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Abstract. The paper presents modified version of Generalized Error Backprop-
agation algorithm (GBP) merged with RMSprop optimizer. This solution is com-
pared with analogous method based on Stochastic Gradient Descent. Both algo-
rithms are used to train MLP and CxNN neural networks solving selected bench-
mark and real–life classification problems. Results indicate that usage of GBP-
RMSprop can be beneficial in terms of increasing classification accuracy aswell as
decreasing activity of neurons’ connections and length of training. This suggests
that RMSprop can effectively solve optimization problems of variable dimension-
ality. In the effect, merging GBP with RMSprop as well as with other optimizers
such as Adam and AdaGrad can lead to construction of better algorithms for
training of contextual neural networks.
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1 Introduction

The popularity of data processing methods based on artificial neural networks is related
to their interesting properties and proven usefulness in many different applications from
science to business and engineering. They are used inmedicine to analyze tissue samples
and support diagnostic processes [1] as well as in transport to control autonomous vehi-
cles [2]. Artificial neural networks are used for echo cancelling in telecommunication
systems [3] and also are crucial in data acquisition and processing during experiments
such as ATLAS of the Large Hadron Collider [4]. They can be found as parts of rec-
ommender systems for financial institutions [5] as well as for end customers [6]. And
currently they find their place in entertainment serving image enhancement in video
games [7, 8].

But to solve different types of tasks different kinds and architectures of artificial
neural networks are considered and proposed. Various convolutional neural networks
(CNN) are developed and used for image processing systems [9]. Recurrent neural net-
works including Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU)
networks are very good in recognition of relations within time-series data as well as in
analyzing and translation of text [10, 11]. And self organizing maps (SOM) are well
known kind of neural systems useful in data clustering for recommender systems and
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knowledge discovery [12]. Specialized architectures of artificial neural networks such as
Generative Adversarial Networks and Variational Autoencoders are used for generation
of data of given properties, including images, text and speech [13, 14]. Another example
are chaos neural networks can be fast generators of random numbers [15]. Finally, new
types of neural networks emerge such as e.g. contextual neural networks (CxNN) with
their ability to adjust their internal activity and dimensionality of considered input space
to optimize accuracy and cost of processing of given data vectors [16–18].

Contextual neural networks were developed to model situations in which priorities
and order of input signals processing can highly influence the results of data analysis
[19]. They are using low-level, decentralized selective attention mechanisms in the form
of conditional, multi-step aggregation functions [16, 17]. At the same time they can
be used easily wherever multilayer perceptron neural networks (MLP) are used. This
is because MLP neural networks are just special case of contextual neural networks.
Moreover, conditional signals processing allows CxNNs to dynamically limit activity
of their internal connections without decrease of data processing accuracy. This makes
them a very good replacement for MLP networks in embedded applications with strong
limitations of energy and computing power.

Contextual neural networks were used successfully in many practical applications
such as e.g. fingerprints classification in crime investigations [20], transmissions pre-
diction in cognitive radio, and classification of cancer gene expression microarray data
[18]. Lately contextual neural networks were also implemented in a special version of
a very popular H2O machine learning framework. This allows large scale, distributed
computation with use of this type of models [21, 22].

In almost all cases mentioned above contextual neural networks were trained with
SIF aggregation function [17, 18] and generalized error backpropagation method (GBP)
based on stochastic gradient descent approach (SGD, with mini-batch = 1). In this
paper we are analyzing properties of contextual neural networks when trained with GBP
algorithmmodified to useRMSprop [23] stochastic optimization.The tests are performed
on three microarray data sets of cancer gene expression, such as: Armstrong (ALL-
MLL Leukemia), Golub (ALL-AML Leukemia) and SRBCT (Small Round Blue Cell
Tumors) [24–26]. Additionally selected benchmark problems from UCI ML repository
were analyzed for comparison with previously reported results [27].

The further parts of the paper are organized as follows. The second section includes
description of the GBP algorithm and basic properties of contextual neural networks.

