
Multi-Agent Reinforcement Learning
Tool for Job Shop Scheduling Problems

Yailen Mart́ınez Jiménez1(B) , Jessica Coto Palacio2 , and Ann Nowé3

1 Universidad Central “Marta Abreu” de Las Villas, Santa Clara, Cuba
yailenm@uclv.edu.cu

2 UEB Hotel Los Caneyes, Santa Clara, Cuba
informatico@caneyes.vcl.tur.cu

3 Vrije Universiteit Brussel, Brussels, Belgium
ann.nowe@ai.vub.ac.be

Abstract. The emergence of Industry 4.0 allows for new approaches
to solve industrial problems such as the Job Shop Scheduling Prob-
lem. It has been demonstrated that Multi-Agent Reinforcement Learning
approaches are highly promising to handle complex scheduling scenar-
ios. In this work we propose a user friendly Multi-Agent Reinforcement
Learning tool, more appealing for industry. It allows the users to inter-
act with the learning algorithms in such a way that all the constraints
in the production floor are carefully included and the objectives can be
adapted to real world scenarios. The user can either keep the best sched-
ule obtained by a Q-Learning algorithm or adjust it by fixing some oper-
ations in order to meet certain constraints, then the tool will optimize
the modified solution respecting the user preferences using two possible
alternatives. These alternatives are validated using OR-Library bench-
marks, the experiments show that the modified Q-Learning algorithm is
able to obtain the best results.

Keywords: Reinforcement Learning · Multi-Agent Systems · Industry
4.0 · Job Shop Scheduling

1 Introduction

During the last years, technological developments have increasingly benefited
industry performance. The appearance of new information technologies have
given rise to intelligent factories in what is termed as Industry 4.0 (i4.0) [11,12].
The i4.0 revolution involves the combination of intelligent and adaptive systems
using shared knowledge among diverse heterogeneous platforms for computa-
tional decision-making [11,13,21], within Cyber-Physical Systems (CPS). In this
sense, embedding Multi-Agent Systems (MAS) into CPS is a highly promising
approach to handle complex and dynamic problems [13]. A typical example of an
industrial opportunity of this kind is scheduling, whose goal is to achieve resource
optimization and minimization of the total execution time [19]. Given the com-
plexity and dynamism of industrial environments, the resolution of this type of
c© Springer Nature Switzerland AG 2020
B. Dorronsoro et al. (Eds.): OLA 2020, CCIS 1173, pp. 3–12, 2020.
https://doi.org/10.1007/978-3-030-41913-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41913-4_1&domain=pdf
http://orcid.org/0000-0002-1223-0589
http://orcid.org/0000-0002-1977-145X
http://orcid.org/0000-0001-6346-4564
https://doi.org/10.1007/978-3-030-41913-4_1


4 Y. Mart́ınez Jiménez et al.

problem may involve the use of very complex solutions, as customer orders have
to be executed, and each order is composed by a number of operations that have
to be processed on the resources or machines available. In real world scheduling
problems, the environment is so dynamic that all this information is usually not
known beforehand. For example, manufacturing scheduling is subject to con-
stant uncertainty, machines breakdown, orders take longer than expected, and
these unexpected events can make the original schedule fail [10,24].

Accordingly, the problem of creating a job-shop scheduling, known as Job-
Shop Scheduling Problem (JSSP), is considered one of the hardest manufacturing
problems in the literature [1]. Many scheduling problems suggest a natural for-
mulation as distributed decision making tasks. Hence, the employment of MAS
represents an evident approach [5]. These agents typically use Reinforcement
Learning (RL), which is learning what to do (how to map situations to actions)
so as to maximize a numerical reward signal [18]. It allows an agent to learn
optimal behavior through trial-and-error interactions with its environment. By
repeatedly trying actions in different situations the agent can discover the con-
sequences of its behavior and identify the best action for each situation. For
example, when dealing with unexpected events, learning methods can play an
important role, as they could ‘learn’ from previous results and change specific
parameters for the next iterations, allowing not only to find good solutions, but
more robust ones.

