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Preface

This book collects a selection of the best papers presented at the Third International
Conference on Optimization and Learning (OLA 2020), that was celebrated in Cádiz,
Spain, during February 17–19, 2020. The conference aims to attract outstanding
research papers focusing on the future challenges of optimization and learning meth-
ods, identifying and exploiting their synergies, and analyzing their applications in
different fields, such as health, industry 4.0, games, logistics, among others.

In the 2020 edition of OLA, seven special sessions were organized into the
following interesting topics: (i) artificial intelligence in games, (ii) metaheuristics &
learning, (iii) learning and optimization in cybersecurity, (iv) computational intelligence
for smart cities, (v) artificial intelligence for health applications, (vi) hyper-heuristics and
their applications, and (vii) intelligent systems and energy. In addition, there were regular
sessions covering topics such as (viii) optimization for learning, (ix) learning for
optimization, (x) transportation, (xi) parallel and cooperative learning and optimization,
(xii) scheduling, and (xiii) energy-aware optimization. In total, 13 sessions were
organized and 2 keynote speakers were invited.

OLA 2020 renders a forum for the international communities of optimization and
learning to discuss recent results and to develop new ideas and collaborations in a
friendly and relaxed atmosphere. The conference received a total of 55 submissions,
that were evaluated in a peer-review process by a minimum of three experts. After this
reviewing process, 23 papers were selected to be part of these proceedings, meaning a
42% acceptance rate.

We would like to thank the members of the different committees involved in OLA
2020, as well as the authors of all submitted papers. All of them made the conference
possible thanks to their generous effort.

February 2020 Bernabé Dorronsoro
Patricia Ruiz

Juan Carlos de la Torre
Daniel Urda

El-Ghazali Talbi
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Multi-Agent Reinforcement Learning
Tool for Job Shop Scheduling Problems

Yailen Mart́ınez Jiménez1(B) , Jessica Coto Palacio2 , and Ann Nowé3

1 Universidad Central “Marta Abreu” de Las Villas, Santa Clara, Cuba
yailenm@uclv.edu.cu

2 UEB Hotel Los Caneyes, Santa Clara, Cuba
informatico@caneyes.vcl.tur.cu

3 Vrije Universiteit Brussel, Brussels, Belgium
ann.nowe@ai.vub.ac.be

Abstract. The emergence of Industry 4.0 allows for new approaches
to solve industrial problems such as the Job Shop Scheduling Prob-
lem. It has been demonstrated that Multi-Agent Reinforcement Learning
approaches are highly promising to handle complex scheduling scenar-
ios. In this work we propose a user friendly Multi-Agent Reinforcement
Learning tool, more appealing for industry. It allows the users to inter-
act with the learning algorithms in such a way that all the constraints
in the production floor are carefully included and the objectives can be
adapted to real world scenarios. The user can either keep the best sched-
ule obtained by a Q-Learning algorithm or adjust it by fixing some oper-
ations in order to meet certain constraints, then the tool will optimize
the modified solution respecting the user preferences using two possible
alternatives. These alternatives are validated using OR-Library bench-
marks, the experiments show that the modified Q-Learning algorithm is
able to obtain the best results.

Keywords: Reinforcement Learning · Multi-Agent Systems · Industry
4.0 · Job Shop Scheduling

1 Introduction

During the last years, technological developments have increasingly benefited
industry performance. The appearance of new information technologies have
given rise to intelligent factories in what is termed as Industry 4.0 (i4.0) [11,12].
The i4.0 revolution involves the combination of intelligent and adaptive systems
using shared knowledge among diverse heterogeneous platforms for computa-
tional decision-making [11,13,21], within Cyber-Physical Systems (CPS). In this
sense, embedding Multi-Agent Systems (MAS) into CPS is a highly promising
approach to handle complex and dynamic problems [13]. A typical example of an
industrial opportunity of this kind is scheduling, whose goal is to achieve resource
optimization and minimization of the total execution time [19]. Given the com-
plexity and dynamism of industrial environments, the resolution of this type of
c© Springer Nature Switzerland AG 2020
B. Dorronsoro et al. (Eds.): OLA 2020, CCIS 1173, pp. 3–12, 2020.
https://doi.org/10.1007/978-3-030-41913-4_1
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problem may involve the use of very complex solutions, as customer orders have
to be executed, and each order is composed by a number of operations that have
to be processed on the resources or machines available. In real world scheduling
problems, the environment is so dynamic that all this information is usually not
known beforehand. For example, manufacturing scheduling is subject to con-
stant uncertainty, machines breakdown, orders take longer than expected, and
these unexpected events can make the original schedule fail [10,24].

Accordingly, the problem of creating a job-shop scheduling, known as Job-
Shop Scheduling Problem (JSSP), is considered one of the hardest manufacturing
problems in the literature [1]. Many scheduling problems suggest a natural for-
mulation as distributed decision making tasks. Hence, the employment of MAS
represents an evident approach [5]. These agents typically use Reinforcement
Learning (RL), which is learning what to do (how to map situations to actions)
so as to maximize a numerical reward signal [18]. It allows an agent to learn
optimal behavior through trial-and-error interactions with its environment. By
repeatedly trying actions in different situations the agent can discover the con-
sequences of its behavior and identify the best action for each situation. For
example, when dealing with unexpected events, learning methods can play an
important role, as they could ‘learn’ from previous results and change specific
parameters for the next iterations, allowing not only to find good solutions, but
more robust ones.

Another problem that has been identified in the scheduling community is the
fact that most of the research concentrates on optimization problems that are
a simplified version of reality. As the author points out in [20]: “this allows for
the use of sophisticated approaches and guarantees in many cases that optimal
solutions are obtained. However, the exclusion of real-world restrictions harms
the applicability of those methods. What the industry needs are systems for
optimized production scheduling that adjust exactly to the conditions in the
production plant and that generate good solutions in very little time”. In this
research we propose a Multi-Agent Reinforcement Learning tool that allows
the user to either keep the best result obtained by a learning algorithm or to
include extra constraints of the production floor. This first version allows to
fix operations to time intervals in the corresponding resources and afterwards
optimize the solution based on the new constraints added by the user. This is a
first approach that helps to close the gap between literature and practice.

2 Literature Review

As it has been mentioned before, scheduling is a decision-making process con-
cerned with the allocation of limited resources (machines, material handling
equipment, operators, tools, etc.) to competing tasks (operations of jobs) over
time with the goal of optimizing one or more objectives [15]. The output of this
process is time/machine/operation assignments [9]. Scheduling is considered as
one of the key problems in manufacturing systems, and it has been a subject of
interest for a long time. However, it is difficult to talk about a method that gives
optimal solutions for every problem that emerges [2].
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Different Operations Research (OR) techniques (Linear Programming,
Mixed-Integer Programming, etc.) have been applied to scheduling problems.
These approaches usually involve the definition of a model, which contains an
objective function, a set of variables and a set of constraints. OR based tech-
niques have demonstrated the ability to obtain optimal solutions for well-defined
problems, but OR solutions are restricted to static models. Artificial Intelli-
gence approaches, on the other hand, provide more flexible representations of
real-world problems, allowing human expertise to be present in the loop [8].

2.1 Job Shop Scheduling

A well-known manufacturing scheduling problem is the classical JSSP, which
involves a set of jobs and a set of machines with the purpose of finding the
best schedule, that is, an allocation of the operations to time intervals on the
machines that has the minimum duration required to complete all jobs (in this
case the objective is to minimize the makespan). The total number of possible
solutions for a problem with n jobs and m machines is m(n!). In this case,
exact optimization methods fail to provide timely solutions. Therefore, we must
turn our attention to find methods that can efficiently produce satisfactory (but
not necessarily optimal) solutions [14]. Some of the restrictions inherent in the
definition of the JSSP are the following:

– Only one operation from each job can be processed simultaneously.
– No preemption (i.e. process interruption) of operations is allowed.
– Each job must be processed to completion and no job is processed twice on

the same machine.
– Jobs may be started and finished at any time, i.e., no release or due dates

times exist.
– Machines cannot process more than one operation at a time.
– There is only one machine of each type and they may be idle within the

schedule period.
– Jobs must wait for the next machine in the processing order to become avail-

able.
– The machine processing order of each job is known in advance and it is

immutable.

Operations Research offers different mathematical approaches in order to
solve scheduling problems, for example Linear Programming, Dynamic Program-
ming and Branch and Bound methods. When the size of the problem is not too
big, these methods can provide optimal solutions in a reasonable amount of
time. Most real world scheduling problems are NP-hard, and the size is usually
not small, that is why optimization methods fail to provide optimal solutions
in a reasonable timespan. This is where heuristic methods become the focus of
attention, these methods can obtain good solutions in an efficient way. Artificial
Intelligence became an important tool to solve real world scheduling problems in
the early 80s [26]. In [5,6], the authors suggested and analyzed the application of
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RL techniques to solve job shop scheduling problems. They demonstrated that
interpreting and solving this kind of scenarios as a multi-agent learning problem
is beneficial for obtaining near-optimal solutions and can very well compete with
alternative solution approaches.

2.2 Multi-Agent Reinforcement Learning (MARL)

The Reinforcement Learning paradigm is a popular way to address problems
that have only limited environmental feedback, rather than correctly labeled
examples, as is common in other machine learning contexts. While significant
progress has been made to improve learning in a single task, the idea of transfer
learning has only recently been applied to reinforcement learning tasks. The core
idea of transfer is that experience gained in learning to perform one task can help
improve learning performance in a related, but different, task. There are many
possible approaches to learn such a policy, Temporal Difference methods, such as
Q-Learning (QL) [18,22] and Sarsa [7,16], policy search methods, such as policy
iteration (dynamic programming), policy gradient [3,23], and direct policy search
[25], among others. The general idea behind them is to learn through interaction
with an environment and the steps can be summarized as follows:

1. The agent perceives an input state.
2. The agent determines an action using a decision-making function (policy).
3. The chosen action is performed.
4. The agent obtains a scalar reward from its environment (reinforcement).
5. Information about the reward that has been received for having taken the

recent action in the current state is processed.

The basic RL paradigm is to learn the mapping from states to actions only
on the basis of the rewards the agent gets from its environment. By repeatedly
performing actions and observing resulting rewards, the agent tries to improve
and fine-tune its policy. RL is considered as a strong method for learning in MAS
environments. Multi-Agent Systems are a rapidly growing research area that
unifies ideas from several disciplines, including artificial intelligence, computer
science, cognitive science, sociology, and management science. Recently, there
has been a considerable amount of interest in the field motivated by the fact
that many real-world problems such as engineering design, intelligent search,
medical diagnosis, and robotics can be best modeled using a group of problem
solvers instead of one, each named agent [17].

3 Multi-Agent Reinforcement Learning Tool

The MARL tool groups several algorithms aimed at solving scheduling problems
in the manufacturing industry. This paper proposes a first version of a tool
which focuses on the need of building a more flexible schedule, in order to adjust
it to the user’s requests without violating the restrictions of the JSSP scenario.
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Figure 1 shows the main interface, where the user must first choose the file where
the information related to the problem is described, basically the jobs that need
to be processed, the resources available to execute them and the processing times
(open button). The original algorithms are based on solving the JSSP.

Fig. 1. Main interface of the MARL tool.

The approach used to obtain the original solution that the user can afterwards
modify is the one proposed in [14], it is a generic multi-agent reinforcement learn-
ing approach that can easily be adapted to different scheduling settings, such as
the Flexible Job Shop (FJSSP) or the Parallel Machines Job Shop Scheduling
(PMJSSP). The algorithm used is the Q-Learning, which works by learning an
action-value function that gives the expected utility of taking a given action
in a given state. There is basically an agent per machine which takes care of
allocating the operations that must be executed by the corresponding resource.
Figure 2 shows the agents in a scheduling environment, and the parameters on
the left of the main interface are explained in detail in [14].

Once the user chooses the scheduling scenario to solve (JSSP, FJSSP or
PMJSSP), the tool proposes an initial solution (Fig. 3) based on the original
QL algorithm described before, and at the same time it enables a set of options
that are the basis of this research. The user has the possibility to move the
operations either using the mouse or the touch screen, and these movements
must be validated once the new positions are decided.

All the options are explained in detail below:

– Save Schedule: It allows to save the schedule as an image (.png) through a
dialog box to choose the path and to specify the file name.
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Fig. 2. Agents in a scheduling environment, as proposed in [16].

Fig. 3. Example of a schedule obtained using the MARL tool for the ft06 instance.

– Validate: Once an operation is moved from its original position, the new
schedule must be validated either with a right or a left shifting so that the
tool can then allow to make new changes. If the start time of an operation is
increased (it is shifted to the right), then the start time of the next operation
of the same job is checked and if it starts before the new end time of the
previous one, adjustments to the schedule have to be made. As a consequence,
the first thing is to aspire to locate that operation right after its predecessor,
in case the new placement obstructs the processing of another operation in
the same resource, the new start time becomes the end time of that other
operation, and so on, the possible locations are analyzed until an available
time slot is found. The shift to the left occurs similarly with the exception
that the operation is placed in such a way that its execution starts earlier. The
algorithm always checks that it is a valid movement, that is, that it does not
start before the minimum possible start time for that operation. Regarding
the following operations of the same job, the algorithm tries to move them as
close as possible to their predecessor, in order to minimize the makespan.

– Fix: This option is enabled once the new schedule is validated, in order to
optimize afterwards the schedule with the new changes. The fixed operations
are highlighted in black and there is the possibility of pressing them again to
stop fixing their position.
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– End Fix: The user has to choose this option once the process of fixing the
operations is finished, and then proceed to optimize the schedule, either using
the shiftings or using the Q-Learning algorithm.

– Optimize: After fixing the operations that the user wants to keep in the
specified positions, then the rest of the schedule can be optimized. This is
based on performing a left shift on all the movable operations, respecting
the constraints of the job shop scheduling and also the start times of the
fixed operations. The procedure is performed according to the position of
the operations on the x-axis, in increasing order according to their starting
times. When an operation different from the first of each job is selected,
its new initial time will be the end time of its predecessor, if this is not a
valid movement because it interferes with the execution of another operation
being processed on the same machine, then it is shifted to the first available
interval where it fits on that resource, and if this is not possible then it keeps
its original position.

– Q-Learning: This optimization is based on applying the QL algorithm
described before, including a new constraint, in this case the algorithm will
learn a schedule taking into account the operations that were fixed by the
user.

– Undo: It is possible to go back as many schedules as validations have been
made.

In this paper we compare the performance of the two alternatives for opti-
mizing the schedule once the user has fixed some operations, the classical left
shifting which is executed when clicking the optimize button and the modified
Q-Learning version, which includes the position of the fixed operations in the
learning process.

4 Experimental Results

In order to measure the performance of the two alternatives several benchmark
problems from the OR-Library [4] were used. The OR-Library is a library of
problem instances covering various OR problems. Table 1 shows the results for
11 JSSP instances, with different number of jobs and machines.

The column optimum represents the best-known solution for the correspond-
ing instance; Original QL refers to the best solution obtained by the original
version of the QL algorithm, without any extra constraints. For the results
shown in the last two columns some modifications were made to the solution
obtained by the original QL, for each instance the same operations were fixed,
and each optimization alternative had to adjust the schedule in order to mini-
mize the makespan. To determine if there are significant differences in the results
obtained by the alternatives a statistical analysis was performed and the results
are shown in Fig. 4.

As it can be seen, the Wilcoxon test shows that there are significant differ-
ences between the two alternatives (sig = 0.08), the mean ranks confirm that the
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Table 1. Experimental results using instances from the OR-Library.

Instance Optimum Original QL Optimize QL with fixed operations

ft06 55 55 82 76

la01 666 666 849 810

la02 655 667 848 801

la03 597 610 752 730

la04 590 611 647 640

la05 593 593 603 603

la06 926 926 1012 1008

la07 890 890 1016 1010

la08 863 863 1060 1043

la09 951 951 1144 1096

la10 958 958 1016 1016

Fig. 4. Statistical analysis using the Wilcoxon test.

QL version with fixed operations is able to obtain better results than the clas-
sical optimization process of shifting the operations (optimize). This is mainly
because the left shifting respects the order in which the operations were initially
placed along the x axis. The QL algorithm, on the other hand, keeps the fixed
positions and during the process of learning, the order in which the operations
are scheduled in the resources does not have to be the same, this allows the
approach to obtain better solutions in terms of makespan.
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5 Conclusions

This paper proposed a Multi-Agent Reinforcement Learning tool for the Job
Shop Scheduling Problem, which can be adapted to other scheduling scenarios
as the Flexible JSSP and the Parallel Machines JSSP. This tool allows the user to
keep the best schedule obtained by the original QL algorithm or to make adjust-
ments in order to move operations to fix intervals, according to the constraints of
the production floor. After all the adjustments have been made, a rescheduling
process is started in order to optimize as much as possible the modified solution.
This optimization can be done by shifting to the left all the possible movable
operations or using a modified version of the QL algorithm. The alternatives were
evaluated using benchmark data from the OR-Library and the results showed
that the QL algorithm is able to show the best results.
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Abstract. We present a procedure for the design of a Deep Neural Net-
work (DNN) that estimates the execution time for training a deep neural
network per batch on GPU accelerators. The estimator is destined to be
embedded in the scheduler of a shared GPU infrastructure, capable of
providing estimated training times for a wide range of network architec-
tures, when the user submits a training job. To this end, a very short and
simple representation for a given DNN is chosen. In order to compensate
for the limited degree of description of the basic network representa-
tion, a novel co-evolutionary approach is taken to fit the estimator. The
training set for the estimator, i.e. DNNs, is evolved by an evolutionary
algorithm that optimizes the accuracy of the estimator. In the process,
the genetic algorithm evolves DNNs, generates Python-Keras programs
and projects them onto the simple representation. The genetic opera-
tors are dynamic, they change with the estimator’s accuracy in order to
balance accuracy with generalization. Results show that despite the low
degree of information in the representation and the simple initial design
for the predictor, co-evolving the training set performs better than near
random generated population of DNNs.

Keywords: Deep Learning · Genetic algorithm

1 Introduction

Deep Learning [16] related computation has become a fast growing workload in
High Performance Computing (HPC) facilities and cloud data centers DTT/B to
the rapid advancement and proliferation of Deep Learning technology. It allows
for scalable and fully automatic learning of robust features from a broad range of
multimedia data, e.g., image, video, audio, and text. The highly regular struc-
ture of commonly used primitives in Deep Learning is amenable to massively
parallel architectures such as CUDA-enabled GPUs especially when processing
huge amounts of data. Nevertheless, the ever growing amount of recorded data
and associated operations needed to train modern DNNs outpaces the compute
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capabilities of mid-sized data centers usually found in academia. As an example,
a state-of-the-art transformer network such as GPT-2 [20] exhibits 774 million
trainable parameters in comparison to the 62 million parameters of AlexNet [15]
from 2012. In the last decade it has empirically been observed [3] that the qual-
ity and amount of data might have a significantly higher impact on the model
quality than the specific choice of classifiers. Recent research [11] suggests that
the same is applicable to Deep Learning – empirical improvement of generaliza-
tion properties is correlated to increasing amounts of training data. As a result,
Deep Learning is widely adopted by a broad range of scientists in a diversity of
disciplines not necessarily related to computer science.

This demand can be addressed by efficient scheduling of Deep Learning tasks
to fully saturate available compute resources. However, existing job schedulers
in large scale compute cluster resource management system or large scale batch
processing framework such as MESOS [13] in a Tensorflow Cluster [2], YARN [22]
in MXNet cluster [5], SLURM [24] in general, scientific High Performance Com-
puting tends to statically allocate compute resource based on user resource quota
or requested quantity. (1) Using dynamic resource allocation, (2) recommending
optimal job execution time to users from scheduler perspective are two natural
ideas for improvements.

In the case of static resource allocation, the resource allocation is done
one-time off when the resource for the job is initialized with the best match-
ing resource, and it might prevent the job from getting accelerated from later
released more suitable compute resource unless manually reconfigured by cluster
operation team or job submitter.

Deep Learning training time highly depends on DNN model architecture and
other factors such as training environment and setup, and the training finish
time still highly depends on human empirical observation, hence is challenging
for average job submitter to estimate job execution time without special knowl-
edge on the targeting system. If a recommended DNN training job time could
be provided, job submitter will be able to better manage not only their job
monitoring cycle but also model development turn-around-time, hence save the
compute resource from being occupied in the long tail of DNN training.

In this paper, we present a DNN training time per batch estimator, which
aims to address the common requirements of DNN execution time estimation
which could potentially pave the path forward towards an intelligent Deep Learn-
ing task scheduler. In our work, we empirically assume batch size as the major
hyperparameter factor, and accelerator throughput as the major environmental
factor, for execution time.

Moreover, estimating a training time allows to assess the cost of training (as
in the pay-per-use model of cloud computing). This cost estimate is useful per
se, but also influences the design process as it controls the number of neural
architectures to explore, hyperparameter tuning and data requirements, all of
which contribute to the accuracy of the model [14].

The proposed DNN training time per batch estimator (abbreviated as
DTT/B from here onwards) can be used by data center and HPC task scheduler,
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which would complement its estimation with additional information such as data
volume, allocated resources (i.e. GPUs) and their characteristics. For this pur-
pose the DTT/B estimator’s role is to provide a time estimation for any given
DNN architecture, with a standard batch size (32), on a single GPU accelerator.
The approach followed for the design of the DTT/B is our contribution, and
different DTT/B can be designed under the same approach. More specifically,
our contributions are:

– A DNN that predicts the training time of a submitted Keras [6]-
TensorFlow [1] model for a batch.

– A simple, succinct representation for DNNs, that is easily extracted from the
model definition (such as source code).

– A novel co-evolutionary [12] like procedure to train the DTT/B DNN. The
training data necessary to fit the DTT/B (i.e. different DNNs for which the
DTT/B predicts runtimes) is grown incrementally over successive generations
of a genetic algorithm [9]. The new DNNs are generated according to their
predicted runtime: the training data for the DTT/B evolves with the accuracy
of the DTT/B. Also, the DNNs evolved are converted to executable Python-
Keras DNN programs.

The description of the DTT/B DNN, the simple representation and the co-
evolutionary data generation process are presented in Sect. 3.

2 Related Work

Paleo [19] is an analytical model for runtime, fitted with measured runtimes on
specific architectures. The results show that accurate estimates for different com-
ponents (networking, computation) can be produced from simple models (linear).
Paleo’s approach relies on detailed representation of an architecture (FLOP for
an algorithm). The analytical models are fitted from few training data, and eval-
uated on one unseen example, its generalization is therefore uncertain. Moreover
the hyperparameter space and data dependency are not dependent variables.
Our approach is similar to Paleo’s in that different models are used for differ-
ent factors (networking, computation, memory), yet, a higher-level description
of an architecture is used (Tensorflow code). Data and hyperparameters are
also explicitely included. Generalization is a key objective, and is accordingly
reported in our results.

NeuralPower [4] is a predictor for energy consumption of a Convolutional
Neural Network (CNN) inference, and relies on runtime prediction. The scope
of our paper is the prediction of the training time, not the inference time, of
any DNN, not only CNN. Compared with [19], NeuralPower differs in the choice
of the model class to be fitted (polynomial), and improves the model fitting
with cross-validation. It is similar in that the same lower-level features are used
(FLOP, memory access count). Also, it is based on a few CNN architectures.
The differences with our approach are therefore similar to those mentioned in
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the review of [19]. In addition, NeuralPower considers only CNNs, and their
prediction runtimes, not training times.

Approaches similar (from this paper’s perspective) to Paleo and NeuralPower
are presented in [18,21,23]. The runtime prediction model is composed of several
analytical sub-models. Each model is fitted with measurements obtained from a
selection of well-known CNNs. The accuracy of the predictions are evaluated on a
limited number of CNNs (typically three). As with the above results, the models
rely on detailed features of the algorithms (for example: FLOP, clock cycles),
and the hardware. In addition, the target platform in [23] is Xeon PHI, and the
prediction model’s generalization is aimed at the number of threads. Also, the
runtime predicted in [8,21] is for CNN inference, because their objective is to
tailor a CNN inference model for the specific user needs.

Our approach does not fit an analytical model of detailed information on the
algorithms used. Also, our scope is not restricted to CNNs.

In [14], the predictor is trained from existing architectures (restricted to Fully
Connected Networks -FCN- and CNN) and their respective data sets. The model
estimates the runtime per type of layer, under different hyperparameters and
GPU configuration. Unseen architecture runtimes are said to be extrapolated
from these individual layers (but not composition rule is provided). This estima-
tor design leads to a large input space, that is sampled to train the estimator.
Also, they propose a complete runtime estimator, whereas this paper focuses on
a part of a larger estimator. They report results for a variety of GPUs. The pre-
dictor we present is also a DNN, but in contrast, our proposed batch estimator
aims to make predictions from features derived from known architectures, where
those features will also be available in future or unseen architectures (not just
individual layers). The estimator’s training data is generated with a genetic algo-
rithm throughout the estimator’s training. Our estimator also aims to support
any, unseen, data set (data records and hyperparameters).

[7,17] collect training times for well-known DNNs. This is related to our
work because it records measured runtimes of known DNNs, yet fundamentally
different as it does perform any prediction.

GAN [10] could be applied to the generation of DNN architectures for training
the DTT/B, but it pursues a different objective from the evolutionary approach
we present. GAN would generate DNNs in-the-style-of a given model, while we
also need to generate different DNNs to cover any future architecture.

3 Proposed Approach

3.1 Overview

As mentioned in Sect. 1, the objective of the DTT/B is to predict the training
time per batch of a given DNN, from a model representation that is easily
extracted from the DNN definition or source code. As the DTT/B is to be
embedded in a scheduler of a shared infrastructure of GPUs, the simplicity of
the representation is more important than its accuracy, because only a simple
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Fig. 1. Overview of the DTT/B evolutionary design.

representation will allow the DTT/B to be actually deployed, whereas estimation
errors can be accounted for.

The approach presented consists of a very simple representation of the DNN,
the DTT/B modeled as a DNN, and a co-evolutionary process that generates
appropriate training data for the DTT/B. Figure 1 illustrates that the DTT/B is
evolved through its training set. DTT/B accepts as input DNN representations,
predicts runtimes that then serve to evolve the next training data set, such that
each cycle -or generation- improves the DTT/B’s accuracy.

3.2 DTT/B Model

The DTT/B is modeled as a DNN, and defined by the code listing below. The
DTT/B is a simple sequential DNN, because the key element in the DTT/B’s
design is not the DNN design, but the training data set used for its fitting [11]. Of
course, the DTT/B’s architecture can be further refined to improve the predic-
tion results. The notable feature of the DTT/B DNN is that it solves a regression
problem: predicting a runtime.

model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(

32, input_shape=(32,), activation=’relu’))
model.add(tf.keras.layers.Dropout(0.2))
model.add(tf.keras.layers.Dense(

64, input_shape=(32,),activation=’relu’))
model.add(tf.keras.layers.Dropout(0.2))
model.add(tf.keras.layers.Dense(

64, input_shape=(32,), activation=’relu’))
model.add(tf.keras.layers.Dropout(0.2))
model.add(tf.keras.layers.Dense(

1, activation=’linear’, kernel_initializer=’zeros’))
model.compile(loss=’mean_squared_error’, optimizer=’rmsprop’)
model.fit(x_train, y_train, batch_size=16, epochs=500)
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3.3 DTT/B Features

The requirement for the DTT/B is to provide runtime estimates from a readily
extracted representation of a given DNN. Our approach is use a simple repre-
sentation, available both to the designer of the DNN and to the scheduler of the
shared computing platform.

We propose to represent a complete DNN as the sequence of each layer’s
number of trainable parameters (i.e. without any layer type information). As an
example, the DNN representation of the DTT/B DNN defined above is [1056,
0, 2112, 0, 4160, 0, 65] as can be seen from the output of the summary()
function of Keras applied to the DTT/B model.

Layer (type) Output Shape Param #
______________________________________________________
dense (Dense) (None, 32) 1056
dropout (Dropout) (None, 32) 0
dense_1 (Dense) (None, 64) 2112
dropout_1 (Dropout) (None, 64) 0
dense_2 (Dense) (None, 64) 4160
dropout_2 (Dropout) (None, 64) 0
dense_3 (Dense) (None, 1) 65
______________________________________________________
Total params: 7,393
Trainable params: 7,393
Non-trainable params: 0

3.4 Co-evolving the DTT/B Training Set

The training data for the DTT/B DNN are short sequences of each layer’s num-
ber of trainable parameters. In order to generate this DTT/B training data,
DNNs must first be generated. Our objective is to accurately predict training

Fig. 2. Evolutionary data generation.
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runtimes for DNNs similar to well-known architectures and to generalize to dif-
ferent DNNs that may be submitted in the future.

Our approach to meet this objective is to grow the DTT/B training data
(DNNs). From an initial set of a few well-known DNNs, an evolutionary process
generates additional DNNs in a co-evolutionary fashion: the population of DNNs
evolves with the accuracy of the DTT/B. The intent is to add similar DNNs
to the population, until the accuracy of the DTT/B is satisfactory, then to
introduce different DNNs, and loop. From each DNN in the population, the
simple proposed representation is extracted as input to the DTT/B.

As presented in Fig. 2, at each generation in the evolutionary process, each
DNN in the population is evaluated. The evaluation consists of (1) generating
executable model (a Python-Keras program), (2) executing the program and
recording the observed runtime, (3) training the DTT/B with the extracted
representation, (4) predicting the runtime on a test set (unseen data). This
evaluation results in a runtime prediction error for the DNN. For each DNN
evaluated, a new DNN is produced according to following rule:

– if the prediction error ratio is greater than 25%, then a similar child DNN is
generated,

– if the error ratio is greater than 10%, then a slightly different child DNN is
generated,

– if the error ratio is less than 10%, then a rather different child DNN is gen-
erated.

The exact meaning for similar, slightly different and rather different is defined
below. The generated or child DNNs (according to the rule above) are added
to the DTT/B training set (the child DNN does not replace its parent DNN).
Therefore, at each generation, the population doubles.

Table 1. Elementary operations on DNN layers.

Operator name Function performed Domain (supported layers)

Mutation Randomly changes several layer
parameters: units, filters, kernel
size, stride, use bias, regularizer
function, activation function,
dropout rate

Dense, Conv1D, Conv2D,
LSTM, ConvLSTM2D,
Dropout, Activation,
BatchNormalization

Addition Duplicates the previous layer
and mutates

Dense, Conv1D, Conv2D,
Conv3D, LSTM, ConvLSTM2D,
Dropout, Flatten, Activation,
BatchNormalization

Removal Deletes a layer Layers previously added

A child DNN in the population is generated by combining three elemen-
tary layer operations: mutation, removal and addition, summarized in Table 1.



20 F. Pinel et al.

The operators are valid only on sequential DNN architectures. The elementary
layer operations are combined to generate a child DNN:

– A similar child DNN is the result of a single layer mutation.
– A slightly different child DNN is the result of a layer removal, mutation and

addition.
– A rather different child DNN is the result of two slightly different changes.

The design of the layer operators aims to introduce changes that modify the
chosen representation (sequence of layer variables), but also to make changes
that do not, in order to test our representation with counter-examples. The
layer addition and removal functions are chosen such as to ensure that almost
all generated architectures produce valid DNNs.

4 Results

4.1 Experimental Setup

The initial population of DNNs consists of six well-known architectures: MNIST
MLP, MNIST CNN, Reuters MLP, Conv LSTM, Addition RNN, IMDB CNN,
as provided as examples by the Keras framework. The unit of work predicted is
the batch training time, for a batch size of 32. The evolutionary process lasts 8
generations, leading to a maximum of 1536 DNNs.

The evolutionary algorithm operates on a JSON representation of a DNN 1.
The JSON representation is transformed into a Python program that calls the
Keras framework. The Python program is then executed to record the expected
batch runtime (the label). The generated python program includes instrumen-
tation code to record the batch runtime. DNNs from the previous generation
are carried over to the next generation without modification. The GPUs used
for the measured and predicted batch training time are NVIDIA Tesla V100
SXM2 32GiB of memory. The evaluation of the DNN population is performed
with 4-fold cross-validation, such that each DNN receives a prediction while not
present in the training of the DTT/B.

4.2 Results

Table 2 summarizes the results of the evolved DTT/B through its training set.
The objective is to evaluate the suitability of a simple representation (sequence
of layer parameters), and the co-evolution process to train the DTT/B. The
DTT/B’s design is at this moment secondary and can later be changed.

In order to evaluate the co-evolutionary design of the DTT/B, the evolved
training set is compared to a more random population generation, fourth column
in Table 2. The more random generation process consists in applying the rather
different (Sect. 3.4) changes to each DNN, indistinctly of the prediction error.

1 https://gitlab.uni.lu/src/ola2020.

https://gitlab.uni.lu/src/ola2020
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Table 2. DTT/B accuracy results.

Layer
distance

#DNNs Wilcoxon
sign-rank

Evolved training
set (median error)

More random
training set
(median error)

0 566 W=20344.500
p=0.000

39.8% 56.8%

1 548 W=44483.500,
p=0.000

38.9% 40.0%

2 383 W=28469.000,
p=0.000

41.5% 39.2%

3 237 W=13682.000,
p=0.774

43.2% 37.2%

4 274 W=15059.500,
p=0.004

52.6% 43.7%

5 283 W=16162.000,
p=0.006

52.5% 44.5%

6 205 W=8048.000,
p=0.003

59.8% 49.8%

7 119 W=3357.500,
p=0.573

59.1% 56.1%

8 40 W=327.500,
p=0.267

69.2% 67.5%

While the changes are more random, they apply the same elementary operations
as the evolutionary process. Also, the evolutionary process applies the same
changes, albeit less often.

The results shown are obtained from the 6 different models, three evolved
DTT/B, and three more random. From each model’s final training set (at gen-
eration 8), 10% of the DNNs are sampled and set aside for the comparison.
The sampled are not used in the training of the 6 models. Thus, the test DNNs
come from the final training sets of the different models. Although the evolution-
ary operators introduce diversity, sampling from both evolved and more random
models helps measure the generalization of the estimator, which would otherwise
be evaluated on DNNs issued from the same generator.

In addition, the 10% sampling is performed separately across different cate-
gories: each category corresponds to a distance between the DNN and its original
template (one of the 6 initial models from Keras). The distance is expressed as
the difference in number of layers (without distinguishing type). For example,
Keras’s MNIST MLP contains 5 layers (including 2 without trainable parame-
ters), after 8 generations if a generated DNN contains 6 layers, the distance is 1.
Column 1 of Table 2 indicates the distance to the original model. Five samplings
are performed, and for each sample, each of the 6 models is tested three times.
Each test DNN is therefore evaluated 9 times for the evolved DTT/Bs and also
9 times for the more random DTT/Bs.
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The results indicate that when the number of layers of the evolved DTT/B
training set is close to the original DNN, the evolved population yields a more
accurate DTT/B (distances 0 and 1). It is important to remind that even if a
layer distance is small, the evolved DNN will be significantly different from the
original template, in the number of parameters (visible in the simple represen-
tation chosen) and in other properties of the layer. The evolved population and
more random population is equivalent (the statistical test show the results come
from the same distribution) when the layer distance is 3, 7 and 8. This means
that although the evolved population initially targeted DNNs similar (in num-
ber of layers) to their original model, the resulting DTT/B still performs well
on DNN with more layers. Nevertheless, because the difference in population
generation between the evolutionary and more random process are small, the
accuracy difference is not very different.

Overall, the current design for the DTT/B yields prediction errors of 39 to
50%. This is more than previous analytical prediction models, yet the represen-
tation of the DNNs to predict is much simpler, and the scope of DNNs is greater.
More elaborate DTT/B designs can be proposed, this is considered future work,
as we focused on the DNN representation and DNN generation.

5 Conclusion and Future Work

In this paper we presented an evolutionary approach to the design of a deep
neural network that predicts training time per batch. The evolutionary approach
consists of co-evolving the training data with the accuracy of the predictor.
This approach first exploits the initial training data, then explores new DNNs
once the accuracy is satisfactory (25% error). The motivation for this approach
is to validate a simple representation of a given DNN for prediction: a short
sequence of the number of parameters per layer. The simple representation is
motivated by the pragmatic objective of embedding this predictor in schedulers
of shared GPU infrastructure. The results show that the simple representation,
combined with an evolutionary design is better able to predict training times
than a more random data generation process (with a 39–50% error rate). With
these preliminary findings, more focus can now be placed on the accuracy of the
DTT/B.
Future work will consist of:

– extending the DNN evolutionary algorithm, to support more complex DNN
architectures, to add a cross-over operator that will lead to a better coverage
of all possible DNNs. A possible approach is to apply programming language
based evolutionary techniques, by considering the DNNs models as high-level
programs.

– Refining the design of the predictor. With a more capable evolutionary DNN
generator, the predictor’s design could also be evolved.

– Complementing the batch training runtime estimator by taking the comput-
ing resources and data size into account.
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Abstract. The neural network research field is still producing novel
and improved models which continuously outperform their predeces-
sors. However, a large portion of the best-performing architectures are
still fully hand-engineered by experts. Recently, methods that autom-
atize the search for optimal structures have started to reach the level
of state-of-the-art hand-crafted structures. Nevertheless, replacing the
expert knowledge requires high efficiency from the search algorithm, and
flexibility on the part of the model concept. This work proposes a set of
model structure-modifying operators designed specifically for the VALP,
a recently introduced multi-network model for heterogeneous multi-task
problems. These modifiers are employed in a greedy multi-objective
search algorithm which employs a non dominance-based acceptance cri-
terion in order to test the viability of a structure-exploring method built
on the operators. The results obtained from the experiments carried out
in this work indicate that the modifiers can indeed form part of intelli-
gent searches over the space of VALP structures, which encourages more
research in this direction.

Keywords: Heterogeneous multi-task learning · Deep learning ·
Structure optimization

1 Introduction

Hyperparameter selection and other preliminary choices, such as structure
design, are key features for model based machine learning. Deep neural networks
(DNN) are especially dependent on these pre-learning decisions, as their perfor-
mance is contingent on the structure in which their weights are distributed. When
this structure follows certain architecture standards, such as densely connected
layers or convolutional operations, it can be defined with a reasonable amount
of hyperparameters. Despite this reduced number of hyperparameters (e.g., acti-
vation functions, weight initialization functions, number of layers, architectures
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of said layers), the amount of different combinations rapidly increases as lay-
ers are added to the network. Additionally, it is widely accepted that DNNs
deliver better performance as they get deeper. These design choices are usually
made by experts with knowledge about the problem and the manner in which
models operate. A good example of this is the Inception-v3 network [17], which
obtained near state-of-the-art results in the ImageNet classification problem [13],
and supposed a decrease in the number of parameters compared to its predeces-
sors, consisting of only 42 layers. This paper proposes four different structure
modifiers, mainly intended for their application in neural models. These tools
could be used as building blocks for performing automated structure searches,
which would reduce the dependence on experts for model designing tasks.

The search of a good structure can be broadly applied to all DNN models.
However, there is one particular DNN-based model which could greatly benefit
by such a structure search framework. The VALP [5] is a model based on small
DNN building blocks that are interconnected between them in a graph structure,
and which are capable of using multiple pieces of data as input and performing
more than one task at the same time. Despite not being intended to reach the
complexity levels of Inception-v3-like networks, the subDNNs contain their fair
share of structural hyperparameters. Additionally, when this set of relatively
reduced structures is combined in the architecture built by the model connections
in the VALP, the complexity of the superstructure can reach or even surpass
those of hand-crafted, sophisticated models.

The design and application of an intelligent search method could be beneficial
for the recently created VALP concept, and the efforts described in this work
are devoted to this goal.

The rest of the paper is organized as follows: Sect. 2 contains an analysis of
works that have a direct relation to ours. The VALP model is introduced in
Sect. 3. The proposed algorithm is described and tested in Sects. 4 and 5 respec-
tively, before concluding with some remarks and future work lines in Sect. 6.

2 Related Work

There is a long tradition on the usage of evolutionary algorithms (EA) for the
development of neural structures, a practice known as neuroevolution (NE).

Two of the most widely known evolutionary algorithms are the neural net-
works through augmenting topologies (NEAT) [16] and compositional pattern
producing networks (CPPN) [15]. These models have been improved to form
more sophisticated methods, such as NEAT-LSTM [12] and differentiable pat-
tern producing networks (DPPN) [3].

The work in [10] proposes an evolutionary algorithm to develop convolutional
neural networks (CNN) that can identify hand-written characters from 20 differ-
ent alphabets. The procedure is carried out by combining different convolutional
cells and network structures. The main contribution of [10] relies on CoDeep-
NEAT, a technique that co-evolves small modules consisting of a reduced set
of operations and incomplete network architectures, using two different popula-
tions [11]. Elements from both populations are combined (modules are placed
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to complete the network structures) and evaluated. The score produced when
evaluating the model accuracy is used as the fitness value for the EA.

Although NE hoards a large proportion of the developments in the neural
structure search area, several other methods with different inspirations have also
been developed.

The work presented in [1] proposes two operators for expanding DNN archi-
tectures (Net2Net). A relatively shallow and narrow teacher network is trained
for the objective task. Next, either Net2WiderNet or Net2DeeperNet is applied
to create a child network, which inherits the weights of its teacher. Net2WiderNet
modifies a layer of a network by enlarging its size, and it can be applied to either
densely connected layers, or convolutional ones. Net2DeeperNet simply adds a
new layer to a network.

An extension of [1] is presented in [18], resolving some of its inherent
limitations. They proposed a method that permits the employment of non-
idempotent activation functions when applying Net2DeeperNet. Additionally,
it proposes an alternative to zero-padding kernels and blobs in CNNs when
using Net2WiderNet, which theoretically provides better results. The authors
finally give the term network morphism to the framework containing these kind
of operators.

The work presented in [2] takes full advantage of the framework defined in
[18] and uses it as a tool for a Neural Architecture Search by Hill climbing
(NASH), using a simple structure as a starting point. Once the NASH algorithm
has reached a local minimum, the resultant structure is also trained from scratch
(starting with random weights) in order to test the validity of the weight inher-
itance concept. The authors compare their approach to other structure search
methods in the literature, obtaining competitive results in much more reduced
computing time for CIFAR DBs.

Regarding networks with similar characteristics to the VALP, we find Eyenet;
a complex DNN based on ResNet50 [6] for performing various tasks at the same
time [19]. This network is used to predict various aspects of a human eye in real
time. The network can estimate whether the eye is closed, or eye gaze direction,
among other parameters. Additionally, the weight training includes intermedi-
ate loss functions, as the designers force the network to learn a collection of
important prior variables that otherwise are ignored by the model.

3 VALP

The VALP model was introduced in [5] as a DNN-based framework for dealing
with heterogeneous multitask learning (HMTL) problems. The VALP is based
on a directed graph (digraph) that can be defined with two of its main compo-
nents: G = (V,A). The vertices V represent the model components in a VALP,
while the directed edges or arrows A represent connections between these model
components. Different types of model components exist, namely: model inputs,
networks, and model outputs; V = I ∪ N ∪ O. I represents the set of nodes
where the input information is placed for the model to receive. There are no



28 U. Garciarena et al.

connections ending in nodes grouped in I. The nodes in N represent the net-
works in the model. They must have at least one incoming and one outgoing
connection. Finally, O encompasses the model output nodes, the nodes where
the model stores the predictions it produces. These nodes cannot have outgoing
connections, and must have at least one incoming connection.

Because the data requested in a regression output is different from another
output requiring classification or samples, model components and connections
must respect typing rules. For implementing these regulations into a VALP, we
have designed the following network types:

Generic MLP, g: A regular MLP that maps the provided input to an output.
It can take any type of information as input. Its output can be interpreted
as numeric values (in any case) or samples (exclusively if it received sam-
ples). This primary network essentially transforms information into a different
encoding, therefore, it can serve as an encoder that complements a Decoder.

Decoder, d: The decoder (borrowing the concept from the Variational AutoEn-
coder (VAE) [8]) collects a vector of numeric values provided by a Generic
MLP, interprets them as means (μ) and variances (σ) of a N (μ, I × σ), and
uses samples generated from that distribution to obtain new samples with
the desired characteristics.

Discretizer, δ: Similar to a regular MLP, this network can take any kind of
data type as input. However, this network can only output discrete values. It
has a softmax activation function in the last layer.
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Fig. 1. VALP structure example. It contains a single data input (I = {i0}), nine
networks (N = {g0, δ1, ...d8}), and three different outputs (O = {o0, o1, o2}). The
numbers labeling the connections refer to the size (number of variables) in the data
being transported, and “sam.” stands for samples, “num.” represents numeric values,
and “disc.” are discrete values.
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Despite offering great flexibility, VALPs also have to set certain limitations.
The main restriction concerns data types. Connections can only exist between
two compatible model components; e.g., a Decoder cannot only receive inputs
from a Discretizer (as it requires at least one Generic MLP acting as an encoder),
a model output cannot receive data directly from a mode input without at
least one network in the middle, etc. VALP configurations which respect these
restrictions are denoted as valid VALP configurations (vvc). For more details in
the model specification, we refer the reader to the original VALP work [5]. A
visual example of a vvc VALP is shown in Fig. 1.

4 VALP Structure Search

Once the foundations of the VALP have been established, we aim at seizing the
full potential of the model. The performance of the VALP strongly depends on
its structure, which turns the optimality of said structure into a key aspect of
the model. With this in mind, we focus our efforts on designing an intelligent
structure search method.

4.1 VALP Modifying Operators

First of all, we propose a manner in which a vvc can be improved. For that goal,
we propose a set of four different operators on which the proposal of this paper
as well as several other intelligent searches can be based on:

– add connection: Given a vvc, this operator randomly chooses two unlinked
model components and links them by creating a new connection.

– delete connection: Given a vvc, this operator randomly chooses a connec-
tion and deletes it.

– divide connection: Given a vvc, this operator randomly chooses a connec-
tion and includes a network in the middle. For example, if a connection c0 that
links n0 to n1 is chosen, a connection c1 between n0 and the newly created
nm, and a connection c2 between nm and n1 are created. c0 is deleted.

– bypass network: Given a vvc, this operator randomly chooses a network n0

and deletes it. Each component providing data to n0 switches to providing
data to each and every component n0 provided data to.

All four methods are able to slightly modify the structure of a vvc, and rely on
mechanisms which guarantee that the product of their application will remain a
vvc. For example, delete connection will not, under any circumstances, delete
a connection in case it is the only source of data of a model component, or
bypass network will never suppress a decoder previous to a “samples” model
output. Graphical examples of how these operators work are shown in Fig. 2.
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Fig. 2. Examples of the different operators.

4.2 Hill Climbing

As previously stated, several search algorithms can be implemented based on
the presented operators. A straightforward manner of improving the structure
of a given VALP is a greedy algorithm; a hill climbing approach, although other
strategies could be evaluated in the future. This algorithm starts by evaluating
a random element, in our case, a vvc. Next, a candidate element is created by
modifying the current element. The candidate is evaluated, and if it improves
the current solution, the latter is replaced by the former as the current element.
Otherwise, the candidate is discarded, and a new one is generated. This pro-
cedure is repeated iteratively until a halting criterion is met (in this case, an
evaluation limit). Algorithm 1 shows the HC method in pseudocode form and it
makes use of the following hyperparameters and auxiliary functions:

– iter limit: Sets the upper bound for the maximum allowed evaluations during
one HC run.

– train data, val data: Contain data to train and validate a model.
– problem definition: Contains the necessary information about the problem for

defining a VALP.
– random vvc(problem definition): Returns a random vvc prepared for working

with the problem definition.
– train evaluate(vvc, train data, test data): Given a vvc, it uses train data

for training it and val data to return an estimation of its quality.
– random modification(vvc): Receives a vvc and applies one of the four oper-

ators introduced in Sect. 4.1.
– acceptance criterion(information, res): given the information relevant to

the decision of accepting one new solution or not, and the results of a new
solution, this function returns a Boolean determining whether the solution
should be accepted or not.
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– update(information, res): Given the same parameters as to the previous func-
tion, this function updates the information with the taken decision (res).

Functions acceptance criterion and update should work in synchrony, as
the decisions of the former are based on the information updated by the latter.

Function Hill Climbing (iter limit, problem definition, train data, val data)
pivot = random vvc(problem definition)
iters = 1
res = train evaluate(pivot, train data, val data)
results = [res]
while iters < iter limit do

new = random modification(pivot)
res = train evaluate(new, train data, val data)
if acceptance criterion(results, res) then

pivot = new
results = update(results, res)

end
iters = iters + 1

end
return pivot, results

Algorithm 1. Pseudocode of the HC procedure employed in this paper.

Loss Function: The loss function is determined to a great extent by the tasks
being addressed. We consider the same tasks as in [5] and use the following loss
functions:

– For regression outputs, the mean squared error (MSE) is chosen.
– For the classification outputs, the cross entropy between the predicted and

true labels.
– For the output in which samples similar to the input are created, the log-

likelihood.
– Finally, as the sampling capabilities of this VALP are inherited from the

(VAE), the Kullback-Leibler (KL) divergence between the decoder inputs
and N (0, 1) is added to the loss function.

VALPs are trained using a combination of the former loss functions and
back-propagation.

Acceptance Criterion: A key aspect of any HC algorithm is the criterion
chosen for accepting a candidate as the better solution when compared to the
pivot. The problem being handled in this work has three different objectives, for
which reason this choice is not trivial. In this case, we have designed a multi-
objective optimization approach. A solution a is dominated by another solution
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b when the objective values produced by solution b are better than or equal
to those produced by a. We keep an updated set of non-dominated solutions
found by the algorithm, also known as the Pareto set (PS). At each step of the
algorithm, if the candidate solution is not dominated by the solutions in the PS,
it is accepted and the PS is updated.

5 Experiments

Once the different methods for structure search have been formalized, we proceed
to test the performance of the algorithm.

5.1 Problem Being Addressed

The Fashion-MNIST [20] dataset consists of a set of 70, 000 grayscale images of
28× 28 pixels. This database is oriented towards classification, as each element
in the database belongs to one of ten classes. We extend this problem so that the
structure-optimizing algorithm is tested in a demanding scenario for the VALP.

In order to include a numeric value-output in the problem, we compute a
32-bin histogram of each image and require the VALP to predict these values,
as in a regression problem. Finally, for including the generative modeling task,
the model is required to generate samples which mimic the input image.

The Fashion-MNIST database is split in two parts, a training and a testing
set, consisting of 60, 000 and 10, 000 images. We have split the 60, 000 images of
the training set into two parts again (with 50, 000 and 10, 000 examples), so that
we can perform a test while the search is performed, and a validation afterwards.

Model Evaluation: For evaluating the model performance, we have selected
three suitable functions that measure the quality of the three model outputs
individually:

– Continuous output: MSE is used. The same choice as for the loss function.
– Discrete output: The accuracy error (1−accuracy) is used. Because the prob-

lem is balanced, we consider this function to be suitable.
– Sampling output: The Inception score (IS) [14] is chosen.

The adequacy of the IS comes as a result of the dataset chosen to test the
HC algorithm, which is composed of images. This metric relies on a classification
model, and the work proposing the metric used an Inception model. Despite this,
we choose MobileNet [7], as it obtained better accuracy.

This metric takes into account, on the one hand, the diversity of the gen-
erations. For that, we collect the class assigned to each generated image by
MobileNet: p(y|x), where x are the samples created by the VALP, and y the
classes assigned to them. These probabilities should have a high entropy value.
On the other hand, we measure how sure the classifier was when assigning said
classes to the samples. A perfect generative model should generate samples to
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which the classifier can assign classes with high confidence. Therefore p(y) should
exhibit a low entropy. By computing a divergence metric, in this case the KL,
between these two probability distributions, we obtain a metric where the larger
the value, the better the samples can be considered. The IS is can be defined as:

IS = exp
(
Ex∼pg

KL(p(y|x)||p(y))
)

(1)

where Ex∼pg
is the expected value for all samples.

5.2 Methodology

To put the potential of the proposed HC algorithm into perspective, we are con-
trasting the results it produces with a random search in the same search space.
In order to keep the comparison fair, both algorithms are awarded the same
number of evaluations: 50. A random search comprises 50 randomly generated
VALP structures, while a HC run consists of a randomly generated solution
followed by 49 candidate solutions (regardless of these being accepted or not).

Each of these two search methods is run 500 times due to the large stochastic
component present in both algorithms.

5.3 Results

In order to set a scenario where all the objectives of the problem seek minimiza-
tion, the HC algorithm pursues the minimization of −IS. Moreover, because the
lowest values obtained in the experimental section lay near −20, all the results in
this section show (20−IS) as the sampling objective. This way, all the objectives
will also have near-zero optimal values.

Sequential Analysis: Firstly, we have interpreted the 500 runs of each search
method as a single sequential procedure of the structure search. In other words,
this results in a HC search of 25.000 steps with 500 resets (one reset after 50
consecutive steps), and a random search with 25.000 evaluations. Two different
PSs were generated, one from each of the grouped procedures, with their non-
dominated solutions. The corresponding Pareto fronts (PFs) are represented in
the leftmost subfigure of Fig. 3. For representing a three-objective PF, we have
chosen to show the three possible two-objective combinations available. As lower
values imply better results, it is apparent that the HC algorithm (represented
with orange points) obtained better results compared to the Random search
(blue points). This difference is most noticeable in the Sampling objective, as
both MSE-Sampling and Sampling-Accuracy perspectives of the PF show more
orange points in the lower areas of the Sampling objective. The edge is nar-
rower in the MSE and Accuracy objectives, as it is not that clear which search
algorithm produced more accurate VALPs.

The rightmost part of Fig. 3 shows, for each of the steps given in the sequen-
tial search (in the x axis) the best found VALP until that moment (regarding
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Fig. 3. Sequential analysis of the search algorithms. The blue color represents the Ran-
dom search, whereas the Orange color represents the Pareto-based search algorithm.
The figure on the left shows the objective values produced by the VALPs in the PS
computed from all 500 runs of each algorithm. The figure on the right shows, for each
evaluation step, the best objective value found in each objective until that moment.
(Color figure online)

its objective value, in the y axis). Again, we observe how HC was able to clearly
outclass the Random search in terms of the Sampling score. Despite being closer,
the Accuracy and MSE lines representing the HC algorithm still end up signif-
icantly lower than its Random counterpart. Note that the concatenation of the
500 results was arbitrary, and the line shapes may not be fully representative
of the reality. The final outcome, in which the HC algorithm produces better
results than the Random search, however, is not a product of chance. Also, note
that about 4.000 steps were not represented, as no improvement was found.

Fig. 4. Frequency of log(hypervolume) indicators from the PFs generated by all runs
of both algorithms.

Individual Analysis: The second analysis performed considers each of the 500
runs as individual procedures. We compute the hypervolume indicator [4] for
each one of the 1.000 searches. The results (the logarithm of the hypervolume
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indicator, for improved visualization of the results) are presented in Fig. 4. It
is clear that the HC algorithm obtained low hypervolume values much more
frequently while keeping the amount of high values lower. The visual difference
has been confirmed by the Kruskal-Wallis statistical test [9], rejecting the null
hypothesis of both sets of hypervolume values belonging to the same distribution
with 1.8 · 10−10 p-value.

6 Conclusions and Future Work

We have introduced a local search-oriented algorithm for structural search of
the VALP. The designed Hill Climbing algorithm searches over the space of
possible structures by generating a random structure and applying one of a set
of specifically designed VALP structure-altering operators.

According to two different analysis approaches, the HC algorithm signifi-
cantly outperformed the Random search in all metrics computed, for all the
problems presented to the VALP.

Investigating whether the improvement in performance came as a result of a
possible increase in the model complexity is proposed as a natural extension to
complete this study.

Regarding other search paradigms, strategies such as evolutionary algorithms
which are not local-oriented, could give a broader perspective to the VALP
structure search problem, as these are not bounded to small neighborhoods
once a search direction has been chosen.
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Abstract. In this paper we present the parameterisation and optimi-
sation of the CACOC (Chaotic Ant Colony Optimisation for Coverage)
mobility model applied to Unmanned Aerial Vehicles (UAV) in order
to perform surveillance tasks. The use of unpredictable routes based on
the chaotic solutions of a dynamic system as well as pheromone trails
improves the area coverage performed by a swarm of UAVs. We pro-
pose this new application of CACOC to detect intruders entering an
area under surveillance. Having identified several parameters to be opti-
mised with the aim of increasing intruder detection rate, we address the
optimisation of this model using a Cooperative Coevolutionary Genetic
Algorithm (CCGA). Twelve case studies (120 scenarios in total) have
been optimised by performing 30 independent runs (360 in total) of our
algorithm. Finally, we tested our proposal in 100 unseen scenarios of each
case study (1200 in total) to find out how robust is our proposal against
unexpected intruders.

Keywords: Swarm robotics · Mobility model · Unmanned Aerial
Vehicle · Evolutionary Algorithm · Surveillance

1 Introduction

Nowadays, one of the most common scenarios for Unmanned Aerial Vehicles
(UAV) is the surveillance of exclusion areas such as army bases, private facilities
or around prisons. In this scenario, UAVs equipped with cameras are used to
explore a specific area in order to keep out unwelcome visitors [9]. Having this
in mind, there is a need for intelligent surveillance trajectories [4] to prevent
intruders from predicting the routes of UAVs and easily avoiding them as they
move through the exclusion zone.

In [13] a mobility model for generating unpredictable trajectories for UAV
swarms is proposed. This model, called Chaotic Ant Colony Optimisation
for Coverage (CACOC), uses chaotic solutions of a dynamical system and
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pheromones for guiding UAVs as well as improving the coverage of a given area
using a multi-level swarm of collaborating UAVs.

CACOC relies on a set of parameters that can influence the vehicle’s behav-
ior and, consequently, the coverage performance. We propose in this paper an
improvement of CACOC by calculating an optimised parameter set for this
mobility model using an evolutionary bioinspired approach, with the aim of
increasing the chances of spotting intruders in the area under surveillance, using
a reduced number of UAVs and unpredictable trajectories. This is a novel use
of CACOC since it has never been used for target detection.

The remainder of this paper is organised as follows. After reviewing the lit-
erature in the next section, the CACOC mobility model is explained and its
parameters are discussed in Sect. 3. Section 4 focuses on the proposed optimisa-
tion algorithm. In Sect. 5 we present the characteristics of our case studies and
the simulation environment. Section 6 focuses on our experimental results. And
finally, in Sect. 7, conclusions and future work are given.

2 Literature Review

There are some research works which address route optimisation and surveil-
lance using UAVs. In [12] a cooperative algorithm for optimizing UAVs routes is
proposed where agents share information for the benefit of the team while search-
ing for a target in minimum time. The authors performed simulations to test
their proposal achieving improvements over traditional implementations. In [7]
a Genetic Algorithm (GA) is proposed to optimise the parameters of a swarm
of robots, with the objective of improving the mapping of the environment. By
changing those parameters, the authors modify how agent-modeled ants travel
from nest and use pheromone communication to improve foraging success.

In [17] a swarm of UAVs is optimised to improve target detection and track-
ing, map coverage, and network connectivity. They compare their proposed
model, called Dual-Pheromone Clustering Hybrid Approach (DPCHA) with
other approaches to obtain around 50% improvement in map coverage. In [2] a
decentralised mobility model for UAV fleets based on Ant Colony Optimisation
(ACO) is presented. It relies on attractive and repulsive pheromones to detect
and track a maximum number of targets to perform surveillance and tracking
missions. Attractive pheromones are used to follow and track discovered targets,
while repulsive pheromones are used to survey the area by repelling UAVs to
less scanned cells.

In [16] the authors present a chaotic predator-prey biogeography-based opti-
misation (CPPBBO) method, integrating the chaos theory and the concept of
predator-prey into the classical Biogeography-Based Optimisation (BBO) algo-
rithm. They use it to solve the Uninhabited Combat Air Vehicle (UCAV) path
planning problem, with the aim of ensuring the maximum safety of the calculated
path with the minimum fuel cost. In [1] a surveillance system composed of a team
of UAVs is proposed. This is an efficient distributed solution for area surveillance
which uses long endurance missions and limited communication range.
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All these proposals use mobility models different from CACOC and do not
provide unpredictable routes to improve area surveillance and intruder detec-
tion as we propose in our study, where we combine a cooperative bio-inspired
approach with chaotic trajectories.

3 CACOC Mobility

CACOC (Chaotic Ant Colony Optimisation for Coverage) [13] is a mobility
model based on chaotic dynamics and pheromone trails for improving area cov-
erage using unpredictable trajectories. In spite of being unpredictable, CACOC’s
trajectories are also deterministic, what is extremely valuable if there are com-
munication issues, allowing the Ground Control Station (GCS) to know where
the vehicles are at any time. Algorithm 1 shows the pseudocode of CACOC.