Next, in Sect. 3, the modified GBP method is presented with details related to
RMSprop algorithm. Within Sect. 4 the results of experiments with CxNN trained with
GBP-SGD are compared with outcomes of GBP-RMSprop. Finally, conclusions are
given in Sect. 5 along with planned research.

2 Generalized Error Backpropagation Algorithm

Neurons of contextual neural networks are using multi-step, conditional aggregation
functions. Their inputs are clustered in groups of different priorities and in each step of
aggregation only one group of inputs is read in and analyzed. The partial activation of the
group is calculated and added to the activation of the neuron. This process is repeated for
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the groups of decreasing priorities till the activation of the neuron is greater than given
constant threshold or till all groups are analyzed. Finally, the aggregated activation value
is used by activation function (e.g. tanh or linear rectifier) to calculate output value of the
neuron. This is generalization of the classical neuron used to buildMLP neural networks,
in which all inputs belong to only one group.

If the connections which are the most important to solve given problem are assigned
to the groups of the highest priorities (one input connection can be assigned only to
one group), it can happen that for given input vector not all inputs will be read in and
analyzed to calculate the output of the neuron. It can be said that in such case the activity
of input connections of the neuron was below 100%. One can also observe that the same
neuron with conditional aggregation function can have different activities of inputs for
different input vectors. And the lower the activity of input connections of neurons the
lower the computational cost of usage of neural network and the lower the influence of
low-importance input signals on the output values of the neurons.

It is the role of the training algorithm of neural network to find such grouping of
inputs of each neuron to minimize both the output error and average activity of the
connections between neurons. To make it possible with gradient-based algorithm and
without doubling the number of parameters describing input connection of the neuron,
the following assumptions are made:

– the values of number of groups and aggregation threshold parameters are the same
for all hidden neurons and are set before the training,

– neurons are using deep coding to storewithin connectionsweights both the description
of the algorithm of calculation of output values as well as the assignment of inputs to
given groups.

In the effect of above assumptions, self-consistence method can be added to the
error backpropagation algorithm (BP) to optimize non-continuous, non-differentiable
groupings of inputs of neurons by coupling them with continuous and differentiable
parameters such as weights of connections [16]. This creates the basic form of the
generalized error backpropagation algorithm (GBP) which was shown to effectively
train contextual neural networks with different aggregation and activation functions [17,
18] as well as with different schemes of initialization of groupings of neuronal inputs
[28]. The schematic block diagram of GBP method is presented at the Fig. 1.

During the training with GBP, weights of connections are updated with usage of
generalized delta rule which takes into account the fact that some of input connections
for given vectors can have no influence on the output error regardless on the value of the
related input signals. At the same time neuron inputs groupings are stored in temporary
virtual grouping vectors which are calculated from connections weights vector w with
use of grouping function �́(w). Typically, the grouping function �́ forces the relation
that for given neuron input connections with higher values of weights belong to groups
of higher importance. What is important - update of connections groupings can change
the error space of the neural network - and if performed too frequently, can lead to
destabilization of the training process.

To overcome this problem, the update of inputs groupings is done only once after each
omega training epochs. This controls the coupling between weights vector and grouping
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Fig. 1. Generalized error backpropagation algorithm using stochastic gradient descent

vector - and stabilizes the training. Finally, after the training, virtual grouping vectors
can be discarded because they can be later calculated from weights of connections of
neurons.

3 Generalized Error Backpropagation with RMSprop

In the previous section as well as in applications reported in the literature, the GBP
algorithm is considered with the stochastic gradient descent (SGD) method of updating
values of connections weights for each training vector. This is because the simplicity of
SGDmakes it to be faster than batch gradient descent method and allows straightforward
derivation of error and weights update rules for contextual neural networks [16, 23]. But
SGD method is not good at avoiding local minima of error functions. It also finds it
difficult to guide training of neural networks through saddle points of error spaces. In
such points the gradient of error is almost zero in all dimensions [29]. This problem
can be especially frequent in low–dimensional error spaces, what is typical case in
contextual neural networks. In CxNNs the error space evolves from low-dimensional to
high-dimensional during conditional aggregation of inputs in neurons. When the model
approaches optimum, this evolution often ends after processing of very few first groups
of connections. Thus it seems to be worth checking how GBP will function when it will
be extended with gradient descent optimization algorithm such as RMSprop [23].

