = 3978. Already the smaller of these
approximate values does not agree with our upper bound.

Optimal Collision Side-Channel Attacks 139

function values with binomial distribution. This indicates that the AES S-box
Hamming weight leakage can be considered as a kind of typical leakage func-
tion for the set of random leakage function values with binomial distribution.

– There exist a gap between success rates of template attacks and the upper
bounds for success rate of collision side-channel attacks. This gap cannot be
closed.

6 Summary

Our results provide new insights on collision side-channel attacks. We derive
optimal distinguishers for collision side-channel attacks and a computationally
efficient algorithm for the evaluation of these distinguishers. The developed eval-
uation algorithm can also be applied to Bruneau et al. [4] to make their attack
computationally feasible for large values of L. The proposed solution offers bet-
ter results than all previous solutions in terms of success rate. Our approach
provides an upper bound for the success rate of collision side-channel attacks.
We show experimentally that we are able to reach this upper bound for the
optimal distinguishers. This result demonstrates the optimality of our approach
to collision side-channel attacks.

As a future work one may try to look at higher-order success rate of collision
side-channel attacks. To improve the post-processing of collision side-channel
attacks in that case, it might be worth to describe the problem as a depen-
dent knapsack problem, as it was proposed for divide and conquer strategy [9].
Another direction is to look at collision side-channel attacks for higher-order
leakage. The correlation collision side-channel attack exploits only first order
leakages.

Acknowledgments. The authors thank Wolfgang Thumser, Telekom Security for
fruitful discussions on the notion of optimality of collision side-channel attacks.

References

1. Bogdanov, A.: Improved side-channel collision attacks on AES. In: Adams, C., Miri,
A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 84–95. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-77360-3 6

2. Bogdanov, A.: Multiple-differential side-channel collision attacks on AES. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 30–44. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-85053-3 3

3. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5 2

4. Bruneau, N., Carlet, C., Guilley, S., Heuser, A., Prouff, E., Rioul, O.: Stochastic
collision attack. IEEE Trans. Inform. Forensics Secur. 12(9), 2090–2104 (2017).
https://doi.org/10.1109/TIFS.2017.2697401

5. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36400-5 3

https://doi.org/10.1007/978-3-540-77360-3_6
https://doi.org/10.1007/978-3-540-85053-3_3
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1109/TIFS.2017.2697401
https://doi.org/10.1007/3-540-36400-5_3

140 C. Glowacz and V. Grosso

6. Durvaux, F., Standaert, F.-X., Veyrat-Charvillon, N.: How to certify the leakage
of a chip? In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol.
8441, pp. 459–476. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-55220-5 26

7. Gérard, B., Standaert, F.: Unified and optimized linear collision attacks and their
application in a non-profiled setting: extended version. J. Cryptogr. Eng. 3(1),
45–58 (2013). https://doi.org/10.1007/s13389-013-0051-9

8. Joye, M., Quisquater, J.-J. (eds.): CHES 2004. LNCS, vol. 3156. Springer, Heidel-
berg (2004). https://doi.org/10.1007/b99451

9. Martin, D.P., O’Connell, J.F., Oswald, E., Stam, M.: Counting keys in parallel
after a side channel attack. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015,
Part II. LNCS, vol. 9453, pp. 313–337. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-48800-3 13

10. Moradi, A., Mischke, O., Eisenbarth, T.: Correlation-enhanced power analysis col-
lision attack. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol.
6225, pp. 125–139. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-15031-9 9

11. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel
cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp.
30–46. Springer, Heidelberg (2005). https://doi.org/10.1007/11545262 3

12. Schramm, K., Leander, G., Felke, P., Paar, C.: A collision-attack on AES. In: Joye,
M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 163–175. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5 12

13. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-01001-9 26

14. Wiemers, A., Klein, D.: Entropy reduction for the correlation-enhanced power
analysis collision attack. In: Inomata, A., Yasuda, K. (eds.) IWSEC 2018. LNCS,
vol. 11049, pp. 51–67. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
97916-8 4

https://doi.org/10.1007/978-3-642-55220-5_26
https://doi.org/10.1007/978-3-642-55220-5_26
https://doi.org/10.1007/s13389-013-0051-9
https://doi.org/10.1007/b99451
https://doi.org/10.1007/978-3-662-48800-3_13
https://doi.org/10.1007/978-3-662-48800-3_13
https://doi.org/10.1007/978-3-642-15031-9_9
https://doi.org/10.1007/978-3-642-15031-9_9
https://doi.org/10.1007/11545262_3
https://doi.org/10.1007/978-3-540-28632-5_12
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-319-97916-8_4
https://doi.org/10.1007/978-3-319-97916-8_4

Microarchitectural Attacks

A Bit-Level Approach to Side Channel
Based Disassembling

Valence Cristiani, Maxime Lecomte, and Thomas Hiscock(B)

Univ. Grenoble Alpes, CEA, LETI, MINATEC Campus, 38054 Grenoble, France
{valence.cristiani,maxime.lecomte,thomas.hiscock}@cea.fr

Abstract. Side-Channel Based Disassembling (SCBD) is a powerful
application of side-channel analysis that allows recovering instructions
executed by a processor from its physical leakages, such as the electro-
magnetic field (EM) emitted by the chip. These attacks directly compro-
mise code confidentiality, but they can also reveal to an adversary many
critical information on the system’s internals. In this work, we propose
a new approach for SCBD that directly focuses the bit encoding of an
instruction using local EM leakage. We exploit a very precise bit-level
leakage model and derive from it new algorithms that aim at recovering
the actual bit values. We also propose strategies to automate the com-
plex tasks of finding the best EM probe positions and combining them to
improve results. On a PIC16 target, our method succeed in recovering the
bits of an instruction with an average rate of 99,41% per bit. Compared
to the state of the art, our disassembler is easier to train, recovers more
information about instructions than just opcode and requires almost no
modifications to target other processor architectures. Thus, this kind of
disassemblers might become a threat to more complex processors, where
side-channel disassembling has not been proved to be feasible yet.

Keywords: Side-channel analysis · Reverse engineering · Hardware
security · Leakage analysis

1 Introduction

Side-Channel Based Disassembling (SCBD) is the task of recovering instructions
executed by a device based on its physical signature, known as side-channel leak-
ages. For more than two decades many techniques and tools have been developed
to extract secrets from sources such as timing variations [7], power consump-
tion [6], electromagnetic field [15] (EM), acoustic noise [4] and many others.
While side-channel analysis research is primarily concerned with the security of
cryptographic primitives, there is also an active research on SCBD [3,10,13,18].
Indeed an accurate quantification of the instruction leakage is a very useful
security indicator for many systems. Obviously, SCBD is a direct threat to code
intellectual property, which can be a requirement for manufacturers that put lots
of efforts into the development of an algorithm. The instruction stream can also
c© Springer Nature Switzerland AG 2020
S. Beläıd and T. Güneysu (Eds.): CARDIS 2019, LNCS 11833, pp. 143–158, 2020.
https://doi.org/10.1007/978-3-030-42068-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-42068-0_9&domain=pdf
https://doi.org/10.1007/978-3-030-42068-0_9

144 V. Cristiani et al.

reveal sensible code regions such as block ciphers or function entries. Such infor-
mation can be exploited by an attacker to drive more specific attacks such as
fault injections. Interestingly, SCBD can also be used as a non-intrusive malware
detection mechanism [11].

The SCBD task can be regarded as a supervised machine learning classifi-
cation problem, where a side-channel trace has to be associated to a sequence
of executed instructions. The natural approach is to divide the global trace
into instruction traces correctly labeled. These traces will then feed a learning
algorithm in order to build a classifier able to make accurate predictions on the
instructions that corresponds to an attack trace. However, training such a classi-
fier is difficult in practice, as many target-specific knowledge is required to create
a model. Furthermore, with complex processor architectures and deep pipelines,
the switching noise generated by other activities in the core becomes prepon-
derant. A proper randomization of all of these surrounding elements requires a
huge amount of data, as well as complex profiling code snippets. Thus, while the
opcode classification approach proved to work on small microcontrollers [13,18]
it is unlikely that it would scale to more complex processors.

Contributions. In this work, we propose an alternative approach to SCBD
that overcome these issues. The core idea is to create a classifier directly on the
bits that encode the instructions. This approach requires almost no assumptions
on the target architecture, as in any processor, the bits of the instructions are
transferred from memory to the processor and then manipulated, which may
introduce leakages that can be exploited. Furthermore, the training is greatly
simplified: the profiling can be performed on random code snippets, and by
construction a bit-level approach allows having more training data available
per class. We also show how exploiting very local leakages and combining EM
measured at different positions greatly improves the accuracy.

Through this paper, we detail the construction of a bit-level SCBD (Sect. 3)
and evaluate its performances on a PIC16F microcontroller (Sects. 4 and 5). We
manage to get an average of 99.41% recognition rate per bit which leads to
an opcode recognition rate as efficient as current state of the art. However, our
disassembler recovers much more information encoded in the instructions (literal
values, register numbers, etc.). These results suggest that the bit-level approach
proposed is worth considering for SCBD on more complex cores.

2 Background

2.1 Structure of a Side-Channel Disassembler

The high-level structure of a side-channel disassembler as a supervised machine
learning classification task is shown in Fig. 1. During a profiling phase, the
attacker has access to a clone of the target device on which he can run arbi-
trary programs. He then collects side-channel data, such as the EM field, during

A Bit-Level Approach to Side Channel Based Disassembling 145

the execution of several profiling code snippets in order to train a classifier. Dur-
ing the attack phase, the classifier is applied on unknown traces to predict and
recover instructions. An attack trace usually contains many instructions, thus
a preliminary step is required to divide the trace of a program into individual
instruction traces. On small devices, instructions have a constant execution time,
hence a fixed-size windows is enough to extract instructions. But with complex
cores this operation may require a more advanced strategy.

Fig. 1. High level architecture of a side-channel disassembler

The goal of a classifier is to associate a class c ∈ C to a trace x (a realization
of a random variable X) of p samples. In an opcode-based classifier C is the set
of opcodes of the target architecture, for example C = {add, xor, load, . . . }. The
template attack (TA) of Chari et al. [1], used by most opcode-based classifiers
[3,13,18] build an estimation of Pr(X | C = c) during the profiling phase which
is then used in the attack phase to compute Pr(C = c | X) thanks to Bayes’
theorem. Given an unknown instruction trace x, an attacker selects the class that
maximizes Pr(C = c | X = x). The TA models the per-class probability density
Pr(X | C = c) as a multivariate Gaussian distribution denoted N (μc,Σc),
where μc is the mean vector and Σc the covariance matrix of the distribution.
For each class c, the profiling phase infers the parameters μc, Σc from a set of
observations (xc) using classical statistical estimators. Due to its proximity with
the quadratic discriminant analysis (QDA) technique in the machine learning
field, we use the terms QDA and TA interchangeably.

However, not all samples in a trace contain relevant information. A com-
mon practice is to apply feature extraction techniques to reduce the computa-
tional cost of the attack. In a nutshell, these techniques transform a trace of
p samples into a trace of d samples (with d � p) while preserving –hopefully–
most of the information. Both the training and the attack phases are performed
in this reduced feature space. The most common feature extraction techniques
include the Principal Component Analysis (PCA) and Linear Discriminant anal-
ysis (LDA).

146 V. Cristiani et al.

2.2 Related Work

Early Side-Channel Based Reverse Engineering. The use of side-channel
analysis for software reverse engineering was first suggested by Quisquarter
et al. [16] in 2002, who described an instruction classifier based on a neural
network. Unfortunately, they did not provide experimental results. A leakage
analysis on a Java card by Vermoen et al. [19] proved that some instructions
(Java bytecodes) could be identified in a power trace, but they did not propose
an instruction recovery algorithm. In his master thesis, Goldback [5] constructed
a very detailed power leakage model of a 8-bit Microchip PIC16 microcontroller.
He managed to perform a template attack [1] to recover up to 75% of correct
instructions on a small set of 4 opcodes.

Concurrently, Novak et al. [12] and Clavier et al. [2] used side-channel anal-
ysis to perform reverse-engineering on encryption algorithms involving secret
permutation tables (A3/A8). While these attacks are often referred as “Side
Channel Analysis for Reverse Engineering” (SCARE), they do not allow any
kind of instruction flow reconstruction.

Side-Channel Based Disassembly. The first real side-channel based disas-
sembler was described by Eisenbarth et al. [3] in 2010. They constructed an
opcode classifier using a template attack. Thanks to Hidden Markov Models
they managed to exploit prior knowledge on instruction distribution and improve
the accuracy of their disassembler by a few percents. On a PIC16 microncon-
troller using power consumption, they managed to get a 70% recognition rate
on test data and 40% on real programs. Strobel et al. [18] also described an
opcode-based side-channel disassembler, working on EM. They concluded that
EM contains much more information than power consumption and managed to
get 90% recognition rate on real programs and 95% on test programs. Msgna
et al. [10] constructed an instruction classifier based on a k-Nearest Neighbors (k-
NN) algorithm. They reported a 100% instruction recognition on 35 instructions
of an ATMega163 microcontroller. However, this classifier was not evaluated on
real programs and [18] could not reproduce their results. Park et al. [13] con-
structed a SCBD on a ATMega328P exploiting knowledge of the hardware used
by each instruction. They reported a 99.03% recognition rate thanks to advanced
noise reduction preprocessing techniques (based on discrete wavelet transforms)
and a hierarchical classification as suggested by McCann et al. [8,9].

3 Construction of a Bit-Level Side-Channel Disassembler

3.1 Challenges of Bit-Level Instruction Recovery

Processor instructions are usually encoded as a binary word (denoted I for
the rest of this paper) of 8 up to 128 bits which contains information such as
the opcode, registers and literal values used in the instructions. Our approach
consists in attacking bits of I independently, which requires to train a distinct

A Bit-Level Approach to Side Channel Based Disassembling 147

classifier for each bit of the instruction. Although this idea sounds pretty straight-
forward, it comes with viability questions that we discuss hereafter.

Distinguishing bit level variations, which impact consumption in a very tiny
manner, requires a high signal to noise ratio. More than this, each bit should
have its own leakage characteristics, otherwise, distinguishing for example the
2-digits binary words 01 and 10 would not be possible. As explained in Sect. 3.4,
we suggest using EM with multiple probe positions to exploit local leakage and
thus, increase chances of detecting such leakage differences between bits.

Another problem is that we suggest to attack independently some bits whose
impact on the physical quantities measured are not independent. Small groups
of bits of I are sometimes only interpretable as a whole and not separately. To
address this issue, we propose to analyze only the part of the trace that corre-
sponds to the fetching of the instruction, totally ignoring the actual execution
of the instruction. While this may be interpreted as a loss of information, this
drastically reduces the dependencies between the bits on the power consump-
tion. In other words, we only analyze the update of the instruction register and
not its actual execution behavior.

3.2 Leakage Model and Classification

A leakage model for individual bits of the instructions has to be selected in order
to derive the set of classes C of the bit classifiers. The most common models are
the Hamming Weight and Hamming distance models which at the bit level,
respectively estimate the leakage as the bit value and as the bit toggle. A more
accurate model known as the “signed Hamming distance” (SHD), introduced in
[14] states that with precise electromagnetic measurements, the direction of the
bit toggle can also be distinguished.

Based on these observations, we selected a leakage model with 3 possible
target events at a given time for each bit: the bit stayed constant, it switched from
0 to 1 or switched from 1 to 0. We denote T = {constant, 0 → 1, 1 → 0} the set
of these transitions. Following the formalism introduced in Sect. 2.1, for each bit
of the instruction a classifier with C = T is created. It combines LDA for feature
extraction and QDA for the actual classification. The training phase can be done
on random instructions, with correctly labeled bit transitions, which greatly
simplifies the process. Then, for an observed sequence of N instructions, the
classifier is applied to all the instructions successively, and yields a finite sequence
of pair: T = (tn, pn)1≤n≤N of bit transition associated with its probability.

3.3 From Signed Hamming Distance to Bit Values

The sequence T still needs to be transformed into a sequence of bit values.
However, finding the optimal bit sequence is not straightforward, as each bit
prediction influences the predictions for other bits. We propose a simple algo-
rithm that perform this task. The sequence T generated by the classifier is given
as input to the FindBitsLeft function (shown in Algorithm1) which maintains a
state bit (bs) and updates its value according to the transitions encountered. In

148 V. Cristiani et al.

case of 0 → 1 or 1 → 0, the current state bit is set to the transition final value.
When no transition occurred, the current bit value is kept. The algorithm also
computes a confidence in the bit value returned (ps in Algorithm 1). This value
is overwritten on a bit toggle, but is decreased when a constant transition is
taken. Intuitively, we should be less confident in a constant transition as we take
the precedent value as output, which could also be wrong. We explored different
strategies to update ps in this case. Based on our experiments, an efficient one is
to multiply ps by the confidence of the actual transition. This confidence value
is useful for comparing different predictions for the same bit.

Algorithm 1. FindBitsLeft (see comments for FindBitsRight)
Input: T, a sequence of transitions with their probability
Output: B, a sequence of bit values with their confidence

B ← empty sequence
bs ← 0
ps ← 0

for (t , p) ∈ T do /* In a right scan: iterate in reverse order */

if t ∈ {0 → 1, 1 → 0} then
ps ← p
bs ← final value of t /* And use the initial value of t instead */

else
ps ← ps × p

Append (ps, bs) to B

end
return B

Fig. 2. Example of the different bit recovery algorithms proposed

Indeed, a transition reveals information about both the initial value and the
final value. The FindBitsLeft procedure only uses the final value so far. Thus, a
possible improvement is to tweak this function and define FindBitsRight which
perform the same algorithm in reverse order to exploit the information on the
initial value. The right scan works the same way as the left scan but uses the ini-
tial value of the transition as the current bit value instead of the final value. The
improved algorithm, denoted FindBitsL+R, runs both versions of FindBits,

A Bit-Level Approach to Side Channel Based Disassembling 149

align the two output sequences so that the nth element of each sequence cor-
responds to the same bit transition, and compare the two sequences selecting
the bit value with the highest confidence. An example of this algorithm is shown
in Fig. 2. We notice that by construction FindBitsLeft and FindBitsRight cannot
give output until the first bit toggle encountered. From the previous algorithms
the success rate (SR) of our classifier is defined as the number of correct bit
predictions divided by the number of instructions.

3.4 Exploiting Local Information

Our classification uses EM field as input data rather than power consumption.
Indeed, EM field with a careful probe positioning allows capturing very local
effects such as single bit leakages. As we attack each bit of I independently, the
best positions are likely to be different between the bits.

Choosing the Best Positions. The ideal approach to select the best probe
position would be to exhaustively walk a grid of n × m positions above the cir-
cuit, run the attack on each position and select the one with the highest SR.
However, this strategy can quickly become too expensive in terms of computa-
tions. For example, even a small 20 × 20 grid leads to 400 different positions. In
our case, the longest part of the attack is the feature extraction (LDA). In order
to speed up the cartography we perform the attack on a very reduced set of k
points of interest (PoI). It can be viewed as an additional feature extraction step
performed before the LDA during the cartography. This PoI extraction trans-
forms the input traces (xi) of p samples into k � p dimensional vectors (x′

i).
We choose to keep the k samples x(t) that maximize the Mean Difference (MD):

MD(t) =
∑

c1,c2∈T ,
c1 �=c2

∣∣∣E[X(t) | C = c1] − E[X(t) | C = c2]
∣∣∣

Choosing the value of k can be done empirically observing the evolution of the
SR as k decreases, at some fixed positions. Although the SRs may be lower
with this additional step, we assume that this should not drastically change the
ranking of the positions. Once the best positions has been found, the actual
attack can be run with either a higher value of k or without the PoI extraction.

Combining Different Positions. In a previous work, Strobel et al. [18]
combined EM traces acquired from different positions by concatenating them
before the features extraction. However, finding the best combination of positions
(which maximise the SR for instance) is hard in practice due to an exponential-
size search space. We propose a simple greedy algorithm (see Algorithm 2) that
searches a good subset of positions to attack one bit. In a nutshell, the algo-
rithm builds iteratively a set P of best positions. At each iteration, the algo-
rithm attempts to add each one of the remaining positions to P. The one that
improves the most the SR is added to P. The algorithm may exit earlier if the
success rate does not improve enough (this threshold is defined by ε).

150 V. Cristiani et al.

Algorithm 2. FindPos
Input: M, a list of EM measurements at different positions in a set G
Output: P ⊂ G, a subset of positions to be combined

/* The SR(P,M) function concatenates EM data at positions P, runs

the attack, computes and returns the SR */

P ← {}
for step ← 0 to stepmax do

best ← arg maxpos∈G\PSR(P ∪ {pos},M)

if |SR(P,M) − SR(P ∪ {best},M)| < ε then return P
P ← P ∪ best

end
return P

4 Leakage Analysis of the PIC16F

4.1 Overview of the PIC16F

Our experiments are conducted on a PIC16F15376 Microchip microcontroller
from the MPLAB Xpress evaluation board. Besides being ubiquitous in embed-
ded systems, this family of PIC microcontrollers is a common reference in
the SCBD literature [3,5,18] and allows a fair comparison of our results. The
PIC16F15376 has around 50 instructions which are encoded on 14 bits. A typi-
cal instruction contains from 3 to 6 bits that are used to match the instruction
(the opcode in some sense). The remaining bits encode the arguments of the
instruction such as a control bits, source/destination registers or literal values.

Fig. 3. Architecture of the PIC16F

Architecture. A simplified internal architecture of the PIC16F is depicted
on Fig. 3. Excluding jumps, all instructions require 4 clock cycles to complete.
During the execution of an instruction, the next one is prefetched from FLASH
memory, thus this processor has a 2-stage pipeline: prefetch and execution. The
instruction bit leakages are most likely to be caused by this prefetching and the
instruction register activity. Jump instructions require 4 additional clock cycles

A Bit-Level Approach to Side Channel Based Disassembling 151

to be executed but can be regarded as the actual instruction followed by a nop.
This dummy instruction is actually only used to refill the pipeline after the jump
and our disassembler always detect it as a nop.

Side-Channel Behavior. A taste of EM and power side-channel traces
obtained during the execution of 3 instructions are shown in Fig. 4. Both were
acquired using the measurement setup described in Sect. 4.2. We stress that in
all of the experiments, the PIC16 is clocked at 20 Mhz, except for Fig. 4 where
the clock was reduced to 1 MHz to distinguish power peaks (at 20 Mhz, the
power curve is flat). The 4 execution cycles are clearly visible on the traces.
As expected, the EM behavior is much more local: some peaks have different
amplitudes and small temporal shifts based on the probe position.

Fig. 4. Power and EM field measured during the execution of 3 instructions.

4.2 Our Experimental Setup

Our experimental setup is presented in Fig. 5. We acquire the near field elec-
tromagnetic emanations of the PIC16F through an EM Langer probe, an ICR
HH 100 27 with a bandwidth of 6 GHz. The probe is placed over the IC pack-
age without any depackaging, at less than 500µm from the package thanks to
a high precision motorized XYZ table. The probe is connected through a low-
noise amplifier to a digital oscilloscope (DSO) from Rohde & Schwarz (RTO
2024) which has a bandwidth of 2 GHz and a sample rate set to 10 GS/s. The
PIC is clocked by an external reference set at 20 MHz. A GPIO of the PIC is
used to synchronize the oscilloscope acquisition with the computation.

Fig. 5. Experimental setup

152 V. Cristiani et al.

With these settings, the 4 clock cycles of an instruction last for 200 ns and
represents 2000 samples of the oscilloscope. A typical trace may span over several
milliseconds and is made of thousands of instructions. To avoid synchronization
issues, the clock of the PIC is generated by a signal generator (FI5350GA) which
is also connected to the reference clock of the DSO. This setup ensures that the
PIC and the DSO stay synchronized and that no post processing is required to
divide a trace into individual instructions.

4.3 Study of Single Bit Leakages

This section presents three experimental results which confirm that there exists
probe positions where (1) single bit leakages actually occur, (2) each bit influ-
ences the EM field independently from other bits and (3) the SHD leakage model
suggested in Sect. 3.2 is appropriate. These experiments are seen as pre-attack
analysis to validate the requirements for a bit-level disassembler to be successful.
For concision and simplicity, only the behavior of the 8 lower bits of I (14-bit
PIC instructions) are analyzed. These specific bits encode literal values and can
be set to an arbitrary value still creating a valid instruction if the remaining 6
upper bits of I are set to an opcode that uses a literal value. As an example,
we will use movlw k (which is encoded as 110000‖kbase 2) that loads the literal
value k into the processor accumulator register.

Leakage Differences Between Bits. To demonstrate that single bit leakages
are distinguishable, we perform Welch’s t-test [17] between traces of movlw 0
and movlw 2j , with 0 ≤ j ≤ 7. This test evaluates whether there are significant
differences on traces when a single bit of the instruction changes. In the profiling
code, a nop (encoded with fourteen 0 s) is placed before each movlw instruction,
so that the test works for any leakage model. The t-test is performed on all 400
probe positions of a square (2 mm × 2 mm) grid (20×20) centered over the chip.
Many probe positions with a successful t-tests (that goes over a threshold of 4.5)
were found, which means that the SNR in our setup is good enough to detect
single bit variations. Figure 6a and b show respectively positions where a t-test
for j = 0 and for j = 4 are very different from the others. Intuitively, these two
positions may bring useful information to determine respectively the value of bit

Fig. 6. Single bit T-Tests results at different positions

A Bit-Level Approach to Side Channel Based Disassembling 153

0 and bit 4 of I. Figure 6c shows a position where all t-tests are distinct from
each other. The same experiment was performed with other literal instructions
such as addlw or xor and gave similar results.

Leakage Independence of Bits. The second experiment aims at verifying
that each bit of I contributes independently to the EM field. We use the nota-
tion L(movlw k) to denote the measured EM field during the prefetching of
the instruction movlw k (as in the previous experiment, a nop is prepended to
each instruction). In our setup, L(·) returns a 2000-dimensional vector, as the
prefetching last for one instruction. To model the leakage strictly caused by an
8 bits literal value we define the leakage function Lliteral simply by:

Lliteral(k) = L(movlw k) − L(movlw 0)

If the leakage of bits are independent, one would expect that the leakages of
individual bits can be summed to obtain the leakage of a given word, formally
for any subset J of {0, 1, 2, 3, 4, 5, 6, 7}, one should have:

∑

j∈J

Lliteral(2j) = Lliteral

⎛

⎝
∑

j∈J

2j

⎞

⎠

We verified this equation empirically for some of the probe positions found in the
previous experiments. Figure 7 shows an example where J = {0, 1, 2, 3, 4, 5, 6, 7}.
All the small amplitude curves represent the leakage function Lliteral(2j) for
0 ≤ j ≤ 7. The dark and light blue lines represent respectively the sum of all the
individual leakages and the leakage of 255 which is equal to

∑7
j=0 2j . These two

lines clearly seem to match. One could argue that this experiment is not enough
to really show that each bit contributes independently to the global leakage.
However, it still increases our confidence in the feasibility of the attack.

Fig. 7. Leakage independence (Color figure online)

154 V. Cristiani et al.

Leakage Model. All experiments presented so far analyzed the fetching of
instructions preceded by a nop, so that the results are agnostic to the leakage
model. To confirm that the signed Hamming distance is an appropriate model, we
choose some of the probe positions with high t-test associated to one particular
bit of I. Then, we analyzed the leakages in terms of transitions of this bit (all the
other bits being constant). Figure 8 shows the EM traces for multiple transitions
of the bit 0. This clearly illustrates that the three classes from the SHD model
create a good partitioning of traces.

Fig. 8. EM traces grouped according to the transition of bit 0

Fig. 9. Cartography of the SR of the bit-level classifiers

5 Evaluation

This section presents the results of our bit-level SCBD. The training and evalua-
tion phases use two different sets made of 2000 random valid instructions. Each
acquisition is averaged 1000 times to improve the SNR. The results were also
confirmed on simple programs written in C. The disassembler first applies a PoI
extraction of k = 50 points that maximize the MD, then applies a LDA to the
results and keeps 2 components. Then, the fourteen QDA-based classifiers, one
for each bit of I, are applied to recover the 1999 bit transitions among the 3
transition classes T introduced in Sect. 3.2. Finally, the algorithms described in
Sect. 3.3 are applied to recover the 1999 corresponding bit values.

A Bit-Level Approach to Side Channel Based Disassembling 155

Fig. 10. Evolution of the success rate by adding new positions

5.1 Mono-Spatial Attack

The attack was first conducted for each bit on each of the 20 × 20 grid (400
positions) that was used for our leakage analysis. The SR of the attack (using
the FindBitsL+R algorithm) on all the grid and for each bit is shown in Fig. 9
(a Gaussian interpolation has been applied to the raw data). Surprisingly, each
bit has its own spatial signature: the “hot areas”, where the attack has a better
success rate, strongly depend on the bit. The best success rates obtained for
each bit are given in Table 1. The FindBitsL+R algorithm slightly improves the
accuracy of the attack. While most bits are recovered with a high accuracy, a
few (bits 8, 9, 10, 11), hardly get above 80%. These results can be improved by
combining measurements from multiple positions.

Table 1. Success rate at the best probe position for each bit

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13

FindBitsLeft 100 94.1 99.2 83.1 97.0 90.7 93.5 97.4 71.8 78.6 75.9 72.8 88.7 92.0

FindBitsL+R 100 94.8 99.5 85.7 98.2 93.1 94.6 97.9 74.5 80.6 78.7 74.2 90.9 93.5

5.2 Multi-spatial Attack

We evaluate the multi-position attack described in Sect. 3.4 by collecting and
combining data from up to 14 positions using Algorithm2. Figure 10 shows how
adding more positions affects the SR of each bit. Note that for a given bit, we
stop collecting new positions when the SR improvement is too low. These results
show that the low SR of some bits in the mono-spatial case (bits 8 to 11) can
be brought up to 97% and more with several additional positions. Once the best
position combination has been found it is still possible to increase the number of
sample kept by the PoI extraction: Table 2 shows the SR of a multi-spatial attack
where the number of PoI is higher (k = 400). All the SR are above 98.4%, we

156 V. Cristiani et al.

achieved a 100% SR for 6 bits. The average of the 14 SR is 99.41% which leads
to 95% of the instructions being recovered without any faults. The acquisition
time for this attack is about one hour, the training of all the classifiers takes
approximately 30 min and the actual attack is instantaneous.

Fig. 11. Leakage cartography for two different devices (same scale as Fig. 9)

Table 2. Success rate for a multi-spatial attack

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Success rate 100 100 100 100 99.8 100 100 98.5 98.6 98.9 99.3 98.4 99.6 98.7

Used positions 1 4 1 4 6 4 3 2 13 14 7 14 11 8

5.3 Template Portability

In a realistic context, the training phase would be performed on a clone of the
target. This introduces the risk of overfitting on the clone device characteristics.
Our first attempt to port the attack was no exception to the rule: applying our
classifier to a different target completely failed. However, the SR cartography
for two different targets shown in Fig. 9 reveal clear similarities, which suggests
that the attacks behave almost the same on the two targets. More precisely the
SR cartography shown in Fig. 11 is almost the same but shifted by a constant
vector of norm around 300µm. We successfully conducted an attack between
the two target with roughly the same SR as in the mono-target case simply by
shifting all the probe position at the acquisition time on the second circuit. In a
real attack scenario, we argue that the shift vector could be brute-forced (until
a high SR is reached) by attacking a known sequence of instructions such as the
boot code.

6 Conclusion and Further Work

In this work, we described a new kind of side-channel disassembler that uses
bit-level classifiers to recover instructions from non-invasive EM measurements.
This approach requires a very precise experimental setup to discriminate small

A Bit-Level Approach to Side Channel Based Disassembling 157

bits variations in traces, especially on very a low-power device like a PIC16F
microcontroller. Fortunately, the algorithms proposed in this paper can fully
automate the recovering process. Furthermore, we observed that the disassembler
is portable between different chips of the same family, which makes this kind of
attacks truly realistic. A bit-level instruction disassembler is a huge gain in terms
of genericity. The training process is greatly simplified compared to an opcode
classifier because it can be performed on random binaries instead of carefully
crafted assembly snippets. We demonstrated that such a disassembler achieve
good recognition rate, with an average success rate of 99.41% on a bit level and
95% on the full 14-bits instruction. This result may be improved by exploiting
prior knowledge on the program such as instruction transition probability, invalid
opcode, etc.

It seems that our approach can be extended to recover other valuable informa-
tion from processors such as runtime register values. Moreover, this work opens
interesting perspectives regarding the side-channel disassembling on pipelined
processors, which remains an open problem. Future work will aim at validating
our approach on more complex processors.

Acknowledgments. The authors would like to thanks the reviewers for their helpful
comments. This work was funded thanks to the French national program “Programme
d’Investissement d’Avenir IRT Nanoelec” ANR-10-AIRT-05.

References

1. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36400-5 3

2. Clavier, C.: Side channel analysis for reverse engineering (SCARE), an improved
attack against a secret A3/A8 GSM algorithm (2004)

3. Eisenbarth, T., Paar, C., Weghenkel, B.: Building a side channel based disassem-
bler. In: Gavrilova, M.L., Tan, C.J.K., Moreno, E.D. (eds.) Transactions on Com-
putational Science X. LNCS, vol. 6340, pp. 78–99. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-17499-5 4

4. Genkin, D., Shamir, A., Tromer, E.: RSA key extraction via low-bandwidth acous-
tic cryptanalysis. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol.
8616, pp. 444–461. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-44371-2 25

5. Goldack, M., Paar, I.C.: Side-channel based reverse engineering for microcon-
trollers. Master’s thesis, Ruhr-Universität Bochum, Germany (2008)

6. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

7. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

8. McCann, D., Oswald, E., Whitnall, C.: Towards practical tools for side chan-
nel aware software engineering: ‘grey box’ modelling for instruction leakages. In:
USENIX Security Symposium (2017)

https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/978-3-642-17499-5_4
https://doi.org/10.1007/978-3-662-44371-2_25
https://doi.org/10.1007/978-3-662-44371-2_25
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-68697-5_9

158 V. Cristiani et al.

9. McCann, D., Whitnall, C., Oswald, E.: ELMO: emulating leaks for the ARM
Cortex-M0 without access to a side channel lab. IACR Cryptology ePrint Archive
(2016)

10. Msgna, M., Markantonakis, K., Mayes, K.: Precise instruction-level side channel
profiling of embedded processors. In: Huang, X., Zhou, J. (eds.) ISPEC 2014.
LNCS, vol. 8434, pp. 129–143. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-06320-1 11

11. Msgna, M., Markantonakis, K., Naccache, D., Mayes, K.: Verifying software
integrity in embedded systems: a side channel approach. In: Prouff, E. (ed.)
COSADE 2014. LNCS, vol. 8622, pp. 261–280. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-10175-0 18

12. Novak, R.: Side-channel based reverse engineering of secret algorithms. In: Pro-
ceedings of the Electrotechnical and Computer Science Conference (2003)

13. Park, J., Xu, X., Jin, Y., Forte, D., Tehranipoor, M.: Power-based side-channel
instruction-level disassembler. In: Design Automation Conference (2018)

14. Peeters, E., Standaert, F.X., Quisquater, J.J.: Power and electromagnetic analysis:
improved model, consequences and comparisons. VLSI J. 40, 52–60 (2007)

15. Quisquater, J.-J., Samyde, D.: ElectroMagnetic Analysis (EMA): measures and
counter-measures for smart cards. In: Attali, I., Jensen, T. (eds.) E-smart 2001.
LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-45418-7 17

16. Quisquater, J.J., Samyde, D.: Automatic code recognition for smart cards using
a kohonen neural network. In: Proceedings of the Smart Card Research and
Advanced Application Conference (2002)

17. Schneider, T., Moradi, A.: Leakage assessment methodology. In: Güneysu, T.,
Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 495–513. Springer, Heidel-
berg (2015). https://doi.org/10.1007/978-3-662-48324-4 25

18. Strobel, D., Bache, F., Oswald, D., Schellenberg, F., Paar, C.: SCANDALee: a
side-channel-based disassembler using local electromagnetic emanations. In: Pro-
ceedings of the Design, Automation & Test in Europe Conference & Exhibition
(2015)

19. Vermoen, D., Witteman, M., Gaydadjiev, G.N.: Reverse engineering Java card
applets using power analysis. In: Sauveron, D., Markantonakis, K., Bilas, A.,
Quisquater, J.-J. (eds.) WISTP 2007. LNCS, vol. 4462, pp. 138–149. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-72354-7 12

https://doi.org/10.1007/978-3-319-06320-1_11
https://doi.org/10.1007/978-3-319-06320-1_11
https://doi.org/10.1007/978-3-319-10175-0_18
https://doi.org/10.1007/978-3-319-10175-0_18
https://doi.org/10.1007/3-540-45418-7_17
https://doi.org/10.1007/3-540-45418-7_17
https://doi.org/10.1007/978-3-662-48324-4_25
https://doi.org/10.1007/978-3-540-72354-7_12

CCCiCC: A Cross-Core
Cache-Independent Covert Channel

on AMD Family 15h CPUs

Carl-Daniel Hailfinger1,2(B) , Kerstin Lemke-Rust1, and Christof Paar3

1 Bonn-Rhein-Sieg University of Applied Sciences, Sankt Augustin, Germany
Kerstin.Lemke-Rust@h-brs.de

2 Horst-Görtz Institute, Ruhr University Bochum, Bochum, Germany
Carl-Daniel.Hailfinger@rub.de

3 Max Planck Institute for Cyber Security and Privacy, Bochum, Germany
Christof.Paar@rub.de

Abstract. Spectre and similar microarchitectural attacks have recently
caused a major paradigm shift in hardware and software development
to restrict attacker-controlled speculative execution and microarchitec-
tural sampling. So far, research has focused on cache interaction, instruc-
tion scheduling, microarchitectural sampling and speculative side effects,
whereas instruction decoding research has been notably absent. We dis-
close two cross-core covert channels on multiple AMD processor gener-
ations (Family 15h) spanning from Bulldozer to Excavator with partial
applicability to Zen.