Another problem that has been identified in the scheduling community is the
fact that most of the research concentrates on optimization problems that are
a simplified version of reality. As the author points out in [20]: “this allows for
the use of sophisticated approaches and guarantees in many cases that optimal
solutions are obtained. However, the exclusion of real-world restrictions harms
the applicability of those methods. What the industry needs are systems for
optimized production scheduling that adjust exactly to the conditions in the
production plant and that generate good solutions in very little time”. In this
research we propose a Multi-Agent Reinforcement Learning tool that allows
the user to either keep the best result obtained by a learning algorithm or to
include extra constraints of the production floor. This first version allows to
fix operations to time intervals in the corresponding resources and afterwards
optimize the solution based on the new constraints added by the user. This is a
first approach that helps to close the gap between literature and practice.

2 Literature Review

As it has been mentioned before, scheduling is a decision-making process con-
cerned with the allocation of limited resources (machines, material handling
equipment, operators, tools, etc.) to competing tasks (operations of jobs) over
time with the goal of optimizing one or more objectives [15]. The output of this
process is time/machine/operation assignments [9]. Scheduling is considered as
one of the key problems in manufacturing systems, and it has been a subject of
interest for a long time. However, it is difficult to talk about a method that gives
optimal solutions for every problem that emerges [2].



Multi-Agent Reinforcement Learning Tool for Job Shop Scheduling Problems 5

Different Operations Research (OR) techniques (Linear Programming,
Mixed-Integer Programming, etc.) have been applied to scheduling problems.
These approaches usually involve the definition of a model, which contains an
objective function, a set of variables and a set of constraints. OR based tech-
niques have demonstrated the ability to obtain optimal solutions for well-defined
problems, but OR solutions are restricted to static models. Artificial Intelli-
gence approaches, on the other hand, provide more flexible representations of
real-world problems, allowing human expertise to be present in the loop [8].

2.1 Job Shop Scheduling

A well-known manufacturing scheduling problem is the classical JSSP, which
involves a set of jobs and a set of machines with the purpose of finding the
best schedule, that is, an allocation of the operations to time intervals on the
machines that has the minimum duration required to complete all jobs (in this
case the objective is to minimize the makespan). The total number of possible
solutions for a problem with n jobs and m machines is m(n!). In this case,
exact optimization methods fail to provide timely solutions. Therefore, we must
turn our attention to find methods that can efficiently produce satisfactory (but
not necessarily optimal) solutions [14]. Some of the restrictions inherent in the
definition of the JSSP are the following:

– Only one operation from each job can be processed simultaneously.
– No preemption (i.e. process interruption) of operations is allowed.
– Each job must be processed to completion and no job is processed twice on

the same machine.
– Jobs may be started and finished at any time, i.e., no release or due dates

times exist.
– Machines cannot process more than one operation at a time.
– There is only one machine of each type and they may be idle within the

schedule period.
– Jobs must wait for the next machine in the processing order to become avail-

able.
– The machine processing order of each job is known in advance and it is

immutable.

Operations Research offers different mathematical approaches in order to
solve scheduling problems, for example Linear Programming, Dynamic Program-
ming and Branch and Bound methods. When the size of the problem is not too
big, these methods can provide optimal solutions in a reasonable amount of
time. Most real world scheduling problems are NP-hard, and the size is usually
not small, that is why optimization methods fail to provide optimal solutions
in a reasonable timespan. This is where heuristic methods become the focus of
attention, these methods can obtain good solutions in an efficient way. Artificial
Intelligence became an important tool to solve real world scheduling problems in
the early 80s [26]. In [5,6], the authors suggested and analyzed the application of



6 Y. Mart́ınez Jiménez et al.

RL techniques to solve job shop scheduling problems. They demonstrated that
interpreting and solving this kind of scenarios as a multi-agent learning problem
is beneficial for obtaining near-optimal solutions and can very well compete with
alternative solution approaches.

2.2 Multi-Agent Reinforcement Learning (MARL)

The Reinforcement Learning paradigm is a popular way to address problems
that have only limited environmental feedback, rather than correctly labeled
examples, as is common in other machine learning contexts. While significant
progress has been made to improve learning in a single task, the idea of transfer
learning has only recently been applied to reinforcement learning tasks. The core
idea of transfer is that experience gained in learning to perform one task can help
improve learning performance in a related, but different, task. There are many
possible approaches to learn such a policy, Temporal Difference methods, such as
Q-Learning (QL) [18,22] and Sarsa [7,16], policy search methods, such as policy
iteration (dynamic programming), policy gradient [3,23], and direct policy search
[25], among others. The general idea behind them is to learn through interaction
with an environment and the steps can be summarized as follows:

1. The agent perceives an input state.
2. The agent determines an action using a decision-making function (policy).
3. The chosen action is performed.
4. The agent obtains a scalar reward from its environment (reinforcement).
5. Information about the reward that has been received for having taken the

recent action in the current state is processed.

