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Abstract. An accurate forecast of freight demand at sanitary facilities
of ports is one of the key challeng-es for transport policymakers to better
allocate resources and to improve planning operations. This paper pro-
poses a combined hybrid approach to predict the short-term volume of
containers passing through the sanitary facilities of a maritime port. The
proposed methodology is based on a three-stage process. First, the time
series is decomposed into similar smaller regions easier to predict using a
self-organizing map (SOM) clustering. Then, a seasonal auto-regressive
integrated moving averages (SARIMA) model is fitted to each cluster,
obtaining predicted values and residuals of each cluster. A support vector
regression (SVR) model is finally applied in each cluster using the histor-
ical data clustered and the predicted variables from the SARIMA step,
testing different hybrid configurations. The experimental results demon-
strated that the proposed model outperforms other methodologies based
on SVR. The proposed model can be used as an automatic decision-
making tool by seaport or airport management due to its capacity to
plan resources in advance.

Keywords: Container forecasting · Machine learning · Support vector
regression · Self-organizing maps · Hybrid models

1 Introduction

The Border Inspection Posts (BIPs) were created in order to guarantee the secu-
rity at border crossings and the quality of the import-export goods by inspecting
them. BIPs are the approved facilities where the checks of goods (transported
within containers by trucks or towing vehicles) are carried out before entering the
Community territory. Thus, the BIPs are bottlenecks that must be necessarily
considered by Port Authorities. In order to avoid time delays and congestion in
the sanitary facilities, the port management must be able to accurately forecast
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the number of container passing through these sanitary facilities. An accurate
prediction of this volume may become a useful tool to improve human resources,
planning operations and the service quality at ports. In this paper, the forecast-
ing techniques can be divided into three categories: single methods, combined
methods and hybrid methods.

The first class comprises both linear and nonlinear techniques. On the one
hand, linear techniques are based on the assumption of having a linear rela-
tionship between the future values and the current and past values of the time
series. The well-known autoregressive integrated moving averages (ARIMA) [2]
models have been constantly applied to solve forecasting tasks related to mar-
itime transport [1,5]. On the other hand, nonlinear techniques have become a
strength alternative against the weaknesses of linear models. In this subcate-
gory, two techniques must be highlighted: artificial neural networks (ANNs) and
support vector machines for regression (SVR). Due to its great generalization
ability, SVR has been used in forecasting transport tasks with promising results.
Some examples include a predicting of container throughputs, inspection freights
and roll on-roll of freight traffic at ports [7–9]. Their findings showed that SVR
makes more accurate predictions than ANNs.

The second category comprises the combined models. One of the most fre-
quently approach consists of combining a single prediction technique with a
clustering method. When the clustering method has divided the database into
several clusters, a prediction technique is then applied in each cluster indepen-
dently. Self-organizing maps (SOMs) [6] is probably the best-known clustering
method. A combined SOM-ANN model was firstly introduced by Chen et al. [3]
to predict traffic flows in transportation. Results showed that the SOM-ANN
model outperformed the rest of the models. Due to the recent emergence of SVR
in transportation, there is hardly any research related to transport combining
SOM and SVR in a two-stage procedure. Nevertheless, it is a widespread solution
in many other forecasting fields [4].

The third category includes hybrid models. Real-world time series are not
completely linear or nonlinear, but rather contain both components. Thus, a
methodology using linear and non-linear models in a hybrid way takes the capa-
bilities of both models. Hybridizing linear and non-linear models have been pro-
posed in recent years. ARIMA has been the most commonly used linear model
in hybrid models literature. Several authors have proposed a hybridization of
SARIMA and SVR to address several forecasting tasks in the transport sec-
tor. As an example, Xie et al. [11] proposed several hybrid approaches in a
comparative way including the SARIMA-SVR model for container throughput
forecasting. Authors pointed out that a hybrid strategy considering ARIMA and
SVR models overcomes the performance of single models.

In this study, a combined-hybrid forecasting model is proposed in such a
way that a hybrid model (SARIMA-SVR) is combined with a clustering method
(SOM) to forecast the daily number of containers passing through a BIP, thus
resulting in a new SOM-SARIMA-SVR strategy. This methodology unifies in a
single model the strengths of clustering methods in decomposing the forecasting
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task into some relatively easier subtasks (using a SOM method) together with
the strengths of hybrid models to fit linear and nonlinear components (using a
SARIMA-SVR model).

