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Abstract. In this paper we present the parameterisation and optimi-
sation of the CACOC (Chaotic Ant Colony Optimisation for Coverage)
mobility model applied to Unmanned Aerial Vehicles (UAV) in order
to perform surveillance tasks. The use of unpredictable routes based on
the chaotic solutions of a dynamic system as well as pheromone trails
improves the area coverage performed by a swarm of UAVs. We pro-
pose this new application of CACOC to detect intruders entering an
area under surveillance. Having identified several parameters to be opti-
mised with the aim of increasing intruder detection rate, we address the
optimisation of this model using a Cooperative Coevolutionary Genetic
Algorithm (CCGA). Twelve case studies (120 scenarios in total) have
been optimised by performing 30 independent runs (360 in total) of our
algorithm. Finally, we tested our proposal in 100 unseen scenarios of each
case study (1200 in total) to find out how robust is our proposal against
unexpected intruders.

Keywords: Swarm robotics · Mobility model · Unmanned Aerial
Vehicle · Evolutionary Algorithm · Surveillance

1 Introduction

Nowadays, one of the most common scenarios for Unmanned Aerial Vehicles
(UAV) is the surveillance of exclusion areas such as army bases, private facilities
or around prisons. In this scenario, UAVs equipped with cameras are used to
explore a specific area in order to keep out unwelcome visitors [9]. Having this
in mind, there is a need for intelligent surveillance trajectories [4] to prevent
intruders from predicting the routes of UAVs and easily avoiding them as they
move through the exclusion zone.

In [13] a mobility model for generating unpredictable trajectories for UAV
swarms is proposed. This model, called Chaotic Ant Colony Optimisation
for Coverage (CACOC), uses chaotic solutions of a dynamical system and
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pheromones for guiding UAVs as well as improving the coverage of a given area
using a multi-level swarm of collaborating UAVs.

CACOC relies on a set of parameters that can influence the vehicle’s behav-
ior and, consequently, the coverage performance. We propose in this paper an
improvement of CACOC by calculating an optimised parameter set for this
mobility model using an evolutionary bioinspired approach, with the aim of
increasing the chances of spotting intruders in the area under surveillance, using
a reduced number of UAVs and unpredictable trajectories. This is a novel use
of CACOC since it has never been used for target detection.

The remainder of this paper is organised as follows. After reviewing the lit-
erature in the next section, the CACOC mobility model is explained and its
parameters are discussed in Sect. 3. Section 4 focuses on the proposed optimisa-
tion algorithm. In Sect. 5 we present the characteristics of our case studies and
the simulation environment. Section 6 focuses on our experimental results. And
finally, in Sect. 7, conclusions and future work are given.

2 Literature Review

There are some research works which address route optimisation and surveil-
lance using UAVs. In [12] a cooperative algorithm for optimizing UAVs routes is
proposed where agents share information for the benefit of the team while search-
ing for a target in minimum time. The authors performed simulations to test
their proposal achieving improvements over traditional implementations. In [7]
a Genetic Algorithm (GA) is proposed to optimise the parameters of a swarm
of robots, with the objective of improving the mapping of the environment. By
changing those parameters, the authors modify how agent-modeled ants travel
from nest and use pheromone communication to improve foraging success.

In [17] a swarm of UAVs is optimised to improve target detection and track-
ing, map coverage, and network connectivity. They compare their proposed
model, called Dual-Pheromone Clustering Hybrid Approach (DPCHA) with
other approaches to obtain around 50% improvement in map coverage. In [2] a
decentralised mobility model for UAV fleets based on Ant Colony Optimisation
(ACO) is presented. It relies on attractive and repulsive pheromones to detect
and track a maximum number of targets to perform surveillance and tracking
missions. Attractive pheromones are used to follow and track discovered targets,
while repulsive pheromones are used to survey the area by repelling UAVs to
less scanned cells.