Algorithm 1. Chaotic Ant Colony Optimisation for Coverage (CACOC).
1: procedure CACOC
2: current state ←“ahead”
3: loop
4: ρ ← next value in first return map
5: if no pheromone sensed in the neighbourhood then
6: if ρ < 1

3
then � CROMM

7: current state ←“right”
8: else if ρ < 2

3
then

9: current state ←“left”
10: else
11: current state ←“ahead”
12: end if
13: else
14: if ρ < PR then � Pheromones
15: current state ←“right”
16: else if ρ < PR + PL then
17: current state ←“left”
18: else
19: current state ←“ahead”
20: end if
21: end if
22: move according to the current state
23: end loop
24: end procedure

First, the next value in the first return map ρ describing a chaotic system
(chaotic attractor obtained by solving an ordinary differential equations system,
see [14]) is used to replace the random part of the mobility model. If there
is no pheromone in the UAV’s neighborhood, the next movement direction is



40 D. H. Stolfi et al.

given by CROMM (Chaotic Rössler Mobility Model) [13]. CROMM is an asym-
metric mobility model which uses the first return map to calculate the UAV’s
next movement direction. It is a purely chaotic mobility model which does not
use pheromones and the current state for each UAV is obtained according to
an equally split partition as explained in [13]. Continuing with Algorithm 1, if
pheromone trails are detected, they are used as repellers and the next action is
calculated according to the probabilities shown in Table 1 [13].

Table 1. Pheromone action table.

Probability of action: Left Ahead Right

PL = total−left
2×total

PA = total−ahead
2×total

PR = total−right
2×total

When using pheromone repellers, UAVs are better spread in the area avoiding
visiting the same spots too frequently. As pheromone trails evaporate, a UAV will
eventually visit again the same region of the map. This is an intended behaviour
since these UAVs are not mapping the area but performing surveillance tasks.

Fig. 1. Three pheromone parameters proposed for CACOC.

We propose three parameters in CACOC which are used for adapting this
model to different scenarios, number of vehicles, etc., with the aim of increas-
ing the probability of detecting intruders. We have parameterised the amount
of pheromones left by each vehicle (τa), the pheromone radius (τr) and maxi-
mum detection distance (τd) as shown in Fig. 1. The higher τa, the longer the
pheromones remains in the map as they are subject to a decay rate which is
fixed to one unit per simulation step (tick).

Table 2 shows the parameters defined for CACOC to be optimised by the
proposed algorithm in order to detect the maximum number of intruders.
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Table 2. Parameters proposed for CACOC.

Parameter Symbol Units Range

Pheromone amount τa % [1–100]

Pheromone radius τr Cells [0.5–2.5]

Pheromone scan depth τd Cells [1–10]

4 Cooperative Coevolutionary Genetic Algorithm

We propose a Cooperative Coevolutionary Genetic Algorithm (CCGA) to max-
imise the probability of detecting and intruder fostering the collaboration
between the members of the swarm. Our approach is based on the CCGA-2 [11]
proposed as an extension of the traditional GA with the aim of representing
and solving more complex problems by explicitly modeling the coevolution of
cooperating species (Fig. 2).

Fig. 2. Cooperative Coevolutionary Genetic Algorithm (CCGA). In this example, the
SOLUTION VECTOR1 of GA1 is evaluated by completing the full configuration vector
using the best individuals from the other GAs and a random sample of individuals from
the other GAs, as well. The same process is followed to evaluate the rest of individuals
in all the GAs’ populations.

Each UAV has been assigned to a Genetic Algorithm (GA) to optimise its
own set of parameters, i.e. τa, τr, and τd, as it is coded in each respective solu-
tion vectors using real numbers. Those GAs are identical and execute their own
main loop until the evaluation stage where the full configuration vector is built
using the best solution from the other GA’s. Additionally, a second evalua-
tion is performed using a random sample of individuals from the other GA’s
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populations [11]. This technique reduces the convergence speed, fostering the
populations’ diversity.

Each GA is based on an Evolutionary Algorithm (EA) [5,8] which is an
efficient method for solving combinatorial optimisation problems. EAs simulate
processes present in evolution such as natural selection, gene recombination after
reproduction, gene mutation, and the dominance of the fittest individuals over
the weaker ones. This is a generational GA where an offspring of λ individuals
is obtained from the population μ, so that the auxiliary population Q contains
the same number of individuals (20 in our implementation) as the population
P . The pseudocode of a GA is presented in Algorithm 2.

Algorithm 2. Pseudocode of the Genetic Algorithm (GA).
1: procedure GA(Ni, Pc, Pm)
2: t ← ∅
3: Q(0) ← ∅ � Q=auxiliary population
4: P (0) ← Initialisation(Ni) � P=population
5: while not TerminationCondition() do
6: Q(t) ← Selection(P (t))
7: Q(t) ← Crossover(Q(t), Pc)
8: Q(t) ← Mutation(Q(t), Pm)
9: Evaluation(Q(t))

10: P (t + 1) ← Replacement(Q(t), P (t))
11: t ← t + 1
12: end while
13: end procedure

After initializing t and Q(0) (lines 2 and 3), the GA generates P (0) by using
the Initialisation function (line 4). Then, the main loop is executed while the
TerminationCondition is not fulfilled (in our case we stop after 30 generations).
Following the main loop, the Selection operator is applied to populate Q(t) using
Binary Tournament [6] (line 6). After that, the Crossover operator is applied
(line 7) and then, the Mutation operator slightly modifies the new offspring (line
8). Finally, after the Evaluation of Q(t) (line 9), the new population P (t + 1)
is obtained by applying the Replacement operator (line 10). In order to avoid
population stagnation and preserve its diversity (and entropy), we have selected
the best individual in Q(t) to replace the worst one in P (t) [3] if it detects more
intruders (it has a better fitness value).

4.1 Operators

We have based our crossover operator and mutation operator on the ones pro-
posed in [3] for solving continuous optimizing problems. The crossover operator
is applied to each two individuals in the population (X and Y ) with a crossover
probability Pc = 0.9 calculated in our previous tests. First, a random integer M
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between 1 and the length of the solution vector (L) is obtained as shown in Eq. 1
and used to calculate the value of both Δx and Δy, see Eq. 2. After that, all the
configuration values in the solution vector beyond a randomly selected crossing
point are changed according to Eq. 3.

M = randInt(1, L) (1)

Δx =
Xi

M
, Δy =

Yi

M
(2)

X′i = Xi + Δy − Δx, Y ′i = Yi − Δy + Δx (3)

The mutation operator [3] has also been adapted to our problem character-
istics. In this case a new value M is calculated as in Eq. 1 and used to get the
value of Δ (Eq. 4) taking into account the upper and lower bound of each config-
uration variable (Table 2). Then, with a mutation probability Pm = 1

L the value
of Δ will we either subtracted from or added to the variable Xi according to a
probability Pd = 1

2 (equiprobable).

Δ =
UpBd(Xi) − LowBd(Xi)

M
(4)

X′i =

{
Xi − Δ if Pd < 0.5
Xi + Δ otherwise

(5)

4.2 Fitness Function

Our objective is maximizing the efficiency of the surveillance system, i.e. max-
imise the number of intruders detected. Therefore, the evaluation consists of
obtaining the percentage of intruders successfully detected by the UAV swarm
when its members are configured by the parameters in x, during the analysis
time (600 s). We also consider as a successful situation when the analysis time
ends and an intruder has not reached its destination despite not having been
detected by any UAV, see Eq. 6. This could happen since intruders are able to
evade UAVs but they deviate from their original trajectory, run out of time,
and never reach their destination. In order to increase the robustness of our pro-
posal, we evaluate ten different scenarios (γ = 10) and obtain the fitness value
using the Monte Carlo method [10]. As we are maximizing the average number
of detections, the higher the value of F (x), the better.

F (x) =
1
γ

∑
i

# of intrudersi − # of intruders at destinationi

# of intrudersi
(6)

5 Simulation Environment

We use a simulation environment in order to test our proposal and optimise
the UAV’s parameters. Each scenario is represented as a lattice of 100 by 100
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cells (Fig. 3) where the UAV’s can move following the mobility model (CACOC
in this study) leaving pheromones behind while scanning the area under their
detection area (calculated according to real camera specifications). The centre
of the map contains the region to be protected where intruders wish to arrive.
A swarm of UAVs will try to prevent that by using unpredictable trajectories. If
an intruder is detected, it is removed from the scenario and counted as a success.
At the end of a simulation, all the intruders which have not reached destination
are also considered as a success despite the fact they have not been detected yet.

Fig. 3. Snapshots of our simulation environment: HUNTED SIM.

For this study the intruders’ behavior has been modeled using a repelling
force which makes each intruder try to avoid UAV’s (Eq. 7) which competes with
an attracting force towards destination (Eq. 9). The intruder’s next movement
(Eq. 10) will depend on the relative position of the destination given by xa and
the surrounding UAVs (if any) which are closer than the maximum distance
Dmax. These UAVs contribute to the repelling force xr proportionally as given
by δi (Eq. 8). Finally, the resulting moving direction is normalised to be scaled
according to the movement speed of each intruder.

xr(t+1) =
∑
i

[(uavi − x(t)) ∗ δi] (7)

δi =

{
Dmax × ‖uavi − x(t)‖−1 if ‖uavi − x(t)‖ < Dmax

0 otherwise
(8)

xa(t+1) =
dest − x(t)

‖dest − x(t)‖ (9)

x(t+1) =
xr(t+1) + xa(t+1)

‖xr(t+1) + xa(t+1)‖ (10)
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In this study the intruders move at the same speed as UAVs, have a detection
(sight) angle of 180◦, and are able to see UAVs up to 10 m away. We have set
up 12 surveillance case studies in which there are 2, 4, 6, and 8 intruders being
chased by 4, 8, 12, and 16 UAVs providing there are more UAVs than intruders.
Following the pattern UAVS.INTRUDERS we have named each case study as 4.2,
8.2, 8.4, 8.6, 12.2, 12.4, 12.6, 12.8, 16.2, 16.4, 16.6, and 16.8. We have also
defined ten scenarios for each case study to improve the robustness of the system.
Scenarios differ in the arrival time of intruders and the position by which they
enter the area (always by one border of the map), both of which have been
chosen randomly. Since we set up an analysis time of 600 s the maximum arrival
time is under 400 s.

6 Experimental Results

The experiments were conducted in two stages. First, we addressed the optimisa-
tion of each case study by performing 30 independent runs of CCGA-2 including
ten scenarios each. The whole optimisation process needed 360 runs in total.

Table 3 shows the fitness value obtained for each case study and its opti-
mization time. Since we have performed 30 independent runs because CCGA
is non deterministic, we report the average, standard deviation, minimum, and
maximum (best) fitness values achieved. It can be seen that the more UAVs in
the map, the better, as expected.

Moreover, fitness values (success rate) decrease when there are more intruders
trying to reach their destination, although a higher number of UAVs mitigates
in part this matter, e.g. 12 UAVs are more successful in catching six intruders
than 8 UAVs. The aforementioned tendencies can be also observed in Fig. 4.

Fig. 4. Fitness value increases with the number of UAVs and it decreases when there
are more intruders in the scenario.

The second stage consisted in testing the best configuration for each set of
UAVs (4, 8, 12, and 16) on 100 unseen scenarios of each case study. We report
in Table 4 the average success rate obtained. It can be seen that again the more
UAVs, the better, so that 8 UAVs are in the 57%–60% success range, 12 UAVs
are in 74%–80%, and 16 UAVs are around 84%–87% on average.
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Table 3. Results of the optimisation process performed by CCGA-2 (30 runs).

Case study Fitness Time (Hours)

Avg. StdDev. Min. Max.

4.2 0.710 0.064 0.550 0.850 1.0

8.2 0.905 0.038 0.850 1.000 2.9

8.4 0.808 0.031 0.750 0.850 3.1

8.6 0.775 0.035 0.717 0.850 3.0

12.2 0.982 0.025 0.950 1.000 6.1

12.4 0.926 0.021 0.900 0.975 6.1

12.6 0.888 0.023 0.850 0.967 6.0

12.8 0.863 0.018 0.825 0.900 6.1

16.2 1.000 0.000 1.000 1.000 10.2

16.4 0.983 0.012 0.975 1.000 10.4

16.6 0.960 0.016 0.933 1.000 10.5

16.8 0.945 0.012 0.925 0.963 10.4

Table 4. Average detection percentage after testing of the best configurations obtained
in 100 scenarios of each case study.

UAVs Intruders Total

2 4 6 8

4 16.0% — — — 16.0%

8 57.5% 57.3% 59.0% — 58.2%

12 79.5% 75.8% 74.3% 76.0% 75.8%

16 86.0% 87.0% 84.0% 85.1% 85.3%

Figure 5 shows the distribution of these values for each case study, i.e. 1200
different scenarios. It can be seen that there are scenarios in which all the intrud-
ers were spotted (100% success) while in other, no one was detected (0% success).
We went deeper in our analysis focused on the 0% success cases to discover that
intruders managed to dodge the UAVs by going backwards and trying to move
forward again avoiding the UAVs in the neighbourhood, until they arrived to
destination. All in all, no intruders were detected in 72% of scenarios in 4.2, 16%
in 8.2, 4% in 8.4, 4% in 12.2 and 2% in 16.2.

We have conducted our experimentation using computing nodes equipped
with Xeon Gold 6132@2.6 GHz and 128 GB of RAM. It took about 80 h of parallel
runs (90 equivalent days).
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Fig. 5. Average success rate for each case study (100 unseen scenarios each).

7 Conclusion

In this paper we have proposed new features for the CACOC (Chaotic Ant
Colony Optimisation for Coverage) mobility model to be used as part of an
intruder detection system for the first time. We have optimised the newly
proposed parameters using an Cooperative Coevolutionary Genetic Algorithm
(CCGA) to maximise the intruder detection rate when the swarm of UAVs is
performing surveillance tasks.

We have detected up to 100% of intruders during the optimisation stage
and after testing the best configurations achieved in 1200 scenarios we have
observed detection rates up to 87%. These results show that the parameters
selected can be optimised to modify the swarm behaviour in order to improve
the detection of intruders. Moreover, the coevolutionary strategy allowed the
individual configuration of each UAV in the swarm, which could be observed in
the robustness of the system when tested against new unseen scenarios.

As future work we want to analyse the predators’ behaviour in order to
improve further our proposal. We plan to address a coevolutionary approach opti-
mising also the intruders, implementing a competitive evolution of both species
following game theory’s rules. Also, we wish to evolve full configuration vectors
using a GA and compare its results with the CCGA ones.
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Abstract. Batch normalization was introduced as a novel solution to
help with training fully-connected feed-forward deep neural networks.
It proposes to normalize each training-batch in order to alleviate the
problem caused by internal covariate shift. The original method claimed
that Batch Normalization must be performed before the ReLu activation
in the training process for optimal results. However, a second method
has since gained ground which stresses the importance of performing BN
after the ReLu activation in order to maximize performance. In fact,
in the source code of PyTorch, common architectures such as VGG16,
ResNet and DenseNet have Batch Normalization layer after the ReLU
activation layer. Our work is the first to demystify the aforementioned
debate and offer a comprehensive answer as to the proper order for Batch
Normalization in the neural network training process. We demonstrate
that for convolutional neural networks (CNNs) without skip connections,
it is optimal to do ReLu activation before Batch Normalization as a result
of higher gradient flow. In Residual Networks with skip connections, the
order does not affect the performance or the gradient flow between the
layers.

Keywords: Deep Learning · Batch Normalization · Training Neural
Networks

1 Introduction

The introduction of Batch Normalization has tremendously helped with the
training of fully-connected feed-forward deep neural networks. Its promising
results led to the mechanism becoming widely adopted and to it becoming the
accepted norm in practice. It was initially proposed that Batch Normalization
should be done prior to ReLu activation [4]. However, since then, Batch Nor-
malization (BN) after ReLu became the norm when importing pre-built CNN
models from PyTorch and Tensorflow [1,6]. In fact, the authors of these packages
claim that BN must be performed after ReLu. This pivotal shift in the ordering
has raised questions by many and has stirred a debate in the field as to which
order is optimal. In addition to these 2 aforementioned views, interestingly, Ian
c© Springer Nature Switzerland AG 2020
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Goodfellow remarked that the order actually does not matter at all [2]. These
three viewpoints are all in stark contrast to one another. Notably, until our work,
there has not been any thorough analysis of this problem. Our work is the first
to offer a study into whether order matters, and if so, what the proper order
should be for optimal performance.

To address this problem, we performed experiments on CNN and Resnet [3]
architectures. We subsequently ran simulations for both the order BN ReLu
(original) and ReLu BN and analyzed the results. Furthermore, we performed
a thorough mathematical examination of the gradients while training for each
layer to gain further insight. Our experiments clearly show that in CNNs there
is an improvement in performance when we switch the order from BN ReLu
to ReLu BN. This effect was not observed in Residual Networks which have
skip connections. Below we offer a thorough description of BN and the problem
at hand. From there we offer an analysis of the different orderings of BN for
CNNs and Residual Networks. Lastly, we provide empirical results which indicate
the training and validation accuracy as well as gradient flows for the different
orderings of BN for different types of neural networks.

2 Batch Normalization Problem Description

During the training process, the distributions of inputs of each layer shifts. This
shift occurs for the inner nodes of the network. The change in the distributions
of the nodes has profound negative effects on the training process. In fact, this
shift occurs layer by layer and can significantly slow down the training process.
This problem is also known as the Internal Covariate Shift [4]. The solution to
this problem centers around the idea of ensuring that the distribution of each
layer’s inputs remains fixed during training. The premise is that this fixing is
best achieved through taking the inputs x and enacting linear transformations
so that they have means of 0 and variances of 1 [5].

However, it is quite costly to perform such transformations to the inputs of
each layer. Thus, the initial proposal for Batch Normalization states that every
scalar feature is normalized independently [4]. Moreover, because mini-batches
are utilized in the SG training, each mini-batch will have its own mean and
variance. This is critical so that the “statistics used for normalization can fully
participate in the gradient backpropagation [4].”

Another benefit of Batch Normalization is that it removes the necessity for
performing Dropout. Large deep neural networks can frequently overfit due to
extremely large numbers of parameters. The models can be made very complex
and they subsequently become prone to overfitting. This makes it even more
difficult to combine several deep neural networks to be used simultaneously.
Dropout is a mechanism for alleviating this issue as it temporarily removes
certain units at random from the neural network [7]. The downside of Dropout
is that it can increase the training time significantly and so the ability of Batch
Normalization to supplant Dropout is another added benefit.

The initial result from Batch Normalization showed a significant improve-
ment over existing methods. In fact, through combining multiple models trained
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using Batch Normalization, the results surpassed that of the best known system
on ImageNet with 4.8% test error. Interestingly, this was even higher than the
accuracy of human raters [4].

These results were very promising and subsequently this paper led to Batch
Normalization becoming a norm in training fully-connected feed-forward deep
neural networks. As mentioned, the initially proposed order of BN ReLu has since
been disputed by many in the field. Specifically, the reversed order ReLu BN has
gained ground as a result of the widespread use of pre-built CNN models from
PyTorch and Tensorflow. However, there is no thorough examination of why one
order is superior to the other. The problem has not yet been properly addressed
and we consider this to be imperative. Below we offer results that indicate the
optimal order of Batch Normalization in the neural network training process as
well as a mathematical explanation of the mechanism at play.

2.1 Convolution Neural Network: ReLu BN

In order to gain further insight into the aforementioned problem of BN and
ReLu order, we mathematically expand backpropagation on a simple Residual
Network and see the effects that the order of BN and ReLU has on the gradient
of weights. Below we analyze backpropagation in the perspective of the Batch
Normalization layer. To begin, let us look at the mathematical expression of the
output of batch normalization in the Eq. 1 where x̂ is batch normalized input,
γ is the scaling factor, and β is the shift factor. The partial derivative of batch
normalization with respect to γ and β are described in the Eqs. 2 and 3, where
Out is the value in the layers after the Batch Normalization layer.

BN = γx̂ + β (1)

∂Out

∂γ
=

∂Out

∂BN

∂BN

∂γ
=

∂Out

∂BN
x̂ (2)

∂Out

∂β
=

∂Out

∂BN

∂BN

∂β
=

∂Out

∂BN
(3)

To demonstrate backpropagation, we consider a CNN model with convolution
blocks, and we analyze the backpropagation of the batch normalization layer at
the end of the first convolution block. In the case of model with order of ReLU
and BN in the forward pass, the Out will be the weights from the convolution
block following the BN layer. Then we can express the Eqs. 2 and 3 in terms of
partial derivatives of the weights with respect to BN and arrive at Eqs. 4 and 5.
In the equations, ∂Out

∂BN will be an array of values ranging from negative infinity to
positive infinity. x̂ will be Batch Normalized ReLU activated values that will also
range from negative infinity to positive infinity. Therefore, the resulting gradients
in Eqs. 4 and 5 will be ranging from negative infinity to positive infinity.

∂Out

∂β
=

∂Out

∂BN
∼ ∂wi

∂BN
(4)
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∂Out

∂γ
=

∂Out

∂BN
x̂ ∼ ∂wi

∂BN
· x̂ =

∂wi

∂BN
· BN(ReLu(Input)) (5)

2.2 Convolution Neural Network: BN ReLu

In the case of the model with order of BN and ReLu in the forward pass, the Out
will be ReLu activated values. Then we can express the Eqs. 2 and 3 in terms
of partial derivative of ReLu activated values with respect to BN, and arrive
at the Eqs. 6 and 7. In this case, by the mathematics of ReLu, all the negative
input to ReLu will become zero. Therefore, the ReLu activated values will range
from zero to infinity, and will significantly have more values corresponding to
zero compared to the counterpart model with opposite order of ReLu and BN.
Similarly, in the partial derivative of ReLus, the values will be semi-definite
positive, and will include much more zero values compared to the Eqs. 4 and 5.
In the end, the order of BN followed by ReLu results in “more” sparse gradient,
and during training, we do not want zeros in our gradients. This is because zero
gradients cannot reduce the loss function to update the weights. The model will
train slower and less effectively when there is more sparsity in the gradients.

∂Out

∂β
=

∂Out

∂BN
∼ ∂ReLui

∂BN
(6)

∂Out

∂γ
=

∂Out

∂BN
x̂ ∼ ∂ReLui

∂BN
· x̂ (7)

Therefore, in the case of Convolution Neural Networks (CNNs), we expect
the model to perform better if the ReLu layer comes before the BN layer in the
forward pass as there will be more non-zero values in the gradient.

2.3 Residual Neural Network

In the case of Residual Neural Network with skip connection (ResNet,
DenseNet), we expect the order of ReLu and Batch Normalization layers to
not affect the result because of the skip connection layers. Let us consider a
model with a skip connection such as the one presented in Fig. 1. In this partic-
ular model, if we perform backpropagation, we can brake it down into two parts:
forward pass term and residual term. In Eq. 8, the forward pass term is ∂Out

∂x

and the residual term is ∂Out
∂x · F ∗(x).

y = x + F (x)∂Out
∂x = ∂E

∂out ·
∂y
∂x = ∂Out

∂y · (1 + F ∗(x))

= ∂Out
∂y + ∂Out

∂y · F ∗(x)

(8)

In the Residual Network with skip connection, if the gradient of residual term is
much larger than the forward pass term, the residual term dominates the forward
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Fig. 1. Residual network with skip connection

pass term during backpropagation. The forward pass term does not have much
impact on the overall gradient value (Eq. 9). Similarly, if the gradient of forward
pass term is much larger than the residual term, the forward pass term would
dominate the residual term, and the residual term would not have much impact
on the overall gradient value (Eq. 10). Therefore, if there is a skip connection,
it can be seen as the model having “2” paths to perform the backpropagation,
and the order of BN and ReLu layers would not matter as the gradient can
flow through the skip connection path to reach earlier layer and compensate the
sparse gradients through the convolutional layers.

When F ∗(x) � ∂Out
∂y ,

∂Out
∂x ∼ ∂Out

∂y · F ∗(x)
(9)

When ∂Out
∂y � F ∗(x),

∂Out
∂x ∼ ∂Out

∂y

(10)
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3 Experiments

To observe the effects of the order of Batch Normalization layer and ReLu layer,
we keep all the hyper-parameter the same through out the empirical experiments.
The loss function used is Cross Entropy Loss, and the optimizer used is SGD
with initial learning rate of 0.001 and halving at the 80th epoch. The models are
trained to 150 epochs, and the training batch size is set as 64. For CNN without
skip connections, we choose VGG16, and for CNN with skip connections, we
choose ResNet with 32 layers and DenseNet with 40 layers. The models are built
from PyTorch model source code, and the order of Batch Normalization layer
and ReLU layer was adjusted accordingly. The GPU used in the experiments is
NVIDIA Tesla P100, and CIFAR10 and CIFAR100 datasets are used to train
the models.

4 Result

In all the experiments, the validation accuracy of architectures with ReLU BN
configuration came out to be higher than the validation accuracy of architectures
with BN ReLU configuration. The difference in accuracy is more pronounced
between the two counterpart configurations when the architectures were trained
on more complex dataset, CIFAR100, than trained on less complex dataset,
CIFAR10.

5 Analysis

5.1 Gradient Flow

Higher gradient flow in the layers allow the loss function to find the global mini-
mum faster, and from the result we observe that the Validation Accuracy at the
end of 150 epoch was higher for the particular configuration that yielded higher
gradient flow. In the case of CNNs without skip connection, the shallower model,
VGG16, has larger difference in gradient flow when trained on simpler dataset,
CIFAR10, than when trained on more complex dataset, CIFAR100 (Figs. 2, 3, 4
and 5).

6 Discussion

Our work has shown that for CNNs without skip connections, it is optimal to do
ReLu activation before the Batch Normalization, as a result of higher gradient
flow. In Residual Networks with skip connections, the order does not affect the
performance or the gradient flow between the layers (Tables 1 and 2).

One particular observation we make is that for CNNs without skip connec-
tions, the shallow model has larger gradient flow difference between the order of
Batch Normalization and ReLU activation when trained on a simpler dataset.
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Table 1. Configuration with higher average gradient flow for different architectures

Architecture Cifar10 Cifar100

VGG16 BN ReLU BN ReLU

ResNet ReLU BN ReLU BN

DenseNet BN ReLU BN ReLU

Fig. 2. (a–c): Training and validation accuracy of respective models of VGG16,
DenseNet, ResNet with BN ReLU configuration tested on Cifar10 dataset. (d–f): Train-
ing and validation accuracy of respective models of VGG16, DenseNet, ResNet with
ReLU BN configuration tested on Cifar10 dataset.

Table 2. Validation accuracy for different architecture configurations using CIFAR10
and CIFAR100 dataset

Architecture BN ReLU ReLU BN

CIFAR 10 VGG16 89.20 89.23

CIFAR 100 VGG16 62.24 63.75

CIFAR 10 ResNet 86.40 86.20

CIFAR 100 ResNet 55.43 57.20

CIFAR 10 DenseNet 82.06 83.15

CIFAR 100 DenseNet 47.04 50.75

For CNNs with skip connections, the deeper model has larger gradient flow dif-
ference between the order of Batch Normalization and ReLU activation when
trained on a more complex dataset.



56 D. D. Franceschi and J. H. Jang

Fig. 3. (a-c): Training and validation accuracy of respective models of VGG16,
DenseNet, ResNet with BN ReLU configuration tested on Cifar100 dataset. (d–f):
Training and validation accuracy of respective models of VGG16, DenseNet, ResNet
with ReLU BN configuration tested on Cifar100 dataset.

Fig. 4. (a–c): Layer gradient flow of respective models of VGG16, DenseNet, ResNet
with BN ReLU configuration tested on Cifar10 dataset. (d–f): Layer gradient flow of
respective models of VGG16, DenseNet, ResNet with ReLU BN configuration tested on
Cifar10 lataset. Legend: dark blue is average gradient, light blue is maximum gradient*
(Color figure online)
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Fig. 5. (a–c): Layer gradient flow of respective models of VGG16, DenseNet, ResNet
with BN ReLU configuration tested on Cifar100 dataset. (d–f): Layer gradient flow of
respective models of VGG16, DenseNet, ResNet with ReLU BN configuration tested
on Cifar100 dataset. Legend: dark blue is average gradient, light blue is maximum
gradient (Color figure online)

In the future, we will further expand our analysis on the gradient flow using
various model depths and using dataset with varying complexity.
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Abstract. Several previous works have shown how using prior knowl-
edge within machine learning models helps to overcome the curse of
dimensionality issue in high dimensional settings. However, most of these
works are based on simple linear models (or variations) or do make
the assumption of knowing a pre-defined variable grouping structure in
advance, something that will not always be possible. This paper presents
a hybrid genetic algorithm and machine learning approach which aims
to learn variables grouping structure during the model estimation pro-
cess, thus taking advantage of the benefits introduced by models based
on problem-specific information but with no requirement of having a pri-
ory any information about variables structure. This approach has been
tested on four synthetic datasets and its performance has been compared
against two well-known reference models (LASSO and Group-LASSO).
The results of the analysis showed how that the proposed approach,
called GAGL, considerably outperformed LASSO and performed as well
as Group-LASSO in high dimensional settings, with the added benefit of
learning the variables grouping structure from data instead of requiring
this information a priory before estimating the model.

Keywords: Genetic Algorithms · Machine Learning · Prior
knowledge · Optimization

1 Introduction

Nowadays, Artificial Intelligence (AI) techniques in general, and Machine Learn-
ing (ML) models in particular, are being widely and successfully used to address
difficult problems in many different areas [5,18]. Supervised ML-based methods
are data-driven techniques which allow to learn hidden patterns between input
and output spaces, thus allowing to build powerful tools to aid decision-making.
Traditionally, ML methods such as deep learning [8] have been proved to perform
accurately when enough data is available to train these models (i.e., whenever
N > P , being N the number of samples and P the number of variables). How-
ever, there exist many real-world problems where it is rare to find more than a
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few hundreds or a couple of thousands of samples available to train these kind
of models, thus probably facing the well-known curse of dimensionality problem
(N << P ) which may drastically reduce the performance of ML-based methods.

High dimensional settings will then require to make assumptions and to have
strong priors in order to make ML-methods work in these scenarios. For instance,
the production line of many industries could be seen as a process composed of
several stages through which the final product is step by step assembled, i.e., the
product may go through different machines and each of these machines could
then be seen as a group with their respective variables. In biomedical areas, it is
known that certain genes interact among each other in a molecular level and are
organized in different pathways, thus interpreting each of these pathways as one
group with similar characteristics. In this sense, a multivariate linear predictor
which uses some known and pre-defined problem-specific information was intro-
duced in [12]. Recently, a similar approach which incorporates prior knowledge
onto deep learning models was proposed in [16] and tested over synthetic data. In
[15], the use of prior knowledge was also studied and built-in a well-known linear
model such as the Least Absolute Shrinkage and Selection Operator (LASSO)
[14] to identify biomarkers with high prediction capabilities. Furthermore, evo-
lutionary algorithms have also been previously used [9] to develop ML classifiers
using problem-related information from external databases. In spite of all the
effort and work done in these studies, the caveat is that either these proposals are
based on simple linear models (or variations) which do not capture more com-
plex relationships in the data, or they require to know in advance a pre-defined
variables grouping structure.

The main contribution of this paper is the design and evaluation of the
Genetic Algorithm Group-LASSO (GAGL) method, a hybrid Genetic Algorithm
(GA) [2] and ML-based approach which aims at taking advantage of the benefits
added by considering prior knowledge within ML methods, in terms of predictive
performance, as well as at overcoming the issue of knowing in advance a pre-
defined variables grouping structure, a fact which will not always be possible
or easy to have. In this sense, four different synthetic datasets with the same
samples sizes (N) were built, each of them accounting for a different number of
input variables (P ) or different number of groups of variables (G). Two refer-
ence models (LASSO and Group-LASSO) were used as traditional ML models
in this work in order to compare the predictive performance of the proposed
GAGL approach. LASSO does not consider any prior knowledge, while Group-
LASSO does take it into account, but requires to know it in advance. In contrast
to the previous models, GAGL makes use of prior knowledge, but it does not
require this knowledge in advance, because it automatically discovers it. As the
proposed method is based on evolutionary algorithms, the initial random solu-
tions, describing different variable groups, are evolved and optimized during the
training process until a pseudo-optimal solution is achieved, hoping to get a ML
model with a predictive performance similar to Group-LASSO but which does
not require to know nor specify a priory any variables grouping structure.
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The rest of the paper is organized as follows. Section 2 describes the synthetic
data generation process, the models and the experimental design used in this
study. Results obtained from the analysis are presented in Sect. 3 and, finally,
some conclusions are given in Sect. 4.

Table 1. Number of samples, variables and groups of variables associated to each
synthetic dataset created.

Full Name #Samples (N ) #Variables (P) #Groups (G)

N250 P100 G10 250 100 10

N250 P100 G50 250 100 50

N250 P1000 G10 250 1000 10

N250 P1000 G50 250 1000 50

2 Materials and Methodology

This section describes the synthetic data generation process implemented in
this paper to mimic a possible real scenario in which certain groups of vari-
ables present similar structure. In addition, the ML methods used as well as the
experimental design defined to analyze the datasets are also introduced.

2.1 Synthetic Datasets

By definition, data-driven methods typically use data available to estimate statis-
tical or computational models which address a specific problem. Let us consider
a dataset defined as D = {xi , yi}N

i=1 consisting of N samples, where xi ∈ RP is a
P -dimensional vector representing the input variables and yi being the response
variable for the i-th sample. In this context, it is assumed the existence of G
non-overlapping groups of variables in such a way that variables belonging to
the same group share a similar structure. Therefore, the input vector xi was
randomly sampled from a multivariate normal distribution xi ∼ N (0, Σ), set-
ting the covariance matrix Σ in a way that accounts for the similarity in the
group structure. In this sense, input variables within the same group are corre-
lated with a correlation coefficient close to 0.5 while input variables of different
groups are assumed to be independent (i.e., correlation coefficient close to zero).
The response variable yi was computed as a linear combination of the input vari-
ables, i.e., yi = β0 +

∑P
j=1 βjxij + ξi, where ξi accounts for some random noise

normally distributed (ξ ∼ N (0, 5)). The β0, ..., βj coefficients were also sampled
from a normal distribution, β ∼ N (μg, 0.25), where μg accounts for groups of β
coefficients centered in different values, and allowing for the possibility of having
coefficients set to zero but ensuring that at least one input variable within each
G group had a non-zero coefficient assigned.
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(a) N250 P100 G10 (b) N250 P100 G50

Fig. 1. Oracle group structure for the two synthetic datasets created consisting of
P = 100 input variables.

Table 1 shows the main characteristics of the four synthetic datasets created
following the generation process described before. Each dataset differs one to
another either on the number of input features P ∈ [100, 1000] or on the number
of existing groups G ∈ [10, 50]. On one hand, the first two settings, in which the
number of samples available to train ML models is higher than the number of
input features describing a given sample (N > P ), will be used to show how
any ML model could perform accurate predictions in this scenario despite of
the existing variables group structure. On the other hand, the last two settings
are representing a much harder task for ML models (N << P ) and they will
be used to demonstrate how learning possible variables group structures from
data and using this information when training ML models may provide a better
predictive performance than traditional ML models. In this sense, Fig. 1 shows
the oracle group structure for 2 out of the 4 datasets used in this work, which
should ideally be learned by GAGL from data and provided to ML models to
build better estimators.

2.2 Baseline Methods

Two well-known ML models are used in this work and considered the reference
models: the Least Absolute Shrinkage and Selection Operator (LASSO) and the
Group-LASSO models. The former does not take into account variables group
structure, being useful in this analysis to set a lower bound of the predictive per-
formance. The latter requires you to provide a known variable grouping structure
(something a priory not known in many problems) thus being useful to set an
upper bound of the predictive performance. In this paper, authors propose to
use an evolutionary algorithm with the aim of inferring from data the variable
groups structure for those problems where no information on how variables are
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related is available. In high dimensional settings, this approach should perform
better than traditional ones, which do not consider this information.

LASSO. It is a linear model suitable for problems where the number of input
variables P is high. LASSO [14] adds a regularization term onto the minimization
problem solved in a linear regression by including an l1-penalty as shown in Eq. 1:

β̂λ = arg min
β

||y − f(βX)||22 + λ||β||1 (1)

The regularization term allows to set some of the β coefficients to zero and
to shrink others, thus performing variable selection and shrinkage. The strength
of the regularization applied is controlled by the hyper-parameter λ. In this
sense, a high value of λ will provide solutions with many β coefficients set to
zero, while a value of λ close to zero will perform almost no variable selection,
thus resulting in a model very similar to linear regression. In order to estimate
a LASSO model, the R package glmnet [6] was used, which provides an easy
interface to automatically learn λ through cross-validation.

Group-LASSO. It is a LASSO-based model which accounts for variables group
structure during the model estimation process [1,10,17]. In principle, Group-
LASSO includes a combination of l1 and l2 group-wise penalties allowing to
perform (i) group selection and (ii) variable selection within a group. Equation 2
depicts the minimization problem solved by Group-LASSO to find the optimal
β coefficients across G given groups:

β̂λ = arg min
β

||y − f(βX)||22 + λ
G∑

g=1

||βIg
||2 (2)

Although Group-LASSO has been proved to outperform LASSO in some sce-
narios, it has a considerable disadvantage in a way that it requires the analyst
to provide a pre-definition of the variables grouping structure prior to the model
estimation, information that is not typically available, or at least easy to obtain,
in many ML-related problems. Similarly to LASSO, the λ hyper-parameter con-
trols the strength of the regularization applied. The R package grpreg [3] was
used to train a Group-Lasso model in this analysis.

2.3 A Hybrid Genetic Algorithm Group-LASSO (GAGL)

In order to overcome the disadvantages present in high dimensional settings by
LASSO (does not consider problem-specific information or variables grouping
structure at all) and Group-LASSO (requires a pre-definition of variables group-
ing structure prior to estimate the model), this paper presents an approach based
on evolutionary algorithms. This approach aims at discovering and learning the
inherent variables grouping structure from data in order to improve predictive
performance of traditional ML models. In this sense, this approach could be seen
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as an intermediate approach between LASSO, which does not use any problem-
specific information, and Group-LASSO, which requires pre-defined groups of
variables.

Fig. 2. Schematic overview of the procedure followed to estimate and evaluate the
three different models under study. The “*” depicts a model which has already been
fitted to the training data.

Regarding evolutionary algorithms, one can find a wide variety of methods
in the literature [4,13], all of them sharing the fact of simulating the individual
evolution process through selection and reproduction procedures. In particular,
authors propose to use a Genetic Algorithm (GA) as a class of optimization
procedure inspired by these biological mechanisms. Usually, GAs try to optimize
a fitness function f(z) over a given space Z of arbitrary dimension. The main
features of the GA implemented in this paper are next described:

– Individual encoding and initial population: an individual or chromosome z
within the population of the GA is a vector of length P (the number of input
variables describing one sample of the synthetic datasets), where each position
within this vector could take integer values from one to G (the number of
groups that one would like to discover), i.e., z ∈ [1, ..., G]P . In this sense, the
integer value in the p-th position of this vector indicates the group to which
the p-th variable belongs to. The size of the population is set to K = 50
individuals which are evolved throughout the optimization process, and the
initial population is randomly created.

– Selection, crossover and mutation: a random selection strategy for the selec-
tion of the parents is used. Furthermore, a One Point Crossover operator is
used in such a way that, first, a random crossover point is selected, and then
the child inherits values of the first parent until this point and values of the
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second one from this point onward. Random Resetting is considered for the
mutation operator, where random genes of the individual, according to the
probability of mutation assigned to each gene, mutate their current value to
a new random one within the pre-established range.

– Fitness function: the implementation of the GA used in this paper minimizes
the fitness function shown in Eq. 3,

f(z) = RMSE(z) − |Corr(z)| (3)

where RMSE and Corr correspond to the Root Mean Squared Error and
the Pearson’s correlation coefficient measures, respectively, later defined in
Sect. 2.4. These metrics are obtained after training a Group-LASSO model to
part of the dataset with the pre-defined grouping structure indicated by indi-
vidual z, and then evaluating the model in the remaining part of the dataset
which has not been used to estimate the model. This training/evaluation
procedure is performed 5 times varying the train and evaluation datasets,
thus providing an average and more robust RMSE and Corr performance of
individual z.

Therefore, the initial population of the GA is evaluated according to the
fitness function defined in Eq. 3. Then, the elite or best ranked individuals go
directly to the next generation at the same time that parents selected are used to
evolve the population using the crossover and mutation operators, thus conform-
ing the entire population for the new generations. The optimization process is
executed until an stop criteria is met. In this work, the R package gramEvol [11],
which implements a GA with the features mentioned above, was used to perform
the analysis.

2.4 Experimental Design

The analysis was performed using a 10-fold cross-validation [7] evaluation strat-
egy. In this sense, the entire datasets are partitioned in 10 folds of equal sizes
in order to estimate the performance of each model tested. To this end, mod-
els are trained using 9 folds (named training set) and evaluated in the unseen
test fold left apart (named testing set). This procedure is iteratively repeated
by rotating the folds used for training and testing. Figure 2 shows an overview
of the experimental design for the analysis carried out in this paper. Since this
paper addresses a regression task for all the 4 synthetic datasets, two well-known
and complementary performance measures are used to measure the goodness of
the models: the Pearson’s correlation coefficient (σ) and the Root Mean Squared
Error (RMSE ). Equations 4–5 show how each performance measure is calculated
given the observed (y) and predicted (ŷ) vector values. High values of the Pear-
son’s correlation coefficient (σ ≈ 1) indicate a better performance than low ones,
while low values of RMSE (RMSE ≈ 0) shows better performance than high
values of RMSE.
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σ(y, ŷ) =
∑N

i=1 (yi − ȳ)(ŷi − ¯̂y)
√∑N

i=1 (yi − ȳ)2
∑N

i=1 (ŷi − ¯̂y)2
(4)

RMSE(y, ŷ) =

√
√
√
√ 1

N

N∑

i=1

(ŷi − yi)2 (5)

3 Results

Table 2 shows the average performance measures obtained by the two reference
models (LASSO and Group-LASSO) and the proposed approach in this paper
(GAGL) in the four synthetic datasets. Moreover, Fig. 3 shows, for each model
and dataset analyzed, the variance of the performance metrics considered across
the different test folds of the evaluation strategy. In the small dimensional set-
ting (N > P ) there is basically no difference on the performance achieved by
the three models tested despite of including pre-defined grouping structure in
Group-LASSO or learning this structure with the proposed GAGL approach. In
this sense, traditional ML models such as LASSO can perform as well as other
alternatives which take into account problem-specific information. However, the
benefits of including prior knowledge within the model estimation process can
be easily appreciated on much harder tasks such as the ones defined in the high
dimensional setting (N << P ). In this scenario, one can clearly see how the
traditional model which does not use any kind of prior knowledge (LASSO)
achieves the poorest performance (σ = 0.97, σ = 0.81 and RMSE = 13.22,

Table 2. Ten-fold cross-validation average models’ performance for the four synthetic
datasets analyzed.

Dataset Model σ RMSE

LASSO 0.79 5.59

N250 P100 G10 Group-LASSO 0.78 5.70

GAGL 0.81 5.22

LASSO 0.83 6.52

N250 P100 G50 Group-LASSO 0.84 6.30

GAGL 0.83 6.45

LASSO 0.97 13.22

N250 P1000 G10 Group-LASSO 0.98 9.27

GAGL 0.98 9.78

LASSO 0.81 17.89

N250 P1000 G50 Group-LASSO 0.93 12.11

GAGL 0.92 12.43
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RMSE = 17.89), which can be assumed the lower threshold. In contrast, the
Group-LASSO model using the pre-defined true grouping structure achieves
the best performance, as expected (σ = 0.98, σ = 0.93 and RMSE = 9.27,
RMSE = 12.11), which can be considered the upper threshold to which our pro-
posal in this paper should ideally tend to. In fact, the proposed GAGL approach,
which learns the grouping structure during the model estimation process in spite
of requiring the pre-definition of these groups (this may not always be known
or possible to acquire), considerably outperforms LASSO and performs almost
as well as Group-LASSO, achieving a σ = 0.98, σ = 0.92 and RMSE = 9.78,
RMSE = 12.43 on each high dimensional dataset analyzed.

Fig. 3. Variance of each performance measure (σ and RMSE) across the different test
sets of the 10-fold cross-validation strategy for each model and dataset analyzed.

Additionally, Fig. 4 shows in blue, and for each dataset analyzed, the fitness
value evolution of each individual tested within the population on each genera-
tion of the GA. The best ranked individual (i.e., the one with the lowest fitness
value) per generation is shown in red colour. It is possible to appreciate how
the fitness value decreases over time, thus allowing us to think of possible better
solutions if further generations of the populations were considered. Neverthe-
less and due to computational costs reasons, authors consider 1000 generations
a reasonable number to show the benefits of the GAGL approach in terms of
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predictive performance when the grouping structure is learned during the model
estimation process.

Fig. 4. Fitness value evolution of the population across the 1000 generations for each
dataset analyzed (in red the best ranked individual on each generation). (Color figure
online)

4 Conclusions

This paper has presented a GA and ML-based approach (called GAGL) to learn
variables grouping structure during the model estimation process. Four different
synthetic datasets were built, all of them consisting of N = 250 samples, account-
ing for different number of input variables (P = 100 and P = 1000) and different
variables grouping structure (G = 10 and G = 50). In order to test the goodness
of the proposed approach, two reference models were considered: LASSO as a
traditional ML model which does not take into account problem-specific infor-
mation, and Group-LASSO which indeed uses prior knowledge but requires to
pre-define a fixed setting of variables grouping structure before estimating the
model. The results of the analysis showed how the proposed GAGL approach
performed in high dimensional settings much better than LASSO, achieving per-
formance metrics very close to Group-LASSO but with the added benefit of not
needing to pre-establish any group of variables in advance, thus learning this
structure from data. Future work will continue aiming to improve both the pre-
dictive performance of this kind of approaches as well as to learn as much as
possible the true original variables structure.
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10. Meier, L., Van De Geer, S., Bühlmann, P.: The group lasso for logistic regression.
J. Roy. Stat. Soc. Series B (Stat. Methodol.) 70(1), 53–71 (2008)

11. Noorian, F., de Silva, A.M., Leong, P.H.W.: gramEvol: Grammatical evolution in
R. J. Stat. Softw. 71(1), 1–26 (2016). https://doi.org/10.18637/jss.v071.i01

12. Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: A sparse-group lasso. J. Com-
put. Graph. Stat. 22(2), 231–245 (2013)
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Juan Jesús Ruiz-Aguilar(B), Daniel Urda, José Antonio Moscoso-López,
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Abstract. An accurate forecast of freight demand at sanitary facilities
of ports is one of the key challeng-es for transport policymakers to better
allocate resources and to improve planning operations. This paper pro-
poses a combined hybrid approach to predict the short-term volume of
containers passing through the sanitary facilities of a maritime port. The
proposed methodology is based on a three-stage process. First, the time
series is decomposed into similar smaller regions easier to predict using a
self-organizing map (SOM) clustering. Then, a seasonal auto-regressive
integrated moving averages (SARIMA) model is fitted to each cluster,
obtaining predicted values and residuals of each cluster. A support vector
regression (SVR) model is finally applied in each cluster using the histor-
ical data clustered and the predicted variables from the SARIMA step,
testing different hybrid configurations. The experimental results demon-
strated that the proposed model outperforms other methodologies based
on SVR. The proposed model can be used as an automatic decision-
making tool by seaport or airport management due to its capacity to
plan resources in advance.

Keywords: Container forecasting · Machine learning · Support vector
regression · Self-organizing maps · Hybrid models

1 Introduction

The Border Inspection Posts (BIPs) were created in order to guarantee the secu-
rity at border crossings and the quality of the import-export goods by inspecting
them. BIPs are the approved facilities where the checks of goods (transported
within containers by trucks or towing vehicles) are carried out before entering the
Community territory. Thus, the BIPs are bottlenecks that must be necessarily
considered by Port Authorities. In order to avoid time delays and congestion in
the sanitary facilities, the port management must be able to accurately forecast
c© Springer Nature Switzerland AG 2020
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the number of container passing through these sanitary facilities. An accurate
prediction of this volume may become a useful tool to improve human resources,
planning operations and the service quality at ports. In this paper, the forecast-
ing techniques can be divided into three categories: single methods, combined
methods and hybrid methods.

The first class comprises both linear and nonlinear techniques. On the one
hand, linear techniques are based on the assumption of having a linear rela-
tionship between the future values and the current and past values of the time
series. The well-known autoregressive integrated moving averages (ARIMA) [2]
models have been constantly applied to solve forecasting tasks related to mar-
itime transport [1,5]. On the other hand, nonlinear techniques have become a
strength alternative against the weaknesses of linear models. In this subcate-
gory, two techniques must be highlighted: artificial neural networks (ANNs) and
support vector machines for regression (SVR). Due to its great generalization
ability, SVR has been used in forecasting transport tasks with promising results.
Some examples include a predicting of container throughputs, inspection freights
and roll on-roll of freight traffic at ports [7–9]. Their findings showed that SVR
makes more accurate predictions than ANNs.

The second category comprises the combined models. One of the most fre-
quently approach consists of combining a single prediction technique with a
clustering method. When the clustering method has divided the database into
several clusters, a prediction technique is then applied in each cluster indepen-
dently. Self-organizing maps (SOMs) [6] is probably the best-known clustering
method. A combined SOM-ANN model was firstly introduced by Chen et al. [3]
to predict traffic flows in transportation. Results showed that the SOM-ANN
model outperformed the rest of the models. Due to the recent emergence of SVR
in transportation, there is hardly any research related to transport combining
SOM and SVR in a two-stage procedure. Nevertheless, it is a widespread solution
in many other forecasting fields [4].

The third category includes hybrid models. Real-world time series are not
completely linear or nonlinear, but rather contain both components. Thus, a
methodology using linear and non-linear models in a hybrid way takes the capa-
bilities of both models. Hybridizing linear and non-linear models have been pro-
posed in recent years. ARIMA has been the most commonly used linear model
in hybrid models literature. Several authors have proposed a hybridization of
SARIMA and SVR to address several forecasting tasks in the transport sec-
tor. As an example, Xie et al. [11] proposed several hybrid approaches in a
comparative way including the SARIMA-SVR model for container throughput
forecasting. Authors pointed out that a hybrid strategy considering ARIMA and
SVR models overcomes the performance of single models.

In this study, a combined-hybrid forecasting model is proposed in such a
way that a hybrid model (SARIMA-SVR) is combined with a clustering method
(SOM) to forecast the daily number of containers passing through a BIP, thus
resulting in a new SOM-SARIMA-SVR strategy. This methodology unifies in a
single model the strengths of clustering methods in decomposing the forecasting
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task into some relatively easier subtasks (using a SOM method) together with
the strengths of hybrid models to fit linear and nonlinear components (using a
SARIMA-SVR model).

2 Brief Introduction to SOM, SARIMA and SVR Models

Self-organizing Maps (SOM)

Within the unsupervised learning field, a SOM is a kind of neural network.
First proposed by Kohonen [6], a SOM is a classification technique which groups
objects of the systems into regions called clusters. In the process, neurons of
the model organize themselves considering only those that play a similar role,
forming a cluster. The topology of a SOM model is based on several neurons
distributed into two layers. The first one (input layer) is formed by k neurons
and each neuron correspond with one input. The output layer, called the com-
petition layer, can consist on different topologies (2-D grid for this case) where
the preprocessing is performed. All the neurons of the output layer are con-
nected by weights with all neurons of the input layer. Different input vectors
xi = [x1, x2, . . . , xk]k are presented to the networks at each training iteration.
During the network training, the Euclidean distance between x and all the weight
vectors are computed as follows:

‖x − wb‖ = min
i

{∥∥∥x(t) − wî
∥∥∥
}

i = 1, 2, . . . , l (1)

where l is the number of output neurons. According to Eq. (1), wb is considered
the winning neuron, i.e. the neuron that has the weight vector closest to x. In
addition, the weight of the winning neuron and their neighbours are updated
in a learning procedure by which the outputs become self-organised and the
feature map between inputs and outputs is formed. It is worth mentioning that
the neighbours will have their weights updated as well, although by not as much
as the winner itself. The weight update equation, Eq. (2), has a time (epoch)
dependent and descendent learning rate α(t), and a neighbour function N .

W (t + 1) = W (t) + N(v, t)α(t)(x − W (t)) (2)

Auto-regressive Integrated Moving Averages (ARIMA)

ARIMA models were introduced by Box and Jenkins [2] and have been a widely
used forecasting linear model during several decades. Three prediction terms
compose this linear function: the autoregressive term (AR), the moving average
term (MA) and the integration term (I). A SARIMA model can be obtained by
extending the ARIMA model to incorporate seasonal features. In this way, the
model is specified as SARIMA(p, d, q)(P,D,Q)S , where q represent the order of
the moving average terms, p denotes the order of the autoregressive terms and
d is the degree of differencing. The parameters (P,D,Q) deals with the seasonal
part and the capital letters corresponds to their counterparts for the seasonal
models with the seasonal orders and the seasonality of the model is represented
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by the parameter s. Equation (3) depicts a typical expression of the SARIMA
model.

ϕp(L)ΦP (BS)∇d∇D
S yt = θq(B)ΘQ(BS)at (3)

where yt is the observed value, ∇d and ∇D
S are the regular and seasonal differenc-

ing operators, respectively, p and P are the number of non-seasonal and seasonal
autoregressive terms, q and Q are the number of non-seasonal and seasonal mov-
ing average terms, d and D are the number of regular and seasonal differences,
ϕ and φ deptic the value weights of the non-seasonal and seasonal autoregressive
term, θ and Θ represent the weights of the non-seasonal and seasonal moving
average term, the seasonality is represented by S and at is the noise term.

Support Vector Machines for Regression (SVR) Models

Support vector machines (SV M) is a kind of machine learning system focused
on the structural risk minimization. The main objective of this method is max-
imizing the margin distance [10]. First introduced for classification problems,
the ε-insensitive loss function, has enabled its use in regression problems. The
process is the following: first, the input data are mapped into a new space of
higher dimensional features, called feature space, by a non-linear mapping a pri-
ori using a kernel transformation. The aim of this feature space is to detect a
linear regression function that can be fit the output data with the input data.
This linear regression corresponds to the nonlinear regression model in the origi-
nal space and it can be expressed as in Eq. (4). The following Equation represents
the problem that should be optimized:

min
w,b,ξ

1
2
‖w‖2 + C

N∑
i=1

(ξ+i + ξ−
i )

subject to:

w · xi + b − yi ≤ ε + ξ+i

yi − w · xi − bi ≤ ε + ξ−
i

ξ+i , ξ−
i ≥ 0

(4)

with i = 1, . . . , l ξ−
i and ξ+i are slack variables that deal with the training

error on the top and the bottom, respectively. The expression ‖w‖2/2 defines
the structure risk concerning the flatness of the model and the parameter C
is a correction factor which deals with the trade-off between the flatness and
the error. Gaussian kernel was chosen as kernel function. The dual optimization
problem can be solved with the Lagrangian multiplier method. The main rea-
son for using Lagrange Multipliers is that it is not very difficult to setup the
problem. The critical thing to note is that Lagrange multipliers only works with
equality constraints and therefore it is necessary to rearrange them. The result
is a fairly complicated system of equations, but there are methods to solve these.
Using Karush-Kuhn-Tucker conditions, we can substitute these into the primal
equation, rearrange and solve [10].
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3 Forecasting Approach

The experimental database comes from the BIP of the Port of Algeciras Bay,
located in the South of Spain. The Port of Algeciras Bay was the port with max-
imum throughput in the Mediterranean Sea and the fourth port in the European
continent related to the total throughput in 2018. The database was provided
by the Port Authority and contains daily records of the number of containers at
the Algeciras BIP from 2010 to 2014, which makes a total of 1825 daily records.

3.1 The Proposed Hybrid Methodology

The proposed methodology consist on a three-step hybrid procedure to fore-
cast the daily number of containers passing through a BIP. Different prediction
horizons were assessed: one-day (ph = 1) and seven-day (ph = 7) ahead. The
prediction was one-step ahead (yt+ph), that is yt+1 and yt+7. The estimation
can be thereby modelled as a nonlinear function of the n preceding values of the
series, called the autoregressive window (n) and its design is presented in Fig. 1.
For the ph = 7 case, the autoregressive window is composed of values of the
container series periodically sampled every seven days in the past. This is due
to the weekly seasonality found in the analysis of the autocorrelation function
of the time series. The main assumption here is that the best predictions are
obtained when past inputs corresponding to the same day of the week are used
(e.g., using several successive Mondays in the past to predict a future Monday).

np = 7

np = 1

…

…

n

n = 1n n = 2

… …

…

yt

yt-7

yt-1yt-2yt-3yt-4yt-5yt-6yt-7yt-n·ph

yt-14yt-n·ph

n = 1n = 2n = 3

yt

yt+1

yt+7

…

Fig. 1. Possible autoregressive window sizes in Steps II and III and their prediction
horizons (ph): one-day prediction horizon (above the timeline) and seven-day prediction
horizon (below the timeline). n is the size of the auto-regressive window.

Step I: SOM. A SOM model is first applied to the data in order to split
the data-base in several disjoint groups, called clusters, with similar statistical
distribution. Each cluster works independently in the second and third step.
In such cases, a single SARIMA and SVR models are applied independently
after decomposing the heterogeneous data into different homogeneous regions.
An experimental framework was developed in order to select the optimal number
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of past values to be considered (nc) in the input vector of the SOM, which is
described in Eq. (5):

xi = [yt, yt−1·ph, yt−2·ph, . . . , yt−nc·ph]T (5)

where t is each sample (daily value). Each row is arranged recursively using
different lagged terms (as in an autoregressive window).

Step II: SARIMA. A SARIMA model is fitted to each cluster generated by
the SOM in Step I, obtaining different predicted and residual values of these
clusters. A hold-out validation technique was applied during the process. The
data (of each cluster) was divided into two groups: the training set containing
two thirds of the dataset, and the test set comprising the rest of the samples. The
parameters of the model were adjusted using the training set and the test set was
used to validate the model. Different parameter ranges were tested using a trial-
and-error procedure. The values of the parameters tested within each cluster
are, for the non-seasonal part: p = 0, 1, 2, 3, 4; d = 0, 1, 2 and q = 1, 2, 3, 4; and
for the seasonal part: s = 2, 5, 7; P = 0, 1, 2; D = 0, 1, 2 and Q = 0, 1, 2, 3. All
the possible combinations of parameters were tested.

Step III: SVR. A SVR model is again applied to each generated cluster. The
three different SVR parameters are determined by an iterative process (trial-and-
error). For each cluster, the inputs of the SVR model are composed by the origi-
nal data of the cluster and their forecasted values and residuals from the second
(SARIMA) step. Thus, three different groups of variables compose the inputs of
each cluster: the forecasted values and residuals from the SARIMA step, pi and
ei respectively, and the original data yi, where i denotes the cluster. The presence
of these variables within the inputs leads to the proposed hybrid configurations.
Each variable is sorted recursively in terms of an autoregressive window. The
sizes of the original data, predicted values and residuals from the SARIMA step
are denoted as ny, np and ne, respectively. The range of parameter tested in each
cluster and each ph were ne, ny, np = [1, 2, . . . , 20] and, for the SVR parame-
ters, ε, γ = [2(−12,−11,...,−2)] and C = [1, 2, . . . , 10, 50, 100, 200, . . . , 1000]. For
each possible combination of the autoregressive parameters (ne, ny, np), all the
possible combinations of the hyperparameters (C, ε, γ) were tested.

A twofold cross-validation (2-CV) technique was used. First, 2-CV divides
the database into two sets (training and test) of equal sizes. The model deter-
mines the optimal hyperparameters with the training set. Then, the performance
accuracy is computed by the training set. The sets are subsequently inverted
and the process is computed again, obtaining the average of the two steps.
This validation strategy was repeated 20 times and the final prediction per-
formance was the average of these repetitions. The whole predicted time series
is achieved by adding the predictions of each available clusters. Note that, as
in the SARIMA model, the best SVR model may be different on each cluster.
Two hybrid approaches were proposed and assessed. The prediction results were
obtained for two prediction horizons, ph = 1 and ph = 7.
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SOM -SARIMA-SV R-1 Model (Hybrid Approach 1)
The time series can be decomposed into two independent and additive terms: a
linear component Lt and a nonlinear component NLt. Then, a linear forecasting
model such as SARIMA can be applied in order to model the linear component
and thereby to obtain the predicted values denoted as p̂t and the residual et.
Subsequently, a SVR model is applied over the residuals to fit the nonlinear
component NLt:

N̂Lt+ph = f(et, et−ph, . . . , et−n·ph) + εt = êt+ph (6)

where êt is the predicted residual, f is the nonlinear function obtained by the
SVR model, n is the size of the autoregressive window, ph is the prediction
horizon and εt is the error term. Finally, the prediction is achieved by adding
the two single components, that is:

Ŷt+ph = L̂t+ph + N̂Lt+ph (7)

SOM -SARIMA-SV R-2 Model (Hybrid Approach 2)
The time series is considered a nonlinear function of the original data and the
residuals and the predicted values from the second step:

Ŷt+ph = f(yt, yt−1·ph, yt−2·ph, . . . , yt−ny·ph, et+ph, et, et−1·ph,

. . . , et−ny·ph, P̂t, P̂t−1·ph, . . . , P̂t−np·ph) + εt+ph

(8)

where p̂t is the predicted value from the SARIMA model and ne, ny and np
represent autoregressive window sizes for e, y and p̂ variables, respectively.