2 Brief Introduction to SOM, SARIMA and SVR Models

Self-organizing Maps (SOM)

Within the unsupervised learning field, a SOM is a kind of neural network.
First proposed by Kohonen [6], a SOM is a classification technique which groups
objects of the systems into regions called clusters. In the process, neurons of
the model organize themselves considering only those that play a similar role,
forming a cluster. The topology of a SOM model is based on several neurons
distributed into two layers. The first one (input layer) is formed by k neurons
and each neuron correspond with one input. The output layer, called the com-
petition layer, can consist on different topologies (2-D grid for this case) where
the preprocessing is performed. All the neurons of the output layer are con-
nected by weights with all neurons of the input layer. Different input vectors
xi = [x1, x2, . . . , xk]k are presented to the networks at each training iteration.
During the network training, the Euclidean distance between x and all the weight
vectors are computed as follows:

‖x − wb‖ = min
i

{∥∥∥x(t) − wî
∥∥∥
}

i = 1, 2, . . . , l (1)

where l is the number of output neurons. According to Eq. (1), wb is considered
the winning neuron, i.e. the neuron that has the weight vector closest to x. In
addition, the weight of the winning neuron and their neighbours are updated
in a learning procedure by which the outputs become self-organised and the
feature map between inputs and outputs is formed. It is worth mentioning that
the neighbours will have their weights updated as well, although by not as much
as the winner itself. The weight update equation, Eq. (2), has a time (epoch)
dependent and descendent learning rate α(t), and a neighbour function N .

W (t + 1) = W (t) + N(v, t)α(t)(x − W (t)) (2)

Auto-regressive Integrated Moving Averages (ARIMA)

ARIMA models were introduced by Box and Jenkins [2] and have been a widely
used forecasting linear model during several decades. Three prediction terms
compose this linear function: the autoregressive term (AR), the moving average
term (MA) and the integration term (I). A SARIMA model can be obtained by
extending the ARIMA model to incorporate seasonal features. In this way, the
model is specified as SARIMA(p, d, q)(P,D,Q)S , where q represent the order of
the moving average terms, p denotes the order of the autoregressive terms and
d is the degree of differencing. The parameters (P,D,Q) deals with the seasonal
part and the capital letters corresponds to their counterparts for the seasonal
models with the seasonal orders and the seasonality of the model is represented
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by the parameter s. Equation (3) depicts a typical expression of the SARIMA
model.

ϕp(L)ΦP (BS)∇d∇D
S yt = θq(B)ΘQ(BS)at (3)

where yt is the observed value, ∇d and ∇D
S are the regular and seasonal differenc-

ing operators, respectively, p and P are the number of non-seasonal and seasonal
autoregressive terms, q and Q are the number of non-seasonal and seasonal mov-
ing average terms, d and D are the number of regular and seasonal differences,
ϕ and φ deptic the value weights of the non-seasonal and seasonal autoregressive
term, θ and Θ represent the weights of the non-seasonal and seasonal moving
average term, the seasonality is represented by S and at is the noise term.

Support Vector Machines for Regression (SVR) Models

Support vector machines (SV M) is a kind of machine learning system focused
on the structural risk minimization. The main objective of this method is max-
imizing the margin distance [10]. First introduced for classification problems,
the ε-insensitive loss function, has enabled its use in regression problems. The
process is the following: first, the input data are mapped into a new space of
higher dimensional features, called feature space, by a non-linear mapping a pri-
ori using a kernel transformation. The aim of this feature space is to detect a
linear regression function that can be fit the output data with the input data.
This linear regression corresponds to the nonlinear regression model in the origi-
nal space and it can be expressed as in Eq. (4). The following Equation represents
the problem that should be optimized:

min
w,b,ξ

1
2
‖w‖2 + C

N∑
i=1

(ξ+i + ξ−
i )

subject to:

w · xi + b − yi ≤ ε + ξ+i

yi − w · xi − bi ≤ ε + ξ−
i

ξ+i , ξ−
i ≥ 0

(4)

with i = 1, . . . , l ξ−
i and ξ+i are slack variables that deal with the training