In [16] the authors present a chaotic predator-prey biogeography-based opti-
misation (CPPBBO) method, integrating the chaos theory and the concept of
predator-prey into the classical Biogeography-Based Optimisation (BBO) algo-
rithm. They use it to solve the Uninhabited Combat Air Vehicle (UCAV) path
planning problem, with the aim of ensuring the maximum safety of the calculated
path with the minimum fuel cost. In [1] a surveillance system composed of a team
of UAVs is proposed. This is an efficient distributed solution for area surveillance
which uses long endurance missions and limited communication range.
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All these proposals use mobility models different from CACOC and do not
provide unpredictable routes to improve area surveillance and intruder detec-
tion as we propose in our study, where we combine a cooperative bio-inspired
approach with chaotic trajectories.

3 CACOC Mobility

CACOC (Chaotic Ant Colony Optimisation for Coverage) [13] is a mobility
model based on chaotic dynamics and pheromone trails for improving area cov-
erage using unpredictable trajectories. In spite of being unpredictable, CACOC’s
trajectories are also deterministic, what is extremely valuable if there are com-
munication issues, allowing the Ground Control Station (GCS) to know where
the vehicles are at any time. Algorithm 1 shows the pseudocode of CACOC.

Algorithm 1. Chaotic Ant Colony Optimisation for Coverage (CACOC).
1: procedure CACOC
2: current state ←“ahead”
3: loop
4: ρ ← next value in first return map
5: if no pheromone sensed in the neighbourhood then
6: if ρ < 1

3
then � CROMM

7: current state ←“right”
8: else if ρ < 2

3
then

9: current state ←“left”
10: else
11: current state ←“ahead”
12: end if
13: else
14: if ρ < PR then � Pheromones
15: current state ←“right”
16: else if ρ < PR + PL then
17: current state ←“left”
18: else
19: current state ←“ahead”
20: end if
21: end if
22: move according to the current state
23: end loop
24: end procedure

First, the next value in the first return map ρ describing a chaotic system
(chaotic attractor obtained by solving an ordinary differential equations system,
see [14]) is used to replace the random part of the mobility model. If there
is no pheromone in the UAV’s neighborhood, the next movement direction is
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given by CROMM (Chaotic Rössler Mobility Model) [13]. CROMM is an asym-
metric mobility model which uses the first return map to calculate the UAV’s
next movement direction. It is a purely chaotic mobility model which does not
use pheromones and the current state for each UAV is obtained according to
an equally split partition as explained in [13]. Continuing with Algorithm 1, if
pheromone trails are detected, they are used as repellers and the next action is
calculated according to the probabilities shown in Table 1 [13].

Table 1. Pheromone action table.

Probability of action: Left Ahead Right

PL = total−left
2×total

PA = total−ahead
2×total

PR = total−right
2×total

When using pheromone repellers, UAVs are better spread in the area avoiding
visiting the same spots too frequently. As pheromone trails evaporate, a UAV will
eventually visit again the same region of the map. This is an intended behaviour
since these UAVs are not mapping the area but performing surveillance tasks.

Fig. 1. Three pheromone parameters proposed for CACOC.

We propose three parameters in CACOC which are used for adapting this
model to different scenarios, number of vehicles, etc., with the aim of increas-
ing the probability of detecting intruders. We have parameterised the amount
of pheromones left by each vehicle (τa), the pheromone radius (τr) and maxi-
mum detection distance (τd) as shown in Fig. 1. The higher τa, the longer the
pheromones remains in the map as they are subject to a decay rate which is
fixed to one unit per simulation step (tick).

Table 2 shows the parameters defined for CACOC to be optimised by the
proposed algorithm in order to detect the maximum number of intruders.
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Table 2. Parameters proposed for CACOC.

Parameter Symbol Units Range

Pheromone amount τa % [1–100]

Pheromone radius τr Cells [0.5–2.5]

Pheromone scan depth τd Cells [1–10]

4 Cooperative Coevolutionary Genetic Algorithm

We propose a Cooperative Coevolutionary Genetic Algorithm (CCGA) to max-
imise the probability of detecting and intruder fostering the collaboration
between the members of the swarm. Our approach is based on the CCGA-2 [11]
proposed as an extension of the traditional GA with the aim of representing
and solving more complex problems by explicitly modeling the coevolution of
cooperating species (Fig. 2).