The proposed SOM-SARIMA-SVR procedure is graphically shown in Fig. 2:

3.2 Performance Indexes

Performance Criteria of Stage I (Clustering). Two clustering quality
indices have been used, CQI1 and CQI2 (Eqs. (9–10)):

QI1 =
(
S̃i

)
(9)

QI2 =
∑

Si (10)

where Si is the silhouette function and its value for each pattern is between −1
to +1. This parameter is defined as Si = Di − di/max(di,Di), where Di is the
minimum average distance from one pattern of a cluster to another pattern in
another cluster and di is the average distance in the own cluster from one pattern
to the rest of patterns.
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Fig. 2. The overall process scheme of the SOM-SARIMA-SVR approach.

Performance Indexes of Stages II and III (Prediction). The mean square
error (MSE), the mean absolute percentage error (MAPE) and the mean abso-
lute error (MAE) are the performance indices that have been considered to
calculate the estimation of the generalization error in the prediction steps (I and
III). Equations (11–13) shows these performance criteria and their calculation,
where m is the sample size, yt is the real value of the observation and yt is the
corresponding predicted value.

MSE =
∑m

i=1(yi − ŷi)2

m
(11)

MAE =
∑m

i=1|ŷi − yi|
m

(12)

MAPE =
∑m

i=1|yi − ŷi)/yi|
m

(13)

4 Experimental Results and Discussion

A comparison among the single SVR, the combined SOM-SVR, the hybrid
SARIMA-SVR and the proposed SOM-SARIMA-SVR models was performed.
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First, a SOM model was employed as a clustering technique. Testing different
configurations of the SOM network, the most appropriate SOM size for the data
was found to be the map size of 8×8 neurons in the output layer with a hexagonal
grid topology and a three-dimensional input space. Results leads to consider that
the SOM network has clustered the data into two groups. These results can be
contrasted analytically and are collected in Table 1 which shows the best results
obtained per cluster and their input vector configuration. Based on the two
clustering performance indexes (CQI1, and CQI2), the two-classes clustering was
the best choice for the time series, reaching the highest values of CQI1 and CQI2
(0.659 and 717.548, respectively). This result confirms the obtained previously
with the SOM algorithm. Consequently, the database was also divided into two
groups, hereinafter called Cluster 1 and Cluster 2. Best results were achieved
using a three-element input vector (nc = 3) with a temporal leap of 7-day in the
past.

Table 1. Clustering results of the SOM step, where c is the number of clusters tested
and nc is the size of the input vector. The temporal leap in the past is 1 or 7 days.

Best configurations Performance indices

Clusters (c) Temporal leap nc CQ1 CQ2

2 7 3 0.650 717.548

3 7 3 0.627 682.549

4 1 3 0.588 643.792

5 1 3 0.601 658.248

In the second step, a SARIMA model was independently applied to
each cluster. Using an iterative trial-and-error procedure, the best-fitted
models were ARIMA(2, 0, 3) for Cluster 1 (without seasonal part) and
SARIMA(2, 1, 2)(2, 1, 3)5, with a seasonality of 5 days for Cluster 2. The require-
ments of a white noise process were satisfied to the residuals of the model.

Finally, in the third step, different SVR models were applied to each cluster
considering the two proposed hybrid approaches which are formed depending
on the input variables used. Focused on an individual hybrid configuration, a
best SVR model was achieved in each cluster to fit the data. The parameter
configuration of these SVR models is (generally) different in each cluster. The
final prediction results of this hybrid approach were obtained by integrating the
prediction values achieved in the two clusters as a single predicted time series.
That is, ŷinspections = {ŷcluster1}

⋃{ŷcluster2}.
The most accurate models for each hybrid approach are collected in Table 2.

These prediction results were obtained considering the junction of the predictions
of the two clusters. Table 2 is divided according to the prediction horizon used
(ph = 1 or ph = 7 days). Furthermore, for each prediction horizon, results
are collected depending on the hybrid configuration applied. For the hybrid
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approach 2 (SOM-SARIMA-SVR-2), results are presented considering the set of
inputs used (y, e or/and p) in order to clearly show the most relevant inputs.
The SOM-SARIMA-SVR-2 (without p as input) provides the best prediction
results for one-day ahead prediction, followed by the rest of possible models
presented in the hybrid approach 2 (considering different SVR inputs) and finally
the hybrid approach 1, in that order. The SOM-SARIMA-SVR-2 achieved the
best value in at least two performance indexes. In this case, more sophisticated
models obtained no better results. Nevertheless, the classical approach considers
an additive relationship between the linear and nonlinear component of the time
series. Consequently, it can be concluded that this approach is less powerful
than the other approach. For one-day ahead predictions, two different input
variables (y and e) are proved to be sufficient to predict the time series accurately.
However, there are not great differences among the prediction performances with
the rest models.

Table 2. Mean prediction performance results of the proposed SOM-SARIMA-SVR
models for one-day and seven-day ahead prediction horizons. The final number of the
model indicates the hybrid approach (1 or 2). The column inputs indicates the inputs
used in the SVR models, where y is the original data and e and p depict the residuals
and predicted values from the second step, respectively. Best values in bold.

ph Hybrid approach Model Inputs Performance indices

MSE MAE MAPE

1 1 SOM-SARIMA-SVR 1 e 296.3551 11.8413 18.6794

2 SOM-SARIMA-SVR 2 y, e 287.0105 11.6790 17.9391

SOM-SARIMA-SVR 2 y, p 288.7795 11.7174 17.7721

SOM-SARIMA-SVR 2 y, e, p 287.8423 11.8362 17.8603

7 1 SOM-SARIMA-SVR 1 e 299.6534 11.9761 18.4053

2 SOM-SARIMA-SVR 2 y, e 290.8783 11.8295 18.1178

SOM-SARIMA-SVR 2 y, p 306.1622 12.4121 18.3690

SOM-SARIMA-SVR 2 y, e, p 289.7224 11.8394 17.9783

Similar results were obtained considering the behaviour of the models for 7-
day ahead prediction, where better values of performance indexes were reached
with the hybrid approach 2. The most complex approach (SOM-SARIMA-SVR
2 with all variables as inputs) obtained the best results, reaching four of the five
best performance indexes. Better results were yielded using the more sophisti-
cated models (hybrid approach 2) instead of the classical approach (hybrid app-
roach 1). Particularly, SARIMA-SOM-SVR-2 with variables e and y as inputs of
the SVR achieved the best results. The best-fitted network of Cluster 1 for this
hybrid configuration 2 in the third step is composed by autoregressive window
sizes of twelve for the y input variable (ny = 12) and two for the e input from
SARIMA step (ne = 2), being the optimal SVR parameters C = 200, γ = 2−4

and ε = 2−8. To model Cluster 2, the best parameter configuration was ny = 12,
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ne = 2, C = 50, γ = 2−2 and ε = 2−2. For this network architecture, the number
and size of SVR inputs coincide in both clusters. The final prediction is reached
by junction the predicted values of the two clusters.

To conclude, the most accurate single SVR model, the most accurate com-
bined SOM-SVR model and the most accurate hybrid SARIMA-SVR model were
also compared against the proposed model. These comparisons are summarized
in Table 3. As this table shows, the proposed SOM-SARIMA-SVR model out-
performs the rest of the models in both prediction horizons. This suggest that
the “divide-and-conquer” principle, introduced with the usage of the cluster-
ing stage, can improve the performance of the hybrid models that consider the
hybridization of linear and nonlinear forecasting techniques. Figure 3 represents
a comparison point-to-point between the observed and predicted values for the
best-fitted models concerning the ph = 1 case.

Table 3. Comparison of the best mean prediction performance results of the single
models (SVR), the combined models (SOM-SVR), the hybrid model (SARIMA-SVR)
and the proposed model (SOM-SARIMA-SVR) for one-day and seven-day prediction
horizon. Best values in bold.

ph Model Performance indices

MSE MAE MAPE

1 SVR 389.1624 14.3328 23.0695

SOM-SVR 381.6965 14.1565 21.8681

SARIMA-SVR 302.0054 12.0024 19.4246

SOM-SARIMA-SVR 287.0105 11.6790 17.7721

7 SVR 299.6534 11.9761 18.4053

SOM-SVR 290.8783 11.8295 18.1178

SARIMA-SVR 306.1622 12.4121 1 8.3690

SOM-SARIMA-SVR 289.7224 11.8394 17.9783
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Fig. 3. Comparison of the observed and predicted value on number of containers
checked with the most accurate models. ph = 1 case.
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5 Conclusions

In this study, a combined-hybrid SOM-SARIMA-SVR forecasting model has
been proposed based on a three-step procedure to predict the number of con-
tainers passing through a Border Inspection Post. A clustering SOM is first
applied to obtain smaller regions with similar statistical features which may be
easier to predict. A SARIMA model is then fitted within each cluster to obtain
predicted values and residuals of the clustered database. Finally, a SVR model is
used to forecast each cluster independently using the variables obtained from the
second step together with the original data as inputs. The SOM-SARIMA-SVR
model proposed has been developed and compared to other possible methodolo-
gies implied in the process (SVR, SOM-SVR and SARIMA-SVR). The results
obtained indicate that the SOM-SARIMA-SVR model is the most competitive
model, improving the forecasting performance of the rest of the models concern-
ing the prediction of the container demand and outperforms these methodolo-
gies. This methodology can provide an automatic tool to predict workloads in
inspection facilities avoiding congestion and delays. Therefore, it can be used as
a decision-making tool by port managers due to its capacity to plan resources
in advance.
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and Bernabé Dorronsoro1(B)

1 School of Engineering, University of Cadiz, Cádiz, Spain
bernabe.dorronsoro@uca.es

2 University of the Republic, Montevideo, Uruguay
3 E-Bus Competence Center, Livange, Luxembourg

https://goal.uca.es

Abstract. Plug-in hybrid (PH) buses offer range and operating flexibil-
ity of buses with conventional internal combustion engines with environ-
mental. However, when they are frequently charged, they also enable soci-
etal benefits (emissions- and noise-related) associated with electric buses.
Thanks to geofencing, pure electric drive of PH buses can be assigned to
specific locations via a back-office system. As a result, PH buses not only
can fulfil zero-emission (ZE) zones set by city authorities, but they can
also minimize total energy use thanks to selection of locations favour-
ing (from energy perspective) electric drive. Such a location-controlled
behaviour allows executing targeted air quality improvement and noise
reduction strategies as well reducing energy consumption. However, cur-
rent ZE zone assignment strategies used by PH buses are static—they
are based on the first-come-first serve rule and do not consider traffic
conditions. In this article, we propose a novel recommendation system,
based on artificial intelligence, that allows PH buses operating efficiently
in a dynamic environment, making the best use of the available resources
so that emission- and noise-pollution levels are minimized.

Keywords: Sustainable urban transport · Plug-in hybrid bus · Zero
emission zone management · Genetic Algorithms · Artificial neural
networks

1 Introduction

Air pollution and noise are the main problems in densely populated urban areas.
Public transport (PT) is the only emission- energy- and space-efficient mobility
solution for urban corridors with high mobility demand. While Euro 6 regula-
tion has significantly lowered the emissions of pollutants from buses with internal
combustion engines (ICE), there is still a question of noise and energy efficiency.
The only technology that allows to reduce noise and in the same time offer high
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energy efficiency are battery-electric buses (BEB). However, BEB require charg-
ing infrastructure. With today’s battery capacity, in most of the cases buses
need to be charged during the operations. Such charging requirements might
interfere with operators’ primary concern, which is the revenue service (with
on-time performance and reliability being the key performance indicators). The
process towards full electrification of city buses has started but as it is not a sim-
ple one-by-one replacement of ICE; it will last for many years and will require
some additional bridge solutions. The first one are full hybrid buses. They are
cost-effective clean vehicle solution with zero-emissions capability that comes
without complications and costs of charging infrastructure. In addition to sig-
nificant reductions of fuel consumption and CO2 emissions, hybrid buses take
advantage of using high power electric machine. This enables high energy recov-
ery, and certain amount of pure electric drive (in particular around bus stops).
Plug-in hybrid (PH) buses (also referred to as electric hybrids) are the second
bridge solution. These buses have batteries of higher capacity (around 20 kWh)
and rely on battery charging from the grid. Typically, they use high-power oppor-
tunity charging at the end points of routes. The electric distance driven by such
buses depends on the charging setup (i.e. how often they charge)—typically is in
the range of 50 to 70% of a route. In case if PH is not charged from the grid, it
behaves like a hybrid. PH typically use zero emission zone management system,
that allows to pre-set locations (via geofencing) where the bus would drive in
electric mode. This enables implementing a targeted environmental strategy to
the worst-affected areas rather than aiming at overall reduction in average levels
of harmful pollutants and noise. This operating flexibility is their main novelty
and the reason why they are being deployed in several European cities. One of
the reasons is that this feature allows respecting zero-emission (ZE) corridors in
cities. While locations of some ZE zones are defined by city authorities, there
is still an open question how to distribute the electric drive on a given route in
an optimal (energy-efficient) way. The decision about when to use the ICE or
the electric motor is a complex task because the energy consumption of the PH
bus depends on many external, internal and dynamic elements (speed, elevation,
weather, driving style, etc.) highly influencing their electric range. This opens a
wide variety of new challenges that have not been tackled yet.

In addition to the trend towards PT electrification, authorities are promoting
other actions in the redesign of urban transportation to minimize both its envi-
ronmental and its societal effects. One of the most common followed strategies
consists in defining ZE corridors that aim at limiting noise from vehicles and
reduce tailpipe emissions to zero. Examples of such areas are the city downtown,
schools or hospital surrounding areas, or pedestrian streets. Such measures are
already being put in place nowadays, and they will be soon essential in the future
for livable cities. Therefore, any solution for sustainable public transportation
must consider and respect these ZE corridors.

The main contribution of this work is the modeling and resolution of a novel
optimization problem for the effective management of electric drive PH buses,
looking for minimum energy consumption during their operation, and respecting
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ZE corridors. The problem, that we call Efficient PH Bus Operation (EPBO),
is to decide whether the vehicle should use the electric or explosion motor at
any time in order to cover the route with minimum energy use. We solve it
following two different approaches: (i) a genetic algorithm (GA) that assumes
full knowledge of the whole system to find a static optimal strategy, and a
decentralized recommendation system, based on supervised machine learning,
that makes use of local knowledge to dynamically take decisions.

The structure of this paper is as follows. Next section presents an overview of
the main existing works in the field of sustainable urban transport. After that,
Sect. 3 defines the problem tackled in this work, and Sect. 4 presents the tools
we used to solve the problem. Results are summarized in Sect. 5, and our main
conclusions are given in Sect. 6.

2 Sustainable Urban Transport

Bus electrification brings several new benefits to society. Particularly, it reduces
energy consumption as well as emissions of noise, greenhouse gases and pollu-
tants. Consequently it makes buses more comfortable [14]. As argued in Sect. 1,
PH buses arise as a bridge solution to full electric buses. They are able to charge
their batteries from an electric grid via “en-route opportunity charging”. This
allows to downsize battery and extend bus range to desirable values [6].

Charging infrastructure creates a strong link between infrastructure planning
and bus operations [15], and some recent research focuses on developing a proper
system design such as deploying strategic locations of e-charging stations [13].
Energy efficiency is also addressed via energy management strategies for the
engine [12], and regenerative breaking technologies [11]. In addition, technology
allows the use of batteries with more and more capacity in buses. Thanks to
recent advances in all these fields, PH buses currently provide an autonomy of
almost 10 km in electric mode, they can efficiently charge their batteries while
on route, and the time to fully charge their batteries at charging stations is a
matter of several minutes. Therefore, e-bus systems are currently moving from
pilot projects [13] to small-scale deployments with very few charging stations.
For example, the TOSA system in Geneva uses both terminal (3–4 min with
low power) and at bus stops e-charging (15-second each 1–1.5 km with high
power) [3]. The potentials and needs of large-scale e-bus systems were investi-
gated by the EU’s flagship project on e-buses Zero Emission Urban Bus System
(ZeEUS), and the challenges of the best choice for the electrification technology
for each bus route and the optimum charging strategy were raised.

Zero emission zone (ZEZ) management is a new category of Intelligent Trans-
portation Systems (ITS) telematics dedicated to optimize vehicle performance
via off-board intelligence. Preliminary works are proposing to use geofencing for
ZEZ management in the field of PH commercial vehicles [2]. In [17] the authors
indicate potentials of dynamic ZEZ management for PE buses. However, to the
best of our knowledge, the literature does not propose any methods that could
overcome the limitations of today’s static approaches. ZEZ management is an
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essential part of PH, which unlike in the past, are no longer just vehicles sold to
operators but rather a turn-key solution that includes charging infrastructure,
telematics and battery contracts. The current ZEZ management of PH buses
simply assigns electric mode into predefined zones in an offline planning (based
on the first-come first-served rule). Thus, it does not account for real-time factors
influencing the range, as the load of the bus, the use of air conditioning, traffic,
etc. Consequently, the assignment is very conservative and the full potential of
dynamic ZEZ is not exploited [18]. However, we envision high potential benefits
of applying dynamic strategies that adapt zone assignment according to weather,
traffic conditions, initial battery state of charge or cooperation with cooperative
ITS (C-ITS). Authors show in [16] that the use of C-ITS to mitigate stop-and-go
progression can increase up to 6% the electric distance of PH buses.

3 The Efficient PH Bus Operation Problem

We model and address in this work the problem of Efficient PH Bus Operation,
or EPBO. Let us assume that the bus route T is composed of n segments,
T = {t1, t2, . . . , tn}, where each segment ti is defined by (i) its length (li),
measured in kilometers, (ii) its slope (si), that can take values 0, 1, or −1, if it
is flat, uphill, or downhill, respectively, and (iii) variable zone (zi), that can take
value 1 or 0 to indicate whether it is a ZE zone or not, respectively.

The EPBO problem is to maximize the following fitness function:

f(x) =
∑n

i=0 xi · g(x, ti); g(x, ti) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2 · li if zi = 1 ∧ ci = li

ci if zi = 0

−K · (li − ci) if zi = 1 ∧ ci < li

. (1)

In the equation, x is the solution vector, assigning whether every route seg-
ment ti should be covered with electric (xi = 1) or explosion (xi = 0) engine,
and ci is the distance covered in segment ti by the bus in electric mode. Function
g(x, ti) assigns a quality value to segment ti, according to a simulation that takes
into account the strategy followed by the bus since the beginning of the route
until the end of segment ti. This is computed with the proposed PHSim simula-
tor, presented in Sect. 4.1, that estimates the battery level of the bus after every
segment, when following the strategy defined by solution x. Function g(x, ti)
favors the green segments that were fully covered in electric mode (i.e., the seg-
ment is green, zi = 1, and the distance covered using the electric engine, defined
as ci, is the same as the length of the segment), and penalizing those green seg-
ments that were not fully covered (i.e., when ci < li). In the former case, the
segment contributes to the fitness function with twice its length. In the latter
case, the fitness function is penalized with the distance not covered in electric
mode, namely li − ci, multiplied by a large constant K. This constant must be
high enough to ensure that the fitness value of any non valid solution, defined as
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the strategy in which at least one green segment is not fully covered using the
electric engine, is worse than any valid one. In this work, we set K to 10,000.
When the segment is not defined as a green one (zi = 0) but the bus covers it in
electric mode, either fully or partially, it contributes to the fitness function with
the distance covered in electric mode.

4 Solving the Problem

We present in this section how we tackled the resolution of EPBO problem using
a GA and an artificial neural network (ANN). Before, we present in Sect. 4.1 the
simulator used in this work to estimate the performance of the bus during its
operation, when following a given strategy.

4.1 Simulator

We have built a simple simulator to emulate the energetic performance of the
bus during its operation in a given route. It is called PHSim. The inputs to the
simulator are (i) the route, as a set of segments, each with a number of features
characterizing it (its length, inclination, or if it is in a ZEZ or not), and (ii) the
battery management strategy, a vector with length the number of segments in
the route. The value of each position in the vector can be 1, if the bus is covering
it in electric mode, or 0, if it should use the explosion engine.

Regarding the output, the simulator estimates the distance covered in electric
mode for every segment, as well as the battery level at the end of every segment.
With these values it is direct to compute the required values to compute the
fitness function defined in Sect. 3 to evaluate the quality of a given battery
management strategy.

The pseudocode of the simulator is given in Algorithm 1, and it works as
follows. It first takes the initial battery level, and initializes a number of variables,
used to store the battery level after each segment and the number of kilometers
covered in electric mode in each segment. Then, for every segment, it first checks
if the strategy requires covering it in electric mode. If it is the case, it computes
the electric consumption of covering the segment. If the battery level allows
covering the whole segment, it is decreased by the estimated amount of energy
to cover the segment. In other case, the battery level is set to zero and the
distance covered of the segment is computed, according to the consumption.

In order to estimate the battery consumption of the bus, we assume three dif-
ferent consumption levels: 0.8 kWh/km, 1.2 kWh/km, or 1.6 kWh/km, depending
on whether the segment is light downhill, flat, or light uphill [17]. In addition,
this consumption is increased by 30% if air conditioning is activated [8].

4.2 Genetic Algorithms

Genetic Algorithms (or GAs) [7,9] are iterative search processes for solving opti-
mization problems. They work on a set of tentative solutions, called the popula-
tion, that are evolved for a number of iterations, normally referred as generations.
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Algorithm 1. Pseudocode of PHSim simulator
Input: B � Initial battery level
Input: RouteSegments � Information on the segments composing the route
Input: x � The strategy to follow

1: bl = zeros(|RouteSegments|+1) � Estimated battery level after every segment
2: c = zeros(|RouteSegments|) � Estimated distance covered in electric mode
3: if x[0] == 1 then � The first segment should be covered in electric mode
4: � Returns the consumption, b, and the distance covered, c[s], in electric mode
5: (b, c[s]) = batteryConsumption(s, batteryLevel)
6: bl[s] = B - b
7: end if
8: for s ∈ [1, |RouteSegments|) do � For the rest of the segments
9: if x[s] == 1 then � This segment should be covered in electric mode

10: � Returns the consumption, b, and the distance covered, c[s], in electric mode
11: (b, c[s]) = batteryConsumption(s, batteryLevel)
12: bl[s] = bl[s-1] - b
13: end if
14: end for

Return: (bl, c)

The evolution of the population is achieved by creating new solutions (or indi-
viduals) through the application of a set of operators on the population, and
the survival of the fittest ones. These operators are typically (i) selection, to
choose a number of parents from the population, (ii) recombination, that com-
bines the information of the parents into one or more new individuals (i.e., the
offspring), and (iii) mutation, that performs slight random changes in individ-
uals to hopefully generate better ones. From one generation to the next one,
the best fitting solutions survive. Which ones and how many of them survive is
defined by the elitist criterion of the algorithm. Solutions are assigned a fitness
value that allows comparing them in order to decide whether one is better than
the other or not. This value is computed by the fitness function, which must be
specifically designed for the problem to be solved.

In this paper, a solution represents the strategy of the bus to efficiently cover
the hole route, so that the emission of pollutants is minimized, or, said in other
words, the use of the battery of the bus is maximized. In order the strategy to
be feasible, it must respect all ZEZs: the bus must use its electric engine in these
areas. We use in this work the simulator presented in Sect. 4.1 to emulate the
strategy. The output of the simulator is then used to compute the fitness value
of the solution, as described in Sect. 3.

4.3 Artificial Neural Networks

ANNs [10] are very well known machine learning methods that can be used
for classification or regression problems. In this work, we focus on classification
problems. They have an architecture composed of layers of neurons, being the
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(a) Route used in our simulations.
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Fig. 1. Graphical representation of route 181 in Montevideo, Uruguay.

first and last layer the input and output ones, respectively, and the rest are hid-
den layers. All neurons from one layer are connected to all neurons from the next
layer. The number of hidden layers and the number of neurons composing them
are hyperparameters of the system, that need to be adjusted experimentally. The
input layer has as many neurons as the number of features in our model, while
the number of neurons in the output layer is defined by the number of classes.

In ANNs, neurons can be excited according to the values received through
its input connections, their associated weights, and an activation function. Each
neuron computes the sum of the weighted signals received through each input
connection. This sum is then passed to the activation function to decide whether
the computed value will be propagated to the output of the neuron or not,
according to its magnitude. Training an ANN implies finding the right weights
for every connection between neurons.

5 Experimentation

We first describe the scenario used in our simulations. Then, we present the
details and configurations of the algorithms used to solve the problem. Finally,
we present and discuss the main results achieved in Sect. 5.5.

5.1 Scenario

The selected scenario is a real route of the urban transportation system in Mon-
tevideo, Uruguay. We took route number 181, one of the most important routes
in the city, with a high number of passengers. The route, shown in Fig. 1, is
among the longest routes in the city with 16.07 km length, a feature that makes
it challenging the efficient management of the battery.

We propose a first basic approach to the problem in this paper. We divide the
route into 183 segments. Boundaries between segments are defined by bus stops,
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as well as by significant slope changes. Therefore, the consumption of the bus
is constant within a given segment. Segments were created using a geographical
information system, used to compute the elevation of the route at its intersections
with the contour lines, as shown in Fig. 1b.

The considered route does not have any ZEZ, so we generated them. We
considered five different cases, when the percentage of green segments (i.e. seg-
ments belonging to a ZEZ) is 2, 5, 10, 15, and 20% of the 183 segments. This
assignment was randomly done, and we created 20 different routes of every kind,
making a total of 100 routes. For some of these routes we did not find any fea-
sible solution, so we discarded them. Therefore, taking into account that each
route is composed of 183 segments, and we discarded 4 routes, we have a total
of around 17, 500 segments that will be used for training our ANN.

5.2 Configuration of the Experiments

We used the eaMuPlusLambda GA implementation from the Distributed Evolu-
tionary Algorithms in Python (DEAP) library [5]. It is a (μ + λ)-GA, meaning
that the new population for the next generation is created from among the μ
individuals of the current population plus the newly generated λ solutions [1].

We did some preliminary experimentations to adjust all the parameters of
the GA. The algorithm was configured with the well known two-points crossover
and bit-flip mutation operators. Parents are selected from the population with
a binary tournament method, and they are recombined with 50% probability.
Randomly, 20% of the resulting solutions are mutated, and the probability to
flip the value of each variable is set to 0.1. The population size was set to 100
individuals, as well as μ and λ. Regarding the maximum number of evaluations,
we performed some convergence studies for the different problem versions studied
and decided to use 1, 000, 000 evaluations.

We used Keras Framework [4] for the experiments performed with the ANN.
We generated a dataset with a large number of route segments, that will be
the samples to train and test our models. Every segment (or sample) contains
information about the battery level of the bus at the beginning of the segment,
its length and inclination (for simplification, we discretized the inclination with
only three values, meaning uphill, downhill or flat), a binary value indicating
whether it belongs to a ZEZ (value 1) or not (value −1), and some additional
information about the rest of the route that the bus still needs to cover, as the
remaining kilometers of the route, and how many of them are ZEZs. The class
of every segment is whether it should be covered in electric mode or not. This
information is taken from the results of the GA, close to optimal solutions that
will provide the ANN with enough information to perform accurate predictions.

We followed a well accepted methodology to train the model. We divided the
whole dataset into two disjoint sets: testing (70% of the dataset) and validation
(30%), and these two sets are randomly generated in every epoch (we use 3, 000
epochs in this work). All data was normalized by standardizing each input vari-
able (i.e. zero mean and unit variance) in order to avoid any possible bias due
to the magnitude differences in the values of the variables. In addition, both the
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Table 1. Results from the GA for a sample instance with 20% green segments. Route
length is 16.07 km, 3.11 km of them being ZEZs.

Battery
level

Air
conditioning

Electric engine Diesel engine

Regular zones ZE zones Regular zones ZE zones

9 kWh Off 5.53 km 3.11 km 7.43 km 0.00 km

9 kWh On 3.80 km 3.11 km 9.16 km 0.00 km

7 kWh Off 3.81 km 3.11 km 9.15 km 0.00 km

7 kWh On 1.86 km 3.11 km 11.10 km 0.00 km

testing and validation datasets were created so that they have a balanced num-
ber of samples of each class. This was done just by discarding random samples
of class 0 (supposing around 65% of the dataset).

Once the ANN model is trained, it is used for validation in new, unseen,
routes. The trained model is used to predict whether the corresponding route
segment should be covered in electric or diesel mode, and this prediction is done
from the first to the last segment, sequentially, updating the battery level of the
bus after covering every segment, when necessary.

All experiments were performed on an Intel Core i5-8600K 3.6 GHz processor
with 16 GB RAM memory, with Ubuntu 18.04 operating system.

5.3 Solving the Problem with the GA

Once the routes conforming our dataset are generated, we still need to classify
every segment, so that the ANN can learn, based on local variables, whether the
route segment should be covered in electric mode or not. For that, we solve every
route with a basic GA, as presented in Sect. 4.2. Solving a route gives as many
observations for our dataset as the number of segments it contains, namely 183.

We show in Table 1 the results found by the GA for a selected instance where
20% of segments are ZEZs. This particular instance is composed by 3.11 km of
ZEZs, and the rest of the route is 12.96 km long. It can be seen that the GA can
always find feasible solutions. In the most favorable case, the bus can cover more
than half the route length in electric mode. This percentage quickly decreases
when the initially battery level is reduced and/or the A/C is on. We graphically
show in Fig. 2a all the segments composing the route, emphasizing in green color
those belonging to ZEZs. We present the results obtained for that route with two
different initial battery capacity levels, and also when using air conditioning or
not. Figures 2b and c present the result obtained by the GA for the considered
instance showing the length and the slope of the segments, respectively, for the
most restrictive instance studied: when the initial battery level is 7 kWh and
A/C is in use. As it can be seen, all green segments are covered by the solution.
As it could be expected, from all uphill segments, the GA chose only those ones
belonging to ZEZs to be covered in electric mode. It is also natural that most
selected segments to be covered in electric mode are downhill and short ones.
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(a) Segments length of the studied route. ZEZs are in green.

(b) GA solution (yellow means electric). Segments length.

(c) GA solution (yellow means electric). Segments slope.

Fig. 2. Route segments and result of the GA (7 kWh battery and A/C on). (Color
figure online)



Intelligent Electric Drive Management for Plug-in Hybrid Buses 95

Table 2. Results of the experiments for ANN hyperparameters selection.

Architecture Weights optimizer

Hidden
neurons

Hidden
layers

Accuracy Hidden
neurons

Hidden
layers

Accuracy Optimizer Accuracy

3 1 0.75 7 1 0.76 sgd 0.76

3 2 0.76 7 2 0.76 adam 0.77

3 3 0.75 7 3 0.76 adamax 0.78

3 4 0.76 7 4 0.77 adagrad 0.75

5 1 0.75 10 1 0.76 adadelta 0.76

5 2 0.76 10 2 0.76 rmsprop 0.77

5 3 0.76 10 3 0.77 nadam 0.76

5 4 0.76 10 4 0.76

5.4 Hyperparameters Selection and Tuning for the ANN

We set the number of input and output neurons to 6 (the number of available
variables) and 2 (the number of classes), respectively. We set the number of
epochs to 3, 000, and the model is trained, iterating on the data in batches of 32
samples. The activation function used for the output layer is softmax, and the sig-
moid function for the hidden layer neurons. We used the categorical crossentropy
loss function from Keras. We made some experiments to decide the architecture
of the network, as well as the optimizer to use for computing the weights. The
data used for training the ANN correspond to all route segments for 2, 5, 10,
15, and 20% ZEZs. The class every sample belongs to is obtained from the GA
solution, when the initial battery level is set to 7 kWh and A/C is in use.

We can see in Table 2 the results of the accuracy of the model, when testing
from 1 to 4 hidden layers each with a number of neurons of 3, 5, 7, and 10.
The optimizer used in this study is the Stochastic gradient descent, the most
basic one. We can see that the highest accuracy is obtained in the cases of 4
hidden layers with 7 neurons each, and 3 hidden layers with 10 neurons each.
From these two configurations, we adopted the latter one, because it is faster to
execute, given that it has one hidden layer less.

Once the architecture is defined, we evaluate the performance of seven differ-
ent optimizers, available in Keras. For this study, we set the number of epochs
to 10, 000, as an attempt to emphasize the differences between the optimizers.
Table 2 shows that the most accurate one is adamax, so we chose it.

5.5 Validation of the ANN Model

We present in Table 3 the average fitness value obtained by the GA and the ANN
on the 20 different instances of each of the studied percentage of ZEZs in the
route. We considered the case when the initial battery level is 7 kWh and A/C is
in use. It can be seen that the solutions of the GA (assuming global knowledge)
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Table 3. Average fitness of solutions found by GA and ANN.

ZEZs 2% 5% 10% 15% 20%

GA 6.100 6.918 6.751 7.200 7.747

ANN 5.700 6.491 6.787 7.410 7.944

outperforms the results obtained by the ANN for the instances with shortest
ZEZs (namely, 2 and 5% of the segments). However, the ANN outperforms the
results reported by the GA in the rest of the instances. These instances are more
challenging because they include longer ZEZs. At this point, we would like to
emphasize that ANN makes use of local data to take decisions, and it learned
how to decide the strategy from the solutions reported by the GA. Meaning that,
even when it learns the strategy from the GA, it is able to outperform it. This
fact is possible because the ANN learns the recommended action (either to use
electric or explosion motor) for every segment individually, according to local
variables. This approach allows it detecting anomalies in the training process in
those cases where the GA took a wrong decision, ignoring them.

6 Conclusions and Future Work

Plug-in hybrid buses are flexible solutions to significantly reduce noise and emis-
sions in urban public transport. They provide 10 km electric drive autonomy, and
can operate with either motor any time. We model in this paper the Efficient
PH Bus Operation problem (EPBO) to find the best strategy for a PH bus to
operate with minimum emissions, and respecting zero-emission zones.

We built a simple simulator to emulate the performance of PH buses when
following a given route strategy, and used it to solve the problem with a GA. This
approach finds pseudo-optimal static solutions, making use of global knowledge.
Additionally, we propose an ANN to allow the bus taking on-line decisions on
the strategy to follow in a dynamic environment, according to local variables.
The ANN is trained with the strategies discovered by the GA.

The parameters of the GA and the ANN were tuned experimentally, and
the performance of both methods was carefully analyzed. The ANN was able
to learn the right decisions from the GA to build a good strategy, discarding
the wrong ones. This is evidenced by the fact that the solutions found by ANN
outperformed those of the GA, in general, despite the fact that ANN only uses
local information to take decisions while the GA makes use of global information.

As future work, we plan to define a more realistic version of the problem,
characterizing the consumption of the bus from real data. Additionally, we will
investigate the use of unsupervised learning models to find accurate strategies.
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Abstract. The set k-cover problem (SkCP) is an extension of the clas-
sical set cover problem (SCP), in which each row needs to be covered
by at least k columns while the coverage cost is minimized. The case of
k = 1 refers to the classical SCP. SkCP has many applications including
in computational biology. We develop a simple and effective heuristic
for both weighted and unweighted SkCP. In the weighted SkCP, there
is a cost associated with a column and in the unweighted variant, all
columns have the identical cost. The proposed heuristic first generates a
lower bound and then builds a feasible solution from the lower bound.
We improve the feasible solution through several procedures including a
removal local search. We consider three different values for k and test
the heuristic on 45 benchmark instances of SCP from OR library. There-
fore, we solve 135 instances. Over the solved instances, we show that our
proposed heuristic obtains quality solutions.

Keywords: Set cover problem · Multiple coverage · Heuristic

1 Introduction

Given a set of elements (rows) I = {1, . . . ,m} (set “universe”) and a set P =
{P1, . . . , Pn} of n subsets of columns whose union is equal to I, where Pj ⊆ I,
j ∈ J = {1, . . . , n}, a subset J∗ ⊆ J defines a “cover” of I if

⋃
j∈J∗ Pj = I. Let

cj > 0 denote the cost of column j. The set cover problem (SCP) aims to obtain
a minimum cost cover. In other words, SCP identifies a subset of P whose union
is equal to I and has the smallest cost [16].

The literature on SCP is very rich. Several exact algorithms have been devel-
oped that can obtain optimal solution for the medium sized instances in a reason-
able amount of time [2,3,5,6,8,15]. Nevertheless, SCP still remains intractable
in a general term, and hence, heuristics are of practical importance. One of the
fundamental heuristics for SCP was developed by [13]. Chvatal’s idea is based
on the cost of column j, i.e., cj and the number of currently uncovered rows that
could be covered by column j, i.e., kj . This greedy heuristic evaluates column
j by calculating cj/kj , and then selects the column with the minimum value
of cj/kj . This evaluation criterion has been used in many heuristic algorithms
c© Springer Nature Switzerland AG 2020
B. Dorronsoro et al. (Eds.): OLA 2020, CCIS 1173, pp. 98–112, 2020.
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developed afterwards. For example, [24] improved the column selection mecha-
nism of the Chvatal’s greedy heuristic by adding a local search procedure, and
[1] merged several solutions into a reduced cost one. Randomized procedures
have also been utilized with the Chvatal’s greedy heuristic. For example, [14]
created a list of columns that pass a certain criterion. Then a column is ran-
domly selected from this list. Another randomized idea has been implemented
by [19]. Instead of selecting a column j with the minimum cj/kj , their algo-
rithm randomly selects a column j while the total number of random selections
is controlled by a parameter.

Probably one of the best heuristic algorithms for SCP that ever has pro-
posed is due to [9]. Their algorithm is a Lagrangian-based heuristic where the
Lagrangian multipliers are utilized in a greedy heuristic to obtain quality solu-
tions. Then, a subset of columns that has a high probability of being in an
optimal solution is selected and their corresponding binary variables are set to
the value of 1. It is clear that this results in an SCP instance with a reduced
number of columns and rows, on which the whole algorithm is iterated. Other
Lagrangian-based procedures are due to [17] and [12]. We refer the interested
reader to [10] for a review of the SCP algorithms, up to the year 2000.

Other heuristics include the genetic algorithm of [7] and an efficient heuristic
of [26], in which a “3-flip neighborhood” that obtains a set of solutions from
the current solution by exchanging at most three subsets is performed followed
by several procedures to reduce the size of the neighborhood. A tabu search
was studied in [11]. [21] developed a meta-heuristic for SCP, in which the con-
struction and improvement phases have some degree of randomization. A few
studies investigated the unweighted or unicost SCP (see for example [4]). The
unweighted SCP is more difficult to solve than the weighted variant [25]. We note
that in the unicost SCP every column has the identical cost, and the optimal
solution therefore minimizes the total number of selected columns.

The literature on SkCP is not as rich as SCP. First, we note that in SkCP
every row needs to be covered by at least k columns while the coverage cost is
minimized. It is clear that SCP is a special case of SkCP, where k = 1. SkCP
is more difficult to solve than SCP because of the multi coverage requirement.
One of the heuristics for SkCP is by [22] and [23]. Their algorithm builds an
initial solution by a Lagrangian-based heuristic and then repairs it by using a
randomized greedy algorithm combined with path relinking. Further improve-
ment to this solution is made by two neighborhoods. The first neighborhood
removes unnecessary columns while the second one replaces a more expensive
column with a cheaper one. Another algorithm, a dynamic program, has been
discussed in [18].

The remaining of this paper is organized as follows. Section 2 explains SkCP
and proposes an integer program. Section 3 discusses lower bound schemes for
SkCP. In Sect. 4, we develop a heuristic algorithm. The computational results
of the algorithm have been reported in Sect. 5. The paper ends with a few con-
cluding remarks and future research directions.
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2 Problem Statement

Consider an unweighted instance of SCP in which I = {1, 2, 3, 4, 5} and P =
{P1 = {1, 2, 3}, P2 = {2, 4}, P3 = {3, 4}, P4 = {4, 5}, P5 = {1, 2}, P6 = {1, 2, 5}},
where

⋃

j∈J

Pj = I. Here, the smallest number of subsets of P whose union is equal

to I is 2, and the subsets are P1 = {1, 2, 3} and P4 = {4, 5}. Thus, J∗ = {1, 4}.
SkCP occurs when every element of I must be covered by at least k columns.

Given k = 2 in the above example, the smallest number of subsets of P would be
4, and the subsets are P1 = {1, 2, 3}, P3 = {3, 4}, P4 = {4, 5} and P6 = {1, 2, 5}.
Thus, J∗ = {1, 3, 4, 6}. In this example, we cannot have k ≥ 3 because we cannot
cover every element of I more than 2 times. In fact, no subsets of J can cover
every element of I more than 2 times.

SkCP can be modeled as an integer program (IP) and may be formulated as
problem P1 [16]:

Problem P1

min
∑

j∈J

cjxj (1)

∑

j∈J

aijxj ≥ k, i ∈ I, k ∈ Z
+, (2)

xj ∈ {0, 1}, j ∈ J, (3)

where the objective function (Eq. (1)) minimizes the total cost of selecting
columns and cj > 0,∀j ∈ J is the cost of selecting column j to cover a row,
and xj is a binary decision variable, which takes 1 if column j is chosen to cover
a row (i.e., chosen to be in the solution) and 0 otherwise. In an unweighted (uni-
cost) SkCP, cj = ζ,∀j ∈ J , where ζ > 0 is a constant, and the objective function
therefore minimizes the total number of columns. Constraints (2) ensure a feasi-
ble solution is obtained, i.e., every row is covered by at least k columns, k ∈ Z

+,
where aij is a parameter that takes the value of 1 if column j covers row i and
0 otherwise. We note that the case of k = 1 in the right hand side of constraints
(2) will result in SCP. Finally, constraints (3) ensure that xj ∈ {0, 1},∀j ∈ J .

3 A Lower Bound

We propose a lower bound (LB) for SkCP. We will later utilize the lower bound
to deliver a feasible solution for the proposed heuristic of Sect. 4.

An intuitive LB for SkCP can be calculated as LB = k. It is clear that every
row must be covered by at least k columns (see the right hand side of constraints
(2)). Therefore, in order to have a feasible solution at least k columns must be
chosen.

A tighter LB is developed by solving a linear programming (LP) relaxation of
problem P1. Linear programming relaxations have been studied for many integer
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and mixed integer programs including SCP (see [20]). LP relaxation of problem
P1 is obtained by setting 0 ≤ xj ≤ 1,∀j ∈ J . Problem P2 shows LP.

Problem P2

z = min
∑

j∈J

cjxj (4)

∑

j∈J

aijxj ≥ k, i ∈ I, k ∈ Z
+, (5)

0 ≤ xj ≤ 1, j ∈ J. (6)

Assume that the optimal objective function value of SkCP, i.e., of problem
P1 is z∗, and that of its LP relaxation (i.e., of problem P2) is z ∈ R

+. Clearly,
z ≤ z∗, and hence, z is a valid LB for SkCP. That LB is obtained by solving
problem P2 to optimality.

4 A Heuristic Algorithm for SkCP

In this section, we propose a heuristic algorithm for SkCP. The heuristic algo-
rithm starts by solving problem P2 to optimality and delivering a LB, which is
most likely an infeasible solution. If LB is feasible, the algorithm stops because
it has obtained the optimal solution. If LB is infeasible, the heuristic repairs it
in order to obtain a feasible solution, through adjusting the fractional variables.
This feasible solution is further improved in two stages: an exact stage and a
heuristic one. Algorithm1 summarizes the proposed heuristic.

Algorithm 1. The proposed heuristic algorithm for SkCP.
Input: Problems P1 and P2.
Output: A feasible solution for SkCP.

Step 1: calculate a lower bound.
Solve problem P2 to optimality; let z ∈ R

+ be the optimal objective function
value;
if xj ∈ {0, 1}, ∀j ∈ J then

Stop, the lower bound is optimal;
end
else

Step 2: generate a feasible solution.
Fix certain xj variables to take the value of 1, and enforce the remaining
variables to take the binary values; perform a re-optimization;
Step 3: improve the feasible solution.
Find and remove any redundant column(s) in the feasible solution;

end
return the so obtained solution;
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Step 1 solves the LP relaxation of SkCP, i.e., problem P2 to optimality and
obtains the LB. Step 2 generates a feasible solution by adjusting certain variables
xj , j ∈ J to take the value of 1, and the remaining to take a binary value
and performing a re-optimization. We note that by fixing certain variables to
take the value of 1, we build a partial solution. This partially built solution
favorably impacts the convergence of an exact algorithm/solver, and we observe
that without a partially built solution, particularly for large instances of SkCP,
even by allowing an exact solver such as CPLEX to be run for 30 min, a single
feasible solution may not be found.

We perform two operations in Step 2 in order to generate a feasible solution
for SkCP from an LB solution: (1) we ensure that xj ∈ {0, 1},∀j ∈ J , and (2)
we let those xj variables that already have a value of one be in the solution. Let
problem P3 denote the new IP. We solve problem P3, which leads to an upper
bound (UB) for SkCP.

Step 3 improves the feasible solution by finding any redundant column(s)
and iteratively removing them, such that every row is still covered by at least k
columns. This is because there is a possibility that redundant columns have been
forced to enter into the feasible solution through Step 2. We therefore propose
a removal algorithm that looks for redundant columns and removes them from
the solution. The removal algorithm is preformed randomly and iteratively.

The removal algorithm first looks for any column that if it is removed from the
feasible solution the solution still remains feasible. The algorithm creates a list of
such columns. Then, it randomly selects a column from that list and removes it
from the solution. The algorithm keeps removing the redundant columns as long
as the solution remains feasible. It should be noted that the order in which the
redundant columns are removed from the feasible solution impacts the objective
function value. For this purpose, we perform a random removal.

5 Computational Results

We implement the proposed heuristic algorithm in the programming language
Python 2.7 with the Python CPLEX API. We perform all the computational
experiments on a PC with Intel R© CoreTM Xeon E5-1650 CPU with 12 cores
clocked at 3.50 GHz and 32 GB of memory under Linux Ubuntu 14.04 LTS oper-
ating system. We only use one thread in order to provide the most similar basis
for comparing the results with other studies.

We apply the heuristic algorithm on 45 weighted instances of SCP from
the OR library (http://people.brunel.ac.uk/∼mastjjb/jeb/orlib/scpinfo.html).
We select these 45 instance because they are benchmark instances of SCP and
the study of [23] reports on the same instances. Table 1 shows basic information
regarding these instances, particularly, the size of the instances.

To obtain an instance of SkCP per instance of SCP, we must consider k ≥ 2
(the right hand side in constraints (2) in problem P1). In particular, we consider
three different coverage values:

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/scpinfo.html
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Table 1. The information regarding 45 benchmark instances of SCP.

Class Dimension Density (%) Number of
instances

scp4 200 × 1000 2 10

scp5 200 × 2000 2 10

scp6 200 × 1000 5 5

scpa 300 × 3000 2 5

scpb 300 × 3000 5 5

scpc 400 × 4000 2 5

scpd 400 × 4000 5 5

– kmin = 2;
– kmax = mini∈I{

∑
j∈J aij}; and

– kmed = �(kmin + kmax)/2	.
Remember that aij is a parameter, which takes 1 if column j covers row

i and 0 otherwise. Also,
∑

j∈J aij denotes the total number of times that row
i is covered. The maximum coverage value, i.e., kmax, is the greatest value of
coverage for which a feasible solution exists. Unless kmin > kmax, the minimum
coverage value of 2 always results in a feasible solution and maintains the least
amount of multiple coverage for SkCP. Finally, we consider in-between values by
setting the coverage value to �(kmin + kmax)/2	. Following these three coverage
values, in total, we solve 135 settings (45 instances each with three values for k).

We report the complete computational results of Algorithm 1 on the 135
settings in Tables 4, 5 and 6. Each table also reports the computational results
of the solver CPLEX, in the forms of lower and upper bounds and as reported in
[23], as well as the outcomes of the hybrid heuristic algorithm of [23], again in the
forms of lower and upper bounds. The explanation of the columns of Tables 4, 5
and 6 are as follow.

– Instance: name of the SCP instance.
– LB: the lower bound obtained by solving problem P2 to optimality.
– LB-time(s): the computational time, in seconds, for obtaining LB, which is

the computational time of solving problem P2 to optimality.
– UB: the upper bound obtained in Step 2.
– UB-time(s): the computational time, in seconds, for obtaining UB.
– z-best: the improved solution as the result of applying the random removal

heuristic.
– Total-time(s): the total computational time, in seconds, of Algorithm 1. We

note that this time is greater than the summation of both “LB-time(s)” and
“UB-time(s)” because of the time of the auxiliary operations (reading the
data file of an instance, processing the data file, etc.).

– CPLEX LB: the lower bound obtained by the solver CPLEX, as reported in
[23].
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– CPLEX UB: the upper bound obtained by the solver CPLEX, as reported in
[23].

– LAGRASP LB: the lower bound obtained by the hybrid Lagrangian heuristic
with GRASP and path-relinking algorithms, and as reported in [23].

– LAGRASP UB: the upper bound obtained by the hybrid Lagrangian heuristic
with GRASP and path-relinking algorithms, and as reported in [23].

We consider different computational times as the stopping criterion of our
heuristic algorithm. This stopping criterion is only applied if the algorithm fails
in obtaining the optimal solution. This is because in [23], the authors set various
time limits for different classes of the instances. Their computational time limits
are shown in Table 2. In our study, for the case of kmed we set the maximum
computational time for Step 2 of Algorithm1 to 140 s, and for the case of kmax

we set it to 260 s. Those are almost equal to the [23]’s minimum computational
time limits for the large instances, that is, across the instance classes “scpa”,
“scpb”, “scpc” and “scpd”, although they used a larger value of the minimum
computational time for the instance classes “scpb”, “scpc” and “scpd”. We note
that for the instance classes “scp4”, “scp5” and “scp6” the computational times
are negligible (see Tables 4, 5 and 6). Finally, we wish to state that the results
associated with the solver CPLEX, which are reported in columns “CPLEX
LB” and “CPLEX UB” in Tables 4, 5 and 6, are from [23]. For these results,
the authors set different computational time limits, and up to several hours for
some instances.

Table 2. The maximum computational time in seconds, which were used in the study
of [23].

Class kmin kmed kmax

scp4 5 15 27

scp5 10 45 90

scp6 5 20 38

scpa 21 141 265

scpb 17 235 288

scpc 39 329 580

scpd 26 489 544

In order to evaluate the performance of our heuristic algorithm (Algorithm1),
and compare it and CPLEX, and also that of [23], we use three measures: (1)
the number of best obtained solutions, (2) the gap between the lower and upper
bounds, and (3) the computation time. Next, we detail these measures.

5.1 The Number of Best Obtained Solutions

As reported in Tables 4, for the case of kmin our heuristic algorithm obtains
better solution for nine instances, out of 45, than that of the LAGRASP algo-
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rithm (of [23]), while the LAGRASP algorithm obtains better solution only in
seven instances. For the remaining instances, both algorithms obtain the same
solution.

For the case of kmed, except for the seven instances that the LAGRASP algo-
rithm reports better solution, for the remaining instances, that is, 38 instances,
Algorithm 1 delivers superior solution. We note that for five of these instances, out
of seven, the computational time limits of the LAGRASP algorithm are 235, 329
and 489 s, while the total computational time of Algorithm1 is less than 150 s.

For the case of kmax, in only two instances of “spc45” and “spc61” the
LAGRASP algorithm obtains better solution, and very close to the results of
Algorithm 1. In the remaining instances, that is, in 43 instances, our heuristic
algorithm produces superior solution. This is fully reported in Table 6.

We report a summary of the number of superior solutions obtained by either
Algorithm 1 or the LAGRASP algorithm in Table 3. Table 3 shows that over all
instances and all coverage values, our heuristic algorithm obtains superior results
than the LAGRASP algorithm. More importantly, our heuristic overcomes the
LAGRASP algorithm, particularly in more difficult instances, i.e., those with
coverage values of greater than 2.

Table 3. The number of superior solutions delivered by the proposed heuristic algo-
rithm (Algorithm 1) and the LAGRASP algorithm of [23].

Algorithm kmin kmed kmax

Heuristic algorithm 9 38 43

LAGRASP algorithm 7 7 2

5.2 The Gap Between the Lower and Upper Bounds

The purpose of calculating this criterion is to show the quality of both lower
and upper bounds of our heuristic algorithm, the LAGRASP algorithm [23] and
the solver CPLEX. We evaluate the gap as the difference between the lower and
upper bounds, i.e., gap = (UB − LB).

We illustrate the values of gap associated with the three mentioned proce-
dures in Figs. 1, 2 and 3, where each figure stands for one coverage value. For
the case of kmin = 2, the solver CPLEX obtains the optimal solution for all
instances, thus, it has a gap of 0. Figure 1 indicates the superior performance of
the heuristic algorithm; while in only five, out of 45 instances, the LAGRASP
algorithm has a lower value of gap than the heuristic algorithm, in 14 instances,
the heuristic algorithm has a lower value of gap than that of the LAGRASP
algorithm. In the remaining instances, both algorithms have the identical value
of gap.
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Table 4. The computational results for the coverage value kmin = 2.

Instance Heuristic algorithm CPLEX LAGRASP algorithm

LB LB-time(s) UB UB-time(s) z-best Total-time(s) LB UB LB UB

scp41 1142 0.3589 1150 0.3702 1150 0.8195 1148 1148 1142 1150

scp42 1205 0.4088 1205 0.4088 1205 0.4676 1205 1205 1205 1205

scp43 1207 0.3670 1214 0.3979 1214 0.8523 1213 1213 1207 1214

scp44 1184 0.3687 1185 0.3675 1185 0.8254 1185 1185 1184 1185

scp45 1263 0.3955 1268 0.3820 1266 0.8677 1266 1266 1262 1266

scp46 1345 0.3584 1352 0.3887 1352 0.8363 1349 1349 1344 1349

scp47 1115 0.4004 1115 0.3509 1115 0.8468 1115 1115 1114 1115

scp48 1213 0.3953 1225 0.4510 1225 0.9340 1225 1225 1212 1225

scp49 1485 0.3651 1485 0.3642 1485 0.8154 1485 1485 1485 1485

scp410 1356 0.3727 1359 0.4122 1359 0.8722 1356 1356 1355 1356

scp51 578 0.9511 579 0.8106 579 1.9347 579 579 578 579

scp52 668 0.8566 677 1.0170 677 2.0486 677 677 668 679

scp53 571 0.7953 575 0.8624 575 1.8359 574 574 571 574

scp54 578 0.8508 586 1.0224 585 2.0528 582 582 578 587

scp55 549 0.7927 550 0.8475 550 1.8259 550 550 549 550

scp56 558 0.8479 561 0.8117 561 1.8348 560 560 557 560

scp57 693 0.9509 695 0.8160 695 1.9408 695 695 693 695

scp58 661 0.8562 664 0.9025 664 1.9358 662 662 661 662

scp59 681 0.8072 687 0.8233 687 1.8073 687 687 681 687

scp510 671 0.9960 672 1.0041 672 2.1744 672 672 670 672

scp61 277 0.3764 283 0.5021 283 0.9751 283 283 277 283

scp62 297 0.3541 302 0.4118 302 0.8571 302 302 297 302

scp63 310 0.3571 313 0.3921 313 0.8417 313 313 310 313

scp64 287 0.3657 294 0.4063 294 0.8628 292 292 286 292

scp65 348 0.3661 353 0.6023 353 1.0603 353 353 347 353

scpa1 552 1.4758 563 1.8635 563 3.7322 562 562 552 563

scpa2 553 1.6965 560 1.8731 560 3.9591 560 560 553 560

scpa3 518 1.4855 524 1.8167 524 3.6903 524 524 518 524

scpa4 522 1.4748 527 1.6200 527 3.4889 527 527 522 527

scpa5 551 1.3713 558 1.7161 558 3.4792 557 557 551 559

scpb1 141 1.4709 149 2.4756 149 4.3793 149 149 141 149

scpb2 145 1.4218 150 1.8260 150 3.6620 150 150 144 151

scpb3 160 1.3525 165 1.7380 165 3.4795 165 165 160 165

scpb4 150 1.3597 157 2.2069 157 3.9584 157 157 150 157

scpb5 146 1.3554 151 1.8883 151 3.6353 151 151 146 152

scpc1 505 1.8816 515 3.0278 515 5.5778 514 514 505 515

scpc2 474 2.0586 483 2.4801 483 5.1962 483 483 473 486

scpc3 530 2.2362 545 7.7408 545 10.6472 544 544 530 544

scpc4 477 2.2249 484 2.7514 484 5.6417 484 484 477 485

scpc5 478 2.2327 489 2.4551 489 5.3475 488 488 478 490

scpd1 118 2.2173 122 2.7312 122 5.6862 122 122 117 122

scpd2 122 2.0506 127 2.4610 127 5.2413 127 127 122 127

scpd3 134 1.8681 138 2.6076 138 5.1860 138 138 134 138

scpd4 117 1.8673 122 2.8730 122 5.4582 122 122 117 123

scpd5 125 2.2233 130 2.4382 130 5.3723 130 130 124 130
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For the case of kmed, the heuristic algorithm clearly outperforms the
LAGRASP algorithm: except for three instances, over the remaining 42 instances
the heuristic algorithm obtains a lower value of gap than the LAGRASP algo-
rithm. For the case of kmax, the values of gap of the heuristic algorithm are always
significantly lower than that of the LAGRASP algorithm. In fact, instances asso-
ciated with the coverage values of kmed and kmax are those instances that the
solver CPLEX encounters difficulty in obtaining the optimal solution.

5.3 The Computational Time

Regarding the computational time, in the LAGRASP algorithm the minimum
computational time for the cases of kmin, kmed and kmax is 5, 15 and 27 s,
respectively, and the maximum computational time is 39, 489 and 580 s. On
the contrary, while there is no minimum computational time for our heuristic
algorithm, the outcomes reported in Tables 4, 5 and 6 are obtained under the
maximum computational times of 140 and 260 s for the coverage values of kmed

and kmax. Also, we set no maximum computational time limit for the coverage
value of kmin = 2. The smaller computational time along with the higher quality
solutions indicate the efficiency of the proposed heuristic algorithm for SkCP.

Fig. 1. The gap in the lower and upper bounds for the coverage value kmin = 2.
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Table 5. The computational results for the coverage value kmed.