The basic RL paradigm is to learn the mapping from states to actions only
on the basis of the rewards the agent gets from its environment. By repeatedly
performing actions and observing resulting rewards, the agent tries to improve
and fine-tune its policy. RL is considered as a strong method for learning in MAS
environments. Multi-Agent Systems are a rapidly growing research area that
unifies ideas from several disciplines, including artificial intelligence, computer
science, cognitive science, sociology, and management science. Recently, there
has been a considerable amount of interest in the field motivated by the fact
that many real-world problems such as engineering design, intelligent search,
medical diagnosis, and robotics can be best modeled using a group of problem
solvers instead of one, each named agent [17].

3 Multi-Agent Reinforcement Learning Tool

The MARL tool groups several algorithms aimed at solving scheduling problems
in the manufacturing industry. This paper proposes a first version of a tool
which focuses on the need of building a more flexible schedule, in order to adjust
it to the user’s requests without violating the restrictions of the JSSP scenario.



Multi-Agent Reinforcement Learning Tool for Job Shop Scheduling Problems 7

Figure 1 shows the main interface, where the user must first choose the file where
the information related to the problem is described, basically the jobs that need
to be processed, the resources available to execute them and the processing times
(open button). The original algorithms are based on solving the JSSP.

Fig. 1. Main interface of the MARL tool.

The approach used to obtain the original solution that the user can afterwards
modify is the one proposed in [14], it is a generic multi-agent reinforcement learn-
ing approach that can easily be adapted to different scheduling settings, such as
the Flexible Job Shop (FJSSP) or the Parallel Machines Job Shop Scheduling
(PMJSSP). The algorithm used is the Q-Learning, which works by learning an
action-value function that gives the expected utility of taking a given action
in a given state. There is basically an agent per machine which takes care of
allocating the operations that must be executed by the corresponding resource.
Figure 2 shows the agents in a scheduling environment, and the parameters on
the left of the main interface are explained in detail in [14].

Once the user chooses the scheduling scenario to solve (JSSP, FJSSP or
PMJSSP), the tool proposes an initial solution (Fig. 3) based on the original
QL algorithm described before, and at the same time it enables a set of options
that are the basis of this research. The user has the possibility to move the
operations either using the mouse or the touch screen, and these movements
must be validated once the new positions are decided.

All the options are explained in detail below:

– Save Schedule: It allows to save the schedule as an image (.png) through a
dialog box to choose the path and to specify the file name.



8 Y. Mart́ınez Jiménez et al.

Fig. 2. Agents in a scheduling environment, as proposed in [16].

Fig. 3. Example of a schedule obtained using the MARL tool for the ft06 instance.

– Validate: Once an operation is moved from its original position, the new
schedule must be validated either with a right or a left shifting so that the
tool can then allow to make new changes. If the start time of an operation is
increased (it is shifted to the right), then the start time of the next operation
of the same job is checked and if it starts before the new end time of the
previous one, adjustments to the schedule have to be made. As a consequence,
the first thing is to aspire to locate that operation right after its predecessor,
in case the new placement obstructs the processing of another operation in
the same resource, the new start time becomes the end time of that other
operation, and so on, the possible locations are analyzed until an available
time slot is found. The shift to the left occurs similarly with the exception
that the operation is placed in such a way that its execution starts earlier. The
algorithm always checks that it is a valid movement, that is, that it does not
start before the minimum possible start time for that operation. Regarding
the following operations of the same job, the algorithm tries to move them as
close as possible to their predecessor, in order to minimize the makespan.

– Fix: This option is enabled once the new schedule is validated, in order to
optimize afterwards the schedule with the new changes. The fixed operations
are highlighted in black and there is the possibility of pressing them again to
stop fixing their position.