Fig. 2. Cooperative Coevolutionary Genetic Algorithm (CCGA). In this example, the
SOLUTION VECTOR1 of GA1 is evaluated by completing the full configuration vector
using the best individuals from the other GAs and a random sample of individuals from
the other GAs, as well. The same process is followed to evaluate the rest of individuals
in all the GAs’ populations.

Each UAV has been assigned to a Genetic Algorithm (GA) to optimise its
own set of parameters, i.e. τa, τr, and τd, as it is coded in each respective solu-
tion vectors using real numbers. Those GAs are identical and execute their own
main loop until the evaluation stage where the full configuration vector is built
using the best solution from the other GA’s. Additionally, a second evalua-
tion is performed using a random sample of individuals from the other GA’s
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populations [11]. This technique reduces the convergence speed, fostering the
populations’ diversity.

Each GA is based on an Evolutionary Algorithm (EA) [5,8] which is an
efficient method for solving combinatorial optimisation problems. EAs simulate
processes present in evolution such as natural selection, gene recombination after
reproduction, gene mutation, and the dominance of the fittest individuals over
the weaker ones. This is a generational GA where an offspring of λ individuals
is obtained from the population μ, so that the auxiliary population Q contains
the same number of individuals (20 in our implementation) as the population
P . The pseudocode of a GA is presented in Algorithm 2.

Algorithm 2. Pseudocode of the Genetic Algorithm (GA).
1: procedure GA(Ni, Pc, Pm)
2: t ← ∅
3: Q(0) ← ∅ � Q=auxiliary population
4: P (0) ← Initialisation(Ni) � P=population
5: while not TerminationCondition() do
6: Q(t) ← Selection(P (t))
7: Q(t) ← Crossover(Q(t), Pc)
8: Q(t) ← Mutation(Q(t), Pm)
9: Evaluation(Q(t))

10: P (t + 1) ← Replacement(Q(t), P (t))
11: t ← t + 1
12: end while
13: end procedure

After initializing t and Q(0) (lines 2 and 3), the GA generates P (0) by using
the Initialisation function (line 4). Then, the main loop is executed while the
TerminationCondition is not fulfilled (in our case we stop after 30 generations).
Following the main loop, the Selection operator is applied to populate Q(t) using
Binary Tournament [6] (line 6). After that, the Crossover operator is applied
(line 7) and then, the Mutation operator slightly modifies the new offspring (line
8). Finally, after the Evaluation of Q(t) (line 9), the new population P (t + 1)
is obtained by applying the Replacement operator (line 10). In order to avoid
population stagnation and preserve its diversity (and entropy), we have selected
the best individual in Q(t) to replace the worst one in P (t) [3] if it detects more
intruders (it has a better fitness value).

4.1 Operators

We have based our crossover operator and mutation operator on the ones pro-
posed in [3] for solving continuous optimizing problems. The crossover operator
is applied to each two individuals in the population (X and Y ) with a crossover
probability Pc = 0.9 calculated in our previous tests. First, a random integer M
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between 1 and the length of the solution vector (L) is obtained as shown in Eq. 1
and used to calculate the value of both Δx and Δy, see Eq. 2. After that, all the
configuration values in the solution vector beyond a randomly selected crossing
point are changed according to Eq. 3.

M = randInt(1, L) (1)

Δx =
Xi

M
, Δy =

Yi

M
(2)

X′i = Xi + Δy − Δx, Y ′i = Yi − Δy + Δx (3)

The mutation operator [3] has also been adapted to our problem character-
istics. In this case a new value M is calculated as in Eq. 1 and used to get the
value of Δ (Eq. 4) taking into account the upper and lower bound of each config-
uration variable (Table 2). Then, with a mutation probability Pm = 1

L the value
of Δ will we either subtracted from or added to the variable Xi according to a
probability Pd = 1

2 (equiprobable).