In this work, cross-core instruction decoding and synchronization
interactions are explored as a source of information leakage on these pro-
cessors to yield multiple cache-independent covert channels in a non-SMT
environment. In contrast to other attacks, we do not rely on memory
interaction nor on speculative execution. None of the existing mitigations
in the Linux kernel and processor microcode against transient execution
attacks have any measurable effect on the CCCiCC covert channels. To
the best of our knowledge, this is not fixable with a microcode update
since any updated instruction would also become usable for signaling.

Keywords: Covert channel · Multithreaded and multicore
architecture · AMD Family 15h · Instruction scheduling · CPUID
instruction · Cache-independent · Cross-core · Information hiding

1 Introduction

Microarchitectural attacks lately have come into focus due to their ability to
exploit even formally proven software and even if that software has been specifi-
cally hardened against some side-channel attacks. Some recently discovered side-
channel attacks like Spectre-STL [11,15] can not be hardened against purely
in software, but rather some processor behaviour has to be changed through
c© Springer Nature Switzerland AG 2020
S. Beläıd and T. Güneysu (Eds.): CARDIS 2019, LNCS 11833, pp. 159–175, 2020.
https://doi.org/10.1007/978-3-030-42068-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-42068-0_10&domain=pdf
http://orcid.org/0000-0002-0206-7642
https://doi.org/10.1007/978-3-030-42068-0_10

160 C.-D. Hailfinger et al.

microcode updates or other means. Especially for high-performance general pur-
pose processors, the design focus has been on speed improvements through var-
ious microarchitectural optimizations like speculative execution at the expense
of exposing leakage effects of those optimizations. As such, using those leakage
effects as a side-channel or a covert channel has become a viable attack option
and mitigating this leakage is either costly from a performance perspective or
even impossible in certain scenarios.

A covert channel is a hidden information channel that requires a co-operation
between the sender and receiver of information. Typically, one process with
access to security sensitive information acts as the sender and one process with-
out access to sensitive information acts as the receiver. The information channel
is also built upon timing, power, or memory characteristics of an implementation.

Shared hardware resources can be used as side-channels and covert chan-
nels, both for non-persistent [24] resources as well as persistent [10] resources.
Due to the increasing complexity of modern processor microarchitectures and the
interaction between different microarchitectural features, mitigating direct infor-
mation leakage effects as well as indirect effects is getting progressively harder.
Recent research has shown that even if side-channel mitigations are in place,
indirect side effects still can be exploited in some cases [10].

Attacks using cache side effects of code execution (without taking speculation
into account) [18,22,23] have been known since 2002, and cache timing effects
were already mentioned in the context of timing analysis on cryptographic imple-
mentations in 1996 [13]. In 2018, attacks using microarchitectural side effects
based on speculative execution were published: The Spectre [12] and Meltdown
[14] attacks both focus on disclosing otherwise inaccessible memory content via
side-channel. The proof of concept implementations for various Spectre variants
rely on memory related leakage effects, specifically through cache, as the channel
of choice for exfiltrating data. Mitigation efforts so far have focused mostly on
reducing or eliminating speculation in vulnerable contexts as well as limiting the
effect of speculation on the memory subsystem [5,9,15].

Other classes of side and covert channels are based on properties of further
microarchitecture components besides the memory architecture. Among them,
one class of side-channels is based on the execution engine itself. We use the term
cache-independent for these kinds of side and covert channels. The execution
engine can be used both as a leakage source as well as a possible information
exfiltration channel.

In this work, we present two covert channel attack vectors, one using the
shared instruction decoder in multicore AMD Family 15h “Piledriver” micropro-
cessors without simultaneous multithreading (SMT) as well as another vector
with lower bandwidth working on the AMD Family 15h “Steamroller” micro-
processors. Our new CCCiCC attacks are capable of enabling an information
channel using differences of instruction decoding speed that are caused by using
micro-coded instructions (CPUID, RCL) which are blocking the instruction
decoder for prolonged periods as well as using a serializing instruction (CPUID)
which influences instruction scheduling even across modules. CCCiCC thus
belong to the class of attacks against non-persistent shared hardware resources.

CCCiCC: A Cross-Core Cache-Independent Covert Channel 161

In contrast to PortSmash [4] and SMoTherSpectre [3], CCCiCC v1 works across
cores as long as the instruction decoder is shared. CCCiCC v2 does not need a
shared instruction decoder and relies on cross-module serializing effects instead.
To the best of our knowledge, resource contention in the instruction decoder as
well as instruction serialization effects in the instruction scheduler have not yet
been analyzed from an information leakage perspective.

2 Background

2.1 Microarchitecture

Both AMD and Intel offer x86 processors in which multiple threads share exe-
cution units to improve utilization of those units. Intel processors are offered
without and with SMT (called “Hyper-Threading”) where each core has one
instruction decoder, one instruction scheduler and one execution engine which
are shared among two threads in the multithreading case. AMD processors with
the Zen microarchitecture are offered with and without SMT. For both AMD
and Intel implementations of SMT, each core shares all of its resources among
two threads if multithreading is enabled. For AMD Family 15h (Fam15h) proces-
sors (“Bulldozer”, “Piledriver”, “Steamroller” and “Excavator” variants of the
Family 15h microarchitecture) the terminology and the implementation are a bit
different. These processors are a special case among x86 processors since they
have a hybrid design combining some aspects of multithreading with a multicore
architecture. A Fam15h processor is built from one or more modules hosting
two cores each. The two cores of each module share some resources (L1 instruc-
tion cache, L2 cache, instruction fetching, floating point and vector execution
units), but other resources (L1 data cache, integer execution unit and pipelines)
are not shared among cores, yielding a design which can neither be classified as
pure multicore nor pure multithreaded. Figure 1 shows a simplified version of the
architecture diagram of two-core Fam15h Piledriver/Steamroller modules. The
Fam15h “Steamroller” microarchitecture variant has one dedicated instruction
decoder per core, whereas the other Fam15h microarchitecture variants share the
instruction decoder between both cores of a module [2]. The Fam15h “Steam-
roller” also has a loop buffer after the instruction decoder. Each Fam15h core can
run one thread, making it a total of two threads per module. In contrast, each
core hosting a pair of threads in the Intel Sandy Bridge microarchitecture from
the same era has a shared L1 data cache and shared integer execution units [20].
As such, the design of AMD Family 15h “cores” resembles the usual definition
of cores more closely than the definition of threads.

Some x86 instructions are able to influence instruction scheduling, but only
the CPUID instruction is both unprivileged and documented to serialize execu-
tion flow. Additionally, some microcoded instructions (CPUID, RCL) on AMD
Family 15h take more than one clock cycle to decode. Depending on the microar-
chitectural implementation, this serialization effect and the decoding delay can
be observed on other cores through a reduction in the number of executed
instructions per time and/or subtle changes in timing measurement. Using

162 C.-D. Hailfinger et al.

Fig. 1. Architecture diagram of a two-core module of the AMD Family 15h Piledriver
(straight/dotted lines) and Steamroller (straight/ dashed lines) microarchitecture [16]

CPUID or RCL in userspace does not trap to the operating system kernel and
does not access any memory. CPUID does not use any execution unit. As such,
CPUID and RCL combine stealthy behaviour with desirable leakage effects. Our
implementation of abusing CPUID and RCL execution to establish a cross-core
covert channel yields a throughput-based covert channel on an AMD Family 15h
“Piledriver” A6-4400M processor and a noise-based covert channel on an AMD
Family 15h “Steamroller” A10-7800 processor. Each covert channel type yields
more than 1 Mbit/s bandwidth.

2.2 Processing of an Instruction in AMD Family 15h Piledriver
CPUs

For the purposes of this paper, L1 and L2 branch target buffers as well as the
prediction queue and the instruction cache have no impact on the attack except
to keep the instruction fetch queue full.

An instruction is first fetched from L1 instruction cache and then fed to
the instruction decoder. The instruction decoder is alternating between serving

CCCiCC: A Cross-Core Cache-Independent Covert Channel 163

each of the cores at a rate of one switch per clock cycle. In the absence of con-
tention, each core will be serviced every other cycle. The instruction decoder
can decode up to four instructions per clock cycle to RISC-style macro-ops sub-
ject to the following constraints: Four instructions generating one macro-op each
or three instructions generating 2/1/1 macro-ops or two instructions generating
two macro-ops each or a single instruction generating three or more macro-ops.
There is a limit of four generated macro-ops per clock cycle. Any instruction
generating more than four macro-ops will block the instruction decoder in sub-
sequent clock cycles until all macro-ops for the instruction are generated. Table 1
(left part) shows the decoder interactions between NOPs as well as the decoder
interactions between CPUID and NOPs on a Fam15h Piledriver microarchitec-
ture. Table 1 (right part) shows the same interactions on a Fam15h Steamroller
microarchitecture. Whereas microcoded instructions with more than 4 macro-
ops on Piledriver (Table 1 (left part)) have a noticeable impact on instruction
throughput of the other same-module core due to aforementioned resource con-
tention, this scenario does not apply to Steamroller (Table 1 (right part)) because
the instruction decoder is not shared between cores. Instructions which generate
at least three macro-ops per instruction are using microcode [2]. Instructions like
NOP, FNOP and FWAIT as well as some 128-bit register renaming operations
are resolved immediately without being scheduled [7]. Some pairs of macro-ops
are fused to reduce the number of macro-ops being scheduled. The macro-ops are
passed to one of the out-of-order schedulers matching the type of the instruction
(e.g. integer) where they are broken down into micro-ops. The micro-ops are
either sent to one of the associated execution units (e.g. EX0), resolved in the
register file (e.g. register-to-register moves), or resolved directly (e.g. NOP). The
scheduler and execution unit for floating point is shared between cores, whereas
integer scheduler and execution unit are private to each core [16].

The Fam15h “Steamroller” microarchitecture variant adds a dedicated
instruction decoder per core as well as an additional macro-op queue after the
instruction decoder for tight loop acceleration compared to Fam15h “Piledriver”.

3 Related Work on Cache-Independent Information
Leakage

Since this paper focuses on cache/memory-independent attacks, the various
attacks revealing memory contents via side-channel (e.g. various Spectre vari-
ants) and attacks on cache implementations are out of scope. Other attacks
such as LazyFP [21] indeed exploit the execution engine, specifically the time
window between speculative execution and a subsequent fault after the CPU
detects that the data accessed speculatively should not have been accessed. The
branch target buffer and return stack buffer attacks are also execution engine
attacks and rely strongly on speculative execution. An overview of various related
classes of transient execution attacks and defenses can be found in [5]. Microar-
chitectural non-cache leakage effects and non-speculative interactions between
instructions on x86 architectures were first explored systematically by Fogh in

164 C.-D. Hailfinger et al.

Table 1. Instruction decoder behaviour for Fam15h Piledriver A6-4400M (left) and
Fam15h Steamroller A10-7800 (right)

Clock Decoded Decoded
cycle instructions instructions
no. core 0 core 1

(sender) (receiver)
0 4x NOP <inactive>
1 <inactive> 4x NOP
2 4x NOP <inactive>
3 <inactive> 4x NOP
4 CPUID <inactive>
5 <cont’d> <blocked>
6 <cont’d> <inactive>
7 <cont’d> <blocked>
8 <cont’d> <inactive>
9 <cont’d> <blocked>
10 <cont’d> <inactive>
11 <cont’d> <blocked>
12 <cont’d> <inactive>
13 <cont’d> <blocked>
14 <cont’d> <inactive>
15 <inactive> 4x NOP
16 CPUID <inactive>

Clock Decoded Decoded
cycle instructions instructions
no. core 0 core 1

(sender) (receiver)
0 4x NOP 4x NOP
1 4x NOP 4x NOP
2 CPUID 4x NOP
3 <cont’d> 4x NOP
4 <cont’d> 4x NOP
5 <cont’d> 4x NOP
6 <cont’d> 4x NOP
7 <cont’d> 4x NOP
8 <cont’d> 4x NOP
9 <cont’d> 4x NOP
10 <cont’d> 4x NOP
11 <cont’d> 4x NOP
12 <cont’d> 4x NOP
13 CPUID 4x NOP
14 <cont’d> 4x NOP
15 <cont’d> 4x NOP
16 <cont’d> 4x NOP

the seminal work “Covert Shotgun – Automatically finding SMT covert chan-
nels” [8]. Covert shotgun works by running blocks of identical instructions in
one thread and another block of identical instructions in another thread on the
same core. The execution time of each block of instructions is measured. Instruc-
tions are selected such that the measurement is performed for each possible valid
instruction pair. If the execution time for any given instruction A running on
one thread differs based on which instruction is executed on another thread on
the same core, instruction A can be used as the receiving side of a side-channel
where blocks of the instructions causing differing execution time are executed
on the sending side. Since AMD Family 15h processors are not using classical
multithreading, but rather a multicore setup with some shared resources among
core pairs in a multithreading-inspired design [16], they pose an interesting way
to research processors with limited execution contention points outside classical
SMT. A special case of contention between two threads accessing the same execu-
tion unit was presented in “Cheap hardware parallelism implies cheap security”
[1] where the integer multiplier shared between threads on the same core was
exploited. PortSmash [4] builds on Covert Shotgun and generalizates the Cheap
Hardware Parallelism attack to determine execution time based on contention
for each execution unit (and associated ports) and uses execution time differ-
ences to determine execution unit usage on the other thread of the same core.
This allows the attacker to discern code execution patterns down to a level of
instruction classes running on the other thread of the same core. In case of a data

CCCiCC: A Cross-Core Cache-Independent Covert Channel 165

dependent instruction flow where the instruction classes differ for the possible
executed instruction sequences, the attacker is able to reconstruct the data on
which the instruction flow depends. As an example, PortSmash demonstrates
the feasibility of the attack to recover an ECC P-384 private key from OpenSSL
1.1.0h. Although the PortSmash authors mention that their method depends
on the SMT feature of a CPU, it is also partially applicable to Fam15h core
pairs, but limited to the shared floating point and vector execution units. Since
Fam15h integer units are not shared, PortSmash can’t be applied against them.
SMoTherSpectre [3] similarly builds on Covert Shotgun, but port contention is
used as a covert channel combined with branch target injection (BTI, also known
as Spectre V2) [12] to yield a cache-independent side-channel for speculatively
executed code. However, due to the nature of PortSmash and SMoTherSpec-
tre, both can be mitigated by disabling SMT. The random number generator
in modern CPUs is also a shared resource which can be used as a non-cache
covert channel [6]. Timing variations dependent on the time elapsed since previ-
ous AVX2 instructions are used as a side or covert channel gadget in NetSpectre
[19] both in a speculative and non-speculative context, but they are limited to
same-core attacks.

4 Our Cache-Independent Covert Channels on AMD
Family 15h

4.1 CCCiCC v1: Instruction Decoder Throughput

The instruction decoder has not yet been a target for resource contention attacks,
but it presents a prime opportunity to learn about instruction types executed
by another core on the same processor module without having to resort to cre-
ating execution unit contention, making the attack harder to detect. Although
instruction decoder contention may be indirectly measurable via execution unit
throughput, the scheduler and pipelines between the decoder and the various
execution units introduce undesirable additional effects which may completely
mask the small changes in instruction decoder throughput per core. We therefore
chose to measure instruction decoder throughput with instructions documented
as not to get passed to any execution unit. Among the usable instructions for this
case are NOP, FNOP and FWAIT [2]. NOP has the advantage over FNOP of
being a single-byte instruction, maximizing the load on the instruction decoder.
FNOP would serve the purpose as well, but it has a prefix and the number of
prefixed instructions being serviced in the decoder is limited. FWAIT has the
undesirable effect of triggering any pending floating point exceptions and will
not be used here.

To establish a covert channel, we desire to block the instruction decoder
as long as possible on the core of the sender side to increase the magnitude
of throughput differences on the receiver side. Both the Piledriver and Steam-
roller microarchitecture can decode instructions up to a limit of four generated
macro-ops per clock cycle, using any combination of instructions generating one
or two macro-ops per instruction is not going to block the instruction decoder

166 C.-D. Hailfinger et al.

for the next cycle. To block decoding in subsequent clock cycles, the sending
side has to use microcoded instructions which generate at least three macro-ops
per instruction [2]. In the AMD 15h Family, the CPUID instruction generates
between 38 and 64 macro-ops [7], therefore blocking the instruction decoder for
10 to 16 cycles. The RCL instruction is a close second and generates 17 macro-
ops, blocking the instruction decoder for 5 cycles. Both instructions cause a
detectable decoding slowdown on the other core of the Piledriver CPU chosen
for this experiment, with the effect of CPUID being slightly more pronounced. In
a virtualized scenario, using RCL would be preferable over CPUID because the
former can not be trapped by a hypervisor. As opposed to CPUID, the slow-
down effect of RCL does not scale linearly with the measurement length, but
rather keeps a constant difference. To signal the opposite state, the instruction
decoder has to be fed instructions which will complete decoding in a single clock
cycle and which will not have any impact on the decoder in the following clock
cycle. To rule out any possible slowdowns or other interactions from the instruc-
tion scheduler, pipelines and execution units, we pick the same NOP instruction
which is also used for throughput measurement on the receiving side. Experi-
mentally, NOP has been replaced with the INC instruction, and there have been
no observable differences in measurements between NOP and INC.

To rule out other cross-core interactions on Family 15h processors, the same
covert channel attack with CPUID/RCL vs. NOP/INC is performed against a
Steamroller CPU which is mostly identical to a Piledriver CPU except for a per-
core instruction decoder. The covert channel mentioned above based on decoder
throughput does not work on a Steamroller CPU, confirming that the sharing
of the instruction decoder is the actual point of contention.

4.2 CCCiCC v2: Timing Measurement Noise

However, a surprising result on Steamroller CPUs is that CPUID and RCL differ
in their cross-core effect. Due to the non-shared instruction decoder, neither
instruction should have a cross-core effect. RCL is indeed indistinguishable from
NOP/INC, but CPUID changes the throughput measurements on the other core
by introducing a small amount of noise. The only explanation for this is the
serializing/synchronizing effect of CPUID. AMD has hinted in the past that
CPUID at least serializes the core on which CPUID is executed. We noticed that
the serializing effect on Steamroller CPUs was strong enough to be detected not
only on the other core of the same module, but even on a core of another module,
making this new serialization based covert channel suitable even in a scenario
without shared resources and even in scenarios with all variants of multithreading
disabled. The cross-module bandwidth of the noise-based covert channel is lower
than the cross-core same-module bandwidth of the same channel.

4.3 Implementation

Setup. The x86 architecture offers various time sources with different precisions,
among them RTC, PIT, PM Clock, APIC Timer, HPET, performance counters

CCCiCC: A Cross-Core Cache-Independent Covert Channel 167

and TSC (Time Stamp Counter). The only high-precision low-overhead time
source accessible from unprivileged code is reading the TSC with the RDTSC
or RDTSCP instructions. Although RDTSC can also be blocked for userspace
programs, the Linux kernel so far has not implemented that particular mecha-
nism. The TSC is a per-core counter guaranteed to be monotonically increasing,
and recent processors use the CPU base clock for counting clock cycles regard-
less of the current clock speed. There is a pitfall if the RDTSC instruction is
used: The CPU may reorder RDTSC relative to the instructions before and after
it. Intel recommends combining CPUID with RDTSC [17] to have a barrier in
both directions for cycle-accurate measurements. The RDTSCP instruction is
guaranteed to be executed after all preceding instructions, but it may be exe-
cuted after instructions following it. Our measurements are performed back-to-
back, and each RDTSCP instruction acts as a barrier for the previous RDTSCP
instruction. Any measurement errors will thus be averaged out over time. Since
RDTSCP is the best option available, we opt for using RDTSCP. Alternative
implementations using the Linux interfaces gettimeofday() and clock getttime()
have been tested to work well and will continue to work even in cases where
RDTSC/RDTSCP is blocked, but their resolution and overhead does reduce the
usable bandwidth of the channel.

The environments used for measurement are a machine with an AMD A6-
4400M 2-core 1-module Piledriver CPU running at 2700 MHz and for compari-
son another machine with an AMD A10-7800 4-core 2-module Steamroller CPU
running at 3500 MHz. A third machine with an AMD Ryzen 5 1600 with SMT
running at 3200 MHz is employed to check the applicability of the results on
a more recent microarchitecture. All three machines run Ubuntu 18.04.2 Desk-
top with Linux kernel 4.18 and all current microcode updates as of 2019-07-01
installed. The operating system is installed for the x86-64 architecture. The mea-
surement code can run both in 32-bit and 64-bit mode, no significant differences
have been observed between these modes. To reduce noise, the sender thread is
pinned to core 0, whereas the receiver is pinned to core 1. Both the taskset as well
as the cset utilities can be used for core pinning with comparable results. The
system had some noise during the measurements because a default installation
of Ubuntu desktop including drivers and various daemons was active to reflect
real world usage. To increase precision further at the cost of being less repre-
sentative of the real world, we could consider enabling CPU isolation, disabling
the scheduler for the core doing measurements and quieting various interrupt
sources, although none were needed for our experiments. Further noise can be
introduced by running office software, e.g. word processors, but such CPU usage
generally occurs for a roughly fixed time after each keystroke and will be low
unless the user is typing. A strong source of noise is browsing the web because
most websites use active content, which tends to put varying load with unpre-
dictable timing on the CPU.

To prevent CPU frequency scaling and thermal throttling interactions, the
core running the sender code as well as the core running the measurement code
were primed by running NOP loops for a few seconds before the covert channel
was established. For comparison, some of the tests were repeated after fixing the

168 C.-D. Hailfinger et al.

CPU at maximum non-turbo frequency with the utility cpufreq-set and after dis-
abling automatic frequency turbo boosting through /sys/devices/system/cpu/
cpufreq/boost. This cross-check under more controlled conditions yielded iden-
tical results, showing that the priming process caused the CPU to run at the
maximum non-turbo frequency. CPU temperature was monitored to detect any
thermal throttling and CPU fans were set to maximum speed. No thermal throt-
tling except for the prevention of turbo boost was observed.

On the sending side, the code for blocking the instruction decoder is a tight
loop of CPUID or RCL instructions, and the code for freeing the instruction
decoder is a tight loop containing 1 NOP or INC instruction. Running a tight
loop of CPUID/RCL on the sending side is associated with the value 0, and the
tight loop of 1 NOP/INC is associated with the value of 1. On the receiving side,
the code for measuring decoder throughput is a RDTSCP instruction followed by
a tight loop containing 16 NOP instructions followed by a RDTSCP instruction.
Loops containing fewer NOP instructions on the receiving side have a lower
signal-to-noise ratio, and loops containing more NOP instructions have the same
problem. The difference of the values returned by the two RDTSCP instructions
is the elapsed time in base clock cycles.

4.4 Throughput Measurements

Due to the way the measurement code is written, all measurements include the
constant cost for one RDTSCP instruction as well as two MOV instructions.
Each measurement was repeated 100,000 times in a tight loop. The measure-
ments were grouped by value and counted. The values comprising the 90th per-
centile of the most common measurements are listed in Tables 2 and 3. On the
sending side, the number of loops was tuned to take exactly one period (bit) of
the signal, yielding three different values for CPUID, RCL, and NOP/INC.

Table 2 shows the number of clock cycles per measurement for the Piledriver
CPU. The timing difference between measurements on core 1 while running
CPUID or NOP on core 0 start getting significant above 10 loops. In the case
of 1 and 10 loops, the difference for core 1 run times is between 0 and 3 clock
cycles. In contrast to that, the case of 100 loops has a run time difference of
319 or 311 clock cycles, suggesting a nonlinear relation between number of loops
and run time difference at least for a low number of loops. For the case of 1000
loops, the run time difference is 3253 clock cycles, which is roughly proportional
to the difference for 100 loops. The tests with 100 and 10000 loops have a so far
unexplained anomaly which results in measurement values alternating between
the two values listed in the corresponding cell of Table 1. Overall, tests with more
than 10 loops show a consistent run time difference between runs where core 0
executes CPUID or NOP. The throughput tests were also repeated with RCL
instead of CPUID on core 0. The corresponding number of clock cycles for more
than 10 loops measured on core 1 were slightly higher than for CPUID, but still
substantially lower than for NOP/INC. RCL has two advantages over CPUID
in this scenario: slightly less noise during measurement and being undetectable
even when a hypervisor is running.

CCCiCC: A Cross-Core Cache-Independent Covert Channel 169

Table 2. Clock cycles per measurement, Piledriver A6-4400M

Loops on
core 1

Clock cycles on core 1
(CPUID on core 0)

Clock cycles on core 1
(NOP/INC on core 0)

Difference

1 88 (99.8%) 89 (51.2%), 90 (47.1%) 1, 2

10 129 (99.7%) 129 (49.9%), 132 (49.9%) 0, 3

11 134 (99.8%) 137 (99.6%) 3

12 138 (99.9%) 148 (99.9%) 10

20 174 (99.6%) 220 (99.9%) 46

100 627 (47.0%), 635 (47.0%) 946 (99.9%) 319, 311

1000 5793 (90.8%) 9046 (99.6%) 3253

10000 57327 (49.4%), 58235 (46.9%) 90046 (98.8%) 32719, 31811

Multiple values in a cell indicate that multiple values
occurred during measurements

Table 3. Clock cycles per measurement, Steamroller A10-7800

Loops on core 1 Clock cycles on core 1
(CPUID on core 0)

Clock cycles on core 1
(NOP/INC/RCL on core 0)

Difference

1 119 (33.3%), 121
(33.0%), 122 (33.0%)

119 (99.9%) 0, 2, 3

10 161 (62.4%), 170
(29.2%)

160 (99.9%) 1, 10

100 592 (40.1%), 593
(39.8%), 599 (19.7%)

592 (99.9%) 0, 1, 7

1000 5092 (20.4%), 5093
(59.4%), 5099 (19.7%)

5092 (97.8%) 0, 1, 7

10000 50092 (41.0%), 50093
(37.7%), 50097
(18.7%)

50092 (98.7%) 0, 1, 5

Multiple values in a cell indicate that multiple values
occurred during measurements

The best raw bit error rate after decoding of a 1 MHz RCL/INC signal with
11 loops on the receiver side on the “Steamroller” A6-4400M was 1.7 ∗ 10−3.
Using 10 loops or less on the receiver side often resulted in decoding failure.
Increasing the number of loops substantially increased the bit error rate because
the number of samples per bit approached 1.

The receiver runs all measurements back-to-back. The number of samples
per second thus depends on the measurement overhead per sample as well as the
number of loops per sample as well as the instructions inside the loop. There
is an additional constraint on the number of loops to measure any difference
in execution times. Subsect. 4.5 has an example of the number of clock cycles
per measurement. With the current measurement implementation in the above

170 C.-D. Hailfinger et al.

example, the upper limit of sampling frequency is 18.8 MHz. The number of
samples per bit can be calculated by dividing the sampling frequency by the
bit rate. The bit rates in this paper were chosen arbitrarily to yield low error
rates. Experimentally, we tried a 10 Mbit/s bit rate for CCCiCCv1, but the error
rate approached 30%. A measurement implementation with less error checks
experimentally achieved a sampling frequency of ˜25 MHz.

Table 3 shows clock cycle measurements for the Steamroller CPU. Although
there is a slight variability for the measurements in case of running CPUID on
core 0, the absolute difference between measurements for 100, 1000 and 10000
loops varies between 0 and 7 cycles, making this a decidedly non-proportional
relation likely to be caused by one-off effects of each measurement. Each mea-
surement has a fixed and a variable component. The variable component is the
number of loop iterations per measurement and thus also the execution of the
instructions part of the loop. The fixed component is the RDTSCP instruction
terminating one measurement and starting another as well as potentially the
first iteration of the loop. Since the Steamroller CPU does not have a shared
instruction decoder, an instruction decoder contention with the instructions in
the loop can be ruled out and only the timing measurement code itself can be
the culprit.

The difference between Tables 2 and 3 shows how architectural changes like
unsharing an instruction decoder can drastically change speed measurements
and code interdependencies in a processor.

4.5 From Instruction Throughput to Covert Channel

The measurements on the receiving side of a covert channel need to fulfill two
primary criteria: 1. Signal reconstruction has to be possible and 2. The data rate
should be maximized.

Obviously, there are real-world problems such as sender or receiver being
scheduled away, processes (e.g. web browsers) consuming background CPU cycles
and most importantly figuring out when to start listening. If the receiver process
is temporarily halted by the scheduler, this is reflected in the RDTSC measure-
ments and the exact duration of the pause can be calculated from the difference
of the previous and current RDTSC measurement. Background CPU activity
introduces noise, but unless a website is causing the browser to continuously
execute javascript, the noise level in the measurements only has a minor impact
on reconstructing the signal. If the sender process is halted by the scheduler,
the receiver process will not be able to measure this directly. The test data
in these experiments usually had a 16-bit preamble of alternating bits followed
by a sequence number followed by a constant-length payload. A trivial imple-
mentation of the receiver will discard all input until the preamble has been
received successfully. The received sequence number can then be compared to
the expected sequence number. Any difference can be attributed to one of three
reasons: Sender halted, receiver halted, or noise. The preamble and sequence
number make synchronization and detection of an active sender trivially easy at

CCCiCC: A Cross-Core Cache-Independent Covert Channel 171

a frame level. The detected signal edges at the preamble can be used to synchro-
nize the clock of the decoder. The decoding approach used in this paper depends
on oversampling and calculating the number of bits from the observed length
of a given run of a constant signal level, synchronizing at every edge resulting
from a level change. Scheduling interaction with the receiver in the middle of
a packet can by detected through RDTSC changes during each single sample
measurement, and from the elapsed time the receiver can calculate the number
of bits possibly missed. The sender being scheduled away during a packet can
happen for two reasons: A hardware interrupt takes priority, and the timeslice
of the sender process is elapsed. Depending on the settings in the Linux kernel,
the timeslice of a process will be scheduled between 100 and 1000 Hz, with no
interruption if no competing requests for the same processor thread are pend-
ing. The number of possible scheduling events during a single packet for each
of receiver and sender are thus low and experimentation did not yet yield any
result above 1. The number of frames affected by scheduling events varies with
overall system load, but on an mostly idle system the rate was below 1% on aver-
age. Detection and compensation of such scheduling events for the sender side
could be accomplished on the receiver side by changing the packet format, either
by incorporating a constant trailer or by incorporating an error correcting code
somewhere in the packet. An error correcting code would also allow to eliminate
any bit errors resulting from noise. We discarded any data inside a frame from
the point the signal deteriorated, foregoing an error correction.

Error detection and noise handling are substantially more difficult for low-
amplitude noise-based channels compared to the throughput-based channel.
Actively browsing the web introduced enough noise to increase the error rate
in the throughput-based channel, but it even prevented synchronization for the
noise-based channels during most measurements.

With the data from Table 2, measuring the timing of 11 loops is sufficient
to reliably distinguish between states with a signal level difference of 2.2%. The
timing of 12 loops has a stronger signal level difference of 6.8%, but a 5.3% lower
sampling rate on average. Given the goal of having a real-world environment,
the stronger signal level difference is chosen to deal with possible noise sources.
With an average of (138 + 148)/2 = 143 clock cycles per sample at a base clock
of 2700 MHz in the CPU, a theoretical maximum sampling rate of 18.8 MHz is
possible. The current implementation reaches a slightly variable sampling rate
around 9 MHz. The sampling rate varies because each measurement of a con-
stant code block takes more or less time depending on the instruction decoder
contention and there is no compensatory delay after shorter measurements.

For Fig. 2 on Piledriver shows the measurements while a repeating bit pattern
of 0101001000 is being sent at a rate of 1 MHz. The 0 bit is a tight loop of CPUID
and the 1 bit is a tight loop of NOP. Notable are two types of artifacts resulting
from an implementation choice of the sender side: The slightly increased values
at boundaries between bits are an implementation artifact resulting from a call
and stack frame setup necessary for every bit sent as well as stack frame teardown
and call return. Both the CPUID loop and the NOP loop are assembler functions

172 C.-D. Hailfinger et al.

0 10000 20000 30000 40000

Clocks elapsed

140

150

160

C
lo
ck
s/
m
ea
su
re
m
en
t

Fig. 2. CCCiCCv1 Throughput-based signal, Piledriver core 0 → 1 (same module),
pattern 0101001000, 1Mbit/s, 12 loops/measurement

0 10000 20000 30000 40000 50000 60000 70000

Clocks elapsed

200

250

C
lo
ck
s/
m
ea
su
re
m
en
t

Fig. 3. CCCiCCv1 Throughput-based signal, Ryzen thread 0 → 1 (same core), pattern
01010101010101010100010001000101, 1Mbit/s, 40 loops/measurement

0 10000 20000 30000 40000

Clocks elapsed

120

122

124

C
lo
ck
s/
m
ea
su
re
m
en
t

Fig. 4. CCCiCCv2 Noise-based signal, Steamroller core 0 → 1 (same module), pattern
01010101010101010100010001000101, 1Mbit/s, 1 loop/measurement

which are called from the C code of the sender implementation. The strongly
increased values at pattern start are an implementation artifact associated with
an outer loop in the C code implementing the pattern repetition and loading
patterns from memory. The signal is clearly visible in Fig. 2 without filtering or
other postprocessing and suggests that a frequency increase on the sender side
is possible.

Figure 3 shows the measurements on an AMD Ryzen 5 1600 between thread 0
and thread 1 on the same core. The Ryzen (Zen) architecture is the successor of
the Family 15h architecture with two threads per core and without subdivision

CCCiCC: A Cross-Core Cache-Independent Covert Channel 173

0.0 0.2 0.4 0.6 0.8 1.0

Clock cycles elapsed ×107

5090

5095

5100

5105

5110

C
lo
ck

cy
cl
es

p
er

m
ea
su
re
m
en
t

Fig. 5. CCCiCCv2 Noise-based signal, Steamroller core 0 → 3 (different module), pat-
tern 01010101010101010100010001000101, 10 kbit/s, 1000 loops/measurement

into modules. It has one instruction decoder per core, shared between threads.
As expected, the throughput-based channel caused by instruction decoder con-
tention only works between threads on the same core. We were unable to confirm
the presence of a covert channel between different cores on this AMD Ryzen
platform.

Figure 4 demonstrates the RDTSC measurement noise caused by the execu-
tion of the CPUID instruction on Steamroller. The noise is clearly discernible
from the noise-free time regions. The Figure shows a bit pattern transmitted
from core 0 to core 1 on the same module. Table 3 has statistics on this channel.

Closely related is Fig. 5 which shows the same noise-based covert channel on
Steamroller, but from core 0 to core 3 on different modules. The cross-module
covert channel has a lower bandwidth of only 10 kbit/s, but it is available even
if all variants of multithreading and all variants of cores with shared execution
resources are disabled, i.e. even if there is only one thread per module active.
There is an additional unidentified source of constant low-amplitude noise in
these measurements. Compared to Fig. 4, the amplitude of the noise caused by
CPUID is a bit larger. One possible explanation is that the same-module cross-
core serialization only has to serialize one non-sender core, the cross-module
serialization will serialize both cores of the non-sender module, yielding a longer
delay until serialization is complete.