Multi-Agent Reinforcement Learning Tool for Job Shop Scheduling Problems 9

– End Fix: The user has to choose this option once the process of fixing the
operations is finished, and then proceed to optimize the schedule, either using
the shiftings or using the Q-Learning algorithm.

– Optimize: After fixing the operations that the user wants to keep in the
specified positions, then the rest of the schedule can be optimized. This is
based on performing a left shift on all the movable operations, respecting
the constraints of the job shop scheduling and also the start times of the
fixed operations. The procedure is performed according to the position of
the operations on the x-axis, in increasing order according to their starting
times. When an operation different from the first of each job is selected,
its new initial time will be the end time of its predecessor, if this is not a
valid movement because it interferes with the execution of another operation
being processed on the same machine, then it is shifted to the first available
interval where it fits on that resource, and if this is not possible then it keeps
its original position.

– Q-Learning: This optimization is based on applying the QL algorithm
described before, including a new constraint, in this case the algorithm will
learn a schedule taking into account the operations that were fixed by the
user.

– Undo: It is possible to go back as many schedules as validations have been
made.

In this paper we compare the performance of the two alternatives for opti-
mizing the schedule once the user has fixed some operations, the classical left
shifting which is executed when clicking the optimize button and the modified
Q-Learning version, which includes the position of the fixed operations in the
learning process.

4 Experimental Results

In order to measure the performance of the two alternatives several benchmark
problems from the OR-Library [4] were used. The OR-Library is a library of
problem instances covering various OR problems. Table 1 shows the results for
11 JSSP instances, with different number of jobs and machines.

The column optimum represents the best-known solution for the correspond-
ing instance; Original QL refers to the best solution obtained by the original
version of the QL algorithm, without any extra constraints. For the results
shown in the last two columns some modifications were made to the solution
obtained by the original QL, for each instance the same operations were fixed,
and each optimization alternative had to adjust the schedule in order to mini-
mize the makespan. To determine if there are significant differences in the results
obtained by the alternatives a statistical analysis was performed and the results
are shown in Fig. 4.

As it can be seen, the Wilcoxon test shows that there are significant differ-
ences between the two alternatives (sig = 0.08), the mean ranks confirm that the



10 Y. Mart́ınez Jiménez et al.

Table 1. Experimental results using instances from the OR-Library.

Instance Optimum Original QL Optimize QL with fixed operations

ft06 55 55 82 76

la01 666 666 849 810

la02 655 667 848 801

la03 597 610 752 730

la04 590 611 647 640

la05 593 593 603 603

la06 926 926 1012 1008

la07 890 890 1016 1010

la08 863 863 1060 1043

la09 951 951 1144 1096

la10 958 958 1016 1016

Fig. 4. Statistical analysis using the Wilcoxon test.

QL version with fixed operations is able to obtain better results than the clas-
sical optimization process of shifting the operations (optimize). This is mainly
because the left shifting respects the order in which the operations were initially
placed along the x axis. The QL algorithm, on the other hand, keeps the fixed
positions and during the process of learning, the order in which the operations
are scheduled in the resources does not have to be the same, this allows the
approach to obtain better solutions in terms of makespan.



Multi-Agent Reinforcement Learning Tool for Job Shop Scheduling Problems 11

5 Conclusions

This paper proposed a Multi-Agent Reinforcement Learning tool for the Job
Shop Scheduling Problem, which can be adapted to other scheduling scenarios
as the Flexible JSSP and the Parallel Machines JSSP. This tool allows the user to
keep the best schedule obtained by the original QL algorithm or to make adjust-
ments in order to move operations to fix intervals, according to the constraints of
the production floor. After all the adjustments have been made, a rescheduling
process is started in order to optimize as much as possible the modified solution.
This optimization can be done by shifting to the left all the possible movable
operations or using a modified version of the QL algorithm. The alternatives were
evaluated using benchmark data from the OR-Library and the results showed
that the QL algorithm is able to show the best results.