error on the top and the bottom, respectively. The expression ‖w‖2/2 defines
the structure risk concerning the flatness of the model and the parameter C
is a correction factor which deals with the trade-off between the flatness and
the error. Gaussian kernel was chosen as kernel function. The dual optimization
problem can be solved with the Lagrangian multiplier method. The main rea-
son for using Lagrange Multipliers is that it is not very difficult to setup the
problem. The critical thing to note is that Lagrange multipliers only works with
equality constraints and therefore it is necessary to rearrange them. The result
is a fairly complicated system of equations, but there are methods to solve these.
Using Karush-Kuhn-Tucker conditions, we can substitute these into the primal
equation, rearrange and solve [10].
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3 Forecasting Approach

The experimental database comes from the BIP of the Port of Algeciras Bay,
located in the South of Spain. The Port of Algeciras Bay was the port with max-
imum throughput in the Mediterranean Sea and the fourth port in the European
continent related to the total throughput in 2018. The database was provided
by the Port Authority and contains daily records of the number of containers at
the Algeciras BIP from 2010 to 2014, which makes a total of 1825 daily records.

3.1 The Proposed Hybrid Methodology

The proposed methodology consist on a three-step hybrid procedure to fore-
cast the daily number of containers passing through a BIP. Different prediction
horizons were assessed: one-day (ph = 1) and seven-day (ph = 7) ahead. The
prediction was one-step ahead (yt+ph), that is yt+1 and yt+7. The estimation
can be thereby modelled as a nonlinear function of the n preceding values of the
series, called the autoregressive window (n) and its design is presented in Fig. 1.
For the ph = 7 case, the autoregressive window is composed of values of the
container series periodically sampled every seven days in the past. This is due
to the weekly seasonality found in the analysis of the autocorrelation function
of the time series. The main assumption here is that the best predictions are
obtained when past inputs corresponding to the same day of the week are used
(e.g., using several successive Mondays in the past to predict a future Monday).

np = 7

np = 1

…

…

n

n = 1n n = 2

… …

…

yt

yt-7

yt-1yt-2yt-3yt-4yt-5yt-6yt-7yt-n·ph

yt-14yt-n·ph

n = 1n = 2n = 3

yt

yt+1

yt+7

…

Fig. 1. Possible autoregressive window sizes in Steps II and III and their prediction
horizons (ph): one-day prediction horizon (above the timeline) and seven-day prediction
horizon (below the timeline). n is the size of the auto-regressive window.

Step I: SOM. A SOM model is first applied to the data in order to split
the data-base in several disjoint groups, called clusters, with similar statistical
distribution. Each cluster works independently in the second and third step.
In such cases, a single SARIMA and SVR models are applied independently
after decomposing the heterogeneous data into different homogeneous regions.
An experimental framework was developed in order to select the optimal number
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of past values to be considered (nc) in the input vector of the SOM, which is
described in Eq. (5):

xi = [yt, yt−1·ph, yt−2·ph, . . . , yt−nc·ph]T (5)

where t is each sample (daily value). Each row is arranged recursively using
different lagged terms (as in an autoregressive window).

Step II: SARIMA. A SARIMA model is fitted to each cluster generated by
the SOM in Step I, obtaining different predicted and residual values of these
clusters. A hold-out validation technique was applied during the process. The
data (of each cluster) was divided into two groups: the training set containing
two thirds of the dataset, and the test set comprising the rest of the samples. The
parameters of the model were adjusted using the training set and the test set was
used to validate the model. Different parameter ranges were tested using a trial-
and-error procedure. The values of the parameters tested within each cluster
are, for the non-seasonal part: p = 0, 1, 2, 3, 4; d = 0, 1, 2 and q = 1, 2, 3, 4; and
for the seasonal part: s = 2, 5, 7; P = 0, 1, 2; D = 0, 1, 2 and Q = 0, 1, 2, 3. All
the possible combinations of parameters were tested.