Instance Heuristic algorithm CPLEX LAGRASP algorithm

LB LB-time(s) UB UB-time(s) z-best Total-time(s) LB UB LB UB

scp41 8323 0.4183 8363 0.8421 8363 1.3614 8350 8350 8323 8366

scp42 6090 0.3948 6120 0.6301 6118 1.1313 6111 6111 6089 6117

scp43 4660 0.3882 4681 0.6107 4681 1.0931 4676 4676 4660 4690

scp44 4648 0.3854 4674 0.6361 4674 1.1174 4670 4670 4648 4679

scp45 8371 0.4156 8399 0.6705 8398 1.1963 8389 8389 8371 8409

scp46 6380 0.4030 6419 0.8190 6419 1.3289 6416 6416 6380 6432

scp47 6271 0.3922 6282 0.4678 6282 0.9562 6281 6281 6270 6284

scp48 8394 0.4393 8427 0.7094 8427 1.2483 8421 8421 8394 8439

scp49 7074 0.3843 7107 0.8277 7106 1.3171 7101 7101 7073 7121

scp410 5340 0.3892 5358 0.5764 5358 1.0608 5355 5355 5339 5364

scp51 11177 0.9294 11213 2.7007 11213 3.8341 11205 11205 11176 11239

scp52 14390 0.9955 14436 8.0157 14436 9.2176 14418 14418 14390 14473

scp53 11455 0.8720 11488 5.1118 11488 6.1879 11476 11476 11455 11513

scp54 9920 0.8655 9958 6.8794 9956 7.9669 9944 9944 9920 9965

scp55 10858 0.9709 10899 8.1277 10898 9.3220 10880 10880 10858 10918

scp56 10551 0.9206 10597 6.7598 10597 7.8804 10581 10581 10551 10629

scp57 14884 0.8857 14937 18.9089 14934 20.0241 14919 14919 14884 14984

scp58 10586 0.8786 10637 14.6317 10635 15.7302 10622 10622 10585 10687

scp59 11019 0.8704 11053 2.6521 11053 3.7215 11042 11042 11019 11081

scp510 12404 0.9817 12451 13.9889 12451 15.1762 12436 12436 12403 12475

scp61 7573 0.4006 7669 140.4098 7669 140.9678 7653 7653 7572 7692

scp62 6668 0.4124 6752 140.3778 6752 140.9190 6739 6739 6667 6773

scp63 8261 0.4003 8321 51.4953 8317 52.0123 8309 8309 8261 8365

scp64 8479 0.4175 8567 140.3868 8567 140.9490 8546 8546 8478 8585

scp65 8975 0.4029 9060 51.0494 9060 51.5598 9038 9038 8974 9070

scpa1 21129 1.7001 21286 141.5528 21281 143.7994 21156 21227 21128 21324

scpa2 21666 1.7916 21793 141.5658 21793 143.8558 21695 21739 21665 21820

scpa3 20033 1.6697 20149 141.6502 20148 143.8644 20061 20095 20032 20155

scpa4 22789 2.0624 22916 141.4427 22916 144.0060 22821 22865 22788 22985

scpa5 18566 1.5699 18698 141.5359 18694 143.6538 18595 18643 18566 18706

scpb1 28967 1.6967 29222 141.6068 29218 143.9352 28984 29222 28966 29234

scpb2 27924 1.6774 28196 141.4656 28196 143.6938 27940 28112 27922 28187

scpb3 27679 1.7879 27899 141.7234 27899 144.0662 27695 27872 27678 27944

scpb4 25523 1.9818 25773 141.4371 25773 143.9715 25542 25678 25522 25742

scpb5 28050 1.8540 28310 141.6663 28310 144.0607 28067 28203 28049 28297

scpc1 32426 2.8552 32779 142.1399 32761 145.9637 32448 32659 32425 32763

scpc2 32535 2.6472 32849 142.1362 32848 145.7539 32556 32765 32534 32871

scpc3 34235 3.1382 34546 142.1377 34542 146.2534 34261 34492 34234 34610

scpc4 31158 2.9094 31494 142.3221 31472 146.1969 31183 31366 31157 31495

scpc5 29863 2.7237 30190 142.3447 30177 146.0629 29886 30060 29861 30196

scpd1 38720 2.7303 39092 142.7402 39073 146.5547 38734 38991 38719 39132

scpd2 38761 2.8589 39143 142.4048 39116 146.3849 38770 39030 38760 39098

scpd3 38907 2.8655 39324 142.1577 39314 146.1367 38919 39198 38906 39271

scpd4 38525 2.7938 38908 142.7761 38894 146.6473 38537 38781 38524 38879

scpd5 40051 3.1509 40416 142.3631 40404 146.6003 40064 40321 40050 40409
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Table 6. The computational results for the coverage value kmax.

Instance Heuristic algorithm CPLEX LAGRASP

algorithm

LB LB-time(s) UB UB-time(s) z-best Total-time(s) LB UB LB UB

scp41 18259 0.4207 18278 0.4587 18273 1.0190 18265 18265 18258 18290

scp42 12329 0.3949 12369 0.8735 12369 1.3718 12360 12360 12328 12405

scp43 10384 0.4201 10396 0.3974 10396 0.9185 10396 10396 10384 10398

scp44 10350 0.4038 10401 1.1854 10401 1.6909 10393 10393 10349 10427

scp45 18850 0.4006 18863 0.4019 18863 0.9223 18856 18856 18849 18856

scp46 15363 0.4251 15411 0.9463 15411 1.4780 15394 15394 15363 15419

scp47 15203 0.4258 15249 0.5639 15249 1.0971 15233 15233 15202 15280

scp48 18577 0.4254 18610 0.4890 18610 1.0234 18602 18602 18576 18628

scp49 16531 0.4049 16563 0.6257 16563 1.1383 16558 16558 16531 16591

scp410 11588 0.4130 11616 0.6204 11616 1.1348 11607 11607 11587 11618

scp51 35619 0.9491 35698 50.5264 35679 51.7554 35663 35663 35618 35749

scp52 45367 0.8873 45412 1.6983 45412 2.8189 45396 45396 45367 45433

scp53 36292 0.9718 36349 29.7402 36349 30.9376 36329 36329 36291 36388

scp54 27985 0.8526 28037 6.3085 28037 7.3766 28017 28017 27984 28051

scp55 32739 1.0076 32795 2.5233 32795 3.7506 32779 32779 32738 32878

scp56 29567 0.8532 29632 16.9056 29632 17.9721 29608 29608 29567 29653

scp57 41897 0.8822 41955 5.3357 41944 6.4941 41930 41930 41897 41954

scp58 32283 0.8765 32349 14.6929 32344 15.8297 32320 32320 32282 32405

scp59 33551 0.8506 33602 7.7708 33602 8.8389 33584 33584 33551 33655

scp510 38668 0.9134 38737 6.8340 38737 7.9774 38709 38709 38668 38807

scp61 23408 0.3953 23536 260.3654 23536 260.9636 23476 23516 23407 23534

scp62 19860 0.3985 19964 260.3546 19964 260.9392 19934 19934 19859 20025

scp63 27924 0.3958 28016 10.8473 28014 11.3940 27983 27983 27924 28027

scp64 26372 0.4450 26475 260.4122 26475 261.0836 26442 26442 26371 26530

scp65 26990 0.4055 27084 15.1279 27084 15.6599 27069 27069 26990 27124

scpa1 68405 1.7908 68585 261.6691 68579 264.1710 68437 68522 68404 68669

scpa2 65760 1.8314 65881 261.7751 65881 264.1746 65796 65842 65760 65922

scpa3 66707 1.7972 66879 261.5672 66879 263.9561 66740 66829 66706 67016

scpa4 72244 1.7242 72401 261.6744 72398 264.1258 72283 72334 72243 72465

scpa5 60357 1.6999 60553 261.5820 60553 263.8644 60397 60491 60356 60625

scpb1 105331 1.8579 105522 261.6987 105522 264.2919 105359 105506 105329 105636

scpb2 102721 1.8461 103007 261.5693 103007 264.1144 102748 102922 102720 103046

scpb3 98047 2.0049 98400 261.8758 98400 264.5722 98070 98280 98046 98445

scpb4 93544 1.6781 93808 261.5188 93807 264.0664 93568 93777 93544 93836

scpb5 102600 1.6531 102834 261.7535 102822 264.2676 102629 102810 102597 102905

scpc1 112250 2.5384 112570 262.5925 112557 266.4856 112286 112471 112248 112667

scpc2 113728 2.8601 113993 262.2336 113974 266.4783 113760 113916 113726 114145

scpc3 117249 2.5051 117544 262.2001 117544 265.7805 117278 117416 117247 117680

scpc4 110648 2.6279 110947 262.4679 110935 266.4167 110677 110823 110647 111091

scpc5 104230 2.9947 104538 262.4448 104506 266.7337 104253 104439 104229 104591

scpd1 144479 2.9304 145055 262.5927 145055 266.7581 144500 144887 144476 145060

scpd2 143767 2.5725 144200 262.3346 144177 266.5021 143793 144096 143765 144218

scpd3 140121 2.6589 140658 262.5656 140655 266.7408 140137 140474 140120 140685

scpd4 143094 2.5840 143544 262.5864 143544 266.3338 143121 143513 143091 143582

scpd5 145960 2.9003 146373 262.3349 146373 266.4197 145980 146307 145957 146452
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Fig. 2. The gap in the lower and upper bounds for the coverage value kmed.

Fig. 3. The gap in the lower and upper bounds for the coverage value kmax.

6 Conclusion

In this study, we develop a heuristic algorithm for SkCP. SkCP is a generaliza-
tion of SCP, where the coverage requirement is greater than 1. We compared
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our heuristic algorithm and the LAGRASP algorithm and solver CPLEX, which
were reported in [23]. Over 45 benchmark instances of the SCP from the OR
library and three different coverage values for every instance (thus, in total 135
settings), we show that the results of the heuristic algorithm competes well with
the state-of-the-art algorithms. We also show that not only the developed heuris-
tic is faster than the LAGRASP algorithm and the solver CPLEX, it obtains
higher quality solutions, particularly, when the value of the parameter coverage
increases. Increasing the coverage value tremendously impacts the computational
time. In addition, the heuristic algorithm has a smaller value of gap (difference
between upper and lower bounds). The tighter gap is very important because it
provides an evidence on the higher quality of the obtained solutions, and it may
be utilized by exact algorithms including the branch-and-bound.

Acknowledgment. Amir Salehipour is the recipient of an Australian Research Coun-
cil Discovery Early Career Researcher Award (project number DE170100234) funded
by the Australian Government.
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Abstract. This article presents the application of data analysis and
computational intelligence techniques for evaluating the air quality in
the center of Madrid, Spain. Polynomial regression and deep learning
methods to analyze the time series of nitrogen dioxide concentration,
in order to evaluate the effectiveness of Madrid Central, a set of road
traffic limitation measures applied in downtown Madrid. According to
the reported results, Madrid Central was able to significantly reduce the
nitrogen dioxide concentration, thus effectively improving air quality.

Keywords: Smart cities · Air pollution · Computational intelligence

1 Introduction

Mobility is a crucial issue in nowadays cities, having direct implication on the
quality of life of citizens. Sustainable mobility contributes to reduce environmen-
tal pollution, which has serious negative effects on health. Sustainable mobility
is a relevant subject of study under the novel paradigm of smart cities [1].

Most of modern cities have been designed without considering air quality
concerns. In fact 91% of the world population lives in places where the air quality
levels specified by World Health Organization (WHO) are not met [24]. Many
cities have prioritized the use of motorized vehicles, causing a significant negative
impact on health and quality of life, especially for children and the elderly.

One of the major concerns arising from the rapid development of car-oriented
cities is the high generation of air pollutants and their impact on the health
of citizens [20]. WHO estimates that 4.2 million deaths per year are due to air
pollution worldwide [24]. International authorities have taken actions by enacting
environmental policies oriented to reducing pollutants (e.g., the Clean Air Policy
Package adopted by the European Union (EU) to control harmful emissions).

This article analyzes the Madrid Central initiative, which has been imple-
mented in Madrid (Spain) in order to diminished air pollutants and thus comply
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with the requirement demanded by the EU. Madrid Central, defined as a low
emissions zone, extends a series of traffic restrictions aimed at reducing the high
levels of air pollution in the city. As a result, most pollutants vehicles cannot
access to the central downtown area.

The proposed methodology for air quality evaluation applies data analysis
and computational intelligence methods (polynomial regression and deep learn-
ing) to approximate the time series of nitrogen dioxide (NO2) concentration,
which is a direct indicator of environmental pollution. The main results indicate
that the deep learning approach is able to correctly approximate the time series of
NO2 concentration, according to standard metrics for evaluation. Results allow
concluding that Madrid Central was able to significantly reduce the nitrogen
dioxide concentration, thus effectively improving air quality.

The main contributions of this work are: (i) the analysis of the air qual-
ity, regarding NO2 concentration, in Madrid downtown and (ii) the application
of computational intelligence to assess the environmental impact of car restric-
tion measures in Madrid Central. The proposed approach is generic and can be
applied to analyze other policies to deal with different challenges in smart cities.

The article is organized as follows. Next section describes the case study and
reviews related works. Section 3 introduces the proposed approach. The evalua-
tion of air quality via data analysis and computational intelligence is presented
in Sect. 4. Finally, Sect. 5 presents the conclusions and the main lines of future
work.

2 Case Study and Related Works

This section presents the case study and reviews relevant related works.

2.1 Reducing Traffic: Residential Priority Areas and Madrid
Central

In the EU air pollution it is considered the biggest environmental risk, causing
more than 400,000 premature deaths, years of life lost as well as several health
derived problems (i.e. heart disease, strokes, asthma, lung diseases and lung
cancer). Besides, it has an impact over natural ecosystems, biodiversity loss,
and climate change [6,16]. Less known is that it can harms deeply the built
environment and so, the cultural heritage [6]. Finally, it produces an economic
cost in terms of increasing expenses associated to health issues and in terms of
diminished production (e.g. agricultural lost and lost of working days).

Those factors have lead the EU to take action by enacting stronger air poli-
cies and a bigger control among their Member States. The Clean Air Policy
Package refers to the Directive 2008/50/EC [5] and to the 2004/107/EC [4]
and it sets different objectives for 2020 and 2030. This EU clean air policy relies
on three main pillars mandatory to every member state: (i) ambient air quality
standards and air quality plans accordingly; (ii) national emission commitments
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enacted on the National Emissions Ceiling Directive; and (iii) emissions and
energy standards for key sources of pollution.

One of these key sources of pollution are vehicles. In fact, the biggest contri-
bution of NO2 emissions and big part of particulate matter emissions are caused
by the transport sector. The maximum levels established by the EU have been
exceeded in some EU countries, Spain among them. Under the risk of huge eco-
nomic fines, the EU required the reduction of the referred pollutants. As an
attempt avoid the economic sanction, the city of Madrid (one of the largest
contributors to air pollution) implement a low emission zone in the downtown
area: Madrid Central. This zone is established by the Ordenanza de Movili-
dad Sostenible (October 5th, 2018) starting the traffic restriction on November
30, 2018 and fining for noncompliance in March 16, 2019. The designed area
covers the Centro District (4.72 km2). A series of car restrictions are applied,
except to residents and authorized cars (e.g., people with reduced mobility, pub-
lic transport, security and emergency services, vehicle-sharing) are progressively
applied to eliminate transit traffic. For the rest, a environmental sticker system
is followed: depending on how contaminant is a car it will be labelled with an
environmental sticker, marking so if you can access and park in the area, access
but not park or neither one nor the other. The idea behind those measures are
not just improving air quality in the short term, but change mobility behaviour.
As a first victory, this measure succeeds in paralysing EU disciplinary measures.

2.2 Related Works

A number of researches have studied the efficacy of car restriction policies in dif-
ferent cities. Several of them have included some type of analysis of air pollution.
A brief review of the related literature is presented next.

Several articles studied the rapid growth of car ownership in Beijing, China
and its impact on transportation, energy efficiency, and environmental pollu-
tion [13,14]. In general, authors acknowledged that implementing and evaluat-
ing car restriction policies is somehow difficult. First measures on Beijing were
taken in 2010, with the main goal of mitigating the effects of traffic congestion
and reduce air pollution. Liguang et al. [13] analyzed data from Beijing Munic-
ipal Committee of Transport to evaluate the implementation of car use restric-
tion measures. Results reported confirmed that fairly good effects on improving
urban transportation and air quality were achieved. No computational intelli-
gence methods were applied for the analysis, but just a comparison of average
and sampled values and qualitative indicator. Liu et al. [14] proposed an indirect
approach to evaluate the impact of car restrictions and air quality, by applying
a generalized additive model to explore the association of driving restrictions
and daily hospital admissions for respiratory diseases. Several interest facts were
obtained from the analysis, including higher daily hospital admissions for respi-
ratory disease for some days, and the stronger effect on cold season. Female and
people older than 65 years benefited more from the applied environmental policy.
Overall, authors found positive effects on the improvement of public health.
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Wang et al. [23] applied a data analysis approach to address traffic conges-
tion and air pollution in Beijing, regarding driving restriction policies. Using data
from Beijing Household Travel Survey, the authors analyzed short-term effects
of driving restriction policies on individual mode choice and the impact in pol-
lution. The main results showed an impact on public transit transportation and
a large number of drivers (about 50%) breaking the rules, i.e., driving illegally
when not allowed to. Evidence of reductions in congestion and mobile source pol-
lution were also confirmed. As a result, driving restrictions have shown effective
in curbing air pollution and traffic congestion. Using data from multiple monitor-
ing stations, Viard and Fu [22] confirmed that air pollution fell up to 21% when
one-day-per-week restrictions were implemented, with the consequent benefits on
improved health conditions. Recently, Li et al. [12] performed a similar study for
Shanghai, but focusing on the impact of restrictions for non-local vehicle on air
quality. CO concentration and Air Quality Index were studied applying regres-
sion discontinuity statistical analysis. The main results confirmed that non-local
vehicle restriction policy was a key factor to improve the air quality and com-
muters health in Shanghai. Other cities have implemented temporary measures,
e.g., Paris prohibited circulation of more than half of the cars registered in the
suburban region in the summer of 2019, due to a notorious worsening of the air
pollution [19].

In Latin America, the efficacy of car restriction policies and their impacts
on pollution and health have been seldom studied. Indeed, some researchers
have argued that car restrictions policies have not yielded a positive impact on
air pollution yet (e.g., in the Colombian city of Medelĺın [8]). Other researches
have claimed that restricting the car utilization by license plate numbers is a
misguided urban transport policy that does not help to significantly improve
the quality of life of citizens [3,25]. In any case, researchers must take into
account that the effects of vehicle restriction policies are often neutralized by
the continuous growth of vehicle ownership and utilization in modern cities.

Several researches have applied data analysis to study the relationship
between transportation and health of citizens (e.g., [21]). Some other articles
have applied neural networks approaches to evaluate urban policies and air pol-
lution (e.g., [18]), especially to deal with complex urban systems, but no studies
relating car restriction policies and air pollution were found in the bibliographic
review. This article contributes in this line of research by applying a learning
approach for pollution prediction and evaluation of car restriction policies in the
center of Madrid, Spain.

3 Methodology for Air Quality Evaluation

This section presents the applied methodology for air quality evaluation and
assessing the impact of the Madrid Central initiative.
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3.1 Data Analysis Approach

Data analysis methods have been applied in several related articles for studying
air quality in modern cities [10,17,25]. It is a also a common methodology for
public services analysis and evaluation in smart cities [2,7,15,26].

In order to determine the objective effects of the car restriction policies imple-
mented by Madrid Central, the NO2 concentration is evaluated as a relevant indi-
cator of the environmental pollution. The main goal of the study is to determine
whether the implementation of Madrid Central caused a statistically significant
decrease in NO2 pollution or not. In order to meet that goal, computational
intelligence methods are applied to learn from the time series of NO2 concen-
tration and to predict the pollutant emissions in case Madrid Central were not
implemented in December 2018. After that, the real measurements are compared
to the predictions in order to determine if significant deviations from the learned
model have occurred or not.

The analysis extends and complements a previous study of environmental pol-
lution in the center of Madrid [11]. That work applied a linear regression method
and considered a lower resolution on the observed data, thus non-conclusive
results were obtained for the O3 pollution, mainly because the simple linear
regression method was not able to capture the complexity of several interacting
effects in the analyzed urban zone.

3.2 Data Description

The source of data studied in the analysis is provided by the Open Data Portal
(ODP) offered by the Madrid City Council (https://datos.madrid.es/), an online
platform that promotes access to data about municipal public management. The
data gathered by the sensor located in Madrid Central (Plaza del Carmen) is
analyzed to evaluate the impact of the car restriction policies.

The analysis is performed considering a temporal frame of nine years, from
January 2011 to September 2019. Two relevant periods are distinguished: pre-
Madrid Central, i.e., the period before implementing the initiative (from January
2011 to November 2018), and post-Madrid Central, i.e., the period after imple-
menting the initiative (from December 2018 to September 2019). Every dataset
considers hourly values of NO2 concentration.

Regarding the computational intelligence methods, the following datasets
were considered:

– Training dataset: 90% of the data from pre-Madrid Central is used for train-
ing. Data from January 1st, 2011 to November, 30th, 2017 is used, accounting
for a total number of 60168 observations.

– Validation dataset: the remaining 10% is used for validation. Data from
December 1st, 2017 to September, 30th, 2018 is used, accounting for a total
number of 7248 observations.

– Comparison dataset: Finally, the comparison is performed over 7248 observa-
tions, taken from December 1st, 2018 to September, 30th, 2019.

https://datos.madrid.es/
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3.3 Computational Intelligence Methods Applied in the Study

Polynomial regression and Recurrent Neural Networks (RNN) are applied to
predict the general future trend in NO2 concentration after the implementation
of the road traffic restrictions in Madrid Central.

Polynomial Regression. Polynomial regression is one of the simplest methods
for analysis and estimation of time series, yet it is one that is frequently used
in the related literature [11,12,14]. In this article, three polynomial regression
methods are studied: linear, quadratic, and polynomial (grade 10). These meth-
ods provide a set of baseline results to compare the prediction accuracy of more
sophisticated learning methods.

Recurrent Neural Network. RNNs are artificial neural networks whose con-
nections form a directed graph along a temporal sequence, allowing to capture
temporal dynamic behavior of studied phenomena [9]. RNNs are more useful to
analyze time series than standard feed forward neural networks.

In this article, instead of applying a traditional fully connected RNN, a Long
Short Term Memory (LSTM) RNN is used. The main reason for applying LSTM
is that they allow modeling the sequential dependence of input data. In this case,
LSTM are (a priory) a better method for capturing the daily pattern of NO2

concentration, (described in Fig. 2).
Regarding the RNN architecture, it contains two hidden layers and 50 neu-

rons per layer. Lookback observations are set to 24 (corresponding to 24 h), in
order to capture the daily patterns of NO2 concentration. A standard linear
activation function is applied. The RNN was trained using backpropagation,
applying Stochastic Gradient Descent optimization.

3.4 Metrics and Statistical Tests

Three metrics are considered in the analysis. The Mean Squared Error (MSE) is
used for training the proposed computational intelligent methods and to analyze
their prediction quality over validation data. MSE is the mean of the squares of
the differences between the observed (xm) and the predicted value (x̃m) for each
observation m in the comparison data set M (Eq. 1). For the comparison of time
series in order to determine the effect of the car restriction policies implemented
by Madrid Central, MSE and Mean Absolute Error (MAE) are applied. MAE is
similar to MSE but it takes into account the absolute difference instead of the
squared one (Eq. 2). The aforementioned absolute metric is also considered to
account for the real difference between NO2 concentration.

MSE =
1

|M |
∑

m∈M

(xm − x̃m)2 (1)

MAE =
1

|M |
∑

m∈M

|(xm − x̃m)| (2)
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Finally, the percentage of predictions that are over the real value (↑real) is
reported. This metric is applied to determine if the difference is over (thus, the
method overestimates) or below (the method underestimates) the real value.

Regarding the methodology to determine statistical significance of the
obtained results, the following procedure was applied:

1. Shapiro-Wilks statistical test was applied to check if the results follow a nor-
mal distribution or not. The test was applied considering a statistical signif-
icance of 99% (i.e., p-value< 0.01).

2. Analysis of Variance (ANOVA) statistical models are applied to analyze the
differences between the predicted and the observed NO2 values, after the
Shapiro-Wilks results confirmed that MSE values do not follow a normal
distribution, with a statistical significance of 99% (i.e., p-value< 0.01).

3. Wilcoxon statistical test was applied to analyze MSE and MAE results, con-
sidering a statistical significance of 99% (i.e., p-value< 0.01).

4 Experimental Evaluation

This section describes the experimental evaluation of the proposed approach.

4.1 Development and Execution Platform

The proposed computational intelligence methods were developed using python
(version 3.7) and the pytorch (version 1.0) open source machine learning library.

The experimental evaluation was performed in a Intel Core i7-8700K
@3.70 GHz with 64 GB RAM, 6 cores and using hyper threading (12 execu-
tion threads). The RNN training phase was performed using a NVIDIA GeForce
GTX 1080 GPU with memory of 16 GB.

4.2 Experimental Results

This subsection reports the experimental results of the proposed computational
intelligence methods.

Fig. 1. NO2 concentration distribution along weekdays.
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Fig. 2. Hourly NO2 concentration of each day.

Analysis of NO2 Concentration Data. The first step of the study involved
analyzing NO2 concentration data. Weekly, daily, and hourly analysis were per-
formed to detect patterns and periodicity in the time series. Figure 1 reports the
box plots corresponding to NO2 concentration for each day of the week. Figure 2
shows the average values corresponding to the hourly NO2 concentration for
each day of the week.

Results reported in Fig. 1 indicate that there are two clear clusters: working
days and weekends. Absolute differences on the median NO2 concentration values
are significant: MAE = 8µg/m3 (19% of the average value for a working day) for
Saturday and MAE = 11µg/m3 (26% of the average value for a working day) for
Sunday. These values account for a significant reduction of vehicles circulating
in the studied area as reported by several media. Furthermore, the analysis of
the time series of hourly values in Fig. 2 clearly shows that the morning peak
of NO2 concentration in working days reduces to almost the half on Saturdays
and to lower than the half on Sundays. On the other hand, the afternoon peak
is still present on weekends.

Table 1 reports the computed values for NO2 concentration before and after
installing the Madrid Central initiative. Minimum (min), median, inter-quartile
range (IQR), and maximum (max ) values are reported, since the results do
not follow a normal distribution, according to the Shapiro-Wilks statistical test
(confidence level = 0.99). The Δ column reports the average difference between
post-Madrid Central and pre-Madrid Central values. ANOVA values indicate
that the differences are statistically significant. The box plots in Fig. 3 present
the comparison of the NO2 concentration per day, between pre-Madrid Central
values and post-Madrid Central values.

Differences between pre- and post-Madrid Central NO2 concentration values
seem to be significant, but the simple analysis of median values does not account
for other effects that can be considered to model NO2 pollution. Thus, the pro-
posed approach applies computational intelligence methods to learn and predict
the corresponding time series. The main results are reported next.
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Table 1. Summary of the NO2 concentration (in µg/m3) sensed in the center of
Madrid. Negative values of Δ indicate a reduction of NO2 concentration.

Weekday pre-Madrid Central post-Madrid Central Δ ANOVA

min median IQR max min median IQR max F -value p-value

Monday 9.0 41.0 27.0 149.0 2.0 35.0 35.0 147.0 −2.96 8.5 4×10−3

Tuesday 10.0 44.0 31.0 134.0 2.0 33.0 33.0 128.0 −8.49 70.8 <10−3

Wednesday 12.0 43.0 32.0 185.0 2.0 31.0 34.0 123.0 −9.45 87.5 <10−3

Thursday 10.0 43.0 32.0 138.0 1.0 31.0 34.0 131.0 −9.24 72.9 <10−3

Friday 9.0 46.0 32.0 125.0 1.0 33.0 34.0 139.0 −9.68 95.6 <10−3

Saturday 9.0 36.5 23.0 132.0 1.0 30.0 32.0 122.0 −4.99 34.4 <10−3

Sunday 10.0 34.0 21.0 120.0 1.0 23.0 26.0 117.0 −6.63 50.9 <10−3

Fig. 3. NO2 concentration for each day of the week: � pre-Madrid Central, � post-
Madrid Central.

Polynomial Regression Results. Figure 4 graphically presents the training
data (red dots) and the polynomial used for approximation. The graphics shows
that the quadratic model provides a better approximation than linear and the
degree 10 polynomial for pre-Madrid Central observations. In turn, the degree
10 polynomial is the best method to predict values for the post-Madrid Central
period. Results are confirmed by the MSE and MAE values reported in Table 2.

Fig. 4. Polynomial regression fitting. (Color figure online)
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For the pre-Madrid Central period, the quadratic polynomial improves 2.6% over
the linear regression method, and 2.6% over the degree 10 polynomial, regarding
the MSE metric. For the post-Madrid Central period, the degree 10 polynomial
improves 20.9% over the linear regression method, and 1,8% over the quadratic
polynomial, regarding the MSE metric.

Table 2. Polynomial regression fitting results.

Fitting method pre-Madrid Central post-Madrid Central

MSE MAE ↑real MSE MAE ↑real
Linear 426.07 16.74 0.58 633.75 21.43 0.68

Quadratic 414.77 16.06 0.55 510.42 18.83 0.69

Polynomial (degree 10) 423.76 16.21 0.54 501.40 18.63 0.68

RNN Results. Table 3 reports the main results of the RNN accuracy anal-
ysis, regarding the two studied metrics (MSE and MAE). Minimum (min),
median, IQR, and maximum (max ) values of both metrics are reported, since
the Shaphiro-Wilks confirmed that results do not follow a normal distribution.
Results indicate that the proposed LSTM RNN is able to accurate approximate
the time series of NO2 concentration. Relative values of MAE were lower than
0.2 (in median) and lower than 0.06 (in maximum). MSE values were signif-
icantly lower than those computed with polynomial regression. Vales of ↑real
indicate that for post-Madrid Central period, the RNN predicted values over
the real measurement in 62% of the observations, accounting for a real reduc-
tion on NO2 concentration in that period. Results are statistically significant,
according to the reported p-values of the Wilcoxon test (p-values < 10−7).

Table 3. Results of the RNN accuracy analysis.

Metric pre-Madrid Central post-Madrid Central Wilcoxon

min median IQR max min median IQR max p-value

MSE 153.56 160.33 4.40 169.69 153.91 161.79 5.10 169.62 <10−4

MAE 9.64 9.89 0.19 10.28 9.59 9.91 0.26 10.20 2×10−2

↑real 0.55 0.56 0.01 0.57 0.60 0.62 0.01 0.64 <10−4

Global Discussion. As expected, the RNN provided more accurate predictions
than the ones using polynomial regression, accounting for lower MSE and MAE
metrics. RNN allows capturing the complex relationships and periodicity on
the time series data. For the post-Madrid Central period, MSE and MAE val-
ues reduced up to 0.25 of those of linear regression and up to 0.31 of those
of quadratic and degree 10 polynomials. Furthermore, all methods predicted a
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majority of observations over the real values, and the difference was statistically
significant. Thus, results reported in the previous subsection allows concluding
that the Madrid Central initiative has certainly reduced concentrations of the
NO2 pollutant in the city.

5 Conclusions and Future Work

This article presented an approach applying data analysis and computational
intelligence techniques for evaluating the air quality in the center on Madrid,
Spain. Air quality and pollution are relevant problems in the context of smart
cities, and a reliable diagnosis is key to address such challenges.

Polynomial regression and deep learning methods were applied to analyze
the time series of NO2 concentration, in order to evaluate the effectiveness of car
restriction policies instrumented in the Madrid Central initiative. Real data was
processed, obtained from a sensor installed in the studied area. The accuracy of
the proposed method was evaluated applying standard metrics for prediction.
Results indicated that RNN accounted for accurate predictions for both pre-
Madrid Central and post-Madrid Central scenarios. MSE and MAE values were
significantly better that polynomial regression.

According to the reported results, Madrid Central was able to significantly
reduce NO2 concentration, thus effectively improving air quality. This a very pos-
itive result, with direct implications on the health of citizens, which is confirmed
by the learning approach presented in this article.

The main lines for future work include extending the analysis to nearby zones
in the city, performing a multivariate analysis by taking into account related
data (e.g., wind speed, temperature, etc.); and evaluating the impact on other
relevant indicators (e.g., economical impact, mobility behaviour, citizens’ health,
etc.) The proposed approach can be applied to other scenarios too.
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Abstract. Archery is one of these sports in which the athletes repeat
the same body postures over and over again. This means that tiny wrong
habits could cause serious long-term health injuries. Consequently, learn-
ing a correct shooting technique is very important for both beginner
archers and elite athletes. In this work, we present a system that uses
machine learning to automatically detect anomalous postures and return
to the archer a shooting score, that works by giving the archer a feed-
back on his own body configuration. We use a neural network to analyze
images of archers during the firing and return the place of their different
body joints. With this information, the system can detect wrong pos-
tures which might lead to injuries. This feedback is very important to
the archer when learning the shooting technique. In addition, the system
is not intrusive for the archer, so she/he can fire arrows freely. Prelimi-
nary results show the usefulness of the system, which is able to detect 4
spine misalignment and 4 raised elbow analyzing only 9 shots.

Keywords: Improved sports performance · Injury reduction ·
Artificial intelligence · Machine learning · Body posture analysis

1 Introduction

The regular practise of sport provides great benefits to our physical and mental
health [7], and makes us feel better. However, training improperly or incorrectly
might lead us to injuries. Therefore, it is important to have a correct body
posture when practicing sports in order to reduce the injuries and pain in specific
parts of our body.

In sports such as archery, the sportswomen/sportsmen perform many repeti-
tions of the same steps: Stance, Nocking the arrow, String hand and grip, Body
pre-setting, Raising the bow, Pre-draw, Draw, Aiming, Release, and Follow-
through. Therefore, bad posture in any of these steps can lead to a future
injury [10]. For that reason, it is recommended that a specialised trainer super-
vises the archer’s training to correct possible bad postures before they are becom-
ing injuries, such as: tendonitis, bursitis, or epicondylitis.

The required supervision by a specialised trainer is not always possible, so
then beginner archers are especially exposed to injuries. To avoid these harm
c© Springer Nature Switzerland AG 2020
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injuries, we propose a system based on new advances in artificial intelligence
which can aid athletes, specifically archers, to improve their performance and
avoid injuries.

The main contribution of this article is a software system called ATILA
(Archery Training through Improvement, Learning and Analysis) that is capable
of analyzing the body posture of the archer and detect incorrect positions. The
objective of the software system is twofold: the reduction of injuries in novel
archers and the increase of the performance as a consequence of a good body
posture.

In this article, there are other contributions that we want to mention:

– The evaluation of a shot has been done using a neural network which can
extract the joints of the body from images, both pictures and videos.

– An experiment has been performed to evaluate the proposed system.
– Preliminary results show that the system/methodology will reduce the

injuries of novel archers.

The reminder of this paper is organized as follows: Sect. 2 presents related
work on improving archery performance and a brief base on archery. Section 3
describes the different parts of our system. Section 4 presents our experimental
setup. Section 5 provides some preliminary results of our work. Finally, Sect. 6
present the conclusions of the work and the next steps of the research and
development.

2 Background and Related Work

People commonly associate archery with the type of archery performed at the
Olympics. But, this is only one of the forms of competition that exist in archery.
We can classify the competitions according to different criteria:

– Type of bow
– Place of shooting
– Type of target.

There are other criteria for classifying archery modalities such as: shooting
styles (Olympic and instinctive) and more specific competitions such as tradi-
tional archery, historical recreations, etc. All of these different tournaments allow
us to explore different aspects of the archer’s skill and body capabilities [6].

Each type of archery has different characteristics in terms of materials and
shapes. However, what the archery has in common (except for slight variations)
are the different phases through which the archer goes to fire an arrow [3]. In
general, the process of shooting an arrow is divided into the following phases:

1. Stance: preparation of body posture.
2. Nocking the arrow: placing the arrow on the rope.
3. String Hand and Grip: initial rope grip and bow.
4. Body Pre-setting: establishment of the body posture with the prepared bow.
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5. Raising the bow: elevation of the bow to face the target.
6. Pre-draw: pre-tensioning of the string (beginning of muscular tension).
7. Draw: tensioning of the rope from the raised position to the aiming position.
8. Aiming: the main shooting phase. Static position in which the mark is tar-

geted. This will be the first stage that we will improve with our system.
9. Release: release of the rope. The arrow is fired.

10. Follow-through: follow the arrow with the eyes keeping the body posture.

In order to learn these phases correctly and safely, different approaches have
been investigated. Different gadgets can be added to the arch to improve per-
formance [2,13]. The problem with these solutions is that they imply certain
handicaps for the archer: greater weight in the bow, mobility limitations, high
cost, etc. From the point of view of the coaches, several works have been devel-
oped in sports sciences. Some researchers have tried to catalogue the different
aspects of the learning process [4], while others have proposed new methods of
training [8]. Both ideas are based on the need to have a monitor overseeing the
evolution of the beginning archer. However, it would be interesting to be able to
get feedback from a coach without having to have one available every time he
or she takes a shot.

Artificial intelligence and machine learning have been very useful in different
domains. In this work, we are interested in the use of artificial intelligence and
machine learning in the Sports domain [11], and in particular in archery [5,9].
The utilisation of artificial intelligence in the sport of archery is still in its
infancy [12], though there are already interesting studies such as the one carried
out in [5]. In that work, Chang et al. applied clustering techniques to differ-
ent physical magnitudes of athletes, e.g. arm tension or bow power. Using the
collected data, they compared talented athletes with those who have a fairer
performance. However, obtaining some kind of personal data can be intrusive
for the archer because you need specialized measuring instruments. Moreover,
by not taking the position into account, it is not possible to know how long the
archer’s useful life will be.

3 Proposed Training System: ATILA

Injuries can shorten or even interrupt the athlete’s career and cause health prob-
lems. Identifying bad habits in the body posture of athletes can greatly reduce
the number of injuries during their career and therefore have a higher and more
continuous performance. In the particular case of archery, a series of steps are
repeated continuously to perform the arrow shots. Going further, the archers
seek replicability of the shot. Consequently, it is noteworthy that making some
incorrect posture in some of the phases as custom, causes that part of the body
suffers for all the repetitions made.

Intending to avoid injuries in archers, we propose ATILA, a software system
which collects images of the archer and detects bad habits, communicating them
so that the archer can make appropriate posture corrections.
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This system focuses mainly on beginner archers but is equally useful for refin-
ing technique in more experienced archers. Our system consists of the following
phases: image acquisition, calculation of the position of the body joints, anal-
ysis of the relative position, and evaluation of the shot. Figure 1 shows a brief
schematic of ATILA. Next, we will describe each phase in more detail.

Fig. 1. System overview.

3.1 Image Acquisition

Not be intrusive is a mandatory requirement of our system because we do not
want to disturb the archer while shoots arrows. The quality of current cameras
(professional or even smartphones) enables us to work with high-quality photos
and videos. Besides, we use a tripod located only one meter away from the
archer (for the stability of the images), which along with the wide-angle of a
smartphone’s camera is enough to have a complete image of the archer and bow.

3.2 Calculation of the Position of the Joints

The computation of the body joints is a key phase of ATILA. For this task, we
use a neural network built through Tensorflow [1]. The neural network allows,
given an image, to detect the different joints of the body and parts of the face
(eyes, nose, mouth and ears) returning their coordinates. It also provides a level
of precision in each area. In this work, it is of special interest the relative positions
between the different parts of the body, to obtain a correct alignment of the
posture. Mainly, we will focus on the points from the hip to the eyes, since in
the upper part of the body are the main areas of interest.

3.3 Analysis of the Relative Position

Each person has a different height and complexion. To make our system more
robust to the specific characteristics of different archers, we work with the relative
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position of the different parts of the body. The connection between the position
of these parts of the archer’s body allows us to calculate a series of indicators
of the quality of the shot. These indicators allow us to detect if the elbow is
not correctly aligned with the hand, the hips and head are not centred, or the
shoulders are excessively raised, to name a few. Table 1 describes some of the
incorrect body poses ATILA can detect by using the position of a subset of
joints or body parts. More postures should be taken into account, but these are
the main causes of injuries during the aiming phase. Besides, there are body
postures which are not harmful but imply bad performance in the shot. Then,
our system would be able to detect poses that are detrimental to the performance
of the shot, but that is not the focus of this work.

Table 1. Incorrect body posture and effects on the archer detected by our system.

Incorrect posture Detection Firing effect Injury

Misaligned spine Shoulders misaligned
with respect to the hips

Shot too high or
too low

Back problems

Elbow, of the arm
that holding the
rope, too high

Wrist and shoulder
misalignment

Inaccurate
shooting

Injuries to the wrist,
shoulders and muscles
of the arm and forearm

Neck forward Eyes, nose, and ear
misaligned with the
spine

Loss of power in
the shot

Strikes on the head
with the rope,
contractures in the
neck

Arm of the bow
shrunk

Difference between the
detected dimensions of
both arms

Lack of power by
not achieving a
complete opening
of arms

Muscle fatigue in arms
and forearms

Misalignment of
the arms

Elbows, wrists and
shoulders misaligned
vertically

Inaccurate
shooting

Damage to different
muscle groups,
shoulders, arms and
back

3.4 Evaluation of the Shot

According to the information obtained in the previous step, it is possible to give
a score of the quality of the shot. Two types of “good shots” can be distin-
guished: high precision and not harmful. Advanced athletes, who have already
fully learned the right postures, will be looking for performance improvements.
On the other hand, beginner archers must develop a shooting technique that
allows them to have a long way as healthy athletes. Both types of shots are
closely related. However, it is less relevant to hit the mark on an initial stage of
learning. Our system will allow you to decide the type of training so that you
can focus on the corresponding phases of the shot. The final score will be the
sum of the scores on each of the different parts of the archer’s body posture.
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4 Experimental Setup

In this section, we describe the experimental details followed in the rest of the
paper. The configuration of the system and shooting characteristics used in the
experiments presented here are as follows:

– Target is 18 m away.
– Outdoor.
– Recurve bow left-handed, with a power of 36 lb and bow length of 66”.
– Traditional instinctive shooting style.
– Camera 1m. away from the archer.

We locate the target 18 m away form the archer because, according to the
World Archery1, it is the official basic distance for shooting both outdoors and
indoors. The recurve bow is usually the recommended one for beginners. The
bow is left-handed since the archer is left-handed (the case for the right-handed
would be symmetrical).

In this work, we use traditional instinctive style instead of Olympic shooting
style because the Olympic bow is more complex. The Olympic bow has more
gadgets than the instinctive bow such as stabilizers, sight, and clicker. Besides,
the instinctive style allows us a better image treatment and gives us greater
freedom in body posture.

Figure 2 presents a brief outline of the positions of the archer and the target
on the archery field. The camera was placed 1 m from the archer, this position
allows the correct detection of the most relevant joints for the system.

Fig. 2. Scheme of the elements in the archery field.

In this experiment, we focus on the main shooting phase: aiming. Commonly,
beginner archers perform several wrong body postures. Our system can detect
these postures and report them to the user. We can see in Fig. 3 the pictures
of the most common wrong body postures during the aiming phase which we
take into account in this experiment. It is noteworthy that these wrong body
postures do not necessarily imply a low performance in terms of shooting pre-
cision. However, as the training progresses, they can lead to various injuries or
health problems that make it impossible for them to practice any sport. For this
reason, it is important to learn correct body posture from the very moment you
start the archery practise.
1 World Archery website: https://worldarchery.org/.

https://worldarchery.org/
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Fig. 3. Examples of pictures and body diagrams of anomalous postures detected by
ATILA.

5 Preliminary Results

To show the viability and use of our system, we present here some preliminary
results. A beginner archer made a total of nine shots with the characteristics
described in the previous section. Intending to show how the system detects
incorrect positions, we consider two types of incorrect postures in this experi-
ment: misaligned spine and raised elbow. For each of them we have calculated
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two indicators δ1 and δ2 as follows:

c1 = [hipright, shoulderleft]
c2 = [hipleft, shoulderright]

|c1| − |c2| = δ1

(1)

in the case of a misaligned spine, and

e1 = [wristright, wristleft]
e2 = [wristleft, elbowleft]
e3 = [wristright, elbowleft]

|e1 + e2| − |e3| = δ2

(2)

for the rised elbow.
The system assigns a score, that represents the quality of that body posture,

to each type of irregularity in the shot to calculate the final score (scoreFinal).
Each partial score is in the range 0–4 being 0 the worst score and 4 the best
score. Table 2 presents the conditions for each δn and the score attached to the
body posture. In this way, we calculate the quality of the shot by adding the
scores of both incorrect postures scoreFinal = scoreδ1 + scoreδ2 . This formula
allows us to easily evaluate ATILA in this proof of concept.

Table 2. Scores for the wrong postures misaligned spine and rised elbow.

Score Misaligned spine Rised elbow

0 20 ≤ δ1 100 ≤ δ2

1 15 ≤ δ1 < 20 75 ≤ δ2 < 100

2 10 ≤ δ1 < 15 50 ≤ δ2 < 75

3 5 ≤ δ1 < 10 25 ≤ δ2 < 50

4 δ1 < 5 δ2 < 25

Table 3 summarizes the indicators and score of each shot returned by our
system. Overall, the shots obtained quite high scores. In particular, the first
shot was virtually free of the injuries analysed. It means that the archer made
a correct body posture. However, the shots 3,7 and 4,6 are of special interest
for the archer since, although the archer did not get a low overall score, they
can be dangerous and produce an injury (partial low scores). The archer did
not achieve perfect punctuation in any shot mainly because of the misalignment
between shoulders and hips. The analyzed data are very interesting because both
wrong postures seem to be related. When the archer correctly aligns the spine,
the elbow will be in an incorrect place, and vice versa. The last two shots (8 and
9) got a final score of 0. This is because the archer performs a wrong posture
intentionally to test the correct operation of ATILA.
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We believe that these results are a good starting point to work on since
ATILA has detected 4 possible injuries of both types in 9 shots. Also, the use-
fulness of ATILA is confirmed considering the identification of these guidelines
in shots makes that the archer accelerates her/his learning.

Table 3. Coordinates of each articulation, indicators and final score. We marked the
lowest scores, 0 and 1, (incorrect body postures).

Shoot δ1 δ2 Misaligned spine score Rised elbow score Final Score

1 5.35 13.28 3 4 7

2 11.76 31.41 2 3 5

3 24.38 24.22 0 4 4

4 8.14 85.05 3 1 4

5 14.16 6.82 2 4 6

6 1.73 75.72 4 1 5

7 15.25 0.12 1 4 5

8 26.07 182.41 0 0 0

9 35.34 243.86 0 0 0

6 Conclusions

In this article, we have presented ATILA, a system for monitoring and reducing
injuries in archers, mainly beginners. Advances in machine learning and image
processing are the basis of this system. Our proposal can analyze the body
posture and discover positions harmful to the athlete using images obtained
by a camera or smartphone. Results show that in 9 shots, ATILA detects 4
misaligned spines and 4 raised elbows, postures that should be corrected to
avoid injuries related to these body parts. It is noteworthy that the system
shows overwhelming advantages in terms of injuries detection, which justify the
effort devoted to its research and development. Moreover, as far as we know,
there is no similar system.

In the next stages of the work, we will develop in greater depth the system
creating a more intuitive and useful interface for the final user, with the aim
of testing the system daily in a real-world archery academy in Malaga (Spain).
Also, to improve the accuracy in the detection of injuries, we will use a greater
number of cameras, as well as video sequences to analyze other phases of the
shot. All of this will allow us to train the neural network with a high amount of
domain-specific data. In the meantime, body postures will be analyzed, not only
to reduce injuries but also to improve the quality of the shots and thus actively
assist in the training of the archers.
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Abstract. We present an approach for learning patterns for Complex
Event Processing (CEP) in robot sensor data. While the robot executes
a certain task, sensor data is recorded. The sensor data recordings are
classified in terms of events or outcomes that characterize the task. These
classified recordings are then used to learn simple rules that describe the
events using a simple, domain specific language, in a human-readable
and interpretable way.

Keywords: Robots · Time series · Machine learning · Complex event
detection · Interpretable AI

1 Introduction

Complex Event Processing (CEP [2]) has proven to be an effective and versatile
way to and derive conclusions from low-level data streams. Low-level information
about events from different data sources is integrated and combined in order to
generate high-level events that carry a domain-specific meaning – for example,
the appearance of a certain sequence of low-level events within a certain time
frame.

The rules for determining whether a high-level event should be emitted can be
complex. The interdependencies between different sources and types of low-level
events and their relative time characteristics have to be described formally and
in a machine-executable form. This can either happen by implementing the rules
directly within a general purpose programming language, or based on domain-
specific languages for complex event processing or event stream processing.
Although these languages allow formulating the queries in a human-readable
and machine-executable form, determining the actual structure and contents of
the query for a particular use case is still difficult and may require a lot of domain
knowledge.

Machine learning approaches can help to automate the process of finding
queries that match certain patterns in a stream of events. The basic idea is to
use a set of labeled training data consisting of recorded streams of events, and
treat the problem of finding a query that correctly classifies the patterns that
appear in the data as an optimization problem. We describe an approach that
shows how the task of defining a query pattern can be automated.
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The remainder of this paper is structured as follows: Sect. 2 introduces the use
case for which our approach has been applied. In Sect. 3 we review and summarize
the related work for complex event processing, stream event processing, and
machine learning approaches that have been applied for similar use cases. The
problem statement and goals of the approach are described in Sect. 4. Section 5
describes the approach in detail, starting with a high-level conceptual view, and a
formalization of the problem. The implementation that our evaluation is based
on is described in Sect. 6, and the results of the evaluation are summarized
in Sect. 7. In Sect. 8, we conclude with a summary and show future research
directions.

2 Sample Use Case

An example use case for our approach is to learn patterns that describe error
conditions that occur during the automated assembly of electrical components by
a robot, as described in [5]. In this scenario, a robot picks an electrical component
from a container and mounts it onto a profile rail within a switch cabinet, as
shown in Fig. 1.

Fig. 1. Automated electrical component assembly by robot

The robot is a sensitive robot that records forces that are exerted during the
assembly process, and offers this data in form of numerical time series. Based
on this data, it is possible to detect whether the assembly was successful. This
information can solely be derived from the force that is recorded in z-direction.
Figure 2 shows the time series for a successful and an unsuccessful assembly step.

The successful assembly is indicated by a characteristic curve shape that
occurs when the electrical component snaps into the profile rail. Our goal is to
learn patterns that describe conditions like this one, based on a simple pattern
language, from a small set of recordings of successful and unsuccessful assembly
processes.
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Fig. 2. Comparison of force signals at successful assembly (left) and unsuccessful assem-
bly (right)

3 Related Work

The field of Complex Event Processing has gained a lot of attention recently,
because the concept of deriving higher-level events from streams of low-level
events is crucial for decision making in many application areas. For the specific
goal of detecting events in time series data, different approaches have been stud-
ied. In this section, we present work that is related to our work in terms of goals
or the general approach, and point out the differences to our approach in view
of the sample use case that we described.

The work by [4] aims at identifying shapes that may appear in temporal
data sets. They present a list of shapes that intuitively capture the behavior of
a variable over time. For example, they define a “spike” as a sudden increase
followed by a sudden decrease of a value, which is exactly the shape that indicates
a successful assembly in our use case. The goal here is to explicitly define and
search for known shapes, whereas our goal is to automatically find the relevant
shapes (or patterns) in the first place, and provide the result in an interpretable
and processable form.

The goal of automatically learning CEP rules was also addressed by [8].
They point out the difficulties of implementing algorithms and rules for complex
event detection: These rules either have to be implemented in software, or with
an Event Description Language, but in both cases, domain experts may not be
able to formulate the rules without the help of a software engineer. Therefore,
they propose a special kind of Hidden Markov Model that allows learning event
rules from a sequence of events where the domain expert does not have to define
or describe the relevant event, but only tags the point in time when the rele-
vant event occurred. The results of this learning process are not interpretable,
because, as the name suggests, the actual description of the event is Hidden in
the Markov Model.

The iCEP framework presented in [6] describes an approach for learning
patterns that describe complex events based on primitive events using CEP
operators, like selection, aggregation, and windowing. The problem of rule gen-
eration is then decomposed into learning different aspects of the rule, where
one module is presented for learning each aspect. The element that most closely
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resembles our approach is the constraint learner that derives inequality relations
for elements of the rule.

Another approach for applying data mining techniques to learn CEP rules
from labeled input data was presented by [7]. They extract shapelets from the
time series data, which are then translated into simple CEP rules, and combined
into composite CEP rules. The rules are directly output as statements in EPL,
an Event Processing Language that can be used in different CEP engines. So the
focus was not on generating interpretable, but rather directly executable rules.

The approach of extracting patterns from multivariate time series using
shapelets was also addressed by [3]. They extract shapelets for all patterns that
appear in the time series, and identify representative key shapelets from this
set. Similar to our approach, they consider the goal of finding patterns as an
optimization problem. Even though shapelets are an interpretable basis for rules
and patterns in the context of classification, they cannot directly be translated
into domain-specific rules that may be used for complex event processing.

4 Problem Statement

We specify the goals of our approach by means of requirements.

(R1) Automated Process: The process for finding a pattern should be automated.
It should require as few human interaction as possible, and as little domain
knowledge as possible.

(R2) Interpretability: The patterns should be described in a form that can be
interpreted, understood, and therefore be validated by humans.

(R3) Accuracy: The patterns that are generated by the process should generate
an accuracy that is similar to the accuracy that can be achieved with a pattern
that is created by a domain expert.

(R4) Small Training Data Sets: The task of creating labeled training data is
time consuming and involves a lot of effort and domain knowledge. Therefore,
the approach should be capable of finding patterns based on small training data
sets that consist of few representative instances for all classes.

5 Approach

At the highest level of abstraction, the problem of finding a good pattern – i.e.
a query that matches the time series according to their labels – is a non-linear
optmization problem. The following section gives an overview of the optimization
process and the main building blocks that it consists of.

5.1 Overview

Figure 3 shows the conceptual view on the approach presented in this paper.
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Fig. 3. A conceptual overview of the proposed approach: The training data, consisting
of labeled time series, is passed to the pattern learner. The pattern learner generates a
pattern, applies it to the training data, and computes the classification accuracy. The
optimizer modifies the pattern iteratively. The pattern for which the highest classifica-
tion accuracy has been achieved is returned.

Training Data: The training data for our test cases consists of numerical time
series instances. The time series are labeled, meaning each one is associated with
information that indicates whether the assembly of the component was successful
or not. A formal definition and different options for preprocessing this time series
data for the goal of describing and detecting patterns can be found in [5].

Pattern: The representation of the resulting pattern – i.e. the external represen-
tation – is simply a string that describes the actual query. We use the definition
of a pattern based on the pattern language that was presented in [5]. The internal
representation for the pattern depends on the type of the optimizer. A simple
but versatile representation of such a pattern for optimization purposes is that
a pattern is stored as a list of constraints, where each constraint involves one of
the measures described in [5], the identifier for the segment that it refers to, and
the numerical threshold for the inequality.

Classifier and Pattern Matcher: The process of matching a pattern against an
input time series is described in detail in [5]. Conceptually, the input time series is
divided into segments, and the constraints that a pattern consists of are checked
for the sequence of the most recent segments that have been received. When the
pattern matches the current sequence, a high-level event is emitted. The classifier
computes the number of true/false positives/negatives for the input data, and
determines the value of the objective function for the optimization. There are
different possible choices for the objective value that is to be maximized. It can
be the overall classification accuracy, the average F1 score, the informedness,
or any other measure that can be computed from the confusion matrix of the
classification results.

Optimizer: The optimizer is the core element of the pattern learner. Its main
task is to either generate a new pattern or modify an existing pattern, with the
goal of improving the pattern for the training data, according to the objective
function. The following Sect. 5.2, will summarize the optimization approaches
that we examined.
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5.2 Optimization Approaches

The problem of optimizing the pattern in order to match the time series accord-
ing to their labels can be divided into two sub-problems: The first one is the
symbolic manipulation of the overall structure of the pattern. This refers to the
number of constraints that the pattern consists of and the measures and seg-
ments that each of the constraints operates on. The second sub-problem is the
numeric optimization of the thresholds of the constraints of a pattern. These
threshold values may be adjusted in order to tighten the classification rules that
are given by one pattern.

Symbolic Optimization with Genetic Algorithms. The search space for
the basic structure of the pattern is large, and the structure cannot be derived
systematically from the labeled input data. Therefore, we applied a genetic
algorithm approach for searching an initial set of possible patterns, treating
the objective value as the “fitness” in the genetic optimization process. In this
approach, a phenotype is an element of a population during the execution of
the genetic algorithm, and basically combines a genotype with a fitness value.
The genotype consists of a single chromosome. Each chromosome consists of a
sequence of genes with arbitrary length. Each gene has an allele that directly
encodes one condition that is part of a pattern. Therefore, each chromosome
(and thus, each genotype) directly represents a pattern consisting of multiple
conditions.

The evolution then consists of generating an initial (random) population, and
optimizing the population throughout several generations. The next generation
is computed by applying different mutations to the individuals of the current
population:

– Multi-point crossover: The sequences of genes from the chromosomes of two
parents are split at multiple points, and recombined to generate the offspring.

– Mutator: Randomly replaces a single gene of a chromosome with a new one.
– Dynamic condition chromosome mutator: Randomly adds or removes genes

from a chromosome.
– Condition chromosome mutator: Randomly changes the threshold value of a

single condition of one gene by a small amount, relative to the value range
that was determined for the respective condition.

Each of these mutations is applied with a small probability to the individuals
of one generation, in order to generate the offspring. In each generation, the
likelihood of individuals to survive for the next generation is proportional to
their fitness.

Symbolic Search Space. In the most general case, a pattern P as an m-ary
predicate on segments that is a conjunction of q conditions: P =

∧j<q
j=0 Cj . In

order to narrow the search space for the pattern learning, some constraints can be
given to the pattern learner. These constraints refer to the number of segments



144 B. G. Humm and M. Hutter

m that may appear in a pattern, and to the minimum and maximum number of
conditions q that a pattern may consist of. For example, it is possible to enforce
m = 3, to let the pattern learner search for patterns of the form P (I0, I1, I2).
Similarly, the number of conditions q can be restricted to a certain interval.
For example, one can enforce 2 <= q <= 4 to make sure that each pattern
contains at least two and at most four conditions. These constraints may either
be defined by a domain expert, depending on the complexity of the problem
and the associated complexity of the pattern, or by the user, who can use these
constraints to set an upper limit for the complexity of the pattern.

Numerical Optimization. It is possible to turn the optimization task into
a purely numerical optimization, by assuming the overall structure of a given
pattern to be fixed. This means that for a given pattern like

P (I0) = Slope(I0) > x ∧ Slope(I0) < y

the thresholds x and y can be considered as the real arguments of a multivariate
function, where the function value is the value of the objective function that is
applied to the resulting pattern. Given this definition, many standard methods of
numerical optmization may be applied. A special case of this approach is to start
the numerical optimization with a pattern that involves all possible conditions,
and initially defines the thresholds to be the minimum and maximum values of
the respective measures.

Numerical Search Space. The search space for the numerical optimization can
be bounded by the minimum and maximum values that are observed for the
respective measure in the training data. For the above example, the values will
be bounded by the minimum and maximum value of the slope that has been
observed for any segment. If a domain expert decides that segments with larger
or smaller slopes should also be considered, the search space can be broadened
based on this domain knowledge.

6 Implementation

In order to assess the feasibility of the approaches presented in this paper, we
implemented the pattern learning algorithm and applied it to various test data
sets. The implementation was made in Java. For the application of the generic
algorithms, we used the jenetics library [9]. The numerical optimization was
done with the Apache Commons Math library [1].

7 Evaluation

The following sections describe the test setup that we used for our evaluation,
and the results referring the requirements specified in Sect. 4.
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7.1 Test Data

The learning approach has been applied to a corpus of three test data sets.
Each data set contains 60 recordings of the sensor outputs of the robot that
have been measured during the assembly process. For each data set, there are 40
recordings where the assembly process succeeded and 20 recordings where the
assembly process failed. The relevant sensor is the sensor that records the force
in z-direction, measured at a 1 ms interval. Details about the preprocessing and
actual pattern matching process can be found in [5].

The data sets that we used for our evaluation refer to the same use case:
Detecting whether the assembly of an electrical component was successful or
not. The data sets differ in the overall length and the absolute values of the time
series that they contain. But in all cases, the successful assembly can be detected
by a characteristic “spike” in the force in z-direction, as shown in Fig. 2. Our
goal is to find a pattern that describes this characteristic generically, in a form
that is applicable to all data sets. Therefore, we applied the pattern learner to a
data set that was created by combining the initial ones, yielding 180 recordings
of 120 positive and 60 negative cases, and present the resulting pattern as well
as the accuracy that this pattern achieves for the combined and the individual
data sets.

7.2 Configuration

The configuration of the genetic algorithm that performs the symbolic opti-
mization was the same in all our experiments: The probability for crossover
mutations, general mutations and mutations that add or remove genes was 0.1.
The probability for changing the threshold value of a condition of one pattern
was also 0.1, with the change of the value being +/− 0.25 times the original
value, clamping the result to be in the valid range. We used a population size
of 1024 individuals, with 8 generations, stopping the evolution for the case that
the objective value remained stable for 4 generations.

Two dimensions of the search space for the symbolic optimization are the
number of segments that should appear in a pattern, and the number of condi-
tions that a pattern may consist of. Without any domain knowledge, the pattern
learner could be applied without any constraints for these dimensions. But for
our experiments, using the knowledge about the curve shape, we concluded that
the pattern should involve at most 3 segments - roughly corresponding to the
spike that indicated a successful assembly. We also limited the search space for
the symbolic optimization, allowing the pattern learner to generate patterns
having 1, 2 or 3 conditions.

A dedicated examination of the effect of different constraints or the influence
of the parameters (e.g. the population size) on the final result was not part of
our research, as the goal was to be able to generate good patterns without a ded-
icated parameter space exploration. The implementation focusses on flexibility,
simplicity and reproducibility of the results. This means that the implementation
is not optimized for efficiency. But with the configuration described above, the
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search for the patterns described in the following sections took approximately
11 min on a standard desktop PC.

7.3 Results

As mentioned in Sect. 5, there are two steps for the optimization: The symbolic
optimization that focusses on the structure of a pattern, and the numerical
optimization that optimizes the thresholds of a given pattern.

The best patterns with 1, 2 and 3 conditions and their accuracies are shown
here:

Pattern Accuracy
P1 = P (I0, I1, I2) = Slope(I2) > 0.04755 0.95
P2 = P (I0, I1, I2) = Slope(I1) > 0.03535 ∧

StartV(I2) < −0.42348 0.961
P3 = P (I0, I1, I2) = Slope(I2) > 0.03228 ∧

EndV(I0) > −20.87390 ∧
EndV(I1) < −5.17449 0.933

Note that a pattern with a higher number of conditions does not necessarily
achieve a higher accuracy. The random nature of the genetic algorithm and
the larger search space make it possible that a local optimum for the case of 3
conditions achieves a lower accuracy than one for the case of 2 conditions.

