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Abstract. We present an approach for learning patterns for Complex
Event Processing (CEP) in robot sensor data. While the robot executes
a certain task, sensor data is recorded. The sensor data recordings are
classified in terms of events or outcomes that characterize the task. These
classified recordings are then used to learn simple rules that describe the
events using a simple, domain specific language, in a human-readable
and interpretable way.
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1 Introduction

Complex Event Processing (CEP [2]) has proven to be an effective and versatile
way to and derive conclusions from low-level data streams. Low-level information
about events from different data sources is integrated and combined in order to
generate high-level events that carry a domain-specific meaning – for example,
the appearance of a certain sequence of low-level events within a certain time
frame.

The rules for determining whether a high-level event should be emitted can be
complex. The interdependencies between different sources and types of low-level
events and their relative time characteristics have to be described formally and
in a machine-executable form. This can either happen by implementing the rules
directly within a general purpose programming language, or based on domain-
specific languages for complex event processing or event stream processing.
Although these languages allow formulating the queries in a human-readable
and machine-executable form, determining the actual structure and contents of
the query for a particular use case is still difficult and may require a lot of domain
knowledge.

Machine learning approaches can help to automate the process of finding
queries that match certain patterns in a stream of events. The basic idea is to
use a set of labeled training data consisting of recorded streams of events, and
treat the problem of finding a query that correctly classifies the patterns that
appear in the data as an optimization problem. We describe an approach that
shows how the task of defining a query pattern can be automated.
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The remainder of this paper is structured as follows: Sect. 2 introduces the use
case for which our approach has been applied. In Sect. 3 we review and summarize
the related work for complex event processing, stream event processing, and
machine learning approaches that have been applied for similar use cases. The
problem statement and goals of the approach are described in Sect. 4. Section 5
describes the approach in detail, starting with a high-level conceptual view, and a
formalization of the problem. The implementation that our evaluation is based
on is described in Sect. 6, and the results of the evaluation are summarized
in Sect. 7. In Sect. 8, we conclude with a summary and show future research
directions.

2 Sample Use Case

An example use case for our approach is to learn patterns that describe error
conditions that occur during the automated assembly of electrical components by
a robot, as described in [5]. In this scenario, a robot picks an electrical component
from a container and mounts it onto a profile rail within a switch cabinet, as
shown in Fig. 1.

Fig. 1. Automated electrical component assembly by robot

The robot is a sensitive robot that records forces that are exerted during the
assembly process, and offers this data in form of numerical time series. Based
on this data, it is possible to detect whether the assembly was successful. This
information can solely be derived from the force that is recorded in z-direction.
Figure 2 shows the time series for a successful and an unsuccessful assembly step.

The successful assembly is indicated by a characteristic curve shape that
occurs when the electrical component snaps into the profile rail. Our goal is to
learn patterns that describe conditions like this one, based on a simple pattern
language, from a small set of recordings of successful and unsuccessful assembly
processes.
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Fig. 2. Comparison of force signals at successful assembly (left) and unsuccessful assem-
bly (right)

3 Related Work

The field of Complex Event Processing has gained a lot of attention recently,
because the concept of deriving higher-level events from streams of low-level
events is crucial for decision making in many application areas. For the specific
goal of detecting events in time series data, different approaches have been stud-
ied. In this section, we present work that is related to our work in terms of goals
or the general approach, and point out the differences to our approach in view
of the sample use case that we described.

The work by [4] aims at identifying shapes that may appear in temporal
data sets. They present a list of shapes that intuitively capture the behavior of
a variable over time. For example, they define a “spike” as a sudden increase
followed by a sudden decrease of a value, which is exactly the shape that indicates
a successful assembly in our use case. The goal here is to explicitly define and
search for known shapes, whereas our goal is to automatically find the relevant
shapes (or patterns) in the first place, and provide the result in an interpretable
and processable form.

The goal of automatically learning CEP rules was also addressed by [8].
They point out the difficulties of implementing algorithms and rules for complex
event detection: These rules either have to be implemented in software, or with
an Event Description Language, but in both cases, domain experts may not be
able to formulate the rules without the help of a software engineer. Therefore,
they propose a special kind of Hidden Markov Model that allows learning event
rules from a sequence of events where the domain expert does not have to define
or describe the relevant event, but only tags the point in time when the rele-
vant event occurred. The results of this learning process are not interpretable,
because, as the name suggests, the actual description of the event is Hidden in
the Markov Model.