5 Summary

We presented two new high-bandwidth covert channels exploiting timing infor-
mation of a non-persistent shared hardware resource. The first covert chan-
nel CCCiCC v1 is based on variations in throughput of the shared instruction
decoder in an AMD Family 15h Piledriver processor. On this microarchitecture,
we managed to transfer data with a covert channel at 1 Mbit/s rate. The sec-
ond covert channel CCCiCC v2 is based on the presence and absence of noise

174 C.-D. Hailfinger et al.

in timing measurements with the RDSTC instruction in an AMD Family 15h
Steamroller processor. On the latter microarchitecture, instantiating a covert
channel with a bandwidth of 1 Mbit/s has been demonstrated as well.

Our CCCiCC attacks are portable to other multithreaded and multicore
CPUs as long as the target architecture either has contention points in a shared
instruction decoder or the serializing effect of CPUID introduces noise in RDTSC
measurements on another core or thread.

Although this implementation used a TSC for precise measurements, prelimi-
nary tests have shown that in the absence of TSC access alternative unprivileged
OS timing functionality is a viable alternative, albeit at a significantly reduced
covert channel bandwidth.

We showed that establishing a cache-independent and memory-independent
covert channel is not limited to SMT architectures, but it also can work for
clustered and other shared-decoder multicore and multithreading setups as well
as pure multicore setups without shared resources.

Mitigation options depend on whether the covert channel is to be prevented
entirely or if a bandwidth reduction is sufficient. Removing access to precise
timers enables a bandwidth reduction, whereas restricting execution to one
core per processor module eliminates the throughput-based covert channel com-
pletely. For the noise-based covert channel between different modules on “Steam-
roller”, there are only two methods to eliminate the covert channel: Enabling
virtualization and trapping all CPUID instructions which is impossible in a non-
virtualized setup, and running at most one concurrent process on the CPU which
results in a massive slowdown.

AMD has been notified by us in a responsible disclosure process. Full proof-
of-concept code including a self-synchronizing decoder for the receiver side is
available at https://github.com/emsec/CCCiCC.

References

1. Acıiçmez, O., Seifert, J.P.: Cheap hardware parallelism implies cheap security. In:
Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC 2007), pp.
80–91. IEEE (2007)

2. AMD: Software Optimization Guide for AMD Family 15h Processors (2014).
https://www.amd.com/system/files/TechDocs/47414 15h sw opt guide.pdf

3. Bhattacharyya, A., et al.: SMoTherSpectre: exploiting speculative execution
through port contention. arXiv preprint arXiv:1903.01843 (2019)

4. Cabrera Aldaya, A., Brumley, B.B., ul Hassan, S., Pereida Garćıa, C., Tuveri, N.:
Port Contention for Fun and Profit. Cryptology ePrint Archive, Report 2018/1060
(2018). https://eprint.iacr.org/2018/1060

5. Canella, C., et al.: A systematic evaluation of transient execution attacks and
defenses. arXiv preprint arXiv:1811.05441 (2018)

6. Evtyushkin, D., Ponomarev, D.: Covert channels through random number gen-
erator: mechanisms, capacity estimation and mitigations. In: Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security, pp.
843–857. ACM (2016)

https://github.com/emsec/CCCiCC
https://www.amd.com/system/files/TechDocs/47414_15h_sw_opt_guide.pdf
http://arxiv.org/abs/1903.01843
https://eprint.iacr.org/2018/1060
http://arxiv.org/abs/1811.05441

CCCiCC: A Cross-Core Cache-Independent Covert Channel 175

7. Fog, A.: Instruction tables: lists of instruction latencies, throughputs and micro-
operation breakdowns for Intel, AMD and VIA CPUs (2018). https://www.agner.
org/optimize/instruction tables.pdf

8. Fogh, A.: Covert Shotgun: automatically finding SMT covert channels (2016).
https://cyber.wtf/2016/09/27/covert-shotgun/

9. Ge, Q., Yarom, Y., Cock, D., Heiser, G.: A survey of microarchitectural timing
attacks and countermeasures on contemporary hardware. J. Cryptogr. Eng. 8(1),
1–27 (2018)

10. Gras, B., Razavi, K., Bos, H., Giuffrida, C.: Translation leak-aside buffer: defeat-
ing cache side-channel protections with TLB attacks. In: 27th USENIX Security
Symposium, SEC 2018, pp. 955–972. USENIX Association, Berkeley (2018)

11. Horn, J.: Speculative execution, variant 4: speculative store bypass (2018). https://
bugs.chromium.org/p/project-zero/issues/detail?id=1528

12. Kocher, P., et al.: Spectre attacks: exploiting speculative execution. arXiv preprint
arXiv:1801.01203 (2018)

13. Kocher, P.C.: Timing attacks on implementations of diffie-hellman, RSA, DSS, and
other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

14. Lipp, M., et al.: Meltdown: reading kernel memory from user space. In: 27th
USENIX Security Symposium, pp. 973–990 (2018)

15. Mcilroy, R., Sevcik, J., Tebbi, T., Titzer, B.L., Verwaest, T.: Spectre is here
to stay: an analysis of side-channels and speculative execution. arXiv preprint
arXiv:1902.05178 (2019)

16. Nussbaum, S.: AMD trinity APU. In: 2012 IEEE Hot Chips 24 Symposium (HCS),
pp. 1–40. IEEE (2012)

17. Paoloni, G.: How to benchmark code execution times on Intel IA-32 and IA-64
instruction set architectures. Intel Corporation, p. 123 (2010)

18. Percival, C.: Cache Missing for Fun and Profit (2005)
19. Schwarz, M., Schwarzl, M., Lipp, M., Masters, J., Gruss, D.: NetSpectre: read

arbitrary memory over network. In: Sako, K., Schneider, S., Ryan, P.Y.A. (eds.)
ESORICS 2019. LNCS, vol. 11735, pp. 279–299. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-29959-0 14

20. Shimpi, A.L.: Intel’s Sandy Bridge Architecture Exposed (2010). https://www.
anandtech.com/print/3922/intels-sandy-bridge-architecture-exposed

21. Stecklina, J., Prescher, T.: LazyFP: leaking FPU register state using microarchi-
tectural side-channels. arXiv preprint arXiv:1806.07480 (2018)

22. Tsunoo, Y.: Crypt-analysis of block ciphers implemented on computers with cache.
In: Proceedings ISITA2002, October 2002

23. Tsunoo, Y., Saito, T., Suzaki, T., Shigeri, M., Miyauchi, H.: Cryptanalysis of DES
implemented on computers with cache. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.)
CHES 2003. LNCS, vol. 2779, pp. 62–76. Springer, Heidelberg (2003). https://doi.
org/10.1007/978-3-540-45238-6 6

24. Wang, Z., Lee, R.B.: Covert and side channels due to processor architecture.
In: Proceedings of the 22nd Annual Computer Security Applications Conference,
ACSAC 2006, pp. 473–482. IEEE Computer Society, Washington (2006)

https://www.agner.org/optimize/instruction_tables.pdf
https://www.agner.org/optimize/instruction_tables.pdf
https://cyber.wtf/2016/09/27/covert-shotgun/
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
http://arxiv.org/abs/1801.01203
https://doi.org/10.1007/3-540-68697-5_9
http://arxiv.org/abs/1902.05178
https://doi.org/10.1007/978-3-030-29959-0_14
https://doi.org/10.1007/978-3-030-29959-0_14
https://www.anandtech.com/print/3922/intels-sandy-bridge-architecture-exposed
https://www.anandtech.com/print/3922/intels-sandy-bridge-architecture-exposed
http://arxiv.org/abs/1806.07480
https://doi.org/10.1007/978-3-540-45238-6_6
https://doi.org/10.1007/978-3-540-45238-6_6

Design Considerations for EM Pulse
Fault Injection

Arthur Beckers1(B), Masahiro Kinugawa2, Yuichi Hayashi3, Daisuke Fujimoto3,
Josep Balasch1, Benedikt Gierlichs1, and Ingrid Verbauwhede1

1 imec-COSIC KU Leuven, Leuven, Belgium
{arthur.beckers,josep.balasch,benedikt.gierlichs,

ingrid.verbauwhede}@esat.kuleuven.be
2 National Institute of Technology (KOSEN), Sendai College, Sendai, Japan

kinugawa@sendai-nct.ac.jp
3 Nara Institute of Science and Technology, Ikoma, Japan

{yu-ichi,fujimoto}@is.naist.jp

Abstract. Electromagnetic-fault injection (EM-FI) setups are appeal-
ing since they can be made at a low cost, achieve relatively high spatial
resolutions, and avoid the need of tampering with the PCB or packaging
of the target. In this paper we first sketch the importance of under-
standing the pulse characteristics of a pulse injection setup in order to
successfully mount an attack. We then look into the different components
that make up an EM-pulse setup and demonstrate their impact on the
pulse shape. The different components are then assembled to form an
EM-pulse injection setup. The effectiveness of the setup and how differ-
ent design decisions impact the outcome of a fault injection campaign
are demonstrated on a 32-bit ARM microcontroller.

Keywords: EM fault attack · Probe design · EM-FI setup

1 Introduction

Since the introduction of the Bellcore attack by Boneh et al. [3] many different
fault injection methods have been developed [2]. These fault injection methods
are often classified according to their invasiveness and locality. Techniques such
as clock and voltage glitching introduce global faults into the chip, but do not
require tampering with the chip package or the chip itself. Therefore they are
labeled as non-invasive and global. On the other side of the spectrum, optical
fault injection [12] is a (semi-)invasive technique that requires line of sight to
the target IC. In return, it can achieve high locality and potentially affect only
a few transistors.

EM-fault injection [11] can be situated somewhere in between. It involves
exposing the target IC to a pulsed or continuous E or H-field, or a combination
of both. The injected field couples with the wiring of the IC, inducing voltage and
current fluctuations inside the device. Since the EM-field can propagate through
c© Springer Nature Switzerland AG 2020
S. Beläıd and T. Güneysu (Eds.): CARDIS 2019, LNCS 11833, pp. 176–192, 2020.
https://doi.org/10.1007/978-3-030-42068-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-42068-0_11&domain=pdf
https://doi.org/10.1007/978-3-030-42068-0_11

Design Considerations for EM Pulse Fault Injection 177

the package of the IC, the method can be labeled as non invasive. In some
situations, however, removing the package might be beneficial. It can increase
the resolution of the attack and the field strength received by the IC. This makes
EM-FI applicable also in (semi-)invasive settings. If the spatial dimensions of
the injected field are sufficiently small compared to the size of the IC, only a
smaller portion of the IC is affected. This gives EM-fault injection a certain
degree of locality. Alternatively, EM-FI can achieve global effects by targeting
bonding wires or PCB traces. This can be seen as a “contactless” voltage or
clock glitching.

Related Work. EM-FI comes in two variants. One can either inject a contin-
uous (harmonic) EM-wave or a single EM pulse. In this work we focus on the
latter. More specifically, we investigate how different design decisions impact
the pulse shape generated by an EM-pulse generator. In a previous work by R.
Omarouayache et al. [9] a detailed study was done on how different probe param-
eters impact the size and shape of the generated magnetic field. The authors
investigated the effect of different parameters by simulating the probes using
a 3D EM simulator. In this work, we take their design recommendations into
account and perform empirical testing of various probes when integrated into a
complete EM-pulse injection setup.

Setups to perform EM-pulse injection have been described in the academic lit-
erature [7]. Most works use experimental setups around commercial high-voltage
pulse generators, capable of generating pulses up to 500 V and 5 ns width. Using
such a setup, Ordas et al. [10] compare different type of handmade injectors (flat,
sharp, crescent) when targeting an FPGA platform. Alternative designs include
the BADFET by Cui and Housley [4] and the setup designed by Balasch et al. [1].
The former uses a similar circuitry as the one described in this paper, storing
the energy released over the EM probe in a capacitor bank, but use rather large
probes in the order of centimeters. The latter setup uses a different approach, in
which the energy released to the EM probe is stored in a large inductor.

In addition to academic literature, there exist several commercial solutions
available for EM-FI such as the NewAE’s ChipSHOUTER1, Riscure’s EM-FI
Transient Probe2 or Langer EMV’s ICI Set3. For most of these setups, the cir-
cuitry used for pulse generation is not public information. The only commercial
solution for which the circuit diagram is available is the ChipSHOUTER, which
uses a similar approach to the one we use in this work.

Contributions. The goal of this work is not to propose a new EM-FI setup
and compare it to existing solutions. Rather differently, we aim to investigate
how different components of an EM-pulse injection setup impact the shape of
the generated pulse. We start by studying the impact of the probe design param-
eters. For this, we propose a measurement method based on a microstrip line to
1 http://store.newae.com/chipshouter-kit.
2 https://getquote.riscure.com/en/quote/2101068/em-fi-transient-probe.htm.
3 https://www.langer-emv.de/en/category/ic-side-channel-analysis/94.

http://store.newae.com/chipshouter-kit
https://getquote.riscure.com/en/quote/2101068/em-fi-transient-probe.htm
https://www.langer-emv.de/en/category/ic-side-channel-analysis/94

178 A. Beckers et al.

measure spatial and temporal characteristics of the probes. After the different
parameters that impact the pulse shape are established, we describe a set of
design guidelines by building an EM-pulse fault injection setup and demonstrat-
ing its effectiveness on a 32-bit microcontroller.

2 Challenge

Building an EM-pulse injection setup is conceptually simple. One needs to inter-
face a pulse generator with an injection probe. Both components are commer-
cially available, or they can be constructed. In any case, the shape of the gen-
erated EM pulse is determined by the choice of these components. In turn, the
success rate of a fault injection campaign depends strongly on the characteristics
of the pulse. Thus correctly tailoring the pulse parameters to the target device
might have a significant impact on the outcome of a fault injection campaign. If
we have a setup capable of generating small pulse widths, we can for example
target individual instructions at high clock frequencies. Or if we have a larger
pulse width, we might fault multiple instructions simultaneously.

Fault models for EM-fault injection have been described by Ordas et al. [10]
for FPGAs and by Moro et al. [8] for microcontrollers. Both studies conclude
that EM-pulse injection causes violations of the setup and hold times of the IC.
Therefore pulses must be injected around a clock edge in order to be effective.
The voltage and current fluctuations caused by the EM-pulse result in an incor-
rect sampling of the data at the input of a flip-flop during the setup or hold
time. How these induced voltages and currents propagate through a particular
IC requires extensive testing or detailed EM-simulations. This aspect has been
recently investigated by Dumont et al. [5], which model the interactions between
EM probes, EM pulses and ICs to gain understanding on the occurrence of EM
faults.

Intuitively, we can abstract the concept to the following: an IC will be faulted
if a clock edge occurs when voltage and current fluctuations exceed a certain
threshold. The time window (tsensitive) during which the induced voltage and
current fluctuations persist on the device, depends on a multitude of parameters.
tsensitive can, for instance, be enlarged by increasing the pulse width, by injecting
multiple pulses in rapid succession, or by increasing the size of the injected field.
The ratio between the time window during which we can fault an operation
and the clock period (tclock) determines whether we affect one or multiple clock
cycles. We call this ratio the fault sensitivity ratio (FSR) expressed as FSR =
tsensitive/tclock. If the FSR is larger than 1, one can fault multiple clock cycles
simultaneously. If the FSR is smaller than 1, one is able to fault a single clock
cycle. The time tsensitive is determined by both the target device and the EM-
FI pulse characteristics, as illustrated in Fig. 1. The value tsensitive equals the
sum of the setup and hold time of the device plus the pulse width. This is a
simplification of the actual fault mechanism, but it gives a good intuition on
how different pulse characteristics influence the outcome of EM-pulse injection.
In practice, a per device study should be done to investigate how tsensitive relates

Design Considerations for EM Pulse Fault Injection 179

Fig. 1. Illustration of the fault sensitivity ratio (FSR).

to the pulse shape. The value tclock on the other hand is fixed by the clock
frequency of the target device, which may not be controllable by an adversary.
By changing the pulse characteristics, we can thus tune the FSR depending
on the application. A high FSR might for instance be desired when a device
is profiled for its sensitivity to EM-pulse injection, while an FSR lower than 1
might be preferable when performing an attack.

3 Probe Design

In this section we examine the impact different probe parameters have on the
pulse characteristics. In what follows we only consider H-field probes, although
in theory also E-field probes could be used for performing EM-fault injection.
H-field probes are commonly constructed by winding conductive wiring around
either an air or ferrite core, thus forming a solenoid. The pulses generated by an
EM-FI setup generally have a rise-time in the nanosecond range. We are thus
operating in the near-field since the probes are commonly placed within a few
centimeters of the target device. Different relations apply when the probes have
a higher rise time or are placed further away from the target.

3.1 Near-Field Coupling

In the near-field region, currents induced into a target device are the result
of coupling between probe and device. Generally, the pulse generator can be
modeled as a charge capacitor in combination with a switching element. An EM-
pulse is generated by discharging the capacitor through the injection probe. This
model is equivalent to an RLC circuit if we assume an ideal switch. A diagram
of such a circuit can be seen in Fig. 2. Before pulse injection, the capacitor is

Fig. 2. Model of EM-pulse injection circuit.

180 A. Beckers et al.

charged to a high DC voltage. Once charged, the switch is closed and current
starts flowing through the inductor. Due to coupling between the IC and the
probe, a current will be induced in the wiring of the target device. The amount
of current will depend on the shape of the H-field pulse and on the wire geometry
of the target device. Thus, once placed above an IC, the load seen by the pulse
generator will be that of the coupled inductors. The amount of coupling between
the probe and device will be frequency dependent. The resistor in the RLC
model combines both the parasitic resistance of the probe and resistance added
for damping the response.

By solving the differential equation of the RLC circuit we can get a basic
understanding of how different parameters influence the pulse shape. There are
three possible solutions to the differential equation depending on the damping
of the RLC circuit. Ideally we would like our EM-injection setup to be critically
damped. Over-damping would increase our pulse width, while under-damping
will result in ringing. The different current equations to resulting from the differ-
ential equation can be found in Appendix A. Since the magnetic field generated
by the probe is proportional to the current flowing through it, we can derive
some of the pulse characteristics from the current equations (Appendix A).

The rise time, peak amplitude and pulse width will be determined by the
resistance, the initial voltage over the capacitor and the probe inductance. The
resistance and the initial voltage are two parameters which can generally be
chosen freely by the designer. The inductance on the other hand is determined
by the probe geometry. Equation 1 gives the inductance of an ideal solenoid.
Here k is the relative permeability, μ0 is the permeability of free space, N is the
number of windings, A is the loop area and l is the length of the solenoid. The
actual probe will have a different inductance because of parasitics, saturation of
the ferrite core, etc. but the equation gives us the basic relationship between the
different variables that make up the probe inductance.

L =
kμ0N

2A

l
(1)

The size of the magnetic field at the center line of the solenoid resulting from
the current flowing through the probe is given by Eq. 2. Here r is the radius of the
probe and z is the distance along its axis. The bottom of the solenoid is situated
at z = 0 while the top is located at z = l. From Eqs. 1 and 4 we can see that
the size of the magnetic field is inversely proportional to the inductance of the
probe. By varying the different parameters we can tune the pulse characteristics
to our needs.

B =
kμ0N

2l
I

⎡
⎣ z√

z2 + r2
− z − l√

(z − l)2 + r2

⎤
⎦ (2)

Another approach for modeling the impact of different parameters on the
generated field is by simulating the RLC circuit in SPICE, which allows for a
more accurate modeling of the circuit.

Design Considerations for EM Pulse Fault Injection 181

3.2 Experimental Validation

In order to confirm that the theoretical relations from the previous section
hold, we performed experimental measurements on solenoid probes with differ-
ent winding geometries. To this end, we built a test setup similar to the circuit in
Fig. 2. Instead of an ideal switch, we used a gas discharge tube with a breakdown
voltage of 370 V. This component is selected because of its high rise time and
small parasitics, which makes its behaviour similar to that of an ideal switch. For
our experiments, the capacitor was connected to a 400 V power supply through
a current limiting resistor of 1 MΩ. Once the capacitor voltage reaches 370 V,
breakdown occurs and a current flows through the probe generating a magnetic
pulse. Our test setup is shown in Fig. 3.

The evaluated probes were made with ferrite rods produced by Fair-Rite4.
The windings around the ferrite core were made using enameled wire with a
thickness of 150 µm. We only used rods, and no other special geometries such
as sharpened tips were tested. These special geometries could however improve
the magnetic field characteristics as observed in [9]. The default configuration
of our evaluation board has a 47 pF charge capacitor, a probe with 2 windings
and a 2 mm ferrite core.

For the probe evaluation we used a 50 Ω microstrip line to measure the H-
field pulse. It was made from a 0.3 mm thick dual sided FR-4 substrate with a
copper thickness of 18 µm and dielectric constant of 4.7. The resulting width of
the microstrip line was 0.532 mm for a 50 Ω line. At either end, the microstrip
line was terminated by a 50 Ω impedance. The PCB dimensions were 14 cm
wide and 24 cm long. The board was chosen to be as thin as possible to have a
narrow 50 Ω stripline, which is beneficial for measuring the spatial resolution.
The length of the board was chosen as large as practically feasible, in order
to have a larger temporal separation between the reflection that might occur
due to small impedance mismatches and the actual pulse. In order to measure
the response of the probe, we mounted the evaluation board on a stepper table
with a 15 µm step size. The probe was placed on top of the PCB and moved
perpendicular to the microstrip line. The theoretical result of a microstrip line
measurement for an H-field pulse are shown in Fig. 4. When the centerline of the
probe is placed on top of the middle of the microstrip line the measured field
will be zero, since the magnetic field to either side of the microstrip line will be
equal. Once the probe is moved away from the center of the microstrip line, a
net magnetic field will be measured and the peak amplitude of the response will
increase up to the point Re. At the point Re, we measure the maximal peak
amplitude response Am of the probe. When time domain responses are given
for a probe, they are taken at the point Re. The distance between the middle of
the microstrip line and Re is also taken as a measure for the resolution of the
probe.

The microstrip line was chosen as measurement method since besides the
temporal characteristics of the probe it can also be used to evaluate its spatial

4 https://www.fair-rite.com/products/engineering-kits/?kit=21558.

https://www.fair-rite.com/products/engineering-kits/?kit=21558

182 A. Beckers et al.

Fig. 3. Gas discharge tube based EM-
probe evaluation circuit.

Fig. 4. Microstrip line response.

resolution. An alternative method is to use loop antennas, but these can not
capture the spatial resolution of the probe. In order to determine the minimal
field strength required to fault the intended target, it should be mounted on a
test board and profiled for its EM-pulse sensitivity. However, this approach has
its limitations for probe characterization. First, the result will not only depend
on the probe characteristics but also depend heavily on the used target IC. And
second, spatial resolution might be hard to establish using an IC as profiling
device given that the induced currents might propagate through the entire IC
depending on the internal routing. Therefore we opted to use a microstrip line
as evaluation method. It should be noted however, that when an IC is targeted
the frequency dependency of the coupling between probe and IC might give
significant performance differences between different probes. Ideally, the transfer
characteristic of an IC should first be measured and the probe should be designed
accordingly. This is however outside the scope of this work.

3.3 Results

In what follows we experimentally analyze the influence several parameters in
the design have on the pulse shape. All measurements are done using a Tektronix
DPO7040C scope with 25 GS/s sample rate and a 6 GHz bandwidth. The input
impedance of the scope is set to 50 Ω.

Ferrite Material. When large magnetic fields are induced into ferrite materi-
als they will saturate. This saturation causes them to behave non-linearly, which
makes simulating the impact of the chosen ferrite on the pulse shape difficult
unless exact data is delivered by the manufacturer. The pulse shape was mea-
sured using three different ferrite materials made by the same manufacturer.
They are all marketed for RF applications. The tree materials have a different
frequency rating and permeability. The permeability of the first ferrite mate-
rial, material 78 is 2000 H/m and has its pole at 1 MHz. The second material,

Design Considerations for EM Pulse Fault Injection 183

material 61 has a permeability of 110 H/m and has its pole at 20 MHz. Lastly,
material 67 has a permeability of 40 H/m and a pole at 100 MHz. The probe
responses for each material are depicted in Fig. 5. The plot clearly shows that
the used ferrite material has a significant impact on the pulse response, e.g. the
pulse magnitude of material 61 is more than 50% larger than material 67. In the
rest of our experiments we use material 67. Although the pulse has the small-
est amplitude response, the material is designed to operate at high frequencies
making it unlikely to be the limiting factor for the rise time of our probe.

Number of Windings. The inductance is expected to rise quadratically with
the number of windings. Thus according to Eq. 5, we expect the pulse ampli-
tude to decrease with the number of windings. Since also the damping of the
circuit depends on the inductance, we further expect the pulse width to increase
with the number of windings. The magnetic field however linearly increases with
the number of windings and thus compensates slightly for the decrease in cur-
rent amplitude. Figure 6 shows the pulse response measured at position Re for
variations in the number of windings. It behaves as expected.

Fig. 5. Pulse response for different ferrite
materials.

Fig. 6. Pulse response for different number
of windings.

Core Diameter. Increasing the core diameter will reduce the amplitude of
the pulse, since both the inductance (Eq. 1) and magnetic field (Eq. 2) depend
on the solenoid radius. In this experiment we are however more interested in
the probe resolution. We varied the probe diameter and measured the spatial
characteristics of the probe. The results can be seen in Fig. 7. As shown in the
plot, the distance between the peak amplitudes Re varies linearly with the probe
diameter. Note that for our experiments we used rather large probe diameters,
ranging from 1 to 4 mm. These diameters were chosen out of practical consid-
erations, being one of the few sets commercially available. Using a probe with a
large diameter to target an IC might not be ideal, since the current induced in
the IC is proportional to the magnetic field difference around the wiring.

184 A. Beckers et al.

Fig. 7. Pulse response for different solenoid diameters.

Winding Geometry. A final probe parameter which can be varied is the length
of the solenoid. There are two strategies which can be employed. Either the wire
thickness can be reduced or windings can be overlapped. Reducing the wire
thickness increases the resistance of the wire. The increased resistance usually
does not pose a problem since some resistance is needed to dampen the pulse. The
increased resistance however increases the risk of burning through the wiring due
to the high current flowing through it. Figure 8 shows the response for a probe
with 10 windings placed next to each other, and that of a probe with two layers
of 5 windings. It shows that an increase in pulse magnitude can be achieved by
altering the winding configuration.

Charge Capacitor. In our evaluation board we can also vary the size of the
charge capacitor. Varying the charge capacitor emulates a change in the pulse
generator design. In Fig. 9 the measured pulses for a varying capacitance can be
seen.

Fig. 8. Pulse response for different wind-
ing geometries.

Fig. 9. Pulse response for different charge
capacitors.

4 Pulse Generator

The main requirement for an EM-FI pulse generator is to produce a large cur-
rent pulse with a fast rise time. Currents flowing through the probe are usu-
ally in the tens of amperes. In order to obtain a good temporal resolution, the
rise time should be in the nanoseconds range. In the remainder of the paper

Design Considerations for EM Pulse Fault Injection 185

we will restrict ourselves to a pulse generator design based on the RLC-circuit
introduced in Fig. 2. Some adaptations to the circuit have to be made for it to
become a functional EM-pulse generator. For instance, the ideal switch will have
to be replaced and a power supply will have to be added to the design. Since the
pulses needed for EM-pulse injection are generally in the nanoseconds range, the
parasitics of the different discrete components can start dominating. Therefore
components with good high frequency characteristics should be selected. Com-
ponents with long lead wires should for instance be avoided, since the parasitic
inductance of the leads will reduce the bandwidth of the pulse.

Note that off-the-shelf components such as RF power amplifiers or high volt-
age pulse generators are usually designed to drive a resistive 50 Ω load. EM-
probes however have a different impedance which might result in a reduced
efficiency of the amplifier or pulse generator. Therefore extra matching circuitry
might have to be added to prevent damage to the equipment or to make sure
the generated pulse matches the expectations.

4.1 Switching Element

When designing an RLC-based pulse generator different switching elements can
be used. The most common switching element is a MOSFET, but also other
semiconductor devices such as IGBTs or bipolar transistors in regular opera-
tion or in avalanche mode could be used. Besides semiconductor devices, one
could also use dielectric breakdown devices such as a spark gap based switch.
MOSFETs, and to a lesser extent IGBTs, are the preferred switching elements
for EM-pulse setups. They tolerate high voltages and currents while providing a
reasonable switching speed. One of the major drawbacks are the large parasitic
capacitances of these components. A faster switching element, such as a bipo-
lar transistor, could be used for better rise times. However, bipolar transistors
can usually not tolerate the high currents and voltages required to generate a
sufficiently large magnetic field. Biasing a bipolar transistor into its avalanche
breakdown region might give us the best of both worlds: fast switching speeds
and low parasitics, while being able to tolerate high voltages and currents. The
drawback however is that we can only operate in this avalache region for a small
voltage window.

When selecting the switching component care has to be taken that the par-
asitics do not start dominating the setup. For instance it is not uncommon
for MOSFETs and IGBTs to have an output capacitance which is larger than
1000 pf. These devices do not only have large output capacitances, but also have
significant input capacitance. Therefore a good input driving circuit is required
to have a good turn on characteristics.

4.2 Pulse Delay and Jitter

Fault injection inherently requires a delay element in order to time the attack
properly. From previous work [8,10] we know that often devices can only be
faulted with EM-FI when the injected pulse causes a violation of either the

186 A. Beckers et al.

setup or hold time. If we have a narrow pulse width and a low clock frequency,
it might occur that we only have a 10 ns window (tsensitive) around the clock
edge during which we can inject faults. This puts a lower bound on the res-
olution of our delay element. Too much jitter will reduce the success rate of
the pulse injection campaign. Even if the delay is set properly, a portion of the
injected pulses will fall outside tsensitive. With a large tsensitive the jitter and
delay requirements can be relaxed. For our experiments in Sect. 5 we use an
Agilent 33250 A signal generator as delay element. An alternative would be to
use an FPGA development board as a triggering device.

4.3 Power Supply

The power supply needs to be able to provide a sufficiently high DC voltage.
From Eq. 4 we can see that the current through the probe relates linearly to the
voltage across the charge capacitor. The amount of current the power supply can
deliver in combination with the size of the charge capacitor will determine the
period between consecutive EM-pulse injections. High voltage DC power supplies
can be purchased or build for around 20 Euros in the form of a Cockcroft–
Walton generator. As a last remark, note that a good decoupling between the
EM-FI setup and the rest of the environment is required. Otherwise, coupling
between the EM-pulses might interfere with sensitive auxiliary equipment such
as oscilloscopes. The decoupling can be achieved by minimizing the parasitic EM
emissions from the EM-injection setup by placing decoupling capacitors on the
different power supply rails, placing bulk capacitors close to the MOSFET and
MOSFET driver and using shielded cables or twisted wire pairs to connect the
different components. On the target side, coupling can be minimized by reducing
the overall wire length and by using shielded cables, where possible.

5 Example Design

In this section we describe an example setup for EM pulse injection based on
an RLC circuit with a MOSFET as switching element. This is by no means
an optimal setup, but rather a use case tailored to the principles described in
the paper. Our goal is to build a platform capable of generating 10 ns pulses,
with the goal of targeting individual clock cycles in microcontrollers running at
a frequency of 100 MHz.

5.1 EM Pulse Injection Platform

A circuit diagram of the EM-FI setup, including both pulse generator and probe,
is shown in Fig. 10. As switching element (M1), we select an IPA80R280P7 MOS-
FET from Infineon Technologies. This is an n-channel MOSFET with a fast
rise-time and relatively low output capacitance. It can tolerate a Vds up to 800 V
and a maximal pulsed drain current of 45 A. The MOSFET also has integrated
ESD protection in the form of a Zener diode which is crucial in order to prevent

Design Considerations for EM Pulse Fault Injection 187

damage to the MOSFET. Once the capacitor is discharged through L1 there
will be a flyback voltage across the inductor. The flyback voltage will result in a
negative VDS , which has to be protected against. We opted to not put a flyback
diode directly across L1 but instead to rely on the build in Zener diode of the
MOSFET.

The IPA80R280P7 is driven by a Microchip MIC4422 low side MOSFET
driver (X1). The jitter introduced by the MOSFET and driver combination
amounts to 0.43 ns. The delay between the rising edge of the TRIG signal and
pulse generation is 56 ns. A current limiting resistor (R2) is inserted at the source
terminal of the MOSFET. This resistor serves as a safety mechanism to ensure
the current never exceeds the maximal current rating of the MOSFET. In our
case, the gate voltage during the on state is fixed to 12 V and the VGS(th) of
the MOSFET is 3 V. Choosing the resistor to be 0.22 Ω, the current through
the MOSFET will not exceed 40 A since the voltage across R2 will reduce VGS ,
turning off the MOSFET if the current exceeds 40 A. Increasing the value of
R2 and thus limiting the current through the MOSFET would also allow us to
generate square pulses. The PCB design for the EM-pulse generator is shown in
Fig. 11 and its corresponding schematic in Appendix B. The layout of the PCB
is important not only to reduce the parasitics, but also to prevent undesired
coupling or hotspots due to excessive heat generation. The main focus during
PCB layout should be the high current RLC loop, which should be kept as small
as possible. The cost of assembling the entire design is around 40 Euro.

Fig. 10. Circuit diagram of EM pulse
injection setup.

Fig. 11. EM-pulse injector PCB.

The second component in our example design is the probe. In order to obtain
a good spatial resolution, we select a ferrite rod with a 750 µm diameter and 4
windings. The number of windings could be reduced in case the setup does not
achieve the desired 10 ns pulse width. The inductance L1 of the probe can be
estimated using Eq. 1, or directly measured using an impedance meter. Knowing
the inductance of the probe helps us with the choice of capacitor C1. Since we opt
to build a setup that is slightly overdamped, the choice of capacitor size impacts
the pulse width and amplitude. By modeling the circuit in SPICE, we estimated
that a 1000 pF capacitor for C1 would yield the desired 10 ns pulse width. With

188 A. Beckers et al.

these parameters, however, the circuit turns out to be underdamped. Therefore
we add a 10 Ω resistor R3 in order to achieve a slight overdamped response.
After assembling the setup a pulse width of 12 ns was measured. Lowering the
capacitance C1 and adjusting R3 finally enabled us to obtain the desired 10 ns
pulse width.

5.2 Experimental Results

We target an STM32F411 from ST Microelectronics mounted on a NUCLEO-
F411RE development board. This is a 32-bit ARM Cortex-M4 microcontroller
featuring a three-stage pipeline. Its maximal frequency of 100 MHz makes it per-
fectly suitable for our experiments. The board is positioned on an XYZ stepper
table such that the EM probe can be placed on top of the IC. Our experiments
are performed in a non-invasive setting, e.g. without exposing the die of the chip
(Fig. 12).

Fig. 12. EM-fault injection setup with STM32F411 target board.

We select the store multiple (STM) instruction as target operation. We write
a simple target routine that writes the values of 10 working registers (r0 to r9)
to memory. The values are fixed to 0x55555555. This alternating string of ones
and zeros is chosen to accommodate for the occurrence of bit set, bit reset or bit
flip faults. Using a GPIO trigger for synchronization, we inject EM pulses during
the writing stage of STM. Two sets of experiments are performed with different
damping ratios. For the first experiment, a 10 Ω resistor is chosen for R3 making
the EM-pulse critically damped. For the second experiment, R3 contains a 1 Ω
resistor that makes the EM-pulse underdamped. All other parameters such as
the probe, power supply voltage, injection location and timing are kept constant
for both sets of experiments. The resulting pulse shapes for both the critically
damped and underdamped case can be seen in Fig. 13a and b. After scanning the
entire chip surface for sensitive areas, we selected a location with a high success
rate. EM-pulses were injected in this region over a time period of 100 ns, with
1 ns steps.

Design Considerations for EM Pulse Fault Injection 189

When injecting pulses with the critically damped setup, we can fault indi-
vidual writes to memory as can be seen in Fig. 13c. The X-axis corresponds to
the register written to memory, while the Y-axis corresponds to the timing. An
orange square indicates a fault was injected into the STM instruction while stor-
ing a particular register. At every step in time, 100 pulses were injected into the
target. The plot clearly shows that the critically damped configuration of the
setup allows to target individual writes to memory. Converting the setup to an
underdamped configuration results in the fault map from Fig. 13d. We can still
in some occasions target individual instructions, but also multiple instruction
faults occur. This effect can be linked to the FSR described in Sect. 2. In the
critically damped case, we have a single pulse with a 10 ns pulse width. It is
likely that the voltage and current fluctuations only persist for a portion of this
pulse width, and therefore we can target individual clock cycles. In the under-
damped case however, we have multiple harmonic oscillations after the first pulse
increasing the tsensitive and thus faulting multiple instructions simultaneously.