The best 25 patterns that have been found by the genetic algorithm have
subsequently been passed to a simple numerical optimization which increased or
decreased the thresholds of a pattern as long as the resulting accuracy did not
decrease. Due to the small size and the training set and the simplicity of the
resulting patterns, this simple numerical optimization on the (already optimized)
patterns did usually not increase the resulting accuracy, but often tightened the
thresholds of the involved conditions. For example, for the best pattern with 2
conditions described above, the threshold for the start value of segment I2 could
be decreased from −0.42348 to −1.88572, yielding the pattern

P ′
2 = P (I0, I1, I2) = Slope(I1) > 0.03535 ∧ StartV(I2) < −1.88572

which still achieves an accuracy of 0.961.
Table 1 summarizes the accuracy of the resulting pattern, individually for the

three test data sets, as well as for the combined data set:

7.4 Purely Numerical Optimization

As a demonstration of the feasibility and usefulness of the numerical optimiza-
tion step, we applied the numerical optimization to a pattern that involves all
possible conditions for a given number of segments. The general procedure was as
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Table 1. Classification accuracy of the resulting pattern P ′
2 for the three data sets and

the combined data set

Data set A B C Combined

Accuracy 0.967 1.000 0.900 0.961

follows: For a given number of segments, we generated a pattern that was a con-
junction of all conditions that could be applied to the segments, and the thresh-
olds have been chosen to be the minimum and maximum value that appears
for the respective measure. For three segments, five measures, and the possible
relations <and>, this yields a pattern that involves 30 conditions, and therefore,
30 thresholds. These thresholds have been used as the real arguments of a multi-
variate function. We then applied the CMA-ES (Covariance Matrix Adaptation
Evolution Strategy) optimizer from the Apache Commons Math library [1] to
this function. After the optimization, we removed all conditions from the result
pattern that could be removed without decreasing the accuracy. The resulting
pattern was

P ′
3 = P (I0, I1, I2) = DeltaT(I1) > 26.11010 ∧

StartV(I2) > −2.49862 ∧
DeltaV(I2) < −1.26727

with an accuracy of 0.933.
The main purpose of this experiment was to show that even though the

numerical optimization did not improve the accuracy for the simple pattern
that was generated by the symbolic optimization for the sample use case, it can
still be applied to more complex patterns in order to improve the accuracy of
the final result.

7.5 Evaluation of Requirements

We evaluate our results referring to the requirements specified in Sect. 4.

(R1) Automated Process: The process of finding a pattern is completely auto-
mated. It is possible, but not necessary, to integrate domain knowledge in the
search process. If nothing is known about the structure of the input data, the
pattern learner can be treated as a black box that only receives the labeled input
data and performs the optimization that results in a pattern.

(R2) Interpretability: The patterns that are generated are provided in a simple
but expressive pattern language that was described in [5]. The patterns consist
of simple conditions that describe basic properties of the shape of the time series
data. The pattern that achieved the highest accuracy for our application case
was

P ′
2 = P (I0, I1, I2) = Slope(I1) > 0.03535 ∧ StartV(I2) < −0.42348
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The intuitive meaning of the conditions is that there should be a segment I1
which has a noticeably positive slope, followed by a segment I2 that starts at a
low point. This matches the expected pattern for the ”spike” in the force that
is shown in the example in Fig. 2.

(R3) Accuracy: The work in [5] presented a pattern using the same pattern
language and data sets, which achieved an accuracy of 0.967, 0.983, and 0.867
for the three data sets, respectively. We applied our pattern learner to a data set
that was created from combining these data sets, let it search for a single pattern,
and evaluated the resulting pattern individually for the data sets, achieving
accuracies of 0.967, 1.0 and 0.9, respectively. So the goal of achieving an accuracy
that is similar to that of a pattern created by a domain expert is clearly met,
and in fact, the accuracy of the generated pattern is even higher for two of the
three data sets.

(R4) Small Training Data Sets: The training data for our use case consisted of
three different data sets, each having 40 positive and 20 negative instances, which
we combined in order to compare the resulting pattern to the baseline pattern
that was created manually by a domain expert. The actual value domains of
the three data sets differ noticeably. For example, the total duration or absolute
value of the recorded force are different. The main similarity of the data sets are
the characteristics of the “spike” that indicates a successful assembly. And these
characteristics have properly been captured by the pattern learner, even though
the actual data contains only 180 training instances which have been created by
combining different, even smaller training data sets.

8 Conclusions and Future Work

We have successfully applied the approach of automatically learning patterns
for complex event detection based on segmented time series data to our main
use case. The results are promising in that the process is fully automatic, and
generates interpretable patterns that achieve a high classification accuracy, even
with small training data sets.

There are several possible directions for future research. One of them is
application-driven, namely trying to learn more complex patterns that may
appear in other use cases. Anther possible task is a more detailed examination
of the influence of constraints and learning parameters on the result, or possible
improvements in accuracy that can be achieved with different numerical optimiz-
ers. The distinction between the symbolic and the numerical optimization allows
different ways of interweaving both optimization methods: One could start with
the symbolic optimization and apply the numeric optimization to the resulting
pattern, or start with a pattern that describes all possible conditions, optimize it
numerically, and use this pattern to initialize the first population of the genetic
algorithm. We will continue to publish our results on this.
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Abstract. Matrix factorization is used by recommender systems in col-
laborative filtering for building prediction models based on a couple of
matrices. These models are usually generated by stochastic gradient
descent algorithm, which learns the model minimizing the error done.
Finally, the obtained models are validated according to an error crite-
rion by predicting test data. Since the model generation can be tackled
as an optimization problem where there is a huge set of possible solu-
tions, we propose to use metaheuristics as alternative solving methods
for matrix factorization. In this work we applied a novel metaheuristic
for continuous optimization, which works inspired by the vapour-liquid
equilibrium. We considered a particular case were matrix factorization
was applied: the prediction student performance problem. The obtained
results surpassed thoroughly the accuracy provided by stochastic gradi-
ent descent.

Keywords: Matrix factorization · Gradient descent · Metaheuristics

1 Introduction

Machine Learning (ML) is a concept that covers a wide spectrum of tools and
methods designed to detect automatically patterns in data [21] and predict future
behaviors, by optimizing a performance criterion according to test data or past
experience [1]. This technology is particularly interesting nowadays because of
the current capacity of getting a huge amount of data from different sources, the
so-called Big Data (BD). Thus, applying ML in the BD era to extract knowledge
and make decisions is a challenging task, with a great interest in many fields [2].
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ML is usually split into three techniques: Supervised Learning (SL), Non-
Supervise Learning (NSL) and Reinforcement Learning (RL). SL learns from the
mapping of inputs (attributes or variables for a sample) to outputs (expected
response/label for a sample). NSL identifies groups/clusters in the set of data
in an autonomous way, i.e., without labeling the samples. RL learns iteratively
through a decision-making process, where choices are feed with positive or neg-
ative scores based on the response generated.

This work focuses on Recommender Systems (RSs) [11], which is an SL tech-
nique. Specifically, RS is within Collaborative Filtering (CL) algorithms, which
are used to predict the future behavior of users for a particular task based on
both particular and global users’ activity. Thus, RSs are a popular method to
elaborate personalized recommendations in large databases for systems which
interact with users, e.g., on-line information systems and e-commerce applica-
tions. The recommendations are generated from mathematical models, which
learn about users’ interests for specific products. The learning process identifies
the user’s preferences and compares them to the preferences of other users in
the system, facilitating the product search for the user [25].

The knowledge of users behavior is important, not only for recommendation
purposes but for predicting analysis. We focus our work on an interesting case
where RS is applied for predicting purposes: The Predicting Student Perfor-
mance (PSP) problem. In this problem, the student scores (performances) are
predicted for some lost tasks (exams, exercises, and tests) during the learning
process, i.e., tasks which were not completed or the student did not attend [33].

For this problem, a dataset considers S students and I tasks. The matrix P
contains the performances for each student and task. Dknw ⊆ P is the set of
known performances and Dunk = P −Dknw is the set of unknown performances.
Dknw is considered to build both the training (denoted as Dtrain ⊆ Dknw)
and testing (denoted as Dtest = Dknw − Dtrain) sets to generate and testing
the knowledge model, respectively. Once the model is built and generated, the
values in Dunk can be predicted to obtain the lost performances in P .

The models built in RSs are usually factorized and driven by latent factors
to establish a good balance between prediction scalability and accuracy [18]. A
latent factor defines the implicit relationship “user – rates – item” in recom-
mender systems, or “student – performance – task” for the PSP problem. Under
this focus, Matrix Factorization (MF) is proven to be a good technique to build
prediction models by factorizing a matrix into a product of matrices [15].

Focusing on PSP, MF approximates P as the product of two smaller matrices
W1 and W2 with sizes S × K and I × K, respectively, where K is the number
of latent factors, defining how a student performs a task [24]. That is,

P ≈ W1 × W2T . (1)

From this equation, the greater the value of K is, the larger matrices the
model has, with the corresponding increased computation effort. In our work,
we have considered a fixed value of K according to experiments done with similar
datasets for the problem.
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According to MF, the unknown performance value p̂s,i ∈ Dunk of a student
s ∈ 1, . . . , S for a task i ∈ 1, . . . , I is predicted as (2), where w1s,k is the value
for the s-th student and k-th latent factor in W1 and w2i,k is the value for i-th
task and k-th latent factor in W2, with with k ∈ 1, . . . , K.

p̂s,i =
K∑

k=1

(w1s,k × w2i,k) = (W1 × W2T )s,i, (2)

The accuracy of the prediction model while predicting the samples in Dtest

could be measured according to the Root Mean Squared Error (RMSE) (3),
where ps,i is the performance of the s-th student obtained in the i-th task. The
goal of this work is to obtain W1 and W2 so that RMSE is minimized. To this
end, we propose to apply a novel metaheuristic in order to obtain optimal W1
and W2, as alternative to the usual solving method for this purpose.

RMSE =

√∑
s,i∈Dtest (ps,i − p̂s,i)2

|Dtest| . (3)

2 Solving-Methods for Matrix Factorization

Stochastic Gradient Descent (SGD) is a classical iterative method for calculating
W1 and W2. After explaining it, we introduce the concept of metaheuristic as
an alternative solving-method for the problem.

2.1 Stochastic Gradient Descent

SDG has a random nature and is very efficient dealing with large datasets [3].
The non-deterministic nature comes from the initialization stage. This algorithm
updates iteratively W1 and W2 during the training stage. To this end, it tries
to minimize the error done in the prediction during iterations, measuring the
differences between both real and predicted values through the Mean Squared
Error (MSE) (4), where es,i = ps,i − p̂s,i.

MSE =
1

|Dtrain|
∑

(s,i)∈Dtrain

(es,i)
2
, (4)

SDG initializes W1 and W2 randomly with positive real numbers from a
normal distribution N(0, σ2), where σ2 is usually 0.01. Over iterations, SDG
calculates the gradient of es,i to identify in which direction to update the values
of w1s,k and w2i,k, ∀s ∈ S, i ∈ I (5) and (6).

∂

∂ w1s,k
es,i

2 = −2 es,i w2i,k = −2(ps,i − p̂s,i)w2i,k, (5)

∂

∂ w2i,k
es,i

2 = −2 es,i w1s,k = −2(ps,i − p̂s,i)w1s,k. (6)
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The new values for w1s,k and w2i,k (w1s,k′ and w2i,k′, respectively) are
calculated in the opposite direction of the gradient, which is given by (7) and
(8), where β is the learning rate.

w1s,k′ = w1s,k − β
∂

∂ w1s,k
es,i

2 = w1s,k + 2 β es,i w2i,k, (7)

w2i,k′ = w2i,k − β
∂

∂ w2i,k
es,i

2 = w2i,k + 2 β es,i w1s,k, (8)

This updating process can be enhanced by adding a regularization term λ
when calculating e2s,i (9).

es,i
2 = (ps,i − p̂s,i)2 + λ(|W1|2 + |W2|2). (9)

Then, the gradient is calculated as (10) and (11), and the new values for
w1s,k and w2i,k are given by (12) and (13).

∂

∂w1s,k
es,i

2 = −2 es,i w2i,k + λw1s,k, (10)

∂

∂w2i,k
es,i

2 = −2 es,i w1s,k + λw2i,k, (11)

w1s,k′ = w1s,k − β
∂

∂ w1s,k
es,i

2 = w1s,k + β (2 es,i w2i,k − λw1s,k), (12)

w2i,k′ = w2i,k − β
∂

∂ w2i,k
es,i = w2i,k + β (2 es,i w1s,k − λ w2i,k). (13)

The iterative process ends when reaching a stop criterion, e.g., a number of
iterations and when the error converged to a given value. Once the training stage
ends, the model accuracy is calculated using Dtest and RMSE metric. Finally,
the values in Dtest are calculated through Eq. (2).

2.2 Metaheuristics for Solving Optimization Problems

Metaheuristics are approximate, non-deterministic algorithms used to solve com-
plex optimization problems in combinatorial or continuous domains, which can-
not be tackled by exact techniques [8].

Some popular metaheuristics are Simulated Annealing (SA) [14], Variable
Neighborhood Search (VNS) [19], Greedy Randomized Adaptive Search Proce-
dure (GRASP) [6], Tabu Search (TS) [9], Genetic Algorithms (GA) [10], Grav-
itational Search Algorithm (GSA) [23], Ant Colony Optimization (ACO) [5],
Particle Swarm Optimization (PSO) [13], and Artificial Bee Colony (ABC) [12].
Because of the powerful of metaherustics, they are applied in many fields as
data mining [22], computer science [29], modeling [30], simulation [7], image
processing [31], industry [34].
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In the ML field, the application of metaheuristics has proven to be especially
interesting [20]. In this sense, matrix factorization can be tackled as an opti-
mization problem, where the fitness function f(X) to be optimized measures
the prediction error in the testing set through RMSE. The decision variables of
this optimization problem are related to W1 and W2 matrices. Thus, there are
as many decision variables as elements W1 and W2 have [15].

Some works have explored metaheuristics as optimization methods with
regard to MF, mainly focused on non-negative MF. For example, GAs and swarm
intelligence were applied in [16] and [32] respectively to initialize the factorized
matrices in nonnegative matrix factorization, by exploring efficiently the search
space of initial solutions. In addition, [32] improves the accuracy per runtime for
the multiplicative updating in solving non-negative MF.

3 The Vapour-Liquid Equilibrium Metaheuristic

Separation problems via conventional or extractive distillation columns in chemi-
cal engineering are examples where thermodynamic equilibrium calculations are
made. Among these techniques, there will be a mixture of two or more fluid
phases [17,26,27]. Under thermodynamic equilibrium conditions, each chemical
compound is distributed among all phases, being their chemical potential the
same between a couple of phases. In such closed systems, the total Gibbs free
energy is minimum with regard to all changes that could occur at an estab-
lished temperature and pressure [26,28]. This saturation condition inspired the
Vapour-Liquid Equilibrium (VLE) metaheuristic [4], which is able to solve any
optimization problems in the continuous domain.

The distribution of the chemical compounds of mixtures between liquid and
vapour phases is described according to the Laws of Raoult and Dalton [26].
This model calculates the bubble and dew points in liquid and vapor phases
respectively. The bubble and dew points are the temperatures (TBP ) and (TDP )
from which a liquid/vapor mixture begins to boil/condense, respectively. Both
processes represent liquid-vapor equilibrium states.

The values of the movement operators (bubble and dew) are automatically
selected when solving the equations of the model. These operators work in par-
allel on the real domain of each decision variable when searching for an optimal.
These domains represent molar fractions of the most volatile chemical species of
binary mixtures. The number of decision variables of the optimization problem
is equal to the number of binary mixtures.

The bubble and dew operators are applied on both exploration and exploita-
tion phases, creating and updating neighborhood structures around the best
solution found in the previous iteration, by changing just one decision variable
each time. The values of these operators depend on the chemical nature of the
most volatile component of each system, the saturation temperature, and the
total system pressure.

The application and definition of these operators is given by (14) and (15),
where l and v are the molar fractions of the most volatile chemical component of
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each mixture, denoted by the subscript 1. The mole fraction of the most volatile
component in the iteration t, is calculated by a linear transformation equation
of the value of the decision variable xd(t), from the real domain [min,max] ∈ R,
to the value of the parallel domain [newmin, newmax] = [0, 1] ∈ R.

l1(t + 1) = v1(t) = BubOp l1(t) = K1l1(t) (14)

l1(t + 1) = DewOp v1(t) =
1

K1
v1(t) (15)

The inputs to the algorithm are: the stop criteria, the execution parameters,
the formulation of the objective function, and the number of decision variables.
The stop criteria are the number of movements to be performed (M) and the
number of restarts to try (R), with R ≤ M . The parameters with highest influ-
ence on the search process are α (it autonomously adjusts the size of the search
subset of the decision variables) and β (the probability of acceptance of worse
solutions than the best solution found so far).

Each time the algorithm restarts, it creates a new starting solution. Next, a
new search of neighborhoods is guided by the values of the molar fractions that
suggest where there could be at least one local optimum. The possible values
of α are odd numbers greater than or equal to 3. The algorithm calculates the
probability of accepting a possible solution randomly and compares it with β.
If the solution is not accepted, the algorithm restarts in another region of the
search space, either conserving or changing the chemical species of the mixtures
according to the user specifications. The characterization of chemicals is carried
out by means of their vapor pressure, according to Antoine’s equation [26].

On the other hand, for a given number of experiments, the output information
includes the optimal value found, the location of the corresponding solution, the
convergence graphs of all the experiments carried out, and the box plot.

Figure 1 shows how the search is carried out around the neighborhood of the
decision variable x3, centered on row p = 3 of the search table. In this figure,
α − 1 movements of the decision variable occur between the iteration t and the
iteration t + 1, keeping the values of the other variables in those corresponding
to the iteration t. After having found the value for iteration t + 1 of the variable
x3, this is centered in row 3, by moving and completing the necessary rows by
the application of the movement operators.

4 Results

In this section we show the results obtained after applying SGD and VLE for
solving the PSP problem, considering the same datasets (students-tasks perfor-
mance matrices and test sets for validating the model by calculating RMSE).

4.1 Experimental Framework

The experimental framework consist of several datasets and fixed values for the
main parameters of SGD and VLE. This framework balances among diversity,
accuracy, and computing time.
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Fig. 1. Search of the next value of x3 in the search table of decision variable 3.

Since both solving methods have non-deterministic nature, it is mandatory
to perform several runs for each experiment, and choose the best solution found
(which has the minimum RMSE). For statistic purposes, we have selected 41
runs for each experiment, obtaining the minimum, maximum, mean, median
and standard deviation values for RMSE.

Datasets. Table 1 shows the datasets considered for the experiments. Each col-
umn represents a classroom obtained from the virtual campus of the University
of Extremadura (UEX), Spain, along academic year 2017–2018. These datasets
are the result of filtering the original data extracted, since many of the students
and tasks showed a limited academic activity; otherwise, including the original
data could introduce noise in the prediction. Thus, the performance matrices P
built after applying the corresponding filters represent academic environments
where there is not any student with less than a third of activity in all tasks, and
the task with the minimum students’ activity has 80% of participation.

We used all the known performances of the datasets to train the prediction
model, and chose test performances following the same method: one known per-
formance by student in consecutive tasks. Therefore, the datasets not only show
diversity in the performance matrix sizes (the number of students and tasks),
but in the training and test settings.

With regard to the number of latent factors in the matrix factorization model
considered for the experiments, we have chosen K = 64. This is one of the
possible values (16, 32, 64, 128) considered in the PSP problem [33] that provides
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Table 1. Datasets of virtual classrooms considered for the experiments.

IC HS TO EN BE PR

S 107 95 116 78 47 65

I 8 5 3 9 10 2

P 856 475 348 702 470 130

Dknw 800 457 324 657 440 116

Dunk 56 18 24 45 30 14

Dtrain 800 457 324 657 440 116

Dtest 102 92 105 73 43 59

good accuracy with a balanced computing effort, according to experiments done
for this purpose.

VLE and SGD Settings. Table 2 shows the values selected for the main
parameters of the two solving methods. The number of latent factors K, and
the learning rate β and regularization factor λ for SGD were chosen according
to existing literature in similar works [33]. The remaining parameters and strate-
gies of SGD and VLE were chosen from many tunning experiments performed
with the aim of reaching a good balance between accuracy and computing time.

Table 2. Values of the main parameters of SGD and VLE.

SGD

Learning rate (β) 0.01

Regularization factor (λ) 0.015

Stop criterion Iterations

Max. number of iterations 10,000

Standard deviation 0.1

Biased no

V LE

Number of movements (M) 10

Solutions in the search area (α) 3, 5, 7

Min. acceptance probability (βV LE) 0.01

Limit in descending movements (δ) 1E−10

Antoine’s constants

A between 13.73 and 13.80

B between 2,533.93 and 2,548.74

C between 220.00 and 223.24

Pressure (P) 70 KPa
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Fig. 2. RMSE found after applying VLE considering three values of α.

We point out that the results given by SGD do not improve significantly if
the number of iterations increases a lot, since the convergence of RMSE to its
minimum value is very fast. In the tunning experiments, the maximum number
of 10,000 iterations chosen for SGD guarantees an enough convergence without
increasing the computing time a lot.

With regard to VLE, the value of α was selected pursuing an equilibrium
between the accuracy of the results and the computing time spent. Figure 2
shows the mean RMSE (bar graphs) and computing time for one run (line plot)
after applying VLE to the datasets, considering three values for α. Since α = 3
provides good accuracy results with lower computing time, we selected this value
for the comparison with SGD.

4.2 Performance Comparison

Figure 3 summarizes the most important results of the comparison between SGD
and VLE performances. The figure shows the minimum, maximum and mean
values of RMSE evaluated on the test sets of six datasets, after applying SGD
(left) and VLE (right) for obtaining the prediction models (W1 and W2).

The model obtained by SGD considers training sets, whereas VLE uses other
evolutive methods. The figure also plots the computing time corresponding to
one run of the solving methods. The RMSE values are displayed as bar graphs
with the same scale in both cases, whereas the time values are drawn as line plots
with different scales for a better comparison, due to the significant difference.

With regard to the accuracy of the results, VLE provides the best results
in all the experiments and datasets. This is the most important result of our
work, since we have surpassed the accuracy provided by the usual method for
generating the prediction models in recommender systems.

The accuracy improvement of VLE with regard to SGD, understood as the
rate between both RMSE values, is shown in Table 3, from which we can calculate
a mean of 4.5 times (or 355%) VLE is more accurate than SGD. Nevertheless,
the SGD-VLE comparison offers worse results for VLE in terms of computing
time. The operations involved in VLE are much more complex and larger than
the simple ones for calculating and updating the gradient.
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Fig. 3. RMSE (minimum, maximum and mean) of the solutions found considering
SGD (left) or VLE (right), and the corresponding computing time for one run of
these solving methods. The RMSE axes (bar graphs) have the same scale for better
comparison, whereas the time axes (line plots) have different scales due to the high
difference between both methods.

Table 3. Accuracy improvement of VLE with regard to SGD.

IC HS TO EN BE PR

Times VLE more accurate than SGD 4.14 3.99 3.29 4.65 6.27 4.98

VLE is % more accurate than SGD 314% 299% 229% 365% 527% 398%

This circumstance implies a strong influence on the computing time, as we
can see in Fig. 3. In this figure, we have considered VLE for α = 3, which
provides similar accuracy with lower computing times. Although the limitation
of VLE in computing time term could be reduced adjusting some operations and
parameters, VLE can be successfully applied to those environments where the
prediction model can be generated before real-time predictions phase. In other
words, VLE can generate a off-line model to be applied in on-line frameworks.

5 Conclusions

There are two main contributions in this work. On the one hand, we propose
a novel metaheuristic based on the vapour-liquid equilibrium to solve optimiza-
tion problems. This nature-inspired method gives good performance results when
dealing with benchmark functions of different characteristics. On the other hand,
we have formulated the matrix factorization in recommender systems as an
optimization problem, where metaheuristics can be applied. As this problem
is usually solved by using stochastic gradient descent, we have compared both
solving methods when considering a particular application of the recommender
systems: the predicting students performance problem. We have found that the
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metaheuristic proposal surpasses thoroughly the performance given by gradient
descent, in accuracy terms, for different datasets and runs of the algorithms.

The main line of future work deals with configuring the metaheuristic to be
faster. An efficient tunning of the main parameters, together with a simplifica-
tion of some procedures, can reduce the computing time significantly. This is
particularly interesting for applying the metaheuristic in processes involved in
online systems, when real time responses can be required.
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Abstract. Network densification with deployments of many small base
stations (SBSs) is a key enabler technology for the fifth generation (5G)
cellular networks, and it is also clearly in conflict with one of the target
design requirements of 5G systems: a 90% reduction of the power con-
sumption. In order to address this issue, switching off a number of SBSs
in periods of low traffic demand has been standardized as an recognized
strategy to save energy. But this poses a challenging NP-complete opti-
mization problem to the system designers, which do also have to provide
the users with maxima capacity. This is a multi-objective optimization
problem that has been tackled with multi-objective evolutionary algo-
rithms (MOEAs). In particular, a problem-specific search operator with
problem-domain information has been devised so as to engineer hybrid
MOEAs. It is based on promoting solutions that activate SBSs which
may serve users with higher data rates, while also deactivating those
not serving any user at all. That is, it tries to improve the two problem
objectives simultaneously. The resulting hybrid algorithms have shown
to reach better approximations to the Pareto fronts than the canonical
algorithms over a set of nine scenarios with increasing diversity in SBSs
and users.

Keywords: Problem specific operator · Hybridization ·
Multi-objective optimization · Cell switch-off problem · 5G networks

1 Introduction

The analysis of the market included in the mobility reports elaborated by
Ericcson [7] and Cisco [4] clearly state and confirm the inexorable growth of
the mobile subscriptions worldwide, and the consequent increase in the traf-
fic demands, which will not be able to be allocated within the current opera-
tive mobile network technologies, mostly the third and fourth generations. With
these predictions, both public and private initiatives started to develop the fifth
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generation (5G) of cellular systems more than a decade ago. The design goals
for such networks to clearly improve upon the existing technologies were quite
ambitious [2,3], aiming, among others, at 1–10 Gbps connections, 1 ms latency,
1000x bandwidth, 10–100x connections and, the one that targets this work, 90%
of energy consumption to reduce the increasing carbon footprint of this newly
5G networks [18].

Three main paradigms are considered as the key enabler technologies for
5G [14]: use the millimeter wave (mmWave), spectrum, multi-antenna transmis-
sion (massive, collaborative MIMO) communications, and network densification.
A common fact among them is that they are clearly conflicting the design goal
of saving energy. This is specially critical in the third one, which is the target of
this work, as 5G networks require the deployment of a large number of small base
stations (SBSs), which are close to the mobile users, resulting in the so-called
ultra-dense networks (UDN) [9,12]. Indeed, these dense deployments come with
a considerable increase in the power consumption of the system as SBSs are the
most consuming device of the network (between 50% to 80%), regardless of its
load [19]. In order to address this issue, an already standardized strategy [1] is
to switch off a subset of the SBSs in periods of low demand. This is known as the
Cell Switch-Off (CSO) problem [8], an NP-complete problem [10] whose search
space grows exponentially with the number of SBSs of the UDN. But reducing
the energy consumption may be in conflict with maintaining the network oper-
ative in terms of the capacity provided to the users, thus clearly driving to a
multi-objective optimization problem [11,15].

The focus of this work is to use multi-objective metaheuristics (MOEAs) [5],
more concretely, to enhance the search of two MOEAs, NSGA-II [6] and
MOCell [17], by incorporating problem knowledge into their evolutionary loop.
We already explored this line of research in [20], where a local search operator
that turns off those SBSs that do not have users connected was proposed. This
operator was solely aimed at reducing the power consumption of the network, not
considering the capacity objective. As a result, the approximated Pareto fronts
reached by the hybrid MOEAs clearly explore the regions of the search space
that activate the lower number of SBSs, and also provide the User Equipments
(UEs) with the lower network capacity. The goal of this work is to introduce a
novel local search operator that improves the capacity objective as well. To do
so, it works by activating the SBSs that may potentially serve users with higher
capacities (i.e., those with larger bandwidth), if the quality of the wireless link,
measured in terms of the signal-interference plus noise ratio (SINR), falls below
a given threshold. This operator has been called FCSOn, which stands for Fem-
toCell Switch On, as these are the types of cells of our UDN modeling with the
larger operating frequency, and thus the higher available bandwidth. In order to
show its effectiveness, it has been incorporated to NSGA-II and MOCell, giv-
ing rise to its hybrid versions NSGA-IIFCSOn and MOCellFCSOn, and they have
been compared to both the canonical versions of the algorithms and the previous
devised operator [20] on a set of 9 different scenarios with increasing densifica-
tion. The results have shown that the search of these two new hybrid MOEAs
are capable of better reaching non-dominated solutions with higher capacity.
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The work has been structured as follows. The next section formally describes
the model of the UDN used, as well as the formulation of the problem objectives
for both the CSO problem. Section 3 details the FSOn operator and its integra-
tion in NSGA-II and MOCell. The experimental methodology and the analysis
of the results is carried out in the Sect. 4. Finally, the main conclusions of the
work as well as the lines for future research are included in Sect. 5.

Table 1. Model parameters for BSs and UEs.

Cell Parameter LL LM LH ML MM MH HL HM HH

macro Gtx 14

f 2 GHz (BW = 100 MHz)

micro1 Gtx 12

f 3.5 GHz (BW = 175 MHz)

λmicro1
P [BS/km2] 100 100 100 200 200 200 300 300 300

micro2 Gtx 10

f 5 GHz (BW = 250 MHz)

λmicro2
P [BS/km2] 100 100 100 200 200 200 300 300 300

pico1 Gtx 5

f 10 GHz (BW = 500 MHz)

λpico1
P [BS/km2] 500 500 500 600 600 600 700 700 700

pico2 Gtx 7

f 14 GHz (BW = 700 MHz)

λpico2
P [BS/km2] 500 500 500 600 600 600 700 700 700

femto1 Gtx 4

f 28 GHz (BW = 1400 MHz)

λfemto1
P [BS/km2] 1000 1000 1000 2000 2000 2000 3000 3000 3000

femto2 Gtx 3

f 66 GHz (BW = 3300 MHz)

λfemto2
P [BS/km2] 1000 1000 1000 2000 2000 2000 3000 3000 3000

UEs λUE
P [UE/km2] 1000 2000 3000 1000 2000 3000 1000 2000 3000

2 Problem Modeling

This section first introduces the modeling of the UDN and, then, a mathematical
formulation of the CSO problem is provided.
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2.1 UDN Modeling

This work considers a service area of 500 × 500m2, which has been discretized
using a grid of 100 × 100 points (also called “pixels” or area elements), each
covering a 25 m2 area, where the signal power is assumed to be constant. Ten
different regions have been defined with different propagation conditions. In
order to compute the received power at each point, Prx[dBm], the following
model has been used:

Prx[dBm] = Ptx[dBm] + PLoss[dB] (1)

where, Prx is the received power in dBm, Ptx is the transmitted power in dBm,
and PLoss are the global signal losses, which depend on the given propagation
region, and are computed as:

PLoss[dB] = GA + PA (2)

where GA is the total gain of both antennas, and PA are the transmission losses
in space, computed as:

PA[dB] =
(

λ

2 · π · d

)K

(3)

where d is the Euclidean distance to the SBS, K is the exponent loss, which
ranges randomly in [2.0, 4.0] for each of the 10 different regions. The signal to
interference plus noise ratio (SINR) for User Equipment (UE) k, is:

SINRk =
Prx,j,k[mW ]∑M

i=1 Prx,i,k[mW ] − Prx,j,k[mW ] + Pn[mW ]
(4)

where Prx,j,k is the received power by UE k from SBS j, the summation is the
total received power by UE k from all the SBSs operating at the same frequency
that j, and Pn is the noise power, computed as:

Pn[dBm] = −174 + 10 · log10 BWj (5)

being BWj the bandwidth of SBS j, defined as the 5% of the SBS operating
frequency (see Table 1). Finally, the capacity of the UE k is:

Cj
k[bps] = BW j

k [Hz] · log2(1 + SINRk) (6)

where BW j
k corresponds to the bandwidth assigned to the UE k when connected

to the SBS j, assuming a round robin scheduling, that is:

BW j
k =

BWj

Nj
(7)

where Nj is the number of UEs connected to SBS j, assuming that UEs are
connected to the SBS with the highest SINR, regardless of its type.
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Four different types of cells of decreasing size are considered (fully hetero-
geneous network): femtocells, picocells, microcells, and macrocells. Two sub-
types of femto, pico, and microcells are also defined, summing up 7 cell types
(see Table 1). The SBSs that serve these cells all have a transmitting power of
Ptx = 750mW , so their actual coverage is defined by their operating frequencies
and the consequent losses that considers the SINR (the higher the frequency,
the lower the coverage). Also, SBSs are deployed using an independent Poisson
Process (PPP) with different densities (defined by λBS

P ). UEs are also positioned
using a PPP with a value of λUE

P , but using social attractors (SAs), following
the procedure proposed in [16]. This deployment scheme also uses two factors α
and μβ , which indicate how strong the attraction of BSs to SAs is (same applies
for SAs to UEs). The values used in the simulations are α = μβ = 0.25.

The detailed parametrization of the addressed scenarios is included in Table 1,
in which the names in the last nine columns, XY, stand for the deployment
densities of SBSs and UEs, respectively, so that X = {L, M, H}, meaning either
low, medium, or high density deployments (λSBS

P parameter of the PPP), and
Y = {L, M, H}, indicates a low, medium or high density of deployed UEs (λUE

P

parameter of the PPP). The parameters Gtx and f of each type of cell refer to
the transmission gain and the operating frequency (and its available bandwidth)
of the antenna, respectively.

2.2 The CSO Problem

Let B be the set of the SBSs randomly deployed. A solution to the CSO problem
is a binary string s ∈ {0, 1}|B|, where si indicates whether SBS i is activated or
not. The first objective to be minimized is therefore computed as:

min fPower(s) =
|B|∑
i=1

si (8)

that is, the number of active SBSs in the network.
Let U be the set of the UEs also deployed as described in the section above.

In order to compute the total capacity of the system, UEs are first assigned to
the active SBS that provides the highest SINR. Let A(s) ∈ {0, 1}|U|×|B| be the
matrix where aij = 1 if sj = 1 and SBS j serves UE i with the highest SINR,
and aij = 0 otherwise. Then, the second objective to be maximized, which is the
total capacity provided to all the UEs, is calculated as:

max fCap(s) =
|U|∑
i=1

|B|∑
j=1

sj · aij · BW j
i (9)

where BW j
i is the shared bandwidth of SBS j provided to UE i (Eq. 7). We would

like to remark that these two problem objectives are clearly in conflict with each
other, as switching off base stations, that is, minimizing the power consumption
of the network, will clearly decrease its capacity because the available bandwidth
to serve users is reduced.
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3 Hybrid MOEAs: The FCSOn Operator

This section details, firstly, the solution representation used to address the CSO
and the genetic operators of the two MOEAs. Secondly, a description of the
FCSOn operator is provided, followed by the contributions of this work. Finally,
a brief description of NSGA-II and MOCell and how they integrate the operator
within its evolutionary cycle is given.

3.1 Representation and Genetic Operators

The representation used for the candidate solutions is the canonical binary string,
in which each gene corresponds to a SBS, and indicates whether it is on (‘1’)
or off (‘0’). The selection, crossover and mutation operators are, respectively,
binary tournament, two-point crossover with rc = 0.9, and flip bit mutation with
rm = 1/L, where L is the number of SBSs of the UDN. The stopping condition
is to reach 100000 evaluations of the objective functions. All the algorithms used
in this work have been implemented in the jMetal framework1.

3.2 The FCSOn Operator

As stated in the introduction section, this is a capacity-based operator as it
aims at increasing the capacity the UDN provides to the UEs by switching on
femtocells that may act as serving cells. Recall that this type of cells are those
with the higher available bandwidth (they have the higher operating frequency)
when users are rather close to them. We assume this closeness to be enough when
the SINR received by the UE u from the a femtocell f is greater than 1 dB. If this
holds, then the f is switched on as is could be a potential candidate to serve u
with higher capacity. If the current cell that serves u has no more users connected,
then it is switched off. The FCSOn operator builds upon the CSO operator
presented in [20], which deactivates those cells not having any UE connected.
Whereas the CSO operator clearly targets only the power consumption objective,
the FCSOn operator also aims at improving the capacity. Algorithm1 sketches
the pseudocode of the operator.

3.3 Hybrid Algorithms NSGA-IIF CSOn y MOCellF CSOn

This section first outlines the template of a generic MOEA (Algorithm 2), to fur-
ther describe the canonical versions of NSGA-II and MOCell afterwards. Then,
based upon this template, the modifications required to include the FCSOn
operator are detailed.

The NSGA-II algorithm (Non-dominated Sorting Genetic Algorithm II ) [6]
is a genetic algorithm that works by generating, from a population Pt, another
auxiliary population Qt using the genetic operators of selection, crossover and
mutation (line 8 of the Algorithm2); then, the solutions included in Pt ∪ Qt

1 https://github.com/jMetal/.

https://github.com/jMetal/
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are ordered according to their rank and, those with the best (lowest) values of
this quality indicator, are passed on to the next generation Pt+1 (line 11). For
selecting among solutions with the same range, NSGA-II uses a density estimator
that promotes solutions from the less populated areas of the approximated front.

MOCell (Multi-Objective Cellular Genetic Algorithm) is a cellular genetic
algorithm [17] that includes an external file to store the non-dominated solu-
tions found during the search (line 4 in Algorithm2). This archive is bounded
and uses the same density estimator of NSGA-II to maintain the diversity of
solutions along the approximated Pareto front. Its major contributions lies in
the neighborhood relationship between solutions, as the population is structured
in a 2D toroidal mesh, defining a set of neighboring solutions that is used in the
evolutionary cycle.

Algorithm 1. Pseudocode of the FCSOn operator
1: U ← GetUsersNotServedByFemtoCell()
2: for u in U do
3: current ← GetServingCell(u)
4: C ← GetFemtoCellsWithHigherSINR(u)
5: for c in C do
6: if SINR(u,c) > 1 dB then
7: Activate(c)
8: SetServingCell(u,c)
9: end if

10: end for
11: end for
12: ApplyCSOOperator() //see [20] for the details

Algorithm 2. Template of a multi-objective metaheuristics
1: S(0) ← GenerateInitialPopulation()
2: A(0) ← ∅
3: Evaluate(S)
4: A(0) ← Update(A(0), S(0))
5: t ← 0
6: while not StoppingCondition( ) do
7: t ← t + 1
8: S(t) ← GeneticOperators(A(t − 1), S(t − 1))
9: Evaluate(S′(t))

10: A(t) ← Update(A(t), S′(t))
11: end while
12: Output: A
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Algorithm 3. NSGA-IIFCSOn and MOCellFCSOn

8: S(t) ← GeneticOperators(A(t − 1), S(t − 1))
9: r ← Random(0, 1)

10: if r < rFCSOn then
11: S′(t) ← FCSOn(S(t))
12: end if
13: Evaluate(S′(t))
14: A(t) ← Update(A(t), S′(t))

The FCSOn operator has been integrated within the NSGA-II and MOCell
evolutionary cycle by replacing Algorithm2 lines 8 to 10 with those of the
Algorithm 3. Right after applying genetic operators, and before evaluating to
determine whether or not to incorporate them into the next generation of algo-
rithm solutions, the local search is applied with a given rate, rFCSOn.

4 Experimentation

This section describes the methodology used to conduct the experiments,
showing the effectiveness of the new hybrid proposals, NSGA-IIFCSOn and
MOCellFCSOn, as well as the analysis of the obtained results.

4.1 Methodology

Since metaheuristics are stochastic algorithms, 30 independent runs of each algo-
rithm for each of the nine scenarios have been performed. Each run addresses a
random instance of the problem, but the same 30 seeds are used to ensure that
all algorithms tackle the same set of instances. Two indicators have been used to
measure the quality of the approaches to the Pareto front achieved by the four
algorithms: the hypervolume (HV) [21] and the attainment surfaces [13].

The HV is considered as one of the more suitable indicators in the multi-
objective community. Higher values of this metric are better. Since this indicator
is not free from an arbitrary scaling of the objectives, we have built up a reference
Pareto front (RPF) for each problem composed of all the nondominated solutions
found for each problem instance by all the algorithms. Then, the RPF is used
to normalize each approximation prior to compute the HV value. While the
HV allows one to numerically compare different algorithms, from the point of
view of a decision maker, it gives no information about the shape of the front.
The empirical attainment function (EAF) [13] has been defined to do so. EAF
graphically displays the expected performance and its variability over multiple
runs of a multi-objective algorithm.
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4.2 Results of the HV Indicator

This section first starts by analyzing the effect of the hybridization of NSGA-II
and MOCell with the FCSOn operator in the HV indicator. To do so, taking the
base setting for the two algorithms described in Sect. 3.1, two different values for
rFCSOn have been evaluated: 0.01 and 0.1, the same as in our previous work [20].
This value is superscripted to NSGA-IIFCSOn and MOCellFCSOn for a better
identification in Table 2, which includes the average HV values and its standard
deviation for both the canonical algorithms and their hybrid versions. A grey
coloured background has been used to highlight the best (highest) value for each
algorithm.

The first clear conclusion drawn from the results is that the hybrid algorithms
are always reaching approximated fronts with higher (better) HV values (no
row for the NSGA-II and MOCell columns are highlighted). This means that
the problem-domain information included in the algorithms has improved the
search performance. The second conclusion is that, as long as the scenarios gain
in density, the gap between the HV value of the canonical algorithm and the
hybrid versions increases, thus resulting to approximated Pareto fronts with
lower power consumption and higher capacity. Indeed, averaging over all the LX,
MX, and HX scenarios results in a HV gap of 0.02, 0.09 and 0.16, respectively.
Figure 1 displays the statistical analysis of the results. It shows that differences
become statistically significant with the size of the instances gets larger.

Table 2. HV results for all algorithms over the 9 scenarios.

NSGA-II NSGA-II0.01FCSOn NSGA-II0.1FCSOn MOCell MOCell0.01FCSOn MOCell0.1FCSOn

LL
0.3327 0.3678 0.3653 0.3413 0.3553 0.3663

±0.0766 ±0.1041 ±0.0990 ±0.0849 ±0.0852 ±0.1008

LM
0.3702 0.4081 0.4084 0.3596 0.3848 0.3945

±0.1064 ±0.1171 ±0.1218 ±0.1015 ±0.1100 ±0.1137

LH
0.4229 0.4642 0.4483 0.4032 0.4263 0.4349

±0.1463 ±0.1496 ±0.1534 ±0.1305 ±0.1457 ±0.1304

ML
0.2541 0.3345 0.3349 0.2677 0.3086 0.3223

±0.0635 ±0.1008 ±0.0989 ±0.0698 ±0.0789 ±0.0909

MM
0.1827 0.3243 0.3211 0.1747 0.2920 0.2953

±0.0949 ±0.1507 ±0.1414 ±0.0934 ±0.1344 ±0.1368

MH
0.2729 0.3721 0.3705 0.2661 0.3411 0.3438

±0.1156 ±0.1633 ±0.1664 ±0.1147 ±0.1500 ±0.1487

HL
0.1527 0.3690 0.3857 0.2497 0.3653 0.3715

±0.0616 ±0.0950 ±0.0921 ±0.0663 ±0.0867 ±0.0922

HM
0.0968 0.3357 0.3536 0.1930 0.3315 0.3315

±0.0676 ±0.1129 ±0.1088 ±0.0795 ±0.1025 ±0.1041

HH
0.1349 0.3302 0.3329 0.2116 0.3278 0.3203

±0.0642 ±0.1219 ±0.1210 ±0.0800 ±0.1089 ±0.1022
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Fig. 1. Statistical analysis of the HV results for each of the 9 scenarios.
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Fig. 2. Attaiment surfaces of NSGA-II and NSGA-IIFCSOn (top), and MOCell and
MOCellFCSon (bottom), for the three scenarios with a lower SBS density.

As to the effect of the application rate of the FCSOn operator, rFCSOn, it
can be observed that, in general (12 out of the 18 cases), the setting with 0.1
has obtained higher HV values. This is a very promising finding, as it opens a
research line to further enhance the search capabilities of the MOEAs for this
problem by promoting the use of the smallest SBSs of the network, which are not
only the more numerous, but also the ones that provide the higher bandwidth.
They are those that also consume the lower power consumption.

Finally, and as it consistently occurred with the search operator devised in
our previous paper, it can also be seen that NSGA-II has better integrated the
newly generated genetic material within the search than MOCell, because in the
initial study on this problem [15], NSGA-II was outperformed by MOCell, and
now the situation with the hybrid version has been reversed, that is, NSGA-
IIFCSOn has always obtained a higher HV value (except for the LL instance).

4.3 Attainment Surfaces

In order to graphically show the actual differences of the approximated Pareto
fronts reached by the hybrid algorithms that uses the FCSOn operator, Figs. 2,
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Fig. 3. Attaiment surfaces of NSGA-II and NSGA-IIFCSOn (top), and MOCell and
MOCellFCSon (bottom), for the three scenarios with a medium SBS density.
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Fig. 4. Attaiment surfaces of NSGA-II and NSGA-IIFCSOn (top), and MOCell and
MOCellFCSon (bottom), for the three scenarios with a high SBS density.

3, and 4 includes the 50%-attainment surfaces of the algorithms for the LX, MX
and HX scenarios, respectively. The figures have been arranged in two rows, with
the surfaces of NSGA-II at the top, and those of MOCell at the bottom. The
figures not only display the attainment surfaces of the canonical algorithms and
the FCSOn-based hybrid versions of the algorithms, but also that of the CSO
operator obtained in [20].

A first common, clear fact in all figures is that the CSO-based hybrid has
always explored better the region of the search space with a smaller number
of active SBSs (lower consumption), that is, the left-hand side of the displayed
graphics. But this is expected, because the CSO operator has been devised only
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targeting this problem objective (recall, it is based on switching off SBSs not
serving any UE). The second conclusion is that the median approximated fronts
of the FCSOn-based hybrids always dominate those of the canonical algorithms,
and improving upon the two objectives (not only in the power consumption, as
the CSO-base one does), thus also reaching solutions with higher capacity. This
is specially relevant in the LL, LH, and HL scenarios.

This visual inspection of the median approximated fronts clearly shows that
the initial working hypothesis of developing an capacity-based operator that also
accounts for the capacity objective has been achieved. Our goal of promoting the
activation of close, high bandwidth femtocells has enabled the hybrid algorithms
to explore a complex region of the search space. It is complex because increasing
the capacity is not an easy task as it requires to minimize interferences (to
increase the SINR), which is done by deactivating SBSs. That is, the FCSOn
operator has reached a proper balance between activation and deactivation of
SBSs. Indeed, we would also like to remark the newly proposed FCSOn operator
has been able to improve the energy consumption objective, activating an smaller
number of SBSs than the canonical algorithms do.

5 Conclusions

This work has addressed the Cell-Switch Off problem in ultra-dense network
deployments required for the fifth generation of telecommunication systems. It
has been formulated as a multi-objective optimization problem with two con-
flicting objectives: minimizing the power consumption measured in terms of the
number of active base stations, and maximizing the capacity provided to the
end users (GBps in downlink). In this context, a new capacity-enhanced local
search operator aiming at promoting the association of users to femtocells, called
FCSOn, is devised. The rational behind this problem-specific knowledge is that
this type of cells are those that provide the higher bandwidth (higher capacity).
The FCSOon operator is built upon a previous operator that also deactivates
all the cells with no users assigned, thus also targeting a reduction of the power
consumption. The integration within NSGA-II and MOCell has resulted in an
enhanced exploration of the search space that has reached solutions that improve
the two problem objectives. It has been shown both numerically, by using the
HV indicator and, graphically and more clearly, with the attainment surfaces. As
future work we plan to better characterize this operator, measuring the impact
of the threshold it requires (set to 1 dB), and also to devise other operators
that keep improving the search of multi-objective metaheuristics. Evaluating
the impact of the operator in other MOEAs will also be considered.
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Abstract. Having many non dominated solutions in bi-objective opti-
mization problems, this paper aims to cluster the Pareto front using
Euclidean distances. The p-center problems, both in the discrete and
continuous versions, become solvable with a dynamic programming algo-
rithm. Having N points, the complexity of clustering is O(KN log N)
(resp. O(KN log2 N)) time and O(N) memory space for the continuous
(resp. discrete) K-center problem for K � 3, and in O(N log N) time
for such 2-center problems. Furthermore, parallel implementations allow
quasi-linear speed-up for the practical applications.

Keywords: Optimization · Clustering algorithms · Dynamic
programming · P-center problems · Bi-objective optimization · Pareto
front

1 Introduction

Multi-objective optimization (MOO) approaches may generate large sets of non
dominated solutions using Pareto dominance [24]. A Pareto Front (PF) denotes
the projection of the non-dominated solutions in the space of the objectives.
For the visualization of the PF, concise information on the shape of solutions
are required for decision makers. One can present clusters, density of points and
representative points in the clusters. Clustering and selecting points in a PF is
also a crucial issue inside MOO population-based metaheuristics [2,26]. In this
paper, we consider the case of two-dimensional (2d) PF, measuring distances in
R

2 using the Euclidean distance. The p-center problems, both in the discrete and
continuous versions, define the clusters for covering the 2d PF with p identical
balls while minimizing the radius of the balls to use.

The p-center problems are NP-complete in general and also for the Euclidean
cases in R

2 [12,14,20,21]. This paper proves that p-center problems in a 2d
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PF are solvable in polynomial time with a Dynamic Programming (DP) algo-
rithm, and discusses properties of the DP algorithm for an efficient implementa-
tion. Section 2 describes the p-center problems in a 2d PF using a unified nota-
tion. In Sect. 3, we discuss related state-of-the-art works. In Sect. 4, intermediate
results are presented, with a specific optimality property. Section 5 details the
proposed DP algorithm including the complexity proofs and discussions on a
parallel implementation. Section 6 summarizes our contributions and discusses
new perspectives. Some elementary proofs are gathered in AppendixA .

2 Problem Statement and Notation

Without loss of generality, we consider a set E = {x1, . . . , xN} of N elements of
R

2, that is a PF obtained by the minimization of two objectives. As noticed in
[9], this is characterized by the following property:

∀ 1 � i �= j � N, xi I xj (1)

where the relations I,≺ for all y = (y1, y2), z = (z1, z2) ∈ R
2 are defined as

follows:

y ≺ z ⇐⇒ y1 < z1 and y2 > z2 (2)
y � z ⇐⇒ y ≺ z or y = z (3)
y I z ⇐⇒ y ≺ z or z ≺ y (4)

We consider the Euclidean norm, defining for all y = (y1, y2), z = (z1, z2) ∈
R

2:
d(y, z) = ||y − z|| =

√
(y1 − z1)2 + (y2 − z2)2 (5)

We define ΠK(E), as the set of all possible partitions of E in K subsets:

ΠK(E) =
{

P ⊂ P(E)
∣∣∣ ∀p, p′ ∈ P, p ∩ p′ = ∅,

⋃
p∈P

p = E and |P | = K
}

(6)

K-center problems are combinatorial optimization problems indexed by ΠK(E):

min
π∈ΠK(E)

max
P∈π

f(P ) (7)

The function f measures for each subset of E a dissimilarity among the points in
the subset. The K-center problems cover the 2d PF with K identical disks while
minimizing the radius of the disks to use. Considering the discrete K-center
problem, the centers of the disks are points of the 2d PF:

∀P ⊂ E, fD
ctr(P ) = min

y∈P
max
x∈P

‖x − y‖ (8)

The continuous K-center problem minimizes the radius of covering disks without
any constraint concerning the center of the covering disks:

∀P ⊂ E, fC
ctr(P ) = min

y∈R2
max
x∈P

‖x − y‖ (9)
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We unify notations with γ ∈ {0, 1}, γ = 0 (resp 1) indicates that the con-
tinuous (resp. discrete) p-center problem is used. The continuous and discrete
K-center problems in a 2d PF are denoted K-γ-CP2dPF. fγ denotes the cluster-
ing measure among fC

ctr, f
D
ctr. The γ notation will proved useful when reporting

the complexities of algorithms.

3 Related Works

3.1 Complexity Results

P-center problems are NP-hard [14,20]. The discrete p-center problem in R
2 with

a Euclidean distance is also NP-hard [21]. To solve discrete p-center problems,
exact algorithms based on Integer Linear Program (ILP) formulations were pro-
posed [6,11]. Exponential exact algorithms were also provided for the continuous
p-center problem [7]. An NO(

√
p)-time algorithm solves the continuous Euclidean

p-center problem in the plane [15]. Specific cases of p-center problems are solv-
able in polynomial time. The continuous 1-center, i.e. the minimum covering ball
problem, has a linear complexity in R

2 [19]. The discrete 1-center is solved in
O(N log N) time using Voronoi diagrams [3]. The continuous and planar 2-center
are solved in randomized expected O(N log2 N) time [23]. The discrete and pla-
nar 2-center are solvable in time O(N4/3 log5 N) [1]. The continuous p-center on
a line, finding k disks with centers on a given line l, is solvable in O(pK log N)
time and O(N) space [16].

3.2 Clustering/Selecting Points in Pareto Frontiers

Selecting representative points in PF has been studied for exact methods and
meta-heuristics in MOO [22]. Clustering the PF is useful for population-based
metaheuristics to design operators such as crossover in evolutionary algorithms
[24,26]. Maximizing the quality of discrete representations of PF was studied
in the Hypervolume Subset Selection (HSS) problem [2,22]. The HSS problem
is NP-hard in dimension 3 [4]. The 2d case is solvable in polynomial time by
DP algorithm in O(KN2) time and O(KN) space [2]. This time complexity was
improved in O(KN + N log N) by [5] and in O(K.(N − K) + N log N) by [17].
Similar results exist when clustering a 2d PF. The 2d p-median and k-medoids
problems are NP hard [20]. The 2d PF cases are solvable in O(N3) time with
DP algorithms [9,10]. The K-means clustering problem is also NP-hard for 2d
problems and K > 1 [18]. Under conjecture, the 2d PF case would be solvable in
O(N3) time with a DP algorithm [8]. We note that an affine 2d PF is a line in
R

2, which is equivalent to 1 dimensional (1d) case. The 1d k-means problem is
polynomially solvable with a DP algorithm in O(KN2) time and O(KN) space
[25], improved in O(KN) time and O(N) space [13]. Continuous K-center in a
affine 2d PF has a complexity in O(NK log N) time and O(N) space [16].
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4 Intermediate Results

4.1 Indexation and Distances in a 2d PF

Relations ≺ and � induce a new indexation of E with monotony properties.
Lemma 1 extends properties of � and < in R.

Lemma 1. � is an order relation, and ≺ is a transitive relation:

∀x, y, z ∈ R
2, x ≺ y and y ≺ z =⇒ x ≺ z (10)

Proposition 1 (Total order). Points (xi) can be indexed such that:

∀(i1, i2) ∈ [[1;N ]]2, i1 < i2 =⇒ xi1 ≺ xi2 (11)
∀(i1, i2) ∈ [[1;N ]]2, i1 � i2 =⇒ xi1 � xi2 (12)

∀(i1, i2, i3) ∈ [[1;N ]]3, i1 � i2 < i3 =⇒ d(xi1 , xi2) < d(xi1 , xi3) (13)
∀(i1, i2, i3) ∈ [[1;N ]]3, i1 < i2 � i3 =⇒ d(xi2 , xi3) < d(xi1 , xi3) (14)

The complexity of the sorting re-indexation is in O(N log N).

Proof. We index E such that the first coordinate is increasing. This sorting has
a complexity in O(N log N). Proving it implies (11) and (13), (12) is implied by
(11) and proving (14) is similar with (13). Let (i1, i2) ∈ [[1;N ]]2, with i1 < i2. We
have x1

i1
< x1

i2
with the new indexation. xi1Ixi2 implies x2

i1
> x2

i2
and xi1 ≺ xi2 ,

which proves (11). Let i1 < i2 < i3. We note xi1 = (x1
i1

, x2
i1

), xi2 = (x1
i2

, x2
i2

)
and xi3 = (x1

i3
, x2

i3
) . (11) implies x1

i1
< x1

i2
< x1

i3
and x2

i1
> x2

i2
> x2

i3
.

Hence, (x1
i1

− x1
i2

)2 < (x1
i1

− x1
i3

)2 and (x2
i1

− x2
i2

)2 < (x2
i1

− x2
i3

)2.
d(xi1 , xi2)

2 = (x1
i1

− x1
i2

)2 + (x2
i1

− x2
i2

)2 < d(xi1 , xi3)
2, which proves (13). �

4.2 1-Center in a 2d PF

Proposition 2 proves that the 1-center problems (i.e. computing the costs fγ(E))
has a linear complexity. It uses the Lemma 2 proven in AppendixA.

Lemma 2. Let P ⊂ E, P �= ∅. Let i � i′ such that xi, xi′ ∈ P and for all
j ∈ [[i, i′]], xi � xj � xi′ .

fC
ctr(P ) =

1
2
‖xi − xi′‖ (15)

fD
ctr(P ) = min

j∈[[i,i′]],xj∈P
max (‖xj − xi‖, ‖xj − xi′‖) (16)

Proposition 2. Let γ ∈ {0, 1}. 1-γ-CP2dPF has a complexity in O(N) time
using an additional memory space in O(1).

Proof. Using Eqs. (15) or (16), fγ(E) is computed at most in O(N) time once
the extreme elements have been computed for the order relation ≺. Computing
these extreme points is also in O(N) time, with one traversal of E �.
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4.3 Optimality of Interval Clustering

Proposition 3 gives a common optimality property: interval clustering is optimal.

Lemma 3. Let γ ∈ {0, 1}. Let P ⊂ P ′ ⊂ E. We have fγ(P ) � fγ(P ′).

Proof. Let i, j (resp i′, j′) the minimal and maximal indexes of points of P
(resp P ′). Using Proposition 1 and Lemma 2, fC

ctr(P ) � fC
ctr(P

′) is easy to prove,
and using: fD

ctr(P ) = mink∈[[i,j]],xk∈P max (‖xk − xi‖, ‖xj − xk‖), we have:
fD

ctr(P ) � mink∈[[i′,j′]],xk∈P ′ max (‖xk − xi‖, ‖xj − xk‖)
fD

ctr(P ) � mink∈[[i′,j′]],xk∈P ′ max (‖xk − xi′‖, ‖xj′ − xk‖) = fD
ctr(P

′) �

Proposition 3. Let γ ∈ {0, 1}, let K ∈ N
∗, let E = (xi) a 2d PF, indexed

following Proposition 1. There exists optimal solutions of K-γ-CP2dPF using
only clusters on the shape Ci,i′ = {xj}j∈[[i,i′]] = {x ∈ E | ∃j ∈ [[i, i′]], x = xj}.
Proof. We prove the result by induction on K ∈ N

∗. For K = 1, the opti-
mal solution is E = {xj}j∈[[1,N ]]. Let us suppose K > 1 and the Induction
Hypothesis (IH): Proposition 3 is true for (K − 1)-γ-CP2dPF. Let π ∈ ΠK(E)
an optimal solution of K-γ-CP2dPF, let OPT be the optimal cost. We denote
π = {C1, . . . , CK}, CK being the cluster of xN . For all k ∈ [[1,K]], fγ(Ck) � OPT .
Let i the minimal index such that xi ∈ CK . We consider the subsets C′

K =
{xj}j∈[[i,N ]] and C′

k = Ck ∩ {xj}j∈[[1,i−1]] for all k ∈ [[1,K − 1]]. {C′
1, . . . , C′

K−1} is
a partition of E′ = {xj}j∈[[1,i−1]], and {C′

1, . . . , C′
K} is a partition of E. For all

k ∈ [[1,K − 1]], C′
k ⊂ Ck so that fγ(C′

k) � fγ(Ck) � OPT (Lemma 3). C′
1, . . . , C′

K

is a partition of E, and maxk∈[[1,K]] f(C′
k) � OPT . Hence, C′

1, . . . , C′
K−1 is an

optimal solution of (K-1)-γ-CP2dPF applied to E′. Let OPT ′ be the optimal
cost, we have OPT ′ � maxk∈[[1,K−1]] fγ(C′

k) � OPT . Applying IH for (K-1)-γ-
CP2dPF to E′, we have C′′

1 , . . . , C′′
K−1 an optimal solution of (K-1)-γ-CP2dPF

in E′ on the shape Ci,i′ = {xj}j∈[[i,i′]] = {x ∈ E′ | ∃j ∈ [[i, i′]], x = xj}. For all
k ∈ [[1,K − 1]], fγ(C′′

k ) � OPT ′ � OPT . C′′
1 , . . . , C′′

K−1, C′
K is an optimal solution

of K-γ-CP2dPF in E using only clusters Ci,i′ . �.