References

1. Asadzadeh, L.: A local search genetic algorithm for the job shop scheduling problem
with intelligent agents. Comput. Ind. Eng. 85, 376–383 (2015)

2. Aydin, M.E., Oztemel, E.: Dynamic job-shop scheduling using reinforcement learn-
ing agents. Robot. Auton. Syst. 33, 169–178 (2000)

3. Baxter, J., Bartlett, P.L.: Infinite-horizon policy-gradient estimation. J. Artif.
Intell. Res. 15, 319–350 (2001)

4. Beasley, J.E.: OR-Library: distributing test problems by electronic mail. J. Oper.
Res. Soc. 41(11), 1069–1072 (1990)

5. Gabel, T.: Multi-agent reinforcement learning approaches for distributed job-shop
scheduling problems. Ph.D. thesis, Universität Osnabrück (2009)

6. Gabel, T., Riedmiller, M.: On a successful application of multi-agent reinforcement
learning to operations research benchmarks. In: IEEE International Symposium on
Approximate Dynamic Programming and Reinforcement Learning, Honolulu, pp.
68–75 (2007)

7. Gavin, R., Niranjan, M.: On-line Q-learning using connectionist systems. Technical
report, Engineering Department, Cambridge University (1994)

8. Gomes, C.P.: Artificial intelligence and operations research: challenges and oppor-
tunities in planning and scheduling. Knowl. Eng. Rev. 15(1), 1–10 (2000)

9. Goren, S., Sabuncuoglu, I.: Robustness and stability measures for scheduling:
single-machine environment. IIE Trans. 40(1), 66–83 (2008)

10. Hall, N., Potts, C.: Rescheduling for new orders. Oper. Res. 52, 440–453 (2004)
11. Leitao, P., Colombo, A., Karnouskos, S.: Industrial automation based on cyber-

physical systems technologies: prototype implementations and challenges. Comput.
Ind. 81, 11–25 (2016)

12. Leitao, P., Rodrigues, N., Barbosa, J., Turrin, C., Pagani, A.: Intelligent products:
the grace experience. Control Eng. Pract. 42, 95–105 (2005)

13. Leusin, M.E., Frazzon, E.M., Uriona Maldonado, M., Kück, M., Freitag, M.: Solv-
ing the job-shop scheduling problem in the industry 4.0 era. Technologies 6(4), 107
(2018)

14. Mart́ınez Jiménez, Y.: A generic multi-agent reinforcement learning approach for
scheduling problems. Ph.D. thesis, Vrije Universiteit Brussel, Brussels (2012)



12 Y. Mart́ınez Jiménez et al.

15. Pinedo, M.: Scheduling: Theory, Algorithms and Systems. PrenticeHall, Englewood
cliffs (1995)

16. Singh, S., Sutton, R.S.: Reinforcement learning with replacing eligibility traces.
Mach. Learn. 22, 123–158 (1996)

17. Stone, P., Veloso, M.: Multiagent systems: a survey from a machine learning per-
spective. Auton. Robot. 8(3), 345–383 (2000)

18. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. The MIT
Press, Cambridge (1998)

19. Toader, F.A.: Production scheduling in flexible manufacturing systems: a state of
the art survey. J. Electr. Eng. Electron. Control Comput. Sci. 3(7), 1–6 (2017)

20. Urlings, T.: Heuristics and metaheuristics for heavily constrained hybrid flowshop
problems. Ph.D. thesis (2010)

21. Vogel-Heuser, B., Lee, J., Leitao, P.: Agents enabling cyber-physical production
systems. AT-Autom. 63, 777–789 (2015)

22. Watkins, C.J.C.H.: Learning from delayed rewards. Ph.D. thesis, King’s College
(1989)

23. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Mach. Learn. 8, 229–256 (1992)

24. Xiang, W., Lee, H.: Ant colony intelligence in multi-agent dynamic manufacturing
scheduling. Eng. Appl. Artif. Intell. 21, 73–85 (2008)

25. Ng, A.Y., Jordan, M.: PEGASUS: a policy search method for large MDPs and
POMDPs. In: Proceedings of the 16th Conference on Uncertainty in Artificial
Intelligence (2000)

26. Zhang, W.: Reinforcement learning for job shop scheduling. Ph.D. thesis, Oregon
State University (1996)


	Multi-Agent Reinforcement Learning Tool for Job Shop Scheduling Problems
	1 Introduction
	2 Literature Review
	2.1 Job Shop Scheduling
	2.2 Multi-Agent Reinforcement Learning (MARL)

	3 Multi-Agent Reinforcement Learning Tool
	4 Experimental Results
	5 Conclusions
	References