The iCEP framework presented in [6] describes an approach for learning
patterns that describe complex events based on primitive events using CEP
operators, like selection, aggregation, and windowing. The problem of rule gen-
eration is then decomposed into learning different aspects of the rule, where
one module is presented for learning each aspect. The element that most closely
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resembles our approach is the constraint learner that derives inequality relations
for elements of the rule.

Another approach for applying data mining techniques to learn CEP rules
from labeled input data was presented by [7]. They extract shapelets from the
time series data, which are then translated into simple CEP rules, and combined
into composite CEP rules. The rules are directly output as statements in EPL,
an Event Processing Language that can be used in different CEP engines. So the
focus was not on generating interpretable, but rather directly executable rules.

The approach of extracting patterns from multivariate time series using
shapelets was also addressed by [3]. They extract shapelets for all patterns that
appear in the time series, and identify representative key shapelets from this
set. Similar to our approach, they consider the goal of finding patterns as an
optimization problem. Even though shapelets are an interpretable basis for rules
and patterns in the context of classification, they cannot directly be translated
into domain-specific rules that may be used for complex event processing.

4 Problem Statement

We specify the goals of our approach by means of requirements.

(R1) Automated Process: The process for finding a pattern should be automated.
It should require as few human interaction as possible, and as little domain
knowledge as possible.

(R2) Interpretability: The patterns should be described in a form that can be
interpreted, understood, and therefore be validated by humans.

(R3) Accuracy: The patterns that are generated by the process should generate
an accuracy that is similar to the accuracy that can be achieved with a pattern
that is created by a domain expert.

(R4) Small Training Data Sets: The task of creating labeled training data is
time consuming and involves a lot of effort and domain knowledge. Therefore,
the approach should be capable of finding patterns based on small training data
sets that consist of few representative instances for all classes.

5 Approach

At the highest level of abstraction, the problem of finding a good pattern – i.e.
a query that matches the time series according to their labels – is a non-linear
optmization problem. The following section gives an overview of the optimization
process and the main building blocks that it consists of.

5.1 Overview

Figure 3 shows the conceptual view on the approach presented in this paper.
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Fig. 3. A conceptual overview of the proposed approach: The training data, consisting
of labeled time series, is passed to the pattern learner. The pattern learner generates a
pattern, applies it to the training data, and computes the classification accuracy. The
optimizer modifies the pattern iteratively. The pattern for which the highest classifica-
tion accuracy has been achieved is returned.

Training Data: The training data for our test cases consists of numerical time
series instances. The time series are labeled, meaning each one is associated with
information that indicates whether the assembly of the component was successful
or not. A formal definition and different options for preprocessing this time series
data for the goal of describing and detecting patterns can be found in [5].

Pattern: The representation of the resulting pattern – i.e. the external represen-
tation – is simply a string that describes the actual query. We use the definition
of a pattern based on the pattern language that was presented in [5]. The internal
representation for the pattern depends on the type of the optimizer. A simple
but versatile representation of such a pattern for optimization purposes is that
a pattern is stored as a list of constraints, where each constraint involves one of
the measures described in [5], the identifier for the segment that it refers to, and
the numerical threshold for the inequality.

Classifier and Pattern Matcher: The process of matching a pattern against an
input time series is described in detail in [5]. Conceptually, the input time series is
divided into segments, and the constraints that a pattern consists of are checked
for the sequence of the most recent segments that have been received. When the
pattern matches the current sequence, a high-level event is emitted. The classifier
computes the number of true/false positives/negatives for the input data, and
determines the value of the objective function for the optimization. There are
different possible choices for the objective value that is to be maximized. It can
be the overall classification accuracy, the average F1 score, the informedness,
or any other measure that can be computed from the confusion matrix of the
classification results.