Δ =
UpBd(Xi) − LowBd(Xi)

M
(4)

X′i =

{
Xi − Δ if Pd < 0.5
Xi + Δ otherwise

(5)

4.2 Fitness Function

Our objective is maximizing the efficiency of the surveillance system, i.e. max-
imise the number of intruders detected. Therefore, the evaluation consists of
obtaining the percentage of intruders successfully detected by the UAV swarm
when its members are configured by the parameters in x, during the analysis
time (600 s). We also consider as a successful situation when the analysis time
ends and an intruder has not reached its destination despite not having been
detected by any UAV, see Eq. 6. This could happen since intruders are able to
evade UAVs but they deviate from their original trajectory, run out of time,
and never reach their destination. In order to increase the robustness of our pro-
posal, we evaluate ten different scenarios (γ = 10) and obtain the fitness value
using the Monte Carlo method [10]. As we are maximizing the average number
of detections, the higher the value of F (x), the better.

F (x) =
1
γ

∑
i

# of intrudersi − # of intruders at destinationi

# of intrudersi
(6)

5 Simulation Environment

We use a simulation environment in order to test our proposal and optimise
the UAV’s parameters. Each scenario is represented as a lattice of 100 by 100
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cells (Fig. 3) where the UAV’s can move following the mobility model (CACOC
in this study) leaving pheromones behind while scanning the area under their
detection area (calculated according to real camera specifications). The centre
of the map contains the region to be protected where intruders wish to arrive.
A swarm of UAVs will try to prevent that by using unpredictable trajectories. If
an intruder is detected, it is removed from the scenario and counted as a success.
At the end of a simulation, all the intruders which have not reached destination
are also considered as a success despite the fact they have not been detected yet.

Fig. 3. Snapshots of our simulation environment: HUNTED SIM.

For this study the intruders’ behavior has been modeled using a repelling
force which makes each intruder try to avoid UAV’s (Eq. 7) which competes with
an attracting force towards destination (Eq. 9). The intruder’s next movement
(Eq. 10) will depend on the relative position of the destination given by xa and
the surrounding UAVs (if any) which are closer than the maximum distance
Dmax. These UAVs contribute to the repelling force xr proportionally as given
by δi (Eq. 8). Finally, the resulting moving direction is normalised to be scaled
according to the movement speed of each intruder.

xr(t+1) =
∑
i

[(uavi − x(t)) ∗ δi] (7)

δi =

{
Dmax × ‖uavi − x(t)‖−1 if ‖uavi − x(t)‖ < Dmax

0 otherwise
(8)

xa(t+1) =
dest − x(t)

‖dest − x(t)‖ (9)

x(t+1) =
xr(t+1) + xa(t+1)

‖xr(t+1) + xa(t+1)‖ (10)
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In this study the intruders move at the same speed as UAVs, have a detection
(sight) angle of 180◦, and are able to see UAVs up to 10 m away. We have set
up 12 surveillance case studies in which there are 2, 4, 6, and 8 intruders being
chased by 4, 8, 12, and 16 UAVs providing there are more UAVs than intruders.
Following the pattern UAVS.INTRUDERS we have named each case study as 4.2,
8.2, 8.4, 8.6, 12.2, 12.4, 12.6, 12.8, 16.2, 16.4, 16.6, and 16.8. We have also
defined ten scenarios for each case study to improve the robustness of the system.
Scenarios differ in the arrival time of intruders and the position by which they
enter the area (always by one border of the map), both of which have been
chosen randomly. Since we set up an analysis time of 600 s the maximum arrival
time is under 400 s.

6 Experimental Results

The experiments were conducted in two stages. First, we addressed the optimisa-
tion of each case study by performing 30 independent runs of CCGA-2 including
ten scenarios each. The whole optimisation process needed 360 runs in total.

Table 3 shows the fitness value obtained for each case study and its opti-
mization time. Since we have performed 30 independent runs because CCGA
is non deterministic, we report the average, standard deviation, minimum, and
maximum (best) fitness values achieved. It can be seen that the more UAVs in
the map, the better, as expected.