RMSprop, a gradient descent optimization method proposed by Geoff Hinton
is a simplified version of AdaDelta method. It can be expressed with the following
formula for update of weight w of connection j during the training step t:

w
j
t+1 = w

j
t − α√

v
j
t + ε

(
∂E j

∂w j

)

t

(1)
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where

v
j
t = γ v

j
t−1 + (1 − γ )

(
∂E j

∂w j

)2

t

. (2)

In such solution the partial derivative of error E over connection weight w is used to
adaptively adjust the length of step of the gradient descent. It is partially controlled by the
three constant parameters: learning rate α, fraction of gradient decay γ and computability
guard ε. Their typical values are: 0.001, 0.9 and 0.0001, respectively. But the most
important element of the RMSprop is its partial memory v of the errors caused by given
connection for previous training vectors. It allows to speed up the training while sliding
from the saddle points and to make it more precise near points close to optimal solutions.
This is why for many problems RMSprop outperforms SGD as well as schedule-based
gradient descent methods [30].

But in the case of GBP and contextual neural network for given training vector part
of connections between neurons can be not active. Thus the generalized formula for
error E of j-th neuron in m-th layer of contextual neurons is

Em
j = F ′(φm

j )

nm+1∑
i=1

E (m+1)
i wm+1

i, j H(k∗(m+1)
i − θm+1

i, j ), (3)

where F is the activation function of the neuron, ϕ is the activation of the neuron and
θ is the number of the group to which is assigned connection between j-th neuron in
m-th layer and i-th neuron in layer m + 1. At the same time k* is the maximal number of
group which was active during aggregation of signals by i-th neuron in layer m + 1 and
H is the Heaviside function. In the effect, RMSprop formulas to be used with contextual
neural network must be rewritten to the following form:

w
j
t+1 =

⎧
⎨
⎩

w
j
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v
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t
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(5)

Thus even if the connection not active for given vector does not contribute to the error of
the neuron and its weight is not changed, the relatedmemory of past gradients ismodified
as given by (5) for k∗

j < θ j . In the effect, after long inactivity of the connection the actual
training step coefficient becomes close to its initial value, what is expected. And finally,
by using (3) to calculate right-hand partial derivatives within (4) and (5) one achieves
the weights update formula of GBP algorithm combined with RMSprop method.

4 Results of Experiments

To find out how combining GBP with RMSprop modifies the training of contextual
neural networks results achieved with GBP-RMSprop algorithm were compared with
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outcomes of standard version of GBP (further denoted as GBP-SGD). Both methods
were used to solve classification problems defined by the three microarray data sets
of cancer gene expression, such as: Armstrong (ALL-MLL Leukemia), Golub (ALL-
AML Leukemia) and SRBCT (Small Round Blue Cell Tumors) [24–26]. Additionally
selected benchmark problems from UCI ML repository were analyzed (Sonar, Heart
Cancer and Crx) [27]. During experiments the values of following parameters were
examined: number of training epochs, hidden connections activity of resulting models
aswell as their accuracy of classification for test data. The architectures of trainedmodels
were constructed with the use of one-hot encoding of attributes, as well as numbers of
neurons and groups of connections as given in the Table 1.

Table 1. Basic properties of data sets and neural networks used within experiments

Data set Number
of classes

Number of
attributes

Number
of input
neurons

Number
of hidden
neurons

Number
of groups

Number of
hidden
connections

Number
of data
vectors

Armstrong 2 12582 12582 3 13 33785 72

Golub 2 7129 7129 3 13 21426 72

SRBCT 4 2308 2308 3 13 6963 83

Sonar 2 60 60 30 25 1860 208

Heart C. 5 13 28 10 16 330 303

Crx 2 15 47 20 3 1000 690

Hidden neurons of CxNNs were using SIF aggregation functions and single group
initialization of connections grouping [16].MLPmodelswere trained for reference. In all
cases the stopping criterion of training was perfect classification or lack of improvement
of accuracy for training data for more than 1200 epochs. For each set of parameters
training was performed with the use of repeated 10 times 5–fold cross-validation [31].
During each training models with the lowest test error were stored for analysis.