(a) Critically damped probe response (b) Underdamped probe response

(c) Fault map critically damped probe (d) Fault map underdamped probe

Fig. 13. EM-pulse injection results on the STM32F411 processor

Note that our experimental evaluation considers only the injection of a single
pulse per campaign, which models an adversary capable of injecting one fault
per cryptographic execution. If an adversary aims to inject multiple faults per
execution, then the pulse frequency becomes a relevant design aspect. The time

190 A. Beckers et al.

between consecutive pulses in our setup can be approximated by 4R1(C1 +
Cparasitic). The size of R1 is dependent on the drive strength of V1. The more
current that can be supplied by V1, the lower we can set R1.

6 Conclusions

In this work we show that no special circuitry or equipment is needed to build
a quality EM-pulse injection setup. However, a good understanding on how the
different building blocks and design parameters impact the final pulse shape is
important and not often discussed in the literature. Our study provides some
guidelines supported by experimental results, and shows that a good tuning of
the EM-pulse setup to the target device is critical for the success rate of an
EM-pulse injection campaign.

Acknowledgment. This work was supported in part by the Research Council KU
Leuven C1 on Security and Privacy for Cyber-Physical Systems and the Internet of
Things with contract number C16/15/058 and through the Horizon 2020 research and
innovation programme under Cathedral ERC Advanced Grant 695305. Additionally
this work has been partially supported by FWO project VS06717N in collaboration
with JSPS.

A The RLC Circuit

By applying Kirchhoff’s law to the RLC loop from Fig. 2 we obtain the following
equation:

d2I

dt2
+

R

L

dI

dt
+

I

LC
= 0, (3)

Solving this equation yields three possible solutions depending on whether
the circuit is critically damped (Eq. 4), underdamped (Eq. 5) or overdamped
(Eqs. 7 and 8).

I =
V0

L
t exp

(
− R

2L
t

)
(4)

I =
V0

Lωd
sin(ωdt) exp

(
− R

2L
t

)
(5)

ωd =

√
1

LC
− R2

4L2
(6)

I =
V0

(s1 − s2)L
[exp (s1t) − exp (s2t)] (7)

s1, s2 = − R

2L
±

√(
R

2L

)2

− 1
LC

(8)

The solutions to the simple series RLC circuit can be found in nearly every
physics textbook, see for instance [6].

Design Considerations for EM Pulse Fault Injection 191

B EM-Pulse Injection Circuit - Schematic

See Fig. 14.

Fig. 14. EM-pulse injector schematic.

References

1. Balasch, J., Arumi, D., Manich, S.: Design and validation of a platform for elec-
tromagnetic fault injection. In: DCIS 2017, pp. 1–6. IEEE (2017)

2. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The sorcerer’s
apprentice guide to fault attacks. Proc. IEEE 94(2), 370–382 (2006)

3. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryp-
tographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 37–51. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-
69053-0 4

4. Cui, A., Housley, R.: BADFET: defeating modern secure boot using second-order
pulsed electromagnetic fault injection. In: 11th USENIX Workshop on Offensive
Technologies (WOOT 2017). USENIX Association, Vancouver (2017)

5. Dumont, M., Lisart, M., Maurine, P.: Electromagnetic fault injection: how faults
occur. In: FDTC 2019, pp. 9–16. IEEE (2019)

6. Giancoli, D.C.: Physics: Principles with Applications. Pearson, Boston (2014)
7. Maurine, P.: Techniques for EM fault injection: equipments and experimental

results. In: FDTC 2012, pp. 3–4 (2012)

https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/3-540-69053-0_4

192 A. Beckers et al.

8. Moro, N., Dehbaoui, A., Heydemann, K., Robisson, B., Encrenaz, E.: Electromag-
netic fault injection: towards a fault model on a 32-bit microcontroller. In: Fischer,
W., Schmidt, J. (eds.) FDTC 2013, pp. 77–88. IEEE (2013)

9. Omarouayache, R., Raoult, J., Jarrix, S., Chusseau, L., Maurine, P.: Magnetic
microprobe design for EM fault attack. In: Catrysse, J., Pissoort, D. (eds.) EMC
2013, pp. 949–954. IEEE Computer Society, Brugge (2013)

10. Ordas, S., Guillaume-Sage, L., Tobich, K., Dutertre, J.-M., Maurine, P.: Evidence
of a larger EM-induced fault model. In: Joye, M., Moradi, A. (eds.) CARDIS 2014.
LNCS, vol. 8968, pp. 245–259. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-16763-3 15

11. Quisquater, J.J., Samyde, D.: Eddy current for magnetic analysis with active sen-
sor. In: Esmart 2002 (2002)

12. Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks. In: Kaliski,
B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 2–12. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5 2

https://doi.org/10.1007/978-3-319-16763-3_15
https://doi.org/10.1007/978-3-319-16763-3_15
https://doi.org/10.1007/3-540-36400-5_2

Cryptographic Primitives

Lightweight MACs from Universal
Hash Functions

Sébastien Duval1,2,3(B) and Gaëtan Leurent1

1 Inria, Paris, France
2 Sorbonne Universités, Paris, France

3 UCLouvain, Louvain-la-Neuve, Belgium
s.duval@uclouvain.be

Abstract. Lightweight cryptography is a topic of growing importance,
with the goal to secure the communication of low-end devices that are
not powerful enough to use conventional cryptography. There have been
many recent proposals of lightweight block ciphers, but comparatively
few results on lightweight Message Authentication Codes (MACs).

Therefore, this paper focuses on lightweight MACs. We review some
existing constructions, and revisit the choices made in mainstream MACs
with a focus on lightweight cryptography. We consider MACs based on
universal hash functions, because they offer information theoretic secu-
rity, can be implemented efficiently and are widely used in conventional
cryptography. However, many constructions used in practice (such as
GMAC or Poly1305-AES) follow the Wegman-Carter-Shoup construc-
tion, which is only secure up to 264 queries with a 128-bit state.

We point out that there are simple solutions to reach security beyond
the birthday bound, and we propose a concrete instantiation, MAC611,
reaching 61-bit security with a 61-bit universal hash function. We wrote
an optimized implementation on two ARM micro-controllers, and we
obtain very good performances on the Cortex-M4, at only 3.7 c/B for
long messages, and less than one thousand cycles for short messages.

Keywords: Lightweight cryptography · Micro-controller · MAC ·
Almost universal hash functions · Beyond-birthday-bound security

1 Introduction

Message Authentication Codes (MACs) are important cryptographic primitives,
used to authenticate messages. A MAC is a short tag computed by the sender
from the message and a key, and verified by the receiver with the same key.

In this paper, we focus on MAC algorithms for constrained environments.
This is a field of growing importance, due to the increasing number of small
communicating objects, such as contactless smart cards, wireless sensors, mobile
phones, and Internet of Thing devices. In particular, we have seen that many of
these devices use weak cryptography (e.g. MIFARE Crypto-1, KeeLoq), due to
hardware limitations. To solve this issue, the academic community has designed
c© Springer Nature Switzerland AG 2020
S. Beläıd and T. Güneysu (Eds.): CARDIS 2019, LNCS 11833, pp. 195–215, 2020.
https://doi.org/10.1007/978-3-030-42068-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-42068-0_12&domain=pdf
https://doi.org/10.1007/978-3-030-42068-0_12

196 S. Duval and G. Leurent

new algorithms for constrained environments, creating the field of lightweight
cryptography. There is now a large number of block ciphers optimized for con-
strained environments and some of them have been standardized (PRESENT [9]
in ISO/IEC 29192, HIGHT [19] in ISO/IEC 18033-3, KASUMI in UMTS).
Recently, the NIST has started a standardization effort for lightweight cryp-
tography1, which shows that the field is gaining importance. However, there
are still few options for modes of operation for these lightweight block ciphers
and lightweight MACs; a recent survey [5] lists 117 lightweight cryptographic
algorithms, including just 3 MACs.

MAC Constructions. MAC algorithms can be built in many different ways: from
block ciphers (CBC-MAC [15], OMAC, PMAC), from hash functions (HMAC),
or from scratch like Pelican MAC, or Chaskey. These constructions are deter-
ministic, which makes them vulnerable against a generic forgery attack using
collisions in the internal state, due to Preneel and van Oorschot [29]. Therefore,
they only achieve security up to the birthday bound, i.e. when the amount of
data authenticated with a single key is bounded by 2n/2, with n the state size.

When using a lightweight block cipher with a blocksize of n = 64 bits, this is
typically insufficient. One way to increase the security is to use a larger internal
state. Indeed, several modes have been proposed recently using a 2n-bit internal
state with an n-bit block cipher (e.g. SUM-ECBC [34], 3kf9 [35], PMAC+ [13]).

Another way to avoid Preneel and van Oorschot’s attack is to make the MAC
not deterministic, using a nonce, a unique value provided by the user (in practice,
the nonce is usually a counter). An important example of nonce-based MAC is
the Wegman-Carter construction [33] which authenticates a message M using a
nonce N as:

WC[H,F]k1,k2(M,N) = Hk1(M) ⊕ Fk2(N),

with H a family of XOR universal hash functions, and F a PRF. This construc-
tion is widely deployed in schemes such as GMAC [24] and Poly1305 [3].

Lightweight MACs. While MACs seem to be an important primitive for
lightweight cryptography, few constructions have been optimized for con-
strained environments. Notable exceptions are the ARX based Chaskey [27] and
SipHash [1]. Chaskey is optimized for 32-bit micro-controllers with very good
software performances, while SipHash targets 64-bit processors but should also
have good performances on micro-controllers. TuLP [18] is another lightweight
dedicated MAC, based on the PRESENT round function. It uses a small 64-bit
state, but suffers from collision issues after 232 blocks of data.

Another recent proposal is LightMAC [23], a mode for block-cipher-based
MAC with a security bound independent of the message length, making it more
usable with a small block size (but the security is still limited to 2n/2 queries).
Lightweight hash functions such as QUARK [2] or SPONGENT [8] can also be
used to build a MAC (e.g. using HMAC), but using a dedicated MAC is typically
more efficient (in particular, hash functions require a larger internal state).
1 https://csrc.nist.gov/projects/lightweight-cryptography.

https://csrc.nist.gov/projects/lightweight-cryptography

Lightweight MACs from Universal Hash Functions 197

Our Results. In this paper we study the design of lightweight MACs, optimized
for software implementation on micro-controllers. To improve performance, we
use a small state size of n bits for the bulk of the computation, with a nonce-based
MAC to reach a security of 2n. We focus on constructions based on universal
hash functions in the style of Wegman and Carter. Universal hash functions only
require statistical security, rather than computational security, which usually
makes them cheaper to implement.

We note that practical MACs based on universal hash functions such as
GMAC and Poly1305-AES only have security up to 2n/2 queries (the birthday
bound) but simple tweaks can increase the security to 2n queries. Additionnally,
we improve the security proofs of some composition results in case some com-
ponents are permutations, which improves in particular the security proof of a
proposal by Minematsu and Tsunoo [26] using a reduced block cipher.

We then design a concrete instantiation, MAC611. We use a small state of
roughly 64 bits with a beyond-birthday-secure mode, which allows for a faster
primitive than GMAC and Poly1305-AES, with a similar data limit of roughly
264 queries. Moreover, our construction can tolerate some repetition of nonces,
while GMAC and Poly1305-AES fail catastrophically in this case. Nonce-misuse
resistance is particularly relevant for lightweight cryptography, because the state
of a device can sometimes be reset by an adversary.

MAC611 requires one block cipher call for the setup, just one multiplication
(mod261 − 1) per message block, and one block cipher for the finalization, mak-
ing it efficient both for short and long messages. Finally, we have implemented
MAC611 on two Cortex-M micro-controllers to compare the performance with
other MAC algorithms. Our results show that MAC611 is extremely efficient
(Table 2), making it a promising construction for micro-controllers.

Organization of the Paper. We first review the previous literature on MAC
constructions from universal hash functions in Sect. 2, and concrete constructions
of universal hash functions in Sect. 3. In Sect. 4, we show that the security proof
of some composition results can be improved when the underlying components
are permutations. In Sect. 5, we set to build a MAC function optimized for micro-
controllers. We compare the existing choices for implementing a universal hash
function and turning it into a MAC, and propose a concrete construction based
on polynomial evaluation in a small field in Sect. 6.

2 MAC Constructions from Universal Hash Functions

Universal hash functions were introduced by Carter and Wegman in 1977 [10] and
are now used in many MAC constructions and security proofs. The idea is to hash
the message then encrypt the result. The original encryption was a one-time-pad,
which was then replaced by a counter-mode encryption. Such constructions are
used in GMAC, the authentication part of GCM [24], and in Poly1305 [3], two of
the most widely used schemes in TLS today. Many constructions exist to build
efficient universal hash functions, and turn them into secure MACs. We sum up
the main ones in the following.

198 S. Duval and G. Leurent

2.1 Universal Hash Functions

There are several related definitions of universal and almost universal hash func-
tions. In general a (almost) universal hash function H is a family of functions
(denoted as h ∈ H, or Hk ∈ H to emphasize the key) such that a fixed pair
of inputs has a low collision probability for a randomly chosen element of the
family. In the following, we denote the cardinality of set H as |H|. We define
almost universal hash functions as:

Definition 1 (ε-AU). A family H : A → B is ε-almost universal if:

∀m �= m′ ∈ A, |{h ∈ H : h(m) = h(m′)}| ≤ ε|H|
To handle any output difference rather than only collisions, one can use

almost XOR universal hash functions:

Definition 2 (ε-AXU). A family H : A → B is ε-almost XOR universal if:

∀m �= m′ ∈ A, ∀d ∈ B, |{h ∈ H : h(m) ⊕ h(m′) = d}| ≤ ε|H|
If H is ε-AXU, it is also ε-AU, and we can further define an ε-AU family G :
A × B → B as follows:

G = {(m1,m2) �→ h(m1) ⊕ m2 : h ∈ H}
Definition 3 (ε-ASU). A family H : A → B is ε-almost strongly universal if:{

∀m ∈ A, ∀t ∈ B, |{h ∈ H : h(m) = t}| = |H|/|B|
∀m �= m′ ∈ A, ∀t, t′ ∈ B, |{h ∈ H : h(m) = t, h(m′) = t′}| ≤ ε|H|/|B|

If H : A → B is ε-ASU then H is also ε-AU.

2.2 MAC Algorithms

The security of a MAC algorithm is defined as an upper bound on the success
probability of an adversary that tries to forge a valid tag. Formally, we consider
an adversary A with oracle access to the MAC algorithm F ; the adversary must
output a message and tag pair, and succeeds if the message has not been queried
to the oracle, and the tag is valid. Many constructions have been proposed to
build a MAC out of a (almost) universal hash function. In the following bounds,
we denote the output size of the universal hash function and the tag size as n.

Wegman-Carter. The seminal work by Wegman and Carter [33] introduced
the following MAC, using an ε-AXU family of hash functions H and a PRF F .
If nonces are unique, this construction reaches n-bit security:

WC[H,F]k1,k2(M,N) = Hk1(M) ⊕ Fk2(N),

AdvMAC
WC[H,F] ≤ AdvPRF

F + ε + 2−n.

Lightweight MACs from Universal Hash Functions 199

Wegman-Carter-Shoup. In many concrete instantiations (GMAC [24],
Poly1305-AES [3]), the PRF is instantiated with a block cipher E, following the
Wegman-Carter-Shoup construction [31]. The security can be analyzed using
the PRF-PRP switching lemma (AdvPRF

E ≤ AdvPRP
E + q2

2n), but this adds a
birthday term q2/2n to the bound:

WCS[H,E]k1,k2(M,N) = Hk1(M) ⊕ Ek2(N),

AdvMAC
WCS[H,E] ≤ AdvPRP

E + q2

2n + ε + 2−n.

The proof can be improved by looking directly at the MAC security (instead of
the PRF security) [4,31], but it is still limited by the birthday bound. Indeed,
there is a forgery attack with roughly

√
n2n/2 short queries [21,22,28].

Therefore the use of the nonce in WCS fails to increase the security compared
to a deterministic MAC, but makes the construction more fragile (nonce repetion
can leak the hash key).

Hash and PRF: F (H(M)). Alternatively, the hash and PRF construction
builds a deterministic MAC from an ε-AU family H. It is analyzed in [7]:

HF[H,F]k1,k2(M,N) = Fk2(Hk1(M)),

AdvMAC
HF[H,F] ≤ AdvPRF

F + q2ε/2 + 2−n.

WMAC: F (H(M)‖N). Some constructions allow to combine the n-bit security
with nonces, and the birthday security when nonces are repeated. In particular, if
a 2n-bit PRF is available, one can use the construction introduced by UMAC [7]
and later analyzed as WMAC [6] with an ε-AU function. This construction was
analyzed in [7] assuming that the nonces are always distinct:

WMAC[H,F]k1,k2(M,N) = Fk2(Hk1(M) ‖ N),

AdvMAC
HFN[H,F] ≤ AdvPRF

F + ε + 2−n.

EWCDM. Cogliati and Seurin have recently proposed a construction with sim-
ilar security using only an n-bit block cipher and an ε-AXU function [11]. A
later work by Mennink and Neves [25] proved security up to 2n:

EWCDM[H,E]k1,k2,k3(M,N) = Ek3

(
Hk1(M) ⊕ Ek2(N) ⊕ N

)
,

AdvMAC
EWCDM[H,E] ≤ AdvPRP

F + q/2n + q2ε/2n + 2−n.

3 Construction of Universal Hash Functions

We now review previous results on the construction of universal hash functions.

200 S. Duval and G. Leurent

3.1 Constructions for Short Messages

Some crucial AU/AXU families use multiplication by a secret key in a field F:

H1 : F → F = {m �→ m × k : k ∈ F} is XOR universal; (1)

H2 : F × F → F = {m1,m2 �→ m1 × k + m2 : k ∈ F} is universal. (2)

Polynomial Hashing [14]. In order to hash a long message with a single key, these
constructions can be generalized to polynomial hashing. The input message is
interpreted as a polynomial, and evaluated on the secret key:

H : F� → F = {m1,m2, . . . m� �→
�∑

i=1

mi × ki : k ∈ F}.

The family H with messages of length � is �ε-AXU. Practical MACs like GMAC
and Poly1305 use this construction with different choices of the field F.

Using Reduced Block Ciphers [26]. Instead of multiplications, one can use reduced
block ciphers. For instance, the exact MEDP of 4-round AES from [20] shows
that it is ε-AXU with ε ≈ 1.18 · 2−110 (if the round keys are independent).

H : {0, 1}n → {0, 1}n = {m �→ Ek(m) : k ∈ {0, 1}n} is ε-AXU. (3)

This construction has been used by Minematsu and Tsunoo to build an AES-
based MAC faster than CBC-MAC [26].

3.2 Composition and Extension

To accept long messages, composition and domain extension can be used. We
will focus here on the composition of (almost) universal hash functions.
Composition [32]. Let H1 : A → B and H2 : B → C. Consider G : A → C as:

G = {m �→ (h2(h1(m))) : h1 ∈ H1, h2 ∈ H2}.

We have the following results:

– If H1 is ε1-AU and H2 is ε2-AU, then G is ε-AU, with ε = ε1 + ε2 − ε1ε2.
– If H1 is ε1-AU and H2 is ε2-ASU, then G is ε-ASU, with ε = ε1 + ε2 − ε1ε2.
– If H1 is ε1-AU and H2 is ε2-AXU, then G is ε-AXU, with ε = ε1 + ε2 − ε1ε2.

If H1 and H2 are compressive, their composition G will compress incrementally.
The last two results can be used to compose an efficient ε-AU function and a
stronger ε-AXU or ε-ASU, to build an efficient ε-AXU or ε-ASU function.

Lightweight MACs from Universal Hash Functions 201

Domain Extension by Composition. Building an AU family with arbitrary input
domain from a fixed-length compressing AU family can be done in a Merkle-
Damg̊ard style:

Let H1 : A1 → B1 and H2 : A2×B1 → B2 be ε1-AU and ε2-AU, respectively.
We define the iteration of H1 and H2, H : A1 × A2 → B2 as follows:

H = {(m1,m2) �→ h2(m2, h1(m1)) : h1 ∈ H1, h2 ∈ H2}
Using the previous results, we can prove that H is ε-AU with ε = ε1+ε2−ε1ε2 ≤
ε1 + ε2 because it is the composition of H ′

1 and H2, where H ′
1 is also ε1-AU:

H ′
1 : A1 × A2 → A2 × B2 = {(m1,m2) �→ (m2, h1(m1)) : h1 ∈ H1}.

Moreover, if H2 is ε2-AXU (resp. ε2-ASU), then H is also ε-AXU (resp. ε-ASU).
This result can easily be extended to the iteration of three or more functions.

In particular, it can be used to iterate a single ε-AU function H : B × A → B,
to build the �-th iterate H� : B ×A� → B with � independent keys; H� is �ε-AU.
In particular, this construction is used in [26].

4 Improved Bounds with Permutations

We can improve the security bound of the iteration of two AU hash functions
(following the construction of Sect. 3.2) in the special case where the second
function is a permutation when the first input is fixed.

We show that with this extra condition, the iteration of two ε-AU functions
is ε-AU, while it is only ε′-AU with ε′ = 2ε − ε2 in general.

Theorem 1. Let H1 : A1 → B1 be ε1-AU and H2 : A2 × B1 → B2.
Consider G : A1 × A2 → B2 defined as

G = {(m1,m2) �→ h2(m2, h1(m1)) : h1 ∈ H1, h2 ∈ H2}.

If x �→ h2(m,x) is a permutation for all h2 ∈ H2 and all m ∈ A2, then:

– If H2 is ε2-AU, then G is max{ε1, ε2}-AU,
– If H2 is ε2-AXU, then G is max{ε1, ε2}-AXU,
– If H2 is ε2-ASU, then G is max{ε1, ε2}-ASU.

In particular, we can improve the security bound of PC-MAC from Mine-
matsu and Tsunoo [26]. PC-MAC repeats d iterations of reduced-round AES
with independent keys (typically, d = 15), with a security bound of:

AdvPRF
PC-MAC(q) ≤ AdvPRP

EK
(ρq + c) +

2.5(ρq + c)2

2n
+ (dεdp + εsdp)

q2

2
,

with q queries of maximum length ρ, and c is roughly equal to a small constant
times d. With our results, we can replace the term dεdp by εdp:

AdvPRF
PC-MAC(q) ≤ AdvPRP

EK
(ρq + c) +

2.5(ρq + c)2

2n
+ (εdp + εsdp)

q2

2
.

202 S. Duval and G. Leurent

Proof. Case 1: AU ⇒ AU . We denote N = #{(h1, h2) ∈ H1 × H2 :
h2(m2, h1(m1)) = h2(m′

2, h1(m′
1))} for a fixed message pair (m1‖m2,m

′
1‖m′

2).
We want to prove that: N ≤ max{ε1, ε2} × |H1| × |H2|.
If m2 = m′

2 (and thus m1 �= m′
1), we write:

N =
∑

h2∈H2

#{h1 ∈ H1 : h2(m2, h1(m1)) = h2(m2, h1(m
′
1))}

=
∑

h2∈H2

#{h1 ∈ H1 : h1(m1) = h1(m
′
1)} since x �→ h2(m2, x) is a permutation

≤
∑

h2∈H2

ε1 × |H1| = ε1 × |H1| × |H2|.

If m2 �= m′
2, we write:

N =
∑

h1∈H1

#{h2 ∈ H2 : h2(m2, h1(m1)) = h2(m′
2, h1(m′

1))}

≤
∑

h1∈H1

ε2 × |H2| = ε2 × |H1| × |H2|.

We used that h1(m1) and h1(m′
1) are fixed values for eached fixed h1 and

m2 �= m′
2.

In the end, we get that G is max{ε1, ε2}-AU .
Case 2: AXU ⇒ AXU . We denote N = #{(h1, h2) ∈ H1 × H2 :

h2(m2, h1(m1))⊕h2(m′
2, h1(m′

1)) = d} for a fixed message pair (m1‖m2,m
′
1‖

m′
2) and a fixed d ∈ B2. We want to prove that N ≤ max{ε1, ε2}×|H1|×|H2|.

The complicated case is collision (d = 0), because collision can either occur in
h1 or in h2. Using the AU case, we get that when d = 0, N ≤ max{ε1, ε2} ×
|H1| × |H2|.
Otherwise, d �= 0. Therefore (m2, h1(m1)) �= (m′

2, h1(m′
1)), and we simply

write:

N =
∑

h1∈H1

#{h2 ∈ H2 : h2(m2, h1(m1)) ⊕ h2(m′
2, h1(m′

1)) = d}

≤
∑

h1∈H1

ε2 × |H2| = ε2 × |H1| × |H2|.

Case 3: ASU ⇒ ASU . First, we have to show that H is balanced. For fixed
messages m1,m2, and a fixed y ∈ B2, we have:

M = #{(h1, h2) ∈ H1 × H2 : h2(m2, h1(m1)) = y}
=

∑
h1∈H1

#{h2 ∈ H2 : h2(m2, h1(m1)) = y}

≤
∑

h1∈H1

|H2|/|B2| = |H1| × |H2|/|B2|.

Lightweight MACs from Universal Hash Functions 203

We denote N = #{(h1, h2) ∈ H1 × H2 : h2(m2, h1(m1)) = y, h2(m′
2,

h1(m′
1)) = y′} for a fixed message pair (m1‖m2,m

′
1‖m′

2) and fixed y, y′ ∈ B2.
We want to prove that N ≤ max{ε1, ε2} × |H1| × |H2|.
Similarly to the AXU proof, the complicated case is collision (y = y′), because
collision can either occur in h1 or in h2. Using the AU case, we get that when
y = y′, N ≤ max{ε1, ε2} × |H1| × |H2|.
Otherwise, y �= y′. Therefore (m2, h1(m1)) �= (m′

2, h1(m′
1)), and we simply

write:

N = #{(h1, h2) ∈ H1 × H2 : h2(m2, h1(m1)) = y, h2(m′
2, h1(m′

1)) = y′}
=

∑
h1∈H1

#{h2 ∈ H2 : h2(m2, h1(m1)) = y, h2(m′
2, h1(m′

1)) = y′}

≤
∑

h1∈H1

ε2 × |H2| = ε2 × |H1| × |H2|.

Again, we use that, for fixed h1, h1(m1) and h1(m′
1) are fixed values. �

5 Instantiating a Lightweight MAC

We now consider the construction of a lightweight MAC with a small state, in
order to reach good performance on 32-bit micro-controllers. Following Sect. 2,
we use the WMAC construction F (H(M) ‖ N) with a 61-bit universal hash
function, and a 128-bit block cipher2, in order to reach a data limit of 261 queries.
The main downside of WMAC compared to Wegman-Carter is that the block
cipher cannot be evaluated in parallel with the hash function, but this hardly
matters for micro-controller implementations.

An important part of this work consists in the implementation and optimiza-
tion of our algorithm, MAC611, on two 32-bit micro-controllers.

We ran benchmarks to explore design choices and compare with existing
MACs. We used two micro-controllers: an FRDM-KL46Z board with a Cortex-
M0+ micro-controller and an FRDM-K64F board with a Cortex-M4 micro-
controller. The Cortex-M0+ is very limited, while the Cortex-M4 is slightly
more powerful, with more RAM, and more instructions.

5.1 Choice of Universal Hash Function: XPoly

We focus on AU families based on field arithmetics, which offer trade-offs between
key size and security. Over a field F, the two main options are:

Polynomial hashing [14]: Hk : m1, . . . m� �→ ∑�
i=1 mi × k�+1−i

Hk is an �ε-AXU family using a single field element as key, with ε = 1/|F|.

2 Unfortunately, we did not find a good 64-bit block cipher with an efficient imple-
mentation on micro-controllers to use in EWCDM.

204 S. Duval and G. Leurent

Dot product [16]: Hk1,...k�
: m1, . . . m� �→ ∑�

i=1 mi × ki

Hk1,...k�
is an ε-AXU family using � field elements as key, with ε = 1/|F|.

In particular, the factor � in the security of polynomial hashing leads to a
class of weak keys for GMAC [30].

To balance security and key size, we propose two constructions using poly-
nomial hashing, with independent subkeys ki for every chunk of λ blocks of
message. We denote P [m] the polynomial whose coefficients are given by mes-
sage m. The function is typically evaluated using Horner’s rule, with a single
multiplication and addition per message block:

P [m](k) =
�∑

i=1

mi×k�+1−i = (((· · · ((m1×k)+m2)×k · · ·)+m�−1)×k+m�)×k .

Sum of Polynomials. One option is to sum independent polynomials:

Hk1,...,k�
: m1, . . . m�λ �→

�∑

i=1

P [m1+λ(i−1), . . . , mλi](ki) =
�∑

i=1

λ∑

j=1

mλ(i−1)+j × kλ+1−j
i

Since the polynomial hashes are λε-AXU, this construction is also a λε-AXU
family, using the analysis of [10, Proposition 8].

m1

×k0

m2

×k0

m3

×k0

m4

×k0

m5

×k1

m6

×k1

m7

×k1

m8

×k1

m9

×k2

|m|

t

Fig. 1. XPoly: universal hashing based on composition of polynomials (with λ = 4).

Composition of Polynomials. Alternatively, we can build a λε-AU family with
the composition result of Theorem 1, using λε-AU functions defined from poly-
nomial hashing: Hi : m1, . . .m�,m�+1 �→ P [m1, . . . m�](ki) ⊕ m�+1:

XPoly1k1,...,k�
: m1, . . . m�λ �→

�∑
i=1

λ∑
j=1

mλ(i−1)+j ×
�λ−1∏

u=λ(i−1)+j

k�u/λ�

We still implement the construction with Horner’s rule, changing the subkey
every λ blocks (see Fig. 1). The composition has a smaller state than the sum of
polynomials, therefore we use composition for our design.

The parameter λ offers a trade-off between security and key length. The key
length is linear in the message size, but we can use a PRF to stretch a master
key into sub-keys for each chunk, with ki = Fk(i). If λ is not too small, the time
taken to derive the keys can be kept small.

For a practical MAC, we need a universal hash function family that can pro-
cess messages of different lengths. To achieve this, we first pad the message with

Lightweight MACs from Universal Hash Functions 205

zeroes to a full block, we append a block with an encoding of the message length
(the number of bytes), and we process the padded message through XPoly1.
We denote this construction as XPoly: XPoly(m) = XPoly1(pad(m) ‖ |m|); this
family is 2λε-AU, with ε = 1/|F|.

5.2 Choice of Field and Multiplication

We now have to choose a field to define our universal hash function. This is an
important choice because the field multiplication is the main operation in XPoly.
There are two kinds of fields that can be used for efficient implementations: fields
Fp defined modulo a prime number p close to 264 or 2128 (as used in Poly1305),
and binary fields such as F264 and F2128 (like GMAC).

Table-Based Implementations. Since the multiplication by a fixed key is a
linear operation, it can be implemented using precomputed tables. For instance,
if we precompute μi = 2i × k for 0 ≤ i < n, we can decompose an element x ∈ F

as x =
∑

0≤i<n xi × 2i (where xi is just the i-th bit of x), and use:

x × k =
∑

0≤i<n

xi × 2i × k =
∑

0≤i<n

xi × μi.

In particular, in a binary field, the sum is just an XOR. More generally, we can
precompute multiplication tables for several consecutive bits. If we divide x into
t-bit chunks and precompute tables of 2t entries for each chunk, we just need
n/t table accesses and n/t − 1 sums to evaluate the product x × k.

Table 1. Benchmarks for universal hashing in various fields. We report timing in
cycles/bytes for the multiplication (to account for the difference in field size), and the
number of cycles needed to build the tables.

Field Implem. Mem. Cortex-M0+ Cortex-M4

mul (c/B) table (c) mul (c/B) table (c)

F2128 1-bit chunks 4kB 148 3984 128 2756

4-bit chunks 8 kB 48 16992 35 10918

8-bit chunks 64 kB - - 19 104922

F264 1-bit chunks 1kB 91 1440 85 1131

4-bit chunks 2 kB 21 6144 19 3769

8-bit chunks 16 kB 12 53184 11 40142

F2128 GMAC 256 B 95 ? 53 ?

F261−1 MAC611 – 19 – 3.7 –

F2130−5 Poly1305 – 94 – 5 –

206 S. Duval and G. Leurent

Benchmarks. We wrote table-based implementations of multiplication in a
binary field in C and assembly, using several chunk sizes (1 bit, 4 bits, and 8
bits), and we give benchmarks results in Table 1. Note that we could not imple-
ment multiplication in F2128 with 8-bit chunks on the Cortex-M0+ because the
tables do not fit in the RAM of this small micro-controller.

For reference, we also benchmarked the OpenSSL implementations of GMAC
(multiplication in F2128), which includes ARM assembly that can run on the
Cortex-M4 (but not on the Cortex-M0+). It uses a single table with chunks of
4 bits (256 bytes of memory).

As expected, our benchmarks show that multiplication in a small field is more
efficient (the cost of the multiplication is quadratic), and table-based implemen-
tation can be quite fast on micro-controllers, using some memory for the tables.
In particular, multiplication over F264 using 4-bit or 8-bit chunks is competitive
with Chaskey.

Using the Multiplier. Alternatively, multiplication in fields defined modulo a
prime can be implemented efficiently using the integer multiplier of the processor.
This is useful for servers using different keys with several clients, since accessing
tables would often incur cache misses [3].

To evaluate the speed of prime field multiplication, we benchmarked the
OpenSSL implementations of Poly1305 (multiplication in F2130−5), which uses
assembly on the Cortex-M4, and C code on the Cortex-M0+. On the Cortex-M4,
this is much faster than a table based multiplication, with just 5 c/B. Indeed,
the Cortex-M4 has a fast multiplier and a well written implementation of the
multiplication in a prime field can be very fast (but bad implementations can be
much slower...).

Algorithm 1. MAC611
Parameters: E is Noekeon, λ = 1024
Input: K, M, N

Divide M into 7-byte blocks mi (with zero-padding)
x ← 0
for 1 ≤ i ≤ |M | do

if i mod λ = 1 then
h ← T64(EK(0 ‖ (i − 1)/λ)) mod 261 − 1

x ← (x + mi) × h mod 261 − 1

x ← x + bytelen(M)
return T64

(
EK(263 + x ‖ N)

)

Since prime field multiplications can also be implemented with tables if
needed, we decided to use a prime field for our construction. We wrote optimized
assembly implementations of the multiplication in F261−1 (because we target the
64-bit security level). As detailed in Sect. 6.1, we achieved very good results,

Lightweight MACs from Universal Hash Functions 207

with just 3.7 c/B on the Cortex-M4 and 19 c/B on the Cortex-M0+ (without
using any tables). Therefore, we use the field F261−1 for our construction.

6 A Concrete Instantiation: MAC611

We can now define a concrete MAC construction based on our analysis, and
compare its performance with other MAC constructions. As explained above,
we use the XPoly universal hash function with λ = 1024 over the field F261−1.
Since the field has less than 264 elements, we cut the message into blocks mi of
56 bits (i.e. 7 bytes).

For the finalization of the MAC construction, we considered various choices
for the PRF, and we decided to use Noekeon [12], a 128-bit block cipher with
very efficient implementations on micro-controllers. Therefore, we use the con-
struction F (H(M) ‖ N) from WMAC: we concatenate the 64-bit hash and a
64-bit nonce, encrypt them, and truncate the output to 64 bits (we denote the
first 64 bits of variable a by T64(a)). We also use Noekeon to derive the subkeys
used in XPoly from the block-cipher key, by encrypting a counter and truncating
then reducing the output modulo 261 −1: ki = T64(Noekeon(0‖ i)) mod 261 −1.

Since the output of XPoly is a field element, we take the representative h
between 0 and 261−2, and we compute the MAC as F (263+h‖N). This ensures
a domain separation between the block-cipher calls for the key-derivation and
for the finalization.