Step III: SVR. A SVR model is again applied to each generated cluster. The
three different SVR parameters are determined by an iterative process (trial-and-
error). For each cluster, the inputs of the SVR model are composed by the origi-
nal data of the cluster and their forecasted values and residuals from the second
(SARIMA) step. Thus, three different groups of variables compose the inputs of
each cluster: the forecasted values and residuals from the SARIMA step, pi and
ei respectively, and the original data yi, where i denotes the cluster. The presence
of these variables within the inputs leads to the proposed hybrid configurations.
Each variable is sorted recursively in terms of an autoregressive window. The
sizes of the original data, predicted values and residuals from the SARIMA step
are denoted as ny, np and ne, respectively. The range of parameter tested in each
cluster and each ph were ne, ny, np = [1, 2, . . . , 20] and, for the SVR parame-
ters, ε, γ = [2(−12,−11,...,−2)] and C = [1, 2, . . . , 10, 50, 100, 200, . . . , 1000]. For
each possible combination of the autoregressive parameters (ne, ny, np), all the
possible combinations of the hyperparameters (C, ε, γ) were tested.

A twofold cross-validation (2-CV) technique was used. First, 2-CV divides
the database into two sets (training and test) of equal sizes. The model deter-
mines the optimal hyperparameters with the training set. Then, the performance
accuracy is computed by the training set. The sets are subsequently inverted
and the process is computed again, obtaining the average of the two steps.
This validation strategy was repeated 20 times and the final prediction per-
formance was the average of these repetitions. The whole predicted time series
is achieved by adding the predictions of each available clusters. Note that, as
in the SARIMA model, the best SVR model may be different on each cluster.
Two hybrid approaches were proposed and assessed. The prediction results were
obtained for two prediction horizons, ph = 1 and ph = 7.
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SOM -SARIMA-SV R-1 Model (Hybrid Approach 1)
The time series can be decomposed into two independent and additive terms: a
linear component Lt and a nonlinear component NLt. Then, a linear forecasting
model such as SARIMA can be applied in order to model the linear component
and thereby to obtain the predicted values denoted as p̂t and the residual et.
Subsequently, a SVR model is applied over the residuals to fit the nonlinear
component NLt:

N̂Lt+ph = f(et, et−ph, . . . , et−n·ph) + εt = êt+ph (6)

where êt is the predicted residual, f is the nonlinear function obtained by the
SVR model, n is the size of the autoregressive window, ph is the prediction
horizon and εt is the error term. Finally, the prediction is achieved by adding
the two single components, that is:

Ŷt+ph = L̂t+ph + N̂Lt+ph (7)

SOM -SARIMA-SV R-2 Model (Hybrid Approach 2)
The time series is considered a nonlinear function of the original data and the
residuals and the predicted values from the second step:

Ŷt+ph = f(yt, yt−1·ph, yt−2·ph, . . . , yt−ny·ph, et+ph, et, et−1·ph,

. . . , et−ny·ph, P̂t, P̂t−1·ph, . . . , P̂t−np·ph) + εt+ph

(8)

where p̂t is the predicted value from the SARIMA model and ne, ny and np
represent autoregressive window sizes for e, y and p̂ variables, respectively.

The proposed SOM-SARIMA-SVR procedure is graphically shown in Fig. 2:

3.2 Performance Indexes

Performance Criteria of Stage I (Clustering). Two clustering quality
indices have been used, CQI1 and CQI2 (Eqs. (9–10)):

QI1 =
(
S̃i

)
(9)

QI2 =
∑

Si (10)

where Si is the silhouette function and its value for each pattern is between −1
to +1. This parameter is defined as Si = Di − di/max(di,Di), where Di is the
minimum average distance from one pattern of a cluster to another pattern in
another cluster and di is the average distance in the own cluster from one pattern
to the rest of patterns.
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Fig. 2. The overall process scheme of the SOM-SARIMA-SVR approach.

Performance Indexes of Stages II and III (Prediction). The mean square
error (MSE), the mean absolute percentage error (MAPE) and the mean abso-
lute error (MAE) are the performance indices that have been considered to
calculate the estimation of the generalization error in the prediction steps (I and
III). Equations (11–13) shows these performance criteria and their calculation,
where m is the sample size, yt is the real value of the observation and yt is the
corresponding predicted value.

MSE =
∑m

i=1(yi − ŷi)2

m
(11)

MAE =
∑m

i=1|ŷi − yi|
m

(12)

MAPE =
∑m

i=1|yi − ŷi)/yi|
m

(13)

4 Experimental Results and Discussion

A comparison among the single SVR, the combined SOM-SVR, the hybrid
SARIMA-SVR and the proposed SOM-SARIMA-SVR models was performed.