Optimizer: The optimizer is the core element of the pattern learner. Its main
task is to either generate a new pattern or modify an existing pattern, with the
goal of improving the pattern for the training data, according to the objective
function. The following Sect. 5.2, will summarize the optimization approaches
that we examined.
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5.2 Optimization Approaches

The problem of optimizing the pattern in order to match the time series accord-
ing to their labels can be divided into two sub-problems: The first one is the
symbolic manipulation of the overall structure of the pattern. This refers to the
number of constraints that the pattern consists of and the measures and seg-
ments that each of the constraints operates on. The second sub-problem is the
numeric optimization of the thresholds of the constraints of a pattern. These
threshold values may be adjusted in order to tighten the classification rules that
are given by one pattern.

Symbolic Optimization with Genetic Algorithms. The search space for
the basic structure of the pattern is large, and the structure cannot be derived
systematically from the labeled input data. Therefore, we applied a genetic
algorithm approach for searching an initial set of possible patterns, treating
the objective value as the “fitness” in the genetic optimization process. In this
approach, a phenotype is an element of a population during the execution of
the genetic algorithm, and basically combines a genotype with a fitness value.
The genotype consists of a single chromosome. Each chromosome consists of a
sequence of genes with arbitrary length. Each gene has an allele that directly
encodes one condition that is part of a pattern. Therefore, each chromosome
(and thus, each genotype) directly represents a pattern consisting of multiple
conditions.

The evolution then consists of generating an initial (random) population, and
optimizing the population throughout several generations. The next generation
is computed by applying different mutations to the individuals of the current
population:

– Multi-point crossover: The sequences of genes from the chromosomes of two
parents are split at multiple points, and recombined to generate the offspring.

– Mutator: Randomly replaces a single gene of a chromosome with a new one.
– Dynamic condition chromosome mutator: Randomly adds or removes genes

from a chromosome.
– Condition chromosome mutator: Randomly changes the threshold value of a

single condition of one gene by a small amount, relative to the value range
that was determined for the respective condition.

Each of these mutations is applied with a small probability to the individuals
of one generation, in order to generate the offspring. In each generation, the
likelihood of individuals to survive for the next generation is proportional to
their fitness.

Symbolic Search Space. In the most general case, a pattern P as an m-ary
predicate on segments that is a conjunction of q conditions: P =

∧j<q
j=0 Cj . In

order to narrow the search space for the pattern learning, some constraints can be
given to the pattern learner. These constraints refer to the number of segments
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m that may appear in a pattern, and to the minimum and maximum number of
conditions q that a pattern may consist of. For example, it is possible to enforce
m = 3, to let the pattern learner search for patterns of the form P (I0, I1, I2).
Similarly, the number of conditions q can be restricted to a certain interval.
For example, one can enforce 2 <= q <= 4 to make sure that each pattern
contains at least two and at most four conditions. These constraints may either
be defined by a domain expert, depending on the complexity of the problem
and the associated complexity of the pattern, or by the user, who can use these
constraints to set an upper limit for the complexity of the pattern.

Numerical Optimization. It is possible to turn the optimization task into
a purely numerical optimization, by assuming the overall structure of a given
pattern to be fixed. This means that for a given pattern like

P (I0) = Slope(I0) > x ∧ Slope(I0) < y

the thresholds x and y can be considered as the real arguments of a multivariate
function, where the function value is the value of the objective function that is
applied to the resulting pattern. Given this definition, many standard methods of
numerical optmization may be applied. A special case of this approach is to start
the numerical optimization with a pattern that involves all possible conditions,
and initially defines the thresholds to be the minimum and maximum values of
the respective measures.

Numerical Search Space. The search space for the numerical optimization can
be bounded by the minimum and maximum values that are observed for the
respective measure in the training data. For the above example, the values will
be bounded by the minimum and maximum value of the slope that has been
observed for any segment. If a domain expert decides that segments with larger
or smaller slopes should also be considered, the search space can be broadened
based on this domain knowledge.

6 Implementation

In order to assess the feasibility of the approaches presented in this paper, we
implemented the pattern learning algorithm and applied it to various test data
sets. The implementation was made in Java. For the application of the generic
algorithms, we used the jenetics library [9]. The numerical optimization was
done with the Apache Commons Math library [1].

7 Evaluation

The following sections describe the test setup that we used for our evaluation,
and the results referring the requirements specified in Sect. 4.
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7.1 Test Data

The learning approach has been applied to a corpus of three test data sets.
Each data set contains 60 recordings of the sensor outputs of the robot that
have been measured during the assembly process. For each data set, there are 40
recordings where the assembly process succeeded and 20 recordings where the
assembly process failed. The relevant sensor is the sensor that records the force
in z-direction, measured at a 1 ms interval. Details about the preprocessing and
actual pattern matching process can be found in [5].