6.1 Implementation Details

The choice of the field allows for very efficient implementations on processors or
micro-controllers with a fast integer multiplier, but table-based implementations
are also possible when there is no multiplier or a very slow one. More precisely,
elements of the field are stored as an unsigned 64-bit integer, and the field
operations are implemented as follows3:

Modular reduction can be implemented very efficiently, by just comput-
ing (x>>61) + (x&0x1fffffffffffffff) (in C notation). This is a par-
tial reduction with output between 0 and 261 + 6 (for x a 64-bit unsigned
integer), but this range is small enough to reuse the output for further oper-
ations.

Modular addition is implemented with an integer addition. A modular reduc-
tion is rarely needed, since the result of the addition is usually smaller than
264 (in the easiest case, we add a partially reduced operand in [0, 261 +6] and
a message block in [0, 256 − 1], so that the output fits in 62 bits).

Modular multiplication is implemented with an integer multiplication (with
roughly 64-bit inputs and 128-bit output) followed by a modular reduction.
We suggest implementation strategies for several micro-controllers.
On Cortex-M4 (armv7-M) we can multiply two 32-bit inputs and get a 64-bit

3 The code is available at: https://github.com/Cryptosaurus/MAC611.

https://github.com/Cryptosaurus/MAC611

208 S. Duval and G. Leurent

product in a single cycle. The 64-bit multiplication uses 4 such multiplica-
tions and few additions. The full multiplication (including a partial reduction)
takes just 14 cycles. The output range is slightly larger than the input range,
so we need a reduction after a few multiplications.
On Cortex-M0+ (armv6-M) we can only get a 32-bit product from the multi-
plication of two 32-bit inputs. Therefore, a naive implementation takes 16 mul-
tiplication instructions. Instead, we implement a 32-bit multiplication with
64-bit output using 4 multiplication instructions, and use Karatsuba’s algo-
rithm to implement a 62-bit multiplication (with 124-bit output) using three
32-bit multiplications (we first write the input in base 231 to avoid over-
flow when adding two values). The full multiplication (including a partial
reduction) takes around 100 cycles on our Cortex-M0+, with a single cycle
multiplier.
Finally, some Cortex-M0+ take 32 cycles for a 32-bit product. It is then
quicker to use a table-based implementation (with table entries between 0
and 261 − 1, we can add eight values without overflow). This implementation
takes around 100 cycles on our Cortex-M0+, but requires 16 MB of memory.

Benchmarks Results. Table 2 shows benchmark results of MAC611 with various
message lengths, and a comparison with other primitives. For comparison, we use

Table 2. Performance comparison on Cortex micro-controllers (BC denotes the block
cipher, which is set Noekeon in all benchmarks). Note that OpenSSL implementations
are not optimized for code size or memory usage.

Algorithm Implem. Code size (bytes) Mem (B) Speed (cycles)

MAC BC Tot. Stack State 56B 896B 7168B Long

Cortex-M0+

MAC611 Small 542 636 1178 196 40 7.6k 42.3k 306k 42 c/B

Fast 3064 692 3765 104 40 4.4k 21.4k 138k 19 c/B

Tables (16kB) 1420 692 2112 108 16k 4.4k 22.2k 228k 27 c/B

Poly1305 OpenSSL (Os) 1480 636 2116 364 288 12.1k 93.0k 705k 98 c/B

OpenSSL (O3) 3148 692 3840 236 288 9.5k 87.0k 672k 93 c/B

GMAC OpenSSL (Os) 2148 636 2784 156 440 14.9k 109k 823k 114 c/B

OpenSSL (O3) 3388 692 4080 180 440 11.2k 89.2k 677k 94 c/B

Chaskey-12 B. Haase 916 – 916 48 48 1.5k 12.5k 96k 13 c/B

CBC-MAC OpenSSL (Os) 388 636 1024 148 64 24.4k 271k 2110k 291 c/B

OpenSSL (O3) 820 692 1512 116 64 14.1k 153k 1180k 164 c/B

Cortex-M4

MAC611 Small 842 348 1190 136 40 1243 4243 28k 3.7 c/B

Fast 1064 3724 4788 76 40 1038 4038 27k 3.7 c/B

Poly1305 OpenSSL 900 348 1248 104 288 1631 5446 36k 4.9 c/B

GMAC OpenSSL 2190 348 2538 168 440 5758 49598 381k 53 c/B

Chaskey-12 C Ref (O3) 1084 – 1084 96 48 888 7488 58k 8.1 c/B

CBC-MAC OpenSSL (Os) 380 348 728 120 64 4851 50066 385k 53 c/B

OpenSSL (O3) 828 3724 4552 76 64 4011 40486 310k 43 c/B

Lightweight MACs from Universal Hash Functions 209

several standard MACs from OpenSSL, with Noekeon as the underlying block
cipher: Poly1305, GMAC (as a part of GCM), and CBC-MAC (as a part of
CCM). On the Cortex-M4, this includes optimized assembly code for Poly1305,
GMAC and Noekeon. For Chaskey, we use the reference C implementation on
the Cortex-M4, and an assembly implementation from B. Haase4 optimized for
the Cortex-M0+.

MAC611 is faster that all the primitives tested on the Cortex-M4, with less
than one thousand cycles for short messages, and only 3.7 c/B for long messages.
On the Cortex-M0+, Chaskey is the fastest with 14 c/B, but MAC611 is a close
second with 19 c/B. MAC611 is also faster than Wegman-Carter MACs GMAC
and Poly1305 thanks to the use of a smaller field.

When a crypto accelerator is available, standard based constructions such as
AES-CBC-MAC or GMAC could be faster, but given the very good performance
of MAC611, this is not always the case. For instance, presentation slides of the
ST32L45, a Cortex-M4 with a crypto core, show that it takes 67 cycles per block
for GMAC (4.2 c/B), and 206 cycles per block for AES-CBC-MAC (12.9 c/B).

We compare the security of the primitives in Sect. 6.3.

6.2 Choice of the Parameter λ

We used the benchmark results in Table 1 to choose a value of the parameter λ,
such that the subkey derivation and the construction of the multiplication tables
(in case of a table-based implementation) have a limited impact on performance.
In a 64-bit field, the time spent building the tables corresponds to roughly 500
multiplications in the worst case. Therefore, we chose λ = 1024, so that the key
derivation is amortized over 1024 blocks for long messages. For short messages,
we precompute the key k1 (and the corresponding table if needed), so that
rekeying is not needed for messages smaller than λ blocks (i.e. 8 kB).

In terms of security, the next section shows that the impact of λ is quite
limited: the advantage of an attacker with negligible data increases by a factor
λ, but when the attacker uses a large amount of data (which is necessary to
reach a higher success probability), the advantage does not increase with λ.

6.3 Security Bounds

Let us derive the security of MAC611. Denote n = 64 the output size, q the
number of queries, and ρ the maximum query length. For the finalization and
subkey derivation, we use a truncated block cipher with 128-bit input and 64-
bit output E′ : x ∈ {0, 1}2n �→ T64(E(x)). Therefore, there are better security
bounds than the PRP-PRF switching lemma: we can use the analysis of [17, Eq.
(2.5)], with AdvPRF

E′ (q) ≤ AdvPRP
E (q) + q

23n/2 .

4 http://mouha.be/wp-content/uploads/chaskey cortex m0.zip.
5 http://www.st.com/resource/en/product training/stm32l4 security aes.pdf.

http://mouha.be/wp-content/uploads/chaskey_cortex_m0.zip
http://www.st.com/resource/en/product_training/stm32l4_security_aes.pdf

210 S. Duval and G. Leurent

Consider first MAC611$, defined with uniform independent subkeys in F261−1.
From the previous results, XPoly is 2λ

|F| -AU . When the nonces are unique, the

security proof from WMAC gives: AdvMAC
MAC611$(q) ≤ AdvPRF

E′ (q) + 2λ
|F| + 1

2n .
We now consider the actual MAC611, i.e. with subkeys ki = T64(E(i‖0)) mod

261 − 1, 1 ≤ i ≤ ρ
λ . The modular reduction to F261−1 introduces a small bias:

δ = 1
2

∑∣∣∣pi − 1
261−1

∣∣∣ = 1
2 · 8 · 1

261−1 ≈ 2−62. Therefore:

AdvMAC
MAC611(q) ≤ AdvMAC

MAC611$(q) + AdvPRF
E′

(
ρ
λ

)
+ δ

≤ AdvPRP
E

(
q + ρ

λ

)
+ q+ρ/λ

296 + 5
264 + 2λ

261−1 .

In particular, the maximum advantage of a nonce-respecting adversary is roughly
2−n/2 = 2−32, even with q = 264 queries of ρ = 264 blocks. In Appendix A, we
compare this bound with the security of Wegman-Carter-Shoup constructions
such as GMAC. If the nonces are reused, the analysis of Hash-then-PRF gives:

AdvNM-MAC
MAC611 (q) ≤ AdvPRP

E

(
q + ρ

λ

)
+ q+λ/ρ

23n/2 + δ + 1
2n + q2

|F|

≤ AdvPRP
E

(
q + ρ

λ

)
+ q+λ/ρ

296 + 5
264 + q2

261−1 .

Security Level. Comparing the security of MAC611, GMAC, CBC-MAC,
Poly1305-AES and Chaskey is difficult, because security cannot be reduced to a
single number. As a rough comparison, we can say that all these algorithms have
a security level of (roughly) 64 bits, because they are broken by a forgery attack
with about 264 time and data. On the other hand, Chacha20-Poly1305 offers a
significantly higher security than the previous algorithms, because it uses the
one-time MAC construction (it is secure up to 2106 operations).

More precisely, the success rate of an attacker depends on the number of
queries q and the maximum query length ρ, as shown in Appendix A. While
all these algorithms are secure up to roughly 264 queries, the success rate of an
attacker with a small amount of data is higher against MAC611 than against the
other constructions, due to the small state size.

These bounds also depend on how the algorithm is used: on the one hand the
security of GMAC, CBC-MAC, Poly1305-AES and Chaskey increases if rekeying
is consistently used, but on the other hand the security of GMAC and Poly1305-
AES is completely lost if nonces are misused.

Lightweight MACs from Universal Hash Functions 211

Conclusion

In this work we revisit MAC algorithms based on universal hash functions in
the context of lightweight cryptography. We give improved results on the com-
position of universal hash functions, and design a concrete MAC, MAC611. Our
construction uses a universal hash function on 61 bits, combined with the WMAC
construction to obtain security up to roughly 261 operations.

We demonstrate the good performance of this construction with fast micro-
controller implementations using the on-board multiplier. On a Cortex-M4
micro-controller, we need less than one thousand cycles for small messages, and
only 3.7 cycles per byte for long messages. This is significantly faster than alter-
native constructions like Chaskey, GMAC, CBC-MAC, or Poly1305.

Acknowledgments. The work of Sébastien Duval has been funded in parts by the
European Commission through the H2020 project 731591 (acronym REASSURE).

A Comparison of Security Bounds

We can compare the maximum advantage of an adversary against MAC611,
GMAC, CBC-MAC, Chakey, and LightMAC [23], as a function of the number
of queries, for various query lengths. We have the following bounds:

AdvMAC
MAC611(q) ≤ AdvPRP

E

(
q + ρ

λ

)
+

q+ρ/λ

23n/2 + 1
2n + 2λ

|F| + δ with n = 64

AdvMAC
Chaskey(q) ≤ 3(qρ)2 + 2qρt

2n
with n = 128

AdvMAC
LightMAC(q) ≤ AdvPRP

E (qρ) +

(
1 +

2

2n/2 − 1
+

1

(2n/2 − 1)2

)
q2

2n with n = 64

AdvMAC
GMAC(q) ≤ AdvPRP

AES (q) +
ρ
2n

(
1 − q

2n

)− q+1
2 with n = 128

AdvMAC
CBC-MAC(q) ≤ AdvPRP

AES (q) +
ρ2q2

2n−1 with n = 128

The bounds for Poly1305-AES are essentially the same as for GMAC. Note that
the bound for Chaskey involves the time t of the attacker; in the following we
assume that the time and data of the attacker are the same, i.e. t = qρ.

We compare all the bounds in Fig. 2.

212 S. Duval and G. Leurent

20 28 216 224 232 240 248 256 264 272

20

2−8

2−16

2−24

2−32

2−40

2−48

2−56

2−64

2−72

2−80

2−88

2−96

2−104

2−112

2−120

q (number of queries)

A
d
v
(A

dv
an

ta
ge
)

MAC611, ρ = 264 MAC611, ρ = 232 MAC611, ρ = 216

Chaskey, ρ = 264 Chaskey, ρ = 232 Chaskey, ρ = 216

CBC-MAC, ρ = 264 CBC-MAC, ρ = 232 CBC-MAC, ρ = 216

GMAC, ρ = 264 GMAC, ρ = 232 GMAC, ρ = 216

LightMAC, ρ ≤ 258 (independent of ρ)

Fig. 2. Security bound for several MAC constructions

Lightweight MACs from Universal Hash Functions 213

References

1. Aumasson, J.-P., Bernstein, D.J.: SipHash: a fast short-input PRF. In: Galbraith,
S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 489–508. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-34931-7 28

2. Aumasson, J.P., Henzen, L., Meier, W., Naya-Plasencia, M.: Quark: a lightweight
hash. J. Cryptol. 26(2), 313–339 (2013)

3. Bernstein, D.J.: The Poly1305-AES message-authentication code. In: Gilbert, H.,
Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 32–49. Springer, Heidelberg
(2005). https://doi.org/10.1007/11502760 3

4. Bernstein, D.J.: Stronger security bounds for Wegman-Carter-Shoup authentica-
tors. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 164–180.
Springer, Heidelberg (2005). https://doi.org/10.1007/11426639 10

5. Biryukov, A., Perrin, L.: State of the art in lightweight symmetric cryptography.
Cryptology ePrint Archive, Report 2017/511 (2017). http://eprint.iacr.org/2017/
511

6. Black, J., Cochran, M.: MAC reforgeability. In: Dunkelman, O. (ed.) FSE 2009.
LNCS, vol. 5665, pp. 345–362. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-03317-9 21

7. Black, J., Halevi, S., Krawczyk, H., Krovetz, T., Rogaway, P.: UMAC: fast and
secure message authentication. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol.
1666, pp. 216–233. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48405-1 14

8. Bogdanov, A., Knežević, M., Leander, G., Toz, D., Varıcı, K., Verbauwhede, I.:
spongent: a lightweight hash function. In: Preneel, B., Takagi, T. (eds.) CHES
2011. LNCS, vol. 6917, pp. 312–325. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-23951-9 21

9. Bogdanov, A., et al.: PRESENT: an ultra-lightweight block cipher. In: Paillier,
P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2 31

10. Carter, J.L., Wegman, M.N.: Universal classes of hash functions. In: Proceedings of
the Ninth Annual ACM Symposium on Theory of Computing, pp. 106–112. ACM
(1977)

11. Cogliati, B., Seurin, Y.: EWCDM: an efficient, beyond-birthday secure, nonce-
misuse resistant MAC. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9814, pp. 121–149. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53018-4 5

12. Daemen, J., Peeters, M., Van Assche, G., Rijmen, V.: Nessie proposal: NOEKEON.
In: First Open NESSIE Workshop (2000)

13. Datta, N., Dutta, A., Nandi, M., Paul, G., Zhang, L.: Single key variant of
PMAC Plus. IACR Trans. Symm. Cryptol. 2017(4), 268–305 (2017)

14. Dietzfelbinger, M., Gil, J., Matias, Y., Pippenger, N.: Polynomial hash func-
tions are reliable. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 235–246.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55719-9 77

15. Computer data authentication: National Bureau of Standards, NIST FIPS PUB
113. U.S, Department of Commerce (1985)

16. Gilbert, E.N., MacWilliams, F.J., Sloane, N.J.: Codes which detect deception. Bell
Labs Tech. J. 53(3), 405–424 (1974)

17. Gilboa, S., Gueron, S., Morris, B.: How many queries are needed to distinguish a
truncated random permutation from a random function? J. Cryptol. 31(1), 162–
171 (2018)

https://doi.org/10.1007/978-3-642-34931-7_28
https://doi.org/10.1007/11502760_3
https://doi.org/10.1007/11426639_10
http://eprint.iacr.org/2017/511
http://eprint.iacr.org/2017/511
https://doi.org/10.1007/978-3-642-03317-9_21
https://doi.org/10.1007/978-3-642-03317-9_21
https://doi.org/10.1007/3-540-48405-1_14
https://doi.org/10.1007/3-540-48405-1_14
https://doi.org/10.1007/978-3-642-23951-9_21
https://doi.org/10.1007/978-3-642-23951-9_21
https://doi.org/10.1007/978-3-540-74735-2_31
https://doi.org/10.1007/978-3-662-53018-4_5
https://doi.org/10.1007/978-3-662-53018-4_5
https://doi.org/10.1007/3-540-55719-9_77

214 S. Duval and G. Leurent

18. Gong, Z., Hartel, P.H., Nikova, S., Tang, S., Zhu, B.: Tulp: a family of lightweight
message authentication codes for body sensor networks. J. Comput. Sci. Technol.
29(1), 53–68 (2014)

19. Hong, D., et al.: HIGHT: a new block cipher suitable for low-resource device. In:
Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 46–59. Springer,
Heidelberg (2006). https://doi.org/10.1007/11894063 4

20. Keliher, L., Sui, J.: Exact maximum expected differential and linear probability
for two-round advanced encryption standard. IET Inf. Secur. 1(2), 53–57 (2007)

21. Leurent, G., Sibleyras, F.: The missing difference problem, and its applications to
counter mode encryption. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018.
LNCS, vol. 10821, pp. 745–770. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78375-8 24

22. Luykx, A., Preneel, B.: Optimal forgeries against polynomial-based MACs and
GCM. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820,
pp. 445–467. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-
9 17

23. Luykx, A., Preneel, B., Tischhauser, E., Yasuda, K.: A MAC mode for lightweight
block ciphers. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 43–59. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-52993-5 3

24. McGrew, D.A., Viega, J.: The security and performance of the Galois/counter
mode (GCM) of operation. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT
2004. LNCS, vol. 3348, pp. 343–355. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-30556-9 27

25. Mennink, B., Neves, S.: Encrypted Davies-Meyer and its dual: towards optimal
security using mirror theory. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10403, pp. 556–583. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63697-9 19

26. Minematsu, K., Tsunoo, Y.: Provably secure MACs from differentially-uniform
permutations and AES-based implementations. In: Robshaw, M. (ed.) FSE 2006.
LNCS, vol. 4047, pp. 226–241. Springer, Heidelberg (2006). https://doi.org/10.
1007/11799313 15

27. Mouha, N., Mennink, B., Van Herrewege, A., Watanabe, D., Preneel, B., Ver-
bauwhede, I.: Chaskey: an efficient MAC algorithm for 32-bit microcontrollers. In:
Joux, A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 306–323. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-13051-4 19

28. Nandi, M.: Bernstein bound on WCS is tight. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018. LNCS, vol. 10992, pp. 213–238. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96881-0 8

29. Preneel, B., van Oorschot, P.C.: MDx-MAC and building fast MACs from hash
functions. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 1–14.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-44750-4 1

30. Procter, G., Cid, C.: On weak keys and forgery attacks against polynomial-based
MAC schemes. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 287–304.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43933-3 15

31. Shoup, V.: On fast and provably secure message authentication based on univer-
sal hashing. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 313–328.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 24

32. Stinson, D.R.: Universal hashing and authentication codes. In: Feigenbaum, J. (ed.)
CRYPTO 1991. LNCS, vol. 576, pp. 74–85. Springer, Heidelberg (1992). https://
doi.org/10.1007/3-540-46766-1 5

https://doi.org/10.1007/11894063_4
https://doi.org/10.1007/978-3-319-78375-8_24
https://doi.org/10.1007/978-3-319-78375-8_24
https://doi.org/10.1007/978-3-319-78381-9_17
https://doi.org/10.1007/978-3-319-78381-9_17
https://doi.org/10.1007/978-3-662-52993-5_3
https://doi.org/10.1007/978-3-540-30556-9_27
https://doi.org/10.1007/978-3-540-30556-9_27
https://doi.org/10.1007/978-3-319-63697-9_19
https://doi.org/10.1007/978-3-319-63697-9_19
https://doi.org/10.1007/11799313_15
https://doi.org/10.1007/11799313_15
https://doi.org/10.1007/978-3-319-13051-4_19
https://doi.org/10.1007/978-3-319-96881-0_8
https://doi.org/10.1007/978-3-319-96881-0_8
https://doi.org/10.1007/3-540-44750-4_1
https://doi.org/10.1007/978-3-662-43933-3_15
https://doi.org/10.1007/3-540-68697-5_24
https://doi.org/10.1007/3-540-46766-1_5
https://doi.org/10.1007/3-540-46766-1_5

Lightweight MACs from Universal Hash Functions 215

33. Wegman, M.N., Carter, L.: New hash functions and their use in authentication
and set equality. J. Comput. Syst. Sci. 22, 265–279 (1981)

34. Yasuda, K.: The sum of CBC MACs is a secure PRF. In: Pieprzyk, J. (ed.) CT-
RSA 2010. LNCS, vol. 5985, pp. 366–381. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-11925-5 25

35. Zhang, L., Wu, W., Sui, H., Wang, P.: 3kf9: enhancing 3GPP-MAC beyond the
birthday bound. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol.
7658, pp. 296–312. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-34961-4 19

https://doi.org/10.1007/978-3-642-11925-5_25
https://doi.org/10.1007/978-3-642-11925-5_25
https://doi.org/10.1007/978-3-642-34961-4_19
https://doi.org/10.1007/978-3-642-34961-4_19

FELICS-AEAD: Benchmarking
of Lightweight Authenticated Encryption

Algorithms

Luan Cardoso dos Santos(B), Johann Großschädl, and Alex Biryukov

CSC and SnT, University of Luxembourg,
6, Avenue de la Fonte, 4364 Esch-sur-Alzette, Luxembourg

{luan.cardoso,johann.groszschaedl,alex.biryukov}@uni.lu

Abstract. Cryptographic algorithms that can simultaneously provide
both encryption and authentication play an increasingly important role
in modern security architectures and protocols (e.g. TLS v1.3). Dozens
of authenticated encryption systems have been designed in the past five
years, which has initiated a large body of research in cryptanalysis. The
interest in authenticated encryption has further risen after the National
Institute of Standards and Technology (NIST) announced an initiative
to standardize “lightweight” authenticated ciphers and hash functions
that are suitable for resource-constrained devices. However, while there
already exist some cryptanalytic results on these recent designs, little is
known about their performance, especially when they are executed on
small 8, 16, and 32-bit microcontrollers. In this paper, we introduce an
open-source benchmarking tool suite for a fair and consistent evaluation
of Authenticated Encryption with Associated Data (AEAD) algorithms
written in C or assembly language for 8-bit AVR, 16-bit MSP430, and
32-bit ARM Cortex-M3 platforms. The tool suite is an extension of the
FELICS benchmarking framework and provides a new AEAD-specific
low-level API that allows users to collect very fine-grained and detailed
results for execution time, RAM consumption, and binary code size in a
highly automated fashion. FELICS-AEAD comes with two pre-defined
evaluation scenarios, which were developed to resemble security-critical
operations commonly carried out by real IoT applications to ensure the
benchmarks are meaningful in practice. We tested the AEAD tool suite
using five authenticated encryption algorithms, namely AES-GCM and
the CAESAR candidates ACORN, ASCON, Ketje-Jr, and NORX, and
present some preliminary results.

Keywords: Internet of Things · Lightweight cryptography ·
Authenticated Encryption · Application Program Interface ·
Evaluation scenario

1 Introduction

An Authenticated Encryption (AE) algorithm can be loosely defined as a sym-
metric cryptographic algorithm that is capable to (simultaneously) assure the
c© Springer Nature Switzerland AG 2020
S. Beläıd and T. Güneysu (Eds.): CARDIS 2019, LNCS 11833, pp. 216–233, 2020.
https://doi.org/10.1007/978-3-030-42068-0_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-42068-0_13&domain=pdf
https://doi.org/10.1007/978-3-030-42068-0_13

FELICS-AEAD: Benchmarking of Lightweight Authenticated Encryption 217

confidentiality and authenticity of data [3,11]. A special form of AE, known as
Authenticated Encryption with Associated Data (AEAD), allows a part of the
data to remain unencrypted, while still all data gets authenticated. The notion
of AEAD was first formalized by Rogaway [14] in 2002 and has applications in
such areas as network packet encryption where the header (which contains the
destination address) needs to be readable by routers, but should nonetheless be
authenticated and integrity-protected. An AEAD algorithm takes a quadruple
of the form (M,A,K,N) as input and outputs a tuple (C, T), where M is the
message to be encrypted and authenticated, A is the associated data that gets
authenticated only (but not encrypted), K is the secret key, N is a nonce, C is
the ciphertext, and T is an authentication tag. Conversely, the decryption uses
(C,A,K,N, T) as input and outputs the original message M if T is valid, or an
error symbol ⊥ otherwise. The two essential security goals an AEAD algorithm
has to achieve are confidentiality and authenticity; a mathematically rigorous
definition of both was given by Rogaway [14]. Informally, confidentiality means
that a passive adversary with access to C and T should not be able to deduce
any information about M , except of its length. Authenticity generally refers to
the ability to thwart forgery attacks, which means an active adversary should
have a very low success probability when attempting to fabricate a (C, T)-tuple
that the decrypting party will verify as authentic.

Initially, AEAD schemes were created by combining a block cipher in some
mode of operation with a Message Authentication Code (MAC) algorithm. A
clear disadvantage of this approach is the necessity of having two different primi-
tives and requiring two passes over the message. Modern constructions use a dif-
ferent approach, where a single algorithm is able to deliver authenticated encryp-
tion, with a single pass over the message. In recent years, the cryptographic com-
munity has shown great interest in AEAD because of the CAESAR competition
and the NIST call for lightweight primitives. CAESAR (short for Competition
for Authenticated Encryption: Security, Applicability, and Robustness) is an
already finished competition whose objective was to select a portfolio of AEAD
algorithms. It followed the spirit of previous cryptographic competitions, such
as the one that yielded the now omnipresent block cipher AES. In 2018, the
NIST officially announced the initiation of a process to solicit, evaluate, and
standardize lightweight cryptographic algorithms—namely AEAD schemes and
hash functions—that are suitable for constrained environments where the cur-
rent standards can not provide acceptable performance. The motivation behind
this initiative is the emergence of more and more application domains where
constrained devices are interconnected to form the so-called Internet of Things
(IoT). Security and privacy are extremely important in the IoT, but cannot
always be provided by the currently standardized cryptosystems. This is because
the severe constraints under which present (and future) IoT devices are expected
to operate were not anticipated 20–25 years ago when many of the current NIST
standards (e.g. AES, SHA-2) were designed.

218 L. Cardoso dos Santos et al.

Motivation and Research Needs. In response to NIST’s call for proposals for
lightweight AEAD algorithms and hash functions, a total of 57 candidates were
submitted by March 29, 2019. These candidates are currently evaluated in an
open process taking various criteria into account, which include besides security
(i.e. resistance against known cryptanalytic attacks) also practical aspects like
performance and resource requirements (e.g. silicon area, memory footprint, code
size) when implemented in hardware and software [13]. The NIST anticipates
an initial (i.e. first-round) evaluation period of about six months to filter out
candidates with obvious weaknesses and narrow the candidate pool for a more
careful study and analysis in a second round. In total, the NIST estimates a
duration of two to four years until the publication of a first draft standard and
emphasizes that “the success of the lightweight crypto standardization process
relies on the efforts of the researchers from the cryptographic community that
provide security, implementation, and performance analysis of the candidates”1.
Most papers introducing a new AEAD algorithm report some kind of results
of some kind of performance evaluation on some kind of platform using some
kind of implementation. Unfortunately, these results are usually not suitable
for a comparison of the efficiency of two or more algorithms since it is not
easily possible to take differences in the characteristics of the target platforms
or differences in the simulation/measurement conditions into account. There is a
need for a way to compare performance figures for many algorithms consistently
and fairly so that designers and implementers of IoT applications can make better
decisions regarding which algorithm is the most suitable one under a given set
of efficiency requirements and resource constraints.

In the course of the CAESAR competition, the eBACS framework [4] was
used for the bechmarking of the submitted AEAD algorithms. However, the orig-
inal eBACS tools only support 64-bit Intel/AMD processors and high-end ARM
models, mostly from the Cortex-A series, whereas many IoT devices are equipped
with low-end microcontrollers, e.g. 8-bit AVR ATmega, 16-bit TI MSP430, or
32-bit ARM Cortex-M. These microcontrollers are optimized for small silicon
area and low power consumption, which means they have totally different char-
acteristics than their 64-bit counterparts. These differences manifest not only in
the word size, but also the instruction set, the size of the register file, the latency
of individual instructions, the degree of instruction-level parallelism, and many
other aspects. For example, 64-bit Intel or ARM processors have a register space
of 128 bytes (or even more when taking vector registers into account), whereas
the MSP430 platform (which lies at the opposite end of the spectrum) provides
24 bytes altogether. Furthermore, most 8 and 16-bit microcontrollers can only
execute shifts or rotations at a rate of one bit per cycle, whereas more powerful
processors are capable to perform n-bit shifts/rotations in a single cycle. For
all these reasons, benchmarking results generated with eBACS are of little use
when it comes to the evaluation of AEAD algorithms on microcontrollers.

1 See https://csrc.nist.gov/projects/lightweight-cryptography/round-1-candidates
(accessed 2019-07-15).

https://csrc.nist.gov/projects/lightweight-cryptography/round-1-candidates

FELICS-AEAD: Benchmarking of Lightweight Authenticated Encryption 219

Aims and Contributions of This Paper. The present paper addresses the
research needs identified above and puts forward a proposal for the benchmark-
ing of lightweight AEAD algorithms. Our proposal aims to answer two basic
questions that generally arise in the context of software benchmarking of crypto-
graphic algorithms. The first question relates to the Application Program Inter-
face (API) that implementations of a candidate algorithms have to follow to
ensure a fair and consistent evaluation. We will argue in Subsect. 2.2 that, for
the purpose of benchmarking, it makes sense to use a low-level API sense since it
allows one to obtain more fine-grained results compared to a high-level API con-
sisting of just the functions encrypt and decrypt. Furthermore, we introduce an
API containing seven low-level functions, which we consider well suited for the
benchmarking of AEAD algorithms. The second issue concerns the question of
how to measure the execution time and other metrics of interest, which includes
aspects like the length of the message M and the length of the associated data
A. More concretely, how should the length-ratio of M and A be to get mean-
ingful results? We will try to answer these questions in Subsect. 2.1 through the
definition of so-called evaluation scenarios that aim to mimic security-related
operations commonly carried out by “real” IoT devices. More concretely, these
scenarios are inspired by the need for AEAD operations in two networking pro-
tocols with relevance for the IoT, namely IEEE 802.15.4 (the most common
PHY/MAC-layer protocol for low-rate wireless networks) and IPv6.

We implemented both the low-level API for AEAD and the evaluation
scenarios in the form of an extension to the well-known and widely-used
FELICS (Fair Evaluation of Lightweight Cryptographic Systems) framework [7].
FELICS was originally created to support the collection benchmarking results
for (lightweight) block ciphers on three embedded platforms: 8-bit AVR, 16-bit
MSP430, and 32-bit ARM Cortex-M3. The full source code of FELICS is avail-
able under GPLv3 to increase the transparency and reproducibility of bench-
marking results. Besides execution time, FELICS is also capable to determine
the binary size and RAM footprint on the three currently supported platforms.
The framework is modular, built on well documented and free compilers and
tools, which allows easy extension of functionality and integration of new micro-
controller platforms and evaluation scenarios. We tested the extended FELICS
toolsuite using optimized C implementations of five AEAD algorithms (namely
AES-GCM, ACORN, ASCON, Ketje-Jr, and NORX) that adhere to our low-
level API. These tests confirm that FELICS-AEAD works properly and is able
to collect large amounts of benchmarking results in an efficient and highly-
automated fashion. An analysis of the collected benchmarking results for these
five algorithms allows us to draw some conclusions about how basic design deci-
sions like the organization of the “state” (i.e. whether the state is processed at
a granularity of 32-bit words or 64-bit words) affect the performance on small
microcontrollers.

220 L. Cardoso dos Santos et al.

2 The FELICS Framework and Its AEAD Extension

FELICS – Fair Evaluation of Lightweight Cryptographic Systems – is a free
and open source framework that assesses the efficiency of C and assembly imple-
mentations of lightweight cryptographic primitives on embedded devices. Fol-
lowing a modular design philosophy, the framework can easily be extended to
accommodate new metrics, evaluation scenarios, and devices. FELICS is the
core of an effort to increase the transparency in the analysis of lightweight algo-
rithms’ performances and aims to facilitate a fair comparison of a large number of
candidates. Figure 1 gives an overview of the structure and main components of
the FELICS framework.

2.1 Overview of Modules

FELICS is written in C, but also includes Bash and Python scripts. The frame-
work was designed to work on Linux and allows the benchmarking of C and
assembly implementations of cryptographic primitives that follow a set of pre-
defined requirements. C was chosen because of its continuing popularity in the
IoT and the fact that most reference implementations are written in this lan-
guage. Furthermore, C code is highly portable, which is an important asset
since there is no single dominating platform in the IoT. However, FELICS also
supports the benchmarking of platform specific Assembler implementations to
eliminate the impact of the compiler’s ability (or inability) for code optimiza-
tion. Hand-crafted Assembler code can take architecture-specific optimizations
into account and has the potential to significantly outperform compiled C code.

Scenario 1
Scenario 2

Block Ciphers Module Steam Ciphers Module

AVR

MSP

ARM

Scripts FOM Block
Cipher

FOM Stream
Cipher FOM AEAD

AEAD Ciphers Module

Source
Code

Scenario 1
Scenario 2

Source
Code

Source
Code

Execution
time

Code SizeRam

Execution
time

Code SizeRam

Execution
time

Code SizeRam

Scenario 1(abc)
Scenario 2(abc)

FELICS FRAMEWORK

Core Module

Fig. 1. Modular structure of the FELICS benchmarking framework.

FELICS-AEAD: Benchmarking of Lightweight Authenticated Encryption 221

Core Module. The Core module, as the name implies, is the main part of
the framework, and provides the tools necessary to collect the metrics for each
of the supported devices. This module aims to facilitate the integration of new
target devices and new metrics. Collection of metrics can be done individually
or in batch mode. Beyond metrics collection, the Core also defines modules to
debug and evaluate ciphers in a PC, mainly to aid in the implementation and
integration process of new ciphers by the framework’s users. A Python script
for processing the generated CSV files and to assemble a ranking of candidates
based on a so-called Figure-Of-Merit (FOM) is also present (see [8] for details).

Authenticated Encryption Module. This module allows the evaluation of
lightweight AEAD ciphers. To allow the framework to extract the metrics, each
cipher’s implementation must follow the defined API.

A template for implementation, as well as implementations of identity
ciphers, are provided with the module and can be used as a guide to help new
users to integrate new implementations. The complete rules and step-by-step
integration guide for cipher implementations can be found in the README file in
the example cipher.

The framework supports cipher evaluation based on scenarios. Scenarios
implement common real-world use cases, with practical relevance for IoT, with
the main objective of generating realistic benchmark results that are meaningful
in the real world. The current scenarios in the AEAD module of FELICS are
divided into three main groups:

– Debug and verification Scenario: Also called Scenario 0, is mainly used
for debugging purposes. It operates over a single block of input and allows
the implementers to check their implementations on known test vectors.

– IEEE 802.15.4 Scenarios: These scenarios are based on the security needs
of data communication in wireless sensor networks and other IoT applica-
tions using the IEEE 802.15.4 MAC/PHY-layer protocol. The maximum
frame size of IEEE 802.15.4 is 127 bytes; the length of the header depends
on various factors, such as the format of the source and destination addresses,
but can not exceed 25 bytes. This leaves (at least) 102 bytes as frame pay-
load. IEEE 802.15.4 supports three kinds of security services, namely (i)
“Encryption Only” with AES in counter mode, (ii) “Authentication Only”
with AES-CBC-MAC producing a MAC of either 32, 64, or 128 bits, and (iii)
“Authenticated Encryption” using AES-CCM with the same MAC lengths.
• Scenario 1a: Encryption of 102 bytes of data.
• Scenario 1b: Authentication of 86 bytes of payload and 25 bytes of

header. This scenario assumes that 16 bytes of payload are reserved to
write the authentication tag.

• Scenario 1c: Authenticated encryption of 86 bytes of payload and 25
bytes of header (which is authenticated but not encrypted). As with Sce-
nario 1b, the authentication tag has a length of 16 bytes.