Container Demand Forecasting: SARIMA-SOM-SVR 77

First, a SOM model was employed as a clustering technique. Testing different
configurations of the SOM network, the most appropriate SOM size for the data
was found to be the map size of 8×8 neurons in the output layer with a hexagonal
grid topology and a three-dimensional input space. Results leads to consider that
the SOM network has clustered the data into two groups. These results can be
contrasted analytically and are collected in Table 1 which shows the best results
obtained per cluster and their input vector configuration. Based on the two
clustering performance indexes (CQI1, and CQI2), the two-classes clustering was
the best choice for the time series, reaching the highest values of CQI1 and CQI2
(0.659 and 717.548, respectively). This result confirms the obtained previously
with the SOM algorithm. Consequently, the database was also divided into two
groups, hereinafter called Cluster 1 and Cluster 2. Best results were achieved
using a three-element input vector (nc = 3) with a temporal leap of 7-day in the
past.

Table 1. Clustering results of the SOM step, where c is the number of clusters tested
and nc is the size of the input vector. The temporal leap in the past is 1 or 7 days.

Best configurations Performance indices

Clusters (c) Temporal leap nc CQ1 CQ2

2 7 3 0.650 717.548

3 7 3 0.627 682.549

4 1 3 0.588 643.792

5 1 3 0.601 658.248

In the second step, a SARIMA model was independently applied to
each cluster. Using an iterative trial-and-error procedure, the best-fitted
models were ARIMA(2, 0, 3) for Cluster 1 (without seasonal part) and
SARIMA(2, 1, 2)(2, 1, 3)5, with a seasonality of 5 days for Cluster 2. The require-
ments of a white noise process were satisfied to the residuals of the model.

Finally, in the third step, different SVR models were applied to each cluster
considering the two proposed hybrid approaches which are formed depending
on the input variables used. Focused on an individual hybrid configuration, a
best SVR model was achieved in each cluster to fit the data. The parameter
configuration of these SVR models is (generally) different in each cluster. The
final prediction results of this hybrid approach were obtained by integrating the
prediction values achieved in the two clusters as a single predicted time series.
That is, ŷinspections = {ŷcluster1}

⋃{ŷcluster2}.
The most accurate models for each hybrid approach are collected in Table 2.

These prediction results were obtained considering the junction of the predictions
of the two clusters. Table 2 is divided according to the prediction horizon used
(ph = 1 or ph = 7 days). Furthermore, for each prediction horizon, results
are collected depending on the hybrid configuration applied. For the hybrid
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approach 2 (SOM-SARIMA-SVR-2), results are presented considering the set of
inputs used (y, e or/and p) in order to clearly show the most relevant inputs.
The SOM-SARIMA-SVR-2 (without p as input) provides the best prediction
results for one-day ahead prediction, followed by the rest of possible models
presented in the hybrid approach 2 (considering different SVR inputs) and finally
the hybrid approach 1, in that order. The SOM-SARIMA-SVR-2 achieved the
best value in at least two performance indexes. In this case, more sophisticated
models obtained no better results. Nevertheless, the classical approach considers
an additive relationship between the linear and nonlinear component of the time
series. Consequently, it can be concluded that this approach is less powerful
than the other approach. For one-day ahead predictions, two different input
variables (y and e) are proved to be sufficient to predict the time series accurately.
However, there are not great differences among the prediction performances with
the rest models.

Table 2. Mean prediction performance results of the proposed SOM-SARIMA-SVR
models for one-day and seven-day ahead prediction horizons. The final number of the
model indicates the hybrid approach (1 or 2). The column inputs indicates the inputs
used in the SVR models, where y is the original data and e and p depict the residuals
and predicted values from the second step, respectively. Best values in bold.