Values of parameters of considered training methods were: training step α = 0.01,
mini-batch size = 1, threshold of aggregation function ϕ* = 0.6, groups actualization
interval ω = 25, fraction of gradient decay γ = 0.9, computability guard ε = 0.0001.
Activation function of neurons was bipolar sigmoid. Uniform weights initialization was
usedwith range (−0.2, 0.2). All pseudo-random values were generated with theMersene
Twister algorithm (MT19937) [32]. For each type of analyzed training algorithms, aggre-
gation functions and training subsets of data, the same sequences of random values were
used during initialization and training of neural networks. Experiments were performed
with the use of 3706.6 ± 0.2 MHz 16 core Intel Core i9 9900 K CPU with core-wise
separation of simulation processes with appropriate core affinity settings.

The statistical significances of measurements were calculated with the use of two-
sample T-Test (confidence above 90%). Shapiro-Wilk normality test was used to ana-
lyze the normality of series. Results for MLP neural networks trained with GBP-SGD
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and GBP-RMSprop are presented in Table 2. Analogous results for CxNNs with SIF
aggregation function are given in Table 3.

Table 2. Average results with standard deviations for MLP neural networks trained with GBP-
SGD and GBP-RMSprop algorithms. Highlighted values are statistically better.

Data set Training
algorithm

Training
epochs [1]

Training time [s] Test error [%] Hidden conn.
activity [%]

Armstrong GBP-SGD 8.2 ± 4.8 13.7 ± 8.0 9.2 ± 8.7 100 ± 0

GBP-RMSp 56.7 ± 6.1 126.3 ± 148.0 3.3 ± 4.4 100 ± 0

Golub GBP-SGD 10.8 ± 6.4 9.8 ± 5.7 9.8 ± 8.3 100 ± 0

GBP-RMSp 30.3 ± 27.2 28.0 ± 25.0 3.0 ± 4.0 100 ± 0

SRBCT GBP-SGD 11.2 ± 2.9 5.6 ± 1.4 10.9 ± 6.9 100 ± 0

GBP-RMSp 47.1 ± 21.4 16.2 ± 7.3 4.2 ± 5.2 100 ± 0

Sonar GBP-SGD 280 ± 328 11.1 ± 13.0 13.0 ± 4.5 100 ± 0

GBP-RMSp 111 ± 196 4.5 ± 7.8 10.3 ± 4.1 100 ± 0

Heart C. GBP-SGD 528 ± 796 16.4 ± 24.8 12.9 ± 3.8 100 ± 0

GBP-RMSp 304 ± 543 11.7 ± 20.9 12.2 ± 3.6 100 ± 0

Crx GBP-SGD 783 ± 1216 64.9 ± 107.2 11.6 ± 2.2 100 ± 0

GBP-RMSp 877 ± 928 59.6 ± 63.0 10.9 ± 2.3 100 ± 0

As it can be seen in Table 2 the usage of GBP-RMSprop algorithm allows to generate
MLP neural networks which are better than analogous structures trained with usage of
GBP-SGD method. The former models for all considered problems have lower average
classification error for the test data, and in case of four problems this difference is
statistically significant. This is especially evident in the case of neural networks with
higher number of connections between neurons (problems Armstrong, Golub, SRBCT).
It can be observed that decrease of the average test error in most cases is related with
increase of the number of training epochs (except Sonar and Heart Cancer problems).
While for all MLP neural networks the activity of hidden connections is by definition
equal 100%, changes of number of training epochs are connected with proportional
changes of training time. It is also worth to note, that in the case of MLP networks GBP
algorithm behaves like standard error backpropagationmethod (with SGDor RMSprop).