– IPv6 Scenarios: These scenarios are based on the use cases of IPv6 frames,
as defined in RFC 2460. The MTU of IPv6 is at least 1280 bytes and the

222 L. Cardoso dos Santos et al.

header has a fixed length of 40 bytes. Based on experiments with the Network
Simulator NS-3, we found that the following message and associated data
lengths serve as good representatives for real-world scenarios.
• Scenario 2a: Encryption of 1240 bytes of data.
• Scenario 2b: Authentication of 1224 bytes of payload and 40 bytes of

header.
• Scenario 2c: Authenticated encryption of 1224 bytes of payload and 40

bytes of header.

The IEEE 802.15.4 and IPv6 scenarios differ not only in the amount of data
to be protected (127 bytes vs 1280 bytes), but also in the relation of data-length
of AD-length. In the former case, the AD/D ratio is 0.29, whereas in the latter
case the AD-length is negligible in relation to the D-length.

2.2 API for Authenticated Encryption

The FELICS API aims to offer a generic and well-specified interface for the
most common operations performed by an AEAD algorithm. Different from
other frameworks, the FELICS API is composed of seven low-level functions.
While this may introduce difficulties for certain implementation techniques (e.g.
bitslicing), the low-level API gives the framework more flexibility and allows one
to obtain more fine-grained benchmarking results. Such fine-grained results can
be useful, for example, when one wants to analyze why a given AEAD algorithm
is more or less efficient and its competitors. Our seven functions are described
below and their prototypes are given in Listing 1.

– Initialize: This function receives as parameters pointers to the algorithm’s
state, key, and nonce, and should execute the cipher’s initialization proce-
dures.

– ProcessAssocData: This function receives as parameters a pointer to the
state, a byte stream of associated data, as well as its length.

– ProcessPlaintext: This function receives as parameters a pointer to the
state, a byte stream of data, as well as the length of plaintext and ciphertext.
The ciphertext should overwrite the plaintext.

– ProcessCiphertext: This function receives as parameters a pointer to the
state, a byte stream of data, as well as the length of plaintext and ciphertext.
The plaintext should overwrite the ciphertext.

– Finalize: This function receives as parameters pointers to the state and
key, and executes the finalization steps on the internal state, preparing it for
the authentication tag generation.

– GenerateTag: This functions receives as parameters a pointer to the internal
state and the authentication tag and should write the appropriate informa-
tion on the authentication tag.

– VerifyTag: This function received two pointers to authentication tags, and
compare both. Returns (int)(1) if the tags match, and (int)(0) otherwise.

FELICS-AEAD: Benchmarking of Lightweight Authenticated Encryption 223

Listing 1. Function prototypes of the low-level AEAD API.

void Initialize(uint8_t *state , const uint8_t *key ,

const uint8_t *nonce);

void ProcessAssocData (uint8_t *state , uint8_t *assocData ,

size_t assocDataLen);

void ProcessPlaintext (uint8_t *state , uint8_t *message ,

size_t messageLen);

void ProcessCiphertext(uint8_t *state , uint8_t *message ,

size_t messageLen);

void Finalize(uint8_t *state , uint8_t *key);

void GenerateTag(uint8_t *state , uint8_t *tag);

int VerifyTag(uint8_t *state , uint8_t *tag);

NIST specified a high-level API consisting of two functions (namely
aead encrypt and aead decrypt), which submitters of AEAD candidates had
to follow when they developed the (mandatory) reference implementation and
an (optional) optimized implementation. While such a high-level API is con-
venient for software developers using AEAD algorithms, it is not necessarily a
good choice for collecting benchmarking results, especially in Scenario 0. This is
probably best explained taking the block-cipher benchmarks from [9] as exam-
ple. Similar to AEAD, one can benchmark block ciphers using either a high-level
or a low-level API. The former consists of generic functions for encrypting/de-
crypting of an arbitrary amount of data using a specified mode operation. On
the other hand, the low-level API consists of two functions for each encryption
and decryption, one to encrypt/decrypt a single block, and one to perform the
encrytion/decryption key schedule. In order to minimize the overall development
effort, the high-level functions can simply be implemented as wrappers over the
low-level functions. However, using the low-level API for benchmarking in Sce-
nario 0 makes certain properties of ciphers more apparent than the high-level
API. For example, RC5 is extremely fast, but has a very costly key schedule,
which becomes immediately evident with benchmarking results obtained with
the low-level API. Therefore, RC5 is unattractive for scenarios where the amount
of data to be encrypted or decrypted is small. This information is not so directly
obvious when benchmarking results are generated with the high-level API.

2.3 Target Devices and Evaluation Metrics

For this framework, three widely used microcontrollers were chosen as repre-
sentatives of the most used 8, 16, and 32-bit platforms used in the IoT. These
microcontrollers have been optimized for small area and low power consumption.
Their main characteristics are summarized in Table 1 and a brief description of
each will follow on the next paragraphs.

The AVR ATMega 128 is a microcontroller manufactured by Atmel, fea-
turing 32 8-bit registers (R0 - R31) with single clock access time. Six of those

224 L. Cardoso dos Santos et al.

Table 1. Key characteristics of the target microcontrollers.

Characteristic AVR MSP ARM

CPU 8-bit RISC 16-bit RISC 32-bit RISC

Frequency 16 MHz 8 MHz 84 MHz

Registers 32 16 21

Architecture Harvard Von Neumann Havard

Flash 128 KB 48 KB 512 KB

SRAM 4 KB 10 KB 96 KB

Supply voltage 4.6–5.5 V 1.8–3.6 V 1.6–3.6 V

registers can also be used as 16-bit indirect address pointers for data space. The
instructions are executed within a two-stage, single-level pipeline, with most of
its 133 instructions requiring a single cycle to execute. AVR processors are based
on a modified Harvard architecture, where program and data are stored in sepa-
rate physical memory regions in different physical addresses. Regarding memory,
the ATmega128 comes with 128 KB Flash amd 4 KB SRAM.

The MSP430F1611 microcontroller is a RISC CPU produced by Texas
Instruments. It follows a Von Neumann architecture, and features 16 registers,
with 12 being general purpose. Operations over registers take one clock cycle,
while the other instructions depend on its format and addressing mode used.
Memory wise, the MSP430 has one shared address space for special function
registers, peripherals, RAM and FLASH. It has 48 KB of Flash and 10 KB of
SRAM. Typical applications include medical devices and smart meters.

The 32-bit Atmel SAM3X8 Cortex M3 is a RISC CPU that executes the
Thumb-2 instruction set. This processor has a three-level pipeline and 13 general-
purpose registers. It features 512 KB of Flash and 96 KB of SRAM divided into
two banks of 64 KB and 32 KB. The Cortex-M3 is specially designed to achieve
high performance in power-sensitive embedded applications, such as microcon-
trollers, automotive and industrial controllers, wireless networking, and others.
This processor runs at a maximum frequency of 84 MHz.

For cipher evaluation, three metrics are used: Execution time, RAM usage,
and code size. These metrics were chosen because they outline the main charac-
teristics of the implementations. Secondary metrics, such as energy consumption
were not included mainly due to being closely related to the basic metrics.

Execution time consists in measuring the number of cycles necessary to exe-
cute a given operation. This metric is extracted by using either a cycle-accurate
simulator a development board. Extraction of cycle-counter uses AVRORA [15]
for the AVR processor, and MSPDebug [2] for MSP. Extraction of cycle counter on
ARM is done via the automatic insertion of code to read ARM’s system time reg-
isters. One important detail regarding ARM’s measurements is that there may
exist variations in the extracted numbers, due to different instructions being
generated at compilation time and memory alignment of test data.

FELICS-AEAD: Benchmarking of Lightweight Authenticated Encryption 225

RAM consumption is a combination of stack and data requirements. The
stack consumption describes the maximum amount of RAM used to store local
variables and return addresses after interruptions and system calls. The data
requirement represents the static RAM usage and is given by the size of the
constants stored in the device’s RAM. Static RAM consumption is measured
using the GNU size tool. The stack consumption is measured using a gdb client
and the target simulator or development board.

Code size is measured in bytes and quantifies the amount of storage an
operation or evaluation scenario occupies in the non-volatile memory of the
target device. It is measured using the GNU size tool on the appropriate object
files. To obtain the overall code size, the framework simply sums the size of the
text and data sections, which contain, respectively, the executable instructions
generated by the compiler and the static variables that are initialized with a
non-zero value.

Figure of Merit. Due to space limitations, normally only a subset of data can
be correctly shown in publications. To aid in the classifications of the evaluated
ciphers, FELICS introduces the Figure-of-Merit (FOM), that can be used to rank
the analyzed ciphers. For each implementation i and platform d, a performance
indicator pid that aggregates the metrics from M = {execution time, RAM
consumption, code size} as

pi,d =
∑

m∈M

wm
vi,d,m

mini(vi,d,m)

where vi,d,m is the value of the metric m for the implementation i on the platform
p; and wm is the relative weight for the metric m, with wm = 1 by default for
all platforms. Then, for each cipher and the selected set of best implementations
iAV R, iMSP , and iARM (one for each platform) the FOM is calculated as the
average performance indicator across the three platforms:

FOM(iAV R, iMSP , iARM) =
piAV R

+ piMSP
+ piARM

3

3 Analyzed AEAD Algorithms

In this section, we briefly describe the ciphers implemented in FELICS, as an
example and initial work for the framework. These ciphers were chosen for their
relevance in the context of IoT and lightweight cryptography, as well for being
part of an ongoing effort of standardizing AEAD schemes.

ACORN. Acorn is an AEAD scheme created by Hongjun Wu, and finalist of
the CAESAR competition. It features a stream-cipher-like construction based
on six concatenated linear feedback shift registers. The cipher’s design benefits
lightweight hardware implementations since the processing can be done in a
bitwise fashion [17].

226 L. Cardoso dos Santos et al.

Table 2. Parameters of the evaluated ciphers, in bits.

Cipher Block Key Nonce State Tag

NORX 384 128 128 512 128

ACORN 1 128 128 293 128

Ketje-Jr 16 128 48 200 128

ASCON 64 128 128 320 128

AES-GCM 128 128 96 1824 128

AES-GCM. The Galois/Counter mode is a mode of operation for 128-bit block
ciphers, widely used together with the AES block cipher for its efficiency and
performance. GCM is used in MACSec Ethernet Security, IEEE 802.11ad wire-
less protocols, Fibre Channel security protocols, and is also included in the NSA
Suite B Cryptography, as well as various other software [12].

ASCON. Ascon is a family of AEAD ciphers, finalist of the CAESAR compe-
tition. It was designed by Christoph Dobraunig et al. in 2014. The main goal of
ASCON is to achieve a very low memory footprint, both in hardware and soft-
ware implementations, and still provide an adequate combination of security,
speed, and size, with focus on the last. ASCON is based on the Sponge Design,
being similar to SpongeWrap and MonkeyDuplex constructions [10].

Ketje. Ketje is a family of four AEAD algorithms, aimed to memory-
constrained devices and that strongly relies on nonce uniqueness for security.
It was designed by Guido Bertoni et al. and is a third-round candidate of the
CAESAR competition. Ketje is based on a reduced round version of Keccak,
over a MonkeyDuplex and MonkeyWrap constructions [5].

NORX. NORX is a family of AEAD ciphers created by Jean-Philippe Aumas-
son et al. in 2014. NORX supports associated data both as header and trailer.
The algorithm also supports arbitrary parallelism in the payload processing step
and is optimized for hardware and software implementations, with a specially
SIMD friendly construction. NORX is based on ChaCha’s permutation, with the
integer addition replaced by an ARX approximation, which –according to the
designers– allows simplified cryptanalysis and improves hardware efficiency [1].

4 Preliminary Results

Using the FELICS extension for authenticated encryption described in Sect. 2,
we benchmarked optimized C implementations of the five AEAD algorithms on
three platforms and for two evaluation scenarios plus Scenario 0, which is mainly

FELICS-AEAD: Benchmarking of Lightweight Authenticated Encryption 227

Table 3. Results for Scenario 1 (IEEE 802.15.4). For each platform and each cipher,
the best implementation results are reported. The code size and memory consumption
are specified for the whole scenario (and not just the AEAD algorithm alone), which
includes the 127-byte IEEE 802.15.4 frame to be encrypted and/or authenticated. The
smaller the Figure-of-merit, the better is the implementation of a cipher.

Cipher AVR MSP ARM FOM

Size Mem Time Size Mem Time Size Mem Time

NORX S1a 4702 214 135640 3992 214 66738 1474 214 17227 4.3

S1b 3936 223 90728 3482 223 53035 1148 223 10089 4.0

S1c 5028 207 124062 4216 207 75727 1634 207 16685 4.5

ASCON S1a 3734 190 519420 5656 190 599643 1712 190 80316 9.4

S1b 3734 199 340671 5656 199 395564 1712 199 52958 8.9

S1c 3734 183 534908 5656 183 619523 1712 183 83118 9.4

Ketje-Jr S1a 5156 165 290446 6248 165 346867 3564 165 138867 9.4

S1b 5156 174 211749 6248 174 254923 3564 174 99490 9.8

S1c 5156 158 311949 6248 158 372720 3564 158 148381 9.7

ACORN S1a 3292 191 337818 3170 191 456972 1954 191 191869 10.0

S1b 3292 200 408914 3170 200 551501 1954 200 236235 15.7

S1c 3292 184 464381 3170 184 626192 1954 184 267168 12.5

AES-GCM S1a 6578 374 889573 6798 374 2137251 6096 374 1086449 41.5

S1b 5944 383 447505 6782 383 1150450 6028 383 565606 34.0

S1c 6578 367 975184 6798 367 2369572 6096 367 1197073 44.6

for debugging and verification. Table 2 summarizes the main characteristics of
the specific variants of the AEAD algorithms we implemented.

The FELICS framework allows ranking all these implementations according
to their execution time, RAM footprint, or code size in any scenario on any
platform. Table 3 summarizes the results of Scenario 1, which is inspired by the
need for security in the IEEE 802.15.4 protocol. This scenario actually consists
of three sub-scenarios with different operations and slightly different lengths of
the data to be encrypted and/or authenticated. However, all three sub-scenarios
have in common that the amount of data is relatively small, namely between 86
and 102 bytes, due to the 127-byte MTU – maximum transmission unit – of the
IEEE 802.15.4 protocol. If associated data is processed, its length is roughly one
fourth of the data-length. Concretely, in Sub-scenario 1a (“encryption only”),
102 bytes of data are encrypted, whereas in Sub-scenario 1b (“authentication
only”) the size of the data is 86 bytes and the size of the associated data is 25
bytes. Finally, in Scenario 1c (“authenticated encryption”) 86 bytes of data are
encrypted and 86+25 = 111 bytes are authenticated. NORX is the clear winner
in all three sub-scenarios, followed by ASCON and Ketje-Jr, which perform very
similar in all three sub-scenarios. However, the FOM score of the latter two
algorithms is more than twice higher than that of NORX.

228 L. Cardoso dos Santos et al.

Table 4. Results for Scenario 2 (IPv6). For each platform and each cipher, the best
implementation results are reported. The code size and memory consumption are spec-
ified for the whole scenario (and not just the AEAD algorithm alone), which includes
the 1280-byte IPv6 packet to be encrypted and/or authenticated. The smaller the
Figure-of-merit, the better is the implementation of a cipher.

Cipher AVR MSP ARM FOM

Size Mem Time Size Mem Time Size Mem Time

NORX S2a 4702 1376 800313 3992 1376 501290 1474 1376 109933 4.1

S2b 3936 1376 424601 3482 1376 246263 1148 1376 46113 3.7

S2c 5028 1376 814467 4216 1376 508728 1634 1376 111361 4.2

ASCON S2a 3292 1353 1811457 3170 1353 2454962 1954 1353 1013715 8.5

S2b 3292 1353 1136110 3170 1353 1541295 1954 1353 644411 10.5

S2c 3292 1353 1916720 3170 1353 2595469 1954 1353 1077068 8.7

Ketje-Jr S2a 5156 1327 3026956 6248 1327 3623707 3564 1327 1481660 12.6

S2b 5156 1327 1527941 6248 1327 1860262 3564 1327 751536 13.3

S2c 5156 1327 3007966 6248 1327 3601416 3564 1327 1471405 12.5

ACORN S2a 3734 1352 6174633 5656 1352 7109127 1712 1352 947367 13.9

S2b 3734 1352 3146041 5656 1352 3619665 1712 1352 479574 14.2

S2c 3734 1352 6112583 5656 1352 7039689 1712 1352 938358 13.6

AES-GCM S2a 6578 1536 9807655 6798 1536 23748153 6096 1536 12036393 64.4

S2b 5944 1536 3526008 6782 1536 9531538 6028 1536 4564667 54.2

S2c 6578 1536 9812008 6798 1536 23796554 6096 1536 12050336 63.6

Finally, Table 4 shows the results of Scenario 2, which deals with security for
the IPv6 protocol. This scenario is again split into three sub-scenarios, similar
to the sub-scenarios in the context of IEEE 802.15.4 described above. However,
the amount of data to be encrypted is much larger, around 1200 bytes, while the
amount of associated data is relatively small; more concretely, the ratio between
data and associated data is roughly 30:1. Again, NORX is the clear winner in
all three sub-scenarios, followed by ASCON and Ketje-Jr. However, compared
to the IEEE 802.15.4 scenarios, the difference between ASCON and Ketje-Jr is
much bigger. Similar to before, the FOM score of NORX is significantly better
than that of the runner-up ASCON.

It is interesting to observe that NORX is in both scenarios speed-wise much
better than the other candidates. NORX outperforms its CAESAR competitors
by a factor of at least two; in some extreme cases, NORX is even five times
faster than the second-best algorithm. This significant difference begs for more
analysis and raises the question of what design decisions make an AEAD algo-
rithm efficient (or inefficient) on small microcontroller platforms. However, this
question is difficult to answer since the efficiency of AEAD designs depends on
many different factors, some of which are architecture-independent, i.e. affect
the performance on 8, 16, 32, and 64-bit platforms similarly, whereas others are
architecture-dependent in the sense that they impact the performance across

FELICS-AEAD: Benchmarking of Lightweight Authenticated Encryption 229

platforms differently. An example of the latter is the organization of the state,
i.e. whether the state is processed at a granularity of 32-bit words or 64-bit
words. The benchmarked version of NORX processes the state in 32-bit words,
whereas ASCON, ACORN, and Ketje-Jr operate on 64-bit words. Organizing the
state in 64-bit quantities is the natural choice for designs aiming at high perfor-
mance on Intel/AMD and 64-bit ARM processors as it allows one to exploit the
full word-size of these processors, but may lead to suboptimal performance on
smaller microcontroller platforms, which is due to three reasons.

First, C compilers for 8-bit AVR and 16-bit MSP microcontrollers (e.g.
mspgcc) are, in general, not very good at handling 64-bit words (i.e. operands
of type uint64 t). We assume this is because outside cryptography there are
very few application domains where a programmer really needs a 64-bit integer
on an 8 or 16-bit microcontroller. NORX128 uses 32-bit words, which seems to
make it much easier for a C compiler to generate efficient code than for the other
CAESAR candidates that process 64-bit words. The second reason is the small
register space of 8 and 16-bit microcontrollers. For example, the MSP430 archi-
tecture comes with only twelve 16-bit general-purpose registers, which means it
would theoretically be possible to hold three 64-bit words in the register file.
However, in practice, this is not the case since always one or two registers are
needed for temporary results and often also one register has to be set to 0.
Therefore, it can be expected that no more than two 64-bit words can be kept in
registers at any time, but it may be possible to accommodate five 32-bit words
when the cipher’s state is organized in 32-bit words. Finally, the third reason
why 64-bit words can entail suboptimal performance is ARM-specific and relates
to the fact that one of the two operands of an arithmetic/logical instruction is
fed through a barrel-shifter before it enters the ALU, which means shifts and
rotations can be executed “for free” together with other instructions. However,
on a 32-bit ARM microcontroller, shifts and rotations are only free for 32-bit
operands, but not for 64-bit quantities.

5 Comparison with Other Benchmarking Tools

Besides FELICS, there exist a few other tools for the benchmarking of cryp-
tographic algorithms, of which eBACS and XXBX are the most closely related
ones. eBACS (short for ECRYPT Benchmarking of Cryptographic Systems) was
developed during the ECRYPT II project to evaluate the performance of crypto-
graphic algorithms on Intel/AMD processors and high-end ARM models capable
to run Linux (e.g. the Cortex-A series). It features modules for measuring the per-
formance of public-key cryptosystems (called eBATS), stream ciphers (eBASC),
hash functions (eBASH), and authenticated encryption algorithms (eBAEAD).
Those modules operate all under a common framework called SUPERCOP (Sys-
tem for Unified Performance Evaluation Related to Cryptographic Operations
and Primitives) that allows benchmarking of C, C++ and assembly implemen-
tations. It comes with a large collection of implementations of cryptographic
algorithms and automatically compiles source code using different compilers and

230 L. Cardoso dos Santos et al.

compiler options. The execution time is extracted via a cycle counter (accessed
through assembler code) for many different lengths of input data. Since execu-
tion time is the only metric measured by this framework, implementations are
optimized solely for speed.

The eXternal Benchmarking eXtension [16] is an extension for the SUPER-
COP framework developed with the objective of benchmarking hash functions
on different microcontrollers in the context of the SHA-3 competition. XBX was
the first project to measure, in a unified manner, the performance of crypto-
graphic primitives built for different devices using the same evaluation method-
ology. In support for the now finished CAESAR competition, XBX was extended
for AEAD algorithms and the ability to measure power consumption. However,
apart from a 1-page summary of this so-called XXBX extension [6] (published
in 2017), we are not of aware any further papers describing concrete details of
its inner working, which indicates that XXBX is still under development.

Low-Level API. eBACS (and also XXBX) require AEAD implementations
to follow a simple high-level API consisting of just two basic functions, namely
aead encrypt and aead decrypt. This simplicity ensures that the API is easy to
use (and hard to misuse), even for inexperienced software developers, but yields
very coarse-grained results when applied to benchmarking. FELICS-AEAD, on
the other hand, defines a low-level API comprising the seven functions specified
in Listing 1. This low-level API offers a high degree of flexibility and allows for
easy implementation of different kinds of security services, including the high-
level functions of eBACS, for which nothing more than simple wrappers are
needed. Consequently, adhering to the low-level API does not introduce more
development effort than the high-level functions of eBACS. However, the low-
level API enables a more fine-grained evaluation of AEAD algorithms since not
only their overall execution times can be compared but also the times needed
for initialization, encrypting/decrypting the data, processing the associated data,
and generating/verifying the authentication tag. All these timings are valuable
for algorithm designers when trying to analyze why a given AEAD algorithm
is faster or slower than others. The fine-grained benchmarking results obtained
with the low-level API may also be useful when one has to find the most suit-
able AEAD algorithm (out of a pool of candidates) for the encryption and/or
authentication of a certain amount of data and associated data, respectively.

Evaluation Scenarios. eBACS measures the execution time of AEAD algo-
rithms for combinations of data lengths and associated data lengths ranging from
0 to 2048 bytes in steps of one byte. These more than four million combinations
have to be multiplied by the number of compiler options (i.e. optimization lev-
els), which makes the collection of benchmarking results extremely computation-
intensive and costly, especially when a large number of AEAD implementations
have to be evaluated. The target platforms of eBACS (Intel/AMD and high-
end ARM processors) are powerful enough to execute such a workload in an
acceptable time, but this is not the case for resource-constrained 8 and 16-bit

FELICS-AEAD: Benchmarking of Lightweight Authenticated Encryption 231

microcontrollers that can only be accessed via a debug probe and have to be pro-
grammed separately for each implementation. Using cycle-accurate instruction-
set simulators is also not a solution since most of them lack a stable way of
scripting to automate the verification of test vectors and the recording of cycle
counts. These issues were the main reason to introduce the two evaluation sce-
narios (and six sub-scenarios) described in Subsect. 2.1. Namely, by defining very
specific use cases that resemble real-world security services in the IoT, FELICS-
AEAD becomes capable to evaluate a large number of implementations in a
reasonable amount of time. The two scenarios are intended to have very dif-
ferent characteristics and requirements for AEAD algorithms. For example, the
amount of data in Scenario 1 is relatively small and the length of the associated
data is roughly a quarter of the data length. On the other hand, the amount of
data in Scenario 2 is much higher, but the associated data amounts to only a
small fraction of the data-length.

Figure-of-Merit. eBACS measures only the execution time of AEAD imple-
mentations, which makes it relatively easy to rank candidates by e.g. comparing
their average throughput in cycles/byte. In contrast, FELICS-AEAD determines
not only the execution time but also the memory footprint and code size of an
implementation on each of the three supported platforms. This is reasonable
since both RAM and ROM (resp. flash) are usually scarce resources in the IoT.
However, taking three different metrics for each AEAD implementation into
account makes a comparison of the benchmarking results relatively difficult,
which is why FELICS allows the user to define a Figure-of-Merit (FOM) that
combines execution time, RAM footprint, and code size into a single number.
The FOM metric can use different weight factors for the three metrics, but by
default, they have equal weight and, consequently, the execution time is consid-
ered to be equally important as RAM footprint and code size.

6 Conclusions and Final Remarks

In this paper, we introduced an extension to FELICS, a free and open-source
benchmarking framework for the evaluation of AEAD algorithms. The main
motivation behind this development is to give the designers of AEAD algorithms
a fair, comprehensive and consistent way of evaluating their algorithms in the
context of lightweight embedded devices, as well as a consistent way of comparing
performance metrics between different algorithms. More specifically, this paper
provided three contributions: (i) an API that allows a fine-grained evaluation
of algorithms, while still maintaining design flexibility for the designers; (ii) a
series of real-world based evaluations scenarios, allowing a fair comparison of
algorithms based on their predicted future use; and (iii) preliminary results with
a small set of well-known AEAD algorithms that demonstrate the framework’s
practical value. Thanks to its modular design, FELICS is very flexible and can be
extended to support new metrics, new scenarios, and new devices. Furthermore,
new implementations of AEAD algorithms can easily be added to the framework.

232 L. Cardoso dos Santos et al.

With that in mind, we encourage the cryptographic community to contribute
optimized C and Assembler implementations of AEAD candidates submitted
to the NIST lightweight crypto project and support in this way the fair and
transparent evaluation of AEAD algorithms.

Acknowledgements. We would like to thank Daniel Dinu, Yann Le Corre, and Virat
Shejwalkar for directly and indirectly helping with the development of this work. Luan
Cardoso dos Santos is supported by the Luxembourg National Research Fund through
grant PRIDE15/10621687/SPsquared.

References

1. Aumasson, J.-P., Jovanovic, P., Neves, S.: NORX: parallel and scalable AEAD.
In: Kuty�lowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8713, pp. 19–36.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11212-1 2

2. Beer, D.: MSPDebug: Debugging Tool for MSP430 MCUs (2015). http://
mspdebug.sourceforge.net

3. Bellare, M., Rogaway, P.: Encode-then-encipher encryption: how to exploit nonces
or redundancy in plaintexts for efficient cryptography. In: Okamoto, T. (ed.)
ASIACRYPT 2000. LNCS, vol. 1976, pp. 317–330. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44448-3 24

4. Bernstein, D.J., Lange, T.: eBACS: ECRYPT Benchmarking of Cryptographic
Systems (2009). http://bench.cr.yp.to

5. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., Van Keer, R.: CAESAR
submission: Ketje v2 (2016)

6. Carter, M.R., Velagala, R.R., Pham, J., Kaps, J.P.: eXtended eXternal Benchmark-
ing eXtension (XXBX). In: IEEE International Symposium on Hardware Oriented
Security and Trust (HOST 2018) (2018)

7. CryptoLUX Team: FELICS: Fair Evaluation of Lightweight Cryptographic Sys-
tems (2016). http://www.cryptolux.org/index.php/FELICS

8. Dinu, D., Biryukov, A., Großschädl, J., Khovratovich, D., Corre, Y., Perrin, L.:
FELICS-fair evaluation of lightweight cryptographic systems. In: NIST Workshop
on Lightweight Cryptography, vol. 128 (2015)

9. Dinu, D., Le Corre, Y., Khovratovich, D., Perrin, L., Großschädl, J., Biryukov,
A.: Triathlon of lightweight block ciphers for the Internet of Things. Cryptology
ePrint Archive, Report 2015/209 (2015). https://eprint.iacr.org/2015/209

10. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1, submission to
the CAESAR competition. CAESAR First Round Submission, March 2014

11. Katz, J., Yung, M.: Unforgeable encryption and chosen ciphertext secure modes of
operation. In: Goos, G., Hartmanis, J., van Leeuwen, J., Schneier, B. (eds.) FSE
2000. LNCS, vol. 1978, pp. 284–299. Springer, Heidelberg (2001). https://doi.org/
10.1007/3-540-44706-7 20

12. McGrew, D., Viega, J.: The Galois/counter mode of operation (GCM). Submission
to NIST Modes of Operation Process, vol. 20 (2004)

13. National Institute of Standards and Technology (NIST): Submission requirements
and evaluation criteria for the lightweight cryptography standardization process.
Technical report (2018). http://csrc.nist.gov/CSRC/media/Projects/Lightweight-
Cryptography/documents/final-lwc-submission-requirements-august2018.pdf

https://doi.org/10.1007/978-3-319-11212-1_2
http://mspdebug.sourceforge.net
http://mspdebug.sourceforge.net
https://doi.org/10.1007/3-540-44448-3_24
http://bench.cr.yp.to
http://www.cryptolux.org/index.php/FELICS
https://eprint.iacr.org/2015/209
https://doi.org/10.1007/3-540-44706-7_20
https://doi.org/10.1007/3-540-44706-7_20
http://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
http://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf

FELICS-AEAD: Benchmarking of Lightweight Authenticated Encryption 233

14. Rogaway, P.: Authenticated-encryption with associated-data. In: Atluri, V. (ed.)
Proceedings of the 9th ACM Conference on Computer and Communications Secu-
rity (CCS 2002), pp. 98–107. ACM Press, New York (2002)

15. Titzer, B.L., Lee, D.K., Palsberg, J.: Avrora: scalable sensor network simulation
with precise timing. In: 2005 Fourth International Symposium on Information Pro-
cessing in Sensor Networks (IPSN 2005), pp. 477–482. IEEE (2005)

16. Wenzel-Benner, C., Gräf, J.: XBX: eXternal Benchmarking eXtension for the
SUPERCOP crypto benchmarking framework. In: Mangard, S., Standaert, F.-X.
(eds.) CHES 2010. LNCS, vol. 6225, pp. 294–305. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15031-9 20

17. Wu, H.: ACORN: a lightweight authenticated cipher (v3). Candidate for the CAE-
SAR Competition (2016). https://competitions.cr.yp.to/round3/acornv3.pdf

https://doi.org/10.1007/978-3-642-15031-9_20
https://competitions.cr.yp.to/round3/acornv3.pdf

Advances in Side-Channel Analysis

A Comparison of χ2-Test and Mutual
Information as Distinguisher
for Side-Channel Analysis

Bastian Richter(B), David Knichel, and Amir Moradi

Horst Görtz Institute, Ruhr University Bochum,
Bochum, Germany

{bastian.richter,david.knichel,amir.moradi}@rub.de

Abstract. Masking is known as the most widely studied countermea-
sure against side-channel analysis attacks. Since a masked implementa-
tion is based on a certain number of shares (referred to as the order of
masking), it still exhibits leakages at higher orders. In order to exploit
such leakages, higher-order statistical moments individually at each order
need to be estimated reflecting the higher-order attacks. Instead, Mutual
Information Analysis (MIA) known for more than 10 years avoids such a
moment-based analysis by considering the entire distribution for the key
recovery. Recently the χ2-test has been proposed for leakage detection
and as a distinguisher where also the whole distribution of the leakages
is analyzed.

In this work, we compare these two schemes to examine their depen-
dency. Indeed, one of the goals of this research is to conclude whether
one can outperform the other. In addition to a theoretical comparison,
we present two case studies and their corresponding practical evalua-
tions. Both case studies are masked hardware implementations; one is
an FPGA-based realization of a threshold implementation of PRESENT,
and the other is an AES implementation as a coprocessor on a commer-
cial smart card.

Keywords: Chi squared test · Mutual information analysis ·
Side-channel attacks

1 Introduction

When developing real-world cryptographic applications, implementation attacks
pose a serious threat. The past has shown that cryptographic applications like
locking systems [5,17], one-time-password tokens [16], RFID cards [15], and mesh
networks [4] not incorporating strong countermeasures are susceptible to Side-
Channel Analysis (SCA) attacks. Thus, it is very important to harden these
during development and to thoroughly test by performing possible attacks.

Within the area of countermeasures against SCA attacks, masking is widely
considered as the most important one since it can give certain guarantees, e.g.
c© Springer Nature Switzerland AG 2020
S. Beläıd and T. Güneysu (Eds.): CARDIS 2019, LNCS 11833, pp. 237–251, 2020.
https://doi.org/10.1007/978-3-030-42068-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-42068-0_14&domain=pdf
https://doi.org/10.1007/978-3-030-42068-0_14

238 B. Richter et al.

threshold implementations [14] concerning glitches in the implementation. By
splitting the computation into shares, direct leakage of the state can be prevented
and not only reduced or covered by noise like with hiding countermeasures. In
the univariate case these masking schemes are developed to prevent leakage
up to a certain statistical order, i.e. a first-order masking prevents extracting
information via the first statistical moment but might still be attackable via the
second centered statistical moment. However, higher-order statistics are more
susceptible to noise, so the required number of traces to sufficiently approximate
the statistics are increasing exponentially with the order [19].

Further, when implementing masking schemes, the designers always have
to test whether some physical side-effects of the platform are influencing the
effectiveness of the countermeasure. Here, especially coupling [3,10] is a main
problem for hardware implementations which can lead to unpredicted leakages
in lower orders due to undesired interaction between the shares.

An initial test is usually performed by using a leakage detection method often
based on the t-test [8]. In 2018 the χ2-test [12] was proposed as an addition to
the t-test. While the t-test highlights leakage in each order individually, the χ2-
test considers the whole distribution and can thus detect leakage spread over
multiple orders. Leakage detected with the χ2-test but not in the t-tests can
indicate that the noise in the measurements is not sufficient to cover the leakage
in the higher orders.

However, leakage detected in these tests does not necessarily indicate
exploitable leakage. To further examine if detected leakage can be exploited,
attacks have to be executed. The original Correlation Power Analysis (CPA) [2]
attack correlates the measurements with a hypothetical power model based on
a guessed key and thus targets the first order. Fortunately, the attack can be
extended to higher orders by preprocessing the measurements [19] (c.f. Sect. 2.5).
But still, this only attacks individual orders like the t-test. To attack the whole
distribution different attack methods are needed. The first one was Mutual Infor-
mation Analysis (MIA) presented by Gierlichs et al. in 2008 [7] which computes
the mutual information between the measurements and an assumed model to
reveal the key. As this is based on histograms or a kernel distribution, it also con-
siders the whole distribution. In addition to leakage detection Moradi et al. also
proposed a distinguisher based on the χ2-test, which tests whether the groups
defined by a model are independent and thus can also reveal the keys. In combi-
nation with modern measurement methods like on-die EM measurements [6,9]
which can monitor the leakage of the cryptographic core independently of the
surrounding circuitry, a low noise measurement might defeat a masking imple-
mentation when targeting with the combined leakage of all orders.

1.1 Contribution

As both methods follow similar approaches and can actually be calculated on
the same precomputed histograms, the question arises whether one of the meth-
ods shows an advantage over the other. To evaluate this, we first try to find a
theoretical dependency between the two tests and show why these schemes are

A Comparison of χ2-Test and MI as Distinguisher for SCA 239

not directly related in the way the attacks are currently formulated. Further,
we present two case studies which successfully exploit leakage in higher orders.
The first one is a threshold implementation of PRESENT implemented on an
FPGA and the second an SCA-protected AES hardware implementation on a
smart card.

2 Background

2.1 χ2-Test and Distinguisher

Utilizing the χ2-test to detect leakage independent of statistical moments was
initially proposed by Moradi et al. in 2018 [12]. Further, they showed that it can
also be used as a distinguisher similar to MIA.