ph Hybrid approach Model Inputs Performance indices

MSE MAE MAPE

1 1 SOM-SARIMA-SVR 1 e 296.3551 11.8413 18.6794

2 SOM-SARIMA-SVR 2 y, e 287.0105 11.6790 17.9391

SOM-SARIMA-SVR 2 y, p 288.7795 11.7174 17.7721

SOM-SARIMA-SVR 2 y, e, p 287.8423 11.8362 17.8603

7 1 SOM-SARIMA-SVR 1 e 299.6534 11.9761 18.4053

2 SOM-SARIMA-SVR 2 y, e 290.8783 11.8295 18.1178

SOM-SARIMA-SVR 2 y, p 306.1622 12.4121 18.3690

SOM-SARIMA-SVR 2 y, e, p 289.7224 11.8394 17.9783

Similar results were obtained considering the behaviour of the models for 7-
day ahead prediction, where better values of performance indexes were reached
with the hybrid approach 2. The most complex approach (SOM-SARIMA-SVR
2 with all variables as inputs) obtained the best results, reaching four of the five
best performance indexes. Better results were yielded using the more sophisti-
cated models (hybrid approach 2) instead of the classical approach (hybrid app-
roach 1). Particularly, SARIMA-SOM-SVR-2 with variables e and y as inputs of
the SVR achieved the best results. The best-fitted network of Cluster 1 for this
hybrid configuration 2 in the third step is composed by autoregressive window
sizes of twelve for the y input variable (ny = 12) and two for the e input from
SARIMA step (ne = 2), being the optimal SVR parameters C = 200, γ = 2−4

and ε = 2−8. To model Cluster 2, the best parameter configuration was ny = 12,
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ne = 2, C = 50, γ = 2−2 and ε = 2−2. For this network architecture, the number
and size of SVR inputs coincide in both clusters. The final prediction is reached
by junction the predicted values of the two clusters.

To conclude, the most accurate single SVR model, the most accurate com-
bined SOM-SVR model and the most accurate hybrid SARIMA-SVR model were
also compared against the proposed model. These comparisons are summarized
in Table 3. As this table shows, the proposed SOM-SARIMA-SVR model out-
performs the rest of the models in both prediction horizons. This suggest that
the “divide-and-conquer” principle, introduced with the usage of the cluster-
ing stage, can improve the performance of the hybrid models that consider the
hybridization of linear and nonlinear forecasting techniques. Figure 3 represents
a comparison point-to-point between the observed and predicted values for the
best-fitted models concerning the ph = 1 case.

Table 3. Comparison of the best mean prediction performance results of the single
models (SVR), the combined models (SOM-SVR), the hybrid model (SARIMA-SVR)
and the proposed model (SOM-SARIMA-SVR) for one-day and seven-day prediction
horizon. Best values in bold.

ph Model Performance indices

MSE MAE MAPE

1 SVR 389.1624 14.3328 23.0695

SOM-SVR 381.6965 14.1565 21.8681

SARIMA-SVR 302.0054 12.0024 19.4246

SOM-SARIMA-SVR 287.0105 11.6790 17.7721

7 SVR 299.6534 11.9761 18.4053

SOM-SVR 290.8783 11.8295 18.1178

SARIMA-SVR 306.1622 12.4121 1 8.3690

SOM-SARIMA-SVR 289.7224 11.8394 17.9783

04/27/2012 05/12/2012 05/19/2012
Time (days)

50

75

100

In
sp

ec
tio

ns

Observed SVR SOM-SVR SARIMA-SVR SARIMA-SOM-SVR

Fig. 3. Comparison of the observed and predicted value on number of containers
checked with the most accurate models. ph = 1 case.
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5 Conclusions

In this study, a combined-hybrid SOM-SARIMA-SVR forecasting model has
been proposed based on a three-step procedure to predict the number of con-
tainers passing through a Border Inspection Post. A clustering SOM is first
applied to obtain smaller regions with similar statistical features which may be
easier to predict. A SARIMA model is then fitted within each cluster to obtain
predicted values and residuals of the clustered database. Finally, a SVR model is
used to forecast each cluster independently using the variables obtained from the
second step together with the original data as inputs. The SOM-SARIMA-SVR
model proposed has been developed and compared to other possible methodolo-
gies implied in the process (SVR, SOM-SVR and SARIMA-SVR). The results
obtained indicate that the SOM-SARIMA-SVR model is the most competitive
model, improving the forecasting performance of the rest of the models concern-
ing the prediction of the container demand and outperforms these methodolo-
gies. This methodology can provide an automatic tool to predict workloads in
inspection facilities avoiding congestion and delays. Therefore, it can be used as
a decision-making tool by port managers due to its capacity to plan resources
in advance.
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