At the same timeGBP-RMSprop can train contextual neural networkswhich produce
lower testing error than their counterparts trained with GBP-SGD. And for most consid-
ered problems the related change of number of training epochs is lower than for MLP
networks. E.g. for Golub data set the number of training epochs increases 3 times when
GBP–RMSprop is used for MLP and only by 3% for CxNNs. GBP–RMSprop has also
no problems with reduction of activity of hidden connection within CxNNs. For Sonar
and Heart Cancer data sets activity of hidden connections is decreased by 20 and 30%
points, respectively, while the testing error is lower than results forMLP for both training
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Table 3. Average results with standard deviations for CxNNs with SIF aggregation trained with
GBP-SGD and GBP-RMSprop algorithms. Highlighted values are statistically better.

Data set Training
algorithm

Training
epochs [1]

Training time [s] Test error [%] Hidden conn.
activity [%]

Armstrong GBP-SGD 9.8 ± 5.5 14.8 ± 6.6 6.4 ± 6.6 55.1 ± 24.7

GBP-RMSp 22.8 ± 17.1 36.3 ± 26.1 4.3 ± 4.9 58.7 ± 16.9

Golub GBP-SGD 15.0 ± 10.8 11.0 ± 9.8 5.9 ± 6.2 50.5 ± 21.6

GBP-RMSp 15.4 ± 7.5 19.2 ± 9.1 3.0 ± 4.2 51.9 ± 13.0

SRBCT GBP-SGD 17.1 ± 7.4 7.5 ± 2.8 8.5 ± 8.2 48.3 ± 12.0

GBP-RMSp 21.4 ± 8.0 10.2 ± 4.6 6.8 ± 6.3 72.3 ± 11.3

Sonar GBP-SGD 1036 ± 755 65.2 ± 47.5 9.7 ± 3.6 46.1 ± 10.3

GBP-RMSp 804 ± 836 49.5 ± 52.1 8.9 ± 3.6 33.1 ± 10.4

Heart C. GBP-SGD 1083 ± 1236 71.8 ± 79.9 11.0 ± 3.1 53.6 ± 11.6

GBP-RMSp 841 ± 634 63.2 ± 48.0 10.2 ± 3.0 43.5 ± 10.8

Crx GBP-SGD 1150 ± 1407 116.9 ± 149.1 10.5 ± 2.2 67.2 ± 7.4

GBP-RMSp 1168 ± 935 146.5 ± 119.5 10.1 ± 2.3 68.1 ± 6.8

methods. Thus in the case of MLP and CxNNs usage of GBP-RMSprop can be benefi-
cial both in terms of number of training epochs, hidden connections activity and testing
error.

5 Conclusions

In this paper a modification of Generalized Error Backpropagation algorithm was pre-
sented which includes appropriately adapted RMSprop optimizer. As expected, this
allowed statistically significant reduction of test error, activity of hidden connections
and number of epochs of training of considered contextual neural networks. Classifi-
cation results obtained for CxNNs built with GBP-RMSprop in case of four out of six
analyzed problems were better than for MLP networks obtained with the same train-
ing method. And in all cases models built with GBP-RMSprop were better than those
trained with GBP-SGD. This suggests that RMSprop can be effectively adapted and
used with contextual optimizationmodels which are operating in error spaces of variable
dimensionality which are evolving during processing of given data vectors.

Presented results also open new questions and research directions related with con-
textual neural networks and optimization algorithms such as GBP-RMSprop. First, it is
unknown why for SRBCT data set the measured testing error for models trained with
GBP-RMSprop is higher for CxNNs than forMLP. Second, it could be interesting to find
out why the usage of GBP-RMSprop decreased number of epochs of training of CxNNs
in relation to MLPs in the case of the three biggest of considered neural networks (all
for microarray data). Performing analogous analyses for additional benchmark data sets
could be very helpful in this task. Finally, presented results of measurements of usage of
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GBP–RMSprop indicate that it could be also beneficial to check the results of training of
contextual neural networks with other aggregation functions and modifications of GBP
method. This would include merging of GBP e.g. with Adam and AdaGrad gradient
descent optimizers [23].
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