Moreover, fitness values (success rate) decrease when there are more intruders
trying to reach their destination, although a higher number of UAVs mitigates
in part this matter, e.g. 12 UAVs are more successful in catching six intruders
than 8 UAVs. The aforementioned tendencies can be also observed in Fig. 4.

Fig. 4. Fitness value increases with the number of UAVs and it decreases when there
are more intruders in the scenario.

The second stage consisted in testing the best configuration for each set of
UAVs (4, 8, 12, and 16) on 100 unseen scenarios of each case study. We report
in Table 4 the average success rate obtained. It can be seen that again the more
UAVs, the better, so that 8 UAVs are in the 57%–60% success range, 12 UAVs
are in 74%–80%, and 16 UAVs are around 84%–87% on average.
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Table 3. Results of the optimisation process performed by CCGA-2 (30 runs).

Case study Fitness Time (Hours)

Avg. StdDev. Min. Max.

4.2 0.710 0.064 0.550 0.850 1.0

8.2 0.905 0.038 0.850 1.000 2.9

8.4 0.808 0.031 0.750 0.850 3.1

8.6 0.775 0.035 0.717 0.850 3.0

12.2 0.982 0.025 0.950 1.000 6.1

12.4 0.926 0.021 0.900 0.975 6.1

12.6 0.888 0.023 0.850 0.967 6.0

12.8 0.863 0.018 0.825 0.900 6.1

16.2 1.000 0.000 1.000 1.000 10.2

16.4 0.983 0.012 0.975 1.000 10.4

16.6 0.960 0.016 0.933 1.000 10.5

16.8 0.945 0.012 0.925 0.963 10.4

Table 4. Average detection percentage after testing of the best configurations obtained
in 100 scenarios of each case study.

UAVs Intruders Total

2 4 6 8

4 16.0% — — — 16.0%

8 57.5% 57.3% 59.0% — 58.2%

12 79.5% 75.8% 74.3% 76.0% 75.8%

16 86.0% 87.0% 84.0% 85.1% 85.3%

Figure 5 shows the distribution of these values for each case study, i.e. 1200
different scenarios. It can be seen that there are scenarios in which all the intrud-
ers were spotted (100% success) while in other, no one was detected (0% success).
We went deeper in our analysis focused on the 0% success cases to discover that
intruders managed to dodge the UAVs by going backwards and trying to move
forward again avoiding the UAVs in the neighbourhood, until they arrived to
destination. All in all, no intruders were detected in 72% of scenarios in 4.2, 16%
in 8.2, 4% in 8.4, 4% in 12.2 and 2% in 16.2.

We have conducted our experimentation using computing nodes equipped
with Xeon Gold 6132@2.6 GHz and 128 GB of RAM. It took about 80 h of parallel
runs (90 equivalent days).
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Fig. 5. Average success rate for each case study (100 unseen scenarios each).

7 Conclusion

In this paper we have proposed new features for the CACOC (Chaotic Ant
Colony Optimisation for Coverage) mobility model to be used as part of an
intruder detection system for the first time. We have optimised the newly
proposed parameters using an Cooperative Coevolutionary Genetic Algorithm
(CCGA) to maximise the intruder detection rate when the swarm of UAVs is
performing surveillance tasks.

We have detected up to 100% of intruders during the optimisation stage
and after testing the best configurations achieved in 1200 scenarios we have
observed detection rates up to 87%. These results show that the parameters
selected can be optimised to modify the swarm behaviour in order to improve
the detection of intruders. Moreover, the coevolutionary strategy allowed the
individual configuration of each UAV in the swarm, which could be observed in
the robustness of the system when tested against new unseen scenarios.

As future work we want to analyse the predators’ behaviour in order to
improve further our proposal. We plan to address a coevolutionary approach opti-
mising also the intruders, implementing a competitive evolution of both species
following game theory’s rules. Also, we wish to evolve full configuration vectors
using a GA and compare its results with the CCGA ones.
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