Algorithm 1. Computation of fD
ctr(Ci,i′)

input: indexes i < i′

Define idInf = i, vInf = ||xi − xi′ ||, idSup = i′, vSup = ||xi − xi′ ||
while idSup − idInf � 2

Compute idMid =
⌊

i+i′
2

⌋
, temp = fi,i′(idMid), temp2 = fi,i′(idMid + 1)

if temp < temp2 : set idSup = idMid, vSup = temp
else if temp > temp2 : set idInf = 1 + idMid, vInf = temp2
else return temp = temp2

end while
return min(vInf, vSup)
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4.4 Computation of Cluster Costs

This section computes efficiently the costs of clusters Ci,i′ used in Proposition 3.
Once the PF E is indexed using Proposition 1, (15) computes a cluster cost
fC

ctr(Ci,i′) in O(1). Using (16), cluster costs fD
ctr(Ci,i′) can be computed in O(i′−i)

time for all i < i′. Lemma 4, proven in AppendixA, and Proposition 4 allows to
compute fD

ctr(Ci,i′) in O(log(i′ − i)) time once E is indexed using Proposition 1.

Lemma 4. Let (i, i′) with i < i′. fi,i′ : j ∈ [[i, i′]] −→ max(‖xj − xi‖,
‖xj − xi′‖) is strictly decreasing in a [[i, l]], and then is strictly increasing for
j ∈ [[l + 1, i′]]

Proposition 4. Let E = {x1, . . . , xN} be N points of R
2, such that for all

i �= j, xi ≺ xj. Computing cost fD
ctr(Ci,i′) for any cluster Ci,i′ has a complexity

in O(log(i′ − i)) time using Algorithm 1.

Proof. Let i < i′. Algorithm 1 uses Lemma 4 to have a loop invariant: the
existence of a minimal solution of fi,i′(j∗) with idInf � j∗ � idSup. Algorithm
1 is a dichotomic search, finding the center and computing the cost of Ci,i′ using
at most log(i′ − i) operations in O(1). �

Algorithm 2. K-center clustering in a 2dPF using a general DP algorithm

Input: N points of R
2, E = {x1, . . . , xN} a 2d PF, γ ∈ {0, 1}, K ∈ N − {0, 1}.

initialize matrix C(γ) with C
(γ)
k,i = 0 for all i ∈ [[1; N ]], k ∈ [[1; K − 1]]

sort E following the order of Proposition 1
compute Ci,1 = fγ(C1,i) for all i ∈ [[1; N ]]
for k = 2 to K − 1:

for i = 2 to N − 1:

set C
(γ)
k,i = minj∈[[2,i]] max(C

(γ)
k−1,j−1, fγ(Cj,i))

end for
end for

set OPT = minj∈[[2,N ]] max(C
(γ)
K−1,j−1, fγ(Cj,N ))

set i = j = argminj∈[[2,N ]] max(C
(γ)
K−1,j−1, fγ(Cj,N ))

initialize P = {[[j; N ]]}, a set of sub-intervals of [[1; N ]].
for k = K to 2 with increment k ← k − 1 :

find j ∈ [[1, i]] such that max(C
(γ)
k−1,j−1, fγ(Cj,i)) is minimal

add [[j, i]] in P
i = j − 1

end for
return OPT the optimal cost and the partition P ∪ [[1, i]]
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5 DP Algorithm and Complexity Results

5.1 General DP Algorithm

Proposition 3 implies a common DP algorithm for p-center problems. Defining
C

(γ)
k,i as the optimal cost of k-γ-CP2dPF clustering with k cluster among points

[[1, i]] for all i ∈ [[1, N ]] and k ∈ [[1,K]]. The case k = 1 is given by:

∀i ∈ [[1, N ]], C
(γ)
1,i = fγ(C1,i) (17)

We have the following induction relation, defining C
(γ)
k,0 = 0 for all k � 0:

∀i ∈ [[1, N ]], ∀k ∈ [[2,K]], C
(γ)
k,i = min

j∈[[1,i]]
max(C(γ)

k−1,j−1, fγ(Cj,i)) (18)

Algorithm 2 uses these relations to compute the optimal values of C
(γ)
k,i . C

(γ)
K,N is

the optimal solution of K-γ-CP2dPF, a backtracking algorithm allows to com-
pute the optimal partitions.

5.2 Computing the Lines of the DP Matrix

In Algorithm 2, the main issue for the time complexity is to compute efficiently
C

(γ)
k,i = minj∈[[2,i]] max(C(γ)

k−1,j−1, fγ(Cj,i)). Lemma 5 and Proposition 5 allows to

compute each line of C
(γ)
k,i with a complexity in O(N log N) time.

Lemma 5. Let γ ∈ {0, 1}, i ∈ [[4, N ]], k ∈ [[2,K]]. The application gi,k : j ∈
[[2, i]] −→ max(C(γ)

k−1,j−1, fγ(Cj,i)). gi,k is firstly decreasing and then is increasing.

Proof. Having gi,k(3) < gi,k(2) and gi,k(N − 1) < gi,k(N), the result is given
by the monotone properties: j ∈ [[1, i]] −→ fγ(Cj,i) is decreasing with Lemma 3,
j ∈ [[1, N ]] −→ C

(γ)
k,j is increasing for all k, as proven below for k � 2, the

case k = 1 is implied by the Lemma 3. Let k ∈ [[2,K]] and j ∈ [[2, N ]]. Let
C1, . . . , Ck an optimal solution of k-γ-CP2dPF among points (xl)l∈[[1,j]], its cost
is C

(γ)
k,j . We index clusters such that xj ∈ Ck. For all k′ ∈ [[1, k]], f(Ck′) � C

(γ)
k,j .

{C′
1, . . . , C′

k} = {C1, . . . , Ck−1, Ck − xk} is a partition of (xl)l∈[[1,j−1]], so that
C

(γ)
k,j−1 � maxk′∈[[1,k]] fγ(C′

k′). With Lemma 3, fγ(C′
k′) = fγ(Ck − xk) � fγ(Ck).

Hence, C
(γ)
k,j−1 � maxk′∈[[1,k]] fγ(C′

k′) � C
(γ)
k,j . �

Proposition 5 (Line computation). Let γ ∈ {0, 1}, i ∈ [[2, N ]], k ∈ [[2,K]].
Having computed the values C

(γ)
k−1;j, C

(γ)
k,i = minj∈[[2,i]] max(C(γ)

k−1,j−1fγ(Cj,i))
is computed calling O(log i) cost computations fγ(Cj,i), for a complexity in
O(logγ i) time. Once the line of the DP matrix C

(γ)
k−1,j is computed for all

j ∈ [[1, N ]], the line C
(γ)
k,j can be computed in O(N log1+γ N) time and O(N)

space.

Proof. Similarly to Algorithm 1, Algorithm 3 is a dichotomic search based on
Lemma 5. It calls O(log i) cost computations fγ(Cj,i). �
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Algorithm 3. Dichotomic computation of minj∈[[2,i]] max(C
(γ)
k−1,j−1, fγ(Cj,i))

input: indexes i ∈ [[2, N ]], k ∈ [[2, K]], γ ∈ {0, 1}, vj = Cj,k−1 for j ∈ [[1, i − 1]].

define idInf = 2, vInf = fγ(C2,i),
define idSup = i, vSup = vi−1,
while idSup − idInf > 2 :

Compute idMid =
⌊

i+i′
2

⌋
, temp = gi,k(idMid), temp2 = gi,k(idMid + 1)

if temp < temp2 : idSup = idMid, vSup = temp
else : idInf = 1 + idMid, vInf = temp2

end while
return min(vInf, vSup)

5.3 Linear Memory Consumption

Storing the whole matrix C
(γ)
k,n in Algorithm 2 requires to use at least a memory

space in O(KN). Actually, the DP matrix can be computed line by line, with
k increasing. The computation of line k + 1 requires the line k and cost compu-
tations requiring O(1) additional memory space. In the DP matrix, deleting the
line k−1 once the line k is completed allows to have 2N elements in the memory.
It allows to compute the optimal value C

(γ)
K,N using O(N) memory space.

The backtracking operations, as written in Algorithm 2, require the whole
matrix C

(γ)
k,n. Algorithm 4 provides an alternative backtrack with a complexity

of O(N) memory space and O(KN log N) time, as proven in Proposition 6.

Lemma 6. Let K ∈ N,K � 2. The indexes given by Algorithm 4 are lower
bounds of the indexes of any optimal solution of K-γ-CP2dPF:
Denoting [[1, i1]], [[i1 + 1, i2]], . . . , [[iK−1 + 1, N ]] the indexes given by Algorithm 4,
and [[1, i′1]], [[i

′
1 + 1, i′2]], . . . , [[i

′
K−1 + 1, N ]] the indexes of an optimal solution of

K-γ-CP2dPF, we have for all k ∈ [[1,K − 1]], ik � i′k.

Proof. The proof uses a decreasing induction on k. The initialisation case k =
K − 1 is given by the first step of Algorithm 4, and that j ∈ [[1, N ]] −→ fγ(Cj,N )
is decreasing with Lemma 3. Having for a given k, i′k � ik, ik−1 � i′k−1 is implied
by Proposition 1 and d(zik , zik−1−1) > OPT . �

Proposition 6. Knowing the optimal cost of K-γ-CP2dPF, Algorithm 4 com-
putes an optimal partition in O(N log N) time using O(1) additional space.

Proof. Let OPT be the optimal cost of K-γ-CP2dPF. Let [[1, i1]], [[i1 +
1, i2]], . . . , [[iK−1+1, N ]] be the indexes given by Algorithm 4, By construction, all
the clusters Cik+1,ik+1 for all k > 1 verify fγ(C) � OPT . We have to prove that
fγ(C1,i1) � OPT to ensure that Algorithm 4 returns an optimal solution. Let
[[1, i′1]], [[i

′
1 +1, i′2]], . . . , [[i

′
K−1 +1, N ]] be the indexes defining an optimal solution.

Lemma 6 implies that i1 � i′1, and Lemma 3 implies fγ(C1,i1) � fγ(C1,i′
1
) � OPT .

Analyzing the complexity, Algorithm 4 calls at most (K + N) � 2N times the
function fγ , the complexity is in O(N logγ N) time. �
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Algorithm 4. Backtracking algorithm using O(N) memory space

Input: - N points of R
2 , γ ∈ {0, 1}, K ∈ N − {0, 1};

- E = {x1, . . . , xN} a 2d PF indexed with Proposition 1;
- OPT , the optimal cost of K-γ-CP2dPF.

initialize maxId = N , minId = N , P = ∅, a set of sub-intervals of [[1; N ]].
for k = K to 2 with increment k ← k − 1

set minId = maxId
while fγ(CminId−1,maxId)) � OPT do minId = minId − 1 end while
add [[minId, maxId]] in P
set maxId = minId − 1

end for
return [[1, maxId]] ∪ P

Remark. Actually, a dichotomic search can compute the largest cluster with
an extremity given and a bounded cost, with a complexity in O(K log1+γ N). To
avoid the case K = O(N) and γ = 1, Algorithm 4 is designed in O(N log N) time
without distinguishing the cases, which is sufficient for the complexity results.

5.4 Complexity Results

Theorem 1. Let γ ∈ {0, 1}. K-γ-CP2dPF is solvable in polynomial time. 1-
γ-CP2dPF is solvable in O(N) time with an additional memory space in O(1).
2-γ-CP2dPF is solvable in O(N log N) time and O(N) space. For K � 2, K-γ-
CP2dPF is solvable in O(KN log1+γ N) time and O(N) space.

Proof. The induction formula (18) uses only values C
(γ)
j,i with j < k in Algo-

rithm 3. C
(γ)
k,N is at the end of each loop in k the optimal value of the k-center

clustering among the N points of E. Proposition 6 ensures that Algorithm 4
gives an optimal partition. Let us analyze the complexity. We suppose K � 2,
the case K = 1 is given by Proposition 2. The space complexity is in O(N) using
Sect. 5.3. Indexing E with Proposition 1 has a time complexity in O(N log N).
Computing the first line of the DP matrix costs has also a time complexity
at most in O(N log N). With Proposition 5, the construction of the lines of
the DP matrix C

(γ)
k,i for k ∈ [[2,K − 1]] requires N × (K − 2) computations

of minj∈[[1,i]] C
(γ)
k−1,j−1 + fγ(Cj,i), which are in O(log1+γ N) time, the complex-

ity of this phase is in O((K − 2)N log1+γ N). With Proposition 6, backtrack-
ing operations are also in O(N log N) time. Finally, the time complexity is in
O(N log N + (K − 2)N log1+γ N) for K-γ-CP2dPF. The case K = 2 induces a
complexity in O(N log N) time, whereas cases K � 3 imply a time complexity
in O(KN log1+γ N). �

5.5 Towards a Parallel Implementation

The time complexity in O(NK log1+γ N) is already efficient for large scale com-
putations of k-γ-CP2dPF with a sequential implementation. The DP algorithm
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has also good properties for a parallel implementation. Computing the DP matrix
line by line with Algorithm 3 requires N − 1 independent computations to com-
pute each line from the previous one. A parallel implementation of Algorithm 3
is straightforward using OpenMP or Message Passing Interface (MPI). However,
the logarithmic search of Algorithm 1 is a bottleneck for a fine-grained paral-
lelization with General Purpose Graphical Processing Units (GPGPU). Such
parallel implementation would implement a O(KN2) time version of Algorithm
2, which may be efficient dealing with a very large number of processes using
GPU computing. The improved O(N) time complexity proved in this paper for
Algorithm 1 is also a good property for GPU computing.

The initial sorting and the computation of the first line of the DP matrix,
running both in O(N log N) time, can also be parallelized. It may have an influ-
ence on the total computation time for small values of K when the time for the
sorting initialization is comparable to the time to run Algorithm 3. Algorithm 4
is sequential, but with a low complexity, it is not crucial to parallelize this step.

6 Conclusion and Perspectives

This paper analyzed the properties of p-center problems in the special case of
a discrete set of non-dominated points in a 2d Euclidean space. A common
optimal property is proven, allowing a resolution using a polynomial DP algo-
rithm. The complexity is in O(KN log N) time for the continuous p-center and
in O(KN log2 N) time for the discrete p-center, with a space complexity in
O(N) for both cases. The discrete 2-center problem is also proven solvable in
O(N log N) time, 1-center problems are solvable in O(N) time, it improves spe-
cific results known for planar 1-center and 2-center problems.

The proposed DP algorithms can also be efficiently parallelized to speed up
the computational time. Indeed many induced sub-problems are independent,
parallel implementations allow quasi-linear speed-up in Algorithm 2. A coarse-
grained shared-memory or distributed implementation is straightforward. A fine-
grained parallelization using GPGPU is also possible, with a O(KN2) time ver-
sion of Algorithm 2, which may be efficient in practice dealing with a very large
number of processes using GPU computing.

These results give promising perspectives. Clustering a (2d) PF is embed-
ded into MOO meta-heuristics [2,26]. For instance, clustering Pareto sets has
an application for genetic algorithms to select diversified solutions for cross-over
and mutation operators [26]. In such applications, the response time for clus-
tering must be very short. The complexity and the parallelization possibilities
of Algorithm 2 are relevant for this practical application. Furthermore, faster
computations are also possible with heuristics based on Algorithm 2. Given that
p-center problems in a 3d PF are NP hard problems, we are also investigating
the design of p-center meta-heuristics for 3d PFs.



Clustering a 2d Pareto Front 189

Appendix A: Proof of the Lemmas 2 and 4

Proof of Lemma 2: ∀k ∈ [[i, i′]], ‖xj − xk‖ � max (‖xj − xi‖, ‖xj − xi‖), using
Proposition 1. Then:
fD
ctr(P ) = minj∈[[i,i′]],xj∈P max

(
max

(‖xj − xi‖, ‖xj − xi‖
)
, maxk∈[[i,i′]] ‖xj − xk‖)

fD
ctr(P ) = minj∈[[i,i′]],xj∈P max (‖xj − xi‖, ‖xj − xi′‖). It proves (16). We prove

now a stronger result than (15): the application x ∈ R
2 −→ maxp∈P ‖x−p‖ ∈ R

as a unique minimum reached for x = xi+xj

2 :

∀x ∈ R
2 −

{
xi + xj

2

}
, max

p∈P
‖x − p‖ >

1
2
‖xi − xj‖ = max

p∈P
‖xi + xj

2
− p‖ (19)

We prove (19) analytically, denoting diam(P ) = 1
2‖xi − xj‖. We firstly use the

coordinates defining as origin the point O = xi+xj

2 and that xi = (− 1
2diam(P ), 0)

and xj = (12diam(P ), 0). Let x a point in R
2 and (x1, x2) its coordinates. We

minimize maxp∈P d(x, xp) distinguishing the cases:
if x1 > 0, d(x, xi)2 = (x1+ 1

2diam(P ))2+x2
2 � (x1+ 1

2diam(P ))2 > ( 12diam(P ))2

if x1 < 0, d(x, xj)2 = (x1− 1
2diam(P ))2+x2

2 � (x1− 1
2diam(P ))2 > ( 12diam(P ))2

if x1 = 0 and x2 �= 0, d(x, xi)2 = (12diam(P ))2 + x2
2 > ( 12diam(P ))2

In these three sub-cases, maxp∈P d(x, xp) � d(x, xi) > 1
2diam(P ). The three

cases allow to reach any point of R
2 except x0 = xi+xj

2 . To prove the last equality,
we use the coordinates such that xi = (− 1

2diam(P ); 0) and xj = (12diam(P ); 0).
The origin x0 has coordinates ( 1

2
√
2
diam(P ), 1

2
√
2
diam(P )). Let x = (x1, x2) ∈

P , such that x �= xi, xj . Thus xi ≺ x ≺ xj . The Pareto dominance induces
0 � x1, x2 � 1√

2
diam(P ). d(x, x0)2 = (x1− 1

2
√
2
diam(P ))2+(x2− 1

2
√
2
diam(P ))2

d(x, x0)2 � ( 1
2
√
2
diam(P ))2 + ( 1

2
√
2
diam(P ))2 = 21

8diam(P ))2

d(x, x0) � 1
2diam(P ), which proves (19) as d(x0, xi) = d(x0, xj) = 1

2diam(P ). �
Proof of Lemma 4: Let i < i′. We define gi,i′,j , hi,i′,j with:
gi,i′ : j ∈ [[i, i′]] −→ ‖xj − xi‖ and hi,i′ : j ∈ [[i, i′]] −→ ‖xj − xi′‖
Using Proposition 1, g is strictly decreasing and h is strictly increasing.
Let A = {j ∈ [[i, i′]]|∀m ∈ [[i, j]]gi,i′(m) < hi,i′(m)}. gi,i′(i) = 0 and hi,i′(i) =
‖xi′−xi‖ > 0 so that i ∈ A, A �= ∅. We note l = max A. hi,i′(i′) = 0 and gi,i′(i′) =
‖xi′ −xi‖ > 0 so that i′ /∈ A and l < i′. Let j ∈ [[i, l−1]]. gi,i′(j) < gi,i′(j+1) and
hi,i′,j(j + 1) < hi,i′(j). fi,i′(j + 1) = max (gi,i′(j + 1), hi,i′(j + 1)) = hi,i(j + 1)
and fi,i′(j) = max(gi,i′(j), hi,i′(j)) = hi,i(j) as j, j +1 ∈ A. Hence, fi,i′(j +1) =
hi,i′(j + 1) < hi,i′(j) = fi,i′(j). It proves that fi,i′ is strictly decreasing in [[i, l]].
l + 1 /∈ A and gi,i′(l + 1) > hi,i′(l + 1) to be coherent with l = max A. Let j ∈
[[l+1, i′ −1]]. j+1 > j � l+1 so gi,i′(j+1) > gi,i′(j) � gi,i′(l+1) > hi,i′(l+1) �
hi,i′(j) > hi,i′(j+1). It implies fi,i′(j+1) = gi,i′(j+1) and fi,i′(j) = gi,i′(j) and
fi,i′(j+1) < fi,i′(j). gi,i′(j) < gi,i′(j+1) and hi,i′,j(j+1) < hi,i′(j). fi,i′(j+1) =
max(gi,i′(j + 1), hi,i′(j + 1)) = gi,i(j + 1) and fi,i′(j) = max(gi,i′(j), hi,i′(j)) =
hi,i(j) as j, j + 1 ∈ A. Hence, fi,i′(j + 1) = hi,i′(j + 1) > hi,i′(j) = fi,i′(j), fi,i′

is strictly increasing in [[l + 1, i′]]. �



190 N. Dupin et al.

References

1. Agarwal, P., Sharir, M., Welzl, E.: The discrete 2-center problem. Discret. Comput.
Geom. 20(3), 287–305 (1998)

2. Auger, A., Bader, J., Brockhoff, D., Zitzler, E.: Investigating and exploiting the
bias of the weighted hypervolume to articulate user preferences. In: Proceedings of
GECCO 2009, pp. 563–570. ACM (2009)

3. Brass, P., Knauer, C., Na, H., Shin, C., Vigneron, A.: Computing k-centers on a
line. arXiv preprint arXiv:0902.3282 (2009)

4. Bringmann, K., Cabello, S., Emmerich, M.: Maximum volume subset selection for
anchored boxes. arXiv preprint arXiv:1803.00849 (2018)

5. Bringmann, K., Friedrich, T., Klitzke, P.: Two-dimensional subset selection for
hypervolume and epsilon-indicator. In: Annual Conference on Genetic and Evolu-
tionary Computation, pp. 589–596. ACM (2014)

6. Calik, H., Tansel, B.: Double bound method for solving the p-center location prob-
lem. Comput. Oper. Res. 40(12), 2991–2999 (2013)

7. Drezner, Z.: The p-centre problem - heuristic and optimal algorithms. J. Oper.
Res. Soc. 35(8), 741–748 (1984)

8. Dupin, N., Nielsen, F., Talbi, E.: Dynamic programming heuristic for k-means
clustering among a 2-dimensional pareto frontier. In: 7th International Conference
on Metaheuristics and Nature Inspired Computing, pp. 1–8 (2018)

9. Dupin, N., Nielsen, F., Talbi, E.-G.: K-medoids clustering is solvable in polynomial
time for a 2d pareto front. In: Le Thi, H.A., Le, H.M., Pham Dinh, T. (eds.)
WCGO 2019. AISC, vol. 991, pp. 790–799. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-21803-4 79

10. Dupin, N., Talbi, E.: Clustering in a 2-dimensional pareto front: p-median and
p-center are solvable in polynomial time. arXiv preprint arXiv:1806.02098 (2018)
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Abstract. Security is one of the most challenging issues facing the Internet of
Things. One of the most usual architecture for IoT ecosystems has three layers
(Acquisition, Networks and Applications), and provides the security to the dif-
ferent elements of the IoT ecosystems through specific technology or techniques,
available in the different layers. However, the deployment of security technol-
ogy at each layer complicates the management and maintainability of the security
credentials increasing the risk of information leak, greater manual intervention
and complicates the maintainability of consistency of the sensitive data. In this
paper we propose a new architecture model, where a fourth security layer has
been added, containing all the security technology traditionally delegated to the
other layers, removing them from other layers. This new model is supported by
the widespread use of Digital Objects, covering all aspects including physical
components, processes and sensed data.

Keywords: Internet of Things (IoT) · Ecosystems · Digital object architecture ·
Security · Distributed

1 Introduction

The Internet of Things (IoT) technology will transform the way people interact with
their environment, enabling the gathering and management of large volumes of data in
order to transform it into useful information and knowledge. This involves cutting-edge
technologies (Low-Power Wide-Area Networks, high-speed communication protocols,
sensors and actuators) to support different IoT applications in different fields such as
smart industry, smart energy and smart buildings, among others [1].

These different IoT applications are developed, usually, within an IoT ecosystem.
We can define an IoT ecosystem as a set of tools or platforms that provide support for
reusable software, components or modules to develop IoT applications, deploy sensor
networks or Low Power Wide Area Networks (LPWANs), exchange of data between
end-users and IoT devices through cloud services, use of standards, etc. [2].

IoT architecture models are enablers for IoT ecosystems, where through the different
architecture layers, the different elements of the IoT ecosystems are organised. In the
literature, such IoT architectures have been proposed [3]. An architecture model that is
particularly popular is that described in [4], which can be divided into three different
layers:
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• Acquisition Layer (ACL): This layer is related to the sensing equipment, in order to
acquire data from the environment (e.g. get temperature from a sensor) or act in the
environment (e.g. turn on a light). Sensors, actuators or RFID badge readers belong
to this layer.

• Network Layer (NWL): Themiddle layer contains the different network services and
technology support, in order to enable the data transmission between acquisition layer
and application layer. Cloud computing platforms, network servers, IoT platforms or
(mobile) communications are in this layer.

• Application Layer (APL): The top layer designed to support, develop and deploy
IoT applications in the different specific areas (m-Health, smart buildings, logistic
monitoring). IoT applications or data storage are in this layer.

Figure 1 shows an example of an IoT ecosystem supported by the basic architecture
model for IoT, where the different security mechanisms have been used.

Fig. 1. IoT ecosystems supported by IoT architecture with security constraints.

Although this architecture provides several benefits for IoT ecosystems, there are also
many technical and non-technical challenges to address, such as scalability, connectivity,
standards definition, compatibility, privacy and, surely, security [5].

In terms of security, overall security requirements of the IoT is, in fact, the integration
of the different security requirements related to information acquisition, information
transmission and information processing:

• The information acquisition (supported byACL) is done through securitymechanisms
provided by sensors/actuators or IoT devices, in order to ensure that the information
is valid and available to the requesting entity. Some examples of security mechanisms
are security tokens or passwords to interact with IoT devices, private addresses to
access a specific sensor or embedded security implemented in the hardware (physical
security).

• The information transmission (supported by NWL) between IoT devices and IoT
applications uses cryptographic and secure protocols such as TLS (Transport Layer
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Security) and secure Radio Frequency (RF). This is done to guarantee the confiden-
tiality, integrity or authenticity of the data and information (sender, receiver, size,
payload, timestamp) in the transmission process.

• The information processing (supported by APL) is important to ensure the privacy
and confidentiality of the storage information. This is done through secure APIs,
interfaces supported by symmetric (AES) and asymmetric (RSA, DSA) techniques,
and possibly flags to indicate what subsequent processing is permissible.

The deployment of an IoT ecosystem is not an automated process. In fact, the user
intervention is required in many different tasks: deployment of platforms, development
of IoT applications, deployment of sensor networks, gateways, servers, end-users sign-on
(username/password), and set up of credentials for the authorisation of each user.

For instance, in the deployment of a LPWAN (sensors, actuators, IoT devices,
gateways), IoT programmers/developers set up manually the network, with the aim
to exchange information between devices and end-user’s applications in a secure way.
This procedure involves the implementation of the source code needed (e.g. sensors pro-
gramming, data processing methods, enable data transmission), connecting and deploy-
ing physically the devices and setting up security parameters required (e.g. tokens, pass-
words, addresses). Furthermore, this manual management of security-related parameters
is involved in many tasks, not just in the deployment of a LPWANs, such as the use of
third-party tokens used in IoT applications or themanagement of credentials to authorise
or revoke permissions.

Although security is provided by secure technologies (e.g. protocols, cryptographic
systems, etc.) deployed in the different layers of the architecture, IoT ecosystems are
not even as safe as they should be. The technology commonly presented in an IoT
ecosystem still has security gaps and threats, such as data tampering, spoofing, man-in-
the-middle denial of service attacks and the insecure operation of servers and operating
systems, amongothers [6].On theother hand, themanualmanagement of security-related
parameters in IoT ecosystems such as security tokens, passwords or private addresses
can cause additional security gaps.

New technical upgrades are released to address and solve the security vulnerabilities
related to the use of secure technologies. However, human errors derived from user
interaction is even more crucial and are not always addressed explicitly, causing a big
security issue not just in IoT, also in any kind of system [7].

The release of security tokens, the loss of devices where sensitive values are stored
or the management of sensitive data in a non-encrypted form facilitate malicious users
to perform attacks in the IoT ecosystem e.g., stealing information, enabling/disabling
sensors or, in short, handling or bring down. For instance, it is worth mentioning the
recent Dyn (2016) where thousands of Internet of Things (IoT) devices were compro-
mised bringing down the DynDNS company server interruption DNS services of famous
applications like Twitter or Netflix [8].

In this paper, we proposed a new architecture model based on a distributed approach
to ease the management of security credentials, minimising user intervention as regards
to the sensitive information in the deployment and implementation of IoT ecosystems.

To accomplish with the previous requirements, our proposal adds a fourth Security
Layer to the basic architecture model for IoT. This layer concentrate and manage the
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different security issues presented in the rest of layers that require user intervention. This
new security layer is supported by the Handle System, a Secured Identity Data Manage-
ment System (SIDMS) that provides secure mechanisms (authentication, authorisation)
for digital objects.

In this section, the introduction and motivation of the work have been presented.
The remainder of the paper is organized as follows. The related work is presented in
Sect. 2. Section 3 presents our proposal, the new architecture model, as well as the start-
up (implementation), addressing the security constraints, features and benefits. Finally,
Sect. 4 summarises our conclusions and outlines future work.

2 Related Work

Doing a systematic review of literature, the research works that focus on secure IoT
architectures are organised into two different categories: (1) keeping the original IoT
architecture model but improving the technology on each layer or, (2) proposing a new
architecture model with additional security features.

In the first category are those that add additional safety techniques at each layer
(Acquisition, Network, Application), replacing old cryptographic techniques for new
ones or insecure protocols by their secure version, more suitable to IoT scenarios at the
relevant layer.

For instance, one project [9] uses DTLS (Datagram Transport Layer Security) to
enhance the security of the data transmission. Other projects [10] add other crypto-
graphic techniques such as ECC (Elliptic Curve Cryptography) to move the authorisa-
tion into smart things themselves, or use PKI (Public Key Encryption) instead symmetric
techniques like AES.

In the second category are the projects proposing to extend the basic architecture
model by adding a fourth security layer with new security features, in order to enhance
the security of the IoT ecosystems supported by the architecture.

For instance, the project presented in [11] proposes a new architectural model, with
a new layer to provide different security mechanisms for the different layers of the basic
architecture (e.g. ECC at acquisition layer, channel encryption at the network layer and
database security services at application layer).

Other proposals are much more sophisticated, such as that presented in [12], which
proposes a new architecturemodelwith new layers for security. This proposal contributes
with security aspects, such as advice to set up secure sensors in almost inaccessible
places (protected geolocation) or the recommendation to use international policies and
standards.

Both types of categories have benefits and drawbacks, but in both cases, the use
of new technology (through the original layers or in a new one) involves the use of
new secure tokens or sensitive values, which are required by the different cryptographic
techniques or protocols. Usually, the added complexity increases the number of sensitive
data parameters, giving increasing risk of errors – particularly if there is user intervention.

Furthermore, the storage of sensitive data is usually supported by traditional DBMS
(DatabaseManagement Systems), with ad-hoc authentication and authorisation systems.
It is essential to secure it.
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3 Secure Architecture for IoT Ecosystems

In this section,we introduce the proposed security architecturemodel for IoTecosystems,
the principles on which it is based and an implementation using dedicated technology.

3.1 Architecture Principles

The following principles have guided our design:

• In an IoT ecosystem, physical as well as digital elements have sensitive elements
related to security (e.g. a sensor has a security and possibly an authentication token, a
user has a username/password, some elements require authorisation). Each physical
and digital element will be represented and managed as Digital Object (DO), that is,
a well identified resource through an identifier with a specific structure and features
[13].

• Each DO that represents an IoT element contains a set of well-defined sensitive ele-
ments ISA (Identified Sensitive Attributes) to represent the different security parame-
ters related to the corresponding IoT element (e.g. security token, password, authorised
user).

• Each DO, and each ISA, has at least two security features:

– Their own ACL (Access Control List), where the elements of the list are able to
access the information of the DO.

– Authentication procedure, required to manage the DO – including its security.

• The new security layer provides mechanisms to manage ISA and DOs to which they
refer, to automate themanagement of the digital objects, reducing theuser intervention.

• DOs are created and accessed by IoT ecosystem elements (DOs consumers).
• The new security layer, although it is included in a specific architecture within a con-
crete IoT ecosystem, it could be accessed from external IoT ecosystems, at any-time,
anywhere and from any device. This allows interoperability with other ecosystems
and the sharing of information. The exception is that certain ISA information, and
therefore also the physical element to which they refer, may be accessible or managed
only from certain specific systems to ensure security features.

3.2 Architecture Model

Following the principles described, a new layer SCL (Security Layer) is added to support
all the aspects related to the management of sensitive information, that is, move the
management of the sensitive information. All this information is moved from the other
layers to the SCL (Fig. 2).

Fundamental to our approach is the concept of a Digital Object (DO), with the syntax
of an Identifier, Attributes and Metadata. The metadata determines how the DO can be
created, accessed, modified and deleted and DO attributes may themselves be other DOs
(Digital Objects).
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Fig. 2. New architecture proposal overview.

A DO may represent a physical entity such as a building, room, piping system or
IoT device. It may also be a process – like how a door is unlocked, how a network is
accessed or what regulations apply to a room exit capacity. It may also be a piece of data
– including its description, format, value and the way it should be processed.

The new layer should contain a set of components that deal with DOs in a secure
way. These components are the following:

• Secured Identity Data Management System (SIDMS). A trusted entity to store the dig-
ital objects in distributed servers, providing secure mechanisms to secure transactions
between producers/consumers and servers. In this case, we have been using Handle
System, that will be described in Sect. 3.3.

• DO producers. Software in the IoT ecosystem that creates the different DOs related
to security, interacting with the SIDMS.

Fig. 3. Architectural model for secure IoT ecosystems.
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• Security users. Different types of entities which are responsible for the sensitive
elements and transform them into DOs using the IoT software (DOs producers).

Although these are the three main components of the architecture, the SIDMS
requires a set of internal components which are required to ensure the security of the IoT
ecosystems. These components are (1) the DO management, (2) Authentication and (3)
Authorisation services and a (4) decentralised access control. In addition, the relevant
servers must be run in a secure manner. This requires also integrity checks on the data
stored and probably additional tools for subsequent forensic analysis. Figure 3 shows
the proposed architecture.

3.3 Architecture Implementation

3.3.1 Overview

The basic architecture model for IoT is well defined [4]; several IoT scenarios following
it have been deployed [14, 15]. In these, different technologies have been used. The
architecture presented so far in Sect. 3.2 and represented in Fig. 3, is still abstract, and
several implementations are possible, especially as regards the SIDMS.

The SIDMS implementation used must be compatible with the features of Sect. 3.1
and the four components of Sect. 3.2. Many different available implementations could
be considered, and even a new one developed. However, we have examined the Handle
System, and consider it fully cover our needs. This does not imply it is the best or only
one we could use; it is merely that it illustrates the features we consider important. We
discuss below its architecture and how it is used.

3.3.2 Handle System

The Handle System is a comprehensive system for assigning, managing, and resolv-
ing persistent identifiers for digital objects [13] over the Internet [16, 17]. In addition
to incorporating database of information and represent digital objects accessed via an
identifier, it includes an open set of protocols, an identifier space and an implementation
of the protocols [28]. These protocols enable a distributed computer system with two
different levels: a Global Handle Registry (GHR), managed by CNRI (Corporation for
National Research Initiatives) on behalf of the international DONA Foundation, and a
Local Handle Services (LHS), managed by local entities with any desired granularity as
with the DNS.

In Handle, a digital object identifier is composed of two different parts: a prefix and
a name called suffix, separated by the character “/”, that is, prefix/suffix. For instance,
handle “1234/handle1” is defined under the LHS with the prefix 1234 and has the
unique name with the suffix handle1.

Each digital object is composed by a set of equal data structures known as indices.
Each index is identified by an integer number. Usually, each one is used for a specific
purpose, according to the type.

TheHandle architecture provides scalability, extensibility, replicated storage and per-
formance enhancement including caching and hashing [29]. One of the most important
features provided by Handle for the purposes of IoT is the security.



202 A. Ruiz-Zafra and R. Magán-Carrión

The Handle system provides two different mechanisms to ensure the security of
the different digital objects: Authentication and Authorisation. The authentication is the
process to be identified as a digital object, while the authorisation is the possibility to be
able to access and/or modify a specific digital object.

The authorisation is automaticallymanagedby theHandleSystemviaAccessControl
Lists (ACL). If an entity, with its username and password, is not authorised in the ACL to
perform the requested operation, the Handle System returns a non-authorised message.
The system allows both symmetric and public/private key pairs to be used, which can
be used directly through the Handle Software in Java or vie the REST API [17].

3.3.3 Security Architecture Supported by Handle

The Handle System is compatible with the four services specified as required in
Sect. 3.2 and Fig. 3 for the SIDMS: DO management, authentication, authorisation
and decentralised access control. This last if facilitated through a REST API, where a
user can access through the software (DOs producers) to the DO management system
implemented by the Handle System through the HTTPS protocol.

In the Handle System, everything is a digital object, so the secure users or even
DOs producers have a digital representation as DOs in Handle, with their identifiers
and their security constraints. Two examples of this are: 55555/secuser1 and
55555/doproducer1.

Before any operation is carried out via the REST API, the Handle System checks the
authorisation of the requesting entity in the ACL. Only if the entity is so authorised, is it
carried out; otherwise an unauthorised message is returned. The authentication system
supported by the Handle System is based on a challenge-response method [30] or the
basic authorisation method supported by the HTTP protocol.

Authorised security users can create the DOs through the DO producers. Authorised
DO consumers are the different users or applications of the IoT ecosystem who, through
the same REST API and security mechanisms supported by Handle (authentication,
authorisation), are able to read and/or update the DO (depending on the authorisation).
The data, which may be sensitive and need protecting, is in the JSON format to ease
interoperability.

Each Handle deployment is considered a LHS (Local Handle Service). This has a
prefix in its identifier that can be resolved by several servers, to support as many requests
as required to aid scalability. Each replica contains a copy of the digital objects. The
replication as well as the consistency of the data is managed by the Handle System.

The distributed Handle architecture ensures that DOs in the Local Handle Service
in this ecosystem are accessible via the Global Handle Registry. This permits access
from applications in different ecosystems to these DOs at the Application Layer in an
interoperable and secure way – subject, of course, to constraints imposed by the ACLs.

The main benefit of the use of the Handle as a management tool for the sensitive
elements of an IoT ecosystem is the possibility to simplify and automate processes,
manually done in the classical IoT architecture. This improves not only the security, but
also consistency and maintainability of the IoT ecosystems.

The change of secure parameters through Handle does not cause data persistence
problems, because it is done automatically. Dedicated software can be implemented to
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manage automatically, and through the REST API, sensitive information. For instance,
a new DO, with its sensitive data can be created with minimal, and sometimes no human
intervention.

Furthermore, IoT applications use digital objects where their values are stored rather
than the raw values themselves. This ensures that changes in the values do not require
any recompilation or development process. This is useful not only for sensitive param-
eters, but also for information that should be updated very often. This improves the
maintainability of IoT ecosystems, because changes in the digital objects do not affect
the applications already deployed.

In addition, Handle allows the management of the security on-the-fly. Due to its
authorisation system, any permission can be granted and revoked through the REST
API, by changing the ACL (adding or removing an entity), without making any other
modification in the IoT ecosystem. Figure 4 shows the implementation of the security
architecture proposed using Handle.

Fig. 4. Security architecture for IoT ecosystems supported by the handle system.

4 Conclusions and Further Work

Security is one of the main concerns in IoT, where many approaches have appeared to
address the challenge to provide security in IoT ecosystems.

The most common IoT architecture is based on three different layers (Acquisition,
Network andApplications), where the different security aspects are located in each layer,
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supported by security technology, protocols and cryptographic techniques. This usually
leads to a requirement for much manual intervention with security parameters, because
the management of sensitive passwords, tokens or credentials is required. It can also
lead to problems in maintaining the consistency and integrity of the security parameters.

In this paper, we have addressed this issue, proposing an alternative distributed
architecture for secure IoT ecosystems, concentrating the security considerations in a
fourth security layer.

The architecture model proposed is based on the use of Digital Objects in the IoT
ecosystems, supported by a Secured Identifier Data Management System (SIDMS).
All management of physical and digital objects, processes and data is reflected in the
management of the digital objects. This can enhance the maintainability of the security
parameters and contribute to ease the automation of the deployment.

As an example of a suitable SIDMSwe have used theHandle System, which contains
the properties required in the architecture principles proposed. These properties are,
among others: adequate security for authentication, authorisation and Access Control
Lists, recursion potential in attributes, etc.

Besides the use ofHandle to provide security features, the fourth layer added contains
other elements, such as the role of security users and DOs producers, which are crucial
in the procedure to deploy secure IoT ecosystems. The security users, DOs producers
as well as the use of the SIDMS and digital objects ensure the integrity of the sensitive
data and the security in their access/management.

As for future work, we intend to do a synthetic PoC (Proof of Concept) in the lab
to validate our proposal. In addition, in order to validate our approach in real environ-
ment, we intend to do a PoC with a real building, a sizable sensor deployment, public
applications and with the collaboration of an industry partner or public entity.

Acknowledgments. This paper was funded by the Spanish Ministerio de Ciencia, Innovación y
Universidades and ERDF under contract RTI2018-100754-B-I00 (iSUN project).
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Abstract. This paper presents the design and development of an
Android application (using Unreal Engine 4) called GravityVolve. It is
a two-dimensions game based on the N-Body problem previously pre-
sented by some of the authors. In order to complete a map, the player
will have to push the particle from its initial position until it reaches
the circumference’s position. Thus, the maps of GravityVolve are made
up of a particle, a circumference and a set of planets. These maps are
procedurally generated by an evolutionary algorithm, and are assigned
a difficulty level (‘Easy’, ‘Medium’, ‘Hard’). When a player completes
a map, he/she will have access to a selection system where he/she will
have to choose the level of difficulty he/she considers appropriate. So, the
objectives of this study are two: first, to gather a considerable amount of
votes from players with respect to their perception about the difficulty of
every map; and two, to compare both, the user’s difficulty feeling and the
difficulty given by the algorithm in order to check their correlation and
reach some conclusions regarding the quality of the proposed method.
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1 Introduction

Procedural Content Generation (PCG) is performed by algorithms that
autonomously and dynamically create content based on some guidelines.
Although at a first glance PCG may seem to mean “random”, the difference
lies in the rules that such content must satisfy and that limit the possibilities; so
the generated content always fulfills certain expectations. In addition, content
can be generated for any of the components of a video game: it can be present
in the game levels/maps, music, plot, items, or enemies for instance. Another
premise of PCG is the difficulty curve can be adjusted, always posing a challenge
for players. Although this is not the only advantage that these methods present;
they also imply a considerable saving in resources and in time of development
since it is not necessary to produce all the content manually. It can be also
noticed in the size of the game, since the content is not directly stored.

This paper describes a two-dimensional mobile videogame, GravityVolve,
based on physics and inspired by the problem of N-bodies [8], which maps are
generated procedurally [6] by means of an Evolutionary Algorithm (EA) [5].

EA [1] is a metaheuristic inspired in the natural evolution of the species [2],
normally used as an optimisation tool. It is based on a population of solutions
(named individuals or chromosomes), which are evaluated (according to a fitness
function), selected and recombined (crossover operator) to generate an offspring.
The descendants of a population will tend to be better solutions than previous
ones. This process is repeated until a stop criteria is met.

Thus, the previously proposed algorithm was a Search-Based Procedural
Content Generation (SBPCG) approach [7]. It considers maps as individuals,
being each of the generated maps/levels for GravityVolve game composed of a
set of planets, a circle or destination and a particle, that the player controls. The
circle and the particle always start located on one of the planets (they do not
necessarily have to be both on the same one) and the objective of the game is just
to move the particle from its initial position until it reaches the circumference. To
do so, an impulse must be applied to make it move in a certain direction, while
all the planets deviate their trajectory according to their gravitational force. To
help the user to give the desired impulse, he/she can look to a guideline that
predicts the beginning of the trajectory that the particle will take.

The PCG algorithm allows to adjust the difficulty level in three categories
(‘Easy’, ‘Medium’ or ‘Hard’) according to the disposition of these elements in
the map [5]. So, in order to validate the algorithm, a sample of representative
maps of each level of difficulty has been chosen, and a set of users/players have
evaluated them, by means of votes, once completed. The aim was to compare the
correlation between the difficulties given by the users and the difficulty assigned
by the algorithm.

To this aim an Android version of the GravityVolve game has been developed,
in order to make it more accessible to catch a big amount of users, facilitating
user rate data collection to demonstrate the validity of the algorithm.
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The maps have been generated in a Web application in Google App Engine
[4], and hosted in Firebase [3] database. Similarly, user votes will also be stored
in the same database for later analysis.

The paper is structured as follows: first, the process used to create the map
is presented. Then, in Sect. 3 the mobile application is described. Results are
discussed in Sect. 4. Finally conclusions and future lines of work are shown.

2 Evolutionary Map Generation Algorithm

The mobile application described in this work (Sect. 3) implements the previously
presented Evolutionary Algorithm for map generation in the N-Boby problem
[5]. It was a spatially-structured EA to generate GravityVolve game maps of
different levels of difficulty, which is described in the following lines.

The algorithm is a steady-state EA which considers three different subsets
in the population, each one devoted to evolve maps with a different associated
difficulty, namely an ‘easy maps’ subgroup, a ‘medium difficulty maps’ subgroup,
and a ‘hard maps’ subgroup.

Every individual models a map, with a different amount o planets (repre-
sented by 3 variables each: x, y, radius), in addition to the ball position and
the target destination. So, they could have different lengths. This population is
initialized randomly, in order to ensure high diversity among the maps.

With respect to the crossover operator, it is based on a random selection
of the parents (again for increasing the diversity). A single point model was
implemented, considering a line which separates the map into two parts, so the
planets in each side (their center) are the genetic material to recombine. Two
individuals are generated, and then evaluated considering a fitness function based
on the difficulty to solve the map. According to this value, both are compared
with the best, worst and central individuals in their corresponding subgroups,
and then, each of them replace the individual with a lower fitness value than
them.

The mutation operator applies a random increase or decrease in the coordi-
nates or radius of a random gene in a random individual for planets’ genes, and
in the planet location and angle of the ball or the target hole.

Both, the recombination and mutation operators are controlled in order to
generate valid maps after their application.

Three fitness functions to evaluate the difficulty of a level were proposed:
– Planet intersections: the distance between the particle and the hole as well

as the number of planets between them is a good estimator of how hard it is
to put the ball on the hole, so a line is drawn between the ball and the hole
centers and the number of planets’ intersections are used to compute a value.

– Gravitational acceleration: minimize the ball’s force of attraction by reducing
the hole planet radius and increase the radius of the rest.

– Simulations: 10 test throws of the ball are conducted, with different angles
and forces, and with random velocities. So, the fitness of the map is average
of the minimum distance between the ball and the hole after the shoot. So as
the fitness decreases, the difficulty level of the map also decreases.
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3 Mobile Application Description

GravityVolve is a game developed with the aim of having a base where you can
put into practice the evolutionary algorithm that, in this case, would focus on
the creation of different maps with a difficulty varying between easy, medium or
hard. In order to verify that the difficulty of the maps was adjusted to reality,
a voting system has been added. Once players complete a map, they have to
vote for the difficulty they think the map deserved. Once the result of these
votes is obtained, the data obtained is contrasted with the difficulty given by
the algorithm to see the relationship between them.

This application has been developed using Unreal Engine 4 and programmed
for Android O.S.. It uses a Non-SQL database named Firebase, in which the
App stores information of the maps together with the players’ votes, in the form
of JSON structures and by means of an API REST.

The player can observe the planets, the particle and the target circumfer-
ence/hole on some of them. In order to complete a map it is necessary to take
the particle to the hole and, to accomplish this objective, you will have to drag
your finger on the screen. As long as you keep your finger on the screen of the
device, the last position of the particle will be saved before the movement (to
restore the position in case the game limits are abandoned). It is possible to acti-
vate a help mode in which a guideline predicting the beginning of the trajectory
that the particle will take is shown to the player. So, the difficulty to solve the
map will decrease if this mode is used.

When the player is satisfied with the trajectory and lifts the finger from the
screen the particle is propelled. It should be noted that the player can adjust the
force with which the particle will be propelled (up to a limit). At the moment
the player lifts his finger, the velocity vector of the particle becomes a vector
that goes from the position of the particle to the point where it had clicked on
the screen, ceasing to be at rest and start the movement.

Between each frame there are all the operations that modify the state of
the video game, so that the information shown on the screen (in our case, the
position of the particle) changes constantly, giving a sensation of movement. In
each frame of the application is checked if the particle is in motion, if this is
the case then the position of the particle will be updated. To do this, all the
acceleration vectors between the particle and each of the planets are calculated
and added to the particle velocity vector; finally, the next particle position is
calculated by applying the velocity vector calculated to the current position.

In order to obtain the acceleration vector between the particle and only one
of the planets, this formula is used:

va =
m2

r3
(p2 − p1) (1)

where p1 and p2 are the points where the center of the particle and the planet
are located, respectively; m2 is the mass of the planet and r is the cubic distance
between both circumferences.
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If during the course of this operation it is detected that the distance between
the particle and any of the planets is very low, it will be understood that they
have collided, increasing the collision counter by one unit. With the rest of
the planets (or all of them if there has not been a collision) the distance is
calculated. When the collision counter reaches a maximum of 15, the particle
will stop moving and land on the planet with which it collides.

In each frame two more checks take place, on the one hand it is verified that
the particle is within a few limits so that, in the case of being far away from the
zone of game, it is possible to return to the initial point of the shot; so that the
player does not have to wait until the movement of the particle ends by itself.
On the other hand it is checked if the particle has reached the circumference:
this would mean the end of the map and the activation of the voting system.
Once the vote has been sent, the next level will be loaded in the same way as
the current level.

When there are no more maps to vote for, the application will automatically
return to the main menu and the help line will be deactivated. The player will
have to vote all maps again but without this help. As soon as there are no
more unvoiced maps, the player will be taken back to the main menu and an
option will be enabled to activate or deactivate the help line. Figure 1 shows a
screenshot of the game.

As previously stated, the mobile application aims to gathering votes from
human players describing the difficulty they have felt for completing a level.
Thus, a final screen is shown once a map is correctly finished (see Fig. 2).

Fig. 1. Screenshot of the mobile GravityVolve game. Number of performed movements
is shown at the bottom, together with the number of the level.
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Fig. 2. Difficulty voting screen of GravityVolve game.“Fácil” means “Easy”, “Medio”
means “Medium”, and “Dif́ıcil” means “Hard”.

4 Results and Discussion

In order to test the value of the evolutionary PCG algorithm with regard to
its accuracy in the categorization of the difficulty associated to every map, an
experiment has been conducted considering 30 different players who installed
the App in their smartphones. 21 different maps were offered to be played, so
the users completed a different number of them (those which they desired). The
players could also choose to use the Help Line or not to use it - which definitely
have an impact in the difficulty to complete a map -, as they will show below.

Thus, after one week, 448 votes were gathered for levels in which the player
used the help line and 210 votes for those levels where he/she did not use that
aid.

The results are presented in Fig. 3, where the default difficulties are those
assigned to the maps by the PCG algorithm. Please note that the ranks or
scales of votes are different for ‘HL’ and ‘NO HL’ graphs.

Looking at Fig. 3, first fact we can notice is the effect that the use of HL
has on the evaluation of the maps by the users. They feel them easier in all the
cases, even in those which were defined as HARD by the algorithm (left bottom
graph), which are in the majority of cases voted as EASY or MEDIUM. The
same effect can be detected in MEDIUM difficulty levels which many of them
are voted as EASY.

When No HL is used, the votes always choose a harder difficulty than in the
same maps with HL, so we can noticed in the graphs of the right column that
the MEDIUM (red color) and HARD (green color) blocks grow with respect to
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Fig. 3. Amount of votes for each of the default difficulties (in rows), using the help
line (left column) and not using it (right column). (Color figure online)

the EASY ones (blue color). Thus, we consider those results as more reliable
with respect to the PCG algorithm assignment.

It can also be seen that there are some maps which their difficulty level has
not been properly defined, such as the EASY map1 (mostly voted as MEDIUM)
or the MEDIUM map2, map13, map21, clearly felt as EASY to be solved with
HL. HARD difficulty is almost not chosen when HL is used, so we can conclude
that this line really helps the players to face the map resolution.

The aggregated results are shown in Fig. 4. As it can be seen the global
players’ perception of the different default difficulties is mostly focused on EASY
or MEDIUM values, mainly when HL is used. In plays with No HL, some HARD
votes arise. These graphs could be interpreted as a confusion matrix considering
the diagonal results (from right to left) are the votes which coincide with the
assigned default difficulty.
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Fig. 4. Global amount of votes, grouped for each of the default difficulties, using the
help line (left side graph) and not using it (right side graph).

Fig. 5. Average error for each map (1 to 21), considering the default difficulty assigned
to the map and the difficulty voted by the players. Being EASY value as ‘1’ and HARD
as ‘3’, the error would be in the interval [0, 2]. The colors in the map number indicate
the default difficulty of the map: blue is EASY, red is MEDIUM, and green is HARD.
(Color figure online)

Finally, Fig. 5 presents the average error between the difficulty assigned to
every map and the voted by the players. We see how the average error is higher
in the maps with difficulties HARD and MEDIUM and lower in EASY, from
which it follows that players have a predilection for the vote EASY.

On the other hand, it can also be seen that, when the help is disabled, the
error in the EASY maps increases and it decreases in the maps with MEDIUM
and HARD difficulties. From this we can reinforce the idea that, certainly, the
help line has a direct influence on the players’ perception of the difficulty of the
maps.
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5 Conclusions

This paper presents an Android application implementing a physics-based game,
named GravityVolve. It also includes an evolutionary procedural content gener-
ation (PCG) method able to generate maps for this game and also to assign a
difficulty level based on some computations. The developed game has incorpo-
rated an aid tool (called Help Line), together with a voting system for gathering
the opinion with respect to the difficulty perceived by the player when he/she
has completed a map.

So, the aim of this application and this work is to study the correlation
between the difficulty assigned by the PCG algorithm and the players’ opinion.

From the analysis of the data it can be deduced, according to the sample
obtained, that the players tend to vote “Easy” and in some cases, “Medium”.
On the other hand, “Hard” votes are the exception. In addition, deactivating
the helpline has a direct reaction in the votes of the players, being these of a
higher difficulty (generally) than the votes corresponding to the same maps but
with the help of the helpline.

However, it should be borne in mind that there is a possibility that players
may be more reluctant to qualify a level as “Hard” on the grounds that they are
compromising their own ability. Another possibility is that the sampled players
are more experienced in video games and GravityVolve has not been a real
challenge for them.

In conclusion, it can be said that, in general, players consider that the dif-
ficulty of the maps is less than that given by the algorithm. To balance both
points of view, it would be fair to modify the PCG algorithm to increase the
difficulty of the “Hard” difficulty.

In this line, the graphs used in this analysis could get to identify those maps
with a clearly wrong default difficulty, which should be revised looking for some
clues to refine the difficulty assignment method performed by the PCG algo-
rithm.
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Abstract. Video game development is still a difficult task today, requir-
ing strong programming skills and knowledge of multiple technologies.
To tackle this problem, some visual tools such as Unity or Unreal have
appeared. These tools are effective and easy to use, but they are not
entirely aimed at end-users with little knowledge of software engineer-
ing. Currently, there is a resurgence in the use of chatbots thanks to the
recent advances in fields such as artificial intelligence or language process-
ing. However, there is no evidence about the use of conversational agents
for developing video games with domain-specific languages (DSLs). This
work states the following two hypotheses: (i) Conversational agents based
on natural language can be used to work with DSL for the creation of
video games; (ii) these conversational agents can be automatically cre-
ated by extracting the concepts, properties and relationships from their
abstract syntax. To demonstrate the hypotheses, we propose and detail
the implementation of a framework to work with DSLs through a chat-
bot, its implementation details and a systematic method to automate its
construction. This approach could be also suitable for other disciplines,
in addition to video games development.

Keywords: Video games · End-User Development · Conversational
agents · Model-Driven Engineering · Domain Specific Languages ·
Chatbots

1 Introduction

The video game industry has reached almost 138 million dollars in sales in 2018,
becoming one of the most important and profitable sectors in the world, surpass-
ing in growth the music and film industry [29]. This growth has been boosted
since the appearance of smartphones, where video games are one of the most
popular applications. Although video games have traditionally been seen as a
leisure-focused activity, they are increasingly becoming a popular alternative in
other fields such as academia [7,15], where teachers are limited by time and skills
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for its development and use in class, or in the field of health, where they can
offer an attractive alternative to traditional modes of exercise [6].

Nowadays, the development of a videogame requires the participation of sev-
eral professionals, each of them focused on one aspect of the videogame, forming
a multidisciplinary team where there are not only programmers. This means
that non-expert users are limited when it comes to creating their own video
games. This circumstance also affects both the personal and professional con-
text, increasing the need for users to create their own software artifacts in any
of the fields. As a result, there is a growing interest in End-User Development
(EUD) tools [18], thanks to which non-programmers can create software, par-
ticipating in different stages of the creation process, without having to know
professional programming languages [22]. Although these tools can help users,
they still do not seem to adapt to complex software engineering problems.

End-user development tools are usually based on special languages adapted
to the needs of the target users. Domain-specific languages (DSLs) are hence
specialised in modeling or solving a specific set of problems. There are several
cases of success in terms of end-user development tools using DSLs, as is the
case of spreadsheets [10] or business process management [11], among others.
Domain experts are increasingly participating in the design of these languages,
contributing with their experience [20].

New devices such as mobile phones, tablets or smartwatches have made desk-
top computers no longer the only representatives of end-user computing [14]. The
appearance of new methods of interaction, such as voice or gesture recognition,
has led to a rethinking of the interaction between human and machine, with the
main objective of achieving natural communication with the end-user [14]. In
the field of end-user development, there is little work on these new paradigms
of user interfaces, suggesting that even EUD researchers are not significantly
contributing to the development of such tools [19].

Traditionally, textual or visual user interfaces are the most commonly used
interfaces for working with DSL. Could new interaction methods be applied
to DSL and its supporting tools? In order to develop the hypotheses previously
raised, a framework has been developed in this research to automate the creation
of conversational agents for DSLs. The framework allows users to interact with
their DSL through a text-based or voice-based chatbot.

The rest of the paper is structured as follows. Section 2 presents the research
background and related works. Section 3 describes the conversational modeling
framework. A case study consisting on the use of a conversational agent for the
Martin Fowler’s State Machine language [13] is included in Sect. 4. Conclusions
and future lines of work are stated in the last section.

2 Background and Related Works

The objective of this research is to demonstrate that it is possible to use conver-
sational agents to work with DSLs under the Model-Driven Engineering (MDE)
approach in video game development. The following is a description of the most
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commonly used game engines, the concepts of DSL and MDE as well as their
applications to video game development and, finally, the foundations and the
role of conversational agents for modeling and programming purposes.

2.1 Game Development Tools

Thanks to the great impact it has had on the commercial software industry, the
video game industry has evolved by offering different frameworks for the creation
of video games [26]. These frameworks, also known as game engines, provide users
with the programming experience, the set of functionalities necessary to design
and create their own video games, through the definition of game elements and
their behavior, quickly and efficiently [4].

Unity3D and Unreal Engine are two of the most used tools for videogame
development. Both provide an engine that can be used to create multiplatform
2D and 3D video games. With its editor, developers can modify the physics,
behavior of objects, interactions between them and also import 3D objects cre-
ated with 3D modeling tools. Unreal Engine allows you to configure the behav-
ior of objects in video games, with a complexity and graphic quality superior
to Unity3D, but unfortunately, the learning curve of Unreal is steep, which is a
disadvantage for novice users.

With the aim of bringing non-expert users closer to video game development,
some EUD tools have emerged. For example, GameMaker [3] is a video game
engine that can be used to create 2D video games by novice creators. With
its editor, developers can configure the interactions and relations of the objects
through drag-and-drop, thus simplifying and minimizing code writing. In addi-
tion, the tool has its own programming language, which provides expert users
with a higher level of customization of object actions.

2.2 MDE and DSLs for Video Game Development

MDE focuses on the systematic use of software models to improve productivity
and some other aspects of software quality. This discipline has demonstrated its
potential to master the arbitrary complexity of software by providing a higher
level of abstraction as well as raising the level of automation [8,25].

Domain-specific languages are systems of communication for design or devel-
opment purposes, usually small in size, that are adapted to the needs of a given
domain to solve a specific set of problems [13]. This adaptation is done in seman-
tic terms, but also in notation and syntax, allowing an abstraction close to the
one used in the domain [13].