The data sets that we used for our evaluation refer to the same use case:
Detecting whether the assembly of an electrical component was successful or
not. The data sets differ in the overall length and the absolute values of the time
series that they contain. But in all cases, the successful assembly can be detected
by a characteristic “spike” in the force in z-direction, as shown in Fig. 2. Our
goal is to find a pattern that describes this characteristic generically, in a form
that is applicable to all data sets. Therefore, we applied the pattern learner to a
data set that was created by combining the initial ones, yielding 180 recordings
of 120 positive and 60 negative cases, and present the resulting pattern as well
as the accuracy that this pattern achieves for the combined and the individual
data sets.

7.2 Configuration

The configuration of the genetic algorithm that performs the symbolic opti-
mization was the same in all our experiments: The probability for crossover
mutations, general mutations and mutations that add or remove genes was 0.1.
The probability for changing the threshold value of a condition of one pattern
was also 0.1, with the change of the value being +/− 0.25 times the original
value, clamping the result to be in the valid range. We used a population size
of 1024 individuals, with 8 generations, stopping the evolution for the case that
the objective value remained stable for 4 generations.

Two dimensions of the search space for the symbolic optimization are the
number of segments that should appear in a pattern, and the number of condi-
tions that a pattern may consist of. Without any domain knowledge, the pattern
learner could be applied without any constraints for these dimensions. But for
our experiments, using the knowledge about the curve shape, we concluded that
the pattern should involve at most 3 segments - roughly corresponding to the
spike that indicated a successful assembly. We also limited the search space for
the symbolic optimization, allowing the pattern learner to generate patterns
having 1, 2 or 3 conditions.

A dedicated examination of the effect of different constraints or the influence
of the parameters (e.g. the population size) on the final result was not part of
our research, as the goal was to be able to generate good patterns without a ded-
icated parameter space exploration. The implementation focusses on flexibility,
simplicity and reproducibility of the results. This means that the implementation
is not optimized for efficiency. But with the configuration described above, the



146 B. G. Humm and M. Hutter

search for the patterns described in the following sections took approximately
11 min on a standard desktop PC.

7.3 Results

As mentioned in Sect. 5, there are two steps for the optimization: The symbolic
optimization that focusses on the structure of a pattern, and the numerical
optimization that optimizes the thresholds of a given pattern.

The best patterns with 1, 2 and 3 conditions and their accuracies are shown
here:

Pattern Accuracy
P1 = P (I0, I1, I2) = Slope(I2) > 0.04755 0.95
P2 = P (I0, I1, I2) = Slope(I1) > 0.03535 ∧

StartV(I2) < −0.42348 0.961
P3 = P (I0, I1, I2) = Slope(I2) > 0.03228 ∧

EndV(I0) > −20.87390 ∧
EndV(I1) < −5.17449 0.933

Note that a pattern with a higher number of conditions does not necessarily
achieve a higher accuracy. The random nature of the genetic algorithm and
the larger search space make it possible that a local optimum for the case of 3
conditions achieves a lower accuracy than one for the case of 2 conditions.

The best 25 patterns that have been found by the genetic algorithm have
subsequently been passed to a simple numerical optimization which increased or
decreased the thresholds of a pattern as long as the resulting accuracy did not
decrease. Due to the small size and the training set and the simplicity of the
resulting patterns, this simple numerical optimization on the (already optimized)
patterns did usually not increase the resulting accuracy, but often tightened the
thresholds of the involved conditions. For example, for the best pattern with 2
conditions described above, the threshold for the start value of segment I2 could
be decreased from −0.42348 to −1.88572, yielding the pattern

P ′
2 = P (I0, I1, I2) = Slope(I1) > 0.03535 ∧ StartV(I2) < −1.88572

which still achieves an accuracy of 0.961.
Table 1 summarizes the accuracy of the resulting pattern, individually for the

three test data sets, as well as for the combined data set:

7.4 Purely Numerical Optimization

As a demonstration of the feasibility and usefulness of the numerical optimiza-
tion step, we applied the numerical optimization to a pattern that involves all
possible conditions for a given number of segments. The general procedure was as
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Table 1. Classification accuracy of the resulting pattern P ′
2 for the three data sets and

the combined data set

Data set A B C Combined

Accuracy 0.967 1.000 0.900 0.961

follows: For a given number of segments, we generated a pattern that was a con-
junction of all conditions that could be applied to the segments, and the thresh-
olds have been chosen to be the minimum and maximum value that appears
for the respective measure. For three segments, five measures, and the possible
relations <and>, this yields a pattern that involves 30 conditions, and therefore,
30 thresholds. These thresholds have been used as the real arguments of a multi-
variate function. We then applied the CMA-ES (Covariance Matrix Adaptation
Evolution Strategy) optimizer from the Apache Commons Math library [1] to
this function. After the optimization, we removed all conditions from the result
pattern that could be removed without decreasing the accuracy. The resulting
pattern was

P ′
3 = P (I0, I1, I2) = DeltaT(I1) > 26.11010 ∧

StartV(I2) > −2.49862 ∧
DeltaV(I2) < −1.26727

with an accuracy of 0.933.
The main purpose of this experiment was to show that even though the

numerical optimization did not improve the accuracy for the simple pattern
that was generated by the symbolic optimization for the sample use case, it can
still be applied to more complex patterns in order to improve the accuracy of
the final result.

7.5 Evaluation of Requirements

We evaluate our results referring to the requirements specified in Sect. 4.

(R1) Automated Process: The process of finding a pattern is completely auto-
mated. It is possible, but not necessary, to integrate domain knowledge in the
search process. If nothing is known about the structure of the input data, the
pattern learner can be treated as a black box that only receives the labeled input
data and performs the optimization that results in a pattern.

(R2) Interpretability: The patterns that are generated are provided in a simple
but expressive pattern language that was described in [5]. The patterns consist
of simple conditions that describe basic properties of the shape of the time series
data. The pattern that achieved the highest accuracy for our application case
was

P ′
2 = P (I0, I1, I2) = Slope(I1) > 0.03535 ∧ StartV(I2) < −0.42348
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The intuitive meaning of the conditions is that there should be a segment I1
which has a noticeably positive slope, followed by a segment I2 that starts at a
low point. This matches the expected pattern for the ”spike” in the force that
is shown in the example in Fig. 2.

(R3) Accuracy: The work in [5] presented a pattern using the same pattern
language and data sets, which achieved an accuracy of 0.967, 0.983, and 0.867
for the three data sets, respectively. We applied our pattern learner to a data set
that was created from combining these data sets, let it search for a single pattern,
and evaluated the resulting pattern individually for the data sets, achieving
accuracies of 0.967, 1.0 and 0.9, respectively. So the goal of achieving an accuracy
that is similar to that of a pattern created by a domain expert is clearly met,
and in fact, the accuracy of the generated pattern is even higher for two of the
three data sets.

(R4) Small Training Data Sets: The training data for our use case consisted of
three different data sets, each having 40 positive and 20 negative instances, which
we combined in order to compare the resulting pattern to the baseline pattern
that was created manually by a domain expert. The actual value domains of
the three data sets differ noticeably. For example, the total duration or absolute
value of the recorded force are different. The main similarity of the data sets are
the characteristics of the “spike” that indicates a successful assembly. And these
characteristics have properly been captured by the pattern learner, even though
the actual data contains only 180 training instances which have been created by
combining different, even smaller training data sets.

8 Conclusions and Future Work

We have successfully applied the approach of automatically learning patterns
for complex event detection based on segmented time series data to our main
use case. The results are promising in that the process is fully automatic, and
generates interpretable patterns that achieve a high classification accuracy, even
with small training data sets.

There are several possible directions for future research. One of them is
application-driven, namely trying to learn more complex patterns that may
appear in other use cases. Anther possible task is a more detailed examination
of the influence of constraints and learning parameters on the result, or possible
improvements in accuracy that can be achieved with different numerical optimiz-
ers. The distinction between the symbolic and the numerical optimization allows
different ways of interweaving both optimization methods: One could start with
the symbolic optimization and apply the numeric optimization to the resulting
pattern, or start with a pattern that describes all possible conditions, optimize it
numerically, and use this pattern to initialize the first population of the genetic
algorithm. We will continue to publish our results on this.
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