χ2-Test of Independence. Pearson’s χ2-test of independence checks whether
two random variables are independent. For two random variables X and Y , it
tests whether

H0 : Pr[X = x|Y = y] = Pr[X = x]

which means that they are independent. Let P ∈ R
r×c be the matrix with pij

standing for the joint probabilities Pr[X = xi ∧ Y = yj] that X takes its i-th
category and Y takes its j-th. If H0 holds, the multiplication rule states that
Pr[X = xi ∧ Y = yj] = Pr[X = xi] · Pr[Y = yj]. So in a random experiment
with N repetitions, the expected frequency that X = xi and Y = yj should
be N · Pr[X = xi] · Pr[Y = yj]. Since Pr[X = xi] and Pr[Y = yj] are not
known, they have to be estimated from the contingency table F = (fi,j) ∈ R

r×c

where fi,j is the number of times that xi occurred together with yj . To estimate
Pr[X = xi] we sum up all frequencies in the corresponding row and divide it
by the total number of experiments N . To estimate Pr[Y = yj] we sum up all
frequencies in the corresponding column and divide it by N . This results in the
expected frequency being calculated as

ei,j =

(c−1∑
k=0

fi,k

N

)(r−1∑
k=0

fk,j

N

)
· N =

(c−1∑
k=0

fi,k

)(r−1∑
k=0

fk,j

)
N

. (1)

Now the Z value is a metric of how much the actual frequencies fi,j differ
from the expected ones ei,j . It is computed in the same fashion as shown in
Eq. (2):

Z =
r−1∑
i=0

c−1∑
j=0

(fi,j − ei,j)2

ei,j
. (2)

With the degree of freedom as v = (r − 1) · (c − 1). The p-value

p =
∫ ∞

Z

f(Z, v) dx, f(Z, v) =

⎧⎨
⎩

Z
v
2 −1e−Z

2

2
v
2 Γ(v

2)
Z > 0

0 Z ≤ 0
, (3)

240 B. Richter et al.

with the gamma function Γ can be used as a metric in order to test H0. It
expresses the probability whether the null hypothesis is accepted. We use this
test for specific leakage assessment and as a distinguisher in a Differential Power
Analysis (DPA). More precisely, we test whether the distribution depends of the
value of a hypothetical power model. In this case, X corresponds to the value
measured by the ADC of the oscilloscope and Y corresponds to the value of the
power model. It can also be used in addition to the non-specific t-test [12], where
Y is simply 0 or 1, depending of whether a random plaintext or a fixed plaintext
is used.

Distinguisher. Very similar to the way the Pearson correlation coefficient is
used as a distinguisher in a DPA/CPA, we may use the result of the χ2-test.
In DPA/CPA, it is assumed that for the correct key guess, the values of the
power model correlates well with the actual power consumption. In χ2-test the
assumption is that for the correct key guess, the traces depend on the values of
the power model, whereas the power consumption is independent of the model
for wrong key guesses. For every key guess this can be checked with the χ2-test
of independence. Similar to the t-test, we can state with a certain confidence
that the assumption H0 is wrong, which in our case means that the values of
the power consumption depends on the values of the model.

2.2 Mutual Information Analysis

Mutual Information Analysis (MIA) for SCA was initially proposed by Gierlichs
et al. in 2008 [7] as a more generic information-theoretic distinguisher.

Mutual Information. The Mutual Information (MI) I is a measure for the
information shared between two random variables X and Y .

As the entropy H(X) is a measure of the information contained in X we can
substract the conditional entropy H(X|Y) as this is exactly the portion of the
entropy which is not covered by Y to get the mutual information I(X;Y).

I(X;Y) = H(X) − H(X|Y)
= H(X) + H(Y) − H(X,Y) = I(Y ;X)

(4)

Suppose that X and Y are random variables of the discrete spaces X and Y, we
can also formulate the mutual information I(X;Y) as

I(X;Y) =
∑
x∈X

∑
y∈Y

Pr[X = x, Y = y]·

log2

(
Pr[X = x, Y = y]

Pr[X = x]Pr[Y = y]

)
,

(5)

knowing the joint probability Pr[X = x, Y = y] and the marginal probabilities
Pr[X = x] and Pr[Y = y] which can be calculated from the contingency tables.

A Comparison of χ2-Test and MI as Distinguisher for SCA 241

Distinguisher. Considering this in the side-channel application, we set one vari-
able as our observation of the side-channel and the other a model of the leakage
depending on the secret key. Hence, we set X as our observation of the power
consumption and Y as the assumed distribution of our leakage model. Hence, if
the power consumption behaves similar to our leakage model, the mutual infor-
mation increases. Only if the key is correct, our observations have the same or
a similar distribution as the power model and thus a high mutual information.

2.3 Implementation of χ2-Test and MIA

The first step needed is the calculation of the histograms for the different models
and key candidates. For each key candidate the traces are grouped by the key
dependent model. The histograms are then calculated for each group and each
point in time. Here, the original oscilloscope quantization (8-bit values as the
result of its Analog-to-Digital Converter (ADC)) is kept and the results saved as
starting point for the different metric calculations. When using the same model
this can be performed as a common precomputation step for χ2-test and MIA,
as both methods can perform their computation on the same histograms.

Based on these basic histograms the next step differs for the two methods.
The χ2-test has a fixed rule for handling empty bins by ignoring them. This
can result in different numbers of bins for each point in time. But since we
use the p-value for comparison of the candidates, this does not matter as it is
accounted for in the degrees-of-freedom v (see Eq. (3)). For MIA the original
histograms have to be rebinned. The lowest (highest, respectively) bin contains
the lowest(highest, respectively) value measured with the bins in between filled
with the corresponding ratio of the original bin counts. Additionally, the number
of bins has to be the same for each point in time to be able to compare these. At
the same time, also the success of the attack highly depends on the choice of the
number of bins as shown by Moradi et al. in [11]. Thus, MIA has to be performed
multiple times with different parameters to find the best attack setting which
results in a high overhead in comparison to the χ2-test. These adjustments to
the bins, are only performed in memory within the respective calculation.

2.4 Relation Between χ2-Test and Mutual Information

While at first glance MIA and the χ2-test seem very similar and can show similar
results (see Sects. 3.1 and 4.6), they are based on different approaches. There are
different tests which can be performed with a statistical measure like the χ2-test.
Two common ones to perform on data sets are the test of goodness-of-fit and
the test of independence which was already introduced in Sect. 2.1.

The test of goodness-of-fit examines whether the contingency table based
on an observation fi of a random variable fits the expected occurrences ei of a
theoretical model. In contrast to the test of independence the expected values ei

are given by a theoretical model and not by the observations.
For the same applications as the χ2-test there is the G-test, which can be

used as an alternative for test of goodness-of-fit and test of independence. It

242 B. Richter et al.

is also based on histograms/contingency tables and also approximates the χ2

distribution.

G = 2
∑
∀i

fi · ln
(

fi

ei

)
(6)

As shown in [13] Eq. (6) can also be expressed in terms of probabilities pi =
1
N

∑
i fi,j and pi,j = 1

N fi,j with N the total number of observations.

G = 2N
∑
∀i,∀j

pi,j · (ln(pi,j) − ln(pi) − ln(pj)) (7)

By considering the definition of entropy H(x) = −∑
x∈X p(x) · ln p(x) and joint

entropy H(x, y) = −∑
x∈X ,y∈Y p(x, y) · ln p(x, y) based on the natural logarithm

and distributing the sum to the sub-terms we can further express G through
entropies and following from these mutual information.

G = 2N (H(x) + H(y) − H(x, y)) = 2N · I(x; y) (8)

Please note that the entropy and mutual information in computer science are
usually calculated with log2 which introduces an additional factor of 1

ln 2 ≈ 1.443
in Eq. (8).

Based on this, there should only be a constant factor between mutual infor-
mation and the G value. As G-test and χ2-test both approximate the χ2-
distribution, these should lead to the same results for reasonable sample sizes.
So, there seems to be a connection between χ2 and mutual information. How-
ever, the two tests are currently used in different approaches. For the χ2-test as
presented in [12] we split up the observations into sets based on a model and
then perform a test of independence, i.e. whether the distributions of the sets are
independent. In contrast, for MIA we calculate the mutual information between
our model and the observations which is more like a test of goodness-of-fit, i.e.
whether the observed distribution is similar to the theoretical model. Accord-
ingly, the relation via the G-test does not apply. Since we cannot give a direct
theoretical connection we further evaluate their behavior by two case studies.

2.5 Higher-Order CPA

CPA as introduced by Bier et al. [2] uses the Pearson correlation coefficient
between measurements and hypothetical leakage to extract the secret key. The
hypothetical leakage is calculated for each challenge using a key dependent
model.

In order to attack masked implementations, it is possible to perform a univari-
ate (i.e., every point in time is considered individually) CPA at higher orders by
preprocessing the measurements. To this end, the point-wise mean is subtracted
from the measurements t and the results are taken to the power of the order d
as t′ = (t − t̄)d. It is shown by Schneider et al. [20] in 2016 how to efficiently
perform these computations.

A Comparison of χ2-Test and MI as Distinguisher for SCA 243

3 Case Study 1: PRESENT Threshold Implementation

Our first case study is a threshold implementation of the PRESENT cipher as
presented in [18]. For better comparison we evaluate the same implementation
used by Moradi et al. in [12]. To achieve first-order security the state of the
cipher is split into three Boolean shares (x1, x2, x3) where x = x1 ⊕ x2 ⊕ x3.
It is saved in three 16-by-4 bit shift registers and from there shifted 4 bits per
clock cycle. After key addition, the state is shifted into the S-box which is split
up into two functions G and F separated by a register. The S-box lookups are
then run as a pipelined serial computation which takes 17 clock cycles with the
PLayer run in parallel in one clock cycle after the S-boxes.

The design is implemented on a Xilinx Spartan-6 FPGA on a SAKURA-G
board [1]. To collect the measurements, we used the integrated amplifier of the
SAKURA-G board and sampled the power consumption at a sampling rate of
1 GS/s. The core was running at a frequency of 160 MHz and the initial sharing
performed in the control FPGA to prevent leakage from the inputs, i.e. the target
FPGA receives masked plaintext and issues masked ciphertext.

Performing a random-vs-fixed (non-specific) t-test on the traces revealed min-
imal leakage (t = 8.2) in the second and significant leakage (t = 39.55) in the
third order using 50,000,000 traces. Since we attack the first round of the encryp-
tion and the major leakage is right at the beginning of the measurement, we only
consider the first 500 ns for the attack.

3.1 Results

As we are analyzing a nibble-serial implementation, we chose the Hamming
distance of two consecutive S-box lookups as our power model HD(S(pi ⊕
ki), S(pi+1 ⊕ ki+1)). It results in 8-bit key candidates, as it is based on the
distance between two consecutive nibbles. To decrease the complexity of the
attack, we can assume that we perform the 8 bit attack only for the first dis-
tance, continuing from there we always already know one of the two key nibbles
and can work with 4 bit candidates. To find the optimal number of bins for the
MIA, we first tested which settings lead to the best result for the nibble and
then performed the attack with this optimal number of bins.

We performed a key recovery on one of the key nibbles with χ2-test and MIA
using 50,000,000 traces. Figure 1(a) and (c) show the χ2-p-value and the mutual
information after all traces were processed. Both attacks are successful and the
correct key can be clearly distinguished. As both methods use the same model
they highlight the correct key at the same point in time but the period during
which the correct key stands out is longer for MIA. However, correct key and
wrong candidates are more clearly separated in the χ2-test. This is also confirmed
by Fig. 1(d) and (b) which plot the maximum MI (p-value, respectively) over the
number of traces in the calculation. The χ2-test needs 30,000,000 traces for the
key to stand out while MIA needs 36,000,000 traces for the correct key to be
more likely than the ghost peak.

244 B. Richter et al.

Fig. 1. Results of χ2-test and MIA on PRESENT threshold implementation.

We also performed CPAs from the first to the third order but were not able to
recover the key. We therefore omitted the figures. This indicates that combined
leakage in higher order can indeed be better exploited in our case by moment-free
methods.

4 Case Study 2: Smart Card

Our second target is a commercially available smart card implementing the Java
Card standard with multiple cryptographic hardware cores. In this case study
we target the AES encryption which is implemented by a dedicated circuit of
the card.

4.1 Measurements

We performed on-die near-field EM measurements on the backside of the die,
exposing it by removing the center pad of the smart card contacts and the
underlying material.

For the measurements we used a Teledyne-Lecroy Waverunner 8254M with
a sampling rate of 5 GSamples/s and the full bandwidth of 2.5 GHz. This high
sampling rate and bandwidth is needed since the on-die EM signal includes sharp
peaks reflecting the high frequency of the signal. As the EM probe we used a
Langer EMV ICR HH150-27 near-field microprobe with a diameter of 150µm
and a bandwidth of 1.5 MHz to 6 GHz.

To find the optimal position on the die we scanned over the die and by visual
inspection chose a position which showed a characteristic round pattern of the
AES encryption.

A Comparison of χ2-Test and MI as Distinguisher for SCA 245

0 2 4 6 8 10 12
Time [s]

-50

0

50

V
ol

ta
ge

 [A
D

C
 u

ni
ts

]

Fig. 2. Mean trace of 2000 aligned traces with clearly visible round structures.

4.2 Architecture

Based on our measurements we were able to identify the rounds of the AES
implementation. The rounds are formed by the repeating pattern in Fig. 2 of
approx. 0.75 µs length. The rounds are marked by red lines in Fig. 2. We con-
firmed this using correlation on the key schedule, which is executed at every
round. Each round needs 25 clock cycles including the key schedule of 7 clock
cylces to complete. The three high peaks within the round pattern are the end
of the key schedule. Interestingly, the last round seems to be not shorter than
the other ones although the MixColumns operation is missing in the last round
of the AES algorithm.

4.3 Countermeasures

While it is based on a smart card IC which is also used in Common Criteria
certified software and hardware combinations, the Java card we are attacking is
not certified and most likely does not implement all countermeasures which are
included in a certified product. Still, we expect that the circuit realizes hardware
countermeasures.

A visual inspection of multiple measurements reveals strong random delays
of the encryption in relation to the communication and additional high jitter of
the clock. Also, we were able to get first order correlations on some plaintext
bytes at the beginning of the realigned traces but no first order correlation on
intermediates of the first round (see Sect. 4.6). Due to this low first order leakage,
we believe that the card also incorporates some kind of masking countermeasures.

From a certified product one would expect additional countermeasures. A
typical one would be dummy rounds, which we can exclude here since the traces
clearly show 10 rounds, also the leakage of single rounds occurs only within one
round pattern and not distributed over multiple ones.

4.4 Alignment

As we already observed random timing and jitter countermeasures we first need
to align the traces. In the following, we explain how we did this to achieve the
aligned mean trace shown in Fig. 2.

246 B. Richter et al.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time [s]

-50

0

50

V
ol

ta
ge

 [A
D

C
 u

ni
ts

]

(a) Start: Only trigger

11.6 11.7 11.8 11.9 12 12.1 12.2 12.3 12.4 12.5 12.6
Time [s]

-50

0

50

V
ol

ta
ge

 [A
D

C
 u

ni
ts

]

(b) End: Only trigger

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time [s]

-50

0

50

V
ol

ta
ge

 [A
D

C
 u

ni
ts

]

(c) Start: After coarse alignment

11.6 11.7 11.8 11.9 12 12.1 12.2 12.3 12.4 12.5 12.6
Time [s]

-50

0

50

V
ol

ta
ge

 [A
D

C
 u

ni
ts

]
(d) End: After coarse alignment

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time [s]

-50

0

50

V
ol

ta
ge

 [A
D

C
 u

ni
ts

]

(e) Start: After peak alignment

11.6 11.7 11.8 11.9 12 12.1 12.2 12.3 12.4 12.5 12.6
Time [s]

-50

0

50

V
ol

ta
ge

 [A
D

C
 u

ni
ts

]

(f) End: After peak alignment

Fig. 3. Beginning and end of ten traces each after the three different stages of align-
ment.

Trigger on High Peak. To compensate for the long random delays, we used
an advanced trigger setting making use of both IO communication signals of the
card and the EM signal itself. This approach is possible since we are performing
a localized EM measurement which exhibits the highest amplitudes when the
encryption is running. Using such a trigger results in traces with only small
temporal variation of the beginning of the encryption block as shown in Fig. 3(a)
and (b).

Coarse Alignment of AES Block. We selected a reference pattern at the
beginning of the first trace. To recover the offset of the other traces, we then
correlated the pattern over a window at the beginning. Shifting the traces by
the found offset results in Fig. 3(c) and (d). The beginning is now aligned but
due to the clock jitter, the difference between the traces increases to the end.

Fine Alignment Against Clock Jitter. To overcome the clock jitter, we
followed a windowing approach. For each clock cycle in each trace we searched
for the minimum and selected a window around it. By only keeping the part of
the trace belonging to the windows of the 150 clock cycles, we created traces

A Comparison of χ2-Test and MI as Distinguisher for SCA 247

whose clock cycles are aligned. As shown in Fig. 3(e) and (f) all peaks are now
aligned at the beginning as well as at the end.

4.5 Key Recovery

After performing the alignment, we were able to conduct an attack on a subset
of the key bytes. To this end, we used a Hamming distance (HD) model between
outputs of the S-box operation HD(S(pi⊕ki), S(pj ⊕kj)). We found certain pairs
(i, j) = {(1, 2), (5, 6), (9, 10), (13, 14), (6, 7), (14, 15)} which lead to successful key
recovery. As the model targets the distance between two bytes the size of the key
candidates is 16 bits for the first four pairs and 8 bits for the last two ones since
one of the bytes is already known from a previous pair. Interestingly, the first
four pairs resemble the byte-wise distance between the second and third row of
the AES state matrix.

0.425 0.43 0.435 0.44
Time [s]

0

5

10

-lo
g 10

(p
)

(6,7)
(14,15)

(a)

0.76 0.762 0.764 0.766 0.768
Time [s]

0

10

20

-lo
g 10

(p
)

(1,2)
(5,6)
(9,10)
(13,14)

(b)

Fig. 4. Results of χ2-test over time (a) and zooms of the two peaks we chose for the
attack (b) and (c).

The results of the χ2-test can suffer from outlier categories with only low
counts. To prevent this from influencing the analyses, we modified the initial
model. Instead of using the normal Hamming distance to categorize the traces,
we merged the less frequent HDs which results in the following five categories
[{0, 1, 2}, 3, 4, 5, {6, 7, 8}]. In the following we denote this grouping as HD′.

Considering the leakage of the different pairs over time we observed that that
the pairs {(1, 2), (5, 6), (9, 10), (13, 14)} leak at three different times while pairs
{(6, 7), (14, 15)} only leak at one point. For the attack we chose the peaks with
the highest p-value for the respective pairs which are shown in more detail in
Fig. 4(a) and (b).

Figure 5 shows the progress of the attack for the different pairs of key bytes.
The pair (13, 14) shows the highest probability and can be recovered with less
than 200000 traces. With 350000 required traces pair (6, 7) is the most difficult
to recover.

Using 350,000 traces only 6 out of 16 key bytes remain unknown with this
attack. The remaining 48 bits of entropy are within brute-force range even with-
out specialized hardware.

248 B. Richter et al.

(a) HD′(S(p1 ⊕ k1), S(p2 ⊕ k2)) (b) HD′(S(p5 ⊕ k5), S(p6 ⊕ k6))

(c) HD′(S(p6 ⊕ k6), S(p7 ⊕ k7)) (d) HD′(S(p9 ⊕ k9), S(p10 ⊕ k10))

(e) HD′(S(p13 ⊕ k13), S(p14 ⊕ k14)) (f) HD′(S(p14 ⊕ k14), S(p15 ⊕ k15))

Fig. 5. Progress of the attack results with the χ2-distinguisher. Correct key highlighted
in black.

4.6 χ2-Test Vs. MIA Vs. HOCPA

In order to compare the different attacks we ran a χ2-test, a MIA and CPAs
from the first to the third order. To speed up the analyses we only used an 8-bit
candidate and a small window of the traces. As the target, we picked the pairs
(13, 14) and (6, 7) which are the ones requiring the least and most number of
traces to succeed.

The CPAs at 1st to 3rd order were not successful in recovering the secret.
Further, we used the aforementioned HD′ model for all attacks. Since CPA needs
a linear dependency between the power model and the measurements, we also
examined the normal HD model but the attacks at all three orders were still not
successful.

In contrast, χ2-test and MIA were both able to recover the keys. For the
pair (13, 14) (shown in Fig. 6) both attacks represent a clear peak for the cor-
rect key candidate. The χ2-test needs around 200,000 traces and MIA requires
slightly more traces (230,000). The attack targeting the pair (6, 7) show a dif-
ferent behavior shown in Fig. 7. While it was the worst performing pair for the
χ2-test with 350,000 traces, it performs even better than the other pair with
MIA. It needs only 180,000 traces to identify the correct candidate. Interestingly,
the optimal number of bins for MIA is very different for the two considered key

A Comparison of χ2-Test and MI as Distinguisher for SCA 249

pairs. While the first showed best results with rebinning to 33 bins, the second
one was optimal with only 8 bins.

Fig. 6. Results of χ2-test, MIA and 3rd order CPA attacks on key byte pair (13, 14).

Fig. 7. Results of χ2-test, MIA and 3rd order CPA attacks on key byte pair (6, 7).

250 B. Richter et al.

5 Conclusion

As explained in Sect. 2.4, for the current use of χ2-test and MIA there is no
direct relation. This is also shown in the two case studies presented here. While
for the PRESENT TI the χ2-test performed better, in the second case study we
also presented an example in which MIA outperforms the other.

Independent of the presented results, there are differences in the application
of the tests. While the computational effort needed to execute a single attack
is similar for χ2-test and MIA especially when using common histograms, the
settings of MIA need to be optimized. In the histogram-based attacks an optimal
number of bins has to be found for optimal results. This can result in the need
to run the attack many times. The χ2-test in contrast has defined rules how to
handle empty bins. Thus, the χ2-test might not necessarily be the best attack
but it is easy to apply and does not need tuning, especially when already using
it for leakage detection.

The presented second case study highlights the importance of thorough test-
ing and certifying of cryptographic implementations. The common higher-order
attacks (CPA) cannot reveal the secret while more sophisticated ones are able to
do so. In case the underlying hardware AES implementation should be certified,
such moment-free distinguishers also need to be examined.

Future Works. As the two analysis methods χ2-test and MIA are currently used
in different test types, it might be interesting to see how the χ2-test performs in
a test of goodness-of-fit scenario. Since the methods might converge differently,
they still may lead to different results. It might also be interesting to see whether
using the G-test instead of the χ2-test leads to a faster key recovery.

Acknowledgments. This work is partly supported by the German Research Founda-
tion (DFG) through the project 393207943 “Security for Internet of Things with Low
Energy and Low Power Consumption (GreenSec)”, and Germany’s Excellence Strategy
- EXC 2092 CASA - 390781972.

References

1. Side-Channel AttacK User Reference Architecture. http://satoh.cs.uec.ac.jp/
SAKURA/index.html

2. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5 2

3. De Cnudde, T., Ender, M., Moradi, A.: Hardware masking, revisited. IACR Trans.
Cryptogr. Hardw. Embed. Syst. 2018(2), 123–148 (2018)

4. Dinu, D., Kizhvatov, I.: EM analysis in the iot context: lessons learned from an
attack on thread. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018(1), 73–97
(2018)

5. Eisenbarth, T., Kasper, T., Moradi, A., Paar, C., Salmasizadeh, M., Shalmani,
M.T.M.: On the power of power analysis in the real world: a complete break of
the KeeLoq code hopping scheme. In: Wagner, D. (ed.) CRYPTO 2008. LNCS,

http://satoh.cs.uec.ac.jp/SAKURA/index.html
http://satoh.cs.uec.ac.jp/SAKURA/index.html
https://doi.org/10.1007/978-3-540-28632-5_2

A Comparison of χ2-Test and MI as Distinguisher for SCA 251

vol. 5157, pp. 203–220. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-85174-5 12

6. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: concrete results.
In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
251–261. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44709-1 21

7. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information analysis. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-85053-3 27

8. Goodwill, G., Jun, B., Jaffe, J., Rohatgi, P.: A testing methodology for side channel
resistance validation. In: NIST Non-invasive Attack Testing Workshop (2011)

9. Heyszl, J., Mangard, S., Heinz, B., Stumpf, F., Sigl, G.: Localized electromagnetic
analysis of cryptographic implementations. In: Dunkelman, O. (ed.) CT-RSA 2012.
LNCS, vol. 7178, pp. 231–244. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-27954-6 15

10. Moradi, A., Mischke, O.: On the simplicity of converting leakages from multivariate
to univariate (case study of a glitch-resistant masking scheme). In: Bertoni, G.,
Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 1–20. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40349-1 1

11. Moradi, A., Mousavi, N., Paar, C., Salmasizadeh, M.: A comparative study of
mutual information analysis under a Gaussian assumption. In: Youm, H.Y., Yung,
M. (eds.) WISA 2009. LNCS, vol. 5932, pp. 193–205. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-10838-9 15

12. Moradi, A., Richter, B., Schneider, T., Standaert, F.: Leakage detection with the
x2-test. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018(1), 209–237 (2018)

13. Morris, A.: An information theoretic measure of sequence recognition performance.
Technical report, IDIAP (2002)

14. Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of nonlinear
functions in the presence of glitches. J. Cryptol. 24(2), 292–321 (2011)

15. Oswald, D., Paar, C.: Breaking Mifare DESFire MF3ICD40: power analysis and
templates in the real world. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS,
vol. 6917, pp. 207–222. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-23951-9 14

16. Oswald, D., Richter, B., Paar, C.: Side-channel attacks on the Yubikey 2 one-time
password generator. In: Stolfo, S.J., Stavrou, A., Wright, C.V. (eds.) RAID 2013.
LNCS, vol. 8145, pp. 204–222. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-41284-4 11

17. Oswald, D., Strobel, D., Schellenberg, F., Kasper, T., Paar, C.: When reverse-
engineering meets side-channel analysis – digital lockpicking in practice. In: Lange,
T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282, pp. 571–588.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43414-7 29

18. Poschmann, A., Moradi, A., Khoo, K., Lim, C., Wang, H., Ling, S.: Side-channel
resistant crypto for less than 2, 300 GE. J. Cryptol. 24(2), 322–345 (2011)

19. Prouff, E., Rivain, M., Bevan, R.: Statistical analysis of second order differential
power analysis. IEEE Trans. Comput. 58(6), 799–811 (2009)

20. Schneider, T., Moradi, A., Güneysu, T.: Robust and one-pass parallel computa-
tion of correlation-based attacks at arbitrary order. In: Standaert, F.-X., Oswald,
E. (eds.) COSADE 2016. LNCS, vol. 9689, pp. 199–217. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-43283-0 12

https://doi.org/10.1007/978-3-540-85174-5_12
https://doi.org/10.1007/978-3-540-85174-5_12
https://doi.org/10.1007/3-540-44709-1_21
https://doi.org/10.1007/978-3-540-85053-3_27
https://doi.org/10.1007/978-3-642-27954-6_15
https://doi.org/10.1007/978-3-642-27954-6_15
https://doi.org/10.1007/978-3-642-40349-1_1
https://doi.org/10.1007/978-3-642-10838-9_15
https://doi.org/10.1007/978-3-642-23951-9_14
https://doi.org/10.1007/978-3-642-23951-9_14
https://doi.org/10.1007/978-3-642-41284-4_11
https://doi.org/10.1007/978-3-642-41284-4_11
https://doi.org/10.1007/978-3-662-43414-7_29
https://doi.org/10.1007/978-3-319-43283-0_12

Key Enumeration from the Adversarial
Viewpoint

When to Stop Measuring and Start Enumerating?

Melissa Azouaoui1,2(B), Romain Poussier3, François-Xavier Standaert1,
and Vincent Verneuil2

1 Université Catholique de Louvain, Louvain-la-Neuve, Belgium
2 NXP Semiconductors, Hamburg, Germany

melissa.azouaoui@nxp.com
3 Temasek Laboratories, Nanyang Technological University, Singapore, Singapore

Abstract. In this work, we formulate and investigate a pragmatic ques-
tion related to practical side-channel attacks complemented with key enu-
meration. In a real attack scenario, after an attacker has extracted side-
channel information, it is possible that despite the entropy of the key has
been significantly reduced, she cannot yet achieve a direct key recovery. If
the correct key lies within a sufficiently small set of most probable keys,
it can then be recovered with a plaintext and the corresponding cipher-
text, by performing enumeration. Our proposal relates to the following
question: how does an attacker know when to stop acquiring side-channel
observations and when to start enumerating with a given computational
effort? Since key enumeration is an expensive (i.e. time-consuming) task,
this is an important question from an adversarial viewpoint. To answer
this question, we present an efficient (heuristic) way to perform key-less
rank estimation, based on simple entropy estimations using histograms.

Keywords: Side-channel attacks · Key rank estimation · Key
enumeration

1 Introduction

Key enumeration and key rank estimation are important parts of the secu-
rity evaluation of cryptographic implementations. These methods allow post-
processing the side-channel attack outcomes and determine the computational
security of an implementation with respect to a full key recovery. Key enumera-
tion is an adversarial tool that allows testing key candidates without the knowl-
edge of the key by listing the key candidates starting with the most likely one
according to the attack results. For example, Veyrat-Charvillon et al. presented
a deterministic algorithm for key enumeration [13] that allows the optimal enu-
meration of full keys by decreasing order of probabilities, by reformulating the
key enumeration problem as a geometric problem. Ye et al. proposed a so-called
key space finding algorithm [15], that returns the enumeration workload for a
c© Springer Nature Switzerland AG 2020
S. Beläıd and T. Güneysu (Eds.): CARDIS 2019, LNCS 11833, pp. 252–267, 2020.
https://doi.org/10.1007/978-3-030-42068-0_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-42068-0_15&domain=pdf
https://doi.org/10.1007/978-3-030-42068-0_15

Key Enumeration from the Adversarial Viewpoint 253

given success probability, by considering the number of optimal guesses for each
subkey. Bogdanov et al. proposed a score-based key enumeration algorithm [2]
that reduces the high computational and memory complexity of previous pro-
posals. Martin et al. provided a new method [9] by casting the key enumeration
as an integer knapsack problem.

On the other hand, rank estimation is a part of the side-channel evaluator’s
tool set: given lists of discrete probability distributions for independent parts
of the key and the correct key, a key rank estimation algorithm provides tight
bounds for the position of the correct key among all possible ones (i.e. the num-
ber of guesses required to find the key following an optimal enumeration like
above). In 2013, Veyrat-Charvillon et al. showed [14] that in the context of secu-
rity evaluations (for which the key is usually known), it is possible to estimate the
rank of a key beyond the evaluator’s practical enumeration capabilities. Bern-
stein, Lange, and van Vredendaal improved this rank estimation proposals [1]
and introduced a new method using polynomial multiplication to calculate lower
and upper bounds for the ranks of all keys, by re-writing the problem of counting
probabilities larger than the key’s probability as finding the number of terms in
a generalized polynomial satisfying a specific condition. In parallel, Glowacz et
al. proposed a new tool for rank estimation [6] that is conceptually simple and
very efficient, based on histogram convolutions, which was later extended to key
enumeration by Poussier, Standaert, and Grosso [10]. At CHES 2017, a different
and faster approach [5] was finally proposed by Choudary and Popescu. They
suggested to bound the guessing entropy with information theoretic measures
and inequalities, that do not require the knowledge of the correct key, estimated
across multiple side-channel attacks.

In this paper, we tackle a different question than key enumeration or rank
estimation, which lies somewhere in between. In a realistic attack scenario,
after an adversary has performed a divide-and-conquer side-channel information
extraction using a set of N observations, she obtains a vector of probabilities or
scores for each subkey. The goal of the adversary is to perform a full key recovery.
In this context, if all the subkeys have not been fully recovered immediately from
the information extracted, the natural next step is key enumeration, up to a cer-
tain limit defined by her computational capabilities. Depending on the attacks,
the cryptographic operation(s) targeted, and the size of the key, enumeration
can become the most time- and resource-consuming step. Hence, it is very useful
(for an adversary) to efficiently estimate the key rank, and therefore to know
whether it is worth to start enumerating the key candidates or if the collection of
more side-channel observations is needed. We believe that this is an important
problem from an adversarial point-of-view, that has not yet been investigated.

We show in this article a simple solution for this purpose and propose a key-
less heuristic (i.e. that doesn’t require the knowledge of the key) to efficiently
approximate the rank of a key given the result of a side-channel attack. Our
solution is based on the key rank estimation method from Glowacz et al. [6] using
histograms, which we combine with information theoretic metrics to predict the

254 M. Azouaoui et al.

rank of the full key from one single attack. In particular, it differs from the
solution of Choudary and Popescu [5] in the sense that it allows estimating the
key rank of a single attack (rather than the estimation of the average key rank).
Nonetheless, we compare an adaptation of their solution to this single attack
setting with our method in Sect. 6.

The rest of the paper is organized as follows. First, Sect. 2 describes more pre-
cisely the problem under investigation. Secondly, Sect. 3 introduces the required
background. Then, Sect. 4 discusses our proposed method to estimate the rank
without the knowledge of the key from an attack perspective. Section 5 suggests
an adaptation of the CHES 2017 proposal for rank estimation to the single-
attack/attacker scenario. The results of the different methods are further shown
in Sect. 6. We additionally discuss the usability and some limitations of our
method in Sect. 7. We finally conclude in Sect. 8.

2 Problem Statement

Key enumeration algorithms can offer a trade-off between the required number
of side-channel observations and the computational power of the adversary. That
is, the use of such algorithms allows recovering the full key with fewer traces,
often referred to as the data complexity of a side-channel attack, at the cost
of computational/time complexity. However, in practice, it is not trivial for an
adversary to know when to start the enumeration. Our goal is to tackle this
problem by answering the following question: Can the attacker infer if more
side-channel measurements are required or if she expects a successful key recovery
after enumeration, given the current attack outcome?

To highlight the importance of this question, we picture the strategy that an
adversary follows to recover the full key. When performing a side-channel attack
it is common to follow a divide-and-conquer strategy, in which parts of the key
are targeted and possibly recovered independently. For the rest of this paper,
we use the same notations as in [6]. The target of a side-channel attack is an
n-bit key k ∈ K, divided into Np = n

b parts of b bits, called subkeys and denoted
as ki, for i in [1 : Np]. A side-channel attack makes use of a set of q inputs
Xq and the corresponding set of q leakages Lq (for example when targeting the
AES S-box output, the attacker observes, given an input xj

i (1 ≤ j ≤ q), the
leakage lji of S(xj

i ⊕ ki)). After the attack, the adversary obtains Np lists of
probabilities Pr[k∗

i |Xq,Lq] where k∗
i refers to a subkey possibility out of the 2b

candidates. Attacks using Gaussian templates [4] or a linear-regression model [11]
output probabilities, but for other distinguishers such as DPA [7] and CPA [3],
a Bayesian extension is possible [13].

Let’s assume that the adversary is able to perform key enumeration with
respect to some computational effort e (e.g. 1 < e < 250). A first attack strat-
egy is shown in Algorithm 1. In that case, the attacker first collects a set of
measurements, performs the attack, enumerates up to the first e most probable
key candidates or until the correct key has been recovered. If the key has not
been recovered, she then collects new side-channel observations and repeats the
process.

Key Enumeration from the Adversarial Viewpoint 255

Algorithm 1. Greedy attacker’s strategy.
Input. Enumeration effort e.

1: Collect a set of side-channel measurements.
2: Update the attack Np probability lists Pi for each subkey ki.
3: Enumerate up to the first e key candidates or until the correct key k is found.
4: if k not found then
5: Collect new side-channel measurements and go to step 2.
6: end if

The greedy attacker strategy has one main drawback. Indeed, the attacker
does not know if the key is reachable via enumeration after step 2. That is, she
has no way to know how many times she has to loop over steps 2 to 6. More
specifically, if (e.g.) w repetitions of side-channel measurements are required for
the attack, the adversary spends an effort of w × e in enumeration. As the time
complexity of such a method is high, it mitigates the original goal of enumeration,
which is to trade a lower measurement complexity for a higher computational
power.

The aforementioned issue could be avoided if the adversary could assess if
the key is reachable with an enumeration effort at most e, using the currently
available measurements. Following this idea, we now assume that the attacker is
provided with a tool that, from the probability lists Pi and without the knowl-
edge of the actual key, returns an approximate R̂ of the actual rank R. Using this
tool, a more efficient attack strategy is shown in Algorithm 2. With this method,
enumeration is executed only if the approximated rank R̂ is found to be within
the enumeration effort e. If R̂ is close enough to R, this method is obviously
more optimal than the previous one and achieves the desired trade-off between
side-channel observations and computational power.