A DSL is composed of three elements [8,20]: (i) the abstract syntax (or meta-
model) that defines language concepts, the relationships between them and the
rules that ensure when a model is well-formed; (ii) the concrete syntax that
establishes notation; and (iii) the semantics that are normally defined through
the translation to concepts of another target language with known semantics.

MDE approach is suitable to develop DSLs, as evidenced by the number of
MDE frameworks for creating both graphical languages, such as Sirius or DSL
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Tools, and textual ones, such as EMFText or Xtext. The visual syntax defines
a mapping between the abstract elements of the language and a set of figures
or shapes. On the contrary, in textual syntaxes the mapping is done between
the language elements and grammatical rules. Once both abstract and concrete
syntax are defined, it is necessary to provide a support tool that allows users to
work with the DSL.

The MDE approach and DSLs can be used to support the video game devel-
opment. For example, Gonzalez-Garcia et al. [15] propose a DSL for the devel-
opment of multiplatform educational video games focused on non-expert users.
In this same line is also the proposal of Solis-Martinez et al. [26], which present
a specific notation based on the BPMN specification to define several key char-
acteristics of video game logic. Furthermore, Nuñez-Valdez et al. [21] present a
graphical editor intended for non-expert users to develop their own video games
with a DSL.

2.3 Chatbots in Modeling and Programming Tasks

Although the term chatbot has traditionally been used only with text-only appli-
cations, due to the advances in Automatic Speech Recognition (ASR) and Nat-
ural Language Processing (NLP), the concept has become nowadays broader [9].
The objective of NLP is to facilitate the interaction between human and machine.
To achieve this, it learns the syntax and meaning of user language, processes it
and gives the result to the user [16]. In the case of the ASR systems, the aim
is to translate a speech signal into a sequence of words. The purpose of this
conversion is text-based communication or for the control of devices [12]. This
renewed interest in chatbots has led large technology companies to create their
own development frameworks. Some examples are Google Dialogflow, Amazon
Lex and Microsoft Bot Framework, among others.

Not all chatbots are aimed to get information from the users, but they can
also be used to create new content or to perform actions. These chatbots can
also be related to computing, more specifically to modeling, as by demonstrated
Perez-Soler et al. [23]. In that work, the authors detail how, through a messaging
system such as Telegram, it is possible to create domain models. Furthermore,
Jolak et al. [17] propose a collaborative software design environment that allows
users to create UML models with multiple modes of interaction including, among
others, voice commands.

Besides, Rosenblatt [24] proposes a development environment for program-
ming via voice recognition. Vaziri et al. [27] present a compiler that takes the
specifications of a web API written in Swagger and automatically generates a
chatbot that allows the end-user to make calls to that API. Additionally, it is
possible to work with ontologies through a chatbot, as proposed by Al-Zubaide
et al. [5]. Their tool maps ontologies and knowledge in a relational database so
that they can be used in a chatbot.

In the reviewed literature, there are some works about the use of chatbots
or voice commands to deal with some specific languages. However, none of these
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works deal with video game development. In addition, these works are not gener-
alizable enough to support different domains and there is no evidence of methods
or tools to automate the development of conversational agents for working with
DSLs.

3 A Framework for Using and Creating Conversational
Agents for DSLs

This section describes an approach for working with DSLs through a chatbot, its
implementation details and a systematic method to automate their construction.

3.1 Approach

DSL support tools enhanced with conversational bots are equipped with a mes-
saging window to manipulate the running model or program via natural lan-
guage. In this way, the chatbot enables the user to introduce voice or textual
commands that will be processed and transformed into specific actions on the
artefact under development.

Regardless of the concrete syntax developed for the DSL, the use of conver-
sational agents with a DSL previously requires a mapping between its abstract
syntax and the elements of every conversational agent, namely entities and inten-
tions. First, all the concepts, properties and relationships defined in the abstract
syntax are mapped to entities of the conversational agent. These entities are
grouped into three categories, namely Element, Attribute, and Relation. Then,
a set of specific intents for Creating, Reading, Updating or Deleting (CRUD)
model elements must be provided. Figure 1 shows a classification of the intents
according to whether the actions they perform depends on the focused model ele-
ment (i.e., focus intents) or not focused (i.e., general intents). All the intents are
pre-trained with a set of specific expressions to deal with them. For example, the
create element general intention includes expressions in natural language, such
as create the [element] with the [attribute] [value].

In addition to the intents to manipulate the model elements, there are other
intents aimed at improving the user experience during the conversation. For
example, contextual awareness, i.e., the bot remembers the last action applied
to the model and, depending on the focused element, provides hints to tell the
user what to do next.

3.2 Implementation

The above-described approach has been developed by using the Dialogflow [1]
conversational agent engine because it provides us with a complete Java API and
training features to improve its performance by incorporating interaction logs.
The current implementation requires that the abstract syntax of the DSLs must
be written with Ecore, the de facto standard for meta-modeling of the Eclipse
Modeling Framework (EMF) [2]. The conversational agent’s user interface was
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Fig. 1. Classification of intents for the conversational agent

developed as an Eclipse plug-in, fully integrated with the rest of the Eclipse IDE
ecosystem.

Through the chatbot interface, the user sends a text or voice input to
Dialogflow. The content of this input is processed, determining what intent
it belongs to and what relevant information (entities) it contains. Afterwards,
Dialogflow generates a response in JSON format, which includes the context of
the current conversation, the action that the user wants to perform and the enti-
ties involved. Once the necessary data are extracted from Dialogflow’s response,
they are sent to an interpreter who determines what set of EMF operations (e.g:
EcoreUtil.delete, EcoreUtil.create, etc.) should be applied on the active model.
Once the operation is executed, the chatbot will provide the user with a message
about the result of the operation. Figure 2 depicts the interactions among the
above components.

3.3 Automated Generation of Conversational Agents

A particular application of MDE is MDD, which aims to automatically gener-
ate code by developing and transforming software models and, hence, reduces
complexity and development efforts [28]. By following the MDD paradigm, a sys-
tematic method to (semi-)automatically generate chatbots for DSLs is defined
below (see Fig. 3).

First, the DSL developer must create the language’s abstract syntax (i.e.,
EMF domain model) and create an empty Dialogflow project. The latter action
cannot be automated because Dialogflow does not permit to create projects
programmatically, so that it is necessary to register the new conversational agent
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Fig. 2. Sequence diagram of the Eclipse chatbot plug-in

Fig. 3. Chatbot plug-in generation

and acquire the developer API keys through the Dialogflow’s management web
tool. Second, the Eclipse plug-in project must be developed to interact with
the chatbot. For that, a dedicated Maven archetype to automate this activity
is available to the DSL developer. The archetype asks the user for the project
name, the ecore file with the abstract syntax and the Dialogflow’s access key. The
archetype consists of a parameterized template of an Eclipse project containing
the libraries required to interact with the conversational agent engine and the
EMF-based models. Two processes are triggered by this archetype: (i) a Model to
Text (M2T) transformation process to generate, from the language meta-model,
a series of code artifacts required to manage Java classes and to perform EMF
operations over the running models; and (ii) another M2T process to populate
the Dialogflow project with the required entities, intents and expressions via a
REST API. Third, the generated plug-in can be later integrated with other plug-
ins to build a complete Eclipse product and distribute it. Finally, DSL developers
can customize the set of expressions suitable for each Dialogflow project’s intent.
Additionally, thanks to the DialogFlow’s built-in machine learning algorithms,
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Fig. 4. Eclipse product including a chatbot interface

the agent’s precision in matching user inputs can improve over time after the
software is released.

4 Case Study

Since the nineties, state machines have been one of the most widely used
resources in video game development [30]. The state machines are used to gener-
alize all possible situations and reactions that occur by the action of the human
player. Therefore, to verify the validity of the approach proposed in this research,
a chatbot is presented to work with models of state machines, specifically the
one defined by Martin Fowler in his book Domain-Specific Languages [13].

The Eclipse plug-in to work with that DSL through a chatbot interface was
generated using the method and tools previously described. Afterwards, a desk-
top Eclipse application was built, comprising: (i) a read-only Ecore diagram
viewer to show the visual representation of the language meta-model; (ii) the
XMI tree viewer of the running model; and (iii) the chatbot interface to interact
with the conversation agent using voice or text inputs. Figure 4 depicts the user
interface of the product whilst working with the Miss Grant’s secret compart-
ment model [13], commonly used as an initial example for a lot of modeling
tools.

With this tool, the user can edit models by adding states, events and com-
mands, as well as editing their properties and relationships. Firstly, the DSL
user must create a project by using the create a new project option. In a pop-up
menu, the user must enter the project name and the name desired for the state
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Fig. 5. Example of chatbot usage

machine to be created. Then, the user will be able to use the chatbot inter-
face. Two snippets of the dialog between the user and the bot to model Fowler’s
example are shown in Fig. 5. The commands sent to the chatbot, the received
answers and the impact on the running model can also be observed.

5 Conclusions

Video games are no longer only focused on leisure, but are increasingly used by
different fields such as health or education. The growing interest in being able
to create video games has led to the emergence of EUD tools, thanks to which
non-programmers can create their own games using specific languages aimed at
simplifying technological barriers.

In addition, new and improved methods of user-machine interaction are
emerging. For example, thanks to advances in natural language processing and
speech recognition, chat robots are being widely used in many applications. In
this sense, this paper explores a new way of interacting with DSLs through
conversational agents.

This document presents a framework for the use and creation of specific con-
versational interfaces for these domains focused on the creation of video games.
The first hypothesis raised in this paper was tested by developing an Eclipse-
based tool with a chatbot interface capable of working with Martin Fowler’s
DSL State Machine. However, the second hypothesis cannot be fully supported,



Conversational Agents for the Development of Video Games 225

because the method and tool for automating the creation of conversational agents
have been tested with a single language, so more applications are still required.

As future work, we consider two main lines. First, conduct a usability assess-
ment to collect user feedback. We must verify that the intentions and the set
of possible expressions that users may say match those intentions are appropri-
ate for their needs and expectations. The training phrases initially provided will
be expanded so that conversational agents achieve a higher success rate during
recognition. Second, more quantitative studies will be conducted to measure the
effort required to develop models using chatbot interfaces compared to the use
of common notations (visual or textual).

We believe that the inclusion of chat robots during EUD processes through
DSLs focused on creating video games provides users with a more adaptable
way to use these languages. Currently, users of these DSLs must be accustomed
to the concrete notation explicitly defined by the DSL designer. However, with
the approach presented in this paper, DSL users will be able to work in a more
flexible environment, using their own natural language expressions. In short, this
approach can contribute to greatly reducing the learning curve of development
languages.
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Abstract. Automatic diagnostic tools have been extensively imple-
mented in medical diagnosis processes of different diseases. In this regard,
breast cancer diagnosis is particularly important as it becomes one of
the most dangerous diseases for women. Consequently, regular and pre-
emptive screening for breast cancer could help initiate treatment earlier
and more effectively. In this regard, hospitals and clinics are in need to
a robust diagnostic tool that could provide reliable results. The accu-
racy of diagnostic tools is an important factor that should be taken into
consideration when designing a new system. This has motivated us to
develop an automatic diagnostic system combining two methodologies:
Deep Feedforward Neural Networks (DFNNs) and swarm intelligence
algorithms. Swarm intelligence techniques are based on Particle Swarm
Optimization (PSO) as well as the Mother Tree Optimization (MTO)
algorithm we proposed in the past. In order to asses the performance,
in terms of accuracy, of the proposed system, we have conducted sev-
eral experiments using the Wisconsin Breast Cancer Dataset (WBCD).
The results show that the DFNN combined with a variant of our MTO
attains a high classification performance, reaching 100% precision.

Keywords: Neural network · Nature-inspired techniques ·
Classification · Breast cancer diagnosis

1 Introduction

Cancer represents the second highest cause of death in the world [1]. This disease
affects several vital human organs: pancreas, liver, testis, prostate, lung, cervix
uteri, melanoma of skin, breast, and so forth. Breast cancer is the second most
common diagnosed cancer [2]. Early detection of breast cancer gives doctors and
decision makers the opportunity to initiate an effective treatment method. There
are several kinds of cancer classifications, but the most important is the binary
one: benign or malignant. The benign stage of breast cancer is less invasive and
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does not have high risk treatment, while the malignant stage may cause severe
health complications [3].

Automatic diagnostic classifiers have been used to diagnose breast cancer at
an early stage. These classifiers provide radiologists with more confidence to sup-
port their breast cancer diagnosis. These tools should be carefully designed with
high accuracy so that they can provide reliable results. In this regard, the WBCD
has been used for classification models evaluation purposes [4], and the models
that we present below, achieved varying results with relatively good accuracy.
Quinlan et al. introduced an improved variant of the C4.5 algorithm, and the
authors evaluated the classifier on different datasets. The results showed that the
accuracy of the proposed algorithm is 94.74% with tree size 25 ± 0.5 [5]. Hamilton
et al. introduced a classifier called Rule Induction through Approximate Classi-
fication (RIAC), and the algorithm was evaluated on different datasets. RIAC
achieved 94.99% accuracy compared to 96.0% accuracy when using C4.5 [6].
Salama conducted extensive experiments to compare different classifiers. The
results showed that the best classifier is Sequential Minimal Optimization (SMO)
with accuracy 97.72% [7]. Polat et al. conducted an analysis of the Least Square
Support Vector Machines (LS-SVM) classifier using the WBCD. The results
showed that the accuracy of the classifier is 94.44% using 80% of data as train-
ing and 20% as test data [8]. Nauck et al. introduced a neuro-fuzzy classifier,
combining neural networks and fuzzy logic and called NEFCLASS, that achieved
95.04% accuracy [9]. Pena-Reyes et al. introduced a fuzzy-genetic classifier that
combines genetic algorithms along with a fuzzy system. The authors evaluated
the fuzzy-genetic system and achieved 97.8% accuracy [10]. Abonyi et al. intro-
duced a fuzzy system that is an extension of the quadratic Bayes classifier. The
proposed classifier allows each rule to represent more than one class and achieve
95.57% accuracy [11]. Paulin et al. conducted an extensive comparison between
several back propagation algorithms to tune the DFNN. The results show that
Levenberg Marquardt (LM) is the best algorithm with 99.28% accuracy [12].
Nahato et al. introduced a classifier using a Relation Method With A Back Prop-
agation Neural Network (RS-BPNN). RS-BPNN has been compared with several
published models, and obtained an accuracy of 98.6%, which outperforms all the
other classifiers [13]. Abdel-Zahe et al. introduced the back-propagation neural
network with Liebenberg Marquardt learning function. Here, the weights are ini-
tialized from the Deep Belief Network path (DBN-NN). The authors evaluated
the accuracy of the classifier and obtained a score of 99.68%, which outperforms
the other classifiers from the literature [14].

Despite the success results we listed above, training a neural network using
back propagation [15] has some limitations. The back propagation algorithm
requires some learning parameters such as, learning rate, momentum, gradient
information, and predetermined structure. In addition, this algorithm assumes
that the DFNN has a fixed structure; therefore, designing a near optimal DFNNs
structure is still unsolved problem [16]. To overcome these limitations, several
studies have used nature-inspired techniques for training, instead of back prop-
agation. These techniques achieved better performance as they have a better
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ability to reach the global optimum, in practice (by preventing the search algo-
rithm from being trapped in a local optimum). In this regard, the Artificial Bee
Colony (ABC) and PSO algorithms have been used to adjust weights of DFNNs
and achieved promising results [17,18].

Following the same idea, we propose a new system using a DFNN together
with a swarm intelligent technique. In this regard, we consider PSO as well as
new nature-inspired technique that we recently proposed and called MTO [19]. In
order to asses the performance, in terms of accuracy, of the proposed system, we
have conducted several experiments using the Wisconsin Breast Cancer Dataset
(WBCD). The results show that the DFNN combined with a variant of our
MTO, called MTO with Climate Change (MTOCL), attains a high classification
performance, reaching 100% accuracy.

2 Dataset Description

The WBCD is produced by the University of Wisconsin hospital for diagnosing
breast cancer based on the Fine Needle Aspiration (FNA) test [4]. This dataset
has been used to evaluate the effectiveness of classifier systems. It is used to
distinguish between benign and malignant cancers based on nine attributes from
the FNA: Clump thickness, Uniformity of cell size, Uniformity of cell shape,
Marginal Adhesion, Single Epithelial cell size, Bare Nuclei, Bland Chromatin,
Normal Nucleoli, and Mitoses as shown in Table 1. Attributes have integer values
in range [1, 10]. These attributes play a significant role in determining whether a
cell is cancerous or not. For example, thickness does not get grouped cancerous
cells that are grouped in multilayers while benign cells are grouped in monolayers
affecting clump thickness. The uniformity of size and shape play an important
role as well to distinguish between cancerous cells and normal cells. In addition,
normal cells have the ability to stick together while cancerous cells lose this
feature. Epithelial cell size is one of the indicators of malignancy as well. The
nuclei that are not surrounded by cytoplasm are called bare nuclei, which occurs
in benign tumors. The bland chromatin is uniform in benign cells while it is
coarser in malignant cells. Finally, pathologists can determine the grade of cancer
through the number of mitoses [7].

The data set contains 699 case studies that are divided into: benign 458
(65.5%) and malignant 241 (34.5%). In addition, we removed all missing values
(16 cases) during the experiments, given that their count is low. Removing data
with missing values results in robust and highly accurate model. Each case study
has 11 attributes including class label as shown in Table 1 and sample id number.
We removed the sample id attribute during the experiment, the class attribute
represents the output class, and the rest of attributes are the inputs. Figure 1
shows the distribution and frequency of all nine features that have values in
range [1: 10] as shown in Table 1, and the attribute class has either 2 or 4. The
distribution demonstrates that the values of each feature are well scattered in
the 2D map.
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Table 1. List of attributes including the binary classification

No. Attribute Domain

1 Sample number

2 Clump thickness 1–10

3 Uniformity of cell size 1–10

4 Uniformity of cell shape 1–10

5 Marginal adhesion 1–10

6 Single epithelial cell size 1–10

7 Bare nuclei 1–10

8 Bland chromatin 1–10

9 Normal nucleoli 1–10

10 Mitoses 1–10

11 Class 2 for benign and
4 for malignant

Fig. 1. Wisconsin breast cancer data: nine attributes (input) and class attribute (out-
put)

2.1 Data Processing

Data normalization is one of the approaches that is used to obtain better results
and minimize bias. In addition, data normalization can speed up the training
process by starting the training process for any given feature within the same
scale. The normalization process produces the same range of values for each
input feature for the neural network. In our experiment, all input features are
normalized in the range between 0 and 1.

Discretizing data is another significant process that makes the prediction
process more effective. Desensitization is used to convert numerical values into
categorical values. One way to discretize is dividing the entire range of values
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into a number of groups. In our experiment, the output class has values 2 or
4, which can be represented as 00100 or 00001. In addition, all missing data
are removed from the dataset. The dataset is then divided into training dataset
(80%) (559 samples) (60% training and 20% validating) and testing dataset
(20%) (140 samples). The training dataset is applied to create the model, and
testing dataset is used to evaluate the accuracy of the model.

3 Proposed Breast Cancer Diagnosis System

The architecture of our proposed system is summarized in Fig. 2. Here, the chosen
technique (MTO, MTOCL or PSO) initially generates a random population
(20 agents) using the parameters in Table 2, and each agent of the population
represents all necessary weights for all layers: the weights between the input
layer and the first hidden layer is (9 * 30) weights, between the first hidden
layer and the second hidden layer is (30 * 15) weights, and between the second
hidden layer and the output layer is (15 * 5) weights, which totals to 795 weight.
These weights, in range [−4, 4], feed our DFNN to create our model. Thus, the
initial generated agents produce 20 different DFNN models, and the mean square
error (MSE) of each model is calculated as an indicator of its performance. The
MSE is then returned back to the selected swarm intelligence algorithm, which
represents the fitness value of each agent in the population. The swarm algorithm
then updates the position of each agent (795 weights of DFNN) using different
rules to improve its MSE (minimize its value). This process is repeated until
the system achieves the minimum MSE values [17,18]. The number of iterations
is set to 100 for PSO or MTO, and 20 for MTOCL, for 5 climate change (100
iterations in total).

Table 2. Parameter settings

Algorithm Parameters settings

MTO or MTO-CL Root signal δ = 2.0

MFN signal Δ = 0.03

Small deviation φ = 1.0

Population size = 20

PSO Constriction factor χ = 0.72984

Acceleration coefficient c1 = 2.02 and c1 = 2.02

Population size = 20

Our DFNN consists of one input layer (9 inputs), one output layer (5 digits),
and two hidden layers respectively containing 30 and 15 neurons. We determine
the number of neurons in each hidden layer after conducing several preliminary
experiments. The input layer has a number of neurons that is equal to the number
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of input attributes (9) and the output layer has a number of neurons that is equal
to the number of output classes (5) (after categorizing the output class to 00100
and 00001). In our network, the sigmoid function has been used as an activation
function and mean square error as a fitness value. The network is connected and
tuned separately with each of the three swarm intelligence algorithms through
minimizing the mean square error until the input-output mapping is complete.
We use the accuracy (number of predictions over by the number of samples) as
an indicator to measure the performance of each proposed model.

Deep feedforward
Neural Network

Receive weights
from SI algorithm

Use updated
weights to
calculate MSE

Swarm intelligence
algorithm

Update weights
to send back
to DFNN

Receive MSE
and update
the fitness values

Fig. 2. The proposed system of training the feedforward neural network using SI algo-
rithm

3.1 Mother Tree Optimization (MTO)

MTO [19] pseudocode is shown in Algorithm 1. MTO uses a set of cooperating
agents that evolve in a fashion inspired by communication between Douglas fir
trees, and mediated by the mycorrhizal fungi network that transfers nutrients
between plants of the same or different species. The population is a group of
Active Food Sources (AFSs) whose size is denoted by NT. Agents in the pop-
ulation are arranged in descending order based on their fitness values. Agents
performs feeding and receiving operations in each iteration. During feeding oper-
ation, the population is partitioned into feeders and non-feeders. Each member
in the feeder group can feed an offspring Nos. The number of agents in feeder
NFrs and non-feeder NNFrs groups are given by

Nos =
NT

2
− 1,

NT = NFrs + NNFrs

NFrs =
NT

2
+ 1

(1)

During the receiving operations, the population is divided into four different
groups. Agents update their positions according to the group to which they
belong. The population is partitioned into a single Top Mother Tree (TMT) (an
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agent receiving nutrients from a random source), a set of Partially Connected
Trees (PCTs) that has NPCTs agents, and Fully Connected Trees (FCTs) group
that has NFCTs agents. The numbers of agents in the PCTs and FCTs groups
are given by

NPCTs = NT − 4,
NFCTs = 3,

NT = NFCTs + NPCTs + 1.
(2)

The TMT performs an exploitation process at each iteration (using two
levels of exploitation) by searching for better solution around its position. The
updated position of the first level of exploitation of the TMT is given by:

P1(xk+1) = P1(xk) + δR(d) (3)

R(d) = 2 (round (rand(d, 1)) − 1) rand(d, 1), (4)

where root signal step size δ is equal to 2.0 that has been adopted based on
preliminary experiments, R(d) is a random fixed vector that depends on the seed
number, P (xk) is the position of an agent at iteration k. After each iteration
of the first exploitation level, it compares the fitness value of the new position
with the current one. If the new position has a higher fitness value than the
current one, then it will move to the next exploitation level; otherwise it does
not. In each iteration of the second level, the TMT evaluates a new position in
a random direction with smaller step size Δ. The value of Δ is set to 0.03 after
preliminary experiments.

P1(xk+1) = P1(xk) + ΔR(d) (5)

where Δ is the MFN signal step size. The user may tune the values of δ and Δ
depending on the optimization problem. The FPCTs group has (NT

2 − 2) agents
and starts from the agent ranked 2 and ends at the agent ranked (NT

2 − 1). The
members of FPCTs group update the position as follows:

Pn(xk+1) = Pn(xk) +

n−1∑

i=1

1

n − i + 1
(Pi(xk) − Pn(xk)), (6)

where Pn(xk) represents the current position of any member in range [2, NT
2 − 1)],

Pi(xk) represents the current position of a candidate solution that has better
number of nutrients, and Pn(xk+1) represents the updated position of this mem-
ber. The members of the FCTs group start at candidate solution ranked NT

2

to candidate solution ranked NT
2 + 2. The updated position is given by

Pn(xk+1) = Pn(xk) +

n−1∑

i=n−Nos

1

n − i + 1
(Pi(xk) − Pn(xk)). (7)
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The LPCTs group members start at candidate solution ranked NT
2 + 3 to

the end of the population. The updated position is given by

Pn(xk+1) = Pn(xk) +

NT −Nos∑

i=n−Nos

1

n − i + 1
(Pi(xk) − Pn(xk)). (8)

3.2 MTO Algorithm with Climate Change (MTOCL)

The MTOCL extends MTO with two phases: elimination and distortion as shown
in Algorithm 1. In the elimination phase, the candidate solutions that have the
lowest fitness are removed and are replaced by new random candidate solutions
in the search space. In our experiments, the elimination percentage has been
adopted based on preliminary experiments to be 20% of the total population.
In the distortion phase, the rest of the population (80%) is distorted by slightly
deviating their candidate solutions positions.

The MTO algorithm and its variant MTOCL have been tested on several
recommended optimization benchmark functions. The results showed that MTO
algorithm achieves better performance in terms of solution quality and number of
function evaluations compared to several PSO variants. In addition, the results
showed that MTOCL has the capability to solve more complex problems that
MTO could not solve [19].

3.3 Particle Swarm Optimization (PSO)

In 1995, Eberhart and Kennedy introduced the first idea of particle swarm opti-
mization as shown in Algorithm 2 [20]. The PSO algorithm mimics the movement
of a flock of birds. Each bird in the flock is associated to a particle (candidate
solution). The position of each particle in the search space is updated based
on the previous best position of the particle itself (local position) and the best
position of the entire flock (global position). The PSO algorithm updates the
position of each particle using the following equation [20]:

xk+1
id = xk

id + vk+1
id , (9)

where xid is the position of a particle i, the superscript k denotes the iteration
rank, and vid is the velocity of the particle i. The velocity of the particle i is
updated using the following equation:

vk+1
id = χ(vk

id + c1 × r1[P k
id − xk

id] + c2 × r2[P k
gd − xk

id]), (10)

where χ is the constriction factor, the vk
id is the previous velocity of the particle

i that provides the necessary momentum for moving around the search space.
The constants c1 and c2 are also known as the acceleration coefficients, and
r1 and r2 are uniform distribution random numbers in range [0, 1]. P k

id is the
local best position for the particle i at iteration k, and P k

gd is the global best
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Algorithm 1. The MTO algorithm and MTOCL variant
Require: : NT , PT , d,Krs, Cl, and El

NT : The population size (AFSs)

PT : The position of the active food sources

d: The dimension of the problem

Krs: The number of kin recognition signals

Cl: The number of climate change events (0 for MTO)

El: The elimination percentage

Distribute T agents uniformly over the search space (P1, . . . , PT )

Evaluate the fitness value of T agents (S1, . . . , ST )

Sort solutions in descending order based on the fitness value and store them in S

S = Sort(S1, . . . , ST )

The sorted positions with the same rank of S stored in array A

A = (P1, . . . , PT )

loop

for krs = 1 to Krs do

Use equations (3)–(8) to update the position of each agent in A

Evaluate the fitness of the updated positions

Sort solutions in descending order and store them in S

Update A

end for

if Cl = 0 then

BREAK;
else

Select the best agents in S ((1 - El) S)

Store the best selected position in Abest

Distort Abest (mulitply by random vector)

Distort(Abest) = Abest ∗ R(d)

Remove the rest of the population (El)S

Generate random agents equal to the the number of removed agents

Cl = Cl − 1

end if

end loop (Cl > 0)

S = Sort(S1 . . . ST )

Global Solution = Min(S)

return Global Solution

position at iteration k. The vector toward the local best position for each particle
is calculated by [P k

id − xk
id], and it is known as the “cognitive” component.

The vector toward the global best position for each particle is calculated by
[P k

gd − xk
id], and it is known as the “social” component. The social component

represents the collaborative effect of the particles to find the global solution, and
it helps other particles toward the global best particle found so far.
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Algorithm 2. Particle Swarm Optimization
Generate random particles and random velocities.
while Stopping condition is not satisfied do

for particle i= 1 to population size (n) do
Update the velocity using Eq. 10
Update the position using Eq. 9
Evaluate the fitness value f
if current fitness value (fi) < local best fitness (flbest) then

flbest = fi
end if
if current fitness value (fi) < global best fitness (fgbest) then

fgbest = fi
end if

end for
end while

4 Experimentation

The following steps have been carried out to implement and evaluate the system
with each of the following swarm intelligence techniques: MTO and MTOCL [19]
in addition to PSO [20]. Firstly, data is cleaned (missing data is removed), and
input data is normalized and output data is discretized. In our experiment, data
is divided into 80% training (60% training and 20% validating) and 20% testing.
The DFNN then is created and connected with early selected swarm intelligence
algorithm. In the first iteration, DFNN weights are initialized randomly, and
DFNN use the weights to calculate the Root Mean Square RMS error as follows:

RMS =
√

(Yactual − Ypredicted)2, (11)

The selected swarm intelligence algorithm receives RMS error back from the
DFNN and updates the position based on different rules. The network is trained
using each of the three algorithms. The network is tested using testing data. The
accuracy of the network has been calculated for each network.

4.1 Performance Evaluation

The confusion matrix is a tool that is used to calculate the precision, recall, and
F1 score of a classifier. The precision is used to evaluate the relationships between
true positive and total predicted positive values, which is usually used when the
costs of false positive is high (in our case malignant). The recall test measures
the relationship between true positive and total actual positive values. Finally,
the F1 Score measures the balance between precision and recall. It is important
to highlight that accuracy can be largely contributed by a large number number
of true negative, which does not have much weight, but false positive has much
business cost.
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Table 3 shows the results of few tests for each of the three swarm intelligent
algorithms. The results demonstrate the effect of each of the algorithms for
training the DFNN on the precision, recall, and F1 score tests of the model.
Here, MTO achieves better results in training the DFNN than MTOCL and
PSO. Indeed, the calculated precision, recall, and F1 score are 100% for MTO
and 97.9% for MTOCL. However, PSO achieves the worst results.

Table 3. The results of precision, recall, and F1 score tests

Test SI algorithm Result %

Precision PSO 95.9

MTO 100

MTOCL 97.9

Recall PSO 97.9

MTO 100

MTOCL 97.9

F1 score PSO 96.9

MTO 100

MTOCL 97.9

5 Conclusion

We propose a high accuracy automatic diagnostic system using DFNN and three
swarm intelligence algorithms: PSO, MTO, and MTOCL. In order to assess the
performance of our system, we conducted several experiments on the WBCD
dataset. The results are very promising as our system is able to reach a 100%
precision, when using the MTO technique. We anticipate that our system can
produce reliable results for hospitals and clinics, allowing patients to receive an
instant diagnosis for breast cancer after performing the FNA test.
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Abstract. This paper presents a logistical study using a mathemati-
cal model based on the Three-dimensional Open Dimension Rectangular
Packing Problem (3D-ODRPP) to optimize the arrangement of products
in a packaging with the practical constraint “product stability”. The pro-
posed model aims at seeking the minimal volume rectangular bounding
box for a set of rectangular products. Our model deals with orthogo-
nal rotation, static stability and overhang constraints of products, three
of the most important real-world conditions that ensure the feasibility
of solution. Literature test instances are given to demonstrate that the
proposed method can find the feasible global optimum of a 3D-ODRPP.
Experimental results show the improvement of solution quality in terms
of box volume and packaging stability comparing to existing models in
the literature.

Keywords: Open dimension packing problem · Mathematical model ·
Packaging stability

1 Introduction

The basic 3D-ODRPP represented in the typology of Cutting and Packing prob-
lems (C&P) [13] is one of the most studied three-dimensional packing problems,
beside the Bin Packing (3D-BPP), Container Rectangular Loading (3D-CRLP)
and Knapsack Problem (3D-KP). According to this typology, the 3D-BPP is a
“Output maximization problem” where the capacity is limited and the objective
is to maximize the profit given by the chosen items. On the other hand, the
3D-ODRPP, 3D-BPP and 3D-CRLP are “Input minimization problems” whose
objective is to minimize the resource needed to accommodate all the given items.

The 3D-ODRPP focuses on finding the length, width and height of a rect-
angular box that can accommodate a given set of rectangular products so that
the volume of the box is minimal. The problem is found in many industries,
specially, in the e-commerce packing industry.
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B. Dorronsoro et al. (Eds.): OLA 2020, CCIS 1173, pp. 241–254, 2020.
https://doi.org/10.1007/978-3-030-41913-4_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-41913-4_20&domain=pdf
http://orcid.org/0000-0003-1010-5175
https://doi.org/10.1007/978-3-030-41913-4_20


242 C.-T.-T. Truong et al.

One of the first mathematical models of three-dimensional packing problems
was introduced by Chen et al. [3]. Their model deals with the 3D-CRLP. It was
among the earliest 3D-CRLP models that cover product orthogonal rotation.
Base on the model of Chen et al. [3], Tsai et al. [11] present a mixed integer
programming linear mathematical model for the 3D-ODRPP by reducing the
number of binary variables and adopting the piecewise linearization techniques
introduced by Vielma et al. [12]. In 2017, Junqueira and Morabito [5] classi-
fied the modeling strategies of 3D-ODRPP into two paradigms, depending on
whether the positioning of the products is given in terms of continuous variables
(position-free paradigm), such as presented by Tsai et al. [11], or discrete vari-
ables (grid-based position paradigm, examples found in [5]). While position-free
models are simpler and have fewer decision variables, grid-based position models
have advantages facing real-world constraints like cargo stability, load-bearing,
multi-drop, etc.

An important condition that affects to the feasibility of solution is the prod-
uct stability (or product support, cargo stability, etc.). This condition ensures
every product to maintain its position during the loading phase. Most of the
mathematical models in the literature focus on full base mono support constraint
(products are entirely supported by the bottom of the box or by another prod-
uct) because of its simplicity. Examples can be found in [6,10]. For the heuristic
algorithms, beside the full-base support condition represented in [1,2,4] there
are also studies of multi-base and partial-base support [7–9].

While 3D-BPP, 3D-CRLP and 3D-KP are usually linear models that don’t
contain any non-linear objective function and constraint, the 3D-ODRPP, in
the other hand, has a non-linear objective function which is the product of box
length, width and height. Tsai et al. [11] applied the logarithmic transformation
and piecewise linearize function presented in [12] to their model to linearize the
objective function. This technique reduces significantly the computational time
to archive the solution.

In this paper, new position-free models for the 3D-ODRPP are introduced.
These models base on the position-free paradigm. Nevertheless, we defined new
decision variables for product rotation. Additionally, our model deals with prod-
uct full and partial base support conditions that are not usually included in
literature mathematical models for the 3D-ODRPP.

The remaining of this paper is organized as follows: Sect. 2 presents non-linear
and linearized mathematical models for the basic 3D-ODRPP; Sect. 3 presents
two 3D-ODRPP mathematical model with mono-base and multi-base product
stability constraints. Section 4 presents numerical experiments and analysis; con-
clusions and perspectives for future works are in Sect. 5.

2 Mathematical Models for the Basic 3D-ODRPP

We introduce in this section a mathematical model for the 3D-ODRPP without
real-world constraints. The basic 3D-ODRPP can be described as follows: a
given set of products of parallelepiped shape is characterized by its length, width
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and height (the longest, second longest and shortest dimension of the product,
respectively) are to be loaded into a box of parallelepiped shape whose length,
width and height are variable. The objective is to achieve the minimum of box
volume, while meeting the following loading constraints:

– Every face of a product must be parallel to one of box faces. In other words,
the orientation of a product can only be chosen from its six possibilities
(Fig. 1).

– There must be no intersection between any pair of products.
– All products must be placed entirely within the box.

The dimensions of the box lie parallel to the x, y and z axis, respectively, of the
coordinates system, with the left-back-bottom corner being at the origin O. The
position of a product is the coordinate of its left-back-bottom corner.

Fig. 1. Product orientations

2.1 Mathematical Model

The mathematical model ODP 1 is represented as follows:
Parameters:

– n: Number of products
– pi, qi, ri: Length, width and height of product i : pi ≥ qi ≥ ri ∀i ∈ {1...n}
– M : Big number used in the model. M =

∑n
i=1 pi

Variables:

– xi, yi, zi (i ∈ {1...n}): Continuous variables indicating the coordinate of prod-
ucts.

– X,Y,Z: Continuous variables for length, width, height of the box, respec-
tively.

– oi,j (i ∈ {1...n}; j ∈ {1...6}): Binary variables indicating weather the product
i has orientation j. For example, if product 1 has the orientation 5 then
o1,5 = 1, otherwise, o1,5 = 0. The orientations are defined as shown in Table 1.
Comparing to models presented in [3,11] that need (9 × n) variables for
product rotations, our model needs only (6 × n) variables.



244 C.-T.-T. Truong et al.

– ai,j , bi,j , ci,j , di,j , ei,j , fi,j (i, j ∈ {1...n}): Binary variables indicating relative
positions (on the left, on the right, behind, in front, below, above) of products
i and j [3]. For example, if product 2 is on the left side of product 3 then
a2,3 = 1, otherwise, a2,3 = 0. Two product are non-intersected if they have
at least one relative position (Fig. 2).

Table 1. Product orientations

Orientation 1 2 3 4 5 6

Side parallel to x-axis p p q q r r

Side parallel to y-axis q r p r p q

Side parallel to z-axis r q r p q p

Objective function:
Minimize XY Z (1)

Subject to:
6∑

j=1

oi,j = 1 ∀i ∈ {1...n} (2)

ai,j + bi,j + ci,j + di,j + ei,j + fi,j ≥ 1 ∀i, j ∈ {1...n}; i �= j (3)

xi + pi(oi,1 + oi,2) + qi(oi,3 + oi,4) + ri(oi,5 + oi,6) ≤ xj + M(1 − ai,j)
∀i, j ∈ {1...n}; i �= j

(4)

bi,j = aj,i ∀i, j ∈ {1...n}; i �= j; (5)

yi + pi(oi,3 + oi,5) + qi(oi,1 + oi,6) + ri(oi,2 + oi,4) ≤ yj + M(1 − ci,j)
∀i, j ∈ {1...n}; i �= j

(6)

di,j = cj,i ∀i, j ∈ {1...n}; i �= j; (7)

zi + pi(oi,4 + oi,6) + qi(oi,2 + oi,5) + ri(oi,1 + oi,3) ≤ zj + M(1 − ei,j)
∀i, j ∈ {1...n}; i �= j

(8)

fi,j = ej,i ∀i, j ∈ {1...n}; i �= j; (9)

X ≥ xi + pi(oi,1 + oi,2) + qi(oi,3 + oi,4) + ri(oi,5 + oi,6) ∀i ∈ {1...n} (10)

Y ≥ yi + pi(oi,3 + oi,5) + qi(oi,1 + oi,6) + ri(oi,2 + oi,4) ∀i ∈ {1...n} (11)

Z ≥ zi + pi(oi,4 + oi,6) + qi(oi,2 + oi,5) + ri(oi,1 + oi,3) ∀i ∈ {1...n} (12)

max
i∈{1...n}

ri ≤ φ ≤
n∑

i=1

pi ∀φ ∈ {X,Y,Z} (13)

n∑

i=1

(piqiri) ≤ X × Y × Z ≤
n∑

i=1

pi ×
(

max
i∈{1...n}

qi

)

×
(

max
i∈{1...n}

ri

)

(14)
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Constraint (2) shows that each product has only one among its six possible
orientations. Constraint (3) assures that there is at least one relative relation
between any two products so that there will be no intersection. Constraints (4)
to (9) define the relative positions (Fig. 2). Constraints (10), (11) and (12) mean
all products must be placed entirely inside the box. Constraints (13) to (14)
represent the upper and lower bounds of box length, width, height and volume.

Fig. 2. Non-intersection conditions

2.2 Linearization

As the model ODP 1 has a non-linear objective function, it is difficult and
requires lots of computational time to obtain the optimal solution [11]. To lin-
earize the objective function (1), we apply the logarithmic transformations and
the piecewise function linearization technique presented in [11,12]. The follow-
ing additional parameters, variables and constraints are added to the linearized
model ODP 2:

Parameters:

– m: Number of break points for the piecewise function.
– αX

k , αY
k , αZ

k : Value of X, Y , Z at the break point k on the axes x, y, z.

Variables:

– fX , fY , fZ : Piecewise function of ln(X), ln(Y ), ln(Z), respectively.
– λX

i , λY
i , λZ

i : Continuous variables for piecewise functions of X, Y and Z,
respectively. 0 ≤ λ

X/Y/Z
i ≤ 1

– uX
k , uY

k , uZ
k : Binary variables for special ordered set of type 2 (SOS2) piecewise

functions of X, Y and Z, respectively.

Linearization constraints:

fφ =
m∑

i=1

(
ln(αφ

i )λφ
i

)
φ =

m∑

i=1

αφ
i λφ

i

m∑

i=1

λφ
i = 1

λφ
i ∈ [0; 1] ∀φ ∈ {X,Y,Z}

(15)
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∑

i∈S+(k)

λφ
i ≤ uφ

k

∑

i∈S−(k)

λφ
i ≤ 1 − uφ

k

λφ
i ∈ [0; 1] uφ

k ∈ {0, 1} ∀φ ∈ {X,Y,Z}
(16)

The constraint (14) can be rewritten as follow:

ln

(
n∑

i=1

(piqiri)

)

≤ fX +fY +fZ ≤ ln

(
n∑

i=1

pi ×
(

max
i∈{1...n}

qi

)

×
(

max
i∈{1...n}

ri

))

(17)
We have then the linearized model ODP 2:

Minimize fX + fY + fZ (18)

Subject to: (2) to (13) and (15) to (17).

3 Static Stability of Products

In this section two different approaches of product static stability are presented:
Full-base support (FBS) and Partial multi-base support (PMBS). For each app-
roach, we introduce a corresponding mathematical model.

3.1 The Full Base Support Constraint

The full base support constraint (FBS) for 3D-ODRPP, as presented in [10], can
be defined as follows: a product is conceded “well-supported” if it is placed on
the bottom of the box or its bottom face must entirely in contact with the top
face of another product (as shown in Fig. 3). To apply this constraint, a binary
variable is added into the model:

Fig. 3. Full base support

– ζi,j (i, j ∈ {1...n}): Binary variable indicating if product i is supported by
product j.
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The three-dimensional open dimension packing with full base support math-
ematical model (ODP FBS) is presented next:
Objective function: (18)
Subject to:

(2) to (13) and (15) to (17)

M ×
n∑

j=1;j �=i

(ζi,j) ≥ zi ∀i ∈ {1...n} (19)

xi + M(1 − ζi,j) ≥ xj ∀i, j ∈ {1...n}; i �= j (20)

yi + M(1 − ζi,j) ≥ yj ∀i, j ∈ {1...n}; i �= j (21)

xj + pj(oj,1 + oj,2) + qj(oj,3 + oj,4) + rj(oj,5 + oj,6) + M(1 − ζi,j) ≥ xi

∀i, j ∈ {1...n}; i �= j
(22)

yj + pj(oj,3 + oj,5) + qj(oj,1 + oj,6) + rj(oj,2 + oj,4) + M(1 − ζi,j) ≥ yi

∀i, j ∈ {1...n}; i �= j
(23)

zj + pj(oj,4 + oj,6) + qj(oj,2 + oj,5) + rj(oj,1 + oj,3) + M(1 − ζi,j) ≥ zi

∀i, j ∈ {1...n}; i �= j
(24)

zj + pj(oj,4 + oj,6) + qj(oj,2 + oj,5) + rj(oj,1 + oj,3) ≤ zi + M(1 − ζi,j)
∀i, j ∈ {1...n}; i �= j

(25)

The constraint (19) implies that if a product is not placed on the bottom
face of the box then it must be support by another product. Constraints (20) to
(23) ensure that the bottom face of product i is entirely inside the top face of
product j if i is supported by j. Constraints (24) and(25) mean the top face of
the base and the bottom face of the supported product has the same altitude.

3.2 Partial Base Support

This sub-section introduces the partial multi base support (PMBS) constraints
where a product can be supported by the bottom of the box or by one or several
other products. We can see that the FBS is a special case of PMBS.

A product is called “well-supported” if its gravity center has a perpendicular
projection lies inside a “base” which is the bottom of the box or formed by top
face of other products. Propose that all products are rigid parallelepiped and
their weight are uniformly distributed (so their center of gravity is the same as
their geometric center), the product i is in stable equilibrium position if one of
the following conditions is satisfied:

1. zi = 0, which means the product is on the floor of the box;
2. The product is supported at four points s

{1}
i , s

{2}
i , s

{3}
i , s

{4}
i such that every

quarter of the bottom face of the product contains one support point (Fig. 4).
In additional, all the support points must be outside of a “minimal supporting
zone” (the red rectangle in Fig. 4b).
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Fig. 4. Partial multi-base support (Color figure online)

These two conditions are modeled as shown in the Eqs. (31) to (54) below.
However every product is “well-supported”, it doesn’t mean the whole pack-

aging is physically stable. Figure 5 shows a case where three products are “well-
supported” but the set are not stable. The reason is the resulting moment acting
to the packaging is not null. To assure this stability, we apply the concepts of grav-
ity center, force and moment equilibrium for 3D-Bin packing problem represented
in [9]. Let P a set of products to be packed and μi the weight of product i, the
gravity center G(Gx, Gy, Gz) of P can be determined by the following equations:

⎧
⎪⎨

⎪⎩

Gx =
∑

i∈P (xc
i × μi)/

∑
i∈P (μi)

Gy =
∑

i∈P (yc
i × μi)/

∑
i∈P (μi)

Gz =
∑

i∈P (zc
i × μi)/

∑
i∈P (μi)

(26)

Where (xc
i , y

c
i , z

c
i ) is the coordinate of product i’s gravity center. The resulting

moment acting on G must be null, which means:

−−→
MR

G =
−→
0 (27)

The condition (27) can be modeled as follows:

∑

i∈P

(μi×(Gx−(xi+
1
2

×(pi(oi,1+oi,2)+qi(oi,3+oi,4)+ri(oi,5+oi,6))))) = 0 (28)

∑

i∈P

(μi×(Gy−(yi+
1
2

×(pi(oi,3+oi,5)+qi(oi,1+oi,6)+ri(oi,2+oi,4))))) = 0 (29)

∑

i∈P

(μi×(Gz −(zi+
1
2

×(pi(oi,4+oi,6)+qi(oi,2+oi,5)+ri(oi,1+oi,3))))) = 0 (30)

Additional parameters and variables of the mathematical model for 3D-
ODRPP with partial multi-base support (ODP PMBS) are next:
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Fig. 5. Well-supported products with overhang

Parameters:

– μi: weight of products.
– τ : given coverage rate: 0 ≤ τ ≤ 1. This parameter defines a rectangle whose

length and width equal to τ times the length and width of the product. This
rectangle is the minimal zone around the perpendicular projection of gravity
center on the bottom face of product and must be entirely inside the base of
the product (red square in Fig. 4b).

Variables:

– bx
{1}
i , bx

{2}
i , bx

{3}
i , bx

{4}
i : x-coordinate of four support points of the product i.

– by
{1}
i , by

{2}
i , by

{3}
i , by

{4}
i : y-coordinate of four support points of the product i.

– ζ
{1}
i,j , ζ

{2}
i,j , ζ

{3}
i,j , ζ

{4}
i,j : binary variables define if the support point 1, 2, 3 and

4, respectively, of product i is supported by product j.

Objective function: (18)
Subject to:

(2) to (13), (15) to (17), (26), (28) to (30)

bx
{1}
i ≥ xi ∀i ∈ P (31)

bx
{1}
i ≤ xi +

1
2

× (pi(oi,1 + oi,2) + qi(oi,3 + oi,4) + ri(oi,5 + oi,6)) × (1 − τ)

∀i ∈ P
(32)

by
{1}
i ≥ yi ∀i ∈ P (33)

by
{1}
i ≤ yi +

1
2

× (pi(oi,3 + oi,5) + qi(oi,1 + oi,6) + ri(oi,2 + oi,4)) × (1 − τ)

∀i ∈ P
(34)
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bx
{2}
i ≥ xi +

1
2

× (pi(oi,1 + oi,2) + qi(oi,3 + oi,4) + ri(oi,5 + oi,6)) × (1 + τ)

∀i ∈ P
(35)

bx
{2}
i ≤ xi + pi(oi,1 + oi,2) + qi(oi,3 + oi,4) + ri(oi,5 + oi,6) ∀i ∈ P (36)

by
{2}
i ≥ yi +

1
2

× (pi(oi,3 + oi,5) + qi(oi,1 + oi,6) + ri(oi,2 + oi,4)) × (1 + τ)

∀i ∈ P
(37)

by
{2}
i ≤ yi + pi(oi,3 + oi,5) + qi(oi,1 + oi,6) + ri(oi,2 + oi,4) ∀i ∈ P (38)

bx
{3}
i ≥ xi ∀i ∈ P (39)

bx
{3}
i ≤ xi +

1
2

× (pi(oi,1 +oi,2)+ qi(oi,3 +oi,4)+ ri(oi,5 +oi,6))× (1− τ) ∀i ∈ P

(40)

by
{3}
i ≥ yi +

1
2

× (pi(oi,3 + oi,5) + qi(oi,1 + oi,6) + ri(oi,2 + oi,4)) × (1 + τ)

∀i ∈ P
(41)

by
{3}
i ≤ yi + yi + pi(oi,3 + oi,5) + qi(oi,1 + oi,6) + ri(oi,2 + oi,4) ∀i ∈ P (42)

bx
{4}
i ≥ xi +

1
2

× (pi(oi,1 + oi,2) + qi(oi,3 + oi,4) + ri(oi,5 + oi,6)) × (1 + τ)

∀i ∈ P
(43)

bx
{4}
i ≤ xi + pi(oi,1 + oi,2) + qi(oi,3 + oi,4) + ri(oi,5 + oi,6) ∀i ∈ P (44)

by
{4}
i ≥ yi ∀i ∈ P (45)

by
{4}
i ≤ yi +

1
2

× (pi(oi,3 + oi,5) + qi(oi,1 + oi,6) + ri(oi,2 + oi,4)) × (1 − τ)

∀i ∈ P
(46)

xj ≤ bx
{φ}
i + (1 − ζ

{φ}
i,j ) × M ∀i, j ∈ P ;∀φ ∈ {1, 2, 3, 4} (47)

yi ≤ by
{φ}
i + (1 − ζ

{φ}
i,j ) × M ∀i, j ∈ P ;∀φ ∈ {1, 2, 3, 4} (48)

bx
{φ}
i ≤ xj + pj(oj,1 + oj,2) + qj(oj,3 + oj,4) + rj(oj,5 + oj,6) + M(1 − ζ

{φ}
i,j )

∀i, j ∈ P ;∀φ ∈ {1, 2, 3, 4}
(49)

by
{φ}
i ≤ yj + pj(oj,3 + oj,5) + qj(oj,1 + oj,6) + rj(oj,2 + oj,4) + M(1 − ζ

{φ}
i,j )

∀i, j ∈ P ;∀φ ∈ {1, 2, 3, 4}
(50)
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zi + (1 − ζ
{φ}
i,j ) × M ≥ zj + pj(oj,4 + oj,6) + qj(oj,2 + oj,5) + rj(oj,1 + oj,3)

∀i, j ∈ P : i �= j;∀φ ∈ {1, 2, 3, 4}
(51)

zi ≤ zj + pj(oj,4 + oj,6) + qj(oj,2 + oj,5) + rj(oj,1 + oj,3) + (1 − ζ
{φ}
i,j ) × M

∀i, j ∈ P : i �= j;∀φ ∈ {1, 2, 3, 4}
(52)

zi ≤ (1 − ζ
{φ}
i,i ) × M ∀i ∈ P ;∀φ ∈ {1, 2, 3, 4} (53)

∑

j∈P

ζ
{φ}
i,j ≥ 1 ∀i ∈ P ;∀φ ∈ {1, 2, 3, 4} (54)

The constraints (31) to (46) ensure that four support points of the prod-
uct i are inside four different quarters of its bottom face. Constraints (47) to
(50) ensure that the four support points belong to top face of other products.
Constraints (51) and (52) make sure the supported item has the same altitude
as it bases. The constraint (53) means if a product is placed at the altitude 0
(zi = 0) then it isn’t supported by any other product (or the product supports
itself). Finally, the constraint (54) implies that each quarter of a product must
be supported by at least one product.

4 Computational Experiments

All the tests in this section are performed in Cplex version 12.8.0 installed on
a Windows 7, Intel core i7-6820HQ at 2.70 GHz computer with 32 GB of RAM.
The coefficient of linearization function is 128 and the coverage rate τ = 0.8
(corresponding to at least 64% of bottom face surface will be inside its base).
The following test instances are used to test the proposed mathematical models:

Literature Test Instances: Ten test instances derived from [11] will be tested.
Because the test instances in [11] didn’t include product weight, in the following
tests, we suppose that all products are weight uniformly distributed with the
density of mass equals to 1 (unit − of − mass/unit − of − volume). Then the
weight of products can be calculated by the Eq. (55).

μi = pi × qi × ri ∀i ∈ P ; (55)

Table 2 shows the filling rate of solutions given by the three models: ODP 2
with no product support condition, ODP FBS with full-base support derived
from [10] and the proposed model ODP PMBS with partial multi-base support.
In two out of ten instances, the model ODP PMBS gives better solutions than
ODP FBS and the same filling rate as ODP 2. Let us consider the problem ts04
(results shown in Table 3), while the ODP 2 can’t guarantee product stability
condition (τ = 0.8) and the ODP FBS sacrifices its filling rate from 87.27% down
to 85.05% to guarantee every product is fully supported, the ODP PMBS allows
product 5 (pink) to be over-hanged on its base (product 2 (green)) and remains
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Table 2. Filling rate (%) and computational time (hh:mm:ss) with m = 128

Instance Number of products Item ODP 2 ODP FBS [10] ODP PMBS

Ts01 4 Filling rate 82.78 82.78 82.78

CPU time 00:00:02 00:00:01 00:00:03

Ts02 5 Filling rate 86.33 86.33 86.33

CPU time 00:00:03 00:00:03 00:00:05

Ts03 6 Filling rate 84.08 84.08 84.08

CPU time 00:00:40 00:00:16 00:01:03

Ts04 7 Filling rate 87.27 85.05 87.27

CPU time 00:03:18 00:01:40 00:07:30

Ts05 8 Filling rate 81.67 81.67 81.67

CPU time 00:00:02 00:00:01 00:00:04

Ts06 9 Filling rate 74.58 74.58 74.58

CPU time 01:53:40 00:00:05 00:12:18

Ts07 4 Filling rate 85.71 85.71 85.71

CPU time 00:00:01 00:00:01 00:00:01

Ts08 5 Filling rate 87.64 87.64 87.64

CPU time 00:00:02 00:00:04 00:00:05

Ts09 6 Filling rate 90.17 90.17 90.17

CPU time 00:00:19 00:01:34 00:02:12

Ts10 7 Filling rate 94.07 90.17 94.07

CPU time 00:15:52 00:17:44 00:25:46

Ts11 8 Filling rate 93.30 92.11 93.30

CPU time 00:05:58 00:08:07 00:34:21

Ts12 9 Filling rate – – –

CPU time 02:00:00 02:00:00 02:00:00

Table 3. Results for ts04

ODP 2 (no support) ODP FBS [10] ODP PMBS

Box size (40 × 16 × 11) (43 × 28 × 6) (40 × 22 × 8)

Volume 7040 7224 7040

Filling rate (%) 87.27 85.05 87.27

the same volume as ODP 2 so that the filling rate won’t changed. Figure 6 shows
product arrangements.

In the term of computational time, as we can see in Table 2, with the coef-
ficient of decomposition m = 128, the model ODP PMBS requires more com-
putational time than ODP 2 and ODP FBS. For the problems with small-sized
products (Ts01 to Ts06), the model ODP PMBS can give the optimal solution
in a reasonable time (from three seconds to about twelve minutes depended on
number of products). For industrial instances (Ts07 to Ts10), where products
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Fig. 6. Solutions for ts04 (Color figure online)

are usually strongly heterogeneous and have bigger size, the computational time
is far longer. For example, with the same number of products equals to seven,
the ODP PMBS give the solution of Ts04 in seven minutes and thirty second
while the time needed for Ts10 is twenty five minutes and forty six seconds.

To see the limit of the proposed method, two additional instances of big-
sized products are tested: the instance Ts11 includes two product sets of Ts07
when the Ts12 is the combination of Ts07 and Ts08 product sets. When n = 8
(Ts11), the computational time is thirty four minutes and twenty one seconds,
and when n = 9 (Ts12), the testing computer is unable to find the solution
within two hours.

5 Conclusions

This work introduced a mathematical model based approach for the 3D-ODRPP.
The proposed model (ODP PMBS) has proved the capacity to seek the optimal
solution of the 3D-ODRPP. A new product stability conditions is introduced
and modeled. The PMBS derived from the concepts of gravity center, force and
moment equilibrium has shown the efficacy on solving the 3D-ODRPP. This
condition is an important real-world constraint not only for the 3D-ODRPP but
also for other three-dimensional packing problems in the literature to guarantee
the feasibility of solution.

For the future works, optimizing the ratio of coverage (τ) will be an inter-
esting subject to study in order to improve product static stability. For many
other real-world applications, additional constraints of three-dimensional pack-
ing could arise in practice, such as dynamic stability, load bearing strength,
product fragility, parcel weight limit, weight distribution within a box, etc. The
computational experiments in Sect. 4 has also shown that within the exact app-
roach, only small-sized problem can be solved in a reasonable time, heuristic
approaches should be applied in large-sized problems. These issues can enhance
practical contributions of the research and are worthy of future investigation.
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4. Gonçalves, J.F., Resende, M.G.: A parallel multi-population biased random-key
genetic algorithm for a container loading problem. Comput. Oper. Res. 39(2),
179–190 (2012)

5. Junqueira, L., Morabito, R.: On solving three-dimensional open-dimension rectan-
gular packing problems. Eng. Optim. 49(5), 733–745 (2017)

6. Pedruzzi, S., Nunes, L.P.A., de Alvarenga Rosa, R., Arpini, B.P.: A mathematical
model to optimize the volumetric capacity of trucks utilized in the transport of
food products. Gest. Prod. 23, 350–364 (2016)
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Abstract. In this work, an optimization method for 3D container load-
ing problem with multiple constraints is proposed. The method consists
of a genetic algorithm to generate an arrangement of cargoes and a fit-
ness evaluation using physics simulation. The fitness function considers
not only the maximization of container density or value but also a few
different constraints such as stability and fragility of the cargoes during
transportation. We employed a container shaking simulation to include
the effect of the constraints to the fitness evaluation. We verified that the
proposed method successfully provides the optimal cargo arrangement to
the small-scale problem with 10 cargoes.

Keywords: Container loading · Genetic algorithm · Physics
simulation

1 Introduction

Container loading problem (CLP) is to find an arrangement of cargoes in a con-
tainer, which comes up in various scene in daily life and business including a
suitcase packing for traveling, bagging purchased items in a supermarket, con-
tainer packing for logistics, and so on. Those packing problems are practically
solved by the sense of a person working on the packing. However, to obtain an
acceptable solutions quickly, the person working on the packing need some level
of experiences or training.

To obtain a reasonable loading pattern in a practical packing scenario by a
computation has significant advantages, which includes training and evaluation
of a person working on a packing task, optimizing a robot packing in a automated
logistic system, and so on. In case of a solver for a practical problem setting,
basically it should be a custom one for that practical problem because a packing
problem in a practical scenario has some constraints of weight, fragility, orienta-
tion, stability of loading pattern etc. Moreover, a particular problem has its own
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importance of the constraints. Bortfeldt and Wäscher [5] reviewed many works of
CLP with various type of constraints. Basically, existing works have focused on
each specific application scenario. Nevertheless these works meet the demands of
practical situations, it makes those solutions only available for the specific part
of the problem. If anyone wish to adapt them to another type of problem, the
whole algorithm must be renewed. On the other hand, meta-heuristics methods
are generally more flexible about an adaptation of a method to different problem
settings.

In this paper we propose a method to obtain a reasonable loading pattern
which can consider various constraints and its importance. Our method consists
of a physics simulation of loading pattern and meta heuristic optimization. In
the physics simulation, we make a loading pattern in the simulator and shake the
container to simulate a motion caused by transport. Then our method evaluates
the damage of each container. The optimization algorithm considers not only the
static evaluation including density, weight but also the constraints of damage
during transportation.

Contribution
This paper proposes a flexible method for CLP combining GA and physics simu-
lation. We design the method to separate design of GA, arrangement of cargoes
and fitness evaluation. The method will be adapted various situations and con-
straints modifying only the fitness function. The function can be designed with
much information from physics simulation. Physics simulation takes an acceler-
ation scenario, adding velocity to the container and cargoes. The cargoes result
its trail, contacts etc. and calculate its value of fitness w.r.t. container loading.

2 Related Works

2.1 Genetic Algorithm

Container loading problem (CLP) is known as a NP-hard optimization problem,
which have been approached with meta-heuristics algorithms [4,6]. This paper
focuses on genetic algorithm (GA) [9], which is inspired by a process of natural
selection to solve optimization problems. GA repeatedly modifies a population
of candidate solutions called individuals to get better solutions. Each individual
has genes representing a solution, which are encoded in many ways such as
bit-string [3], real value [7] and permutation [10]. At each step, GA iteratively
applies genetic operations (e.g., crossover, mutation and selection) to one or
some individuals (called parents) and produces new individuals (called children).
Children inherits some part of parents’ genes, which are variables of the solution.
In the selection process, individuals are evaluated by a fitness function, and those
with higher fitness will survive to the next generation.

In CLP context, genes represent how the cargoes are loaded in a specific
manner. For example, real-polarized genetic algorithm [8] encodes the loading
order of the cargoes as its genes. Wu [12] used two segments of encoding in GA,
including the number and the rotation of the cargoes. In sequence-triple [13],
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genes represent the cargoes positions with three arrays of cargoes order. Relative
positions of each gene represent relative spatial position. Similar to [8,10], we
encodes the loading order into genes. The loading location is straightforward in a
bottom-left-back manner. Different from the other work, we run GA with physics
simulation to compute fitness under several realistic constrains (e.g., rotation,
stability, fragility) in a practical scenario.

2.2 Container Loading with Soft Constraints

In the review by Bortfeldt and Wäscher [5], they mentioned as follows.

Constraints in container loading are usually introduced as hard constraints.
This may be due to the fact that in the design of algorithms such con-
straints can be handled in a more straightforward way than soft con-
straints. Correspondingly, only very few publications consider soft con-
straints.

Many works handle constraints as hard constraints, and only a few types of
constraints such as weight constraints, allocation constraints and positioning
constraints are addressed as soft constraints. Our work tries to represent more
types of constraints as soft constraint and handle them simultaneously.

2.3 Physics Simulation

Physics simulation (PS) calculates the laws of physics. Calculating motions of
multiple objects (multibody dynamics) is used for CLP. StableCargo [11] is a
tool to simulate the transportation of a container, focusing on to simulate how
the cargoes move in the container while transportation. It proposed a metrics
to evaluate the dynamic stability of the container with the simulation. The
interpretation of real transportation is not included in this work.

3 Method

We propose a flexible method for CLP combining genetic algorithm (GA) and
physics simulation (PS). Given particular cargoes and their constraints, GA
iteratively finds loading pattern in a container. Simulating transportation, PS
shakes the container and cargoes to evaluate the stability of loading pattern,
which becomes the fitness value of GA. During the shake, forces are applied to the
cargoes, which are affected by vehicle acceleration, suspension, road condition,
etc.

Figure 1 shows the basic process flow of the proposed method. A population
including N individuals with random genes is generated at first. Then, from N
individuals, GA produces N children by performing crossover and mutation, as
described in Subsect. 3.1. For all 2N individuals, PS simulates to load cargoes
in a container along the loading pattern specified by their genes, and it shakes
the container. Individuals are sorted in descending order of fitness values, and
the top N individuals are selected as a population for the next generation.
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Fig. 1. Flow diagram of the proposed method

Fig. 2. An example of crossover and mutation operations.

3.1 Design of Genetic Algorithm

In this paper, genes g = gc (c = 1 . . .M) represent the loading order of M cargoes
where each gene specifies one of the cargoes. For example, given five cargoes (i.e.,
M = 5), g = (2, 4, 1, 5, 3) indicates the loading order from cargo2 to cargo3. As
shown in Fig. 2, crossover randomly takes two parents gi and gj to produce two
children gN+i and gN+j . Each parent randomly selects a continuous part of
genes, and the part is kept to its child, illustrated by a tick arrow, respectively.
Remaining genes are given by another parent whose order is kept, illustrated by
thin arrows. After crossover, mutation operation is operated by swapping two
parts of the genes in each child. By selection operation, all individuals containing
parents and children in a population (i.e., P = {g1, . . . , gN , gN+1, . . . , g2N}) are
sorted in descending order of their fitness values, and the top N individuals are
selected for the next generation.

3.2 Physics Simulation

The container shaking simulation is implemented as a multibody dynamics sim-
ulation. All cargoes and the container is represented as rigidbodies (which never
bend). Each cargo is one rectangular rigidbody, and the container is constructed
with five rectangular rigidbodies, one bottom and four walls. The acceleration
scenario is implemented by changing velocity of the container. The container is
put on a vast plane with no friction.

The cargoes are put in the container in the order of genes represent. The first
cargo is put in left-front-bottom corner of the container, then following cargoes
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are put into the next space in top-right-back order. At first, cargoes are stacked
up while the following cargo have smaller face than the top face of previous
cargo and the cargo do not beyond the top of the container. When the following
cargo cannot be stacked, it is put on the right space while not to stick out to
front-axis. When the container is filled and some cargoes are remained to not
packed yet, these unloaded cargoes are not included in the simulation.

Unity [2] is used to implement the physics simulation. It is a widely used IDE
for video game, AR/VR application and so on. It has a physics engine which is
based on PhysX [1].

3.3 Fitness Evaluation

Physics simulation generates much valuable information to evaluate the pack-
ing, transform, rotation, contact and velocity, etc. Various fitness functions can
be designed such information without modifying algorithm flow. Branches or
conditions also can be introduced.

E is the fitness function (Eq. 1) used in selection of GA phase.

minimize E = f1 +
1

#C
(
∑

C

(f2 + f3)) +
1

#S
(
∑

S

f4) +
1

#F
(
∑

F

f5) (1)

#C is the number of cargoes in the container. #S is the number of cargoes with
stacking constraints, and #F is the one with fragility constraints. f1 indicates
the density of the container (Eq. 2). f2 and f3 are the translation (Eq. 3) and
rotation (Eq. 4) of each cargo, respectively. f4 and f5 are binary values indicating
that the constraint is met or not. Each cargo has the value 1 if the constraint
is not satisfied, otherwise 0. f4 is for the stacking constraint, and f5 is for the
fragility constraint.

f1(Density) = 1 −
∑

cargoes.V

Container.V
(2)

f2(Translation) = 1 − Overlap

Cargo.V
(3)

f3(Rotation) =
rot.y

360
+

rot.x

90
+

rot.z

90
(4)

Overlap = (a− |p0.x− p.x|)(b− |p0.y − p.y|)(c− |p0.z − p.z|) (5)

Overlap (Eq. 5) indices the translation of a cargo by how much it remains in the
initial position. As Fig. 3 shows a 2d example, a cargo remains only some volume
(area) in the space that it initially there, after it moved. The value of translation
is the ratio of this remaining volume (area) par whole volume of the cargo. This
normalizes the value with cargoes sizes. Note that the translation calculation
(Eq. 3) ignores any rotational move of cargo, which is evaluated in f3.

“Density” is the ratio of container space usage. Higher ratio is considered to
be better. “Move” averages the cargoes move, excluding rotational move. Each
cargoes’ position is represented as a point of center of mass, “Move” evaluates the
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Fig. 3. Overlap shown in 2D. The rectangles represent a cargo before/after it moves,
the gray area is the overlap.

Fig. 4. Typical damage boundary curve. Fig. 5. Implemented damage bound-
aries. Two thresholds on velocity and
acceleration mark the damage region.

transform of the point. The implemented equation evaluates how much volume
remains in initial space.

“Rotation” evaluates the rotational move of a cargo. In Eq. 4, the angles are
in degree. The rotation around x- and z-axis means tipping of the cargo, thus
it has higher value than y-axis rotation. “Move” and “rotation” value take an
average of all cargoes in the container. Cargoes that not in the container, NOT
included in the simulation, are also NOT included the evaluation.

“Do not stack” is one of popular constraints in CLP research. A cargo with
this property mustn’t put under any other cargoes. In PS, all contacts between
cargoes, and between cargo and container are calculated. Each cargo which has
a property of “Do not stack” watches its all contacts during the simulation. If
the contact point is on the top surface, the cargo returns 1. This value also take
an average of cargoes, note that the number of cargoes which have the “Do not
stack” property and in the container.
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“Fragility” is another constraint to prevent a delicate cargo from any rough
handling during transportation. To evaluate the damage of a cargo during trans-
portation, Damage Boundary Curve (DBC) was introduced [11]. The curve
divides damage region considering that the damage occurs on a combination
of acceleration and velocity as Fig. 4. Damage Boundary Curve (DBC) is deter-
mined with tests on the real object. In this work we simplified the curve to two
thresholds on velocity and acceleration as Fig. 5. The cargo with this “Fragile”
property watches its velocity and acceleration are under the thresholds. If veloc-
ity and acceleration are both over the threshold simultaneously, the cargo return
1. Then take an average of cargoes which have the property and in the container.

4 Experiments

In this section, we perform five experiments to verify that fitness equations
shown in the previous section properly reflect constraints such as density, move,
rotation, stack and fragility of cargoes in a container. We first consider small-
scale problems with less than 10 cargoes, which have particular solutions under
one of the constraints. We verify that the proposed method successfully finds the
proper solutions to the problems. Then, we also consider more complex problem
under all constrains and apply the proposed method to it.

4.1 Experiment on Density

To evaluate “Density” constraint, we simulate eight cargoes, four are tall and
the others are short. As shown in Fig. 6, tall cargoes height are the same of
the container’s height, and all cargoes width and depth are 1/2 of container.
Short cargoes cannot be stacked in the container because the height are larger
than 1/2 of container. Figure 7 shows an example of possible arrangement whose
“Density” fitness is the worse (left) and the best (right).

Therefore, the expected answer is to load four Tall cargoes to maximize
the container space usage. The experiment are run with 30 individuals for 30
generations. Figures 8 and 9 show the trace of fitness evaluation (Eq. 1) and
“Density” term (Eq. 2), respectively. The graphs show the change of values while
30 generations (29 iterations). At the last generation, we obtained the expected
answer in all 30 individuals. This confirms that the “Density” fitness affect the
solution.

Note that the solution is not yet converged. Swapping cargoes with the same
size do not affect the evaluation even though their genes are different. This
implies that there are 4! × 4! = 576 variations of genes. The optimal solution is
to load four Tall cargoes first and four Short cargoes next although some cargoes
cannot be loaded due to the limited space.
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Fig. 6. Container space and cargoes sizes which are used to experiment on “Density”.

Fig. 7. The “Density” term has better value with the right arrangement than the left
arrangement.

Fig. 8. Fitness value of the best and
worst individual in each generation.

Fig. 9. “Density” value of the best indi-
vidual in each generation.

4.2 Experiment on Move

To evaluate “Move” constraint, we simulate four 5 × 6 × 5 cargoes and one
thin 5 × 4 × 5 cargo. Figure 10 shows the possible arrangement to minimize
the move of cargoes. In this case, putting one thin cargo under another cargo
results in better fitness (right) rather than putting the thin cargo on the another
cargoes (left). Experiment ran with 30 individuals for 10 generations. Figures 11
and 12 show the trace of fitness evaluation (Eq. 1) and “Move” term (Eq. 3),
respectively. At the last generation, all individuals have the expected solution.
This shows that “Move” term (Eq. 3) affects the solution.
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Fig. 10. The “Move” term has better value with the right arrangement than the left
one. In the left arrangement, the short cargo on the top can move around and makes
the value worse.

Fig. 11. Fitness value of the best and
worst individual in each generation.

Fig. 12. “Move” term of the best and
worst individual in each generation.

Fig. 13. The right arrangement has better value of “Rotation” term.

4.3 Experiment on Rotation

To evaluate “Rotation” constraint, one slender cargo, three thin 5 × 6 × 5
cargoes and one tall 5 × 7 × 5 cargo. Slender cargo can be stacked on other
cargoes with standing upright, but a vibration by shake will cause the cargo
to fall. Thus, in this problem, it is assumed that a slender cargo is placed on
tall cargo sideways (Fig. 13). The width and depth of the tall and thin cargoes
are half of each container, so four are arranged without gaps. An experiment
with 30 individuals runs for 30 generations. Figures 14 and 15 show the trace of
fitness evaluation (Eq. 1) and “Rotation” term (Eq. 4), respectively. At the last
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Fig. 14. Fitness value of the best and
worst individual in each generation.

Fig. 15. “Rotation” term of the best and
worst individual in each generation.

Fig. 16. An expected answer for stacking problem.

generation, all individuals show the arrangement with putting slender cargo on
the tall cargo sideways.

4.4 Experiment on Stacking Constraint

To confirm “Stacking” term, we consider a problem for the same 5 × 5 × 5 size
of 8 cargoes and a 10× 10× 10 container. 4 cargoes have the stacking property,
thus should be put on the upper layer. As shown in Fig. 16, the expected solution
fills the container by all cargoes. An experiment with 30 individuals runs for 100
generations. Figures 17 and 18 show the trace of fitness evaluation (Eq. 1) and
the average “Stacking” value (f4 in Eq. 1) of individuals, respectively. At the
last generation, all individuals put the 4 cargoes with the property on the other
4 cargoes. It is confirmed that the “Stacking” term affect the result.

In this experiment the solution is converged. It seems to be accidentally
happen because some cargoes are physically equivalent, thus swapping them
never affect the fitness evaluation. Many apparent different chromosomes are
equivalent in point of view of physics, thus fitness value won’t differ. (In fact
other experiences don’t converge to one answer, we discuss the result adding up
the equivalent individuals.)
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Fig. 17. Fitness value of the best and
worst individual in each generation.

Fig. 18. “Stacking” property evaluations
of the best and the worst individual in
each generation.

Fig. 19. An expected solution that fragile cargoes were put at bottom layer.

4.5 Experiment on Fragility Constraint

To confirm the effect of “Fragility” constraint, we consider a problem for the
same 5× 5× 5 size of 8 cargoes and a 14× 10× 14 container. The container size
is enough to put all cargoes by 2× 2× 2 arrangement, remaining some spaces. 4
cargoes have the “Fragility” property. In this case, those fragile cargoes should
be put on the bottom rather than other cargoes (Fig. 19). Figures 20 and 21 show
the trace of fitness evaluation (Eq. 1) and the average “Fragility” value (f5 in
Eq. 1) of individuals, respectively. An experiment with 30 individuals runs for 100
generations. At the last generation, 27 individuals put the all 4 fragile cargoes
on the bottom layer. 18 are converged to one answer. “Fragility” constraint
makes cargoes to be put bottom layer to avoid falling down those cargoes. It is
confirmed that “Fragility” term affects the result.

4.6 Experiment for Multiple Objectives

We consider more complex problem with various cargoes as shown in Fig. 22.
The container size is 10 × 10 × 20, and 10 cargoes with various size. One cargo
has “Do not stack” property (green), and other one has “Fragile” property (red).
We perform this experiment with 30 individuals for 30 generations three times.
As shown in Fig. 23, fitness value converges to around 1.
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Fig. 20. Fitness value of the best and
worst individual in each generation.

Fig. 21. “Fragility” evaluations of the
best and the worst individual in each
generation.

Fig. 22. An example cargoes and container
space for a complex experiment. (Color figure
online)

Fig. 23. Fitness value of the best and
worst individuals in each generation over
three trials.

4.7 Processing Time

The processing time is almost proportional to the number of cargoes, genera-
tions and populations. Table 1 shows the processing time of 10 cargoes problem
instance. We ran 9 experiments with each different number of generations and
populations. Each experiment is run with 10, 30 and 100 individuals and 10, 30,
100 generations. Population 10 (one generation has 10 individuals) with 10 gen-
eration needs 21 s to obtain the result. 30 individuals with 10 generation needs
57 s, almost three times of the time of 10 individuals and 10 generations.
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Table 1. Relationships between processing time (sec.) and number of generations and
populations.

Generations Populations

10 30 100

10 21 57 201

30 76 212 807

100 229 799 2859

5 Discussion and Limitations

This work handles some constraints of transportation as soft constraints, which
includes stacking constraints or fragility constraints. Although it makes easy to
implement flexible evaluation, there are some disadvantages which should be
discussed. Our method currently ignores remaining cargoes when the capacity
of a container were not enough to contain all cargoes. This makes latter part of
genes meaningless because it cannot affect the fitness evaluation. However, this
affect the GA performance both the speed of convergence and extensive search.

In the problem instances for experiments, there are a possibility that all
cargoes do not fit in the container and some cargoes are left. In that case our
system exclude the remained cargoes from the fitness evaluation. This causes
a convergence that prefers to exclude propertied cargoes. As explained Eq. 1,
propertied cargoes have additional terms in its fitness evaluation and mostly be
worse than other non-propertied cargoes in the same condition.

6 Conclusion

In this work, an optimization method for 3D container loading problem with
multiple constraints is proposed. The method consists of a genetic algorithm to
generate an arrangement of cargoes and a fitness evaluation using physics sim-
ulation. The fitness function considers not only the maximization of container
density or value but also a few different constraints such as stability and fragility
of the cargoes during transportation. We employed a container shaking simula-
tion to include the effect of the constrains to the fitness evaluation. We verified
that the proposed method successfully provides the optimal cargo arrangement
to the small-scale problem with 10 cargoes. In future, we will investigate the
large-size problem and tackle a case when a container cannot contain all car-
goes.
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Abstract. Cable overloading is one of the most critical disturbances
that may occur in smart grids, as it can cause damage to the distribu-
tion power lines. Therefore, the circuits are protected by fuses so that,
the overload could trip the fuse, opening the circuit, and stopping the
flow and heating. However, sustained overloads, even if they are below
the safety limits, could also damage the wires. To prevent overload,
smart grid operators can switch the fuses on or off to protect the cir-
cuits, or remotely curtail the over-producing/over-consuming users. Nev-
ertheless, making the most appropriate decision is a daunting decision-
making task, notably due to contractual and technical obligations. In
this paper, we define and formulate the overloading prevention problem
as a Multiobjective Mixed Integer Quadratically Constrained Program.
We also suggest a solution method using a combinatorial optimization
approach with a state-of-the-art exact solver. We evaluate this approach
for this real-world problem together with Creos Luxembourg S.A., the
leading grid operator in Luxembourg, and show that our method can sug-
gest optimal countermeasures to operators facing potential overloading
incidents.

Keywords: Smart grids · Electrical safety · Combinatorial
optimization · Integer linear programming

1 Introduction

The so-called smart grid paradigm was motivated by the need to manage the
increasing complexity of today’s electricity grids. It aims to follow the rising
demand for energy, e.g., by integrating renewable energies or by providing inno-
vative services, mainly driven by sensors and two-way communications between
smart meters and electricity providers.
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Part of the smart grid’s power system [7] in Luxembourg [5], the low-voltage
distribution grid, carries electric energy from distribution transformers to smart
meters of end customers. This low-voltage network is, in general, more complex
and meshed than the medium-voltage one, and it is harder to track its distur-
bances.

Each distribution substation comprises the part of a power system that deliv-
ers electric energy to industrial and residential users, through feeder pillars, (i.e.,
cabinets and cables). Distribution cabinets control the distributed power and
provide overload protection to the network lines, through their fuses. Between
the service cable and each user installation, a smart meter is installed to measure
the electric consumption and to manage loads, through its relay triggering fea-
ture. The number of connected components of the multigraph mentioned above
is equal to the number of distribution substations, meaning that each service
cable can only be connected to precisely one substation.

Every cable starts from a fuse in a cabinet and ends in another fuse in
another cabinet. If the ending cabinet of the cable does not have any cable
that starts from it, it is called dead end. The state of each fuse can be either
open or closed; this information, combined with the topology of the grid, can
be used to determine the reachability of each cable on the network, from each
one’s substation. The consumption values for each user are given through its
smart meter. Each cable’s current load is the summary of the production and
consumption values of all the users on this cable.

The current load of each cable can be approximated using methods such
as [12]. Accordingly, the load percentage of a cable is obtained by dividing its
current load by its maximum ampacity multiplied by one hundred. Then the
cable is at risk of overloading if its current load is over a predefined threshold.

1.1 Preventing an Overloading Incident

Grid operators typically consider that there is a risk of overloading incident when
the current load percentage on a cable exceeds a predefined threshold (set by
the grid operator). Then, they can apply different countermeasures to reduce
cable loads, thereby avoiding the overloading to occur. The preferred solution
consists of limiting the over-production remotely (e.g., solar panels on a sunny
day) or over-consumption of specific users (e.g., charging EVs); this counter-
measure is commonly named load curtailment [20]. However, some users have
such contracts that prevent the operator from regulating their power capacity.
Therefore, curtailment is not, in such cases, an option. More generally, if cur-
tailments cannot result in a stable state (i.e., without risk of overloading), the
operators have to reconfigure the topology of the grid, by switching fuses, using
the intertrip [2] method to shift reserves from one network to another, even if
intertrip is complicated for the meshed low-voltage network [2].

Changing fuse states require technicians to visit the corresponding cabinets
physically. Therefore, minimizing the number of visiting cabinets is an object of
considerable solicitude to the grid operator to minimize the restoration time of
a potential incident. Another concern is the minimization of the number of fuses
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that have to be switched on or off, as grid’s configuration should remain nearly
the same to its initial state.

Avoid disconnecting users, especially critical ones, such as patients is a matter
of great concern to the grid operators. Still, this may happen as a last resort to
prevent cascading overloads [2] and to avoid any damage to the power line, when
there is an insufficient operating reserve. In this case, the number of disconnected
users should remain minimal.

1.2 Contribution

Given the above requirements, finding the ideal solution(s) to prevent overload-
ing incident is a daunting decision-making task that humans can hardly solve
without support. Therefore, in this paper, we propose a multiobjective com-
binatorial optimization approach to define, model, and solve the overloading
prevention problem for a low-voltage network. Our approach can also model a
medium-voltage smart grid or a standalone microgrid with a minimum number
of changes. Mathematical optimization methods have been successfully applied
to solve a wide range of decision problems [18], including in the energy industry
(see Sect. 2).

Given the physical network data (i.e., substations, cabinets, cables, connec-
tions between cabinets), that are assumed to remain constant, the initial state
of the fuses and the power values from the users’ smart meters, we approximate
the current load percentage on each cable by solving a linear system described
in [12]. To create the matrices defining this linear system, we compute the reach-
able cables from every substation based on the fuses’ state and the physical
network data. We also detect parallel cables (i.e., multiple edges in the grid’s
multigraph), since computations involving those are slightly different.

Once the risk of overload is detected (i.e., the approximated current load
percentage exceeds the predefined threshold), we store the current states of the
fuses and the smart meter values. Then we solve our optimization model to
suggest the most appropriate countermeasures. Curtailment of compliant users
is first attempted.

If this curtailment cannot establish a stable state, the second action we should
take is to switch fuses on or off. On every possible change of fuses’ state, a new
linear system has to be defined and solved in order to approximate the current
loads on the cables. Moreover, simultaneously connecting multiple substations
should be avoided, as we cannot calculate the power flow cycles between substa-
tions; otherwise, the load calculation could return a wrong result [12]. In the end,
our solution aims to maximize the number of connected users while minimizing
the number of visited cabinets and the number of changes applied to fuses.

We evaluate the applicability of our approach through a benchmark set com-
prising ten grid topologies for five substations; similar to an area of a small
village in Luxembourg, and another set containing a gradually increasing num-
ber of substations, by steps of five, from ten to fifty; similar to an area of a
medium-size city in Luxembourg. The topologies are generated by a tool we
developed based on real-world statistics provided by Creos Luxembourg S.A.,
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the only grid operator in Luxembourg and our project partner. Our results show
that our approach is capable of suggesting solutions for all topologies in due time
(up to about 15 min). Moreover, a detailed analysis of the curtailed and discon-
nected users reveals that, curtailment alone is not enough to prevent overloading
incidents, which emphasizes the need for automated solutions to reconfigure the
grid, and more sophisticated demand response programs. The remainder of this
paper is structured as follows. Section 2 discusses related work. Afterward, Sect. 3
provides the mathematical model for this work. Then, in Sect. 4, we detail the
implementation of our proposed solution method, which is evaluated in Sect. 5.
Finally, we conclude in Sect. 6.

2 Related Work

Despite the fact that, the prevention of overloading incidents definitely con-
cerns the grid operators, as of today, this problem is not studied enough. Sev-
eral research works investigate how to prevent overload incidents using demand
response programs. To the best of our knowledge, there is no detailed work that
examine the overloading prevention problem in respect to demand response, for
both producers and consumers, and grid reconfiguration on the same time.

Ramaswamy and Deconinck [15] define the grid reconfiguration problem as
a multiobjective non-convex one and argue that a genetic algorithm is probably
a good optimization method to solve it.

Han and Piette [11] describe different incentive-based demand response pro-
grams; usually reducing demands with a financial benefit for the customers. They
present different methods such as direct load control, interruptible/curtailable
rates, emergency demand response programs, capacity market program, and
demand bidding/buyback programs. To prevent overloads, Bollen [2] present
different curtailment schemes averting the operating reserve from getting insuf-
ficient, that could lead to overloads. In his work, the general directions of cur-
tailment are given without giving many details about modeling and solving of
the curtailment problem. Furthermore, Simao et al. [20] formulate the problem
of planning short-term load curtailment in a dense urban area, as a stochastic
mixed-integer optimization problem. They implement three approximation poli-
cies, and test them with a baseline policy where all curtailable loads are curtailed
to the maximum amount possible. Even if in their work short-term planning is
implemented, overloads are allowed, and the curtailment applies only to con-
sumers of the grid.

In addition to the previous studies, Pashajavid et al. [13] present an over-
load management strategy that controls the supporting floating batteries in an
autonomous microgrid and decides any possible connection between it and its
neighboring microgrids, by monitoring the microgrids’ frequency. However, in
their work, no demand response program is considered.

Furthermore, Shahnia et al. [16] developed a dynamic multi-criteria decision-
making algorithm to manage microgrid overloads. They also deploy a cloud
theory-based probabilistic analysis to contemplate the uncertainties in the con-
sidered distribution network. Nevertheless, they were not considering reactive
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power in their approach to define overloading. Recently, Babalola et al. [1] pro-
posed a multi-agent algorithm that, it does not require load shedding to prevent
cascading failures, such as overloaded lines after a contingency occurs. Nonethe-
less, their work is focused on power generators only.

3 Mathematical Model

The overloading prevention problem can be defined on a complete undirected
multigraph G = (V,E). The set V =

{
1, 2, ..., o

}
is the vertex set, i.e., the set

of the cabinets of the grid, E =
{
(i, j) ∈ V 2, i �= j

}
is the multiple edge set,

i.e., the multiset of the cables that connect the cabinets of the grid. The prob-
lem, we previously described, can be modeled as a Mixed Integer Quadratically
Constrained Program (MIQCP) formulation as follows:

max
n∑

i=1

ri

m∑

k=1

ucki (1)

min
o∑

b=1

dfcabb (2)

min
2n∑

f=1

|xf − x0
f | (3)

subject to:
A · wp = P (4)

A · wq = Q (5)

li < λ,∀i ∈ {
1, . . . , n

}
(6)

Given G, the first objective (1) defines the fuses’ state to maximize the ser-
viced users of the grid. At the same time, the second objective (2) sets the state
of each fuse to minimize the number of visiting cabinets. According to Creos
Luxembourg SA, the cost of reconfiguration is nearly analogous to the number
of the cabinets the technicians have to visit. The third objective (3) minimizes
the number of fuses’ changes to keep the initial fuses’ state as much as possible.

Curtailment policy to the users is applied when any producer or consumer
has amperage over ILP and ILC , respectively. Equations (4) and (5) approximate
the current loads, as in [12]. To avoid overload cables, (6) constraint the current
load percentage on each cable under the predefined threshold. The notation used
is presented in the Appendix.
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4 Implementation

As the problem above is formulated as a MIQCP, a state-of-the-art mathemat-
ical programming solver, Gurobi [10], is chosen to address it. Smart grid’s data
are imported to our program, and a pre-computational phase is taking place.
Vectors, substations, cabinets, as well as the edges, cables, are stored, and the
multigraph of the smart grid is created. Additionally, the initial fuses’ states,
the smart meters, their connecting cables, and their consumption and produc-
tion values are being read and stored. Moreover, the fundamental set of cycles
of the multigraph [14,17] are being found, eliminating any connections between
substations and investigating any multi-edges, multiple cables between cabinets,
on the graph. During this pre-processing phase, the dead-ends cabinets are also
defined, to help us compute the load, using the depth-first-search algorithm [21],
and stored. Having this information about the topology, we construct the poten-
tial linear equations assuming that, all the fuses are closed. This phase ends by
calculating the loads [12] by using Singular Value Decomposition [9] for solving
the over-determined linear system of equations and check if the initial state has
any overloaded cables or not. If an overload is inspected, then, the variables are
being initialized and, using the depth-first-search algorithm [21], the reachabil-
ity vector r is constructed. After the reachability cable state is initialized, we
can create the actual linear equations, the cable, cabinet, dead-end and circle
ones [12].

4.1 Linear Transformation

As Gurobi does not support quadratic equality constraints, we need to trans-
form the constraints (4) and (5) into a linear form. Firstly, we rewrite the con-
straints (4) and (5) as:

Pj =
2n∑

f=1

Ajfwpf ,∀j ∈ {
1, . . . , leq

}
(7)

Qj =
2n∑

f=1

Ajfwqf ,∀j ∈ {
1, . . . , leq

}
(8)

We introduce, for each quadratic term in the above summations, new vari-
ables zpjf = Ajfwpf and zqjf = Ajfwqf . As Ajf ∈ {−1, 0, 1

}
:

zpjf =

⎧
⎨

⎩

−wpf , Ajf = −1
0, Ajf = 0
wpf , Ajf = 1

(9) zqjf =

⎧
⎨

⎩

−wqf , Ajf = −1
0, Ajf = 0
wqf , Ajf = 1

(10)

Using the (9) and (10) we can rewrite the (7) and (8) as:

Pj =
2n∑

f=1

zpjf , ∀j ∈ {
1, . . . , leq

}
(11) Qj =

2n∑

f=1

zqjf , ∀j ∈ {
1, . . . , leq

}
(12)
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To be able to compute the zpjf and zqjf , we need to binary transform the
above piecewise functions using indicator constraints [3]. Thus, for every coeffi-
cient matrix element, we introduce three additional variables as:

−1yjf1 + 0yjf2 + 1yjf3 = Ajf , (13) yjf1 + yjf2 + yjf3 = 1 (14)

∀j ∈ {
1, . . . , leq

}
,∀f ∈ {

1, . . . , 2n
}

, yjf1, yjf2, yjf3 ∈ {
0, 1

}

In (13) it is ensured that Ajf can only take values from its domain where (14)
ensures that, only one variable could take value one. Using the Eqs. (13) and (14),
the Eqs. (9) and (10) become:

zpjf =

⎧
⎨

⎩

−wpf , yjf1 = 1
0, yjf2 = 1
wpf , yjf3 = 1

(15) zqjf =

⎧
⎨

⎩

−wqf , yjf1 = 1
0, yjf2 = 1
wqf , yjf3 = 1

(16)

4.2 Solving Model

The final step is to calculate the difference between the initial and the current
state of each fuse. Moreover, the binary cabinet visit indicator for each cabinet is
computed. To solve the model, we are using the lexicographic approach [4] for the
objectives, to reach any Pareto optimal solution. This approach assigns a priority
to each objective, and optimizes for the objectives in decreasing priority order.
At each step, the current objective is optimized, and a constraint is introduced
to guarantee that the higher-priority objective functions preserve their optimal
value [4,10]. We are specifying an absolute order of importance along with our
partner, Creos Luxembourg S.A. After getting the preference information, our
first objective (1) has the highest importance, the second one (2) has lower
importance and, the third one (3) has the least importance.

5 Evaluation

To be applicable in practice, our method has to provide solutions to the over-
loading prevention problem sufficiently fast. According to our partner Creos
Luxembourg S.A., the computation time should not exceed 15 min (which cor-
responds to the interval of time between two smart meter data reports). Hence,
our first research question concerns the scalability of our approach concerning
increasingly-large grids.

Our primary focus is to analyze the presented solution qualitatively, that
is, how much our approach manages to satisfy the requirements of not discon-
necting, if possible, the users. The absolute numbers, of course, depend on the
particular cases considered. Therefore, our second research question concerns
a relative analysis: how well different curtailment policies allow avoiding user
disconnections in different overload scenarios.
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5.1 Dataset and Experimental Setup

A topology generation software tool to evaluate our proposed method was first
developed. Using this tool, we create ten realistic smart grid graphs based on
real topology data. On each instance, we consider five substations, to answer the
second research question, topologies that resemble the size of a small village in
Luxembourg. For every grid graph, we consider 216 scenarios1 as a combination
of different percentage of overload producers, overload consumers, producers,
and consumers that can be curtailed. Moreover, as we do not notice a significant
difference, when changing the percentage of overloading and curtailment in tim-
ing, we study the scalability only with regard to the grid size by creating another
nine realistic smart grid graphs. Each instance contains a gradually increasing
number of substations, by steps of five, from ten to fifty.

On these graphs, three to four cabinets are connected on each substation,
where the number of cabinets is uniformly random. Two of these cabinets are
connected by two edges (cables) to the substation. Under the first level of cab-
inets, three to five cabinets are connected, where the number of cabinets is
uniformly random. Under the second level of cabinets, zero to two cabinets are
connected, where the number of cabinets is uniformly random. During the exper-
iments’ creation, it is assured that one cabinet, either on the second or the third
level of the graph, is connected to another substation’s cabinet, so that intertrip
can be applied. For each cable, the material, the size and the maximum ampacity
are generated uniformly randomly from real data. On each cable, up to 21 smart
meters are connected. The number of smart meters was sampled from a uniform
discrete distribution with range [0, 21].

To create consumption and production energy data, we analyzed the histor-
ical data we acquired from Creos Luxembourg S.A. More specifically, we ana-
lyzed for the 215 consumers and the seven producers, the four electrical values
from their smart meters, active energy consumption and production and reactive
energy consumption and production. The data consisted of 9 months of measure-
ments, with 96 measurements per day. Mean and standard deviation, as well as
minimum and maximum value for each user, was computed to produce their
consumption and production profiles. For each smart meter, a random profile
is selected and, from the corresponding distribution, an electrical value is gen-
erated. Additionally, at most 10% of the users are selected to produce energy.
To create a different percentage of overloaded and curtailed users, we shuffle the
producers and consumers vectors using the Fisher-Yates algorithm [6,8]. Then,
we pick the corresponding number of users from the shuffled vectors.

A soft curtailment [2] is applied if a producer overpasses the threshold of
60 A, i.e., 80% of 75 A, the typical roof-top solar panel installation amperage,
or if a consumer overpasses the threshold of 32 A, i.e., 80% of 40 A, the typical
amperage supplied by residential meters. If a producer or a consumer is picked
for curtailment, its active energy is limited to 20 A; a value picked together
with Creos Luxembourg S.A. The experiments were conducted on a standard
1 Interested readers may find all the presented results for the 216 instances from

https://github.com/nikosantoniadis/PrevOvrldIncidentsResults.

https://github.com/nikosantoniadis/PrevOvrldIncidentsResults
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MacBook Pro with a 2.6 GHz Intel Core i7 processor, macOS Mojave 10.14.6
operating system, 16 GB 2133 MHz LPDDR3 memory using Java JDK 1.8.0-162
and Gurobi Optimizer 8.1.1 – Academic Version [10].

5.2 Results and Discussion

In what follows, each experiment was run for ten times, for the ten different
topologies, and the 216 different scenarios. The average time and the 99% confi-
dence interval for the 21600 experiments (5 substations), was found to be equal
to 6.363 s ± 1.527 s.

Table 1. Grid topologies
and computation times.

Subst. t(sec.)
w/o curt.

t(sec.)
w/curt.

10 28.5 31.2

15 70.5 75.5

20 105.4 112.4

25 172.1 167.5

30 274.1 298.1

35 436.0 408.8

40 520.2 529.3

45 782.0 806.0

50 887.0 911.5

Table 2. Sample results of our method (5 substations).

POva COva PCura CCura ConUa VisCaba FusesCha

0–25% 0–10% 100% 100% 100% 6.98% 3.47%

0% 25% – 100% 99.96% 7.04% 3.5%

0% 50% – 100% 95.07% 11.55% 5.5%

25% 25% 100% 100% 99.8% 7.18% 3.56%

10% 50% 50% 100% 94.7% 12% 5.78%

50% 10% 100% 100% 99.94% 7.02% 3.49%

10% 0% 0% – 94.57% 10.75% 5.37%

10% 0% 50% – 97.68% 8.47% 4.19%

50% 25% 100% 100% 99.35% 7.67% 3.76%

50% 25% 50% 50% 61.57% 31.6% 17.18%

50% 25% 0% 0% 41.77% 35.83% 23.06%

aPOv : overload producers’ percentage, COv : overload consumers’
percentage, PCur : curtailed producers’ percentage, CCur :
curtailed consumers’ percentage, ConU : connected users
percentage, VisCab: cabinets to visit percentage, FusesCh: fuses
changed percentage

We observe that our method can propose solutions, quickly, to help grid
operators to prevent overloading incidents. To check if our method could be
applied to a larger scale smart grid, we create and test nine different topologies,
and the results of these experiments are shown in Table 1. Indeed, even in the
most complex case, that resembles the size of a medium-size city in Luxembourg,
our approach finds a solution in about the allowed time (15 min). Moreover, we
notice that when the size of the graph doubles, the average computation time is
approximately five times higher. For the second research question, as shown in
Table 2, if the percentage of overloaded consumers remains at most 10%, while
the percentage of overloaded producers remains at most 25%, and curtailment is
applied for all the users of the grid, no disconnection is needed. Nonetheless, for
the same as the above scenarios, the percentages of cabinets to visit and changed
fuses remain low; 6.98% and 3.47%, respectively.

On the opposite, with no curtailment, even when a tenth of the producers
is overloading, 5.43% ± 0.93% of the users should be disconnected to prevent
overload.
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From our findings, it is shown that curtailment policies lead to fewer discon-
nections to prevent overloads. Additionally, less cabinet visits, and less changed
fuses are needed, avoiding additional costs for the electrical companies, while
keeping the grid on a stable configured state, as possible. Nevertheless, in the
long term, electrical companies should increase their operational reserves to
decrease the possibility of disconnections [2]. Moreover, solar panel producers
should install batteries to minimize their losses due to the curtailment poli-
cies [2].

6 Conclusions and Future Work

We defined and formulated the overloading prevention problem in smart grids
as a Multiobjective MIQCP and suggested a solution method using a state-of-
the-art exact solver. It is shown that this approach can be included in the grid
operator’s decision-making process as it can successfully and rapidly help to
prevent challenging overloading incidents in a smart grid of about the size of a
medium city in Luxembourg, minimizing the disconnections of the grid’s users.

Our method has been integrated into a grid visualization tool that, allows
operators to observe the grid cable states, detect (risk of) overloading incident,
and call our algorithm to find appropriate countermeasures. In the longer term,
the integrated software will be used directly by Creos Luxembourg operators.
Moreover, our approach can be parallelized to analyze every substation subgraph
independently from other ones, as in [12].

As future work, we plan to analyze the intermediate states to find the opti-
mal order of fuses’ change. During the analysis of these intermediate states, a
“trade-off” metric should be calculated, as the difference between the maximum
and the minimum load on the grid. This metric should offer an optimal trade-
off between the number of actions to perform and the maximal overload that
any cable or substation reaches during the execution of the actions. Further-
more, we plan to apply a dynamic soft curtailment policy [2] to the grid’s users.
Another interesting addition should be the appliance of a fairness policy to avoid
curtailing the same users repetitively over time. Such considerations, raise the
need for considering the future states of the grid and their inherent stochasticity,
as the recovery response solution should guarantee stability over the next 24 h.
Inevitably, the aforementioned considerations complexify the problem, increas-
ing the size of the problem and its solution space. As such, exact methods may
not be suitable to address those new concerns. Thus, we also plan to exploit
metaheuristic methods [19] to solve the overloading prevention problem.

Acknowledgement. The authors would like to thank Yves Reckinger and Robert
Graglia from Creos Luxembourg S.A. for their support.

Appendix: Nomenclature

The next list describes several symbols that are used within the body of the
document
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Indices

b cabinet index, b ∈
{

1, . . . , o
}

f fuse index, f ∈
{

1, . . . , 2n
}

i cable index, i ∈
{

1, . . . , n
}

j linear equation index, j ∈
{

1, . . . , leq
}

k user index, k ∈
{

1, . . . , m
}

Parameters

δ measurement frequency coefficient; e.g. 60
15

= 4, for 15 min interval

λ maximum allowed current load percentage for all cables, e.g. 80%

aEk active energy for user k, aEk = aECk − aEPk, aEk ∈ R

aECk active energy consumption for user k, aECk ∈ R+

aEPk active energy production for user k, aEPk ∈ R+

ccbf fuse cabinet indicator; 1 if fuse f belongs to the cabinet b, 0 otherwise

cli maximum allowed current load in cable i, e.g. 100 A

curk amperage of user k, curk =

√
aE2

k
+rE2

k√
3·230

IR curtailed amperage for users, e.g. 20A

ILC maximum allowed amperage for consumers, e.g. 32 A

ILP maximum allowed amperage for producers, e.g. 60A

leq number of linear equations, leq ∈ N
∗

m number of users, m ∈ N
∗

n number of cables, n ∈ N
∗

o number of cabinets (including substations), o ∈ N
∗

Pli initial active energy for cable i, Pli = δ
∑m

k=1 uckiRaEk

Qli initial reactive energy for cable i, Qli = δ
∑m

k=1 uckirEk

RaEk real active energy consumption for user k,
RaEk = aEk, if curk < ILC , (consumer) or curk < ILP (producer), and
RaEk = RGaEk otherwise

rEk reactive energy for user k, rEk = rECk − rEPk, rEk ∈ R

rECk reactive energy consumption for user k, rECk ∈ R+

rEPk reactive energy production for user k, rEPk ∈ R+

RGaEk curtailed active energy for user k,
RGaEk =

√|2302 · 3 · I2
R − rE2

k|, RGaEk ∈ R+

ucki user cable indicator; 1 if user k is connected with cable i, 0 otherwise

x0
f initial fuse state; 1 if fuse f is closed, and 0 otherwise;

if f = 2i, x0
f denotes the initial state of the start fuse of cable i,

else if f = 2i + 1, x0
f denotes the initial state of the end fuse of cable i
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Variables

Ajf coefficient matrix element; for equation j and fuse f , Ajf ∈
{

−1, 0, 1
}

dfcabb cabinet visit indicator; 1 if
∑2n

f=1 ccbf |xf − x0
f | ≥ 1, 0 otherwise

li actual current load percentage, at cable i;

li = max(
100

√
wp22i+wq22i

230cli
√
3

,
100

√
wp22i+1+wq22i+1

230cli
√

3
)

Pj active load vector element; Pj = Pli · ri, if equation j is describing the
current flow of cable i, and 0 otherwise, Pj ∈ R

Qj reactive load vector element; Qj = Qli · ri, if equation j is describing the
current flow of cable i, and 0 otherwise, Qj ∈ R

ri reachability cable state; 1 if cable i is powered and 0 otherwise

wpf actual active energy vector energy element for fuse f ; wpf ∈ R

wqf actual reactive energy vector energy element for fuse f ; wqf ∈ R

xf fuse state; 1 if fuse f is closed, and 0 otherwise;
if f = 2i, xf denotes the current state of the start fuse of cable i,
else if f = 2i + 1, xf denotes the current state of the end fuse of cable i
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Abstract. The irruption of Distributed Energy Resources (DER) in the
power system involves new scenarios where domestic consumers (end-
users) would participate aggregated in energy markets, acting as pro-
sumers. Amongst the different possible scenarios, this work is focused on
the analysis of the results of a case study which is composed by 40 homes
equipped with energy generation units including Li-Ion batteries, HESS
systems and second life vehicle batteries to hydrogen storages. Software
tools have been developed and deployed in the pilot to allow the domestic
prosumers to participate into wholesale energy markets so that opera-
tions would be aggregated (all DERs acting as single instance), optimal
(optimizing profit and reducing penalties) and smart managed (help-
ing operators in the decision making process). Participating in energy
markets is not trivial due to different technical requirements that every
participant must comply. Amongst the different existent markets, this
paper is focused on the participation in the day-ahead market and the
grid operation during the following day to reduce penalties and comply
with the energy profile committed. This paper presents an analysis of the
data generated during the pilot operation deployed in a real environment.
This valuable analysis will be developed in Sect. 4 Results, which raises
important conclusions that will be presented. Netfficient is a project
funded by the European Union’s Horizon 2020 research and innovation
program, with the main objective of the deployment and testing of het-
erogeneous storages at different levels of the grid on the German Island
of Borkum.

Keywords: Energy · Intelligent system · Optimization ·
Mathematical programming

1 Introduction

Distributed energy generation (DEG) systems have become increasingly pop-
ular in the last two decades [6]. Recent research shows many evidences about
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the importance that these systems have and will have in the energy system.
Currently, around the 40% of the electricity is consumed by buildings [8] and
the population trend around the world shows that this could go even higher
[9]. Recent DEG implementations are now possible due to more efficient power
generation systems and new discovered energy storage solutions [5,11]. However,
participating at small scale in energy markets addresses some limitations related
not only related to technologies, but also related to the market regulations:

a. Volume limitation: Prosumers are more eligible for participating in the market
trading large quantities of energy, so low volumes are often a barrier.

b. Complexity limitation: Participating in energy markets is complex since the
participants (buyers and sellers) have to propose quantity-bids before gate
closure. This requires strong forecasting techniques and a deep knowledge
about market trends.

These are the reasons why the figure of the aggregator emerges. The aggrega-
tor handles the difficult task of operating all individual nodes as a single instance,
reducing complexity to the end-users and solving bid-volume issues. Netfficient’s
aim is to facilitate the use of renewables at small scale, to test different and new
storage technologies and to build and deploy applications which can be used
by the utilities to manage the virtual power plant (VPP). The developed plat-
form assists the operator in the decision-making process since it handles several
variables and optimizes the participation in the market and also net operation.
This paper describes results and conclusions extracted from these 4-year project
testing algorithms in a real environment. These valuable data draw interesting
conclusions not only about DEG implementations, but also about the possibility
for individual agents at small scale to participate in the energy market.

The structure of the paper is as follows. First, the Energy Resource Man-
agement System is defined in Sect. 2. Section 3 presents the definition of the
energy nodes operating in the pilot. Then, the Sect. 4 addresses a deep study
of the system and shows some key performance indicators used to evaluate the
experiments. Finally, the conclusions of the paper are listed in Sect. 5.

2 Distributed Energy Resource Management System

A Distributed Energy Resource Management System (DERMS) was developed
in the context of Netfficient called EMP (Energy Management Platform). Netf-
ficient EMP provides different functionalities for users to participate in different
markets including multiservice options for simultaneous participation in several
markets at the same time. This requires smart management services not only to
optimize the participation in the market, but also to control network operation
to reduce penalties due to deviations. Figure 1 depicts a sample of the lifecycle
execution.
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2.1 Functionalities of the EMP

Different functionalities have been developed and tested in a real environment
with success. The EMP provides services for scheduling, monitoring and a cen-
tralized alarm system. These horizontal services act as tools for the aggregator
to identify and prevent current and future problems and issues, which leads
in robust, secure and stable market participations. The EMP is responsible of
storing all historical information for further analysis. This information is used
as input in a feedback process that enhances the forecasting services, the smart
management services and new horizons that are identified to extend the function-
ality of the DERMS. Finally, the EMP also includes all customer management
and billing.

Fig. 1. Single isolated Netfficient lifecycle execution

2.2 Smart Management Services

It can be found in the literature several approaches to solve this complex prob-
lem, such as [3,4,7,10], using a multi-level algorithm approach. In Netfficient,
two main core algorithms have been developed using model predictive control
(MPC) techniques. The former consists of an economic optimization to daily set
the optimal bid for the Day Ahead Market participation (DA algorithm). The
later consists of an MPC algorithm running in real time (with a sample time of
10 min) acting as a smart agent to match injection and consumption levels, as
much as possible, with the signed contract on bid time during the day before,
mitigating forecasting deviations and communication or operational problems
(RT algorithm).

DA algorithm is performed the day before the operation. This optimization
is carried out with the forecasting of selling and buying energy prices, energy
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generation and consumption forecasting, and the physical constraints of the grid
(how many nodes will be available during the optimization, their aggregated
capacity etc.). This algorithm has four different modes depending on the oper-
ator. The operator can set a single billing profile for the market (Aggregated
Mode) or act as an aggregator which sets different profiles for every prosumer
(Individual Mode). Additionally, there are two more modes which correspond
to their peer to peer (P2P) respective versions. In these modes the algorithms
consider the cost of energy transmission between prosumers of the same grid
(Fig. 2).

Fig. 2. Aggregator types. On the left an aggregator acting as energy producer and on
the right an aggregator acting as market participant-producer.

3 The Pilot

The system under study in Netfficient project consists of an aggregation of sev-
eral prosumers (called energy nodes) compound of a renewable energy source,
a storage system, a set of adjustable and a set of non-adjustable loads. These
prosumers are connected to the power grid and can inject the excess energy.

This system was tested on a real smart grid schematized in the Fig. 3. The
proposed domestic node system is composed of photovoltaic (PV) panels of
4 kWp, a 2LEV battery of 5 kWh (including inverter), a homeLynk (for stand-
alone use), KNX power-supply, a stand-alone home control panel EBMS, a stand-
alone home control panel and some control electronics hardware. Additionally, a
software platform (EMP, defined in previous section) was developed to manage
and aggregate all the components and to execute the algorithms to optimize the
grid.

Every node has installed an inverter device to send the setpoints to the
homeLynk, whose main objective is keeping a local tracking for solving system
or connection errors. Every Energy Node is able to work offline during the follow-
ing 3 h since the last successful connection without any incidence, which makes
the whole system robust against poor or limited networks or even against any
temporal smart device delay.
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Fig. 3. Netfficient node system description.

4 Results

In this section, different key performance indicators have been analyzed during
the grid operation in the day ahead market with DA and RT algorithm. The
frequency of execution of DA algorithm is one per day, the day before of the
operation (it can be executed several times due to simulation reasons, but only
one is effective for bidding), while RT algorithm is launched every 10 min after
all the information is gathered from devices and from the short-term forecasting
services.

The system has been operated for 24 months. The sample time used to show
results is a 2-month gap from the last and mature stage of the system. In this time
56 days worked at least during more than 25% of the hour of a day successfully,
and 40 fully worked more than the 80%.

The system is so flexible that it allows to add and remove nodes at every RT
execution (every 10 min), since connectivity issues or hardware issues can affect
the entire system. In that context, the selected days operated with an average
of 10.6 nodes per hour simultaneously.

In this section, several approaches have been studied considering three main
different aspects: generic operational information, real performance testing and
robustness evaluation.

4.1 Generic Operational Information

The Fig. 4 depicts the injected and consumed energy profile per day by all the
participant nodes in the aggregation.

The main reasons why first days have a significantly higher profile for injec-
tion are two: July was a better month for energy generation than August; and
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secondly, this is due to the fact that Borkum is a holiday place, so load profiles for
homes were significantly lower during this month as it can be observed. Neverthe-
less, the main important concept extracted from the Fig. 4 is self-consumption.
Only when self-consumption (for every single energy node acting individually)
is satisfied, aggregated injection actions are performed on each one.

Fig. 4. Injection profile (green) vs consumption profile per day (all nodes and hours
aggregated). (Color figure online)

To get more information about the evolution of a single profile, August 25th,
2018 is chosen for further analysis. In the Fig. 5 it can be observed one oper-
ation day with grid injections and consumptions from the network. Negative
values mean that the aggregated grid consumes from the next, and positive ones
mean injection. This profile aggregates the operational setpoints of all energy
nodes. Considering that the batteries start at 50% of their capacities, it can
be observed how the main intention of the grid is consuming during first hours
since prices are cheaper, and batteries are not full. In these hours the bottlenecks
are physical constraints (maximum power charge) of the batteries, which have
been modelled in the system. The Fig. 6 shows the pricing profile for buying and
selling energy. In this example, prices were set the same for buying and sell-
ing, so that the behavior of the algorithm could be evaluated more precisely. It
can be observed how the price trend is becoming more expensive, so the grid is
reducing the consumption from the network. During mid hours in the day, where
generation is much higher and prices are also high, the grid is always trying to
inject (prioritizing self-consumption). In last hours, the energy nodes perform
an injection-to-consume action to get some profit and to set batteries at 50% for
the following day. This 50% state of charge at the beginning of every day is a
tuning param with a huge impact in an overall multiservice integration.
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Fig. 5. Single day profile for grid per hour (nodes are aggregated).

Fig. 6. Energy price profile per hour.

This operational sample shows how batteries perform as a buffer, storing a
different amount of energy than the needed, for the grid to perform inject-to-
consume or consume-to-inject actions when it is required.

Other important aspect to consider is related to the battery cycles. Using
batteries as buffers will force them to be charged and discharged with a higher
frequency than usual what results in performing more battery cycles. These oper-
ations have been demonstrated to have a negative impact in batteries lifecycle
and their capacities. The following figure shows how many cycles the system
forced to perform the batteries so that the participation in the market was opti-
mal (Fig. 7).

Adding the number of battery cycles to the optimization algorithm could be
an interesting line of research, as it is pointed out in Conclusions section.
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Fig. 7. Number of battery cycles for all participant nodes.

4.2 Performance Testing

In this subsection, the performance of the system operating the full day (August
25th, 2018) is analyzed.

Deviations are due to different reasons. During this day, 16 communication
errors happened in total. However, this issue is not relevant in our case because
of the estability of the system which is robust enough to handle massive failures.

There exist an intrinsic issue related to the optimization problem which are
the deviations and differences between the forecasting profiles for generation and
load, and the real ones. In this sense, it is important to remark that this day
was extremely poor on generation [1], since it was raining and it was cloudy the
entire day as it can be seen in Table 1 during the main hours for photovoltaic
generation (Fig. 8).

Nevertheless, this deviation is only an obstacle for the full optimization, but
it can be mitigated with other variables. The accuracy of forecasting services has
a huge impact in the overall system, but the robustness of the system based on
battery buffering help the system to reach the commitment mitigating the devi-
ations and penalties. In Sect. 5 there are some specific actions to be researched
so that this impact could be reduce even more.

Defining PA (profile accuracy) as the relation between the forecast perfor-
mance and the real performance, this day had a 101.61% of completion for the
full day. The Fig. 9 shows the evolution of the system through the 2-month sam-
ple time.

To fully understand the Fig. 9 it is important to highlight that due to the
tunning of the forecasting algorithm process, during the first days of July (injec-
tion was much higher than the profile defined by the DA algorithm), forecastings
were pessimistic about generation. This issue made the grid to store more energy
than needed and get the batteries full. This is not a real problem, since inverters
can be configured to not inject when there is some generation and batteries are
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Fig. 8. Forecast profile vs Real profile.

full. However, these settings were not applied due to testing purposes so that
these scenarios could be stressed, reason why these deviations are reflected in
the charts.

August 2018 was a bad month for generation. In addition, optimization tun-
ing params were set in a non-conservative approach to fully get the best profit
from the operation. It can be observed, even with these aggressive settings, how
last week was much better due to the stability of the smart services deployed and
the improvements in the robustness of the infrastructure with new developments.

In this context, it is important to highlight that the penalties from deviations
when the system has an injection commitment are much higher (about 100 times)
[2] than deviations in sample times when the system is supposed to consume from
the power system. For this reason, the system is able to forsee up to three hours
in advance and perform inject-to-consume or consume-to-inject actions during
consuming commitment so that the real injection during injection time is as near
as possible to the commitment. In the Fig. 10, these increases in consumption to
fill the profile in injection sample times are remarked.

Red dotted sections are time gaps where the grid is consuming more than
necessary on consuming sample times to reach, as much as possible, the commit-
ment in injections sample times. It can be observed how the injection objective
of the first green dotted section is achieved for first two hours. Deviations in
nodes short term load forecasting (user consumption) and deviations in short
term generation forecasting are the main reasons why it fails after these hours.
In the second dotted section the bottleneck are physical constraints. At 20:00 PM
generation forecasting fails, and the system tries to reach the objective without
success. Nevertheless, penalty minimization is performed.
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Fig. 9. Ratio between injected energy and DA profile.

4.3 Robustness Evaluation

During this pilot, the system was stressed to evaluate how would it perform on
real environments where there were poor connections and many network errors.
Hardware fails were also solved depending on their frequency of appearance.

It can be observed how the number of connection errors is independent of PA
absolute deviation given a day. In fact, PA absolute deviation is decreasing with
the time. Some errors were explicitly forced to test the system under stressful
conditions, and it can be observed that the system performs better in last days
even with a higher average of errors per hour.

Most of these errors are temporal (some delays or network issues). To solve
this, the inverter device sets 18 setpoints to operate up to 3 h standalone.

Fig. 10. Injection sample times priority remark. (Color figure online)
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Fig. 11. Average errors per hour/PA absolute deviation.

This makes the system robust to deal with this kind of errors during 3 h and, as
soon as the node reconnects with the system, another set of 18 setpoints is sent
to refresh the energy node actions. It is required to refresh all setpoints in every
established connection, since the new setpoints will depend on the forecasting
services, which will have more accuracy for shorter times. In addition, it should
not be forgotten the system capacity to command different consumptions than
necessary to solve deviation in injection profiles (as explained in Sect. 4.2).

Table 1. Weather status during main hours for photovoltaic generation for August
25th, 2018

Time Temperature Humidity Condition

03:00 PM 15 ◦C 75% Cloudy

04:00 PM 16.6 ◦C 62% Cloudy

05:00 PM 16.1 ◦C 64% Cloudy

06:00 PM 15.5 ◦C 66% Thunder

07:00 PM 13.8 ◦C 79% Cloudy

08:00 PM 13.3 ◦C 84% Cloudy

09:00 PM 11.1 ◦C 91% Cloudy

10:00 PM 11.6 ◦C 81% Light rain shower

11:00 PM 8.9 ◦C 96% Fair

Other important issue to remark in the testing campaign is the related to
Modbus failures. Some nodes experimented a problem with the Modbus that
got frozen suddenly in a given setpoint what made that node to be in a mode
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similar to read-only. If the set point was frozen with a positive setpoint (charging
battery), the battery was getting full until its max allowed capacity, and it got
empty otherwise. The appearance of a read-only node has a big impact in the
whole system. To solve this, a read-only model was developed to be launched
when a read-only node is detected. The integration of this submodel in the system
allows the algorithms to know how would be the behaviour of this malfunctioning
element but not discarding it from the pool. Knowing the status of the failing
node (as well as its forecasting load and generation profiles), other nodes can
mitigate these errors with the developed submodel until this node was pulled out
from the operation pool so that the aggregated operation did not get affected.

5 Conclusions

Building a complex and integrated tool and running it in a real environment
raises important issues and conclusions to be highlighted.

Firstly, this system is robust enough but also sensitive to strong forecast
deviations. Solar generation can be, more or less, accurate to predict, but it is
very difficult to have a high accuracy in node load forecasting, since people can
plug-in very energy-demanding appliances, what terribly affects the operation
for the node in this day, and this also directly affects to the aggregated operation.
Using batteries with a higher capacity (there would be more capacity to buffer
energy) every node is capable to be more resilient by itself to these deviations
and, consequently, the overall performance is better. Next actions are drawn to
evaluate how this resilience index improves changing battery capacities and how
to optimize the topology of the network to get the best relation between cost
and stability.

Other important issue to be consider in future is to optimize considering
the reduction of battery cycles. The degradation of the batteries has a cost, so
performing small charge-discharge actions may involve profits lower than the
return of investment of the equipment. Adding these costs in the optimization
and operational layer will improve the real profit operating the grid.

It is important to remark that the impact of connection errors have been
completely removed as it is shown in Fig. 11. In a decentralized platform where
data is stored with a pushing approach (every device is responsible to save data
instead of having a central agent asking periodically) delays are common due to
clock synchronization, the latency of the network etc. but this unavailability do
not mean that the node is out of order. The approach of generating 18 values at
every sample time (3 h, every 10 min) gives the net an autonomy of 3 h operating
with nodes with these issues.

The results demonstrate that such a complex system is feasible and deployed
in real environments. Several achievements related to energy efficiency and smart
control have been reached and they set the start point for a more complex archi-
tecture. In addition, these designs and implementations solve several intrinsic
problems related to distributed clean-energy dependent systems using DER.
Moreover, prosumers have the possibility to participate in energy markets even
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with low-volume transactions since the aggregated operation removes the barri-
ers for small bid participation. New research and development need to be cov-
ered related with demand response optimization and the integration with smart
domestic appliances.
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Horizon 2020 research and innovation programme under grant agreement No 646463.
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