Algorithm 2. Efficient attacker’s strategy.
Input. Enumeration effort e, and a key-less rank estimation.

1: Collect a set of side-channel measurements.
2: Update the attack Np probability lists Pi for each subkey ki.
3: From Pi lists, compute an estimation R̂ of the rank R.
4: if R̂ ≤ e then
5: Enumerate up to the first e key candidates or until the correct key k is found.
6: if k not found then
7: Collect new side-channel measurements and go to step 2.
8: end if
9: else

10: Collect new side-channel measurements and go to step 2.
11: end if

It is worth mentioning that, as a side advantage, the existence of such a tool
would also give information to the adversary on whether or not the attack will
succeed eventually.

256 M. Azouaoui et al.

Indeed, observing the trend of R̂ either gives some confidence in the efficiency
of the attack if it decreases steadily as the number of measurements increases,
or shows that the attack has little chance to eventually recover the key (or a
significant part of it) otherwise.

3 Background

In this section, we first define the metrics we investigate: the entropy, the rank
and the guessing entropy. For the work described in this paper, we make use of
the Glowacz et al. key rank estimation method [6], which we describe using the
notations introduced in the previous section.

3.1 Entropy, Rank and Guessing Entropy

Entropy. The Shannon entropy H of a discrete random variable X ∈ X following
a probability distribution Pr is defined as:

H(X) = −
∑

x∈X
Pr(x) · log Pr(x).

Rank. The rank R, after a side-channel attack using a set of q inputs Xq and
a corresponding set of q leakages Lq, provides the position of the correct key k
in the sorted vector of |K| = 2n key candidate probabilities p = [p1, p2, ..., p|K|],
i.e:

R(k) = i if Pr[k|Xq,Lq] = pi.

Guessing Entropy. The guessing entropy GE [12] measures the average number
of key candidates to test after a side-channel attack. It corresponds to the average
rank and is defined as:

GE = E
k∈K

(R(k)).

3.2 Key Rank Estimation

Given a set of discrete probability distributions for independent parts of a key
and a correct key k, a rank estimation algorithm provides tight bounds for the
rank among the set of all possible candidates. Among the different proposals for
key rank estimation, we use the histogram-based approach of Glowacz et al. [6].
This algorithm provides efficiently tight bounds for the rank of the key and
gives the probability distribution of the full key expressed as a histogram. Given
the Np lists of the log probabilities of the subkeys LPi = log(Pr[k∗

i |Xq,Lq]),
the method of Glowacz et al. starts by constructing the corresponding Np his-
tograms Hi = hist(LPi, bins) where bins is a set of Nbin equally-sized bins,
used for all the histograms. The convolution of two histograms is denoted as

Key Enumeration from the Adversarial Viewpoint 257

Algorithm 3. Rank estimation.

Input: The key log probability log(Pr[k|Xq,Lq]) and the histograms Hi.
Output: An approximation of k’s rank.

initialization: Hcurr = H1;

histograms convolution:
for i = 2 : Np

Hcurr = conv(Hcurr, Hi);
end

rank estimation:

estimated rank ≈
Np·Nbin−(Np−1)∑

i=bin(log(Pr[k|Xq,Lq]))

Hcurr(i).

conv(Hi,Hj). Knowing the key k, its log probability is log(Pr[k|Xq,Lq]) =
Np∑
i=1

log(Pr[ki|Xq,Lq]). The following steps are described by Algorithm 3. In a nut-
shell, the rank estimation algorithm provides a very efficient way to estimate
and bound the number of key candidates with a probability higher than k.

The estimated rank is then bounded by tracking the quantization error of
the histograms as:

rank lower bound =
Np·Nbin−(Np−1)∑

i=bin(log(Pr[k|Xq,Lq]))+Np

Hcurr(i),

and:

rank upper bound =
Np·Nbin−(Np−1)∑

i=bin(log(Pr[k|Xq,Lq]))−Np

Hcurr(i),

By increasing the number of bins, the tightness of the bounds can be arbi-
trarily reduced. In the rest of this paper, and for the practical experiments, we
use a number of bins large enough such that the tightness is below 1 bit. As this
precision is enough for our experiments, we consider the estimated rank as the
“true” rank and ignore the bounds. We emphasize that the histogram convolu-
tions do not require the knowledge of the key, and only the rank estimation itself
does. For the rest of this paper, we use the final histogram constructed, which
corresponds to the full key distribution.

4 Using the Entropy to Approximate the Rank

The entropy of the key candidate probabilities produced by an attack intuitively
brings some information on the outcome of the attack, since it measures the
uncertainty on the key, which amounts to the number of bits of information left

258 M. Azouaoui et al.

to recover on the key. For instance, an attack ran on data that is uncorrelated
with the key would tend to attribute average probabilities to most candidates,
yielding a high entropy (n bits in the extreme case where all candidates have
a probability of 2−n, while the average rank is 2n−1). On the other hand, an
attack performing extremely well would give a high probability to the correct
key candidate and very low ones to all other candidates. In that case, the entropy
tends to 0 (like the rank) as the probability of the wrong candidates also tends
to 0. This intuition that in realistic cases entropy and rank are linked – although
it’s a loose link, as one can show that entropy and rank can diverge in specific
cases – leads us to consider the use of the entropy to estimate the remaining
enumeration effort of an attack.

In the following, we present how the entropy of the full key can be estimated
using the histogram obtained with the convolution-based method from Glowacz
et al. Although the histogram is only a compressed representation of the full
key candidates’ probability distribution, it still is an excellent tool to analyze it.
To estimate the entropy, we require a proper probability distribution that sums
up to 1. Thus, it is preferred to normalize the full key candidates’ probability
distribution. This is done by ensuring that the sum of the exponential of log
probabilities given by the bins of all keys in all histograms sum to 1. Furthermore,
it is recommended to normalize the distribution of the subkeys, prior to the
histogram convolution, to avoid that the estimated metrics are weighted by the
distributions of the subkeys. The entropy of the full key after a side-channel
attack is estimated using the corresponding histogram (H,bin) as:

H = −
∑

k∗∈K
Pr(k∗) · log Pr(k∗) ≈

∑

k∗∈K
exp(bin(k∗)) · bin(k∗)

≈
Np·Nbin−(Np−1)∑

i=1

H(i) · exp(bin(i)) · bin(i)

We denote by H̃ the estimation of the entropy using the histogram. Note
that bounds on this estimation can be computed. The corresponding formulas
are given in AppendixA.

5 Adapting the CHES 2017 Key-Less GE

At CHES 2017, Choudary and Popescu [5] consider a number of information
theoretic measures and inequalities that are easy and efficient to estimate in order
to bound the guessing entropy of the key. However, in their proposal, they make
a distinction between a key-agnostic guessing entropy and one that requires the
knowledge of the key1. This key-less guessing entropy, that we denote by GEkl,

1 The framework [5] is actually misleading in this respect as it suggests that the GE is
the actual key rank while it is the average key rank. The keyed and key-less versions
are equivalent in case the templates used in the key-less estimation are perfect so
the difference between both definitions only lies in the knowledge of the key.

Key Enumeration from the Adversarial Viewpoint 259

is computed given the sorted vector of the |K| = 2n key candidate probabilities
p = [p1, p2, ..., p|K|] obtained after a side-channel attack as:

GEkl =
|K|∑

i=1

i · pi

The GEkl is impossible to compute since the sum is over all full key candidates.
For that purpose Choudary and Popescu use common measures and bounds
described in information theory literature. Since this work provides a key-less
rank estimation tool, a natural alternative to our previous proposal is to try to
adapt it to our single-attack context. This alternative is again only heuristic since
the bounds are only valid on average [5]. To describe this alternative solution,
we use again the histogram-based PDF estimation provided by the Glowacz et
al. Here, GEkl corresponds to the sum of the position of every key weighted by
its probability and it can be estimated as:

GEkl =
|K|∑

i=1

i · pi ≈
∑

k∗∈ K

⎛

⎝
Np·Nbin−(Np−1)∑

j=bin(k∗)

H(j)

⎞

⎠ · Pr[k∗]

Then, we sum across all histograms and corresponding log probability bins,
yielding the estimation of the key-less guessing entropy G̃Ekl:

G̃Ekl ≈
Np·Nbin−(Np−1)∑

i=1

⎛

⎝
Np·Nbin−(Np−1)∑

j=i

H(j)

⎞

⎠ · exp(bin(i))

Again, new bounds on the key-less guessing entropy estimation can be com-
puted from the histogram approximation, which are given in AppendixA. How-
ever, these bounds are not directly relevant to our work. Precisely, the ones in [6]
require the knowledge of the key (i.e. an evaluation setting) while we aim at key-
less rank estimation, and the ones in [5] only become tight on average over many
experiments (i.e. also in an evaluation setting) while we aim to estimate the rank
of single experiments on-the-fly. For the same reason, bounds on the entropy are
also irrelevant in our adversarial setting. Subsequently, the rest of this paper
ignores the bounds and only focus on the heuristic evaluation of these metrics.

6 Simulated and Real Experiments

In the following sections, we investigate whether the previous metrics can be used
to approximate the rank of the correct key after a single side-channel attack. In
that purpose, we evaluate two average absolute differences (for multiple side-
channel attacks): the first between the logarithm of the rank and the estimated
entropy H̃, and the second between the logarithm of the key rank and the loga-
rithm of G̃Ekl. For that purpose, we use both simulated and real experiments.
We start by describing our experimental setups and then show practical results.

260 M. Azouaoui et al.

6.1 Experimental Setups

Simulated Leakages: We simulated side-channel leakages of the 16 S-box out-
puts of the first round of an unprotected AES. For each byte xi out of the 16,
we model the leakage of xi as HW(xi) + b, where HW denotes the Hamming
weight function, and b represents an independent noise distributed according to
a normal distribution with mean 0 and standard deviation 10.

Real Leakages: We target a custom constant-time C implementation of an
unprotected AES with T-tables. The code runs on an ARM Cortex-M3 micro-
controller running at 83 Mhz, mounted on an Arduino Due board. We acquired
EM measurements with a Langer near field RF-U 5-2 probe and a Lecroy 610Zi
oscilloscope at a sampling rate of 1 GHz. We synchronized the traces at the
beginning of the AES computation using a trigger signal. As for the simulated
case, we target the output of the S-boxes of the first round. For each of the 16
target bytes, we selected the point of interest that exhibit the highest correlation
with the corresponding S-box output value, using a first set of 10,000 traces with
a known key.

We performed a template attack [4] for both simulated and real leakage
experiments. For the real experiments, we use a set of 100,000 traces with known
key and plaintext for the template building phase.

6.2 Results

We show here the practical results using the estimation of the entropy H̃ and the
estimation of the key-less guessing entropy G̃Ekl to approximate the rank of the
key R after a side-channel attack. We additionally compare the performance of
both metrics. We recall that we estimate the rank using the histogram method
of Glowacz et al. and that we used a large enough number of bins so that the
bounds are tight enough for us to use the estimated rank and ignore the bounds.
In the following, we refer to the approximation of log(R) using the entropy as the
H̃-based approximation and the one using the logarithm of the key-less guessing
entropy as the G̃Ekl-based approximation.

As a preliminary experiment, we ran a single attack against both simulated
and real traces. We incremented the number of attack traces until the rank
reached one. The results are depicted in Fig. 1. The left (resp. right) part of the
figure shows the results for simulated (resp. real) traces. In each case, the X-axis
represents the number of attack traces, and the Y-axis is used to represent the
different metrics in log2 scale. We notice that the entropy-based approximation
is closer to the logarithm of the rank than the one based on the key-less guessing
entropy. More specifically, for the simulated traces the H̃-based approximation
remains within less than 10 bits of log(R), while the gap with the G̃Ekl goes
up to 25 bits. The real experiments show less optimistic results. Indeed, while
H̃ remains mainly within 5 bits of log(R), we can observe a fairly large gap of
30 bits when the rank is around 240. Results are worse for log(G̃Ekl) with a
maximal gap of 50 bits.

Key Enumeration from the Adversarial Viewpoint 261

Fig. 1. Comparison of log(G̃Ekl), H̃ and log(R) for a single random side-channel attack
on the AES S-box output. Simulated traces (left) and real EM traces (right).

The previous experiment showed some results for a single attack and that
the entropy is neither an upper bound or a lower bound on the logarithm of
the rank. While this gives some insight about the interest of the considered
metrics, it does not allow deriving any general conclusion. Next, we examine
how the H̃-based approximation and the G̃Ekl-based one perform on average
over many independent experiments. For that purpose, we evaluate the average
absolute difference in bits, first between H̃ and log(R), then between log(G̃Ekl)
and log(R). This is performed over 100 independent attacks for the simulated
and the real traces. The results on the simulated traces are shown in Fig. 2. The
X-axis corresponds to log(R). The Y-axis on the left (resp. right) part of the
figure gives the mean (resp. standard deviation) of the distance between each
measure and the rank. For the left part of the figure, we additionally plot the
maximal distance obtained over the 100 attacks in corresponding dashed curves.
We notice that the entropy clearly seems to outperform the key-less guessing
entropy when estimating the rank for a single attack. First focusing on the
average distance on the left part of the figure, the entropy stays within less than
10 bits of R. The maximal difference we obtained among the 100 experiments
is slightly above 20 bits. However, the mean distance of log(R) to log(G̃Ekl) is
in most cases above 10 bits and below 25 bits, with a maximum above 45 bits.
Also considering the standard deviations of these distances on the right part of
the figure, it is reasonable to consider that the entropy provides a more reliable
estimation of R than the key-less guessing entropy: since the standard deviation
of the distance to H̃ is lower than the one to log(G̃Ekl), the first one is less likely
to deviate from its mean value which is below 10 bits.

262 M. Azouaoui et al.

Fig. 2. Simulated HW leakages: (Left) The average distance from the rank to both the
H̃-based approximation and the G̃Ekl-based approximation as function of the logarithm
of the rank and the maximal distance observed in corresponding dashed lines. (Right)
the distances’ standard deviations.

The results for real traces are shown in Fig. 3. Again, the X-axis represents
log(R) and the Y-axis on the left (resp. right) part of the figure represents
the mean (resp. standard deviation) of the distances, computed over 100 inde-
pendent attacks. The experiments on real traces coincide with the simulated
ones. Accordingly, the entropy-based approximation provides a better estimate
of log(R) than the approximation based on the key-less guessing entropy. The
average distance between log(R) and H̃ is below 12 bits while the average dis-
tance to log(G̃Ekl) is always above the average distance to H̃. The right part
of Fig. 3 is similar to the right part of Fig. 2, as the standard deviation of the
distance to the entropy is lower than the one to the key-less guessing entropy,
confirming that for a real side-channel attack, H̃ provides a better approximation
of log(R) than log(G̃Ekl).

Fig. 3. EM traces: (Left) The average distance from the rank to both the H̃-based
approximation and the G̃Ekl-based approximation as function of the logarithm of the
rank and the maximal distance observed in corresponding dashed lines. (Right) the
distances’ standard deviations.

Key Enumeration from the Adversarial Viewpoint 263

We highlight the fact that all predictions have a higher variance/standard
deviation for middle ranks, which are the most interesting for both evaluators
and attackers, as it is typically the range of ranks where enumeration turns from
being unfeasible to practically feasible. This has been previously observed by
Martin et al. in an evaluation setup [8] with the possibility to perform multiple
attacks with the knowledge of the key. Our results and the ones of Martin et al.
show that the interesting ranks are the hardest to estimate for an evaluator, and
especially in the context of a real attack with the purpose of recovering the key.

Our proposed metric cannot mathematically approximate nor bound the true
rank of the key after a single side-channel attack. However, we experimentally
show that the entropy tends to stay within reasonable limits from the logarithm
of the rank (provided that the attack does not suffer from errors, for e.g. due to
a wrong model assumption). As a result, we believe it can be used in a more effi-
cient strategy by trading data complexity for computational effort as illustrated
by Algorithm 2 by enumerating key candidates up to (or slightly above) 2H̃.

7 Discussion and Limitations

Any attempt to predict the rank from one single attack without the knowledge of
the key suffers from a specific caveat. It is possible that the attack is not carried
out correctly and is converging towards a wrong key (due for example to wrong
intermediates, wrong assumptions about the leakage or unknown countermea-
sures). The entropy and the key-less guessing entropy would then decrease as
the attack tends towards the wrong key candidate, while the rank of the correct
key would not. This behavior does not only affect the entropy and the key-less
guessing entropy but most probably any metric estimated without the knowledge
of the correct key.

Another aspect to consider that affects the considered metrics is the key size.
This can be pictured through a simple example: let’s consider two attacks that
both aim at recovering a bit b whose value is 1, and output two probability
distributions p1 = [Pr1[b = 0] = 0,Pr1[b = 1] = 1] and p2 = [Pr2[b = 0] =
0.45,Pr2[b = 1] = 0.55]. Both attacks achieve a rank of one since the correct
value of b has the highest probability. On the other hand, the entropy values are
quite different. The entropy of the first attack is equal to 0, which is equal to
the logarithm of the rank. For the second attack, the entropy of b is higher and
equal to 0.99277, albeit the correct value of b is ranked first. These discrepancies
can be observed for small keys, but vanish for larger key sizes. This illustrates
how independent conclusions on subkeys can be quite misleading when trying to
infer conclusions on full key recovery.

To demonstrate this effect, we performed the same experiments as described
in the previous section. We estimated the average distance between log(R) and
the entropy and then between log(R) and the key-less guessing entropy, but
across different key sizes. For each key size, we performed 100 attacks. We nor-
malized the distance with respect to the size of the key in bytes. Indeed, nor-
malizing makes the distances comparable for different key sizes, and allows to

264 M. Azouaoui et al.

infer conclusions based on the distance per byte. As an example, a minor dis-
tance for one key byte between R and its key-less prediction is critical, but not
so relevant for the full key. The results are given in Fig. 4, for both the simu-
lated traces on the left and real traces on the right. The dashed line indicates
the maximum values observed. For the simulated experiments, it was possible
to perform experiments on large keys of up to 64 bytes, and up to the AES-
128 key size for the real traces we measured. We used 400 attack traces for the
simulations, leading to a rank of approximately 255, and 70 traces for the real
attack to achieve a rank around 230 for a 128-bit key (with proportional ranks
for smaller key sizes). This was chosen to focus on the interesting ranks and
we did not notice any considerable differences for other ranks, when it comes
to the effect of the key size on the distance to log(R) of either the H̃-based
approximation or the G̃Ekl-based one. As we can see, the normalized difference
indeed decreases when the key size increases, confirming our intuition. Moreover,
the trend starts to settle for both simulated and real traces once realistic full
key sizes are reached. First, for a 1-byte key size, we can observe on average a
two-bit difference between log(R) and H̃ and a lower difference between log(R)
and log(G̃Ekl). On the other hand, for a 16-byte key size, the distance between
the rank and the entropy-based prediction drops to around 0.5 bits of error per
byte for both the simulated and the real traces, while the distance between the
rank and G̃Ekl seems to settle at an average distance of 1.5 bits of error per
byte even for larger key sizes. For the maximal value, we observe the same trend
as previous experiments. The distance to the key-less guessing entropy is higher
than the one to the entropy in most cases. Overall, two conclusions can be drawn
from this experiment. First, it confirms that the entropy-based estimation seems
to be a better tool to approximate the rank than the key-less guessing entropy
once real key sizes are reached. Second, it shows that as expected, it is better to
estimate the security level in an adversarial scenario on the full key than on a
small part of the key, such as a subkey.

Fig. 4. Average distances between the log of the rank, the entropy and log(GM) as
function of the number of key bytes. Maximal distances observed in corresponding
dashed lines. Simulated traces on the left and real traces on the right.

Key Enumeration from the Adversarial Viewpoint 265

8 Conclusion

In this paper, we described a heuristic way to infer an approximation of the
key rank for one single attack without the knowledge of the key. This corre-
sponds to a realistic attack scenario, where the adversary aims at figuring out
if the correct key can be reached through enumeration. Our proposal helps to
devise an optimal attack strategy to trade data complexity for computational
effort when possible. For that purpose, we showed that the remaining entropy
of the full key can be estimated using the histogram built with the rank estima-
tion method from Glowacz et al. without the knowledge of the key. We showed
experimentally that the entropy of the full key distribution after a side-channel
attack is close to the logarithm of the rank on both simulated data and real
EM side-channel measurements of an AES implementation. We compared this
entropy-based approximation of the rank, to a single-attack adaptation of the
key-less rank estimation method of Choudary and Popescu [5]. We additionally
discussed factors that may affect the accuracy of the entropy (and any measure
that lacks knowledge of the key or its probability) as a predictor of the loga-
rithm of the rank. Further research might investigate if the behavior observed in
this paper is common to different side-channel datasets. Moreover, it would be
interesting to investigate if the tool described in this work can help to identify
possible wrong assumptions about the implementation or device that can pos-
sibly hinder the success of the attack. Alternatively, an interesting direction is
to propose a more precise technique or metric to approximate the rank of the
correct key in the single attack scenario.

Acknowledgement. François-Xavier Standaert is a senior research associate of the
Belgian Fund for Scientific Research. This work has been funded in part by the Euro-
pean Commission through the H2020 project 731591 (acronym REASSURE) and by
the ERC Consolidator Grant 724725 (acronym SWORD). The authors acknowledge
the support from the ‘National Integrated Centre of Evaluation’ (NICE), a facility of
Cyber Security Agency, Singapore (CSA).

A Error Bounds on the Histogram Estimations

The bounds on the estimation of the entropy and the key-less guessing entropy
using the Glowacz et al. full key distribution histogram and based on its quan-
tization error are given by:

H upper bound =
Np·Nbin−(Np−1)∑

i=1

H(i). exp(bin(i + Np)).bin(i + Np)

H lower bound =
Np·Nbin−(Np−1)∑

i=1

H(i). exp(bin(i − Np)).bin(i − Np)

266 M. Azouaoui et al.

GEkl upper bound =
Np·Nbin−(Np−1)∑

i=1

⎛

⎝
Np·Nbin−(Np−1)∑

j=i−Np

H(j)

⎞

⎠ . exp(bin(i + Np))

GEkl lower bound =
Np·Nbin−(Np−1)∑

i=1

⎛

⎝
Np·Nbin−(Np−1)∑

j=i+Np

H(j)

⎞

⎠ . exp(bin(i − Np))

References

1. Bernstein, D.J., Lange, T., van Vredendaal, C.: Tighter, faster, simpler side-channel
security evaluations beyond computing power. IACR Cryptology ePrint Archive,
2015:221 (2015)

2. Bogdanov, A., Kizhvatov, I., Manzoor, K., Tischhauser, E., Witteman, M.: Fast
and memory-efficient key recovery in side-channel attacks. In: Dunkelman, O.,
Keliher, L. (eds.) SAC 2015. LNCS, vol. 9566, pp. 310–327. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-31301-6 19

3. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5 2

4. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36400-5 3

5. Choudary, M.O., Popescu, P.G.: Back to Massey: impressively fast, scalable
and tight security evaluation tools. In: Fischer, W., Homma, N. (eds.) CHES 2017.
LNCS, vol. 10529, pp. 367–386. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-66787-4 18

6. Glowacz, C., Grosso, V., Poussier, R., Schüth, J., Standaert, F.-X.: Simpler and
more efficient rank estimation for side-channel security assessment. In: Leander,
G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 117–129. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48116-5 6

7. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

8. Martin, D.P., Mather, L., Oswald, E., Stam, M.: Characterisation and estimation of
the key rank distribution in the context of side channel evaluations. In: Cheon, J.H.,
Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 548–572. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6 20

9. Martin, D.P., O’Connell, J.F., Oswald, E., Stam, M.: Counting keys in parallel
after a side channel attack. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015.
LNCS, vol. 9453, pp. 313–337. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-48800-3 13

10. Poussier, R., Standaert, F.-X., Grosso, V.: Simple key enumeration (and rank esti-
mation) using histograms: an integrated approach. In: Gierlichs, B., Poschmann,
A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 61–81. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53140-2 4

https://doi.org/10.1007/978-3-319-31301-6_19
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/978-3-319-66787-4_18
https://doi.org/10.1007/978-3-319-66787-4_18
https://doi.org/10.1007/978-3-662-48116-5_6
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-662-53887-6_20
https://doi.org/10.1007/978-3-662-48800-3_13
https://doi.org/10.1007/978-3-662-48800-3_13
https://doi.org/10.1007/978-3-662-53140-2_4

Key Enumeration from the Adversarial Viewpoint 267

11. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel
cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp.
30–46. Springer, Heidelberg (2005). https://doi.org/10.1007/11545262 3

12. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-01001-9 26

13. Veyrat-Charvillon, N., Gérard, B., Renauld, M., Standaert, F.-X.: An optimal key
enumeration algorithm and its application to side-channel attacks. In: Knudsen,
L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 390–406. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-35999-6 25

14. Veyrat-Charvillon, N., Gérard, B., Standaert, F.-X.: Security evaluations beyond
computing power. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 126–141. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-38348-9 8

15. Ye, X., Eisenbarth, T., Martin, W.: Bounded, yet sufficient? How to determine
whether limited side channel information enables key recovery. In: Joye, M.,
Moradi, A. (eds.) CARDIS 2014. LNCS, vol. 8968, pp. 215–232. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-16763-3 13

https://doi.org/10.1007/11545262_3
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-642-35999-6_25
https://doi.org/10.1007/978-3-642-38348-9_8
https://doi.org/10.1007/978-3-642-38348-9_8
https://doi.org/10.1007/978-3-319-16763-3_13

Author Index

Alam, Manaar 3
Azouaoui, Melissa 252

Balasch, Josep 176
Becker, Georg T. 40
Beckers, Arthur 176
Bhasin, Shivam 57
Bhattacharya, Sarani 3
Biryukov, Alex 216
Božilov, Dušan 20

Cardoso dos Santos, Luan 216
Chattopadhyay, Anupam 57
Cristiani, Valence 143

Dutertre, Jean-Max 109
Duval, Sébastien 195

Fujimoto, Daisuke 176

Gérard, François 74
Gierlichs, Benedikt 176
Glowacz, Cezary 126
Gravellier, Joseph 109
Grosso, Vincent 126
Großschädl, Johann 216
Gupta, Sourav Sen 57

Hailfinger, Carl-Daniel 159
Hayashi, Yuichi 176
Hiscock, Thomas 143

Imbert, Laurent 95

Kinugawa, Masahiro 176
Knežević, Miroslav 20
Knichel, David 237

Lecomte, Maxime 143
Lemke-Rust, Kerstin 159
Leurent, Gaëtan 195
Lomné, Victor 95

Margraf, Marian 40
Moradi, Amir 237
Moundi, Philippe Loubet 109
Mukhopadhyay, Debdeep 3

Nikov, Ventzislav 20

Olivier, Francis 109

Paar, Christof 159
Poussier, Romain 252
Pratihar, Kuheli 3

Ravi, Prasanna 57
Richter, Bastian 237
Roche, Thomas 95
Rossi, Mélissa 74

Singh, Astikey 3
Soroceanu, Tudor A. A. 40
Standaert, François-Xavier 252

Teglia, Yannick 109
Tobisch, Johannes 40

Verbauwhede, Ingrid 176
Verneuil, Vincent 252

Wisiol, Nils 40

Zengin, Benjamin 40

	Preface
	Organization
	Contents
	System-on-a-Chip Security
	In-situ Extraction of Randomness from Computer Architecture Through Hardware Performance Counters
	1 Introduction
	2 Preliminaries on Hardware Performance Counters
	3 Non-determinism of HPCs and Motivation
	4 Randomness Extraction Using HPCs
	4.1 Selection of the Least Significant Bits
	4.2 Selection of HPC Events Using Yao's Next-Bit Test

	5 Experimental Validation
	5.1 Results on TRNG Output Obtained from HPC Events
	5.2 Perturbation in TRNG Output in Presence of an Adversary

	6 Hybrid Construction to Enhance Throughput
	6.1 Cryptographic Post-processing of the TRNG Output
	6.2 Results on TRNG Output Obtained from Hybrid Construction

	7 Discussion
	8 Conclusion
	References

	Optimized Threshold Implementations: Minimizing the Latency of Secure Cryptographic Accelerators
	1 Introduction
	2 Preliminaries
	2.1 Threshold Implementations
	2.2 Minimizing Implementation Overheads Using S-box Decomposition
	2.3 A Note on Latency and Energy Efficiency

	3 Finding an Efficient Sharing
	4 Hardware Implementation
	4.1 Synthesis Results and Side-Channel Evaluation

	5 Conclusion and Outlook
	References

	Breaking the Lightweight Secure PUF: Understanding the Relation of Input Transformations and Machine Learning Resistance
	1 Introduction
	1.1 Main Contribution

	2 Background
	2.1 Machine Learning Attacks on PUFs
	2.2 Notation
	2.3 Modeling XOR Arbiter PUFs

	3 Input Transformations: Classic vs. Random
	3.1 Pseudorandom Input Transformation
	3.2 Local Minima

	4 Input Transformations: Lightweight Secure
	4.1 Feature Vector Correlation
	4.2 Improved Attack

	5 Solution
	5.1 Permutation-Based Input Transformations

	6 Conclusion
	References

	Post-Quantum Cryptography
	Improving Speed of Dilithium's Signing Procedure
	1 Introduction
	2 Preliminaries
	2.1 Dilithium

	3 Early Evaluation Optimization
	3.1 Note on Timing Attacks
	3.2 Additional Optimizations

	4 Experimental Results
	4.1 A Refined Evaluation Approach
	4.2 Results on the Intel Core i5-4460 CPU
	4.3 Results on the ARM Cortex-M4
	4.4 Memory Requirements for Scenario-2 and Scenario-3

	5 Conclusion
	References

	An Efficient and Provable Masked Implementation of qTESLA
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Masking
	2.3 The qTESLA Signature

	3 Masked qTESLA
	3.1 Masking-Friendly Design
	3.2 Existing Gadgets
	3.3 New Gadgets
	3.4 Masked Scheme

	4 Proof of Masking
	4.1 Main Masking Theorem
	4.2 EUF-CMA Security in the N-probing Model

	5 Practical Aspects
	References

	Side-Channel Analysis
	Side-Channel Attacks on Blinded Scalar Multiplications Revisited
	1 Introduction
	1.1 Preliminaries and Notations
	1.2 Overall Attack Process
	1.3 Paper Organization and Contributions

	2 Previous Works
	2.1 A Divide and Conquer Algorithm
	2.2 Schindler and Wiemers' Phase 1 Algorithm
	2.3 Empirical Improvements
	2.4 Some Results

	3 Improved Algorithms
	3.1 First Observations
	3.2 Keeping a List of the Blinding Factors Best Candidates
	3.3 Algorithms Improvements in Detail
	3.4 Simulation Results and Comparisons

	4 Conclusion and Future Work
	References

	Remote Side-Channel Attacks on Heterogeneous SoC
	1 Introduction
	2 Background
	2.1 Power Side-Channel Attacks
	2.2 FPGA-Based Voltage Sensors
	2.3 Threat Model
	2.4 Related Works

	3 Presentation of the Side-Channel Setup
	3.1 Side-Channel Sensors
	3.2 Side-Channel Targets
	3.3 Xilinx Zynq Experimental Setup

	4 FPGA-Based Attack on Hardware AES
	5 FPGA-Based Attack on Software AES
	5.1 Experiment 1: 8-Bit Tiny AES
	5.2 Experiment 2: 32-Bit OpenSSL AES

	6 EM Results and Discussion
	6.1 Electromagnetic Side-Channel Attack
	6.2 Attack Feasibility
	6.3 Countermeasures

	7 Conclusion
	8 Appendix
	References

	Optimal Collision Side-Channel Attacks
	1 Introduction
	2 Background and Model Notations
	2.1 Collision Side-Channel Attacks
	2.2 Stochastic and Correlation Enhanced Collision Attacks

	3 Optimal Distinguishers for Random Leakage Functions
	4 Optimal Evaluation of Distinguishers
	4.1 Random Space Exploration
	4.2 Upper Bound for the Success Rate

	5 Simulation Results
	6 Summary
	References

	Microarchitectural Attacks
	A Bit-Level Approach to Side Channel Based Disassembling
	1 Introduction
	2 Background
	2.1 Structure of a Side-Channel Disassembler
	2.2 Related Work

	3 Construction of a Bit-Level Side-Channel Disassembler
	3.1 Challenges of Bit-Level Instruction Recovery
	3.2 Leakage Model and Classification
	3.3 From Signed Hamming Distance to Bit Values
	3.4 Exploiting Local Information

	4 Leakage Analysis of the PIC16F
	4.1 Overview of the PIC16F
	4.2 Our Experimental Setup
	4.3 Study of Single Bit Leakages

	5 Evaluation
	5.1 Mono-Spatial Attack
	5.2 Multi-spatial Attack
	5.3 Template Portability

	6 Conclusion and Further Work
	References

	CCCiCC: A Cross-Core Cache-Independent Covert Channel on AMD Family 15h CPUs
	1 Introduction
	2 Background
	2.1 Microarchitecture
	2.2 Processing of an Instruction in AMD Family 15h Piledriver CPUs

	3 Related Work on Cache-Independent Information Leakage
	4 Our Cache-Independent Covert Channels on AMD Family 15h
	4.1 CCCiCC v1: Instruction Decoder Throughput
	4.2 CCCiCC v2: Timing Measurement Noise
	4.3 Implementation
	4.4 Throughput Measurements
	4.5 From Instruction Throughput to Covert Channel

	5 Summary
	References

	Design Considerations for EM Pulse Fault Injection
	1 Introduction
	2 Challenge
	3 Probe Design
	3.1 Near-Field Coupling
	3.2 Experimental Validation
	3.3 Results

	4 Pulse Generator
	4.1 Switching Element
	4.2 Pulse Delay and Jitter
	4.3 Power Supply

	5 Example Design
	5.1 EM Pulse Injection Platform
	5.2 Experimental Results

	6 Conclusions
	A The RLC Circuit
	B EM-Pulse Injection Circuit - Schematic
	References

	Cryptographic Primitives
	Lightweight MACs from Universal Hash Functions
	1 Introduction
	2 MAC Constructions from Universal Hash Functions
	2.1 Universal Hash Functions
	2.2 MAC Algorithms

	3 Construction of Universal Hash Functions
	3.1 Constructions for Short Messages
	3.2 Composition and Extension

	4 Improved Bounds with Permutations
	5 Instantiating a Lightweight MAC
	5.1 Choice of Universal Hash Function: XPoly
	5.2 Choice of Field and Multiplication

	6 A Concrete Instantiation: MAC611
	6.1 Implementation Details
	6.2 Choice of the Parameter
	6.3 Security Bounds

	A Comparison of Security Bounds
	References

	FELICS-AEAD: Benchmarking of Lightweight Authenticated Encryption Algorithms
	1 Introduction
	2 The FELICS Framework and Its AEAD Extension
	2.1 Overview of Modules
	2.2 API for Authenticated Encryption
	2.3 Target Devices and Evaluation Metrics

	3 Analyzed AEAD Algorithms
	4 Preliminary Results
	5 Comparison with Other Benchmarking Tools
	6 Conclusions and Final Remarks
	References

	Advances in Side-Channel Analysis
	A Comparison of 2-Test and Mutual Information as Distinguisherpg for Side-Channel Analysis
	1 Introduction
	1.1 Contribution

	2 Background
	2.1 2-Test and Distinguisher
	2.2 Mutual Information Analysis
	2.3 Implementation of 2-Test and MIA
	2.4 Relation Between 2-Test and Mutual Information
	2.5 Higher-Order CPA

	3 Case Study 1: PRESENT Threshold Implementation
	3.1 Results

	4 Case Study 2: Smart Card
	4.1 Measurements
	4.2 Architecture
	4.3 Countermeasures
	4.4 Alignment
	4.5 Key Recovery
	4.6 2-Test Vs. MIA Vs. HOCPA

	5 Conclusion
	References

	Key Enumeration from the Adversarial Viewpoint
	1 Introduction
	2 Problem Statement
	3 Background
	3.1 Entropy, Rank and Guessing Entropy
	3.2 Key Rank Estimation

	4 Using the Entropy to Approximate the Rank
	5 Adapting the CHES 2017 Key-Less GE
	6 Simulated and Real Experiments
	6.1 Experimental Setups
	6.2 Results

	7 Discussion and Limitations
	8 Conclusion
	A Error Bounds on the Histogram Estimations
	References

	Author Index

